1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 #include <sys/sunldi.h> 48 #include <sys/file.h> 49 #include <sys/bitmap.h> 50 #include <sys/cpuvar.h> 51 #include <sys/time.h> 52 #include <sys/ctype.h> 53 #include <sys/kmem.h> 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/socket.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <netinet/ip6.h> 66 #include <netinet/icmp6.h> 67 #include <netinet/igmp_var.h> 68 #include <sys/policy.h> 69 #include <sys/ethernet.h> 70 #include <sys/callb.h> 71 #include <sys/md5.h> 72 73 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 74 #include <inet/mi.h> 75 #include <inet/nd.h> 76 #include <inet/tunables.h> 77 #include <inet/arp.h> 78 #include <inet/ip_arp.h> 79 #include <inet/mib2.h> 80 #include <inet/ip.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_impl.h> 91 #include <inet/sctp_ip.h> 92 #include <inet/ip_netinfo.h> 93 #include <inet/ilb_ip.h> 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac_client.h> 99 #include <sys/dld.h> 100 #include <sys/mac_flow.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 109 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 110 111 /* The character which tells where the ill_name ends */ 112 #define IPIF_SEPARATOR_CHAR ':' 113 114 /* IP ioctl function table entry */ 115 typedef struct ipft_s { 116 int ipft_cmd; 117 pfi_t ipft_pfi; 118 int ipft_min_size; 119 int ipft_flags; 120 } ipft_t; 121 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 122 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ill_is_quiescent(ill_t *); 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 144 int ioccmd, struct linkblk *li); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize, boolean_t insert, int *errorp); 155 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 156 static void ipif_delete_bcast_ires(ipif_t *ipif); 157 static int ipif_add_ires_v4(ipif_t *, boolean_t); 158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 159 boolean_t isv6); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_set_default(ipif_t *ipif); 164 static int ipif_set_values(queue_t *q, mblk_t *mp, 165 char *interf_name, uint_t *ppa); 166 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 167 queue_t *q); 168 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 169 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 170 ip_stack_t *); 171 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 172 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 173 int *error, ip_stack_t *); 174 175 static int ill_alloc_ppa(ill_if_t *, ill_t *); 176 static void ill_delete_interface_type(ill_if_t *); 177 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 178 static void ill_dl_down(ill_t *ill); 179 static void ill_down(ill_t *ill); 180 static void ill_down_ipifs(ill_t *, boolean_t); 181 static void ill_free_mib(ill_t *ill); 182 static void ill_glist_delete(ill_t *); 183 static void ill_phyint_reinit(ill_t *ill); 184 static void ill_set_nce_router_flags(ill_t *, boolean_t); 185 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 186 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 192 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 194 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 195 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 196 static ip_v4mapinfo_func_t ip_mbcast_mapping; 197 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 198 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 199 static void phyint_free(phyint_t *); 200 201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 207 dl_capability_sub_t *); 208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 209 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_ack(ill_t *, mblk_t *, 211 dl_capability_sub_t *); 212 static void ill_capability_dld_enable(ill_t *); 213 static void ill_capability_ack_thr(void *); 214 static void ill_capability_lso_enable(ill_t *); 215 216 static ill_t *ill_prev_usesrc(ill_t *); 217 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 218 static void ill_disband_usesrc_group(ill_t *); 219 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 220 221 #ifdef DEBUG 222 static void ill_trace_cleanup(const ill_t *); 223 static void ipif_trace_cleanup(const ipif_t *); 224 #endif 225 226 static void ill_dlpi_clear_deferred(ill_t *ill); 227 228 static void phyint_flags_init(phyint_t *, t_uscalar_t); 229 230 /* 231 * if we go over the memory footprint limit more than once in this msec 232 * interval, we'll start pruning aggressively. 233 */ 234 int ip_min_frag_prune_time = 0; 235 236 static ipft_t ip_ioctl_ftbl[] = { 237 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 238 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 239 IPFT_F_NO_REPLY }, 240 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 241 { 0 } 242 }; 243 244 /* Simple ICMP IP Header Template */ 245 static ipha_t icmp_ipha = { 246 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 247 }; 248 249 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 250 251 static ip_m_t ip_m_tbl[] = { 252 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 266 ip_nodef_v6intfid }, 267 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 269 ip_nodef_v6intfid }, 270 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 272 ip_ipv4_v6destintfid }, 273 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 275 ip_ipv6_v6destintfid }, 276 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 277 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 278 ip_nodef_v6intfid }, 279 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 281 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 282 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 283 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 284 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 285 ip_nodef_v6intfid } 286 }; 287 288 char ipif_loopback_name[] = "lo0"; 289 290 /* These are used by all IP network modules. */ 291 sin6_t sin6_null; /* Zero address for quick clears */ 292 sin_t sin_null; /* Zero address for quick clears */ 293 294 /* When set search for unused ipif_seqid */ 295 static ipif_t ipif_zero; 296 297 /* 298 * ppa arena is created after these many 299 * interfaces have been plumbed. 300 */ 301 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 302 303 /* 304 * Allocate per-interface mibs. 305 * Returns true if ok. False otherwise. 306 * ipsq may not yet be allocated (loopback case ). 307 */ 308 static boolean_t 309 ill_allocate_mibs(ill_t *ill) 310 { 311 /* Already allocated? */ 312 if (ill->ill_ip_mib != NULL) { 313 if (ill->ill_isv6) 314 ASSERT(ill->ill_icmp6_mib != NULL); 315 return (B_TRUE); 316 } 317 318 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 319 KM_NOSLEEP); 320 if (ill->ill_ip_mib == NULL) { 321 return (B_FALSE); 322 } 323 324 /* Setup static information */ 325 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 326 sizeof (mib2_ipIfStatsEntry_t)); 327 if (ill->ill_isv6) { 328 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 329 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 330 sizeof (mib2_ipv6AddrEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 332 sizeof (mib2_ipv6RouteEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 334 sizeof (mib2_ipv6NetToMediaEntry_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 336 sizeof (ipv6_member_t)); 337 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 338 sizeof (ipv6_grpsrc_t)); 339 } else { 340 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 341 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 342 sizeof (mib2_ipAddrEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 344 sizeof (mib2_ipRouteEntry_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 346 sizeof (mib2_ipNetToMediaEntry_t)); 347 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 348 sizeof (ip_member_t)); 349 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 350 sizeof (ip_grpsrc_t)); 351 352 /* 353 * For a v4 ill, we are done at this point, because per ill 354 * icmp mibs are only used for v6. 355 */ 356 return (B_TRUE); 357 } 358 359 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 360 KM_NOSLEEP); 361 if (ill->ill_icmp6_mib == NULL) { 362 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 363 ill->ill_ip_mib = NULL; 364 return (B_FALSE); 365 } 366 /* static icmp info */ 367 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 368 sizeof (mib2_ipv6IfIcmpEntry_t); 369 /* 370 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 371 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 372 * -> ill_phyint_reinit 373 */ 374 return (B_TRUE); 375 } 376 377 /* 378 * Completely vaporize a lower level tap and all associated interfaces. 379 * ill_delete is called only out of ip_close when the device control 380 * stream is being closed. 381 */ 382 void 383 ill_delete(ill_t *ill) 384 { 385 ipif_t *ipif; 386 ill_t *prev_ill; 387 ip_stack_t *ipst = ill->ill_ipst; 388 389 /* 390 * ill_delete may be forcibly entering the ipsq. The previous 391 * ioctl may not have completed and may need to be aborted. 392 * ipsq_flush takes care of it. If we don't need to enter the 393 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 394 * ill_delete_tail is sufficient. 395 */ 396 ipsq_flush(ill); 397 398 /* 399 * Nuke all interfaces. ipif_free will take down the interface, 400 * remove it from the list, and free the data structure. 401 * Walk down the ipif list and remove the logical interfaces 402 * first before removing the main ipif. We can't unplumb 403 * zeroth interface first in the case of IPv6 as update_conn_ill 404 * -> ip_ll_multireq de-references ill_ipif for checking 405 * POINTOPOINT. 406 * 407 * If ill_ipif was not properly initialized (i.e low on memory), 408 * then no interfaces to clean up. In this case just clean up the 409 * ill. 410 */ 411 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 412 ipif_free(ipif); 413 414 /* 415 * clean out all the nce_t entries that depend on this 416 * ill for the ill_phys_addr. 417 */ 418 nce_flush(ill, B_TRUE); 419 420 /* Clean up msgs on pending upcalls for mrouted */ 421 reset_mrt_ill(ill); 422 423 update_conn_ill(ill, ipst); 424 425 /* 426 * Remove multicast references added as a result of calls to 427 * ip_join_allmulti(). 428 */ 429 ip_purge_allmulti(ill); 430 431 /* 432 * If the ill being deleted is under IPMP, boot it out of the illgrp. 433 */ 434 if (IS_UNDER_IPMP(ill)) 435 ipmp_ill_leave_illgrp(ill); 436 437 /* 438 * ill_down will arrange to blow off any IRE's dependent on this 439 * ILL, and shut down fragmentation reassembly. 440 */ 441 ill_down(ill); 442 443 /* Let SCTP know, so that it can remove this from its list. */ 444 sctp_update_ill(ill, SCTP_ILL_REMOVE); 445 446 /* 447 * Walk all CONNs that can have a reference on an ire or nce for this 448 * ill (we actually walk all that now have stale references). 449 */ 450 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 451 452 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 453 if (ill->ill_isv6) 454 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 455 456 /* 457 * If an address on this ILL is being used as a source address then 458 * clear out the pointers in other ILLs that point to this ILL. 459 */ 460 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 461 if (ill->ill_usesrc_grp_next != NULL) { 462 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 463 ill_disband_usesrc_group(ill); 464 } else { /* consumer of the usesrc ILL */ 465 prev_ill = ill_prev_usesrc(ill); 466 prev_ill->ill_usesrc_grp_next = 467 ill->ill_usesrc_grp_next; 468 } 469 } 470 rw_exit(&ipst->ips_ill_g_usesrc_lock); 471 } 472 473 static void 474 ipif_non_duplicate(ipif_t *ipif) 475 { 476 ill_t *ill = ipif->ipif_ill; 477 mutex_enter(&ill->ill_lock); 478 if (ipif->ipif_flags & IPIF_DUPLICATE) { 479 ipif->ipif_flags &= ~IPIF_DUPLICATE; 480 ASSERT(ill->ill_ipif_dup_count > 0); 481 ill->ill_ipif_dup_count--; 482 } 483 mutex_exit(&ill->ill_lock); 484 } 485 486 /* 487 * ill_delete_tail is called from ip_modclose after all references 488 * to the closing ill are gone. The wait is done in ip_modclose 489 */ 490 void 491 ill_delete_tail(ill_t *ill) 492 { 493 mblk_t **mpp; 494 ipif_t *ipif; 495 ip_stack_t *ipst = ill->ill_ipst; 496 497 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 498 ipif_non_duplicate(ipif); 499 (void) ipif_down_tail(ipif); 500 } 501 502 ASSERT(ill->ill_ipif_dup_count == 0); 503 504 /* 505 * If polling capability is enabled (which signifies direct 506 * upcall into IP and driver has ill saved as a handle), 507 * we need to make sure that unbind has completed before we 508 * let the ill disappear and driver no longer has any reference 509 * to this ill. 510 */ 511 mutex_enter(&ill->ill_lock); 512 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 513 cv_wait(&ill->ill_cv, &ill->ill_lock); 514 mutex_exit(&ill->ill_lock); 515 ASSERT(!(ill->ill_capabilities & 516 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 517 518 if (ill->ill_net_type != IRE_LOOPBACK) 519 qprocsoff(ill->ill_rq); 520 521 /* 522 * We do an ipsq_flush once again now. New messages could have 523 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 524 * could also have landed up if an ioctl thread had looked up 525 * the ill before we set the ILL_CONDEMNED flag, but not yet 526 * enqueued the ioctl when we did the ipsq_flush last time. 527 */ 528 ipsq_flush(ill); 529 530 /* 531 * Free capabilities. 532 */ 533 if (ill->ill_hcksum_capab != NULL) { 534 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 535 ill->ill_hcksum_capab = NULL; 536 } 537 538 if (ill->ill_zerocopy_capab != NULL) { 539 kmem_free(ill->ill_zerocopy_capab, 540 sizeof (ill_zerocopy_capab_t)); 541 ill->ill_zerocopy_capab = NULL; 542 } 543 544 if (ill->ill_lso_capab != NULL) { 545 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 546 ill->ill_lso_capab = NULL; 547 } 548 549 if (ill->ill_dld_capab != NULL) { 550 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 551 ill->ill_dld_capab = NULL; 552 } 553 554 /* Clean up ill_allowed_ips* related state */ 555 if (ill->ill_allowed_ips != NULL) { 556 ASSERT(ill->ill_allowed_ips_cnt > 0); 557 kmem_free(ill->ill_allowed_ips, 558 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 559 ill->ill_allowed_ips = NULL; 560 ill->ill_allowed_ips_cnt = 0; 561 } 562 563 while (ill->ill_ipif != NULL) 564 ipif_free_tail(ill->ill_ipif); 565 566 /* 567 * We have removed all references to ilm from conn and the ones joined 568 * within the kernel. 569 * 570 * We don't walk conns, mrts and ires because 571 * 572 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 573 * 2) ill_down ->ill_downi walks all the ires and cleans up 574 * ill references. 575 */ 576 577 /* 578 * If this ill is an IPMP meta-interface, blow away the illgrp. This 579 * is safe to do because the illgrp has already been unlinked from the 580 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 581 */ 582 if (IS_IPMP(ill)) { 583 ipmp_illgrp_destroy(ill->ill_grp); 584 ill->ill_grp = NULL; 585 } 586 587 if (ill->ill_mphysaddr_list != NULL) { 588 multiphysaddr_t *mpa, *tmpa; 589 590 mpa = ill->ill_mphysaddr_list; 591 ill->ill_mphysaddr_list = NULL; 592 while (mpa) { 593 tmpa = mpa->mpa_next; 594 kmem_free(mpa, sizeof (*mpa)); 595 mpa = tmpa; 596 } 597 } 598 /* 599 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 600 * could free the phyint. No more reference to the phyint after this 601 * point. 602 */ 603 (void) ill_glist_delete(ill); 604 605 if (ill->ill_frag_ptr != NULL) { 606 uint_t count; 607 608 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 609 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 610 } 611 mi_free(ill->ill_frag_ptr); 612 ill->ill_frag_ptr = NULL; 613 ill->ill_frag_hash_tbl = NULL; 614 } 615 616 freemsg(ill->ill_nd_lla_mp); 617 /* Free all retained control messages. */ 618 mpp = &ill->ill_first_mp_to_free; 619 do { 620 while (mpp[0]) { 621 mblk_t *mp; 622 mblk_t *mp1; 623 624 mp = mpp[0]; 625 mpp[0] = mp->b_next; 626 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 627 mp1->b_next = NULL; 628 mp1->b_prev = NULL; 629 } 630 freemsg(mp); 631 } 632 } while (mpp++ != &ill->ill_last_mp_to_free); 633 634 ill_free_mib(ill); 635 636 #ifdef DEBUG 637 ill_trace_cleanup(ill); 638 #endif 639 640 /* The default multicast interface might have changed */ 641 ire_increment_multicast_generation(ipst, ill->ill_isv6); 642 643 /* Drop refcnt here */ 644 netstack_rele(ill->ill_ipst->ips_netstack); 645 ill->ill_ipst = NULL; 646 } 647 648 static void 649 ill_free_mib(ill_t *ill) 650 { 651 ip_stack_t *ipst = ill->ill_ipst; 652 653 /* 654 * MIB statistics must not be lost, so when an interface 655 * goes away the counter values will be added to the global 656 * MIBs. 657 */ 658 if (ill->ill_ip_mib != NULL) { 659 if (ill->ill_isv6) { 660 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 661 ill->ill_ip_mib); 662 } else { 663 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 664 ill->ill_ip_mib); 665 } 666 667 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 668 ill->ill_ip_mib = NULL; 669 } 670 if (ill->ill_icmp6_mib != NULL) { 671 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 672 ill->ill_icmp6_mib); 673 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 674 ill->ill_icmp6_mib = NULL; 675 } 676 } 677 678 /* 679 * Concatenate together a physical address and a sap. 680 * 681 * Sap_lengths are interpreted as follows: 682 * sap_length == 0 ==> no sap 683 * sap_length > 0 ==> sap is at the head of the dlpi address 684 * sap_length < 0 ==> sap is at the tail of the dlpi address 685 */ 686 static void 687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 688 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 689 { 690 uint16_t sap_addr = (uint16_t)sap_src; 691 692 if (sap_length == 0) { 693 if (phys_src == NULL) 694 bzero(dst, phys_length); 695 else 696 bcopy(phys_src, dst, phys_length); 697 } else if (sap_length < 0) { 698 if (phys_src == NULL) 699 bzero(dst, phys_length); 700 else 701 bcopy(phys_src, dst, phys_length); 702 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 703 } else { 704 bcopy(&sap_addr, dst, sizeof (sap_addr)); 705 if (phys_src == NULL) 706 bzero((char *)dst + sap_length, phys_length); 707 else 708 bcopy(phys_src, (char *)dst + sap_length, phys_length); 709 } 710 } 711 712 /* 713 * Generate a dl_unitdata_req mblk for the device and address given. 714 * addr_length is the length of the physical portion of the address. 715 * If addr is NULL include an all zero address of the specified length. 716 * TRUE? In any case, addr_length is taken to be the entire length of the 717 * dlpi address, including the absolute value of sap_length. 718 */ 719 mblk_t * 720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 721 t_scalar_t sap_length) 722 { 723 dl_unitdata_req_t *dlur; 724 mblk_t *mp; 725 t_scalar_t abs_sap_length; /* absolute value */ 726 727 abs_sap_length = ABS(sap_length); 728 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 729 DL_UNITDATA_REQ); 730 if (mp == NULL) 731 return (NULL); 732 dlur = (dl_unitdata_req_t *)mp->b_rptr; 733 /* HACK: accomodate incompatible DLPI drivers */ 734 if (addr_length == 8) 735 addr_length = 6; 736 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 737 dlur->dl_dest_addr_offset = sizeof (*dlur); 738 dlur->dl_priority.dl_min = 0; 739 dlur->dl_priority.dl_max = 0; 740 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 741 (uchar_t *)&dlur[1]); 742 return (mp); 743 } 744 745 /* 746 * Add the pending mp to the list. There can be only 1 pending mp 747 * in the list. Any exclusive ioctl that needs to wait for a response 748 * from another module or driver needs to use this function to set 749 * the ipx_pending_mp to the ioctl mblk and wait for the response from 750 * the other module/driver. This is also used while waiting for the 751 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 752 */ 753 boolean_t 754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 755 int waitfor) 756 { 757 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 758 759 ASSERT(IAM_WRITER_IPIF(ipif)); 760 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 761 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 762 ASSERT(ipx->ipx_pending_mp == NULL); 763 /* 764 * The caller may be using a different ipif than the one passed into 765 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 766 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 767 * that `ipx_current_ipif == ipif'. 768 */ 769 ASSERT(ipx->ipx_current_ipif != NULL); 770 771 /* 772 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 773 * driver. 774 */ 775 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 776 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 777 (DB_TYPE(add_mp) == M_PCPROTO)); 778 779 if (connp != NULL) { 780 ASSERT(MUTEX_HELD(&connp->conn_lock)); 781 /* 782 * Return error if the conn has started closing. The conn 783 * could have finished cleaning up the pending mp list, 784 * If so we should not add another mp to the list negating 785 * the cleanup. 786 */ 787 if (connp->conn_state_flags & CONN_CLOSING) 788 return (B_FALSE); 789 } 790 mutex_enter(&ipx->ipx_lock); 791 ipx->ipx_pending_ipif = ipif; 792 /* 793 * Note down the queue in b_queue. This will be returned by 794 * ipsq_pending_mp_get. Caller will then use these values to restart 795 * the processing 796 */ 797 add_mp->b_next = NULL; 798 add_mp->b_queue = q; 799 ipx->ipx_pending_mp = add_mp; 800 ipx->ipx_waitfor = waitfor; 801 mutex_exit(&ipx->ipx_lock); 802 803 if (connp != NULL) 804 connp->conn_oper_pending_ill = ipif->ipif_ill; 805 806 return (B_TRUE); 807 } 808 809 /* 810 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 811 * queued in the list. 812 */ 813 mblk_t * 814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 815 { 816 mblk_t *curr = NULL; 817 ipxop_t *ipx = ipsq->ipsq_xop; 818 819 *connpp = NULL; 820 mutex_enter(&ipx->ipx_lock); 821 if (ipx->ipx_pending_mp == NULL) { 822 mutex_exit(&ipx->ipx_lock); 823 return (NULL); 824 } 825 826 /* There can be only 1 such excl message */ 827 curr = ipx->ipx_pending_mp; 828 ASSERT(curr->b_next == NULL); 829 ipx->ipx_pending_ipif = NULL; 830 ipx->ipx_pending_mp = NULL; 831 ipx->ipx_waitfor = 0; 832 mutex_exit(&ipx->ipx_lock); 833 834 if (CONN_Q(curr->b_queue)) { 835 /* 836 * This mp did a refhold on the conn, at the start of the ioctl. 837 * So we can safely return a pointer to the conn to the caller. 838 */ 839 *connpp = Q_TO_CONN(curr->b_queue); 840 } else { 841 *connpp = NULL; 842 } 843 curr->b_next = NULL; 844 curr->b_prev = NULL; 845 return (curr); 846 } 847 848 /* 849 * Cleanup the ioctl mp queued in ipx_pending_mp 850 * - Called in the ill_delete path 851 * - Called in the M_ERROR or M_HANGUP path on the ill. 852 * - Called in the conn close path. 853 * 854 * Returns success on finding the pending mblk associated with the ioctl or 855 * exclusive operation in progress, failure otherwise. 856 */ 857 boolean_t 858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 859 { 860 mblk_t *mp; 861 ipxop_t *ipx; 862 queue_t *q; 863 ipif_t *ipif; 864 int cmd; 865 866 ASSERT(IAM_WRITER_ILL(ill)); 867 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 868 869 mutex_enter(&ipx->ipx_lock); 870 mp = ipx->ipx_pending_mp; 871 if (connp != NULL) { 872 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 873 /* 874 * Nothing to clean since the conn that is closing 875 * does not have a matching pending mblk in 876 * ipx_pending_mp. 877 */ 878 mutex_exit(&ipx->ipx_lock); 879 return (B_FALSE); 880 } 881 } else { 882 /* 883 * A non-zero ill_error signifies we are called in the 884 * M_ERROR or M_HANGUP path and we need to unconditionally 885 * abort any current ioctl and do the corresponding cleanup. 886 * A zero ill_error means we are in the ill_delete path and 887 * we do the cleanup only if there is a pending mp. 888 */ 889 if (mp == NULL && ill->ill_error == 0) { 890 mutex_exit(&ipx->ipx_lock); 891 return (B_FALSE); 892 } 893 } 894 895 /* Now remove from the ipx_pending_mp */ 896 ipx->ipx_pending_mp = NULL; 897 ipif = ipx->ipx_pending_ipif; 898 ipx->ipx_pending_ipif = NULL; 899 ipx->ipx_waitfor = 0; 900 ipx->ipx_current_ipif = NULL; 901 cmd = ipx->ipx_current_ioctl; 902 ipx->ipx_current_ioctl = 0; 903 ipx->ipx_current_done = B_TRUE; 904 mutex_exit(&ipx->ipx_lock); 905 906 if (mp == NULL) 907 return (B_FALSE); 908 909 q = mp->b_queue; 910 mp->b_next = NULL; 911 mp->b_prev = NULL; 912 mp->b_queue = NULL; 913 914 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 915 DTRACE_PROBE4(ipif__ioctl, 916 char *, "ipsq_pending_mp_cleanup", 917 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 918 ipif_t *, ipif); 919 if (connp == NULL) { 920 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 921 } else { 922 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 923 mutex_enter(&ipif->ipif_ill->ill_lock); 924 ipif->ipif_state_flags &= ~IPIF_CHANGING; 925 mutex_exit(&ipif->ipif_ill->ill_lock); 926 } 927 } else { 928 inet_freemsg(mp); 929 } 930 return (B_TRUE); 931 } 932 933 /* 934 * Called in the conn close path and ill delete path 935 */ 936 static void 937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 938 { 939 ipsq_t *ipsq; 940 mblk_t *prev; 941 mblk_t *curr; 942 mblk_t *next; 943 queue_t *wq, *rq = NULL; 944 mblk_t *tmp_list = NULL; 945 946 ASSERT(IAM_WRITER_ILL(ill)); 947 if (connp != NULL) 948 wq = CONNP_TO_WQ(connp); 949 else 950 wq = ill->ill_wq; 951 952 /* 953 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 954 * against this here. 955 */ 956 if (wq != NULL) 957 rq = RD(wq); 958 959 ipsq = ill->ill_phyint->phyint_ipsq; 960 /* 961 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 962 * In the case of ioctl from a conn, there can be only 1 mp 963 * queued on the ipsq. If an ill is being unplumbed flush all 964 * the messages. 965 */ 966 mutex_enter(&ipsq->ipsq_lock); 967 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 968 curr = next) { 969 next = curr->b_next; 970 if (connp == NULL || 971 (curr->b_queue == wq || curr->b_queue == rq)) { 972 /* Unlink the mblk from the pending mp list */ 973 if (prev != NULL) { 974 prev->b_next = curr->b_next; 975 } else { 976 ASSERT(ipsq->ipsq_xopq_mphead == curr); 977 ipsq->ipsq_xopq_mphead = curr->b_next; 978 } 979 if (ipsq->ipsq_xopq_mptail == curr) 980 ipsq->ipsq_xopq_mptail = prev; 981 /* 982 * Create a temporary list and release the ipsq lock 983 * New elements are added to the head of the tmp_list 984 */ 985 curr->b_next = tmp_list; 986 tmp_list = curr; 987 } else { 988 prev = curr; 989 } 990 } 991 mutex_exit(&ipsq->ipsq_lock); 992 993 while (tmp_list != NULL) { 994 curr = tmp_list; 995 tmp_list = curr->b_next; 996 curr->b_next = NULL; 997 curr->b_prev = NULL; 998 wq = curr->b_queue; 999 curr->b_queue = NULL; 1000 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1001 DTRACE_PROBE4(ipif__ioctl, 1002 char *, "ipsq_xopq_mp_cleanup", 1003 int, 0, ill_t *, NULL, ipif_t *, NULL); 1004 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1005 CONN_CLOSE : NO_COPYOUT, NULL); 1006 } else { 1007 /* 1008 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1009 * this can't be just inet_freemsg. we have to 1010 * restart it otherwise the thread will be stuck. 1011 */ 1012 inet_freemsg(curr); 1013 } 1014 } 1015 } 1016 1017 /* 1018 * This conn has started closing. Cleanup any pending ioctl from this conn. 1019 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1020 */ 1021 void 1022 conn_ioctl_cleanup(conn_t *connp) 1023 { 1024 ipsq_t *ipsq; 1025 ill_t *ill; 1026 boolean_t refheld; 1027 1028 /* 1029 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1030 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1031 * started the mp could be present in ipx_pending_mp. Note that if 1032 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1033 * not yet queued anywhere. In this case, the conn close code will wait 1034 * until the conn_ref is dropped. If the stream was a tcp stream, then 1035 * tcp_close will wait first until all ioctls have completed for this 1036 * conn. 1037 */ 1038 mutex_enter(&connp->conn_lock); 1039 ill = connp->conn_oper_pending_ill; 1040 if (ill == NULL) { 1041 mutex_exit(&connp->conn_lock); 1042 return; 1043 } 1044 1045 /* 1046 * We may not be able to refhold the ill if the ill/ipif 1047 * is changing. But we need to make sure that the ill will 1048 * not vanish. So we just bump up the ill_waiter count. 1049 */ 1050 refheld = ill_waiter_inc(ill); 1051 mutex_exit(&connp->conn_lock); 1052 if (refheld) { 1053 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1054 ill_waiter_dcr(ill); 1055 /* 1056 * Check whether this ioctl has started and is 1057 * pending. If it is not found there then check 1058 * whether this ioctl has not even started and is in 1059 * the ipsq_xopq list. 1060 */ 1061 if (!ipsq_pending_mp_cleanup(ill, connp)) 1062 ipsq_xopq_mp_cleanup(ill, connp); 1063 ipsq = ill->ill_phyint->phyint_ipsq; 1064 ipsq_exit(ipsq); 1065 return; 1066 } 1067 } 1068 1069 /* 1070 * The ill is also closing and we could not bump up the 1071 * ill_waiter_count or we could not enter the ipsq. Leave 1072 * the cleanup to ill_delete 1073 */ 1074 mutex_enter(&connp->conn_lock); 1075 while (connp->conn_oper_pending_ill != NULL) 1076 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1077 mutex_exit(&connp->conn_lock); 1078 if (refheld) 1079 ill_waiter_dcr(ill); 1080 } 1081 1082 /* 1083 * ipcl_walk function for cleaning up conn_*_ill fields. 1084 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1085 * conn_bound_if in place. We prefer dropping 1086 * packets instead of sending them out the wrong interface, or accepting 1087 * packets from the wrong ifindex. 1088 */ 1089 static void 1090 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1091 { 1092 ill_t *ill = (ill_t *)arg; 1093 1094 mutex_enter(&connp->conn_lock); 1095 if (connp->conn_dhcpinit_ill == ill) { 1096 connp->conn_dhcpinit_ill = NULL; 1097 ASSERT(ill->ill_dhcpinit != 0); 1098 atomic_dec_32(&ill->ill_dhcpinit); 1099 ill_set_inputfn(ill); 1100 } 1101 mutex_exit(&connp->conn_lock); 1102 } 1103 1104 static int 1105 ill_down_ipifs_tail(ill_t *ill) 1106 { 1107 ipif_t *ipif; 1108 int err; 1109 1110 ASSERT(IAM_WRITER_ILL(ill)); 1111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1112 ipif_non_duplicate(ipif); 1113 /* 1114 * ipif_down_tail will call arp_ll_down on the last ipif 1115 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1116 */ 1117 if ((err = ipif_down_tail(ipif)) != 0) 1118 return (err); 1119 } 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 void 1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1126 { 1127 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1128 (void) ill_down_ipifs_tail(q->q_ptr); 1129 freemsg(mp); 1130 ipsq_current_finish(ipsq); 1131 } 1132 1133 /* 1134 * ill_down_start is called when we want to down this ill and bring it up again 1135 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1136 * all interfaces, but don't tear down any plumbing. 1137 */ 1138 boolean_t 1139 ill_down_start(queue_t *q, mblk_t *mp) 1140 { 1141 ill_t *ill = q->q_ptr; 1142 ipif_t *ipif; 1143 1144 ASSERT(IAM_WRITER_ILL(ill)); 1145 /* 1146 * It is possible that some ioctl is already in progress while we 1147 * received the M_ERROR / M_HANGUP in which case, we need to abort 1148 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1149 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1150 * the in progress ioctl from ever completing. 1151 * 1152 * The thread that started the ioctl (if any) must have returned, 1153 * since we are now executing as writer. After the 2 calls below, 1154 * the state of the ipsq and the ill would reflect no trace of any 1155 * pending operation. Subsequently if there is any response to the 1156 * original ioctl from the driver, it would be discarded as an 1157 * unsolicited message from the driver. 1158 */ 1159 (void) ipsq_pending_mp_cleanup(ill, NULL); 1160 ill_dlpi_clear_deferred(ill); 1161 1162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1163 (void) ipif_down(ipif, NULL, NULL); 1164 1165 ill_down(ill); 1166 1167 /* 1168 * Walk all CONNs that can have a reference on an ire or nce for this 1169 * ill (we actually walk all that now have stale references). 1170 */ 1171 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1172 1173 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1174 if (ill->ill_isv6) 1175 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1176 1177 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1178 1179 /* 1180 * Atomically test and add the pending mp if references are active. 1181 */ 1182 mutex_enter(&ill->ill_lock); 1183 if (!ill_is_quiescent(ill)) { 1184 /* call cannot fail since `conn_t *' argument is NULL */ 1185 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1186 mp, ILL_DOWN); 1187 mutex_exit(&ill->ill_lock); 1188 return (B_FALSE); 1189 } 1190 mutex_exit(&ill->ill_lock); 1191 return (B_TRUE); 1192 } 1193 1194 static void 1195 ill_down(ill_t *ill) 1196 { 1197 mblk_t *mp; 1198 ip_stack_t *ipst = ill->ill_ipst; 1199 1200 /* 1201 * Blow off any IREs dependent on this ILL. 1202 * The caller needs to handle conn_ixa_cleanup 1203 */ 1204 ill_delete_ires(ill); 1205 1206 ire_walk_ill(0, 0, ill_downi, ill, ill); 1207 1208 /* Remove any conn_*_ill depending on this ill */ 1209 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1210 1211 /* 1212 * Free state for additional IREs. 1213 */ 1214 mutex_enter(&ill->ill_saved_ire_lock); 1215 mp = ill->ill_saved_ire_mp; 1216 ill->ill_saved_ire_mp = NULL; 1217 ill->ill_saved_ire_cnt = 0; 1218 mutex_exit(&ill->ill_saved_ire_lock); 1219 freemsg(mp); 1220 } 1221 1222 /* 1223 * ire_walk routine used to delete every IRE that depends on 1224 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1225 * 1226 * Note: since the routes added by the kernel are deleted separately, 1227 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1228 * 1229 * We also remove references on ire_nce_cache entries that refer to the ill. 1230 */ 1231 void 1232 ill_downi(ire_t *ire, char *ill_arg) 1233 { 1234 ill_t *ill = (ill_t *)ill_arg; 1235 nce_t *nce; 1236 1237 mutex_enter(&ire->ire_lock); 1238 nce = ire->ire_nce_cache; 1239 if (nce != NULL && nce->nce_ill == ill) 1240 ire->ire_nce_cache = NULL; 1241 else 1242 nce = NULL; 1243 mutex_exit(&ire->ire_lock); 1244 if (nce != NULL) 1245 nce_refrele(nce); 1246 if (ire->ire_ill == ill) { 1247 /* 1248 * The existing interface binding for ire must be 1249 * deleted before trying to bind the route to another 1250 * interface. However, since we are using the contents of the 1251 * ire after ire_delete, the caller has to ensure that 1252 * CONDEMNED (deleted) ire's are not removed from the list 1253 * when ire_delete() returns. Currently ill_downi() is 1254 * only called as part of ire_walk*() routines, so that 1255 * the irb_refhold() done by ire_walk*() will ensure that 1256 * ire_delete() does not lead to ire_inactive(). 1257 */ 1258 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1259 ire_delete(ire); 1260 if (ire->ire_unbound) 1261 ire_rebind(ire); 1262 } 1263 } 1264 1265 /* Remove IRE_IF_CLONE on this ill */ 1266 void 1267 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1268 { 1269 ill_t *ill = (ill_t *)ill_arg; 1270 1271 ASSERT(ire->ire_type & IRE_IF_CLONE); 1272 if (ire->ire_ill == ill) 1273 ire_delete(ire); 1274 } 1275 1276 /* Consume an M_IOCACK of the fastpath probe. */ 1277 void 1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1279 { 1280 mblk_t *mp1 = mp; 1281 1282 /* 1283 * If this was the first attempt turn on the fastpath probing. 1284 */ 1285 mutex_enter(&ill->ill_lock); 1286 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1287 ill->ill_dlpi_fastpath_state = IDS_OK; 1288 mutex_exit(&ill->ill_lock); 1289 1290 /* Free the M_IOCACK mblk, hold on to the data */ 1291 mp = mp->b_cont; 1292 freeb(mp1); 1293 if (mp == NULL) 1294 return; 1295 if (mp->b_cont != NULL) 1296 nce_fastpath_update(ill, mp); 1297 else 1298 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1299 freemsg(mp); 1300 } 1301 1302 /* 1303 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1304 * The data portion of the request is a dl_unitdata_req_t template for 1305 * what we would send downstream in the absence of a fastpath confirmation. 1306 */ 1307 int 1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1309 { 1310 struct iocblk *ioc; 1311 mblk_t *mp; 1312 1313 if (dlur_mp == NULL) 1314 return (EINVAL); 1315 1316 mutex_enter(&ill->ill_lock); 1317 switch (ill->ill_dlpi_fastpath_state) { 1318 case IDS_FAILED: 1319 /* 1320 * Driver NAKed the first fastpath ioctl - assume it doesn't 1321 * support it. 1322 */ 1323 mutex_exit(&ill->ill_lock); 1324 return (ENOTSUP); 1325 case IDS_UNKNOWN: 1326 /* This is the first probe */ 1327 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1328 break; 1329 default: 1330 break; 1331 } 1332 mutex_exit(&ill->ill_lock); 1333 1334 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1335 return (EAGAIN); 1336 1337 mp->b_cont = copyb(dlur_mp); 1338 if (mp->b_cont == NULL) { 1339 freeb(mp); 1340 return (EAGAIN); 1341 } 1342 1343 ioc = (struct iocblk *)mp->b_rptr; 1344 ioc->ioc_count = msgdsize(mp->b_cont); 1345 1346 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1347 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1348 putnext(ill->ill_wq, mp); 1349 return (0); 1350 } 1351 1352 void 1353 ill_capability_probe(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 1357 ASSERT(IAM_WRITER_ILL(ill)); 1358 1359 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1360 ill->ill_dlpi_capab_state != IDCS_FAILED) 1361 return; 1362 1363 /* 1364 * We are starting a new cycle of capability negotiation. 1365 * Free up the capab reset messages of any previous incarnation. 1366 * We will do a fresh allocation when we get the response to our probe 1367 */ 1368 if (ill->ill_capab_reset_mp != NULL) { 1369 freemsg(ill->ill_capab_reset_mp); 1370 ill->ill_capab_reset_mp = NULL; 1371 } 1372 1373 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1374 1375 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1376 if (mp == NULL) 1377 return; 1378 1379 ill_capability_send(ill, mp); 1380 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1381 } 1382 1383 void 1384 ill_capability_reset(ill_t *ill, boolean_t reneg) 1385 { 1386 ASSERT(IAM_WRITER_ILL(ill)); 1387 1388 if (ill->ill_dlpi_capab_state != IDCS_OK) 1389 return; 1390 1391 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1392 1393 ill_capability_send(ill, ill->ill_capab_reset_mp); 1394 ill->ill_capab_reset_mp = NULL; 1395 /* 1396 * We turn off all capabilities except those pertaining to 1397 * direct function call capabilities viz. ILL_CAPAB_DLD* 1398 * which will be turned off by the corresponding reset functions. 1399 */ 1400 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1401 } 1402 1403 static void 1404 ill_capability_reset_alloc(ill_t *ill) 1405 { 1406 mblk_t *mp; 1407 size_t size = 0; 1408 int err; 1409 dl_capability_req_t *capb; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 ASSERT(ill->ill_capab_reset_mp == NULL); 1413 1414 if (ILL_HCKSUM_CAPABLE(ill)) { 1415 size += sizeof (dl_capability_sub_t) + 1416 sizeof (dl_capab_hcksum_t); 1417 } 1418 1419 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1420 size += sizeof (dl_capability_sub_t) + 1421 sizeof (dl_capab_zerocopy_t); 1422 } 1423 1424 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1425 size += sizeof (dl_capability_sub_t) + 1426 sizeof (dl_capab_dld_t); 1427 } 1428 1429 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1430 STR_NOSIG, &err); 1431 1432 mp->b_datap->db_type = M_PROTO; 1433 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1434 1435 capb = (dl_capability_req_t *)mp->b_rptr; 1436 capb->dl_primitive = DL_CAPABILITY_REQ; 1437 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1438 capb->dl_sub_length = size; 1439 1440 mp->b_wptr += sizeof (dl_capability_req_t); 1441 1442 /* 1443 * Each handler fills in the corresponding dl_capability_sub_t 1444 * inside the mblk, 1445 */ 1446 ill_capability_hcksum_reset_fill(ill, mp); 1447 ill_capability_zerocopy_reset_fill(ill, mp); 1448 ill_capability_dld_reset_fill(ill, mp); 1449 1450 ill->ill_capab_reset_mp = mp; 1451 } 1452 1453 static void 1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1455 { 1456 dl_capab_id_t *id_ic; 1457 uint_t sub_dl_cap = outers->dl_cap; 1458 dl_capability_sub_t *inners; 1459 uint8_t *capend; 1460 1461 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1462 1463 /* 1464 * Note: range checks here are not absolutely sufficient to 1465 * make us robust against malformed messages sent by drivers; 1466 * this is in keeping with the rest of IP's dlpi handling. 