xref: /illumos-gate/usr/src/uts/common/inet/ip/ip_if.c (revision 66582b606a8194f7f3ba5b3a3a6dca5b0d346361)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990 Mentat Inc.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27  */
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/cmn_err.h>
44 #include <sys/kstat.h>
45 #include <sys/debug.h>
46 #include <sys/zone.h>
47 #include <sys/sunldi.h>
48 #include <sys/file.h>
49 #include <sys/bitmap.h>
50 #include <sys/cpuvar.h>
51 #include <sys/time.h>
52 #include <sys/ctype.h>
53 #include <sys/kmem.h>
54 #include <sys/systm.h>
55 #include <sys/param.h>
56 #include <sys/socket.h>
57 #include <sys/isa_defs.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <sys/sockio.h>
64 #include <netinet/in.h>
65 #include <netinet/ip6.h>
66 #include <netinet/icmp6.h>
67 #include <netinet/igmp_var.h>
68 #include <sys/policy.h>
69 #include <sys/ethernet.h>
70 #include <sys/callb.h>
71 #include <sys/md5.h>
72 
73 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
74 #include <inet/mi.h>
75 #include <inet/nd.h>
76 #include <inet/tunables.h>
77 #include <inet/arp.h>
78 #include <inet/ip_arp.h>
79 #include <inet/mib2.h>
80 #include <inet/ip.h>
81 #include <inet/ip6.h>
82 #include <inet/ip6_asp.h>
83 #include <inet/tcp.h>
84 #include <inet/ip_multi.h>
85 #include <inet/ip_ire.h>
86 #include <inet/ip_ftable.h>
87 #include <inet/ip_rts.h>
88 #include <inet/ip_ndp.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_impl.h>
91 #include <inet/sctp_ip.h>
92 #include <inet/ip_netinfo.h>
93 #include <inet/ilb_ip.h>
94 
95 #include <netinet/igmp.h>
96 #include <inet/ip_listutils.h>
97 #include <inet/ipclassifier.h>
98 #include <sys/mac_client.h>
99 #include <sys/dld.h>
100 #include <sys/mac_flow.h>
101 
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
104 
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
107 
108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
109 #include <inet/udp_impl.h> /* needed for udp_stack_t */
110 
111 /* The character which tells where the ill_name ends */
112 #define	IPIF_SEPARATOR_CHAR	':'
113 
114 /* IP ioctl function table entry */
115 typedef struct ipft_s {
116 	int	ipft_cmd;
117 	pfi_t	ipft_pfi;
118 	int	ipft_min_size;
119 	int	ipft_flags;
120 } ipft_t;
121 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
122 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
123 
124 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
125 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
126 		    char *value, caddr_t cp, cred_t *ioc_cr);
127 
128 static boolean_t ill_is_quiescent(ill_t *);
129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
130 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
131 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
132     mblk_t *mp, boolean_t need_up);
133 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
134     mblk_t *mp, boolean_t need_up);
135 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
136     queue_t *q, mblk_t *mp, boolean_t need_up);
137 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
138     mblk_t *mp);
139 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
140     mblk_t *mp);
141 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
142     queue_t *q, mblk_t *mp, boolean_t need_up);
143 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
144     int ioccmd, struct linkblk *li);
145 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
146 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
147 static void	ipsq_flush(ill_t *ill);
148 
149 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
150     queue_t *q, mblk_t *mp, boolean_t need_up);
151 static void	ipsq_delete(ipsq_t *);
152 
153 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
154     boolean_t initialize, boolean_t insert, int *errorp);
155 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
156 static void	ipif_delete_bcast_ires(ipif_t *ipif);
157 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
159 		    boolean_t isv6);
160 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
161 static void	ipif_free(ipif_t *ipif);
162 static void	ipif_free_tail(ipif_t *ipif);
163 static void	ipif_set_default(ipif_t *ipif);
164 static int	ipif_set_values(queue_t *q, mblk_t *mp,
165     char *interf_name, uint_t *ppa);
166 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
167     queue_t *q);
168 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
169     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
170     ip_stack_t *);
171 static ipif_t	*ipif_lookup_on_name_async(char *name, size_t namelen,
172     boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
173     int *error, ip_stack_t *);
174 
175 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
176 static void	ill_delete_interface_type(ill_if_t *);
177 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
178 static void	ill_dl_down(ill_t *ill);
179 static void	ill_down(ill_t *ill);
180 static void	ill_down_ipifs(ill_t *, boolean_t);
181 static void	ill_free_mib(ill_t *ill);
182 static void	ill_glist_delete(ill_t *);
183 static void	ill_phyint_reinit(ill_t *ill);
184 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
185 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
186 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
187 
188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
192 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
193 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
194 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
195 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
196 static ip_v4mapinfo_func_t ip_mbcast_mapping;
197 static void	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
198 static void	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
199 static void	phyint_free(phyint_t *);
200 
201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
207     dl_capability_sub_t *);
208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
209 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
210 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
211 		    dl_capability_sub_t *);
212 static void	ill_capability_dld_enable(ill_t *);
213 static void	ill_capability_ack_thr(void *);
214 static void	ill_capability_lso_enable(ill_t *);
215 
216 static ill_t	*ill_prev_usesrc(ill_t *);
217 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
218 static void	ill_disband_usesrc_group(ill_t *);
219 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
220 
221 #ifdef DEBUG
222 static	void	ill_trace_cleanup(const ill_t *);
223 static	void	ipif_trace_cleanup(const ipif_t *);
224 #endif
225 
226 static	void	ill_dlpi_clear_deferred(ill_t *ill);
227 
228 static	void	phyint_flags_init(phyint_t *, t_uscalar_t);
229 
230 /*
231  * if we go over the memory footprint limit more than once in this msec
232  * interval, we'll start pruning aggressively.
233  */
234 int ip_min_frag_prune_time = 0;
235 
236 static ipft_t	ip_ioctl_ftbl[] = {
237 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
238 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
239 		IPFT_F_NO_REPLY },
240 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
241 	{ 0 }
242 };
243 
244 /* Simple ICMP IP Header Template */
245 static ipha_t icmp_ipha = {
246 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
247 };
248 
249 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
250 
251 static ip_m_t   ip_m_tbl[] = {
252 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
253 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
254 	    ip_nodef_v6intfid },
255 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
256 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
257 	    ip_nodef_v6intfid },
258 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
259 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
260 	    ip_nodef_v6intfid },
261 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
262 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
263 	    ip_nodef_v6intfid },
264 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
265 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
266 	    ip_nodef_v6intfid },
267 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
268 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
269 	    ip_nodef_v6intfid },
270 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
271 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
272 	    ip_ipv4_v6destintfid },
273 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
274 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
275 	    ip_ipv6_v6destintfid },
276 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
277 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
278 	    ip_nodef_v6intfid },
279 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
280 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
281 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
282 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
283 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
284 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
285 	    ip_nodef_v6intfid }
286 };
287 
288 char	ipif_loopback_name[] = "lo0";
289 
290 /* These are used by all IP network modules. */
291 sin6_t	sin6_null;	/* Zero address for quick clears */
292 sin_t	sin_null;	/* Zero address for quick clears */
293 
294 /* When set search for unused ipif_seqid */
295 static ipif_t	ipif_zero;
296 
297 /*
298  * ppa arena is created after these many
299  * interfaces have been plumbed.
300  */
301 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
302 
303 /*
304  * Allocate per-interface mibs.
305  * Returns true if ok. False otherwise.
306  *  ipsq  may not yet be allocated (loopback case ).
307  */
308 static boolean_t
309 ill_allocate_mibs(ill_t *ill)
310 {
311 	/* Already allocated? */
312 	if (ill->ill_ip_mib != NULL) {
313 		if (ill->ill_isv6)
314 			ASSERT(ill->ill_icmp6_mib != NULL);
315 		return (B_TRUE);
316 	}
317 
318 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
319 	    KM_NOSLEEP);
320 	if (ill->ill_ip_mib == NULL) {
321 		return (B_FALSE);
322 	}
323 
324 	/* Setup static information */
325 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
326 	    sizeof (mib2_ipIfStatsEntry_t));
327 	if (ill->ill_isv6) {
328 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
329 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
330 		    sizeof (mib2_ipv6AddrEntry_t));
331 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
332 		    sizeof (mib2_ipv6RouteEntry_t));
333 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
334 		    sizeof (mib2_ipv6NetToMediaEntry_t));
335 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
336 		    sizeof (ipv6_member_t));
337 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
338 		    sizeof (ipv6_grpsrc_t));
339 	} else {
340 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
341 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
342 		    sizeof (mib2_ipAddrEntry_t));
343 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
344 		    sizeof (mib2_ipRouteEntry_t));
345 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
346 		    sizeof (mib2_ipNetToMediaEntry_t));
347 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
348 		    sizeof (ip_member_t));
349 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
350 		    sizeof (ip_grpsrc_t));
351 
352 		/*
353 		 * For a v4 ill, we are done at this point, because per ill
354 		 * icmp mibs are only used for v6.
355 		 */
356 		return (B_TRUE);
357 	}
358 
359 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
360 	    KM_NOSLEEP);
361 	if (ill->ill_icmp6_mib == NULL) {
362 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
363 		ill->ill_ip_mib = NULL;
364 		return (B_FALSE);
365 	}
366 	/* static icmp info */
367 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
368 	    sizeof (mib2_ipv6IfIcmpEntry_t);
369 	/*
370 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
371 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
372 	 * -> ill_phyint_reinit
373 	 */
374 	return (B_TRUE);
375 }
376 
377 /*
378  * Completely vaporize a lower level tap and all associated interfaces.
379  * ill_delete is called only out of ip_close when the device control
380  * stream is being closed.
381  */
382 void
383 ill_delete(ill_t *ill)
384 {
385 	ipif_t	*ipif;
386 	ill_t	*prev_ill;
387 	ip_stack_t	*ipst = ill->ill_ipst;
388 
389 	/*
390 	 * ill_delete may be forcibly entering the ipsq. The previous
391 	 * ioctl may not have completed and may need to be aborted.
392 	 * ipsq_flush takes care of it. If we don't need to enter the
393 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
394 	 * ill_delete_tail is sufficient.
395 	 */
396 	ipsq_flush(ill);
397 
398 	/*
399 	 * Nuke all interfaces.  ipif_free will take down the interface,
400 	 * remove it from the list, and free the data structure.
401 	 * Walk down the ipif list and remove the logical interfaces
402 	 * first before removing the main ipif. We can't unplumb
403 	 * zeroth interface first in the case of IPv6 as update_conn_ill
404 	 * -> ip_ll_multireq de-references ill_ipif for checking
405 	 * POINTOPOINT.
406 	 *
407 	 * If ill_ipif was not properly initialized (i.e low on memory),
408 	 * then no interfaces to clean up. In this case just clean up the
409 	 * ill.
410 	 */
411 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
412 		ipif_free(ipif);
413 
414 	/*
415 	 * clean out all the nce_t entries that depend on this
416 	 * ill for the ill_phys_addr.
417 	 */
418 	nce_flush(ill, B_TRUE);
419 
420 	/* Clean up msgs on pending upcalls for mrouted */
421 	reset_mrt_ill(ill);
422 
423 	update_conn_ill(ill, ipst);
424 
425 	/*
426 	 * Remove multicast references added as a result of calls to
427 	 * ip_join_allmulti().
428 	 */
429 	ip_purge_allmulti(ill);
430 
431 	/*
432 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
433 	 */
434 	if (IS_UNDER_IPMP(ill))
435 		ipmp_ill_leave_illgrp(ill);
436 
437 	/*
438 	 * ill_down will arrange to blow off any IRE's dependent on this
439 	 * ILL, and shut down fragmentation reassembly.
440 	 */
441 	ill_down(ill);
442 
443 	/* Let SCTP know, so that it can remove this from its list. */
444 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
445 
446 	/*
447 	 * Walk all CONNs that can have a reference on an ire or nce for this
448 	 * ill (we actually walk all that now have stale references).
449 	 */
450 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
451 
452 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
453 	if (ill->ill_isv6)
454 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
455 
456 	/*
457 	 * If an address on this ILL is being used as a source address then
458 	 * clear out the pointers in other ILLs that point to this ILL.
459 	 */
460 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
461 	if (ill->ill_usesrc_grp_next != NULL) {
462 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
463 			ill_disband_usesrc_group(ill);
464 		} else {	/* consumer of the usesrc ILL */
465 			prev_ill = ill_prev_usesrc(ill);
466 			prev_ill->ill_usesrc_grp_next =
467 			    ill->ill_usesrc_grp_next;
468 		}
469 	}
470 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
471 }
472 
473 static void
474 ipif_non_duplicate(ipif_t *ipif)
475 {
476 	ill_t *ill = ipif->ipif_ill;
477 	mutex_enter(&ill->ill_lock);
478 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
479 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
480 		ASSERT(ill->ill_ipif_dup_count > 0);
481 		ill->ill_ipif_dup_count--;
482 	}
483 	mutex_exit(&ill->ill_lock);
484 }
485 
486 /*
487  * ill_delete_tail is called from ip_modclose after all references
488  * to the closing ill are gone. The wait is done in ip_modclose
489  */
490 void
491 ill_delete_tail(ill_t *ill)
492 {
493 	mblk_t	**mpp;
494 	ipif_t	*ipif;
495 	ip_stack_t *ipst = ill->ill_ipst;
496 
497 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
498 		ipif_non_duplicate(ipif);
499 		(void) ipif_down_tail(ipif);
500 	}
501 
502 	ASSERT(ill->ill_ipif_dup_count == 0);
503 
504 	/*
505 	 * If polling capability is enabled (which signifies direct
506 	 * upcall into IP and driver has ill saved as a handle),
507 	 * we need to make sure that unbind has completed before we
508 	 * let the ill disappear and driver no longer has any reference
509 	 * to this ill.
510 	 */
511 	mutex_enter(&ill->ill_lock);
512 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
513 		cv_wait(&ill->ill_cv, &ill->ill_lock);
514 	mutex_exit(&ill->ill_lock);
515 	ASSERT(!(ill->ill_capabilities &
516 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
517 
518 	if (ill->ill_net_type != IRE_LOOPBACK)
519 		qprocsoff(ill->ill_rq);
520 
521 	/*
522 	 * We do an ipsq_flush once again now. New messages could have
523 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
524 	 * could also have landed up if an ioctl thread had looked up
525 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
526 	 * enqueued the ioctl when we did the ipsq_flush last time.
527 	 */
528 	ipsq_flush(ill);
529 
530 	/*
531 	 * Free capabilities.
532 	 */
533 	if (ill->ill_hcksum_capab != NULL) {
534 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
535 		ill->ill_hcksum_capab = NULL;
536 	}
537 
538 	if (ill->ill_zerocopy_capab != NULL) {
539 		kmem_free(ill->ill_zerocopy_capab,
540 		    sizeof (ill_zerocopy_capab_t));
541 		ill->ill_zerocopy_capab = NULL;
542 	}
543 
544 	if (ill->ill_lso_capab != NULL) {
545 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
546 		ill->ill_lso_capab = NULL;
547 	}
548 
549 	if (ill->ill_dld_capab != NULL) {
550 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
551 		ill->ill_dld_capab = NULL;
552 	}
553 
554 	/* Clean up ill_allowed_ips* related state */
555 	if (ill->ill_allowed_ips != NULL) {
556 		ASSERT(ill->ill_allowed_ips_cnt > 0);
557 		kmem_free(ill->ill_allowed_ips,
558 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
559 		ill->ill_allowed_ips = NULL;
560 		ill->ill_allowed_ips_cnt = 0;
561 	}
562 
563 	while (ill->ill_ipif != NULL)
564 		ipif_free_tail(ill->ill_ipif);
565 
566 	/*
567 	 * We have removed all references to ilm from conn and the ones joined
568 	 * within the kernel.
569 	 *
570 	 * We don't walk conns, mrts and ires because
571 	 *
572 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
573 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
574 	 *    ill references.
575 	 */
576 
577 	/*
578 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
579 	 * is safe to do because the illgrp has already been unlinked from the
580 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
581 	 */
582 	if (IS_IPMP(ill)) {
583 		ipmp_illgrp_destroy(ill->ill_grp);
584 		ill->ill_grp = NULL;
585 	}
586 
587 	if (ill->ill_mphysaddr_list != NULL) {
588 		multiphysaddr_t *mpa, *tmpa;
589 
590 		mpa = ill->ill_mphysaddr_list;
591 		ill->ill_mphysaddr_list = NULL;
592 		while (mpa) {
593 			tmpa = mpa->mpa_next;
594 			kmem_free(mpa, sizeof (*mpa));
595 			mpa = tmpa;
596 		}
597 	}
598 	/*
599 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
600 	 * could free the phyint. No more reference to the phyint after this
601 	 * point.
602 	 */
603 	(void) ill_glist_delete(ill);
604 
605 	if (ill->ill_frag_ptr != NULL) {
606 		uint_t count;
607 
608 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
609 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
610 		}
611 		mi_free(ill->ill_frag_ptr);
612 		ill->ill_frag_ptr = NULL;
613 		ill->ill_frag_hash_tbl = NULL;
614 	}
615 
616 	freemsg(ill->ill_nd_lla_mp);
617 	/* Free all retained control messages. */
618 	mpp = &ill->ill_first_mp_to_free;
619 	do {
620 		while (mpp[0]) {
621 			mblk_t  *mp;
622 			mblk_t  *mp1;
623 
624 			mp = mpp[0];
625 			mpp[0] = mp->b_next;
626 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
627 				mp1->b_next = NULL;
628 				mp1->b_prev = NULL;
629 			}
630 			freemsg(mp);
631 		}
632 	} while (mpp++ != &ill->ill_last_mp_to_free);
633 
634 	ill_free_mib(ill);
635 
636 #ifdef DEBUG
637 	ill_trace_cleanup(ill);
638 #endif
639 
640 	/* The default multicast interface might have changed */
641 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
642 
643 	/* Drop refcnt here */
644 	netstack_rele(ill->ill_ipst->ips_netstack);
645 	ill->ill_ipst = NULL;
646 }
647 
648 static void
649 ill_free_mib(ill_t *ill)
650 {
651 	ip_stack_t *ipst = ill->ill_ipst;
652 
653 	/*
654 	 * MIB statistics must not be lost, so when an interface
655 	 * goes away the counter values will be added to the global
656 	 * MIBs.
657 	 */
658 	if (ill->ill_ip_mib != NULL) {
659 		if (ill->ill_isv6) {
660 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
661 			    ill->ill_ip_mib);
662 		} else {
663 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
664 			    ill->ill_ip_mib);
665 		}
666 
667 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
668 		ill->ill_ip_mib = NULL;
669 	}
670 	if (ill->ill_icmp6_mib != NULL) {
671 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
672 		    ill->ill_icmp6_mib);
673 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
674 		ill->ill_icmp6_mib = NULL;
675 	}
676 }
677 
678 /*
679  * Concatenate together a physical address and a sap.
680  *
681  * Sap_lengths are interpreted as follows:
682  *   sap_length == 0	==>	no sap
683  *   sap_length > 0	==>	sap is at the head of the dlpi address
684  *   sap_length < 0	==>	sap is at the tail of the dlpi address
685  */
686 static void
687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
688     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
689 {
690 	uint16_t sap_addr = (uint16_t)sap_src;
691 
692 	if (sap_length == 0) {
693 		if (phys_src == NULL)
694 			bzero(dst, phys_length);
695 		else
696 			bcopy(phys_src, dst, phys_length);
697 	} else if (sap_length < 0) {
698 		if (phys_src == NULL)
699 			bzero(dst, phys_length);
700 		else
701 			bcopy(phys_src, dst, phys_length);
702 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
703 	} else {
704 		bcopy(&sap_addr, dst, sizeof (sap_addr));
705 		if (phys_src == NULL)
706 			bzero((char *)dst + sap_length, phys_length);
707 		else
708 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
709 	}
710 }
711 
712 /*
713  * Generate a dl_unitdata_req mblk for the device and address given.
714  * addr_length is the length of the physical portion of the address.
715  * If addr is NULL include an all zero address of the specified length.
716  * TRUE? In any case, addr_length is taken to be the entire length of the
717  * dlpi address, including the absolute value of sap_length.
718  */
719 mblk_t *
720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
721     t_scalar_t sap_length)
722 {
723 	dl_unitdata_req_t *dlur;
724 	mblk_t	*mp;
725 	t_scalar_t	abs_sap_length;		/* absolute value */
726 
727 	abs_sap_length = ABS(sap_length);
728 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
729 	    DL_UNITDATA_REQ);
730 	if (mp == NULL)
731 		return (NULL);
732 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
733 	/* HACK: accomodate incompatible DLPI drivers */
734 	if (addr_length == 8)
735 		addr_length = 6;
736 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
737 	dlur->dl_dest_addr_offset = sizeof (*dlur);
738 	dlur->dl_priority.dl_min = 0;
739 	dlur->dl_priority.dl_max = 0;
740 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
741 	    (uchar_t *)&dlur[1]);
742 	return (mp);
743 }
744 
745 /*
746  * Add the pending mp to the list. There can be only 1 pending mp
747  * in the list. Any exclusive ioctl that needs to wait for a response
748  * from another module or driver needs to use this function to set
749  * the ipx_pending_mp to the ioctl mblk and wait for the response from
750  * the other module/driver. This is also used while waiting for the
751  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
752  */
753 boolean_t
754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
755     int waitfor)
756 {
757 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
758 
759 	ASSERT(IAM_WRITER_IPIF(ipif));
760 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
761 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
762 	ASSERT(ipx->ipx_pending_mp == NULL);
763 	/*
764 	 * The caller may be using a different ipif than the one passed into
765 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
766 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
767 	 * that `ipx_current_ipif == ipif'.
768 	 */
769 	ASSERT(ipx->ipx_current_ipif != NULL);
770 
771 	/*
772 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
773 	 * driver.
774 	 */
775 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
776 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
777 	    (DB_TYPE(add_mp) == M_PCPROTO));
778 
779 	if (connp != NULL) {
780 		ASSERT(MUTEX_HELD(&connp->conn_lock));
781 		/*
782 		 * Return error if the conn has started closing. The conn
783 		 * could have finished cleaning up the pending mp list,
784 		 * If so we should not add another mp to the list negating
785 		 * the cleanup.
786 		 */
787 		if (connp->conn_state_flags & CONN_CLOSING)
788 			return (B_FALSE);
789 	}
790 	mutex_enter(&ipx->ipx_lock);
791 	ipx->ipx_pending_ipif = ipif;
792 	/*
793 	 * Note down the queue in b_queue. This will be returned by
794 	 * ipsq_pending_mp_get. Caller will then use these values to restart
795 	 * the processing
796 	 */
797 	add_mp->b_next = NULL;
798 	add_mp->b_queue = q;
799 	ipx->ipx_pending_mp = add_mp;
800 	ipx->ipx_waitfor = waitfor;
801 	mutex_exit(&ipx->ipx_lock);
802 
803 	if (connp != NULL)
804 		connp->conn_oper_pending_ill = ipif->ipif_ill;
805 
806 	return (B_TRUE);
807 }
808 
809 /*
810  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
811  * queued in the list.
812  */
813 mblk_t *
814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
815 {
816 	mblk_t	*curr = NULL;
817 	ipxop_t	*ipx = ipsq->ipsq_xop;
818 
819 	*connpp = NULL;
820 	mutex_enter(&ipx->ipx_lock);
821 	if (ipx->ipx_pending_mp == NULL) {
822 		mutex_exit(&ipx->ipx_lock);
823 		return (NULL);
824 	}
825 
826 	/* There can be only 1 such excl message */
827 	curr = ipx->ipx_pending_mp;
828 	ASSERT(curr->b_next == NULL);
829 	ipx->ipx_pending_ipif = NULL;
830 	ipx->ipx_pending_mp = NULL;
831 	ipx->ipx_waitfor = 0;
832 	mutex_exit(&ipx->ipx_lock);
833 
834 	if (CONN_Q(curr->b_queue)) {
835 		/*
836 		 * This mp did a refhold on the conn, at the start of the ioctl.
837 		 * So we can safely return a pointer to the conn to the caller.
838 		 */
839 		*connpp = Q_TO_CONN(curr->b_queue);
840 	} else {
841 		*connpp = NULL;
842 	}
843 	curr->b_next = NULL;
844 	curr->b_prev = NULL;
845 	return (curr);
846 }
847 
848 /*
849  * Cleanup the ioctl mp queued in ipx_pending_mp
850  * - Called in the ill_delete path
851  * - Called in the M_ERROR or M_HANGUP path on the ill.
852  * - Called in the conn close path.
853  *
854  * Returns success on finding the pending mblk associated with the ioctl or
855  * exclusive operation in progress, failure otherwise.
856  */
857 boolean_t
858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
859 {
860 	mblk_t	*mp;
861 	ipxop_t	*ipx;
862 	queue_t	*q;
863 	ipif_t	*ipif;
864 	int	cmd;
865 
866 	ASSERT(IAM_WRITER_ILL(ill));
867 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
868 
869 	mutex_enter(&ipx->ipx_lock);
870 	mp = ipx->ipx_pending_mp;
871 	if (connp != NULL) {
872 		if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
873 			/*
874 			 * Nothing to clean since the conn that is closing
875 			 * does not have a matching pending mblk in
876 			 * ipx_pending_mp.
877 			 */
878 			mutex_exit(&ipx->ipx_lock);
879 			return (B_FALSE);
880 		}
881 	} else {
882 		/*
883 		 * A non-zero ill_error signifies we are called in the
884 		 * M_ERROR or M_HANGUP path and we need to unconditionally
885 		 * abort any current ioctl and do the corresponding cleanup.
886 		 * A zero ill_error means we are in the ill_delete path and
887 		 * we do the cleanup only if there is a pending mp.
888 		 */
889 		if (mp == NULL && ill->ill_error == 0) {
890 			mutex_exit(&ipx->ipx_lock);
891 			return (B_FALSE);
892 		}
893 	}
894 
895 	/* Now remove from the ipx_pending_mp */
896 	ipx->ipx_pending_mp = NULL;
897 	ipif = ipx->ipx_pending_ipif;
898 	ipx->ipx_pending_ipif = NULL;
899 	ipx->ipx_waitfor = 0;
900 	ipx->ipx_current_ipif = NULL;
901 	cmd = ipx->ipx_current_ioctl;
902 	ipx->ipx_current_ioctl = 0;
903 	ipx->ipx_current_done = B_TRUE;
904 	mutex_exit(&ipx->ipx_lock);
905 
906 	if (mp == NULL)
907 		return (B_FALSE);
908 
909 	q = mp->b_queue;
910 	mp->b_next = NULL;
911 	mp->b_prev = NULL;
912 	mp->b_queue = NULL;
913 
914 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
915 		DTRACE_PROBE4(ipif__ioctl,
916 		    char *, "ipsq_pending_mp_cleanup",
917 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
918 		    ipif_t *, ipif);
919 		if (connp == NULL) {
920 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
921 		} else {
922 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
923 			mutex_enter(&ipif->ipif_ill->ill_lock);
924 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
925 			mutex_exit(&ipif->ipif_ill->ill_lock);
926 		}
927 	} else {
928 		inet_freemsg(mp);
929 	}
930 	return (B_TRUE);
931 }
932 
933 /*
934  * Called in the conn close path and ill delete path
935  */
936 static void
937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
938 {
939 	ipsq_t	*ipsq;
940 	mblk_t	*prev;
941 	mblk_t	*curr;
942 	mblk_t	*next;
943 	queue_t	*wq, *rq = NULL;
944 	mblk_t	*tmp_list = NULL;
945 
946 	ASSERT(IAM_WRITER_ILL(ill));
947 	if (connp != NULL)
948 		wq = CONNP_TO_WQ(connp);
949 	else
950 		wq = ill->ill_wq;
951 
952 	/*
953 	 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
954 	 * against this here.
955 	 */
956 	if (wq != NULL)
957 		rq = RD(wq);
958 
959 	ipsq = ill->ill_phyint->phyint_ipsq;
960 	/*
961 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
962 	 * In the case of ioctl from a conn, there can be only 1 mp
963 	 * queued on the ipsq. If an ill is being unplumbed flush all
964 	 * the messages.
965 	 */
966 	mutex_enter(&ipsq->ipsq_lock);
967 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
968 	    curr = next) {
969 		next = curr->b_next;
970 		if (connp == NULL ||
971 		    (curr->b_queue == wq || curr->b_queue == rq)) {
972 			/* Unlink the mblk from the pending mp list */
973 			if (prev != NULL) {
974 				prev->b_next = curr->b_next;
975 			} else {
976 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
977 				ipsq->ipsq_xopq_mphead = curr->b_next;
978 			}
979 			if (ipsq->ipsq_xopq_mptail == curr)
980 				ipsq->ipsq_xopq_mptail = prev;
981 			/*
982 			 * Create a temporary list and release the ipsq lock
983 			 * New elements are added to the head of the tmp_list
984 			 */
985 			curr->b_next = tmp_list;
986 			tmp_list = curr;
987 		} else {
988 			prev = curr;
989 		}
990 	}
991 	mutex_exit(&ipsq->ipsq_lock);
992 
993 	while (tmp_list != NULL) {
994 		curr = tmp_list;
995 		tmp_list = curr->b_next;
996 		curr->b_next = NULL;
997 		curr->b_prev = NULL;
998 		wq = curr->b_queue;
999 		curr->b_queue = NULL;
1000 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1001 			DTRACE_PROBE4(ipif__ioctl,
1002 			    char *, "ipsq_xopq_mp_cleanup",
1003 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
1004 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1005 			    CONN_CLOSE : NO_COPYOUT, NULL);
1006 		} else {
1007 			/*
1008 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1009 			 * this can't be just inet_freemsg. we have to
1010 			 * restart it otherwise the thread will be stuck.
1011 			 */
1012 			inet_freemsg(curr);
1013 		}
1014 	}
1015 }
1016 
1017 /*
1018  * This conn has started closing. Cleanup any pending ioctl from this conn.
1019  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1020  */
1021 void
1022 conn_ioctl_cleanup(conn_t *connp)
1023 {
1024 	ipsq_t	*ipsq;
1025 	ill_t	*ill;
1026 	boolean_t refheld;
1027 
1028 	/*
1029 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1030 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1031 	 * started the mp could be present in ipx_pending_mp. Note that if
1032 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1033 	 * not yet queued anywhere. In this case, the conn close code will wait
1034 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
1035 	 * tcp_close will wait first until all ioctls have completed for this
1036 	 * conn.
1037 	 */
1038 	mutex_enter(&connp->conn_lock);
1039 	ill = connp->conn_oper_pending_ill;
1040 	if (ill == NULL) {
1041 		mutex_exit(&connp->conn_lock);
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * We may not be able to refhold the ill if the ill/ipif
1047 	 * is changing. But we need to make sure that the ill will
1048 	 * not vanish. So we just bump up the ill_waiter count.
1049 	 */
1050 	refheld = ill_waiter_inc(ill);
1051 	mutex_exit(&connp->conn_lock);
1052 	if (refheld) {
1053 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1054 			ill_waiter_dcr(ill);
1055 			/*
1056 			 * Check whether this ioctl has started and is
1057 			 * pending. If it is not found there then check
1058 			 * whether this ioctl has not even started and is in
1059 			 * the ipsq_xopq list.
1060 			 */
1061 			if (!ipsq_pending_mp_cleanup(ill, connp))
1062 				ipsq_xopq_mp_cleanup(ill, connp);
1063 			ipsq = ill->ill_phyint->phyint_ipsq;
1064 			ipsq_exit(ipsq);
1065 			return;
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * The ill is also closing and we could not bump up the
1071 	 * ill_waiter_count or we could not enter the ipsq. Leave
1072 	 * the cleanup to ill_delete
1073 	 */
1074 	mutex_enter(&connp->conn_lock);
1075 	while (connp->conn_oper_pending_ill != NULL)
1076 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1077 	mutex_exit(&connp->conn_lock);
1078 	if (refheld)
1079 		ill_waiter_dcr(ill);
1080 }
1081 
1082 /*
1083  * ipcl_walk function for cleaning up conn_*_ill fields.
1084  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1085  * conn_bound_if in place. We prefer dropping
1086  * packets instead of sending them out the wrong interface, or accepting
1087  * packets from the wrong ifindex.
1088  */
1089 static void
1090 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1091 {
1092 	ill_t	*ill = (ill_t *)arg;
1093 
1094 	mutex_enter(&connp->conn_lock);
1095 	if (connp->conn_dhcpinit_ill == ill) {
1096 		connp->conn_dhcpinit_ill = NULL;
1097 		ASSERT(ill->ill_dhcpinit != 0);
1098 		atomic_dec_32(&ill->ill_dhcpinit);
1099 		ill_set_inputfn(ill);
1100 	}
1101 	mutex_exit(&connp->conn_lock);
1102 }
1103 
1104 static int
1105 ill_down_ipifs_tail(ill_t *ill)
1106 {
1107 	ipif_t	*ipif;
1108 	int err;
1109 
1110 	ASSERT(IAM_WRITER_ILL(ill));
1111 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1112 		ipif_non_duplicate(ipif);
1113 		/*
1114 		 * ipif_down_tail will call arp_ll_down on the last ipif
1115 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1116 		 */
1117 		if ((err = ipif_down_tail(ipif)) != 0)
1118 			return (err);
1119 	}
1120 	return (0);
1121 }
1122 
1123 /* ARGSUSED */
1124 void
1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1126 {
1127 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1128 	(void) ill_down_ipifs_tail(q->q_ptr);
1129 	freemsg(mp);
1130 	ipsq_current_finish(ipsq);
1131 }
1132 
1133 /*
1134  * ill_down_start is called when we want to down this ill and bring it up again
1135  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1136  * all interfaces, but don't tear down any plumbing.
1137  */
1138 boolean_t
1139 ill_down_start(queue_t *q, mblk_t *mp)
1140 {
1141 	ill_t	*ill = q->q_ptr;
1142 	ipif_t	*ipif;
1143 
1144 	ASSERT(IAM_WRITER_ILL(ill));
1145 	/*
1146 	 * It is possible that some ioctl is already in progress while we
1147 	 * received the M_ERROR / M_HANGUP in which case, we need to abort
1148 	 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1149 	 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1150 	 * the in progress ioctl from ever completing.
1151 	 *
1152 	 * The thread that started the ioctl (if any) must have returned,
1153 	 * since we are now executing as writer. After the 2 calls below,
1154 	 * the state of the ipsq and the ill would reflect no trace of any
1155 	 * pending operation. Subsequently if there is any response to the
1156 	 * original ioctl from the driver, it would be discarded as an
1157 	 * unsolicited message from the driver.
1158 	 */
1159 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1160 	ill_dlpi_clear_deferred(ill);
1161 
1162 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1163 		(void) ipif_down(ipif, NULL, NULL);
1164 
1165 	ill_down(ill);
1166 
1167 	/*
1168 	 * Walk all CONNs that can have a reference on an ire or nce for this
1169 	 * ill (we actually walk all that now have stale references).
1170 	 */
1171 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1172 
1173 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1174 	if (ill->ill_isv6)
1175 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1176 
1177 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1178 
1179 	/*
1180 	 * Atomically test and add the pending mp if references are active.
1181 	 */
1182 	mutex_enter(&ill->ill_lock);
1183 	if (!ill_is_quiescent(ill)) {
1184 		/* call cannot fail since `conn_t *' argument is NULL */
1185 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1186 		    mp, ILL_DOWN);
1187 		mutex_exit(&ill->ill_lock);
1188 		return (B_FALSE);
1189 	}
1190 	mutex_exit(&ill->ill_lock);
1191 	return (B_TRUE);
1192 }
1193 
1194 static void
1195 ill_down(ill_t *ill)
1196 {
1197 	mblk_t	*mp;
1198 	ip_stack_t	*ipst = ill->ill_ipst;
1199 
1200 	/*
1201 	 * Blow off any IREs dependent on this ILL.
1202 	 * The caller needs to handle conn_ixa_cleanup
1203 	 */
1204 	ill_delete_ires(ill);
1205 
1206 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1207 
1208 	/* Remove any conn_*_ill depending on this ill */
1209 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1210 
1211 	/*
1212 	 * Free state for additional IREs.
1213 	 */
1214 	mutex_enter(&ill->ill_saved_ire_lock);
1215 	mp = ill->ill_saved_ire_mp;
1216 	ill->ill_saved_ire_mp = NULL;
1217 	ill->ill_saved_ire_cnt = 0;
1218 	mutex_exit(&ill->ill_saved_ire_lock);
1219 	freemsg(mp);
1220 }
1221 
1222 /*
1223  * ire_walk routine used to delete every IRE that depends on
1224  * 'ill'.  (Always called as writer, and may only be called from ire_walk.)
1225  *
1226  * Note: since the routes added by the kernel are deleted separately,
1227  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1228  *
1229  * We also remove references on ire_nce_cache entries that refer to the ill.
1230  */
1231 void
1232 ill_downi(ire_t *ire, char *ill_arg)
1233 {
1234 	ill_t	*ill = (ill_t *)ill_arg;
1235 	nce_t	*nce;
1236 
1237 	mutex_enter(&ire->ire_lock);
1238 	nce = ire->ire_nce_cache;
1239 	if (nce != NULL && nce->nce_ill == ill)
1240 		ire->ire_nce_cache = NULL;
1241 	else
1242 		nce = NULL;
1243 	mutex_exit(&ire->ire_lock);
1244 	if (nce != NULL)
1245 		nce_refrele(nce);
1246 	if (ire->ire_ill == ill) {
1247 		/*
1248 		 * The existing interface binding for ire must be
1249 		 * deleted before trying to bind the route to another
1250 		 * interface. However, since we are using the contents of the
1251 		 * ire after ire_delete, the caller has to ensure that
1252 		 * CONDEMNED (deleted) ire's are not removed from the list
1253 		 * when ire_delete() returns. Currently ill_downi() is
1254 		 * only called as part of ire_walk*() routines, so that
1255 		 * the irb_refhold() done by ire_walk*() will ensure that
1256 		 * ire_delete() does not lead to ire_inactive().
1257 		 */
1258 		ASSERT(ire->ire_bucket->irb_refcnt > 0);
1259 		ire_delete(ire);
1260 		if (ire->ire_unbound)
1261 			ire_rebind(ire);
1262 	}
1263 }
1264 
1265 /* Remove IRE_IF_CLONE on this ill */
1266 void
1267 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1268 {
1269 	ill_t	*ill = (ill_t *)ill_arg;
1270 
1271 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1272 	if (ire->ire_ill == ill)
1273 		ire_delete(ire);
1274 }
1275 
1276 /* Consume an M_IOCACK of the fastpath probe. */
1277 void
1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1279 {
1280 	mblk_t	*mp1 = mp;
1281 
1282 	/*
1283 	 * If this was the first attempt turn on the fastpath probing.
1284 	 */
1285 	mutex_enter(&ill->ill_lock);
1286 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1287 		ill->ill_dlpi_fastpath_state = IDS_OK;
1288 	mutex_exit(&ill->ill_lock);
1289 
1290 	/* Free the M_IOCACK mblk, hold on to the data */
1291 	mp = mp->b_cont;
1292 	freeb(mp1);
1293 	if (mp == NULL)
1294 		return;
1295 	if (mp->b_cont != NULL)
1296 		nce_fastpath_update(ill, mp);
1297 	else
1298 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1299 	freemsg(mp);
1300 }
1301 
1302 /*
1303  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1304  * The data portion of the request is a dl_unitdata_req_t template for
1305  * what we would send downstream in the absence of a fastpath confirmation.
1306  */
1307 int
1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1309 {
1310 	struct iocblk	*ioc;
1311 	mblk_t	*mp;
1312 
1313 	if (dlur_mp == NULL)
1314 		return (EINVAL);
1315 
1316 	mutex_enter(&ill->ill_lock);
1317 	switch (ill->ill_dlpi_fastpath_state) {
1318 	case IDS_FAILED:
1319 		/*
1320 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1321 		 * support it.
1322 		 */
1323 		mutex_exit(&ill->ill_lock);
1324 		return (ENOTSUP);
1325 	case IDS_UNKNOWN:
1326 		/* This is the first probe */
1327 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1328 		break;
1329 	default:
1330 		break;
1331 	}
1332 	mutex_exit(&ill->ill_lock);
1333 
1334 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1335 		return (EAGAIN);
1336 
1337 	mp->b_cont = copyb(dlur_mp);
1338 	if (mp->b_cont == NULL) {
1339 		freeb(mp);
1340 		return (EAGAIN);
1341 	}
1342 
1343 	ioc = (struct iocblk *)mp->b_rptr;
1344 	ioc->ioc_count = msgdsize(mp->b_cont);
1345 
1346 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1347 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1348 	putnext(ill->ill_wq, mp);
1349 	return (0);
1350 }
1351 
1352 void
1353 ill_capability_probe(ill_t *ill)
1354 {
1355 	mblk_t	*mp;
1356 
1357 	ASSERT(IAM_WRITER_ILL(ill));
1358 
1359 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1360 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1361 		return;
1362 
1363 	/*
1364 	 * We are starting a new cycle of capability negotiation.
1365 	 * Free up the capab reset messages of any previous incarnation.
1366 	 * We will do a fresh allocation when we get the response to our probe
1367 	 */
1368 	if (ill->ill_capab_reset_mp != NULL) {
1369 		freemsg(ill->ill_capab_reset_mp);
1370 		ill->ill_capab_reset_mp = NULL;
1371 	}
1372 
1373 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1374 
1375 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1376 	if (mp == NULL)
1377 		return;
1378 
1379 	ill_capability_send(ill, mp);
1380 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1381 }
1382 
1383 void
1384 ill_capability_reset(ill_t *ill, boolean_t reneg)
1385 {
1386 	ASSERT(IAM_WRITER_ILL(ill));
1387 
1388 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1389 		return;
1390 
1391 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1392 
1393 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1394 	ill->ill_capab_reset_mp = NULL;
1395 	/*
1396 	 * We turn off all capabilities except those pertaining to
1397 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1398 	 * which will be turned off by the corresponding reset functions.
1399 	 */
1400 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1401 }
1402 
1403 static void
1404 ill_capability_reset_alloc(ill_t *ill)
1405 {
1406 	mblk_t *mp;
1407 	size_t	size = 0;
1408 	int	err;
1409 	dl_capability_req_t	*capb;
1410 
1411 	ASSERT(IAM_WRITER_ILL(ill));
1412 	ASSERT(ill->ill_capab_reset_mp == NULL);
1413 
1414 	if (ILL_HCKSUM_CAPABLE(ill)) {
1415 		size += sizeof (dl_capability_sub_t) +
1416 		    sizeof (dl_capab_hcksum_t);
1417 	}
1418 
1419 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1420 		size += sizeof (dl_capability_sub_t) +
1421 		    sizeof (dl_capab_zerocopy_t);
1422 	}
1423 
1424 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1425 		size += sizeof (dl_capability_sub_t) +
1426 		    sizeof (dl_capab_dld_t);
1427 	}
1428 
1429 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1430 	    STR_NOSIG, &err);
1431 
1432 	mp->b_datap->db_type = M_PROTO;
1433 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1434 
1435 	capb = (dl_capability_req_t *)mp->b_rptr;
1436 	capb->dl_primitive = DL_CAPABILITY_REQ;
1437 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1438 	capb->dl_sub_length = size;
1439 
1440 	mp->b_wptr += sizeof (dl_capability_req_t);
1441 
1442 	/*
1443 	 * Each handler fills in the corresponding dl_capability_sub_t
1444 	 * inside the mblk,
1445 	 */
1446 	ill_capability_hcksum_reset_fill(ill, mp);
1447 	ill_capability_zerocopy_reset_fill(ill, mp);
1448 	ill_capability_dld_reset_fill(ill, mp);
1449 
1450 	ill->ill_capab_reset_mp = mp;
1451 }
1452 
1453 static void
1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1455 {
1456 	dl_capab_id_t *id_ic;
1457 	uint_t sub_dl_cap = outers->dl_cap;
1458 	dl_capability_sub_t *inners;
1459 	uint8_t *capend;
1460 
1461 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1462 
1463 	/*
1464 	 * Note: range checks here are not absolutely sufficient to
1465 	 * make us robust against malformed messages sent by drivers;
1466 	 * this is in keeping with the rest of IP's dlpi handling.
1467 	 * (Remember, it's coming from something else in the kernel
1468 	 * address space)
1469 	 */
1470 
1471 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1472 	if (capend > mp->b_wptr) {
1473 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1474 		    "malformed sub-capability too long for mblk");
1475 		return;
1476 	}
1477 
1478 	id_ic = (dl_capab_id_t *)(outers + 1);
1479 
1480 	if (outers->dl_length < sizeof (*id_ic) ||
1481 	    (inners = &id_ic->id_subcap,
1482 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1483 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1484 		    "encapsulated capab type %d too long for mblk",
1485 		    inners->dl_cap);
1486 		return;
1487 	}
1488 
1489 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1490 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1491 		    "isn't as expected; pass-thru module(s) detected, "
1492 		    "discarding capability\n", inners->dl_cap));
1493 		return;
1494 	}
1495 
1496 	/* Process the encapsulated sub-capability */
1497 	ill_capability_dispatch(ill, mp, inners);
1498 }
1499 
1500 static void
1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1502 {
1503 	dl_capability_sub_t *dl_subcap;
1504 
1505 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1506 		return;
1507 
1508 	/*
1509 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1510 	 * initialized below since it is not used by DLD.
1511 	 */
1512 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1513 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1514 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1515 
1516 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1517 }
1518 
1519 static void
1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1521 {
1522 	/*
1523 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1524 	 * is only to get the VRRP capability.
1525 	 *
1526 	 * Note that we cannot check ill_ipif_up_count here since
1527 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1528 	 * That is done asynchronously, and can race with this function.
1529 	 */
1530 	if (!ill->ill_dl_up) {
1531 		if (subp->dl_cap == DL_CAPAB_VRRP)
1532 			ill_capability_vrrp_ack(ill, mp, subp);
1533 		return;
1534 	}
1535 
1536 	switch (subp->dl_cap) {
1537 	case DL_CAPAB_HCKSUM:
1538 		ill_capability_hcksum_ack(ill, mp, subp);
1539 		break;
1540 	case DL_CAPAB_ZEROCOPY:
1541 		ill_capability_zerocopy_ack(ill, mp, subp);
1542 		break;
1543 	case DL_CAPAB_DLD:
1544 		ill_capability_dld_ack(ill, mp, subp);
1545 		break;
1546 	case DL_CAPAB_VRRP:
1547 		break;
1548 	default:
1549 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1550 		    subp->dl_cap));
1551 	}
1552 }
1553 
1554 /*
1555  * Process the vrrp capability received from a DLS Provider. isub must point
1556  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1557  */
1558 static void
1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1560 {
1561 	dl_capab_vrrp_t	*vrrp;
1562 	uint_t		sub_dl_cap = isub->dl_cap;
1563 	uint8_t		*capend;
1564 
1565 	ASSERT(IAM_WRITER_ILL(ill));
1566 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1567 
1568 	/*
1569 	 * Note: range checks here are not absolutely sufficient to
1570 	 * make us robust against malformed messages sent by drivers;
1571 	 * this is in keeping with the rest of IP's dlpi handling.
1572 	 * (Remember, it's coming from something else in the kernel
1573 	 * address space)
1574 	 */
1575 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1576 	if (capend > mp->b_wptr) {
1577 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1578 		    "malformed sub-capability too long for mblk");
1579 		return;
1580 	}
1581 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1582 
1583 	/*
1584 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1585 	 */
1586 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1587 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1588 		ill->ill_flags |= ILLF_VRRP;
1589 	}
1590 }
1591 
1592 /*
1593  * Process a hardware checksum offload capability negotiation ack received
1594  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1595  * of a DL_CAPABILITY_ACK message.
1596  */
1597 static void
1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1599 {
1600 	dl_capability_req_t	*ocap;
1601 	dl_capab_hcksum_t	*ihck, *ohck;
1602 	ill_hcksum_capab_t	**ill_hcksum;
1603 	mblk_t			*nmp = NULL;
1604 	uint_t			sub_dl_cap = isub->dl_cap;
1605 	uint8_t			*capend;
1606 
1607 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1608 
1609 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1610 
1611 	/*
1612 	 * Note: range checks here are not absolutely sufficient to
1613 	 * make us robust against malformed messages sent by drivers;
1614 	 * this is in keeping with the rest of IP's dlpi handling.
1615 	 * (Remember, it's coming from something else in the kernel
1616 	 * address space)
1617 	 */
1618 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1619 	if (capend > mp->b_wptr) {
1620 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1621 		    "malformed sub-capability too long for mblk");
1622 		return;
1623 	}
1624 
1625 	/*
1626 	 * There are two types of acks we process here:
1627 	 * 1. acks in reply to a (first form) generic capability req
1628 	 *    (no ENABLE flag set)
1629 	 * 2. acks in reply to a ENABLE capability req.
1630 	 *    (ENABLE flag set)
1631 	 */
1632 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1633 
1634 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1635 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1636 		    "unsupported hardware checksum "
1637 		    "sub-capability (version %d, expected %d)",
1638 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1639 		return;
1640 	}
1641 
1642 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1643 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1644 		    "checksum capability isn't as expected; pass-thru "
1645 		    "module(s) detected, discarding capability\n"));
1646 		return;
1647 	}
1648 
1649 #define	CURR_HCKSUM_CAPAB				\
1650 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1651 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1652 
1653 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1654 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1655 		/* do ENABLE processing */
1656 		if (*ill_hcksum == NULL) {
1657 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1658 			    KM_NOSLEEP);
1659 
1660 			if (*ill_hcksum == NULL) {
1661 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1662 				    "could not enable hcksum version %d "
1663 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1664 				    ill->ill_name);
1665 				return;
1666 			}
1667 		}
1668 
1669 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1670 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1671 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1672 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1673 		    "has enabled hardware checksumming\n ",
1674 		    ill->ill_name));
1675 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1676 		/*
1677 		 * Enabling hardware checksum offload
1678 		 * Currently IP supports {TCP,UDP}/IPv4
1679 		 * partial and full cksum offload and
1680 		 * IPv4 header checksum offload.
1681 		 * Allocate new mblk which will
1682 		 * contain a new capability request
1683 		 * to enable hardware checksum offload.
1684 		 */
1685 		uint_t	size;
1686 		uchar_t	*rptr;
1687 
1688 		size = sizeof (dl_capability_req_t) +
1689 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1690 
1691 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1692 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1693 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1694 			    ill->ill_name);
1695 			return;
1696 		}
1697 
1698 		rptr = nmp->b_rptr;
1699 		/* initialize dl_capability_req_t */
1700 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1701 		ocap->dl_sub_offset =
1702 		    sizeof (dl_capability_req_t);
1703 		ocap->dl_sub_length =
1704 		    sizeof (dl_capability_sub_t) +
1705 		    isub->dl_length;
1706 		nmp->b_rptr += sizeof (dl_capability_req_t);
1707 
1708 		/* initialize dl_capability_sub_t */
1709 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1710 		nmp->b_rptr += sizeof (*isub);
1711 
1712 		/* initialize dl_capab_hcksum_t */
1713 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1714 		bcopy(ihck, ohck, sizeof (*ihck));
1715 
1716 		nmp->b_rptr = rptr;
1717 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1718 
1719 		/* Set ENABLE flag */
1720 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1721 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1722 
1723 		/*
1724 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1725 		 * hardware checksum acceleration.
1726 		 */
1727 		ill_capability_send(ill, nmp);
1728 	} else {
1729 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1730 		    "advertised %x hardware checksum capability flags\n",
1731 		    ill->ill_name, ihck->hcksum_txflags));
1732 	}
1733 }
1734 
1735 static void
1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1737 {
1738 	dl_capab_hcksum_t *hck_subcap;
1739 	dl_capability_sub_t *dl_subcap;
1740 
1741 	if (!ILL_HCKSUM_CAPABLE(ill))
1742 		return;
1743 
1744 	ASSERT(ill->ill_hcksum_capab != NULL);
1745 
1746 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1747 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1748 	dl_subcap->dl_length = sizeof (*hck_subcap);
1749 
1750 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1751 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1752 	hck_subcap->hcksum_txflags = 0;
1753 
1754 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1755 }
1756 
1757 static void
1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1759 {
1760 	mblk_t *nmp = NULL;
1761 	dl_capability_req_t *oc;
1762 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1763 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1764 	uint_t sub_dl_cap = isub->dl_cap;
1765 	uint8_t *capend;
1766 
1767 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1768 
1769 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1770 
1771 	/*
1772 	 * Note: range checks here are not absolutely sufficient to
1773 	 * make us robust against malformed messages sent by drivers;
1774 	 * this is in keeping with the rest of IP's dlpi handling.
1775 	 * (Remember, it's coming from something else in the kernel
1776 	 * address space)
1777 	 */
1778 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1779 	if (capend > mp->b_wptr) {
1780 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1781 		    "malformed sub-capability too long for mblk");
1782 		return;
1783 	}
1784 
1785 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1786 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1787 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1788 		    "unsupported ZEROCOPY sub-capability (version %d, "
1789 		    "expected %d)", zc_ic->zerocopy_version,
1790 		    ZEROCOPY_VERSION_1);
1791 		return;
1792 	}
1793 
1794 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1795 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1796 		    "capability isn't as expected; pass-thru module(s) "
1797 		    "detected, discarding capability\n"));
1798 		return;
1799 	}
1800 
1801 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1802 		if (*ill_zerocopy_capab == NULL) {
1803 			*ill_zerocopy_capab =
1804 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1805 			    KM_NOSLEEP);
1806 
1807 			if (*ill_zerocopy_capab == NULL) {
1808 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1809 				    "could not enable Zero-copy version %d "
1810 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1811 				    ill->ill_name);
1812 				return;
1813 			}
1814 		}
1815 
1816 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1817 		    "supports Zero-copy version %d\n", ill->ill_name,
1818 		    ZEROCOPY_VERSION_1));
1819 
1820 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1821 		    zc_ic->zerocopy_version;
1822 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1823 		    zc_ic->zerocopy_flags;
1824 
1825 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1826 	} else {
1827 		uint_t size;
1828 		uchar_t *rptr;
1829 
1830 		size = sizeof (dl_capability_req_t) +
1831 		    sizeof (dl_capability_sub_t) +
1832 		    sizeof (dl_capab_zerocopy_t);
1833 
1834 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1835 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1836 			    "could not enable zerocopy for %s (ENOMEM)\n",
1837 			    ill->ill_name);
1838 			return;
1839 		}
1840 
1841 		rptr = nmp->b_rptr;
1842 		/* initialize dl_capability_req_t */
1843 		oc = (dl_capability_req_t *)rptr;
1844 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1845 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1846 		    sizeof (dl_capab_zerocopy_t);
1847 		rptr += sizeof (dl_capability_req_t);
1848 
1849 		/* initialize dl_capability_sub_t */
1850 		bcopy(isub, rptr, sizeof (*isub));
1851 		rptr += sizeof (*isub);
1852 
1853 		/* initialize dl_capab_zerocopy_t */
1854 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1855 		*zc_oc = *zc_ic;
1856 
1857 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1858 		    "to enable zero-copy version %d\n", ill->ill_name,
1859 		    ZEROCOPY_VERSION_1));
1860 
1861 		/* set VMSAFE_MEM flag */
1862 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1863 
1864 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1865 		ill_capability_send(ill, nmp);
1866 	}
1867 }
1868 
1869 static void
1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1871 {
1872 	dl_capab_zerocopy_t *zerocopy_subcap;
1873 	dl_capability_sub_t *dl_subcap;
1874 
1875 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1876 		return;
1877 
1878 	ASSERT(ill->ill_zerocopy_capab != NULL);
1879 
1880 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1881 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1882 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1883 
1884 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1885 	zerocopy_subcap->zerocopy_version =
1886 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1887 	zerocopy_subcap->zerocopy_flags = 0;
1888 
1889 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1890 }
1891 
1892 /*
1893  * DLD capability
1894  * Refer to dld.h for more information regarding the purpose and usage
1895  * of this capability.
1896  */
1897 static void
1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1899 {
1900 	dl_capab_dld_t		*dld_ic, dld;
1901 	uint_t			sub_dl_cap = isub->dl_cap;
1902 	uint8_t			*capend;
1903 	ill_dld_capab_t		*idc;
1904 
1905 	ASSERT(IAM_WRITER_ILL(ill));
1906 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1907 
1908 	/*
1909 	 * Note: range checks here are not absolutely sufficient to
1910 	 * make us robust against malformed messages sent by drivers;
1911 	 * this is in keeping with the rest of IP's dlpi handling.
1912 	 * (Remember, it's coming from something else in the kernel
1913 	 * address space)
1914 	 */
1915 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1916 	if (capend > mp->b_wptr) {
1917 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1918 		    "malformed sub-capability too long for mblk");
1919 		return;
1920 	}
1921 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1922 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1923 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1924 		    "unsupported DLD sub-capability (version %d, "
1925 		    "expected %d)", dld_ic->dld_version,
1926 		    DLD_CURRENT_VERSION);
1927 		return;
1928 	}
1929 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1930 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1931 		    "capability isn't as expected; pass-thru module(s) "
1932 		    "detected, discarding capability\n"));
1933 		return;
1934 	}
1935 
1936 	/*
1937 	 * Copy locally to ensure alignment.
1938 	 */
1939 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1940 
1941 	if ((idc = ill->ill_dld_capab) == NULL) {
1942 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1943 		if (idc == NULL) {
1944 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1945 			    "could not enable DLD version %d "
1946 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1947 			    ill->ill_name);
1948 			return;
1949 		}
1950 		ill->ill_dld_capab = idc;
1951 	}
1952 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1953 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1954 	ip1dbg(("ill_capability_dld_ack: interface %s "
1955 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1956 
1957 	ill_capability_dld_enable(ill);
1958 }
1959 
1960 /*
1961  * Typically capability negotiation between IP and the driver happens via
1962  * DLPI message exchange. However GLD also offers a direct function call
1963  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1964  * But arbitrary function calls into IP or GLD are not permitted, since both
1965  * of them are protected by their own perimeter mechanism. The perimeter can
1966  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1967  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1968  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1969  * to enter the mac perimeter and then do the direct function calls into
1970  * GLD to enable squeue polling. The ring related callbacks from the mac into
1971  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1972  * protected by the mac perimeter.
1973  */
1974 static void
1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1976 {
1977 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1978 	int			err;
1979 
1980 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1981 	    DLD_ENABLE);
1982 	ASSERT(err == 0);
1983 }
1984 
1985 static void
1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1987 {
1988 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1989 	int			err;
1990 
1991 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1992 	    DLD_DISABLE);
1993 	ASSERT(err == 0);
1994 }
1995 
1996 boolean_t
1997 ill_mac_perim_held(ill_t *ill)
1998 {
1999 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2000 
2001 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2002 	    DLD_QUERY));
2003 }
2004 
2005 static void
2006 ill_capability_direct_enable(ill_t *ill)
2007 {
2008 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2009 	ill_dld_direct_t	*idd = &idc->idc_direct;
2010 	dld_capab_direct_t	direct;
2011 	int			rc;
2012 
2013 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2014 
2015 	bzero(&direct, sizeof (direct));
2016 	direct.di_rx_cf = (uintptr_t)ip_input;
2017 	direct.di_rx_ch = ill;
2018 
2019 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2020 	    DLD_ENABLE);
2021 	if (rc == 0) {
2022 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2023 		idd->idd_tx_dh = direct.di_tx_dh;
2024 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2025 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2026 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2027 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2028 		ASSERT(idd->idd_tx_cb_df != NULL);
2029 		ASSERT(idd->idd_tx_fctl_df != NULL);
2030 		ASSERT(idd->idd_tx_df != NULL);
2031 		/*
2032 		 * One time registration of flow enable callback function
2033 		 */
2034 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2035 		    ill_flow_enable, ill);
2036 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2037 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
2038 	} else {
2039 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
2040 		    "capability, rc = %d\n", rc);
2041 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2042 	}
2043 }
2044 
2045 static void
2046 ill_capability_poll_enable(ill_t *ill)
2047 {
2048 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2049 	dld_capab_poll_t	poll;
2050 	int			rc;
2051 
2052 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2053 
2054 	bzero(&poll, sizeof (poll));
2055 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2056 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2057 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2058 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2059 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2060 	poll.poll_ring_ch = ill;
2061 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2062 	    DLD_ENABLE);
2063 	if (rc == 0) {
2064 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2065 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
2066 	} else {
2067 		ip1dbg(("warning: could not enable POLL "
2068 		    "capability, rc = %d\n", rc));
2069 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2070 	}
2071 }
2072 
2073 /*
2074  * Enable the LSO capability.
2075  */
2076 static void
2077 ill_capability_lso_enable(ill_t *ill)
2078 {
2079 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2080 	dld_capab_lso_t	lso;
2081 	int rc;
2082 
2083 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2084 
2085 	if (ill->ill_lso_capab == NULL) {
2086 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2087 		    KM_NOSLEEP);
2088 		if (ill->ill_lso_capab == NULL) {
2089 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2090 			    "could not enable LSO for %s (ENOMEM)\n",
2091 			    ill->ill_name);
2092 			return;
2093 		}
2094 	}
2095 
2096 	bzero(&lso, sizeof (lso));
2097 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2098 	    DLD_ENABLE)) == 0) {
2099 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2100 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2101 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2102 		ip1dbg(("ill_capability_lso_enable: interface %s "
2103 		    "has enabled LSO\n ", ill->ill_name));
2104 	} else {
2105 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2106 		ill->ill_lso_capab = NULL;
2107 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2108 	}
2109 }
2110 
2111 static void
2112 ill_capability_dld_enable(ill_t *ill)
2113 {
2114 	mac_perim_handle_t mph;
2115 
2116 	ASSERT(IAM_WRITER_ILL(ill));
2117 
2118 	if (ill->ill_isv6)
2119 		return;
2120 
2121 	ill_mac_perim_enter(ill, &mph);
2122 	if (!ill->ill_isv6) {
2123 		ill_capability_direct_enable(ill);
2124 		ill_capability_poll_enable(ill);
2125 		ill_capability_lso_enable(ill);
2126 	}
2127 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2128 	ill_mac_perim_exit(ill, mph);
2129 }
2130 
2131 static void
2132 ill_capability_dld_disable(ill_t *ill)
2133 {
2134 	ill_dld_capab_t	*idc;
2135 	ill_dld_direct_t *idd;
2136 	mac_perim_handle_t	mph;
2137 
2138 	ASSERT(IAM_WRITER_ILL(ill));
2139 
2140 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2141 		return;
2142 
2143 	ill_mac_perim_enter(ill, &mph);
2144 
2145 	idc = ill->ill_dld_capab;
2146 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2147 		/*
2148 		 * For performance we avoid locks in the transmit data path
2149 		 * and don't maintain a count of the number of threads using
2150 		 * direct calls. Thus some threads could be using direct
2151 		 * transmit calls to GLD, even after the capability mechanism
2152 		 * turns it off. This is still safe since the handles used in
2153 		 * the direct calls continue to be valid until the unplumb is
2154 		 * completed. Remove the callback that was added (1-time) at
2155 		 * capab enable time.
2156 		 */
2157 		mutex_enter(&ill->ill_lock);
2158 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2159 		mutex_exit(&ill->ill_lock);
2160 		if (ill->ill_flownotify_mh != NULL) {
2161 			idd = &idc->idc_direct;
2162 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2163 			    ill->ill_flownotify_mh);
2164 			ill->ill_flownotify_mh = NULL;
2165 		}
2166 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2167 		    NULL, DLD_DISABLE);
2168 	}
2169 
2170 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2171 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2172 		ip_squeue_clean_all(ill);
2173 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2174 		    NULL, DLD_DISABLE);
2175 	}
2176 
2177 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2178 		ASSERT(ill->ill_lso_capab != NULL);
2179 		/*
2180 		 * Clear the capability flag for LSO but retain the
2181 		 * ill_lso_capab structure since it's possible that another
2182 		 * thread is still referring to it.  The structure only gets
2183 		 * deallocated when we destroy the ill.
2184 		 */
2185 
2186 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2187 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2188 		    NULL, DLD_DISABLE);
2189 	}
2190 
2191 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2192 	ill_mac_perim_exit(ill, mph);
2193 }
2194 
2195 /*
2196  * Capability Negotiation protocol
2197  *
2198  * We don't wait for DLPI capability operations to finish during interface
2199  * bringup or teardown. Doing so would introduce more asynchrony and the
2200  * interface up/down operations will need multiple return and restarts.
2201  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2202  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2203  * exclusive operation won't start until the DLPI operations of the previous
2204  * exclusive operation complete.
2205  *
2206  * The capability state machine is shown below.
2207  *
2208  * state		next state		event, action
2209  *
2210  * IDCS_UNKNOWN		IDCS_PROBE_SENT		ill_capability_probe
2211  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2212  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2213  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2214  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2215  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2216  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2217  *						    ill_capability_probe.
2218  */
2219 
2220 /*
2221  * Dedicated thread started from ip_stack_init that handles capability
2222  * disable. This thread ensures the taskq dispatch does not fail by waiting
2223  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2224  * that direct calls to DLD are done in a cv_waitable context.
2225  */
2226 void
2227 ill_taskq_dispatch(ip_stack_t *ipst)
2228 {
2229 	callb_cpr_t cprinfo;
2230 	char	name[64];
2231 	mblk_t	*mp;
2232 
2233 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2234 	    ipst->ips_netstack->netstack_stackid);
2235 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2236 	    name);
2237 	mutex_enter(&ipst->ips_capab_taskq_lock);
2238 
2239 	for (;;) {
2240 		mp = ipst->ips_capab_taskq_head;
2241 		while (mp != NULL) {
2242 			ipst->ips_capab_taskq_head = mp->b_next;
2243 			if (ipst->ips_capab_taskq_head == NULL)
2244 				ipst->ips_capab_taskq_tail = NULL;
2245 			mutex_exit(&ipst->ips_capab_taskq_lock);
2246 			mp->b_next = NULL;
2247 
2248 			VERIFY(taskq_dispatch(system_taskq,
2249 			    ill_capability_ack_thr, mp, TQ_SLEEP) !=
2250 			    TASKQID_INVALID);
2251 			mutex_enter(&ipst->ips_capab_taskq_lock);
2252 			mp = ipst->ips_capab_taskq_head;
2253 		}
2254 
2255 		if (ipst->ips_capab_taskq_quit)
2256 			break;
2257 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2258 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2259 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2260 	}
2261 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2262 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2263 	CALLB_CPR_EXIT(&cprinfo);
2264 	thread_exit();
2265 }
2266 
2267 /*
2268  * Consume a new-style hardware capabilities negotiation ack.
2269  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2270  */
2271 static void
2272 ill_capability_ack_thr(void *arg)
2273 {
2274 	mblk_t	*mp = arg;
2275 	dl_capability_ack_t *capp;
2276 	dl_capability_sub_t *subp, *endp;
2277 	ill_t	*ill;
2278 	boolean_t reneg;
2279 
2280 	ill = (ill_t *)mp->b_prev;
2281 	mp->b_prev = NULL;
2282 
2283 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2284 
2285 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2286 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2287 		/*
2288 		 * We have received the ack for our DL_CAPAB reset request.
2289 		 * There isnt' anything in the message that needs processing.
2290 		 * All message based capabilities have been disabled, now
2291 		 * do the function call based capability disable.
2292 		 */
2293 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2294 		ill_capability_dld_disable(ill);
2295 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2296 		if (reneg)
2297 			ill_capability_probe(ill);
2298 		goto done;
2299 	}
2300 
2301 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2302 		ill->ill_dlpi_capab_state = IDCS_OK;
2303 
2304 	capp = (dl_capability_ack_t *)mp->b_rptr;
2305 
2306 	if (capp->dl_sub_length == 0) {
2307 		/* no new-style capabilities */
2308 		goto done;
2309 	}
2310 
2311 	/* make sure the driver supplied correct dl_sub_length */
2312 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2313 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2314 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2315 		goto done;
2316 	}
2317 
2318 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2319 	/*
2320 	 * There are sub-capabilities. Process the ones we know about.
2321 	 * Loop until we don't have room for another sub-cap header..
2322 	 */
2323 	for (subp = SC(capp, capp->dl_sub_offset),
2324 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2325 	    subp <= endp;
2326 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2327 
2328 		switch (subp->dl_cap) {
2329 		case DL_CAPAB_ID_WRAPPER:
2330 			ill_capability_id_ack(ill, mp, subp);
2331 			break;
2332 		default:
2333 			ill_capability_dispatch(ill, mp, subp);
2334 			break;
2335 		}
2336 	}
2337 #undef SC
2338 done:
2339 	inet_freemsg(mp);
2340 	ill_capability_done(ill);
2341 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2342 }
2343 
2344 /*
2345  * This needs to be started in a taskq thread to provide a cv_waitable
2346  * context.
2347  */
2348 void
2349 ill_capability_ack(ill_t *ill, mblk_t *mp)
2350 {
2351 	ip_stack_t	*ipst = ill->ill_ipst;
2352 
2353 	mp->b_prev = (mblk_t *)ill;
2354 	ASSERT(mp->b_next == NULL);
2355 
2356 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2357 	    TQ_NOSLEEP) != TASKQID_INVALID)
2358 		return;
2359 
2360 	/*
2361 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2362 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2363 	 */
2364 	mutex_enter(&ipst->ips_capab_taskq_lock);
2365 	if (ipst->ips_capab_taskq_head == NULL) {
2366 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2367 		ipst->ips_capab_taskq_head = mp;
2368 	} else {
2369 		ipst->ips_capab_taskq_tail->b_next = mp;
2370 	}
2371 	ipst->ips_capab_taskq_tail = mp;
2372 
2373 	cv_signal(&ipst->ips_capab_taskq_cv);
2374 	mutex_exit(&ipst->ips_capab_taskq_lock);
2375 }
2376 
2377 /*
2378  * This routine is called to scan the fragmentation reassembly table for
2379  * the specified ILL for any packets that are starting to smell.
2380  * dead_interval is the maximum time in seconds that will be tolerated.  It
2381  * will either be the value specified in ip_g_frag_timeout, or zero if the
2382  * ILL is shutting down and it is time to blow everything off.
2383  *
2384  * It returns the number of seconds (as a time_t) that the next frag timer
2385  * should be scheduled for, 0 meaning that the timer doesn't need to be
2386  * re-started.  Note that the method of calculating next_timeout isn't
2387  * entirely accurate since time will flow between the time we grab
2388  * current_time and the time we schedule the next timeout.  This isn't a
2389  * big problem since this is the timer for sending an ICMP reassembly time
2390  * exceeded messages, and it doesn't have to be exactly accurate.
2391  *
2392  * This function is
2393  * sometimes called as writer, although this is not required.
2394  */
2395 time_t
2396 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2397 {
2398 	ipfb_t	*ipfb;
2399 	ipfb_t	*endp;
2400 	ipf_t	*ipf;
2401 	ipf_t	*ipfnext;
2402 	mblk_t	*mp;
2403 	time_t	current_time = gethrestime_sec();
2404 	time_t	next_timeout = 0;
2405 	uint32_t	hdr_length;
2406 	mblk_t	*send_icmp_head;
2407 	mblk_t	*send_icmp_head_v6;
2408 	ip_stack_t *ipst = ill->ill_ipst;
2409 	ip_recv_attr_t iras;
2410 
2411 	bzero(&iras, sizeof (iras));
2412 	iras.ira_flags = 0;
2413 	iras.ira_ill = iras.ira_rill = ill;
2414 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2415 	iras.ira_rifindex = iras.ira_ruifindex;
2416 
2417 	ipfb = ill->ill_frag_hash_tbl;
2418 	if (ipfb == NULL)
2419 		return (B_FALSE);
2420 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2421 	/* Walk the frag hash table. */
2422 	for (; ipfb < endp; ipfb++) {
2423 		send_icmp_head = NULL;
2424 		send_icmp_head_v6 = NULL;
2425 		mutex_enter(&ipfb->ipfb_lock);
2426 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2427 			time_t frag_time = current_time - ipf->ipf_timestamp;
2428 			time_t frag_timeout;
2429 
2430 			if (frag_time < dead_interval) {
2431 				/*
2432 				 * There are some outstanding fragments
2433 				 * that will timeout later.  Make note of
2434 				 * the time so that we can reschedule the
2435 				 * next timeout appropriately.
2436 				 */
2437 				frag_timeout = dead_interval - frag_time;
2438 				if (next_timeout == 0 ||
2439 				    frag_timeout < next_timeout) {
2440 					next_timeout = frag_timeout;
2441 				}
2442 				break;
2443 			}
2444 			/* Time's up.  Get it out of here. */
2445 			hdr_length = ipf->ipf_nf_hdr_len;
2446 			ipfnext = ipf->ipf_hash_next;
2447 			if (ipfnext)
2448 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2449 			*ipf->ipf_ptphn = ipfnext;
2450 			mp = ipf->ipf_mp->b_cont;
2451 			for (; mp; mp = mp->b_cont) {
2452 				/* Extra points for neatness. */
2453 				IP_REASS_SET_START(mp, 0);
2454 				IP_REASS_SET_END(mp, 0);
2455 			}
2456 			mp = ipf->ipf_mp->b_cont;
2457 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2458 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2459 			ipfb->ipfb_count -= ipf->ipf_count;
2460 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2461 			ipfb->ipfb_frag_pkts--;
2462 			/*
2463 			 * We do not send any icmp message from here because
2464 			 * we currently are holding the ipfb_lock for this
2465 			 * hash chain. If we try and send any icmp messages
2466 			 * from here we may end up via a put back into ip
2467 			 * trying to get the same lock, causing a recursive
2468 			 * mutex panic. Instead we build a list and send all
2469 			 * the icmp messages after we have dropped the lock.
2470 			 */
2471 			if (ill->ill_isv6) {
2472 				if (hdr_length != 0) {
2473 					mp->b_next = send_icmp_head_v6;
2474 					send_icmp_head_v6 = mp;
2475 				} else {
2476 					freemsg(mp);
2477 				}
2478 			} else {
2479 				if (hdr_length != 0) {
2480 					mp->b_next = send_icmp_head;
2481 					send_icmp_head = mp;
2482 				} else {
2483 					freemsg(mp);
2484 				}
2485 			}
2486 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2487 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2488 			freeb(ipf->ipf_mp);
2489 		}
2490 		mutex_exit(&ipfb->ipfb_lock);
2491 		/*
2492 		 * Now need to send any icmp messages that we delayed from
2493 		 * above.
2494 		 */
2495 		while (send_icmp_head_v6 != NULL) {
2496 			ip6_t *ip6h;
2497 
2498 			mp = send_icmp_head_v6;
2499 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2500 			mp->b_next = NULL;
2501 			ip6h = (ip6_t *)mp->b_rptr;
2502 			iras.ira_flags = 0;
2503 			/*
2504 			 * This will result in an incorrect ALL_ZONES zoneid
2505 			 * for multicast packets, but we
2506 			 * don't send ICMP errors for those in any case.
2507 			 */
2508 			iras.ira_zoneid =
2509 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2510 			    ill, ipst);
2511 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2512 			icmp_time_exceeded_v6(mp,
2513 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2514 			    &iras);
2515 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2516 		}
2517 		while (send_icmp_head != NULL) {
2518 			ipaddr_t dst;
2519 
2520 			mp = send_icmp_head;
2521 			send_icmp_head = send_icmp_head->b_next;
2522 			mp->b_next = NULL;
2523 
2524 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2525 
2526 			iras.ira_flags = IRAF_IS_IPV4;
2527 			/*
2528 			 * This will result in an incorrect ALL_ZONES zoneid
2529 			 * for broadcast and multicast packets, but we
2530 			 * don't send ICMP errors for those in any case.
2531 			 */
2532 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2533 			    ill, ipst);
2534 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2535 			icmp_time_exceeded(mp,
2536 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2537 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2538 		}
2539 	}
2540 	/*
2541 	 * A non-dying ILL will use the return value to decide whether to
2542 	 * restart the frag timer, and for how long.
2543 	 */
2544 	return (next_timeout);
2545 }
2546 
2547 /*
2548  * This routine is called when the approximate count of mblk memory used
2549  * for the specified ILL has exceeded max_count.
2550  */
2551 void
2552 ill_frag_prune(ill_t *ill, uint_t max_count)
2553 {
2554 	ipfb_t	*ipfb;
2555 	ipf_t	*ipf;
2556 	size_t	count;
2557 	clock_t now;
2558 
2559 	/*
2560 	 * If we are here within ip_min_frag_prune_time msecs remove
2561 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2562 	 * ill_frag_free_num_pkts.
2563 	 */
2564 	mutex_enter(&ill->ill_lock);
2565 	now = ddi_get_lbolt();
2566 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2567 	    (ip_min_frag_prune_time != 0 ?
2568 	    ip_min_frag_prune_time : msec_per_tick)) {
2569 
2570 		ill->ill_frag_free_num_pkts++;
2571 
2572 	} else {
2573 		ill->ill_frag_free_num_pkts = 0;
2574 	}
2575 	ill->ill_last_frag_clean_time = now;
2576 	mutex_exit(&ill->ill_lock);
2577 
2578 	/*
2579 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2580 	 */
2581 	if (ill->ill_frag_free_num_pkts != 0) {
2582 		int ix;
2583 
2584 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2585 			ipfb = &ill->ill_frag_hash_tbl[ix];
2586 			mutex_enter(&ipfb->ipfb_lock);
2587 			if (ipfb->ipfb_ipf != NULL) {
2588 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2589 				    ill->ill_frag_free_num_pkts);
2590 			}
2591 			mutex_exit(&ipfb->ipfb_lock);
2592 		}
2593 	}
2594 	/*
2595 	 * While the reassembly list for this ILL is too big, prune a fragment
2596 	 * queue by age, oldest first.
2597 	 */
2598 	while (ill->ill_frag_count > max_count) {
2599 		int	ix;
2600 		ipfb_t	*oipfb = NULL;
2601 		uint_t	oldest = UINT_MAX;
2602 
2603 		count = 0;
2604 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2605 			ipfb = &ill->ill_frag_hash_tbl[ix];
2606 			mutex_enter(&ipfb->ipfb_lock);
2607 			ipf = ipfb->ipfb_ipf;
2608 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2609 				oldest = ipf->ipf_gen;
2610 				oipfb = ipfb;
2611 			}
2612 			count += ipfb->ipfb_count;
2613 			mutex_exit(&ipfb->ipfb_lock);
2614 		}
2615 		if (oipfb == NULL)
2616 			break;
2617 
2618 		if (count <= max_count)
2619 			return;	/* Somebody beat us to it, nothing to do */
2620 		mutex_enter(&oipfb->ipfb_lock);
2621 		ipf = oipfb->ipfb_ipf;
2622 		if (ipf != NULL) {
2623 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2624 		}
2625 		mutex_exit(&oipfb->ipfb_lock);
2626 	}
2627 }
2628 
2629 /*
2630  * free 'free_cnt' fragmented packets starting at ipf.
2631  */
2632 void
2633 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2634 {
2635 	size_t	count;
2636 	mblk_t	*mp;
2637 	mblk_t	*tmp;
2638 	ipf_t **ipfp = ipf->ipf_ptphn;
2639 
2640 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2641 	ASSERT(ipfp != NULL);
2642 	ASSERT(ipf != NULL);
2643 
2644 	while (ipf != NULL && free_cnt-- > 0) {
2645 		count = ipf->ipf_count;
2646 		mp = ipf->ipf_mp;
2647 		ipf = ipf->ipf_hash_next;
2648 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2649 			IP_REASS_SET_START(tmp, 0);
2650 			IP_REASS_SET_END(tmp, 0);
2651 		}
2652 		atomic_add_32(&ill->ill_frag_count, -count);
2653 		ASSERT(ipfb->ipfb_count >= count);
2654 		ipfb->ipfb_count -= count;
2655 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2656 		ipfb->ipfb_frag_pkts--;
2657 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2658 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2659 		freemsg(mp);
2660 	}
2661 
2662 	if (ipf)
2663 		ipf->ipf_ptphn = ipfp;
2664 	ipfp[0] = ipf;
2665 }
2666 
2667 /*
2668  * Helper function for ill_forward_set().
2669  */
2670 static void
2671 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2672 {
2673 	ip_stack_t	*ipst = ill->ill_ipst;
2674 
2675 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2676 
2677 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2678 	    (enable ? "Enabling" : "Disabling"),
2679 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2680 	mutex_enter(&ill->ill_lock);
2681 	if (enable)
2682 		ill->ill_flags |= ILLF_ROUTER;
2683 	else
2684 		ill->ill_flags &= ~ILLF_ROUTER;
2685 	mutex_exit(&ill->ill_lock);
2686 	if (ill->ill_isv6)
2687 		ill_set_nce_router_flags(ill, enable);
2688 	/* Notify routing socket listeners of this change. */
2689 	if (ill->ill_ipif != NULL)
2690 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2691 }
2692 
2693 /*
2694  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2695  * socket messages for each interface whose flags we change.
2696  */
2697 int
2698 ill_forward_set(ill_t *ill, boolean_t enable)
2699 {
2700 	ipmp_illgrp_t *illg;
2701 	ip_stack_t *ipst = ill->ill_ipst;
2702 
2703 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2704 
2705 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2706 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2707 		return (0);
2708 
2709 	if (IS_LOOPBACK(ill))
2710 		return (EINVAL);
2711 
2712 	if (enable && ill->ill_allowed_ips_cnt > 0)
2713 		return (EPERM);
2714 
2715 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2716 		/*
2717 		 * Update all of the interfaces in the group.
2718 		 */
2719 		illg = ill->ill_grp;
2720 		ill = list_head(&illg->ig_if);
2721 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2722 			ill_forward_set_on_ill(ill, enable);
2723 
2724 		/*
2725 		 * Update the IPMP meta-interface.
2726 		 */
2727 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2728 		return (0);
2729 	}
2730 
2731 	ill_forward_set_on_ill(ill, enable);
2732 	return (0);
2733 }
2734 
2735 /*
2736  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2737  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2738  * set or clear.
2739  */
2740 static void
2741 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2742 {
2743 	ipif_t *ipif;
2744 	ncec_t *ncec;
2745 	nce_t *nce;
2746 
2747 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2748 		/*
2749 		 * NOTE: we match across the illgrp because nce's for
2750 		 * addresses on IPMP interfaces have an nce_ill that points to
2751 		 * the bound underlying ill.
2752 		 */
2753 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2754 		if (nce != NULL) {
2755 			ncec = nce->nce_common;
2756 			mutex_enter(&ncec->ncec_lock);
2757 			if (enable)
2758 				ncec->ncec_flags |= NCE_F_ISROUTER;
2759 			else
2760 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2761 			mutex_exit(&ncec->ncec_lock);
2762 			nce_refrele(nce);
2763 		}
2764 	}
2765 }
2766 
2767 /*
2768  * Intializes the context structure and returns the first ill in the list
2769  * cuurently start_list and end_list can have values:
2770  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2771  * IP_V4_G_HEAD		Traverse IPV4 list only.
2772  * IP_V6_G_HEAD		Traverse IPV6 list only.
2773  */
2774 
2775 /*
2776  * We don't check for CONDEMNED ills here. Caller must do that if
2777  * necessary under the ill lock.
2778  */
2779 ill_t *
2780 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2781     ip_stack_t *ipst)
2782 {
2783 	ill_if_t *ifp;
2784 	ill_t *ill;
2785 	avl_tree_t *avl_tree;
2786 
2787 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2788 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2789 
2790 	/*
2791 	 * setup the lists to search
2792 	 */
2793 	if (end_list != MAX_G_HEADS) {
2794 		ctx->ctx_current_list = start_list;
2795 		ctx->ctx_last_list = end_list;
2796 	} else {
2797 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2798 		ctx->ctx_current_list = 0;
2799 	}
2800 
2801 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2802 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2803 		if (ifp != (ill_if_t *)
2804 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2805 			avl_tree = &ifp->illif_avl_by_ppa;
2806 			ill = avl_first(avl_tree);
2807 			/*
2808 			 * ill is guaranteed to be non NULL or ifp should have
2809 			 * not existed.
2810 			 */
2811 			ASSERT(ill != NULL);
2812 			return (ill);
2813 		}
2814 		ctx->ctx_current_list++;
2815 	}
2816 
2817 	return (NULL);
2818 }
2819 
2820 /*
2821  * returns the next ill in the list. ill_first() must have been called
2822  * before calling ill_next() or bad things will happen.
2823  */
2824 
2825 /*
2826  * We don't check for CONDEMNED ills here. Caller must do that if
2827  * necessary under the ill lock.
2828  */
2829 ill_t *
2830 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2831 {
2832 	ill_if_t *ifp;
2833 	ill_t *ill;
2834 	ip_stack_t	*ipst = lastill->ill_ipst;
2835 
2836 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2837 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2838 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2839 	    AVL_AFTER)) != NULL) {
2840 		return (ill);
2841 	}
2842 
2843 	/* goto next ill_ifp in the list. */
2844 	ifp = lastill->ill_ifptr->illif_next;
2845 
2846 	/* make sure not at end of circular list */
2847 	while (ifp ==
2848 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2849 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2850 			return (NULL);
2851 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2852 	}
2853 
2854 	return (avl_first(&ifp->illif_avl_by_ppa));
2855 }
2856 
2857 /*
2858  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2859  * The final number (PPA) must not have any leading zeros.  Upon success, a
2860  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2861  */
2862 static char *
2863 ill_get_ppa_ptr(char *name)
2864 {
2865 	int namelen = strlen(name);
2866 	int end_ndx = namelen - 1;
2867 	int ppa_ndx, i;
2868 
2869 	/*
2870 	 * Check that the first character is [a-zA-Z], and that the last
2871 	 * character is [0-9].
2872 	 */
2873 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2874 		return (NULL);
2875 
2876 	/*
2877 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2878 	 */
2879 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2880 		if (!isdigit(name[ppa_ndx - 1]))
2881 			break;
2882 
2883 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2884 		return (NULL);
2885 
2886 	/*
2887 	 * Check that the intermediate characters are [a-z0-9.]
2888 	 */
2889 	for (i = 1; i < ppa_ndx; i++) {
2890 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2891 		    name[i] != '.' && name[i] != '_') {
2892 			return (NULL);
2893 		}
2894 	}
2895 
2896 	return (name + ppa_ndx);
2897 }
2898 
2899 /*
2900  * use avl tree to locate the ill.
2901  */
2902 static ill_t *
2903 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2904 {
2905 	char *ppa_ptr = NULL;
2906 	int len;
2907 	uint_t ppa;
2908 	ill_t *ill = NULL;
2909 	ill_if_t *ifp;
2910 	int list;
2911 
2912 	/*
2913 	 * get ppa ptr
2914 	 */
2915 	if (isv6)
2916 		list = IP_V6_G_HEAD;
2917 	else
2918 		list = IP_V4_G_HEAD;
2919 
2920 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2921 		return (NULL);
2922 	}
2923 
2924 	len = ppa_ptr - name + 1;
2925 
2926 	ppa = stoi(&ppa_ptr);
2927 
2928 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2929 
2930 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2931 		/*
2932 		 * match is done on len - 1 as the name is not null
2933 		 * terminated it contains ppa in addition to the interface
2934 		 * name.
2935 		 */
2936 		if ((ifp->illif_name_len == len) &&
2937 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2938 			break;
2939 		} else {
2940 			ifp = ifp->illif_next;
2941 		}
2942 	}
2943 
2944 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2945 		/*
2946 		 * Even the interface type does not exist.
2947 		 */
2948 		return (NULL);
2949 	}
2950 
2951 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2952 	if (ill != NULL) {
2953 		mutex_enter(&ill->ill_lock);
2954 		if (ILL_CAN_LOOKUP(ill)) {
2955 			ill_refhold_locked(ill);
2956 			mutex_exit(&ill->ill_lock);
2957 			return (ill);
2958 		}
2959 		mutex_exit(&ill->ill_lock);
2960 	}
2961 	return (NULL);
2962 }
2963 
2964 /*
2965  * comparison function for use with avl.
2966  */
2967 static int
2968 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2969 {
2970 	uint_t ppa;
2971 	uint_t ill_ppa;
2972 
2973 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2974 
2975 	ppa = *((uint_t *)ppa_ptr);
2976 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2977 	/*
2978 	 * We want the ill with the lowest ppa to be on the
2979 	 * top.
2980 	 */
2981 	if (ill_ppa < ppa)
2982 		return (1);
2983 	if (ill_ppa > ppa)
2984 		return (-1);
2985 	return (0);
2986 }
2987 
2988 /*
2989  * remove an interface type from the global list.
2990  */
2991 static void
2992 ill_delete_interface_type(ill_if_t *interface)
2993 {
2994 	ASSERT(interface != NULL);
2995 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2996 
2997 	avl_destroy(&interface->illif_avl_by_ppa);
2998 	if (interface->illif_ppa_arena != NULL)
2999 		vmem_destroy(interface->illif_ppa_arena);
3000 
3001 	remque(interface);
3002 
3003 	mi_free(interface);
3004 }
3005 
3006 /*
3007  * remove ill from the global list.
3008  */
3009 static void
3010 ill_glist_delete(ill_t *ill)
3011 {
3012 	ip_stack_t	*ipst;
3013 	phyint_t	*phyi;
3014 
3015 	if (ill == NULL)
3016 		return;
3017 	ipst = ill->ill_ipst;
3018 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3019 
3020 	/*
3021 	 * If the ill was never inserted into the AVL tree
3022 	 * we skip the if branch.
3023 	 */
3024 	if (ill->ill_ifptr != NULL) {
3025 		/*
3026 		 * remove from AVL tree and free ppa number
3027 		 */
3028 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3029 
3030 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3031 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3032 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3033 		}
3034 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3035 			ill_delete_interface_type(ill->ill_ifptr);
3036 		}
3037 
3038 		/*
3039 		 * Indicate ill is no longer in the list.
3040 		 */
3041 		ill->ill_ifptr = NULL;
3042 		ill->ill_name_length = 0;
3043 		ill->ill_name[0] = '\0';
3044 		ill->ill_ppa = UINT_MAX;
3045 	}
3046 
3047 	/* Generate one last event for this ill. */
3048 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3049 	    ill->ill_name_length);
3050 
3051 	ASSERT(ill->ill_phyint != NULL);
3052 	phyi = ill->ill_phyint;
3053 	ill->ill_phyint = NULL;
3054 
3055 	/*
3056 	 * ill_init allocates a phyint always to store the copy
3057 	 * of flags relevant to phyint. At that point in time, we could
3058 	 * not assign the name and hence phyint_illv4/v6 could not be
3059 	 * initialized. Later in ipif_set_values, we assign the name to
3060 	 * the ill, at which point in time we assign phyint_illv4/v6.
3061 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3062 	 */
3063 	if (ill->ill_flags & ILLF_IPV6)
3064 		phyi->phyint_illv6 = NULL;
3065 	else
3066 		phyi->phyint_illv4 = NULL;
3067 
3068 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3069 		rw_exit(&ipst->ips_ill_g_lock);
3070 		return;
3071 	}
3072 
3073 	/*
3074 	 * There are no ills left on this phyint; pull it out of the phyint
3075 	 * avl trees, and free it.
3076 	 */
3077 	if (phyi->phyint_ifindex > 0) {
3078 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3079 		    phyi);
3080 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3081 		    phyi);
3082 	}
3083 	rw_exit(&ipst->ips_ill_g_lock);
3084 
3085 	phyint_free(phyi);
3086 }
3087 
3088 /*
3089  * allocate a ppa, if the number of plumbed interfaces of this type are
3090  * less than ill_no_arena do a linear search to find a unused ppa.
3091  * When the number goes beyond ill_no_arena switch to using an arena.
3092  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3093  * is the return value for an error condition, so allocation starts at one
3094  * and is decremented by one.
3095  */
3096 static int
3097 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3098 {
3099 	ill_t *tmp_ill;
3100 	uint_t start, end;
3101 	int ppa;
3102 
3103 	if (ifp->illif_ppa_arena == NULL &&
3104 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3105 		/*
3106 		 * Create an arena.
3107 		 */
3108 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3109 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3110 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3111 			/* allocate what has already been assigned */
3112 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3113 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3114 		    tmp_ill, AVL_AFTER)) {
3115 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3116 			    1,		/* size */
3117 			    1,		/* align/quantum */
3118 			    0,		/* phase */
3119 			    0,		/* nocross */
3120 			    /* minaddr */
3121 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3122 			    /* maxaddr */
3123 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3124 			    VM_NOSLEEP|VM_FIRSTFIT);
3125 			if (ppa == 0) {
3126 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3127 				    " failed while switching"));
3128 				vmem_destroy(ifp->illif_ppa_arena);
3129 				ifp->illif_ppa_arena = NULL;
3130 				break;
3131 			}
3132 		}
3133 	}
3134 
3135 	if (ifp->illif_ppa_arena != NULL) {
3136 		if (ill->ill_ppa == UINT_MAX) {
3137 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3138 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3139 			if (ppa == 0)
3140 				return (EAGAIN);
3141 			ill->ill_ppa = --ppa;
3142 		} else {
3143 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3144 			    1,		/* size */
3145 			    1,		/* align/quantum */
3146 			    0,		/* phase */
3147 			    0,		/* nocross */
3148 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3149 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3150 			    VM_NOSLEEP|VM_FIRSTFIT);
3151 			/*
3152 			 * Most likely the allocation failed because
3153 			 * the requested ppa was in use.
3154 			 */
3155 			if (ppa == 0)
3156 				return (EEXIST);
3157 		}
3158 		return (0);
3159 	}
3160 
3161 	/*
3162 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3163 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3164 	 */
3165 	if (ill->ill_ppa == UINT_MAX) {
3166 		end = UINT_MAX - 1;
3167 		start = 0;
3168 	} else {
3169 		end = start = ill->ill_ppa;
3170 	}
3171 
3172 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3173 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3174 		if (start++ >= end) {
3175 			if (ill->ill_ppa == UINT_MAX)
3176 				return (EAGAIN);
3177 			else
3178 				return (EEXIST);
3179 		}
3180 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3181 	}
3182 	ill->ill_ppa = start;
3183 	return (0);
3184 }
3185 
3186 /*
3187  * Insert ill into the list of configured ill's. Once this function completes,
3188  * the ill is globally visible and is available through lookups. More precisely
3189  * this happens after the caller drops the ill_g_lock.
3190  */
3191 static int
3192 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3193 {
3194 	ill_if_t *ill_interface;
3195 	avl_index_t where = 0;
3196 	int error;
3197 	int name_length;
3198 	int index;
3199 	boolean_t check_length = B_FALSE;
3200 	ip_stack_t	*ipst = ill->ill_ipst;
3201 
3202 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3203 
3204 	name_length = mi_strlen(name) + 1;
3205 
3206 	if (isv6)
3207 		index = IP_V6_G_HEAD;
3208 	else
3209 		index = IP_V4_G_HEAD;
3210 
3211 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3212 	/*
3213 	 * Search for interface type based on name
3214 	 */
3215 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3216 		if ((ill_interface->illif_name_len == name_length) &&
3217 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3218 			break;
3219 		}
3220 		ill_interface = ill_interface->illif_next;
3221 	}
3222 
3223 	/*
3224 	 * Interface type not found, create one.
3225 	 */
3226 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3227 		ill_g_head_t ghead;
3228 
3229 		/*
3230 		 * allocate ill_if_t structure
3231 		 */
3232 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3233 		if (ill_interface == NULL) {
3234 			return (ENOMEM);
3235 		}
3236 
3237 		(void) strcpy(ill_interface->illif_name, name);
3238 		ill_interface->illif_name_len = name_length;
3239 
3240 		avl_create(&ill_interface->illif_avl_by_ppa,
3241 		    ill_compare_ppa, sizeof (ill_t),
3242 		    offsetof(struct ill_s, ill_avl_byppa));
3243 
3244 		/*
3245 		 * link the structure in the back to maintain order
3246 		 * of configuration for ifconfig output.
3247 		 */
3248 		ghead = ipst->ips_ill_g_heads[index];
3249 		insque(ill_interface, ghead.ill_g_list_tail);
3250 	}
3251 
3252 	if (ill->ill_ppa == UINT_MAX)
3253 		check_length = B_TRUE;
3254 
3255 	error = ill_alloc_ppa(ill_interface, ill);
3256 	if (error != 0) {
3257 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3258 			ill_delete_interface_type(ill->ill_ifptr);
3259 		return (error);
3260 	}
3261 
3262 	/*
3263 	 * When the ppa is choosen by the system, check that there is
3264 	 * enough space to insert ppa. if a specific ppa was passed in this
3265 	 * check is not required as the interface name passed in will have
3266 	 * the right ppa in it.
3267 	 */
3268 	if (check_length) {
3269 		/*
3270 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3271 		 */
3272 		char buf[sizeof (uint_t) * 3];
3273 
3274 		/*
3275 		 * convert ppa to string to calculate the amount of space
3276 		 * required for it in the name.
3277 		 */
3278 		numtos(ill->ill_ppa, buf);
3279 
3280 		/* Do we have enough space to insert ppa ? */
3281 
3282 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3283 			/* Free ppa and interface type struct */
3284 			if (ill_interface->illif_ppa_arena != NULL) {
3285 				vmem_free(ill_interface->illif_ppa_arena,
3286 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3287 			}
3288 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3289 				ill_delete_interface_type(ill->ill_ifptr);
3290 
3291 			return (EINVAL);
3292 		}
3293 	}
3294 
3295 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3296 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3297 
3298 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3299 	    &where);
3300 	ill->ill_ifptr = ill_interface;
3301 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3302 
3303 	ill_phyint_reinit(ill);
3304 	return (0);
3305 }
3306 
3307 /* Initialize the per phyint ipsq used for serialization */
3308 static boolean_t
3309 ipsq_init(ill_t *ill, boolean_t enter)
3310 {
3311 	ipsq_t  *ipsq;
3312 	ipxop_t	*ipx;
3313 
3314 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3315 		return (B_FALSE);
3316 
3317 	ill->ill_phyint->phyint_ipsq = ipsq;
3318 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3319 	ipx->ipx_ipsq = ipsq;
3320 	ipsq->ipsq_next = ipsq;
3321 	ipsq->ipsq_phyint = ill->ill_phyint;
3322 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3323 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3324 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3325 	if (enter) {
3326 		ipx->ipx_writer = curthread;
3327 		ipx->ipx_forced = B_FALSE;
3328 		ipx->ipx_reentry_cnt = 1;
3329 #ifdef DEBUG
3330 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3331 #endif
3332 	}
3333 	return (B_TRUE);
3334 }
3335 
3336 /*
3337  * Here we perform initialisation of the ill_t common to both regular
3338  * interface ILLs and the special loopback ILL created by ill_lookup_on_name.
3339  */
3340 static int
3341 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback,
3342     boolean_t ipsq_enter)
3343 {
3344 	int count;
3345 	uchar_t *frag_ptr;
3346 
3347 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3348 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3349 	ill->ill_saved_ire_cnt = 0;
3350 
3351 	if (is_loopback) {
3352 		ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus :
3353 		    ip_loopback_mtuplus;
3354 		/*
3355 		 * No resolver here.
3356 		 */
3357 		ill->ill_net_type = IRE_LOOPBACK;
3358 	} else {
3359 		ill->ill_rq = q;
3360 		ill->ill_wq = WR(q);
3361 		ill->ill_ppa = UINT_MAX;
3362 	}
3363 
3364 	ill->ill_isv6 = isv6;
3365 
3366 	/*
3367 	 * Allocate sufficient space to contain our fragment hash table and
3368 	 * the device name.
3369 	 */
3370 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3371 	if (frag_ptr == NULL)
3372 		return (ENOMEM);
3373 	ill->ill_frag_ptr = frag_ptr;
3374 	ill->ill_frag_free_num_pkts = 0;
3375 	ill->ill_last_frag_clean_time = 0;
3376 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3377 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3378 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3379 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3380 		    NULL, MUTEX_DEFAULT, NULL);
3381 	}
3382 
3383 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3384 	if (ill->ill_phyint == NULL) {
3385 		mi_free(frag_ptr);
3386 		return (ENOMEM);
3387 	}
3388 
3389 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3390 	if (isv6) {
3391 		ill->ill_phyint->phyint_illv6 = ill;
3392 	} else {
3393 		ill->ill_phyint->phyint_illv4 = ill;
3394 	}
3395 	if (is_loopback) {
3396 		phyint_flags_init(ill->ill_phyint, DL_LOOP);
3397 	}
3398 
3399 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3400 
3401 	ill_set_inputfn(ill);
3402 
3403 	if (!ipsq_init(ill, ipsq_enter)) {
3404 		mi_free(frag_ptr);
3405 		mi_free(ill->ill_phyint);
3406 		return (ENOMEM);
3407 	}
3408 
3409 	/* Frag queue limit stuff */
3410 	ill->ill_frag_count = 0;
3411 	ill->ill_ipf_gen = 0;
3412 
3413 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3414 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3415 	ill->ill_global_timer = INFINITY;
3416 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3417 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3418 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3419 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3420 
3421 	/*
3422 	 * Initialize IPv6 configuration variables.  The IP module is always
3423 	 * opened as an IPv4 module.  Instead tracking down the cases where
3424 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3425 	 * here for convenience, this has no effect until the ill is set to do
3426 	 * IPv6.
3427 	 */
3428 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3429 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3430 	ill->ill_max_buf = ND_MAX_Q;
3431 	ill->ill_refcnt = 0;
3432 
3433 	return (0);
3434 }
3435 
3436 /*
3437  * ill_init is called by ip_open when a device control stream is opened.
3438  * It does a few initializations, and shoots a DL_INFO_REQ message down
3439  * to the driver.  The response is later picked up in ip_rput_dlpi and
3440  * used to set up default mechanisms for talking to the driver.  (Always
3441  * called as writer.)
3442  *
3443  * If this function returns error, ip_open will call ip_close which in
3444  * turn will call ill_delete to clean up any memory allocated here that
3445  * is not yet freed.
3446  *
3447  * Note: ill_ipst and ill_zoneid must be set before calling ill_init.
3448  */
3449 int
3450 ill_init(queue_t *q, ill_t *ill)
3451 {
3452 	int ret;
3453 	dl_info_req_t	*dlir;
3454 	mblk_t	*info_mp;
3455 
3456 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3457 	    BPRI_HI);
3458 	if (info_mp == NULL)
3459 		return (ENOMEM);
3460 
3461 	/*
3462 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3463 	 * at this point because of the following reason. If we can't
3464 	 * enter the ipsq at some point and cv_wait, the writer that
3465 	 * wakes us up tries to locate us using the list of all phyints
3466 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3467 	 * If we don't set it now, we risk a missed wakeup.
3468 	 */
3469 	if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) {
3470 		freemsg(info_mp);
3471 		return (ret);
3472 	}
3473 
3474 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3475 
3476 	/* Send down the Info Request to the driver. */
3477 	info_mp->b_datap->db_type = M_PCPROTO;
3478 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3479 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3480 	dlir->dl_primitive = DL_INFO_REQ;
3481 
3482 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3483 
3484 	qprocson(q);
3485 	ill_dlpi_send(ill, info_mp);
3486 
3487 	return (0);
3488 }
3489 
3490 /*
3491  * ill_dls_info
3492  * creates datalink socket info from the device.
3493  */
3494 int
3495 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3496 {
3497 	size_t	len;
3498 
3499 	sdl->sdl_family = AF_LINK;
3500 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3501 	sdl->sdl_type = ill->ill_type;
3502 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3503 	len = strlen(sdl->sdl_data);
3504 	ASSERT(len < 256);
3505 	sdl->sdl_nlen = (uchar_t)len;
3506 	sdl->sdl_alen = ill->ill_phys_addr_length;
3507 	sdl->sdl_slen = 0;
3508 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3509 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3510 
3511 	return (sizeof (struct sockaddr_dl));
3512 }
3513 
3514 /*
3515  * ill_xarp_info
3516  * creates xarp info from the device.
3517  */
3518 static int
3519 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3520 {
3521 	sdl->sdl_family = AF_LINK;
3522 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3523 	sdl->sdl_type = ill->ill_type;
3524 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3525 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3526 	sdl->sdl_alen = ill->ill_phys_addr_length;
3527 	sdl->sdl_slen = 0;
3528 	return (sdl->sdl_nlen);
3529 }
3530 
3531 static int
3532 loopback_kstat_update(kstat_t *ksp, int rw)
3533 {
3534 	kstat_named_t *kn;
3535 	netstackid_t	stackid;
3536 	netstack_t	*ns;
3537 	ip_stack_t	*ipst;
3538 
3539 	if (ksp == NULL || ksp->ks_data == NULL)
3540 		return (EIO);
3541 
3542 	if (rw == KSTAT_WRITE)
3543 		return (EACCES);
3544 
3545 	kn = KSTAT_NAMED_PTR(ksp);
3546 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3547 
3548 	ns = netstack_find_by_stackid(stackid);
3549 	if (ns == NULL)
3550 		return (-1);
3551 
3552 	ipst = ns->netstack_ip;
3553 	if (ipst == NULL) {
3554 		netstack_rele(ns);
3555 		return (-1);
3556 	}
3557 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3558 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3559 	netstack_rele(ns);
3560 	return (0);
3561 }
3562 
3563 /*
3564  * Has ifindex been plumbed already?
3565  */
3566 static boolean_t
3567 phyint_exists(uint_t index, ip_stack_t *ipst)
3568 {
3569 	ASSERT(index != 0);
3570 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3571 
3572 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3573 	    &index, NULL) != NULL);
3574 }
3575 
3576 /*
3577  * Pick a unique ifindex.
3578  * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3579  * flag is set so that next time time ip_assign_ifindex() is called, it
3580  * falls through and resets the index counter back to 1, the minimum value
3581  * for the interface index. The logic below assumes that ips_ill_index
3582  * can hold a value of IF_INDEX_MAX+1 without there being any loss
3583  * (i.e. reset back to 0.)
3584  */
3585 boolean_t
3586 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3587 {
3588 	uint_t loops;
3589 
3590 	if (!ipst->ips_ill_index_wrap) {
3591 		*indexp = ipst->ips_ill_index++;
3592 		if (ipst->ips_ill_index > IF_INDEX_MAX) {
3593 			/*
3594 			 * Reached the maximum ifindex value, set the wrap
3595 			 * flag to indicate that it is no longer possible
3596 			 * to assume that a given index is unallocated.
3597 			 */
3598 			ipst->ips_ill_index_wrap = B_TRUE;
3599 		}
3600 		return (B_TRUE);
3601 	}
3602 
3603 	if (ipst->ips_ill_index > IF_INDEX_MAX)
3604 		ipst->ips_ill_index = 1;
3605 
3606 	/*
3607 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3608 	 * at this point and don't want to call any function that attempts
3609 	 * to get the lock again.
3610 	 */
3611 	for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3612 		if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3613 			/* found unused index - use it */
3614 			*indexp = ipst->ips_ill_index;
3615 			return (B_TRUE);
3616 		}
3617 
3618 		ipst->ips_ill_index++;
3619 		if (ipst->ips_ill_index > IF_INDEX_MAX)
3620 			ipst->ips_ill_index = 1;
3621 	}
3622 
3623 	/*
3624 	 * all interface indicies are inuse.
3625 	 */
3626 	return (B_FALSE);
3627 }
3628 
3629 /*
3630  * Assign a unique interface index for the phyint.
3631  */
3632 static boolean_t
3633 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3634 {
3635 	ASSERT(phyi->phyint_ifindex == 0);
3636 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3637 }
3638 
3639 /*
3640  * Initialize the flags on `phyi' as per the provided mactype.
3641  */
3642 static void
3643 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3644 {
3645 	uint64_t flags = 0;
3646 
3647 	/*
3648 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3649 	 * we always presume the underlying hardware is working and set
3650 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3651 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3652 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3653 	 */
3654 	if (mactype == SUNW_DL_IPMP)
3655 		flags |= PHYI_FAILED;
3656 	else
3657 		flags |= PHYI_RUNNING;
3658 
3659 	switch (mactype) {
3660 	case SUNW_DL_VNI:
3661 		flags |= PHYI_VIRTUAL;
3662 		break;
3663 	case SUNW_DL_IPMP:
3664 		flags |= PHYI_IPMP;
3665 		break;
3666 	case DL_LOOP:
3667 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3668 		break;
3669 	}
3670 
3671 	mutex_enter(&phyi->phyint_lock);
3672 	phyi->phyint_flags |= flags;
3673 	mutex_exit(&phyi->phyint_lock);
3674 }
3675 
3676 /*
3677  * Return a pointer to the ill which matches the supplied name.  Note that
3678  * the ill name length includes the null termination character.  (May be
3679  * called as writer.)
3680  * If do_alloc and the interface is "lo0" it will be automatically created.
3681  * Cannot bump up reference on condemned ills. So dup detect can't be done
3682  * using this func.
3683  */
3684 ill_t *
3685 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3686     boolean_t *did_alloc, ip_stack_t *ipst)
3687 {
3688 	ill_t	*ill;
3689 	ipif_t	*ipif;
3690 	ipsq_t	*ipsq;
3691 	kstat_named_t	*kn;
3692 	boolean_t isloopback;
3693 	in6_addr_t ov6addr;
3694 
3695 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3696 
3697 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3698 	ill = ill_find_by_name(name, isv6, ipst);
3699 	rw_exit(&ipst->ips_ill_g_lock);
3700 	if (ill != NULL)
3701 		return (ill);
3702 
3703 	/*
3704 	 * Couldn't find it.  Does this happen to be a lookup for the
3705 	 * loopback device and are we allowed to allocate it?
3706 	 */
3707 	if (!isloopback || !do_alloc)
3708 		return (NULL);
3709 
3710 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3711 	ill = ill_find_by_name(name, isv6, ipst);
3712 	if (ill != NULL) {
3713 		rw_exit(&ipst->ips_ill_g_lock);
3714 		return (ill);
3715 	}
3716 
3717 	/* Create the loopback device on demand */
3718 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3719 	    sizeof (ipif_loopback_name), BPRI_MED));
3720 	if (ill == NULL)
3721 		goto done;
3722 
3723 	bzero(ill, sizeof (*ill));
3724 	ill->ill_ipst = ipst;
3725 	netstack_hold(ipst->ips_netstack);
3726 	/*
3727 	 * For exclusive stacks we set the zoneid to zero
3728 	 * to make IP operate as if in the global zone.
3729 	 */
3730 	ill->ill_zoneid = GLOBAL_ZONEID;
3731 
3732 	if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0)
3733 		goto done;
3734 
3735 	if (!ill_allocate_mibs(ill))
3736 		goto done;
3737 
3738 	ill->ill_current_frag = ill->ill_max_frag;
3739 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3740 	ill->ill_mc_mtu = ill->ill_mtu;
3741 	/*
3742 	 * ipif_loopback_name can't be pointed at directly because its used
3743 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3744 	 * from the glist, ill_glist_delete() sets the first character of
3745 	 * ill_name to '\0'.
3746 	 */
3747 	ill->ill_name = (char *)ill + sizeof (*ill);
3748 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3749 	ill->ill_name_length = sizeof (ipif_loopback_name);
3750 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3751 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3752 
3753 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3754 	if (ipif == NULL)
3755 		goto done;
3756 
3757 	ill->ill_flags = ILLF_MULTICAST;
3758 
3759 	ov6addr = ipif->ipif_v6lcl_addr;
3760 	/* Set up default loopback address and mask. */
3761 	if (!isv6) {
3762 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3763 
3764 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3765 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3766 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3767 		    ipif->ipif_v6subnet);
3768 		ill->ill_flags |= ILLF_IPV4;
3769 	} else {
3770 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3771 		ipif->ipif_v6net_mask = ipv6_all_ones;
3772 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3773 		    ipif->ipif_v6subnet);
3774 		ill->ill_flags |= ILLF_IPV6;
3775 	}
3776 
3777 	/*
3778 	 * Chain us in at the end of the ill list. hold the ill
3779 	 * before we make it globally visible. 1 for the lookup.
3780 	 */
3781 	ill_refhold(ill);
3782 
3783 	ipsq = ill->ill_phyint->phyint_ipsq;
3784 
3785 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3786 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3787 
3788 	/* Let SCTP know so that it can add this to its list */
3789 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3790 
3791 	/*
3792 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3793 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3794 	 * requires to be after ill_glist_insert() since we need the
3795 	 * ill_index set. Pass on ipv6_loopback as the old address.
3796 	 */
3797 	sctp_update_ipif_addr(ipif, ov6addr);
3798 
3799 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3800 
3801 	/*
3802 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3803 	 * If so, free our original one.
3804 	 */
3805 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3806 		ipsq_delete(ipsq);
3807 
3808 	if (ipst->ips_loopback_ksp == NULL) {
3809 		/* Export loopback interface statistics */
3810 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3811 		    ipif_loopback_name, "net",
3812 		    KSTAT_TYPE_NAMED, 2, 0,
3813 		    ipst->ips_netstack->netstack_stackid);
3814 		if (ipst->ips_loopback_ksp != NULL) {
3815 			ipst->ips_loopback_ksp->ks_update =
3816 			    loopback_kstat_update;
3817 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3818 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3819 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3820 			ipst->ips_loopback_ksp->ks_private =
3821 			    (void *)(uintptr_t)ipst->ips_netstack->
3822 			    netstack_stackid;
3823 			kstat_install(ipst->ips_loopback_ksp);
3824 		}
3825 	}
3826 
3827 	*did_alloc = B_TRUE;
3828 	rw_exit(&ipst->ips_ill_g_lock);
3829 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3830 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3831 	return (ill);
3832 done:
3833 	if (ill != NULL) {
3834 		if (ill->ill_phyint != NULL) {
3835 			ipsq = ill->ill_phyint->phyint_ipsq;
3836 			if (ipsq != NULL) {
3837 				ipsq->ipsq_phyint = NULL;
3838 				ipsq_delete(ipsq);
3839 			}
3840 			mi_free(ill->ill_phyint);
3841 		}
3842 		ill_free_mib(ill);
3843 		if (ill->ill_ipst != NULL)
3844 			netstack_rele(ill->ill_ipst->ips_netstack);
3845 		mi_free(ill);
3846 	}
3847 	rw_exit(&ipst->ips_ill_g_lock);
3848 	return (NULL);
3849 }
3850 
3851 /*
3852  * For IPP calls - use the ip_stack_t for global stack.
3853  */
3854 ill_t *
3855 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3856 {
3857 	ip_stack_t	*ipst;
3858 	ill_t		*ill;
3859 	netstack_t	*ns;
3860 
3861 	ns = netstack_find_by_stackid(GLOBAL_NETSTACKID);
3862 
3863 	if ((ipst = ns->netstack_ip) == NULL) {
3864 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3865 		netstack_rele(ns);
3866 		return (NULL);
3867 	}
3868 
3869 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3870 	netstack_rele(ns);
3871 	return (ill);
3872 }
3873 
3874 /*
3875  * Return a pointer to the ill which matches the index and IP version type.
3876  */
3877 ill_t *
3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3879 {
3880 	ill_t	*ill;
3881 	phyint_t *phyi;
3882 
3883 	/*
3884 	 * Indexes are stored in the phyint - a common structure
3885 	 * to both IPv4 and IPv6.
3886 	 */
3887 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3888 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3889 	    (void *) &index, NULL);
3890 	if (phyi != NULL) {
3891 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3892 		if (ill != NULL) {
3893 			mutex_enter(&ill->ill_lock);
3894 			if (!ILL_IS_CONDEMNED(ill)) {
3895 				ill_refhold_locked(ill);
3896 				mutex_exit(&ill->ill_lock);
3897 				rw_exit(&ipst->ips_ill_g_lock);
3898 				return (ill);
3899 			}
3900 			mutex_exit(&ill->ill_lock);
3901 		}
3902 	}
3903 	rw_exit(&ipst->ips_ill_g_lock);
3904 	return (NULL);
3905 }
3906 
3907 /*
3908  * Verify whether or not an interface index is valid for the specified zoneid
3909  * to transmit packets.
3910  * It can be zero (meaning "reset") or an interface index assigned
3911  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3912  */
3913 boolean_t
3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3915     ip_stack_t *ipst)
3916 {
3917 	ill_t		*ill;
3918 
3919 	if (ifindex == 0)
3920 		return (B_TRUE);
3921 
3922 	ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3923 	if (ill == NULL)
3924 		return (B_FALSE);
3925 	if (IS_VNI(ill)) {
3926 		ill_refrele(ill);
3927 		return (B_FALSE);
3928 	}
3929 	ill_refrele(ill);
3930 	return (B_TRUE);
3931 }
3932 
3933 /*
3934  * Return the ifindex next in sequence after the passed in ifindex.
3935  * If there is no next ifindex for the given protocol, return 0.
3936  */
3937 uint_t
3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3939 {
3940 	phyint_t *phyi;
3941 	phyint_t *phyi_initial;
3942 	uint_t   ifindex;
3943 
3944 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3945 
3946 	if (index == 0) {
3947 		phyi = avl_first(
3948 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3949 	} else {
3950 		phyi = phyi_initial = avl_find(
3951 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3952 		    (void *) &index, NULL);
3953 	}
3954 
3955 	for (; phyi != NULL;
3956 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3957 	    phyi, AVL_AFTER)) {
3958 		/*
3959 		 * If we're not returning the first interface in the tree
3960 		 * and we still haven't moved past the phyint_t that
3961 		 * corresponds to index, avl_walk needs to be called again
3962 		 */
3963 		if (!((index != 0) && (phyi == phyi_initial))) {
3964 			if (isv6) {
3965 				if ((phyi->phyint_illv6) &&
3966 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3967 				    (phyi->phyint_illv6->ill_isv6 == 1))
3968 					break;
3969 			} else {
3970 				if ((phyi->phyint_illv4) &&
3971 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3972 				    (phyi->phyint_illv4->ill_isv6 == 0))
3973 					break;
3974 			}
3975 		}
3976 	}
3977 
3978 	rw_exit(&ipst->ips_ill_g_lock);
3979 
3980 	if (phyi != NULL)
3981 		ifindex = phyi->phyint_ifindex;
3982 	else
3983 		ifindex = 0;
3984 
3985 	return (ifindex);
3986 }
3987 
3988 /*
3989  * Return the ifindex for the named interface.
3990  * If there is no next ifindex for the interface, return 0.
3991  */
3992 uint_t
3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3994 {
3995 	phyint_t	*phyi;
3996 	avl_index_t	where = 0;
3997 	uint_t		ifindex;
3998 
3999 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4000 
4001 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4002 	    name, &where)) == NULL) {
4003 		rw_exit(&ipst->ips_ill_g_lock);
4004 		return (0);
4005 	}
4006 
4007 	ifindex = phyi->phyint_ifindex;
4008 
4009 	rw_exit(&ipst->ips_ill_g_lock);
4010 
4011 	return (ifindex);
4012 }
4013 
4014 /*
4015  * Return the ifindex to be used by upper layer protocols for instance
4016  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4017  */
4018 uint_t
4019 ill_get_upper_ifindex(const ill_t *ill)
4020 {
4021 	if (IS_UNDER_IPMP(ill))
4022 		return (ipmp_ill_get_ipmp_ifindex(ill));
4023 	else
4024 		return (ill->ill_phyint->phyint_ifindex);
4025 }
4026 
4027 
4028 /*
4029  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4030  * that gives a running thread a reference to the ill. This reference must be
4031  * released by the thread when it is done accessing the ill and related
4032  * objects. ill_refcnt can not be used to account for static references
4033  * such as other structures pointing to an ill. Callers must generally
4034  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4035  * or be sure that the ill is not being deleted or changing state before
4036  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4037  * ill won't change any of its critical state such as address, netmask etc.
4038  */
4039 void
4040 ill_refhold(ill_t *ill)
4041 {
4042 	mutex_enter(&ill->ill_lock);
4043 	ill->ill_refcnt++;
4044 	ILL_TRACE_REF(ill);
4045 	mutex_exit(&ill->ill_lock);
4046 }
4047 
4048 void
4049 ill_refhold_locked(ill_t *ill)
4050 {
4051 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4052 	ill->ill_refcnt++;
4053 	ILL_TRACE_REF(ill);
4054 }
4055 
4056 /* Returns true if we managed to get a refhold */
4057 boolean_t
4058 ill_check_and_refhold(ill_t *ill)
4059 {
4060 	mutex_enter(&ill->ill_lock);
4061 	if (!ILL_IS_CONDEMNED(ill)) {
4062 		ill_refhold_locked(ill);
4063 		mutex_exit(&ill->ill_lock);
4064 		return (B_TRUE);
4065 	}
4066 	mutex_exit(&ill->ill_lock);
4067 	return (B_FALSE);
4068 }
4069 
4070 /*
4071  * Must not be called while holding any locks. Otherwise if this is
4072  * the last reference to be released, there is a chance of recursive mutex
4073  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4074  * to restart an ioctl.
4075  */
4076 void
4077 ill_refrele(ill_t *ill)
4078 {
4079 	mutex_enter(&ill->ill_lock);
4080 	ASSERT(ill->ill_refcnt != 0);
4081 	ill->ill_refcnt--;
4082 	ILL_UNTRACE_REF(ill);
4083 	if (ill->ill_refcnt != 0) {
4084 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4085 		mutex_exit(&ill->ill_lock);
4086 		return;
4087 	}
4088 
4089 	/* Drops the ill_lock */
4090 	ipif_ill_refrele_tail(ill);
4091 }
4092 
4093 /*
4094  * Obtain a weak reference count on the ill. This reference ensures the
4095  * ill won't be freed, but the ill may change any of its critical state
4096  * such as netmask, address etc. Returns an error if the ill has started
4097  * closing.
4098  */
4099 boolean_t
4100 ill_waiter_inc(ill_t *ill)
4101 {
4102 	mutex_enter(&ill->ill_lock);
4103 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4104 		mutex_exit(&ill->ill_lock);
4105 		return (B_FALSE);
4106 	}
4107 	ill->ill_waiters++;
4108 	mutex_exit(&ill->ill_lock);
4109 	return (B_TRUE);
4110 }
4111 
4112 void
4113 ill_waiter_dcr(ill_t *ill)
4114 {
4115 	mutex_enter(&ill->ill_lock);
4116 	ill->ill_waiters--;
4117 	if (ill->ill_waiters == 0)
4118 		cv_broadcast(&ill->ill_cv);
4119 	mutex_exit(&ill->ill_lock);
4120 }
4121 
4122 /*
4123  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4124  * driver.  We construct best guess defaults for lower level information that
4125  * we need.  If an interface is brought up without injection of any overriding
4126  * information from outside, we have to be ready to go with these defaults.
4127  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4128  * we primarely want the dl_provider_style.
4129  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4130  * at which point we assume the other part of the information is valid.
4131  */
4132 void
4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4134 {
4135 	uchar_t		*brdcst_addr;
4136 	uint_t		brdcst_addr_length, phys_addr_length;
4137 	t_scalar_t	sap_length;
4138 	dl_info_ack_t	*dlia;
4139 	ip_m_t		*ipm;
4140 	dl_qos_cl_sel1_t *sel1;
4141 	int		min_mtu;
4142 
4143 	ASSERT(IAM_WRITER_ILL(ill));
4144 
4145 	/*
4146 	 * Till the ill is fully up  the ill is not globally visible.
4147 	 * So no need for a lock.
4148 	 */
4149 	dlia = (dl_info_ack_t *)mp->b_rptr;
4150 	ill->ill_mactype = dlia->dl_mac_type;
4151 
4152 	ipm = ip_m_lookup(dlia->dl_mac_type);
4153 	if (ipm == NULL) {
4154 		ipm = ip_m_lookup(DL_OTHER);
4155 		ASSERT(ipm != NULL);
4156 	}
4157 	ill->ill_media = ipm;
4158 
4159 	/*
4160 	 * When the new DLPI stuff is ready we'll pull lengths
4161 	 * from dlia.
4162 	 */
4163 	if (dlia->dl_version == DL_VERSION_2) {
4164 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4165 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4166 		    brdcst_addr_length);
4167 		if (brdcst_addr == NULL) {
4168 			brdcst_addr_length = 0;
4169 		}
4170 		sap_length = dlia->dl_sap_length;
4171 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4172 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4173 		    brdcst_addr_length, sap_length, phys_addr_length));
4174 	} else {
4175 		brdcst_addr_length = 6;
4176 		brdcst_addr = ip_six_byte_all_ones;
4177 		sap_length = -2;
4178 		phys_addr_length = brdcst_addr_length;
4179 	}
4180 
4181 	ill->ill_bcast_addr_length = brdcst_addr_length;
4182 	ill->ill_phys_addr_length = phys_addr_length;
4183 	ill->ill_sap_length = sap_length;
4184 
4185 	/*
4186 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4187 	 * but we must ensure a minimum IP MTU is used since other bits of
4188 	 * IP will fly apart otherwise.
4189 	 */
4190 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4191 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4192 	ill->ill_current_frag = ill->ill_max_frag;
4193 	ill->ill_mtu = ill->ill_max_frag;
4194 	ill->ill_mc_mtu = ill->ill_mtu;	/* Overridden by DL_NOTE_SDU_SIZE2 */
4195 
4196 	ill->ill_type = ipm->ip_m_type;
4197 
4198 	if (!ill->ill_dlpi_style_set) {
4199 		if (dlia->dl_provider_style == DL_STYLE2)
4200 			ill->ill_needs_attach = 1;
4201 
4202 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4203 
4204 		/*
4205 		 * Allocate the first ipif on this ill.  We don't delay it
4206 		 * further as ioctl handling assumes at least one ipif exists.
4207 		 *
4208 		 * At this point we don't know whether the ill is v4 or v6.
4209 		 * We will know this whan the SIOCSLIFNAME happens and
4210 		 * the correct value for ill_isv6 will be assigned in
4211 		 * ipif_set_values(). We need to hold the ill lock and
4212 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4213 		 * the wakeup.
4214 		 */
4215 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4216 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4217 		mutex_enter(&ill->ill_lock);
4218 		ASSERT(ill->ill_dlpi_style_set == 0);
4219 		ill->ill_dlpi_style_set = 1;
4220 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4221 		cv_broadcast(&ill->ill_cv);
4222 		mutex_exit(&ill->ill_lock);
4223 		freemsg(mp);
4224 		return;
4225 	}
4226 	ASSERT(ill->ill_ipif != NULL);
4227 	/*
4228 	 * We know whether it is IPv4 or IPv6 now, as this is the
4229 	 * second DL_INFO_ACK we are recieving in response to the
4230 	 * DL_INFO_REQ sent in ipif_set_values.
4231 	 */
4232 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4233 	/*
4234 	 * Clear all the flags that were set based on ill_bcast_addr_length
4235 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4236 	 * changed now and we need to re-evaluate.
4237 	 */
4238 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4239 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4240 
4241 	/*
4242 	 * Free ill_bcast_mp as things could have changed now.
4243 	 *
4244 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4245 	 * with no underlying interfaces (and thus an unknown broadcast
4246 	 * address length), but we enforce that an interface is broadcast-
4247 	 * capable as part of allowing it to join a group.
4248 	 */
4249 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4250 		if (ill->ill_bcast_mp != NULL)
4251 			freemsg(ill->ill_bcast_mp);
4252 		ill->ill_net_type = IRE_IF_NORESOLVER;
4253 
4254 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4255 		    ill->ill_phys_addr_length,
4256 		    ill->ill_sap,
4257 		    ill->ill_sap_length);
4258 
4259 		if (ill->ill_isv6)
4260 			/*
4261 			 * Note: xresolv interfaces will eventually need NOARP
4262 			 * set here as well, but that will require those
4263 			 * external resolvers to have some knowledge of
4264 			 * that flag and act appropriately. Not to be changed
4265 			 * at present.
4266 			 */
4267 			ill->ill_flags |= ILLF_NONUD;
4268 		else
4269 			ill->ill_flags |= ILLF_NOARP;
4270 
4271 		if (ill->ill_mactype == SUNW_DL_VNI) {
4272 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4273 		} else if (ill->ill_phys_addr_length == 0 ||
4274 		    ill->ill_mactype == DL_IPV4 ||
4275 		    ill->ill_mactype == DL_IPV6) {
4276 			/*
4277 			 * The underying link is point-to-point, so mark the
4278 			 * interface as such.  We can do IP multicast over
4279 			 * such a link since it transmits all network-layer
4280 			 * packets to the remote side the same way.
4281 			 */
4282 			ill->ill_flags |= ILLF_MULTICAST;
4283 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4284 		}
4285 	} else {
4286 		ill->ill_net_type = IRE_IF_RESOLVER;
4287 		if (ill->ill_bcast_mp != NULL)
4288 			freemsg(ill->ill_bcast_mp);
4289 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4290 		    ill->ill_bcast_addr_length, ill->ill_sap,
4291 		    ill->ill_sap_length);
4292 		/*
4293 		 * Later detect lack of DLPI driver multicast
4294 		 * capability by catching DL_ENABMULTI errors in
4295 		 * ip_rput_dlpi.
4296 		 */
4297 		ill->ill_flags |= ILLF_MULTICAST;
4298 		if (!ill->ill_isv6)
4299 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4300 	}
4301 
4302 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4303 	if (ill->ill_mactype == SUNW_DL_IPMP)
4304 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4305 
4306 	/* By default an interface does not support any CoS marking */
4307 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4308 
4309 	/*
4310 	 * If we get QoS information in DL_INFO_ACK, the device supports
4311 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4312 	 */
4313 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4314 	    dlia->dl_qos_length);
4315 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4316 		ill->ill_flags |= ILLF_COS_ENABLED;
4317 	}
4318 
4319 	/* Clear any previous error indication. */
4320 	ill->ill_error = 0;
4321 	freemsg(mp);
4322 }
4323 
4324 /*
4325  * Perform various checks to verify that an address would make sense as a
4326  * local, remote, or subnet interface address.
4327  */
4328 static boolean_t
4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4330 {
4331 	ipaddr_t	net_mask;
4332 
4333 	/*
4334 	 * Don't allow all zeroes, or all ones, but allow
4335 	 * all ones netmask.
4336 	 */
4337 	if ((net_mask = ip_net_mask(addr)) == 0)
4338 		return (B_FALSE);
4339 	/* A given netmask overrides the "guess" netmask */
4340 	if (subnet_mask != 0)
4341 		net_mask = subnet_mask;
4342 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4343 	    (addr == (addr | ~net_mask)))) {
4344 		return (B_FALSE);
4345 	}
4346 
4347 	/*
4348 	 * Even if the netmask is all ones, we do not allow address to be
4349 	 * 255.255.255.255
4350 	 */
4351 	if (addr == INADDR_BROADCAST)
4352 		return (B_FALSE);
4353 
4354 	if (CLASSD(addr))
4355 		return (B_FALSE);
4356 
4357 	return (B_TRUE);
4358 }
4359 
4360 #define	V6_IPIF_LINKLOCAL(p)	\
4361 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4362 
4363 /*
4364  * Compare two given ipifs and check if the second one is better than
4365  * the first one using the order of preference (not taking deprecated
4366  * into acount) specified in ipif_lookup_multicast().
4367  */
4368 static boolean_t
4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4370 {
4371 	/* Check the least preferred first. */
4372 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4373 		/* If both ipifs are the same, use the first one. */
4374 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4375 			return (B_FALSE);
4376 		else
4377 			return (B_TRUE);
4378 	}
4379 
4380 	/* For IPv6, check for link local address. */
4381 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4382 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4383 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4384 			/* The second one is equal or less preferred. */
4385 			return (B_FALSE);
4386 		} else {
4387 			return (B_TRUE);
4388 		}
4389 	}
4390 
4391 	/* Then check for point to point interface. */
4392 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4393 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4394 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4395 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4396 			return (B_FALSE);
4397 		} else {
4398 			return (B_TRUE);
4399 		}
4400 	}
4401 
4402 	/* old_ipif is a normal interface, so no need to use the new one. */
4403 	return (B_FALSE);
4404 }
4405 
4406 /*
4407  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4408  * The ipif must be up, and its ill must multicast-capable, not
4409  * condemned, not an underlying interface in an IPMP group, and
4410  * not a VNI interface.  Order of preference:
4411  *
4412  *	1a. normal
4413  *	1b. normal, but deprecated
4414  *	2a. point to point
4415  *	2b. point to point, but deprecated
4416  *	3a. link local
4417  *	3b. link local, but deprecated
4418  *	4. loopback.
4419  */
4420 static ipif_t *
4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4422 {
4423 	ill_t			*ill;
4424 	ill_walk_context_t	ctx;
4425 	ipif_t			*ipif;
4426 	ipif_t			*saved_ipif = NULL;
4427 	ipif_t			*dep_ipif = NULL;
4428 
4429 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4430 	if (isv6)
4431 		ill = ILL_START_WALK_V6(&ctx, ipst);
4432 	else
4433 		ill = ILL_START_WALK_V4(&ctx, ipst);
4434 
4435 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4436 		mutex_enter(&ill->ill_lock);
4437 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4438 		    ILL_IS_CONDEMNED(ill) ||
4439 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4440 			mutex_exit(&ill->ill_lock);
4441 			continue;
4442 		}
4443 		for (ipif = ill->ill_ipif; ipif != NULL;
4444 		    ipif = ipif->ipif_next) {
4445 			if (zoneid != ipif->ipif_zoneid &&
4446 			    zoneid != ALL_ZONES &&
4447 			    ipif->ipif_zoneid != ALL_ZONES) {
4448 				continue;
4449 			}
4450 			if (!(ipif->ipif_flags & IPIF_UP) ||
4451 			    IPIF_IS_CONDEMNED(ipif)) {
4452 				continue;
4453 			}
4454 
4455 			/*
4456 			 * Found one candidate.  If it is deprecated,
4457 			 * remember it in dep_ipif.  If it is not deprecated,
4458 			 * remember it in saved_ipif.
4459 			 */
4460 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4461 				if (dep_ipif == NULL) {
4462 					dep_ipif = ipif;
4463 				} else if (ipif_comp_multi(dep_ipif, ipif,
4464 				    isv6)) {
4465 					/*
4466 					 * If the previous dep_ipif does not
4467 					 * belong to the same ill, we've done
4468 					 * a ipif_refhold() on it.  So we need
4469 					 * to release it.
4470 					 */
4471 					if (dep_ipif->ipif_ill != ill)
4472 						ipif_refrele(dep_ipif);
4473 					dep_ipif = ipif;
4474 				}
4475 				continue;
4476 			}
4477 			if (saved_ipif == NULL) {
4478 				saved_ipif = ipif;
4479 			} else {
4480 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4481 					if (saved_ipif->ipif_ill != ill)
4482 						ipif_refrele(saved_ipif);
4483 					saved_ipif = ipif;
4484 				}
4485 			}
4486 		}
4487 		/*
4488 		 * Before going to the next ill, do a ipif_refhold() on the
4489 		 * saved ones.
4490 		 */
4491 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4492 			ipif_refhold_locked(saved_ipif);
4493 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4494 			ipif_refhold_locked(dep_ipif);
4495 		mutex_exit(&ill->ill_lock);
4496 	}
4497 	rw_exit(&ipst->ips_ill_g_lock);
4498 
4499 	/*
4500 	 * If we have only the saved_ipif, return it.  But if we have both
4501 	 * saved_ipif and dep_ipif, check to see which one is better.
4502 	 */
4503 	if (saved_ipif != NULL) {
4504 		if (dep_ipif != NULL) {
4505 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4506 				ipif_refrele(saved_ipif);
4507 				return (dep_ipif);
4508 			} else {
4509 				ipif_refrele(dep_ipif);
4510 				return (saved_ipif);
4511 			}
4512 		}
4513 		return (saved_ipif);
4514 	} else {
4515 		return (dep_ipif);
4516 	}
4517 }
4518 
4519 ill_t *
4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4521 {
4522 	ipif_t *ipif;
4523 	ill_t *ill;
4524 
4525 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4526 	if (ipif == NULL)
4527 		return (NULL);
4528 
4529 	ill = ipif->ipif_ill;
4530 	ill_refhold(ill);
4531 	ipif_refrele(ipif);
4532 	return (ill);
4533 }
4534 
4535 /*
4536  * This function is called when an application does not specify an interface
4537  * to be used for multicast traffic (joining a group/sending data).  It
4538  * calls ire_lookup_multi() to look for an interface route for the
4539  * specified multicast group.  Doing this allows the administrator to add
4540  * prefix routes for multicast to indicate which interface to be used for
4541  * multicast traffic in the above scenario.  The route could be for all
4542  * multicast (224.0/4), for a single multicast group (a /32 route) or
4543  * anything in between.  If there is no such multicast route, we just find
4544  * any multicast capable interface and return it.  The returned ipif
4545  * is refhold'ed.
4546  *
4547  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4548  * unicast table. This is used by CGTP.
4549  */
4550 ill_t *
4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4552     boolean_t *multirtp, ipaddr_t *setsrcp)
4553 {
4554 	ill_t			*ill;
4555 
4556 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4557 	if (ill != NULL)
4558 		return (ill);
4559 
4560 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4561 }
4562 
4563 /*
4564  * Look for an ipif with the specified interface address and destination.
4565  * The destination address is used only for matching point-to-point interfaces.
4566  */
4567 ipif_t *
4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4569 {
4570 	ipif_t	*ipif;
4571 	ill_t	*ill;
4572 	ill_walk_context_t ctx;
4573 
4574 	/*
4575 	 * First match all the point-to-point interfaces
4576 	 * before looking at non-point-to-point interfaces.
4577 	 * This is done to avoid returning non-point-to-point
4578 	 * ipif instead of unnumbered point-to-point ipif.
4579 	 */
4580 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4581 	ill = ILL_START_WALK_V4(&ctx, ipst);
4582 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4583 		mutex_enter(&ill->ill_lock);
4584 		for (ipif = ill->ill_ipif; ipif != NULL;
4585 		    ipif = ipif->ipif_next) {
4586 			/* Allow the ipif to be down */
4587 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4588 			    (ipif->ipif_lcl_addr == if_addr) &&
4589 			    (ipif->ipif_pp_dst_addr == dst)) {
4590 				if (!IPIF_IS_CONDEMNED(ipif)) {
4591 					ipif_refhold_locked(ipif);
4592 					mutex_exit(&ill->ill_lock);
4593 					rw_exit(&ipst->ips_ill_g_lock);
4594 					return (ipif);
4595 				}
4596 			}
4597 		}
4598 		mutex_exit(&ill->ill_lock);
4599 	}
4600 	rw_exit(&ipst->ips_ill_g_lock);
4601 
4602 	/* lookup the ipif based on interface address */
4603 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4604 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4605 	return (ipif);
4606 }
4607 
4608 /*
4609  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4610  */
4611 static ipif_t *
4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4613     zoneid_t zoneid, ip_stack_t *ipst)
4614 {
4615 	ipif_t  *ipif;
4616 	ill_t   *ill;
4617 	boolean_t ptp = B_FALSE;
4618 	ill_walk_context_t	ctx;
4619 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4620 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4621 
4622 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4623 	/*
4624 	 * Repeat twice, first based on local addresses and
4625 	 * next time for pointopoint.
4626 	 */
4627 repeat:
4628 	ill = ILL_START_WALK_V4(&ctx, ipst);
4629 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4630 		if (match_ill != NULL && ill != match_ill &&
4631 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4632 			continue;
4633 		}
4634 		mutex_enter(&ill->ill_lock);
4635 		for (ipif = ill->ill_ipif; ipif != NULL;
4636 		    ipif = ipif->ipif_next) {
4637 			if (zoneid != ALL_ZONES &&
4638 			    zoneid != ipif->ipif_zoneid &&
4639 			    ipif->ipif_zoneid != ALL_ZONES)
4640 				continue;
4641 
4642 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4643 				continue;
4644 
4645 			/* Allow the ipif to be down */
4646 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4647 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4648 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4649 			    (ipif->ipif_pp_dst_addr == addr))) {
4650 				if (!IPIF_IS_CONDEMNED(ipif)) {
4651 					ipif_refhold_locked(ipif);
4652 					mutex_exit(&ill->ill_lock);
4653 					rw_exit(&ipst->ips_ill_g_lock);
4654 					return (ipif);
4655 				}
4656 			}
4657 		}
4658 		mutex_exit(&ill->ill_lock);
4659 	}
4660 
4661 	/* If we already did the ptp case, then we are done */
4662 	if (ptp) {
4663 		rw_exit(&ipst->ips_ill_g_lock);
4664 		return (NULL);
4665 	}
4666 	ptp = B_TRUE;
4667 	goto repeat;
4668 }
4669 
4670 /*
4671  * Lookup an ipif with the specified address.  For point-to-point links we
4672  * look for matches on either the destination address or the local address,
4673  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4674  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4675  * (or illgrp if `match_ill' is in an IPMP group).
4676  */
4677 ipif_t *
4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4679     ip_stack_t *ipst)
4680 {
4681 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4682 	    zoneid, ipst));
4683 }
4684 
4685 /*
4686  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4687  * except that we will only return an address if it is not marked as
4688  * IPIF_DUPLICATE
4689  */
4690 ipif_t *
4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4692     ip_stack_t *ipst)
4693 {
4694 	return (ipif_lookup_addr_common(addr, match_ill,
4695 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4696 	    zoneid, ipst));
4697 }
4698 
4699 /*
4700  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4701  * `match_ill' across the IPMP group.  This function is only needed in some
4702  * corner-cases; almost everything should use ipif_lookup_addr().
4703  */
4704 ipif_t *
4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4706 {
4707 	ASSERT(match_ill != NULL);
4708 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4709 	    ipst));
4710 }
4711 
4712 /*
4713  * Look for an ipif with the specified address. For point-point links
4714  * we look for matches on either the destination address and the local
4715  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4716  * is set.
4717  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4718  * ill (or illgrp if `match_ill' is in an IPMP group).
4719  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4720  */
4721 zoneid_t
4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4723 {
4724 	zoneid_t zoneid;
4725 	ipif_t  *ipif;
4726 	ill_t   *ill;
4727 	boolean_t ptp = B_FALSE;
4728 	ill_walk_context_t	ctx;
4729 
4730 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4731 	/*
4732 	 * Repeat twice, first based on local addresses and
4733 	 * next time for pointopoint.
4734 	 */
4735 repeat:
4736 	ill = ILL_START_WALK_V4(&ctx, ipst);
4737 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4738 		if (match_ill != NULL && ill != match_ill &&
4739 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4740 			continue;
4741 		}
4742 		mutex_enter(&ill->ill_lock);
4743 		for (ipif = ill->ill_ipif; ipif != NULL;
4744 		    ipif = ipif->ipif_next) {
4745 			/* Allow the ipif to be down */
4746 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4747 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4748 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4749 			    (ipif->ipif_pp_dst_addr == addr)) &&
4750 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4751 				zoneid = ipif->ipif_zoneid;
4752 				mutex_exit(&ill->ill_lock);
4753 				rw_exit(&ipst->ips_ill_g_lock);
4754 				/*
4755 				 * If ipif_zoneid was ALL_ZONES then we have
4756 				 * a trusted extensions shared IP address.
4757 				 * In that case GLOBAL_ZONEID works to send.
4758 				 */
4759 				if (zoneid == ALL_ZONES)
4760 					zoneid = GLOBAL_ZONEID;
4761 				return (zoneid);
4762 			}
4763 		}
4764 		mutex_exit(&ill->ill_lock);
4765 	}
4766 
4767 	/* If we already did the ptp case, then we are done */
4768 	if (ptp) {
4769 		rw_exit(&ipst->ips_ill_g_lock);
4770 		return (ALL_ZONES);
4771 	}
4772 	ptp = B_TRUE;
4773 	goto repeat;
4774 }
4775 
4776 /*
4777  * Look for an ipif that matches the specified remote address i.e. the
4778  * ipif that would receive the specified packet.
4779  * First look for directly connected interfaces and then do a recursive
4780  * IRE lookup and pick the first ipif corresponding to the source address in the
4781  * ire.
4782  * Returns: held ipif
4783  *
4784  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4785  */
4786 ipif_t *
4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4788 {
4789 	ipif_t	*ipif;
4790 
4791 	ASSERT(!ill->ill_isv6);
4792 
4793 	/*
4794 	 * Someone could be changing this ipif currently or change it
4795 	 * after we return this. Thus  a few packets could use the old
4796 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4797 	 * will atomically be updated or cleaned up with the new value
4798 	 * Thus we don't need a lock to check the flags or other attrs below.
4799 	 */
4800 	mutex_enter(&ill->ill_lock);
4801 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4802 		if (IPIF_IS_CONDEMNED(ipif))
4803 			continue;
4804 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4805 		    ipif->ipif_zoneid != ALL_ZONES)
4806 			continue;
4807 		/* Allow the ipif to be down */
4808 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4809 			if ((ipif->ipif_pp_dst_addr == addr) ||
4810 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4811 			    ipif->ipif_lcl_addr == addr)) {
4812 				ipif_refhold_locked(ipif);
4813 				mutex_exit(&ill->ill_lock);
4814 				return (ipif);
4815 			}
4816 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4817 			ipif_refhold_locked(ipif);
4818 			mutex_exit(&ill->ill_lock);
4819 			return (ipif);
4820 		}
4821 	}
4822 	mutex_exit(&ill->ill_lock);
4823 	/*
4824 	 * For a remote destination it isn't possible to nail down a particular
4825 	 * ipif.
4826 	 */
4827 
4828 	/* Pick the first interface */
4829 	ipif = ipif_get_next_ipif(NULL, ill);
4830 	return (ipif);
4831 }
4832 
4833 /*
4834  * This func does not prevent refcnt from increasing. But if
4835  * the caller has taken steps to that effect, then this func
4836  * can be used to determine whether the ill has become quiescent
4837  */
4838 static boolean_t
4839 ill_is_quiescent(ill_t *ill)
4840 {
4841 	ipif_t	*ipif;
4842 
4843 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4844 
4845 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4846 		if (ipif->ipif_refcnt != 0)
4847 			return (B_FALSE);
4848 	}
4849 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4850 		return (B_FALSE);
4851 	}
4852 	return (B_TRUE);
4853 }
4854 
4855 boolean_t
4856 ill_is_freeable(ill_t *ill)
4857 {
4858 	ipif_t	*ipif;
4859 
4860 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4861 
4862 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4863 		if (ipif->ipif_refcnt != 0) {
4864 			return (B_FALSE);
4865 		}
4866 	}
4867 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4868 		return (B_FALSE);
4869 	}
4870 	return (B_TRUE);
4871 }
4872 
4873 /*
4874  * This func does not prevent refcnt from increasing. But if
4875  * the caller has taken steps to that effect, then this func
4876  * can be used to determine whether the ipif has become quiescent
4877  */
4878 static boolean_t
4879 ipif_is_quiescent(ipif_t *ipif)
4880 {
4881 	ill_t *ill;
4882 
4883 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4884 
4885 	if (ipif->ipif_refcnt != 0)
4886 		return (B_FALSE);
4887 
4888 	ill = ipif->ipif_ill;
4889 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4890 	    ill->ill_logical_down) {
4891 		return (B_TRUE);
4892 	}
4893 
4894 	/* This is the last ipif going down or being deleted on this ill */
4895 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4896 		return (B_FALSE);
4897 	}
4898 
4899 	return (B_TRUE);
4900 }
4901 
4902 /*
4903  * return true if the ipif can be destroyed: the ipif has to be quiescent
4904  * with zero references from ire/ilm to it.
4905  */
4906 static boolean_t
4907 ipif_is_freeable(ipif_t *ipif)
4908 {
4909 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4910 	ASSERT(ipif->ipif_id != 0);
4911 	return (ipif->ipif_refcnt == 0);
4912 }
4913 
4914 /*
4915  * The ipif/ill/ire has been refreled. Do the tail processing.