1467 * (Remember, it's coming from something else in the kernel 1468 * address space) 1469 */ 1470 1471 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1472 if (capend > mp->b_wptr) { 1473 cmn_err(CE_WARN, "ill_capability_id_ack: " 1474 "malformed sub-capability too long for mblk"); 1475 return; 1476 } 1477 1478 id_ic = (dl_capab_id_t *)(outers + 1); 1479 1480 inners = &id_ic->id_subcap; 1481 if (outers->dl_length < sizeof (*id_ic) || 1482 inners->dl_length > (outers->dl_length - sizeof (*inners))) { 1483 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1484 "encapsulated capab type %d too long for mblk", 1485 inners->dl_cap); 1486 return; 1487 } 1488 1489 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1490 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1491 "isn't as expected; pass-thru module(s) detected, " 1492 "discarding capability\n", inners->dl_cap)); 1493 return; 1494 } 1495 1496 /* Process the encapsulated sub-capability */ 1497 ill_capability_dispatch(ill, mp, inners); 1498 } 1499 1500 static void 1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1502 { 1503 dl_capability_sub_t *dl_subcap; 1504 1505 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1506 return; 1507 1508 /* 1509 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1510 * initialized below since it is not used by DLD. 1511 */ 1512 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1513 dl_subcap->dl_cap = DL_CAPAB_DLD; 1514 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1515 1516 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1517 } 1518 1519 static void 1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1521 { 1522 /* 1523 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1524 * is only to get the VRRP capability. 1525 * 1526 * Note that we cannot check ill_ipif_up_count here since 1527 * ill_ipif_up_count is only incremented when the resolver is setup. 1528 * That is done asynchronously, and can race with this function. 1529 */ 1530 if (!ill->ill_dl_up) { 1531 if (subp->dl_cap == DL_CAPAB_VRRP) 1532 ill_capability_vrrp_ack(ill, mp, subp); 1533 return; 1534 } 1535 1536 switch (subp->dl_cap) { 1537 case DL_CAPAB_HCKSUM: 1538 ill_capability_hcksum_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_ZEROCOPY: 1541 ill_capability_zerocopy_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_DLD: 1544 ill_capability_dld_ack(ill, mp, subp); 1545 break; 1546 case DL_CAPAB_VRRP: 1547 break; 1548 default: 1549 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1550 subp->dl_cap)); 1551 } 1552 } 1553 1554 /* 1555 * Process the vrrp capability received from a DLS Provider. isub must point 1556 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1557 */ 1558 static void 1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1560 { 1561 dl_capab_vrrp_t *vrrp; 1562 uint_t sub_dl_cap = isub->dl_cap; 1563 uint8_t *capend; 1564 1565 ASSERT(IAM_WRITER_ILL(ill)); 1566 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1567 1568 /* 1569 * Note: range checks here are not absolutely sufficient to 1570 * make us robust against malformed messages sent by drivers; 1571 * this is in keeping with the rest of IP's dlpi handling. 1572 * (Remember, it's coming from something else in the kernel 1573 * address space) 1574 */ 1575 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1576 if (capend > mp->b_wptr) { 1577 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1578 "malformed sub-capability too long for mblk"); 1579 return; 1580 } 1581 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1582 1583 /* 1584 * Compare the IP address family and set ILLF_VRRP for the right ill. 1585 */ 1586 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1587 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1588 ill->ill_flags |= ILLF_VRRP; 1589 } 1590 } 1591 1592 /* 1593 * Process a hardware checksum offload capability negotiation ack received 1594 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1595 * of a DL_CAPABILITY_ACK message. 1596 */ 1597 static void 1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1599 { 1600 dl_capability_req_t *ocap; 1601 dl_capab_hcksum_t *ihck, *ohck; 1602 ill_hcksum_capab_t **ill_hcksum; 1603 mblk_t *nmp = NULL; 1604 uint_t sub_dl_cap = isub->dl_cap; 1605 uint8_t *capend; 1606 1607 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1608 1609 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1610 1611 /* 1612 * Note: range checks here are not absolutely sufficient to 1613 * make us robust against malformed messages sent by drivers; 1614 * this is in keeping with the rest of IP's dlpi handling. 1615 * (Remember, it's coming from something else in the kernel 1616 * address space) 1617 */ 1618 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1619 if (capend > mp->b_wptr) { 1620 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1621 "malformed sub-capability too long for mblk"); 1622 return; 1623 } 1624 1625 /* 1626 * There are two types of acks we process here: 1627 * 1. acks in reply to a (first form) generic capability req 1628 * (no ENABLE flag set) 1629 * 2. acks in reply to a ENABLE capability req. 1630 * (ENABLE flag set) 1631 */ 1632 ihck = (dl_capab_hcksum_t *)(isub + 1); 1633 1634 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1635 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1636 "unsupported hardware checksum " 1637 "sub-capability (version %d, expected %d)", 1638 ihck->hcksum_version, HCKSUM_VERSION_1); 1639 return; 1640 } 1641 1642 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1643 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1644 "checksum capability isn't as expected; pass-thru " 1645 "module(s) detected, discarding capability\n")); 1646 return; 1647 } 1648 1649 #define CURR_HCKSUM_CAPAB \ 1650 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1651 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1652 1653 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1654 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1655 /* do ENABLE processing */ 1656 if (*ill_hcksum == NULL) { 1657 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1658 KM_NOSLEEP); 1659 1660 if (*ill_hcksum == NULL) { 1661 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1662 "could not enable hcksum version %d " 1663 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1664 ill->ill_name); 1665 return; 1666 } 1667 } 1668 1669 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1670 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1671 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1672 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1673 "has enabled hardware checksumming\n ", 1674 ill->ill_name)); 1675 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1676 /* 1677 * Enabling hardware checksum offload 1678 * Currently IP supports {TCP,UDP}/IPv4 1679 * partial and full cksum offload and 1680 * IPv4 header checksum offload. 1681 * Allocate new mblk which will 1682 * contain a new capability request 1683 * to enable hardware checksum offload. 1684 */ 1685 uint_t size; 1686 uchar_t *rptr; 1687 1688 size = sizeof (dl_capability_req_t) + 1689 sizeof (dl_capability_sub_t) + isub->dl_length; 1690 1691 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1692 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1693 "could not enable hardware cksum for %s (ENOMEM)\n", 1694 ill->ill_name); 1695 return; 1696 } 1697 1698 rptr = nmp->b_rptr; 1699 /* initialize dl_capability_req_t */ 1700 ocap = (dl_capability_req_t *)nmp->b_rptr; 1701 ocap->dl_sub_offset = 1702 sizeof (dl_capability_req_t); 1703 ocap->dl_sub_length = 1704 sizeof (dl_capability_sub_t) + 1705 isub->dl_length; 1706 nmp->b_rptr += sizeof (dl_capability_req_t); 1707 1708 /* initialize dl_capability_sub_t */ 1709 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1710 nmp->b_rptr += sizeof (*isub); 1711 1712 /* initialize dl_capab_hcksum_t */ 1713 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1714 bcopy(ihck, ohck, sizeof (*ihck)); 1715 1716 nmp->b_rptr = rptr; 1717 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1718 1719 /* Set ENABLE flag */ 1720 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1721 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1722 1723 /* 1724 * nmp points to a DL_CAPABILITY_REQ message to enable 1725 * hardware checksum acceleration. 1726 */ 1727 ill_capability_send(ill, nmp); 1728 } else { 1729 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1730 "advertised %x hardware checksum capability flags\n", 1731 ill->ill_name, ihck->hcksum_txflags)); 1732 } 1733 } 1734 1735 static void 1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1737 { 1738 dl_capab_hcksum_t *hck_subcap; 1739 dl_capability_sub_t *dl_subcap; 1740 1741 if (!ILL_HCKSUM_CAPABLE(ill)) 1742 return; 1743 1744 ASSERT(ill->ill_hcksum_capab != NULL); 1745 1746 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1747 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1748 dl_subcap->dl_length = sizeof (*hck_subcap); 1749 1750 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1751 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1752 hck_subcap->hcksum_txflags = 0; 1753 1754 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1755 } 1756 1757 static void 1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1759 { 1760 mblk_t *nmp = NULL; 1761 dl_capability_req_t *oc; 1762 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1763 ill_zerocopy_capab_t **ill_zerocopy_capab; 1764 uint_t sub_dl_cap = isub->dl_cap; 1765 uint8_t *capend; 1766 1767 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1768 1769 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1770 1771 /* 1772 * Note: range checks here are not absolutely sufficient to 1773 * make us robust against malformed messages sent by drivers; 1774 * this is in keeping with the rest of IP's dlpi handling. 1775 * (Remember, it's coming from something else in the kernel 1776 * address space) 1777 */ 1778 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1779 if (capend > mp->b_wptr) { 1780 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1781 "malformed sub-capability too long for mblk"); 1782 return; 1783 } 1784 1785 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1786 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1787 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1788 "unsupported ZEROCOPY sub-capability (version %d, " 1789 "expected %d)", zc_ic->zerocopy_version, 1790 ZEROCOPY_VERSION_1); 1791 return; 1792 } 1793 1794 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1795 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1796 "capability isn't as expected; pass-thru module(s) " 1797 "detected, discarding capability\n")); 1798 return; 1799 } 1800 1801 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1802 if (*ill_zerocopy_capab == NULL) { 1803 *ill_zerocopy_capab = 1804 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1805 KM_NOSLEEP); 1806 1807 if (*ill_zerocopy_capab == NULL) { 1808 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1809 "could not enable Zero-copy version %d " 1810 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1811 ill->ill_name); 1812 return; 1813 } 1814 } 1815 1816 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1817 "supports Zero-copy version %d\n", ill->ill_name, 1818 ZEROCOPY_VERSION_1)); 1819 1820 (*ill_zerocopy_capab)->ill_zerocopy_version = 1821 zc_ic->zerocopy_version; 1822 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1823 zc_ic->zerocopy_flags; 1824 1825 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1826 } else { 1827 uint_t size; 1828 uchar_t *rptr; 1829 1830 size = sizeof (dl_capability_req_t) + 1831 sizeof (dl_capability_sub_t) + 1832 sizeof (dl_capab_zerocopy_t); 1833 1834 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1835 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1836 "could not enable zerocopy for %s (ENOMEM)\n", 1837 ill->ill_name); 1838 return; 1839 } 1840 1841 rptr = nmp->b_rptr; 1842 /* initialize dl_capability_req_t */ 1843 oc = (dl_capability_req_t *)rptr; 1844 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1845 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1846 sizeof (dl_capab_zerocopy_t); 1847 rptr += sizeof (dl_capability_req_t); 1848 1849 /* initialize dl_capability_sub_t */ 1850 bcopy(isub, rptr, sizeof (*isub)); 1851 rptr += sizeof (*isub); 1852 1853 /* initialize dl_capab_zerocopy_t */ 1854 zc_oc = (dl_capab_zerocopy_t *)rptr; 1855 *zc_oc = *zc_ic; 1856 1857 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1858 "to enable zero-copy version %d\n", ill->ill_name, 1859 ZEROCOPY_VERSION_1)); 1860 1861 /* set VMSAFE_MEM flag */ 1862 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1863 1864 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1865 ill_capability_send(ill, nmp); 1866 } 1867 } 1868 1869 static void 1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1871 { 1872 dl_capab_zerocopy_t *zerocopy_subcap; 1873 dl_capability_sub_t *dl_subcap; 1874 1875 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1876 return; 1877 1878 ASSERT(ill->ill_zerocopy_capab != NULL); 1879 1880 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1881 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1882 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1883 1884 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1885 zerocopy_subcap->zerocopy_version = 1886 ill->ill_zerocopy_capab->ill_zerocopy_version; 1887 zerocopy_subcap->zerocopy_flags = 0; 1888 1889 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1890 } 1891 1892 /* 1893 * DLD capability 1894 * Refer to dld.h for more information regarding the purpose and usage 1895 * of this capability. 1896 */ 1897 static void 1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1899 { 1900 dl_capab_dld_t *dld_ic, dld; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 ill_dld_capab_t *idc; 1904 1905 ASSERT(IAM_WRITER_ILL(ill)); 1906 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 dld_ic = (dl_capab_dld_t *)(isub + 1); 1922 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1923 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1924 "unsupported DLD sub-capability (version %d, " 1925 "expected %d)", dld_ic->dld_version, 1926 DLD_CURRENT_VERSION); 1927 return; 1928 } 1929 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 /* 1937 * Copy locally to ensure alignment. 1938 */ 1939 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1940 1941 if ((idc = ill->ill_dld_capab) == NULL) { 1942 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1943 if (idc == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1945 "could not enable DLD version %d " 1946 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1947 ill->ill_name); 1948 return; 1949 } 1950 ill->ill_dld_capab = idc; 1951 } 1952 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1953 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1954 ip1dbg(("ill_capability_dld_ack: interface %s " 1955 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1956 1957 ill_capability_dld_enable(ill); 1958 } 1959 1960 /* 1961 * Typically capability negotiation between IP and the driver happens via 1962 * DLPI message exchange. However GLD also offers a direct function call 1963 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1964 * But arbitrary function calls into IP or GLD are not permitted, since both 1965 * of them are protected by their own perimeter mechanism. The perimeter can 1966 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1967 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1968 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1969 * to enter the mac perimeter and then do the direct function calls into 1970 * GLD to enable squeue polling. The ring related callbacks from the mac into 1971 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1972 * protected by the mac perimeter. 1973 */ 1974 static void 1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 int err; 1979 1980 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1981 DLD_ENABLE); 1982 ASSERT(err == 0); 1983 } 1984 1985 static void 1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1987 { 1988 ill_dld_capab_t *idc = ill->ill_dld_capab; 1989 int err; 1990 1991 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1992 DLD_DISABLE); 1993 ASSERT(err == 0); 1994 } 1995 1996 boolean_t 1997 ill_mac_perim_held(ill_t *ill) 1998 { 1999 ill_dld_capab_t *idc = ill->ill_dld_capab; 2000 2001 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2002 DLD_QUERY)); 2003 } 2004 2005 static void 2006 ill_capability_direct_enable(ill_t *ill) 2007 { 2008 ill_dld_capab_t *idc = ill->ill_dld_capab; 2009 ill_dld_direct_t *idd = &idc->idc_direct; 2010 dld_capab_direct_t direct; 2011 int rc; 2012 2013 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2014 2015 bzero(&direct, sizeof (direct)); 2016 direct.di_rx_cf = (uintptr_t)ip_input; 2017 direct.di_rx_ch = ill; 2018 2019 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2020 DLD_ENABLE); 2021 if (rc == 0) { 2022 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2023 idd->idd_tx_dh = direct.di_tx_dh; 2024 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2025 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2026 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2027 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2028 ASSERT(idd->idd_tx_cb_df != NULL); 2029 ASSERT(idd->idd_tx_fctl_df != NULL); 2030 ASSERT(idd->idd_tx_df != NULL); 2031 /* 2032 * One time registration of flow enable callback function 2033 */ 2034 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2035 ill_flow_enable, ill); 2036 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2037 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2038 } else { 2039 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2040 "capability, rc = %d\n", rc); 2041 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2042 } 2043 } 2044 2045 static void 2046 ill_capability_poll_enable(ill_t *ill) 2047 { 2048 ill_dld_capab_t *idc = ill->ill_dld_capab; 2049 dld_capab_poll_t poll; 2050 int rc; 2051 2052 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2053 2054 bzero(&poll, sizeof (poll)); 2055 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2056 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2057 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2058 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2059 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2060 poll.poll_ring_ch = ill; 2061 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2062 DLD_ENABLE); 2063 if (rc == 0) { 2064 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2065 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2066 } else { 2067 ip1dbg(("warning: could not enable POLL " 2068 "capability, rc = %d\n", rc)); 2069 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2070 } 2071 } 2072 2073 /* 2074 * Enable the LSO capability. 2075 */ 2076 static void 2077 ill_capability_lso_enable(ill_t *ill) 2078 { 2079 ill_dld_capab_t *idc = ill->ill_dld_capab; 2080 dld_capab_lso_t lso; 2081 int rc; 2082 2083 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2084 2085 if (ill->ill_lso_capab == NULL) { 2086 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2087 KM_NOSLEEP); 2088 if (ill->ill_lso_capab == NULL) { 2089 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2090 "could not enable LSO for %s (ENOMEM)\n", 2091 ill->ill_name); 2092 return; 2093 } 2094 } 2095 2096 bzero(&lso, sizeof (lso)); 2097 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2098 DLD_ENABLE)) == 0) { 2099 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2100 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2101 ill->ill_capabilities |= ILL_CAPAB_LSO; 2102 ip1dbg(("ill_capability_lso_enable: interface %s " 2103 "has enabled LSO\n ", ill->ill_name)); 2104 } else { 2105 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2106 ill->ill_lso_capab = NULL; 2107 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2108 } 2109 } 2110 2111 static void 2112 ill_capability_dld_enable(ill_t *ill) 2113 { 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (ill->ill_isv6) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 if (!ill->ill_isv6) { 2123 ill_capability_direct_enable(ill); 2124 ill_capability_poll_enable(ill); 2125 ill_capability_lso_enable(ill); 2126 } 2127 ill->ill_capabilities |= ILL_CAPAB_DLD; 2128 ill_mac_perim_exit(ill, mph); 2129 } 2130 2131 static void 2132 ill_capability_dld_disable(ill_t *ill) 2133 { 2134 ill_dld_capab_t *idc; 2135 ill_dld_direct_t *idd; 2136 mac_perim_handle_t mph; 2137 2138 ASSERT(IAM_WRITER_ILL(ill)); 2139 2140 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2141 return; 2142 2143 ill_mac_perim_enter(ill, &mph); 2144 2145 idc = ill->ill_dld_capab; 2146 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2147 /* 2148 * For performance we avoid locks in the transmit data path 2149 * and don't maintain a count of the number of threads using 2150 * direct calls. Thus some threads could be using direct 2151 * transmit calls to GLD, even after the capability mechanism 2152 * turns it off. This is still safe since the handles used in 2153 * the direct calls continue to be valid until the unplumb is 2154 * completed. Remove the callback that was added (1-time) at 2155 * capab enable time. 2156 */ 2157 mutex_enter(&ill->ill_lock); 2158 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2159 mutex_exit(&ill->ill_lock); 2160 if (ill->ill_flownotify_mh != NULL) { 2161 idd = &idc->idc_direct; 2162 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2163 ill->ill_flownotify_mh); 2164 ill->ill_flownotify_mh = NULL; 2165 } 2166 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2167 NULL, DLD_DISABLE); 2168 } 2169 2170 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2172 ip_squeue_clean_all(ill); 2173 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2174 NULL, DLD_DISABLE); 2175 } 2176 2177 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2178 ASSERT(ill->ill_lso_capab != NULL); 2179 /* 2180 * Clear the capability flag for LSO but retain the 2181 * ill_lso_capab structure since it's possible that another 2182 * thread is still referring to it. The structure only gets 2183 * deallocated when we destroy the ill. 2184 */ 2185 2186 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2188 NULL, DLD_DISABLE); 2189 } 2190 2191 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2192 ill_mac_perim_exit(ill, mph); 2193 } 2194 2195 /* 2196 * Capability Negotiation protocol 2197 * 2198 * We don't wait for DLPI capability operations to finish during interface 2199 * bringup or teardown. Doing so would introduce more asynchrony and the 2200 * interface up/down operations will need multiple return and restarts. 2201 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2202 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2203 * exclusive operation won't start until the DLPI operations of the previous 2204 * exclusive operation complete. 2205 * 2206 * The capability state machine is shown below. 2207 * 2208 * state next state event, action 2209 * 2210 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2211 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2212 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2213 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2214 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2215 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2216 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2217 * ill_capability_probe. 2218 */ 2219 2220 /* 2221 * Dedicated thread started from ip_stack_init that handles capability 2222 * disable. This thread ensures the taskq dispatch does not fail by waiting 2223 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2224 * that direct calls to DLD are done in a cv_waitable context. 2225 */ 2226 void 2227 ill_taskq_dispatch(ip_stack_t *ipst) 2228 { 2229 callb_cpr_t cprinfo; 2230 char name[64]; 2231 mblk_t *mp; 2232 2233 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2234 ipst->ips_netstack->netstack_stackid); 2235 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2236 name); 2237 mutex_enter(&ipst->ips_capab_taskq_lock); 2238 2239 for (;;) { 2240 mp = ipst->ips_capab_taskq_head; 2241 while (mp != NULL) { 2242 ipst->ips_capab_taskq_head = mp->b_next; 2243 if (ipst->ips_capab_taskq_head == NULL) 2244 ipst->ips_capab_taskq_tail = NULL; 2245 mutex_exit(&ipst->ips_capab_taskq_lock); 2246 mp->b_next = NULL; 2247 2248 VERIFY(taskq_dispatch(system_taskq, 2249 ill_capability_ack_thr, mp, TQ_SLEEP) != 2250 TASKQID_INVALID); 2251 mutex_enter(&ipst->ips_capab_taskq_lock); 2252 mp = ipst->ips_capab_taskq_head; 2253 } 2254 2255 if (ipst->ips_capab_taskq_quit) 2256 break; 2257 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2258 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2259 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2260 } 2261 VERIFY(ipst->ips_capab_taskq_head == NULL); 2262 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2263 CALLB_CPR_EXIT(&cprinfo); 2264 thread_exit(); 2265 } 2266 2267 /* 2268 * Consume a new-style hardware capabilities negotiation ack. 2269 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2270 */ 2271 static void 2272 ill_capability_ack_thr(void *arg) 2273 { 2274 mblk_t *mp = arg; 2275 dl_capability_ack_t *capp; 2276 dl_capability_sub_t *subp, *endp; 2277 ill_t *ill; 2278 boolean_t reneg; 2279 2280 ill = (ill_t *)mp->b_prev; 2281 mp->b_prev = NULL; 2282 2283 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2284 2285 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2286 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2287 /* 2288 * We have received the ack for our DL_CAPAB reset request. 2289 * There isnt' anything in the message that needs processing. 2290 * All message based capabilities have been disabled, now 2291 * do the function call based capability disable. 2292 */ 2293 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2294 ill_capability_dld_disable(ill); 2295 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2296 if (reneg) 2297 ill_capability_probe(ill); 2298 goto done; 2299 } 2300 2301 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2302 ill->ill_dlpi_capab_state = IDCS_OK; 2303 2304 capp = (dl_capability_ack_t *)mp->b_rptr; 2305 2306 if (capp->dl_sub_length == 0) { 2307 /* no new-style capabilities */ 2308 goto done; 2309 } 2310 2311 /* make sure the driver supplied correct dl_sub_length */ 2312 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2313 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2314 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2315 goto done; 2316 } 2317 2318 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2319 /* 2320 * There are sub-capabilities. Process the ones we know about. 2321 * Loop until we don't have room for another sub-cap header.. 2322 */ 2323 for (subp = SC(capp, capp->dl_sub_offset), 2324 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2325 subp <= endp; 2326 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2327 2328 switch (subp->dl_cap) { 2329 case DL_CAPAB_ID_WRAPPER: 2330 ill_capability_id_ack(ill, mp, subp); 2331 break; 2332 default: 2333 ill_capability_dispatch(ill, mp, subp); 2334 break; 2335 } 2336 } 2337 #undef SC 2338 done: 2339 inet_freemsg(mp); 2340 ill_capability_done(ill); 2341 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2342 } 2343 2344 /* 2345 * This needs to be started in a taskq thread to provide a cv_waitable 2346 * context. 2347 */ 2348 void 2349 ill_capability_ack(ill_t *ill, mblk_t *mp) 2350 { 2351 ip_stack_t *ipst = ill->ill_ipst; 2352 2353 mp->b_prev = (mblk_t *)ill; 2354 ASSERT(mp->b_next == NULL); 2355 2356 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2357 TQ_NOSLEEP) != TASKQID_INVALID) 2358 return; 2359 2360 /* 2361 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2362 * which will do the dispatch using TQ_SLEEP to guarantee success. 2363 */ 2364 mutex_enter(&ipst->ips_capab_taskq_lock); 2365 if (ipst->ips_capab_taskq_head == NULL) { 2366 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2367 ipst->ips_capab_taskq_head = mp; 2368 } else { 2369 ipst->ips_capab_taskq_tail->b_next = mp; 2370 } 2371 ipst->ips_capab_taskq_tail = mp; 2372 2373 cv_signal(&ipst->ips_capab_taskq_cv); 2374 mutex_exit(&ipst->ips_capab_taskq_lock); 2375 } 2376 2377 /* 2378 * This routine is called to scan the fragmentation reassembly table for 2379 * the specified ILL for any packets that are starting to smell. 2380 * dead_interval is the maximum time in seconds that will be tolerated. It 2381 * will either be the value specified in ip_g_frag_timeout, or zero if the 2382 * ILL is shutting down and it is time to blow everything off. 2383 * 2384 * It returns the number of seconds (as a time_t) that the next frag timer 2385 * should be scheduled for, 0 meaning that the timer doesn't need to be 2386 * re-started. Note that the method of calculating next_timeout isn't 2387 * entirely accurate since time will flow between the time we grab 2388 * current_time and the time we schedule the next timeout. This isn't a 2389 * big problem since this is the timer for sending an ICMP reassembly time 2390 * exceeded messages, and it doesn't have to be exactly accurate. 2391 * 2392 * This function is 2393 * sometimes called as writer, although this is not required. 2394 */ 2395 time_t 2396 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2397 { 2398 ipfb_t *ipfb; 2399 ipfb_t *endp; 2400 ipf_t *ipf; 2401 ipf_t *ipfnext; 2402 mblk_t *mp; 2403 time_t current_time = gethrestime_sec(); 2404 time_t next_timeout = 0; 2405 uint32_t hdr_length; 2406 mblk_t *send_icmp_head; 2407 mblk_t *send_icmp_head_v6; 2408 ip_stack_t *ipst = ill->ill_ipst; 2409 ip_recv_attr_t iras; 2410 2411 bzero(&iras, sizeof (iras)); 2412 iras.ira_flags = 0; 2413 iras.ira_ill = iras.ira_rill = ill; 2414 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2415 iras.ira_rifindex = iras.ira_ruifindex; 2416 2417 ipfb = ill->ill_frag_hash_tbl; 2418 if (ipfb == NULL) 2419 return (B_FALSE); 2420 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2421 /* Walk the frag hash table. */ 2422 for (; ipfb < endp; ipfb++) { 2423 send_icmp_head = NULL; 2424 send_icmp_head_v6 = NULL; 2425 mutex_enter(&ipfb->ipfb_lock); 2426 while ((ipf = ipfb->ipfb_ipf) != 0) { 2427 time_t frag_time = current_time - ipf->ipf_timestamp; 2428 time_t frag_timeout; 2429 2430 if (frag_time < dead_interval) { 2431 /* 2432 * There are some outstanding fragments 2433 * that will timeout later. Make note of 2434 * the time so that we can reschedule the 2435 * next timeout appropriately. 2436 */ 2437 frag_timeout = dead_interval - frag_time; 2438 if (next_timeout == 0 || 2439 frag_timeout < next_timeout) { 2440 next_timeout = frag_timeout; 2441 } 2442 break; 2443 } 2444 /* Time's up. Get it out of here. */ 2445 hdr_length = ipf->ipf_nf_hdr_len; 2446 ipfnext = ipf->ipf_hash_next; 2447 if (ipfnext) 2448 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2449 *ipf->ipf_ptphn = ipfnext; 2450 mp = ipf->ipf_mp->b_cont; 2451 for (; mp; mp = mp->b_cont) { 2452 /* Extra points for neatness. */ 2453 IP_REASS_SET_START(mp, 0); 2454 IP_REASS_SET_END(mp, 0); 2455 } 2456 mp = ipf->ipf_mp->b_cont; 2457 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2458 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2459 ipfb->ipfb_count -= ipf->ipf_count; 2460 ASSERT(ipfb->ipfb_frag_pkts > 0); 2461 ipfb->ipfb_frag_pkts--; 2462 /* 2463 * We do not send any icmp message from here because 2464 * we currently are holding the ipfb_lock for this 2465 * hash chain. If we try and send any icmp messages 2466 * from here we may end up via a put back into ip 2467 * trying to get the same lock, causing a recursive 2468 * mutex panic. Instead we build a list and send all 2469 * the icmp messages after we have dropped the lock. 2470 */ 2471 if (ill->ill_isv6) { 2472 if (hdr_length != 0) { 2473 mp->b_next = send_icmp_head_v6; 2474 send_icmp_head_v6 = mp; 2475 } else { 2476 freemsg(mp); 2477 } 2478 } else { 2479 if (hdr_length != 0) { 2480 mp->b_next = send_icmp_head; 2481 send_icmp_head = mp; 2482 } else { 2483 freemsg(mp); 2484 } 2485 } 2486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2487 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2488 freeb(ipf->ipf_mp); 2489 } 2490 mutex_exit(&ipfb->ipfb_lock); 2491 /* 2492 * Now need to send any icmp messages that we delayed from 2493 * above. 2494 */ 2495 while (send_icmp_head_v6 != NULL) { 2496 ip6_t *ip6h; 2497 2498 mp = send_icmp_head_v6; 2499 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2500 mp->b_next = NULL; 2501 ip6h = (ip6_t *)mp->b_rptr; 2502 iras.ira_flags = 0; 2503 /* 2504 * This will result in an incorrect ALL_ZONES zoneid 2505 * for multicast packets, but we 2506 * don't send ICMP errors for those in any case. 2507 */ 2508 iras.ira_zoneid = 2509 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2510 ill, ipst); 2511 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2512 icmp_time_exceeded_v6(mp, 2513 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2514 &iras); 2515 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2516 } 2517 while (send_icmp_head != NULL) { 2518 ipaddr_t dst; 2519 2520 mp = send_icmp_head; 2521 send_icmp_head = send_icmp_head->b_next; 2522 mp->b_next = NULL; 2523 2524 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2525 2526 iras.ira_flags = IRAF_IS_IPV4; 2527 /* 2528 * This will result in an incorrect ALL_ZONES zoneid 2529 * for broadcast and multicast packets, but we 2530 * don't send ICMP errors for those in any case. 2531 */ 2532 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2533 ill, ipst); 2534 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2535 icmp_time_exceeded(mp, 2536 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2537 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2538 } 2539 } 2540 /* 2541 * A non-dying ILL will use the return value to decide whether to 2542 * restart the frag timer, and for how long. 2543 */ 2544 return (next_timeout); 2545 } 2546 2547 /* 2548 * This routine is called when the approximate count of mblk memory used 2549 * for the specified ILL has exceeded max_count. 2550 */ 2551 void 2552 ill_frag_prune(ill_t *ill, uint_t max_count) 2553 { 2554 ipfb_t *ipfb; 2555 ipf_t *ipf; 2556 size_t count; 2557 clock_t now; 2558 2559 /* 2560 * If we are here within ip_min_frag_prune_time msecs remove 2561 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2562 * ill_frag_free_num_pkts. 2563 */ 2564 mutex_enter(&ill->ill_lock); 2565 now = ddi_get_lbolt(); 2566 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2567 (ip_min_frag_prune_time != 0 ? 2568 ip_min_frag_prune_time : msec_per_tick)) { 2569 2570 ill->ill_frag_free_num_pkts++; 2571 2572 } else { 2573 ill->ill_frag_free_num_pkts = 0; 2574 } 2575 ill->ill_last_frag_clean_time = now; 2576 mutex_exit(&ill->ill_lock); 2577 2578 /* 2579 * free ill_frag_free_num_pkts oldest packets from each bucket. 2580 */ 2581 if (ill->ill_frag_free_num_pkts != 0) { 2582 int ix; 2583 2584 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2585 ipfb = &ill->ill_frag_hash_tbl[ix]; 2586 mutex_enter(&ipfb->ipfb_lock); 2587 if (ipfb->ipfb_ipf != NULL) { 2588 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2589 ill->ill_frag_free_num_pkts); 2590 } 2591 mutex_exit(&ipfb->ipfb_lock); 2592 } 2593 } 2594 /* 2595 * While the reassembly list for this ILL is too big, prune a fragment 2596 * queue by age, oldest first. 2597 */ 2598 while (ill->ill_frag_count > max_count) { 2599 int ix; 2600 ipfb_t *oipfb = NULL; 2601 uint_t oldest = UINT_MAX; 2602 2603 count = 0; 2604 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2605 ipfb = &ill->ill_frag_hash_tbl[ix]; 2606 mutex_enter(&ipfb->ipfb_lock); 2607 ipf = ipfb->ipfb_ipf; 2608 if (ipf != NULL && ipf->ipf_gen < oldest) { 2609 oldest = ipf->ipf_gen; 2610 oipfb = ipfb; 2611 } 2612 count += ipfb->ipfb_count; 2613 mutex_exit(&ipfb->ipfb_lock); 2614 } 2615 if (oipfb == NULL) 2616 break; 2617 2618 if (count <= max_count) 2619 return; /* Somebody beat us to it, nothing to do */ 2620 mutex_enter(&oipfb->ipfb_lock); 2621 ipf = oipfb->ipfb_ipf; 2622 if (ipf != NULL) { 2623 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2624 } 2625 mutex_exit(&oipfb->ipfb_lock); 2626 } 2627 } 2628 2629 /* 2630 * free 'free_cnt' fragmented packets starting at ipf. 2631 */ 2632 void 2633 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2634 { 2635 size_t count; 2636 mblk_t *mp; 2637 mblk_t *tmp; 2638 ipf_t **ipfp = ipf->ipf_ptphn; 2639 2640 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2641 ASSERT(ipfp != NULL); 2642 ASSERT(ipf != NULL); 2643 2644 while (ipf != NULL && free_cnt-- > 0) { 2645 count = ipf->ipf_count; 2646 mp = ipf->ipf_mp; 2647 ipf = ipf->ipf_hash_next; 2648 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2649 IP_REASS_SET_START(tmp, 0); 2650 IP_REASS_SET_END(tmp, 0); 2651 } 2652 atomic_add_32(&ill->ill_frag_count, -count); 2653 ASSERT(ipfb->ipfb_count >= count); 2654 ipfb->ipfb_count -= count; 2655 ASSERT(ipfb->ipfb_frag_pkts > 0); 2656 ipfb->ipfb_frag_pkts--; 2657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2658 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2659 freemsg(mp); 2660 } 2661 2662 if (ipf) 2663 ipf->ipf_ptphn = ipfp; 2664 ipfp[0] = ipf; 2665 } 2666 2667 /* 2668 * Helper function for ill_forward_set(). 2669 */ 2670 static void 2671 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2672 { 2673 ip_stack_t *ipst = ill->ill_ipst; 2674 2675 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2676 2677 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2678 (enable ? "Enabling" : "Disabling"), 2679 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2680 mutex_enter(&ill->ill_lock); 2681 if (enable) 2682 ill->ill_flags |= ILLF_ROUTER; 2683 else 2684 ill->ill_flags &= ~ILLF_ROUTER; 2685 mutex_exit(&ill->ill_lock); 2686 if (ill->ill_isv6) 2687 ill_set_nce_router_flags(ill, enable); 2688 /* Notify routing socket listeners of this change. */ 2689 if (ill->ill_ipif != NULL) 2690 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2691 } 2692 2693 /* 2694 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2695 * socket messages for each interface whose flags we change. 2696 */ 2697 int 2698 ill_forward_set(ill_t *ill, boolean_t enable) 2699 { 2700 ipmp_illgrp_t *illg; 2701 ip_stack_t *ipst = ill->ill_ipst; 2702 2703 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2704 2705 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2706 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2707 return (0); 2708 2709 if (IS_LOOPBACK(ill)) 2710 return (EINVAL); 2711 2712 if (enable && ill->ill_allowed_ips_cnt > 0) 2713 return (EPERM); 2714 2715 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2716 /* 2717 * Update all of the interfaces in the group. 2718 */ 2719 illg = ill->ill_grp; 2720 ill = list_head(&illg->ig_if); 2721 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2722 ill_forward_set_on_ill(ill, enable); 2723 2724 /* 2725 * Update the IPMP meta-interface. 