4916  * Determine if the ipif or ill in question has become quiescent and if so
4917  * wakeup close and/or restart any queued pending ioctl that is waiting
4918  * for the ipif_down (or ill_down)
4919  */
4920 void
4921 ipif_ill_refrele_tail(ill_t *ill)
4922 {
4923 	mblk_t	*mp;
4924 	conn_t	*connp;
4925 	ipsq_t	*ipsq;
4926 	ipxop_t	*ipx;
4927 	ipif_t	*ipif;
4928 	dl_notify_ind_t *dlindp;
4929 
4930 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4931 
4932 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4933 		/* ip_modclose() may be waiting */
4934 		cv_broadcast(&ill->ill_cv);
4935 	}
4936 
4937 	ipsq = ill->ill_phyint->phyint_ipsq;
4938 	mutex_enter(&ipsq->ipsq_lock);
4939 	ipx = ipsq->ipsq_xop;
4940 	mutex_enter(&ipx->ipx_lock);
4941 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4942 		goto unlock;
4943 
4944 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4945 
4946 	ipif = ipx->ipx_pending_ipif;
4947 	if (ipif->ipif_ill != ill)	/* wait is for another ill; bail */
4948 		goto unlock;
4949 
4950 	switch (ipx->ipx_waitfor) {
4951 	case IPIF_DOWN:
4952 		if (!ipif_is_quiescent(ipif))
4953 			goto unlock;
4954 		break;
4955 	case IPIF_FREE:
4956 		if (!ipif_is_freeable(ipif))
4957 			goto unlock;
4958 		break;
4959 	case ILL_DOWN:
4960 		if (!ill_is_quiescent(ill))
4961 			goto unlock;
4962 		break;
4963 	case ILL_FREE:
4964 		/*
4965 		 * ILL_FREE is only for loopback; normal ill teardown waits
4966 		 * synchronously in ip_modclose() without using ipx_waitfor,
4967 		 * handled by the cv_broadcast() at the top of this function.
4968 		 */
4969 		if (!ill_is_freeable(ill))
4970 			goto unlock;
4971 		break;
4972 	default:
4973 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4974 		    (void *)ipsq, ipx->ipx_waitfor);
4975 	}
4976 
4977 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4978 	mutex_exit(&ipx->ipx_lock);
4979 	mp = ipsq_pending_mp_get(ipsq, &connp);
4980 	mutex_exit(&ipsq->ipsq_lock);
4981 	mutex_exit(&ill->ill_lock);
4982 
4983 	ASSERT(mp != NULL);
4984 	/*
4985 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4986 	 * we can only get here when the current operation decides it
4987 	 * it needs to quiesce via ipsq_pending_mp_add().
4988 	 */
4989 	switch (mp->b_datap->db_type) {
4990 	case M_PCPROTO:
4991 	case M_PROTO:
4992 		/*
4993 		 * For now, only DL_NOTIFY_IND messages can use this facility.
4994 		 */
4995 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
4996 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4997 
4998 		switch (dlindp->dl_notification) {
4999 		case DL_NOTE_PHYS_ADDR:
5000 			qwriter_ip(ill, ill->ill_rq, mp,
5001 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5002 			return;
5003 		case DL_NOTE_REPLUMB:
5004 			qwriter_ip(ill, ill->ill_rq, mp,
5005 			    ill_replumb_tail, CUR_OP, B_TRUE);
5006 			return;
5007 		default:
5008 			ASSERT(0);
5009 			ill_refrele(ill);
5010 		}
5011 		break;
5012 
5013 	case M_ERROR:
5014 	case M_HANGUP:
5015 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5016 		    B_TRUE);
5017 		return;
5018 
5019 	case M_IOCTL:
5020 	case M_IOCDATA:
5021 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5022 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5023 		return;
5024 
5025 	default:
5026 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5027 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5028 	}
5029 	return;
5030 unlock:
5031 	mutex_exit(&ipsq->ipsq_lock);
5032 	mutex_exit(&ipx->ipx_lock);
5033 	mutex_exit(&ill->ill_lock);
5034 }
5035 
5036 #ifdef DEBUG
5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5038 static void
5039 th_trace_rrecord(th_trace_t *th_trace)
5040 {
5041 	tr_buf_t *tr_buf;
5042 	uint_t lastref;
5043 
5044 	lastref = th_trace->th_trace_lastref;
5045 	lastref++;
5046 	if (lastref == TR_BUF_MAX)
5047 		lastref = 0;
5048 	th_trace->th_trace_lastref = lastref;
5049 	tr_buf = &th_trace->th_trbuf[lastref];
5050 	tr_buf->tr_time = ddi_get_lbolt();
5051 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5052 }
5053 
5054 static void
5055 th_trace_free(void *value)
5056 {
5057 	th_trace_t *th_trace = value;
5058 
5059 	ASSERT(th_trace->th_refcnt == 0);
5060 	kmem_free(th_trace, sizeof (*th_trace));
5061 }
5062 
5063 /*
5064  * Find or create the per-thread hash table used to track object references.
5065  * The ipst argument is NULL if we shouldn't allocate.
5066  *
5067  * Accesses per-thread data, so there's no need to lock here.
5068  */
5069 static mod_hash_t *
5070 th_trace_gethash(ip_stack_t *ipst)
5071 {
5072 	th_hash_t *thh;
5073 
5074 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5075 		mod_hash_t *mh;
5076 		char name[256];
5077 		size_t objsize, rshift;
5078 		int retv;
5079 
5080 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5081 			return (NULL);
5082 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5083 		    (void *)curthread);
5084 
5085 		/*
5086 		 * We use mod_hash_create_extended here rather than the more
5087 		 * obvious mod_hash_create_ptrhash because the latter has a
5088 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5089 		 * block.
5090 		 */
5091 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5092 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5093 		rshift = highbit(objsize);
5094 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5095 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5096 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5097 		if (mh == NULL) {
5098 			kmem_free(thh, sizeof (*thh));
5099 			return (NULL);
5100 		}
5101 		thh->thh_hash = mh;
5102 		thh->thh_ipst = ipst;
5103 		/*
5104 		 * We trace ills, ipifs, ires, and nces.  All of these are
5105 		 * per-IP-stack, so the lock on the thread list is as well.
5106 		 */
5107 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5108 		list_insert_tail(&ip_thread_list, thh);
5109 		rw_exit(&ip_thread_rwlock);
5110 		retv = tsd_set(ip_thread_data, thh);
5111 		ASSERT(retv == 0);
5112 	}
5113 	return (thh != NULL ? thh->thh_hash : NULL);
5114 }
5115 
5116 boolean_t
5117 th_trace_ref(const void *obj, ip_stack_t *ipst)
5118 {
5119 	th_trace_t *th_trace;
5120 	mod_hash_t *mh;
5121 	mod_hash_val_t val;
5122 
5123 	if ((mh = th_trace_gethash(ipst)) == NULL)
5124 		return (B_FALSE);
5125 
5126 	/*
5127 	 * Attempt to locate the trace buffer for this obj and thread.
5128 	 * If it does not exist, then allocate a new trace buffer and
5129 	 * insert into the hash.
5130 	 */
5131 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5132 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5133 		if (th_trace == NULL)
5134 			return (B_FALSE);
5135 
5136 		th_trace->th_id = curthread;
5137 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5138 		    (mod_hash_val_t)th_trace) != 0) {
5139 			kmem_free(th_trace, sizeof (th_trace_t));
5140 			return (B_FALSE);
5141 		}
5142 	} else {
5143 		th_trace = (th_trace_t *)val;
5144 	}
5145 
5146 	ASSERT(th_trace->th_refcnt >= 0 &&
5147 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5148 
5149 	th_trace->th_refcnt++;
5150 	th_trace_rrecord(th_trace);
5151 	return (B_TRUE);
5152 }
5153 
5154 /*
5155  * For the purpose of tracing a reference release, we assume that global
5156  * tracing is always on and that the same thread initiated the reference hold
5157  * is releasing.
5158  */
5159 void
5160 th_trace_unref(const void *obj)
5161 {
5162 	int retv;
5163 	mod_hash_t *mh;
5164 	th_trace_t *th_trace;
5165 	mod_hash_val_t val;
5166 
5167 	mh = th_trace_gethash(NULL);
5168 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5169 	ASSERT(retv == 0);
5170 	th_trace = (th_trace_t *)val;
5171 
5172 	ASSERT(th_trace->th_refcnt > 0);
5173 	th_trace->th_refcnt--;
5174 	th_trace_rrecord(th_trace);
5175 }
5176 
5177 /*
5178  * If tracing has been disabled, then we assume that the reference counts are
5179  * now useless, and we clear them out before destroying the entries.
5180  */
5181 void
5182 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5183 {
5184 	th_hash_t	*thh;
5185 	mod_hash_t	*mh;
5186 	mod_hash_val_t	val;
5187 	th_trace_t	*th_trace;
5188 	int		retv;
5189 
5190 	rw_enter(&ip_thread_rwlock, RW_READER);
5191 	for (thh = list_head(&ip_thread_list); thh != NULL;
5192 	    thh = list_next(&ip_thread_list, thh)) {
5193 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5194 		    &val) == 0) {
5195 			th_trace = (th_trace_t *)val;
5196 			if (trace_disable)
5197 				th_trace->th_refcnt = 0;
5198 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5199 			ASSERT(retv == 0);
5200 		}
5201 	}
5202 	rw_exit(&ip_thread_rwlock);
5203 }
5204 
5205 void
5206 ipif_trace_ref(ipif_t *ipif)
5207 {
5208 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5209 
5210 	if (ipif->ipif_trace_disable)
5211 		return;
5212 
5213 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5214 		ipif->ipif_trace_disable = B_TRUE;
5215 		ipif_trace_cleanup(ipif);
5216 	}
5217 }
5218 
5219 void
5220 ipif_untrace_ref(ipif_t *ipif)
5221 {
5222 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5223 
5224 	if (!ipif->ipif_trace_disable)
5225 		th_trace_unref(ipif);
5226 }
5227 
5228 void
5229 ill_trace_ref(ill_t *ill)
5230 {
5231 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5232 
5233 	if (ill->ill_trace_disable)
5234 		return;
5235 
5236 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5237 		ill->ill_trace_disable = B_TRUE;
5238 		ill_trace_cleanup(ill);
5239 	}
5240 }
5241 
5242 void
5243 ill_untrace_ref(ill_t *ill)
5244 {
5245 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5246 
5247 	if (!ill->ill_trace_disable)
5248 		th_trace_unref(ill);
5249 }
5250 
5251 /*
5252  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5253  * failure, ipif_trace_disable is set.
5254  */
5255 static void
5256 ipif_trace_cleanup(const ipif_t *ipif)
5257 {
5258 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5259 }
5260 
5261 /*
5262  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5263  * failure, ill_trace_disable is set.
5264  */
5265 static void
5266 ill_trace_cleanup(const ill_t *ill)
5267 {
5268 	th_trace_cleanup(ill, ill->ill_trace_disable);
5269 }
5270 #endif /* DEBUG */
5271 
5272 void
5273 ipif_refhold_locked(ipif_t *ipif)
5274 {
5275 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5276 	ipif->ipif_refcnt++;
5277 	IPIF_TRACE_REF(ipif);
5278 }
5279 
5280 void
5281 ipif_refhold(ipif_t *ipif)
5282 {
5283 	ill_t	*ill;
5284 
5285 	ill = ipif->ipif_ill;
5286 	mutex_enter(&ill->ill_lock);
5287 	ipif->ipif_refcnt++;
5288 	IPIF_TRACE_REF(ipif);
5289 	mutex_exit(&ill->ill_lock);
5290 }
5291 
5292 /*
5293  * Must not be called while holding any locks. Otherwise if this is
5294  * the last reference to be released there is a chance of recursive mutex
5295  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5296  * to restart an ioctl.
5297  */
5298 void
5299 ipif_refrele(ipif_t *ipif)
5300 {
5301 	ill_t	*ill;
5302 
5303 	ill = ipif->ipif_ill;
5304 
5305 	mutex_enter(&ill->ill_lock);
5306 	ASSERT(ipif->ipif_refcnt != 0);
5307 	ipif->ipif_refcnt--;
5308 	IPIF_UNTRACE_REF(ipif);
5309 	if (ipif->ipif_refcnt != 0) {
5310 		mutex_exit(&ill->ill_lock);
5311 		return;
5312 	}
5313 
5314 	/* Drops the ill_lock */
5315 	ipif_ill_refrele_tail(ill);
5316 }
5317 
5318 ipif_t *
5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5320 {
5321 	ipif_t	*ipif;
5322 
5323 	mutex_enter(&ill->ill_lock);
5324 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5325 	    ipif != NULL; ipif = ipif->ipif_next) {
5326 		if (IPIF_IS_CONDEMNED(ipif))
5327 			continue;
5328 		ipif_refhold_locked(ipif);
5329 		mutex_exit(&ill->ill_lock);
5330 		return (ipif);
5331 	}
5332 	mutex_exit(&ill->ill_lock);
5333 	return (NULL);
5334 }
5335 
5336 /*
5337  * TODO: make this table extendible at run time
5338  * Return a pointer to the mac type info for 'mac_type'
5339  */
5340 static ip_m_t *
5341 ip_m_lookup(t_uscalar_t mac_type)
5342 {
5343 	ip_m_t	*ipm;
5344 
5345 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5346 		if (ipm->ip_m_mac_type == mac_type)
5347 			return (ipm);
5348 	return (NULL);
5349 }
5350 
5351 /*
5352  * Make a link layer address from the multicast IP address *addr.
5353  * To form the link layer address, invoke the ip_m_v*mapping function
5354  * associated with the link-layer type.
5355  */
5356 void
5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5358 {
5359 	ip_m_t *ipm;
5360 
5361 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5362 		return;
5363 
5364 	ASSERT(addr != NULL);
5365 
5366 	ipm = ip_m_lookup(ill->ill_mactype);
5367 	if (ipm == NULL ||
5368 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5369 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5370 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5371 		    ill->ill_name, ill->ill_mactype));
5372 		return;
5373 	}
5374 	if (ill->ill_isv6)
5375 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5376 	else
5377 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5378 }
5379 
5380 /*
5381  * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5382  * Otherwise returns B_TRUE.
5383  *
5384  * The netmask can be verified to be contiguous with 32 shifts and or
5385  * operations. Take the contiguous mask (in host byte order) and compute
5386  *	mask | mask << 1 | mask << 2 | ... | mask << 31
5387  * the result will be the same as the 'mask' for contiguous mask.
5388  */
5389 static boolean_t
5390 ip_contiguous_mask(uint32_t mask)
5391 {
5392 	uint32_t	m = mask;
5393 	int		i;
5394 
5395 	for (i = 1; i < 32; i++)
5396 		m |= (mask << i);
5397 
5398 	return (m == mask);
5399 }
5400 
5401 /*
5402  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5403  * ill is passed in to associate it with the correct interface.
5404  * If ire_arg is set, then we return the held IRE in that location.
5405  */
5406 int
5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5408     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5409     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5410 {
5411 	ire_t	*ire, *nire;
5412 	ire_t	*gw_ire = NULL;
5413 	ipif_t	*ipif = NULL;
5414 	uint_t	type;
5415 	int	match_flags = MATCH_IRE_TYPE;
5416 	tsol_gc_t *gc = NULL;
5417 	tsol_gcgrp_t *gcgrp = NULL;
5418 	boolean_t gcgrp_xtraref = B_FALSE;
5419 	boolean_t cgtp_broadcast;
5420 	boolean_t unbound = B_FALSE;
5421 
5422 	ip1dbg(("ip_rt_add:"));
5423 
5424 	if (ire_arg != NULL)
5425 		*ire_arg = NULL;
5426 
5427 	/* disallow non-contiguous netmasks */
5428 	if (!ip_contiguous_mask(ntohl(mask)))
5429 		return (ENOTSUP);
5430 
5431 	/*
5432 	 * If this is the case of RTF_HOST being set, then we set the netmask
5433 	 * to all ones (regardless if one was supplied).
5434 	 */
5435 	if (flags & RTF_HOST)
5436 		mask = IP_HOST_MASK;
5437 
5438 	/*
5439 	 * Prevent routes with a zero gateway from being created (since
5440 	 * interfaces can currently be plumbed and brought up no assigned
5441 	 * address).
5442 	 */
5443 	if (gw_addr == 0)
5444 		return (ENETUNREACH);
5445 	/*
5446 	 * Get the ipif, if any, corresponding to the gw_addr
5447 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5448 	 * we match on the gatway and destination to handle unnumbered pt-pt
5449 	 * interfaces.
5450 	 */
5451 	if (ill != NULL)
5452 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5453 	else
5454 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5455 	if (ipif != NULL) {
5456 		if (IS_VNI(ipif->ipif_ill)) {
5457 			ipif_refrele(ipif);
5458 			return (EINVAL);
5459 		}
5460 	}
5461 
5462 	/*
5463 	 * GateD will attempt to create routes with a loopback interface
5464 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5465 	 * these routes to be added, but create them as interface routes
5466 	 * since the gateway is an interface address.
5467 	 */
5468 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5469 		flags &= ~RTF_GATEWAY;
5470 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5471 		    mask == IP_HOST_MASK) {
5472 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5473 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5474 			    NULL);
5475 			if (ire != NULL) {
5476 				ire_refrele(ire);
5477 				ipif_refrele(ipif);
5478 				return (EEXIST);
5479 			}
5480 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5481 			    "for 0x%x\n", (void *)ipif,
5482 			    ipif->ipif_ire_type,
5483 			    ntohl(ipif->ipif_lcl_addr)));
5484 			ire = ire_create(
5485 			    (uchar_t *)&dst_addr,	/* dest address */
5486 			    (uchar_t *)&mask,		/* mask */
5487 			    NULL,			/* no gateway */
5488 			    ipif->ipif_ire_type,	/* LOOPBACK */
5489 			    ipif->ipif_ill,
5490 			    zoneid,
5491 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5492 			    NULL,
5493 			    ipst);
5494 
5495 			if (ire == NULL) {
5496 				ipif_refrele(ipif);
5497 				return (ENOMEM);
5498 			}
5499 			/* src address assigned by the caller? */
5500 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5501 				ire->ire_setsrc_addr = src_addr;
5502 
5503 			nire = ire_add(ire);
5504 			if (nire == NULL) {
5505 				/*
5506 				 * In the result of failure, ire_add() will have
5507 				 * already deleted the ire in question, so there
5508 				 * is no need to do that here.
5509 				 */
5510 				ipif_refrele(ipif);
5511 				return (ENOMEM);
5512 			}
5513 			/*
5514 			 * Check if it was a duplicate entry. This handles
5515 			 * the case of two racing route adds for the same route
5516 			 */
5517 			if (nire != ire) {
5518 				ASSERT(nire->ire_identical_ref > 1);
5519 				ire_delete(nire);
5520 				ire_refrele(nire);
5521 				ipif_refrele(ipif);
5522 				return (EEXIST);
5523 			}
5524 			ire = nire;
5525 			goto save_ire;
5526 		}
5527 	}
5528 
5529 	/*
5530 	 * The routes for multicast with CGTP are quite special in that
5531 	 * the gateway is the local interface address, yet RTF_GATEWAY
5532 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5533 	 * this undocumented and unusual use of multicast routes.
5534 	 */
5535 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5536 		flags &= ~RTF_GATEWAY;
5537 
5538 	/*
5539 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5540 	 * and the gateway address provided is one of the system's interface
5541 	 * addresses.  By using the routing socket interface and supplying an
5542 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5543 	 * specifying an interface route to be created is available which uses
5544 	 * the interface index that specifies the outgoing interface rather than
5545 	 * the address of an outgoing interface (which may not be able to
5546 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5547 	 * flag, routes can be specified which not only specify the next-hop to
5548 	 * be used when routing to a certain prefix, but also which outgoing
5549 	 * interface should be used.
5550 	 *
5551 	 * Previously, interfaces would have unique addresses assigned to them
5552 	 * and so the address assigned to a particular interface could be used
5553 	 * to identify a particular interface.  One exception to this was the
5554 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5555 	 *
5556 	 * With the advent of IPv6 and its link-local addresses, this
5557 	 * restriction was relaxed and interfaces could share addresses between
5558 	 * themselves.  In fact, typically all of the link-local interfaces on
5559 	 * an IPv6 node or router will have the same link-local address.  In
5560 	 * order to differentiate between these interfaces, the use of an
5561 	 * interface index is necessary and this index can be carried inside a
5562 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5563 	 * of using the interface index, however, is that all of the ipif's that
5564 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5565 	 * cannot be used to differentiate between ipif's (or logical
5566 	 * interfaces) that belong to the same ill (physical interface).
5567 	 *
5568 	 * For example, in the following case involving IPv4 interfaces and
5569 	 * logical interfaces
5570 	 *
5571 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5572 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5573 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5574 	 *
5575 	 * the ipif's corresponding to each of these interface routes can be
5576 	 * uniquely identified by the "gateway" (actually interface address).
5577 	 *
5578 	 * In this case involving multiple IPv6 default routes to a particular
5579 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5580 	 * default route is of interest:
5581 	 *
5582 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5583 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5584 	 */
5585 
5586 	/* RTF_GATEWAY not set */
5587 	if (!(flags & RTF_GATEWAY)) {
5588 		if (sp != NULL) {
5589 			ip2dbg(("ip_rt_add: gateway security attributes "
5590 			    "cannot be set with interface route\n"));
5591 			if (ipif != NULL)
5592 				ipif_refrele(ipif);
5593 			return (EINVAL);
5594 		}
5595 
5596 		/*
5597 		 * Whether or not ill (RTA_IFP) is set, we require that
5598 		 * the gateway is one of our local addresses.
5599 		 */
5600 		if (ipif == NULL)
5601 			return (ENETUNREACH);
5602 
5603 		/*
5604 		 * We use MATCH_IRE_ILL here. If the caller specified an
5605 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5606 		 * we use the ill derived from the gateway address.
5607 		 * We can always match the gateway address since we record it
5608 		 * in ire_gateway_addr.
5609 		 * We don't allow RTA_IFP to specify a different ill than the
5610 		 * one matching the ipif to make sure we can delete the route.
5611 		 */
5612 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5613 		if (ill == NULL) {
5614 			ill = ipif->ipif_ill;
5615 		} else if (ill != ipif->ipif_ill) {
5616 			ipif_refrele(ipif);
5617 			return (EINVAL);
5618 		}
5619 
5620 		/*
5621 		 * We check for an existing entry at this point.
5622 		 *
5623 		 * Since a netmask isn't passed in via the ioctl interface
5624 		 * (SIOCADDRT), we don't check for a matching netmask in that
5625 		 * case.
5626 		 */
5627 		if (!ioctl_msg)
5628 			match_flags |= MATCH_IRE_MASK;
5629 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5630 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5631 		    NULL);
5632 		if (ire != NULL) {
5633 			ire_refrele(ire);
5634 			ipif_refrele(ipif);
5635 			return (EEXIST);
5636 		}
5637 
5638 		/*
5639 		 * Some software (for example, GateD and Sun Cluster) attempts
5640 		 * to create (what amount to) IRE_PREFIX routes with the
5641 		 * loopback address as the gateway.  This is primarily done to
5642 		 * set up prefixes with the RTF_REJECT flag set (for example,
5643 		 * when generating aggregate routes.)
5644 		 *
5645 		 * If the IRE type (as defined by ill->ill_net_type) would be
5646 		 * IRE_LOOPBACK, then we map the request into a
5647 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5648 		 * these interface routes, by definition, can only be that.
5649 		 *
5650 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5651 		 * routine, but rather using ire_create() directly.
5652 		 *
5653 		 */
5654 		type = ill->ill_net_type;
5655 		if (type == IRE_LOOPBACK) {
5656 			type = IRE_IF_NORESOLVER;
5657 			flags |= RTF_BLACKHOLE;
5658 		}
5659 
5660 		/*
5661 		 * Create a copy of the IRE_IF_NORESOLVER or
5662 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5663 		 * gateway.
5664 		 */
5665 		ire = ire_create(
5666 		    (uchar_t *)&dst_addr,
5667 		    (uint8_t *)&mask,
5668 		    (uint8_t *)&gw_addr,
5669 		    type,
5670 		    ill,
5671 		    zoneid,
5672 		    flags,
5673 		    NULL,
5674 		    ipst);
5675 		if (ire == NULL) {
5676 			ipif_refrele(ipif);
5677 			return (ENOMEM);
5678 		}
5679 
5680 		/* src address assigned by the caller? */
5681 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5682 			ire->ire_setsrc_addr = src_addr;
5683 
5684 		nire = ire_add(ire);
5685 		if (nire == NULL) {
5686 			/*
5687 			 * In the result of failure, ire_add() will have
5688 			 * already deleted the ire in question, so there
5689 			 * is no need to do that here.
5690 			 */
5691 			ipif_refrele(ipif);
5692 			return (ENOMEM);
5693 		}
5694 		/*
5695 		 * Check if it was a duplicate entry. This handles
5696 		 * the case of two racing route adds for the same route
5697 		 */
5698 		if (nire != ire) {
5699 			ire_delete(nire);
5700 			ire_refrele(nire);
5701 			ipif_refrele(ipif);
5702 			return (EEXIST);
5703 		}
5704 		ire = nire;
5705 		goto save_ire;
5706 	}
5707 
5708 	/*
5709 	 * Get an interface IRE for the specified gateway.
5710 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5711 	 * gateway, it is currently unreachable and we fail the request
5712 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5713 	 * is an IRE_LOCAL or IRE_LOOPBACK.
5714 	 * If RTA_IFP was specified we look on that particular ill.
5715 	 */
5716 	if (ill != NULL)
5717 		match_flags |= MATCH_IRE_ILL;
5718 
5719 	/* Check whether the gateway is reachable. */
5720 again:
5721 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5722 	if (flags & RTF_INDIRECT)
5723 		type |= IRE_OFFLINK;
5724 
5725 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5726 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5727 	if (gw_ire == NULL) {
5728 		/*
5729 		 * With IPMP, we allow host routes to influence in.mpathd's
5730 		 * target selection.  However, if the test addresses are on
5731 		 * their own network, the above lookup will fail since the
5732 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5733 		 * hidden test IREs to be found and try again.
5734 		 */
5735 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5736 			match_flags |= MATCH_IRE_TESTHIDDEN;
5737 			goto again;
5738 		}
5739 		if (ipif != NULL)
5740 			ipif_refrele(ipif);
5741 		return (ENETUNREACH);
5742 	}
5743 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5744 		ire_refrele(gw_ire);
5745 		if (ipif != NULL)
5746 			ipif_refrele(ipif);
5747 		return (ENETUNREACH);
5748 	}
5749 
5750 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
5751 		unbound = B_TRUE;
5752 		if (ipst->ips_ip_strict_src_multihoming > 0)
5753 			ill = gw_ire->ire_ill;
5754 	}
5755 
5756 	/*
5757 	 * We create one of three types of IREs as a result of this request
5758 	 * based on the netmask.  A netmask of all ones (which is automatically
5759 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5760 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5761 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5762 	 * destination prefix.
5763 	 */
5764 	if (mask == IP_HOST_MASK)
5765 		type = IRE_HOST;
5766 	else if (mask == 0)
5767 		type = IRE_DEFAULT;
5768 	else
5769 		type = IRE_PREFIX;
5770 
5771 	/* check for a duplicate entry */
5772 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5773 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5774 	    0, ipst, NULL);
5775 	if (ire != NULL) {
5776 		if (ipif != NULL)
5777 			ipif_refrele(ipif);
5778 		ire_refrele(gw_ire);
5779 		ire_refrele(ire);
5780 		return (EEXIST);
5781 	}
5782 
5783 	/* Security attribute exists */
5784 	if (sp != NULL) {
5785 		tsol_gcgrp_addr_t ga;
5786 
5787 		/* find or create the gateway credentials group */
5788 		ga.ga_af = AF_INET;
5789 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5790 
5791 		/* we hold reference to it upon success */
5792 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5793 		if (gcgrp == NULL) {
5794 			if (ipif != NULL)
5795 				ipif_refrele(ipif);
5796 			ire_refrele(gw_ire);
5797 			return (ENOMEM);
5798 		}
5799 
5800 		/*
5801 		 * Create and add the security attribute to the group; a
5802 		 * reference to the group is made upon allocating a new
5803 		 * entry successfully.  If it finds an already-existing
5804 		 * entry for the security attribute in the group, it simply
5805 		 * returns it and no new reference is made to the group.
5806 		 */
5807 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5808 		if (gc == NULL) {
5809 			if (ipif != NULL)
5810 				ipif_refrele(ipif);
5811 			/* release reference held by gcgrp_lookup */
5812 			GCGRP_REFRELE(gcgrp);
5813 			ire_refrele(gw_ire);
5814 			return (ENOMEM);
5815 		}
5816 	}
5817 
5818 	/* Create the IRE. */
5819 	ire = ire_create(
5820 	    (uchar_t *)&dst_addr,		/* dest address */
5821 	    (uchar_t *)&mask,			/* mask */
5822 	    (uchar_t *)&gw_addr,		/* gateway address */
5823 	    (ushort_t)type,			/* IRE type */
5824 	    ill,
5825 	    zoneid,
5826 	    flags,
5827 	    gc,					/* security attribute */
5828 	    ipst);
5829 
5830 	/*
5831 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5832 	 * reference to the 'gcgrp'. We can now release the extra reference
5833 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5834 	 */
5835 	if (gcgrp_xtraref)
5836 		GCGRP_REFRELE(gcgrp);
5837 	if (ire == NULL) {
5838 		if (gc != NULL)
5839 			GC_REFRELE(gc);
5840 		if (ipif != NULL)
5841 			ipif_refrele(ipif);
5842 		ire_refrele(gw_ire);
5843 		return (ENOMEM);
5844 	}
5845 
5846 	/* Before we add, check if an extra CGTP broadcast is needed */
5847 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5848 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5849 
5850 	/* src address assigned by the caller? */
5851 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5852 		ire->ire_setsrc_addr = src_addr;
5853 
5854 	ire->ire_unbound = unbound;
5855 
5856 	/*
5857 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5858 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5859 	 */
5860 
5861 	/* Add the new IRE. */
5862 	nire = ire_add(ire);
5863 	if (nire == NULL) {
5864 		/*
5865 		 * In the result of failure, ire_add() will have
5866 		 * already deleted the ire in question, so there
5867 		 * is no need to do that here.
5868 		 */
5869 		if (ipif != NULL)
5870 			ipif_refrele(ipif);
5871 		ire_refrele(gw_ire);
5872 		return (ENOMEM);
5873 	}
5874 	/*
5875 	 * Check if it was a duplicate entry. This handles
5876 	 * the case of two racing route adds for the same route
5877 	 */
5878 	if (nire != ire) {
5879 		ire_delete(nire);
5880 		ire_refrele(nire);
5881 		if (ipif != NULL)
5882 			ipif_refrele(ipif);
5883 		ire_refrele(gw_ire);
5884 		return (EEXIST);
5885 	}
5886 	ire = nire;
5887 
5888 	if (flags & RTF_MULTIRT) {
5889 		/*
5890 		 * Invoke the CGTP (multirouting) filtering module
5891 		 * to add the dst address in the filtering database.
5892 		 * Replicated inbound packets coming from that address
5893 		 * will be filtered to discard the duplicates.
5894 		 * It is not necessary to call the CGTP filter hook
5895 		 * when the dst address is a broadcast or multicast,
5896 		 * because an IP source address cannot be a broadcast
5897 		 * or a multicast.
5898 		 */
5899 		if (cgtp_broadcast) {
5900 			ip_cgtp_bcast_add(ire, ipst);
5901 			goto save_ire;
5902 		}
5903 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5904 		    !CLASSD(ire->ire_addr)) {
5905 			int res;
5906 			ipif_t *src_ipif;
5907 
5908 			/* Find the source address corresponding to gw_ire */
5909 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5910 			    NULL, zoneid, ipst);
5911 			if (src_ipif != NULL) {
5912 				res = ipst->ips_ip_cgtp_filter_ops->
5913 				    cfo_add_dest_v4(
5914 				    ipst->ips_netstack->netstack_stackid,
5915 				    ire->ire_addr,
5916 				    ire->ire_gateway_addr,
5917 				    ire->ire_setsrc_addr,
5918 				    src_ipif->ipif_lcl_addr);
5919 				ipif_refrele(src_ipif);
5920 			} else {
5921 				res = EADDRNOTAVAIL;
5922 			}
5923 			if (res != 0) {
5924 				if (ipif != NULL)
5925 					ipif_refrele(ipif);
5926 				ire_refrele(gw_ire);
5927 				ire_delete(ire);
5928 				ire_refrele(ire);	/* Held in ire_add */
5929 				return (res);
5930 			}
5931 		}
5932 	}
5933 
5934 save_ire:
5935 	if (gw_ire != NULL) {
5936 		ire_refrele(gw_ire);
5937 		gw_ire = NULL;
5938 	}
5939 	if (ill != NULL) {
5940 		/*
5941 		 * Save enough information so that we can recreate the IRE if
5942 		 * the interface goes down and then up.  The metrics associated
5943 		 * with the route will be saved as well when rts_setmetrics() is
5944 		 * called after the IRE has been created.  In the case where
5945 		 * memory cannot be allocated, none of this information will be
5946 		 * saved.
5947 		 */
5948 		ill_save_ire(ill, ire);
5949 	}
5950 	if (ioctl_msg)
5951 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5952 	if (ire_arg != NULL) {
5953 		/*
5954 		 * Store the ire that was successfully added into where ire_arg
5955 		 * points to so that callers don't have to look it up
5956 		 * themselves (but they are responsible for ire_refrele()ing
5957 		 * the ire when they are finished with it).
5958 		 */
5959 		*ire_arg = ire;
5960 	} else {
5961 		ire_refrele(ire);		/* Held in ire_add */
5962 	}
5963 	if (ipif != NULL)
5964 		ipif_refrele(ipif);
5965 	return (0);
5966 }
5967 
5968 /*
5969  * ip_rt_delete is called to delete an IPv4 route.
5970  * ill is passed in to associate it with the correct interface.
5971  */
5972 /* ARGSUSED4 */
5973 int
5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5975     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5976     ip_stack_t *ipst, zoneid_t zoneid)
5977 {
5978 	ire_t	*ire = NULL;
5979 	ipif_t	*ipif;
5980 	uint_t	type;
5981 	uint_t	match_flags = MATCH_IRE_TYPE;
5982 	int	err = 0;
5983 
5984 	ip1dbg(("ip_rt_delete:"));
5985 	/*
5986 	 * If this is the case of RTF_HOST being set, then we set the netmask
5987 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5988 	 */
5989 	if (flags & RTF_HOST) {
5990 		mask = IP_HOST_MASK;
5991 		match_flags |= MATCH_IRE_MASK;
5992 	} else if (rtm_addrs & RTA_NETMASK) {
5993 		match_flags |= MATCH_IRE_MASK;
5994 	}
5995 
5996 	/*
5997 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5998 	 * we check if the gateway address is one of our interfaces first,
5999 	 * and fall back on RTF_GATEWAY routes.
6000 	 *
6001 	 * This makes it possible to delete an original
6002 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6003 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
6004 	 * and those can not be deleted here.
6005 	 *
6006 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
6007 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
6008 	 * otherwise we use the ill derived from the gateway address.
6009 	 * We can always match the gateway address since we record it
6010 	 * in ire_gateway_addr.
6011 	 *
6012 	 * For more detail on specifying routes by gateway address and by
6013 	 * interface index, see the comments in ip_rt_add().
6014 	 */
6015 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6016 	if (ipif != NULL) {
6017 		ill_t	*ill_match;
6018 
6019 		if (ill != NULL)
6020 			ill_match = ill;
6021 		else
6022 			ill_match = ipif->ipif_ill;
6023 
6024 		match_flags |= MATCH_IRE_ILL;
6025 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6026 			ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6027 			    IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6028 			    match_flags, 0, ipst, NULL);
6029 		}
6030 		if (ire == NULL) {
6031 			match_flags |= MATCH_IRE_GW;
6032 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6033 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6034 			    match_flags, 0, ipst, NULL);
6035 		}
6036 		/* Avoid deleting routes created by kernel from an ipif */
6037 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6038 			ire_refrele(ire);
6039 			ire = NULL;
6040 		}
6041 
6042 		/* Restore in case we didn't find a match */
6043 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6044 	}
6045 
6046 	if (ire == NULL) {
6047 		/*
6048 		 * At this point, the gateway address is not one of our own
6049 		 * addresses or a matching interface route was not found.  We
6050 		 * set the IRE type to lookup based on whether
6051 		 * this is a host route, a default route or just a prefix.
6052 		 *
6053 		 * If an ill was passed in, then the lookup is based on an
6054 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6055 		 */
6056 		match_flags |= MATCH_IRE_GW;
6057 		if (ill != NULL)
6058 			match_flags |= MATCH_IRE_ILL;
6059 		if (mask == IP_HOST_MASK)
6060 			type = IRE_HOST;
6061 		else if (mask == 0)
6062 			type = IRE_DEFAULT;
6063 		else
6064 			type = IRE_PREFIX;
6065 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6066 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6067 	}
6068 
6069 	if (ipif != NULL) {
6070 		ipif_refrele(ipif);
6071 		ipif = NULL;
6072 	}
6073 
6074 	if (ire == NULL)
6075 		return (ESRCH);
6076 
6077 	if (ire->ire_flags & RTF_MULTIRT) {
6078 		/*
6079 		 * Invoke the CGTP (multirouting) filtering module
6080 		 * to remove the dst address from the filtering database.
6081 		 * Packets coming from that address will no longer be
6082 		 * filtered to remove duplicates.
6083 		 */
6084 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6085 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6086 			    ipst->ips_netstack->netstack_stackid,
6087 			    ire->ire_addr, ire->ire_gateway_addr);
6088 		}
6089 		ip_cgtp_bcast_delete(ire, ipst);
6090 	}
6091 
6092 	ill = ire->ire_ill;
6093 	if (ill != NULL)
6094 		ill_remove_saved_ire(ill, ire);
6095 	if (ioctl_msg)
6096 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6097 	ire_delete(ire);
6098 	ire_refrele(ire);
6099 	return (err);
6100 }
6101 
6102 /*
6103  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6104  */
6105 /* ARGSUSED */
6106 int
6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6108     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6109 {
6110 	ipaddr_t dst_addr;
6111 	ipaddr_t gw_addr;
6112 	ipaddr_t mask;
6113 	int error = 0;
6114 	mblk_t *mp1;
6115 	struct rtentry *rt;
6116 	ipif_t *ipif = NULL;
6117 	ip_stack_t	*ipst;
6118 
6119 	ASSERT(q->q_next == NULL);
6120 	ipst = CONNQ_TO_IPST(q);
6121 
6122 	ip1dbg(("ip_siocaddrt:"));
6123 	/* Existence of mp1 verified in ip_wput_nondata */
6124 	mp1 = mp->b_cont->b_cont;
6125 	rt = (struct rtentry *)mp1->b_rptr;
6126 
6127 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6128 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6129 
6130 	/*
6131 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6132 	 * to a particular host address.  In this case, we set the netmask to
6133 	 * all ones for the particular destination address.  Otherwise,
6134 	 * determine the netmask to be used based on dst_addr and the interfaces
6135 	 * in use.
6136 	 */
6137 	if (rt->rt_flags & RTF_HOST) {
6138 		mask = IP_HOST_MASK;
6139 	} else {
6140 		/*
6141 		 * Note that ip_subnet_mask returns a zero mask in the case of
6142 		 * default (an all-zeroes address).
6143 		 */
6144 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6145 	}
6146 
6147 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6148 	    B_TRUE, NULL, ipst, ALL_ZONES);
6149 	if (ipif != NULL)
6150 		ipif_refrele(ipif);
6151 	return (error);
6152 }
6153 
6154 /*
6155  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6156  */
6157 /* ARGSUSED */
6158 int
6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6160     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6161 {
6162 	ipaddr_t dst_addr;
6163 	ipaddr_t gw_addr;
6164 	ipaddr_t mask;
6165 	int error;
6166 	mblk_t *mp1;
6167 	struct rtentry *rt;
6168 	ipif_t *ipif = NULL;
6169 	ip_stack_t	*ipst;
6170 
6171 	ASSERT(q->q_next == NULL);
6172 	ipst = CONNQ_TO_IPST(q);
6173 
6174 	ip1dbg(("ip_siocdelrt:"));
6175 	/* Existence of mp1 verified in ip_wput_nondata */
6176 	mp1 = mp->b_cont->b_cont;
6177 	rt = (struct rtentry *)mp1->b_rptr;
6178 
6179 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6180 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6181 
6182 	/*
6183 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6184 	 * to a particular host address.  In this case, we set the netmask to
6185 	 * all ones for the particular destination address.  Otherwise,
6186 	 * determine the netmask to be used based on dst_addr and the interfaces
6187 	 * in use.
6188 	 */
6189 	if (rt->rt_flags & RTF_HOST) {
6190 		mask = IP_HOST_MASK;
6191 	} else {
6192 		/*
6193 		 * Note that ip_subnet_mask returns a zero mask in the case of
6194 		 * default (an all-zeroes address).
6195 		 */
6196 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6197 	}
6198 
6199 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6200 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6201 	    ipst, ALL_ZONES);
6202 	if (ipif != NULL)
6203 		ipif_refrele(ipif);
6204 	return (error);
6205 }
6206 
6207 /*
6208  * Enqueue the mp onto the ipsq, chained by b_next.
6209  * b_prev stores the function to be executed later, and b_queue the queue
6210  * where this mp originated.
6211  */
6212 void
6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6214     ill_t *pending_ill)
6215 {
6216 	conn_t	*connp;
6217 	ipxop_t *ipx = ipsq->ipsq_xop;
6218 
6219 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6220 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6221 	ASSERT(func != NULL);
6222 
6223 	mp->b_queue = q;
6224 	mp->b_prev = (void *)func;
6225 	mp->b_next = NULL;
6226 
6227 	switch (type) {
6228 	case CUR_OP:
6229 		if (ipx->ipx_mptail != NULL) {
6230 			ASSERT(ipx->ipx_mphead != NULL);
6231 			ipx->ipx_mptail->b_next = mp;
6232 		} else {
6233 			ASSERT(ipx->ipx_mphead == NULL);
6234 			ipx->ipx_mphead = mp;
6235 		}
6236 		ipx->ipx_mptail = mp;
6237 		break;
6238 
6239 	case NEW_OP:
6240 		if (ipsq->ipsq_xopq_mptail != NULL) {
6241 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6242 			ipsq->ipsq_xopq_mptail->b_next = mp;
6243 		} else {
6244 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6245 			ipsq->ipsq_xopq_mphead = mp;
6246 		}
6247 		ipsq->ipsq_xopq_mptail = mp;
6248 		ipx->ipx_ipsq_queued = B_TRUE;
6249 		break;
6250 
6251 	case SWITCH_OP:
6252 		ASSERT(ipsq->ipsq_swxop != NULL);
6253 		/* only one switch operation is currently allowed */
6254 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6255 		ipsq->ipsq_switch_mp = mp;
6256 		ipx->ipx_ipsq_queued = B_TRUE;
6257 		break;
6258 	default:
6259 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6260 	}
6261 
6262 	if (CONN_Q(q) && pending_ill != NULL) {
6263 		connp = Q_TO_CONN(q);
6264 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6265 		connp->conn_oper_pending_ill = pending_ill;
6266 	}
6267 }
6268 
6269 /*
6270  * Dequeue the next message that requested exclusive access to this IPSQ's
6271  * xop.  Specifically:
6272  *
6273  *  1. If we're still processing the current operation on `ipsq', then
6274  *     dequeue the next message for the operation (from ipx_mphead), or
6275  *     return NULL if there are no queued messages for the operation.
6276  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6277  *
6278  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6279  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6280  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6281  *     leaving IPMP groups and require a careful dance -- see the comments
6282  *     in-line below for details.  If we're leaving a group xop or if we're
6283  *     joining a group xop and become writer on it, then we proceed to (3).
6284  *     Otherwise, we return NULL and exit the xop.
6285  *
6286  *  3. For each IPSQ in the xop, return any switch operation stored on
6287  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6288  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6289  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6290  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6291  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6292  *     each phyint in the group, including the IPMP meta-interface phyint.
6293  */
6294 static mblk_t *
6295 ipsq_dq(ipsq_t *ipsq)
6296 {
6297 	ill_t	*illv4, *illv6;
6298 	mblk_t	*mp;
6299 	ipsq_t	*xopipsq;
6300 	ipsq_t	*leftipsq = NULL;
6301 	ipxop_t *ipx;
6302 	phyint_t *phyi = ipsq->ipsq_phyint;
6303 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6304 	boolean_t emptied = B_FALSE;
6305 
6306 	/*
6307 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6308 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6309 	 */
6310 	rw_enter(&ipst->ips_ill_g_lock,
6311 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6312 	mutex_enter(&ipsq->ipsq_lock);
6313 	ipx = ipsq->ipsq_xop;
6314 	mutex_enter(&ipx->ipx_lock);
6315 
6316 	/*
6317 	 * Dequeue the next message associated with the current exclusive
6318 	 * operation, if any.
6319 	 */
6320 	if ((mp = ipx->ipx_mphead) != NULL) {
6321 		ipx->ipx_mphead = mp->b_next;
6322 		if (ipx->ipx_mphead == NULL)
6323 			ipx->ipx_mptail = NULL;
6324 		mp->b_next = (void *)ipsq;
6325 		goto out;
6326 	}
6327 
6328 	if (ipx->ipx_current_ipif != NULL)
6329 		goto empty;
6330 
6331 	if (ipsq->ipsq_swxop != NULL) {
6332 		/*
6333 		 * The exclusive operation that is now being completed has
6334 		 * requested a switch to a different xop.  This happens
6335 		 * when an interface joins or leaves an IPMP group.  Joins
6336 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6337 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6338 		 * (phyint_free()), or interface plumb for an ill type
6339 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6340 		 *
6341 		 * Xop switches are not allowed on the IPMP meta-interface.
6342 		 */
6343 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6344 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6345 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6346 
6347 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6348 			/*
6349 			 * We're switching back to our own xop, so we have two
6350 			 * xop's to drain/exit: our own, and the group xop
6351 			 * that we are leaving.
6352 			 *
6353 			 * First, pull ourselves out of the group ipsq list.
6354 			 * This is safe since we're writer on ill_g_lock.
6355 			 */
6356 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6357 
6358 			xopipsq = ipx->ipx_ipsq;
6359 			while (xopipsq->ipsq_next != ipsq)
6360 				xopipsq = xopipsq->ipsq_next;
6361 
6362 			xopipsq->ipsq_next = ipsq->ipsq_next;
6363 			ipsq->ipsq_next = ipsq;
6364 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6365 			ipsq->ipsq_swxop = NULL;
6366 
6367 			/*
6368 			 * Second, prepare to exit the group xop.  The actual
6369 			 * ipsq_exit() is done at the end of this function
6370 			 * since we cannot hold any locks across ipsq_exit().
6371 			 * Note that although we drop the group's ipx_lock, no
6372 			 * threads can proceed since we're still ipx_writer.
6373 			 */
6374 			leftipsq = xopipsq;
6375 			mutex_exit(&ipx->ipx_lock);
6376 
6377 			/*
6378 			 * Third, set ipx to point to our own xop (which was
6379 			 * inactive and therefore can be entered).
6380 			 */
6381 			ipx = ipsq->ipsq_xop;
6382 			mutex_enter(&ipx->ipx_lock);
6383 			ASSERT(ipx->ipx_writer == NULL);
6384 			ASSERT(ipx->ipx_current_ipif == NULL);
6385 		} else {
6386 			/*
6387 			 * We're switching from our own xop to a group xop.
6388 			 * The requestor of the switch must ensure that the
6389 			 * group xop cannot go away (e.g. by ensuring the
6390 			 * phyint associated with the xop cannot go away).
6391 			 *
6392 			 * If we can become writer on our new xop, then we'll
6393 			 * do the drain.  Otherwise, the current writer of our
6394 			 * new xop will do the drain when it exits.
6395 			 *
6396 			 * First, splice ourselves into the group IPSQ list.
6397 			 * This is safe since we're writer on ill_g_lock.
6398 			 */
6399 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6400 
6401 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6402 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6403 				xopipsq = xopipsq->ipsq_next;
6404 
6405 			xopipsq->ipsq_next = ipsq;
6406 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6407 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6408 			ipsq->ipsq_swxop = NULL;
6409 
6410 			/*
6411 			 * Second, exit our own xop, since it's now unused.
6412 			 * This is safe since we've got the only reference.
6413 			 */
6414 			ASSERT(ipx->ipx_writer == curthread);
6415 			ipx->ipx_writer = NULL;
6416 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6417 			ipx->ipx_ipsq_queued = B_FALSE;
6418 			mutex_exit(&ipx->ipx_lock);
6419 
6420 			/*
6421 			 * Third, set ipx to point to our new xop, and check
6422 			 * if we can become writer on it.  If we cannot, then
6423 			 * the current writer will drain the IPSQ group when
6424 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6425 			 * because we're still holding ipsq_lock.
6426 			 */
6427 			ipx = ipsq->ipsq_xop;
6428 			mutex_enter(&ipx->ipx_lock);
6429 			if (ipx->ipx_writer != NULL ||
6430 			    ipx->ipx_current_ipif != NULL) {
6431 				goto out;
6432 			}
6433 		}
6434 
6435 		/*
6436 		 * Fourth, become writer on our new ipx before we continue
6437 		 * with the drain.  Note that we never dropped ipsq_lock
6438 		 * above, so no other thread could've raced with us to
6439 		 * become writer first.  Also, we're holding ipx_lock, so
6440 		 * no other thread can examine the ipx right now.
6441 		 */
6442 		ASSERT(ipx->ipx_current_ipif == NULL);
6443 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6444 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6445 		ipx->ipx_writer = curthread;
6446 		ipx->ipx_forced = B_FALSE;
6447 #ifdef DEBUG
6448 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6449 #endif
6450 	}
6451 
6452 	xopipsq = ipsq;
6453 	do {
6454 		/*
6455 		 * So that other operations operate on a consistent and
6456 		 * complete phyint, a switch message on an IPSQ must be
6457 		 * handled prior to any other operations on that IPSQ.
6458 		 */
6459 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6460 			xopipsq->ipsq_switch_mp = NULL;
6461 			ASSERT(mp->b_next == NULL);
6462 			mp->b_next = (void *)xopipsq;
6463 			goto out;
6464 		}
6465 
6466 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6467 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6468 			if (xopipsq->ipsq_xopq_mphead == NULL)
6469 				xopipsq->ipsq_xopq_mptail = NULL;
6470 			mp->b_next = (void *)xopipsq;
6471 			goto out;
6472 		}
6473 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6474 empty:
6475 	/*
6476 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6477 	 * new messages can end up on any IPSQ in the xop.
6478 	 */
6479 	ipx->ipx_writer = NULL;
6480 	ipx->ipx_forced = B_FALSE;
6481 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6482 	ipx->ipx_ipsq_queued = B_FALSE;
6483 	emptied = B_TRUE;
6484 #ifdef	DEBUG
6485 	ipx->ipx_depth = 0;
6486 #endif
6487 out:
6488 	mutex_exit(&ipx->ipx_lock);
6489 	mutex_exit(&ipsq->ipsq_lock);
6490 
6491 	/*
6492 	 * If we completely emptied the xop, then wake up any threads waiting
6493 	 * to enter any of the IPSQ's associated with it.
6494 	 */
6495 	if (emptied) {
6496 		xopipsq = ipsq;
6497 		do {
6498 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6499 				continue;
6500 
6501 			illv4 = phyi->phyint_illv4;
6502 			illv6 = phyi->phyint_illv6;
6503 
6504 			GRAB_ILL_LOCKS(illv4, illv6);
6505 			if (illv4 != NULL)
6506 				cv_broadcast(&illv4->ill_cv);
6507 			if (illv6 != NULL)
6508 				cv_broadcast(&illv6->ill_cv);
6509 			RELEASE_ILL_LOCKS(illv4, illv6);
6510 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6511 	}
6512 	rw_exit(&ipst->ips_ill_g_lock);
6513 
6514 	/*
6515 	 * Now that all locks are dropped, exit the IPSQ we left.
6516 	 */
6517 	if (leftipsq != NULL)
6518 		ipsq_exit(leftipsq);
6519 
6520 	return (mp);
6521 }
6522 
6523 /*
6524  * Return completion status of previously initiated DLPI operations on
6525  * ills in the purview of an ipsq.
6526  */
6527 static boolean_t
6528 ipsq_dlpi_done(ipsq_t *ipsq)
6529 {
6530 	ipsq_t		*ipsq_start;
6531 	phyint_t	*phyi;
6532 	ill_t		*ill;
6533 
6534 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6535 	ipsq_start = ipsq;
6536 
6537 	do {
6538 		/*
6539 		 * The only current users of this function are ipsq_try_enter
6540 		 * and ipsq_enter which have made sure that ipsq_writer is
6541 		 * NULL before we reach here. ill_dlpi_pending is modified
6542 		 * only by an ipsq writer
6543 		 */
6544 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6545 		phyi = ipsq->ipsq_phyint;
6546 		/*
6547 		 * phyi could be NULL if a phyint that is part of an
6548 		 * IPMP group is being unplumbed. A more detailed
6549 		 * comment is in ipmp_grp_update_kstats()
6550 		 */
6551 		if (phyi != NULL) {
6552 			ill = phyi->phyint_illv4;
6553 			if (ill != NULL &&
6554 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6555 			    ill->ill_arl_dlpi_pending))
6556 				return (B_FALSE);
6557 
6558 			ill = phyi->phyint_illv6;
6559 			if (ill != NULL &&
6560 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6561 				return (B_FALSE);
6562 		}
6563 
6564 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6565 
6566 	return (B_TRUE);
6567 }
6568 
6569 /*
6570  * Enter the ipsq corresponding to ill, by waiting synchronously till
6571  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6572  * will have to drain completely before ipsq_enter returns success.
6573  * ipx_current_ipif will be set if some exclusive op is in progress,
6574  * and the ipsq_exit logic will start the next enqueued op after
6575  * completion of the current op. If 'force' is used, we don't wait
6576  * for the enqueued ops. This is needed when a conn_close wants to
6577  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6578  * of an ill can also use this option. But we dont' use it currently.
6579  */
6580 #define	ENTER_SQ_WAIT_TICKS 100
6581 boolean_t
6582 ipsq_enter(ill_t *ill, boolean_t force, int type)
6583 {
6584 	ipsq_t	*ipsq;
6585 	ipxop_t *ipx;
6586 	boolean_t waited_enough = B_FALSE;
6587 	ip_stack_t *ipst = ill->ill_ipst;
6588 
6589 	/*
6590 	 * Note that the relationship between ill and ipsq is fixed as long as
6591 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6592 	 * relationship between the IPSQ and xop cannot change.  However,
6593 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6594 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6595 	 * waking up all ills in the xop when it becomes available.
6596 	 */
6597 	for (;;) {
6598 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6599 		mutex_enter(&ill->ill_lock);
6600 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6601 			mutex_exit(&ill->ill_lock);
6602 			rw_exit(&ipst->ips_ill_g_lock);
6603 			return (B_FALSE);
6604 		}
6605 
6606 		ipsq = ill->ill_phyint->phyint_ipsq;
6607 		mutex_enter(&ipsq->ipsq_lock);
6608 		ipx = ipsq->ipsq_xop;
6609 		mutex_enter(&ipx->ipx_lock);
6610 
6611 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6612 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6613 		    waited_enough))
6614 			break;
6615 
6616 		rw_exit(&ipst->ips_ill_g_lock);
6617 
6618 		if (!force || ipx->ipx_writer != NULL) {
6619 			mutex_exit(&ipx->ipx_lock);
6620 			mutex_exit(&ipsq->ipsq_lock);
6621 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6622 		} else {
6623 			mutex_exit(&ipx->ipx_lock);
6624 			mutex_exit(&ipsq->ipsq_lock);
6625 			(void) cv_reltimedwait(&ill->ill_cv,
6626 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6627 			waited_enough = B_TRUE;
6628 		}
6629 		mutex_exit(&ill->ill_lock);
6630 	}
6631 
6632 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6633 	ASSERT(ipx->ipx_reentry_cnt == 0);
6634 	ipx->ipx_writer = curthread;
6635 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6636 	ipx->ipx_reentry_cnt++;
6637 #ifdef DEBUG
6638 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6639 #endif
6640 	mutex_exit(&ipx->ipx_lock);
6641 	mutex_exit(&ipsq->ipsq_lock);
6642 	mutex_exit(&ill->ill_lock);
6643 	rw_exit(&ipst->ips_ill_g_lock);
6644 
6645 	return (B_TRUE);
6646 }
6647 
6648 /*
6649  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6650  * across the call to the core interface ipsq_try_enter() and hence calls this
6651  * function directly. This is explained more fully in ipif_set_values().
6652  * In order to support the above constraint, ipsq_try_enter is implemented as
6653  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6654  */
6655 static ipsq_t *
6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6657     int type, boolean_t reentry_ok)
6658 {
6659 	ipsq_t	*ipsq;
6660 	ipxop_t	*ipx;
6661 	ip_stack_t *ipst = ill->ill_ipst;
6662 
6663 	/*
6664 	 * lock ordering:
6665 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6666 	 *
6667 	 * ipx of an ipsq can't change when ipsq_lock is held.
6668 	 */
6669 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6670 	GRAB_CONN_LOCK(q);
6671 	mutex_enter(&ill->ill_lock);
6672 	ipsq = ill->ill_phyint->phyint_ipsq;
6673 	mutex_enter(&ipsq->ipsq_lock);
6674 	ipx = ipsq->ipsq_xop;
6675 	mutex_enter(&ipx->ipx_lock);
6676 
6677 	/*
6678 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6679 	 *    (Note: If the caller does not specify reentry_ok then neither
6680 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6681 	 *    again. Otherwise it can lead to an infinite loop
6682 	 * 2. Enter the ipsq if there is no current writer and this attempted
6683 	 *    entry is part of the current operation
6684 	 * 3. Enter the ipsq if there is no current writer and this is a new
6685 	 *    operation and the operation queue is empty and there is no
6686 	 *    operation currently in progress and if all previously initiated
6687 	 *    DLPI operations have completed.
6688 	 */
6689 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6690 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6691 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6692 	    ipsq_dlpi_done(ipsq))))) {
6693 		/* Success. */
6694 		ipx->ipx_reentry_cnt++;
6695 		ipx->ipx_writer = curthread;
6696 		ipx->ipx_forced = B_FALSE;
6697 		mutex_exit(&ipx->ipx_lock);
6698 		mutex_exit(&ipsq->ipsq_lock);
6699 		mutex_exit(&ill->ill_lock);
6700 		RELEASE_CONN_LOCK(q);
6701 #ifdef DEBUG
6702 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6703 #endif
6704 		return (ipsq);
6705 	}
6706 
6707 	if (func != NULL)
6708 		ipsq_enq(ipsq, q, mp, func, type, ill);
6709 
6710 	mutex_exit(&ipx->ipx_lock);
6711 	mutex_exit(&ipsq->ipsq_lock);
6712 	mutex_exit(&ill->ill_lock);
6713 	RELEASE_CONN_LOCK(q);
6714 	return (NULL);
6715 }
6716 
6717 /*
6718  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6719  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6720  * There is one ipsq per phyint. The ipsq
6721  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6722  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6723  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6724  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6725  * up the interface) and are enqueued in ipx_mphead.
6726  *
6727  * If a thread does not want to reenter the ipsq when it is already writer,
6728  * it must make sure that the specified reentry point to be called later
6729  * when the ipsq is empty, nor any code path starting from the specified reentry
6730  * point must never ever try to enter the ipsq again. Otherwise it can lead
6731  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6732  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6733  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6734  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6735  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6736  * ioctl if the current ioctl has completed. If the current ioctl is still
6737  * in progress it simply returns. The current ioctl could be waiting for
6738  * a response from another module (the driver or could be waiting for
6739  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6740  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6741  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6742  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6743  * all associated DLPI operations have completed.
6744  */
6745 
6746 /*
6747  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6748  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6749  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6750  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6751  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6752  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6753  */
6754 ipsq_t *
6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6756     ipsq_func_t func, int type, boolean_t reentry_ok)
6757 {
6758 	ip_stack_t	*ipst;
6759 	ipsq_t		*ipsq;
6760 
6761 	/* Only 1 of ipif or ill can be specified */
6762 	ASSERT((ipif != NULL) ^ (ill != NULL));
6763 
6764 	if (ipif != NULL)
6765 		ill = ipif->ipif_ill;
6766 	ipst = ill->ill_ipst;
6767 
6768 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6769 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6770 	rw_exit(&ipst->ips_ill_g_lock);
6771 
6772 	return (ipsq);
6773 }
6774 
6775 /*
6776  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6777  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6778  * cannot be entered, the mp is queued for completion.
6779  */
6780 void
6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6782     boolean_t reentry_ok)
6783 {
6784 	ipsq_t	*ipsq;
6785 
6786 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6787 
6788 	/*
6789 	 * Drop the caller's refhold on the ill.  This is safe since we either
6790 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6791 	 * IPSQ, in which case we return without accessing ill anymore.  This
6792 	 * is needed because func needs to see the correct refcount.
6793 	 * e.g. removeif can work only then.
6794 	 */
6795 	ill_refrele(ill);
6796 	if (ipsq != NULL) {
6797 		(*func)(ipsq, q, mp, NULL);
6798 		ipsq_exit(ipsq);
6799 	}
6800 }
6801 
6802 /*
6803  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6804  * prior to exiting.  Caller must be writer on the specified IPSQ.
6805  */
6806 void
6807 ipsq_exit(ipsq_t *ipsq)
6808 {
6809 	mblk_t *mp;
6810 	ipsq_t *mp_ipsq;
6811 	queue_t	*q;
6812 	phyint_t *phyi;
6813 	ipsq_func_t func;
6814 
6815 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6816 
6817 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6818 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6819 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6820 		return;
6821 	}
6822 
6823 	for (;;) {
6824 		phyi = ipsq->ipsq_phyint;
6825 		mp = ipsq_dq(ipsq);
6826 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6827 
6828 		/*
6829 		 * If we've changed to a new IPSQ, and the phyint associated
6830 		 * with the old one has gone away, free the old IPSQ.  Note
6831 		 * that this cannot happen while the IPSQ is in a group.
6832 		 */
6833 		if (mp_ipsq != ipsq && phyi == NULL) {
6834 			ASSERT(ipsq->ipsq_next == ipsq);
6835 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6836 			ipsq_delete(ipsq);
6837 		}
6838 
6839 		if (mp == NULL)
6840 			break;
6841 
6842 		q = mp->b_queue;
6843 		func = (ipsq_func_t)mp->b_prev;
6844 		ipsq = mp_ipsq;
6845 		mp->b_next = mp->b_prev = NULL;
6846 		mp->b_queue = NULL;
6847 
6848 		/*
6849 		 * If 'q' is an conn queue, it is valid, since we did a
6850 		 * a refhold on the conn at the start of the ioctl.
6851 		 * If 'q' is an ill queue, it is valid, since close of an
6852 		 * ill will clean up its IPSQ.
6853 		 */
6854 		(*func)(ipsq, q, mp, NULL);
6855 	}
6856 }
6857 
6858 /*
6859  * Used to start any igmp or mld timers that could not be started
6860  * while holding ill_mcast_lock. The timers can't be started while holding
6861  * the lock, since mld/igmp_start_timers may need to call untimeout()
6862  * which can't be done while holding the lock which the timeout handler
6863  * acquires. Otherwise
6864  * there could be a deadlock since the timeout handlers
6865  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6866  * ill_mcast_lock.
6867  */
6868 void
6869 ill_mcast_timer_start(ip_stack_t *ipst)
6870 {
6871 	int		next;
6872 
6873 	mutex_enter(&ipst->ips_igmp_timer_lock);
6874 	next = ipst->ips_igmp_deferred_next;
6875 	ipst->ips_igmp_deferred_next = INFINITY;
6876 	mutex_exit(&ipst->ips_igmp_timer_lock);
6877 
6878 	if (next != INFINITY)
6879 		igmp_start_timers(next, ipst);
6880 
6881 	mutex_enter(&ipst->ips_mld_timer_lock);
6882 	next = ipst->ips_mld_deferred_next;
6883 	ipst->ips_mld_deferred_next = INFINITY;
6884 	mutex_exit(&ipst->ips_mld_timer_lock);
6885 
6886 	if (next != INFINITY)
6887 		mld_start_timers(next, ipst);
6888 }
6889 
6890 /*
6891  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6892  * and `ioccmd'.
6893  */
6894 void
6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6896 {
6897 	ill_t *ill = ipif->ipif_ill;
6898 	ipxop_t *ipx = ipsq->ipsq_xop;
6899 
6900 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6901 	ASSERT(ipx->ipx_current_ipif == NULL);
6902 	ASSERT(ipx->ipx_current_ioctl == 0);
6903 
6904 	ipx->ipx_current_done = B_FALSE;
6905 	ipx->ipx_current_ioctl = ioccmd;
6906 	mutex_enter(&ipx->ipx_lock);
6907 	ipx->ipx_current_ipif = ipif;
6908 	mutex_exit(&ipx->ipx_lock);
6909 
6910 	/*
6911 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6912 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6913 	 * references to the ipif (so that the references will eventually
6914 	 * drop to zero) and also prevents any "get" operations (e.g.,
6915 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6916 	 * operation has completed and the ipif is again in a stable state.
6917 	 *
6918 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6919 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6920 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6921 	 * ipifs will be affected.
6922 	 *
6923 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6924 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6925 	 * operate on.
6926 	 */
6927 	switch (ioccmd) {
6928 	case SIOCLIFREMOVEIF:
6929 		break;
6930 	case 0:
6931 		mutex_enter(&ill->ill_lock);
6932 		ipif = ipif->ipif_ill->ill_ipif;
6933 		for (; ipif != NULL; ipif = ipif->ipif_next)
6934 			ipif->ipif_state_flags |= IPIF_CHANGING;
6935 		mutex_exit(&ill->ill_lock);
6936 		break;
6937 	default:
6938 		mutex_enter(&ill->ill_lock);
6939 		ipif->ipif_state_flags |= IPIF_CHANGING;
6940 		mutex_exit(&ill->ill_lock);
6941 	}
6942 }
6943 
6944 /*
6945  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6946  * the next exclusive operation to begin once we ipsq_exit().  However, if
6947  * pending DLPI operations remain, then we will wait for the queue to drain
6948  * before allowing the next exclusive operation to begin.  This ensures that
6949  * DLPI operations from one exclusive operation are never improperly processed
6950  * as part of a subsequent exclusive operation.
6951  */
6952 void
6953 ipsq_current_finish(ipsq_t *ipsq)
6954 {
6955 	ipxop_t	*ipx = ipsq->ipsq_xop;
6956 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6957 	ipif_t	*ipif = ipx->ipx_current_ipif;
6958 
6959 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6960 
6961 	/*
6962 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6963 	 * (but in that case, IPIF_CHANGING will already be clear and no
6964 	 * pending DLPI messages can remain).
6965 	 */
6966 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6967 		ill_t *ill = ipif->ipif_ill;
6968 
6969 		mutex_enter(&ill->ill_lock);
6970 		dlpi_pending = ill->ill_dlpi_pending;
6971 		if (ipx->ipx_current_ioctl == 0) {
6972 			ipif = ill->ill_ipif;
6973 			for (; ipif != NULL; ipif = ipif->ipif_next)
6974 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6975 		} else {
6976 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6977 		}
6978 		mutex_exit(&ill->ill_lock);
6979 	}
6980 
6981 	ASSERT(!ipx->ipx_current_done);
6982 	ipx->ipx_current_done = B_TRUE;
6983 	ipx->ipx_current_ioctl = 0;
6984 	if (dlpi_pending == DL_PRIM_INVAL) {
6985 		mutex_enter(&ipx->ipx_lock);
6986 		ipx->ipx_current_ipif = NULL;
6987 		mutex_exit(&ipx->ipx_lock);
6988 	}
6989 }
6990 
6991 /*
6992  * The ill is closing. Flush all messages on the ipsq that originated
6993  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6994  * for this ill since ipsq_enter could not have entered until then.
6995  * New messages can't be queued since the CONDEMNED flag is set.
6996  */
6997 static void
6998 ipsq_flush(ill_t *ill)
6999 {
7000 	queue_t	*q;
7001 	mblk_t	*prev;
7002 	mblk_t	*mp;
7003 	mblk_t	*mp_next;
7004 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7005 
7006 	ASSERT(IAM_WRITER_ILL(ill));
7007 
7008 	/*
7009 	 * Flush any messages sent up by the driver.
7010 	 */
7011 	mutex_enter(&ipx->ipx_lock);
7012 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7013 		mp_next = mp->b_next;
7014 		q = mp->b_queue;
7015 		if (q == ill->ill_rq || q == ill->ill_wq) {
7016 			/* dequeue mp */
7017 			if (prev == NULL)
7018 				ipx->ipx_mphead = mp->b_next;
7019 			else
7020 				prev->b_next = mp->b_next;
7021 			if (ipx->ipx_mptail == mp) {
7022 				ASSERT(mp_next == NULL);
7023 				ipx->ipx_mptail = prev;
7024 			}
7025 			inet_freemsg(mp);
7026 		} else {
7027 			prev = mp;
7028 		}
7029 	}
7030 	mutex_exit(&ipx->ipx_lock);
7031 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7032 	ipsq_xopq_mp_cleanup(ill, NULL);
7033 }
7034 
7035 /*
7036  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7037  * and return the associated ipif.
7038  * Return value:
7039  *	Non zero: An error has occurred. ci may not be filled out.
7040  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7041  *	a held ipif in ci.ci_ipif.
7042  */
7043 int
7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7045     cmd_info_t *ci)
7046 {
7047 	char		*name;
7048 	struct ifreq    *ifr;
7049 	struct lifreq    *lifr;
7050 	ipif_t		*ipif = NULL;
7051 	ill_t		*ill;
7052 	conn_t		*connp;
7053 	boolean_t	isv6;
7054 	int		err;
7055 	mblk_t		*mp1;
7056 	zoneid_t	zoneid;
7057 	ip_stack_t	*ipst;
7058 
7059 	if (q->q_next != NULL) {
7060 		ill = (ill_t *)q->q_ptr;
7061 		isv6 = ill->ill_isv6;
7062 		connp = NULL;
7063 		zoneid = ALL_ZONES;
7064 		ipst = ill->ill_ipst;
7065 	} else {
7066 		ill = NULL;
7067 		connp = Q_TO_CONN(q);
7068 		isv6 = (connp->conn_family == AF_INET6);
7069 		zoneid = connp->conn_zoneid;
7070 		if (zoneid == GLOBAL_ZONEID) {
7071 			/* global zone can access ipifs in all zones */
7072 			zoneid = ALL_ZONES;
7073 		}
7074 		ipst = connp->conn_netstack->netstack_ip;
7075 	}
7076 
7077 	/* Has been checked in ip_wput_nondata */
7078 	mp1 = mp->b_cont->b_cont;
7079 
7080 	if (ipip->ipi_cmd_type == IF_CMD) {
7081 		/* This a old style SIOC[GS]IF* command */
7082 		ifr = (struct ifreq *)mp1->b_rptr;
7083 		/*
7084 		 * Null terminate the string to protect against buffer
7085 		 * overrun. String was generated by user code and may not
7086 		 * be trusted.
7087 		 */
7088 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7089 		name = ifr->ifr_name;
7090 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7091 		ci->ci_sin6 = NULL;
7092 		ci->ci_lifr = (struct lifreq *)ifr;
7093 	} else {
7094 		/* This a new style SIOC[GS]LIF* command */
7095 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7096 		lifr = (struct lifreq *)mp1->b_rptr;
7097 		/*
7098 		 * Null terminate the string to protect against buffer
7099 		 * overrun. String was generated by user code and may not
7100 		 * be trusted.
7101 		 */
7102 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7103 		name = lifr->lifr_name;
7104 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7105 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7106 		ci->ci_lifr = lifr;
7107 	}
7108 
7109 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7110 		/*
7111 		 * The ioctl will be failed if the ioctl comes down
7112 		 * an conn stream
7113 		 */
7114 		if (ill == NULL) {
7115 			/*
7116 			 * Not an ill queue, return EINVAL same as the
7117 			 * old error code.
7118 			 */
7119 			return (ENXIO);
7120 		}
7121 		ipif = ill->ill_ipif;
7122 		ipif_refhold(ipif);
7123 	} else {
7124 		/*
7125 		 * Ensure that ioctls don't see any internal state changes
7126 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7127 		 * set.
7128 		 */
7129 		ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7130 		    isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7131 		if (ipif == NULL) {
7132 			if (err == EINPROGRESS)
7133 				return (err);
7134 			err = 0;	/* Ensure we don't use it below */
7135 		}
7136 	}
7137 
7138 	/*
7139 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7140 	 */
7141 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7142 		ipif_refrele(ipif);
7143 		return (ENXIO);
7144 	}
7145 
7146 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7147 	    name[0] == '\0') {
7148 		/*
7149 		 * Handle a or a SIOC?IF* with a null name
7150 		 * during plumb (on the ill queue before the I_PLINK).
7151 		 */
7152 		ipif = ill->ill_ipif;
7153 		ipif_refhold(ipif);
7154 	}
7155 
7156 	if (ipif == NULL)
7157 		return (ENXIO);
7158 
7159 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7160 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7161 
7162 	ci->ci_ipif = ipif;
7163 	return (0);
7164 }
7165 
7166 /*
7167  * Return the total number of ipifs.
7168  */
7169 static uint_t
7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7171 {
7172 	uint_t numifs = 0;
7173 	ill_t	*ill;
7174 	ill_walk_context_t	ctx;
7175 	ipif_t	*ipif;
7176 
7177 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7178 	ill = ILL_START_WALK_V4(&ctx, ipst);
7179 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7180 		if (IS_UNDER_IPMP(ill))
7181 			continue;
7182 		for (ipif = ill->ill_ipif; ipif != NULL;
7183 		    ipif = ipif->ipif_next) {
7184 			if (ipif->ipif_zoneid == zoneid ||
7185 			    ipif->ipif_zoneid == ALL_ZONES)
7186 				numifs++;
7187 		}
7188 	}
7189 	rw_exit(&ipst->ips_ill_g_lock);
7190 	return (numifs);
7191 }
7192 
7193 /*
7194  * Return the total number of ipifs.
7195  */
7196 static uint_t
7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7198 {
7199 	uint_t numifs = 0;
7200 	ill_t	*ill;
7201 	ipif_t	*ipif;
7202 	ill_walk_context_t	ctx;
7203 
7204 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7205 
7206 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7207 	if (family == AF_INET)
7208 		ill = ILL_START_WALK_V4(&ctx, ipst);
7209 	else if (family == AF_INET6)
7210 		ill = ILL_START_WALK_V6(&ctx, ipst);
7211 	else
7212 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7213 
7214 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7215 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7216 			continue;
7217 
7218 		for (ipif = ill->ill_ipif; ipif != NULL;
7219 		    ipif = ipif->ipif_next) {
7220 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7221 			    !(lifn_flags & LIFC_NOXMIT))
7222 				continue;
7223 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7224 			    !(lifn_flags & LIFC_TEMPORARY))
7225 				continue;
7226 			if (((ipif->ipif_flags &
7227 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7228 			    IPIF_DEPRECATED)) ||
7229 			    IS_LOOPBACK(ill) ||
7230 			    !(ipif->ipif_flags & IPIF_UP)) &&
7231 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7232 				continue;
7233 
7234 			if (zoneid != ipif->ipif_zoneid &&
7235 			    ipif->ipif_zoneid != ALL_ZONES &&
7236 			    (zoneid != GLOBAL_ZONEID ||
7237 			    !(lifn_flags & LIFC_ALLZONES)))
7238 				continue;
7239 
7240 			numifs++;
7241 		}
7242 	}
7243 	rw_exit(&ipst->ips_ill_g_lock);
7244 	return (numifs);
7245 }
7246 
7247 uint_t
7248 ip_get_lifsrcofnum(ill_t *ill)
7249 {
7250 	uint_t numifs = 0;
7251 	ill_t	*ill_head = ill;
7252 	ip_stack_t	*ipst = ill->ill_ipst;
7253 
7254 	/*
7255 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7256 	 * other thread may be trying to relink the ILLs in this usesrc group
7257 	 * and adjusting the ill_usesrc_grp_next pointers
7258 	 */
7259 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7260 	if ((ill->ill_usesrc_ifindex == 0) &&
7261 	    (ill->ill_usesrc_grp_next != NULL)) {
7262 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7263 		    ill = ill->ill_usesrc_grp_next)
7264 			numifs++;
7265 	}
7266 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7267 
7268 	return (numifs);
7269 }
7270 
7271 /* Null values are passed in for ipif, sin, and ifreq */
7272 /* ARGSUSED */
7273 int
7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7275     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7276 {
7277 	int *nump;
7278 	conn_t *connp = Q_TO_CONN(q);
7279 
7280 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7281 
7282 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7283 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7284 
7285 	*nump = ip_get_numifs(connp->conn_zoneid,
7286 	    connp->conn_netstack->netstack_ip);
7287 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7288 	return (0);
7289 }
7290 
7291 /* Null values are passed in for ipif, sin, and ifreq */
7292 /* ARGSUSED */
7293 int
7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7295     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7296 {
7297 	struct lifnum *lifn;
7298 	mblk_t	*mp1;
7299 	conn_t *connp = Q_TO_CONN(q);
7300 
7301 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7302 
7303 	/* Existence checked in ip_wput_nondata */
7304 	mp1 = mp->b_cont->b_cont;
7305 
7306 	lifn = (struct lifnum *)mp1->b_rptr;
7307 	switch (lifn->lifn_family) {
7308 	case AF_UNSPEC:
7309 	case AF_INET:
7310 	case AF_INET6:
7311 		break;
7312 	default:
7313 		return (EAFNOSUPPORT);
7314 	}
7315 
7316 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7317 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7318 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7319 	return (0);
7320 }
7321 
7322 /* ARGSUSED */
7323 int
7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7325     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7326 {
7327 	STRUCT_HANDLE(ifconf, ifc);
7328 	mblk_t *mp1;
7329 	struct iocblk *iocp;
7330 	struct ifreq *ifr;
7331 	ill_walk_context_t	ctx;
7332 	ill_t	*ill;
7333 	ipif_t	*ipif;
7334 	struct sockaddr_in *sin;
7335 	int32_t	ifclen;
7336 	zoneid_t zoneid;
7337 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7338 
7339 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7340 
7341 	ip1dbg(("ip_sioctl_get_ifconf"));
7342 	/* Existence verified in ip_wput_nondata */
7343 	mp1 = mp->b_cont->b_cont;
7344 	iocp = (struct iocblk *)mp->b_rptr;
7345 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7346 
7347 	/*
7348 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7349 	 * the user buffer address and length into which the list of struct
7350 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7351 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7352 	 * the SIOCGIFCONF operation was redefined to simply provide
7353 	 * a large output buffer into which we are supposed to jam the ifreq
7354 	 * array.  The same ioctl command code was used, despite the fact that
7355 	 * both the applications and the kernel code had to change, thus making
7356 	 * it impossible to support both interfaces.
7357 	 *
7358 	 * For reasons not good enough to try to explain, the following
7359 	 * algorithm is used for deciding what to do with one of these:
7360 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7361 	 * form with the output buffer coming down as the continuation message.
7362 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7363 	 * and we have to copy in the ifconf structure to find out how big the
7364 	 * output buffer is and where to copy out to.  Sure no problem...
7365 	 *
7366 	 */
7367 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7368 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7369 		int numifs = 0;
7370 		size_t ifc_bufsize;
7371 
7372 		/*
7373 		 * Must be (better be!) continuation of a TRANSPARENT
7374 		 * IOCTL.  We just copied in the ifconf structure.
7375 		 */
7376 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7377 		    (struct ifconf *)mp1->b_rptr);
7378 
7379 		/*
7380 		 * Allocate a buffer to hold requested information.
7381 		 *
7382 		 * If ifc_len is larger than what is needed, we only
7383 		 * allocate what we will use.
7384 		 *
7385 		 * If ifc_len is smaller than what is needed, return
7386 		 * EINVAL.
7387 		 *
7388 		 * XXX: the ill_t structure can hava 2 counters, for
7389 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7390 		 * number of interfaces for a device, so we don't need
7391 		 * to count them here...
7392 		 */
7393 		numifs = ip_get_numifs(zoneid, ipst);
7394 
7395 		ifclen = STRUCT_FGET(ifc, ifc_len);
7396 		ifc_bufsize = numifs * sizeof (struct ifreq);
7397 		if (ifc_bufsize > ifclen) {
7398 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7399 				/* old behaviour */
7400 				return (EINVAL);
7401 			} else {
7402 				ifc_bufsize = ifclen;
7403 			}
7404 		}
7405 
7406 		mp1 = mi_copyout_alloc(q, mp,
7407 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7408 		if (mp1 == NULL)
7409 			return (ENOMEM);
7410 
7411 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7412 	}
7413 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7414 	/*
7415 	 * the SIOCGIFCONF ioctl only knows about
7416 	 * IPv4 addresses, so don't try to tell
7417 	 * it about interfaces with IPv6-only
7418 	 * addresses. (Last parm 'isv6' is B_FALSE)
7419 	 */
7420 
7421 	ifr = (struct ifreq *)mp1->b_rptr;
7422 
7423 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7424 	ill = ILL_START_WALK_V4(&ctx, ipst);
7425 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7426 		if (IS_UNDER_IPMP(ill))
7427 			continue;
7428 		for (ipif = ill->ill_ipif; ipif != NULL;
7429 		    ipif = ipif->ipif_next) {
7430 			if (zoneid != ipif->ipif_zoneid &&
7431 			    ipif->ipif_zoneid != ALL_ZONES)
7432 				continue;
7433 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7434 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7435 					/* old behaviour */
7436 					rw_exit(&ipst->ips_ill_g_lock);
7437 					return (EINVAL);
7438 				} else {
7439 					goto if_copydone;
7440 				}
7441 			}
7442 			ipif_get_name(ipif, ifr->ifr_name,
7443 			    sizeof (ifr->ifr_name));
7444 			sin = (sin_t *)&ifr->ifr_addr;
7445 			*sin = sin_null;
7446 			sin->sin_family = AF_INET;
7447 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7448 			ifr++;
7449 		}
7450 	}
7451 if_copydone:
7452 	rw_exit(&ipst->ips_ill_g_lock);
7453 	mp1->b_wptr = (uchar_t *)ifr;
7454 
7455 	if (STRUCT_BUF(ifc) != NULL) {
7456 		STRUCT_FSET(ifc, ifc_len,
7457 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7458 	}
7459 	return (0);
7460 }
7461 
7462 /*
7463  * Get the interfaces using the address hosted on the interface passed in,
7464  * as a source adddress
7465  */
7466 /* ARGSUSED */
7467 int
7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7469     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7470 {
7471 	mblk_t *mp1;
7472 	ill_t	*ill, *ill_head;
7473 	ipif_t	*ipif, *orig_ipif;
7474 	int	numlifs = 0;
7475 	size_t	lifs_bufsize, lifsmaxlen;
7476 	struct	lifreq *lifr;
7477 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7478 	uint_t	ifindex;
7479 	zoneid_t zoneid;
7480 	boolean_t isv6 = B_FALSE;
7481 	struct	sockaddr_in	*sin;
7482 	struct	sockaddr_in6	*sin6;
7483 	STRUCT_HANDLE(lifsrcof, lifs);
7484 	ip_stack_t		*ipst;
7485 
7486 	ipst = CONNQ_TO_IPST(q);
7487 
7488 	ASSERT(q->q_next == NULL);
7489 
7490 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7491 
7492 	/* Existence verified in ip_wput_nondata */
7493 	mp1 = mp->b_cont->b_cont;
7494 
7495 	/*
7496 	 * Must be (better be!) continuation of a TRANSPARENT
7497 	 * IOCTL.  We just copied in the lifsrcof structure.
7498 	 */
7499 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7500 	    (struct lifsrcof *)mp1->b_rptr);
7501 
7502 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7503 		return (EINVAL);
7504 
7505 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7506 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7507 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7508 	if (ipif == NULL) {
7509 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7510 		    ifindex));
7511 		return (ENXIO);
7512 	}
7513 
7514 	/* Allocate a buffer to hold requested information */
7515 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7516 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7517 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7518 	/* The actual size needed is always returned in lifs_len */
7519 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7520 
7521 	/* If the amount we need is more than what is passed in, abort */
7522 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7523 		ipif_refrele(ipif);
7524 		return (0);
7525 	}
7526 
7527 	mp1 = mi_copyout_alloc(q, mp,
7528 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7529 	if (mp1 == NULL) {
7530 		ipif_refrele(ipif);
7531 		return (ENOMEM);
7532 	}
7533 
7534 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7535 	bzero(mp1->b_rptr, lifs_bufsize);
7536 
7537 	lifr = (struct lifreq *)mp1->b_rptr;
7538 
7539 	ill = ill_head = ipif->ipif_ill;
7540 	orig_ipif = ipif;
7541 
7542 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7543 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7544 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7545 
7546 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7547 	for (; (ill != NULL) && (ill != ill_head);
7548 	    ill = ill->ill_usesrc_grp_next) {
7549 
7550 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7551 			break;
7552 
7553 		ipif = ill->ill_ipif;
7554 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7555 		if (ipif->ipif_isv6) {
7556 			sin6 = (sin6_t *)&lifr->lifr_addr;
7557 			*sin6 = sin6_null;
7558 			sin6->sin6_family = AF_INET6;
7559 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7560 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7561 			    &ipif->ipif_v6net_mask);
7562 		} else {
7563 			sin = (sin_t *)&lifr->lifr_addr;
7564 			*sin = sin_null;
7565 			sin->sin_family = AF_INET;
7566 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7567 			lifr->lifr_addrlen = ip_mask_to_plen(
7568 			    ipif->ipif_net_mask);
7569 		}
7570 		lifr++;
7571 	}
7572 	rw_exit(&ipst->ips_ill_g_lock);
7573 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7574 	ipif_refrele(orig_ipif);
7575 	mp1->b_wptr = (uchar_t *)lifr;
7576 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7577 
7578 	return (0);
7579 }
7580 
7581 /* ARGSUSED */
7582 int
7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7584     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7585 {
7586 	mblk_t *mp1;
7587 	int	list;
7588 	ill_t	*ill;
7589 	ipif_t	*ipif;
7590 	int	flags;
7591 	int	numlifs = 0;
7592 	size_t	lifc_bufsize;
7593 	struct	lifreq *lifr;
7594 	sa_family_t	family;
7595 	struct	sockaddr_in	*sin;
7596 	struct	sockaddr_in6	*sin6;
7597 	ill_walk_context_t	ctx;
7598 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7599 	int32_t	lifclen;
7600 	zoneid_t zoneid;
7601 	STRUCT_HANDLE(lifconf, lifc);
7602 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7603 
7604 	ip1dbg(("ip_sioctl_get_lifconf"));
7605 
7606 	ASSERT(q->q_next == NULL);
7607 
7608 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7609 
7610 	/* Existence verified in ip_wput_nondata */
7611 	mp1 = mp->b_cont->b_cont;
7612 
7613 	/*
7614 	 * An extended version of SIOCGIFCONF that takes an
7615 	 * additional address family and flags field.
7616 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7617 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7618 	 * interfaces are omitted.
7619 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7620 	 * unless LIFC_TEMPORARY is specified.
7621 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7622 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7623 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7624 	 * has priority over LIFC_NOXMIT.
7625 	 */
7626 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7627 
7628 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7629 		return (EINVAL);
7630 
7631 	/*
7632 	 * Must be (better be!) continuation of a TRANSPARENT
7633 	 * IOCTL.  We just copied in the lifconf structure.
7634 	 */
7635 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7636 
7637 	family = STRUCT_FGET(lifc, lifc_family);
7638 	flags = STRUCT_FGET(lifc, lifc_flags);
7639 
7640 	switch (family) {
7641 	case AF_UNSPEC:
7642 		/*
7643 		 * walk all ILL's.
7644 		 */
7645 		list = MAX_G_HEADS;
7646 		break;
7647 	case AF_INET:
7648 		/*
7649 		 * walk only IPV4 ILL's.
7650 		 */
7651 		list = IP_V4_G_HEAD;
7652 		break;
7653 	case AF_INET6:
7654 		/*
7655 		 * walk only IPV6 ILL's.
7656 		 */
7657 		list = IP_V6_G_HEAD;
7658 		break;
7659 	default:
7660 		return (EAFNOSUPPORT);
7661 	}
7662 
7663 	/*
7664 	 * Allocate a buffer to hold requested information.
7665 	 *
7666 	 * If lifc_len is larger than what is needed, we only
7667 	 * allocate what we will use.
7668 	 *
7669 	 * If lifc_len is smaller than what is needed, return
7670 	 * EINVAL.
7671 	 */
7672 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7673 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7674 	lifclen = STRUCT_FGET(lifc, lifc_len);
7675 	if (lifc_bufsize > lifclen) {
7676 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7677 			return (EINVAL);
7678 		else
7679 			lifc_bufsize = lifclen;
7680 	}
7681 
7682 	mp1 = mi_copyout_alloc(q, mp,
7683 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7684 	if (mp1 == NULL)
7685 		return (ENOMEM);
7686 
7687 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7688 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7689 
7690 	lifr = (struct lifreq *)mp1->b_rptr;
7691 
7692 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7693 	ill = ill_first(list, list, &ctx, ipst);
7694 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7695 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7696 			continue;
7697 
7698 		for (ipif = ill->ill_ipif; ipif != NULL;
7699 		    ipif = ipif->ipif_next) {
7700 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7701 			    !(flags & LIFC_NOXMIT))
7702 				continue;
7703 
7704 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7705 			    !(flags & LIFC_TEMPORARY))
7706 				continue;
7707 
7708 			if (((ipif->ipif_flags &
7709 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7710 			    IPIF_DEPRECATED)) ||
7711 			    IS_LOOPBACK(ill) ||
7712 			    !(ipif->ipif_flags & IPIF_UP)) &&
7713 			    (flags & LIFC_EXTERNAL_SOURCE))
7714 				continue;
7715 
7716 			if (zoneid != ipif->ipif_zoneid &&
7717 			    ipif->ipif_zoneid != ALL_ZONES &&
7718 			    (zoneid != GLOBAL_ZONEID ||
7719 			    !(flags & LIFC_ALLZONES)))
7720 				continue;
7721 
7722 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7723 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7724 					rw_exit(&ipst->ips_ill_g_lock);
7725 					return (EINVAL);
7726 				} else {
7727 					goto lif_copydone;
7728 				}
7729 			}
7730 
7731 			ipif_get_name(ipif, lifr->lifr_name,
7732 			    sizeof (lifr->lifr_name));
7733 			lifr->lifr_type = ill->ill_type;
7734 			if (ipif->ipif_isv6) {
7735 				sin6 = (sin6_t *)&lifr->lifr_addr;
7736 				*sin6 = sin6_null;
7737 				sin6->sin6_family = AF_INET6;
7738 				sin6->sin6_addr =
7739 				    ipif->ipif_v6lcl_addr;
7740 				lifr->lifr_addrlen =
7741 				    ip_mask_to_plen_v6(
7742 				    &ipif->ipif_v6net_mask);
7743 			} else {
7744 				sin = (sin_t *)&lifr->lifr_addr;
7745 				*sin = sin_null;
7746 				sin->sin_family = AF_INET;
7747 				sin->sin_addr.s_addr =
7748 				    ipif->ipif_lcl_addr;
7749 				lifr->lifr_addrlen =
7750 				    ip_mask_to_plen(
7751 				    ipif->ipif_net_mask);
7752 			}
7753 			lifr++;
7754 		}
7755 	}
7756 lif_copydone:
7757 	rw_exit(&ipst->ips_ill_g_lock);
7758 
7759 	mp1->b_wptr = (uchar_t *)lifr;
7760 	if (STRUCT_BUF(lifc) != NULL) {
7761 		STRUCT_FSET(lifc, lifc_len,
7762 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7763 	}
7764 	return (0);
7765 }
7766 
7767 static void
7768 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7769 {
7770 	ip6_asp_t *table;
7771 	size_t table_size;
7772 	mblk_t *data_mp;
7773 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7774 	ip_stack_t	*ipst;
7775 
7776 	if (q->q_next == NULL)
7777 		ipst = CONNQ_TO_IPST(q);
7778 	else
7779 		ipst = ILLQ_TO_IPST(q);
7780 
7781 	/* These two ioctls are I_STR only */
7782 	if (iocp->ioc_count == TRANSPARENT) {
7783 		miocnak(q, mp, 0, EINVAL);
7784 		return;
7785 	}
7786 
7787 	data_mp = mp->b_cont;
7788 	if (data_mp == NULL) {
7789 		/* The user passed us a NULL argument */
7790 		table = NULL;
7791 		table_size = iocp->ioc_count;
7792 	} else {
7793 		/*
7794 		 * The user provided a table.  The stream head
7795 		 * may have copied in the user data in chunks,
7796 		 * so make sure everything is pulled up
7797 		 * properly.
7798 		 */
7799 		if (MBLKL(data_mp) < iocp->ioc_count) {
7800 			mblk_t *new_data_mp;
7801 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7802 			    NULL) {
7803 				miocnak(q, mp, 0, ENOMEM);
7804 				return;
7805 			}
7806 			freemsg(data_mp);
7807 			data_mp = new_data_mp;
7808 			mp->b_cont = data_mp;
7809 		}
7810 		table = (ip6_asp_t *)data_mp->b_rptr;
7811 		table_size = iocp->ioc_count;
7812 	}
7813 
7814 	switch (iocp->ioc_cmd) {
7815 	case SIOCGIP6ADDRPOLICY:
7816 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7817 		if (iocp->ioc_rval == -1)
7818 			iocp->ioc_error = EINVAL;
7819 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7820 		else if (table != NULL &&
7821 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7822 			ip6_asp_t *src = table;
7823 			ip6_asp32_t *dst = (void *)table;
7824 			int count = table_size / sizeof (ip6_asp_t);
7825 			int i;
7826 
7827 			/*
7828 			 * We need to do an in-place shrink of the array
7829 			 * to match the alignment attributes of the
7830 			 * 32-bit ABI looking at it.
7831 			 */
7832 			/* LINTED: logical expression always true: op "||" */
7833 			ASSERT(sizeof (*src) > sizeof (*dst));
7834 			for (i = 1; i < count; i++)
7835 				bcopy(src + i, dst + i, sizeof (*dst));
7836 		}
7837 #endif
7838 		break;
7839 
7840 	case SIOCSIP6ADDRPOLICY:
7841 		ASSERT(mp->b_prev == NULL);
7842 		mp->b_prev = (void *)q;
7843 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7844 		/*
7845 		 * We pass in the datamodel here so that the ip6_asp_replace()
7846 		 * routine can handle converting from 32-bit to native formats
7847 		 * where necessary.
7848 		 *
7849 		 * A better way to handle this might be to convert the inbound
7850 		 * data structure here, and hang it off a new 'mp'; thus the
7851 		 * ip6_asp_replace() logic would always be dealing with native
7852 		 * format data structures..
7853 		 *
7854 		 * (An even simpler way to handle these ioctls is to just
7855 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7856 		 * and just recompile everything that depends on it.)
7857 		 */
7858 #endif
7859 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7860 		    iocp->ioc_flag & IOC_MODELS);
7861 		return;
7862 	}
7863 
7864 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7865 	qreply(q, mp);
7866 }
7867 
7868 static void
7869 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7870 {
7871 	mblk_t		*data_mp;
7872 	struct dstinforeq	*dir;
7873 	uint8_t		*end, *cur;
7874 	in6_addr_t	*daddr, *saddr;
7875 	ipaddr_t	v4daddr;
7876 	ire_t		*ire;
7877 	ipaddr_t	v4setsrc;
7878 	in6_addr_t	v6setsrc;
7879 	char		*slabel, *dlabel;
7880 	boolean_t	isipv4;
7881 	int		match_ire;
7882 	ill_t		*dst_ill;
7883 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7884 	conn_t		*connp = Q_TO_CONN(q);
7885 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7886 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7887 	uint64_t	ipif_flags;
7888 
7889 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7890 
7891 	/*
7892 	 * This ioctl is I_STR only, and must have a
7893 	 * data mblk following the M_IOCTL mblk.
7894 	 */
7895 	data_mp = mp->b_cont;
7896 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7897 		miocnak(q, mp, 0, EINVAL);
7898 		return;
7899 	}
7900 
7901 	if (MBLKL(data_mp) < iocp->ioc_count) {
7902 		mblk_t *new_data_mp;
7903 
7904 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7905 			miocnak(q, mp, 0, ENOMEM);
7906 			return;
7907 		}
7908 		freemsg(data_mp);
7909 		data_mp = new_data_mp;
7910 		mp->b_cont = data_mp;
7911 	}
7912 	match_ire = MATCH_IRE_DSTONLY;
7913 
7914 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7915 	    end - cur >= sizeof (struct dstinforeq);
7916 	    cur += sizeof (struct dstinforeq)) {
7917 		dir = (struct dstinforeq *)cur;
7918 		daddr = &dir->dir_daddr;
7919 		saddr = &dir->dir_saddr;
7920 
7921 		/*
7922 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7923 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7924 		 * and ip_select_source_v6() do not.
7925 		 */
7926 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7927 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7928 
7929 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7930 		if (isipv4) {
7931 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7932 			v4setsrc = INADDR_ANY;
7933 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7934 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7935 			    NULL, NULL);
7936 		} else {
7937 			v6setsrc = ipv6_all_zeros;
7938 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7939 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7940 			    NULL, NULL);
7941 		}
7942 		ASSERT(ire != NULL);
7943 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7944 			ire_refrele(ire);
7945 			dir->dir_dreachable = 0;
7946 
7947 			/* move on to next dst addr */
7948 			continue;
7949 		}
7950 		dir->dir_dreachable = 1;
7951 
7952 		dst_ill = ire_nexthop_ill(ire);
7953 		if (dst_ill == NULL) {
7954 			ire_refrele(ire);
7955 			continue;
7956 		}
7957 
7958 		/* With ipmp we most likely look at the ipmp ill here */
7959 		dir->dir_dmactype = dst_ill->ill_mactype;
7960 
7961 		if (isipv4) {
7962 			ipaddr_t v4saddr;
7963 
7964 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7965 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7966 			    &v4saddr, NULL, &ipif_flags) != 0) {
7967 				v4saddr = INADDR_ANY;
7968 				ipif_flags = 0;
7969 			}
7970 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7971 		} else {
7972 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7973 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7974 			    saddr, NULL, &ipif_flags) != 0) {
7975 				*saddr = ipv6_all_zeros;
7976 				ipif_flags = 0;
7977 			}
7978 		}
7979 
7980 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7981 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7982 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7983 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7984 		ire_refrele(ire);
7985 		ill_refrele(dst_ill);
7986 	}
7987 	miocack(q, mp, iocp->ioc_count, 0);
7988 }
7989 
7990 /*
7991  * Check if this is an address assigned to this machine.
7992  * Skips interfaces that are down by using ire checks.
7993  * Translates mapped addresses to v4 addresses and then
7994  * treats them as such, returning true if the v4 address
7995  * associated with this mapped address is configured.
7996  * Note: Applications will have to be careful what they do
7997  * with the response; use of mapped addresses limits
7998  * what can be done with the socket, especially with
7999  * respect to socket options and ioctls - neither IPv4
8000  * options nor IPv6 sticky options/ancillary data options
8001  * may be used.
8002  */
8003 /* ARGSUSED */
8004 int
8005 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8006     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8007 {
8008 	struct sioc_addrreq *sia;
8009 	sin_t *sin;
8010 	ire_t *ire;
8011 	mblk_t *mp1;
8012 	zoneid_t zoneid;
8013 	ip_stack_t	*ipst;
8014 
8015 	ip1dbg(("ip_sioctl_tmyaddr"));
8016 
8017 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8018 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8019 	ipst = CONNQ_TO_IPST(q);
8020 
8021 	/* Existence verified in ip_wput_nondata */
8022 	mp1 = mp->b_cont->b_cont;
8023 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8024 	sin = (sin_t *)&sia->sa_addr;
8025 	switch (sin->sin_family) {
8026 	case AF_INET6: {
8027 		sin6_t *sin6 = (sin6_t *)sin;
8028 
8029 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8030 			ipaddr_t v4_addr;
8031 
8032 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8033 			    v4_addr);
8034 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8035 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8036 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8037 		} else {
8038 			in6_addr_t v6addr;
8039 
8040 			v6addr = sin6->sin6_addr;
8041 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8042 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8043 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8044 		}
8045 		break;
8046 	}
8047 	case AF_INET: {
8048 		ipaddr_t v4addr;
8049 
8050 		v4addr = sin->sin_addr.s_addr;
8051 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8052 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8053 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8054 		break;
8055 	}
8056 	default:
8057 		return (EAFNOSUPPORT);
8058 	}
8059 	if (ire != NULL) {
8060 		sia->sa_res = 1;
8061 		ire_refrele(ire);
8062 	} else {
8063 		sia->sa_res = 0;
8064 	}
8065 	return (0);
8066 }
8067 
8068 /*
8069  * Check if this is an address assigned on-link i.e. neighbor,
8070  * and makes sure it's reachable from the current zone.
8071  * Returns true for my addresses as well.
8072  * Translates mapped addresses to v4 addresses and then
8073  * treats them as such, returning true if the v4 address
8074  * associated with this mapped address is configured.
8075  * Note: Applications will have to be careful what they do
8076  * with the response; use of mapped addresses limits
8077  * what can be done with the socket, especially with
8078  * respect to socket options and ioctls - neither IPv4
8079  * options nor IPv6 sticky options/ancillary data options
8080  * may be used.
8081  */
8082 /* ARGSUSED */
8083 int
8084 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8085     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8086 {
8087 	struct sioc_addrreq *sia;
8088 	sin_t *sin;
8089 	mblk_t	*mp1;
8090 	ire_t *ire = NULL;
8091 	zoneid_t zoneid;
8092 	ip_stack_t	*ipst;
8093 
8094 	ip1dbg(("ip_sioctl_tonlink"));
8095 
8096 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8097 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8098 	ipst = CONNQ_TO_IPST(q);
8099 
8100 	/* Existence verified in ip_wput_nondata */
8101 	mp1 = mp->b_cont->b_cont;
8102 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8103 	sin = (sin_t *)&sia->sa_addr;
8104 
8105 	/*
8106 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8107 	 * to make sure we only look at on-link unicast address.
8108 	 */
8109 	switch (sin->sin_family) {
8110 	case AF_INET6: {
8111 		sin6_t *sin6 = (sin6_t *)sin;
8112 
8113 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8114 			ipaddr_t v4_addr;
8115 
8116 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8117 			    v4_addr);
8118 			if (!CLASSD(v4_addr)) {
8119 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8120 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8121 				    0, ipst, NULL);
8122 			}
8123 		} else {
8124 			in6_addr_t v6addr;
8125 
8126 			v6addr = sin6->sin6_addr;
8127 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8128 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8129 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8130 				    ipst, NULL);
8131 			}
8132 		}
8133 		break;
8134 	}
8135 	case AF_INET: {
8136 		ipaddr_t v4addr;
8137 
8138 		v4addr = sin->sin_addr.s_addr;
8139 		if (!CLASSD(v4addr)) {
8140 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8141 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8142 		}
8143 		break;
8144 	}
8145 	default:
8146 		return (EAFNOSUPPORT);
8147 	}
8148 	sia->sa_res = 0;
8149 	if (ire != NULL) {
8150 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8151 
8152 		if ((ire->ire_type & IRE_ONLINK) &&
8153 		    !(ire->ire_type & IRE_BROADCAST))
8154 			sia->sa_res = 1;
8155 		ire_refrele(ire);
8156 	}
8157 	return (0);
8158 }
8159 
8160 /*
8161  * TBD: implement when kernel maintaines a list of site prefixes.
8162  */
8163 /* ARGSUSED */
8164 int
8165 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8166     ip_ioctl_cmd_t *ipip, void *ifreq)
8167 {
8168 	return (ENXIO);
8169 }
8170 
8171 /* ARP IOCTLs. */
8172 /* ARGSUSED */
8173 int
8174 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8175     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8176 {
8177 	int		err;
8178 	ipaddr_t	ipaddr;
8179 	struct iocblk	*iocp;
8180 	conn_t		*connp;
8181 	struct arpreq	*ar;
8182 	struct xarpreq	*xar;
8183 	int		arp_flags, flags, alength;
8184 	uchar_t		*lladdr;
8185 	ip_stack_t	*ipst;
8186 	ill_t		*ill = ipif->ipif_ill;
8187 	ill_t		*proxy_ill = NULL;
8188 	ipmp_arpent_t	*entp = NULL;
8189 	boolean_t	proxyarp = B_FALSE;
8190 	boolean_t	if_arp_ioctl = B_FALSE;
8191 	ncec_t		*ncec = NULL;
8192 	nce_t		*nce;
8193 
8194 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8195 	connp = Q_TO_CONN(q);
8196 	ipst = connp->conn_netstack->netstack_ip;
8197 	iocp = (struct iocblk *)mp->b_rptr;
8198 
8199 	if (ipip->ipi_cmd_type == XARP_CMD) {
8200 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8201 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8202 		ar = NULL;
8203 
8204 		arp_flags = xar->xarp_flags;
8205 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8206 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8207 		/*
8208 		 * Validate against user's link layer address length
8209 		 * input and name and addr length limits.
8210 		 */
8211 		alength = ill->ill_phys_addr_length;
8212 		if (ipip->ipi_cmd == SIOCSXARP) {
8213 			if (alength != xar->xarp_ha.sdl_alen ||
8214 			    (alength + xar->xarp_ha.sdl_nlen >
8215 			    sizeof (xar->xarp_ha.sdl_data)))
8216 				return (EINVAL);
8217 		}
8218 	} else {
8219 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8220 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8221 		xar = NULL;
8222 
8223 		arp_flags = ar->arp_flags;
8224 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8225 		/*
8226 		 * Theoretically, the sa_family could tell us what link
8227 		 * layer type this operation is trying to deal with. By
8228 		 * common usage AF_UNSPEC means ethernet. We'll assume
8229 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8230 		 * for now. Our new SIOC*XARP ioctls can be used more
8231 		 * generally.
8232 		 *
8233 		 * If the underlying media happens to have a non 6 byte
8234 		 * address, arp module will fail set/get, but the del
8235 		 * operation will succeed.
8236 		 */
8237 		alength = 6;
8238 		if ((ipip->ipi_cmd != SIOCDARP) &&
8239 		    (alength != ill->ill_phys_addr_length)) {
8240 			return (EINVAL);
8241 		}
8242 	}
8243 
8244 	/* Translate ATF* flags to NCE* flags */
8245 	flags = 0;
8246 	if (arp_flags & ATF_AUTHORITY)
8247 		flags |= NCE_F_AUTHORITY;
8248 	if (arp_flags & ATF_PERM)
8249 		flags |= NCE_F_NONUD; /* not subject to aging */
8250 	if (arp_flags & ATF_PUBL)
8251 		flags |= NCE_F_PUBLISH;
8252 
8253 	/*
8254 	 * IPMP ARP special handling:
8255 	 *
8256 	 * 1. Since ARP mappings must appear consistent across the group,
8257 	 *    prohibit changing ARP mappings on the underlying interfaces.
8258 	 *
8259 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8260 	 *    IP itself, prohibit changing them.
8261 	 *
8262 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8263 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8264 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8265 	 */
8266 	if (IS_UNDER_IPMP(ill)) {
8267 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8268 			return (EPERM);
8269 	}
8270 	if (IS_IPMP(ill)) {
8271 		ipmp_illgrp_t *illg = ill->ill_grp;
8272 
8273 		switch (ipip->ipi_cmd) {
8274 		case SIOCSARP:
8275 		case SIOCSXARP:
8276 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8277 			if (proxy_ill != NULL) {
8278 				proxyarp = B_TRUE;
8279 				if (!ipmp_ill_is_active(proxy_ill))
8280 					proxy_ill = ipmp_illgrp_next_ill(illg);
8281 				if (proxy_ill != NULL)
8282 					lladdr = proxy_ill->ill_phys_addr;
8283 			}
8284 			/* FALLTHRU */
8285 		}
8286 	}
8287 
8288 	ipaddr = sin->sin_addr.s_addr;
8289 	/*
8290 	 * don't match across illgrp per case (1) and (2).
8291 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8292 	 */
8293 	nce = nce_lookup_v4(ill, &ipaddr);
8294 	if (nce != NULL)
8295 		ncec = nce->nce_common;
8296 
8297 	switch (iocp->ioc_cmd) {
8298 	case SIOCDARP:
8299 	case SIOCDXARP: {
8300 		/*
8301 		 * Delete the NCE if any.
8302 		 */
8303 		if (ncec == NULL) {
8304 			iocp->ioc_error = ENXIO;
8305 			break;
8306 		}
8307 		/* Don't allow changes to arp mappings of local addresses. */
8308 		if (NCE_MYADDR(ncec)) {
8309 			nce_refrele(nce);
8310 			return (ENOTSUP);
8311 		}
8312 		iocp->ioc_error = 0;
8313 
8314 		/*
8315 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8316 		 * This will delete all the nce entries on the under_ills.
8317 		 */
8318 		ncec_delete(ncec);
8319 		/*
8320 		 * Once the NCE has been deleted, then the ire_dep* consistency
8321 		 * mechanism will find any IRE which depended on the now
8322 		 * condemned NCE (as part of sending packets).
8323 		 * That mechanism handles redirects by deleting redirects
8324 		 * that refer to UNREACHABLE nces.
8325 		 */
8326 		break;
8327 	}
8328 	case SIOCGARP:
8329 	case SIOCGXARP:
8330 		if (ncec != NULL) {
8331 			lladdr = ncec->ncec_lladdr;
8332 			flags = ncec->ncec_flags;
8333 			iocp->ioc_error = 0;
8334 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8335 		} else {
8336 			iocp->ioc_error = ENXIO;
8337 		}
8338 		break;
8339 	case SIOCSARP:
8340 	case SIOCSXARP:
8341 		/* Don't allow changes to arp mappings of local addresses. */
8342 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8343 			nce_refrele(nce);
8344 			return (ENOTSUP);
8345 		}
8346 
8347 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8348 		flags |= NCE_F_STATIC;
8349 		if (!if_arp_ioctl) {
8350 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8351 			    lladdr, alength, flags);
8352 		} else {
8353 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8354 			if (ipif != NULL) {
8355 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8356 				    lladdr, alength, flags);
8357 				ipif_refrele(ipif);
8358 			}
8359 		}
8360 		if (nce != NULL) {
8361 			nce_refrele(nce);
8362 			nce = NULL;
8363 		}
8364 		/*
8365 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8366 		 * by nce_add_common()
8367 		 */
8368 		err = nce_lookup_then_add_v4(ill, lladdr,
8369 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8370 		    &nce);
8371 		if (err == EEXIST) {
8372 			ncec = nce->nce_common;
8373 			mutex_enter(&ncec->ncec_lock);
8374 			ncec->ncec_state = ND_REACHABLE;
8375 			ncec->ncec_flags = flags;
8376 			nce_update(ncec, ND_UNCHANGED, lladdr);
8377 			mutex_exit(&ncec->ncec_lock);
8378 			err = 0;
8379 		}
8380 		if (nce != NULL) {
8381 			nce_refrele(nce);
8382 			nce = NULL;
8383 		}
8384 		if (IS_IPMP(ill) && err == 0) {
8385 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8386 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8387 			    flags);
8388 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8389 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8390 				break;
8391 			}
8392 		}
8393 		iocp->ioc_error = err;
8394 	}
8395 
8396 	if (nce != NULL) {
8397 		nce_refrele(nce);
8398 	}
8399 
8400 	/*
8401 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8402 	 */
8403 	if (entp != NULL)
8404 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8405 
8406 	return (iocp->ioc_error);
8407 }
8408 
8409 /*
8410  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8411  * the associated sin and refhold and return the associated ipif via `ci'.
8412  */
8413 int
8414 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8415     cmd_info_t *ci)
8416 {
8417 	mblk_t	*mp1;
8418 	sin_t	*sin;
8419 	conn_t	*connp;
8420 	ipif_t	*ipif;
8421 	ire_t	*ire = NULL;
8422 	ill_t	*ill = NULL;
8423 	boolean_t exists;
8424 	ip_stack_t *ipst;
8425 	struct arpreq *ar;
8426 	struct xarpreq *xar;
8427 	struct sockaddr_dl *sdl;
8428 
8429 	/* ioctl comes down on a conn */
8430 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8431 	connp = Q_TO_CONN(q);
8432 	if (connp->conn_family == AF_INET6)
8433 		return (ENXIO);
8434 
8435 	ipst = connp->conn_netstack->netstack_ip;
8436 
8437 	/* Verified in ip_wput_nondata */
8438 	mp1 = mp->b_cont->b_cont;
8439 
8440 	if (ipip->ipi_cmd_type == XARP_CMD) {
8441 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8442 		xar = (struct xarpreq *)mp1->b_rptr;
8443 		sin = (sin_t *)&xar->xarp_pa;
8444 		sdl = &xar->xarp_ha;
8445 
8446 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8447 			return (ENXIO);
8448 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8449 			return (EINVAL);
8450 	} else {
8451 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8452 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8453 		ar = (struct arpreq *)mp1->b_rptr;
8454 		sin = (sin_t *)&ar->arp_pa;
8455 	}
8456 
8457 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8458 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8459 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8460 		if (ipif == NULL)
8461 			return (ENXIO);
8462 		if (ipif->ipif_id != 0) {
8463 			ipif_refrele(ipif);
8464 			return (ENXIO);
8465 		}
8466 	} else {
8467 		/*
8468 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8469 		 * of 0: use the IP address to find the ipif.  If the IP
8470 		 * address is an IPMP test address, ire_ftable_lookup() will
8471 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8472 		 */
8473 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8474 		    ipst);
8475 		if (ipif == NULL) {
8476 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8477 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8478 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8479 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8480 				if (ire != NULL)
8481 					ire_refrele(ire);
8482 				return (ENXIO);
8483 			}
8484 			ASSERT(ire != NULL && ill != NULL);
8485 			ipif = ill->ill_ipif;
8486 			ipif_refhold(ipif);
8487 			ire_refrele(ire);
8488 		}
8489 	}
8490 
8491 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8492 		ipif_refrele(ipif);
8493 		return (ENXIO);
8494 	}
8495 
8496 	ci->ci_sin = sin;
8497 	ci->ci_ipif = ipif;
8498 	return (0);
8499 }
8500 
8501 /*
8502  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8503  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8504  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8505  * up and thus an ill can join that illgrp.
8506  *
8507  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8508  * open()/close() primarily because close() is not allowed to fail or block
8509  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8510  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8511  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8512  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8513  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8514  * state if I_UNLINK didn't occur.
8515  *
8516  * Note that for each plumb/unplumb operation, we may end up here more than
8517  * once because of the way ifconfig works.  However, it's OK to link the same
8518  * illgrp more than once, or unlink an illgrp that's already unlinked.
8519  */
8520 static int
8521 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8522 {
8523 	int err;
8524 	ip_stack_t *ipst = ill->ill_ipst;
8525 
8526 	ASSERT(IS_IPMP(ill));
8527 	ASSERT(IAM_WRITER_ILL(ill));
8528 
8529 	switch (ioccmd) {
8530 	case I_LINK:
8531 		return (ENOTSUP);
8532 
8533 	case I_PLINK:
8534 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8535 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8536 		rw_exit(&ipst->ips_ipmp_lock);
8537 		break;
8538 
8539 	case I_PUNLINK:
8540 		/*
8541 		 * Require all UP ipifs be brought down prior to unlinking the
8542 		 * illgrp so any associated IREs (and other state) is torched.
8543 		 */
8544 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8545 			return (EBUSY);
8546 
8547 		/*
8548 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8549 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8550 		 * join this group.  Specifically: ills trying to join grab
8551 		 * ipmp_lock and bump a "pending join" counter checked by
8552 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8553 		 * joins can occur (since we have ipmp_lock).  Once we drop
8554 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8555 		 * find the illgrp (since we unlinked it) and will return
8556 		 * EAFNOSUPPORT.  This will then take them back through the
8557 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8558 		 * back through I_PLINK above.
8559 		 */
8560 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8561 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8562 		rw_exit(&ipst->ips_ipmp_lock);
8563 		return (err);
8564 	default:
8565 		break;
8566 	}
8567 	return (0);
8568 }
8569 
8570 /*
8571  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8572  * atomically set/clear the muxids. Also complete the ioctl by acking or
8573  * naking it.  Note that the code is structured such that the link type,
8574  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8575  * its clones use the persistent link, while pppd(1M) and perhaps many
8576  * other daemons may use non-persistent link.  When combined with some
8577  * ill_t states, linking and unlinking lower streams may be used as
8578  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8579  */
8580 /* ARGSUSED */
8581 void
8582 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8583 {
8584 	mblk_t		*mp1;
8585 	struct linkblk	*li;
8586 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8587 	int		err = 0;
8588 
8589 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8590 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8591 
8592 	mp1 = mp->b_cont;	/* This is the linkblk info */
8593 	li = (struct linkblk *)mp1->b_rptr;
8594 
8595 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8596 	if (err == EINPROGRESS)
8597 		return;
8598 	if (err == 0)
8599 		miocack(q, mp, 0, 0);
8600 	else
8601 		miocnak(q, mp, 0, err);
8602 
8603 	/* Conn was refheld in ip_sioctl_copyin_setup */
8604 	if (CONN_Q(q)) {
8605 		CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8606 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8607 	}
8608 }
8609 
8610 /*
8611  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8612  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8613  * module stream).
8614  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8615  * an error code on failure.
8616  */
8617 static int
8618 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8619     struct linkblk *li)
8620 {
8621 	int		err = 0;
8622 	ill_t		*ill;
8623 	queue_t		*ipwq, *dwq;
8624 	const char	*name;
8625 	struct qinit	*qinfo;
8626 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8627 	boolean_t	entered_ipsq = B_FALSE;
8628 	boolean_t	is_ip = B_FALSE;
8629 	arl_t		*arl;
8630 
8631 	/*
8632 	 * Walk the lower stream to verify it's the IP module stream.
8633 	 * The IP module is identified by its name, wput function,
8634 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8635 	 * (li->l_qbot) will not vanish until this ioctl completes.
8636 	 */
8637 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8638 		qinfo = ipwq->q_qinfo;
8639 		name = qinfo->qi_minfo->mi_idname;
8640 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8641 		    qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) {
8642 			is_ip = B_TRUE;
8643 			break;
8644 		}
8645 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8646 		    qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) {
8647 			break;
8648 		}
8649 	}
8650 
8651 	/*
8652 	 * If this isn't an IP module stream, bail.
8653 	 */
8654 	if (ipwq == NULL)
8655 		return (0);
8656 
8657 	if (!is_ip) {
8658 		arl = (arl_t *)ipwq->q_ptr;
8659 		ill = arl_to_ill(arl);
8660 		if (ill == NULL)
8661 			return (0);
8662 	} else {
8663 		ill = ipwq->q_ptr;
8664 	}
8665 	ASSERT(ill != NULL);
8666 
8667 	if (ipsq == NULL) {
8668 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8669 		    NEW_OP, B_FALSE);
8670 		if (ipsq == NULL) {
8671 			if (!is_ip)
8672 				ill_refrele(ill);
8673 			return (EINPROGRESS);
8674 		}
8675 		entered_ipsq = B_TRUE;
8676 	}
8677 	ASSERT(IAM_WRITER_ILL(ill));
8678 	mutex_enter(&ill->ill_lock);
8679 	if (!is_ip) {
8680 		if (islink && ill->ill_muxid == 0) {
8681 			/*
8682 			 * Plumbing has to be done with IP plumbed first, arp
8683 			 * second, but here we have arp being plumbed first.
8684 			 */
8685 			mutex_exit(&ill->ill_lock);
8686 			if (entered_ipsq)
8687 				ipsq_exit(ipsq);
8688 			ill_refrele(ill);
8689 			return (EINVAL);
8690 		}
8691 	}
8692 	mutex_exit(&ill->ill_lock);
8693 	if (!is_ip) {
8694 		arl->arl_muxid = islink ? li->l_index : 0;
8695 		ill_refrele(ill);
8696 		goto done;
8697 	}
8698 
8699 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8700 		goto done;
8701 
8702 	/*
8703 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8704 	 * the read queue of the module immediately below IP in the ill.
8705 	 * These are used during the capability negotiation below.
8706 	 */
8707 	ill->ill_lmod_rq = NULL;
8708 	ill->ill_lmod_cnt = 0;
8709 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8710 		ill->ill_lmod_rq = RD(dwq);
8711 		for (; dwq != NULL; dwq = dwq->q_next)
8712 			ill->ill_lmod_cnt++;
8713 	}
8714 
8715 	ill->ill_muxid = islink ? li->l_index : 0;
8716 
8717 	/*
8718 	 * Mark the ipsq busy until the capability operations initiated below
8719 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8720 	 * returns, but the capability operation may complete asynchronously
8721 	 * much later.
8722 	 */
8723 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8724 	/*
8725 	 * If there's at least one up ipif on this ill, then we're bound to
8726 	 * the underlying driver via DLPI.  In that case, renegotiate
8727 	 * capabilities to account for any possible change in modules
8728 	 * interposed between IP and the driver.
8729 	 */
8730 	if (ill->ill_ipif_up_count > 0) {
8731 		if (islink)
8732 			ill_capability_probe(ill);
8733 		else
8734 			ill_capability_reset(ill, B_FALSE);
8735 	}
8736 	ipsq_current_finish(ipsq);
8737 done:
8738 	if (entered_ipsq)
8739 		ipsq_exit(ipsq);
8740 
8741 	return (err);
8742 }
8743 
8744 /*
8745  * Search the ioctl command in the ioctl tables and return a pointer
8746  * to the ioctl command information. The ioctl command tables are
8747  * static and fully populated at compile time.
8748  */
8749 ip_ioctl_cmd_t *
8750 ip_sioctl_lookup(int ioc_cmd)
8751 {
8752 	int index;
8753 	ip_ioctl_cmd_t *ipip;
8754 	ip_ioctl_cmd_t *ipip_end;
8755 
8756 	if (ioc_cmd == IPI_DONTCARE)
8757 		return (NULL);
8758 
8759 	/*
8760 	 * Do a 2 step search. First search the indexed table
8761 	 * based on the least significant byte of the ioctl cmd.
8762 	 * If we don't find a match, then search the misc table
8763 	 * serially.
8764 	 */
8765 	index = ioc_cmd & 0xFF;
8766 	if (index < ip_ndx_ioctl_count) {
8767 		ipip = &ip_ndx_ioctl_table[index];
8768 		if (ipip->ipi_cmd == ioc_cmd) {
8769 			/* Found a match in the ndx table */
8770 			return (ipip);
8771 		}
8772 	}
8773 
8774 	/* Search the misc table */
8775 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8776 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8777 		if (ipip->ipi_cmd == ioc_cmd)
8778 			/* Found a match in the misc table */
8779 			return (ipip);
8780 	}
8781 
8782 	return (NULL);
8783 }
8784 
8785 /*
8786  * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8787  */
8788 static boolean_t
8789 getset_ioctl_checks(mblk_t *mp)
8790 {
8791 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8792 	mblk_t		*mp1 = mp->b_cont;
8793 	mod_ioc_prop_t	*pioc;
8794 	uint_t		flags;
8795 	uint_t		pioc_size;
8796 
8797 	/* do sanity checks on various arguments */
8798 	if (mp1 == NULL || iocp->ioc_count == 0 ||
8799 	    iocp->ioc_count == TRANSPARENT) {
8800 		return (B_FALSE);
8801 	}
8802 	if (msgdsize(mp1) < iocp->ioc_count) {
8803 		if (!pullupmsg(mp1, iocp->ioc_count))
8804 			return (B_FALSE);
8805 	}
8806 
8807 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8808 
8809 	/* sanity checks on mpr_valsize */
8810 	pioc_size = sizeof (mod_ioc_prop_t);
8811 	if (pioc->mpr_valsize != 0)
8812 		pioc_size += pioc->mpr_valsize - 1;
8813 
8814 	if (iocp->ioc_count != pioc_size)
8815 		return (B_FALSE);
8816 
8817 	flags = pioc->mpr_flags;
8818 	if (iocp->ioc_cmd == SIOCSETPROP) {
8819 		/*
8820 		 * One can either reset the value to it's default value or
8821 		 * change the current value or append/remove the value from
8822 		 * a multi-valued properties.
8823 		 */
8824 		if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8825 		    flags != MOD_PROP_ACTIVE &&
8826 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8827 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8828 			return (B_FALSE);
8829 	} else {
8830 		ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8831 
8832 		/*
8833 		 * One can retrieve only one kind of property information
8834 		 * at a time.
8835 		 */
8836 		if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8837 		    (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8838 		    (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8839 		    (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8840 			return (B_FALSE);
8841 	}
8842 
8843 	return (B_TRUE);
8844 }
8845 
8846 /*
8847  * process the SIOC{SET|GET}PROP ioctl's
8848  */
8849 /* ARGSUSED */
8850 static void
8851 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8852 {
8853 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8854 	mblk_t		*mp1 = mp->b_cont;
8855 	mod_ioc_prop_t	*pioc;
8856 	mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8857 	ip_stack_t	*ipst;
8858 	netstack_t	*stack;
8859 	cred_t		*cr;
8860 	boolean_t	set;
8861 	int		err;
8862 
8863 	ASSERT(q->q_next == NULL);
8864 	ASSERT(CONN_Q(q));
8865 
8866 	if (!getset_ioctl_checks(mp)) {
8867 		miocnak(q, mp, 0, EINVAL);
8868 		return;
8869 	}
8870 	ipst = CONNQ_TO_IPST(q);
8871 	stack = ipst->ips_netstack;
8872 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8873 
8874 	switch (pioc->mpr_proto) {
8875 	case MOD_PROTO_IP:
8876 	case MOD_PROTO_IPV4:
8877 	case MOD_PROTO_IPV6:
8878 		ptbl = ipst->ips_propinfo_tbl;
8879 		break;
8880 	case MOD_PROTO_RAWIP:
8881 		ptbl = stack->netstack_icmp->is_propinfo_tbl;
8882 		break;
8883 	case MOD_PROTO_TCP:
8884 		ptbl = stack->netstack_tcp->tcps_propinfo_tbl;
8885 		break;
8886 	case MOD_PROTO_UDP:
8887 		ptbl = stack->netstack_udp->us_propinfo_tbl;
8888 		break;
8889 	case MOD_PROTO_SCTP:
8890 		ptbl = stack->netstack_sctp->sctps_propinfo_tbl;
8891 		break;
8892 	default:
8893 		miocnak(q, mp, 0, EINVAL);
8894 		return;
8895 	}
8896 
8897 	pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto);
8898 	if (pinfo == NULL) {
8899 		miocnak(q, mp, 0, ENOENT);
8900 		return;
8901 	}
8902 
8903 	set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8904 	if (set && pinfo->mpi_setf != NULL) {
8905 		cr = msg_getcred(mp, NULL);
8906 		if (cr == NULL)
8907 			cr = iocp->ioc_cr;
8908 		err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname,
8909 		    pioc->mpr_val, pioc->mpr_flags);
8910 	} else if (!set && pinfo->mpi_getf != NULL) {
8911 		err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname,
8912 		    pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8913 	} else {
8914 		err = EPERM;
8915 	}
8916 
8917 	if (err != 0) {
8918 		miocnak(q, mp, 0, err);
8919 	} else {
8920 		if (set)
8921 			miocack(q, mp, 0, 0);
8922 		else    /* For get, we need to return back the data */
8923 			miocack(q, mp, iocp->ioc_count, 0);
8924 	}
8925 }
8926 
8927 /*
8928  * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8929  * as several routing daemons have unfortunately used this 'unpublished'
8930  * but well-known ioctls.
8931  */
8932 /* ARGSUSED */
8933 static void
8934 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8935 {
8936 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8937 	mblk_t		*mp1 = mp->b_cont;
8938 	char		*pname, *pval, *buf;
8939 	uint_t		bufsize, proto;
8940 	mod_prop_info_t *pinfo = NULL;
8941 	ip_stack_t	*ipst;
8942 	int		err = 0;
8943 
8944 	ASSERT(CONN_Q(q));
8945 	ipst = CONNQ_TO_IPST(q);
8946 
8947 	if (iocp->ioc_count == 0 || mp1 == NULL) {
8948 		miocnak(q, mp, 0, EINVAL);
8949 		return;
8950 	}
8951 
8952 	mp1->b_datap->db_lim[-1] = '\0';	/* Force null termination */
8953 	pval = buf = pname = (char *)mp1->b_rptr;
8954 	bufsize = MBLKL(mp1);
8955 
8956 	if (strcmp(pname, "ip_forwarding") == 0) {
8957 		pname = "forwarding";
8958 		proto = MOD_PROTO_IPV4;
8959 	} else if (strcmp(pname, "ip6_forwarding") == 0) {
8960 		pname = "forwarding";
8961 		proto = MOD_PROTO_IPV6;
8962 	} else {
8963 		miocnak(q, mp, 0, EINVAL);
8964 		return;
8965 	}
8966 
8967 	pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto);
8968 
8969 	switch (iocp->ioc_cmd) {
8970 	case ND_GET:
8971 		if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf,
8972 		    bufsize, 0)) == 0) {
8973 			miocack(q, mp, iocp->ioc_count, 0);
8974 			return;
8975 		}
8976 		break;
8977 	case ND_SET:
8978 		/*
8979 		 * buffer will have property name and value in the following
8980 		 * format,
8981 		 * <property name>'\0'<property value>'\0', extract them;
8982 		 */
8983 		while (*pval++)
8984 			noop;
8985 
8986 		if (!*pval || pval >= (char *)mp1->b_wptr) {
8987 			err = EINVAL;
8988 		} else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL,
8989 		    pinfo, NULL, pval, 0)) == 0) {
8990 			miocack(q, mp, 0, 0);
8991 			return;
8992 		}
8993 		break;
8994 	default:
8995 		err = EINVAL;
8996 		break;
8997 	}
8998 	miocnak(q, mp, 0, err);
8999 }
9000 
9001 /*
9002  * Wrapper function for resuming deferred ioctl processing
9003  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9004  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9005  */
9006 /* ARGSUSED */
9007 void
9008 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9009     void *dummy_arg)
9010 {
9011 	ip_sioctl_copyin_setup(q, mp);
9012 }
9013 
9014 /*
9015  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9016  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
9017  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9018  * We establish here the size of the block to be copied in.  mi_copyin
9019  * arranges for this to happen, an processing continues in ip_wput_nondata with
9020  * an M_IOCDATA message.
9021  */
9022 void
9023 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9024 {
9025 	int	copyin_size;
9026 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9027 	ip_ioctl_cmd_t *ipip;
9028 	cred_t *cr;
9029 	ip_stack_t	*ipst;
9030 
9031 	if (CONN_Q(q))
9032 		ipst = CONNQ_TO_IPST(q);
9033 	else
9034 		ipst = ILLQ_TO_IPST(q);
9035 
9036 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9037 	if (ipip == NULL) {
9038 		/*
9039 		 * The ioctl is not one we understand or own.
9040 		 * Pass it along to be processed down stream,
9041 		 * if this is a module instance of IP, else nak
9042 		 * the ioctl.
9043 		 */
9044 		if (q->q_next == NULL) {
9045 			goto nak;
9046 		} else {
9047 			putnext(q, mp);
9048 			return;
9049 		}
9050 	}
9051 
9052 	/*
9053 	 * If this is deferred, then we will do all the checks when we
9054 	 * come back.
9055 	 */
9056 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9057 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9058 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9059 		return;
9060 	}
9061 
9062 	/*
9063 	 * Only allow a very small subset of IP ioctls on this stream if
9064 	 * IP is a module and not a driver. Allowing ioctls to be processed
9065 	 * in this case may cause assert failures or data corruption.
9066 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9067 	 * ioctls allowed on an IP module stream, after which this stream
9068 	 * normally becomes a multiplexor (at which time the stream head
9069 	 * will fail all ioctls).
9070 	 */
9071 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9072 		goto nak;
9073 	}
9074 
9075 	/* Make sure we have ioctl data to process. */
9076 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9077 		goto nak;
9078 
9079 	/*
9080 	 * Prefer dblk credential over ioctl credential; some synthesized
9081 	 * ioctls have kcred set because there's no way to crhold()
9082 	 * a credential in some contexts.  (ioc_cr is not crfree() by
9083 	 * the framework; the caller of ioctl needs to hold the reference
9084 	 * for the duration of the call).
9085 	 */
9086 	cr = msg_getcred(mp, NULL);
9087 	if (cr == NULL)
9088 		cr = iocp->ioc_cr;
9089 
9090 	/* Make sure normal users don't send down privileged ioctls */
9091 	if ((ipip->ipi_flags & IPI_PRIV) &&
9092 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9093 		/* We checked the privilege earlier but log it here */
9094 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9095 		return;
9096 	}
9097 
9098 	/*
9099 	 * The ioctl command tables can only encode fixed length
9100 	 * ioctl data. If the length is variable, the table will
9101 	 * encode the length as zero. Such special cases are handled
9102 	 * below in the switch.
9103 	 */
9104 	if (ipip->ipi_copyin_size != 0) {
9105 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9106 		return;
9107 	}
9108 
9109 	switch (iocp->ioc_cmd) {
9110 	case O_SIOCGIFCONF:
9111 	case SIOCGIFCONF:
9112 		/*
9113 		 * This IOCTL is hilarious.  See comments in
9114 		 * ip_sioctl_get_ifconf for the story.
9115 		 */
9116 		if (iocp->ioc_count == TRANSPARENT)
9117 			copyin_size = SIZEOF_STRUCT(ifconf,
9118 			    iocp->ioc_flag);
9119 		else
9120 			copyin_size = iocp->ioc_count;
9121 		mi_copyin(q, mp, NULL, copyin_size);
9122 		return;
9123 
9124 	case O_SIOCGLIFCONF:
9125 	case SIOCGLIFCONF:
9126 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9127 		mi_copyin(q, mp, NULL, copyin_size);
9128 		return;
9129 
9130 	case SIOCGLIFSRCOF:
9131 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9132 		mi_copyin(q, mp, NULL, copyin_size);
9133 		return;
9134 
9135 	case SIOCGIP6ADDRPOLICY:
9136 		ip_sioctl_ip6addrpolicy(q, mp);
9137 		ip6_asp_table_refrele(ipst);
9138 		return;
9139 
9140 	case SIOCSIP6ADDRPOLICY:
9141 		ip_sioctl_ip6addrpolicy(q, mp);
9142 		return;
9143 
9144 	case SIOCGDSTINFO:
9145 		ip_sioctl_dstinfo(q, mp);
9146 		ip6_asp_table_refrele(ipst);
9147 		return;
9148 
9149 	case ND_SET:
9150 	case ND_GET:
9151 		ip_process_legacy_nddprop(q, mp);
9152 		return;
9153 
9154 	case SIOCSETPROP:
9155 	case SIOCGETPROP:
9156 		ip_sioctl_getsetprop(q, mp);
9157 		return;
9158 
9159 	case I_PLINK:
9160 	case I_PUNLINK:
9161 	case I_LINK:
9162 	case I_UNLINK:
9163 		/*
9164 		 * We treat non-persistent link similarly as the persistent
9165 		 * link case, in terms of plumbing/unplumbing, as well as
9166 		 * dynamic re-plumbing events indicator.  See comments
9167 		 * in ip_sioctl_plink() for more.
9168 		 *
9169 		 * Request can be enqueued in the 'ipsq' while waiting
9170 		 * to become exclusive. So bump up the conn ref.
9171 		 */
9172 		if (CONN_Q(q)) {
9173 			CONN_INC_REF(Q_TO_CONN(q));
9174 			CONN_INC_IOCTLREF(Q_TO_CONN(q))
9175 		}
9176 		ip_sioctl_plink(NULL, q, mp, NULL);
9177 		return;
9178 
9179 	case IP_IOCTL:
9180 		ip_wput_ioctl(q, mp);
9181 		return;
9182 
9183 	case SIOCILB:
9184 		/* The ioctl length varies depending on the ILB command. */
9185 		copyin_size = iocp->ioc_count;
9186 		if (copyin_size < sizeof (ilb_cmd_t))
9187 			goto nak;
9188 		mi_copyin(q, mp, NULL, copyin_size);
9189 		return;
9190 
9191 	default:
9192 		cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.",
9193 		    iocp->ioc_cmd, iocp->ioc_cmd);
9194 		/* FALLTHRU */
9195 	}
9196 nak:
9197 	if (mp->b_cont != NULL) {
9198 		freemsg(mp->b_cont);
9199 		mp->b_cont = NULL;
9200 	}
9201 	iocp->ioc_error = EINVAL;
9202 	mp->b_datap->db_type = M_IOCNAK;
9203 	iocp->ioc_count = 0;
9204 	qreply(q, mp);
9205 }
9206 
9207 static void
9208 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9209 {
9210 	struct arpreq *ar;
9211 	struct xarpreq *xar;
9212 	mblk_t	*tmp;
9213 	struct iocblk *iocp;
9214 	int x_arp_ioctl = B_FALSE;
9215 	int *flagsp;
9216 	char *storage = NULL;
9217 
9218 	ASSERT(ill != NULL);
9219 
9220 	iocp = (struct iocblk *)mp->b_rptr;
9221 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9222 
9223 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9224 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9225 	    (iocp->ioc_cmd == SIOCSXARP)) {
9226 		x_arp_ioctl = B_TRUE;
9227 		xar = (struct xarpreq *)tmp->b_rptr;
9228 		flagsp = &xar->xarp_flags;
9229 		storage = xar->xarp_ha.sdl_data;
9230 	} else {
9231 		ar = (struct arpreq *)tmp->b_rptr;
9232 		flagsp = &ar->arp_flags;
9233 		storage = ar->arp_ha.sa_data;
9234 	}
9235 
9236 	/*
9237 	 * We're done if this is not an SIOCG{X}ARP
9238 	 */
9239 	if (x_arp_ioctl) {
9240 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9241 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9242 		    sizeof (xar->xarp_ha.sdl_data)) {
9243 			iocp->ioc_error = EINVAL;
9244 			return;
9245 		}
9246 	}
9247 	*flagsp = ATF_INUSE;
9248 	/*
9249 	 * If /sbin/arp told us we are the authority using the "permanent"
9250 	 * flag, or if this is one of my addresses print "permanent"
9251 	 * in the /sbin/arp output.
9252 	 */
9253 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9254 		*flagsp |= ATF_AUTHORITY;
9255 	if (flags & NCE_F_NONUD)
9256 		*flagsp |= ATF_PERM; /* not subject to aging */
9257 	if (flags & NCE_F_PUBLISH)
9258 		*flagsp |= ATF_PUBL;
9259 	if (hwaddr != NULL) {
9260 		*flagsp |= ATF_COM;
9261 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9262 	}
9263 }
9264 
9265 /*
9266  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9267  * interface) create the next available logical interface for this
9268  * physical interface.
9269  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9270  * ipif with the specified name.
9271  *
9272  * If the address family is not AF_UNSPEC then set the address as well.
9273  *
9274  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9275  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9276  *
9277  * Executed as a writer on the ill.
9278  * So no lock is needed to traverse the ipif chain, or examine the
9279  * phyint flags.
9280  */
9281 /* ARGSUSED */
9282 int
9283 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9284     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9285 {
9286 	mblk_t	*mp1;
9287 	struct lifreq *lifr;
9288 	boolean_t	isv6;
9289 	boolean_t	exists;
9290 	char	*name;
9291 	char	*endp;
9292 	char	*cp;
9293 	int	namelen;
9294 	ipif_t	*ipif;
9295 	long	id;
9296 	ipsq_t	*ipsq;
9297 	ill_t	*ill;
9298 	sin_t	*sin;
9299 	int	err = 0;
9300 	boolean_t found_sep = B_FALSE;
9301 	conn_t	*connp;
9302 	zoneid_t zoneid;
9303 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9304 
9305 	ASSERT(q->q_next == NULL);
9306 	ip1dbg(("ip_sioctl_addif\n"));
9307 	/* Existence of mp1 has been checked in ip_wput_nondata */
9308 	mp1 = mp->b_cont->b_cont;
9309 	/*
9310 	 * Null terminate the string to protect against buffer
9311 	 * overrun. String was generated by user code and may not
9312 	 * be trusted.
9313 	 */
9314 	lifr = (struct lifreq *)mp1->b_rptr;
9315 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9316 	name = lifr->lifr_name;
9317 	ASSERT(CONN_Q(q));
9318 	connp = Q_TO_CONN(q);
9319 	isv6 = (connp->conn_family == AF_INET6);
9320 	zoneid = connp->conn_zoneid;
9321 	namelen = mi_strlen(name);
9322 	if (namelen == 0)
9323 		return (EINVAL);
9324 
9325 	exists = B_FALSE;
9326 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9327 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9328 		/*
9329 		 * Allow creating lo0 using SIOCLIFADDIF.
9330 		 * can't be any other writer thread. So can pass null below
9331 		 * for the last 4 args to ipif_lookup_name.
9332 		 */
9333 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9334 		    &exists, isv6, zoneid, ipst);
9335 		/* Prevent any further action */
9336 		if (ipif == NULL) {
9337 			return (ENOBUFS);
9338 		} else if (!exists) {
9339 			/* We created the ipif now and as writer */
9340 			ipif_refrele(ipif);
9341 			return (0);
9342 		} else {
9343 			ill = ipif->ipif_ill;
9344 			ill_refhold(ill);
9345 			ipif_refrele(ipif);
9346 		}
9347 	} else {
9348 		/* Look for a colon in the name. */
9349 		endp = &name[namelen];
9350 		for (cp = endp; --cp > name; ) {
9351 			if (*cp == IPIF_SEPARATOR_CHAR) {
9352 				found_sep = B_TRUE;
9353 				/*
9354 				 * Reject any non-decimal aliases for plumbing
9355 				 * of logical interfaces. Aliases with leading
9356 				 * zeroes are also rejected as they introduce
9357 				 * ambiguity in the naming of the interfaces.
9358 				 * Comparing with "0" takes care of all such
9359 				 * cases.
9360 				 */
9361 				if ((strncmp("0", cp+1, 1)) == 0)
9362 					return (EINVAL);
9363 
9364 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9365 				    id <= 0 || *endp != '\0') {
9366 					return (EINVAL);
9367 				}
9368 				*cp = '\0';
9369 				break;
9370 			}
9371 		}
9372 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9373 		if (found_sep)
9374 			*cp = IPIF_SEPARATOR_CHAR;
9375 		if (ill == NULL)
9376 			return (ENXIO);
9377 	}
9378 
9379 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9380 	    B_TRUE);
9381 
9382 	/*
9383 	 * Release the refhold due to the lookup, now that we are excl
9384 	 * or we are just returning
9385 	 */
9386 	ill_refrele(ill);
9387 
9388 	if (ipsq == NULL)
9389 		return (EINPROGRESS);
9390 
9391 	/* We are now exclusive on the IPSQ */
9392 	ASSERT(IAM_WRITER_ILL(ill));
9393 
9394 	if (found_sep) {
9395 		/* Now see if there is an IPIF with this unit number. */
9396 		for (ipif = ill->ill_ipif; ipif != NULL;
9397 		    ipif = ipif->ipif_next) {
9398 			if (ipif->ipif_id == id) {
9399 				err = EEXIST;
9400 				goto done;
9401 			}
9402 		}
9403 	}
9404 
9405 	/*
9406 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9407 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9408 	 * instead.
9409 	 */
9410 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9411 	    B_TRUE, B_TRUE, &err)) == NULL) {
9412 		goto done;
9413 	}
9414 
9415 	/* Return created name with ioctl */
9416 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9417 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9418 	ip1dbg(("created %s\n", lifr->lifr_name));
9419 
9420 	/* Set address */
9421 	sin = (sin_t *)&lifr->lifr_addr;
9422 	if (sin->sin_family != AF_UNSPEC) {
9423 		err = ip_sioctl_addr(ipif, sin, q, mp,
9424 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9425 	}
9426 
9427 done:
9428 	ipsq_exit(ipsq);
9429 	return (err);
9430 }
9431 
9432 /*
9433  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9434  * interface) delete it based on the IP address (on this physical interface).
9435  * Otherwise delete it based on the ipif_id.
9436  * Also, special handling to allow a removeif of lo0.
9437  */
9438 /* ARGSUSED */
9439 int
9440 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9441     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9442 {
9443 	conn_t		*connp;
9444 	ill_t		*ill = ipif->ipif_ill;
9445 	boolean_t	 success;
9446 	ip_stack_t	*ipst;
9447 
9448 	ipst = CONNQ_TO_IPST(q);
9449 
9450 	ASSERT(q->q_next == NULL);
9451 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9452 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9453 	ASSERT(IAM_WRITER_IPIF(ipif));
9454 
9455 	connp = Q_TO_CONN(q);
9456 	/*
9457 	 * Special case for unplumbing lo0 (the loopback physical interface).
9458 	 * If unplumbing lo0, the incoming address structure has been
9459 	 * initialized to all zeros. When unplumbing lo0, all its logical
9460 	 * interfaces must be removed too.
9461 	 *
9462 	 * Note that this interface may be called to remove a specific
9463 	 * loopback logical interface (eg, lo0:1). But in that case
9464 	 * ipif->ipif_id != 0 so that the code path for that case is the
9465 	 * same as any other interface (meaning it skips the code directly
9466 	 * below).
9467 	 */
9468 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9469 		if (sin->sin_family == AF_UNSPEC &&
9470 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9471 			/*
9472 			 * Mark it condemned. No new ref. will be made to ill.
9473 			 */
9474 			mutex_enter(&ill->ill_lock);
9475 			ill->ill_state_flags |= ILL_CONDEMNED;
9476 			for (ipif = ill->ill_ipif; ipif != NULL;
9477 			    ipif = ipif->ipif_next) {
9478 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9479 			}
9480 			mutex_exit(&ill->ill_lock);
9481 
9482 			ipif = ill->ill_ipif;
9483 			/* unplumb the loopback interface */
9484 			ill_delete(ill);
9485 			mutex_enter(&connp->conn_lock);
9486 			mutex_enter(&ill->ill_lock);
9487 
9488 			/* Are any references to this ill active */
9489 			if (ill_is_freeable(ill)) {
9490 				mutex_exit(&ill->ill_lock);
9491 				mutex_exit(&connp->conn_lock);
9492 				ill_delete_tail(ill);
9493 				mi_free(ill);
9494 				return (0);
9495 			}
9496 			success = ipsq_pending_mp_add(connp, ipif,
9497 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9498 			mutex_exit(&connp->conn_lock);
9499 			mutex_exit(&ill->ill_lock);
9500 			if (success)
9501 				return (EINPROGRESS);
9502 			else
9503 				return (EINTR);
9504 		}
9505 	}
9506 
9507 	if (ipif->ipif_id == 0) {
9508 		ipsq_t *ipsq;
9509 
9510 		/* Find based on address */
9511 		if (ipif->ipif_isv6) {
9512 			sin6_t *sin6;
9513 
9514 			if (sin->sin_family != AF_INET6)
9515 				return (EAFNOSUPPORT);
9516 
9517 			sin6 = (sin6_t *)sin;
9518 			/* We are a writer, so we should be able to lookup */
9519 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9520 			    ipst);
9521 		} else {
9522 			if (sin->sin_family != AF_INET)
9523 				return (EAFNOSUPPORT);
9524 
9525 			/* We are a writer, so we should be able to lookup */
9526 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9527 			    ipst);
9528 		}
9529 		if (ipif == NULL) {
9530 			return (EADDRNOTAVAIL);
9531 		}
9532 
9533 		/*
9534 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9535 		 * lifr_name of the physical interface but with an ip address
9536 		 * lifr_addr of a logical interface plumbed over it.
9537 		 * So update ipx_current_ipif now that ipif points to the
9538 		 * correct one.