2726 */ 2727 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2728 return (0); 2729 } 2730 2731 ill_forward_set_on_ill(ill, enable); 2732 return (0); 2733 } 2734 2735 /* 2736 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2737 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2738 * set or clear. 2739 */ 2740 static void 2741 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2742 { 2743 ipif_t *ipif; 2744 ncec_t *ncec; 2745 nce_t *nce; 2746 2747 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2748 /* 2749 * NOTE: we match across the illgrp because nce's for 2750 * addresses on IPMP interfaces have an nce_ill that points to 2751 * the bound underlying ill. 2752 */ 2753 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2754 if (nce != NULL) { 2755 ncec = nce->nce_common; 2756 mutex_enter(&ncec->ncec_lock); 2757 if (enable) 2758 ncec->ncec_flags |= NCE_F_ISROUTER; 2759 else 2760 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2761 mutex_exit(&ncec->ncec_lock); 2762 nce_refrele(nce); 2763 } 2764 } 2765 } 2766 2767 /* 2768 * Intializes the context structure and returns the first ill in the list 2769 * cuurently start_list and end_list can have values: 2770 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2771 * IP_V4_G_HEAD Traverse IPV4 list only. 2772 * IP_V6_G_HEAD Traverse IPV6 list only. 2773 */ 2774 2775 /* 2776 * We don't check for CONDEMNED ills here. Caller must do that if 2777 * necessary under the ill lock. 2778 */ 2779 ill_t * 2780 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2781 ip_stack_t *ipst) 2782 { 2783 ill_if_t *ifp; 2784 ill_t *ill; 2785 avl_tree_t *avl_tree; 2786 2787 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2788 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2789 2790 /* 2791 * setup the lists to search 2792 */ 2793 if (end_list != MAX_G_HEADS) { 2794 ctx->ctx_current_list = start_list; 2795 ctx->ctx_last_list = end_list; 2796 } else { 2797 ctx->ctx_last_list = MAX_G_HEADS - 1; 2798 ctx->ctx_current_list = 0; 2799 } 2800 2801 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2802 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2803 if (ifp != (ill_if_t *) 2804 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2805 avl_tree = &ifp->illif_avl_by_ppa; 2806 ill = avl_first(avl_tree); 2807 /* 2808 * ill is guaranteed to be non NULL or ifp should have 2809 * not existed. 2810 */ 2811 ASSERT(ill != NULL); 2812 return (ill); 2813 } 2814 ctx->ctx_current_list++; 2815 } 2816 2817 return (NULL); 2818 } 2819 2820 /* 2821 * returns the next ill in the list. ill_first() must have been called 2822 * before calling ill_next() or bad things will happen. 2823 */ 2824 2825 /* 2826 * We don't check for CONDEMNED ills here. Caller must do that if 2827 * necessary under the ill lock. 2828 */ 2829 ill_t * 2830 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2831 { 2832 ill_if_t *ifp; 2833 ill_t *ill; 2834 ip_stack_t *ipst = lastill->ill_ipst; 2835 2836 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2837 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2838 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2839 AVL_AFTER)) != NULL) { 2840 return (ill); 2841 } 2842 2843 /* goto next ill_ifp in the list. */ 2844 ifp = lastill->ill_ifptr->illif_next; 2845 2846 /* make sure not at end of circular list */ 2847 while (ifp == 2848 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2849 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2850 return (NULL); 2851 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2852 } 2853 2854 return (avl_first(&ifp->illif_avl_by_ppa)); 2855 } 2856 2857 /* 2858 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2859 * The final number (PPA) must not have any leading zeros. Upon success, a 2860 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2861 */ 2862 static char * 2863 ill_get_ppa_ptr(char *name) 2864 { 2865 int namelen = strlen(name); 2866 int end_ndx = namelen - 1; 2867 int ppa_ndx, i; 2868 2869 /* 2870 * Check that the first character is [a-zA-Z], and that the last 2871 * character is [0-9]. 2872 */ 2873 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2874 return (NULL); 2875 2876 /* 2877 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2878 */ 2879 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2880 if (!isdigit(name[ppa_ndx - 1])) 2881 break; 2882 2883 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2884 return (NULL); 2885 2886 /* 2887 * Check that the intermediate characters are [a-z0-9.] 2888 */ 2889 for (i = 1; i < ppa_ndx; i++) { 2890 if (!isalpha(name[i]) && !isdigit(name[i]) && 2891 name[i] != '.' && name[i] != '_') { 2892 return (NULL); 2893 } 2894 } 2895 2896 return (name + ppa_ndx); 2897 } 2898 2899 /* 2900 * use avl tree to locate the ill. 2901 */ 2902 static ill_t * 2903 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2904 { 2905 char *ppa_ptr = NULL; 2906 int len; 2907 uint_t ppa; 2908 ill_t *ill = NULL; 2909 ill_if_t *ifp; 2910 int list; 2911 2912 /* 2913 * get ppa ptr 2914 */ 2915 if (isv6) 2916 list = IP_V6_G_HEAD; 2917 else 2918 list = IP_V4_G_HEAD; 2919 2920 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2921 return (NULL); 2922 } 2923 2924 len = ppa_ptr - name + 1; 2925 2926 ppa = stoi(&ppa_ptr); 2927 2928 ifp = IP_VX_ILL_G_LIST(list, ipst); 2929 2930 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2931 /* 2932 * match is done on len - 1 as the name is not null 2933 * terminated it contains ppa in addition to the interface 2934 * name. 2935 */ 2936 if ((ifp->illif_name_len == len) && 2937 bcmp(ifp->illif_name, name, len - 1) == 0) { 2938 break; 2939 } else { 2940 ifp = ifp->illif_next; 2941 } 2942 } 2943 2944 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2945 /* 2946 * Even the interface type does not exist. 2947 */ 2948 return (NULL); 2949 } 2950 2951 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2952 if (ill != NULL) { 2953 mutex_enter(&ill->ill_lock); 2954 if (ILL_CAN_LOOKUP(ill)) { 2955 ill_refhold_locked(ill); 2956 mutex_exit(&ill->ill_lock); 2957 return (ill); 2958 } 2959 mutex_exit(&ill->ill_lock); 2960 } 2961 return (NULL); 2962 } 2963 2964 /* 2965 * comparison function for use with avl. 2966 */ 2967 static int 2968 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2969 { 2970 uint_t ppa; 2971 uint_t ill_ppa; 2972 2973 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2974 2975 ppa = *((uint_t *)ppa_ptr); 2976 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2977 /* 2978 * We want the ill with the lowest ppa to be on the 2979 * top. 2980 */ 2981 if (ill_ppa < ppa) 2982 return (1); 2983 if (ill_ppa > ppa) 2984 return (-1); 2985 return (0); 2986 } 2987 2988 /* 2989 * remove an interface type from the global list. 2990 */ 2991 static void 2992 ill_delete_interface_type(ill_if_t *interface) 2993 { 2994 ASSERT(interface != NULL); 2995 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2996 2997 avl_destroy(&interface->illif_avl_by_ppa); 2998 if (interface->illif_ppa_arena != NULL) 2999 vmem_destroy(interface->illif_ppa_arena); 3000 3001 remque(interface); 3002 3003 mi_free(interface); 3004 } 3005 3006 /* 3007 * remove ill from the global list. 3008 */ 3009 static void 3010 ill_glist_delete(ill_t *ill) 3011 { 3012 ip_stack_t *ipst; 3013 phyint_t *phyi; 3014 3015 if (ill == NULL) 3016 return; 3017 ipst = ill->ill_ipst; 3018 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3019 3020 /* 3021 * If the ill was never inserted into the AVL tree 3022 * we skip the if branch. 3023 */ 3024 if (ill->ill_ifptr != NULL) { 3025 /* 3026 * remove from AVL tree and free ppa number 3027 */ 3028 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3029 3030 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3031 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3032 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3033 } 3034 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3035 ill_delete_interface_type(ill->ill_ifptr); 3036 } 3037 3038 /* 3039 * Indicate ill is no longer in the list. 3040 */ 3041 ill->ill_ifptr = NULL; 3042 ill->ill_name_length = 0; 3043 ill->ill_name[0] = '\0'; 3044 ill->ill_ppa = UINT_MAX; 3045 } 3046 3047 /* Generate one last event for this ill. */ 3048 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3049 ill->ill_name_length); 3050 3051 ASSERT(ill->ill_phyint != NULL); 3052 phyi = ill->ill_phyint; 3053 ill->ill_phyint = NULL; 3054 3055 /* 3056 * ill_init allocates a phyint always to store the copy 3057 * of flags relevant to phyint. At that point in time, we could 3058 * not assign the name and hence phyint_illv4/v6 could not be 3059 * initialized. Later in ipif_set_values, we assign the name to 3060 * the ill, at which point in time we assign phyint_illv4/v6. 3061 * Thus we don't rely on phyint_illv6 to be initialized always. 3062 */ 3063 if (ill->ill_flags & ILLF_IPV6) 3064 phyi->phyint_illv6 = NULL; 3065 else 3066 phyi->phyint_illv4 = NULL; 3067 3068 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3069 rw_exit(&ipst->ips_ill_g_lock); 3070 return; 3071 } 3072 3073 /* 3074 * There are no ills left on this phyint; pull it out of the phyint 3075 * avl trees, and free it. 3076 */ 3077 if (phyi->phyint_ifindex > 0) { 3078 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3079 phyi); 3080 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3081 phyi); 3082 } 3083 rw_exit(&ipst->ips_ill_g_lock); 3084 3085 phyint_free(phyi); 3086 } 3087 3088 /* 3089 * allocate a ppa, if the number of plumbed interfaces of this type are 3090 * less than ill_no_arena do a linear search to find a unused ppa. 3091 * When the number goes beyond ill_no_arena switch to using an arena. 3092 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3093 * is the return value for an error condition, so allocation starts at one 3094 * and is decremented by one. 3095 */ 3096 static int 3097 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3098 { 3099 ill_t *tmp_ill; 3100 uint_t start, end; 3101 int ppa; 3102 3103 if (ifp->illif_ppa_arena == NULL && 3104 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3105 /* 3106 * Create an arena. 3107 */ 3108 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3109 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3110 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3111 /* allocate what has already been assigned */ 3112 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3113 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3114 tmp_ill, AVL_AFTER)) { 3115 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3116 1, /* size */ 3117 1, /* align/quantum */ 3118 0, /* phase */ 3119 0, /* nocross */ 3120 /* minaddr */ 3121 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3122 /* maxaddr */ 3123 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3124 VM_NOSLEEP|VM_FIRSTFIT); 3125 if (ppa == 0) { 3126 ip1dbg(("ill_alloc_ppa: ppa allocation" 3127 " failed while switching")); 3128 vmem_destroy(ifp->illif_ppa_arena); 3129 ifp->illif_ppa_arena = NULL; 3130 break; 3131 } 3132 } 3133 } 3134 3135 if (ifp->illif_ppa_arena != NULL) { 3136 if (ill->ill_ppa == UINT_MAX) { 3137 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3138 1, VM_NOSLEEP|VM_FIRSTFIT); 3139 if (ppa == 0) 3140 return (EAGAIN); 3141 ill->ill_ppa = --ppa; 3142 } else { 3143 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3144 1, /* size */ 3145 1, /* align/quantum */ 3146 0, /* phase */ 3147 0, /* nocross */ 3148 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3149 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3150 VM_NOSLEEP|VM_FIRSTFIT); 3151 /* 3152 * Most likely the allocation failed because 3153 * the requested ppa was in use. 3154 */ 3155 if (ppa == 0) 3156 return (EEXIST); 3157 } 3158 return (0); 3159 } 3160 3161 /* 3162 * No arena is in use and not enough (>ill_no_arena) interfaces have 3163 * been plumbed to create one. Do a linear search to get a unused ppa. 3164 */ 3165 if (ill->ill_ppa == UINT_MAX) { 3166 end = UINT_MAX - 1; 3167 start = 0; 3168 } else { 3169 end = start = ill->ill_ppa; 3170 } 3171 3172 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3173 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3174 if (start++ >= end) { 3175 if (ill->ill_ppa == UINT_MAX) 3176 return (EAGAIN); 3177 else 3178 return (EEXIST); 3179 } 3180 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3181 } 3182 ill->ill_ppa = start; 3183 return (0); 3184 } 3185 3186 /* 3187 * Insert ill into the list of configured ill's. Once this function completes, 3188 * the ill is globally visible and is available through lookups. More precisely 3189 * this happens after the caller drops the ill_g_lock. 3190 */ 3191 static int 3192 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3193 { 3194 ill_if_t *ill_interface; 3195 avl_index_t where = 0; 3196 int error; 3197 int name_length; 3198 int index; 3199 boolean_t check_length = B_FALSE; 3200 ip_stack_t *ipst = ill->ill_ipst; 3201 3202 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3203 3204 name_length = mi_strlen(name) + 1; 3205 3206 if (isv6) 3207 index = IP_V6_G_HEAD; 3208 else 3209 index = IP_V4_G_HEAD; 3210 3211 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3212 /* 3213 * Search for interface type based on name 3214 */ 3215 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3216 if ((ill_interface->illif_name_len == name_length) && 3217 (strcmp(ill_interface->illif_name, name) == 0)) { 3218 break; 3219 } 3220 ill_interface = ill_interface->illif_next; 3221 } 3222 3223 /* 3224 * Interface type not found, create one. 3225 */ 3226 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3227 ill_g_head_t ghead; 3228 3229 /* 3230 * allocate ill_if_t structure 3231 */ 3232 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3233 if (ill_interface == NULL) { 3234 return (ENOMEM); 3235 } 3236 3237 (void) strcpy(ill_interface->illif_name, name); 3238 ill_interface->illif_name_len = name_length; 3239 3240 avl_create(&ill_interface->illif_avl_by_ppa, 3241 ill_compare_ppa, sizeof (ill_t), 3242 offsetof(struct ill_s, ill_avl_byppa)); 3243 3244 /* 3245 * link the structure in the back to maintain order 3246 * of configuration for ifconfig output. 3247 */ 3248 ghead = ipst->ips_ill_g_heads[index]; 3249 insque(ill_interface, ghead.ill_g_list_tail); 3250 } 3251 3252 if (ill->ill_ppa == UINT_MAX) 3253 check_length = B_TRUE; 3254 3255 error = ill_alloc_ppa(ill_interface, ill); 3256 if (error != 0) { 3257 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3258 ill_delete_interface_type(ill->ill_ifptr); 3259 return (error); 3260 } 3261 3262 /* 3263 * When the ppa is choosen by the system, check that there is 3264 * enough space to insert ppa. if a specific ppa was passed in this 3265 * check is not required as the interface name passed in will have 3266 * the right ppa in it. 3267 */ 3268 if (check_length) { 3269 /* 3270 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3271 */ 3272 char buf[sizeof (uint_t) * 3]; 3273 3274 /* 3275 * convert ppa to string to calculate the amount of space 3276 * required for it in the name. 3277 */ 3278 numtos(ill->ill_ppa, buf); 3279 3280 /* Do we have enough space to insert ppa ? */ 3281 3282 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3283 /* Free ppa and interface type struct */ 3284 if (ill_interface->illif_ppa_arena != NULL) { 3285 vmem_free(ill_interface->illif_ppa_arena, 3286 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3287 } 3288 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3289 ill_delete_interface_type(ill->ill_ifptr); 3290 3291 return (EINVAL); 3292 } 3293 } 3294 3295 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3296 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3297 3298 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3299 &where); 3300 ill->ill_ifptr = ill_interface; 3301 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3302 3303 ill_phyint_reinit(ill); 3304 return (0); 3305 } 3306 3307 /* Initialize the per phyint ipsq used for serialization */ 3308 static boolean_t 3309 ipsq_init(ill_t *ill, boolean_t enter) 3310 { 3311 ipsq_t *ipsq; 3312 ipxop_t *ipx; 3313 3314 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3315 return (B_FALSE); 3316 3317 ill->ill_phyint->phyint_ipsq = ipsq; 3318 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3319 ipx->ipx_ipsq = ipsq; 3320 ipsq->ipsq_next = ipsq; 3321 ipsq->ipsq_phyint = ill->ill_phyint; 3322 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3323 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3324 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3325 if (enter) { 3326 ipx->ipx_writer = curthread; 3327 ipx->ipx_forced = B_FALSE; 3328 ipx->ipx_reentry_cnt = 1; 3329 #ifdef DEBUG 3330 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3331 #endif 3332 } 3333 return (B_TRUE); 3334 } 3335 3336 /* 3337 * Here we perform initialisation of the ill_t common to both regular 3338 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3339 */ 3340 static int 3341 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3342 boolean_t ipsq_enter) 3343 { 3344 int count; 3345 uchar_t *frag_ptr; 3346 3347 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3348 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3349 ill->ill_saved_ire_cnt = 0; 3350 3351 if (is_loopback) { 3352 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus : 3353 ip_loopback_mtuplus; 3354 /* 3355 * No resolver here. 3356 */ 3357 ill->ill_net_type = IRE_LOOPBACK; 3358 } else { 3359 ill->ill_rq = q; 3360 ill->ill_wq = WR(q); 3361 ill->ill_ppa = UINT_MAX; 3362 } 3363 3364 ill->ill_isv6 = isv6; 3365 3366 /* 3367 * Allocate sufficient space to contain our fragment hash table and 3368 * the device name. 3369 */ 3370 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3371 if (frag_ptr == NULL) 3372 return (ENOMEM); 3373 ill->ill_frag_ptr = frag_ptr; 3374 ill->ill_frag_free_num_pkts = 0; 3375 ill->ill_last_frag_clean_time = 0; 3376 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3377 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3378 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3379 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3380 NULL, MUTEX_DEFAULT, NULL); 3381 } 3382 3383 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3384 if (ill->ill_phyint == NULL) { 3385 mi_free(frag_ptr); 3386 return (ENOMEM); 3387 } 3388 3389 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3390 if (isv6) { 3391 ill->ill_phyint->phyint_illv6 = ill; 3392 } else { 3393 ill->ill_phyint->phyint_illv4 = ill; 3394 } 3395 if (is_loopback) { 3396 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3397 } 3398 3399 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3400 3401 ill_set_inputfn(ill); 3402 3403 if (!ipsq_init(ill, ipsq_enter)) { 3404 mi_free(frag_ptr); 3405 mi_free(ill->ill_phyint); 3406 return (ENOMEM); 3407 } 3408 3409 /* Frag queue limit stuff */ 3410 ill->ill_frag_count = 0; 3411 ill->ill_ipf_gen = 0; 3412 3413 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3414 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3415 ill->ill_global_timer = INFINITY; 3416 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3417 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3418 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3419 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3420 3421 /* 3422 * Initialize IPv6 configuration variables. The IP module is always 3423 * opened as an IPv4 module. Instead tracking down the cases where 3424 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3425 * here for convenience, this has no effect until the ill is set to do 3426 * IPv6. 3427 */ 3428 ill->ill_reachable_time = ND_REACHABLE_TIME; 3429 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3430 ill->ill_max_buf = ND_MAX_Q; 3431 ill->ill_refcnt = 0; 3432 3433 return (0); 3434 } 3435 3436 /* 3437 * ill_init is called by ip_open when a device control stream is opened. 3438 * It does a few initializations, and shoots a DL_INFO_REQ message down 3439 * to the driver. The response is later picked up in ip_rput_dlpi and 3440 * used to set up default mechanisms for talking to the driver. (Always 3441 * called as writer.) 3442 * 3443 * If this function returns error, ip_open will call ip_close which in 3444 * turn will call ill_delete to clean up any memory allocated here that 3445 * is not yet freed. 3446 * 3447 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3448 */ 3449 int 3450 ill_init(queue_t *q, ill_t *ill) 3451 { 3452 int ret; 3453 dl_info_req_t *dlir; 3454 mblk_t *info_mp; 3455 3456 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3457 BPRI_HI); 3458 if (info_mp == NULL) 3459 return (ENOMEM); 3460 3461 /* 3462 * For now pretend this is a v4 ill. We need to set phyint_ill* 3463 * at this point because of the following reason. If we can't 3464 * enter the ipsq at some point and cv_wait, the writer that 3465 * wakes us up tries to locate us using the list of all phyints 3466 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3467 * If we don't set it now, we risk a missed wakeup. 3468 */ 3469 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3470 freemsg(info_mp); 3471 return (ret); 3472 } 3473 3474 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3475 3476 /* Send down the Info Request to the driver. */ 3477 info_mp->b_datap->db_type = M_PCPROTO; 3478 dlir = (dl_info_req_t *)info_mp->b_rptr; 3479 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3480 dlir->dl_primitive = DL_INFO_REQ; 3481 3482 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3483 3484 qprocson(q); 3485 ill_dlpi_send(ill, info_mp); 3486 3487 return (0); 3488 } 3489 3490 /* 3491 * ill_dls_info 3492 * creates datalink socket info from the device. 3493 */ 3494 int 3495 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3496 { 3497 size_t len; 3498 3499 sdl->sdl_family = AF_LINK; 3500 sdl->sdl_index = ill_get_upper_ifindex(ill); 3501 sdl->sdl_type = ill->ill_type; 3502 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3503 len = strlen(sdl->sdl_data); 3504 ASSERT(len < 256); 3505 sdl->sdl_nlen = (uchar_t)len; 3506 sdl->sdl_alen = ill->ill_phys_addr_length; 3507 sdl->sdl_slen = 0; 3508 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3509 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3510 3511 return (sizeof (struct sockaddr_dl)); 3512 } 3513 3514 /* 3515 * ill_xarp_info 3516 * creates xarp info from the device. 3517 */ 3518 static int 3519 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3520 { 3521 sdl->sdl_family = AF_LINK; 3522 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3523 sdl->sdl_type = ill->ill_type; 3524 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3525 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3526 sdl->sdl_alen = ill->ill_phys_addr_length; 3527 sdl->sdl_slen = 0; 3528 return (sdl->sdl_nlen); 3529 } 3530 3531 static int 3532 loopback_kstat_update(kstat_t *ksp, int rw) 3533 { 3534 kstat_named_t *kn; 3535 netstackid_t stackid; 3536 netstack_t *ns; 3537 ip_stack_t *ipst; 3538 3539 if (ksp == NULL || ksp->ks_data == NULL) 3540 return (EIO); 3541 3542 if (rw == KSTAT_WRITE) 3543 return (EACCES); 3544 3545 kn = KSTAT_NAMED_PTR(ksp); 3546 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3547 3548 ns = netstack_find_by_stackid(stackid); 3549 if (ns == NULL) 3550 return (-1); 3551 3552 ipst = ns->netstack_ip; 3553 if (ipst == NULL) { 3554 netstack_rele(ns); 3555 return (-1); 3556 } 3557 kn[0].value.ui32 = ipst->ips_loopback_packets; 3558 kn[1].value.ui32 = ipst->ips_loopback_packets; 3559 netstack_rele(ns); 3560 return (0); 3561 } 3562 3563 /* 3564 * Has ifindex been plumbed already? 3565 */ 3566 static boolean_t 3567 phyint_exists(uint_t index, ip_stack_t *ipst) 3568 { 3569 ASSERT(index != 0); 3570 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3571 3572 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3573 &index, NULL) != NULL); 3574 } 3575 3576 /* 3577 * Pick a unique ifindex. 3578 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3579 * flag is set so that next time time ip_assign_ifindex() is called, it 3580 * falls through and resets the index counter back to 1, the minimum value 3581 * for the interface index. The logic below assumes that ips_ill_index 3582 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3583 * (i.e. reset back to 0.) 3584 */ 3585 boolean_t 3586 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3587 { 3588 uint_t loops; 3589 3590 if (!ipst->ips_ill_index_wrap) { 3591 *indexp = ipst->ips_ill_index++; 3592 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3593 /* 3594 * Reached the maximum ifindex value, set the wrap 3595 * flag to indicate that it is no longer possible 3596 * to assume that a given index is unallocated. 3597 */ 3598 ipst->ips_ill_index_wrap = B_TRUE; 3599 } 3600 return (B_TRUE); 3601 } 3602 3603 if (ipst->ips_ill_index > IF_INDEX_MAX) 3604 ipst->ips_ill_index = 1; 3605 3606 /* 3607 * Start reusing unused indexes. Note that we hold the ill_g_lock 3608 * at this point and don't want to call any function that attempts 3609 * to get the lock again. 3610 */ 3611 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3612 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3613 /* found unused index - use it */ 3614 *indexp = ipst->ips_ill_index; 3615 return (B_TRUE); 3616 } 3617 3618 ipst->ips_ill_index++; 3619 if (ipst->ips_ill_index > IF_INDEX_MAX) 3620 ipst->ips_ill_index = 1; 3621 } 3622 3623 /* 3624 * all interface indicies are inuse. 3625 */ 3626 return (B_FALSE); 3627 } 3628 3629 /* 3630 * Assign a unique interface index for the phyint. 3631 */ 3632 static boolean_t 3633 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3634 { 3635 ASSERT(phyi->phyint_ifindex == 0); 3636 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3637 } 3638 3639 /* 3640 * Initialize the flags on `phyi' as per the provided mactype. 3641 */ 3642 static void 3643 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3644 { 3645 uint64_t flags = 0; 3646 3647 /* 3648 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3649 * we always presume the underlying hardware is working and set 3650 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3651 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3652 * there are no active interfaces in the group so we set PHYI_FAILED. 3653 */ 3654 if (mactype == SUNW_DL_IPMP) 3655 flags |= PHYI_FAILED; 3656 else 3657 flags |= PHYI_RUNNING; 3658 3659 switch (mactype) { 3660 case SUNW_DL_VNI: 3661 flags |= PHYI_VIRTUAL; 3662 break; 3663 case SUNW_DL_IPMP: 3664 flags |= PHYI_IPMP; 3665 break; 3666 case DL_LOOP: 3667 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3668 break; 3669 } 3670 3671 mutex_enter(&phyi->phyint_lock); 3672 phyi->phyint_flags |= flags; 3673 mutex_exit(&phyi->phyint_lock); 3674 } 3675 3676 /* 3677 * Return a pointer to the ill which matches the supplied name. Note that 3678 * the ill name length includes the null termination character. (May be 3679 * called as writer.) 3680 * If do_alloc and the interface is "lo0" it will be automatically created. 3681 * Cannot bump up reference on condemned ills. So dup detect can't be done 3682 * using this func. 3683 */ 3684 ill_t * 3685 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3686 boolean_t *did_alloc, ip_stack_t *ipst) 3687 { 3688 ill_t *ill; 3689 ipif_t *ipif; 3690 ipsq_t *ipsq; 3691 kstat_named_t *kn; 3692 boolean_t isloopback; 3693 in6_addr_t ov6addr; 3694 3695 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3696 3697 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3698 ill = ill_find_by_name(name, isv6, ipst); 3699 rw_exit(&ipst->ips_ill_g_lock); 3700 if (ill != NULL) 3701 return (ill); 3702 3703 /* 3704 * Couldn't find it. Does this happen to be a lookup for the 3705 * loopback device and are we allowed to allocate it? 3706 */ 3707 if (!isloopback || !do_alloc) 3708 return (NULL); 3709 3710 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3711 ill = ill_find_by_name(name, isv6, ipst); 3712 if (ill != NULL) { 3713 rw_exit(&ipst->ips_ill_g_lock); 3714 return (ill); 3715 } 3716 3717 /* Create the loopback device on demand */ 3718 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3719 sizeof (ipif_loopback_name), BPRI_MED)); 3720 if (ill == NULL) 3721 goto done; 3722 3723 bzero(ill, sizeof (*ill)); 3724 ill->ill_ipst = ipst; 3725 netstack_hold(ipst->ips_netstack); 3726 /* 3727 * For exclusive stacks we set the zoneid to zero 3728 * to make IP operate as if in the global zone. 3729 */ 3730 ill->ill_zoneid = GLOBAL_ZONEID; 3731 3732 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3733 goto done; 3734 3735 if (!ill_allocate_mibs(ill)) 3736 goto done; 3737 3738 ill->ill_current_frag = ill->ill_max_frag; 3739 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3740 ill->ill_mc_mtu = ill->ill_mtu; 3741 /* 3742 * ipif_loopback_name can't be pointed at directly because its used 3743 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3744 * from the glist, ill_glist_delete() sets the first character of 3745 * ill_name to '\0'. 3746 */ 3747 ill->ill_name = (char *)ill + sizeof (*ill); 3748 (void) strcpy(ill->ill_name, ipif_loopback_name); 3749 ill->ill_name_length = sizeof (ipif_loopback_name); 3750 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3751 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3752 3753 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3754 if (ipif == NULL) 3755 goto done; 3756 3757 ill->ill_flags = ILLF_MULTICAST; 3758 3759 ov6addr = ipif->ipif_v6lcl_addr; 3760 /* Set up default loopback address and mask. */ 3761 if (!isv6) { 3762 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3763 3764 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3765 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3766 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3767 ipif->ipif_v6subnet); 3768 ill->ill_flags |= ILLF_IPV4; 3769 } else { 3770 ipif->ipif_v6lcl_addr = ipv6_loopback; 3771 ipif->ipif_v6net_mask = ipv6_all_ones; 3772 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3773 ipif->ipif_v6subnet); 3774 ill->ill_flags |= ILLF_IPV6; 3775 } 3776 3777 /* 3778 * Chain us in at the end of the ill list. hold the ill 3779 * before we make it globally visible. 1 for the lookup. 3780 */ 3781 ill_refhold(ill); 3782 3783 ipsq = ill->ill_phyint->phyint_ipsq; 3784 3785 if (ill_glist_insert(ill, "lo", isv6) != 0) 3786 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3787 3788 /* Let SCTP know so that it can add this to its list */ 3789 sctp_update_ill(ill, SCTP_ILL_INSERT); 3790 3791 /* 3792 * We have already assigned ipif_v6lcl_addr above, but we need to 3793 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3794 * requires to be after ill_glist_insert() since we need the 3795 * ill_index set. Pass on ipv6_loopback as the old address. 3796 */ 3797 sctp_update_ipif_addr(ipif, ov6addr); 3798 3799 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3800 3801 /* 3802 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3803 * If so, free our original one. 3804 */ 3805 if (ipsq != ill->ill_phyint->phyint_ipsq) 3806 ipsq_delete(ipsq); 3807 3808 if (ipst->ips_loopback_ksp == NULL) { 3809 /* Export loopback interface statistics */ 3810 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3811 ipif_loopback_name, "net", 3812 KSTAT_TYPE_NAMED, 2, 0, 3813 ipst->ips_netstack->netstack_stackid); 3814 if (ipst->ips_loopback_ksp != NULL) { 3815 ipst->ips_loopback_ksp->ks_update = 3816 loopback_kstat_update; 3817 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3818 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3819 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3820 ipst->ips_loopback_ksp->ks_private = 3821 (void *)(uintptr_t)ipst->ips_netstack-> 3822 netstack_stackid; 3823 kstat_install(ipst->ips_loopback_ksp); 3824 } 3825 } 3826 3827 *did_alloc = B_TRUE; 3828 rw_exit(&ipst->ips_ill_g_lock); 3829 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3830 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3831 return (ill); 3832 done: 3833 if (ill != NULL) { 3834 if (ill->ill_phyint != NULL) { 3835 ipsq = ill->ill_phyint->phyint_ipsq; 3836 if (ipsq != NULL) { 3837 ipsq->ipsq_phyint = NULL; 3838 ipsq_delete(ipsq); 3839 } 3840 mi_free(ill->ill_phyint); 3841 } 3842 ill_free_mib(ill); 3843 if (ill->ill_ipst != NULL) 3844 netstack_rele(ill->ill_ipst->ips_netstack); 3845 mi_free(ill); 3846 } 3847 rw_exit(&ipst->ips_ill_g_lock); 3848 return (NULL); 3849 } 3850 3851 /* 3852 * For IPP calls - use the ip_stack_t for global stack. 3853 */ 3854 ill_t * 3855 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3856 { 3857 ip_stack_t *ipst; 3858 ill_t *ill; 3859 netstack_t *ns; 3860 3861 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID); 3862 3863 if ((ipst = ns->netstack_ip) == NULL) { 3864 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3865 netstack_rele(ns); 3866 return (NULL); 3867 } 3868 3869 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3870 netstack_rele(ns); 3871 return (ill); 3872 } 3873 3874 /* 3875 * Return a pointer to the ill which matches the index and IP version type. 3876 */ 3877 ill_t * 3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3879 { 3880 ill_t *ill; 3881 phyint_t *phyi; 3882 3883 /* 3884 * Indexes are stored in the phyint - a common structure 3885 * to both IPv4 and IPv6. 3886 */ 3887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3888 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3889 (void *) &index, NULL); 3890 if (phyi != NULL) { 3891 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3892 if (ill != NULL) { 3893 mutex_enter(&ill->ill_lock); 3894 if (!ILL_IS_CONDEMNED(ill)) { 3895 ill_refhold_locked(ill); 3896 mutex_exit(&ill->ill_lock); 3897 rw_exit(&ipst->ips_ill_g_lock); 3898 return (ill); 3899 } 3900 mutex_exit(&ill->ill_lock); 3901 } 3902 } 3903 rw_exit(&ipst->ips_ill_g_lock); 3904 return (NULL); 3905 } 3906 3907 /* 3908 * Verify whether or not an interface index is valid for the specified zoneid 3909 * to transmit packets. 3910 * It can be zero (meaning "reset") or an interface index assigned 3911 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3912 */ 3913 boolean_t 3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3915 ip_stack_t *ipst) 3916 { 3917 ill_t *ill; 3918 3919 if (ifindex == 0) 3920 return (B_TRUE); 3921 3922 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3923 if (ill == NULL) 3924 return (B_FALSE); 3925 if (IS_VNI(ill)) { 3926 ill_refrele(ill); 3927 return (B_FALSE); 3928 } 3929 ill_refrele(ill); 3930 return (B_TRUE); 3931 } 3932 3933 /* 3934 * Return the ifindex next in sequence after the passed in ifindex. 3935 * If there is no next ifindex for the given protocol, return 0. 3936 */ 3937 uint_t 3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3939 { 3940 phyint_t *phyi; 3941 phyint_t *phyi_initial; 3942 uint_t ifindex; 3943 3944 phyi_initial = NULL; 3945 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3946 3947 if (index == 0) { 3948 phyi = avl_first( 3949 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3950 } else { 3951 phyi = phyi_initial = avl_find( 3952 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3953 (void *) &index, NULL); 3954 } 3955 3956 for (; phyi != NULL; 3957 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3958 phyi, AVL_AFTER)) { 3959 /* 3960 * If we're not returning the first interface in the tree 3961 * and we still haven't moved past the phyint_t that 3962 * corresponds to index, avl_walk needs to be called again 3963 */ 3964 if (!((index != 0) && (phyi == phyi_initial))) { 3965 if (isv6) { 3966 if ((phyi->phyint_illv6) && 3967 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3968 (phyi->phyint_illv6->ill_isv6 == 1)) 3969 break; 3970 } else { 3971 if ((phyi->phyint_illv4) && 3972 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3973 (phyi->phyint_illv4->ill_isv6 == 0)) 3974 break; 3975 } 3976 } 3977 } 3978 3979 rw_exit(&ipst->ips_ill_g_lock); 3980 3981 if (phyi != NULL) 3982 ifindex = phyi->phyint_ifindex; 3983 else 3984 ifindex = 0; 3985 3986 return (ifindex); 3987 } 3988 3989 /* 3990 * Return the ifindex for the named interface. 3991 * If there is no next ifindex for the interface, return 0. 3992 */ 3993 uint_t 3994 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3995 { 3996 phyint_t *phyi; 3997 avl_index_t where = 0; 3998 uint_t ifindex; 3999 4000 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4001 4002 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4003 name, &where)) == NULL) { 4004 rw_exit(&ipst->ips_ill_g_lock); 4005 return (0); 4006 } 4007 4008 ifindex = phyi->phyint_ifindex; 4009 4010 rw_exit(&ipst->ips_ill_g_lock); 4011 4012 return (ifindex); 4013 } 4014 4015 /* 4016 * Return the ifindex to be used by upper layer protocols for instance 4017 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4018 */ 4019 uint_t 4020 ill_get_upper_ifindex(const ill_t *ill) 4021 { 4022 if (IS_UNDER_IPMP(ill)) 4023 return (ipmp_ill_get_ipmp_ifindex(ill)); 4024 else 4025 return (ill->ill_phyint->phyint_ifindex); 4026 } 4027 4028 4029 /* 4030 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4031 * that gives a running thread a reference to the ill. This reference must be 4032 * released by the thread when it is done accessing the ill and related 4033 * objects. ill_refcnt can not be used to account for static references 4034 * such as other structures pointing to an ill. Callers must generally 4035 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4036 * or be sure that the ill is not being deleted or changing state before 4037 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4038 * ill won't change any of its critical state such as address, netmask etc. 4039 */ 4040 void 4041 ill_refhold(ill_t *ill) 4042 { 4043 mutex_enter(&ill->ill_lock); 4044 ill->ill_refcnt++; 4045 ILL_TRACE_REF(ill); 4046 mutex_exit(&ill->ill_lock); 4047 } 4048 4049 void 4050 ill_refhold_locked(ill_t *ill) 4051 { 4052 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4053 ill->ill_refcnt++; 4054 ILL_TRACE_REF(ill); 4055 } 4056 4057 /* Returns true if we managed to get a refhold */ 4058 boolean_t 4059 ill_check_and_refhold(ill_t *ill) 4060 { 4061 mutex_enter(&ill->ill_lock); 4062 if (!ILL_IS_CONDEMNED(ill)) { 4063 ill_refhold_locked(ill); 4064 mutex_exit(&ill->ill_lock); 4065 return (B_TRUE); 4066 } 4067 mutex_exit(&ill->ill_lock); 4068 return (B_FALSE); 4069 } 4070 4071 /* 4072 * Must not be called while holding any locks. Otherwise if this is 4073 * the last reference to be released, there is a chance of recursive mutex 4074 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4075 * to restart an ioctl. 4076 */ 4077 void 4078 ill_refrele(ill_t *ill) 4079 { 4080 mutex_enter(&ill->ill_lock); 4081 ASSERT(ill->ill_refcnt != 0); 4082 ill->ill_refcnt--; 4083 ILL_UNTRACE_REF(ill); 4084 if (ill->ill_refcnt != 0) { 4085 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4086 mutex_exit(&ill->ill_lock); 4087 return; 4088 } 4089 4090 /* Drops the ill_lock */ 4091 ipif_ill_refrele_tail(ill); 4092 } 4093 4094 /* 4095 * Obtain a weak reference count on the ill. This reference ensures the 4096 * ill won't be freed, but the ill may change any of its critical state 4097 * such as netmask, address etc. Returns an error if the ill has started 4098 * closing. 4099 */ 4100 boolean_t 4101 ill_waiter_inc(ill_t *ill) 4102 { 4103 mutex_enter(&ill->ill_lock); 4104 if (ill->ill_state_flags & ILL_CONDEMNED) { 4105 mutex_exit(&ill->ill_lock); 4106 return (B_FALSE); 4107 } 4108 ill->ill_waiters++; 4109 mutex_exit(&ill->ill_lock); 4110 return (B_TRUE); 4111 } 4112 4113 void 4114 ill_waiter_dcr(ill_t *ill) 4115 { 4116 mutex_enter(&ill->ill_lock); 4117 ill->ill_waiters--; 4118 if (ill->ill_waiters == 0) 4119 cv_broadcast(&ill->ill_cv); 4120 mutex_exit(&ill->ill_lock); 4121 } 4122 4123 /* 4124 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4125 * driver. We construct best guess defaults for lower level information that 4126 * we need. If an interface is brought up without injection of any overriding 4127 * information from outside, we have to be ready to go with these defaults. 4128 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4129 * we primarely want the dl_provider_style. 4130 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4131 * at which point we assume the other part of the information is valid. 4132 */ 4133 void 4134 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4135 { 4136 uchar_t *brdcst_addr; 4137 uint_t brdcst_addr_length, phys_addr_length; 4138 t_scalar_t sap_length; 4139 dl_info_ack_t *dlia; 4140 ip_m_t *ipm; 4141 dl_qos_cl_sel1_t *sel1; 4142 int min_mtu; 4143 4144 ASSERT(IAM_WRITER_ILL(ill)); 4145 4146 /* 4147 * Till the ill is fully up the ill is not globally visible. 4148 * So no need for a lock. 4149 */ 4150 dlia = (dl_info_ack_t *)mp->b_rptr; 4151 ill->ill_mactype = dlia->dl_mac_type; 4152 4153 ipm = ip_m_lookup(dlia->dl_mac_type); 4154 if (ipm == NULL) { 4155 ipm = ip_m_lookup(DL_OTHER); 4156 ASSERT(ipm != NULL); 4157 } 4158 ill->ill_media = ipm; 4159 4160 /* 4161 * When the new DLPI stuff is ready we'll pull lengths 4162 * from dlia. 4163 */ 4164 if (dlia->dl_version == DL_VERSION_2) { 4165 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4166 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4167 brdcst_addr_length); 4168 if (brdcst_addr == NULL) { 4169 brdcst_addr_length = 0; 4170 } 4171 sap_length = dlia->dl_sap_length; 4172 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4173 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4174 brdcst_addr_length, sap_length, phys_addr_length)); 4175 } else { 4176 brdcst_addr_length = 6; 4177 brdcst_addr = ip_six_byte_all_ones; 4178 sap_length = -2; 4179 phys_addr_length = brdcst_addr_length; 4180 } 4181 4182 ill->ill_bcast_addr_length = brdcst_addr_length; 4183 ill->ill_phys_addr_length = phys_addr_length; 4184 ill->ill_sap_length = sap_length; 4185 4186 /* 4187 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4188 * but we must ensure a minimum IP MTU is used since other bits of 4189 * IP will fly apart otherwise. 4190 */ 4191 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4192 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4193 ill->ill_current_frag = ill->ill_max_frag; 4194 ill->ill_mtu = ill->ill_max_frag; 4195 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4196 4197 ill->ill_type = ipm->ip_m_type; 4198 4199 if (!ill->ill_dlpi_style_set) { 4200 if (dlia->dl_provider_style == DL_STYLE2) 4201 ill->ill_needs_attach = 1; 4202 4203 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4204 4205 /* 4206 * Allocate the first ipif on this ill. We don't delay it 4207 * further as ioctl handling assumes at least one ipif exists. 4208 * 4209 * At this point we don't know whether the ill is v4 or v6. 4210 * We will know this whan the SIOCSLIFNAME happens and 4211 * the correct value for ill_isv6 will be assigned in 4212 * ipif_set_values(). We need to hold the ill lock and 4213 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4214 * the wakeup. 4215 */ 4216 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4217 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4218 mutex_enter(&ill->ill_lock); 4219 ASSERT(ill->ill_dlpi_style_set == 0); 4220 ill->ill_dlpi_style_set = 1; 4221 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4222 cv_broadcast(&ill->ill_cv); 4223 mutex_exit(&ill->ill_lock); 4224 freemsg(mp); 4225 return; 4226 } 4227 ASSERT(ill->ill_ipif != NULL); 4228 /* 4229 * We know whether it is IPv4 or IPv6 now, as this is the 4230 * second DL_INFO_ACK we are recieving in response to the 4231 * DL_INFO_REQ sent in ipif_set_values. 4232 */ 4233 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4234 /* 4235 * Clear all the flags that were set based on ill_bcast_addr_length 4236 * and ill_phys_addr_length (in ipif_set_values) as these could have 4237 * changed now and we need to re-evaluate. 4238 */ 4239 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4240 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4241 4242 /* 4243 * Free ill_bcast_mp as things could have changed now. 4244 * 4245 * NOTE: The IPMP meta-interface is special-cased because it starts 4246 * with no underlying interfaces (and thus an unknown broadcast 4247 * address length), but we enforce that an interface is broadcast- 4248 * capable as part of allowing it to join a group. 4249 */ 4250 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4251 if (ill->ill_bcast_mp != NULL) 4252 freemsg(ill->ill_bcast_mp); 4253 ill->ill_net_type = IRE_IF_NORESOLVER; 4254 4255 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4256 ill->ill_phys_addr_length, 4257 ill->ill_sap, 4258 ill->ill_sap_length); 4259 4260 if (ill->ill_isv6) 4261 /* 4262 * Note: xresolv interfaces will eventually need NOARP 4263 * set here as well, but that will require those 4264 * external resolvers to have some knowledge of 4265 * that flag and act appropriately. Not to be changed 4266 * at present. 4267 */ 4268 ill->ill_flags |= ILLF_NONUD; 4269 else 4270 ill->ill_flags |= ILLF_NOARP; 4271 4272 if (ill->ill_mactype == SUNW_DL_VNI) { 4273 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4274 } else if (ill->ill_phys_addr_length == 0 || 4275 ill->ill_mactype == DL_IPV4 || 4276 ill->ill_mactype == DL_IPV6) { 4277 /* 4278 * The underying link is point-to-point, so mark the 4279 * interface as such. We can do IP multicast over 4280 * such a link since it transmits all network-layer 4281 * packets to the remote side the same way. 4282 */ 4283 ill->ill_flags |= ILLF_MULTICAST; 4284 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4285 } 4286 } else { 4287 ill->ill_net_type = IRE_IF_RESOLVER; 4288 if (ill->ill_bcast_mp != NULL) 4289 freemsg(ill->ill_bcast_mp); 4290 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4291 ill->ill_bcast_addr_length, ill->ill_sap, 4292 ill->ill_sap_length); 4293 /* 4294 * Later detect lack of DLPI driver multicast 4295 * capability by catching DL_ENABMULTI errors in 4296 * ip_rput_dlpi. 4297 */ 4298 ill->ill_flags |= ILLF_MULTICAST; 4299 if (!ill->ill_isv6) 4300 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4301 } 4302 4303 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4304 if (ill->ill_mactype == SUNW_DL_IPMP) 4305 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4306 4307 /* By default an interface does not support any CoS marking */ 4308 ill->ill_flags &= ~ILLF_COS_ENABLED; 4309 4310 /* 4311 * If we get QoS information in DL_INFO_ACK, the device supports 4312 * some form of CoS marking, set ILLF_COS_ENABLED. 4313 */ 4314 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4315 dlia->dl_qos_length); 4316 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4317 ill->ill_flags |= ILLF_COS_ENABLED; 4318 } 4319 4320 /* Clear any previous error indication. */ 4321 ill->ill_error = 0; 4322 freemsg(mp); 4323 } 4324 4325 /* 4326 * Perform various checks to verify that an address would make sense as a 4327 * local, remote, or subnet interface address. 4328 */ 4329 static boolean_t 4330 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4331 { 4332 ipaddr_t net_mask; 4333 4334 /* 4335 * Don't allow all zeroes, or all ones, but allow 4336 * all ones netmask. 4337 */ 4338 if ((net_mask = ip_net_mask(addr)) == 0) 4339 return (B_FALSE); 4340 /* A given netmask overrides the "guess" netmask */ 4341 if (subnet_mask != 0) 4342 net_mask = subnet_mask; 4343 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4344 (addr == (addr | ~net_mask)))) { 4345 return (B_FALSE); 4346 } 4347 4348 /* 4349 * Even if the netmask is all ones, we do not allow address to be 4350 * 255.255.255.255 4351 */ 4352 if (addr == INADDR_BROADCAST) 4353 return (B_FALSE); 4354 4355 if (CLASSD(addr)) 4356 return (B_FALSE); 4357 4358 return (B_TRUE); 4359 } 4360 4361 #define V6_IPIF_LINKLOCAL(p) \ 4362 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4363 4364 /* 4365 * Compare two given ipifs and check if the second one is better than 4366 * the first one using the order of preference (not taking deprecated 4367 * into acount) specified in ipif_lookup_multicast(). 4368 */ 4369 static boolean_t 4370 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4371 { 4372 /* Check the least preferred first. */ 4373 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4374 /* If both ipifs are the same, use the first one. */ 4375 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4376 return (B_FALSE); 4377 else 4378 return (B_TRUE); 4379 } 4380 4381 /* For IPv6, check for link local address. */ 4382 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4383 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4384 V6_IPIF_LINKLOCAL(new_ipif)) { 4385 /* The second one is equal or less preferred. */ 4386 return (B_FALSE); 4387 } else { 4388 return (B_TRUE); 4389 } 4390 } 4391 4392 /* Then check for point to point interface. */ 4393 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4394 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4395 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4396 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4397 return (B_FALSE); 4398 } else { 4399 return (B_TRUE); 4400 } 4401 } 4402 4403 /* old_ipif is a normal interface, so no need to use the new one. */ 4404 return (B_FALSE); 4405 } 4406 4407 /* 4408 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4409 * The ipif must be up, and its ill must multicast-capable, not 4410 * condemned, not an underlying interface in an IPMP group, and 4411 * not a VNI interface. Order of preference: 4412 * 4413 * 1a. normal 4414 * 1b. normal, but deprecated 4415 * 2a. point to point 4416 * 2b. point to point, but deprecated 4417 * 3a. link local 4418 * 3b. link local, but deprecated 4419 * 4. loopback. 4420 */ 4421 static ipif_t * 4422 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4423 { 4424 ill_t *ill; 4425 ill_walk_context_t ctx; 4426 ipif_t *ipif; 4427 ipif_t *saved_ipif = NULL; 4428 ipif_t *dep_ipif = NULL; 4429 4430 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4431 if (isv6) 4432 ill = ILL_START_WALK_V6(&ctx, ipst); 4433 else 4434 ill = ILL_START_WALK_V4(&ctx, ipst); 4435 4436 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4437 mutex_enter(&ill->ill_lock); 4438 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4439 ILL_IS_CONDEMNED(ill) || 4440 !(ill->ill_flags & ILLF_MULTICAST)) { 4441 mutex_exit(&ill->ill_lock); 4442 continue; 4443 } 4444 for (ipif = ill->ill_ipif; ipif != NULL; 4445 ipif = ipif->ipif_next) { 4446 if (zoneid != ipif->ipif_zoneid && 4447 zoneid != ALL_ZONES && 4448 ipif->ipif_zoneid != ALL_ZONES) { 4449 continue; 4450 } 4451 if (!(ipif->ipif_flags & IPIF_UP) || 4452 IPIF_IS_CONDEMNED(ipif)) { 4453 continue; 4454 } 4455 4456 /* 4457 * Found one candidate. If it is deprecated, 4458 * remember it in dep_ipif. If it is not deprecated, 4459 * remember it in saved_ipif. 4460 */ 4461 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4462 if (dep_ipif == NULL) { 4463 dep_ipif = ipif; 4464 } else if (ipif_comp_multi(dep_ipif, ipif, 4465 isv6)) { 4466 /* 4467 * If the previous dep_ipif does not 4468 * belong to the same ill, we've done 4469 * a ipif_refhold() on it. So we need 4470 * to release it. 4471 */ 4472 if (dep_ipif->ipif_ill != ill) 4473 ipif_refrele(dep_ipif); 4474 dep_ipif = ipif; 4475 } 4476 continue; 4477 } 4478 if (saved_ipif == NULL) { 4479 saved_ipif = ipif; 4480 } else { 4481 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4482 if (saved_ipif->ipif_ill != ill) 4483 ipif_refrele(saved_ipif); 4484 saved_ipif = ipif; 4485 } 4486 } 4487 } 4488 /* 4489 * Before going to the next ill, do a ipif_refhold() on the 4490 * saved ones. 4491 */ 4492 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4493 ipif_refhold_locked(saved_ipif); 4494 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4495 ipif_refhold_locked(dep_ipif); 4496 mutex_exit(&ill->ill_lock); 4497 } 4498 rw_exit(&ipst->ips_ill_g_lock); 4499 4500 /* 4501 * If we have only the saved_ipif, return it. But if we have both 4502 * saved_ipif and dep_ipif, check to see which one is better. 4503 */ 4504 if (saved_ipif != NULL) { 4505 if (dep_ipif != NULL) { 4506 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4507 ipif_refrele(saved_ipif); 4508 return (dep_ipif); 4509 } else { 4510 ipif_refrele(dep_ipif); 4511 return (saved_ipif); 4512 } 4513 } 4514 return (saved_ipif); 4515 } else { 4516 return (dep_ipif); 4517 } 4518 } 4519 4520 ill_t * 4521 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4522 { 4523 ipif_t *ipif; 4524 ill_t *ill; 4525 4526 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4527 if (ipif == NULL) 4528 return (NULL); 4529 4530 ill = ipif->ipif_ill; 4531 ill_refhold(ill); 4532 ipif_refrele(ipif); 4533 return (ill); 4534 } 4535 4536 /* 4537 * This function is called when an application does not specify an interface 4538 * to be used for multicast traffic (joining a group/sending data). It 4539 * calls ire_lookup_multi() to look for an interface route for the 4540 * specified multicast group. Doing this allows the administrator to add 4541 * prefix routes for multicast to indicate which interface to be used for 4542 * multicast traffic in the above scenario. The route could be for all 4543 * multicast (224.0/4), for a single multicast group (a /32 route) or 4544 * anything in between. If there is no such multicast route, we just find 4545 * any multicast capable interface and return it. The returned ipif 4546 * is refhold'ed. 4547 * 4548 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4549 * unicast table. This is used by CGTP. 4550 */ 4551 ill_t * 4552 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4553 boolean_t *multirtp, ipaddr_t *setsrcp) 4554 { 4555 ill_t *ill; 4556 4557 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4558 if (ill != NULL) 4559 return (ill); 4560 4561 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4562 } 4563 4564 /* 4565 * Look for an ipif with the specified interface address and destination. 4566 * The destination address is used only for matching point-to-point interfaces. 4567 */ 4568 ipif_t * 4569 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4570 { 4571 ipif_t *ipif; 4572 ill_t *ill; 4573 ill_walk_context_t ctx; 4574 4575 /* 4576 * First match all the point-to-point interfaces 4577 * before looking at non-point-to-point interfaces. 4578 * This is done to avoid returning non-point-to-point 4579 * ipif instead of unnumbered point-to-point ipif. 4580 */ 4581 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4582 ill = ILL_START_WALK_V4(&ctx, ipst); 4583 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4584 mutex_enter(&ill->ill_lock); 4585 for (ipif = ill->ill_ipif; ipif != NULL; 4586 ipif = ipif->ipif_next) { 4587 /* Allow the ipif to be down */ 4588 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4589 (ipif->ipif_lcl_addr == if_addr) && 4590 (ipif->ipif_pp_dst_addr == dst)) { 4591 if (!IPIF_IS_CONDEMNED(ipif)) { 4592 ipif_refhold_locked(ipif); 4593 mutex_exit(&ill->ill_lock); 4594 rw_exit(&ipst->ips_ill_g_lock); 4595 return (ipif); 4596 } 4597 } 4598 } 4599 mutex_exit(&ill->ill_lock); 4600 } 4601 rw_exit(&ipst->ips_ill_g_lock); 4602 4603 /* lookup the ipif based on interface address */ 4604 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4605 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4606 return (ipif); 4607 } 4608 4609 /* 4610 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4611 */ 4612 static ipif_t * 4613 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4614 zoneid_t zoneid, ip_stack_t *ipst) 4615 { 4616 ipif_t *ipif; 4617 ill_t *ill; 4618 boolean_t ptp = B_FALSE; 4619 ill_walk_context_t ctx; 4620 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4621 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4622 4623 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4624 /* 4625 * Repeat twice, first based on local addresses and 4626 * next time for pointopoint. 4627 */ 4628 repeat: 4629 ill = ILL_START_WALK_V4(&ctx, ipst); 4630 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4631 if (match_ill != NULL && ill != match_ill && 4632 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4633 continue; 4634 } 4635 mutex_enter(&ill->ill_lock); 4636 for (ipif = ill->ill_ipif; ipif != NULL; 4637 ipif = ipif->ipif_next) { 4638 if (zoneid != ALL_ZONES && 4639 zoneid != ipif->ipif_zoneid && 4640 ipif->ipif_zoneid != ALL_ZONES) 4641 continue; 4642 4643 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4644 continue; 4645 4646 /* Allow the ipif to be down */ 4647 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4648 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4649 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4650 (ipif->ipif_pp_dst_addr == addr))) { 4651 if (!IPIF_IS_CONDEMNED(ipif)) { 4652 ipif_refhold_locked(ipif); 4653 mutex_exit(&ill->ill_lock); 4654 rw_exit(&ipst->ips_ill_g_lock); 4655 return (ipif); 4656 } 4657 } 4658 } 4659 mutex_exit(&ill->ill_lock); 4660 } 4661 4662 /* If we already did the ptp case, then we are done */ 4663 if (ptp) { 4664 rw_exit(&ipst->ips_ill_g_lock); 4665 return (NULL); 4666 } 4667 ptp = B_TRUE; 4668 goto repeat; 4669 } 4670 4671 /* 4672 * Lookup an ipif with the specified address. For point-to-point links we 4673 * look for matches on either the destination address or the local address, 4674 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4675 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4676 * (or illgrp if `match_ill' is in an IPMP group). 4677 */ 4678 ipif_t * 4679 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4680 ip_stack_t *ipst) 4681 { 4682 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4683 zoneid, ipst)); 4684 } 4685 4686 /* 4687 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4688 * except that we will only return an address if it is not marked as 4689 * IPIF_DUPLICATE 4690 */ 4691 ipif_t * 4692 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4693 ip_stack_t *ipst) 4694 { 4695 return (ipif_lookup_addr_common(addr, match_ill, 4696 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4697 zoneid, ipst)); 4698 } 4699 4700 /* 4701 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4702 * `match_ill' across the IPMP group. This function is only needed in some 4703 * corner-cases; almost everything should use ipif_lookup_addr(). 4704 */ 4705 ipif_t * 4706 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4707 { 4708 ASSERT(match_ill != NULL); 4709 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4710 ipst)); 4711 } 4712 4713 /* 4714 * Look for an ipif with the specified address. For point-point links 4715 * we look for matches on either the destination address and the local 4716 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4717 * is set. 4718 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4719 * ill (or illgrp if `match_ill' is in an IPMP group). 4720 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4721 */ 4722 zoneid_t 4723 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4724 { 4725 zoneid_t zoneid; 4726 ipif_t *ipif; 4727 ill_t *ill; 4728 boolean_t ptp = B_FALSE; 4729 ill_walk_context_t ctx; 4730 4731 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4732 /* 4733 * Repeat twice, first based on local addresses and 4734 * next time for pointopoint. 4735 */ 4736 repeat: 4737 ill = ILL_START_WALK_V4(&ctx, ipst); 4738 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4739 if (match_ill != NULL && ill != match_ill && 4740 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4741 continue; 4742 } 4743 mutex_enter(&ill->ill_lock); 4744 for (ipif = ill->ill_ipif; ipif != NULL; 4745 ipif = ipif->ipif_next) { 4746 /* Allow the ipif to be down */ 4747 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4748 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4749 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4750 (ipif->ipif_pp_dst_addr == addr)) && 4751 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4752 zoneid = ipif->ipif_zoneid; 4753 mutex_exit(&ill->ill_lock); 4754 rw_exit(&ipst->ips_ill_g_lock); 4755 /* 4756 * If ipif_zoneid was ALL_ZONES then we have 4757 * a trusted extensions shared IP address. 4758 * In that case GLOBAL_ZONEID works to send. 4759 */ 4760 if (zoneid == ALL_ZONES) 4761 zoneid = GLOBAL_ZONEID; 4762 return (zoneid); 4763 } 4764 } 4765 mutex_exit(&ill->ill_lock); 4766 } 4767 4768 /* If we already did the ptp case, then we are done */ 4769 if (ptp) { 4770 rw_exit(&ipst->ips_ill_g_lock); 4771 return (ALL_ZONES); 4772 } 4773 ptp = B_TRUE; 4774 goto repeat; 4775 } 4776 4777 /* 4778 * Look for an ipif that matches the specified remote address i.e. the 4779 * ipif that would receive the specified packet. 4780 * First look for directly connected interfaces and then do a recursive 4781 * IRE lookup and pick the first ipif corresponding to the source address in the 4782 * ire. 4783 * Returns: held ipif 4784 * 4785 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4786 */ 4787 ipif_t * 4788 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4789 { 4790 ipif_t *ipif; 4791 4792 ASSERT(!ill->ill_isv6); 4793 4794 /* 4795 * Someone could be changing this ipif currently or change it 4796 * after we return this. Thus a few packets could use the old 4797 * old values. However structure updates/creates (ire, ilg, ilm etc) 4798 * will atomically be updated or cleaned up with the new value 4799 * Thus we don't need a lock to check the flags or other attrs below. 4800 */ 4801 mutex_enter(&ill->ill_lock); 4802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4803 if (IPIF_IS_CONDEMNED(ipif)) 4804 continue; 4805 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4806 ipif->ipif_zoneid != ALL_ZONES) 4807 continue; 4808 /* Allow the ipif to be down */ 4809 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4810 if ((ipif->ipif_pp_dst_addr == addr) || 4811 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4812 ipif->ipif_lcl_addr == addr)) { 4813 ipif_refhold_locked(ipif); 4814 mutex_exit(&ill->ill_lock); 4815 return (ipif); 4816 } 4817 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4818 ipif_refhold_locked(ipif); 4819 mutex_exit(&ill->ill_lock); 4820 return (ipif); 4821 } 4822 } 4823 mutex_exit(&ill->ill_lock); 4824 /* 4825 * For a remote destination it isn't possible to nail down a particular 4826 * ipif. 4827 */ 4828 4829 /* Pick the first interface */ 4830 ipif = ipif_get_next_ipif(NULL, ill); 4831 return (ipif); 4832 } 4833 4834 /* 4835 * This func does not prevent refcnt from increasing. But if 4836 * the caller has taken steps to that effect, then this func 4837 * can be used to determine whether the ill has become quiescent 4838 */ 4839 static boolean_t 4840 ill_is_quiescent(ill_t *ill) 4841 { 4842 ipif_t *ipif; 4843 4844 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4845 4846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4847 if (ipif->ipif_refcnt != 0) 4848 return (B_FALSE); 4849 } 4850 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4851 return (B_FALSE); 4852 } 4853 return (B_TRUE); 4854 } 4855 4856 boolean_t 4857 ill_is_freeable(ill_t *ill) 4858 { 4859 ipif_t *ipif; 4860 4861 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4862 4863 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4864 if (ipif->ipif_refcnt != 0) { 4865 return (B_FALSE); 4866 } 4867 } 4868 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4869 return (B_FALSE); 4870 } 4871 return (B_TRUE); 4872 } 4873 4874 /* 4875 * This func does not prevent refcnt from increasing. But if 4876 * the caller has taken steps to that effect, then this func 4877 * can be used to determine whether the ipif has become quiescent 4878 */ 4879 static boolean_t 4880 ipif_is_quiescent(ipif_t *ipif) 4881 { 4882 ill_t *ill; 4883 4884 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4885 4886 if (ipif->ipif_refcnt != 0) 4887 return (B_FALSE); 4888 4889 ill = ipif->ipif_ill; 4890 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4891 ill->ill_logical_down) { 4892 return (B_TRUE); 4893 } 4894 4895 /* This is the last ipif going down or being deleted on this ill */ 4896 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4897 return (B_FALSE); 4898 } 4899 4900 return (B_TRUE); 4901 } 4902 4903 /* 4904 * return true if the ipif can be destroyed: the ipif has to be quiescent 4905 * with zero references from ire/ilm to it. 4906 */ 4907 static boolean_t 4908 ipif_is_freeable(ipif_t *ipif) 4909 { 4910 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4911 ASSERT(ipif->ipif_id != 0); 4912 return (ipif->ipif_refcnt == 0); 4913 } 4914 4915 /* 4916 * The ipif/ill/ire has been refreled. Do the tail processing. 4917 * Determine if the ipif or ill in question has become quiescent and if so 4918 * wakeup close and/or restart any queued pending ioctl that is waiting 4919 * for the ipif_down (or ill_down) 4920 */ 4921 void 4922 ipif_ill_refrele_tail(ill_t *ill) 4923 { 4924 mblk_t *mp; 4925 conn_t *connp; 4926 ipsq_t *ipsq; 4927 ipxop_t *ipx; 4928 ipif_t *ipif; 4929 dl_notify_ind_t *dlindp; 4930 4931 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4932 4933 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4934 /* ip_modclose() may be waiting */ 4935 cv_broadcast(&ill->ill_cv); 4936 } 4937 4938 ipsq = ill->ill_phyint->phyint_ipsq; 4939 mutex_enter(&ipsq->ipsq_lock); 4940 ipx = ipsq->ipsq_xop; 4941 mutex_enter(&ipx->ipx_lock); 4942 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4943 goto unlock; 4944 4945 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4946 4947 ipif = ipx->ipx_pending_ipif; 4948 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4949 goto unlock; 4950 4951 switch (ipx->ipx_waitfor) { 4952 case IPIF_DOWN: 4953 if (!ipif_is_quiescent(ipif)) 4954 goto unlock; 4955 break; 4956 case IPIF_FREE: 4957 if (!ipif_is_freeable(ipif)) 4958 goto unlock; 4959 break; 4960 case ILL_DOWN: 4961 if (!ill_is_quiescent(ill)) 4962 goto unlock; 4963 break; 4964 case ILL_FREE: 4965 /* 4966 * ILL_FREE is only for loopback; normal ill teardown waits 4967 * synchronously in ip_modclose() without using ipx_waitfor, 4968 * handled by the cv_broadcast() at the top of this function. 4969 */ 4970 if (!ill_is_freeable(ill)) 4971 goto unlock; 4972 break; 4973 default: 4974 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4975 (void *)ipsq, ipx->ipx_waitfor); 4976 } 4977 4978 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4979 mutex_exit(&ipx->ipx_lock); 4980 mp = ipsq_pending_mp_get(ipsq, &connp); 4981 mutex_exit(&ipsq->ipsq_lock); 4982 mutex_exit(&ill->ill_lock); 4983 4984 ASSERT(mp != NULL); 4985 /* 4986 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4987 * we can only get here when the current operation decides it 4988 * it needs to quiesce via ipsq_pending_mp_add(). 4989 */ 4990 switch (mp->b_datap->db_type) { 4991 case M_PCPROTO: 4992 case M_PROTO: 4993 /* 4994 * For now, only DL_NOTIFY_IND messages can use this facility. 4995 */ 4996 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4997 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4998 4999 switch (dlindp->dl_notification) { 5000 case DL_NOTE_PHYS_ADDR: 5001 qwriter_ip(ill, ill->ill_rq, mp, 5002 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5003 return; 5004 case DL_NOTE_REPLUMB: 5005 qwriter_ip(ill, ill->ill_rq, mp, 5006 ill_replumb_tail, CUR_OP, B_TRUE); 5007 return; 5008 default: 5009 ASSERT(0); 5010 ill_refrele(ill); 5011 } 5012 break; 5013 5014 case M_ERROR: 5015 case M_HANGUP: 5016 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5017 B_TRUE); 5018 return; 5019 5020 case M_IOCTL: 5021 case M_IOCDATA: 5022 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5023 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5024 return; 5025 5026 default: 5027 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5028 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5029 } 5030 return; 5031 unlock: 5032 mutex_exit(&ipsq->ipsq_lock); 5033 mutex_exit(&ipx->ipx_lock); 5034 mutex_exit(&ill->ill_lock); 5035 } 5036 5037 #ifdef DEBUG 5038 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5039 static void 5040 th_trace_rrecord(th_trace_t *th_trace) 5041 { 5042 tr_buf_t *tr_buf; 5043 uint_t lastref; 5044 5045 lastref = th_trace->th_trace_lastref; 5046 lastref++; 5047 if (lastref == TR_BUF_MAX) 5048 lastref = 0; 5049 th_trace->th_trace_lastref = lastref; 5050 tr_buf = &th_trace->th_trbuf[lastref]; 5051 tr_buf->tr_time = ddi_get_lbolt(); 5052 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5053 } 5054 5055 static void 5056 th_trace_free(void *value) 5057 { 5058 th_trace_t *th_trace = value; 5059 5060 ASSERT(th_trace->th_refcnt == 0); 5061 kmem_free(th_trace, sizeof (*th_trace)); 5062 } 5063 5064 /* 5065 * Find or create the per-thread hash table used to track object references. 5066 * The ipst argument is NULL if we shouldn't allocate. 5067 * 5068 * Accesses per-thread data, so there's no need to lock here. 5069 */ 5070 static mod_hash_t * 5071 th_trace_gethash(ip_stack_t *ipst) 5072 { 5073 th_hash_t *thh; 5074 5075 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5076 mod_hash_t *mh; 5077 char name[256]; 5078 size_t objsize, rshift; 5079 int retv; 5080 5081 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5082 return (NULL); 5083 (void) snprintf(name, sizeof (name), "th_trace_%p", 5084 (void *)curthread); 5085 5086 /* 5087 * We use mod_hash_create_extended here rather than the more 5088 * obvious mod_hash_create_ptrhash because the latter has a 5089 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5090 * block. 5091 */ 5092 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5093 MAX(sizeof (ire_t), sizeof (ncec_t))); 5094 rshift = highbit(objsize); 5095 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5096 th_trace_free, mod_hash_byptr, (void *)rshift, 5097 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5098 if (mh == NULL) { 5099 kmem_free(thh, sizeof (*thh)); 5100 return (NULL); 5101 } 5102 thh->thh_hash = mh; 5103 thh->thh_ipst = ipst; 5104 /* 5105 * We trace ills, ipifs, ires, and nces. All of these are 5106 * per-IP-stack, so the lock on the thread list is as well. 5107 */ 5108 rw_enter(&ip_thread_rwlock, RW_WRITER); 5109 list_insert_tail(&ip_thread_list, thh); 5110 rw_exit(&ip_thread_rwlock); 5111 retv = tsd_set(ip_thread_data, thh); 5112 ASSERT(retv == 0); 5113 } 5114 return (thh != NULL ? thh->thh_hash : NULL); 5115 } 5116 5117 boolean_t 5118 th_trace_ref(const void *obj, ip_stack_t *ipst) 5119 { 5120 th_trace_t *th_trace; 5121 mod_hash_t *mh; 5122 mod_hash_val_t val; 5123 5124 if ((mh = th_trace_gethash(ipst)) == NULL) 5125 return (B_FALSE); 5126 5127 /* 5128 * Attempt to locate the trace buffer for this obj and thread. 5129 * If it does not exist, then allocate a new trace buffer and 5130 * insert into the hash. 5131 */ 5132 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5133 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5134 if (th_trace == NULL) 5135 return (B_FALSE); 5136 5137 th_trace->th_id = curthread; 5138 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5139 (mod_hash_val_t)th_trace) != 0) { 5140 kmem_free(th_trace, sizeof (th_trace_t)); 5141 return (B_FALSE); 5142 } 5143 } else { 5144 th_trace = (th_trace_t *)val; 5145 } 5146 5147 ASSERT(th_trace->th_refcnt >= 0 && 5148 th_trace->th_refcnt < TR_BUF_MAX - 1); 5149 5150 th_trace->th_refcnt++; 5151 th_trace_rrecord(th_trace); 5152 return (B_TRUE); 5153 } 5154 5155 /* 5156 * For the purpose of tracing a reference release, we assume that global 5157 * tracing is always on and that the same thread initiated the reference hold 5158 * is releasing. 5159 */ 5160 void 5161 th_trace_unref(const void *obj) 5162 { 5163 int retv; 5164 mod_hash_t *mh; 5165 th_trace_t *th_trace; 5166 mod_hash_val_t val; 5167 5168 mh = th_trace_gethash(NULL); 5169 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5170 ASSERT(retv == 0); 5171 th_trace = (th_trace_t *)val; 5172 5173 ASSERT(th_trace->th_refcnt > 0); 5174 th_trace->th_refcnt--; 5175 th_trace_rrecord(th_trace); 5176 } 5177 5178 /* 5179 * If tracing has been disabled, then we assume that the reference counts are 5180 * now useless, and we clear them out before destroying the entries. 5181 */ 5182 void 5183 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5184 { 5185 th_hash_t *thh; 5186 mod_hash_t *mh; 5187 mod_hash_val_t val; 5188 th_trace_t *th_trace; 5189 int retv; 5190 5191 rw_enter(&ip_thread_rwlock, RW_READER); 5192 for (thh = list_head(&ip_thread_list); thh != NULL; 5193 thh = list_next(&ip_thread_list, thh)) { 5194 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5195 &val) == 0) { 5196 th_trace = (th_trace_t *)val; 5197 if (trace_disable) 5198 th_trace->th_refcnt = 0; 5199 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5200 ASSERT(retv == 0); 5201 } 5202 } 5203 rw_exit(&ip_thread_rwlock); 5204 } 5205 5206 void 5207 ipif_trace_ref(ipif_t *ipif) 5208 { 5209 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5210 5211 if (ipif->ipif_trace_disable) 5212 return; 5213 5214 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5215 ipif->ipif_trace_disable = B_TRUE; 5216 ipif_trace_cleanup(ipif); 5217 } 5218 } 5219 5220 void 5221 ipif_untrace_ref(ipif_t *ipif) 5222 { 5223 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5224 5225 if (!ipif->ipif_trace_disable) 5226 th_trace_unref(ipif); 5227 } 5228 5229 void 5230 ill_trace_ref(ill_t *ill) 5231 { 5232 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5233 5234 if (ill->ill_trace_disable) 5235 return; 5236 5237 if (!th_trace_ref(ill, ill->ill_ipst)) { 5238 ill->ill_trace_disable = B_TRUE; 5239 ill_trace_cleanup(ill); 5240 } 5241 } 5242 5243 void 5244 ill_untrace_ref(ill_t *ill) 5245 { 5246 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5247 5248 if (!ill->ill_trace_disable) 5249 th_trace_unref(ill); 5250 } 5251 5252 /* 5253 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5254 * failure, ipif_trace_disable is set. 5255 */ 5256 static void 5257 ipif_trace_cleanup(const ipif_t *ipif) 5258 { 5259 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5260 } 5261 5262 /* 5263 * Called when ill is unplumbed or when memory alloc fails. Note that on 5264 * failure, ill_trace_disable is set. 5265 */ 5266 static void 5267 ill_trace_cleanup(const ill_t *ill) 5268 { 5269 th_trace_cleanup(ill, ill->ill_trace_disable); 5270 } 5271 #endif /* DEBUG */ 5272 5273 void 5274 ipif_refhold_locked(ipif_t *ipif) 5275 { 5276 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5277 ipif->ipif_refcnt++; 5278 IPIF_TRACE_REF(ipif); 5279 } 5280 5281 void 5282 ipif_refhold(ipif_t *ipif) 5283 { 5284 ill_t *ill; 5285 5286 ill = ipif->ipif_ill; 5287 mutex_enter(&ill->ill_lock); 5288 ipif->ipif_refcnt++; 5289 IPIF_TRACE_REF(ipif); 5290 mutex_exit(&ill->ill_lock); 5291 } 5292 5293 /* 5294 * Must not be called while holding any locks. Otherwise if this is 5295 * the last reference to be released there is a chance of recursive mutex 5296 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5297 * to restart an ioctl. 5298 */ 5299 void 5300 ipif_refrele(ipif_t *ipif) 5301 { 5302 ill_t *ill; 5303 5304 ill = ipif->ipif_ill; 5305 5306 mutex_enter(&ill->ill_lock); 5307 ASSERT(ipif->ipif_refcnt != 0); 5308 ipif->ipif_refcnt--; 5309 IPIF_UNTRACE_REF(ipif); 5310 if (ipif->ipif_refcnt != 0) { 5311 mutex_exit(&ill->ill_lock); 5312 return; 5313 } 5314 5315 /* Drops the ill_lock */ 5316 ipif_ill_refrele_tail(ill); 5317 } 5318 5319 ipif_t * 5320 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5321 { 5322 ipif_t *ipif; 5323 5324 mutex_enter(&ill->ill_lock); 5325 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5326 ipif != NULL; ipif = ipif->ipif_next) { 5327 if (IPIF_IS_CONDEMNED(ipif)) 5328 continue; 5329 ipif_refhold_locked(ipif); 5330 mutex_exit(&ill->ill_lock); 5331 return (ipif); 5332 } 5333 mutex_exit(&ill->ill_lock); 5334 return (NULL); 5335 } 5336 5337 /* 5338 * TODO: make this table extendible at run time 5339 * Return a pointer to the mac type info for 'mac_type' 5340 */ 5341 static ip_m_t * 5342 ip_m_lookup(t_uscalar_t mac_type) 5343 { 5344 ip_m_t *ipm; 5345 5346 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5347 if (ipm->ip_m_mac_type == mac_type) 5348 return (ipm); 5349 return (NULL); 5350 } 5351 5352 /* 5353 * Make a link layer address from the multicast IP address *addr. 5354 * To form the link layer address, invoke the ip_m_v*mapping function 5355 * associated with the link-layer type. 5356 */ 5357 void 5358 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5359 { 5360 ip_m_t *ipm; 5361 5362 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5363 return; 5364 5365 ASSERT(addr != NULL); 5366 5367 ipm = ip_m_lookup(ill->ill_mactype); 5368 if (ipm == NULL || 5369 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5370 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5371 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5372 ill->ill_name, ill->ill_mactype)); 5373 return; 5374 } 5375 if (ill->ill_isv6) 5376 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5377 else 5378 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5379 } 5380 5381 /* 5382 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5383 * Otherwise returns B_TRUE. 5384 * 5385 * The netmask can be verified to be contiguous with 32 shifts and or 5386 * operations. Take the contiguous mask (in host byte order) and compute 5387 * mask | mask << 1 | mask << 2 | ... | mask << 31 5388 * the result will be the same as the 'mask' for contiguous mask. 5389 */ 5390 static boolean_t 5391 ip_contiguous_mask(uint32_t mask) 5392 { 5393 uint32_t m = mask; 5394 int i; 5395 5396 for (i = 1; i < 32; i++) 5397 m |= (mask << i); 5398 5399 return (m == mask); 5400 } 5401 5402 /* 5403 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5404 * ill is passed in to associate it with the correct interface. 5405 * If ire_arg is set, then we return the held IRE in that location. 5406 */ 5407 int 5408 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5409 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5410 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5411 { 5412 ire_t *ire, *nire; 5413 ire_t *gw_ire = NULL; 5414 ipif_t *ipif = NULL; 5415 uint_t type; 5416 int match_flags = MATCH_IRE_TYPE; 5417 tsol_gc_t *gc = NULL; 5418 tsol_gcgrp_t *gcgrp = NULL; 5419 boolean_t gcgrp_xtraref = B_FALSE; 5420 boolean_t cgtp_broadcast; 5421 boolean_t unbound = B_FALSE; 5422 5423 ip1dbg(("ip_rt_add:")); 5424 5425 if (ire_arg != NULL) 5426 *ire_arg = NULL; 5427 5428 /* disallow non-contiguous netmasks */ 5429 if (!ip_contiguous_mask(ntohl(mask))) 5430 return (ENOTSUP); 5431 5432 /* 5433 * If this is the case of RTF_HOST being set, then we set the netmask 5434 * to all ones (regardless if one was supplied). 5435 */ 5436 if (flags & RTF_HOST) 5437 mask = IP_HOST_MASK; 5438 5439 /* 5440 * Prevent routes with a zero gateway from being created (since 5441 * interfaces can currently be plumbed and brought up no assigned 5442 * address). 5443 */ 5444 if (gw_addr == 0) 5445 return (ENETUNREACH); 5446 /* 5447 * Get the ipif, if any, corresponding to the gw_addr 5448 * If -ifp was specified we restrict ourselves to the ill, otherwise 5449 * we match on the gatway and destination to handle unnumbered pt-pt 5450 * interfaces. 5451 */ 5452 if (ill != NULL) 5453 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5454 else 5455 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5456 if (ipif != NULL) { 5457 if (IS_VNI(ipif->ipif_ill)) { 5458 ipif_refrele(ipif); 5459 return (EINVAL); 5460 } 5461 } 5462 5463 /* 5464 * GateD will attempt to create routes with a loopback interface 5465 * address as the gateway and with RTF_GATEWAY set. We allow 5466 * these routes to be added, but create them as interface routes 5467 * since the gateway is an interface address. 