9539 		 */
9540 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9541 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9542 
9543 		/* This is a writer */
9544 		ipif_refrele(ipif);
9545 	}
9546 
9547 	/*
9548 	 * Can not delete instance zero since it is tied to the ill.
9549 	 */
9550 	if (ipif->ipif_id == 0)
9551 		return (EBUSY);
9552 
9553 	mutex_enter(&ill->ill_lock);
9554 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9555 	mutex_exit(&ill->ill_lock);
9556 
9557 	ipif_free(ipif);
9558 
9559 	mutex_enter(&connp->conn_lock);
9560 	mutex_enter(&ill->ill_lock);
9561 
9562 	/* Are any references to this ipif active */
9563 	if (ipif_is_freeable(ipif)) {
9564 		mutex_exit(&ill->ill_lock);
9565 		mutex_exit(&connp->conn_lock);
9566 		ipif_non_duplicate(ipif);
9567 		(void) ipif_down_tail(ipif);
9568 		ipif_free_tail(ipif); /* frees ipif */
9569 		return (0);
9570 	}
9571 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9572 	    IPIF_FREE);
9573 	mutex_exit(&ill->ill_lock);
9574 	mutex_exit(&connp->conn_lock);
9575 	if (success)
9576 		return (EINPROGRESS);
9577 	else
9578 		return (EINTR);
9579 }
9580 
9581 /*
9582  * Restart the removeif ioctl. The refcnt has gone down to 0.
9583  * The ipif is already condemned. So can't find it thru lookups.
9584  */
9585 /* ARGSUSED */
9586 int
9587 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9588     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9589 {
9590 	ill_t *ill = ipif->ipif_ill;
9591 
9592 	ASSERT(IAM_WRITER_IPIF(ipif));
9593 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9594 
9595 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9596 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9597 
9598 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9599 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9600 		ill_delete_tail(ill);
9601 		mi_free(ill);
9602 		return (0);
9603 	}
9604 
9605 	ipif_non_duplicate(ipif);
9606 	(void) ipif_down_tail(ipif);
9607 	ipif_free_tail(ipif);
9608 
9609 	return (0);
9610 }
9611 
9612 /*
9613  * Set the local interface address using the given prefix and ill_token.
9614  */
9615 /* ARGSUSED */
9616 int
9617 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9618     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9619 {
9620 	int err;
9621 	in6_addr_t v6addr;
9622 	sin6_t *sin6;
9623 	ill_t *ill;
9624 	int i;
9625 
9626 	ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9627 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9628 
9629 	ASSERT(IAM_WRITER_IPIF(ipif));
9630 
9631 	if (!ipif->ipif_isv6)
9632 		return (EINVAL);
9633 
9634 	if (sin->sin_family != AF_INET6)
9635 		return (EAFNOSUPPORT);
9636 
9637 	sin6 = (sin6_t *)sin;
9638 	v6addr = sin6->sin6_addr;
9639 	ill = ipif->ipif_ill;
9640 
9641 	if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9642 	    IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9643 		return (EADDRNOTAVAIL);
9644 
9645 	for (i = 0; i < 4; i++)
9646 		sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9647 
9648 	err = ip_sioctl_addr(ipif, sin, q, mp,
9649 	    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9650 	return (err);
9651 }
9652 
9653 /*
9654  * Restart entry point to restart the address set operation after the
9655  * refcounts have dropped to zero.
9656  */
9657 /* ARGSUSED */
9658 int
9659 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9660     ip_ioctl_cmd_t *ipip, void *ifreq)
9661 {
9662 	ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9663 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9664 	return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9665 }
9666 
9667 /*
9668  * Set the local interface address.
9669  * Allow an address of all zero when the interface is down.
9670  */
9671 /* ARGSUSED */
9672 int
9673 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9674     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9675 {
9676 	int err = 0;
9677 	in6_addr_t v6addr;
9678 	boolean_t need_up = B_FALSE;
9679 	ill_t *ill;
9680 	int i;
9681 
9682 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9683 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9684 
9685 	ASSERT(IAM_WRITER_IPIF(ipif));
9686 
9687 	ill = ipif->ipif_ill;
9688 	if (ipif->ipif_isv6) {
9689 		sin6_t *sin6;
9690 		phyint_t *phyi;
9691 
9692 		if (sin->sin_family != AF_INET6)
9693 			return (EAFNOSUPPORT);
9694 
9695 		sin6 = (sin6_t *)sin;
9696 		v6addr = sin6->sin6_addr;
9697 		phyi = ill->ill_phyint;
9698 
9699 		/*
9700 		 * Enforce that true multicast interfaces have a link-local
9701 		 * address for logical unit 0.
9702 		 *
9703 		 * However for those ipif's for which link-local address was
9704 		 * not created by default, also allow setting :: as the address.
9705 		 * This scenario would arise, when we delete an address on ipif
9706 		 * with logical unit 0, we would want to set :: as the address.
9707 		 */
9708 		if (ipif->ipif_id == 0 &&
9709 		    (ill->ill_flags & ILLF_MULTICAST) &&
9710 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9711 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9712 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9713 
9714 			/*
9715 			 * if default link-local was not created by kernel for
9716 			 * this ill, allow setting :: as the address on ipif:0.
9717 			 */
9718 			if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9719 				if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9720 					return (EADDRNOTAVAIL);
9721 			} else {
9722 				return (EADDRNOTAVAIL);
9723 			}
9724 		}
9725 
9726 		/*
9727 		 * up interfaces shouldn't have the unspecified address
9728 		 * unless they also have the IPIF_NOLOCAL flags set and
9729 		 * have a subnet assigned.
9730 		 */
9731 		if ((ipif->ipif_flags & IPIF_UP) &&
9732 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9733 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9734 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9735 			return (EADDRNOTAVAIL);
9736 		}
9737 
9738 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9739 			return (EADDRNOTAVAIL);
9740 	} else {
9741 		ipaddr_t addr;
9742 
9743 		if (sin->sin_family != AF_INET)
9744 			return (EAFNOSUPPORT);
9745 
9746 		addr = sin->sin_addr.s_addr;
9747 
9748 		/* Allow INADDR_ANY as the local address. */
9749 		if (addr != INADDR_ANY &&
9750 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9751 			return (EADDRNOTAVAIL);
9752 
9753 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9754 	}
9755 	/*
9756 	 * verify that the address being configured is permitted by the
9757 	 * ill_allowed_ips[] for the interface.
9758 	 */
9759 	if (ill->ill_allowed_ips_cnt > 0) {
9760 		for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9761 			if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9762 			    &v6addr))
9763 				break;
9764 		}
9765 		if (i == ill->ill_allowed_ips_cnt) {
9766 			pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9767 			return (EPERM);
9768 		}
9769 	}
9770 	/*
9771 	 * Even if there is no change we redo things just to rerun
9772 	 * ipif_set_default.
9773 	 */
9774 	if (ipif->ipif_flags & IPIF_UP) {
9775 		/*
9776 		 * Setting a new local address, make sure
9777 		 * we have net and subnet bcast ire's for
9778 		 * the old address if we need them.
9779 		 */
9780 		/*
9781 		 * If the interface is already marked up,
9782 		 * we call ipif_down which will take care
9783 		 * of ditching any IREs that have been set
9784 		 * up based on the old interface address.
9785 		 */
9786 		err = ipif_logical_down(ipif, q, mp);
9787 		if (err == EINPROGRESS)
9788 			return (err);
9789 		(void) ipif_down_tail(ipif);
9790 		need_up = 1;
9791 	}
9792 
9793 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9794 	return (err);
9795 }
9796 
9797 int
9798 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9799     boolean_t need_up)
9800 {
9801 	in6_addr_t v6addr;
9802 	in6_addr_t ov6addr;
9803 	ipaddr_t addr;
9804 	sin6_t	*sin6;
9805 	int	sinlen;
9806 	int	err = 0;
9807 	ill_t	*ill = ipif->ipif_ill;
9808 	boolean_t need_dl_down;
9809 	boolean_t need_arp_down;
9810 	struct iocblk *iocp;
9811 
9812 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9813 
9814 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9815 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9816 	ASSERT(IAM_WRITER_IPIF(ipif));
9817 
9818 	/* Must cancel any pending timer before taking the ill_lock */
9819 	if (ipif->ipif_recovery_id != 0)
9820 		(void) untimeout(ipif->ipif_recovery_id);
9821 	ipif->ipif_recovery_id = 0;
9822 
9823 	if (ipif->ipif_isv6) {
9824 		sin6 = (sin6_t *)sin;
9825 		v6addr = sin6->sin6_addr;
9826 		sinlen = sizeof (struct sockaddr_in6);
9827 	} else {
9828 		addr = sin->sin_addr.s_addr;
9829 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9830 		sinlen = sizeof (struct sockaddr_in);
9831 	}
9832 	mutex_enter(&ill->ill_lock);
9833 	ov6addr = ipif->ipif_v6lcl_addr;
9834 	ipif->ipif_v6lcl_addr = v6addr;
9835 	sctp_update_ipif_addr(ipif, ov6addr);
9836 	ipif->ipif_addr_ready = 0;
9837 
9838 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9839 
9840 	/*
9841 	 * If the interface was previously marked as a duplicate, then since
9842 	 * we've now got a "new" address, it should no longer be considered a
9843 	 * duplicate -- even if the "new" address is the same as the old one.
9844 	 * Note that if all ipifs are down, we may have a pending ARP down
9845 	 * event to handle.  This is because we want to recover from duplicates
9846 	 * and thus delay tearing down ARP until the duplicates have been
9847 	 * removed or disabled.
9848 	 */
9849 	need_dl_down = need_arp_down = B_FALSE;
9850 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9851 		need_arp_down = !need_up;
9852 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9853 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9854 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9855 			need_dl_down = B_TRUE;
9856 		}
9857 	}
9858 
9859 	ipif_set_default(ipif);
9860 
9861 	/*
9862 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9863 	 * tag the ill so that future updates to the interface ID don't result
9864 	 * in this address getting automatically reconfigured from under the
9865 	 * administrator.
9866 	 */
9867 	if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9868 		if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9869 		    !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9870 			ill->ill_manual_linklocal = 1;
9871 	}
9872 
9873 	/*
9874 	 * When publishing an interface address change event, we only notify
9875 	 * the event listeners of the new address.  It is assumed that if they
9876 	 * actively care about the addresses assigned that they will have
9877 	 * already discovered the previous address assigned (if there was one.)
9878 	 *
9879 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9880 	 */
9881 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9882 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9883 		    NE_ADDRESS_CHANGE, sin, sinlen);
9884 	}
9885 
9886 	mutex_exit(&ill->ill_lock);
9887 
9888 	if (need_up) {
9889 		/*
9890 		 * Now bring the interface back up.  If this
9891 		 * is the only IPIF for the ILL, ipif_up
9892 		 * will have to re-bind to the device, so
9893 		 * we may get back EINPROGRESS, in which
9894 		 * case, this IOCTL will get completed in
9895 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9896 		 */
9897 		err = ipif_up(ipif, q, mp);
9898 	} else {
9899 		/* Perhaps ilgs should use this ill */
9900 		update_conn_ill(NULL, ill->ill_ipst);
9901 	}
9902 
9903 	if (need_dl_down)
9904 		ill_dl_down(ill);
9905 
9906 	if (need_arp_down && !ill->ill_isv6)
9907 		(void) ipif_arp_down(ipif);
9908 
9909 	/*
9910 	 * The default multicast interface might have changed (for
9911 	 * instance if the IPv6 scope of the address changed)
9912 	 */
9913 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9914 
9915 	return (err);
9916 }
9917 
9918 /*
9919  * Restart entry point to restart the address set operation after the
9920  * refcounts have dropped to zero.
9921  */
9922 /* ARGSUSED */
9923 int
9924 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9925     ip_ioctl_cmd_t *ipip, void *ifreq)
9926 {
9927 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9928 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9929 	ASSERT(IAM_WRITER_IPIF(ipif));
9930 	(void) ipif_down_tail(ipif);
9931 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9932 }
9933 
9934 /* ARGSUSED */
9935 int
9936 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9937     ip_ioctl_cmd_t *ipip, void *if_req)
9938 {
9939 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9940 	struct lifreq *lifr = (struct lifreq *)if_req;
9941 
9942 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9943 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9944 	/*
9945 	 * The net mask and address can't change since we have a
9946 	 * reference to the ipif. So no lock is necessary.
9947 	 */
9948 	if (ipif->ipif_isv6) {
9949 		*sin6 = sin6_null;
9950 		sin6->sin6_family = AF_INET6;
9951 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9952 		if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
9953 			sin6->sin6_scope_id =
9954 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
9955 		}
9956 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9957 		lifr->lifr_addrlen =
9958 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9959 	} else {
9960 		*sin = sin_null;
9961 		sin->sin_family = AF_INET;
9962 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9963 		if (ipip->ipi_cmd_type == LIF_CMD) {
9964 			lifr->lifr_addrlen =
9965 			    ip_mask_to_plen(ipif->ipif_net_mask);
9966 		}
9967 	}
9968 	return (0);
9969 }
9970 
9971 /*
9972  * Set the destination address for a pt-pt interface.
9973  */
9974 /* ARGSUSED */
9975 int
9976 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9977     ip_ioctl_cmd_t *ipip, void *if_req)
9978 {
9979 	int err = 0;
9980 	in6_addr_t v6addr;
9981 	boolean_t need_up = B_FALSE;
9982 
9983 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9984 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9985 	ASSERT(IAM_WRITER_IPIF(ipif));
9986 
9987 	if (ipif->ipif_isv6) {
9988 		sin6_t *sin6;
9989 
9990 		if (sin->sin_family != AF_INET6)
9991 			return (EAFNOSUPPORT);
9992 
9993 		sin6 = (sin6_t *)sin;
9994 		v6addr = sin6->sin6_addr;
9995 
9996 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9997 			return (EADDRNOTAVAIL);
9998 	} else {
9999 		ipaddr_t addr;
10000 
10001 		if (sin->sin_family != AF_INET)
10002 			return (EAFNOSUPPORT);
10003 
10004 		addr = sin->sin_addr.s_addr;
10005 		if (addr != INADDR_ANY &&
10006 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10007 			return (EADDRNOTAVAIL);
10008 		}
10009 
10010 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10011 	}
10012 
10013 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10014 		return (0);	/* No change */
10015 
10016 	if (ipif->ipif_flags & IPIF_UP) {
10017 		/*
10018 		 * If the interface is already marked up,
10019 		 * we call ipif_down which will take care
10020 		 * of ditching any IREs that have been set
10021 		 * up based on the old pp dst address.
10022 		 */
10023 		err = ipif_logical_down(ipif, q, mp);
10024 		if (err == EINPROGRESS)
10025 			return (err);
10026 		(void) ipif_down_tail(ipif);
10027 		need_up = B_TRUE;
10028 	}
10029 	/*
10030 	 * could return EINPROGRESS. If so ioctl will complete in
10031 	 * ip_rput_dlpi_writer
10032 	 */
10033 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10034 	return (err);
10035 }
10036 
10037 static int
10038 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10039     boolean_t need_up)
10040 {
10041 	in6_addr_t v6addr;
10042 	ill_t	*ill = ipif->ipif_ill;
10043 	int	err = 0;
10044 	boolean_t need_dl_down;
10045 	boolean_t need_arp_down;
10046 
10047 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10048 	    ipif->ipif_id, (void *)ipif));
10049 
10050 	/* Must cancel any pending timer before taking the ill_lock */
10051 	if (ipif->ipif_recovery_id != 0)
10052 		(void) untimeout(ipif->ipif_recovery_id);
10053 	ipif->ipif_recovery_id = 0;
10054 
10055 	if (ipif->ipif_isv6) {
10056 		sin6_t *sin6;
10057 
10058 		sin6 = (sin6_t *)sin;
10059 		v6addr = sin6->sin6_addr;
10060 	} else {
10061 		ipaddr_t addr;
10062 
10063 		addr = sin->sin_addr.s_addr;
10064 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10065 	}
10066 	mutex_enter(&ill->ill_lock);
10067 	/* Set point to point destination address. */
10068 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10069 		/*
10070 		 * Allow this as a means of creating logical
10071 		 * pt-pt interfaces on top of e.g. an Ethernet.
10072 		 * XXX Undocumented HACK for testing.
10073 		 * pt-pt interfaces are created with NUD disabled.
10074 		 */
10075 		ipif->ipif_flags |= IPIF_POINTOPOINT;
10076 		ipif->ipif_flags &= ~IPIF_BROADCAST;
10077 		if (ipif->ipif_isv6)
10078 			ill->ill_flags |= ILLF_NONUD;
10079 	}
10080 
10081 	/*
10082 	 * If the interface was previously marked as a duplicate, then since
10083 	 * we've now got a "new" address, it should no longer be considered a
10084 	 * duplicate -- even if the "new" address is the same as the old one.
10085 	 * Note that if all ipifs are down, we may have a pending ARP down
10086 	 * event to handle.
10087 	 */
10088 	need_dl_down = need_arp_down = B_FALSE;
10089 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
10090 		need_arp_down = !need_up;
10091 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
10092 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10093 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10094 			need_dl_down = B_TRUE;
10095 		}
10096 	}
10097 
10098 	/*
10099 	 * If we've just manually set the IPv6 destination link-local address
10100 	 * (0th ipif), tag the ill so that future updates to the destination
10101 	 * interface ID (as can happen with interfaces over IP tunnels) don't
10102 	 * result in this address getting automatically reconfigured from
10103 	 * under the administrator.
10104 	 */
10105 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10106 		ill->ill_manual_dst_linklocal = 1;
10107 
10108 	/* Set the new address. */
10109 	ipif->ipif_v6pp_dst_addr = v6addr;
10110 	/* Make sure subnet tracks pp_dst */
10111 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10112 	mutex_exit(&ill->ill_lock);
10113 
10114 	if (need_up) {
10115 		/*
10116 		 * Now bring the interface back up.  If this
10117 		 * is the only IPIF for the ILL, ipif_up
10118 		 * will have to re-bind to the device, so
10119 		 * we may get back EINPROGRESS, in which
10120 		 * case, this IOCTL will get completed in
10121 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10122 		 */
10123 		err = ipif_up(ipif, q, mp);
10124 	}
10125 
10126 	if (need_dl_down)
10127 		ill_dl_down(ill);
10128 	if (need_arp_down && !ipif->ipif_isv6)
10129 		(void) ipif_arp_down(ipif);
10130 
10131 	return (err);
10132 }
10133 
10134 /*
10135  * Restart entry point to restart the dstaddress set operation after the
10136  * refcounts have dropped to zero.
10137  */
10138 /* ARGSUSED */
10139 int
10140 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10141     ip_ioctl_cmd_t *ipip, void *ifreq)
10142 {
10143 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10144 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10145 	(void) ipif_down_tail(ipif);
10146 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10147 }
10148 
10149 /* ARGSUSED */
10150 int
10151 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10152     ip_ioctl_cmd_t *ipip, void *if_req)
10153 {
10154 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
10155 
10156 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10157 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10158 	/*
10159 	 * Get point to point destination address. The addresses can't
10160 	 * change since we hold a reference to the ipif.
10161 	 */
10162 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10163 		return (EADDRNOTAVAIL);
10164 
10165 	if (ipif->ipif_isv6) {
10166 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10167 		*sin6 = sin6_null;
10168 		sin6->sin6_family = AF_INET6;
10169 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10170 	} else {
10171 		*sin = sin_null;
10172 		sin->sin_family = AF_INET;
10173 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10174 	}
10175 	return (0);
10176 }
10177 
10178 /*
10179  * Check which flags will change by the given flags being set
10180  * silently ignore flags which userland is not allowed to control.
10181  * (Because these flags may change between SIOCGLIFFLAGS and
10182  * SIOCSLIFFLAGS, and that's outside of userland's control,
10183  * we need to silently ignore them rather than fail.)
10184  */
10185 static void
10186 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10187     uint64_t *offp)
10188 {
10189 	ill_t		*ill = ipif->ipif_ill;
10190 	phyint_t	*phyi = ill->ill_phyint;
10191 	uint64_t	cantchange_flags, intf_flags;
10192 	uint64_t	turn_on, turn_off;
10193 
10194 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10195 	cantchange_flags = IFF_CANTCHANGE;
10196 	if (IS_IPMP(ill))
10197 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
10198 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10199 	turn_off = intf_flags & turn_on;
10200 	turn_on ^= turn_off;
10201 	*onp = turn_on;
10202 	*offp = turn_off;
10203 }
10204 
10205 /*
10206  * Set interface flags.  Many flags require special handling (e.g.,
10207  * bringing the interface down); see below for details.
10208  *
10209  * NOTE : We really don't enforce that ipif_id zero should be used
10210  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
10211  *	  is because applications generally does SICGLIFFLAGS and
10212  *	  ORs in the new flags (that affects the logical) and does a
10213  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10214  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10215  *	  flags that will be turned on is correct with respect to
10216  *	  ipif_id 0. For backward compatibility reasons, it is not done.
10217  */
10218 /* ARGSUSED */
10219 int
10220 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10221     ip_ioctl_cmd_t *ipip, void *if_req)
10222 {
10223 	uint64_t turn_on;
10224 	uint64_t turn_off;
10225 	int	err = 0;
10226 	phyint_t *phyi;
10227 	ill_t *ill;
10228 	conn_t *connp;
10229 	uint64_t intf_flags;
10230 	boolean_t phyint_flags_modified = B_FALSE;
10231 	uint64_t flags;
10232 	struct ifreq *ifr;
10233 	struct lifreq *lifr;
10234 	boolean_t set_linklocal = B_FALSE;
10235 
10236 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10237 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10238 
10239 	ASSERT(IAM_WRITER_IPIF(ipif));
10240 
10241 	ill = ipif->ipif_ill;
10242 	phyi = ill->ill_phyint;
10243 
10244 	if (ipip->ipi_cmd_type == IF_CMD) {
10245 		ifr = (struct ifreq *)if_req;
10246 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10247 	} else {
10248 		lifr = (struct lifreq *)if_req;
10249 		flags = lifr->lifr_flags;
10250 	}
10251 
10252 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10253 
10254 	/*
10255 	 * Have the flags been set correctly until now?
10256 	 */
10257 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10258 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10259 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10260 	/*
10261 	 * Compare the new flags to the old, and partition
10262 	 * into those coming on and those going off.
10263 	 * For the 16 bit command keep the bits above bit 16 unchanged.
10264 	 */
10265 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
10266 		flags |= intf_flags & ~0xFFFF;
10267 
10268 	/*
10269 	 * Explicitly fail attempts to change flags that are always invalid on
10270 	 * an IPMP meta-interface.
10271 	 */
10272 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10273 		return (EINVAL);
10274 
10275 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10276 	if ((turn_on|turn_off) == 0)
10277 		return (0);	/* No change */
10278 
10279 	/*
10280 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
10281 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10282 	 * allow it to be turned off.
10283 	 */
10284 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10285 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
10286 		return (EINVAL);
10287 
10288 	if ((connp = Q_TO_CONN(q)) == NULL)
10289 		return (EINVAL);
10290 
10291 	/*
10292 	 * Only vrrp control socket is allowed to change IFF_UP and
10293 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
10294 	 */
10295 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10296 		if (!connp->conn_isvrrp)
10297 			return (EINVAL);
10298 	}
10299 
10300 	/*
10301 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10302 	 * VRRP control socket.
10303 	 */
10304 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
10305 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10306 			return (EINVAL);
10307 	}
10308 
10309 	if (turn_on & IFF_NOFAILOVER) {
10310 		turn_on |= IFF_DEPRECATED;
10311 		flags |= IFF_DEPRECATED;
10312 	}
10313 
10314 	/*
10315 	 * On underlying interfaces, only allow applications to manage test
10316 	 * addresses -- otherwise, they may get confused when the address
10317 	 * moves as part of being brought up.  Likewise, prevent an
10318 	 * application-managed test address from being converted to a data
10319 	 * address.  To prevent migration of administratively up addresses in
10320 	 * the kernel, we don't allow them to be converted either.
10321 	 */
10322 	if (IS_UNDER_IPMP(ill)) {
10323 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10324 
10325 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10326 			return (EINVAL);
10327 
10328 		if ((turn_off & IFF_NOFAILOVER) &&
10329 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10330 			return (EINVAL);
10331 	}
10332 
10333 	/*
10334 	 * Only allow IFF_TEMPORARY flag to be set on
10335 	 * IPv6 interfaces.
10336 	 */
10337 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10338 		return (EINVAL);
10339 
10340 	/*
10341 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10342 	 */
10343 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10344 		return (EINVAL);
10345 
10346 	/*
10347 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10348 	 * interfaces.  It makes no sense in that context.
10349 	 */
10350 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10351 		return (EINVAL);
10352 
10353 	/*
10354 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10355 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10356 	 * If the link local address isn't set, and can be set, it will get
10357 	 * set later on in this function.
10358 	 */
10359 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10360 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10361 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10362 		if (ipif_cant_setlinklocal(ipif))
10363 			return (EINVAL);
10364 		set_linklocal = B_TRUE;
10365 	}
10366 
10367 	/*
10368 	 * If we modify physical interface flags, we'll potentially need to
10369 	 * send up two routing socket messages for the changes (one for the
10370 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10371 	 */
10372 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10373 		phyint_flags_modified = B_TRUE;
10374 
10375 	/*
10376 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10377 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10378 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10379 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10380 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10381 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10382 	 * will not be honored.
10383 	 */
10384 	if (turn_on & PHYI_STANDBY) {
10385 		/*
10386 		 * No need to grab ill_g_usesrc_lock here; see the
10387 		 * synchronization notes in ip.c.
10388 		 */
10389 		if (ill->ill_usesrc_grp_next != NULL ||
10390 		    intf_flags & PHYI_INACTIVE)
10391 			return (EINVAL);
10392 		if (!(flags & PHYI_FAILED)) {
10393 			flags |= PHYI_INACTIVE;
10394 			turn_on |= PHYI_INACTIVE;
10395 		}
10396 	}
10397 
10398 	if (turn_off & PHYI_STANDBY) {
10399 		flags &= ~PHYI_INACTIVE;
10400 		turn_off |= PHYI_INACTIVE;
10401 	}
10402 
10403 	/*
10404 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10405 	 * would end up on.
10406 	 */
10407 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10408 	    (PHYI_FAILED | PHYI_INACTIVE))
10409 		return (EINVAL);
10410 
10411 	/*
10412 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10413 	 * status of the interface.
10414 	 */
10415 	if ((turn_on | turn_off) & ILLF_ROUTER) {
10416 		err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10417 		if (err != 0)
10418 			return (err);
10419 	}
10420 
10421 	/*
10422 	 * If the interface is not UP and we are not going to
10423 	 * bring it UP, record the flags and return. When the
10424 	 * interface comes UP later, the right actions will be
10425 	 * taken.
10426 	 */
10427 	if (!(ipif->ipif_flags & IPIF_UP) &&
10428 	    !(turn_on & IPIF_UP)) {
10429 		/* Record new flags in their respective places. */
10430 		mutex_enter(&ill->ill_lock);
10431 		mutex_enter(&ill->ill_phyint->phyint_lock);
10432 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10433 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10434 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10435 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10436 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10437 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10438 		mutex_exit(&ill->ill_lock);
10439 		mutex_exit(&ill->ill_phyint->phyint_lock);
10440 
10441 		/*
10442 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10443 		 * same to the kernel: if any of them has been set by
10444 		 * userland, the interface cannot be used for data traffic.
10445 		 */
10446 		if ((turn_on|turn_off) &
10447 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10448 			ASSERT(!IS_IPMP(ill));
10449 			/*
10450 			 * It's possible the ill is part of an "anonymous"
10451 			 * IPMP group rather than a real group.  In that case,
10452 			 * there are no other interfaces in the group and thus
10453 			 * no need to call ipmp_phyint_refresh_active().
10454 			 */
10455 			if (IS_UNDER_IPMP(ill))
10456 				ipmp_phyint_refresh_active(phyi);
10457 		}
10458 
10459 		if (phyint_flags_modified) {
10460 			if (phyi->phyint_illv4 != NULL) {
10461 				ip_rts_ifmsg(phyi->phyint_illv4->
10462 				    ill_ipif, RTSQ_DEFAULT);
10463 			}
10464 			if (phyi->phyint_illv6 != NULL) {
10465 				ip_rts_ifmsg(phyi->phyint_illv6->
10466 				    ill_ipif, RTSQ_DEFAULT);
10467 			}
10468 		}
10469 		/* The default multicast interface might have changed */
10470 		ire_increment_multicast_generation(ill->ill_ipst,
10471 		    ill->ill_isv6);
10472 
10473 		return (0);
10474 	} else if (set_linklocal) {
10475 		mutex_enter(&ill->ill_lock);
10476 		if (set_linklocal)
10477 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10478 		mutex_exit(&ill->ill_lock);
10479 	}
10480 
10481 	/*
10482 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10483 	 * or point-to-point interfaces with an unspecified destination. We do
10484 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10485 	 * have a subnet assigned, which is how in.ndpd currently manages its
10486 	 * onlink prefix list when no addresses are configured with those
10487 	 * prefixes.
10488 	 */
10489 	if (ipif->ipif_isv6 &&
10490 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10491 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10492 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10493 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10494 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10495 		return (EINVAL);
10496 	}
10497 
10498 	/*
10499 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10500 	 * from being brought up.
10501 	 */
10502 	if (!ipif->ipif_isv6 &&
10503 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10504 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10505 		return (EINVAL);
10506 	}
10507 
10508 	/*
10509 	 * If we are going to change one or more of the flags that are
10510 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10511 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10512 	 * IPIF_NOFAILOVER, we will take special action.  This is
10513 	 * done by bring the ipif down, changing the flags and bringing
10514 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10515 	 * back up will trigger the address to be moved.
10516 	 *
10517 	 * If we are going to change IFF_NOACCEPT, we need to bring
10518 	 * all the ipifs down then bring them up again.	 The act of
10519 	 * bringing all the ipifs back up will trigger the local
10520 	 * ires being recreated with "no_accept" set/cleared.
10521 	 *
10522 	 * Note that ILLF_NOACCEPT is always set separately from the
10523 	 * other flags.
10524 	 */
10525 	if ((turn_on|turn_off) &
10526 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10527 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10528 	    IPIF_NOFAILOVER)) {
10529 		/*
10530 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10531 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10532 		 * entries shared between multiple ipifs on the same subnet.
10533 		 */
10534 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10535 		    !(turn_off & IPIF_UP)) {
10536 			if (ipif->ipif_flags & IPIF_UP)
10537 				ill->ill_logical_down = 1;
10538 			turn_on &= ~IPIF_UP;
10539 		}
10540 		err = ipif_down(ipif, q, mp);
10541 		ip1dbg(("ipif_down returns %d err ", err));
10542 		if (err == EINPROGRESS)
10543 			return (err);
10544 		(void) ipif_down_tail(ipif);
10545 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10546 		/*
10547 		 * If we can quiesce the ill, then continue.  If not, then
10548 		 * ip_sioctl_flags_tail() will be called from
10549 		 * ipif_ill_refrele_tail().
10550 		 */
10551 		ill_down_ipifs(ill, B_TRUE);
10552 
10553 		mutex_enter(&connp->conn_lock);
10554 		mutex_enter(&ill->ill_lock);
10555 		if (!ill_is_quiescent(ill)) {
10556 			boolean_t success;
10557 
10558 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10559 			    q, mp, ILL_DOWN);
10560 			mutex_exit(&ill->ill_lock);
10561 			mutex_exit(&connp->conn_lock);
10562 			return (success ? EINPROGRESS : EINTR);
10563 		}
10564 		mutex_exit(&ill->ill_lock);
10565 		mutex_exit(&connp->conn_lock);
10566 	}
10567 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10568 }
10569 
10570 static int
10571 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10572 {
10573 	ill_t	*ill;
10574 	phyint_t *phyi;
10575 	uint64_t turn_on, turn_off;
10576 	boolean_t phyint_flags_modified = B_FALSE;
10577 	int	err = 0;
10578 	boolean_t set_linklocal = B_FALSE;
10579 
10580 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10581 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10582 
10583 	ASSERT(IAM_WRITER_IPIF(ipif));
10584 
10585 	ill = ipif->ipif_ill;
10586 	phyi = ill->ill_phyint;
10587 
10588 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10589 
10590 	/*
10591 	 * IFF_UP is handled separately.
10592 	 */
10593 	turn_on &= ~IFF_UP;
10594 	turn_off &= ~IFF_UP;
10595 
10596 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10597 		phyint_flags_modified = B_TRUE;
10598 
10599 	/*
10600 	 * Now we change the flags. Track current value of
10601 	 * other flags in their respective places.
10602 	 */
10603 	mutex_enter(&ill->ill_lock);
10604 	mutex_enter(&phyi->phyint_lock);
10605 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10606 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10607 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10608 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10609 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10610 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10611 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10612 		set_linklocal = B_TRUE;
10613 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10614 	}
10615 
10616 	mutex_exit(&ill->ill_lock);
10617 	mutex_exit(&phyi->phyint_lock);
10618 
10619 	if (set_linklocal)
10620 		(void) ipif_setlinklocal(ipif);
10621 
10622 	/*
10623 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10624 	 * the kernel: if any of them has been set by userland, the interface
10625 	 * cannot be used for data traffic.
10626 	 */
10627 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10628 		ASSERT(!IS_IPMP(ill));
10629 		/*
10630 		 * It's possible the ill is part of an "anonymous" IPMP group
10631 		 * rather than a real group.  In that case, there are no other
10632 		 * interfaces in the group and thus no need for us to call
10633 		 * ipmp_phyint_refresh_active().
10634 		 */
10635 		if (IS_UNDER_IPMP(ill))
10636 			ipmp_phyint_refresh_active(phyi);
10637 	}
10638 
10639 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10640 		/*
10641 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10642 		 * ipifs that were brought down.
10643 		 *
10644 		 * The routing sockets messages are sent as the result
10645 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10646 		 * as well.
10647 		 */
10648 		err = ill_up_ipifs(ill, q, mp);
10649 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10650 		/*
10651 		 * XXX ipif_up really does not know whether a phyint flags
10652 		 * was modified or not. So, it sends up information on
10653 		 * only one routing sockets message. As we don't bring up
10654 		 * the interface and also set PHYI_ flags simultaneously
10655 		 * it should be okay.
10656 		 */
10657 		err = ipif_up(ipif, q, mp);
10658 	} else {
10659 		/*
10660 		 * Make sure routing socket sees all changes to the flags.
10661 		 * ipif_up_done* handles this when we use ipif_up.
10662 		 */
10663 		if (phyint_flags_modified) {
10664 			if (phyi->phyint_illv4 != NULL) {
10665 				ip_rts_ifmsg(phyi->phyint_illv4->
10666 				    ill_ipif, RTSQ_DEFAULT);
10667 			}
10668 			if (phyi->phyint_illv6 != NULL) {
10669 				ip_rts_ifmsg(phyi->phyint_illv6->
10670 				    ill_ipif, RTSQ_DEFAULT);
10671 			}
10672 		} else {
10673 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10674 		}
10675 		/*
10676 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10677 		 * this in need_up case.
10678 		 */
10679 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10680 	}
10681 
10682 	/* The default multicast interface might have changed */
10683 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10684 	return (err);
10685 }
10686 
10687 /*
10688  * Restart the flags operation now that the refcounts have dropped to zero.
10689  */
10690 /* ARGSUSED */
10691 int
10692 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10693     ip_ioctl_cmd_t *ipip, void *if_req)
10694 {
10695 	uint64_t flags;
10696 	struct ifreq *ifr = if_req;
10697 	struct lifreq *lifr = if_req;
10698 	uint64_t turn_on, turn_off;
10699 
10700 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10701 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10702 
10703 	if (ipip->ipi_cmd_type == IF_CMD) {
10704 		/* cast to uint16_t prevents unwanted sign extension */
10705 		flags = (uint16_t)ifr->ifr_flags;
10706 	} else {
10707 		flags = lifr->lifr_flags;
10708 	}
10709 
10710 	/*
10711 	 * If this function call is a result of the ILLF_NOACCEPT flag
10712 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10713 	 */
10714 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10715 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10716 		(void) ipif_down_tail(ipif);
10717 
10718 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10719 }
10720 
10721 /*
10722  * Can operate on either a module or a driver queue.
10723  */
10724 /* ARGSUSED */
10725 int
10726 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10727     ip_ioctl_cmd_t *ipip, void *if_req)
10728 {
10729 	/*
10730 	 * Has the flags been set correctly till now ?
10731 	 */
10732 	ill_t *ill = ipif->ipif_ill;
10733 	phyint_t *phyi = ill->ill_phyint;
10734 
10735 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10736 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10737 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10738 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10739 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10740 
10741 	/*
10742 	 * Need a lock since some flags can be set even when there are
10743 	 * references to the ipif.
10744 	 */
10745 	mutex_enter(&ill->ill_lock);
10746 	if (ipip->ipi_cmd_type == IF_CMD) {
10747 		struct ifreq *ifr = (struct ifreq *)if_req;
10748 
10749 		/* Get interface flags (low 16 only). */
10750 		ifr->ifr_flags = ((ipif->ipif_flags |
10751 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10752 	} else {
10753 		struct lifreq *lifr = (struct lifreq *)if_req;
10754 
10755 		/* Get interface flags. */
10756 		lifr->lifr_flags = ipif->ipif_flags |
10757 		    ill->ill_flags | phyi->phyint_flags;
10758 	}
10759 	mutex_exit(&ill->ill_lock);
10760 	return (0);
10761 }
10762 
10763 /*
10764  * We allow the MTU to be set on an ILL, but not have it be different
10765  * for different IPIFs since we don't actually send packets on IPIFs.
10766  */
10767 /* ARGSUSED */
10768 int
10769 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10770     ip_ioctl_cmd_t *ipip, void *if_req)
10771 {
10772 	int mtu;
10773 	int ip_min_mtu;
10774 	struct ifreq	*ifr;
10775 	struct lifreq *lifr;
10776 	ill_t	*ill;
10777 
10778 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10779 	    ipif->ipif_id, (void *)ipif));
10780 	if (ipip->ipi_cmd_type == IF_CMD) {
10781 		ifr = (struct ifreq *)if_req;
10782 		mtu = ifr->ifr_metric;
10783 	} else {
10784 		lifr = (struct lifreq *)if_req;
10785 		mtu = lifr->lifr_mtu;
10786 	}
10787 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10788 	if (ipif->ipif_id != 0)
10789 		return (EINVAL);
10790 
10791 	ill = ipif->ipif_ill;
10792 	if (ipif->ipif_isv6)
10793 		ip_min_mtu = IPV6_MIN_MTU;
10794 	else
10795 		ip_min_mtu = IP_MIN_MTU;
10796 
10797 	mutex_enter(&ill->ill_lock);
10798 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10799 		mutex_exit(&ill->ill_lock);
10800 		return (EINVAL);
10801 	}
10802 	/* Avoid increasing ill_mc_mtu */
10803 	if (ill->ill_mc_mtu > mtu)
10804 		ill->ill_mc_mtu = mtu;
10805 
10806 	/*
10807 	 * The dce and fragmentation code can handle changes to ill_mtu
10808 	 * concurrent with sending/fragmenting packets.
10809 	 */
10810 	ill->ill_mtu = mtu;
10811 	ill->ill_flags |= ILLF_FIXEDMTU;
10812 	mutex_exit(&ill->ill_lock);
10813 
10814 	/*
10815 	 * Make sure all dce_generation checks find out
10816 	 * that ill_mtu/ill_mc_mtu has changed.
10817 	 */
10818 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10819 
10820 	/*
10821 	 * Refresh IPMP meta-interface MTU if necessary.
10822 	 */
10823 	if (IS_UNDER_IPMP(ill))
10824 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
10825 
10826 	/* Update the MTU in SCTP's list */
10827 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10828 	return (0);
10829 }
10830 
10831 /* Get interface MTU. */
10832 /* ARGSUSED */
10833 int
10834 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10835     ip_ioctl_cmd_t *ipip, void *if_req)
10836 {
10837 	struct ifreq	*ifr;
10838 	struct lifreq	*lifr;
10839 
10840 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10841 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10842 
10843 	/*
10844 	 * We allow a get on any logical interface even though the set
10845 	 * can only be done on logical unit 0.
10846 	 */
10847 	if (ipip->ipi_cmd_type == IF_CMD) {
10848 		ifr = (struct ifreq *)if_req;
10849 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10850 	} else {
10851 		lifr = (struct lifreq *)if_req;
10852 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10853 	}
10854 	return (0);
10855 }
10856 
10857 /* Set interface broadcast address. */
10858 /* ARGSUSED2 */
10859 int
10860 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10861     ip_ioctl_cmd_t *ipip, void *if_req)
10862 {
10863 	ipaddr_t addr;
10864 	ire_t	*ire;
10865 	ill_t		*ill = ipif->ipif_ill;
10866 	ip_stack_t	*ipst = ill->ill_ipst;
10867 
10868 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10869 	    ipif->ipif_id));
10870 
10871 	ASSERT(IAM_WRITER_IPIF(ipif));
10872 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10873 		return (EADDRNOTAVAIL);
10874 
10875 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10876 
10877 	if (sin->sin_family != AF_INET)
10878 		return (EAFNOSUPPORT);
10879 
10880 	addr = sin->sin_addr.s_addr;
10881 
10882 	if (ipif->ipif_flags & IPIF_UP) {
10883 		/*
10884 		 * If we are already up, make sure the new
10885 		 * broadcast address makes sense.  If it does,
10886 		 * there should be an IRE for it already.
10887 		 */
10888 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10889 		    ill, ipif->ipif_zoneid, NULL,
10890 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10891 		if (ire == NULL) {
10892 			return (EINVAL);
10893 		} else {
10894 			ire_refrele(ire);
10895 		}
10896 	}
10897 	/*
10898 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10899 	 * needs to already exist we never need to change the set of
10900 	 * IRE_BROADCASTs when we are UP.
10901 	 */
10902 	if (addr != ipif->ipif_brd_addr)
10903 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10904 
10905 	return (0);
10906 }
10907 
10908 /* Get interface broadcast address. */
10909 /* ARGSUSED */
10910 int
10911 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10912     ip_ioctl_cmd_t *ipip, void *if_req)
10913 {
10914 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10915 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10916 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10917 		return (EADDRNOTAVAIL);
10918 
10919 	/* IPIF_BROADCAST not possible with IPv6 */
10920 	ASSERT(!ipif->ipif_isv6);
10921 	*sin = sin_null;
10922 	sin->sin_family = AF_INET;
10923 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10924 	return (0);
10925 }
10926 
10927 /*
10928  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10929  */
10930 /* ARGSUSED */
10931 int
10932 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10933     ip_ioctl_cmd_t *ipip, void *if_req)
10934 {
10935 	int err = 0;
10936 	in6_addr_t v6mask;
10937 
10938 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10939 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10940 
10941 	ASSERT(IAM_WRITER_IPIF(ipif));
10942 
10943 	if (ipif->ipif_isv6) {
10944 		sin6_t *sin6;
10945 
10946 		if (sin->sin_family != AF_INET6)
10947 			return (EAFNOSUPPORT);
10948 
10949 		sin6 = (sin6_t *)sin;
10950 		v6mask = sin6->sin6_addr;
10951 	} else {
10952 		ipaddr_t mask;
10953 
10954 		if (sin->sin_family != AF_INET)
10955 			return (EAFNOSUPPORT);
10956 
10957 		mask = sin->sin_addr.s_addr;
10958 		if (!ip_contiguous_mask(ntohl(mask)))
10959 			return (ENOTSUP);
10960 		V4MASK_TO_V6(mask, v6mask);
10961 	}
10962 
10963 	/*
10964 	 * No big deal if the interface isn't already up, or the mask
10965 	 * isn't really changing, or this is pt-pt.
10966 	 */
10967 	if (!(ipif->ipif_flags & IPIF_UP) ||
10968 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10969 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10970 		ipif->ipif_v6net_mask = v6mask;
10971 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10972 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10973 			    ipif->ipif_v6net_mask,
10974 			    ipif->ipif_v6subnet);
10975 		}
10976 		return (0);
10977 	}
10978 	/*
10979 	 * Make sure we have valid net and subnet broadcast ire's
10980 	 * for the old netmask, if needed by other logical interfaces.
10981 	 */
10982 	err = ipif_logical_down(ipif, q, mp);
10983 	if (err == EINPROGRESS)
10984 		return (err);
10985 	(void) ipif_down_tail(ipif);
10986 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10987 	return (err);
10988 }
10989 
10990 static int
10991 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10992 {
10993 	in6_addr_t v6mask;
10994 	int err = 0;
10995 
10996 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10997 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10998 
10999 	if (ipif->ipif_isv6) {
11000 		sin6_t *sin6;
11001 
11002 		sin6 = (sin6_t *)sin;
11003 		v6mask = sin6->sin6_addr;
11004 	} else {
11005 		ipaddr_t mask;
11006 
11007 		mask = sin->sin_addr.s_addr;
11008 		V4MASK_TO_V6(mask, v6mask);
11009 	}
11010 
11011 	ipif->ipif_v6net_mask = v6mask;
11012 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11013 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11014 		    ipif->ipif_v6subnet);
11015 	}
11016 	err = ipif_up(ipif, q, mp);
11017 
11018 	if (err == 0 || err == EINPROGRESS) {
11019 		/*
11020 		 * The interface must be DL_BOUND if this packet has to
11021 		 * go out on the wire. Since we only go through a logical
11022 		 * down and are bound with the driver during an internal
11023 		 * down/up that is satisfied.
11024 		 */
11025 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11026 			/* Potentially broadcast an address mask reply. */
11027 			ipif_mask_reply(ipif);
11028 		}
11029 	}
11030 	return (err);
11031 }
11032 
11033 /* ARGSUSED */
11034 int
11035 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11036     ip_ioctl_cmd_t *ipip, void *if_req)
11037 {
11038 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11039 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11040 	(void) ipif_down_tail(ipif);
11041 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11042 }
11043 
11044 /* Get interface net mask. */
11045 /* ARGSUSED */
11046 int
11047 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11048     ip_ioctl_cmd_t *ipip, void *if_req)
11049 {
11050 	struct lifreq *lifr = (struct lifreq *)if_req;
11051 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11052 
11053 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11054 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11055 
11056 	/*
11057 	 * net mask can't change since we have a reference to the ipif.
11058 	 */
11059 	if (ipif->ipif_isv6) {
11060 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11061 		*sin6 = sin6_null;
11062 		sin6->sin6_family = AF_INET6;
11063 		sin6->sin6_addr = ipif->ipif_v6net_mask;
11064 		lifr->lifr_addrlen =
11065 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11066 	} else {
11067 		*sin = sin_null;
11068 		sin->sin_family = AF_INET;
11069 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
11070 		if (ipip->ipi_cmd_type == LIF_CMD) {
11071 			lifr->lifr_addrlen =
11072 			    ip_mask_to_plen(ipif->ipif_net_mask);
11073 		}
11074 	}
11075 	return (0);
11076 }
11077 
11078 /* ARGSUSED */
11079 int
11080 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11081     ip_ioctl_cmd_t *ipip, void *if_req)
11082 {
11083 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11084 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11085 
11086 	/*
11087 	 * Since no applications should ever be setting metrics on underlying
11088 	 * interfaces, we explicitly fail to smoke 'em out.
11089 	 */
11090 	if (IS_UNDER_IPMP(ipif->ipif_ill))
11091 		return (EINVAL);
11092 
11093 	/*
11094 	 * Set interface metric.  We don't use this for
11095 	 * anything but we keep track of it in case it is
11096 	 * important to routing applications or such.
11097 	 */
11098 	if (ipip->ipi_cmd_type == IF_CMD) {
11099 		struct ifreq    *ifr;
11100 
11101 		ifr = (struct ifreq *)if_req;
11102 		ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11103 	} else {
11104 		struct lifreq   *lifr;
11105 
11106 		lifr = (struct lifreq *)if_req;
11107 		ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11108 	}
11109 	return (0);
11110 }
11111 
11112 /* ARGSUSED */
11113 int
11114 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11115     ip_ioctl_cmd_t *ipip, void *if_req)
11116 {
11117 	/* Get interface metric. */
11118 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11119 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11120 
11121 	if (ipip->ipi_cmd_type == IF_CMD) {
11122 		struct ifreq    *ifr;
11123 
11124 		ifr = (struct ifreq *)if_req;
11125 		ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11126 	} else {
11127 		struct lifreq   *lifr;
11128 
11129 		lifr = (struct lifreq *)if_req;
11130 		lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11131 	}
11132 
11133 	return (0);
11134 }
11135 
11136 /* ARGSUSED */
11137 int
11138 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11139     ip_ioctl_cmd_t *ipip, void *if_req)
11140 {
11141 	int	arp_muxid;
11142 
11143 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11144 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11145 	/*
11146 	 * Set the muxid returned from I_PLINK.
11147 	 */
11148 	if (ipip->ipi_cmd_type == IF_CMD) {
11149 		struct ifreq *ifr = (struct ifreq *)if_req;
11150 
11151 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11152 		arp_muxid = ifr->ifr_arp_muxid;
11153 	} else {
11154 		struct lifreq *lifr = (struct lifreq *)if_req;
11155 
11156 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11157 		arp_muxid = lifr->lifr_arp_muxid;
11158 	}
11159 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
11160 	return (0);
11161 }
11162 
11163 /* ARGSUSED */
11164 int
11165 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11166     ip_ioctl_cmd_t *ipip, void *if_req)
11167 {
11168 	int	arp_muxid = 0;
11169 
11170 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11171 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11172 	/*
11173 	 * Get the muxid saved in ill for I_PUNLINK.
11174 	 */
11175 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
11176 	if (ipip->ipi_cmd_type == IF_CMD) {
11177 		struct ifreq *ifr = (struct ifreq *)if_req;
11178 
11179 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11180 		ifr->ifr_arp_muxid = arp_muxid;
11181 	} else {
11182 		struct lifreq *lifr = (struct lifreq *)if_req;
11183 
11184 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11185 		lifr->lifr_arp_muxid = arp_muxid;
11186 	}
11187 	return (0);
11188 }
11189 
11190 /*
11191  * Set the subnet prefix. Does not modify the broadcast address.
11192  */
11193 /* ARGSUSED */
11194 int
11195 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11196     ip_ioctl_cmd_t *ipip, void *if_req)
11197 {
11198 	int err = 0;
11199 	in6_addr_t v6addr;
11200 	in6_addr_t v6mask;
11201 	boolean_t need_up = B_FALSE;
11202 	int addrlen;
11203 
11204 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11205 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11206 
11207 	ASSERT(IAM_WRITER_IPIF(ipif));
11208 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11209 
11210 	if (ipif->ipif_isv6) {
11211 		sin6_t *sin6;
11212 
11213 		if (sin->sin_family != AF_INET6)
11214 			return (EAFNOSUPPORT);
11215 
11216 		sin6 = (sin6_t *)sin;
11217 		v6addr = sin6->sin6_addr;
11218 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11219 			return (EADDRNOTAVAIL);
11220 	} else {
11221 		ipaddr_t addr;
11222 
11223 		if (sin->sin_family != AF_INET)
11224 			return (EAFNOSUPPORT);
11225 
11226 		addr = sin->sin_addr.s_addr;
11227 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11228 			return (EADDRNOTAVAIL);
11229 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11230 		/* Add 96 bits */
11231 		addrlen += IPV6_ABITS - IP_ABITS;
11232 	}
11233 
11234 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11235 		return (EINVAL);
11236 
11237 	/* Check if bits in the address is set past the mask */
11238 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11239 		return (EINVAL);
11240 
11241 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11242 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11243 		return (0);	/* No change */
11244 
11245 	if (ipif->ipif_flags & IPIF_UP) {
11246 		/*
11247 		 * If the interface is already marked up,
11248 		 * we call ipif_down which will take care
11249 		 * of ditching any IREs that have been set
11250 		 * up based on the old interface address.
11251 		 */
11252 		err = ipif_logical_down(ipif, q, mp);
11253 		if (err == EINPROGRESS)
11254 			return (err);
11255 		(void) ipif_down_tail(ipif);
11256 		need_up = B_TRUE;
11257 	}
11258 
11259 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11260 	return (err);
11261 }
11262 
11263 static int
11264 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11265     queue_t *q, mblk_t *mp, boolean_t need_up)
11266 {
11267 	ill_t	*ill = ipif->ipif_ill;
11268 	int	err = 0;
11269 
11270 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11271 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11272 
11273 	/* Set the new address. */
11274 	mutex_enter(&ill->ill_lock);
11275 	ipif->ipif_v6net_mask = v6mask;
11276 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11277 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11278 		    ipif->ipif_v6subnet);
11279 	}
11280 	mutex_exit(&ill->ill_lock);
11281 
11282 	if (need_up) {
11283 		/*
11284 		 * Now bring the interface back up.  If this
11285 		 * is the only IPIF for the ILL, ipif_up
11286 		 * will have to re-bind to the device, so
11287 		 * we may get back EINPROGRESS, in which
11288 		 * case, this IOCTL will get completed in
11289 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11290 		 */
11291 		err = ipif_up(ipif, q, mp);
11292 		if (err == EINPROGRESS)
11293 			return (err);
11294 	}
11295 	return (err);
11296 }
11297 
11298 /* ARGSUSED */
11299 int
11300 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11301     ip_ioctl_cmd_t *ipip, void *if_req)
11302 {
11303 	int	addrlen;
11304 	in6_addr_t v6addr;
11305 	in6_addr_t v6mask;
11306 	struct lifreq *lifr = (struct lifreq *)if_req;
11307 
11308 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11309 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11310 	(void) ipif_down_tail(ipif);
11311 
11312 	addrlen = lifr->lifr_addrlen;
11313 	if (ipif->ipif_isv6) {
11314 		sin6_t *sin6;
11315 
11316 		sin6 = (sin6_t *)sin;
11317 		v6addr = sin6->sin6_addr;
11318 	} else {
11319 		ipaddr_t addr;
11320 
11321 		addr = sin->sin_addr.s_addr;
11322 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11323 		addrlen += IPV6_ABITS - IP_ABITS;
11324 	}
11325 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11326 
11327 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11328 }
11329 
11330 /* ARGSUSED */
11331 int
11332 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11333     ip_ioctl_cmd_t *ipip, void *if_req)
11334 {
11335 	struct lifreq *lifr = (struct lifreq *)if_req;
11336 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11337 
11338 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11339 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11340 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11341 
11342 	if (ipif->ipif_isv6) {
11343 		*sin6 = sin6_null;
11344 		sin6->sin6_family = AF_INET6;
11345 		sin6->sin6_addr = ipif->ipif_v6subnet;
11346 		lifr->lifr_addrlen =
11347 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11348 	} else {
11349 		*sin = sin_null;
11350 		sin->sin_family = AF_INET;
11351 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11352 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11353 	}
11354 	return (0);
11355 }
11356 
11357 /*
11358  * Set the IPv6 address token.
11359  */
11360 /* ARGSUSED */
11361 int
11362 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11363     ip_ioctl_cmd_t *ipi, void *if_req)
11364 {
11365 	ill_t *ill = ipif->ipif_ill;
11366 	int err;
11367 	in6_addr_t v6addr;
11368 	in6_addr_t v6mask;
11369 	boolean_t need_up = B_FALSE;
11370 	int i;
11371 	sin6_t *sin6 = (sin6_t *)sin;
11372 	struct lifreq *lifr = (struct lifreq *)if_req;
11373 	int addrlen;
11374 
11375 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11376 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11377 	ASSERT(IAM_WRITER_IPIF(ipif));
11378 
11379 	addrlen = lifr->lifr_addrlen;
11380 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11381 	if (ipif->ipif_id != 0)
11382 		return (EINVAL);
11383 
11384 	if (!ipif->ipif_isv6)
11385 		return (EINVAL);
11386 
11387 	if (addrlen > IPV6_ABITS)
11388 		return (EINVAL);
11389 
11390 	v6addr = sin6->sin6_addr;
11391 
11392 	/*
11393 	 * The length of the token is the length from the end.  To get
11394 	 * the proper mask for this, compute the mask of the bits not
11395 	 * in the token; ie. the prefix, and then xor to get the mask.
11396 	 */
11397 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11398 		return (EINVAL);
11399 	for (i = 0; i < 4; i++) {
11400 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11401 	}
11402 
11403 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11404 	    ill->ill_token_length == addrlen)
11405 		return (0);	/* No change */
11406 
11407 	if (ipif->ipif_flags & IPIF_UP) {
11408 		err = ipif_logical_down(ipif, q, mp);
11409 		if (err == EINPROGRESS)
11410 			return (err);
11411 		(void) ipif_down_tail(ipif);
11412 		need_up = B_TRUE;
11413 	}
11414 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11415 	return (err);
11416 }
11417 
11418 static int
11419 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11420     mblk_t *mp, boolean_t need_up)
11421 {
11422 	in6_addr_t v6addr;
11423 	in6_addr_t v6mask;
11424 	ill_t	*ill = ipif->ipif_ill;
11425 	int	i;
11426 	int	err = 0;
11427 
11428 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11429 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11430 	v6addr = sin6->sin6_addr;
11431 	/*
11432 	 * The length of the token is the length from the end.  To get
11433 	 * the proper mask for this, compute the mask of the bits not
11434 	 * in the token; ie. the prefix, and then xor to get the mask.
11435 	 */
11436 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11437 	for (i = 0; i < 4; i++)
11438 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11439 
11440 	mutex_enter(&ill->ill_lock);
11441 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11442 	ill->ill_token_length = addrlen;
11443 	ill->ill_manual_token = 1;
11444 
11445 	/* Reconfigure the link-local address based on this new token */
11446 	ipif_setlinklocal(ill->ill_ipif);
11447 
11448 	mutex_exit(&ill->ill_lock);
11449 
11450 	if (need_up) {
11451 		/*
11452 		 * Now bring the interface back up.  If this
11453 		 * is the only IPIF for the ILL, ipif_up
11454 		 * will have to re-bind to the device, so
11455 		 * we may get back EINPROGRESS, in which
11456 		 * case, this IOCTL will get completed in
11457 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11458 		 */
11459 		err = ipif_up(ipif, q, mp);
11460 		if (err == EINPROGRESS)
11461 			return (err);
11462 	}
11463 	return (err);
11464 }
11465 
11466 /* ARGSUSED */
11467 int
11468 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11469     ip_ioctl_cmd_t *ipi, void *if_req)
11470 {
11471 	ill_t *ill;
11472 	sin6_t *sin6 = (sin6_t *)sin;
11473 	struct lifreq *lifr = (struct lifreq *)if_req;
11474 
11475 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11476 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11477 	if (ipif->ipif_id != 0)
11478 		return (EINVAL);
11479 
11480 	ill = ipif->ipif_ill;
11481 	if (!ill->ill_isv6)
11482 		return (ENXIO);
11483 
11484 	*sin6 = sin6_null;
11485 	sin6->sin6_family = AF_INET6;
11486 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11487 	sin6->sin6_addr = ill->ill_token;
11488 	lifr->lifr_addrlen = ill->ill_token_length;
11489 	return (0);
11490 }
11491 
11492 /*
11493  * Set (hardware) link specific information that might override
11494  * what was acquired through the DL_INFO_ACK.
11495  */
11496 /* ARGSUSED */
11497 int
11498 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11499     ip_ioctl_cmd_t *ipi, void *if_req)
11500 {
11501 	ill_t		*ill = ipif->ipif_ill;
11502 	int		ip_min_mtu;
11503 	struct lifreq	*lifr = (struct lifreq *)if_req;
11504 	lif_ifinfo_req_t *lir;
11505 
11506 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11507 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11508 	lir = &lifr->lifr_ifinfo;
11509 	ASSERT(IAM_WRITER_IPIF(ipif));
11510 
11511 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11512 	if (ipif->ipif_id != 0)
11513 		return (EINVAL);
11514 
11515 	/* Set interface MTU. */
11516 	if (ipif->ipif_isv6)
11517 		ip_min_mtu = IPV6_MIN_MTU;
11518 	else
11519 		ip_min_mtu = IP_MIN_MTU;
11520 
11521 	/*
11522 	 * Verify values before we set anything. Allow zero to
11523 	 * mean unspecified.
11524 	 *
11525 	 * XXX We should be able to set the user-defined lir_mtu to some value
11526 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11527 	 * ill_max_frag value tells us the max MTU that can be handled by the
11528 	 * datalink, whereas the ill_current_frag is dynamically computed for
11529 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11530 	 * since there is currently no way of distinguishing between
11531 	 * administratively fixed link mtu values (e.g., those set via
11532 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11533 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11534 	 * upper-bound.
11535 	 */
11536 	if (lir->lir_maxmtu != 0 &&
11537 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11538 	    lir->lir_maxmtu < ip_min_mtu))
11539 		return (EINVAL);
11540 	if (lir->lir_reachtime != 0 &&
11541 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11542 		return (EINVAL);
11543 	if (lir->lir_reachretrans != 0 &&
11544 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11545 		return (EINVAL);
11546 
11547 	mutex_enter(&ill->ill_lock);
11548 	/*
11549 	 * The dce and fragmentation code can handle changes to ill_mtu
11550 	 * concurrent with sending/fragmenting packets.
11551 	 */
11552 	if (lir->lir_maxmtu != 0)
11553 		ill->ill_user_mtu = lir->lir_maxmtu;
11554 
11555 	if (lir->lir_reachtime != 0)
11556 		ill->ill_reachable_time = lir->lir_reachtime;
11557 
11558 	if (lir->lir_reachretrans != 0)
11559 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11560 
11561 	ill->ill_max_hops = lir->lir_maxhops;
11562 	ill->ill_max_buf = ND_MAX_Q;
11563 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11564 		/*
11565 		 * ill_mtu is the actual interface MTU, obtained as the min
11566 		 * of user-configured mtu and the value announced by the
11567 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11568 		 * we have already made the choice of requiring
11569 		 * ill_user_mtu < ill_current_frag by the time we get here,
11570 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11571 		 * here.
11572 		 */
11573 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11574 		ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11575 	}
11576 	mutex_exit(&ill->ill_lock);
11577 
11578 	/*
11579 	 * Make sure all dce_generation checks find out
11580 	 * that ill_mtu/ill_mc_mtu has changed.
11581 	 */
11582 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11583 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11584 
11585 	/*
11586 	 * Refresh IPMP meta-interface MTU if necessary.
11587 	 */
11588 	if (IS_UNDER_IPMP(ill))
11589 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11590 
11591 	return (0);
11592 }
11593 
11594 /* ARGSUSED */
11595 int
11596 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11597     ip_ioctl_cmd_t *ipi, void *if_req)
11598 {
11599 	struct lif_ifinfo_req *lir;
11600 	ill_t *ill = ipif->ipif_ill;
11601 
11602 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11603 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11604 	if (ipif->ipif_id != 0)
11605 		return (EINVAL);
11606 
11607 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11608 	lir->lir_maxhops = ill->ill_max_hops;
11609 	lir->lir_reachtime = ill->ill_reachable_time;
11610 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11611 	lir->lir_maxmtu = ill->ill_mtu;
11612 
11613 	return (0);
11614 }
11615 
11616 /*
11617  * Return best guess as to the subnet mask for the specified address.
11618  * Based on the subnet masks for all the configured interfaces.
11619  *
11620  * We end up returning a zero mask in the case of default, multicast or
11621  * experimental.
11622  */
11623 static ipaddr_t
11624 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11625 {
11626 	ipaddr_t net_mask;
11627 	ill_t	*ill;
11628 	ipif_t	*ipif;
11629 	ill_walk_context_t ctx;
11630 	ipif_t	*fallback_ipif = NULL;
11631 
11632 	net_mask = ip_net_mask(addr);
11633 	if (net_mask == 0) {
11634 		*ipifp = NULL;
11635 		return (0);
11636 	}
11637 
11638 	/* Let's check to see if this is maybe a local subnet route. */
11639 	/* this function only applies to IPv4 interfaces */
11640 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11641 	ill = ILL_START_WALK_V4(&ctx, ipst);
11642 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11643 		mutex_enter(&ill->ill_lock);
11644 		for (ipif = ill->ill_ipif; ipif != NULL;
11645 		    ipif = ipif->ipif_next) {
11646 			if (IPIF_IS_CONDEMNED(ipif))
11647 				continue;
11648 			if (!(ipif->ipif_flags & IPIF_UP))
11649 				continue;
11650 			if ((ipif->ipif_subnet & net_mask) ==
11651 			    (addr & net_mask)) {
11652 				/*
11653 				 * Don't trust pt-pt interfaces if there are
11654 				 * other interfaces.
11655 				 */
11656 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11657 					if (fallback_ipif == NULL) {
11658 						ipif_refhold_locked(ipif);
11659 						fallback_ipif = ipif;
11660 					}
11661 					continue;
11662 				}
11663 
11664 				/*
11665 				 * Fine. Just assume the same net mask as the
11666 				 * directly attached subnet interface is using.
11667 				 */
11668 				ipif_refhold_locked(ipif);
11669 				mutex_exit(&ill->ill_lock);
11670 				rw_exit(&ipst->ips_ill_g_lock);
11671 				if (fallback_ipif != NULL)
11672 					ipif_refrele(fallback_ipif);
11673 				*ipifp = ipif;
11674 				return (ipif->ipif_net_mask);
11675 			}
11676 		}
11677 		mutex_exit(&ill->ill_lock);
11678 	}
11679 	rw_exit(&ipst->ips_ill_g_lock);
11680 
11681 	*ipifp = fallback_ipif;
11682 	return ((fallback_ipif != NULL) ?
11683 	    fallback_ipif->ipif_net_mask : net_mask);
11684 }
11685 
11686 /*
11687  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11688  */
11689 static void
11690 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11691 {
11692 	IOCP	iocp;
11693 	ipft_t	*ipft;
11694 	ipllc_t	*ipllc;
11695 	mblk_t	*mp1;
11696 	cred_t	*cr;
11697 	int	error = 0;
11698 	conn_t	*connp;
11699 
11700 	ip1dbg(("ip_wput_ioctl"));
11701 	iocp = (IOCP)mp->b_rptr;
11702 	mp1 = mp->b_cont;
11703 	if (mp1 == NULL) {
11704 		iocp->ioc_error = EINVAL;
11705 		mp->b_datap->db_type = M_IOCNAK;
11706 		iocp->ioc_count = 0;
11707 		qreply(q, mp);
11708 		return;
11709 	}
11710 
11711 	/*
11712 	 * These IOCTLs provide various control capabilities to
11713 	 * upstream agents such as ULPs and processes.	There
11714 	 * are currently two such IOCTLs implemented.  They
11715 	 * are used by TCP to provide update information for
11716 	 * existing IREs and to forcibly delete an IRE for a
11717 	 * host that is not responding, thereby forcing an
11718 	 * attempt at a new route.
11719 	 */
11720 	iocp->ioc_error = EINVAL;
11721 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11722 		goto done;
11723 
11724 	ipllc = (ipllc_t *)mp1->b_rptr;
11725 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11726 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11727 			break;
11728 	}
11729 	/*
11730 	 * prefer credential from mblk over ioctl;
11731 	 * see ip_sioctl_copyin_setup
11732 	 */
11733 	cr = msg_getcred(mp, NULL);
11734 	if (cr == NULL)
11735 		cr = iocp->ioc_cr;
11736 
11737 	/*
11738 	 * Refhold the conn in case the request gets queued up in some lookup
11739 	 */
11740 	ASSERT(CONN_Q(q));
11741 	connp = Q_TO_CONN(q);
11742 	CONN_INC_REF(connp);
11743 	CONN_INC_IOCTLREF(connp);
11744 	if (ipft->ipft_pfi &&
11745 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11746 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11747 		error = (*ipft->ipft_pfi)(q,
11748 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11749 	}
11750 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11751 		/*
11752 		 * CONN_OPER_PENDING_DONE happens in the function called
11753 		 * through ipft_pfi above.
11754 		 */
11755 		return;
11756 	}
11757 
11758 	CONN_DEC_IOCTLREF(connp);
11759 	CONN_OPER_PENDING_DONE(connp);
11760 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11761 		freemsg(mp);
11762 		return;
11763 	}
11764 	iocp->ioc_error = error;
11765 
11766 done:
11767 	mp->b_datap->db_type = M_IOCACK;
11768 	if (iocp->ioc_error)
11769 		iocp->ioc_count = 0;
11770 	qreply(q, mp);
11771 }
11772 
11773 /*
11774  * Assign a unique id for the ipif. This is used by sctp_addr.c
11775  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11776  */
11777 static void
11778 ipif_assign_seqid(ipif_t *ipif)
11779 {
11780 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11781 
11782 	ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid);
11783 }
11784 
11785 /*
11786  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11787  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11788  * that the clone is complete -- including the seqid -- and the expectation is
11789  * that the caller will either free or overwrite `sipif' before it's unlocked.
11790  */
11791 static void
11792 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11793 {
11794 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11795 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11796 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11797 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11798 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11799 
11800 	dipif->ipif_flags = sipif->ipif_flags;
11801 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11802 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11803 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11804 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11805 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11806 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11807 
11808 	/*
11809 	 * As per the comment atop the function, we assume that these sipif
11810 	 * fields will be changed before sipif is unlocked.
11811 	 */
11812 	dipif->ipif_seqid = sipif->ipif_seqid;
11813 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11814 }
11815 
11816 /*
11817  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11818  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11819  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11820  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11821  * down (i.e., no DAD), of the same type, and unlocked.
11822  */
11823 static void
11824 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11825 {
11826 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11827 	ipxop_t *ipx = ipsq->ipsq_xop;
11828 
11829 	ASSERT(sipif != dipif);
11830 	ASSERT(sipif != virgipif);
11831 
11832 	/*
11833 	 * Grab all of the locks that protect the ipif in a defined order.
11834 	 */
11835 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11836 
11837 	ipif_clone(sipif, dipif);
11838 	if (virgipif != NULL) {
11839 		ipif_clone(virgipif, sipif);
11840 		mi_free(virgipif);
11841 	}
11842 
11843 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11844 
11845 	/*
11846 	 * Transfer ownership of the current xop, if necessary.
11847 	 */
11848 	if (ipx->ipx_current_ipif == sipif) {
11849 		ASSERT(ipx->ipx_pending_ipif == NULL);
11850 		mutex_enter(&ipx->ipx_lock);
11851 		ipx->ipx_current_ipif = dipif;
11852 		mutex_exit(&ipx->ipx_lock);
11853 	}
11854 
11855 	if (virgipif == NULL)
11856 		mi_free(sipif);
11857 }
11858 
11859 /*
11860  * checks if:
11861  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11862  *	- logical interface is within the allowed range
11863  */
11864 static int
11865 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11866 {
11867 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11868 		return (ENAMETOOLONG);
11869 
11870 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11871 		return (ERANGE);
11872 	return (0);
11873 }
11874 
11875 /*
11876  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11877  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11878  * be inserted into the first space available in the list. The value of
11879  * ipif_id will then be set to the appropriate value for its position.
11880  */
11881 static int
11882 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11883 {
11884 	ill_t *ill;
11885 	ipif_t *tipif;
11886 	ipif_t **tipifp;
11887 	int id, err;
11888 	ip_stack_t	*ipst;
11889 
11890 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11891 	    IAM_WRITER_IPIF(ipif));
11892 
11893 	ill = ipif->ipif_ill;
11894 	ASSERT(ill != NULL);
11895 	ipst = ill->ill_ipst;
11896 
11897 	/*
11898 	 * In the case of lo0:0 we already hold the ill_g_lock.
11899 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11900 	 * ipif_insert.
11901 	 */
11902 	if (acquire_g_lock)
11903 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11904 	mutex_enter(&ill->ill_lock);
11905 	id = ipif->ipif_id;
11906 	tipifp = &(ill->ill_ipif);
11907 	if (id == -1) {	/* need to find a real id */
11908 		id = 0;
11909 		while ((tipif = *tipifp) != NULL) {
11910 			ASSERT(tipif->ipif_id >= id);
11911 			if (tipif->ipif_id != id)
11912 				break; /* non-consecutive id */
11913 			id++;
11914 			tipifp = &(tipif->ipif_next);
11915 		}
11916 		if ((err = is_lifname_valid(ill, id)) != 0) {
11917 			mutex_exit(&ill->ill_lock);
11918 			if (acquire_g_lock)
11919 				rw_exit(&ipst->ips_ill_g_lock);
11920 			return (err);
11921 		}
11922 		ipif->ipif_id = id; /* assign new id */
11923 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11924 		/* we have a real id; insert ipif in the right place */
11925 		while ((tipif = *tipifp) != NULL) {
11926 			ASSERT(tipif->ipif_id != id);
11927 			if (tipif->ipif_id > id)
11928 				break; /* found correct location */
11929 			tipifp = &(tipif->ipif_next);
11930 		}
11931 	} else {
11932 		mutex_exit(&ill->ill_lock);
11933 		if (acquire_g_lock)
11934 			rw_exit(&ipst->ips_ill_g_lock);
11935 		return (err);
11936 	}
11937 
11938 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11939 
11940 	ipif->ipif_next = tipif;
11941 	*tipifp = ipif;
11942 	mutex_exit(&ill->ill_lock);
11943 	if (acquire_g_lock)
11944 		rw_exit(&ipst->ips_ill_g_lock);
11945 
11946 	return (0);
11947 }
11948 
11949 static void
11950 ipif_remove(ipif_t *ipif)
11951 {
11952 	ipif_t	**ipifp;
11953 	ill_t	*ill = ipif->ipif_ill;
11954 
11955 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11956 
11957 	mutex_enter(&ill->ill_lock);
11958 	ipifp = &ill->ill_ipif;
11959 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11960 		if (*ipifp == ipif) {
11961 			*ipifp = ipif->ipif_next;
11962 			break;
11963 		}
11964 	}
11965 	mutex_exit(&ill->ill_lock);
11966 }
11967 
11968 /*
11969  * Allocate and initialize a new interface control structure.  (Always
11970  * called as writer.)