5468 */ 5469 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5470 flags &= ~RTF_GATEWAY; 5471 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5472 mask == IP_HOST_MASK) { 5473 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5475 NULL); 5476 if (ire != NULL) { 5477 ire_refrele(ire); 5478 ipif_refrele(ipif); 5479 return (EEXIST); 5480 } 5481 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5482 "for 0x%x\n", (void *)ipif, 5483 ipif->ipif_ire_type, 5484 ntohl(ipif->ipif_lcl_addr))); 5485 ire = ire_create( 5486 (uchar_t *)&dst_addr, /* dest address */ 5487 (uchar_t *)&mask, /* mask */ 5488 NULL, /* no gateway */ 5489 ipif->ipif_ire_type, /* LOOPBACK */ 5490 ipif->ipif_ill, 5491 zoneid, 5492 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5493 NULL, 5494 ipst); 5495 5496 if (ire == NULL) { 5497 ipif_refrele(ipif); 5498 return (ENOMEM); 5499 } 5500 /* src address assigned by the caller? */ 5501 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5502 ire->ire_setsrc_addr = src_addr; 5503 5504 nire = ire_add(ire); 5505 if (nire == NULL) { 5506 /* 5507 * In the result of failure, ire_add() will have 5508 * already deleted the ire in question, so there 5509 * is no need to do that here. 5510 */ 5511 ipif_refrele(ipif); 5512 return (ENOMEM); 5513 } 5514 /* 5515 * Check if it was a duplicate entry. This handles 5516 * the case of two racing route adds for the same route 5517 */ 5518 if (nire != ire) { 5519 ASSERT(nire->ire_identical_ref > 1); 5520 ire_delete(nire); 5521 ire_refrele(nire); 5522 ipif_refrele(ipif); 5523 return (EEXIST); 5524 } 5525 ire = nire; 5526 goto save_ire; 5527 } 5528 } 5529 5530 /* 5531 * The routes for multicast with CGTP are quite special in that 5532 * the gateway is the local interface address, yet RTF_GATEWAY 5533 * is set. We turn off RTF_GATEWAY to provide compatibility with 5534 * this undocumented and unusual use of multicast routes. 5535 */ 5536 if ((flags & RTF_MULTIRT) && ipif != NULL) 5537 flags &= ~RTF_GATEWAY; 5538 5539 /* 5540 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5541 * and the gateway address provided is one of the system's interface 5542 * addresses. By using the routing socket interface and supplying an 5543 * RTA_IFP sockaddr with an interface index, an alternate method of 5544 * specifying an interface route to be created is available which uses 5545 * the interface index that specifies the outgoing interface rather than 5546 * the address of an outgoing interface (which may not be able to 5547 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5548 * flag, routes can be specified which not only specify the next-hop to 5549 * be used when routing to a certain prefix, but also which outgoing 5550 * interface should be used. 5551 * 5552 * Previously, interfaces would have unique addresses assigned to them 5553 * and so the address assigned to a particular interface could be used 5554 * to identify a particular interface. One exception to this was the 5555 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5556 * 5557 * With the advent of IPv6 and its link-local addresses, this 5558 * restriction was relaxed and interfaces could share addresses between 5559 * themselves. In fact, typically all of the link-local interfaces on 5560 * an IPv6 node or router will have the same link-local address. In 5561 * order to differentiate between these interfaces, the use of an 5562 * interface index is necessary and this index can be carried inside a 5563 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5564 * of using the interface index, however, is that all of the ipif's that 5565 * are part of an ill have the same index and so the RTA_IFP sockaddr 5566 * cannot be used to differentiate between ipif's (or logical 5567 * interfaces) that belong to the same ill (physical interface). 5568 * 5569 * For example, in the following case involving IPv4 interfaces and 5570 * logical interfaces 5571 * 5572 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5574 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5575 * 5576 * the ipif's corresponding to each of these interface routes can be 5577 * uniquely identified by the "gateway" (actually interface address). 5578 * 5579 * In this case involving multiple IPv6 default routes to a particular 5580 * link-local gateway, the use of RTA_IFP is necessary to specify which 5581 * default route is of interest: 5582 * 5583 * default fe80::123:4567:89ab:cdef U if0 5584 * default fe80::123:4567:89ab:cdef U if1 5585 */ 5586 5587 /* RTF_GATEWAY not set */ 5588 if (!(flags & RTF_GATEWAY)) { 5589 if (sp != NULL) { 5590 ip2dbg(("ip_rt_add: gateway security attributes " 5591 "cannot be set with interface route\n")); 5592 if (ipif != NULL) 5593 ipif_refrele(ipif); 5594 return (EINVAL); 5595 } 5596 5597 /* 5598 * Whether or not ill (RTA_IFP) is set, we require that 5599 * the gateway is one of our local addresses. 5600 */ 5601 if (ipif == NULL) 5602 return (ENETUNREACH); 5603 5604 /* 5605 * We use MATCH_IRE_ILL here. If the caller specified an 5606 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5607 * we use the ill derived from the gateway address. 5608 * We can always match the gateway address since we record it 5609 * in ire_gateway_addr. 5610 * We don't allow RTA_IFP to specify a different ill than the 5611 * one matching the ipif to make sure we can delete the route. 5612 */ 5613 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5614 if (ill == NULL) { 5615 ill = ipif->ipif_ill; 5616 } else if (ill != ipif->ipif_ill) { 5617 ipif_refrele(ipif); 5618 return (EINVAL); 5619 } 5620 5621 /* 5622 * We check for an existing entry at this point. 5623 * 5624 * Since a netmask isn't passed in via the ioctl interface 5625 * (SIOCADDRT), we don't check for a matching netmask in that 5626 * case. 5627 */ 5628 if (!ioctl_msg) 5629 match_flags |= MATCH_IRE_MASK; 5630 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5631 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5632 NULL); 5633 if (ire != NULL) { 5634 ire_refrele(ire); 5635 ipif_refrele(ipif); 5636 return (EEXIST); 5637 } 5638 5639 /* 5640 * Some software (for example, GateD and Sun Cluster) attempts 5641 * to create (what amount to) IRE_PREFIX routes with the 5642 * loopback address as the gateway. This is primarily done to 5643 * set up prefixes with the RTF_REJECT flag set (for example, 5644 * when generating aggregate routes.) 5645 * 5646 * If the IRE type (as defined by ill->ill_net_type) would be 5647 * IRE_LOOPBACK, then we map the request into a 5648 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5649 * these interface routes, by definition, can only be that. 5650 * 5651 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5652 * routine, but rather using ire_create() directly. 5653 * 5654 */ 5655 type = ill->ill_net_type; 5656 if (type == IRE_LOOPBACK) { 5657 type = IRE_IF_NORESOLVER; 5658 flags |= RTF_BLACKHOLE; 5659 } 5660 5661 /* 5662 * Create a copy of the IRE_IF_NORESOLVER or 5663 * IRE_IF_RESOLVER with the modified address, netmask, and 5664 * gateway. 5665 */ 5666 ire = ire_create( 5667 (uchar_t *)&dst_addr, 5668 (uint8_t *)&mask, 5669 (uint8_t *)&gw_addr, 5670 type, 5671 ill, 5672 zoneid, 5673 flags, 5674 NULL, 5675 ipst); 5676 if (ire == NULL) { 5677 ipif_refrele(ipif); 5678 return (ENOMEM); 5679 } 5680 5681 /* src address assigned by the caller? */ 5682 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5683 ire->ire_setsrc_addr = src_addr; 5684 5685 nire = ire_add(ire); 5686 if (nire == NULL) { 5687 /* 5688 * In the result of failure, ire_add() will have 5689 * already deleted the ire in question, so there 5690 * is no need to do that here. 5691 */ 5692 ipif_refrele(ipif); 5693 return (ENOMEM); 5694 } 5695 /* 5696 * Check if it was a duplicate entry. This handles 5697 * the case of two racing route adds for the same route 5698 */ 5699 if (nire != ire) { 5700 ire_delete(nire); 5701 ire_refrele(nire); 5702 ipif_refrele(ipif); 5703 return (EEXIST); 5704 } 5705 ire = nire; 5706 goto save_ire; 5707 } 5708 5709 /* 5710 * Get an interface IRE for the specified gateway. 5711 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5712 * gateway, it is currently unreachable and we fail the request 5713 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5714 * is an IRE_LOCAL or IRE_LOOPBACK. 5715 * If RTA_IFP was specified we look on that particular ill. 5716 */ 5717 if (ill != NULL) 5718 match_flags |= MATCH_IRE_ILL; 5719 5720 /* Check whether the gateway is reachable. */ 5721 again: 5722 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5723 if (flags & RTF_INDIRECT) 5724 type |= IRE_OFFLINK; 5725 5726 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5727 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5728 if (gw_ire == NULL) { 5729 /* 5730 * With IPMP, we allow host routes to influence in.mpathd's 5731 * target selection. However, if the test addresses are on 5732 * their own network, the above lookup will fail since the 5733 * underlying IRE_INTERFACEs are marked hidden. So allow 5734 * hidden test IREs to be found and try again. 5735 */ 5736 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5737 match_flags |= MATCH_IRE_TESTHIDDEN; 5738 goto again; 5739 } 5740 if (ipif != NULL) 5741 ipif_refrele(ipif); 5742 return (ENETUNREACH); 5743 } 5744 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5745 ire_refrele(gw_ire); 5746 if (ipif != NULL) 5747 ipif_refrele(ipif); 5748 return (ENETUNREACH); 5749 } 5750 5751 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5752 unbound = B_TRUE; 5753 if (ipst->ips_ip_strict_src_multihoming > 0) 5754 ill = gw_ire->ire_ill; 5755 } 5756 5757 /* 5758 * We create one of three types of IREs as a result of this request 5759 * based on the netmask. A netmask of all ones (which is automatically 5760 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5761 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5762 * created. Otherwise, an IRE_PREFIX route is created for the 5763 * destination prefix. 5764 */ 5765 if (mask == IP_HOST_MASK) 5766 type = IRE_HOST; 5767 else if (mask == 0) 5768 type = IRE_DEFAULT; 5769 else 5770 type = IRE_PREFIX; 5771 5772 /* check for a duplicate entry */ 5773 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5774 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5775 0, ipst, NULL); 5776 if (ire != NULL) { 5777 if (ipif != NULL) 5778 ipif_refrele(ipif); 5779 ire_refrele(gw_ire); 5780 ire_refrele(ire); 5781 return (EEXIST); 5782 } 5783 5784 /* Security attribute exists */ 5785 if (sp != NULL) { 5786 tsol_gcgrp_addr_t ga; 5787 5788 /* find or create the gateway credentials group */ 5789 ga.ga_af = AF_INET; 5790 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5791 5792 /* we hold reference to it upon success */ 5793 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5794 if (gcgrp == NULL) { 5795 if (ipif != NULL) 5796 ipif_refrele(ipif); 5797 ire_refrele(gw_ire); 5798 return (ENOMEM); 5799 } 5800 5801 /* 5802 * Create and add the security attribute to the group; a 5803 * reference to the group is made upon allocating a new 5804 * entry successfully. If it finds an already-existing 5805 * entry for the security attribute in the group, it simply 5806 * returns it and no new reference is made to the group. 5807 */ 5808 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5809 if (gc == NULL) { 5810 if (ipif != NULL) 5811 ipif_refrele(ipif); 5812 /* release reference held by gcgrp_lookup */ 5813 GCGRP_REFRELE(gcgrp); 5814 ire_refrele(gw_ire); 5815 return (ENOMEM); 5816 } 5817 } 5818 5819 /* Create the IRE. */ 5820 ire = ire_create( 5821 (uchar_t *)&dst_addr, /* dest address */ 5822 (uchar_t *)&mask, /* mask */ 5823 (uchar_t *)&gw_addr, /* gateway address */ 5824 (ushort_t)type, /* IRE type */ 5825 ill, 5826 zoneid, 5827 flags, 5828 gc, /* security attribute */ 5829 ipst); 5830 5831 /* 5832 * The ire holds a reference to the 'gc' and the 'gc' holds a 5833 * reference to the 'gcgrp'. We can now release the extra reference 5834 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5835 */ 5836 if (gcgrp_xtraref) 5837 GCGRP_REFRELE(gcgrp); 5838 if (ire == NULL) { 5839 if (gc != NULL) 5840 GC_REFRELE(gc); 5841 if (ipif != NULL) 5842 ipif_refrele(ipif); 5843 ire_refrele(gw_ire); 5844 return (ENOMEM); 5845 } 5846 5847 /* Before we add, check if an extra CGTP broadcast is needed */ 5848 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5849 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5850 5851 /* src address assigned by the caller? */ 5852 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5853 ire->ire_setsrc_addr = src_addr; 5854 5855 ire->ire_unbound = unbound; 5856 5857 /* 5858 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5859 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5860 */ 5861 5862 /* Add the new IRE. */ 5863 nire = ire_add(ire); 5864 if (nire == NULL) { 5865 /* 5866 * In the result of failure, ire_add() will have 5867 * already deleted the ire in question, so there 5868 * is no need to do that here. 5869 */ 5870 if (ipif != NULL) 5871 ipif_refrele(ipif); 5872 ire_refrele(gw_ire); 5873 return (ENOMEM); 5874 } 5875 /* 5876 * Check if it was a duplicate entry. This handles 5877 * the case of two racing route adds for the same route 5878 */ 5879 if (nire != ire) { 5880 ire_delete(nire); 5881 ire_refrele(nire); 5882 if (ipif != NULL) 5883 ipif_refrele(ipif); 5884 ire_refrele(gw_ire); 5885 return (EEXIST); 5886 } 5887 ire = nire; 5888 5889 if (flags & RTF_MULTIRT) { 5890 /* 5891 * Invoke the CGTP (multirouting) filtering module 5892 * to add the dst address in the filtering database. 5893 * Replicated inbound packets coming from that address 5894 * will be filtered to discard the duplicates. 5895 * It is not necessary to call the CGTP filter hook 5896 * when the dst address is a broadcast or multicast, 5897 * because an IP source address cannot be a broadcast 5898 * or a multicast. 5899 */ 5900 if (cgtp_broadcast) { 5901 ip_cgtp_bcast_add(ire, ipst); 5902 goto save_ire; 5903 } 5904 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5905 !CLASSD(ire->ire_addr)) { 5906 int res; 5907 ipif_t *src_ipif; 5908 5909 /* Find the source address corresponding to gw_ire */ 5910 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5911 NULL, zoneid, ipst); 5912 if (src_ipif != NULL) { 5913 res = ipst->ips_ip_cgtp_filter_ops-> 5914 cfo_add_dest_v4( 5915 ipst->ips_netstack->netstack_stackid, 5916 ire->ire_addr, 5917 ire->ire_gateway_addr, 5918 ire->ire_setsrc_addr, 5919 src_ipif->ipif_lcl_addr); 5920 ipif_refrele(src_ipif); 5921 } else { 5922 res = EADDRNOTAVAIL; 5923 } 5924 if (res != 0) { 5925 if (ipif != NULL) 5926 ipif_refrele(ipif); 5927 ire_refrele(gw_ire); 5928 ire_delete(ire); 5929 ire_refrele(ire); /* Held in ire_add */ 5930 return (res); 5931 } 5932 } 5933 } 5934 5935 save_ire: 5936 if (gw_ire != NULL) { 5937 ire_refrele(gw_ire); 5938 gw_ire = NULL; 5939 } 5940 if (ill != NULL) { 5941 /* 5942 * Save enough information so that we can recreate the IRE if 5943 * the interface goes down and then up. The metrics associated 5944 * with the route will be saved as well when rts_setmetrics() is 5945 * called after the IRE has been created. In the case where 5946 * memory cannot be allocated, none of this information will be 5947 * saved. 5948 */ 5949 ill_save_ire(ill, ire); 5950 } 5951 if (ioctl_msg) 5952 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5953 if (ire_arg != NULL) { 5954 /* 5955 * Store the ire that was successfully added into where ire_arg 5956 * points to so that callers don't have to look it up 5957 * themselves (but they are responsible for ire_refrele()ing 5958 * the ire when they are finished with it). 5959 */ 5960 *ire_arg = ire; 5961 } else { 5962 ire_refrele(ire); /* Held in ire_add */ 5963 } 5964 if (ipif != NULL) 5965 ipif_refrele(ipif); 5966 return (0); 5967 } 5968 5969 /* 5970 * ip_rt_delete is called to delete an IPv4 route. 5971 * ill is passed in to associate it with the correct interface. 5972 */ 5973 /* ARGSUSED4 */ 5974 int 5975 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5976 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5977 ip_stack_t *ipst, zoneid_t zoneid) 5978 { 5979 ire_t *ire = NULL; 5980 ipif_t *ipif; 5981 uint_t type; 5982 uint_t match_flags = MATCH_IRE_TYPE; 5983 int err = 0; 5984 5985 ip1dbg(("ip_rt_delete:")); 5986 /* 5987 * If this is the case of RTF_HOST being set, then we set the netmask 5988 * to all ones. Otherwise, we use the netmask if one was supplied. 5989 */ 5990 if (flags & RTF_HOST) { 5991 mask = IP_HOST_MASK; 5992 match_flags |= MATCH_IRE_MASK; 5993 } else if (rtm_addrs & RTA_NETMASK) { 5994 match_flags |= MATCH_IRE_MASK; 5995 } 5996 5997 /* 5998 * Note that RTF_GATEWAY is never set on a delete, therefore 5999 * we check if the gateway address is one of our interfaces first, 6000 * and fall back on RTF_GATEWAY routes. 6001 * 6002 * This makes it possible to delete an original 6003 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6004 * However, we have RTF_KERNEL set on the ones created by ipif_up 6005 * and those can not be deleted here. 6006 * 6007 * We use MATCH_IRE_ILL if we know the interface. If the caller 6008 * specified an interface (from the RTA_IFP sockaddr) we use it, 6009 * otherwise we use the ill derived from the gateway address. 6010 * We can always match the gateway address since we record it 6011 * in ire_gateway_addr. 6012 * 6013 * For more detail on specifying routes by gateway address and by 6014 * interface index, see the comments in ip_rt_add(). 6015 */ 6016 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6017 if (ipif != NULL) { 6018 ill_t *ill_match; 6019 6020 if (ill != NULL) 6021 ill_match = ill; 6022 else 6023 ill_match = ipif->ipif_ill; 6024 6025 match_flags |= MATCH_IRE_ILL; 6026 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6027 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6028 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6029 match_flags, 0, ipst, NULL); 6030 } 6031 if (ire == NULL) { 6032 match_flags |= MATCH_IRE_GW; 6033 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6034 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6035 match_flags, 0, ipst, NULL); 6036 } 6037 /* Avoid deleting routes created by kernel from an ipif */ 6038 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6039 ire_refrele(ire); 6040 ire = NULL; 6041 } 6042 6043 /* Restore in case we didn't find a match */ 6044 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6045 } 6046 6047 if (ire == NULL) { 6048 /* 6049 * At this point, the gateway address is not one of our own 6050 * addresses or a matching interface route was not found. We 6051 * set the IRE type to lookup based on whether 6052 * this is a host route, a default route or just a prefix. 6053 * 6054 * If an ill was passed in, then the lookup is based on an 6055 * interface index so MATCH_IRE_ILL is added to match_flags. 6056 */ 6057 match_flags |= MATCH_IRE_GW; 6058 if (ill != NULL) 6059 match_flags |= MATCH_IRE_ILL; 6060 if (mask == IP_HOST_MASK) 6061 type = IRE_HOST; 6062 else if (mask == 0) 6063 type = IRE_DEFAULT; 6064 else 6065 type = IRE_PREFIX; 6066 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6067 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6068 } 6069 6070 if (ipif != NULL) { 6071 ipif_refrele(ipif); 6072 ipif = NULL; 6073 } 6074 6075 if (ire == NULL) 6076 return (ESRCH); 6077 6078 if (ire->ire_flags & RTF_MULTIRT) { 6079 /* 6080 * Invoke the CGTP (multirouting) filtering module 6081 * to remove the dst address from the filtering database. 6082 * Packets coming from that address will no longer be 6083 * filtered to remove duplicates. 6084 */ 6085 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6086 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6087 ipst->ips_netstack->netstack_stackid, 6088 ire->ire_addr, ire->ire_gateway_addr); 6089 } 6090 ip_cgtp_bcast_delete(ire, ipst); 6091 } 6092 6093 ill = ire->ire_ill; 6094 if (ill != NULL) 6095 ill_remove_saved_ire(ill, ire); 6096 if (ioctl_msg) 6097 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6098 ire_delete(ire); 6099 ire_refrele(ire); 6100 return (err); 6101 } 6102 6103 /* 6104 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6105 */ 6106 /* ARGSUSED */ 6107 int 6108 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6109 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6110 { 6111 ipaddr_t dst_addr; 6112 ipaddr_t gw_addr; 6113 ipaddr_t mask; 6114 int error = 0; 6115 mblk_t *mp1; 6116 struct rtentry *rt; 6117 ipif_t *ipif = NULL; 6118 ip_stack_t *ipst; 6119 6120 ASSERT(q->q_next == NULL); 6121 ipst = CONNQ_TO_IPST(q); 6122 6123 ip1dbg(("ip_siocaddrt:")); 6124 /* Existence of mp1 verified in ip_wput_nondata */ 6125 mp1 = mp->b_cont->b_cont; 6126 rt = (struct rtentry *)mp1->b_rptr; 6127 6128 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6129 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6130 6131 /* 6132 * If the RTF_HOST flag is on, this is a request to assign a gateway 6133 * to a particular host address. In this case, we set the netmask to 6134 * all ones for the particular destination address. Otherwise, 6135 * determine the netmask to be used based on dst_addr and the interfaces 6136 * in use. 6137 */ 6138 if (rt->rt_flags & RTF_HOST) { 6139 mask = IP_HOST_MASK; 6140 } else { 6141 /* 6142 * Note that ip_subnet_mask returns a zero mask in the case of 6143 * default (an all-zeroes address). 6144 */ 6145 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6146 } 6147 6148 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6149 B_TRUE, NULL, ipst, ALL_ZONES); 6150 if (ipif != NULL) 6151 ipif_refrele(ipif); 6152 return (error); 6153 } 6154 6155 /* 6156 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6157 */ 6158 /* ARGSUSED */ 6159 int 6160 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6161 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6162 { 6163 ipaddr_t dst_addr; 6164 ipaddr_t gw_addr; 6165 ipaddr_t mask; 6166 int error; 6167 mblk_t *mp1; 6168 struct rtentry *rt; 6169 ipif_t *ipif = NULL; 6170 ip_stack_t *ipst; 6171 6172 ASSERT(q->q_next == NULL); 6173 ipst = CONNQ_TO_IPST(q); 6174 6175 ip1dbg(("ip_siocdelrt:")); 6176 /* Existence of mp1 verified in ip_wput_nondata */ 6177 mp1 = mp->b_cont->b_cont; 6178 rt = (struct rtentry *)mp1->b_rptr; 6179 6180 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6181 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6182 6183 /* 6184 * If the RTF_HOST flag is on, this is a request to delete a gateway 6185 * to a particular host address. In this case, we set the netmask to 6186 * all ones for the particular destination address. Otherwise, 6187 * determine the netmask to be used based on dst_addr and the interfaces 6188 * in use. 6189 */ 6190 if (rt->rt_flags & RTF_HOST) { 6191 mask = IP_HOST_MASK; 6192 } else { 6193 /* 6194 * Note that ip_subnet_mask returns a zero mask in the case of 6195 * default (an all-zeroes address). 6196 */ 6197 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6198 } 6199 6200 error = ip_rt_delete(dst_addr, mask, gw_addr, 6201 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6202 ipst, ALL_ZONES); 6203 if (ipif != NULL) 6204 ipif_refrele(ipif); 6205 return (error); 6206 } 6207 6208 /* 6209 * Enqueue the mp onto the ipsq, chained by b_next. 6210 * b_prev stores the function to be executed later, and b_queue the queue 6211 * where this mp originated. 6212 */ 6213 void 6214 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6215 ill_t *pending_ill) 6216 { 6217 conn_t *connp; 6218 ipxop_t *ipx = ipsq->ipsq_xop; 6219 6220 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6221 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6222 ASSERT(func != NULL); 6223 6224 mp->b_queue = q; 6225 mp->b_prev = (void *)func; 6226 mp->b_next = NULL; 6227 6228 switch (type) { 6229 case CUR_OP: 6230 if (ipx->ipx_mptail != NULL) { 6231 ASSERT(ipx->ipx_mphead != NULL); 6232 ipx->ipx_mptail->b_next = mp; 6233 } else { 6234 ASSERT(ipx->ipx_mphead == NULL); 6235 ipx->ipx_mphead = mp; 6236 } 6237 ipx->ipx_mptail = mp; 6238 break; 6239 6240 case NEW_OP: 6241 if (ipsq->ipsq_xopq_mptail != NULL) { 6242 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6243 ipsq->ipsq_xopq_mptail->b_next = mp; 6244 } else { 6245 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6246 ipsq->ipsq_xopq_mphead = mp; 6247 } 6248 ipsq->ipsq_xopq_mptail = mp; 6249 ipx->ipx_ipsq_queued = B_TRUE; 6250 break; 6251 6252 case SWITCH_OP: 6253 ASSERT(ipsq->ipsq_swxop != NULL); 6254 /* only one switch operation is currently allowed */ 6255 ASSERT(ipsq->ipsq_switch_mp == NULL); 6256 ipsq->ipsq_switch_mp = mp; 6257 ipx->ipx_ipsq_queued = B_TRUE; 6258 break; 6259 default: 6260 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6261 } 6262 6263 if (CONN_Q(q) && pending_ill != NULL) { 6264 connp = Q_TO_CONN(q); 6265 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6266 connp->conn_oper_pending_ill = pending_ill; 6267 } 6268 } 6269 6270 /* 6271 * Dequeue the next message that requested exclusive access to this IPSQ's 6272 * xop. Specifically: 6273 * 6274 * 1. If we're still processing the current operation on `ipsq', then 6275 * dequeue the next message for the operation (from ipx_mphead), or 6276 * return NULL if there are no queued messages for the operation. 6277 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6278 * 6279 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6280 * not set) see if the ipsq has requested an xop switch. If so, switch 6281 * `ipsq' to a different xop. Xop switches only happen when joining or 6282 * leaving IPMP groups and require a careful dance -- see the comments 6283 * in-line below for details. If we're leaving a group xop or if we're 6284 * joining a group xop and become writer on it, then we proceed to (3). 6285 * Otherwise, we return NULL and exit the xop. 6286 * 6287 * 3. For each IPSQ in the xop, return any switch operation stored on 6288 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6289 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6290 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6291 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6292 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6293 * each phyint in the group, including the IPMP meta-interface phyint. 6294 */ 6295 static mblk_t * 6296 ipsq_dq(ipsq_t *ipsq) 6297 { 6298 ill_t *illv4, *illv6; 6299 mblk_t *mp; 6300 ipsq_t *xopipsq; 6301 ipsq_t *leftipsq = NULL; 6302 ipxop_t *ipx; 6303 phyint_t *phyi = ipsq->ipsq_phyint; 6304 ip_stack_t *ipst = ipsq->ipsq_ipst; 6305 boolean_t emptied = B_FALSE; 6306 6307 /* 6308 * Grab all the locks we need in the defined order (ill_g_lock -> 6309 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6310 */ 6311 rw_enter(&ipst->ips_ill_g_lock, 6312 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6313 mutex_enter(&ipsq->ipsq_lock); 6314 ipx = ipsq->ipsq_xop; 6315 mutex_enter(&ipx->ipx_lock); 6316 6317 /* 6318 * Dequeue the next message associated with the current exclusive 6319 * operation, if any. 6320 */ 6321 if ((mp = ipx->ipx_mphead) != NULL) { 6322 ipx->ipx_mphead = mp->b_next; 6323 if (ipx->ipx_mphead == NULL) 6324 ipx->ipx_mptail = NULL; 6325 mp->b_next = (void *)ipsq; 6326 goto out; 6327 } 6328 6329 if (ipx->ipx_current_ipif != NULL) 6330 goto empty; 6331 6332 if (ipsq->ipsq_swxop != NULL) { 6333 /* 6334 * The exclusive operation that is now being completed has 6335 * requested a switch to a different xop. This happens 6336 * when an interface joins or leaves an IPMP group. Joins 6337 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6338 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6339 * (phyint_free()), or interface plumb for an ill type 6340 * not in the IPMP group (ip_rput_dlpi_writer()). 6341 * 6342 * Xop switches are not allowed on the IPMP meta-interface. 6343 */ 6344 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6345 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6346 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6347 6348 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6349 /* 6350 * We're switching back to our own xop, so we have two 6351 * xop's to drain/exit: our own, and the group xop 6352 * that we are leaving. 6353 * 6354 * First, pull ourselves out of the group ipsq list. 6355 * This is safe since we're writer on ill_g_lock. 6356 */ 6357 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6358 6359 xopipsq = ipx->ipx_ipsq; 6360 while (xopipsq->ipsq_next != ipsq) 6361 xopipsq = xopipsq->ipsq_next; 6362 6363 xopipsq->ipsq_next = ipsq->ipsq_next; 6364 ipsq->ipsq_next = ipsq; 6365 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6366 ipsq->ipsq_swxop = NULL; 6367 6368 /* 6369 * Second, prepare to exit the group xop. The actual 6370 * ipsq_exit() is done at the end of this function 6371 * since we cannot hold any locks across ipsq_exit(). 6372 * Note that although we drop the group's ipx_lock, no 6373 * threads can proceed since we're still ipx_writer. 6374 */ 6375 leftipsq = xopipsq; 6376 mutex_exit(&ipx->ipx_lock); 6377 6378 /* 6379 * Third, set ipx to point to our own xop (which was 6380 * inactive and therefore can be entered). 6381 */ 6382 ipx = ipsq->ipsq_xop; 6383 mutex_enter(&ipx->ipx_lock); 6384 ASSERT(ipx->ipx_writer == NULL); 6385 ASSERT(ipx->ipx_current_ipif == NULL); 6386 } else { 6387 /* 6388 * We're switching from our own xop to a group xop. 6389 * The requestor of the switch must ensure that the 6390 * group xop cannot go away (e.g. by ensuring the 6391 * phyint associated with the xop cannot go away). 6392 * 6393 * If we can become writer on our new xop, then we'll 6394 * do the drain. Otherwise, the current writer of our 6395 * new xop will do the drain when it exits. 6396 * 6397 * First, splice ourselves into the group IPSQ list. 6398 * This is safe since we're writer on ill_g_lock. 6399 */ 6400 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6401 6402 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6403 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6404 xopipsq = xopipsq->ipsq_next; 6405 6406 xopipsq->ipsq_next = ipsq; 6407 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6408 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6409 ipsq->ipsq_swxop = NULL; 6410 6411 /* 6412 * Second, exit our own xop, since it's now unused. 6413 * This is safe since we've got the only reference. 6414 */ 6415 ASSERT(ipx->ipx_writer == curthread); 6416 ipx->ipx_writer = NULL; 6417 VERIFY(--ipx->ipx_reentry_cnt == 0); 6418 ipx->ipx_ipsq_queued = B_FALSE; 6419 mutex_exit(&ipx->ipx_lock); 6420 6421 /* 6422 * Third, set ipx to point to our new xop, and check 6423 * if we can become writer on it. If we cannot, then 6424 * the current writer will drain the IPSQ group when 6425 * it exits. Our ipsq_xop is guaranteed to be stable 6426 * because we're still holding ipsq_lock. 6427 */ 6428 ipx = ipsq->ipsq_xop; 6429 mutex_enter(&ipx->ipx_lock); 6430 if (ipx->ipx_writer != NULL || 6431 ipx->ipx_current_ipif != NULL) { 6432 goto out; 6433 } 6434 } 6435 6436 /* 6437 * Fourth, become writer on our new ipx before we continue 6438 * with the drain. Note that we never dropped ipsq_lock 6439 * above, so no other thread could've raced with us to 6440 * become writer first. Also, we're holding ipx_lock, so 6441 * no other thread can examine the ipx right now. 6442 */ 6443 ASSERT(ipx->ipx_current_ipif == NULL); 6444 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6445 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6446 ipx->ipx_writer = curthread; 6447 ipx->ipx_forced = B_FALSE; 6448 #ifdef DEBUG 6449 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6450 #endif 6451 } 6452 6453 xopipsq = ipsq; 6454 do { 6455 /* 6456 * So that other operations operate on a consistent and 6457 * complete phyint, a switch message on an IPSQ must be 6458 * handled prior to any other operations on that IPSQ. 6459 */ 6460 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6461 xopipsq->ipsq_switch_mp = NULL; 6462 ASSERT(mp->b_next == NULL); 6463 mp->b_next = (void *)xopipsq; 6464 goto out; 6465 } 6466 6467 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6468 xopipsq->ipsq_xopq_mphead = mp->b_next; 6469 if (xopipsq->ipsq_xopq_mphead == NULL) 6470 xopipsq->ipsq_xopq_mptail = NULL; 6471 mp->b_next = (void *)xopipsq; 6472 goto out; 6473 } 6474 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6475 empty: 6476 /* 6477 * There are no messages. Further, we are holding ipx_lock, hence no 6478 * new messages can end up on any IPSQ in the xop. 6479 */ 6480 ipx->ipx_writer = NULL; 6481 ipx->ipx_forced = B_FALSE; 6482 VERIFY(--ipx->ipx_reentry_cnt == 0); 6483 ipx->ipx_ipsq_queued = B_FALSE; 6484 emptied = B_TRUE; 6485 #ifdef DEBUG 6486 ipx->ipx_depth = 0; 6487 #endif 6488 out: 6489 mutex_exit(&ipx->ipx_lock); 6490 mutex_exit(&ipsq->ipsq_lock); 6491 6492 /* 6493 * If we completely emptied the xop, then wake up any threads waiting 6494 * to enter any of the IPSQ's associated with it. 6495 */ 6496 if (emptied) { 6497 xopipsq = ipsq; 6498 do { 6499 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6500 continue; 6501 6502 illv4 = phyi->phyint_illv4; 6503 illv6 = phyi->phyint_illv6; 6504 6505 GRAB_ILL_LOCKS(illv4, illv6); 6506 if (illv4 != NULL) 6507 cv_broadcast(&illv4->ill_cv); 6508 if (illv6 != NULL) 6509 cv_broadcast(&illv6->ill_cv); 6510 RELEASE_ILL_LOCKS(illv4, illv6); 6511 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6512 } 6513 rw_exit(&ipst->ips_ill_g_lock); 6514 6515 /* 6516 * Now that all locks are dropped, exit the IPSQ we left. 6517 */ 6518 if (leftipsq != NULL) 6519 ipsq_exit(leftipsq); 6520 6521 return (mp); 6522 } 6523 6524 /* 6525 * Return completion status of previously initiated DLPI operations on 6526 * ills in the purview of an ipsq. 6527 */ 6528 static boolean_t 6529 ipsq_dlpi_done(ipsq_t *ipsq) 6530 { 6531 ipsq_t *ipsq_start; 6532 phyint_t *phyi; 6533 ill_t *ill; 6534 6535 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6536 ipsq_start = ipsq; 6537 6538 do { 6539 /* 6540 * The only current users of this function are ipsq_try_enter 6541 * and ipsq_enter which have made sure that ipsq_writer is 6542 * NULL before we reach here. ill_dlpi_pending is modified 6543 * only by an ipsq writer 6544 */ 6545 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6546 phyi = ipsq->ipsq_phyint; 6547 /* 6548 * phyi could be NULL if a phyint that is part of an 6549 * IPMP group is being unplumbed. A more detailed 6550 * comment is in ipmp_grp_update_kstats() 6551 */ 6552 if (phyi != NULL) { 6553 ill = phyi->phyint_illv4; 6554 if (ill != NULL && 6555 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6556 ill->ill_arl_dlpi_pending)) 6557 return (B_FALSE); 6558 6559 ill = phyi->phyint_illv6; 6560 if (ill != NULL && 6561 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6562 return (B_FALSE); 6563 } 6564 6565 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6566 6567 return (B_TRUE); 6568 } 6569 6570 /* 6571 * Enter the ipsq corresponding to ill, by waiting synchronously till 6572 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6573 * will have to drain completely before ipsq_enter returns success. 6574 * ipx_current_ipif will be set if some exclusive op is in progress, 6575 * and the ipsq_exit logic will start the next enqueued op after 6576 * completion of the current op. If 'force' is used, we don't wait 6577 * for the enqueued ops. This is needed when a conn_close wants to 6578 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6579 * of an ill can also use this option. But we dont' use it currently. 6580 */ 6581 #define ENTER_SQ_WAIT_TICKS 100 6582 boolean_t 6583 ipsq_enter(ill_t *ill, boolean_t force, int type) 6584 { 6585 ipsq_t *ipsq; 6586 ipxop_t *ipx; 6587 boolean_t waited_enough = B_FALSE; 6588 ip_stack_t *ipst = ill->ill_ipst; 6589 6590 /* 6591 * Note that the relationship between ill and ipsq is fixed as long as 6592 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6593 * relationship between the IPSQ and xop cannot change. However, 6594 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6595 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6596 * waking up all ills in the xop when it becomes available. 6597 */ 6598 for (;;) { 6599 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6600 mutex_enter(&ill->ill_lock); 6601 if (ill->ill_state_flags & ILL_CONDEMNED) { 6602 mutex_exit(&ill->ill_lock); 6603 rw_exit(&ipst->ips_ill_g_lock); 6604 return (B_FALSE); 6605 } 6606 6607 ipsq = ill->ill_phyint->phyint_ipsq; 6608 mutex_enter(&ipsq->ipsq_lock); 6609 ipx = ipsq->ipsq_xop; 6610 mutex_enter(&ipx->ipx_lock); 6611 6612 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6613 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6614 waited_enough)) 6615 break; 6616 6617 rw_exit(&ipst->ips_ill_g_lock); 6618 6619 if (!force || ipx->ipx_writer != NULL) { 6620 mutex_exit(&ipx->ipx_lock); 6621 mutex_exit(&ipsq->ipsq_lock); 6622 cv_wait(&ill->ill_cv, &ill->ill_lock); 6623 } else { 6624 mutex_exit(&ipx->ipx_lock); 6625 mutex_exit(&ipsq->ipsq_lock); 6626 (void) cv_reltimedwait(&ill->ill_cv, 6627 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6628 waited_enough = B_TRUE; 6629 } 6630 mutex_exit(&ill->ill_lock); 6631 } 6632 6633 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6634 ASSERT(ipx->ipx_reentry_cnt == 0); 6635 ipx->ipx_writer = curthread; 6636 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6637 ipx->ipx_reentry_cnt++; 6638 #ifdef DEBUG 6639 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6640 #endif 6641 mutex_exit(&ipx->ipx_lock); 6642 mutex_exit(&ipsq->ipsq_lock); 6643 mutex_exit(&ill->ill_lock); 6644 rw_exit(&ipst->ips_ill_g_lock); 6645 6646 return (B_TRUE); 6647 } 6648 6649 /* 6650 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6651 * across the call to the core interface ipsq_try_enter() and hence calls this 6652 * function directly. This is explained more fully in ipif_set_values(). 6653 * In order to support the above constraint, ipsq_try_enter is implemented as 6654 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6655 */ 6656 static ipsq_t * 6657 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6658 int type, boolean_t reentry_ok) 6659 { 6660 ipsq_t *ipsq; 6661 ipxop_t *ipx; 6662 ip_stack_t *ipst = ill->ill_ipst; 6663 6664 /* 6665 * lock ordering: 6666 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6667 * 6668 * ipx of an ipsq can't change when ipsq_lock is held. 6669 */ 6670 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6671 GRAB_CONN_LOCK(q); 6672 mutex_enter(&ill->ill_lock); 6673 ipsq = ill->ill_phyint->phyint_ipsq; 6674 mutex_enter(&ipsq->ipsq_lock); 6675 ipx = ipsq->ipsq_xop; 6676 mutex_enter(&ipx->ipx_lock); 6677 6678 /* 6679 * 1. Enter the ipsq if we are already writer and reentry is ok. 6680 * (Note: If the caller does not specify reentry_ok then neither 6681 * 'func' nor any of its callees must ever attempt to enter the ipsq 6682 * again. Otherwise it can lead to an infinite loop 6683 * 2. Enter the ipsq if there is no current writer and this attempted 6684 * entry is part of the current operation 6685 * 3. Enter the ipsq if there is no current writer and this is a new 6686 * operation and the operation queue is empty and there is no 6687 * operation currently in progress and if all previously initiated 6688 * DLPI operations have completed. 6689 */ 6690 if ((ipx->ipx_writer == curthread && reentry_ok) || 6691 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6692 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6693 ipsq_dlpi_done(ipsq))))) { 6694 /* Success. */ 6695 ipx->ipx_reentry_cnt++; 6696 ipx->ipx_writer = curthread; 6697 ipx->ipx_forced = B_FALSE; 6698 mutex_exit(&ipx->ipx_lock); 6699 mutex_exit(&ipsq->ipsq_lock); 6700 mutex_exit(&ill->ill_lock); 6701 RELEASE_CONN_LOCK(q); 6702 #ifdef DEBUG 6703 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6704 #endif 6705 return (ipsq); 6706 } 6707 6708 if (func != NULL) 6709 ipsq_enq(ipsq, q, mp, func, type, ill); 6710 6711 mutex_exit(&ipx->ipx_lock); 6712 mutex_exit(&ipsq->ipsq_lock); 6713 mutex_exit(&ill->ill_lock); 6714 RELEASE_CONN_LOCK(q); 6715 return (NULL); 6716 } 6717 6718 /* 6719 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6720 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6721 * There is one ipsq per phyint. The ipsq 6722 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6723 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6724 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6725 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6726 * up the interface) and are enqueued in ipx_mphead. 6727 * 6728 * If a thread does not want to reenter the ipsq when it is already writer, 6729 * it must make sure that the specified reentry point to be called later 6730 * when the ipsq is empty, nor any code path starting from the specified reentry 6731 * point must never ever try to enter the ipsq again. Otherwise it can lead 6732 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6733 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6734 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6735 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6736 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6737 * ioctl if the current ioctl has completed. If the current ioctl is still 6738 * in progress it simply returns. The current ioctl could be waiting for 6739 * a response from another module (the driver or could be waiting for 6740 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6741 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6742 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6743 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6744 * all associated DLPI operations have completed. 6745 */ 6746 6747 /* 6748 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6749 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6750 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6751 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6752 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6753 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6754 */ 6755 ipsq_t * 6756 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6757 ipsq_func_t func, int type, boolean_t reentry_ok) 6758 { 6759 ip_stack_t *ipst; 6760 ipsq_t *ipsq; 6761 6762 /* Only 1 of ipif or ill can be specified */ 6763 ASSERT((ipif != NULL) ^ (ill != NULL)); 6764 6765 if (ipif != NULL) 6766 ill = ipif->ipif_ill; 6767 ipst = ill->ill_ipst; 6768 6769 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6770 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6771 rw_exit(&ipst->ips_ill_g_lock); 6772 6773 return (ipsq); 6774 } 6775 6776 /* 6777 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6778 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6779 * cannot be entered, the mp is queued for completion. 6780 */ 6781 void 6782 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6783 boolean_t reentry_ok) 6784 { 6785 ipsq_t *ipsq; 6786 6787 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6788 6789 /* 6790 * Drop the caller's refhold on the ill. This is safe since we either 6791 * entered the IPSQ (and thus are exclusive), or failed to enter the 6792 * IPSQ, in which case we return without accessing ill anymore. This 6793 * is needed because func needs to see the correct refcount. 6794 * e.g. removeif can work only then. 6795 */ 6796 ill_refrele(ill); 6797 if (ipsq != NULL) { 6798 (*func)(ipsq, q, mp, NULL); 6799 ipsq_exit(ipsq); 6800 } 6801 } 6802 6803 /* 6804 * Exit the specified IPSQ. If this is the final exit on it then drain it 6805 * prior to exiting. Caller must be writer on the specified IPSQ. 6806 */ 6807 void 6808 ipsq_exit(ipsq_t *ipsq) 6809 { 6810 mblk_t *mp; 6811 ipsq_t *mp_ipsq; 6812 queue_t *q; 6813 phyint_t *phyi; 6814 ipsq_func_t func; 6815 6816 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6817 6818 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6819 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6820 ipsq->ipsq_xop->ipx_reentry_cnt--; 6821 return; 6822 } 6823 6824 for (;;) { 6825 phyi = ipsq->ipsq_phyint; 6826 mp = ipsq_dq(ipsq); 6827 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6828 6829 /* 6830 * If we've changed to a new IPSQ, and the phyint associated 6831 * with the old one has gone away, free the old IPSQ. Note 6832 * that this cannot happen while the IPSQ is in a group. 6833 */ 6834 if (mp_ipsq != ipsq && phyi == NULL) { 6835 ASSERT(ipsq->ipsq_next == ipsq); 6836 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6837 ipsq_delete(ipsq); 6838 } 6839 6840 if (mp == NULL) 6841 break; 6842 6843 q = mp->b_queue; 6844 func = (ipsq_func_t)mp->b_prev; 6845 ipsq = mp_ipsq; 6846 mp->b_next = mp->b_prev = NULL; 6847 mp->b_queue = NULL; 6848 6849 /* 6850 * If 'q' is an conn queue, it is valid, since we did a 6851 * a refhold on the conn at the start of the ioctl. 6852 * If 'q' is an ill queue, it is valid, since close of an 6853 * ill will clean up its IPSQ. 6854 */ 6855 (*func)(ipsq, q, mp, NULL); 6856 } 6857 } 6858 6859 /* 6860 * Used to start any igmp or mld timers that could not be started 6861 * while holding ill_mcast_lock. The timers can't be started while holding 6862 * the lock, since mld/igmp_start_timers may need to call untimeout() 6863 * which can't be done while holding the lock which the timeout handler 6864 * acquires. Otherwise 6865 * there could be a deadlock since the timeout handlers 6866 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6867 * ill_mcast_lock. 6868 */ 6869 void 6870 ill_mcast_timer_start(ip_stack_t *ipst) 6871 { 6872 int next; 6873 6874 mutex_enter(&ipst->ips_igmp_timer_lock); 6875 next = ipst->ips_igmp_deferred_next; 6876 ipst->ips_igmp_deferred_next = INFINITY; 6877 mutex_exit(&ipst->ips_igmp_timer_lock); 6878 6879 if (next != INFINITY) 6880 igmp_start_timers(next, ipst); 6881 6882 mutex_enter(&ipst->ips_mld_timer_lock); 6883 next = ipst->ips_mld_deferred_next; 6884 ipst->ips_mld_deferred_next = INFINITY; 6885 mutex_exit(&ipst->ips_mld_timer_lock); 6886 6887 if (next != INFINITY) 6888 mld_start_timers(next, ipst); 6889 } 6890 6891 /* 6892 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6893 * and `ioccmd'. 6894 */ 6895 void 6896 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6897 { 6898 ill_t *ill = ipif->ipif_ill; 6899 ipxop_t *ipx = ipsq->ipsq_xop; 6900 6901 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6902 ASSERT(ipx->ipx_current_ipif == NULL); 6903 ASSERT(ipx->ipx_current_ioctl == 0); 6904 6905 ipx->ipx_current_done = B_FALSE; 6906 ipx->ipx_current_ioctl = ioccmd; 6907 mutex_enter(&ipx->ipx_lock); 6908 ipx->ipx_current_ipif = ipif; 6909 mutex_exit(&ipx->ipx_lock); 6910 6911 /* 6912 * Set IPIF_CHANGING on one or more ipifs associated with the 6913 * current exclusive operation. IPIF_CHANGING prevents any new 6914 * references to the ipif (so that the references will eventually 6915 * drop to zero) and also prevents any "get" operations (e.g., 6916 * SIOCGLIFFLAGS) from being able to access the ipif until the 6917 * operation has completed and the ipif is again in a stable state. 6918 * 6919 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6920 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6921 * on the ill are marked with IPIF_CHANGING since it's unclear which 6922 * ipifs will be affected. 6923 * 6924 * Note that SIOCLIFREMOVEIF is a special case as it sets 6925 * IPIF_CONDEMNED internally after identifying the right ipif to 6926 * operate on. 6927 */ 6928 switch (ioccmd) { 6929 case SIOCLIFREMOVEIF: 6930 break; 6931 case 0: 6932 mutex_enter(&ill->ill_lock); 6933 ipif = ipif->ipif_ill->ill_ipif; 6934 for (; ipif != NULL; ipif = ipif->ipif_next) 6935 ipif->ipif_state_flags |= IPIF_CHANGING; 6936 mutex_exit(&ill->ill_lock); 6937 break; 6938 default: 6939 mutex_enter(&ill->ill_lock); 6940 ipif->ipif_state_flags |= IPIF_CHANGING; 6941 mutex_exit(&ill->ill_lock); 6942 } 6943 } 6944 6945 /* 6946 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6947 * the next exclusive operation to begin once we ipsq_exit(). However, if 6948 * pending DLPI operations remain, then we will wait for the queue to drain 6949 * before allowing the next exclusive operation to begin. This ensures that 6950 * DLPI operations from one exclusive operation are never improperly processed 6951 * as part of a subsequent exclusive operation. 6952 */ 6953 void 6954 ipsq_current_finish(ipsq_t *ipsq) 6955 { 6956 ipxop_t *ipx = ipsq->ipsq_xop; 6957 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6958 ipif_t *ipif = ipx->ipx_current_ipif; 6959 6960 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6961 6962 /* 6963 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6964 * (but in that case, IPIF_CHANGING will already be clear and no 6965 * pending DLPI messages can remain). 6966 */ 6967 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6968 ill_t *ill = ipif->ipif_ill; 6969 6970 mutex_enter(&ill->ill_lock); 6971 dlpi_pending = ill->ill_dlpi_pending; 6972 if (ipx->ipx_current_ioctl == 0) { 6973 ipif = ill->ill_ipif; 6974 for (; ipif != NULL; ipif = ipif->ipif_next) 6975 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6976 } else { 6977 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6978 } 6979 mutex_exit(&ill->ill_lock); 6980 } 6981 6982 ASSERT(!ipx->ipx_current_done); 6983 ipx->ipx_current_done = B_TRUE; 6984 ipx->ipx_current_ioctl = 0; 6985 if (dlpi_pending == DL_PRIM_INVAL) { 6986 mutex_enter(&ipx->ipx_lock); 6987 ipx->ipx_current_ipif = NULL; 6988 mutex_exit(&ipx->ipx_lock); 6989 } 6990 } 6991 6992 /* 6993 * The ill is closing. Flush all messages on the ipsq that originated 6994 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6995 * for this ill since ipsq_enter could not have entered until then. 6996 * New messages can't be queued since the CONDEMNED flag is set. 6997 */ 6998 static void 6999 ipsq_flush(ill_t *ill) 7000 { 7001 queue_t *q; 7002 mblk_t *prev; 7003 mblk_t *mp; 7004 mblk_t *mp_next; 7005 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7006 7007 ASSERT(IAM_WRITER_ILL(ill)); 7008 7009 /* 7010 * Flush any messages sent up by the driver. 7011 */ 7012 mutex_enter(&ipx->ipx_lock); 7013 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7014 mp_next = mp->b_next; 7015 q = mp->b_queue; 7016 if (q == ill->ill_rq || q == ill->ill_wq) { 7017 /* dequeue mp */ 7018 if (prev == NULL) 7019 ipx->ipx_mphead = mp->b_next; 7020 else 7021 prev->b_next = mp->b_next; 7022 if (ipx->ipx_mptail == mp) { 7023 ASSERT(mp_next == NULL); 7024 ipx->ipx_mptail = prev; 7025 } 7026 inet_freemsg(mp); 7027 } else { 7028 prev = mp; 7029 } 7030 } 7031 mutex_exit(&ipx->ipx_lock); 7032 (void) ipsq_pending_mp_cleanup(ill, NULL); 7033 ipsq_xopq_mp_cleanup(ill, NULL); 7034 } 7035 7036 /* 7037 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7038 * and return the associated ipif. 7039 * Return value: 7040 * Non zero: An error has occurred. ci may not be filled out. 7041 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7042 * a held ipif in ci.ci_ipif. 7043 */ 7044 int 7045 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7046 cmd_info_t *ci) 7047 { 7048 char *name; 7049 struct ifreq *ifr; 7050 struct lifreq *lifr; 7051 ipif_t *ipif = NULL; 7052 ill_t *ill; 7053 conn_t *connp; 7054 boolean_t isv6; 7055 int err; 7056 mblk_t *mp1; 7057 zoneid_t zoneid; 7058 ip_stack_t *ipst; 7059 7060 if (q->q_next != NULL) { 7061 ill = (ill_t *)q->q_ptr; 7062 isv6 = ill->ill_isv6; 7063 connp = NULL; 7064 zoneid = ALL_ZONES; 7065 ipst = ill->ill_ipst; 7066 } else { 7067 ill = NULL; 7068 connp = Q_TO_CONN(q); 7069 isv6 = (connp->conn_family == AF_INET6); 7070 zoneid = connp->conn_zoneid; 7071 if (zoneid == GLOBAL_ZONEID) { 7072 /* global zone can access ipifs in all zones */ 7073 zoneid = ALL_ZONES; 7074 } 7075 ipst = connp->conn_netstack->netstack_ip; 7076 } 7077 7078 /* Has been checked in ip_wput_nondata */ 7079 mp1 = mp->b_cont->b_cont; 7080 7081 if (ipip->ipi_cmd_type == IF_CMD) { 7082 /* This a old style SIOC[GS]IF* command */ 7083 ifr = (struct ifreq *)mp1->b_rptr; 7084 /* 7085 * Null terminate the string to protect against buffer 7086 * overrun. String was generated by user code and may not 7087 * be trusted. 7088 */ 7089 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7090 name = ifr->ifr_name; 7091 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7092 ci->ci_sin6 = NULL; 7093 ci->ci_lifr = (struct lifreq *)ifr; 7094 } else { 7095 /* This a new style SIOC[GS]LIF* command */ 7096 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7097 lifr = (struct lifreq *)mp1->b_rptr; 7098 /* 7099 * Null terminate the string to protect against buffer 7100 * overrun. String was generated by user code and may not 7101 * be trusted. 7102 */ 7103 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7104 name = lifr->lifr_name; 7105 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7106 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7107 ci->ci_lifr = lifr; 7108 } 7109 7110 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7111 /* 7112 * The ioctl will be failed if the ioctl comes down 7113 * an conn stream 7114 */ 7115 if (ill == NULL) { 7116 /* 7117 * Not an ill queue, return EINVAL same as the 7118 * old error code. 7119 */ 7120 return (ENXIO); 7121 } 7122 ipif = ill->ill_ipif; 7123 ipif_refhold(ipif); 7124 } else { 7125 /* 7126 * Ensure that ioctls don't see any internal state changes 7127 * caused by set ioctls by deferring them if IPIF_CHANGING is 7128 * set. 7129 */ 7130 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7131 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7132 if (ipif == NULL) { 7133 if (err == EINPROGRESS) 7134 return (err); 7135 err = 0; /* Ensure we don't use it below */ 7136 } 7137 } 7138 7139 /* 7140 * Old style [GS]IFCMD does not admit IPv6 ipif 7141 */ 7142 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7143 ipif_refrele(ipif); 7144 return (ENXIO); 7145 } 7146 7147 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7148 name[0] == '\0') { 7149 /* 7150 * Handle a or a SIOC?IF* with a null name 7151 * during plumb (on the ill queue before the I_PLINK). 7152 */ 7153 ipif = ill->ill_ipif; 7154 ipif_refhold(ipif); 7155 } 7156 7157 if (ipif == NULL) 7158 return (ENXIO); 7159 7160 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7161 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7162 7163 ci->ci_ipif = ipif; 7164 return (0); 7165 } 7166 7167 /* 7168 * Return the total number of ipifs. 7169 */ 7170 static uint_t 7171 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7172 { 7173 uint_t numifs = 0; 7174 ill_t *ill; 7175 ill_walk_context_t ctx; 7176 ipif_t *ipif; 7177 7178 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7179 ill = ILL_START_WALK_V4(&ctx, ipst); 7180 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7181 if (IS_UNDER_IPMP(ill)) 7182 continue; 7183 for (ipif = ill->ill_ipif; ipif != NULL; 7184 ipif = ipif->ipif_next) { 7185 if (ipif->ipif_zoneid == zoneid || 7186 ipif->ipif_zoneid == ALL_ZONES) 7187 numifs++; 7188 } 7189 } 7190 rw_exit(&ipst->ips_ill_g_lock); 7191 return (numifs); 7192 } 7193 7194 /* 7195 * Return the total number of ipifs. 7196 */ 7197 static uint_t 7198 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7199 { 7200 uint_t numifs = 0; 7201 ill_t *ill; 7202 ipif_t *ipif; 7203 ill_walk_context_t ctx; 7204 7205 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7206 7207 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7208 if (family == AF_INET) 7209 ill = ILL_START_WALK_V4(&ctx, ipst); 7210 else if (family == AF_INET6) 7211 ill = ILL_START_WALK_V6(&ctx, ipst); 7212 else 7213 ill = ILL_START_WALK_ALL(&ctx, ipst); 7214 7215 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7216 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7217 continue; 7218 7219 for (ipif = ill->ill_ipif; ipif != NULL; 7220 ipif = ipif->ipif_next) { 7221 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7222 !(lifn_flags & LIFC_NOXMIT)) 7223 continue; 7224 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7225 !(lifn_flags & LIFC_TEMPORARY)) 7226 continue; 7227 if (((ipif->ipif_flags & 7228 (IPIF_NOXMIT|IPIF_NOLOCAL| 7229 IPIF_DEPRECATED)) || 7230 IS_LOOPBACK(ill) || 7231 !(ipif->ipif_flags & IPIF_UP)) && 7232 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7233 continue; 7234 7235 if (zoneid != ipif->ipif_zoneid && 7236 ipif->ipif_zoneid != ALL_ZONES && 7237 (zoneid != GLOBAL_ZONEID || 7238 !(lifn_flags & LIFC_ALLZONES))) 7239 continue; 7240 7241 numifs++; 7242 } 7243 } 7244 rw_exit(&ipst->ips_ill_g_lock); 7245 return (numifs); 7246 } 7247 7248 uint_t 7249 ip_get_lifsrcofnum(ill_t *ill) 7250 { 7251 uint_t numifs = 0; 7252 ill_t *ill_head = ill; 7253 ip_stack_t *ipst = ill->ill_ipst; 7254 7255 /* 7256 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7257 * other thread may be trying to relink the ILLs in this usesrc group 7258 * and adjusting the ill_usesrc_grp_next pointers 7259 */ 7260 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7261 if ((ill->ill_usesrc_ifindex == 0) && 7262 (ill->ill_usesrc_grp_next != NULL)) { 7263 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7264 ill = ill->ill_usesrc_grp_next) 7265 numifs++; 7266 } 7267 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7268 7269 return (numifs); 7270 } 7271 7272 /* Null values are passed in for ipif, sin, and ifreq */ 7273 /* ARGSUSED */ 7274 int 7275 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7276 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7277 { 7278 int *nump; 7279 conn_t *connp = Q_TO_CONN(q); 7280 7281 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7282 7283 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7284 nump = (int *)mp->b_cont->b_cont->b_rptr; 7285 7286 *nump = ip_get_numifs(connp->conn_zoneid, 7287 connp->conn_netstack->netstack_ip); 7288 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7289 return (0); 7290 } 7291 7292 /* Null values are passed in for ipif, sin, and ifreq */ 7293 /* ARGSUSED */ 7294 int 7295 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7296 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7297 { 7298 struct lifnum *lifn; 7299 mblk_t *mp1; 7300 conn_t *connp = Q_TO_CONN(q); 7301 7302 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7303 7304 /* Existence checked in ip_wput_nondata */ 7305 mp1 = mp->b_cont->b_cont; 7306 7307 lifn = (struct lifnum *)mp1->b_rptr; 7308 switch (lifn->lifn_family) { 7309 case AF_UNSPEC: 7310 case AF_INET: 7311 case AF_INET6: 7312 break; 7313 default: 7314 return (EAFNOSUPPORT); 7315 } 7316 7317 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7318 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7319 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7320 return (0); 7321 } 7322 7323 /* ARGSUSED */ 7324 int 7325 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7326 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7327 { 7328 STRUCT_HANDLE(ifconf, ifc); 7329 mblk_t *mp1; 7330 struct iocblk *iocp; 7331 struct ifreq *ifr; 7332 ill_walk_context_t ctx; 7333 ill_t *ill; 7334 ipif_t *ipif; 7335 struct sockaddr_in *sin; 7336 int32_t ifclen; 7337 zoneid_t zoneid; 7338 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7339 7340 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7341 7342 ip1dbg(("ip_sioctl_get_ifconf")); 7343 /* Existence verified in ip_wput_nondata */ 7344 mp1 = mp->b_cont->b_cont; 7345 iocp = (struct iocblk *)mp->b_rptr; 7346 zoneid = Q_TO_CONN(q)->conn_zoneid; 7347 7348 /* 7349 * The original SIOCGIFCONF passed in a struct ifconf which specified 7350 * the user buffer address and length into which the list of struct 7351 * ifreqs was to be copied. Since AT&T Streams does not seem to 7352 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7353 * the SIOCGIFCONF operation was redefined to simply provide 7354 * a large output buffer into which we are supposed to jam the ifreq 7355 * array. The same ioctl command code was used, despite the fact that 7356 * both the applications and the kernel code had to change, thus making 7357 * it impossible to support both interfaces. 7358 * 7359 * For reasons not good enough to try to explain, the following 7360 * algorithm is used for deciding what to do with one of these: 7361 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7362 * form with the output buffer coming down as the continuation message. 7363 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7364 * and we have to copy in the ifconf structure to find out how big the 7365 * output buffer is and where to copy out to. Sure no problem... 7366 * 7367 */ 7368 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7369 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7370 int numifs = 0; 7371 size_t ifc_bufsize; 7372 7373 /* 7374 * Must be (better be!) continuation of a TRANSPARENT 7375 * IOCTL. We just copied in the ifconf structure. 7376 */ 7377 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7378 (struct ifconf *)mp1->b_rptr); 7379 7380 /* 7381 * Allocate a buffer to hold requested information. 7382 * 7383 * If ifc_len is larger than what is needed, we only 7384 * allocate what we will use. 7385 * 7386 * If ifc_len is smaller than what is needed, return 7387 * EINVAL. 7388 * 7389 * XXX: the ill_t structure can hava 2 counters, for 7390 * v4 and v6 (not just ill_ipif_up_count) to store the 7391 * number of interfaces for a device, so we don't need 7392 * to count them here... 7393 */ 7394 numifs = ip_get_numifs(zoneid, ipst); 7395 7396 ifclen = STRUCT_FGET(ifc, ifc_len); 7397 ifc_bufsize = numifs * sizeof (struct ifreq); 7398 if (ifc_bufsize > ifclen) { 7399 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7400 /* old behaviour */ 7401 return (EINVAL); 7402 } else { 7403 ifc_bufsize = ifclen; 7404 } 7405 } 7406 7407 mp1 = mi_copyout_alloc(q, mp, 7408 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7409 if (mp1 == NULL) 7410 return (ENOMEM); 7411 7412 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7413 } 7414 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7415 /* 7416 * the SIOCGIFCONF ioctl only knows about 7417 * IPv4 addresses, so don't try to tell 7418 * it about interfaces with IPv6-only 7419 * addresses. (Last parm 'isv6' is B_FALSE) 7420 */ 7421 7422 ifr = (struct ifreq *)mp1->b_rptr; 7423 7424 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7425 ill = ILL_START_WALK_V4(&ctx, ipst); 7426 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7427 if (IS_UNDER_IPMP(ill)) 7428 continue; 7429 for (ipif = ill->ill_ipif; ipif != NULL; 7430 ipif = ipif->ipif_next) { 7431 if (zoneid != ipif->ipif_zoneid && 7432 ipif->ipif_zoneid != ALL_ZONES) 7433 continue; 7434 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7435 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7436 /* old behaviour */ 7437 rw_exit(&ipst->ips_ill_g_lock); 7438 return (EINVAL); 7439 } else { 7440 goto if_copydone; 7441 } 7442 } 7443 ipif_get_name(ipif, ifr->ifr_name, 7444 sizeof (ifr->ifr_name)); 7445 sin = (sin_t *)&ifr->ifr_addr; 7446 *sin = sin_null; 7447 sin->sin_family = AF_INET; 7448 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7449 ifr++; 7450 } 7451 } 7452 if_copydone: 7453 rw_exit(&ipst->ips_ill_g_lock); 7454 mp1->b_wptr = (uchar_t *)ifr; 7455 7456 if (STRUCT_BUF(ifc) != NULL) { 7457 STRUCT_FSET(ifc, ifc_len, 7458 (int)((uchar_t *)ifr - mp1->b_rptr)); 7459 } 7460 return (0); 7461 } 7462 7463 /* 7464 * Get the interfaces using the address hosted on the interface passed in, 7465 * as a source adddress 7466 */ 7467 /* ARGSUSED */ 7468 int 7469 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7470 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7471 { 7472 mblk_t *mp1; 7473 ill_t *ill, *ill_head; 7474 ipif_t *ipif, *orig_ipif; 7475 int numlifs = 0; 7476 size_t lifs_bufsize, lifsmaxlen; 7477 struct lifreq *lifr; 7478 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7479 uint_t ifindex; 7480 zoneid_t zoneid; 7481 boolean_t isv6 = B_FALSE; 7482 struct sockaddr_in *sin; 7483 struct sockaddr_in6 *sin6; 7484 STRUCT_HANDLE(lifsrcof, lifs); 7485 ip_stack_t *ipst; 7486 7487 ipst = CONNQ_TO_IPST(q); 7488 7489 ASSERT(q->q_next == NULL); 7490 7491 zoneid = Q_TO_CONN(q)->conn_zoneid; 7492 7493 /* Existence verified in ip_wput_nondata */ 7494 mp1 = mp->b_cont->b_cont; 7495 7496 /* 7497 * Must be (better be!) continuation of a TRANSPARENT 7498 * IOCTL. We just copied in the lifsrcof structure. 7499 */ 7500 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7501 (struct lifsrcof *)mp1->b_rptr); 7502 7503 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7504 return (EINVAL); 7505 7506 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7507 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7508 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7509 if (ipif == NULL) { 7510 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7511 ifindex)); 7512 return (ENXIO); 7513 } 7514 7515 /* Allocate a buffer to hold requested information */ 7516 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7517 lifs_bufsize = numlifs * sizeof (struct lifreq); 7518 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7519 /* The actual size needed is always returned in lifs_len */ 7520 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7521 7522 /* If the amount we need is more than what is passed in, abort */ 7523 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7524 ipif_refrele(ipif); 7525 return (0); 7526 } 7527 7528 mp1 = mi_copyout_alloc(q, mp, 7529 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7530 if (mp1 == NULL) { 7531 ipif_refrele(ipif); 7532 return (ENOMEM); 7533 } 7534 7535 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7536 bzero(mp1->b_rptr, lifs_bufsize); 7537 7538 lifr = (struct lifreq *)mp1->b_rptr; 7539 7540 ill = ill_head = ipif->ipif_ill; 7541 orig_ipif = ipif; 7542 7543 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7544 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7545 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7546 7547 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7548 for (; (ill != NULL) && (ill != ill_head); 7549 ill = ill->ill_usesrc_grp_next) { 7550 7551 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7552 break; 7553 7554 ipif = ill->ill_ipif; 7555 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7556 if (ipif->ipif_isv6) { 7557 sin6 = (sin6_t *)&lifr->lifr_addr; 7558 *sin6 = sin6_null; 7559 sin6->sin6_family = AF_INET6; 7560 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7561 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7562 &ipif->ipif_v6net_mask); 7563 } else { 7564 sin = (sin_t *)&lifr->lifr_addr; 7565 *sin = sin_null; 7566 sin->sin_family = AF_INET; 7567 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7568 lifr->lifr_addrlen = ip_mask_to_plen( 7569 ipif->ipif_net_mask); 7570 } 7571 lifr++; 7572 } 7573 rw_exit(&ipst->ips_ill_g_lock); 7574 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7575 ipif_refrele(orig_ipif); 7576 mp1->b_wptr = (uchar_t *)lifr; 7577 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7578 7579 return (0); 7580 } 7581 7582 /* ARGSUSED */ 7583 int 7584 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7585 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7586 { 7587 mblk_t *mp1; 7588 int list; 7589 ill_t *ill; 7590 ipif_t *ipif; 7591 int flags; 7592 int numlifs = 0; 7593 size_t lifc_bufsize; 7594 struct lifreq *lifr; 7595 sa_family_t family; 7596 struct sockaddr_in *sin; 7597 struct sockaddr_in6 *sin6; 7598 ill_walk_context_t ctx; 7599 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7600 int32_t lifclen; 7601 zoneid_t zoneid; 7602 STRUCT_HANDLE(lifconf, lifc); 7603 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7604 7605 ip1dbg(("ip_sioctl_get_lifconf")); 7606 7607 ASSERT(q->q_next == NULL); 7608 7609 zoneid = Q_TO_CONN(q)->conn_zoneid; 7610 7611 /* Existence verified in ip_wput_nondata */ 7612 mp1 = mp->b_cont->b_cont; 7613 7614 /* 7615 * An extended version of SIOCGIFCONF that takes an 7616 * additional address family and flags field. 7617 * AF_UNSPEC retrieve both IPv4 and IPv6. 7618 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7619 * interfaces are omitted. 7620 * Similarly, IPIF_TEMPORARY interfaces are omitted 7621 * unless LIFC_TEMPORARY is specified. 7622 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7623 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7624 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7625 * has priority over LIFC_NOXMIT. 7626 */ 7627 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7628 7629 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7630 return (EINVAL); 7631 7632 /* 7633 * Must be (better be!) continuation of a TRANSPARENT 7634 * IOCTL. We just copied in the lifconf structure. 7635 */ 7636 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7637 7638 family = STRUCT_FGET(lifc, lifc_family); 7639 flags = STRUCT_FGET(lifc, lifc_flags); 7640 7641 switch (family) { 7642 case AF_UNSPEC: 7643 /* 7644 * walk all ILL's. 7645 */ 7646 list = MAX_G_HEADS; 7647 break; 7648 case AF_INET: 7649 /* 7650 * walk only IPV4 ILL's. 7651 */ 7652 list = IP_V4_G_HEAD; 7653 break; 7654 case AF_INET6: 7655 /* 7656 * walk only IPV6 ILL's. 7657 */ 7658 list = IP_V6_G_HEAD; 7659 break; 7660 default: 7661 return (EAFNOSUPPORT); 7662 } 7663 7664 /* 7665 * Allocate a buffer to hold requested information. 7666 * 7667 * If lifc_len is larger than what is needed, we only 7668 * allocate what we will use. 7669 * 7670 * If lifc_len is smaller than what is needed, return 7671 * EINVAL. 7672 */ 7673 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7674 lifc_bufsize = numlifs * sizeof (struct lifreq); 7675 lifclen = STRUCT_FGET(lifc, lifc_len); 7676 if (lifc_bufsize > lifclen) { 7677 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7678 return (EINVAL); 7679 else 7680 lifc_bufsize = lifclen; 7681 } 7682 7683 mp1 = mi_copyout_alloc(q, mp, 7684 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7685 if (mp1 == NULL) 7686 return (ENOMEM); 7687 7688 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7689 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7690 7691 lifr = (struct lifreq *)mp1->b_rptr; 7692 7693 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7694 ill = ill_first(list, list, &ctx, ipst); 7695 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7696 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7697 continue; 7698 7699 for (ipif = ill->ill_ipif; ipif != NULL; 7700 ipif = ipif->ipif_next) { 7701 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7702 !(flags & LIFC_NOXMIT)) 7703 continue; 7704 7705 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7706 !(flags & LIFC_TEMPORARY)) 7707 continue; 7708 7709 if (((ipif->ipif_flags & 7710 (IPIF_NOXMIT|IPIF_NOLOCAL| 7711 IPIF_DEPRECATED)) || 7712 IS_LOOPBACK(ill) || 7713 !(ipif->ipif_flags & IPIF_UP)) && 7714 (flags & LIFC_EXTERNAL_SOURCE)) 7715 continue; 7716 7717 if (zoneid != ipif->ipif_zoneid && 7718 ipif->ipif_zoneid != ALL_ZONES && 7719 (zoneid != GLOBAL_ZONEID || 7720 !(flags & LIFC_ALLZONES))) 7721 continue; 7722 7723 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7724 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7725 rw_exit(&ipst->ips_ill_g_lock); 7726 return (EINVAL); 7727 } else { 7728 goto lif_copydone; 7729 } 7730 } 7731 7732 ipif_get_name(ipif, lifr->lifr_name, 7733 sizeof (lifr->lifr_name)); 7734 lifr->lifr_type = ill->ill_type; 7735 if (ipif->ipif_isv6) { 7736 sin6 = (sin6_t *)&lifr->lifr_addr; 7737 *sin6 = sin6_null; 7738 sin6->sin6_family = AF_INET6; 7739 sin6->sin6_addr = 7740 ipif->ipif_v6lcl_addr; 7741 lifr->lifr_addrlen = 7742 ip_mask_to_plen_v6( 7743 &ipif->ipif_v6net_mask); 7744 } else { 7745 sin = (sin_t *)&lifr->lifr_addr; 7746 *sin = sin_null; 7747 sin->sin_family = AF_INET; 7748 sin->sin_addr.s_addr = 7749 ipif->ipif_lcl_addr; 7750 lifr->lifr_addrlen = 7751 ip_mask_to_plen( 7752 ipif->ipif_net_mask); 7753 } 7754 lifr++; 7755 } 7756 } 7757 lif_copydone: 7758 rw_exit(&ipst->ips_ill_g_lock); 7759 7760 mp1->b_wptr = (uchar_t *)lifr; 7761 if (STRUCT_BUF(lifc) != NULL) { 7762 STRUCT_FSET(lifc, lifc_len, 7763 (int)((uchar_t *)lifr - mp1->b_rptr)); 7764 } 7765 return (0); 7766 } 7767 7768 static void 7769 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7770 { 7771 ip6_asp_t *table; 7772 size_t table_size; 7773 mblk_t *data_mp; 7774 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7775 ip_stack_t *ipst; 7776 7777 if (q->q_next == NULL) 7778 ipst = CONNQ_TO_IPST(q); 7779 else 7780 ipst = ILLQ_TO_IPST(q); 7781 7782 /* These two ioctls are I_STR only */ 7783 if (iocp->ioc_count == TRANSPARENT) { 7784 miocnak(q, mp, 0, EINVAL); 7785 return; 7786 } 7787 7788 data_mp = mp->b_cont; 7789 if (data_mp == NULL) { 7790 /* The user passed us a NULL argument */ 7791 table = NULL; 7792 table_size = iocp->ioc_count; 7793 } else { 7794 /* 7795 * The user provided a table. The stream head 7796 * may have copied in the user data in chunks, 7797 * so make sure everything is pulled up 7798 * properly. 7799 */ 7800 if (MBLKL(data_mp) < iocp->ioc_count) { 7801 mblk_t *new_data_mp; 7802 if ((new_data_mp = msgpullup(data_mp, -1)) == 7803 NULL) { 7804 miocnak(q, mp, 0, ENOMEM); 7805 return; 7806 } 7807 freemsg(data_mp); 7808 data_mp = new_data_mp; 7809 mp->b_cont = data_mp; 7810 } 7811 table = (ip6_asp_t *)data_mp->b_rptr; 7812 table_size = iocp->ioc_count; 7813 } 7814 7815 switch (iocp->ioc_cmd) { 7816 case SIOCGIP6ADDRPOLICY: 7817 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7818 if (iocp->ioc_rval == -1) 7819 iocp->ioc_error = EINVAL; 7820 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7821 else if (table != NULL && 7822 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7823 ip6_asp_t *src = table; 7824 ip6_asp32_t *dst = (void *)table; 7825 int count = table_size / sizeof (ip6_asp_t); 7826 int i; 7827 7828 /* 7829 * We need to do an in-place shrink of the array 7830 * to match the alignment attributes of the 7831 * 32-bit ABI looking at it. 7832 */ 7833 /* LINTED: logical expression always true: op "||" */ 7834 ASSERT(sizeof (*src) > sizeof (*dst)); 7835 for (i = 1; i < count; i++) 7836 bcopy(src + i, dst + i, sizeof (*dst)); 7837 } 7838 #endif 7839 break; 7840 7841 case SIOCSIP6ADDRPOLICY: 7842 ASSERT(mp->b_prev == NULL); 7843 mp->b_prev = (void *)q; 7844 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7845 /* 7846 * We pass in the datamodel here so that the ip6_asp_replace() 7847 * routine can handle converting from 32-bit to native formats 7848 * where necessary. 7849 * 7850 * A better way to handle this might be to convert the inbound 7851 * data structure here, and hang it off a new 'mp'; thus the 7852 * ip6_asp_replace() logic would always be dealing with native 7853 * format data structures.. 7854 * 7855 * (An even simpler way to handle these ioctls is to just 7856 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7857 * and just recompile everything that depends on it.) 7858 */ 7859 #endif 7860 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7861 iocp->ioc_flag & IOC_MODELS); 7862 return; 7863 } 7864 7865 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7866 qreply(q, mp); 7867 } 7868 7869 static void 7870 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7871 { 7872 mblk_t *data_mp; 7873 struct dstinforeq *dir; 7874 uint8_t *end, *cur; 7875 in6_addr_t *daddr, *saddr; 7876 ipaddr_t v4daddr; 7877 ire_t *ire; 7878 ipaddr_t v4setsrc; 7879 in6_addr_t v6setsrc; 7880 char *slabel, *dlabel; 7881 boolean_t isipv4; 7882 int match_ire; 7883 ill_t *dst_ill; 7884 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7885 conn_t *connp = Q_TO_CONN(q); 7886 zoneid_t zoneid = IPCL_ZONEID(connp); 7887 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7888 uint64_t ipif_flags; 7889 7890 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7891 7892 /* 7893 * This ioctl is I_STR only, and must have a 7894 * data mblk following the M_IOCTL mblk. 7895 */ 7896 data_mp = mp->b_cont; 7897 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7898 miocnak(q, mp, 0, EINVAL); 7899 return; 7900 } 7901 7902 if (MBLKL(data_mp) < iocp->ioc_count) { 7903 mblk_t *new_data_mp; 7904 7905 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7906 miocnak(q, mp, 0, ENOMEM); 7907 return; 7908 } 7909 freemsg(data_mp); 7910 data_mp = new_data_mp; 7911 mp->b_cont = data_mp; 7912 } 7913 match_ire = MATCH_IRE_DSTONLY; 7914 7915 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7916 end - cur >= sizeof (struct dstinforeq); 7917 cur += sizeof (struct dstinforeq)) { 7918 dir = (struct dstinforeq *)cur; 7919 daddr = &dir->dir_daddr; 7920 saddr = &dir->dir_saddr; 7921 7922 /* 7923 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7924 * v4 mapped addresses; ire_ftable_lookup_v6() 7925 * and ip_select_source_v6() do not. 7926 */ 7927 dir->dir_dscope = ip_addr_scope_v6(daddr); 7928 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7929 7930 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7931 if (isipv4) { 7932 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7933 v4setsrc = INADDR_ANY; 7934 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7935 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7936 NULL, NULL); 7937 } else { 7938 v6setsrc = ipv6_all_zeros; 7939 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7940 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7941 NULL, NULL); 7942 } 7943 ASSERT(ire != NULL); 7944 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7945 ire_refrele(ire); 7946 dir->dir_dreachable = 0; 7947 7948 /* move on to next dst addr */ 7949 continue; 7950 } 7951 dir->dir_dreachable = 1; 7952 7953 dst_ill = ire_nexthop_ill(ire); 7954 if (dst_ill == NULL) { 7955 ire_refrele(ire); 7956 continue; 7957 } 7958 7959 /* With ipmp we most likely look at the ipmp ill here */ 7960 dir->dir_dmactype = dst_ill->ill_mactype; 7961 7962 if (isipv4) { 7963 ipaddr_t v4saddr; 7964 7965 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7966 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7967 &v4saddr, NULL, &ipif_flags) != 0) { 7968 v4saddr = INADDR_ANY; 7969 ipif_flags = 0; 7970 } 7971 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7972 } else { 7973 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7974 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7975 saddr, NULL, &ipif_flags) != 0) { 7976 *saddr = ipv6_all_zeros; 7977 ipif_flags = 0; 7978 } 7979 } 7980 7981 dir->dir_sscope = ip_addr_scope_v6(saddr); 7982 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7983 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7984 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7985 ire_refrele(ire); 7986 ill_refrele(dst_ill); 7987 } 7988 miocack(q, mp, iocp->ioc_count, 0); 7989 } 7990 7991 /* 7992 * Check if this is an address assigned to this machine. 7993 * Skips interfaces that are down by using ire checks. 7994 * Translates mapped addresses to v4 addresses and then 7995 * treats them as such, returning true if the v4 address 7996 * associated with this mapped address is configured. 