11971  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11972  * is not part of the global linked list of ills. ipif_seqid is unique
11973  * in the system and to preserve the uniqueness, it is assigned only
11974  * when ill becomes part of the global list. At that point ill will
11975  * have a name. If it doesn't get assigned here, it will get assigned
11976  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11977  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11978  * the interface flags or any other information from the DL_INFO_ACK for
11979  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11980  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11981  * second DL_INFO_ACK comes in from the driver.
11982  */
11983 static ipif_t *
11984 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11985     boolean_t insert, int *errorp)
11986 {
11987 	int err;
11988 	ipif_t	*ipif;
11989 	ip_stack_t *ipst = ill->ill_ipst;
11990 
11991 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11992 	    ill->ill_name, id, (void *)ill));
11993 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11994 
11995 	if (errorp != NULL)
11996 		*errorp = 0;
11997 
11998 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11999 		if (errorp != NULL)
12000 			*errorp = ENOMEM;
12001 		return (NULL);
12002 	}
12003 	*ipif = ipif_zero;	/* start clean */
12004 
12005 	ipif->ipif_ill = ill;
12006 	ipif->ipif_id = id;	/* could be -1 */
12007 	/*
12008 	 * Inherit the zoneid from the ill; for the shared stack instance
12009 	 * this is always the global zone
12010 	 */
12011 	ipif->ipif_zoneid = ill->ill_zoneid;
12012 
12013 	ipif->ipif_refcnt = 0;
12014 
12015 	if (insert) {
12016 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12017 			mi_free(ipif);
12018 			if (errorp != NULL)
12019 				*errorp = err;
12020 			return (NULL);
12021 		}
12022 		/* -1 id should have been replaced by real id */
12023 		id = ipif->ipif_id;
12024 		ASSERT(id >= 0);
12025 	}
12026 
12027 	if (ill->ill_name[0] != '\0')
12028 		ipif_assign_seqid(ipif);
12029 
12030 	/*
12031 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12032 	 * (which must not exist yet because the zeroth ipif is created once
12033 	 * per ill).  However, do not not link it to the ipmp_grp_t until
12034 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12035 	 */
12036 	if (id == 0 && IS_IPMP(ill)) {
12037 		if (ipmp_illgrp_create(ill) == NULL) {
12038 			if (insert) {
12039 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12040 				ipif_remove(ipif);
12041 				rw_exit(&ipst->ips_ill_g_lock);
12042 			}
12043 			mi_free(ipif);
12044 			if (errorp != NULL)
12045 				*errorp = ENOMEM;
12046 			return (NULL);
12047 		}
12048 	}
12049 
12050 	/*
12051 	 * We grab ill_lock to protect the flag changes.  The ipif is still
12052 	 * not up and can't be looked up until the ioctl completes and the
12053 	 * IPIF_CHANGING flag is cleared.
12054 	 */
12055 	mutex_enter(&ill->ill_lock);
12056 
12057 	ipif->ipif_ire_type = ire_type;
12058 
12059 	if (ipif->ipif_isv6) {
12060 		ill->ill_flags |= ILLF_IPV6;
12061 	} else {
12062 		ipaddr_t inaddr_any = INADDR_ANY;
12063 
12064 		ill->ill_flags |= ILLF_IPV4;
12065 
12066 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12067 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12068 		    &ipif->ipif_v6lcl_addr);
12069 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12070 		    &ipif->ipif_v6subnet);
12071 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12072 		    &ipif->ipif_v6net_mask);
12073 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12074 		    &ipif->ipif_v6brd_addr);
12075 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12076 		    &ipif->ipif_v6pp_dst_addr);
12077 	}
12078 
12079 	/*
12080 	 * Don't set the interface flags etc. now, will do it in
12081 	 * ip_ll_subnet_defaults.
12082 	 */
12083 	if (!initialize)
12084 		goto out;
12085 
12086 	/*
12087 	 * NOTE: The IPMP meta-interface is special-cased because it starts
12088 	 * with no underlying interfaces (and thus an unknown broadcast
12089 	 * address length), but all interfaces that can be placed into an IPMP
12090 	 * group are required to be broadcast-capable.
12091 	 */
12092 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12093 		/*
12094 		 * Later detect lack of DLPI driver multicast capability by
12095 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12096 		 */
12097 		ill->ill_flags |= ILLF_MULTICAST;
12098 		if (!ipif->ipif_isv6)
12099 			ipif->ipif_flags |= IPIF_BROADCAST;
12100 	} else {
12101 		if (ill->ill_net_type != IRE_LOOPBACK) {
12102 			if (ipif->ipif_isv6)
12103 				/*
12104 				 * Note: xresolv interfaces will eventually need
12105 				 * NOARP set here as well, but that will require
12106 				 * those external resolvers to have some
12107 				 * knowledge of that flag and act appropriately.
12108 				 * Not to be changed at present.
12109 				 */
12110 				ill->ill_flags |= ILLF_NONUD;
12111 			else
12112 				ill->ill_flags |= ILLF_NOARP;
12113 		}
12114 		if (ill->ill_phys_addr_length == 0) {
12115 			if (IS_VNI(ill)) {
12116 				ipif->ipif_flags |= IPIF_NOXMIT;
12117 			} else {
12118 				/* pt-pt supports multicast. */
12119 				ill->ill_flags |= ILLF_MULTICAST;
12120 				if (ill->ill_net_type != IRE_LOOPBACK)
12121 					ipif->ipif_flags |= IPIF_POINTOPOINT;
12122 			}
12123 		}
12124 	}
12125 out:
12126 	mutex_exit(&ill->ill_lock);
12127 	return (ipif);
12128 }
12129 
12130 /*
12131  * Remove the neighbor cache entries associated with this logical
12132  * interface.
12133  */
12134 int
12135 ipif_arp_down(ipif_t *ipif)
12136 {
12137 	ill_t	*ill = ipif->ipif_ill;
12138 	int	err = 0;
12139 
12140 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12141 	ASSERT(IAM_WRITER_IPIF(ipif));
12142 
12143 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12144 	    ill_t *, ill, ipif_t *, ipif);
12145 	ipif_nce_down(ipif);
12146 
12147 	/*
12148 	 * If this is the last ipif that is going down and there are no
12149 	 * duplicate addresses we may yet attempt to re-probe, then we need to
12150 	 * clean up ARP completely.
12151 	 */
12152 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12153 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12154 		/*
12155 		 * If this was the last ipif on an IPMP interface, purge any
12156 		 * static ARP entries associated with it.
12157 		 */
12158 		if (IS_IPMP(ill))
12159 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
12160 
12161 		/* UNBIND, DETACH */
12162 		err = arp_ll_down(ill);
12163 	}
12164 
12165 	return (err);
12166 }
12167 
12168 /*
12169  * Get the resolver set up for a new IP address.  (Always called as writer.)
12170  * Called both for IPv4 and IPv6 interfaces, though it only does some
12171  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12172  *
12173  * The enumerated value res_act tunes the behavior:
12174  *	* Res_act_initial: set up all the resolver structures for a new
12175  *	  IP address.
12176  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
12177  *	  ARP message in defense of the address.
12178  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
12179  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
12180  *
12181  * Returns zero on success, or an errno upon failure.
12182  */
12183 int
12184 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12185 {
12186 	ill_t		*ill = ipif->ipif_ill;
12187 	int		err;
12188 	boolean_t	was_dup;
12189 
12190 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12191 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12192 	ASSERT(IAM_WRITER_IPIF(ipif));
12193 
12194 	was_dup = B_FALSE;
12195 	if (res_act == Res_act_initial) {
12196 		ipif->ipif_addr_ready = 0;
12197 		/*
12198 		 * We're bringing an interface up here.  There's no way that we
12199 		 * should need to shut down ARP now.
12200 		 */
12201 		mutex_enter(&ill->ill_lock);
12202 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
12203 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
12204 			ill->ill_ipif_dup_count--;
12205 			was_dup = B_TRUE;
12206 		}
12207 		mutex_exit(&ill->ill_lock);
12208 	}
12209 	if (ipif->ipif_recovery_id != 0)
12210 		(void) untimeout(ipif->ipif_recovery_id);
12211 	ipif->ipif_recovery_id = 0;
12212 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
12213 		ipif->ipif_addr_ready = 1;
12214 		return (0);
12215 	}
12216 	/* NDP will set the ipif_addr_ready flag when it's ready */
12217 	if (ill->ill_isv6)
12218 		return (0);
12219 
12220 	err = ipif_arp_up(ipif, res_act, was_dup);
12221 	return (err);
12222 }
12223 
12224 /*
12225  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12226  * when a link has just gone back up.
12227  */
12228 static void
12229 ipif_nce_start_dad(ipif_t *ipif)
12230 {
12231 	ncec_t *ncec;
12232 	ill_t *ill = ipif->ipif_ill;
12233 	boolean_t isv6 = ill->ill_isv6;
12234 
12235 	if (isv6) {
12236 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12237 		    &ipif->ipif_v6lcl_addr);
12238 	} else {
12239 		ipaddr_t v4addr;
12240 
12241 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
12242 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12243 		    ipif->ipif_lcl_addr == INADDR_ANY) {
12244 			/*
12245 			 * If we can't contact ARP for some reason,
12246 			 * that's not really a problem.  Just send
12247 			 * out the routing socket notification that
12248 			 * DAD completion would have done, and continue.
12249 			 */
12250 			ipif_mask_reply(ipif);
12251 			ipif_up_notify(ipif);
12252 			ipif->ipif_addr_ready = 1;
12253 			return;
12254 		}
12255 
12256 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12257 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12258 	}
12259 
12260 	if (ncec == NULL) {
12261 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12262 		    (void *)ipif));
12263 		return;
12264 	}
12265 	if (!nce_restart_dad(ncec)) {
12266 		/*
12267 		 * If we can't restart DAD for some reason, that's not really a
12268 		 * problem.  Just send out the routing socket notification that
12269 		 * DAD completion would have done, and continue.
12270 		 */
12271 		ipif_up_notify(ipif);
12272 		ipif->ipif_addr_ready = 1;
12273 	}
12274 	ncec_refrele(ncec);
12275 }
12276 
12277 /*
12278  * Restart duplicate address detection on all interfaces on the given ill.
12279  *
12280  * This is called when an interface transitions from down to up
12281  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12282  *
12283  * Note that since the underlying physical link has transitioned, we must cause
12284  * at least one routing socket message to be sent here, either via DAD
12285  * completion or just by default on the first ipif.  (If we don't do this, then
12286  * in.mpathd will see long delays when doing link-based failure recovery.)
12287  */
12288 void
12289 ill_restart_dad(ill_t *ill, boolean_t went_up)
12290 {
12291 	ipif_t *ipif;
12292 
12293 	if (ill == NULL)
12294 		return;
12295 
12296 	/*
12297 	 * If layer two doesn't support duplicate address detection, then just
12298 	 * send the routing socket message now and be done with it.
12299 	 */
12300 	if (!ill->ill_isv6 && arp_no_defense) {
12301 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12302 		return;
12303 	}
12304 
12305 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12306 		if (went_up) {
12307 
12308 			if (ipif->ipif_flags & IPIF_UP) {
12309 				ipif_nce_start_dad(ipif);
12310 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12311 				/*
12312 				 * kick off the bring-up process now.
12313 				 */
12314 				ipif_do_recovery(ipif);
12315 			} else {
12316 				/*
12317 				 * Unfortunately, the first ipif is "special"
12318 				 * and represents the underlying ill in the
12319 				 * routing socket messages.  Thus, when this
12320 				 * one ipif is down, we must still notify so
12321 				 * that the user knows the IFF_RUNNING status
12322 				 * change.  (If the first ipif is up, then
12323 				 * we'll handle eventual routing socket
12324 				 * notification via DAD completion.)
12325 				 */
12326 				if (ipif == ill->ill_ipif) {
12327 					ip_rts_ifmsg(ill->ill_ipif,
12328 					    RTSQ_DEFAULT);
12329 				}
12330 			}
12331 		} else {
12332 			/*
12333 			 * After link down, we'll need to send a new routing
12334 			 * message when the link comes back, so clear
12335 			 * ipif_addr_ready.
12336 			 */
12337 			ipif->ipif_addr_ready = 0;
12338 		}
12339 	}
12340 
12341 	/*
12342 	 * If we've torn down links, then notify the user right away.
12343 	 */
12344 	if (!went_up)
12345 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12346 }
12347 
12348 static void
12349 ipsq_delete(ipsq_t *ipsq)
12350 {
12351 	ipxop_t *ipx = ipsq->ipsq_xop;
12352 
12353 	ipsq->ipsq_ipst = NULL;
12354 	ASSERT(ipsq->ipsq_phyint == NULL);
12355 	ASSERT(ipsq->ipsq_xop != NULL);
12356 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12357 	ASSERT(ipx->ipx_pending_mp == NULL);
12358 	kmem_free(ipsq, sizeof (ipsq_t));
12359 }
12360 
12361 static int
12362 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12363 {
12364 	int err = 0;
12365 	ipif_t *ipif;
12366 
12367 	if (ill == NULL)
12368 		return (0);
12369 
12370 	ASSERT(IAM_WRITER_ILL(ill));
12371 	ill->ill_up_ipifs = B_TRUE;
12372 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12373 		if (ipif->ipif_was_up) {
12374 			if (!(ipif->ipif_flags & IPIF_UP))
12375 				err = ipif_up(ipif, q, mp);
12376 			ipif->ipif_was_up = B_FALSE;
12377 			if (err != 0) {
12378 				ASSERT(err == EINPROGRESS);
12379 				return (err);
12380 			}
12381 		}
12382 	}
12383 	ill->ill_up_ipifs = B_FALSE;
12384 	return (0);
12385 }
12386 
12387 /*
12388  * This function is called to bring up all the ipifs that were up before
12389  * bringing the ill down via ill_down_ipifs().
12390  */
12391 int
12392 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12393 {
12394 	int err;
12395 
12396 	ASSERT(IAM_WRITER_ILL(ill));
12397 
12398 	if (ill->ill_replumbing) {
12399 		ill->ill_replumbing = 0;
12400 		/*
12401 		 * Send down REPLUMB_DONE notification followed by the
12402 		 * BIND_REQ on the arp stream.
12403 		 */
12404 		if (!ill->ill_isv6)
12405 			arp_send_replumb_conf(ill);
12406 	}
12407 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12408 	if (err != 0)
12409 		return (err);
12410 
12411 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12412 }
12413 
12414 /*
12415  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12416  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12417  */
12418 static void
12419 ill_down_ipifs(ill_t *ill, boolean_t logical)
12420 {
12421 	ipif_t *ipif;
12422 
12423 	ASSERT(IAM_WRITER_ILL(ill));
12424 
12425 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12426 		/*
12427 		 * We go through the ipif_down logic even if the ipif
12428 		 * is already down, since routes can be added based
12429 		 * on down ipifs. Going through ipif_down once again
12430 		 * will delete any IREs created based on these routes.
12431 		 */
12432 		if (ipif->ipif_flags & IPIF_UP)
12433 			ipif->ipif_was_up = B_TRUE;
12434 
12435 		if (logical) {
12436 			(void) ipif_logical_down(ipif, NULL, NULL);
12437 			ipif_non_duplicate(ipif);
12438 			(void) ipif_down_tail(ipif);
12439 		} else {
12440 			(void) ipif_down(ipif, NULL, NULL);
12441 		}
12442 	}
12443 }
12444 
12445 /*
12446  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12447  * a look again at valid source addresses.
12448  * This should be called each time after the set of source addresses has been
12449  * changed.
12450  */
12451 void
12452 ip_update_source_selection(ip_stack_t *ipst)
12453 {
12454 	/* We skip past SRC_GENERATION_VERIFY */
12455 	if (atomic_inc_32_nv(&ipst->ips_src_generation) ==
12456 	    SRC_GENERATION_VERIFY)
12457 		atomic_inc_32(&ipst->ips_src_generation);
12458 }
12459 
12460 /*
12461  * Finish the group join started in ip_sioctl_groupname().
12462  */
12463 /* ARGSUSED */
12464 static void
12465 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12466 {
12467 	ill_t		*ill = q->q_ptr;
12468 	phyint_t	*phyi = ill->ill_phyint;
12469 	ipmp_grp_t	*grp = phyi->phyint_grp;
12470 	ip_stack_t	*ipst = ill->ill_ipst;
12471 
12472 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12473 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12474 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12475 
12476 	if (phyi->phyint_illv4 != NULL) {
12477 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12478 		VERIFY(grp->gr_pendv4-- > 0);
12479 		rw_exit(&ipst->ips_ipmp_lock);
12480 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12481 	}
12482 	if (phyi->phyint_illv6 != NULL) {
12483 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12484 		VERIFY(grp->gr_pendv6-- > 0);
12485 		rw_exit(&ipst->ips_ipmp_lock);
12486 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12487 	}
12488 	freemsg(mp);
12489 }
12490 
12491 /*
12492  * Process an SIOCSLIFGROUPNAME request.
12493  */
12494 /* ARGSUSED */
12495 int
12496 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12497     ip_ioctl_cmd_t *ipip, void *ifreq)
12498 {
12499 	struct lifreq	*lifr = ifreq;
12500 	ill_t		*ill = ipif->ipif_ill;
12501 	ip_stack_t	*ipst = ill->ill_ipst;
12502 	phyint_t	*phyi = ill->ill_phyint;
12503 	ipmp_grp_t	*grp = phyi->phyint_grp;
12504 	mblk_t		*ipsq_mp;
12505 	int		err = 0;
12506 
12507 	/*
12508 	 * Note that phyint_grp can only change here, where we're exclusive.
12509 	 */
12510 	ASSERT(IAM_WRITER_ILL(ill));
12511 
12512 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12513 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12514 		return (EINVAL);
12515 
12516 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12517 
12518 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12519 
12520 	/*
12521 	 * If the name hasn't changed, there's nothing to do.
12522 	 */
12523 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12524 		goto unlock;
12525 
12526 	/*
12527 	 * Handle requests to rename an IPMP meta-interface.
12528 	 *
12529 	 * Note that creation of the IPMP meta-interface is handled in
12530 	 * userland through the standard plumbing sequence.  As part of the
12531 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12532 	 * the name of the interface (see ipif_set_values_tail()).
12533 	 */
12534 	if (IS_IPMP(ill)) {
12535 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12536 		goto unlock;
12537 	}
12538 
12539 	/*
12540 	 * Handle requests to add or remove an IP interface from a group.
12541 	 */
12542 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12543 		/*
12544 		 * Moves are handled by first removing the interface from
12545 		 * its existing group, and then adding it to another group.
12546 		 * So, fail if it's already in a group.
12547 		 */
12548 		if (IS_UNDER_IPMP(ill)) {
12549 			err = EALREADY;
12550 			goto unlock;
12551 		}
12552 
12553 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12554 		if (grp == NULL) {
12555 			err = ENOENT;
12556 			goto unlock;
12557 		}
12558 
12559 		/*
12560 		 * Check if the phyint and its ills are suitable for
12561 		 * inclusion into the group.
12562 		 */
12563 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12564 			goto unlock;
12565 
12566 		/*
12567 		 * Checks pass; join the group, and enqueue the remaining
12568 		 * illgrp joins for when we've become part of the group xop
12569 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12570 		 * requires an mblk_t to scribble on, and since `mp' will be
12571 		 * freed as part of completing the ioctl, allocate another.
12572 		 */
12573 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12574 			err = ENOMEM;
12575 			goto unlock;
12576 		}
12577 
12578 		/*
12579 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12580 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12581 		 * before ip_join_illgrps() is called back.  See the comments
12582 		 * in ip_sioctl_plink_ipmp() for more.
12583 		 */
12584 		if (phyi->phyint_illv4 != NULL)
12585 			grp->gr_pendv4++;
12586 		if (phyi->phyint_illv6 != NULL)
12587 			grp->gr_pendv6++;
12588 
12589 		rw_exit(&ipst->ips_ipmp_lock);
12590 
12591 		ipmp_phyint_join_grp(phyi, grp);
12592 		ill_refhold(ill);
12593 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12594 		    SWITCH_OP, B_FALSE);
12595 		return (0);
12596 	} else {
12597 		/*
12598 		 * Request to remove the interface from a group.  If the
12599 		 * interface is not in a group, this trivially succeeds.
12600 		 */
12601 		rw_exit(&ipst->ips_ipmp_lock);
12602 		if (IS_UNDER_IPMP(ill))
12603 			ipmp_phyint_leave_grp(phyi);
12604 		return (0);
12605 	}
12606 unlock:
12607 	rw_exit(&ipst->ips_ipmp_lock);
12608 	return (err);
12609 }
12610 
12611 /*
12612  * Process an SIOCGLIFBINDING request.
12613  */
12614 /* ARGSUSED */
12615 int
12616 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12617     ip_ioctl_cmd_t *ipip, void *ifreq)
12618 {
12619 	ill_t		*ill;
12620 	struct lifreq	*lifr = ifreq;
12621 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12622 
12623 	if (!IS_IPMP(ipif->ipif_ill))
12624 		return (EINVAL);
12625 
12626 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12627 	if ((ill = ipif->ipif_bound_ill) == NULL)
12628 		lifr->lifr_binding[0] = '\0';
12629 	else
12630 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12631 	rw_exit(&ipst->ips_ipmp_lock);
12632 	return (0);
12633 }
12634 
12635 /*
12636  * Process an SIOCGLIFGROUPNAME request.
12637  */
12638 /* ARGSUSED */
12639 int
12640 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12641     ip_ioctl_cmd_t *ipip, void *ifreq)
12642 {
12643 	ipmp_grp_t	*grp;
12644 	struct lifreq	*lifr = ifreq;
12645 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12646 
12647 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12648 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12649 		lifr->lifr_groupname[0] = '\0';
12650 	else
12651 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12652 	rw_exit(&ipst->ips_ipmp_lock);
12653 	return (0);
12654 }
12655 
12656 /*
12657  * Process an SIOCGLIFGROUPINFO request.
12658  */
12659 /* ARGSUSED */
12660 int
12661 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12662     ip_ioctl_cmd_t *ipip, void *dummy)
12663 {
12664 	ipmp_grp_t	*grp;
12665 	lifgroupinfo_t	*lifgr;
12666 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12667 
12668 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12669 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12670 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12671 
12672 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12673 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12674 		rw_exit(&ipst->ips_ipmp_lock);
12675 		return (ENOENT);
12676 	}
12677 	ipmp_grp_info(grp, lifgr);
12678 	rw_exit(&ipst->ips_ipmp_lock);
12679 	return (0);
12680 }
12681 
12682 static void
12683 ill_dl_down(ill_t *ill)
12684 {
12685 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12686 
12687 	/*
12688 	 * The ill is down; unbind but stay attached since we're still
12689 	 * associated with a PPA. If we have negotiated DLPI capabilites
12690 	 * with the data link service provider (IDS_OK) then reset them.
12691 	 * The interval between unbinding and rebinding is potentially
12692 	 * unbounded hence we cannot assume things will be the same.
12693 	 * The DLPI capabilities will be probed again when the data link
12694 	 * is brought up.
12695 	 */
12696 	mblk_t	*mp = ill->ill_unbind_mp;
12697 
12698 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12699 
12700 	if (!ill->ill_replumbing) {
12701 		/* Free all ilms for this ill */
12702 		update_conn_ill(ill, ill->ill_ipst);
12703 	} else {
12704 		ill_leave_multicast(ill);
12705 	}
12706 
12707 	ill->ill_unbind_mp = NULL;
12708 	if (mp != NULL) {
12709 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12710 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12711 		    ill->ill_name));
12712 		mutex_enter(&ill->ill_lock);
12713 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12714 		mutex_exit(&ill->ill_lock);
12715 		/*
12716 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12717 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12718 		 * ill_capability_dld_disable disable rightaway. If this is not
12719 		 * an unplumb operation then the disable happens on receipt of
12720 		 * the capab ack via ip_rput_dlpi_writer ->
12721 		 * ill_capability_ack_thr. In both cases the order of
12722 		 * the operations seen by DLD is capability disable followed
12723 		 * by DL_UNBIND. Also the DLD capability disable needs a
12724 		 * cv_wait'able context.
12725 		 */
12726 		if (ill->ill_state_flags & ILL_CONDEMNED)
12727 			ill_capability_dld_disable(ill);
12728 		ill_capability_reset(ill, B_FALSE);
12729 		ill_dlpi_send(ill, mp);
12730 	}
12731 	mutex_enter(&ill->ill_lock);
12732 	ill->ill_dl_up = 0;
12733 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12734 	mutex_exit(&ill->ill_lock);
12735 }
12736 
12737 void
12738 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12739 {
12740 	union DL_primitives *dlp;
12741 	t_uscalar_t prim;
12742 	boolean_t waitack = B_FALSE;
12743 
12744 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12745 
12746 	dlp = (union DL_primitives *)mp->b_rptr;
12747 	prim = dlp->dl_primitive;
12748 
12749 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12750 	    dl_primstr(prim), prim, ill->ill_name));
12751 
12752 	switch (prim) {
12753 	case DL_PHYS_ADDR_REQ:
12754 	{
12755 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12756 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12757 		break;
12758 	}
12759 	case DL_BIND_REQ:
12760 		mutex_enter(&ill->ill_lock);
12761 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12762 		mutex_exit(&ill->ill_lock);
12763 		break;
12764 	}
12765 
12766 	/*
12767 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12768 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12769 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12770 	 */
12771 	mutex_enter(&ill->ill_lock);
12772 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12773 	    (prim == DL_UNBIND_REQ)) {
12774 		ill->ill_dlpi_pending = prim;
12775 		waitack = B_TRUE;
12776 	}
12777 
12778 	mutex_exit(&ill->ill_lock);
12779 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12780 	    char *, dl_primstr(prim), ill_t *, ill);
12781 	putnext(ill->ill_wq, mp);
12782 
12783 	/*
12784 	 * There is no ack for DL_NOTIFY_CONF messages
12785 	 */
12786 	if (waitack && prim == DL_NOTIFY_CONF)
12787 		ill_dlpi_done(ill, prim);
12788 }
12789 
12790 /*
12791  * Helper function for ill_dlpi_send().
12792  */
12793 /* ARGSUSED */
12794 static void
12795 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12796 {
12797 	ill_dlpi_send(q->q_ptr, mp);
12798 }
12799 
12800 /*
12801  * Send a DLPI control message to the driver but make sure there
12802  * is only one outstanding message. Uses ill_dlpi_pending to tell
12803  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12804  * when an ACK or a NAK is received to process the next queued message.
12805  */
12806 void
12807 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12808 {
12809 	mblk_t **mpp;
12810 
12811 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12812 
12813 	/*
12814 	 * To ensure that any DLPI requests for current exclusive operation
12815 	 * are always completely sent before any DLPI messages for other
12816 	 * operations, require writer access before enqueuing.
12817 	 */
12818 	if (!IAM_WRITER_ILL(ill)) {
12819 		ill_refhold(ill);
12820 		/* qwriter_ip() does the ill_refrele() */
12821 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12822 		    NEW_OP, B_TRUE);
12823 		return;
12824 	}
12825 
12826 	mutex_enter(&ill->ill_lock);
12827 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12828 		/* Must queue message. Tail insertion */
12829 		mpp = &ill->ill_dlpi_deferred;
12830 		while (*mpp != NULL)
12831 			mpp = &((*mpp)->b_next);
12832 
12833 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12834 		    "while %s pending\n", ill->ill_name,
12835 		    dl_primstr(ill->ill_dlpi_pending)));
12836 
12837 		*mpp = mp;
12838 		mutex_exit(&ill->ill_lock);
12839 		return;
12840 	}
12841 	mutex_exit(&ill->ill_lock);
12842 	ill_dlpi_dispatch(ill, mp);
12843 }
12844 
12845 void
12846 ill_capability_send(ill_t *ill, mblk_t *mp)
12847 {
12848 	ill->ill_capab_pending_cnt++;
12849 	ill_dlpi_send(ill, mp);
12850 }
12851 
12852 void
12853 ill_capability_done(ill_t *ill)
12854 {
12855 	ASSERT(ill->ill_capab_pending_cnt != 0);
12856 
12857 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12858 
12859 	ill->ill_capab_pending_cnt--;
12860 	if (ill->ill_capab_pending_cnt == 0 &&
12861 	    ill->ill_dlpi_capab_state == IDCS_OK)
12862 		ill_capability_reset_alloc(ill);
12863 }
12864 
12865 /*
12866  * Send all deferred DLPI messages without waiting for their ACKs.
12867  */
12868 void
12869 ill_dlpi_send_deferred(ill_t *ill)
12870 {
12871 	mblk_t *mp, *nextmp;
12872 
12873 	/*
12874 	 * Clear ill_dlpi_pending so that the message is not queued in
12875 	 * ill_dlpi_send().
12876 	 */
12877 	mutex_enter(&ill->ill_lock);
12878 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12879 	mp = ill->ill_dlpi_deferred;
12880 	ill->ill_dlpi_deferred = NULL;
12881 	mutex_exit(&ill->ill_lock);
12882 
12883 	for (; mp != NULL; mp = nextmp) {
12884 		nextmp = mp->b_next;
12885 		mp->b_next = NULL;
12886 		ill_dlpi_send(ill, mp);
12887 	}
12888 }
12889 
12890 /*
12891  * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12892  * or M_HANGUP
12893  */
12894 static void
12895 ill_dlpi_clear_deferred(ill_t *ill)
12896 {
12897 	mblk_t	*mp, *nextmp;
12898 
12899 	mutex_enter(&ill->ill_lock);
12900 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12901 	mp = ill->ill_dlpi_deferred;
12902 	ill->ill_dlpi_deferred = NULL;
12903 	mutex_exit(&ill->ill_lock);
12904 
12905 	for (; mp != NULL; mp = nextmp) {
12906 		nextmp = mp->b_next;
12907 		inet_freemsg(mp);
12908 	}
12909 }
12910 
12911 /*
12912  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12913  */
12914 boolean_t
12915 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12916 {
12917 	t_uscalar_t pending;
12918 
12919 	mutex_enter(&ill->ill_lock);
12920 	if (ill->ill_dlpi_pending == prim) {
12921 		mutex_exit(&ill->ill_lock);
12922 		return (B_TRUE);
12923 	}
12924 
12925 	/*
12926 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12927 	 * without waiting, so don't print any warnings in that case.
12928 	 */
12929 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12930 		mutex_exit(&ill->ill_lock);
12931 		return (B_FALSE);
12932 	}
12933 	pending = ill->ill_dlpi_pending;
12934 	mutex_exit(&ill->ill_lock);
12935 
12936 	if (pending == DL_PRIM_INVAL) {
12937 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12938 		    "received unsolicited ack for %s on %s\n",
12939 		    dl_primstr(prim), ill->ill_name);
12940 	} else {
12941 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12942 		    "received unexpected ack for %s on %s (expecting %s)\n",
12943 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12944 	}
12945 	return (B_FALSE);
12946 }
12947 
12948 /*
12949  * Complete the current DLPI operation associated with `prim' on `ill' and
12950  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12951  * operations and the ill's current exclusive IPSQ operation has finished
12952  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12953  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12954  * the comments above ipsq_current_finish() for details.
12955  */
12956 void
12957 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12958 {
12959 	mblk_t *mp;
12960 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12961 	ipxop_t *ipx = ipsq->ipsq_xop;
12962 
12963 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12964 	mutex_enter(&ill->ill_lock);
12965 
12966 	ASSERT(prim != DL_PRIM_INVAL);
12967 	ASSERT(ill->ill_dlpi_pending == prim);
12968 
12969 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12970 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12971 
12972 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12973 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12974 		if (ipx->ipx_current_done) {
12975 			mutex_enter(&ipx->ipx_lock);
12976 			ipx->ipx_current_ipif = NULL;
12977 			mutex_exit(&ipx->ipx_lock);
12978 		}
12979 		cv_signal(&ill->ill_cv);
12980 		mutex_exit(&ill->ill_lock);
12981 		return;
12982 	}
12983 
12984 	ill->ill_dlpi_deferred = mp->b_next;
12985 	mp->b_next = NULL;
12986 	mutex_exit(&ill->ill_lock);
12987 
12988 	ill_dlpi_dispatch(ill, mp);
12989 }
12990 
12991 /*
12992  * Queue a (multicast) DLPI control message to be sent to the driver by
12993  * later calling ill_dlpi_send_queued.
12994  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12995  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12996  * for the same group to race.
12997  * We send DLPI control messages in order using ill_lock.
12998  * For IPMP we should be called on the cast_ill.
12999  */
13000 void
13001 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
13002 {
13003 	mblk_t **mpp;
13004 
13005 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
13006 
13007 	mutex_enter(&ill->ill_lock);
13008 	/* Must queue message. Tail insertion */
13009 	mpp = &ill->ill_dlpi_deferred;
13010 	while (*mpp != NULL)
13011 		mpp = &((*mpp)->b_next);
13012 
13013 	*mpp = mp;
13014 	mutex_exit(&ill->ill_lock);
13015 }
13016 
13017 /*
13018  * Send the messages that were queued. Make sure there is only
13019  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13020  * when an ACK or a NAK is received to process the next queued message.
13021  * For IPMP we are called on the upper ill, but when send what is queued
13022  * on the cast_ill.
13023  */
13024 void
13025 ill_dlpi_send_queued(ill_t *ill)
13026 {
13027 	mblk_t	*mp;
13028 	union DL_primitives *dlp;
13029 	t_uscalar_t prim;
13030 	ill_t *release_ill = NULL;
13031 
13032 	if (IS_IPMP(ill)) {
13033 		/* On the upper IPMP ill. */
13034 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13035 		if (release_ill == NULL) {
13036 			/* Avoid ever sending anything down to the ipmpstub */
13037 			return;
13038 		}
13039 		ill = release_ill;
13040 	}
13041 	mutex_enter(&ill->ill_lock);
13042 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
13043 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13044 			/* Can't send. Somebody else will send it */
13045 			mutex_exit(&ill->ill_lock);
13046 			goto done;
13047 		}
13048 		ill->ill_dlpi_deferred = mp->b_next;
13049 		mp->b_next = NULL;
13050 		if (!ill->ill_dl_up) {
13051 			/*
13052 			 * Nobody there. All multicast addresses will be
13053 			 * re-joined when we get the DL_BIND_ACK bringing the
13054 			 * interface up.
13055 			 */
13056 			freemsg(mp);
13057 			continue;
13058 		}
13059 		dlp = (union DL_primitives *)mp->b_rptr;
13060 		prim = dlp->dl_primitive;
13061 
13062 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13063 		    (prim == DL_UNBIND_REQ)) {
13064 			ill->ill_dlpi_pending = prim;
13065 		}
13066 		mutex_exit(&ill->ill_lock);
13067 
13068 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13069 		    char *, dl_primstr(prim), ill_t *, ill);
13070 		putnext(ill->ill_wq, mp);
13071 		mutex_enter(&ill->ill_lock);
13072 	}
13073 	mutex_exit(&ill->ill_lock);
13074 done:
13075 	if (release_ill != NULL)
13076 		ill_refrele(release_ill);
13077 }
13078 
13079 /*
13080  * Queue an IP (IGMP/MLD) message to be sent by IP from
13081  * ill_mcast_send_queued
13082  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13083  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13084  * group to race.
13085  * We send them in order using ill_lock.
13086  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13087  */
13088 void
13089 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13090 {
13091 	mblk_t **mpp;
13092 	ill_t *release_ill = NULL;
13093 
13094 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13095 
13096 	if (IS_IPMP(ill)) {
13097 		/* On the upper IPMP ill. */
13098 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13099 		if (release_ill == NULL) {
13100 			/* Discard instead of queuing for the ipmp interface */
13101 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13102 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13103 			    mp, ill);
13104 			freemsg(mp);
13105 			return;
13106 		}
13107 		ill = release_ill;
13108 	}
13109 
13110 	mutex_enter(&ill->ill_lock);
13111 	/* Must queue message. Tail insertion */
13112 	mpp = &ill->ill_mcast_deferred;
13113 	while (*mpp != NULL)
13114 		mpp = &((*mpp)->b_next);
13115 
13116 	*mpp = mp;
13117 	mutex_exit(&ill->ill_lock);
13118 	if (release_ill != NULL)
13119 		ill_refrele(release_ill);
13120 }
13121 
13122 /*
13123  * Send the IP packets that were queued by ill_mcast_queue.
13124  * These are IGMP/MLD packets.
13125  *
13126  * For IPMP we are called on the upper ill, but when send what is queued
13127  * on the cast_ill.
13128  *
13129  * Request loopback of the report if we are acting as a multicast
13130  * router, so that the process-level routing demon can hear it.
13131  * This will run multiple times for the same group if there are members
13132  * on the same group for multiple ipif's on the same ill. The
13133  * igmp_input/mld_input code will suppress this due to the loopback thus we
13134  * always loopback membership report.
13135  *
13136  * We also need to make sure that this does not get load balanced
13137  * by IPMP. We do this by passing an ill to ip_output_simple.
13138  */
13139 void
13140 ill_mcast_send_queued(ill_t *ill)
13141 {
13142 	mblk_t	*mp;
13143 	ip_xmit_attr_t ixas;
13144 	ill_t *release_ill = NULL;
13145 
13146 	if (IS_IPMP(ill)) {
13147 		/* On the upper IPMP ill. */
13148 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13149 		if (release_ill == NULL) {
13150 			/*
13151 			 * We should have no messages on the ipmp interface
13152 			 * but no point in trying to send them.
13153 			 */
13154 			return;
13155 		}
13156 		ill = release_ill;
13157 	}
13158 	bzero(&ixas, sizeof (ixas));
13159 	ixas.ixa_zoneid = ALL_ZONES;
13160 	ixas.ixa_cred = kcred;
13161 	ixas.ixa_cpid = NOPID;
13162 	ixas.ixa_tsl = NULL;
13163 	/*
13164 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13165 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13166 	 * That is necessary to handle IGMP/MLD snooping switches.
13167 	 */
13168 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13169 	ixas.ixa_ipst = ill->ill_ipst;
13170 
13171 	mutex_enter(&ill->ill_lock);
13172 	while ((mp = ill->ill_mcast_deferred) != NULL) {
13173 		ill->ill_mcast_deferred = mp->b_next;
13174 		mp->b_next = NULL;
13175 		if (!ill->ill_dl_up) {
13176 			/*
13177 			 * Nobody there. Just drop the ip packets.
13178 			 * IGMP/MLD will resend later, if this is a replumb.
13179 			 */
13180 			freemsg(mp);
13181 			continue;
13182 		}
13183 		mutex_enter(&ill->ill_phyint->phyint_lock);
13184 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13185 			/*
13186 			 * When the ill is getting deactivated, we only want to
13187 			 * send the DLPI messages, so drop IGMP/MLD packets.
13188 			 * DLPI messages are handled by ill_dlpi_send_queued()
13189 			 */
13190 			mutex_exit(&ill->ill_phyint->phyint_lock);
13191 			freemsg(mp);
13192 			continue;
13193 		}
13194 		mutex_exit(&ill->ill_phyint->phyint_lock);
13195 		mutex_exit(&ill->ill_lock);
13196 
13197 		/* Check whether we are sending IPv4 or IPv6. */
13198 		if (ill->ill_isv6) {
13199 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
13200 
13201 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13202 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13203 		} else {
13204 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
13205 
13206 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13207 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13208 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13209 		}
13210 		ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13211 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13212 		(void) ip_output_simple(mp, &ixas);
13213 		ixa_cleanup(&ixas);
13214 
13215 		mutex_enter(&ill->ill_lock);
13216 	}
13217 	mutex_exit(&ill->ill_lock);
13218 
13219 done:
13220 	if (release_ill != NULL)
13221 		ill_refrele(release_ill);
13222 }
13223 
13224 /*
13225  * Take down a specific interface, but don't lose any information about it.
13226  * (Always called as writer.)
13227  * This function goes through the down sequence even if the interface is
13228  * already down. There are 2 reasons.
13229  * a. Currently we permit interface routes that depend on down interfaces
13230  *    to be added. This behaviour itself is questionable. However it appears
13231  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13232  *    time. We go thru the cleanup in order to remove these routes.
13233  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13234  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
13235  *    down, but we need to cleanup i.e. do ill_dl_down and
13236  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13237  *
13238  * IP-MT notes:
13239  *
13240  * Model of reference to interfaces.
13241  *
13242  * The following members in ipif_t track references to the ipif.
13243  *	int     ipif_refcnt;    Active reference count
13244  *
13245  * The following members in ill_t track references to the ill.
13246  *	int             ill_refcnt;     active refcnt
13247  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
13248  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
13249  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
13250  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
13251  *
13252  * Reference to an ipif or ill can be obtained in any of the following ways.
13253  *
13254  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13255  * Pointers to ipif / ill from other data structures viz ire and conn.
13256  * Implicit reference to the ipif / ill by holding a reference to the ire.
13257  *
13258  * The ipif/ill lookup functions return a reference held ipif / ill.
13259  * ipif_refcnt and ill_refcnt track the reference counts respectively.
13260  * This is a purely dynamic reference count associated with threads holding
13261  * references to the ipif / ill. Pointers from other structures do not
13262  * count towards this reference count.
13263  *
13264  * ill_ire_cnt is the number of ire's associated with the
13265  * ill. This is incremented whenever a new ire is created referencing the
13266  * ill. This is done atomically inside ire_add_v[46] where the ire is
13267  * actually added to the ire hash table. The count is decremented in
13268  * ire_inactive where the ire is destroyed.
13269  *
13270  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13271  * This is incremented atomically in
13272  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13273  * table. Similarly it is decremented in ncec_inactive() where the ncec
13274  * is destroyed.
13275  *
13276  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13277  * incremented atomically in nce_add() where the nce is actually added to the
13278  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13279  * is destroyed.
13280  *
13281  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13282  * ilm_add() and decremented before the ilm is freed in ilm_delete().
13283  *
13284  * Flow of ioctls involving interface down/up
13285  *
13286  * The following is the sequence of an attempt to set some critical flags on an
13287  * up interface.
13288  * ip_sioctl_flags
13289  * ipif_down
13290  * wait for ipif to be quiescent
13291  * ipif_down_tail
13292  * ip_sioctl_flags_tail
13293  *
13294  * All set ioctls that involve down/up sequence would have a skeleton similar
13295  * to the above. All the *tail functions are called after the refcounts have
13296  * dropped to the appropriate values.
13297  *
13298  * SIOC ioctls during the IPIF_CHANGING interval.
13299  *
13300  * Threads handling SIOC set ioctls serialize on the squeue, but this
13301  * is not done for SIOC get ioctls. Since a set ioctl can cause several
13302  * steps of internal changes to the state, some of which are visible in
13303  * ipif_flags (such as IFF_UP being cleared and later set), and we want
13304  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13305  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13306  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13307  * the current exclusive operation completes. The IPIF_CHANGING check
13308  * and enqueue is atomic using the ill_lock and ipsq_lock. The
13309  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13310  * change while the ill_lock is held. Before dropping the ill_lock we acquire
13311  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13312  * until we release the ipsq_lock, even though the ill/ipif state flags
13313  * can change after we drop the ill_lock.
13314  */
13315 int
13316 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13317 {
13318 	ill_t		*ill = ipif->ipif_ill;
13319 	conn_t		*connp;
13320 	boolean_t	success;
13321 	boolean_t	ipif_was_up = B_FALSE;
13322 	ip_stack_t	*ipst = ill->ill_ipst;
13323 
13324 	ASSERT(IAM_WRITER_IPIF(ipif));
13325 
13326 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13327 
13328 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13329 	    ill_t *, ill, ipif_t *, ipif);
13330 
13331 	if (ipif->ipif_flags & IPIF_UP) {
13332 		mutex_enter(&ill->ill_lock);
13333 		ipif->ipif_flags &= ~IPIF_UP;
13334 		ASSERT(ill->ill_ipif_up_count > 0);
13335 		--ill->ill_ipif_up_count;
13336 		mutex_exit(&ill->ill_lock);
13337 		ipif_was_up = B_TRUE;
13338 		/* Update status in SCTP's list */
13339 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13340 		ill_nic_event_dispatch(ipif->ipif_ill,
13341 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13342 	}
13343 
13344 	/*
13345 	 * Removal of the last ipif from an ill may result in a DL_UNBIND
13346 	 * being sent to the driver, and we must not send any data packets to
13347 	 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13348 	 * ire and nce entries used in the data path will be cleaned
13349 	 * up, and we also set  the ILL_DOWN_IN_PROGRESS bit to make
13350 	 * sure on new entries will be added until the ill is bound
13351 	 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13352 	 * receipt of a DL_BIND_ACK.
13353 	 */
13354 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13355 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13356 	    ill->ill_dl_up) {
13357 		ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13358 	}
13359 
13360 	/*
13361 	 * Blow away memberships we established in ipif_multicast_up().
13362 	 */
13363 	ipif_multicast_down(ipif);
13364 
13365 	/*
13366 	 * Remove from the mapping for __sin6_src_id. We insert only
13367 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13368 	 * stored as mapped addresses, we need to check for mapped
13369 	 * INADDR_ANY also.
13370 	 */
13371 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13372 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13373 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13374 		int err;
13375 
13376 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13377 		    ipif->ipif_zoneid, ipst);
13378 		if (err != 0) {
13379 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13380 		}
13381 	}
13382 
13383 	if (ipif_was_up) {
13384 		/* only delete if we'd added ire's before */
13385 		if (ipif->ipif_isv6)
13386 			ipif_delete_ires_v6(ipif);
13387 		else
13388 			ipif_delete_ires_v4(ipif);
13389 	}
13390 
13391 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13392 		/*
13393 		 * Since the interface is now down, it may have just become
13394 		 * inactive.  Note that this needs to be done even for a
13395 		 * lll_logical_down(), or ARP entries will not get correctly
13396 		 * restored when the interface comes back up.
13397 		 */
13398 		if (IS_UNDER_IPMP(ill))
13399 			ipmp_ill_refresh_active(ill);
13400 	}
13401 
13402 	/*
13403 	 * neighbor-discovery or arp entries for this interface. The ipif
13404 	 * has to be quiesced, so we walk all the nce's and delete those
13405 	 * that point at the ipif->ipif_ill. At the same time, we also
13406 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13407 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13408 	 * that for ipif_down_tail()
13409 	 */
13410 	ipif_nce_down(ipif);
13411 
13412 	/*
13413 	 * If this is the last ipif on the ill, we also need to remove
13414 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13415 	 * never succeed.
13416 	 */
13417 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13418 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13419 
13420 	/*
13421 	 * Walk all CONNs that can have a reference on an ire for this
13422 	 * ipif (we actually walk all that now have stale references).
13423 	 */
13424 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13425 
13426 	/*
13427 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13428 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13429 	 * and ill_delete -> ipif_free -> ipif_down
13430 	 */
13431 	if (mp == NULL) {
13432 		ASSERT(q == NULL);
13433 		return (0);
13434 	}
13435 
13436 	if (CONN_Q(q)) {
13437 		connp = Q_TO_CONN(q);
13438 		mutex_enter(&connp->conn_lock);
13439 	} else {
13440 		connp = NULL;
13441 	}
13442 	mutex_enter(&ill->ill_lock);
13443 	/*
13444 	 * Are there any ire's pointing to this ipif that are still active ?
13445 	 * If this is the last ipif going down, are there any ire's pointing
13446 	 * to this ill that are still active ?
13447 	 */
13448 	if (ipif_is_quiescent(ipif)) {
13449 		mutex_exit(&ill->ill_lock);
13450 		if (connp != NULL)
13451 			mutex_exit(&connp->conn_lock);
13452 		return (0);
13453 	}
13454 
13455 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13456 	    ill->ill_name, (void *)ill));
13457 	/*
13458 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13459 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13460 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13461 	 */
13462 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13463 	if (!success) {
13464 		/* The conn is closing. So just return */
13465 		ASSERT(connp != NULL);
13466 		mutex_exit(&ill->ill_lock);
13467 		mutex_exit(&connp->conn_lock);
13468 		return (EINTR);
13469 	}
13470 
13471 	mutex_exit(&ill->ill_lock);
13472 	if (connp != NULL)
13473 		mutex_exit(&connp->conn_lock);
13474 	return (EINPROGRESS);
13475 }
13476 
13477 int
13478 ipif_down_tail(ipif_t *ipif)
13479 {
13480 	ill_t	*ill = ipif->ipif_ill;
13481 	int	err = 0;
13482 
13483 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13484 	    ill_t *, ill, ipif_t *, ipif);
13485 
13486 	/*
13487 	 * Skip any loopback interface (null wq).
13488 	 * If this is the last logical interface on the ill
13489 	 * have ill_dl_down tell the driver we are gone (unbind)
13490 	 * Note that lun 0 can ipif_down even though
13491 	 * there are other logical units that are up.
13492 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13493 	 */
13494 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13495 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13496 	    ill->ill_dl_up) {
13497 		ill_dl_down(ill);
13498 	}
13499 	if (!ipif->ipif_isv6)
13500 		err = ipif_arp_down(ipif);
13501 
13502 	ill->ill_logical_down = 0;
13503 
13504 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13505 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13506 	return (err);
13507 }
13508 
13509 /*
13510  * Bring interface logically down without bringing the physical interface
13511  * down e.g. when the netmask is changed. This avoids long lasting link
13512  * negotiations between an ethernet interface and a certain switches.
13513  */
13514 static int
13515 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13516 {
13517 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13518 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13519 
13520 	/*
13521 	 * The ill_logical_down flag is a transient flag. It is set here
13522 	 * and is cleared once the down has completed in ipif_down_tail.
13523 	 * This flag does not indicate whether the ill stream is in the
13524 	 * DL_BOUND state with the driver. Instead this flag is used by
13525 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13526 	 * the driver. The state of the ill stream i.e. whether it is
13527 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13528 	 */
13529 	ipif->ipif_ill->ill_logical_down = 1;
13530 	return (ipif_down(ipif, q, mp));
13531 }
13532 
13533 /*
13534  * Initiate deallocate of an IPIF. Always called as writer. Called by
13535  * ill_delete or ip_sioctl_removeif.
13536  */
13537 static void
13538 ipif_free(ipif_t *ipif)
13539 {
13540 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13541 
13542 	ASSERT(IAM_WRITER_IPIF(ipif));
13543 
13544 	if (ipif->ipif_recovery_id != 0)
13545 		(void) untimeout(ipif->ipif_recovery_id);
13546 	ipif->ipif_recovery_id = 0;
13547 
13548 	/*
13549 	 * Take down the interface. We can be called either from ill_delete
13550 	 * or from ip_sioctl_removeif.
13551 	 */
13552 	(void) ipif_down(ipif, NULL, NULL);
13553 
13554 	/*
13555 	 * Now that the interface is down, there's no chance it can still
13556 	 * become a duplicate.  Cancel any timer that may have been set while
13557 	 * tearing down.
13558 	 */
13559 	if (ipif->ipif_recovery_id != 0)
13560 		(void) untimeout(ipif->ipif_recovery_id);
13561 	ipif->ipif_recovery_id = 0;
13562 
13563 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13564 	/* Remove pointers to this ill in the multicast routing tables */
13565 	reset_mrt_vif_ipif(ipif);
13566 	/* If necessary, clear the cached source ipif rotor. */
13567 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13568 		ipif->ipif_ill->ill_src_ipif = NULL;
13569 	rw_exit(&ipst->ips_ill_g_lock);
13570 }
13571 
13572 static void
13573 ipif_free_tail(ipif_t *ipif)
13574 {
13575 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13576 
13577 	/*
13578 	 * Need to hold both ill_g_lock and ill_lock while
13579 	 * inserting or removing an ipif from the linked list
13580 	 * of ipifs hanging off the ill.
13581 	 */
13582 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13583 
13584 #ifdef DEBUG
13585 	ipif_trace_cleanup(ipif);
13586 #endif
13587 
13588 	/* Ask SCTP to take it out of it list */
13589 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13590 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13591 
13592 	/* Get it out of the ILL interface list. */
13593 	ipif_remove(ipif);
13594 	rw_exit(&ipst->ips_ill_g_lock);
13595 
13596 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13597 	ASSERT(ipif->ipif_recovery_id == 0);
13598 	ASSERT(ipif->ipif_ire_local == NULL);
13599 	ASSERT(ipif->ipif_ire_if == NULL);
13600 
13601 	/* Free the memory. */
13602 	mi_free(ipif);
13603 }
13604 
13605 /*
13606  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13607  * is zero.
13608  */
13609 void
13610 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13611 {
13612 	char	lbuf[LIFNAMSIZ];
13613 	char	*name;
13614 	size_t	name_len;
13615 
13616 	buf[0] = '\0';
13617 	name = ipif->ipif_ill->ill_name;
13618 	name_len = ipif->ipif_ill->ill_name_length;
13619 	if (ipif->ipif_id != 0) {
13620 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13621 		    ipif->ipif_id);
13622 		name = lbuf;
13623 		name_len = mi_strlen(name) + 1;
13624 	}
13625 	len -= 1;
13626 	buf[len] = '\0';
13627 	len = MIN(len, name_len);
13628 	bcopy(name, buf, len);
13629 }
13630 
13631 /*
13632  * Sets `buf' to an ill name.
13633  */
13634 void
13635 ill_get_name(const ill_t *ill, char *buf, int len)
13636 {
13637 	char	*name;
13638 	size_t	name_len;
13639 
13640 	name = ill->ill_name;
13641 	name_len = ill->ill_name_length;
13642 	len -= 1;
13643 	buf[len] = '\0';
13644 	len = MIN(len, name_len);
13645 	bcopy(name, buf, len);
13646 }
13647 
13648 /*
13649  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13650  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13651  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13652  * (May be called as writer.)
13653  */
13654 static ipif_t *
13655 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13656     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13657 {
13658 	char	*cp;
13659 	char	*endp;
13660 	long	id;
13661 	ill_t	*ill;
13662 	ipif_t	*ipif;
13663 	uint_t	ire_type;
13664 	boolean_t did_alloc = B_FALSE;
13665 	char	last;
13666 
13667 	/*
13668 	 * If the caller wants to us to create the ipif, make sure we have a
13669 	 * valid zoneid
13670 	 */
13671 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13672 
13673 	if (namelen == 0) {
13674 		return (NULL);
13675 	}
13676 
13677 	*exists = B_FALSE;
13678 	/* Look for a colon in the name. */
13679 	endp = &name[namelen];
13680 	for (cp = endp; --cp > name; ) {
13681 		if (*cp == IPIF_SEPARATOR_CHAR)
13682 			break;
13683 	}
13684 
13685 	if (*cp == IPIF_SEPARATOR_CHAR) {
13686 		/*
13687 		 * Reject any non-decimal aliases for logical
13688 		 * interfaces. Aliases with leading zeroes
13689 		 * are also rejected as they introduce ambiguity
13690 		 * in the naming of the interfaces.
13691 		 * In order to confirm with existing semantics,
13692 		 * and to not break any programs/script relying
13693 		 * on that behaviour, if<0>:0 is considered to be
13694 		 * a valid interface.
13695 		 *
13696 		 * If alias has two or more digits and the first
13697 		 * is zero, fail.
13698 		 */
13699 		if (&cp[2] < endp && cp[1] == '0') {
13700 			return (NULL);
13701 		}
13702 	}
13703 
13704 	if (cp <= name) {
13705 		cp = endp;
13706 	}
13707 	last = *cp;
13708 	*cp = '\0';
13709 
13710 	/*
13711 	 * Look up the ILL, based on the portion of the name
13712 	 * before the slash. ill_lookup_on_name returns a held ill.
13713 	 * Temporary to check whether ill exists already. If so
13714 	 * ill_lookup_on_name will clear it.
13715 	 */
13716 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13717 	    &did_alloc, ipst);
13718 	*cp = last;
13719 	if (ill == NULL)
13720 		return (NULL);
13721 
13722 	/* Establish the unit number in the name. */
13723 	id = 0;
13724 	if (cp < endp && *endp == '\0') {
13725 		/* If there was a colon, the unit number follows. */
13726 		cp++;
13727 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13728 			ill_refrele(ill);
13729 			return (NULL);
13730 		}
13731 	}
13732 
13733 	mutex_enter(&ill->ill_lock);
13734 	/* Now see if there is an IPIF with this unit number. */
13735 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13736 		if (ipif->ipif_id == id) {
13737 			if (zoneid != ALL_ZONES &&
13738 			    zoneid != ipif->ipif_zoneid &&
13739 			    ipif->ipif_zoneid != ALL_ZONES) {
13740 				mutex_exit(&ill->ill_lock);
13741 				ill_refrele(ill);
13742 				return (NULL);
13743 			}
13744 			if (IPIF_CAN_LOOKUP(ipif)) {
13745 				ipif_refhold_locked(ipif);
13746 				mutex_exit(&ill->ill_lock);
13747 				if (!did_alloc)
13748 					*exists = B_TRUE;
13749 				/*
13750 				 * Drop locks before calling ill_refrele
13751 				 * since it can potentially call into
13752 				 * ipif_ill_refrele_tail which can end up
13753 				 * in trying to acquire any lock.
13754 				 */
13755 				ill_refrele(ill);
13756 				return (ipif);
13757 			}
13758 		}
13759 	}
13760 
13761 	if (!do_alloc) {
13762 		mutex_exit(&ill->ill_lock);
13763 		ill_refrele(ill);
13764 		return (NULL);
13765 	}
13766 
13767 	/*
13768 	 * If none found, atomically allocate and return a new one.
13769 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13770 	 * to support "receive only" use of lo0:1 etc. as is still done
13771 	 * below as an initial guess.
13772 	 * However, this is now likely to be overriden later in ipif_up_done()
13773 	 * when we know for sure what address has been configured on the
13774 	 * interface, since we might have more than one loopback interface
13775 	 * with a loopback address, e.g. in the case of zones, and all the
13776 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13777 	 */
13778 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13779 		ire_type = IRE_LOOPBACK;
13780 	else
13781 		ire_type = IRE_LOCAL;
13782 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13783 	if (ipif != NULL)
13784 		ipif_refhold_locked(ipif);
13785 	mutex_exit(&ill->ill_lock);
13786 	ill_refrele(ill);
13787 	return (ipif);
13788 }
13789 
13790 /*
13791  * Variant of the above that queues the request on the ipsq when
13792  * IPIF_CHANGING is set.
13793  */
13794 static ipif_t *
13795 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13796     zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13797     ip_stack_t *ipst)
13798 {
13799 	char	*cp;
13800 	char	*endp;
13801 	long	id;
13802 	ill_t	*ill;
13803 	ipif_t	*ipif;
13804 	boolean_t did_alloc = B_FALSE;
13805 	ipsq_t	*ipsq;
13806 
13807 	if (error != NULL)
13808 		*error = 0;
13809 
13810 	if (namelen == 0) {
13811 		if (error != NULL)
13812 			*error = ENXIO;
13813 		return (NULL);
13814 	}
13815 
13816 	/* Look for a colon in the name. */
13817 	endp = &name[namelen];
13818 	for (cp = endp; --cp > name; ) {
13819 		if (*cp == IPIF_SEPARATOR_CHAR)
13820 			break;
13821 	}
13822 
13823 	if (*cp == IPIF_SEPARATOR_CHAR) {
13824 		/*
13825 		 * Reject any non-decimal aliases for logical
13826 		 * interfaces. Aliases with leading zeroes
13827 		 * are also rejected as they introduce ambiguity
13828 		 * in the naming of the interfaces.
13829 		 * In order to confirm with existing semantics,
13830 		 * and to not break any programs/script relying
13831 		 * on that behaviour, if<0>:0 is considered to be
13832 		 * a valid interface.
13833 		 *
13834 		 * If alias has two or more digits and the first
13835 		 * is zero, fail.
13836 		 */
13837 		if (&cp[2] < endp && cp[1] == '0') {
13838 			if (error != NULL)
13839 				*error = EINVAL;
13840 			return (NULL);
13841 		}
13842 	}
13843 
13844 	if (cp <= name) {
13845 		cp = endp;
13846 	} else {
13847 		*cp = '\0';
13848 	}
13849 
13850 	/*
13851 	 * Look up the ILL, based on the portion of the name
13852 	 * before the slash. ill_lookup_on_name returns a held ill.
13853 	 * Temporary to check whether ill exists already. If so
13854 	 * ill_lookup_on_name will clear it.
13855 	 */
13856 	ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13857 	if (cp != endp)
13858 		*cp = IPIF_SEPARATOR_CHAR;
13859 	if (ill == NULL)
13860 		return (NULL);
13861 
13862 	/* Establish the unit number in the name. */
13863 	id = 0;
13864 	if (cp < endp && *endp == '\0') {
13865 		/* If there was a colon, the unit number follows. */
13866 		cp++;
13867 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13868 			ill_refrele(ill);
13869 			if (error != NULL)
13870 				*error = ENXIO;
13871 			return (NULL);
13872 		}
13873 	}
13874 
13875 	GRAB_CONN_LOCK(q);
13876 	mutex_enter(&ill->ill_lock);
13877 	/* Now see if there is an IPIF with this unit number. */
13878 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13879 		if (ipif->ipif_id == id) {
13880 			if (zoneid != ALL_ZONES &&
13881 			    zoneid != ipif->ipif_zoneid &&
13882 			    ipif->ipif_zoneid != ALL_ZONES) {
13883 				mutex_exit(&ill->ill_lock);
13884 				RELEASE_CONN_LOCK(q);
13885 				ill_refrele(ill);
13886 				if (error != NULL)
13887 					*error = ENXIO;
13888 				return (NULL);
13889 			}
13890 
13891 			if (!(IPIF_IS_CHANGING(ipif) ||
13892 			    IPIF_IS_CONDEMNED(ipif)) ||
13893 			    IAM_WRITER_IPIF(ipif)) {
13894 				ipif_refhold_locked(ipif);
13895 				mutex_exit(&ill->ill_lock);
13896 				/*
13897 				 * Drop locks before calling ill_refrele
13898 				 * since it can potentially call into
13899 				 * ipif_ill_refrele_tail which can end up
13900 				 * in trying to acquire any lock.
13901 				 */
13902 				RELEASE_CONN_LOCK(q);
13903 				ill_refrele(ill);
13904 				return (ipif);
13905 			} else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13906 				ipsq = ill->ill_phyint->phyint_ipsq;
13907 				mutex_enter(&ipsq->ipsq_lock);
13908 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13909 				mutex_exit(&ill->ill_lock);
13910 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13911 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13912 				mutex_exit(&ipsq->ipsq_lock);
13913 				RELEASE_CONN_LOCK(q);
13914 				ill_refrele(ill);
13915 				if (error != NULL)
13916 					*error = EINPROGRESS;
13917 				return (NULL);
13918 			}
13919 		}
13920 	}
13921 	RELEASE_CONN_LOCK(q);
13922 	mutex_exit(&ill->ill_lock);
13923 	ill_refrele(ill);
13924 	if (error != NULL)
13925 		*error = ENXIO;
13926 	return (NULL);
13927 }
13928 
13929 /*
13930  * This routine is called whenever a new address comes up on an ipif.  If
13931  * we are configured to respond to address mask requests, then we are supposed
13932  * to broadcast an address mask reply at this time.  This routine is also
13933  * called if we are already up, but a netmask change is made.  This is legal
13934  * but might not make the system manager very popular.	(May be called
13935  * as writer.)
13936  */
13937 void
13938 ipif_mask_reply(ipif_t *ipif)
13939 {
13940 	icmph_t	*icmph;
13941 	ipha_t	*ipha;
13942 	mblk_t	*mp;
13943 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13944 	ip_xmit_attr_t ixas;
13945 
13946 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13947 
13948 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13949 		return;
13950 
13951 	/* ICMP mask reply is IPv4 only */
13952 	ASSERT(!ipif->ipif_isv6);
13953 	/* ICMP mask reply is not for a loopback interface */
13954 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13955 
13956 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13957 		return;
13958 
13959 	mp = allocb(REPLY_LEN, BPRI_HI);
13960 	if (mp == NULL)
13961 		return;
13962 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13963 
13964 	ipha = (ipha_t *)mp->b_rptr;
13965 	bzero(ipha, REPLY_LEN);
13966 	*ipha = icmp_ipha;
13967 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13968 	ipha->ipha_src = ipif->ipif_lcl_addr;
13969 	ipha->ipha_dst = ipif->ipif_brd_addr;
13970 	ipha->ipha_length = htons(REPLY_LEN);
13971 	ipha->ipha_ident = 0;
13972 
13973 	icmph = (icmph_t *)&ipha[1];
13974 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13975 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13976 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13977 
13978 	bzero(&ixas, sizeof (ixas));
13979 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13980 	ixas.ixa_zoneid = ALL_ZONES;
13981 	ixas.ixa_ifindex = 0;
13982 	ixas.ixa_ipst = ipst;
13983 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13984 	(void) ip_output_simple(mp, &ixas);
13985 	ixa_cleanup(&ixas);
13986 #undef	REPLY_LEN
13987 }
13988 
13989 /*
13990  * Join the ipif specific multicast groups.
13991  * Must be called after a mapping has been set up in the resolver.  (Always
13992  * called as writer.)
13993  */
13994 void
13995 ipif_multicast_up(ipif_t *ipif)
13996 {
13997 	int err;
13998 	ill_t *ill;
13999 	ilm_t *ilm;
14000 
14001 	ASSERT(IAM_WRITER_IPIF(ipif));
14002 
14003 	ill = ipif->ipif_ill;
14004 
14005 	ip1dbg(("ipif_multicast_up\n"));
14006 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
14007 	    ipif->ipif_allhosts_ilm != NULL)
14008 		return;
14009 
14010 	if (ipif->ipif_isv6) {
14011 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14012 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14013 
14014 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14015 
14016 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14017 			return;
14018 
14019 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14020 
14021 		/*
14022 		 * Join the all hosts multicast address.  We skip this for
14023 		 * underlying IPMP interfaces since they should be invisible.
14024 		 */
14025 		if (!IS_UNDER_IPMP(ill)) {
14026 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14027 			    &err);
14028 			if (ilm == NULL) {
14029 				ASSERT(err != 0);
14030 				ip0dbg(("ipif_multicast_up: "
14031 				    "all_hosts_mcast failed %d\n", err));
14032 				return;
14033 			}
14034 			ipif->ipif_allhosts_ilm = ilm;
14035 		}
14036 
14037 		/*
14038 		 * Enable multicast for the solicited node multicast address.
14039 		 * If IPMP we need to put the membership on the upper ill.
14040 		 */
14041 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14042 			ill_t *mcast_ill = NULL;
14043 			boolean_t need_refrele;
14044 
14045 			if (IS_UNDER_IPMP(ill) &&
14046 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14047 				need_refrele = B_TRUE;
14048 			} else {
14049 				mcast_ill = ill;
14050 				need_refrele = B_FALSE;
14051 			}
14052 
14053 			ilm = ip_addmulti(&v6solmc, mcast_ill,
14054 			    ipif->ipif_zoneid, &err);
14055 			if (need_refrele)
14056 				ill_refrele(mcast_ill);
14057 
14058 			if (ilm == NULL) {
14059 				ASSERT(err != 0);
14060 				ip0dbg(("ipif_multicast_up: solicited MC"
14061 				    " failed %d\n", err));
14062 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14063 					ipif->ipif_allhosts_ilm = NULL;
14064 					(void) ip_delmulti(ilm);
14065 				}
14066 				return;
14067 			}
14068 			ipif->ipif_solmulti_ilm = ilm;
14069 		}
14070 	} else {
14071 		in6_addr_t v6group;
14072 
14073 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14074 			return;
14075 
14076 		/* Join the all hosts multicast address */
14077 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14078 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14079 
14080 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14081 		if (ilm == NULL) {
14082 			ASSERT(err != 0);
14083 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
14084 			return;
14085 		}
14086 		ipif->ipif_allhosts_ilm = ilm;
14087 	}
14088 }
14089 
14090 /*
14091  * Blow away any multicast groups that we joined in ipif_multicast_up().
14092  * (ilms from explicit memberships are handled in conn_update_ill.)
14093  */
14094 void
14095 ipif_multicast_down(ipif_t *ipif)
14096 {
14097 	ASSERT(IAM_WRITER_IPIF(ipif));
14098 
14099 	ip1dbg(("ipif_multicast_down\n"));
14100 
14101 	if (ipif->ipif_allhosts_ilm != NULL) {
14102 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
14103 		ipif->ipif_allhosts_ilm = NULL;
14104 	}
14105 	if (ipif->ipif_solmulti_ilm != NULL) {
14106 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
14107 		ipif->ipif_solmulti_ilm = NULL;
14108 	}
14109 }
14110 
14111 /*
14112  * Used when an interface comes up to recreate any extra routes on this
14113  * interface.
14114  */
14115 int
14116 ill_recover_saved_ire(ill_t *ill)
14117 {
14118 	mblk_t		*mp;
14119 	ip_stack_t	*ipst = ill->ill_ipst;
14120 
14121 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14122 
14123 	mutex_enter(&ill->ill_saved_ire_lock);
14124 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14125 		ire_t		*ire, *nire;
14126 		ifrt_t		*ifrt;
14127 
14128 		ifrt = (ifrt_t *)mp->b_rptr;
14129 		/*
14130 		 * Create a copy of the IRE with the saved address and netmask.
14131 		 */
14132 		if (ill->ill_isv6) {
14133 			ire = ire_create_v6(
14134 			    &ifrt->ifrt_v6addr,
14135 			    &ifrt->ifrt_v6mask,
14136 			    &ifrt->ifrt_v6gateway_addr,
14137 			    ifrt->ifrt_type,
14138 			    ill,
14139 			    ifrt->ifrt_zoneid,
14140 			    ifrt->ifrt_flags,
14141 			    NULL,
14142 			    ipst);
14143 		} else {
14144 			ire = ire_create(
14145 			    (uint8_t *)&ifrt->ifrt_addr,
14146 			    (uint8_t *)&ifrt->ifrt_mask,
14147 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
14148 			    ifrt->ifrt_type,
14149 			    ill,
14150 			    ifrt->ifrt_zoneid,
14151 			    ifrt->ifrt_flags,
14152 			    NULL,
14153 			    ipst);
14154 		}
14155 		if (ire == NULL) {
14156 			mutex_exit(&ill->ill_saved_ire_lock);
14157 			return (ENOMEM);
14158 		}
14159 
14160 		if (ifrt->ifrt_flags & RTF_SETSRC) {
14161 			if (ill->ill_isv6) {
14162 				ire->ire_setsrc_addr_v6 =
14163 				    ifrt->ifrt_v6setsrc_addr;
14164 			} else {
14165 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14166 			}
14167 		}
14168 
14169 		/*
14170 		 * Some software (for example, GateD and Sun Cluster) attempts
14171 		 * to create (what amount to) IRE_PREFIX routes with the
14172 		 * loopback address as the gateway.  This is primarily done to
14173 		 * set up prefixes with the RTF_REJECT flag set (for example,
14174 		 * when generating aggregate routes.)
14175 		 *
14176 		 * If the IRE type (as defined by ill->ill_net_type) is
14177 		 * IRE_LOOPBACK, then we map the request into a
14178 		 * IRE_IF_NORESOLVER.
14179 		 */
14180 		if (ill->ill_net_type == IRE_LOOPBACK)
14181 			ire->ire_type = IRE_IF_NORESOLVER;
14182 
14183 		/*
14184 		 * ire held by ire_add, will be refreled' towards the
14185 		 * the end of ipif_up_done
14186 		 */
14187 		nire = ire_add(ire);
14188 		/*
14189 		 * Check if it was a duplicate entry. This handles
14190 		 * the case of two racing route adds for the same route
14191 		 */
14192 		if (nire == NULL) {
14193 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14194 		} else if (nire != ire) {
14195 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14196 			    (void *)nire));
14197 			ire_delete(nire);
14198 		} else {
14199 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14200 			    (void *)nire));
14201 		}
14202 		if (nire != NULL)
14203 			ire_refrele(nire);
14204 	}
14205 	mutex_exit(&ill->ill_saved_ire_lock);
14206 	return (0);
14207 }
14208 
14209 /*
14210  * Used to set the netmask and broadcast address to default values when the
14211  * interface is brought up.  (Always called as writer.)
14212  */
14213 static void
14214 ipif_set_default(ipif_t *ipif)
14215 {
14216 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14217 
14218 	if (!ipif->ipif_isv6) {
14219 		/*
14220 		 * Interface holds an IPv4 address. Default
14221 		 * mask is the natural netmask.
14222 		 */
14223 		if (!ipif->ipif_net_mask) {
14224 			ipaddr_t	v4mask;
14225 
14226 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14227 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14228 		}
14229 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14230 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14231 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14232 		} else {
14233 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14234 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14235 		}
14236 		/*
14237 		 * NOTE: SunOS 4.X does this even if the broadcast address
14238 		 * has been already set thus we do the same here.
14239 		 */
14240 		if (ipif->ipif_flags & IPIF_BROADCAST) {
14241 			ipaddr_t	v4addr;
14242 
14243 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14244 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14245 		}
14246 	} else {
14247 		/*
14248 		 * Interface holds an IPv6-only address.  Default
14249 		 * mask is all-ones.
14250 		 */
14251 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14252 			ipif->ipif_v6net_mask = ipv6_all_ones;
14253 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14254 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14255 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14256 		} else {
14257 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14258 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14259 		}
14260 	}
14261 }
14262 
14263 /*
14264  * Return 0 if this address can be used as local address without causing
14265  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14266  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14267  * Note that the same IPv6 link-local address is allowed as long as the ills
14268  * are not on the same link.
14269  */
14270 int
14271 ip_addr_availability_check(ipif_t *new_ipif)
14272 {
14273 	in6_addr_t our_v6addr;
14274 	ill_t *ill;
14275 	ipif_t *ipif;
14276 	ill_walk_context_t ctx;
14277 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
14278 
14279 	ASSERT(IAM_WRITER_IPIF(new_ipif));
14280 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14281 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14282 
14283 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14284 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14285 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14286 		return (0);
14287 
14288 	our_v6addr = new_ipif->ipif_v6lcl_addr;
14289 
14290 	if (new_ipif->ipif_isv6)
14291 		ill = ILL_START_WALK_V6(&ctx, ipst);
14292 	else
14293 		ill = ILL_START_WALK_V4(&ctx, ipst);
14294 
14295 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14296 		for (ipif = ill->ill_ipif; ipif != NULL;
14297 		    ipif = ipif->ipif_next) {
14298 			if ((ipif == new_ipif) ||
14299 			    !(ipif->ipif_flags & IPIF_UP) ||
14300 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14301 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14302 			    &our_v6addr))
14303 				continue;
14304 
14305 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14306 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14307 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14308 				ipif->ipif_flags |= IPIF_UNNUMBERED;
14309 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14310 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14311 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14312 				continue;
14313 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14314 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14315 				continue;
14316 			else if (new_ipif->ipif_ill == ill)
14317 				return (EADDRINUSE);
14318 			else
14319 				return (EADDRNOTAVAIL);
14320 		}
14321 	}
14322 
14323 	return (0);
14324 }
14325 
14326 /*
14327  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14328  * IREs for the ipif.