7997 * Note: Applications will have to be careful what they do 7998 * with the response; use of mapped addresses limits 7999 * what can be done with the socket, especially with 8000 * respect to socket options and ioctls - neither IPv4 8001 * options nor IPv6 sticky options/ancillary data options 8002 * may be used. 8003 */ 8004 /* ARGSUSED */ 8005 int 8006 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8007 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8008 { 8009 struct sioc_addrreq *sia; 8010 sin_t *sin; 8011 ire_t *ire; 8012 mblk_t *mp1; 8013 zoneid_t zoneid; 8014 ip_stack_t *ipst; 8015 8016 ip1dbg(("ip_sioctl_tmyaddr")); 8017 8018 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8019 zoneid = Q_TO_CONN(q)->conn_zoneid; 8020 ipst = CONNQ_TO_IPST(q); 8021 8022 /* Existence verified in ip_wput_nondata */ 8023 mp1 = mp->b_cont->b_cont; 8024 sia = (struct sioc_addrreq *)mp1->b_rptr; 8025 sin = (sin_t *)&sia->sa_addr; 8026 switch (sin->sin_family) { 8027 case AF_INET6: { 8028 sin6_t *sin6 = (sin6_t *)sin; 8029 8030 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8031 ipaddr_t v4_addr; 8032 8033 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8034 v4_addr); 8035 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8036 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8037 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8038 } else { 8039 in6_addr_t v6addr; 8040 8041 v6addr = sin6->sin6_addr; 8042 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8043 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8044 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8045 } 8046 break; 8047 } 8048 case AF_INET: { 8049 ipaddr_t v4addr; 8050 8051 v4addr = sin->sin_addr.s_addr; 8052 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8053 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8054 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8055 break; 8056 } 8057 default: 8058 return (EAFNOSUPPORT); 8059 } 8060 if (ire != NULL) { 8061 sia->sa_res = 1; 8062 ire_refrele(ire); 8063 } else { 8064 sia->sa_res = 0; 8065 } 8066 return (0); 8067 } 8068 8069 /* 8070 * Check if this is an address assigned on-link i.e. neighbor, 8071 * and makes sure it's reachable from the current zone. 8072 * Returns true for my addresses as well. 8073 * Translates mapped addresses to v4 addresses and then 8074 * treats them as such, returning true if the v4 address 8075 * associated with this mapped address is configured. 8076 * Note: Applications will have to be careful what they do 8077 * with the response; use of mapped addresses limits 8078 * what can be done with the socket, especially with 8079 * respect to socket options and ioctls - neither IPv4 8080 * options nor IPv6 sticky options/ancillary data options 8081 * may be used. 8082 */ 8083 /* ARGSUSED */ 8084 int 8085 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8086 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8087 { 8088 struct sioc_addrreq *sia; 8089 sin_t *sin; 8090 mblk_t *mp1; 8091 ire_t *ire = NULL; 8092 zoneid_t zoneid; 8093 ip_stack_t *ipst; 8094 8095 ip1dbg(("ip_sioctl_tonlink")); 8096 8097 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8098 zoneid = Q_TO_CONN(q)->conn_zoneid; 8099 ipst = CONNQ_TO_IPST(q); 8100 8101 /* Existence verified in ip_wput_nondata */ 8102 mp1 = mp->b_cont->b_cont; 8103 sia = (struct sioc_addrreq *)mp1->b_rptr; 8104 sin = (sin_t *)&sia->sa_addr; 8105 8106 /* 8107 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8108 * to make sure we only look at on-link unicast address. 8109 */ 8110 switch (sin->sin_family) { 8111 case AF_INET6: { 8112 sin6_t *sin6 = (sin6_t *)sin; 8113 8114 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8115 ipaddr_t v4_addr; 8116 8117 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8118 v4_addr); 8119 if (!CLASSD(v4_addr)) { 8120 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8121 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8122 0, ipst, NULL); 8123 } 8124 } else { 8125 in6_addr_t v6addr; 8126 8127 v6addr = sin6->sin6_addr; 8128 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8129 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8130 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8131 ipst, NULL); 8132 } 8133 } 8134 break; 8135 } 8136 case AF_INET: { 8137 ipaddr_t v4addr; 8138 8139 v4addr = sin->sin_addr.s_addr; 8140 if (!CLASSD(v4addr)) { 8141 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8142 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8143 } 8144 break; 8145 } 8146 default: 8147 return (EAFNOSUPPORT); 8148 } 8149 sia->sa_res = 0; 8150 if (ire != NULL) { 8151 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8152 8153 if ((ire->ire_type & IRE_ONLINK) && 8154 !(ire->ire_type & IRE_BROADCAST)) 8155 sia->sa_res = 1; 8156 ire_refrele(ire); 8157 } 8158 return (0); 8159 } 8160 8161 /* 8162 * TBD: implement when kernel maintaines a list of site prefixes. 8163 */ 8164 /* ARGSUSED */ 8165 int 8166 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8167 ip_ioctl_cmd_t *ipip, void *ifreq) 8168 { 8169 return (ENXIO); 8170 } 8171 8172 /* ARP IOCTLs. */ 8173 /* ARGSUSED */ 8174 int 8175 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8176 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8177 { 8178 int err; 8179 ipaddr_t ipaddr; 8180 struct iocblk *iocp; 8181 conn_t *connp; 8182 struct arpreq *ar; 8183 struct xarpreq *xar; 8184 int arp_flags, flags, alength; 8185 uchar_t *lladdr; 8186 ip_stack_t *ipst; 8187 ill_t *ill = ipif->ipif_ill; 8188 ill_t *proxy_ill = NULL; 8189 ipmp_arpent_t *entp = NULL; 8190 boolean_t proxyarp = B_FALSE; 8191 boolean_t if_arp_ioctl = B_FALSE; 8192 ncec_t *ncec = NULL; 8193 nce_t *nce; 8194 8195 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8196 connp = Q_TO_CONN(q); 8197 ipst = connp->conn_netstack->netstack_ip; 8198 iocp = (struct iocblk *)mp->b_rptr; 8199 8200 if (ipip->ipi_cmd_type == XARP_CMD) { 8201 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8202 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8203 ar = NULL; 8204 8205 arp_flags = xar->xarp_flags; 8206 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8207 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8208 /* 8209 * Validate against user's link layer address length 8210 * input and name and addr length limits. 8211 */ 8212 alength = ill->ill_phys_addr_length; 8213 if (ipip->ipi_cmd == SIOCSXARP) { 8214 if (alength != xar->xarp_ha.sdl_alen || 8215 (alength + xar->xarp_ha.sdl_nlen > 8216 sizeof (xar->xarp_ha.sdl_data))) 8217 return (EINVAL); 8218 } 8219 } else { 8220 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8221 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8222 xar = NULL; 8223 8224 arp_flags = ar->arp_flags; 8225 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8226 /* 8227 * Theoretically, the sa_family could tell us what link 8228 * layer type this operation is trying to deal with. By 8229 * common usage AF_UNSPEC means ethernet. We'll assume 8230 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8231 * for now. Our new SIOC*XARP ioctls can be used more 8232 * generally. 8233 * 8234 * If the underlying media happens to have a non 6 byte 8235 * address, arp module will fail set/get, but the del 8236 * operation will succeed. 8237 */ 8238 alength = 6; 8239 if ((ipip->ipi_cmd != SIOCDARP) && 8240 (alength != ill->ill_phys_addr_length)) { 8241 return (EINVAL); 8242 } 8243 } 8244 8245 /* Translate ATF* flags to NCE* flags */ 8246 flags = 0; 8247 if (arp_flags & ATF_AUTHORITY) 8248 flags |= NCE_F_AUTHORITY; 8249 if (arp_flags & ATF_PERM) 8250 flags |= NCE_F_NONUD; /* not subject to aging */ 8251 if (arp_flags & ATF_PUBL) 8252 flags |= NCE_F_PUBLISH; 8253 8254 /* 8255 * IPMP ARP special handling: 8256 * 8257 * 1. Since ARP mappings must appear consistent across the group, 8258 * prohibit changing ARP mappings on the underlying interfaces. 8259 * 8260 * 2. Since ARP mappings for IPMP data addresses are maintained by 8261 * IP itself, prohibit changing them. 8262 * 8263 * 3. For proxy ARP, use a functioning hardware address in the group, 8264 * provided one exists. If one doesn't, just add the entry as-is; 8265 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8266 */ 8267 if (IS_UNDER_IPMP(ill)) { 8268 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8269 return (EPERM); 8270 } 8271 if (IS_IPMP(ill)) { 8272 ipmp_illgrp_t *illg = ill->ill_grp; 8273 8274 switch (ipip->ipi_cmd) { 8275 case SIOCSARP: 8276 case SIOCSXARP: 8277 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8278 if (proxy_ill != NULL) { 8279 proxyarp = B_TRUE; 8280 if (!ipmp_ill_is_active(proxy_ill)) 8281 proxy_ill = ipmp_illgrp_next_ill(illg); 8282 if (proxy_ill != NULL) 8283 lladdr = proxy_ill->ill_phys_addr; 8284 } 8285 /* FALLTHRU */ 8286 } 8287 } 8288 8289 ipaddr = sin->sin_addr.s_addr; 8290 /* 8291 * don't match across illgrp per case (1) and (2). 8292 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8293 */ 8294 nce = nce_lookup_v4(ill, &ipaddr); 8295 if (nce != NULL) 8296 ncec = nce->nce_common; 8297 8298 switch (iocp->ioc_cmd) { 8299 case SIOCDARP: 8300 case SIOCDXARP: { 8301 /* 8302 * Delete the NCE if any. 8303 */ 8304 if (ncec == NULL) { 8305 iocp->ioc_error = ENXIO; 8306 break; 8307 } 8308 /* Don't allow changes to arp mappings of local addresses. */ 8309 if (NCE_MYADDR(ncec)) { 8310 nce_refrele(nce); 8311 return (ENOTSUP); 8312 } 8313 iocp->ioc_error = 0; 8314 8315 /* 8316 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8317 * This will delete all the nce entries on the under_ills. 8318 */ 8319 ncec_delete(ncec); 8320 /* 8321 * Once the NCE has been deleted, then the ire_dep* consistency 8322 * mechanism will find any IRE which depended on the now 8323 * condemned NCE (as part of sending packets). 8324 * That mechanism handles redirects by deleting redirects 8325 * that refer to UNREACHABLE nces. 8326 */ 8327 break; 8328 } 8329 case SIOCGARP: 8330 case SIOCGXARP: 8331 if (ncec != NULL) { 8332 lladdr = ncec->ncec_lladdr; 8333 flags = ncec->ncec_flags; 8334 iocp->ioc_error = 0; 8335 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8336 } else { 8337 iocp->ioc_error = ENXIO; 8338 } 8339 break; 8340 case SIOCSARP: 8341 case SIOCSXARP: 8342 /* Don't allow changes to arp mappings of local addresses. */ 8343 if (ncec != NULL && NCE_MYADDR(ncec)) { 8344 nce_refrele(nce); 8345 return (ENOTSUP); 8346 } 8347 8348 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8349 flags |= NCE_F_STATIC; 8350 if (!if_arp_ioctl) { 8351 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8352 lladdr, alength, flags); 8353 } else { 8354 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8355 if (ipif != NULL) { 8356 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8357 lladdr, alength, flags); 8358 ipif_refrele(ipif); 8359 } 8360 } 8361 if (nce != NULL) { 8362 nce_refrele(nce); 8363 nce = NULL; 8364 } 8365 /* 8366 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8367 * by nce_add_common() 8368 */ 8369 err = nce_lookup_then_add_v4(ill, lladdr, 8370 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8371 &nce); 8372 if (err == EEXIST) { 8373 ncec = nce->nce_common; 8374 mutex_enter(&ncec->ncec_lock); 8375 ncec->ncec_state = ND_REACHABLE; 8376 ncec->ncec_flags = flags; 8377 nce_update(ncec, ND_UNCHANGED, lladdr); 8378 mutex_exit(&ncec->ncec_lock); 8379 err = 0; 8380 } 8381 if (nce != NULL) { 8382 nce_refrele(nce); 8383 nce = NULL; 8384 } 8385 if (IS_IPMP(ill) && err == 0) { 8386 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8387 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8388 flags); 8389 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8390 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8391 break; 8392 } 8393 } 8394 iocp->ioc_error = err; 8395 } 8396 8397 if (nce != NULL) { 8398 nce_refrele(nce); 8399 } 8400 8401 /* 8402 * If we created an IPMP ARP entry, mark that we've notified ARP. 8403 */ 8404 if (entp != NULL) 8405 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8406 8407 return (iocp->ioc_error); 8408 } 8409 8410 /* 8411 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8412 * the associated sin and refhold and return the associated ipif via `ci'. 8413 */ 8414 int 8415 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8416 cmd_info_t *ci) 8417 { 8418 mblk_t *mp1; 8419 sin_t *sin; 8420 conn_t *connp; 8421 ipif_t *ipif; 8422 ire_t *ire = NULL; 8423 ill_t *ill = NULL; 8424 boolean_t exists; 8425 ip_stack_t *ipst; 8426 struct arpreq *ar; 8427 struct xarpreq *xar; 8428 struct sockaddr_dl *sdl; 8429 8430 /* ioctl comes down on a conn */ 8431 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8432 connp = Q_TO_CONN(q); 8433 if (connp->conn_family == AF_INET6) 8434 return (ENXIO); 8435 8436 ipst = connp->conn_netstack->netstack_ip; 8437 8438 /* Verified in ip_wput_nondata */ 8439 mp1 = mp->b_cont->b_cont; 8440 8441 if (ipip->ipi_cmd_type == XARP_CMD) { 8442 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8443 xar = (struct xarpreq *)mp1->b_rptr; 8444 sin = (sin_t *)&xar->xarp_pa; 8445 sdl = &xar->xarp_ha; 8446 8447 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8448 return (ENXIO); 8449 if (sdl->sdl_nlen >= LIFNAMSIZ) 8450 return (EINVAL); 8451 } else { 8452 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8453 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8454 ar = (struct arpreq *)mp1->b_rptr; 8455 sin = (sin_t *)&ar->arp_pa; 8456 } 8457 8458 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8459 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8460 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8461 if (ipif == NULL) 8462 return (ENXIO); 8463 if (ipif->ipif_id != 0) { 8464 ipif_refrele(ipif); 8465 return (ENXIO); 8466 } 8467 } else { 8468 /* 8469 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8470 * of 0: use the IP address to find the ipif. If the IP 8471 * address is an IPMP test address, ire_ftable_lookup() will 8472 * find the wrong ill, so we first do an ipif_lookup_addr(). 8473 */ 8474 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8475 ipst); 8476 if (ipif == NULL) { 8477 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8478 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8479 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8480 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8481 if (ire != NULL) 8482 ire_refrele(ire); 8483 return (ENXIO); 8484 } 8485 ASSERT(ire != NULL && ill != NULL); 8486 ipif = ill->ill_ipif; 8487 ipif_refhold(ipif); 8488 ire_refrele(ire); 8489 } 8490 } 8491 8492 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8493 ipif_refrele(ipif); 8494 return (ENXIO); 8495 } 8496 8497 ci->ci_sin = sin; 8498 ci->ci_ipif = ipif; 8499 return (0); 8500 } 8501 8502 /* 8503 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8504 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8505 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8506 * up and thus an ill can join that illgrp. 8507 * 8508 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8509 * open()/close() primarily because close() is not allowed to fail or block 8510 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8511 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8512 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8513 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8514 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8515 * state if I_UNLINK didn't occur. 8516 * 8517 * Note that for each plumb/unplumb operation, we may end up here more than 8518 * once because of the way ifconfig works. However, it's OK to link the same 8519 * illgrp more than once, or unlink an illgrp that's already unlinked. 8520 */ 8521 static int 8522 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8523 { 8524 int err; 8525 ip_stack_t *ipst = ill->ill_ipst; 8526 8527 ASSERT(IS_IPMP(ill)); 8528 ASSERT(IAM_WRITER_ILL(ill)); 8529 8530 switch (ioccmd) { 8531 case I_LINK: 8532 return (ENOTSUP); 8533 8534 case I_PLINK: 8535 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8536 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8537 rw_exit(&ipst->ips_ipmp_lock); 8538 break; 8539 8540 case I_PUNLINK: 8541 /* 8542 * Require all UP ipifs be brought down prior to unlinking the 8543 * illgrp so any associated IREs (and other state) is torched. 8544 */ 8545 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8546 return (EBUSY); 8547 8548 /* 8549 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8550 * with an SIOCSLIFGROUPNAME request from an ill trying to 8551 * join this group. Specifically: ills trying to join grab 8552 * ipmp_lock and bump a "pending join" counter checked by 8553 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8554 * joins can occur (since we have ipmp_lock). Once we drop 8555 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8556 * find the illgrp (since we unlinked it) and will return 8557 * EAFNOSUPPORT. This will then take them back through the 8558 * IPMP meta-interface plumbing logic in ifconfig, and thus 8559 * back through I_PLINK above. 8560 */ 8561 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8562 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8563 rw_exit(&ipst->ips_ipmp_lock); 8564 return (err); 8565 default: 8566 break; 8567 } 8568 return (0); 8569 } 8570 8571 /* 8572 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8573 * atomically set/clear the muxids. Also complete the ioctl by acking or 8574 * naking it. Note that the code is structured such that the link type, 8575 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8576 * its clones use the persistent link, while pppd(1M) and perhaps many 8577 * other daemons may use non-persistent link. When combined with some 8578 * ill_t states, linking and unlinking lower streams may be used as 8579 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8580 */ 8581 /* ARGSUSED */ 8582 void 8583 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8584 { 8585 mblk_t *mp1; 8586 struct linkblk *li; 8587 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8588 int err = 0; 8589 8590 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8591 ioccmd == I_LINK || ioccmd == I_UNLINK); 8592 8593 mp1 = mp->b_cont; /* This is the linkblk info */ 8594 li = (struct linkblk *)mp1->b_rptr; 8595 8596 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8597 if (err == EINPROGRESS) 8598 return; 8599 if (err == 0) 8600 miocack(q, mp, 0, 0); 8601 else 8602 miocnak(q, mp, 0, err); 8603 8604 /* Conn was refheld in ip_sioctl_copyin_setup */ 8605 if (CONN_Q(q)) { 8606 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8607 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8608 } 8609 } 8610 8611 /* 8612 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8613 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8614 * module stream). 8615 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8616 * an error code on failure. 8617 */ 8618 static int 8619 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8620 struct linkblk *li) 8621 { 8622 int err = 0; 8623 ill_t *ill; 8624 queue_t *ipwq, *dwq; 8625 const char *name; 8626 struct qinit *qinfo; 8627 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8628 boolean_t entered_ipsq = B_FALSE; 8629 boolean_t is_ip = B_FALSE; 8630 arl_t *arl; 8631 8632 /* 8633 * Walk the lower stream to verify it's the IP module stream. 8634 * The IP module is identified by its name, wput function, 8635 * and non-NULL q_next. STREAMS ensures that the lower stream 8636 * (li->l_qbot) will not vanish until this ioctl completes. 8637 */ 8638 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8639 qinfo = ipwq->q_qinfo; 8640 name = qinfo->qi_minfo->mi_idname; 8641 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8642 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8643 is_ip = B_TRUE; 8644 break; 8645 } 8646 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8647 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8648 break; 8649 } 8650 } 8651 8652 /* 8653 * If this isn't an IP module stream, bail. 8654 */ 8655 if (ipwq == NULL) 8656 return (0); 8657 8658 if (!is_ip) { 8659 arl = (arl_t *)ipwq->q_ptr; 8660 ill = arl_to_ill(arl); 8661 if (ill == NULL) 8662 return (0); 8663 } else { 8664 ill = ipwq->q_ptr; 8665 } 8666 ASSERT(ill != NULL); 8667 8668 if (ipsq == NULL) { 8669 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8670 NEW_OP, B_FALSE); 8671 if (ipsq == NULL) { 8672 if (!is_ip) 8673 ill_refrele(ill); 8674 return (EINPROGRESS); 8675 } 8676 entered_ipsq = B_TRUE; 8677 } 8678 ASSERT(IAM_WRITER_ILL(ill)); 8679 mutex_enter(&ill->ill_lock); 8680 if (!is_ip) { 8681 if (islink && ill->ill_muxid == 0) { 8682 /* 8683 * Plumbing has to be done with IP plumbed first, arp 8684 * second, but here we have arp being plumbed first. 8685 */ 8686 mutex_exit(&ill->ill_lock); 8687 if (entered_ipsq) 8688 ipsq_exit(ipsq); 8689 ill_refrele(ill); 8690 return (EINVAL); 8691 } 8692 } 8693 mutex_exit(&ill->ill_lock); 8694 if (!is_ip) { 8695 arl->arl_muxid = islink ? li->l_index : 0; 8696 ill_refrele(ill); 8697 goto done; 8698 } 8699 8700 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8701 goto done; 8702 8703 /* 8704 * As part of I_{P}LINKing, stash the number of downstream modules and 8705 * the read queue of the module immediately below IP in the ill. 8706 * These are used during the capability negotiation below. 8707 */ 8708 ill->ill_lmod_rq = NULL; 8709 ill->ill_lmod_cnt = 0; 8710 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8711 ill->ill_lmod_rq = RD(dwq); 8712 for (; dwq != NULL; dwq = dwq->q_next) 8713 ill->ill_lmod_cnt++; 8714 } 8715 8716 ill->ill_muxid = islink ? li->l_index : 0; 8717 8718 /* 8719 * Mark the ipsq busy until the capability operations initiated below 8720 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8721 * returns, but the capability operation may complete asynchronously 8722 * much later. 8723 */ 8724 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8725 /* 8726 * If there's at least one up ipif on this ill, then we're bound to 8727 * the underlying driver via DLPI. In that case, renegotiate 8728 * capabilities to account for any possible change in modules 8729 * interposed between IP and the driver. 8730 */ 8731 if (ill->ill_ipif_up_count > 0) { 8732 if (islink) 8733 ill_capability_probe(ill); 8734 else 8735 ill_capability_reset(ill, B_FALSE); 8736 } 8737 ipsq_current_finish(ipsq); 8738 done: 8739 if (entered_ipsq) 8740 ipsq_exit(ipsq); 8741 8742 return (err); 8743 } 8744 8745 /* 8746 * Search the ioctl command in the ioctl tables and return a pointer 8747 * to the ioctl command information. The ioctl command tables are 8748 * static and fully populated at compile time. 8749 */ 8750 ip_ioctl_cmd_t * 8751 ip_sioctl_lookup(int ioc_cmd) 8752 { 8753 int index; 8754 ip_ioctl_cmd_t *ipip; 8755 ip_ioctl_cmd_t *ipip_end; 8756 8757 if (ioc_cmd == IPI_DONTCARE) 8758 return (NULL); 8759 8760 /* 8761 * Do a 2 step search. First search the indexed table 8762 * based on the least significant byte of the ioctl cmd. 8763 * If we don't find a match, then search the misc table 8764 * serially. 8765 */ 8766 index = ioc_cmd & 0xFF; 8767 if (index < ip_ndx_ioctl_count) { 8768 ipip = &ip_ndx_ioctl_table[index]; 8769 if (ipip->ipi_cmd == ioc_cmd) { 8770 /* Found a match in the ndx table */ 8771 return (ipip); 8772 } 8773 } 8774 8775 /* Search the misc table */ 8776 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8777 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8778 if (ipip->ipi_cmd == ioc_cmd) 8779 /* Found a match in the misc table */ 8780 return (ipip); 8781 } 8782 8783 return (NULL); 8784 } 8785 8786 /* 8787 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8788 */ 8789 static boolean_t 8790 getset_ioctl_checks(mblk_t *mp) 8791 { 8792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8793 mblk_t *mp1 = mp->b_cont; 8794 mod_ioc_prop_t *pioc; 8795 uint_t flags; 8796 uint_t pioc_size; 8797 8798 /* do sanity checks on various arguments */ 8799 if (mp1 == NULL || iocp->ioc_count == 0 || 8800 iocp->ioc_count == TRANSPARENT) { 8801 return (B_FALSE); 8802 } 8803 if (msgdsize(mp1) < iocp->ioc_count) { 8804 if (!pullupmsg(mp1, iocp->ioc_count)) 8805 return (B_FALSE); 8806 } 8807 8808 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8809 8810 /* sanity checks on mpr_valsize */ 8811 pioc_size = sizeof (mod_ioc_prop_t); 8812 if (pioc->mpr_valsize != 0) 8813 pioc_size += pioc->mpr_valsize - 1; 8814 8815 if (iocp->ioc_count != pioc_size) 8816 return (B_FALSE); 8817 8818 flags = pioc->mpr_flags; 8819 if (iocp->ioc_cmd == SIOCSETPROP) { 8820 /* 8821 * One can either reset the value to it's default value or 8822 * change the current value or append/remove the value from 8823 * a multi-valued properties. 8824 */ 8825 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8826 flags != MOD_PROP_ACTIVE && 8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8828 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8829 return (B_FALSE); 8830 } else { 8831 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8832 8833 /* 8834 * One can retrieve only one kind of property information 8835 * at a time. 8836 */ 8837 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8838 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8839 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8840 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8841 return (B_FALSE); 8842 } 8843 8844 return (B_TRUE); 8845 } 8846 8847 /* 8848 * process the SIOC{SET|GET}PROP ioctl's 8849 */ 8850 /* ARGSUSED */ 8851 static void 8852 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8853 { 8854 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8855 mblk_t *mp1 = mp->b_cont; 8856 mod_ioc_prop_t *pioc; 8857 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8858 ip_stack_t *ipst; 8859 netstack_t *stack; 8860 cred_t *cr; 8861 boolean_t set; 8862 int err; 8863 8864 ASSERT(q->q_next == NULL); 8865 ASSERT(CONN_Q(q)); 8866 8867 if (!getset_ioctl_checks(mp)) { 8868 miocnak(q, mp, 0, EINVAL); 8869 return; 8870 } 8871 ipst = CONNQ_TO_IPST(q); 8872 stack = ipst->ips_netstack; 8873 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8874 8875 switch (pioc->mpr_proto) { 8876 case MOD_PROTO_IP: 8877 case MOD_PROTO_IPV4: 8878 case MOD_PROTO_IPV6: 8879 ptbl = ipst->ips_propinfo_tbl; 8880 break; 8881 case MOD_PROTO_RAWIP: 8882 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8883 break; 8884 case MOD_PROTO_TCP: 8885 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8886 break; 8887 case MOD_PROTO_UDP: 8888 ptbl = stack->netstack_udp->us_propinfo_tbl; 8889 break; 8890 case MOD_PROTO_SCTP: 8891 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8892 break; 8893 default: 8894 miocnak(q, mp, 0, EINVAL); 8895 return; 8896 } 8897 8898 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8899 if (pinfo == NULL) { 8900 miocnak(q, mp, 0, ENOENT); 8901 return; 8902 } 8903 8904 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8905 if (set && pinfo->mpi_setf != NULL) { 8906 cr = msg_getcred(mp, NULL); 8907 if (cr == NULL) 8908 cr = iocp->ioc_cr; 8909 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8910 pioc->mpr_val, pioc->mpr_flags); 8911 } else if (!set && pinfo->mpi_getf != NULL) { 8912 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8913 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8914 } else { 8915 err = EPERM; 8916 } 8917 8918 if (err != 0) { 8919 miocnak(q, mp, 0, err); 8920 } else { 8921 if (set) 8922 miocack(q, mp, 0, 0); 8923 else /* For get, we need to return back the data */ 8924 miocack(q, mp, iocp->ioc_count, 0); 8925 } 8926 } 8927 8928 /* 8929 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8930 * as several routing daemons have unfortunately used this 'unpublished' 8931 * but well-known ioctls. 8932 */ 8933 /* ARGSUSED */ 8934 static void 8935 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8936 { 8937 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8938 mblk_t *mp1 = mp->b_cont; 8939 char *pname, *pval, *buf; 8940 uint_t bufsize, proto; 8941 mod_prop_info_t *pinfo = NULL; 8942 ip_stack_t *ipst; 8943 int err = 0; 8944 8945 ASSERT(CONN_Q(q)); 8946 ipst = CONNQ_TO_IPST(q); 8947 8948 if (iocp->ioc_count == 0 || mp1 == NULL) { 8949 miocnak(q, mp, 0, EINVAL); 8950 return; 8951 } 8952 8953 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8954 pval = buf = pname = (char *)mp1->b_rptr; 8955 bufsize = MBLKL(mp1); 8956 8957 if (strcmp(pname, "ip_forwarding") == 0) { 8958 pname = "forwarding"; 8959 proto = MOD_PROTO_IPV4; 8960 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8961 pname = "forwarding"; 8962 proto = MOD_PROTO_IPV6; 8963 } else { 8964 miocnak(q, mp, 0, EINVAL); 8965 return; 8966 } 8967 8968 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8969 8970 switch (iocp->ioc_cmd) { 8971 case ND_GET: 8972 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8973 bufsize, 0)) == 0) { 8974 miocack(q, mp, iocp->ioc_count, 0); 8975 return; 8976 } 8977 break; 8978 case ND_SET: 8979 /* 8980 * buffer will have property name and value in the following 8981 * format, 8982 * <property name>'\0'<property value>'\0', extract them; 8983 */ 8984 while (*pval++) 8985 noop; 8986 8987 if (!*pval || pval >= (char *)mp1->b_wptr) { 8988 err = EINVAL; 8989 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8990 pinfo, NULL, pval, 0)) == 0) { 8991 miocack(q, mp, 0, 0); 8992 return; 8993 } 8994 break; 8995 default: 8996 err = EINVAL; 8997 break; 8998 } 8999 miocnak(q, mp, 0, err); 9000 } 9001 9002 /* 9003 * Wrapper function for resuming deferred ioctl processing 9004 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9005 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9006 */ 9007 /* ARGSUSED */ 9008 void 9009 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9010 void *dummy_arg) 9011 { 9012 ip_sioctl_copyin_setup(q, mp); 9013 } 9014 9015 /* 9016 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9017 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9018 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9019 * We establish here the size of the block to be copied in. mi_copyin 9020 * arranges for this to happen, an processing continues in ip_wput_nondata with 9021 * an M_IOCDATA message. 9022 */ 9023 void 9024 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9025 { 9026 int copyin_size; 9027 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9028 ip_ioctl_cmd_t *ipip; 9029 cred_t *cr; 9030 ip_stack_t *ipst; 9031 9032 if (CONN_Q(q)) 9033 ipst = CONNQ_TO_IPST(q); 9034 else 9035 ipst = ILLQ_TO_IPST(q); 9036 9037 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9038 if (ipip == NULL) { 9039 /* 9040 * The ioctl is not one we understand or own. 9041 * Pass it along to be processed down stream, 9042 * if this is a module instance of IP, else nak 9043 * the ioctl. 9044 */ 9045 if (q->q_next == NULL) { 9046 goto nak; 9047 } else { 9048 putnext(q, mp); 9049 return; 9050 } 9051 } 9052 9053 /* 9054 * If this is deferred, then we will do all the checks when we 9055 * come back. 9056 */ 9057 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9058 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9059 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9060 return; 9061 } 9062 9063 /* 9064 * Only allow a very small subset of IP ioctls on this stream if 9065 * IP is a module and not a driver. Allowing ioctls to be processed 9066 * in this case may cause assert failures or data corruption. 9067 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9068 * ioctls allowed on an IP module stream, after which this stream 9069 * normally becomes a multiplexor (at which time the stream head 9070 * will fail all ioctls). 9071 */ 9072 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9073 goto nak; 9074 } 9075 9076 /* Make sure we have ioctl data to process. */ 9077 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9078 goto nak; 9079 9080 /* 9081 * Prefer dblk credential over ioctl credential; some synthesized 9082 * ioctls have kcred set because there's no way to crhold() 9083 * a credential in some contexts. (ioc_cr is not crfree() by 9084 * the framework; the caller of ioctl needs to hold the reference 9085 * for the duration of the call). 9086 */ 9087 cr = msg_getcred(mp, NULL); 9088 if (cr == NULL) 9089 cr = iocp->ioc_cr; 9090 9091 /* Make sure normal users don't send down privileged ioctls */ 9092 if ((ipip->ipi_flags & IPI_PRIV) && 9093 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9094 /* We checked the privilege earlier but log it here */ 9095 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9096 return; 9097 } 9098 9099 /* 9100 * The ioctl command tables can only encode fixed length 9101 * ioctl data. If the length is variable, the table will 9102 * encode the length as zero. Such special cases are handled 9103 * below in the switch. 9104 */ 9105 if (ipip->ipi_copyin_size != 0) { 9106 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9107 return; 9108 } 9109 9110 switch (iocp->ioc_cmd) { 9111 case O_SIOCGIFCONF: 9112 case SIOCGIFCONF: 9113 /* 9114 * This IOCTL is hilarious. See comments in 9115 * ip_sioctl_get_ifconf for the story. 9116 */ 9117 if (iocp->ioc_count == TRANSPARENT) 9118 copyin_size = SIZEOF_STRUCT(ifconf, 9119 iocp->ioc_flag); 9120 else 9121 copyin_size = iocp->ioc_count; 9122 mi_copyin(q, mp, NULL, copyin_size); 9123 return; 9124 9125 case O_SIOCGLIFCONF: 9126 case SIOCGLIFCONF: 9127 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9128 mi_copyin(q, mp, NULL, copyin_size); 9129 return; 9130 9131 case SIOCGLIFSRCOF: 9132 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9133 mi_copyin(q, mp, NULL, copyin_size); 9134 return; 9135 9136 case SIOCGIP6ADDRPOLICY: 9137 ip_sioctl_ip6addrpolicy(q, mp); 9138 ip6_asp_table_refrele(ipst); 9139 return; 9140 9141 case SIOCSIP6ADDRPOLICY: 9142 ip_sioctl_ip6addrpolicy(q, mp); 9143 return; 9144 9145 case SIOCGDSTINFO: 9146 ip_sioctl_dstinfo(q, mp); 9147 ip6_asp_table_refrele(ipst); 9148 return; 9149 9150 case ND_SET: 9151 case ND_GET: 9152 ip_process_legacy_nddprop(q, mp); 9153 return; 9154 9155 case SIOCSETPROP: 9156 case SIOCGETPROP: 9157 ip_sioctl_getsetprop(q, mp); 9158 return; 9159 9160 case I_PLINK: 9161 case I_PUNLINK: 9162 case I_LINK: 9163 case I_UNLINK: 9164 /* 9165 * We treat non-persistent link similarly as the persistent 9166 * link case, in terms of plumbing/unplumbing, as well as 9167 * dynamic re-plumbing events indicator. See comments 9168 * in ip_sioctl_plink() for more. 9169 * 9170 * Request can be enqueued in the 'ipsq' while waiting 9171 * to become exclusive. So bump up the conn ref. 9172 */ 9173 if (CONN_Q(q)) { 9174 CONN_INC_REF(Q_TO_CONN(q)); 9175 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9176 } 9177 ip_sioctl_plink(NULL, q, mp, NULL); 9178 return; 9179 9180 case IP_IOCTL: 9181 ip_wput_ioctl(q, mp); 9182 return; 9183 9184 case SIOCILB: 9185 /* The ioctl length varies depending on the ILB command. */ 9186 copyin_size = iocp->ioc_count; 9187 if (copyin_size < sizeof (ilb_cmd_t)) 9188 goto nak; 9189 mi_copyin(q, mp, NULL, copyin_size); 9190 return; 9191 9192 default: 9193 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9194 iocp->ioc_cmd, iocp->ioc_cmd); 9195 /* FALLTHRU */ 9196 } 9197 nak: 9198 if (mp->b_cont != NULL) { 9199 freemsg(mp->b_cont); 9200 mp->b_cont = NULL; 9201 } 9202 iocp->ioc_error = EINVAL; 9203 mp->b_datap->db_type = M_IOCNAK; 9204 iocp->ioc_count = 0; 9205 qreply(q, mp); 9206 } 9207 9208 static void 9209 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9210 { 9211 struct arpreq *ar; 9212 struct xarpreq *xar; 9213 mblk_t *tmp; 9214 struct iocblk *iocp; 9215 int x_arp_ioctl = B_FALSE; 9216 int *flagsp; 9217 char *storage = NULL; 9218 9219 ASSERT(ill != NULL); 9220 9221 iocp = (struct iocblk *)mp->b_rptr; 9222 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9223 9224 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9225 if ((iocp->ioc_cmd == SIOCGXARP) || 9226 (iocp->ioc_cmd == SIOCSXARP)) { 9227 x_arp_ioctl = B_TRUE; 9228 xar = (struct xarpreq *)tmp->b_rptr; 9229 flagsp = &xar->xarp_flags; 9230 storage = xar->xarp_ha.sdl_data; 9231 } else { 9232 ar = (struct arpreq *)tmp->b_rptr; 9233 flagsp = &ar->arp_flags; 9234 storage = ar->arp_ha.sa_data; 9235 } 9236 9237 /* 9238 * We're done if this is not an SIOCG{X}ARP 9239 */ 9240 if (x_arp_ioctl) { 9241 storage += ill_xarp_info(&xar->xarp_ha, ill); 9242 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9243 sizeof (xar->xarp_ha.sdl_data)) { 9244 iocp->ioc_error = EINVAL; 9245 return; 9246 } 9247 } 9248 *flagsp = ATF_INUSE; 9249 /* 9250 * If /sbin/arp told us we are the authority using the "permanent" 9251 * flag, or if this is one of my addresses print "permanent" 9252 * in the /sbin/arp output. 9253 */ 9254 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9255 *flagsp |= ATF_AUTHORITY; 9256 if (flags & NCE_F_NONUD) 9257 *flagsp |= ATF_PERM; /* not subject to aging */ 9258 if (flags & NCE_F_PUBLISH) 9259 *flagsp |= ATF_PUBL; 9260 if (hwaddr != NULL) { 9261 *flagsp |= ATF_COM; 9262 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9263 } 9264 } 9265 9266 /* 9267 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9268 * interface) create the next available logical interface for this 9269 * physical interface. 9270 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9271 * ipif with the specified name. 9272 * 9273 * If the address family is not AF_UNSPEC then set the address as well. 9274 * 9275 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9276 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9277 * 9278 * Executed as a writer on the ill. 9279 * So no lock is needed to traverse the ipif chain, or examine the 9280 * phyint flags. 9281 */ 9282 /* ARGSUSED */ 9283 int 9284 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9285 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9286 { 9287 mblk_t *mp1; 9288 struct lifreq *lifr; 9289 boolean_t isv6; 9290 boolean_t exists; 9291 char *name; 9292 char *endp; 9293 char *cp; 9294 int namelen; 9295 ipif_t *ipif; 9296 long id; 9297 ipsq_t *ipsq; 9298 ill_t *ill; 9299 sin_t *sin; 9300 int err = 0; 9301 boolean_t found_sep = B_FALSE; 9302 conn_t *connp; 9303 zoneid_t zoneid; 9304 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9305 9306 ASSERT(q->q_next == NULL); 9307 ip1dbg(("ip_sioctl_addif\n")); 9308 /* Existence of mp1 has been checked in ip_wput_nondata */ 9309 mp1 = mp->b_cont->b_cont; 9310 /* 9311 * Null terminate the string to protect against buffer 9312 * overrun. String was generated by user code and may not 9313 * be trusted. 9314 */ 9315 lifr = (struct lifreq *)mp1->b_rptr; 9316 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9317 name = lifr->lifr_name; 9318 ASSERT(CONN_Q(q)); 9319 connp = Q_TO_CONN(q); 9320 isv6 = (connp->conn_family == AF_INET6); 9321 zoneid = connp->conn_zoneid; 9322 namelen = mi_strlen(name); 9323 if (namelen == 0) 9324 return (EINVAL); 9325 9326 exists = B_FALSE; 9327 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9328 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9329 /* 9330 * Allow creating lo0 using SIOCLIFADDIF. 9331 * can't be any other writer thread. So can pass null below 9332 * for the last 4 args to ipif_lookup_name. 9333 */ 9334 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9335 &exists, isv6, zoneid, ipst); 9336 /* Prevent any further action */ 9337 if (ipif == NULL) { 9338 return (ENOBUFS); 9339 } else if (!exists) { 9340 /* We created the ipif now and as writer */ 9341 ipif_refrele(ipif); 9342 return (0); 9343 } else { 9344 ill = ipif->ipif_ill; 9345 ill_refhold(ill); 9346 ipif_refrele(ipif); 9347 } 9348 } else { 9349 /* Look for a colon in the name. */ 9350 endp = &name[namelen]; 9351 for (cp = endp; --cp > name; ) { 9352 if (*cp == IPIF_SEPARATOR_CHAR) { 9353 found_sep = B_TRUE; 9354 /* 9355 * Reject any non-decimal aliases for plumbing 9356 * of logical interfaces. Aliases with leading 9357 * zeroes are also rejected as they introduce 9358 * ambiguity in the naming of the interfaces. 9359 * Comparing with "0" takes care of all such 9360 * cases. 