14329  * When the routine returns EINPROGRESS then mp has been consumed and
14330  * the ioctl will be acked from ip_rput_dlpi.
14331  */
14332 int
14333 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14334 {
14335 	ill_t		*ill = ipif->ipif_ill;
14336 	boolean_t	isv6 = ipif->ipif_isv6;
14337 	int		err = 0;
14338 	boolean_t	success;
14339 	uint_t		ipif_orig_id;
14340 	ip_stack_t	*ipst = ill->ill_ipst;
14341 
14342 	ASSERT(IAM_WRITER_IPIF(ipif));
14343 
14344 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14345 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14346 	    ill_t *, ill, ipif_t *, ipif);
14347 
14348 	/* Shouldn't get here if it is already up. */
14349 	if (ipif->ipif_flags & IPIF_UP)
14350 		return (EALREADY);
14351 
14352 	/*
14353 	 * If this is a request to bring up a data address on an interface
14354 	 * under IPMP, then move the address to its IPMP meta-interface and
14355 	 * try to bring it up.  One complication is that the zeroth ipif for
14356 	 * an ill is special, in that every ill always has one, and that code
14357 	 * throughout IP deferences ill->ill_ipif without holding any locks.
14358 	 */
14359 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14360 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14361 		ipif_t	*stubipif = NULL, *moveipif = NULL;
14362 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14363 
14364 		/*
14365 		 * The ipif being brought up should be quiesced.  If it's not,
14366 		 * something has gone amiss and we need to bail out.  (If it's
14367 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14368 		 */
14369 		mutex_enter(&ill->ill_lock);
14370 		if (!ipif_is_quiescent(ipif)) {
14371 			mutex_exit(&ill->ill_lock);
14372 			return (EINVAL);
14373 		}
14374 		mutex_exit(&ill->ill_lock);
14375 
14376 		/*
14377 		 * If we're going to need to allocate ipifs, do it prior
14378 		 * to starting the move (and grabbing locks).
14379 		 */
14380 		if (ipif->ipif_id == 0) {
14381 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14382 			    B_FALSE, &err)) == NULL) {
14383 				return (err);
14384 			}
14385 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14386 			    B_FALSE, &err)) == NULL) {
14387 				mi_free(moveipif);
14388 				return (err);
14389 			}
14390 		}
14391 
14392 		/*
14393 		 * Grab or transfer the ipif to move.  During the move, keep
14394 		 * ill_g_lock held to prevent any ill walker threads from
14395 		 * seeing things in an inconsistent state.
14396 		 */
14397 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14398 		if (ipif->ipif_id != 0) {
14399 			ipif_remove(ipif);
14400 		} else {
14401 			ipif_transfer(ipif, moveipif, stubipif);
14402 			ipif = moveipif;
14403 		}
14404 
14405 		/*
14406 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
14407 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
14408 		 * replace that one.  Otherwise, pick the next available slot.
14409 		 */
14410 		ipif->ipif_ill = ipmp_ill;
14411 		ipif_orig_id = ipif->ipif_id;
14412 
14413 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14414 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14415 			ipif = ipmp_ill->ill_ipif;
14416 		} else {
14417 			ipif->ipif_id = -1;
14418 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14419 				/*
14420 				 * No more available ipif_id's -- put it back
14421 				 * on the original ill and fail the operation.
14422 				 * Since we're writer on the ill, we can be
14423 				 * sure our old slot is still available.
14424 				 */
14425 				ipif->ipif_id = ipif_orig_id;
14426 				ipif->ipif_ill = ill;
14427 				if (ipif_orig_id == 0) {
14428 					ipif_transfer(ipif, ill->ill_ipif,
14429 					    NULL);
14430 				} else {
14431 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14432 				}
14433 				rw_exit(&ipst->ips_ill_g_lock);
14434 				return (err);
14435 			}
14436 		}
14437 		rw_exit(&ipst->ips_ill_g_lock);
14438 
14439 		/*
14440 		 * Tell SCTP that the ipif has moved.  Note that even if we
14441 		 * had to allocate a new ipif, the original sequence id was
14442 		 * preserved and therefore SCTP won't know.
14443 		 */
14444 		sctp_move_ipif(ipif, ill, ipmp_ill);
14445 
14446 		/*
14447 		 * If the ipif being brought up was on slot zero, then we
14448 		 * first need to bring up the placeholder we stuck there.  In
14449 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14450 		 * call to ipif_up() itself, if we successfully bring up the
14451 		 * placeholder, we'll check ill_move_ipif and bring it up too.
14452 		 */
14453 		if (ipif_orig_id == 0) {
14454 			ASSERT(ill->ill_move_ipif == NULL);
14455 			ill->ill_move_ipif = ipif;
14456 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14457 				ASSERT(ill->ill_move_ipif == NULL);
14458 			if (err != EINPROGRESS)
14459 				ill->ill_move_ipif = NULL;
14460 			return (err);
14461 		}
14462 
14463 		/*
14464 		 * Bring it up on the IPMP ill.
14465 		 */
14466 		return (ipif_up(ipif, q, mp));
14467 	}
14468 
14469 	/* Skip arp/ndp for any loopback interface. */
14470 	if (ill->ill_wq != NULL) {
14471 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14472 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
14473 
14474 		if (!ill->ill_dl_up) {
14475 			/*
14476 			 * ill_dl_up is not yet set. i.e. we are yet to
14477 			 * DL_BIND with the driver and this is the first
14478 			 * logical interface on the ill to become "up".
14479 			 * Tell the driver to get going (via DL_BIND_REQ).
14480 			 * Note that changing "significant" IFF_ flags
14481 			 * address/netmask etc cause a down/up dance, but
14482 			 * does not cause an unbind (DL_UNBIND) with the driver
14483 			 */
14484 			return (ill_dl_up(ill, ipif, mp, q));
14485 		}
14486 
14487 		/*
14488 		 * ipif_resolver_up may end up needeing to bind/attach
14489 		 * the ARP stream, which in turn necessitates a
14490 		 * DLPI message exchange with the driver. ioctls are
14491 		 * serialized and so we cannot send more than one
14492 		 * interface up message at a time. If ipif_resolver_up
14493 		 * does need to wait for the DLPI handshake for the ARP stream,
14494 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
14495 		 */
14496 
14497 		ASSERT(connp != NULL || !CONN_Q(q));
14498 		if (connp != NULL)
14499 			mutex_enter(&connp->conn_lock);
14500 		mutex_enter(&ill->ill_lock);
14501 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14502 		mutex_exit(&ill->ill_lock);
14503 		if (connp != NULL)
14504 			mutex_exit(&connp->conn_lock);
14505 		if (!success)
14506 			return (EINTR);
14507 
14508 		/*
14509 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14510 		 * complete when ipif_ndp_up returns.
14511 		 */
14512 		err = ipif_resolver_up(ipif, Res_act_initial);
14513 		if (err == EINPROGRESS) {
14514 			/* We will complete it in arp_bringup_done() */
14515 			return (err);
14516 		}
14517 
14518 		if (isv6 && err == 0)
14519 			err = ipif_ndp_up(ipif, B_TRUE);
14520 
14521 		ASSERT(err != EINPROGRESS);
14522 		mp = ipsq_pending_mp_get(ipsq, &connp);
14523 		ASSERT(mp != NULL);
14524 		if (err != 0)
14525 			return (err);
14526 	} else {
14527 		/*
14528 		 * Interfaces without underlying hardware don't do duplicate
14529 		 * address detection.
14530 		 */
14531 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14532 		ipif->ipif_addr_ready = 1;
14533 		err = ill_add_ires(ill);
14534 		/* allocation failure? */
14535 		if (err != 0)
14536 			return (err);
14537 	}
14538 
14539 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14540 	if (err == 0 && ill->ill_move_ipif != NULL) {
14541 		ipif = ill->ill_move_ipif;
14542 		ill->ill_move_ipif = NULL;
14543 		return (ipif_up(ipif, q, mp));
14544 	}
14545 	return (err);
14546 }
14547 
14548 /*
14549  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14550  * The identical set of IREs need to be removed in ill_delete_ires().
14551  */
14552 int
14553 ill_add_ires(ill_t *ill)
14554 {
14555 	ire_t	*ire;
14556 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14557 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14558 
14559 	if (ill->ill_ire_multicast != NULL)
14560 		return (0);
14561 
14562 	/*
14563 	 * provide some dummy ire_addr for creating the ire.
14564 	 */
14565 	if (ill->ill_isv6) {
14566 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14567 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14568 	} else {
14569 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14570 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14571 	}
14572 	if (ire == NULL)
14573 		return (ENOMEM);
14574 
14575 	ill->ill_ire_multicast = ire;
14576 	return (0);
14577 }
14578 
14579 void
14580 ill_delete_ires(ill_t *ill)
14581 {
14582 	if (ill->ill_ire_multicast != NULL) {
14583 		/*
14584 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14585 		 * which was taken without any th_tracing enabled.
14586 		 * We also mark it as condemned (note that it was never added)
14587 		 * so that caching conn's can move off of it.
14588 		 */
14589 		ire_make_condemned(ill->ill_ire_multicast);
14590 		ire_refrele_notr(ill->ill_ire_multicast);
14591 		ill->ill_ire_multicast = NULL;
14592 	}
14593 }
14594 
14595 /*
14596  * Perform a bind for the physical device.
14597  * When the routine returns EINPROGRESS then mp has been consumed and
14598  * the ioctl will be acked from ip_rput_dlpi.
14599  * Allocate an unbind message and save it until ipif_down.
14600  */
14601 static int
14602 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14603 {
14604 	mblk_t	*bind_mp = NULL;
14605 	mblk_t	*unbind_mp = NULL;
14606 	conn_t	*connp;
14607 	boolean_t success;
14608 	int	err;
14609 
14610 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14611 
14612 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14613 	ASSERT(IAM_WRITER_ILL(ill));
14614 	ASSERT(mp != NULL);
14615 
14616 	/*
14617 	 * Make sure we have an IRE_MULTICAST in case we immediately
14618 	 * start receiving packets.
14619 	 */
14620 	err = ill_add_ires(ill);
14621 	if (err != 0)
14622 		goto bad;
14623 
14624 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14625 	    DL_BIND_REQ);
14626 	if (bind_mp == NULL)
14627 		goto bad;
14628 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14629 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14630 
14631 	/*
14632 	 * ill_unbind_mp would be non-null if the following sequence had
14633 	 * happened:
14634 	 * - send DL_BIND_REQ to driver, wait for response
14635 	 * - multiple ioctls that need to bring the ipif up are encountered,
14636 	 *   but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14637 	 *   These ioctls will then be enqueued on the ipsq
14638 	 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14639 	 * At this point, the pending ioctls in the ipsq will be drained, and
14640 	 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14641 	 * a non-null ill->ill_unbind_mp
14642 	 */
14643 	if (ill->ill_unbind_mp == NULL) {
14644 		unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14645 		    DL_UNBIND_REQ);
14646 		if (unbind_mp == NULL)
14647 			goto bad;
14648 	}
14649 	/*
14650 	 * Record state needed to complete this operation when the
14651 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14652 	 */
14653 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14654 	ASSERT(connp != NULL || !CONN_Q(q));
14655 	GRAB_CONN_LOCK(q);
14656 	mutex_enter(&ipif->ipif_ill->ill_lock);
14657 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14658 	mutex_exit(&ipif->ipif_ill->ill_lock);
14659 	RELEASE_CONN_LOCK(q);
14660 	if (!success)
14661 		goto bad;
14662 
14663 	/*
14664 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14665 	 * the interface goes down.
14666 	 */
14667 	if (ill->ill_unbind_mp == NULL)
14668 		ill->ill_unbind_mp = unbind_mp;
14669 
14670 	ill_dlpi_send(ill, bind_mp);
14671 	/* Send down link-layer capabilities probe if not already done. */
14672 	ill_capability_probe(ill);
14673 
14674 	/*
14675 	 * Sysid used to rely on the fact that netboots set domainname
14676 	 * and the like. Now that miniroot boots aren't strictly netboots
14677 	 * and miniroot network configuration is driven from userland
14678 	 * these things still need to be set. This situation can be detected
14679 	 * by comparing the interface being configured here to the one
14680 	 * dhcifname was set to reference by the boot loader. Once sysid is
14681 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14682 	 */
14683 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14684 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14685 	    (strlen(srpc_domain) == 0)) {
14686 		if (dhcpinit() != 0)
14687 			cmn_err(CE_WARN, "no cached dhcp response");
14688 	}
14689 
14690 	/*
14691 	 * This operation will complete in ip_rput_dlpi with either
14692 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14693 	 */
14694 	return (EINPROGRESS);
14695 bad:
14696 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14697 
14698 	freemsg(bind_mp);
14699 	freemsg(unbind_mp);
14700 	return (ENOMEM);
14701 }
14702 
14703 /* Add room for tcp+ip headers */
14704 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14705 
14706 /*
14707  * DLPI and ARP is up.
14708  * Create all the IREs associated with an interface. Bring up multicast.
14709  * Set the interface flag and finish other initialization
14710  * that potentially had to be deferred to after DL_BIND_ACK.
14711  */
14712 int
14713 ipif_up_done(ipif_t *ipif)
14714 {
14715 	ill_t		*ill = ipif->ipif_ill;
14716 	int		err = 0;
14717 	boolean_t	loopback = B_FALSE;
14718 	boolean_t	update_src_selection = B_TRUE;
14719 	ipif_t		*tmp_ipif;
14720 
14721 	ip1dbg(("ipif_up_done(%s:%u)\n",
14722 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14723 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14724 	    ill_t *, ill, ipif_t *, ipif);
14725 
14726 	/* Check if this is a loopback interface */
14727 	if (ipif->ipif_ill->ill_wq == NULL)
14728 		loopback = B_TRUE;
14729 
14730 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14731 
14732 	/*
14733 	 * If all other interfaces for this ill are down or DEPRECATED,
14734 	 * or otherwise unsuitable for source address selection,
14735 	 * reset the src generation numbers to make sure source
14736 	 * address selection gets to take this new ipif into account.
14737 	 * No need to hold ill_lock while traversing the ipif list since
14738 	 * we are writer
14739 	 */
14740 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14741 	    tmp_ipif = tmp_ipif->ipif_next) {
14742 		if (((tmp_ipif->ipif_flags &
14743 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14744 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14745 		    (tmp_ipif == ipif))
14746 			continue;
14747 		/* first useable pre-existing interface */
14748 		update_src_selection = B_FALSE;
14749 		break;
14750 	}
14751 	if (update_src_selection)
14752 		ip_update_source_selection(ill->ill_ipst);
14753 
14754 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14755 		nce_t *loop_nce = NULL;
14756 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14757 
14758 		/*
14759 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14760 		 * ipif_lookup_on_name(), but in the case of zones we can have
14761 		 * several loopback addresses on lo0. So all the interfaces with
14762 		 * loopback addresses need to be marked IRE_LOOPBACK.
14763 		 */
14764 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14765 		    htonl(INADDR_LOOPBACK))
14766 			ipif->ipif_ire_type = IRE_LOOPBACK;
14767 		else
14768 			ipif->ipif_ire_type = IRE_LOCAL;
14769 		if (ill->ill_net_type != IRE_LOOPBACK)
14770 			flags |= NCE_F_PUBLISH;
14771 
14772 		/* add unicast nce for the local addr */
14773 		err = nce_lookup_then_add_v4(ill, NULL,
14774 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14775 		    ND_REACHABLE, &loop_nce);
14776 		/* A shared-IP zone sees EEXIST for lo0:N */
14777 		if (err == 0 || err == EEXIST) {
14778 			ipif->ipif_added_nce = 1;
14779 			loop_nce->nce_ipif_cnt++;
14780 			nce_refrele(loop_nce);
14781 			err = 0;
14782 		} else {
14783 			ASSERT(loop_nce == NULL);
14784 			return (err);
14785 		}
14786 	}
14787 
14788 	/* Create all the IREs associated with this interface */
14789 	err = ipif_add_ires_v4(ipif, loopback);
14790 	if (err != 0) {
14791 		/*
14792 		 * see comments about return value from
14793 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14794 		 */
14795 		if (err != EADDRINUSE) {
14796 			(void) ipif_arp_down(ipif);
14797 		} else {
14798 			/*
14799 			 * Make IPMP aware of the deleted ipif so that
14800 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14801 			 * can be completed. Note that we do not want to
14802 			 * destroy the nce that was created on the ipmp_ill
14803 			 * for the active copy of the duplicate address in
14804 			 * use.
14805 			 */
14806 			if (IS_IPMP(ill))
14807 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14808 			err = EADDRNOTAVAIL;
14809 		}
14810 		return (err);
14811 	}
14812 
14813 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14814 		/* Recover any additional IREs entries for this ill */
14815 		(void) ill_recover_saved_ire(ill);
14816 	}
14817 
14818 	if (ill->ill_need_recover_multicast) {
14819 		/*
14820 		 * Need to recover all multicast memberships in the driver.
14821 		 * This had to be deferred until we had attached.  The same
14822 		 * code exists in ipif_up_done_v6() to recover IPv6
14823 		 * memberships.
14824 		 *
14825 		 * Note that it would be preferable to unconditionally do the
14826 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14827 		 * that since ill_join_allmulti() depends on ill_dl_up being
14828 		 * set, and it is not set until we receive a DL_BIND_ACK after
14829 		 * having called ill_dl_up().
14830 		 */
14831 		ill_recover_multicast(ill);
14832 	}
14833 
14834 	if (ill->ill_ipif_up_count == 1) {
14835 		/*
14836 		 * Since the interface is now up, it may now be active.
14837 		 */
14838 		if (IS_UNDER_IPMP(ill))
14839 			ipmp_ill_refresh_active(ill);
14840 
14841 		/*
14842 		 * If this is an IPMP interface, we may now be able to
14843 		 * establish ARP entries.
14844 		 */
14845 		if (IS_IPMP(ill))
14846 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14847 	}
14848 
14849 	/* Join the allhosts multicast address */
14850 	ipif_multicast_up(ipif);
14851 
14852 	if (!loopback && !update_src_selection &&
14853 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14854 		ip_update_source_selection(ill->ill_ipst);
14855 
14856 	if (!loopback && ipif->ipif_addr_ready) {
14857 		/* Broadcast an address mask reply. */
14858 		ipif_mask_reply(ipif);
14859 	}
14860 	/* Perhaps ilgs should use this ill */
14861 	update_conn_ill(NULL, ill->ill_ipst);
14862 
14863 	/*
14864 	 * This had to be deferred until we had bound.  Tell routing sockets and
14865 	 * others that this interface is up if it looks like the address has
14866 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14867 	 * duplicate address detection to do its thing.
14868 	 */
14869 	if (ipif->ipif_addr_ready)
14870 		ipif_up_notify(ipif);
14871 	return (0);
14872 }
14873 
14874 /*
14875  * Add the IREs associated with the ipif.
14876  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14877  */
14878 static int
14879 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14880 {
14881 	ill_t		*ill = ipif->ipif_ill;
14882 	ip_stack_t	*ipst = ill->ill_ipst;
14883 	ire_t		*ire_array[20];
14884 	ire_t		**irep = ire_array;
14885 	ire_t		**irep1;
14886 	ipaddr_t	net_mask = 0;
14887 	ipaddr_t	subnet_mask, route_mask;
14888 	int		err;
14889 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14890 	ire_t		*ire_if = NULL;
14891 	uchar_t		*gw;
14892 
14893 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14894 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14895 		/*
14896 		 * If we're on a labeled system then make sure that zone-
14897 		 * private addresses have proper remote host database entries.
14898 		 */
14899 		if (is_system_labeled() &&
14900 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14901 		    !tsol_check_interface_address(ipif))
14902 			return (EINVAL);
14903 
14904 		/* Register the source address for __sin6_src_id */
14905 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14906 		    ipif->ipif_zoneid, ipst);
14907 		if (err != 0) {
14908 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14909 			return (err);
14910 		}
14911 
14912 		if (loopback)
14913 			gw = (uchar_t *)&ipif->ipif_lcl_addr;
14914 		else
14915 			gw = NULL;
14916 
14917 		/* If the interface address is set, create the local IRE. */
14918 		ire_local = ire_create(
14919 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14920 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14921 		    gw,					/* gateway */
14922 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14923 		    ipif->ipif_ill,
14924 		    ipif->ipif_zoneid,
14925 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14926 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14927 		    NULL,
14928 		    ipst);
14929 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14930 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14931 		    ipif->ipif_ire_type,
14932 		    ntohl(ipif->ipif_lcl_addr)));
14933 		if (ire_local == NULL) {
14934 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14935 			err = ENOMEM;
14936 			goto bad;
14937 		}
14938 	} else {
14939 		ip1dbg((
14940 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14941 		    ipif->ipif_ire_type,
14942 		    ntohl(ipif->ipif_lcl_addr),
14943 		    (uint_t)ipif->ipif_flags));
14944 	}
14945 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14946 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14947 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14948 	} else {
14949 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14950 	}
14951 
14952 	subnet_mask = ipif->ipif_net_mask;
14953 
14954 	/*
14955 	 * If mask was not specified, use natural netmask of
14956 	 * interface address. Also, store this mask back into the
14957 	 * ipif struct.
14958 	 */
14959 	if (subnet_mask == 0) {
14960 		subnet_mask = net_mask;
14961 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14962 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14963 		    ipif->ipif_v6subnet);
14964 	}
14965 
14966 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14967 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14968 	    ipif->ipif_subnet != INADDR_ANY) {
14969 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14970 
14971 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14972 			route_mask = IP_HOST_MASK;
14973 		} else {
14974 			route_mask = subnet_mask;
14975 		}
14976 
14977 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14978 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14979 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14980 		    ntohl(ipif->ipif_subnet)));
14981 		ire_if = ire_create(
14982 		    (uchar_t *)&ipif->ipif_subnet,
14983 		    (uchar_t *)&route_mask,
14984 		    (uchar_t *)&ipif->ipif_lcl_addr,
14985 		    ill->ill_net_type,
14986 		    ill,
14987 		    ipif->ipif_zoneid,
14988 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14989 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14990 		    NULL,
14991 		    ipst);
14992 		if (ire_if == NULL) {
14993 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14994 			err = ENOMEM;
14995 			goto bad;
14996 		}
14997 	}
14998 
14999 	/*
15000 	 * Create any necessary broadcast IREs.
15001 	 */
15002 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15003 	    !(ipif->ipif_flags & IPIF_NOXMIT))
15004 		irep = ipif_create_bcast_ires(ipif, irep);
15005 
15006 	/* If an earlier ire_create failed, get out now */
15007 	for (irep1 = irep; irep1 > ire_array; ) {
15008 		irep1--;
15009 		if (*irep1 == NULL) {
15010 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15011 			err = ENOMEM;
15012 			goto bad;
15013 		}
15014 	}
15015 
15016 	/*
15017 	 * Need to atomically check for IP address availability under
15018 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
15019 	 * ills or new ipifs can be added while we are checking availability.
15020 	 */
15021 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15022 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
15023 	/* Mark it up, and increment counters. */
15024 	ipif->ipif_flags |= IPIF_UP;
15025 	ill->ill_ipif_up_count++;
15026 	err = ip_addr_availability_check(ipif);
15027 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
15028 	rw_exit(&ipst->ips_ill_g_lock);
15029 
15030 	if (err != 0) {
15031 		/*
15032 		 * Our address may already be up on the same ill. In this case,
15033 		 * the ARP entry for our ipif replaced the one for the other
15034 		 * ipif. So we don't want to delete it (otherwise the other ipif
15035 		 * would be unable to send packets).
15036 		 * ip_addr_availability_check() identifies this case for us and
15037 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15038 		 * which is the expected error code.
15039 		 */
15040 		ill->ill_ipif_up_count--;
15041 		ipif->ipif_flags &= ~IPIF_UP;
15042 		goto bad;
15043 	}
15044 
15045 	/*
15046 	 * Add in all newly created IREs.  ire_create_bcast() has
15047 	 * already checked for duplicates of the IRE_BROADCAST type.
15048 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15049 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15050 	 * a /32 route.
15051 	 */
15052 	if (ire_if != NULL) {
15053 		ire_if = ire_add(ire_if);
15054 		if (ire_if == NULL) {
15055 			err = ENOMEM;
15056 			goto bad2;
15057 		}
15058 #ifdef DEBUG
15059 		ire_refhold_notr(ire_if);
15060 		ire_refrele(ire_if);
15061 #endif
15062 	}
15063 	if (ire_local != NULL) {
15064 		ire_local = ire_add(ire_local);
15065 		if (ire_local == NULL) {
15066 			err = ENOMEM;
15067 			goto bad2;
15068 		}
15069 #ifdef DEBUG
15070 		ire_refhold_notr(ire_local);
15071 		ire_refrele(ire_local);
15072 #endif
15073 	}
15074 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15075 	if (ire_local != NULL)
15076 		ipif->ipif_ire_local = ire_local;
15077 	if (ire_if != NULL)
15078 		ipif->ipif_ire_if = ire_if;
15079 	rw_exit(&ipst->ips_ill_g_lock);
15080 	ire_local = NULL;
15081 	ire_if = NULL;
15082 
15083 	/*
15084 	 * We first add all of them, and if that succeeds we refrele the
15085 	 * bunch. That enables us to delete all of them should any of the
15086 	 * ire_adds fail.
15087 	 */
15088 	for (irep1 = irep; irep1 > ire_array; ) {
15089 		irep1--;
15090 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15091 		*irep1 = ire_add(*irep1);
15092 		if (*irep1 == NULL) {
15093 			err = ENOMEM;
15094 			goto bad2;
15095 		}
15096 	}
15097 
15098 	for (irep1 = irep; irep1 > ire_array; ) {
15099 		irep1--;
15100 		/* refheld by ire_add. */
15101 		if (*irep1 != NULL) {
15102 			ire_refrele(*irep1);
15103 			*irep1 = NULL;
15104 		}
15105 	}
15106 
15107 	if (!loopback) {
15108 		/*
15109 		 * If the broadcast address has been set, make sure it makes
15110 		 * sense based on the interface address.
15111 		 * Only match on ill since we are sharing broadcast addresses.
15112 		 */
15113 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15114 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
15115 			ire_t	*ire;
15116 
15117 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15118 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15119 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15120 
15121 			if (ire == NULL) {
15122 				/*
15123 				 * If there isn't a matching broadcast IRE,
15124 				 * revert to the default for this netmask.
15125 				 */
15126 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
15127 				mutex_enter(&ipif->ipif_ill->ill_lock);
15128 				ipif_set_default(ipif);
15129 				mutex_exit(&ipif->ipif_ill->ill_lock);
15130 			} else {
15131 				ire_refrele(ire);
15132 			}
15133 		}
15134 
15135 	}
15136 	return (0);
15137 
15138 bad2:
15139 	ill->ill_ipif_up_count--;
15140 	ipif->ipif_flags &= ~IPIF_UP;
15141 
15142 bad:
15143 	ip1dbg(("ipif_add_ires: FAILED \n"));
15144 	if (ire_local != NULL)
15145 		ire_delete(ire_local);
15146 	if (ire_if != NULL)
15147 		ire_delete(ire_if);
15148 
15149 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15150 	ire_local = ipif->ipif_ire_local;
15151 	ipif->ipif_ire_local = NULL;
15152 	ire_if = ipif->ipif_ire_if;
15153 	ipif->ipif_ire_if = NULL;
15154 	rw_exit(&ipst->ips_ill_g_lock);
15155 	if (ire_local != NULL) {
15156 		ire_delete(ire_local);
15157 		ire_refrele_notr(ire_local);
15158 	}
15159 	if (ire_if != NULL) {
15160 		ire_delete(ire_if);
15161 		ire_refrele_notr(ire_if);
15162 	}
15163 
15164 	while (irep > ire_array) {
15165 		irep--;
15166 		if (*irep != NULL) {
15167 			ire_delete(*irep);
15168 		}
15169 	}
15170 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15171 
15172 	return (err);
15173 }
15174 
15175 /* Remove all the IREs created by ipif_add_ires_v4 */
15176 void
15177 ipif_delete_ires_v4(ipif_t *ipif)
15178 {
15179 	ill_t		*ill = ipif->ipif_ill;
15180 	ip_stack_t	*ipst = ill->ill_ipst;
15181 	ire_t		*ire;
15182 
15183 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15184 	ire = ipif->ipif_ire_local;
15185 	ipif->ipif_ire_local = NULL;
15186 	rw_exit(&ipst->ips_ill_g_lock);
15187 	if (ire != NULL) {
15188 		/*
15189 		 * Move count to ipif so we don't loose the count due to
15190 		 * a down/up dance.
15191 		 */
15192 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15193 
15194 		ire_delete(ire);
15195 		ire_refrele_notr(ire);
15196 	}
15197 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15198 	ire = ipif->ipif_ire_if;
15199 	ipif->ipif_ire_if = NULL;
15200 	rw_exit(&ipst->ips_ill_g_lock);
15201 	if (ire != NULL) {
15202 		ire_delete(ire);
15203 		ire_refrele_notr(ire);
15204 	}
15205 
15206 	/*
15207 	 * Delete the broadcast IREs.
15208 	 */
15209 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15210 	    !(ipif->ipif_flags & IPIF_NOXMIT))
15211 		ipif_delete_bcast_ires(ipif);
15212 }
15213 
15214 /*
15215  * Checks for availbility of a usable source address (if there is one) when the
15216  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15217  * this selection is done regardless of the destination.
15218  */
15219 boolean_t
15220 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15221     ip_stack_t *ipst)
15222 {
15223 	ipif_t		*ipif = NULL;
15224 	ill_t		*uill;
15225 
15226 	ASSERT(ifindex != 0);
15227 
15228 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15229 	if (uill == NULL)
15230 		return (B_FALSE);
15231 
15232 	mutex_enter(&uill->ill_lock);
15233 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15234 		if (IPIF_IS_CONDEMNED(ipif))
15235 			continue;
15236 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15237 			continue;
15238 		if (!(ipif->ipif_flags & IPIF_UP))
15239 			continue;
15240 		if (ipif->ipif_zoneid != zoneid)
15241 			continue;
15242 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15243 		    ipif->ipif_lcl_addr == INADDR_ANY)
15244 			continue;
15245 		mutex_exit(&uill->ill_lock);
15246 		ill_refrele(uill);
15247 		return (B_TRUE);
15248 	}
15249 	mutex_exit(&uill->ill_lock);
15250 	ill_refrele(uill);
15251 	return (B_FALSE);
15252 }
15253 
15254 /*
15255  * Find an ipif with a good local address on the ill+zoneid.
15256  */
15257 ipif_t *
15258 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15259 {
15260 	ipif_t		*ipif;
15261 
15262 	mutex_enter(&ill->ill_lock);
15263 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15264 		if (IPIF_IS_CONDEMNED(ipif))
15265 			continue;
15266 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15267 			continue;
15268 		if (!(ipif->ipif_flags & IPIF_UP))
15269 			continue;
15270 		if (ipif->ipif_zoneid != zoneid &&
15271 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15272 			continue;
15273 		if (ill->ill_isv6 ?
15274 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15275 		    ipif->ipif_lcl_addr == INADDR_ANY)
15276 			continue;
15277 		ipif_refhold_locked(ipif);
15278 		mutex_exit(&ill->ill_lock);
15279 		return (ipif);
15280 	}
15281 	mutex_exit(&ill->ill_lock);
15282 	return (NULL);
15283 }
15284 
15285 /*
15286  * IP source address type, sorted from worst to best.  For a given type,
15287  * always prefer IP addresses on the same subnet.  All-zones addresses are
15288  * suboptimal because they pose problems with unlabeled destinations.
15289  */
15290 typedef enum {
15291 	IPIF_NONE,
15292 	IPIF_DIFFNET_DEPRECATED,	/* deprecated and different subnet */
15293 	IPIF_SAMENET_DEPRECATED,	/* deprecated and same subnet */
15294 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
15295 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
15296 	IPIF_DIFFNET,			/* normal and different subnet */
15297 	IPIF_SAMENET,			/* normal and same subnet */
15298 	IPIF_LOCALADDR			/* local loopback */
15299 } ipif_type_t;
15300 
15301 /*
15302  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15303  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
15304  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
15305  * the first one, unless IPMP is used in which case we round-robin among them;
15306  * see below for more.
15307  *
15308  * Returns NULL if there is no suitable source address for the ill.
15309  * This only occurs when there is no valid source address for the ill.
15310  */
15311 ipif_t *
15312 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15313     boolean_t allow_usesrc, boolean_t *notreadyp)
15314 {
15315 	ill_t	*usill = NULL;
15316 	ill_t	*ipmp_ill = NULL;
15317 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
15318 	ipif_type_t type, best_type;
15319 	tsol_tpc_t *src_rhtp, *dst_rhtp;
15320 	ip_stack_t *ipst = ill->ill_ipst;
15321 	boolean_t samenet;
15322 
15323 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15324 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15325 		    B_FALSE, ipst);
15326 		if (usill != NULL)
15327 			ill = usill;	/* Select source from usesrc ILL */
15328 		else
15329 			return (NULL);
15330 	}
15331 
15332 	/*
15333 	 * Test addresses should never be used for source address selection,
15334 	 * so if we were passed one, switch to the IPMP meta-interface.
15335 	 */
15336 	if (IS_UNDER_IPMP(ill)) {
15337 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15338 			ill = ipmp_ill;	/* Select source from IPMP ill */
15339 		else
15340 			return (NULL);
15341 	}
15342 
15343 	/*
15344 	 * If we're dealing with an unlabeled destination on a labeled system,
15345 	 * make sure that we ignore source addresses that are incompatible with
15346 	 * the destination's default label.  That destination's default label
15347 	 * must dominate the minimum label on the source address.
15348 	 */
15349 	dst_rhtp = NULL;
15350 	if (is_system_labeled()) {
15351 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15352 		if (dst_rhtp == NULL)
15353 			return (NULL);
15354 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15355 			TPC_RELE(dst_rhtp);
15356 			dst_rhtp = NULL;
15357 		}
15358 	}
15359 
15360 	/*
15361 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15362 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15363 	 * After selecting the right ipif, under ill_lock make sure ipif is
15364 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15365 	 * we retry. Inside the loop we still need to check for CONDEMNED,
15366 	 * but not under a lock.
15367 	 */
15368 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15369 retry:
15370 	/*
15371 	 * For source address selection, we treat the ipif list as circular
15372 	 * and continue until we get back to where we started.  This allows
15373 	 * IPMP to vary source address selection (which improves inbound load
15374 	 * spreading) by caching its last ending point and starting from
15375 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
15376 	 * ills since that can't happen on the IPMP ill.
15377 	 */
15378 	start_ipif = ill->ill_ipif;
15379 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15380 		start_ipif = ill->ill_src_ipif;
15381 
15382 	ipif = start_ipif;
15383 	best_ipif = NULL;
15384 	best_type = IPIF_NONE;
15385 	do {
15386 		if ((next_ipif = ipif->ipif_next) == NULL)
15387 			next_ipif = ill->ill_ipif;
15388 
15389 		if (IPIF_IS_CONDEMNED(ipif))
15390 			continue;
15391 		/* Always skip NOLOCAL and ANYCAST interfaces */
15392 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15393 			continue;
15394 		/* Always skip NOACCEPT interfaces */
15395 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15396 			continue;
15397 		if (!(ipif->ipif_flags & IPIF_UP))
15398 			continue;
15399 
15400 		if (!ipif->ipif_addr_ready) {
15401 			if (notreadyp != NULL)
15402 				*notreadyp = B_TRUE;
15403 			continue;
15404 		}
15405 
15406 		if (zoneid != ALL_ZONES &&
15407 		    ipif->ipif_zoneid != zoneid &&
15408 		    ipif->ipif_zoneid != ALL_ZONES)
15409 			continue;
15410 
15411 		/*
15412 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15413 		 * are not valid as source addresses.
15414 		 */
15415 		if (ipif->ipif_lcl_addr == INADDR_ANY)
15416 			continue;
15417 
15418 		/*
15419 		 * Check compatibility of local address for destination's
15420 		 * default label if we're on a labeled system.	Incompatible
15421 		 * addresses can't be used at all.
15422 		 */
15423 		if (dst_rhtp != NULL) {
15424 			boolean_t incompat;
15425 
15426 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15427 			    IPV4_VERSION, B_FALSE);
15428 			if (src_rhtp == NULL)
15429 				continue;
15430 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15431 			    src_rhtp->tpc_tp.tp_doi !=
15432 			    dst_rhtp->tpc_tp.tp_doi ||
15433 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15434 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15435 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15436 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
15437 			TPC_RELE(src_rhtp);
15438 			if (incompat)
15439 				continue;
15440 		}
15441 
15442 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15443 
15444 		if (ipif->ipif_lcl_addr == dst) {
15445 			type = IPIF_LOCALADDR;
15446 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15447 			type = samenet ? IPIF_SAMENET_DEPRECATED :
15448 			    IPIF_DIFFNET_DEPRECATED;
15449 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
15450 			type = samenet ? IPIF_SAMENET_ALLZONES :
15451 			    IPIF_DIFFNET_ALLZONES;
15452 		} else {
15453 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15454 		}
15455 
15456 		if (type > best_type) {
15457 			best_type = type;
15458 			best_ipif = ipif;
15459 			if (best_type == IPIF_LOCALADDR)
15460 				break; /* can't get better */
15461 		}
15462 	} while ((ipif = next_ipif) != start_ipif);
15463 
15464 	if ((ipif = best_ipif) != NULL) {
15465 		mutex_enter(&ipif->ipif_ill->ill_lock);
15466 		if (IPIF_IS_CONDEMNED(ipif)) {
15467 			mutex_exit(&ipif->ipif_ill->ill_lock);
15468 			goto retry;
15469 		}
15470 		ipif_refhold_locked(ipif);
15471 
15472 		/*
15473 		 * For IPMP, update the source ipif rotor to the next ipif,
15474 		 * provided we can look it up.  (We must not use it if it's
15475 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15476 		 * ipif_free() checked ill_src_ipif.)
15477 		 */
15478 		if (IS_IPMP(ill) && ipif != NULL) {
15479 			next_ipif = ipif->ipif_next;
15480 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15481 				ill->ill_src_ipif = next_ipif;
15482 			else
15483 				ill->ill_src_ipif = NULL;
15484 		}
15485 		mutex_exit(&ipif->ipif_ill->ill_lock);
15486 	}
15487 
15488 	rw_exit(&ipst->ips_ill_g_lock);
15489 	if (usill != NULL)
15490 		ill_refrele(usill);
15491 	if (ipmp_ill != NULL)
15492 		ill_refrele(ipmp_ill);
15493 	if (dst_rhtp != NULL)
15494 		TPC_RELE(dst_rhtp);
15495 
15496 #ifdef DEBUG
15497 	if (ipif == NULL) {
15498 		char buf1[INET6_ADDRSTRLEN];
15499 
15500 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15501 		    ill->ill_name,
15502 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15503 	} else {
15504 		char buf1[INET6_ADDRSTRLEN];
15505 		char buf2[INET6_ADDRSTRLEN];
15506 
15507 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15508 		    ipif->ipif_ill->ill_name,
15509 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15510 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15511 		    buf2, sizeof (buf2))));
15512 	}
15513 #endif /* DEBUG */
15514 	return (ipif);
15515 }
15516 
15517 /*
15518  * Pick a source address based on the destination ill and an optional setsrc
15519  * address.
15520  * The result is stored in srcp. If generation is set, then put the source
15521  * generation number there before we look for the source address (to avoid
15522  * missing changes in the set of source addresses.
15523  * If flagsp is set, then us it to pass back ipif_flags.
15524  *
15525  * If the caller wants to cache the returned source address and detect when
15526  * that might be stale, the caller should pass in a generation argument,
15527  * which the caller can later compare against ips_src_generation
15528  *
15529  * The precedence order for selecting an IPv4 source address is:
15530  *  - RTF_SETSRC on the offlink ire always wins.
15531  *  - If usrsrc is set, swap the ill to be the usesrc one.
15532  *  - If IPMP is used on the ill, select a random address from the most
15533  *    preferred ones below:
15534  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15535  * 2. Not deprecated, not ALL_ZONES
15536  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15537  * 4. Not deprecated, ALL_ZONES
15538  * 5. If onlink destination, same subnet and deprecated
15539  * 6. Deprecated.
15540  *
15541  * We have lower preference for ALL_ZONES IP addresses,
15542  * as they pose problems with unlabeled destinations.
15543  *
15544  * Note that when multiple IP addresses match e.g., #1 we pick
15545  * the first one if IPMP is not in use. With IPMP we randomize.
15546  */
15547 int
15548 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15549     ipaddr_t multicast_ifaddr,
15550     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15551     uint32_t *generation, uint64_t *flagsp)
15552 {
15553 	ipif_t *ipif;
15554 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15555 
15556 	if (flagsp != NULL)
15557 		*flagsp = 0;
15558 
15559 	/*
15560 	 * Need to grab the generation number before we check to
15561 	 * avoid a race with a change to the set of local addresses.
15562 	 * No lock needed since the thread which updates the set of local
15563 	 * addresses use ipif/ill locks and exit those (hence a store memory
15564 	 * barrier) before doing the atomic increase of ips_src_generation.
15565 	 */
15566 	if (generation != NULL) {
15567 		*generation = ipst->ips_src_generation;
15568 	}
15569 
15570 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15571 		*srcp = multicast_ifaddr;
15572 		return (0);
15573 	}
15574 
15575 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15576 	if (setsrc != INADDR_ANY) {
15577 		*srcp = setsrc;
15578 		return (0);
15579 	}
15580 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15581 	if (ipif == NULL) {
15582 		if (notready)
15583 			return (ENETDOWN);
15584 		else
15585 			return (EADDRNOTAVAIL);
15586 	}
15587 	*srcp = ipif->ipif_lcl_addr;
15588 	if (flagsp != NULL)
15589 		*flagsp = ipif->ipif_flags;
15590 	ipif_refrele(ipif);
15591 	return (0);
15592 }
15593 
15594 /* ARGSUSED */
15595 int
15596 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15597     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15598 {
15599 	/*
15600 	 * ill_phyint_reinit merged the v4 and v6 into a single
15601 	 * ipsq.  We might not have been able to complete the
15602 	 * operation in ipif_set_values, if we could not become
15603 	 * exclusive.  If so restart it here.
15604 	 */
15605 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15606 }
15607 
15608 /*
15609  * Can operate on either a module or a driver queue.
15610  * Returns an error if not a module queue.
15611  */
15612 /* ARGSUSED */
15613 int
15614 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15615     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15616 {
15617 	queue_t		*q1 = q;
15618 	char		*cp;
15619 	char		interf_name[LIFNAMSIZ];
15620 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15621 
15622 	if (q->q_next == NULL) {
15623 		ip1dbg((
15624 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15625 		return (EINVAL);
15626 	}
15627 
15628 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15629 		return (EALREADY);
15630 
15631 	do {
15632 		q1 = q1->q_next;
15633 	} while (q1->q_next);
15634 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15635 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15636 
15637 	/*
15638 	 * Here we are not going to delay the ioack until after
15639 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15640 	 * original ioctl message before sending the requests.
15641 	 */
15642 	return (ipif_set_values(q, mp, interf_name, &ppa));
15643 }
15644 
15645 /* ARGSUSED */
15646 int
15647 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15648     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15649 {
15650 	return (ENXIO);
15651 }
15652 
15653 /*
15654  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15655  * `irep'.  Returns a pointer to the next free `irep' entry
15656  * A mirror exists in ipif_delete_bcast_ires().
15657  *
15658  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15659  * done in ire_add.
15660  */
15661 static ire_t **
15662 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15663 {
15664 	ipaddr_t addr;
15665 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15666 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15667 	ill_t *ill = ipif->ipif_ill;
15668 	zoneid_t zoneid = ipif->ipif_zoneid;
15669 
15670 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15671 
15672 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15673 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15674 
15675 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15676 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15677 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15678 
15679 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15680 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15681 
15682 	/*
15683 	 * For backward compatibility, we create net broadcast IREs based on
15684 	 * the old "IP address class system", since some old machines only
15685 	 * respond to these class derived net broadcast.  However, we must not
15686 	 * create these net broadcast IREs if the subnetmask is shorter than
15687 	 * the IP address class based derived netmask.  Otherwise, we may
15688 	 * create a net broadcast address which is the same as an IP address
15689 	 * on the subnet -- and then TCP will refuse to talk to that address.
15690 	 */
15691 	if (netmask < subnetmask) {
15692 		addr = netmask & ipif->ipif_subnet;
15693 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15694 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15695 	}
15696 
15697 	/*
15698 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15699 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15700 	 * created.  Creating these broadcast IREs will only create confusion
15701 	 * as `addr' will be the same as the IP address.
15702 	 */
15703 	if (subnetmask != 0xFFFFFFFF) {
15704 		addr = ipif->ipif_subnet;
15705 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15706 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15707 	}
15708 
15709 	return (irep);
15710 }
15711 
15712 /*
15713  * Mirror of ipif_create_bcast_ires()
15714  */
15715 static void
15716 ipif_delete_bcast_ires(ipif_t *ipif)
15717 {
15718 	ipaddr_t	addr;
15719 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15720 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15721 	ill_t		*ill = ipif->ipif_ill;
15722 	zoneid_t	zoneid = ipif->ipif_zoneid;
15723 	ire_t		*ire;
15724 
15725 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15726 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15727 
15728 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15729 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15730 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15731 
15732 	ire = ire_lookup_bcast(ill, 0, zoneid);
15733 	ASSERT(ire != NULL);
15734 	ire_delete(ire); ire_refrele(ire);
15735 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15736 	ASSERT(ire != NULL);
15737 	ire_delete(ire); ire_refrele(ire);
15738 
15739 	/*
15740 	 * For backward compatibility, we create net broadcast IREs based on
15741 	 * the old "IP address class system", since some old machines only
15742 	 * respond to these class derived net broadcast.  However, we must not
15743 	 * create these net broadcast IREs if the subnetmask is shorter than
15744 	 * the IP address class based derived netmask.  Otherwise, we may
15745 	 * create a net broadcast address which is the same as an IP address
15746 	 * on the subnet -- and then TCP will refuse to talk to that address.
15747 	 */
15748 	if (netmask < subnetmask) {
15749 		addr = netmask & ipif->ipif_subnet;
15750 		ire = ire_lookup_bcast(ill, addr, zoneid);
15751 		ASSERT(ire != NULL);
15752 		ire_delete(ire); ire_refrele(ire);
15753 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15754 		ASSERT(ire != NULL);
15755 		ire_delete(ire); ire_refrele(ire);
15756 	}
15757 
15758 	/*
15759 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15760 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15761 	 * created.  Creating these broadcast IREs will only create confusion
15762 	 * as `addr' will be the same as the IP address.
15763 	 */
15764 	if (subnetmask != 0xFFFFFFFF) {
15765 		addr = ipif->ipif_subnet;
15766 		ire = ire_lookup_bcast(ill, addr, zoneid);
15767 		ASSERT(ire != NULL);
15768 		ire_delete(ire); ire_refrele(ire);
15769 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15770 		ASSERT(ire != NULL);
15771 		ire_delete(ire); ire_refrele(ire);
15772 	}
15773 }
15774 
15775 /*
15776  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15777  * from lifr_flags and the name from lifr_name.
15778  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15779  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15780  * Returns EINPROGRESS when mp has been consumed by queueing it on
15781  * ipx_pending_mp and the ioctl will complete in ip_rput.
15782  *
15783  * Can operate on either a module or a driver queue.
15784  * Returns an error if not a module queue.
15785  */
15786 /* ARGSUSED */
15787 int
15788 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15789     ip_ioctl_cmd_t *ipip, void *if_req)
15790 {
15791 	ill_t	*ill = q->q_ptr;
15792 	phyint_t *phyi;
15793 	ip_stack_t *ipst;
15794 	struct lifreq *lifr = if_req;
15795 	uint64_t new_flags;
15796 
15797 	ASSERT(ipif != NULL);
15798 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15799 
15800 	if (q->q_next == NULL) {
15801 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15802 		return (EINVAL);
15803 	}
15804 
15805 	/*
15806 	 * If we are not writer on 'q' then this interface exists already
15807 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15808 	 * so return EALREADY.
15809 	 */
15810 	if (ill != ipif->ipif_ill)
15811 		return (EALREADY);
15812 
15813 	if (ill->ill_name[0] != '\0')
15814 		return (EALREADY);
15815 
15816 	/*
15817 	 * If there's another ill already with the requested name, ensure
15818 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15819 	 * fuse together two unrelated ills, which will cause chaos.
15820 	 */
15821 	ipst = ill->ill_ipst;
15822 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15823 	    lifr->lifr_name, NULL);
15824 	if (phyi != NULL) {
15825 		ill_t *ill_mate = phyi->phyint_illv4;
15826 
15827 		if (ill_mate == NULL)
15828 			ill_mate = phyi->phyint_illv6;
15829 		ASSERT(ill_mate != NULL);
15830 
15831 		if (ill_mate->ill_media->ip_m_mac_type !=
15832 		    ill->ill_media->ip_m_mac_type) {
15833 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15834 			    "use the same ill name on differing media\n"));
15835 			return (EINVAL);
15836 		}
15837 	}
15838 
15839 	/*
15840 	 * We start off as IFF_IPV4 in ipif_allocate and become
15841 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15842 	 * The only flags that we read from user space are IFF_IPV4,
15843 	 * IFF_IPV6, and IFF_BROADCAST.
15844 	 *
15845 	 * This ill has not been inserted into the global list.
15846 	 * So we are still single threaded and don't need any lock
15847 	 *
15848 	 * Saniy check the flags.
15849 	 */
15850 
15851 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15852 	    ((lifr->lifr_flags & IFF_IPV6) ||
15853 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15854 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15855 		    "or IPv6 i.e., no broadcast \n"));
15856 		return (EINVAL);
15857 	}
15858 
15859 	new_flags =
15860 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15861 
15862 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15863 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15864 		    "IFF_IPV4 or IFF_IPV6\n"));
15865 		return (EINVAL);
15866 	}
15867 
15868 	/*
15869 	 * We always start off as IPv4, so only need to check for IPv6.
15870 	 */
15871 	if ((new_flags & IFF_IPV6) != 0) {
15872 		ill->ill_flags |= ILLF_IPV6;
15873 		ill->ill_flags &= ~ILLF_IPV4;
15874 
15875 		if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15876 			ill->ill_flags |= ILLF_NOLINKLOCAL;
15877 	}
15878 
15879 	if ((new_flags & IFF_BROADCAST) != 0)
15880 		ipif->ipif_flags |= IPIF_BROADCAST;
15881 	else
15882 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15883 
15884 	/* We started off as V4. */
15885 	if (ill->ill_flags & ILLF_IPV6) {
15886 		ill->ill_phyint->phyint_illv6 = ill;
15887 		ill->ill_phyint->phyint_illv4 = NULL;
15888 	}
15889 
15890 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15891 }
15892 
15893 /* ARGSUSED */
15894 int
15895 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15896     ip_ioctl_cmd_t *ipip, void *if_req)
15897 {
15898 	/*
15899 	 * ill_phyint_reinit merged the v4 and v6 into a single
15900 	 * ipsq.  We might not have been able to complete the
15901 	 * slifname in ipif_set_values, if we could not become
15902 	 * exclusive.  If so restart it here
15903 	 */
15904 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15905 }
15906 
15907 /*
15908  * Return a pointer to the ipif which matches the index, IP version type and
15909  * zoneid.
15910  */
15911 ipif_t *
15912 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15913     ip_stack_t *ipst)
15914 {
15915 	ill_t	*ill;
15916 	ipif_t	*ipif = NULL;
15917 
15918 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15919 	if (ill != NULL) {
15920 		mutex_enter(&ill->ill_lock);
15921 		for (ipif = ill->ill_ipif; ipif != NULL;
15922 		    ipif = ipif->ipif_next) {
15923 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15924 			    zoneid == ipif->ipif_zoneid ||
15925 			    ipif->ipif_zoneid == ALL_ZONES)) {
15926 				ipif_refhold_locked(ipif);
15927 				break;
15928 			}
15929 		}
15930 		mutex_exit(&ill->ill_lock);
15931 		ill_refrele(ill);
15932 	}
15933 	return (ipif);
15934 }
15935 
15936 /*
15937  * Change an existing physical interface's index. If the new index
15938  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15939  * Finally, we update other systems which may have a dependence on the
15940  * index value.
15941  */
15942 /* ARGSUSED */
15943 int
15944 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15945     ip_ioctl_cmd_t *ipip, void *ifreq)
15946 {
15947 	ill_t		*ill;
15948 	phyint_t	*phyi;
15949 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15950 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15951 	uint_t	old_index, index;
15952 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15953 	avl_index_t	where;
15954 
15955 	if (ipip->ipi_cmd_type == IF_CMD)
15956 		index = ifr->ifr_index;
15957 	else
15958 		index = lifr->lifr_index;
15959 
15960 	/*
15961 	 * Only allow on physical interface. Also, index zero is illegal.
15962 	 */
15963 	ill = ipif->ipif_ill;
15964 	phyi = ill->ill_phyint;
15965 	if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15966 		return (EINVAL);
15967 	}
15968 
15969 	/* If the index is not changing, no work to do */
15970 	if (phyi->phyint_ifindex == index)
15971 		return (0);
15972 
15973 	/*
15974 	 * Use phyint_exists() to determine if the new interface index
15975 	 * is already in use. If the index is unused then we need to
15976 	 * change the phyint's position in the phyint_list_avl_by_index
15977 	 * tree. If we do not do this, subsequent lookups (using the new
15978 	 * index value) will not find the phyint.
15979 	 */
15980 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15981 	if (phyint_exists(index, ipst)) {
15982 		rw_exit(&ipst->ips_ill_g_lock);
15983 		return (EEXIST);
15984 	}
15985 
15986 	/*
15987 	 * The new index is unused. Set it in the phyint. However we must not
15988 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15989 	 * changes. The event must be bound to old ifindex value.
15990 	 */
15991 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15992 	    &index, sizeof (index));
15993 
15994 	old_index = phyi->phyint_ifindex;
15995 	phyi->phyint_ifindex = index;
15996 
15997 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15998 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15999 	    &index, &where);
16000 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16001 	    phyi, where);
16002 	rw_exit(&ipst->ips_ill_g_lock);
16003 
16004 	/* Update SCTP's ILL list */
16005 	sctp_ill_reindex(ill, old_index);
16006 
16007 	/* Send the routing sockets message */
16008 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16009 	if (ILL_OTHER(ill))
16010 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16011 
16012 	/* Perhaps ilgs should use this ill */
16013 	update_conn_ill(NULL, ill->ill_ipst);
16014 	return (0);
16015 }
16016 
16017 /* ARGSUSED */
16018 int
16019 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16020     ip_ioctl_cmd_t *ipip, void *ifreq)
16021 {
16022 	struct ifreq	*ifr = (struct ifreq *)ifreq;
16023 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16024 
16025 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16026 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16027 	/* Get the interface index */
16028 	if (ipip->ipi_cmd_type == IF_CMD) {
16029 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16030 	} else {
16031 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16032 	}
16033 	return (0);
16034 }
16035 
16036 /* ARGSUSED */
16037 int
16038 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16039     ip_ioctl_cmd_t *ipip, void *ifreq)
16040 {
16041 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16042 
16043 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16044 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16045 	/* Get the interface zone */
16046 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16047 	lifr->lifr_zoneid = ipif->ipif_zoneid;
16048 	return (0);
16049 }
16050 
16051 /*
16052  * Set the zoneid of an interface.
16053  */
16054 /* ARGSUSED */
16055 int
16056 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16057     ip_ioctl_cmd_t *ipip, void *ifreq)
16058 {
16059 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16060 	int err = 0;
16061 	boolean_t need_up = B_FALSE;
16062 	zone_t *zptr;
16063 	zone_status_t status;
16064 	zoneid_t zoneid;
16065 
16066 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16067 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16068 		if (!is_system_labeled())
16069 			return (ENOTSUP);
16070 		zoneid = GLOBAL_ZONEID;
16071 	}
16072 
16073 	/* cannot assign instance zero to a non-global zone */
16074 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16075 		return (ENOTSUP);
16076 
16077 	/*
16078 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
16079 	 * the event of a race with the zone shutdown processing, since IP
16080 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16081 	 * interface will be cleaned up even if the zone is shut down
16082 	 * immediately after the status check. If the interface can't be brought
16083 	 * down right away, and the zone is shut down before the restart
16084 	 * function is called, we resolve the possible races by rechecking the
16085 	 * zone status in the restart function.
16086 	 */
16087 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
16088 		return (EINVAL);
16089 	status = zone_status_get(zptr);
16090 	zone_rele(zptr);
16091 
16092 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16093 		return (EINVAL);
16094 
16095 	if (ipif->ipif_flags & IPIF_UP) {
16096 		/*
16097 		 * If the interface is already marked up,
16098 		 * we call ipif_down which will take care
16099 		 * of ditching any IREs that have been set
16100 		 * up based on the old interface address.
16101 		 */
16102 		err = ipif_logical_down(ipif, q, mp);
16103 		if (err == EINPROGRESS)
16104 			return (err);
16105 		(void) ipif_down_tail(ipif);
16106 		need_up = B_TRUE;
16107 	}
16108 
16109 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16110 	return (err);
16111 }
16112 
16113 static int
16114 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16115     queue_t *q, mblk_t *mp, boolean_t need_up)
16116 {
16117 	int	err = 0;
16118 	ip_stack_t	*ipst;
16119 
16120 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16121 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16122 
16123 	if (CONN_Q(q))
16124 		ipst = CONNQ_TO_IPST(q);
16125 	else
16126 		ipst = ILLQ_TO_IPST(q);
16127 
16128 	/*
16129 	 * For exclusive stacks we don't allow a different zoneid than
16130 	 * global.
16131 	 */
16132 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16133 	    zoneid != GLOBAL_ZONEID)
16134 		return (EINVAL);
16135 
16136 	/* Set the new zone id. */
16137 	ipif->ipif_zoneid = zoneid;
16138 
16139 	/* Update sctp list */
16140 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16141 
16142 	/* The default multicast interface might have changed */
16143 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16144 
16145 	if (need_up) {
16146 		/*
16147 		 * Now bring the interface back up.  If this
16148 		 * is the only IPIF for the ILL, ipif_up
16149 		 * will have to re-bind to the device, so
16150 		 * we may get back EINPROGRESS, in which
16151 		 * case, this IOCTL will get completed in
16152 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
16153 		 */
16154 		err = ipif_up(ipif, q, mp);
16155 	}
16156 	return (err);
16157 }
16158 
16159 /* ARGSUSED */
16160 int
16161 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16162     ip_ioctl_cmd_t *ipip, void *if_req)
16163 {
16164 	struct lifreq *lifr = (struct lifreq *)if_req;
16165 	zoneid_t zoneid;
16166 	zone_t *zptr;
16167 	zone_status_t status;
16168 
16169 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16170 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16171 		zoneid = GLOBAL_ZONEID;
16172 
16173 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16174 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16175 
16176 	/*
16177 	 * We recheck the zone status to resolve the following race condition:
16178 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16179 	 * 2) hme0:1 is up and can't be brought down right away;
16180 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16181 	 * 3) zone "myzone" is halted; the zone status switches to
16182 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16183 	 * the interfaces to remove - hme0:1 is not returned because it's not
16184 	 * yet in "myzone", so it won't be removed;
16185 	 * 4) the restart function for SIOCSLIFZONE is called; without the
16186 	 * status check here, we would have hme0:1 in "myzone" after it's been
16187 	 * destroyed.
16188 	 * Note that if the status check fails, we need to bring the interface
16189 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16190 	 * ipif_up_done[_v6]().
16191 	 */
16192 	status = ZONE_IS_UNINITIALIZED;
16193 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16194 		status = zone_status_get(zptr);
16195 		zone_rele(zptr);
16196 	}
16197 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16198 		if (ipif->ipif_isv6) {
16199 			(void) ipif_up_done_v6(ipif);
16200 		} else {
16201 			(void) ipif_up_done(ipif);
16202 		}
16203 		return (EINVAL);
16204 	}
16205 
16206 	(void) ipif_down_tail(ipif);
16207 
16208 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16209 	    B_TRUE));
16210 }
16211 
16212 /*
16213  * Return the number of addresses on `ill' with one or more of the values
16214  * in `set' set and all of the values in `clear' clear.
16215  */
16216 static uint_t
16217 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16218 {
16219 	ipif_t	*ipif;
16220 	uint_t	cnt = 0;
16221 
16222 	ASSERT(IAM_WRITER_ILL(ill));
16223 
16224 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16225 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16226 			cnt++;
16227 
16228 	return (cnt);
16229 }
16230 
16231 /*
16232  * Return the number of migratable addresses on `ill' that are under
16233  * application control.
16234  */
16235 uint_t
16236 ill_appaddr_cnt(const ill_t *ill)
16237 {
16238 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16239 	    IPIF_NOFAILOVER));
16240 }
16241 
16242 /*
16243  * Return the number of point-to-point addresses on `ill'.
16244  */
16245 uint_t
16246 ill_ptpaddr_cnt(const ill_t *ill)
16247 {
16248 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16249 }
16250 
16251 /* ARGSUSED */
16252 int
16253 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16254     ip_ioctl_cmd_t *ipip, void *ifreq)
16255 {
16256 	struct lifreq	*lifr = ifreq;
16257 
16258 	ASSERT(q->q_next == NULL);
16259 	ASSERT(CONN_Q(q));
16260 
16261 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16262 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16263 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16264 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16265 
16266 	return (0);
16267 }
16268 
16269 /* Find the previous ILL in this usesrc group */
16270 static ill_t *
16271 ill_prev_usesrc(ill_t *uill)
16272 {
16273 	ill_t *ill;
16274 
16275 	for (ill = uill->ill_usesrc_grp_next;
16276 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16277 	    ill = ill->ill_usesrc_grp_next)
16278 		/* do nothing */;
16279 	return (ill);
16280 }
16281 
16282 /*
16283  * Release all members of the usesrc group. This routine is called
16284  * from ill_delete when the interface being unplumbed is the
16285  * group head.
16286  *
16287  * This silently clears the usesrc that ifconfig setup.
16288  * An alternative would be to keep that ifindex, and drop packets on the floor
16289  * since no source address can be selected.
16290  * Even if we keep the current semantics, don't need a lock and a linked list.
16291  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16292  * the one that is being removed. Issue is how we return the usesrc users
16293  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16294  * ill_usesrc_ifindex matching a target ill. We could also do that with an
16295  * ill walk, but the walker would need to insert in the ioctl response.
16296  */
16297 static void
16298 ill_disband_usesrc_group(ill_t *uill)
16299 {
16300 	ill_t *next_ill, *tmp_ill;
16301 	ip_stack_t	*ipst = uill->ill_ipst;
16302 
16303 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16304 	next_ill = uill->ill_usesrc_grp_next;
16305 
16306 	do {
16307 		ASSERT(next_ill != NULL);
16308 		tmp_ill = next_ill->ill_usesrc_grp_next;
16309 		ASSERT(tmp_ill != NULL);
16310 		next_ill->ill_usesrc_grp_next = NULL;
16311 		next_ill->ill_usesrc_ifindex = 0;
16312 		next_ill = tmp_ill;
16313 	} while (next_ill->ill_usesrc_ifindex != 0);
16314 	uill->ill_usesrc_grp_next = NULL;
16315 }
16316 
16317 /*
16318  * Remove the client usesrc ILL from the list and relink to a new list
16319  */
16320 int
16321 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16322 {
16323 	ill_t *ill, *tmp_ill;
16324 	ip_stack_t	*ipst = ucill->ill_ipst;
16325 
16326 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16327 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16328 
16329 	/*
16330 	 * Check if the usesrc client ILL passed in is not already
16331 	 * in use as a usesrc ILL i.e one whose source address is
16332 	 * in use OR a usesrc ILL is not already in use as a usesrc
16333 	 * client ILL
16334 	 */
16335 	if ((ucill->ill_usesrc_ifindex == 0) ||
16336 	    (uill->ill_usesrc_ifindex != 0)) {
16337 		return (-1);
16338 	}
16339 
16340 	ill = ill_prev_usesrc(ucill);
16341 	ASSERT(ill->ill_usesrc_grp_next != NULL);
16342 
16343 	/* Remove from the current list */
16344 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16345 		/* Only two elements in the list */
16346 		ASSERT(ill->ill_usesrc_ifindex == 0);
16347 		ill->ill_usesrc_grp_next = NULL;
16348 	} else {
16349 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16350 	}
16351 
16352 	if (ifindex == 0) {
16353 		ucill->ill_usesrc_ifindex = 0;
16354 		ucill->ill_usesrc_grp_next = NULL;
16355 		return (0);
16356 	}
16357 
16358 	ucill->ill_usesrc_ifindex = ifindex;
16359 	tmp_ill = uill->ill_usesrc_grp_next;
16360 	uill->ill_usesrc_grp_next = ucill;
16361 	ucill->ill_usesrc_grp_next =
16362 	    (tmp_ill != NULL) ? tmp_ill : uill;
16363 	return (0);
16364 }
16365 
16366 /*
16367  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16368  * ip.c for locking details.
16369  */
16370 /* ARGSUSED */
16371 int
16372 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16373     ip_ioctl_cmd_t *ipip, void *ifreq)
16374 {
16375 	struct lifreq *lifr = (struct lifreq *)ifreq;
16376 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16377 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16378 	int err = 0, ret;
16379 	uint_t ifindex;
16380 	ipsq_t *ipsq = NULL;
16381 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16382 
16383 	ASSERT(IAM_WRITER_IPIF(ipif));
16384 	ASSERT(q->q_next == NULL);
16385 	ASSERT(CONN_Q(q));
16386 
16387 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16388 
16389 	ifindex = lifr->lifr_index;
16390 	if (ifindex == 0) {
16391 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16392 			/* non usesrc group interface, nothing to reset */
16393 			return (0);
16394 		}
16395 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16396 		/* valid reset request */
16397 		reset_flg = B_TRUE;
16398 	}
16399 
16400 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16401 	if (usesrc_ill == NULL)
16402 		return (ENXIO);
16403 	if (usesrc_ill == ipif->ipif_ill) {
16404 		ill_refrele(usesrc_ill);
16405 		return (EINVAL);
16406 	}
16407 
16408 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16409 	    NEW_OP, B_TRUE);
16410 	if (ipsq == NULL) {
16411 		err = EINPROGRESS;
16412 		/* Operation enqueued on the ipsq of the usesrc ILL */
16413 		goto done;
16414 	}
16415 
16416 	/* USESRC isn't currently supported with IPMP */
16417 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16418 		err = ENOTSUP;
16419 		goto done;
16420 	}
16421 
16422 	/*
16423 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
16424 	 * used by IPMP underlying interfaces, but someone might think it's
16425 	 * more general and try to use it independently with VNI.)
16426 	 */
16427 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16428 		err = ENOTSUP;
16429 		goto done;
16430 	}
16431 
16432 	/*
16433 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16434 	 * already a client then return EINVAL
16435 	 */
16436 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16437 		err = EINVAL;
16438 		goto done;
16439 	}
16440 
16441 	/*
16442 	 * If the ill_usesrc_ifindex field is already set to what it needs to
16443 	 * be then this is a duplicate operation.
16444 	 */
16445 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16446 		err = 0;
16447 		goto done;
16448 	}
16449 
16450 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16451 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16452 	    usesrc_ill->ill_isv6));
16453 
16454 	/*
16455 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16456 	 * and the ill_usesrc_ifindex fields
16457 	 */
16458 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16459 
16460 	if (reset_flg) {
16461 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16462 		if (ret != 0) {
16463 			err = EINVAL;
16464 		}
16465 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
16466 		goto done;
16467 	}
16468 
16469 	/*
16470 	 * Four possibilities to consider:
16471 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16472 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16473 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16474 	 * 4. Both are part of their respective usesrc groups
16475 	 */
16476 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16477 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16478 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16479 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16480 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16481 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16482 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16483 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16484 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16485 		/* Insert at head of list */
16486 		usesrc_cli_ill->ill_usesrc_grp_next =
16487 		    usesrc_ill->ill_usesrc_grp_next;
16488 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16489 	} else {
16490 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16491 		    ifindex);
16492 		if (ret != 0)
16493 			err = EINVAL;
16494 	}
16495 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
16496 
16497 done:
16498 	if (ipsq != NULL)
16499 		ipsq_exit(ipsq);
16500 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16501 	ill_refrele(usesrc_ill);
16502 
16503 	/* Let conn_ixa caching know that source address selection changed */
16504 	ip_update_source_selection(ipst);
16505 
16506 	return (err);
16507 }
16508 
16509 /* ARGSUSED */
16510 int
16511 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16512     ip_ioctl_cmd_t *ipip, void *if_req)
16513 {
16514 	struct lifreq	*lifr = (struct lifreq *)if_req;
16515 	ill_t		*ill = ipif->ipif_ill;
16516 
16517 	/*
16518 	 * Need a lock since IFF_UP can be set even when there are
16519 	 * references to the ipif.
16520 	 */
16521 	mutex_enter(&ill->ill_lock);
16522 	if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16523 		lifr->lifr_dadstate = DAD_IN_PROGRESS;
16524 	else
16525 		lifr->lifr_dadstate = DAD_DONE;
16526 	mutex_exit(&ill->ill_lock);
16527 	return (0);
16528 }
16529 
16530 /*
16531  * comparison function used by avl.
16532  */
16533 static int
16534 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16535 {
16536 
16537 	uint_t index;
16538 
16539 	ASSERT(phyip != NULL && index_ptr != NULL);
16540 
16541 	index = *((uint_t *)index_ptr);
16542 	/*
16543 	 * let the phyint with the lowest index be on top.
16544 	 */
16545 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16546 		return (1);
16547 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16548 		return (-1);
16549 	return (0);
16550 }
16551 
16552 /*
16553  * comparison function used by avl.
16554  */
16555 static int
16556 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16557 {
16558 	ill_t *ill;
16559 	int res = 0;
16560 
16561 	ASSERT(phyip != NULL && name_ptr != NULL);
16562 
16563 	if (((phyint_t *)phyip)->phyint_illv4)
16564 		ill = ((phyint_t *)phyip)->phyint_illv4;
16565 	else
16566 		ill = ((phyint_t *)phyip)->phyint_illv6;
16567 	ASSERT(ill != NULL);
16568 
16569 	res = strcmp(ill->ill_name, (char *)name_ptr);
16570 	if (res > 0)
16571 		return (1);
16572 	else if (res < 0)
16573 		return (-1);
16574 	return (0);
16575 }
16576 
16577 /*
16578  * This function is called on the unplumb path via ill_glist_delete() when
16579  * there are no ills left on the phyint and thus the phyint can be freed.
16580  */
16581 static void
16582 phyint_free(phyint_t *phyi)
16583 {
16584 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16585 
16586 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16587 
16588 	/*
16589 	 * If this phyint was an IPMP meta-interface, blow away the group.
16590 	 * This is safe to do because all of the illgrps have already been
16591 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16592 	 * If we're cleaning up as a result of failed initialization,
16593 	 * phyint_grp may be NULL.
16594 	 */
16595 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16596 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16597 		ipmp_grp_destroy(phyi->phyint_grp);
16598 		phyi->phyint_grp = NULL;
16599 		rw_exit(&ipst->ips_ipmp_lock);
16600 	}
16601 
16602 	/*
16603 	 * If this interface was under IPMP, take it out of the group.
16604 	 */
16605 	if (phyi->phyint_grp != NULL)
16606 		ipmp_phyint_leave_grp(phyi);
16607 
16608 	/*
16609 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16610 	 * will be freed in ipsq_exit().
16611 	 */
16612 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16613 	phyi->phyint_name[0] = '\0';
16614 
16615 	mi_free(phyi);
16616 }
16617 
16618 /*
16619  * Attach the ill to the phyint structure which can be shared by both
16620  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16621  * function is called from ipif_set_values and ill_lookup_on_name (for
16622  * loopback) where we know the name of the ill. We lookup the ill and if
16623  * there is one present already with the name use that phyint. Otherwise
16624  * reuse the one allocated by ill_init.
16625  */
16626 static void
16627 ill_phyint_reinit(ill_t *ill)
16628 {
16629 	boolean_t isv6 = ill->ill_isv6;
16630 	phyint_t *phyi_old;
16631 	phyint_t *phyi;
16632 	avl_index_t where = 0;
16633 	ill_t	*ill_other = NULL;
16634 	ip_stack_t	*ipst = ill->ill_ipst;
16635 
16636 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16637 
16638 	phyi_old = ill->ill_phyint;
16639 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16640 	    phyi_old->phyint_illv6 == NULL));
16641 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16642 	    phyi_old->phyint_illv4 == NULL));
16643 	ASSERT(phyi_old->phyint_ifindex == 0);
16644 
16645 	/*
16646 	 * Now that our ill has a name, set it in the phyint.
16647 	 */
16648 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16649 
16650 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16651 	    ill->ill_name, &where);
16652 
16653 	/*
16654 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16655 	 *    the global list of ills. So no other thread could have located
16656 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16657 	 * 2. Now locate the other protocol instance of this ill.
16658 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16659 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16660 	 *    of neither ill can change.
16661 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16662 	 *    other ill.
16663 	 * 5. Release all locks.
16664 	 */
16665 
16666 	/*
16667 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16668 	 * we are initializing IPv4.
16669 	 */
16670 	if (phyi != NULL) {
16671 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16672 		ASSERT(ill_other->ill_phyint != NULL);
16673 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16674 		    (!isv6 && ill_other->ill_isv6));
16675 		GRAB_ILL_LOCKS(ill, ill_other);
16676 		/*
16677 		 * We are potentially throwing away phyint_flags which
16678 		 * could be different from the one that we obtain from
16679 		 * ill_other->ill_phyint. But it is okay as we are assuming
16680 		 * that the state maintained within IP is correct.
16681 		 */
16682 		mutex_enter(&phyi->phyint_lock);
16683 		if (isv6) {
16684 			ASSERT(phyi->phyint_illv6 == NULL);
16685 			phyi->phyint_illv6 = ill;
16686 		} else {
16687 			ASSERT(phyi->phyint_illv4 == NULL);
16688 			phyi->phyint_illv4 = ill;
16689 		}
16690 
16691 		/*
16692 		 * Delete the old phyint and make its ipsq eligible
16693 		 * to be freed in ipsq_exit().
16694 		 */
16695 		phyi_old->phyint_illv4 = NULL;
16696 		phyi_old->phyint_illv6 = NULL;
16697 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16698 		phyi_old->phyint_name[0] = '\0';
16699 		mi_free(phyi_old);
16700 	} else {
16701 		mutex_enter(&ill->ill_lock);
16702 		/*
16703 		 * We don't need to acquire any lock, since
16704 		 * the ill is not yet visible globally  and we
16705 		 * have not yet released the ill_g_lock.
16706 		 */
16707 		phyi = phyi_old;
16708 		mutex_enter(&phyi->phyint_lock);
16709 		/* XXX We need a recovery strategy here. */
16710 		if (!phyint_assign_ifindex(phyi, ipst))
16711 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16712 
16713 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16714 		    (void *)phyi, where);
16715 
16716 		(void) avl_find(&ipst->ips_phyint_g_list->
16717 		    phyint_list_avl_by_index,
16718 		    &phyi->phyint_ifindex, &where);
16719 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16720 		    (void *)phyi, where);
16721 	}
16722 
16723 	/*
16724 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16725 	 * pending mp is not affected because that is per ill basis.
16726 	 */
16727 	ill->ill_phyint = phyi;
16728 
16729 	/*
16730 	 * Now that the phyint's ifindex has been assigned, complete the
16731 	 * remaining
16732 	 */
16733 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16734 	if (ill->ill_isv6) {
16735 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16736 		    ill->ill_phyint->phyint_ifindex;
16737 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16738 	} else {
16739 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16740 	}
16741 
16742 	/*
16743 	 * Generate an event within the hooks framework to indicate that
16744 	 * a new interface has just been added to IP.  For this event to
16745 	 * be generated, the network interface must, at least, have an
16746 	 * ifindex assigned to it.  (We don't generate the event for
16747 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16748 	 *
16749 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16750 	 * that the ordering of delivered events to listeners matches the
16751 	 * order of them in the kernel.
16752 	 */
16753 	if (!IS_LOOPBACK(ill)) {
16754 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16755 		    ill->ill_name_length);
16756 	}
16757 	RELEASE_ILL_LOCKS(ill, ill_other);
16758 	mutex_exit(&phyi->phyint_lock);
16759 }
16760 
16761 /*
16762  * Notify any downstream modules of the name of this interface.
16763  * An M_IOCTL is used even though we don't expect a successful reply.
16764  * Any reply message from the driver (presumably an M_IOCNAK) will
16765  * eventually get discarded somewhere upstream.  The message format is
16766  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16767  * to IP.
16768  */
16769 static void
16770 ip_ifname_notify(ill_t *ill, queue_t *q)
16771 {
16772 	mblk_t *mp1, *mp2;
16773 	struct iocblk *iocp;
16774 	struct lifreq *lifr;
16775 
16776 	mp1 = mkiocb(SIOCSLIFNAME);
16777 	if (mp1 == NULL)
16778 		return;
16779 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16780 	if (mp2 == NULL) {
16781 		freeb(mp1);
16782 		return;
16783 	}
16784 
16785 	mp1->b_cont = mp2;
16786 	iocp = (struct iocblk *)mp1->b_rptr;
16787 	iocp->ioc_count = sizeof (struct lifreq);
16788 
16789 	lifr = (struct lifreq *)mp2->b_rptr;
16790 	mp2->b_wptr += sizeof (struct lifreq);
16791 	bzero(lifr, sizeof (struct lifreq));
16792 
16793 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16794 	lifr->lifr_ppa = ill->ill_ppa;
16795 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16796 
16797 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16798 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16799 	putnext(q, mp1);
16800 }
16801 
16802 static int
16803 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16804 {
16805 	int		err;
16806 	ip_stack_t	*ipst = ill->ill_ipst;
16807 	phyint_t	*phyi = ill->ill_phyint;
16808 
16809 	/*
16810 	 * Now that ill_name is set, the configuration for the IPMP
16811 	 * meta-interface can be performed.
16812 	 */
16813 	if (IS_IPMP(ill)) {
16814 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16815 		/*
16816 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16817 		 * meta-interface and we need to create the IPMP group.
16818 		 */
16819 		if (phyi->phyint_grp == NULL) {
16820 			/*
16821 			 * If someone has renamed another IPMP group to have
16822 			 * the same name as our interface, bail.
16823 			 */
16824 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16825 				rw_exit(&ipst->ips_ipmp_lock);
16826 				return (EEXIST);
16827 			}
16828 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16829 			if (phyi->phyint_grp == NULL) {
16830 				rw_exit(&ipst->ips_ipmp_lock);
16831 				return (ENOMEM);
16832 			}
16833 		}
16834 		rw_exit(&ipst->ips_ipmp_lock);
16835 	}
16836 
16837 	/* Tell downstream modules where they are. */
16838 	ip_ifname_notify(ill, q);
16839 
16840 	/*
16841 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16842 	 * Error cases are ENOMEM ...
16843 	 */
16844 	err = ill_dl_phys(ill, ipif, mp, q);
16845 
16846 	if (ill->ill_isv6) {
16847 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16848 		if (ipst->ips_mld_slowtimeout_id == 0) {
16849 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16850 			    (void *)ipst,
16851 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16852 		}
16853 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16854 	} else {
16855 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16856 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16857 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16858 			    (void *)ipst,
16859 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16860 		}
16861 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16862 	}
16863 
16864 	return (err);
16865 }
16866 
16867 /*
16868  * Common routine for ppa and ifname setting. Should be called exclusive.
16869  *
16870  * Returns EINPROGRESS when mp has been consumed by queueing it on
16871  * ipx_pending_mp and the ioctl will complete in ip_rput.
16872  *
16873  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16874  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16875  * For SLIFNAME, we pass these values back to the userland.
16876  */
16877 static int
16878 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16879 {
16880 	ill_t	*ill;
16881 	ipif_t	*ipif;
16882 	ipsq_t	*ipsq;
16883 	char	*ppa_ptr;
16884 	char	*old_ptr;
16885 	char	old_char;
16886 	int	error;
16887 	ip_stack_t	*ipst;
16888 
16889 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16890 	ASSERT(q->q_next != NULL);
16891 	ASSERT(interf_name != NULL);
16892 
16893 	ill = (ill_t *)q->q_ptr;
16894 	ipst = ill->ill_ipst;
16895 
16896 	ASSERT(ill->ill_ipst != NULL);
16897 	ASSERT(ill->ill_name[0] == '\0');
16898 	ASSERT(IAM_WRITER_ILL(ill));
16899 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16900 	ASSERT(ill->ill_ppa == UINT_MAX);
16901 
16902 	ill->ill_defend_start = ill->ill_defend_count = 0;
16903 	/* The ppa is sent down by ifconfig or is chosen */
16904 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16905 		return (EINVAL);
16906 	}
16907 
16908 	/*
16909 	 * make sure ppa passed in is same as ppa in the name.
16910 	 * This check is not made when ppa == UINT_MAX in that case ppa
16911 	 * in the name could be anything. System will choose a ppa and
16912 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16913 	 */
16914 	if (*new_ppa_ptr != UINT_MAX) {
16915 		/* stoi changes the pointer */
16916 		old_ptr = ppa_ptr;
16917 		/*
16918 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16919 		 * (they don't have an externally visible ppa).  We assign one
16920 		 * here so that we can manage the interface.  Note that in
16921 		 * the past this value was always 0 for DLPI 1 drivers.
16922 		 */
16923 		if (*new_ppa_ptr == 0)
16924 			*new_ppa_ptr = stoi(&old_ptr);
16925 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16926 			return (EINVAL);
16927 	}
16928 	/*
16929 	 * terminate string before ppa
16930 	 * save char at that location.
16931 	 */
16932 	old_char = ppa_ptr[0];
16933 	ppa_ptr[0] = '\0';
16934 
16935 	ill->ill_ppa = *new_ppa_ptr;
16936 	/*
16937 	 * Finish as much work now as possible before calling ill_glist_insert
16938 	 * which makes the ill globally visible and also merges it with the
16939 	 * other protocol instance of this phyint. The remaining work is
16940 	 * done after entering the ipsq which may happen sometime later.
16941 	 */
16942 	ipif = ill->ill_ipif;
16943 
16944 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16945 	ipif_assign_seqid(ipif);
16946 
16947 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16948 		ill->ill_flags |= ILLF_IPV4;
16949 
16950 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16951 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16952 
16953 	if (ill->ill_flags & ILLF_IPV6) {
16954 
16955 		ill->ill_isv6 = B_TRUE;
16956 		ill_set_inputfn(ill);
16957 		if (ill->ill_rq != NULL) {
16958 			ill->ill_rq->q_qinfo = &iprinitv6;
16959 		}
16960 
16961 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16962 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16963 		ipif->ipif_v6subnet = ipv6_all_zeros;
16964 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16965 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16966 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16967 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16968 		/*
16969 		 * point-to-point or Non-mulicast capable
16970 		 * interfaces won't do NUD unless explicitly
16971 		 * configured to do so.
16972 		 */
16973 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16974 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16975 			ill->ill_flags |= ILLF_NONUD;
16976 		}
16977 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16978 		if (ill->ill_flags & ILLF_NOARP) {
16979 			/*
16980 			 * Note: xresolv interfaces will eventually need
16981 			 * NOARP set here as well, but that will require
16982 			 * those external resolvers to have some
16983 			 * knowledge of that flag and act appropriately.
16984 			 * Not to be changed at present.
16985 			 */
16986 			ill->ill_flags &= ~ILLF_NOARP;
16987 		}
16988 		/*
16989 		 * Set the ILLF_ROUTER flag according to the global
16990 		 * IPv6 forwarding policy.
16991 		 */
16992 		if (ipst->ips_ipv6_forwarding != 0)
16993 			ill->ill_flags |= ILLF_ROUTER;
16994 	} else if (ill->ill_flags & ILLF_IPV4) {
16995 		ill->ill_isv6 = B_FALSE;
16996 		ill_set_inputfn(ill);
16997 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16998 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16999 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
17000 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
17001 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
17002 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17003 		/*
17004 		 * Set the ILLF_ROUTER flag according to the global
17005 		 * IPv4 forwarding policy.
17006 		 */
17007 		if (ipst->ips_ip_forwarding != 0)
17008 			ill->ill_flags |= ILLF_ROUTER;
17009 	}
17010 
17011 	ASSERT(ill->ill_phyint != NULL);
17012 
17013 	/*
17014 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17015 	 * be completed in ill_glist_insert -> ill_phyint_reinit
17016 	 */
17017 	if (!ill_allocate_mibs(ill))
17018 		return (ENOMEM);
17019 
17020 	/*
17021 	 * Pick a default sap until we get the DL_INFO_ACK back from
17022 	 * the driver.
17023 	 */
17024 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17025 	    ill->ill_media->ip_m_ipv4sap;
17026 
17027 	ill->ill_ifname_pending = 1;
17028 	ill->ill_ifname_pending_err = 0;
17029 
17030 	/*
17031 	 * When the first ipif comes up in ipif_up_done(), multicast groups
17032 	 * that were joined while this ill was not bound to the DLPI link need
17033 	 * to be recovered by ill_recover_multicast().
17034 	 */
17035 	ill->ill_need_recover_multicast = 1;
17036 
17037 	ill_refhold(ill);
17038 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17039 	if ((error = ill_glist_insert(ill, interf_name,
17040 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17041 		ill->ill_ppa = UINT_MAX;
17042 		ill->ill_name[0] = '\0';
17043 		/*
17044 		 * undo null termination done above.
17045 		 */
17046 		ppa_ptr[0] = old_char;
17047 		rw_exit(&ipst->ips_ill_g_lock);
17048 		ill_refrele(ill);
17049 		return (error);
17050 	}
17051 
17052 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17053 
17054 	/*
17055 	 * When we return the buffer pointed to by interf_name should contain
17056 	 * the same name as in ill_name.
17057 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17058 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17059 	 * so copy full name and update the ppa ptr.
17060 	 * When ppa passed in != UINT_MAX all values are correct just undo
17061 	 * null termination, this saves a bcopy.
17062 	 */
17063 	if (*new_ppa_ptr == UINT_MAX) {
17064 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17065 		*new_ppa_ptr = ill->ill_ppa;
17066 	} else {
17067 		/*
17068 		 * undo null termination done above.
17069 		 */
17070 		ppa_ptr[0] = old_char;
17071 	}
17072 
17073 	/* Let SCTP know about this ILL */
17074 	sctp_update_ill(ill, SCTP_ILL_INSERT);
17075 
17076 	/*
17077 	 * ill_glist_insert has made the ill visible globally, and
17078 	 * ill_phyint_reinit could have changed the ipsq. At this point,
17079 	 * we need to hold the ips_ill_g_lock across the call to enter the
17080 	 * ipsq to enforce atomicity and prevent reordering. In the event
17081 	 * the ipsq has changed, and if the new ipsq is currently busy,
17082 	 * we need to make sure that this half-completed ioctl is ahead of
17083 	 * any subsequent ioctl. We achieve this by not dropping the
17084 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
17085 	 * ensuring that new ioctls can't start.
17086 	 */
17087 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17088 	    B_TRUE);
17089 
17090 	rw_exit(&ipst->ips_ill_g_lock);
17091 	ill_refrele(ill);
17092 	if (ipsq == NULL)
17093 		return (EINPROGRESS);
17094 
17095 	/*
17096 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17097 	 */
17098 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17099 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17100 	else
17101 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17102 
17103 	error = ipif_set_values_tail(ill, ipif, mp, q);
17104 	ipsq_exit(ipsq);
17105 	if (error != 0 && error != EINPROGRESS) {
17106 		/*
17107 		 * restore previous values
17108 		 */
17109 		ill->ill_isv6 = B_FALSE;
17110 		ill_set_inputfn(ill);
17111 	}
17112 	return (error);
17113 }
17114 
17115 void
17116 ipif_init(ip_stack_t *ipst)
17117 {
17118 	int i;
17119 
17120 	for (i = 0; i < MAX_G_HEADS; i++) {
17121 		ipst->ips_ill_g_heads[i].ill_g_list_head =
17122 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17123 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
17124 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17125 	}
17126 
17127 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17128 	    ill_phyint_compare_index,
17129 	    sizeof (phyint_t),
17130 	    offsetof(struct phyint, phyint_avl_by_index));
17131 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17132 	    ill_phyint_compare_name,
17133 	    sizeof (phyint_t),
17134 	    offsetof(struct phyint, phyint_avl_by_name));
17135 }
17136 
17137 /*
17138  * Save enough information so that we can recreate the IRE if
17139  * the interface goes down and then up.
17140  */
17141 void
17142 ill_save_ire(ill_t *ill, ire_t *ire)
17143 {
17144 	mblk_t	*save_mp;
17145 
17146 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17147 	if (save_mp != NULL) {
17148 		ifrt_t	*ifrt;
17149 
17150 		save_mp->b_wptr += sizeof (ifrt_t);
17151 		ifrt = (ifrt_t *)save_mp->b_rptr;
17152 		bzero(ifrt, sizeof (ifrt_t));
17153 		ifrt->ifrt_type = ire->ire_type;
17154 		if (ire->ire_ipversion == IPV4_VERSION) {
17155 			ASSERT(!ill->ill_isv6);
17156 			ifrt->ifrt_addr = ire->ire_addr;
17157 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17158 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17159 			ifrt->ifrt_mask = ire->ire_mask;
17160 		} else {
17161 			ASSERT(ill->ill_isv6);
17162 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
17163 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17164 			mutex_enter(&ire->ire_lock);
17165 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17166 			mutex_exit(&ire->ire_lock);
17167 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17168 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
17169 		}
17170 		ifrt->ifrt_flags = ire->ire_flags;
17171 		ifrt->ifrt_zoneid = ire->ire_zoneid;
17172 		mutex_enter(&ill->ill_saved_ire_lock);
17173 		save_mp->b_cont = ill->ill_saved_ire_mp;
17174 		ill->ill_saved_ire_mp = save_mp;
17175 		ill->ill_saved_ire_cnt++;
17176 		mutex_exit(&ill->ill_saved_ire_lock);
17177 	}
17178 }
17179 
17180 /*
17181  * Remove one entry from ill_saved_ire_mp.
17182  */
17183 void
17184 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17185 {
17186 	mblk_t	**mpp;
17187 	mblk_t	*mp;
17188 	ifrt_t	*ifrt;
17189 
17190 	/* Remove from ill_saved_ire_mp list if it is there */
17191 	mutex_enter(&ill->ill_saved_ire_lock);
17192 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17193 	    mpp = &(*mpp)->b_cont) {
17194 		in6_addr_t	gw_addr_v6;
17195 
17196 		/*
17197 		 * On a given ill, the tuple of address, gateway, mask,
17198 		 * ire_type, and zoneid is unique for each saved IRE.
17199 		 */
17200 		mp = *mpp;
17201 		ifrt = (ifrt_t *)mp->b_rptr;
17202 		/* ire_gateway_addr_v6 can change - need lock */
17203 		mutex_enter(&ire->ire_lock);
17204 		gw_addr_v6 = ire->ire_gateway_addr_v6;
17205 		mutex_exit(&ire->ire_lock);
17206 
17207 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17208 		    ifrt->ifrt_type != ire->ire_type)
17209 			continue;
17210 
17211 		if (ill->ill_isv6 ?
17212 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17213 		    &ire->ire_addr_v6) &&
17214 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17215 		    &gw_addr_v6) &&
17216 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17217 		    &ire->ire_mask_v6)) :
17218 		    (ifrt->ifrt_addr == ire->ire_addr &&
17219 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17220 		    ifrt->ifrt_mask == ire->ire_mask)) {
17221 			*mpp = mp->b_cont;
17222 			ill->ill_saved_ire_cnt--;
17223 			freeb(mp);
17224 			break;
17225 		}
17226 	}
17227 	mutex_exit(&ill->ill_saved_ire_lock);
17228 }
17229 
17230 /*
17231  * IP multirouting broadcast routes handling
17232  * Append CGTP broadcast IREs to regular ones created
17233  * at ifconfig time.
17234  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17235  * the destination and the gateway are broadcast addresses.
17236  * The caller has verified that the destination is an IRE_BROADCAST and that
17237  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17238  * we create a MULTIRT IRE_BROADCAST.
17239  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17240  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17241  */
17242 static void
17243 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17244 {
17245 	ire_t *ire_prim;
17246 
17247 	ASSERT(ire != NULL);
17248 
17249 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17250 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17251 	    NULL);
17252 	if (ire_prim != NULL) {
17253 		/*
17254 		 * We are in the special case of broadcasts for
17255 		 * CGTP. We add an IRE_BROADCAST that holds
17256 		 * the RTF_MULTIRT flag, the destination
17257 		 * address and the low level
17258 		 * info of ire_prim. In other words, CGTP
17259 		 * broadcast is added to the redundant ipif.
17260 		 */
17261 		ill_t *ill_prim;
17262 		ire_t  *bcast_ire;
17263 
17264 		ill_prim = ire_prim->ire_ill;
17265 
17266 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17267 		    (void *)ire_prim, (void *)ill_prim));
17268 
17269 		bcast_ire = ire_create(
17270 		    (uchar_t *)&ire->ire_addr,
17271 		    (uchar_t *)&ip_g_all_ones,
17272 		    (uchar_t *)&ire->ire_gateway_addr,
17273 		    IRE_BROADCAST,
17274 		    ill_prim,
17275 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
17276 		    ire->ire_flags | RTF_KERNEL,
17277 		    NULL,
17278 		    ipst);
17279 
17280 		/*
17281 		 * Here we assume that ire_add does head insertion so that
17282 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17283 		 */
17284 		if (bcast_ire != NULL) {
17285 			if (ire->ire_flags & RTF_SETSRC) {
17286 				bcast_ire->ire_setsrc_addr =
17287 				    ire->ire_setsrc_addr;
17288 			}
17289 			bcast_ire = ire_add(bcast_ire);
17290 			if (bcast_ire != NULL) {
17291 				ip2dbg(("ip_cgtp_filter_bcast_add: "
17292 				    "added bcast_ire %p\n",
17293 				    (void *)bcast_ire));
17294 
17295 				ill_save_ire(ill_prim, bcast_ire);
17296 				ire_refrele(bcast_ire);
17297 			}
17298 		}
17299 		ire_refrele(ire_prim);
17300 	}
17301 }
17302 
17303 /*
17304  * IP multirouting broadcast routes handling
17305  * Remove the broadcast ire.
17306  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17307  * the destination and the gateway are broadcast addresses.
17308  * The caller has only verified that RTF_MULTIRT was set. We check
17309  * that the destination is broadcast and that the gateway is a broadcast
17310  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17311  */
17312 static void
17313 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17314 {
17315 	ASSERT(ire != NULL);
17316 
17317 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17318 		ire_t *ire_prim;
17319 
17320 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17321 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17322 		    ipst, NULL);
17323 		if (ire_prim != NULL) {
17324 			ill_t *ill_prim;
17325 			ire_t  *bcast_ire;
17326 
17327 			ill_prim = ire_prim->ire_ill;
17328 
17329 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
17330 			    "ire_prim %p, ill_prim %p\n",
17331 			    (void *)ire_prim, (void *)ill_prim));
17332 
17333 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17334 			    ire->ire_gateway_addr, IRE_BROADCAST,
17335 			    ill_prim, ALL_ZONES, NULL,
17336 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17337 			    MATCH_IRE_MASK, 0, ipst, NULL);
17338 
17339 			if (bcast_ire != NULL) {
17340 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
17341 				    "looked up bcast_ire %p\n",
17342 				    (void *)bcast_ire));
17343 				ill_remove_saved_ire(bcast_ire->ire_ill,
17344 				    bcast_ire);
17345 				ire_delete(bcast_ire);
17346 				ire_refrele(bcast_ire);
17347 			}
17348 			ire_refrele(ire_prim);
17349 		}
17350 	}
17351 }
17352 
17353 /*
17354  * Derive an interface id from the link layer address.
17355  * Knows about IEEE 802 and IEEE EUI-64 mappings.
17356  */
17357 static void
17358 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17359 {
17360 	char		*addr;
17361 
17362 	/*
17363 	 * Note that some IPv6 interfaces get plumbed over links that claim to
17364 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17365 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
17366 	 * interface ID on IPv6 interfaces above links that actually have real
17367 	 * Ethernet addresses.
17368 	 */
17369 	if (ill->ill_phys_addr_length == ETHERADDRL) {
17370 		/* Form EUI-64 like address */
17371 		addr = (char *)&v6addr->s6_addr32[2];
17372 		bcopy(ill->ill_phys_addr, addr, 3);
17373 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
17374 		addr[3] = (char)0xff;
17375 		addr[4] = (char)0xfe;
17376 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17377 	}
17378 }
17379 
17380 /* ARGSUSED */
17381 static void
17382 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17383 {
17384 }
17385 
17386 typedef struct ipmp_ifcookie {
17387 	uint32_t	ic_hostid;
17388 	char		ic_ifname[LIFNAMSIZ];
17389 	char		ic_zonename[ZONENAME_MAX];
17390 } ipmp_ifcookie_t;
17391 
17392 /*
17393  * Construct a pseudo-random interface ID for the IPMP interface that's both
17394  * predictable and (almost) guaranteed to be unique.
17395  */
17396 static void
17397 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17398 {
17399 	zone_t		*zp;
17400 	uint8_t		*addr;
17401 	uchar_t		hash[16];
17402 	ulong_t		hostid;
17403 	MD5_CTX		ctx;
17404 	ipmp_ifcookie_t	ic = { 0 };
17405 
17406 	ASSERT(IS_IPMP(ill));
17407 
17408 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17409 	ic.ic_hostid = htonl((uint32_t)hostid);
17410 
17411 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17412 
17413 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17414 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17415 		zone_rele(zp);
17416 	}
17417 
17418 	MD5Init(&ctx);
17419 	MD5Update(&ctx, &ic, sizeof (ic));
17420 	MD5Final(hash, &ctx);
17421 
17422 	/*
17423 	 * Map the hash to an interface ID per the basic approach in RFC3041.
17424 	 */
17425 	addr = &v6addr->s6_addr8[8];
17426 	bcopy(hash + 8, addr, sizeof (uint64_t));
17427 	addr[0] &= ~0x2;				/* set local bit */
17428 }
17429 
17430 /*
17431  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17432  */
17433 static void
17434 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17435 {
17436 	phyint_t *phyi = ill->ill_phyint;
17437 
17438 	/*
17439 	 * Check PHYI_MULTI_BCAST and length of physical
17440 	 * address to determine if we use the mapping or the
17441 	 * broadcast address.
17442 	 */
17443 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17444 	    ill->ill_phys_addr_length != ETHERADDRL) {
17445 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17446 		return;
17447 	}
17448 	m_physaddr[0] = 0x33;
17449 	m_physaddr[1] = 0x33;
17450 	m_physaddr[2] = m_ip6addr[12];
17451 	m_physaddr[3] = m_ip6addr[13];
17452 	m_physaddr[4] = m_ip6addr[14];
17453 	m_physaddr[5] = m_ip6addr[15];
17454 }
17455 
17456 /*
17457  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17458  */
17459 static void
17460 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17461 {
17462 	phyint_t *phyi = ill->ill_phyint;
17463 
17464 	/*
17465 	 * Check PHYI_MULTI_BCAST and length of physical
17466 	 * address to determine if we use the mapping or the
17467 	 * broadcast address.
17468 	 */
17469 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17470 	    ill->ill_phys_addr_length != ETHERADDRL) {
17471 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17472 		return;
17473 	}
17474 	m_physaddr[0] = 0x01;
17475 	m_physaddr[1] = 0x00;
17476 	m_physaddr[2] = 0x5e;
17477 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
17478 	m_physaddr[4] = m_ipaddr[2];
17479 	m_physaddr[5] = m_ipaddr[3];
17480 }
17481 
17482 /* ARGSUSED */
17483 static void
17484 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17485 {
17486 	/*
17487 	 * for the MULTI_BCAST case and other cases when we want to
17488 	 * use the link-layer broadcast address for multicast.
17489 	 */
17490 	uint8_t	*bphys_addr;
17491 	dl_unitdata_req_t *dlur;
17492 
17493 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17494 	if (ill->ill_sap_length < 0) {
17495 		bphys_addr = (uchar_t *)dlur +
17496 		    dlur->dl_dest_addr_offset;
17497 	} else  {
17498 		bphys_addr = (uchar_t *)dlur +
17499 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
17500 	}
17501 
17502 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17503 }
17504 
17505 /*
17506  * Derive IPoIB interface id from the link layer address.
17507  */
17508 static void
17509 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17510 {
17511 	char		*addr;
17512 
17513 	ASSERT(ill->ill_phys_addr_length == 20);
17514 	addr = (char *)&v6addr->s6_addr32[2];
17515 	bcopy(ill->ill_phys_addr + 12, addr, 8);
17516 	/*
17517 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17518 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17519 	 * rules. In these cases, the IBA considers these GUIDs to be in
17520 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17521 	 * required; vendors are required not to assign global EUI-64's
17522 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
17523 	 * of the interface identifier. Whether the GUID is in modified
17524 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17525 	 * bit set to 1.
17526 	 */
17527 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
17528 }
17529 
17530 /*
17531  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17532  * Note on mapping from multicast IP addresses to IPoIB multicast link
17533  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17534  * The format of an IPoIB multicast address is:
17535  *
17536  *  4 byte QPN      Scope Sign.  Pkey
17537  * +--------------------------------------------+
17538  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17539  * +--------------------------------------------+
17540  *
17541  * The Scope and Pkey components are properties of the IBA port and
17542  * network interface. They can be ascertained from the broadcast address.
17543  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17544  */
17545 static void
17546 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17547 {
17548 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17549 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17550 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17551 	uint8_t	*bphys_addr;
17552 	dl_unitdata_req_t *dlur;
17553 
17554 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17555 
17556 	/*
17557 	 * RFC 4391: IPv4 MGID is 28-bit long.
17558 	 */
17559 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17560 	m_physaddr[17] = m_ipaddr[1];
17561 	m_physaddr[18] = m_ipaddr[2];
17562 	m_physaddr[19] = m_ipaddr[3];
17563 
17564 
17565 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17566 	if (ill->ill_sap_length < 0) {
17567 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17568 	} else  {
17569 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17570 		    ill->ill_sap_length;
17571 	}
17572 	/*
17573 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17574 	 */
17575 	m_physaddr[5] = bphys_addr[5];
17576 	m_physaddr[8] = bphys_addr[8];
17577 	m_physaddr[9] = bphys_addr[9];
17578 }
17579 
17580 static void
17581 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17582 {
17583 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17584 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17585 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17586 	uint8_t	*bphys_addr;
17587 	dl_unitdata_req_t *dlur;
17588 
17589 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17590 
17591 	/*
17592 	 * RFC 4391: IPv4 MGID is 80-bit long.
17593 	 */
17594 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17595 
17596 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17597 	if (ill->ill_sap_length < 0) {
17598 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17599 	} else  {
17600 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17601 		    ill->ill_sap_length;
17602 	}
17603 	/*
17604 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17605 	 */
17606 	m_physaddr[5] = bphys_addr[5];
17607 	m_physaddr[8] = bphys_addr[8];
17608 	m_physaddr[9] = bphys_addr[9];
17609 }
17610 
17611 /*
17612  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17613  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17614  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17615  * of RFC4213.
17616  */
17617 static void
17618 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17619 {
17620 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17621 	v6addr->s6_addr32[2] = 0;
17622 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17623 }
17624 
17625 /*
17626  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17627  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17628  * id.
17629  */
17630 static void
17631 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17632 {
17633 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17634 
17635 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17636 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17637 }
17638 
17639 static void
17640 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17641 {
17642 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17643 }
17644 
17645 static void
17646 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17647 {
17648 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17649 }
17650 
17651 static void
17652 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17653 {
17654 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17655 }
17656 
17657 static void
17658 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17659 {
17660 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17661 }
17662 
17663 /*
17664  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17665  * Returns an held ill, or NULL.
17666  */
17667 ill_t *
17668 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17669     ip_stack_t *ipst)
17670 {
17671 	ill_t	*ill;
17672 	ipif_t	*ipif;
17673 
17674 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17675 	if (ill == NULL)
17676 		return (NULL);
17677 
17678 	mutex_enter(&ill->ill_lock);
17679 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17680 		if (IPIF_IS_CONDEMNED(ipif))
17681 			continue;
17682 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17683 		    ipif->ipif_zoneid != ALL_ZONES)
17684 			continue;
17685 
17686 		mutex_exit(&ill->ill_lock);
17687 		return (ill);
17688 	}
17689 	mutex_exit(&ill->ill_lock);
17690 	ill_refrele(ill);
17691 	return (NULL);
17692 }
17693 
17694 /*
17695  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17696  * If a pointer to an ipif_t is returned then the caller will need to do
17697  * an ill_refrele().
17698  */
17699 ipif_t *
17700 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17701     ip_stack_t *ipst)
17702 {
17703 	ipif_t *ipif;
17704 	ill_t *ill;
17705 
17706 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17707 	if (ill == NULL)
17708 		return (NULL);
17709 
17710 	mutex_enter(&ill->ill_lock);
17711 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17712 		mutex_exit(&ill->ill_lock);
17713 		ill_refrele(ill);
17714 		return (NULL);
17715 	}
17716 
17717 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17718 		if (!IPIF_CAN_LOOKUP(ipif))
17719 			continue;
17720 		if (lifidx == ipif->ipif_id) {
17721 			ipif_refhold_locked(ipif);
17722 			break;
17723 		}
17724 	}
17725 
17726 	mutex_exit(&ill->ill_lock);
17727 	ill_refrele(ill);
17728 	return (ipif);
17729 }
17730 
17731 /*
17732  * Set ill_inputfn based on the current know state.
17733  * This needs to be called when any of the factors taken into
17734  * account changes.
17735  */
17736 void
17737 ill_set_inputfn(ill_t *ill)
17738 {
17739 	ip_stack_t	*ipst = ill->ill_ipst;
17740 
17741 	if (ill->ill_isv6) {
17742 		if (is_system_labeled())
17743 			ill->ill_inputfn = ill_input_full_v6;
17744 		else
17745 			ill->ill_inputfn = ill_input_short_v6;
17746 	} else {
17747 		if (is_system_labeled())
17748 			ill->ill_inputfn = ill_input_full_v4;
17749 		else if (ill->ill_dhcpinit != 0)
17750 			ill->ill_inputfn = ill_input_full_v4;
17751 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17752 		    != NULL)
17753 			ill->ill_inputfn = ill_input_full_v4;
17754 		else if (ipst->ips_ip_cgtp_filter &&
17755 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17756 			ill->ill_inputfn = ill_input_full_v4;
17757 		else
17758 			ill->ill_inputfn = ill_input_short_v4;
17759 	}
17760 }
17761 
17762 /*
17763  * Re-evaluate ill_inputfn for all the IPv4 ills.
17764  * Used when RSVP and CGTP comes and goes.
17765  */
17766 void
17767 ill_set_inputfn_all(ip_stack_t *ipst)
17768 {
17769 	ill_walk_context_t	ctx;
17770 	ill_t			*ill;
17771 
17772 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17773 	ill = ILL_START_WALK_V4(&ctx, ipst);
17774 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17775 		ill_set_inputfn(ill);
17776 
17777 	rw_exit(&ipst->ips_ill_g_lock);
17778 }
17779 
17780 /*
17781  * Set the physical address information for `ill' to the contents of the
17782  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17783  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17784  * EINPROGRESS will be returned.
17785  */
17786 int
17787 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17788 {
17789 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17790 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17791 
17792 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17793 
17794 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17795 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17796 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17797 		/* Changing DL_IPV6_TOKEN is not yet supported */
17798 		return (0);
17799 	}
17800 
17801 	/*
17802 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17803 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17804 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17805 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17806 	 */
17807 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17808 		freemsg(mp);
17809 		return (ENOMEM);
17810 	}
17811 
17812 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17813 
17814 	/*
17815 	 * Since we'll only do a logical down, we can't rely on ipif_down
17816 	 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17817 	 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17818 	 * case, to quiesce ire's and nce's for ill_is_quiescent.
17819 	 */
17820 	mutex_enter(&ill->ill_lock);
17821 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17822 	/* no more ire/nce addition allowed */
17823 	mutex_exit(&ill->ill_lock);
17824 
17825 	/*
17826 	 * If we can quiesce the ill, then set the address.  If not, then
17827 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17828 	 */
17829 	ill_down_ipifs(ill, B_TRUE);
17830 	mutex_enter(&ill->ill_lock);
17831 	if (!ill_is_quiescent(ill)) {
17832 		/* call cannot fail since `conn_t *' argument is NULL */
17833 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17834 		    mp, ILL_DOWN);
17835 		mutex_exit(&ill->ill_lock);
17836 		return (EINPROGRESS);
17837 	}
17838 	mutex_exit(&ill->ill_lock);
17839 
17840 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17841 	return (0);
17842 }
17843 
17844 /*
17845  * When the allowed-ips link property is set on the datalink, IP receives a
17846  * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17847  * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17848  * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17849  * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17850  * array.
17851  */
17852 void
17853 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17854 {
17855 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17856 	dl_notify_ind_t	*dlip = (dl_notify_ind_t *)mp->b_rptr;
17857 	mac_protect_t *mrp;
17858 	int i;
17859 
17860 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17861 	mrp = (mac_protect_t *)&dlip[1];
17862 
17863 	if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17864 		kmem_free(ill->ill_allowed_ips,
17865 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17866 		ill->ill_allowed_ips_cnt = 0;
17867 		ill->ill_allowed_ips = NULL;
17868 		mutex_enter(&ill->ill_phyint->phyint_lock);
17869 		ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17870 		mutex_exit(&ill->ill_phyint->phyint_lock);
17871 		return;
17872 	}
17873 
17874 	if (ill->ill_allowed_ips != NULL) {
17875 		kmem_free(ill->ill_allowed_ips,
17876 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17877 	}
17878 	ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17879 	ill->ill_allowed_ips = kmem_alloc(
17880 	    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17881 	for (i = 0; i < mrp->mp_ipaddrcnt;  i++)
17882 		ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17883 
17884 	mutex_enter(&ill->ill_phyint->phyint_lock);
17885 	ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17886 	mutex_exit(&ill->ill_phyint->phyint_lock);
17887 }
17888 
17889 /*
17890  * Once the ill associated with `q' has quiesced, set its physical address
17891  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17892  * are passed (linked by b_cont), since we sometimes need to save two distinct
17893  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17894  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17895  * is quiesced, we know any stale nce's with the old address information have
17896  * already been removed, so we don't need to call nce_flush().
17897  */
17898 /* ARGSUSED */
17899 static void
17900 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17901 {
17902 	ill_t		*ill = q->q_ptr;
17903 	mblk_t		*addrmp2 = unlinkb(addrmp);
17904 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17905 	uint_t		addrlen, addroff;
17906 	int		status;
17907 
17908 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17909 
17910 	addroff	= dlindp->dl_addr_offset;
17911 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17912 
17913 	switch (dlindp->dl_data) {
17914 	case DL_IPV6_LINK_LAYER_ADDR:
17915 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17916 		freemsg(addrmp2);
17917 		break;
17918 
17919 	case DL_CURR_DEST_ADDR:
17920 		freemsg(ill->ill_dest_addr_mp);
17921 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17922 		ill->ill_dest_addr_mp = addrmp;
17923 		if (ill->ill_isv6) {
17924 			ill_setdesttoken(ill);
17925 			ipif_setdestlinklocal(ill->ill_ipif);
17926 		}
17927 		freemsg(addrmp2);
17928 		break;
17929 
17930 	case DL_CURR_PHYS_ADDR:
17931 		freemsg(ill->ill_phys_addr_mp);
17932 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17933 		ill->ill_phys_addr_mp = addrmp;
17934 		ill->ill_phys_addr_length = addrlen;
17935 		if (ill->ill_isv6)
17936 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17937 		else
17938 			freemsg(addrmp2);
17939 		if (ill->ill_isv6) {
17940 			ill_setdefaulttoken(ill);
17941 			ipif_setlinklocal(ill->ill_ipif);
17942 		}
17943 		break;
17944 	default:
17945 		ASSERT(0);
17946 	}
17947 
17948 	/*
17949 	 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17950 	 * as we bring the ipifs up again.
17951 	 */
17952 	mutex_enter(&ill->ill_lock);
17953 	ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17954 	mutex_exit(&ill->ill_lock);
17955 	/*
17956 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17957 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17958 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17959 	 * brought up.
17960 	 */
17961 	status = ill_up_ipifs(ill, q, addrmp);
17962 	if (status != EINPROGRESS)
17963 		ipsq_current_finish(ipsq);
17964 }
17965 
17966 /*
17967  * Helper routine for setting the ill_nd_lla fields.
17968  */
17969 void
17970 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17971 {
17972 	freemsg(ill->ill_nd_lla_mp);
17973 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17974 	ill->ill_nd_lla_mp = ndmp;
17975 	ill->ill_nd_lla_len = addrlen;
17976 }
17977 
17978 /*
17979  * Replumb the ill.
17980  */
17981 int
17982 ill_replumb(ill_t *ill, mblk_t *mp)
17983 {
17984 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17985 
17986 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17987 
17988 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17989 
17990 	/*
17991 	 * If we can quiesce the ill, then continue.  If not, then
17992 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17993 	 */
17994 	ill_down_ipifs(ill, B_FALSE);
17995 
17996 	mutex_enter(&ill->ill_lock);
17997 	if (!ill_is_quiescent(ill)) {
17998 		/* call cannot fail since `conn_t *' argument is NULL */
17999 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
18000 		    mp, ILL_DOWN);
18001 		mutex_exit(&ill->ill_lock);
18002 		return (EINPROGRESS);
18003 	}
18004 	mutex_exit(&ill->ill_lock);
18005 
18006 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18007 	return (0);
18008 }
18009 
18010 /* ARGSUSED */
18011 static void
18012 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18013 {
18014 	ill_t *ill = q->q_ptr;
18015 	int err;
18016 	conn_t *connp = NULL;
18017 
18018 	ASSERT(IAM_WRITER_IPSQ(ipsq));
18019 	freemsg(ill->ill_replumb_mp);
18020 	ill->ill_replumb_mp = copyb(mp);
18021 
18022 	if (ill->ill_replumb_mp == NULL) {
18023 		/* out of memory */
18024 		ipsq_current_finish(ipsq);
18025 		return;
18026 	}
18027 
18028 	mutex_enter(&ill->ill_lock);
18029 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18030 	    ill->ill_rq, ill->ill_replumb_mp, 0);
18031 	mutex_exit(&ill->ill_lock);
18032 
18033 	if (!ill->ill_up_ipifs) {
18034 		/* already closing */
18035 		ipsq_current_finish(ipsq);
18036 		return;
18037 	}
18038 	ill->ill_replumbing = 1;
18039 	err = ill_down_ipifs_tail(ill);
18040 
18041 	/*
18042 	 * Successfully quiesced and brought down the interface, now we send
18043 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18044 	 * DL_NOTE_REPLUMB message.
18045 	 */
18046 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18047 	    DL_NOTIFY_CONF);
18048 	ASSERT(mp != NULL);
18049 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18050 	    DL_NOTE_REPLUMB_DONE;
18051 	ill_dlpi_send(ill, mp);
18052 
18053 	/*
18054 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18055 	 * streams have to be unbound. When all the DLPI exchanges are done,
18056 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
18057 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18058 	 * arp_bringup_done().
18059 	 */
18060 	ASSERT(ill->ill_replumb_mp != NULL);
18061 	if (err == EINPROGRESS)
18062 		return;
18063 	else
18064 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18065 	ASSERT(connp == NULL);
18066 	if (err == 0 && ill->ill_replumb_mp != NULL &&
18067 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18068 		return;
18069 	}
18070 	ipsq_current_finish(ipsq);
18071 }
18072 
18073 /*
18074  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18075  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
18076  * as per the ioctl.  On failure, an errno is returned.
18077  */
18078 static int
18079 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18080 {
18081 	int rval;
18082 	struct strioctl iocb;
18083 
18084 	iocb.ic_cmd = cmd;
18085 	iocb.ic_timout = 15;
18086 	iocb.ic_len = bufsize;
18087 	iocb.ic_dp = buf;
18088 
18089 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18090 }
18091 
18092 /*
18093  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18094  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18095  */
18096 static int
18097 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18098     uint_t *bufsizep, cred_t *cr)
18099 {
18100 	int err;
18101 	struct lifnum lifn;
18102 
18103 	bzero(&lifn, sizeof (lifn));
18104 	lifn.lifn_family = af;
18105 	lifn.lifn_flags = LIFC_UNDER_IPMP;
18106 
18107 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18108 		return (err);
18109 
18110 	/*
18111 	 * Pad the interface count to account for additional interfaces that
18112 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18113 	 */
18114 	lifn.lifn_count += 4;
18115 	bzero(lifcp, sizeof (*lifcp));
18116 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
18117 	lifcp->lifc_family = af;
18118 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18119 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18120 
18121 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18122 	if (err != 0) {
18123 		kmem_free(lifcp->lifc_buf, *bufsizep);
18124 		return (err);
18125 	}
18126 
18127 	return (0);
18128 }
18129 
18130 /*
18131  * Helper for ip_interface_cleanup() that removes the loopback interface.
18132  */
18133 static void
18134 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18135 {
18136 	int err;
18137 	struct lifreq lifr;
18138 
18139 	bzero(&lifr, sizeof (lifr));
18140 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
18141 
18142 	/*
18143 	 * Attempt to remove the interface.  It may legitimately not exist
18144 	 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18145 	 */
18146 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18147 	if (err != 0 && err != ENXIO) {
18148 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18149 		    "error %d\n", isv6 ? "v6" : "v4", err));
18150 	}
18151 }
18152 
18153 /*
18154  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18155  * groups and that IPMP data addresses are down.  These conditions must be met
18156  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18157  */
18158 static void
18159 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18160 {
18161 	int af = isv6 ? AF_INET6 : AF_INET;
18162 	int i, nifs;
18163 	int err;
18164 	uint_t bufsize;
18165 	uint_t lifrsize = sizeof (struct lifreq);
18166 	struct lifconf lifc;
18167 	struct lifreq *lifrp;
18168 
18169 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18170 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18171 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
18172 		return;
18173 	}
18174 
18175 	nifs = lifc.lifc_len / lifrsize;
18176 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18177 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18178 		if (err != 0) {
18179 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18180 			    "flags: error %d", lifrp->lifr_name, err);
18181 			continue;
18182 		}
18183 
18184 		if (lifrp->lifr_flags & IFF_IPMP) {
18185 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18186 				continue;
18187 
18188 			lifrp->lifr_flags &= ~IFF_UP;
18189 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18190 			if (err != 0) {
18191 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18192 				    "bring down (error %d); IPMP interface may "
18193 				    "not be shutdown", lifrp->lifr_name, err);
18194 			}
18195 
18196 			/*
18197 			 * Check if IFF_DUPLICATE is still set -- and if so,
18198 			 * reset the address to clear it.
18199 			 */
18200 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18201 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18202 				continue;
18203 
18204 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18205 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18206 			    lifrp, lifrsize, cr)) != 0) {
18207 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18208 				    "reset DAD (error %d); IPMP interface may "
18209 				    "not be shutdown", lifrp->lifr_name, err);
18210 			}
18211 			continue;
18212 		}
18213 
18214 		if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18215 			lifrp->lifr_groupname[0] = '\0';
18216 			if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18217 			    lifrsize, cr)) != 0) {
18218 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18219 				    "leave IPMP group (error %d); associated "
18220 				    "IPMP interface may not be shutdown",
18221 				    lifrp->lifr_name, err);
18222 				continue;
18223 			}
18224 		}
18225 	}
18226 
18227 	kmem_free(lifc.lifc_buf, bufsize);
18228 }
18229 
18230 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
18231 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
18232 
18233 /*
18234  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18235  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18236  * when the user-level processes in the zone are killed and the latter are
18237  * cleaned up by str_stack_shutdown().
18238  */
18239 void
18240 ip_interface_cleanup(ip_stack_t *ipst)
18241 {
18242 	ldi_handle_t	lh;
18243 	ldi_ident_t	li;
18244 	cred_t		*cr;
18245 	int		err;
18246 	int		i;
18247 	char		*devs[] = { UDP6DEV, UDPDEV };
18248 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
18249 
18250 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18251 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18252 		    " error %d", err);
18253 		return;
18254 	}
18255 
18256 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18257 	ASSERT(cr != NULL);
18258 
18259 	/*
18260 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
18261 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
18262 	 * the loop.)
18263 	 */
18264 	for (i = 0; i < 2; i++) {
18265 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18266 		if (err != 0) {
18267 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18268 			    " error %d", devs[i], err);
18269 			continue;
18270 		}
18271 
18272 		ip_loopback_removeif(lh, i == 0, cr);
18273 		ip_ipmp_cleanup(lh, i == 0, cr);
18274 
18275 		(void) ldi_close(lh, FREAD|FWRITE, cr);
18276 	}
18277 
18278 	ldi_ident_release(li);
18279 	crfree(cr);
18280 }
18281 
18282 /*
18283  * This needs to be in-sync with nic_event_t definition
18284  */
18285 static const char *
18286 ill_hook_event2str(nic_event_t event)
18287 {
18288 	switch (event) {
18289 	case NE_PLUMB:
18290 		return ("PLUMB");
18291 	case NE_UNPLUMB:
18292 		return ("UNPLUMB");
18293 	case NE_UP:
18294 		return ("UP");
18295 	case NE_DOWN:
18296 		return ("DOWN");
18297 	case NE_ADDRESS_CHANGE:
18298 		return ("ADDRESS_CHANGE");
18299 	case NE_LIF_UP:
18300 		return ("LIF_UP");
18301 	case NE_LIF_DOWN:
18302 		return ("LIF_DOWN");
18303 	case NE_IFINDEX_CHANGE:
18304 		return ("IFINDEX_CHANGE");
18305 	default:
18306 		return ("UNKNOWN");
18307 	}
18308 }
18309 
18310 void
18311 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18312     nic_event_data_t data, size_t datalen)
18313 {
18314 	ip_stack_t		*ipst = ill->ill_ipst;
18315 	hook_nic_event_int_t	*info;
18316 	const char		*str = NULL;
18317 
18318 	/* create a new nic event info */
18319 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18320 		goto fail;
18321 
18322 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18323 	info->hnei_event.hne_lif = lif;
18324 	info->hnei_event.hne_event = event;
18325 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
18326 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18327 	info->hnei_event.hne_data = NULL;
18328 	info->hnei_event.hne_datalen = 0;
18329 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18330 
18331 	if (data != NULL && datalen != 0) {
18332 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18333 		if (info->hnei_event.hne_data == NULL)
18334 			goto fail;
18335 		bcopy(data, info->hnei_event.hne_data, datalen);
18336 		info->hnei_event.hne_datalen = datalen;
18337 	}
18338 
18339 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18340 	    DDI_NOSLEEP) == DDI_SUCCESS)
18341 		return;
18342 
18343 fail:
18344 	if (info != NULL) {
18345 		if (info->hnei_event.hne_data != NULL) {
18346 			kmem_free(info->hnei_event.hne_data,
18347 			    info->hnei_event.hne_datalen);
18348 		}
18349 		kmem_free(info, sizeof (hook_nic_event_t));
18350 	}
18351 	str = ill_hook_event2str(event);
18352 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18353 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
18354 }
18355 
18356 static int
18357 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18358 {
18359 	int		err = 0;
18360 	const in_addr_t	*addr = NULL;
18361 	nce_t		*nce = NULL;
18362 	ill_t		*ill = ipif->ipif_ill;
18363 	ill_t		*bound_ill;
18364 	boolean_t	added_ipif = B_FALSE;
18365 	uint16_t	state;
18366 	uint16_t	flags;
18367 
18368 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18369 	    ill_t *, ill, ipif_t *, ipif);
18370 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
18371 		addr = &ipif->ipif_lcl_addr;
18372 	}
18373 
18374 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18375 		if (res_act != Res_act_initial)
18376 			return (EINVAL);
18377 	}
18378 
18379 	if (addr != NULL) {
18380 		ipmp_illgrp_t	*illg = ill->ill_grp;
18381 
18382 		/* add unicast nce for the local addr */
18383 
18384 		if (IS_IPMP(ill)) {
18385 			/*
18386 			 * If we're here via ipif_up(), then the ipif
18387 			 * won't be bound yet -- add it to the group,
18388 			 * which will bind it if possible. (We would
18389 			 * add it in ipif_up(), but deleting on failure
18390 			 * there is gruesome.)  If we're here via
18391 			 * ipmp_ill_bind_ipif(), then the ipif has
18392 			 * already been added to the group and we
18393 			 * just need to use the binding.
18394 			 */
18395 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18396 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
18397 				if (bound_ill == NULL) {
18398 					/*
18399 					 * We couldn't bind the ipif to an ill
18400 					 * yet, so we have nothing to publish.
18401 					 * Mark the address as ready and return.
18402 					 */
18403 					ipif->ipif_addr_ready = 1;
18404 					return (0);
18405 				}
18406 				added_ipif = B_TRUE;
18407 			}
18408 		} else {
18409 			bound_ill = ill;
18410 		}
18411 
18412 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18413 		    NCE_F_NONUD);
18414 		/*
18415 		 * If this is an initial bring-up (or the ipif was never
18416 		 * completely brought up), do DAD.  Otherwise, we're here
18417 		 * because IPMP has rebound an address to this ill: send
18418 		 * unsolicited advertisements (ARP announcements) to
18419 		 * inform others.
18420 		 */
18421 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18422 			state = ND_UNCHANGED; /* compute in nce_add_common() */
18423 		} else {
18424 			state = ND_REACHABLE;
18425 			flags |= NCE_F_UNSOL_ADV;
18426 		}
18427 
18428 retry:
18429 		err = nce_lookup_then_add_v4(ill,
18430 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18431 		    addr, flags, state, &nce);
18432 
18433 		/*
18434 		 * note that we may encounter EEXIST if we are moving
18435 		 * the nce as a result of a rebind operation.
18436 		 */
18437 		switch (err) {
18438 		case 0:
18439 			ipif->ipif_added_nce = 1;
18440 			nce->nce_ipif_cnt++;
18441 			break;
18442 		case EEXIST:
18443 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18444 			    ill->ill_name));
18445 			if (!NCE_MYADDR(nce->nce_common)) {
18446 				/*
18447 				 * A leftover nce from before this address
18448 				 * existed
18449 				 */
18450 				ncec_delete(nce->nce_common);
18451 				nce_refrele(nce);
18452 				nce = NULL;
18453 				goto retry;
18454 			}
18455 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18456 				nce_refrele(nce);
18457 				nce = NULL;
18458 				ip1dbg(("ipif_arp_up: NCE already exists "
18459 				    "for %s:%u\n", ill->ill_name,
18460 				    ipif->ipif_id));
18461 				goto arp_up_done;
18462 			}
18463 			/*
18464 			 * Duplicate local addresses are permissible for
18465 			 * IPIF_POINTOPOINT interfaces which will get marked
18466 			 * IPIF_UNNUMBERED later in
18467 			 * ip_addr_availability_check().
18468 			 *
18469 			 * The nce_ipif_cnt field tracks the number of
18470 			 * ipifs that have nce_addr as their local address.
18471 			 */
18472 			ipif->ipif_addr_ready = 1;
18473 			ipif->ipif_added_nce = 1;
18474 			nce->nce_ipif_cnt++;
18475 			err = 0;
18476 			break;
18477 		default:
18478 			ASSERT(nce == NULL);
18479 			goto arp_up_done;
18480 		}
18481 		if (arp_no_defense) {
18482 			if ((ipif->ipif_flags & IPIF_UP) &&
18483 			    !ipif->ipif_addr_ready)
18484 				ipif_up_notify(ipif);
18485 			ipif->ipif_addr_ready = 1;
18486 		}
18487 	} else {
18488 		/* zero address. nothing to publish */
18489 		ipif->ipif_addr_ready = 1;
18490 	}
18491 	if (nce != NULL)
18492 		nce_refrele(nce);
18493 arp_up_done:
18494 	if (added_ipif && err != 0)
18495 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18496 	return (err);
18497 }
18498 
18499 int
18500 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18501 {
18502 	int		err = 0;
18503 	ill_t		*ill = ipif->ipif_ill;
18504 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
18505 
18506 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18507 	    ill_t *, ill, ipif_t *, ipif);
18508 
18509 	/*
18510 	 * need to bring up ARP or setup mcast mapping only
18511 	 * when the first interface is coming UP.
18512 	 */
18513 	first_interface = (ill->ill_ipif_up_count == 0 &&
18514 	    ill->ill_ipif_dup_count == 0 && !was_dup);
18515 
18516 	if (res_act == Res_act_initial && first_interface) {
18517 		/*
18518 		 * Send ATTACH + BIND
18519 		 */
18520 		err = arp_ll_up(ill);
18521 		if (err != EINPROGRESS && err != 0)
18522 			return (err);
18523 
18524 		/*
18525 		 * Add NCE for local address. Start DAD.
18526 		 * we'll wait to hear that DAD has finished
18527 		 * before using the interface.
18528 		 */
18529 		if (err == EINPROGRESS)
18530 			wait_for_dlpi = B_TRUE;
18531 	}
18532 
18533 	if (!wait_for_dlpi)
18534 		(void) ipif_arp_up_done_tail(ipif, res_act);
18535 
18536 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
18537 }
18538 
18539 /*
18540  * Finish processing of "arp_up" after all the DLPI message
18541  * exchanges have completed between arp and the driver.
18542  */
18543 void
18544 arp_bringup_done(ill_t *ill, int err)
18545 {
18546 	mblk_t	*mp1;
18547 	ipif_t  *ipif;
18548 	conn_t *connp = NULL;
18549 	ipsq_t	*ipsq;
18550 	queue_t *q;
18551 
18552 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18553 
18554 	ASSERT(IAM_WRITER_ILL(ill));
18555 
18556 	ipsq = ill->ill_phyint->phyint_ipsq;
18557 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18558 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18559 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18560 	if (mp1 == NULL) /* bringup was aborted by the user */
18561 		return;
18562 
18563 	/*
18564 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18565 	 * must have an associated conn_t.  Otherwise, we're bringing this
18566 	 * interface back up as part of handling an asynchronous event (e.g.,
18567 	 * physical address change).
18568 	 */
18569 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18570 		ASSERT(connp != NULL);
18571 		q = CONNP_TO_WQ(connp);
18572 	} else {
18573 		ASSERT(connp == NULL);
18574 		q = ill->ill_rq;
18575 	}
18576 	if (err == 0) {
18577 		if (ipif->ipif_isv6) {
18578 			if ((err = ipif_up_done_v6(ipif)) != 0)
18579 				ip0dbg(("arp_bringup_done: init failed\n"));
18580 		} else {
18581 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18582 			if (err != 0 ||
18583 			    (err = ipif_up_done(ipif)) != 0) {
18584 				ip0dbg(("arp_bringup_done: "
18585 				    "init failed err %x\n", err));
18586 				(void) ipif_arp_down(ipif);
18587 			}
18588 
18589 		}
18590 	} else {
18591 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18592 	}
18593 
18594 	if ((err == 0) && (ill->ill_up_ipifs)) {
18595 		err = ill_up_ipifs(ill, q, mp1);
18596 		if (err == EINPROGRESS)
18597 			return;
18598 	}
18599 
18600 	/*
18601 	 * If we have a moved ipif to bring up, and everything has succeeded
18602 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18603 	 * down -- the admin can try to bring it up by hand if need be.
18604 	 */
18605 	if (ill->ill_move_ipif != NULL) {
18606 		ipif = ill->ill_move_ipif;
18607 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18608 		    ipif->ipif_ill->ill_name));
18609 		ill->ill_move_ipif = NULL;
18610 		if (err == 0) {
18611 			err = ipif_up(ipif, q, mp1);
18612 			if (err == EINPROGRESS)
18613 				return;
18614 		}
18615 	}
18616 
18617 	/*
18618 	 * The operation must complete without EINPROGRESS since
18619 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18620 	 * Otherwise, the operation will be stuck forever in the ipsq.
18621 	 */
18622 	ASSERT(err != EINPROGRESS);
18623 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18624 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18625 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18626 		    ill_t *, ill, ipif_t *, ipif);
18627 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18628 	} else {
18629 		ipsq_current_finish(ipsq);
18630 	}
18631 }
18632 
18633 /*
18634  * Finish processing of arp replumb after all the DLPI message
18635  * exchanges have completed between arp and the driver.
18636  */
18637 void
18638 arp_replumb_done(ill_t *ill, int err)
18639 {
18640 	mblk_t	*mp1;
18641 	ipif_t  *ipif;
18642 	conn_t *connp = NULL;
18643 	ipsq_t	*ipsq;
18644 	queue_t *q;
18645 
18646 	ASSERT(IAM_WRITER_ILL(ill));
18647 
18648 	ipsq = ill->ill_phyint->phyint_ipsq;
18649 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18650 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18651 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18652 	if (mp1 == NULL) {
18653 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18654 		    ipsq->ipsq_xop->ipx_current_ioctl));
18655 		/* bringup was aborted by the user */
18656 		return;
18657 	}
18658 	/*
18659 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18660 	 * must have an associated conn_t.  Otherwise, we're bringing this
18661 	 * interface back up as part of handling an asynchronous event (e.g.,
18662 	 * physical address change).
18663 	 */
18664 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18665 		ASSERT(connp != NULL);
18666 		q = CONNP_TO_WQ(connp);
18667 	} else {
18668 		ASSERT(connp == NULL);
18669 		q = ill->ill_rq;
18670 	}
18671 	if ((err == 0) && (ill->ill_up_ipifs)) {
18672 		err = ill_up_ipifs(ill, q, mp1);
18673 		if (err == EINPROGRESS)
18674 			return;
18675 	}
18676 	/*
18677 	 * The operation must complete without EINPROGRESS since
18678 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18679 	 * Otherwise, the operation will be stuck forever in the ipsq.
18680 	 */
18681 	ASSERT(err != EINPROGRESS);
18682 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18683 		DTRACE_PROBE4(ipif__ioctl, char *,
18684 		    "arp_replumb_done finish",
18685 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18686 		    ill_t *, ill, ipif_t *, ipif);
18687 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18688 	} else {
18689 		ipsq_current_finish(ipsq);
18690 	}
18691 }
18692 
18693 void
18694 ipif_up_notify(ipif_t *ipif)
18695 {
18696 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18697 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18698 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18699 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18700 	    NE_LIF_UP, NULL, 0);
18701 }
18702 
18703 /*
18704  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18705  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18706  * TPI end points with STREAMS modules pushed above.  This is assured by not
18707  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18708  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18709  * while unwinding from the ispq and that could be a thread from the bottom.
18710  */
18711 /* ARGSUSED */
18712 int
18713 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18714     ip_ioctl_cmd_t *ipip, void *arg)
18715 {
18716 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18717 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18718 	int ret = 0;
18719 	int i;
18720 	size_t size;
18721 	ip_stack_t *ipst;
18722 	zoneid_t zoneid;
18723 	ilb_stack_t *ilbs;
18724 
18725 	ipst = CONNQ_TO_IPST(q);
18726 	ilbs = ipst->ips_netstack->netstack_ilb;
18727 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18728 
18729 	switch (command) {
18730 	case ILB_CREATE_RULE: {
18731 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18732 
18733 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18734 			ret = EINVAL;
18735 			break;
18736 		}
18737 
18738 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18739 		break;
18740 	}
18741 	case ILB_DESTROY_RULE:
18742 	case ILB_ENABLE_RULE:
18743 	case ILB_DISABLE_RULE: {
18744 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18745 
18746 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18747 			ret = EINVAL;
18748 			break;
18749 		}
18750 
18751 		if (cmd->flags & ILB_RULE_ALLRULES) {
18752 			if (command == ILB_DESTROY_RULE) {
18753 				ilb_rule_del_all(ilbs, zoneid);
18754 				break;
18755 			} else if (command == ILB_ENABLE_RULE) {
18756 				ilb_rule_enable_all(ilbs, zoneid);
18757 				break;
18758 			} else if (command == ILB_DISABLE_RULE) {
18759 				ilb_rule_disable_all(ilbs, zoneid);
18760 				break;
18761 			}
18762 		} else {
18763 			if (command == ILB_DESTROY_RULE) {
18764 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18765 			} else if (command == ILB_ENABLE_RULE) {
18766 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18767 				    NULL);
18768 			} else if (command == ILB_DISABLE_RULE) {
18769 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18770 				    NULL);
18771 			}
18772 		}
18773 		break;
18774 	}
18775 	case ILB_NUM_RULES: {
18776 		ilb_num_rules_cmd_t *cmd;
18777 
18778 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18779 			ret = EINVAL;
18780 			break;
18781 		}
18782 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18783 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18784 		break;
18785 	}
18786 	case ILB_RULE_NAMES: {
18787 		ilb_rule_names_cmd_t *cmd;
18788 
18789 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18790 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18791 		    cmd->num_names == 0) {
18792 			ret = EINVAL;
18793 			break;
18794 		}
18795 		size = cmd->num_names * ILB_RULE_NAMESZ;
18796 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18797 		    size != cmd_mp->b_wptr) {
18798 			ret = EINVAL;
18799 			break;
18800 		}
18801 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18802 		break;
18803 	}
18804 	case ILB_NUM_SERVERS: {
18805 		ilb_num_servers_cmd_t *cmd;
18806 
18807 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18808 			ret = EINVAL;
18809 			break;
18810 		}
18811 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18812 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18813 		    &(cmd->num));
18814 		break;
18815 	}
18816 	case ILB_LIST_RULE: {
18817 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18818 
18819 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18820 			ret = EINVAL;
18821 			break;
18822 		}
18823 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18824 		break;
18825 	}
18826 	case ILB_LIST_SERVERS: {
18827 		ilb_servers_info_cmd_t *cmd;
18828 
18829 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18830 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18831 		    cmd->num_servers == 0) {
18832 			ret = EINVAL;
18833 			break;
18834 		}
18835 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18836 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18837 		    size != cmd_mp->b_wptr) {
18838 			ret = EINVAL;
18839 			break;
18840 		}
18841 
18842 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18843 		    &cmd->num_servers);
18844 		break;
18845 	}
18846 	case ILB_ADD_SERVERS: {
18847 		ilb_servers_info_cmd_t *cmd;
18848 		ilb_rule_t *rule;
18849 
18850 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18851 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18852 			ret = EINVAL;
18853 			break;
18854 		}
18855 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18856 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18857 		    size != cmd_mp->b_wptr) {
18858 			ret = EINVAL;
18859 			break;
18860 		}
18861 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18862 		if (rule == NULL) {
18863 			ASSERT(ret != 0);
18864 			break;
18865 		}
18866 		for (i = 0; i < cmd->num_servers; i++) {
18867 			ilb_server_info_t *s;
18868 
18869 			s = &cmd->servers[i];
18870 			s->err = ilb_server_add(ilbs, rule, s);
18871 		}
18872 		ILB_RULE_REFRELE(rule);
18873 		break;
18874 	}
18875 	case ILB_DEL_SERVERS:
18876 	case ILB_ENABLE_SERVERS:
18877 	case ILB_DISABLE_SERVERS: {
18878 		ilb_servers_cmd_t *cmd;
18879 		ilb_rule_t *rule;
18880 		int (*f)();
18881 
18882 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18883 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18884 			ret = EINVAL;
18885 			break;
18886 		}
18887 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18888 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18889 		    size != cmd_mp->b_wptr) {
18890 			ret = EINVAL;
18891 			break;
18892 		}
18893 
18894 		if (command == ILB_DEL_SERVERS)
18895 			f = ilb_server_del;
18896 		else if (command == ILB_ENABLE_SERVERS)
18897 			f = ilb_server_enable;
18898 		else if (command == ILB_DISABLE_SERVERS)
18899 			f = ilb_server_disable;
18900 
18901 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18902 		if (rule == NULL) {
18903 			ASSERT(ret != 0);
18904 			break;
18905 		}
18906 
18907 		for (i = 0; i < cmd->num_servers; i++) {
18908 			ilb_server_arg_t *s;
18909 
18910 			s = &cmd->servers[i];
18911 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18912 		}
18913 		ILB_RULE_REFRELE(rule);
18914 		break;
18915 	}
18916 	case ILB_LIST_NAT_TABLE: {
18917 		ilb_list_nat_cmd_t *cmd;
18918 
18919 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18920 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18921 			ret = EINVAL;
18922 			break;
18923 		}
18924 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18925 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18926 		    size != cmd_mp->b_wptr) {
18927 			ret = EINVAL;
18928 			break;
18929 		}
18930 
18931 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18932 		    &cmd->flags);
18933 		break;
18934 	}
18935 	case ILB_LIST_STICKY_TABLE: {
18936 		ilb_list_sticky_cmd_t *cmd;
18937 
18938 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18939 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18940 			ret = EINVAL;
18941 			break;
18942 		}
18943 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18944 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18945 		    size != cmd_mp->b_wptr) {
18946 			ret = EINVAL;
18947 			break;
18948 		}
18949 
18950 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18951 		    &cmd->num_sticky, &cmd->flags);
18952 		break;
18953 	}
18954 	default:
18955 		ret = EINVAL;
18956 		break;
18957 	}
18958 done:
18959 	return (ret);
18960 }
18961 
18962 /* Remove all cache entries for this logical interface */
18963 void
18964 ipif_nce_down(ipif_t *ipif)
18965 {
18966 	ill_t *ill = ipif->ipif_ill;
18967 	nce_t *nce;
18968 
18969 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18970 	    ill_t *, ill, ipif_t *, ipif);
18971 	if (ipif->ipif_added_nce) {
18972 		if (ipif->ipif_isv6)
18973 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18974 		else
18975 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18976 		if (nce != NULL) {
18977 			if (--nce->nce_ipif_cnt == 0)
18978 				ncec_delete(nce->nce_common);
18979 			ipif->ipif_added_nce = 0;
18980 			nce_refrele(nce);
18981 		} else {
18982 			/*
18983 			 * nce may already be NULL because it was already
18984 			 * flushed, e.g., due to a call to nce_flush
18985 			 */
18986 			ipif->ipif_added_nce = 0;
18987 		}
18988 	}
18989 	/*
18990 	 * Make IPMP aware of the deleted data address.
18991 	 */
18992 	if (IS_IPMP(ill))
18993 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18994 
18995 	/*
18996 	 * Remove all other nces dependent on this ill when the last ipif
18997 	 * is going away.
18998 	 */
18999 	if (ill->ill_ipif_up_count == 0) {
19000 		ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst);
19001 		if (IS_UNDER_IPMP(ill))
19002 			nce_flush(ill, B_TRUE);
19003 	}
19004 }
19005 
19006 /*
19007  * find the first interface that uses usill for its source address.
19008  */
19009 ill_t *
19010 ill_lookup_usesrc(ill_t *usill)
19011 {
19012 	ip_stack_t *ipst = usill->ill_ipst;
19013 	ill_t *ill;
19014 
19015 	ASSERT(usill != NULL);
19016 
19017 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19018 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19019 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19020 	for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19021 	    ill = ill->ill_usesrc_grp_next) {
19022 		if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19023 		    !ILL_IS_CONDEMNED(ill)) {
19024 			ill_refhold(ill);
19025 			break;
19026 		}
19027 	}
19028 	rw_exit(&ipst->ips_ill_g_lock);
19029 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
19030 	return (ill);
19031 }
19032 
19033 /*
19034  * This comment applies to both ip_sioctl_get_ifhwaddr and
19035  * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19036  * is the same.
19037  *
19038  * The goal here is to find an IP interface that corresponds to the name
19039  * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19040  * chain and to fill out a sockaddr/sockaddr_storage structure with the
19041  * mac address.
19042  *
19043  * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19044  * of different reasons:
19045  * ENXIO - the device name is not known to IP.
19046  * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19047  * by ill_phys_addr not pointing to an actual address.
19048  * EPFNOSUPPORT - this will indicate that a request is being made for a
19049  * mac address that will not fit in the data structure supplier (struct
19050  * sockaddr).
19051  *
19052  */
19053 /* ARGSUSED */
19054 int
19055 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19056     ip_ioctl_cmd_t *ipip, void *if_req)
19057 {
19058 	struct sockaddr *sock;
19059 	struct ifreq *ifr;
19060 	mblk_t *mp1;
19061 	ill_t *ill;
19062 
19063 	ASSERT(ipif != NULL);
19064 	ill = ipif->ipif_ill;
19065 
19066 	if (ill->ill_phys_addr == NULL) {
19067 		return (EADDRNOTAVAIL);
19068 	}
19069 	if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19070 		return (EPFNOSUPPORT);
19071 	}
19072 
19073 	ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19074 
19075 	/* Existence of mp1 has been checked in ip_wput_nondata */
19076 	mp1 = mp->b_cont->b_cont;
19077 	ifr = (struct ifreq *)mp1->b_rptr;
19078 
19079 	sock = &ifr->ifr_addr;
19080 	/*
19081 	 * The "family" field in the returned structure is set to a value
19082 	 * that represents the type of device to which the address belongs.
19083 	 * The value returned may differ to that on Linux but it will still
19084 	 * represent the correct symbol on Solaris.
19085 	 */
19086 	sock->sa_family = arp_hw_type(ill->ill_mactype);
19087 	bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19088 
19089 	return (0);
19090 }
19091 
19092 /*
19093  * The expection of applications using SIOCGIFHWADDR is that data will
19094  * be returned in the sa_data field of the sockaddr structure. With
19095  * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19096  * equivalent. In light of this, struct sockaddr_dl is used as it
19097  * offers more space for address storage in sll_data.
19098  */
19099 /* ARGSUSED */
19100 int
19101 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19102     ip_ioctl_cmd_t *ipip, void *if_req)
19103 {
19104 	struct sockaddr_dl *sock;
19105 	struct lifreq *lifr;
19106 	mblk_t *mp1;
19107 	ill_t *ill;
19108 
19109 	ASSERT(ipif != NULL);
19110 	ill = ipif->ipif_ill;
19111 
19112 	if (ill->ill_phys_addr == NULL) {
19113 		return (EADDRNOTAVAIL);
19114 	}
19115 	if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19116 		return (EPFNOSUPPORT);
19117 	}
19118 
19119 	ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19120 
19121 	/* Existence of mp1 has been checked in ip_wput_nondata */
19122 	mp1 = mp->b_cont->b_cont;
19123 	lifr = (struct lifreq *)mp1->b_rptr;
19124 
19125 	/*
19126 	 * sockaddr_ll is used here because it is also the structure used in
19127 	 * responding to the same ioctl in sockpfp. The only other choice is
19128 	 * sockaddr_dl which contains fields that are not required here
19129 	 * because its purpose is different.
19130 	 */
19131 	lifr->lifr_type = ill->ill_type;
19132 	sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19133 	sock->sdl_family = AF_LINK;
19134 	sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19135 	sock->sdl_type = ill->ill_mactype;
19136 	sock->sdl_nlen = 0;
19137 	sock->sdl_slen = 0;
19138 	sock->sdl_alen = ill->ill_phys_addr_length;
19139 	bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19140 
19141 	return (0);
19142 }
19143