9361 */ 9362 if ((strncmp("0", cp+1, 1)) == 0) 9363 return (EINVAL); 9364 9365 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9366 id <= 0 || *endp != '\0') { 9367 return (EINVAL); 9368 } 9369 *cp = '\0'; 9370 break; 9371 } 9372 } 9373 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9374 if (found_sep) 9375 *cp = IPIF_SEPARATOR_CHAR; 9376 if (ill == NULL) 9377 return (ENXIO); 9378 } 9379 9380 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9381 B_TRUE); 9382 9383 /* 9384 * Release the refhold due to the lookup, now that we are excl 9385 * or we are just returning 9386 */ 9387 ill_refrele(ill); 9388 9389 if (ipsq == NULL) 9390 return (EINPROGRESS); 9391 9392 /* We are now exclusive on the IPSQ */ 9393 ASSERT(IAM_WRITER_ILL(ill)); 9394 9395 if (found_sep) { 9396 /* Now see if there is an IPIF with this unit number. */ 9397 for (ipif = ill->ill_ipif; ipif != NULL; 9398 ipif = ipif->ipif_next) { 9399 if (ipif->ipif_id == id) { 9400 err = EEXIST; 9401 goto done; 9402 } 9403 } 9404 } 9405 9406 /* 9407 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9408 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9409 * instead. 9410 */ 9411 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9412 B_TRUE, B_TRUE, &err)) == NULL) { 9413 goto done; 9414 } 9415 9416 /* Return created name with ioctl */ 9417 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9418 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9419 ip1dbg(("created %s\n", lifr->lifr_name)); 9420 9421 /* Set address */ 9422 sin = (sin_t *)&lifr->lifr_addr; 9423 if (sin->sin_family != AF_UNSPEC) { 9424 err = ip_sioctl_addr(ipif, sin, q, mp, 9425 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9426 } 9427 9428 done: 9429 ipsq_exit(ipsq); 9430 return (err); 9431 } 9432 9433 /* 9434 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9435 * interface) delete it based on the IP address (on this physical interface). 9436 * Otherwise delete it based on the ipif_id. 9437 * Also, special handling to allow a removeif of lo0. 9438 */ 9439 /* ARGSUSED */ 9440 int 9441 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9442 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9443 { 9444 conn_t *connp; 9445 ill_t *ill = ipif->ipif_ill; 9446 boolean_t success; 9447 ip_stack_t *ipst; 9448 9449 ipst = CONNQ_TO_IPST(q); 9450 9451 ASSERT(q->q_next == NULL); 9452 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9453 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9454 ASSERT(IAM_WRITER_IPIF(ipif)); 9455 9456 connp = Q_TO_CONN(q); 9457 /* 9458 * Special case for unplumbing lo0 (the loopback physical interface). 9459 * If unplumbing lo0, the incoming address structure has been 9460 * initialized to all zeros. When unplumbing lo0, all its logical 9461 * interfaces must be removed too. 9462 * 9463 * Note that this interface may be called to remove a specific 9464 * loopback logical interface (eg, lo0:1). But in that case 9465 * ipif->ipif_id != 0 so that the code path for that case is the 9466 * same as any other interface (meaning it skips the code directly 9467 * below). 9468 */ 9469 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9470 if (sin->sin_family == AF_UNSPEC && 9471 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9472 /* 9473 * Mark it condemned. No new ref. will be made to ill. 9474 */ 9475 mutex_enter(&ill->ill_lock); 9476 ill->ill_state_flags |= ILL_CONDEMNED; 9477 for (ipif = ill->ill_ipif; ipif != NULL; 9478 ipif = ipif->ipif_next) { 9479 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9480 } 9481 mutex_exit(&ill->ill_lock); 9482 9483 ipif = ill->ill_ipif; 9484 /* unplumb the loopback interface */ 9485 ill_delete(ill); 9486 mutex_enter(&connp->conn_lock); 9487 mutex_enter(&ill->ill_lock); 9488 9489 /* Are any references to this ill active */ 9490 if (ill_is_freeable(ill)) { 9491 mutex_exit(&ill->ill_lock); 9492 mutex_exit(&connp->conn_lock); 9493 ill_delete_tail(ill); 9494 mi_free(ill); 9495 return (0); 9496 } 9497 success = ipsq_pending_mp_add(connp, ipif, 9498 CONNP_TO_WQ(connp), mp, ILL_FREE); 9499 mutex_exit(&connp->conn_lock); 9500 mutex_exit(&ill->ill_lock); 9501 if (success) 9502 return (EINPROGRESS); 9503 else 9504 return (EINTR); 9505 } 9506 } 9507 9508 if (ipif->ipif_id == 0) { 9509 ipsq_t *ipsq; 9510 9511 /* Find based on address */ 9512 if (ipif->ipif_isv6) { 9513 sin6_t *sin6; 9514 9515 if (sin->sin_family != AF_INET6) 9516 return (EAFNOSUPPORT); 9517 9518 sin6 = (sin6_t *)sin; 9519 /* We are a writer, so we should be able to lookup */ 9520 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9521 ipst); 9522 } else { 9523 if (sin->sin_family != AF_INET) 9524 return (EAFNOSUPPORT); 9525 9526 /* We are a writer, so we should be able to lookup */ 9527 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9528 ipst); 9529 } 9530 if (ipif == NULL) { 9531 return (EADDRNOTAVAIL); 9532 } 9533 9534 /* 9535 * It is possible for a user to send an SIOCLIFREMOVEIF with 9536 * lifr_name of the physical interface but with an ip address 9537 * lifr_addr of a logical interface plumbed over it. 9538 * So update ipx_current_ipif now that ipif points to the 9539 * correct one. 9540 */ 9541 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9542 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9543 9544 /* This is a writer */ 9545 ipif_refrele(ipif); 9546 } 9547 9548 /* 9549 * Can not delete instance zero since it is tied to the ill. 9550 */ 9551 if (ipif->ipif_id == 0) 9552 return (EBUSY); 9553 9554 mutex_enter(&ill->ill_lock); 9555 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9556 mutex_exit(&ill->ill_lock); 9557 9558 ipif_free(ipif); 9559 9560 mutex_enter(&connp->conn_lock); 9561 mutex_enter(&ill->ill_lock); 9562 9563 /* Are any references to this ipif active */ 9564 if (ipif_is_freeable(ipif)) { 9565 mutex_exit(&ill->ill_lock); 9566 mutex_exit(&connp->conn_lock); 9567 ipif_non_duplicate(ipif); 9568 (void) ipif_down_tail(ipif); 9569 ipif_free_tail(ipif); /* frees ipif */ 9570 return (0); 9571 } 9572 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9573 IPIF_FREE); 9574 mutex_exit(&ill->ill_lock); 9575 mutex_exit(&connp->conn_lock); 9576 if (success) 9577 return (EINPROGRESS); 9578 else 9579 return (EINTR); 9580 } 9581 9582 /* 9583 * Restart the removeif ioctl. The refcnt has gone down to 0. 9584 * The ipif is already condemned. So can't find it thru lookups. 9585 */ 9586 /* ARGSUSED */ 9587 int 9588 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9589 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9590 { 9591 ill_t *ill = ipif->ipif_ill; 9592 9593 ASSERT(IAM_WRITER_IPIF(ipif)); 9594 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9595 9596 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9597 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9598 9599 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9600 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9601 ill_delete_tail(ill); 9602 mi_free(ill); 9603 return (0); 9604 } 9605 9606 ipif_non_duplicate(ipif); 9607 (void) ipif_down_tail(ipif); 9608 ipif_free_tail(ipif); 9609 9610 return (0); 9611 } 9612 9613 /* 9614 * Set the local interface address using the given prefix and ill_token. 9615 */ 9616 /* ARGSUSED */ 9617 int 9618 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9619 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9620 { 9621 int err; 9622 in6_addr_t v6addr; 9623 sin6_t *sin6; 9624 ill_t *ill; 9625 int i; 9626 9627 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9628 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9629 9630 ASSERT(IAM_WRITER_IPIF(ipif)); 9631 9632 if (!ipif->ipif_isv6) 9633 return (EINVAL); 9634 9635 if (sin->sin_family != AF_INET6) 9636 return (EAFNOSUPPORT); 9637 9638 sin6 = (sin6_t *)sin; 9639 v6addr = sin6->sin6_addr; 9640 ill = ipif->ipif_ill; 9641 9642 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9643 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9644 return (EADDRNOTAVAIL); 9645 9646 for (i = 0; i < 4; i++) 9647 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9648 9649 err = ip_sioctl_addr(ipif, sin, q, mp, 9650 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9651 return (err); 9652 } 9653 9654 /* 9655 * Restart entry point to restart the address set operation after the 9656 * refcounts have dropped to zero. 9657 */ 9658 /* ARGSUSED */ 9659 int 9660 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9661 ip_ioctl_cmd_t *ipip, void *ifreq) 9662 { 9663 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9665 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9666 } 9667 9668 /* 9669 * Set the local interface address. 9670 * Allow an address of all zero when the interface is down. 9671 */ 9672 /* ARGSUSED */ 9673 int 9674 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9675 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9676 { 9677 int err = 0; 9678 in6_addr_t v6addr; 9679 boolean_t need_up = B_FALSE; 9680 ill_t *ill; 9681 int i; 9682 9683 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9684 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9685 9686 ASSERT(IAM_WRITER_IPIF(ipif)); 9687 9688 ill = ipif->ipif_ill; 9689 if (ipif->ipif_isv6) { 9690 sin6_t *sin6; 9691 phyint_t *phyi; 9692 9693 if (sin->sin_family != AF_INET6) 9694 return (EAFNOSUPPORT); 9695 9696 sin6 = (sin6_t *)sin; 9697 v6addr = sin6->sin6_addr; 9698 phyi = ill->ill_phyint; 9699 9700 /* 9701 * Enforce that true multicast interfaces have a link-local 9702 * address for logical unit 0. 9703 * 9704 * However for those ipif's for which link-local address was 9705 * not created by default, also allow setting :: as the address. 9706 * This scenario would arise, when we delete an address on ipif 9707 * with logical unit 0, we would want to set :: as the address. 9708 */ 9709 if (ipif->ipif_id == 0 && 9710 (ill->ill_flags & ILLF_MULTICAST) && 9711 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9712 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9713 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9714 9715 /* 9716 * if default link-local was not created by kernel for 9717 * this ill, allow setting :: as the address on ipif:0. 9718 */ 9719 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9720 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9721 return (EADDRNOTAVAIL); 9722 } else { 9723 return (EADDRNOTAVAIL); 9724 } 9725 } 9726 9727 /* 9728 * up interfaces shouldn't have the unspecified address 9729 * unless they also have the IPIF_NOLOCAL flags set and 9730 * have a subnet assigned. 9731 */ 9732 if ((ipif->ipif_flags & IPIF_UP) && 9733 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9734 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9735 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9736 return (EADDRNOTAVAIL); 9737 } 9738 9739 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9740 return (EADDRNOTAVAIL); 9741 } else { 9742 ipaddr_t addr; 9743 9744 if (sin->sin_family != AF_INET) 9745 return (EAFNOSUPPORT); 9746 9747 addr = sin->sin_addr.s_addr; 9748 9749 /* Allow INADDR_ANY as the local address. */ 9750 if (addr != INADDR_ANY && 9751 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9752 return (EADDRNOTAVAIL); 9753 9754 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9755 } 9756 /* 9757 * verify that the address being configured is permitted by the 9758 * ill_allowed_ips[] for the interface. 9759 */ 9760 if (ill->ill_allowed_ips_cnt > 0) { 9761 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9762 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9763 &v6addr)) 9764 break; 9765 } 9766 if (i == ill->ill_allowed_ips_cnt) { 9767 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9768 return (EPERM); 9769 } 9770 } 9771 /* 9772 * Even if there is no change we redo things just to rerun 9773 * ipif_set_default. 9774 */ 9775 if (ipif->ipif_flags & IPIF_UP) { 9776 /* 9777 * Setting a new local address, make sure 9778 * we have net and subnet bcast ire's for 9779 * the old address if we need them. 9780 */ 9781 /* 9782 * If the interface is already marked up, 9783 * we call ipif_down which will take care 9784 * of ditching any IREs that have been set 9785 * up based on the old interface address. 9786 */ 9787 err = ipif_logical_down(ipif, q, mp); 9788 if (err == EINPROGRESS) 9789 return (err); 9790 (void) ipif_down_tail(ipif); 9791 need_up = 1; 9792 } 9793 9794 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9795 return (err); 9796 } 9797 9798 int 9799 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9800 boolean_t need_up) 9801 { 9802 in6_addr_t v6addr; 9803 in6_addr_t ov6addr; 9804 ipaddr_t addr; 9805 sin6_t *sin6; 9806 int sinlen; 9807 int err = 0; 9808 ill_t *ill = ipif->ipif_ill; 9809 boolean_t need_dl_down; 9810 boolean_t need_arp_down; 9811 struct iocblk *iocp; 9812 9813 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9814 9815 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9816 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9817 ASSERT(IAM_WRITER_IPIF(ipif)); 9818 9819 /* Must cancel any pending timer before taking the ill_lock */ 9820 if (ipif->ipif_recovery_id != 0) 9821 (void) untimeout(ipif->ipif_recovery_id); 9822 ipif->ipif_recovery_id = 0; 9823 9824 if (ipif->ipif_isv6) { 9825 sin6 = (sin6_t *)sin; 9826 v6addr = sin6->sin6_addr; 9827 sinlen = sizeof (struct sockaddr_in6); 9828 } else { 9829 addr = sin->sin_addr.s_addr; 9830 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9831 sinlen = sizeof (struct sockaddr_in); 9832 } 9833 mutex_enter(&ill->ill_lock); 9834 ov6addr = ipif->ipif_v6lcl_addr; 9835 ipif->ipif_v6lcl_addr = v6addr; 9836 sctp_update_ipif_addr(ipif, ov6addr); 9837 ipif->ipif_addr_ready = 0; 9838 9839 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9840 9841 /* 9842 * If the interface was previously marked as a duplicate, then since 9843 * we've now got a "new" address, it should no longer be considered a 9844 * duplicate -- even if the "new" address is the same as the old one. 9845 * Note that if all ipifs are down, we may have a pending ARP down 9846 * event to handle. This is because we want to recover from duplicates 9847 * and thus delay tearing down ARP until the duplicates have been 9848 * removed or disabled. 9849 */ 9850 need_dl_down = need_arp_down = B_FALSE; 9851 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9852 need_arp_down = !need_up; 9853 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9854 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9855 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9856 need_dl_down = B_TRUE; 9857 } 9858 } 9859 9860 ipif_set_default(ipif); 9861 9862 /* 9863 * If we've just manually set the IPv6 link-local address (0th ipif), 9864 * tag the ill so that future updates to the interface ID don't result 9865 * in this address getting automatically reconfigured from under the 9866 * administrator. 9867 */ 9868 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9869 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9870 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9871 ill->ill_manual_linklocal = 1; 9872 } 9873 9874 /* 9875 * When publishing an interface address change event, we only notify 9876 * the event listeners of the new address. It is assumed that if they 9877 * actively care about the addresses assigned that they will have 9878 * already discovered the previous address assigned (if there was one.) 9879 * 9880 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9881 */ 9882 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9883 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9884 NE_ADDRESS_CHANGE, sin, sinlen); 9885 } 9886 9887 mutex_exit(&ill->ill_lock); 9888 9889 if (need_up) { 9890 /* 9891 * Now bring the interface back up. If this 9892 * is the only IPIF for the ILL, ipif_up 9893 * will have to re-bind to the device, so 9894 * we may get back EINPROGRESS, in which 9895 * case, this IOCTL will get completed in 9896 * ip_rput_dlpi when we see the DL_BIND_ACK. 9897 */ 9898 err = ipif_up(ipif, q, mp); 9899 } else { 9900 /* Perhaps ilgs should use this ill */ 9901 update_conn_ill(NULL, ill->ill_ipst); 9902 } 9903 9904 if (need_dl_down) 9905 ill_dl_down(ill); 9906 9907 if (need_arp_down && !ill->ill_isv6) 9908 (void) ipif_arp_down(ipif); 9909 9910 /* 9911 * The default multicast interface might have changed (for 9912 * instance if the IPv6 scope of the address changed) 9913 */ 9914 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9915 9916 return (err); 9917 } 9918 9919 /* 9920 * Restart entry point to restart the address set operation after the 9921 * refcounts have dropped to zero. 9922 */ 9923 /* ARGSUSED */ 9924 int 9925 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9926 ip_ioctl_cmd_t *ipip, void *ifreq) 9927 { 9928 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9929 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9930 ASSERT(IAM_WRITER_IPIF(ipif)); 9931 (void) ipif_down_tail(ipif); 9932 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9933 } 9934 9935 /* ARGSUSED */ 9936 int 9937 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9938 ip_ioctl_cmd_t *ipip, void *if_req) 9939 { 9940 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9941 struct lifreq *lifr = (struct lifreq *)if_req; 9942 9943 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9944 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9945 /* 9946 * The net mask and address can't change since we have a 9947 * reference to the ipif. So no lock is necessary. 9948 */ 9949 if (ipif->ipif_isv6) { 9950 *sin6 = sin6_null; 9951 sin6->sin6_family = AF_INET6; 9952 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9953 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 9954 sin6->sin6_scope_id = 9955 ipif->ipif_ill->ill_phyint->phyint_ifindex; 9956 } 9957 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9958 lifr->lifr_addrlen = 9959 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9960 } else { 9961 *sin = sin_null; 9962 sin->sin_family = AF_INET; 9963 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9964 if (ipip->ipi_cmd_type == LIF_CMD) { 9965 lifr->lifr_addrlen = 9966 ip_mask_to_plen(ipif->ipif_net_mask); 9967 } 9968 } 9969 return (0); 9970 } 9971 9972 /* 9973 * Set the destination address for a pt-pt interface. 9974 */ 9975 /* ARGSUSED */ 9976 int 9977 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9978 ip_ioctl_cmd_t *ipip, void *if_req) 9979 { 9980 int err = 0; 9981 in6_addr_t v6addr; 9982 boolean_t need_up = B_FALSE; 9983 9984 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9985 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9986 ASSERT(IAM_WRITER_IPIF(ipif)); 9987 9988 if (ipif->ipif_isv6) { 9989 sin6_t *sin6; 9990 9991 if (sin->sin_family != AF_INET6) 9992 return (EAFNOSUPPORT); 9993 9994 sin6 = (sin6_t *)sin; 9995 v6addr = sin6->sin6_addr; 9996 9997 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9998 return (EADDRNOTAVAIL); 9999 } else { 10000 ipaddr_t addr; 10001 10002 if (sin->sin_family != AF_INET) 10003 return (EAFNOSUPPORT); 10004 10005 addr = sin->sin_addr.s_addr; 10006 if (addr != INADDR_ANY && 10007 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10008 return (EADDRNOTAVAIL); 10009 } 10010 10011 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10012 } 10013 10014 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10015 return (0); /* No change */ 10016 10017 if (ipif->ipif_flags & IPIF_UP) { 10018 /* 10019 * If the interface is already marked up, 10020 * we call ipif_down which will take care 10021 * of ditching any IREs that have been set 10022 * up based on the old pp dst address. 10023 */ 10024 err = ipif_logical_down(ipif, q, mp); 10025 if (err == EINPROGRESS) 10026 return (err); 10027 (void) ipif_down_tail(ipif); 10028 need_up = B_TRUE; 10029 } 10030 /* 10031 * could return EINPROGRESS. If so ioctl will complete in 10032 * ip_rput_dlpi_writer 10033 */ 10034 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10035 return (err); 10036 } 10037 10038 static int 10039 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10040 boolean_t need_up) 10041 { 10042 in6_addr_t v6addr; 10043 ill_t *ill = ipif->ipif_ill; 10044 int err = 0; 10045 boolean_t need_dl_down; 10046 boolean_t need_arp_down; 10047 10048 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10049 ipif->ipif_id, (void *)ipif)); 10050 10051 /* Must cancel any pending timer before taking the ill_lock */ 10052 if (ipif->ipif_recovery_id != 0) 10053 (void) untimeout(ipif->ipif_recovery_id); 10054 ipif->ipif_recovery_id = 0; 10055 10056 if (ipif->ipif_isv6) { 10057 sin6_t *sin6; 10058 10059 sin6 = (sin6_t *)sin; 10060 v6addr = sin6->sin6_addr; 10061 } else { 10062 ipaddr_t addr; 10063 10064 addr = sin->sin_addr.s_addr; 10065 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10066 } 10067 mutex_enter(&ill->ill_lock); 10068 /* Set point to point destination address. */ 10069 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10070 /* 10071 * Allow this as a means of creating logical 10072 * pt-pt interfaces on top of e.g. an Ethernet. 10073 * XXX Undocumented HACK for testing. 10074 * pt-pt interfaces are created with NUD disabled. 10075 */ 10076 ipif->ipif_flags |= IPIF_POINTOPOINT; 10077 ipif->ipif_flags &= ~IPIF_BROADCAST; 10078 if (ipif->ipif_isv6) 10079 ill->ill_flags |= ILLF_NONUD; 10080 } 10081 10082 /* 10083 * If the interface was previously marked as a duplicate, then since 10084 * we've now got a "new" address, it should no longer be considered a 10085 * duplicate -- even if the "new" address is the same as the old one. 10086 * Note that if all ipifs are down, we may have a pending ARP down 10087 * event to handle. 10088 */ 10089 need_dl_down = need_arp_down = B_FALSE; 10090 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10091 need_arp_down = !need_up; 10092 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10093 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10094 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10095 need_dl_down = B_TRUE; 10096 } 10097 } 10098 10099 /* 10100 * If we've just manually set the IPv6 destination link-local address 10101 * (0th ipif), tag the ill so that future updates to the destination 10102 * interface ID (as can happen with interfaces over IP tunnels) don't 10103 * result in this address getting automatically reconfigured from 10104 * under the administrator. 10105 */ 10106 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10107 ill->ill_manual_dst_linklocal = 1; 10108 10109 /* Set the new address. */ 10110 ipif->ipif_v6pp_dst_addr = v6addr; 10111 /* Make sure subnet tracks pp_dst */ 10112 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10113 mutex_exit(&ill->ill_lock); 10114 10115 if (need_up) { 10116 /* 10117 * Now bring the interface back up. If this 10118 * is the only IPIF for the ILL, ipif_up 10119 * will have to re-bind to the device, so 10120 * we may get back EINPROGRESS, in which 10121 * case, this IOCTL will get completed in 10122 * ip_rput_dlpi when we see the DL_BIND_ACK. 10123 */ 10124 err = ipif_up(ipif, q, mp); 10125 } 10126 10127 if (need_dl_down) 10128 ill_dl_down(ill); 10129 if (need_arp_down && !ipif->ipif_isv6) 10130 (void) ipif_arp_down(ipif); 10131 10132 return (err); 10133 } 10134 10135 /* 10136 * Restart entry point to restart the dstaddress set operation after the 10137 * refcounts have dropped to zero. 10138 */ 10139 /* ARGSUSED */ 10140 int 10141 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10142 ip_ioctl_cmd_t *ipip, void *ifreq) 10143 { 10144 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10145 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10146 (void) ipif_down_tail(ipif); 10147 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10148 } 10149 10150 /* ARGSUSED */ 10151 int 10152 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10153 ip_ioctl_cmd_t *ipip, void *if_req) 10154 { 10155 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10156 10157 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10158 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10159 /* 10160 * Get point to point destination address. The addresses can't 10161 * change since we hold a reference to the ipif. 10162 */ 10163 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10164 return (EADDRNOTAVAIL); 10165 10166 if (ipif->ipif_isv6) { 10167 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10168 *sin6 = sin6_null; 10169 sin6->sin6_family = AF_INET6; 10170 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10171 } else { 10172 *sin = sin_null; 10173 sin->sin_family = AF_INET; 10174 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10175 } 10176 return (0); 10177 } 10178 10179 /* 10180 * Check which flags will change by the given flags being set 10181 * silently ignore flags which userland is not allowed to control. 10182 * (Because these flags may change between SIOCGLIFFLAGS and 10183 * SIOCSLIFFLAGS, and that's outside of userland's control, 10184 * we need to silently ignore them rather than fail.) 10185 */ 10186 static void 10187 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10188 uint64_t *offp) 10189 { 10190 ill_t *ill = ipif->ipif_ill; 10191 phyint_t *phyi = ill->ill_phyint; 10192 uint64_t cantchange_flags, intf_flags; 10193 uint64_t turn_on, turn_off; 10194 10195 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10196 cantchange_flags = IFF_CANTCHANGE; 10197 if (IS_IPMP(ill)) 10198 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10199 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10200 turn_off = intf_flags & turn_on; 10201 turn_on ^= turn_off; 10202 *onp = turn_on; 10203 *offp = turn_off; 10204 } 10205 10206 /* 10207 * Set interface flags. Many flags require special handling (e.g., 10208 * bringing the interface down); see below for details. 10209 * 10210 * NOTE : We really don't enforce that ipif_id zero should be used 10211 * for setting any flags other than IFF_LOGINT_FLAGS. This 10212 * is because applications generally does SICGLIFFLAGS and 10213 * ORs in the new flags (that affects the logical) and does a 10214 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10215 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10216 * flags that will be turned on is correct with respect to 10217 * ipif_id 0. For backward compatibility reasons, it is not done. 10218 */ 10219 /* ARGSUSED */ 10220 int 10221 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10222 ip_ioctl_cmd_t *ipip, void *if_req) 10223 { 10224 uint64_t turn_on; 10225 uint64_t turn_off; 10226 int err = 0; 10227 phyint_t *phyi; 10228 ill_t *ill; 10229 conn_t *connp; 10230 uint64_t intf_flags; 10231 boolean_t phyint_flags_modified = B_FALSE; 10232 uint64_t flags; 10233 struct ifreq *ifr; 10234 struct lifreq *lifr; 10235 boolean_t set_linklocal = B_FALSE; 10236 10237 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10238 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10239 10240 ASSERT(IAM_WRITER_IPIF(ipif)); 10241 10242 ill = ipif->ipif_ill; 10243 phyi = ill->ill_phyint; 10244 10245 if (ipip->ipi_cmd_type == IF_CMD) { 10246 ifr = (struct ifreq *)if_req; 10247 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10248 } else { 10249 lifr = (struct lifreq *)if_req; 10250 flags = lifr->lifr_flags; 10251 } 10252 10253 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10254 10255 /* 10256 * Have the flags been set correctly until now? 10257 */ 10258 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10259 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10260 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10261 /* 10262 * Compare the new flags to the old, and partition 10263 * into those coming on and those going off. 10264 * For the 16 bit command keep the bits above bit 16 unchanged. 10265 */ 10266 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10267 flags |= intf_flags & ~0xFFFF; 10268 10269 /* 10270 * Explicitly fail attempts to change flags that are always invalid on 10271 * an IPMP meta-interface. 10272 */ 10273 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10274 return (EINVAL); 10275 10276 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10277 if ((turn_on|turn_off) == 0) 10278 return (0); /* No change */ 10279 10280 /* 10281 * All test addresses must be IFF_DEPRECATED (to ensure source address 10282 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10283 * allow it to be turned off. 10284 */ 10285 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10286 (turn_on|intf_flags) & IFF_NOFAILOVER) 10287 return (EINVAL); 10288 10289 if ((connp = Q_TO_CONN(q)) == NULL) 10290 return (EINVAL); 10291 10292 /* 10293 * Only vrrp control socket is allowed to change IFF_UP and 10294 * IFF_NOACCEPT flags when IFF_VRRP is set. 10295 */ 10296 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10297 if (!connp->conn_isvrrp) 10298 return (EINVAL); 10299 } 10300 10301 /* 10302 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10303 * VRRP control socket. 10304 */ 10305 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10306 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10307 return (EINVAL); 10308 } 10309 10310 if (turn_on & IFF_NOFAILOVER) { 10311 turn_on |= IFF_DEPRECATED; 10312 flags |= IFF_DEPRECATED; 10313 } 10314 10315 /* 10316 * On underlying interfaces, only allow applications to manage test 10317 * addresses -- otherwise, they may get confused when the address 10318 * moves as part of being brought up. Likewise, prevent an 10319 * application-managed test address from being converted to a data 10320 * address. To prevent migration of administratively up addresses in 10321 * the kernel, we don't allow them to be converted either. 10322 */ 10323 if (IS_UNDER_IPMP(ill)) { 10324 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10325 10326 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10327 return (EINVAL); 10328 10329 if ((turn_off & IFF_NOFAILOVER) && 10330 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10331 return (EINVAL); 10332 } 10333 10334 /* 10335 * Only allow IFF_TEMPORARY flag to be set on 10336 * IPv6 interfaces. 10337 */ 10338 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10339 return (EINVAL); 10340 10341 /* 10342 * cannot turn off IFF_NOXMIT on VNI interfaces. 10343 */ 10344 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10345 return (EINVAL); 10346 10347 /* 10348 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10349 * interfaces. It makes no sense in that context. 10350 */ 10351 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10352 return (EINVAL); 10353 10354 /* 10355 * For IPv6 ipif_id 0, don't allow the interface to be up without 10356 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10357 * If the link local address isn't set, and can be set, it will get 10358 * set later on in this function. 10359 */ 10360 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10361 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10362 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10363 if (ipif_cant_setlinklocal(ipif)) 10364 return (EINVAL); 10365 set_linklocal = B_TRUE; 10366 } 10367 10368 /* 10369 * If we modify physical interface flags, we'll potentially need to 10370 * send up two routing socket messages for the changes (one for the 10371 * IPv4 ill, and another for the IPv6 ill). Note that here. 10372 */ 10373 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10374 phyint_flags_modified = B_TRUE; 10375 10376 /* 10377 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10378 * (otherwise, we'd immediately use them, defeating standby). Also, 10379 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10380 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10381 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10382 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10383 * will not be honored. 10384 */ 10385 if (turn_on & PHYI_STANDBY) { 10386 /* 10387 * No need to grab ill_g_usesrc_lock here; see the 10388 * synchronization notes in ip.c. 10389 */ 10390 if (ill->ill_usesrc_grp_next != NULL || 10391 intf_flags & PHYI_INACTIVE) 10392 return (EINVAL); 10393 if (!(flags & PHYI_FAILED)) { 10394 flags |= PHYI_INACTIVE; 10395 turn_on |= PHYI_INACTIVE; 10396 } 10397 } 10398 10399 if (turn_off & PHYI_STANDBY) { 10400 flags &= ~PHYI_INACTIVE; 10401 turn_off |= PHYI_INACTIVE; 10402 } 10403 10404 /* 10405 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10406 * would end up on. 10407 */ 10408 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10409 (PHYI_FAILED | PHYI_INACTIVE)) 10410 return (EINVAL); 10411 10412 /* 10413 * If ILLF_ROUTER changes, we need to change the ip forwarding 10414 * status of the interface. 10415 */ 10416 if ((turn_on | turn_off) & ILLF_ROUTER) { 10417 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10418 if (err != 0) 10419 return (err); 10420 } 10421 10422 /* 10423 * If the interface is not UP and we are not going to 10424 * bring it UP, record the flags and return. When the 10425 * interface comes UP later, the right actions will be 10426 * taken. 10427 */ 10428 if (!(ipif->ipif_flags & IPIF_UP) && 10429 !(turn_on & IPIF_UP)) { 10430 /* Record new flags in their respective places. */ 10431 mutex_enter(&ill->ill_lock); 10432 mutex_enter(&ill->ill_phyint->phyint_lock); 10433 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10434 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10435 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10436 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10437 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10438 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10439 mutex_exit(&ill->ill_lock); 10440 mutex_exit(&ill->ill_phyint->phyint_lock); 10441 10442 /* 10443 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10444 * same to the kernel: if any of them has been set by 10445 * userland, the interface cannot be used for data traffic. 10446 */ 10447 if ((turn_on|turn_off) & 10448 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10449 ASSERT(!IS_IPMP(ill)); 10450 /* 10451 * It's possible the ill is part of an "anonymous" 10452 * IPMP group rather than a real group. In that case, 10453 * there are no other interfaces in the group and thus 10454 * no need to call ipmp_phyint_refresh_active(). 10455 */ 10456 if (IS_UNDER_IPMP(ill)) 10457 ipmp_phyint_refresh_active(phyi); 10458 } 10459 10460 if (phyint_flags_modified) { 10461 if (phyi->phyint_illv4 != NULL) { 10462 ip_rts_ifmsg(phyi->phyint_illv4-> 10463 ill_ipif, RTSQ_DEFAULT); 10464 } 10465 if (phyi->phyint_illv6 != NULL) { 10466 ip_rts_ifmsg(phyi->phyint_illv6-> 10467 ill_ipif, RTSQ_DEFAULT); 10468 } 10469 } 10470 /* The default multicast interface might have changed */ 10471 ire_increment_multicast_generation(ill->ill_ipst, 10472 ill->ill_isv6); 10473 10474 return (0); 10475 } else if (set_linklocal) { 10476 mutex_enter(&ill->ill_lock); 10477 if (set_linklocal) 10478 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10479 mutex_exit(&ill->ill_lock); 10480 } 10481 10482 /* 10483 * Disallow IPv6 interfaces coming up that have the unspecified address, 10484 * or point-to-point interfaces with an unspecified destination. We do 10485 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10486 * have a subnet assigned, which is how in.ndpd currently manages its 10487 * onlink prefix list when no addresses are configured with those 10488 * prefixes. 10489 */ 10490 if (ipif->ipif_isv6 && 10491 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10492 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10493 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10494 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10495 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10496 return (EINVAL); 10497 } 10498 10499 /* 10500 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10501 * from being brought up. 10502 */ 10503 if (!ipif->ipif_isv6 && 10504 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10505 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10506 return (EINVAL); 10507 } 10508 10509 /* 10510 * If we are going to change one or more of the flags that are 10511 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10512 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10513 * IPIF_NOFAILOVER, we will take special action. This is 10514 * done by bring the ipif down, changing the flags and bringing 10515 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10516 * back up will trigger the address to be moved. 10517 * 10518 * If we are going to change IFF_NOACCEPT, we need to bring 10519 * all the ipifs down then bring them up again. The act of 10520 * bringing all the ipifs back up will trigger the local 10521 * ires being recreated with "no_accept" set/cleared. 10522 * 10523 * Note that ILLF_NOACCEPT is always set separately from the 10524 * other flags. 10525 */ 10526 if ((turn_on|turn_off) & 10527 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10528 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10529 IPIF_NOFAILOVER)) { 10530 /* 10531 * ipif_down() will ire_delete bcast ire's for the subnet, 10532 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10533 * entries shared between multiple ipifs on the same subnet. 10534 */ 10535 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10536 !(turn_off & IPIF_UP)) { 10537 if (ipif->ipif_flags & IPIF_UP) 10538 ill->ill_logical_down = 1; 10539 turn_on &= ~IPIF_UP; 10540 } 10541 err = ipif_down(ipif, q, mp); 10542 ip1dbg(("ipif_down returns %d err ", err)); 10543 if (err == EINPROGRESS) 10544 return (err); 10545 (void) ipif_down_tail(ipif); 10546 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10547 /* 10548 * If we can quiesce the ill, then continue. If not, then 10549 * ip_sioctl_flags_tail() will be called from 10550 * ipif_ill_refrele_tail(). 10551 */ 10552 ill_down_ipifs(ill, B_TRUE); 10553 10554 mutex_enter(&connp->conn_lock); 10555 mutex_enter(&ill->ill_lock); 10556 if (!ill_is_quiescent(ill)) { 10557 boolean_t success; 10558 10559 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10560 q, mp, ILL_DOWN); 10561 mutex_exit(&ill->ill_lock); 10562 mutex_exit(&connp->conn_lock); 10563 return (success ? EINPROGRESS : EINTR); 10564 } 10565 mutex_exit(&ill->ill_lock); 10566 mutex_exit(&connp->conn_lock); 10567 } 10568 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10569 } 10570 10571 static int 10572 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10573 { 10574 ill_t *ill; 10575 phyint_t *phyi; 10576 uint64_t turn_on, turn_off; 10577 boolean_t phyint_flags_modified = B_FALSE; 10578 int err = 0; 10579 boolean_t set_linklocal = B_FALSE; 10580 10581 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10582 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10583 10584 ASSERT(IAM_WRITER_IPIF(ipif)); 10585 10586 ill = ipif->ipif_ill; 10587 phyi = ill->ill_phyint; 10588 10589 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10590 10591 /* 10592 * IFF_UP is handled separately. 10593 */ 10594 turn_on &= ~IFF_UP; 10595 turn_off &= ~IFF_UP; 10596 10597 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10598 phyint_flags_modified = B_TRUE; 10599 10600 /* 10601 * Now we change the flags. Track current value of 10602 * other flags in their respective places. 10603 */ 10604 mutex_enter(&ill->ill_lock); 10605 mutex_enter(&phyi->phyint_lock); 10606 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10607 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10608 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10609 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10610 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10611 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10612 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10613 set_linklocal = B_TRUE; 10614 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10615 } 10616 10617 mutex_exit(&ill->ill_lock); 10618 mutex_exit(&phyi->phyint_lock); 10619 10620 if (set_linklocal) 10621 (void) ipif_setlinklocal(ipif); 10622 10623 /* 10624 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10625 * the kernel: if any of them has been set by userland, the interface 10626 * cannot be used for data traffic. 10627 */ 10628 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10629 ASSERT(!IS_IPMP(ill)); 10630 /* 10631 * It's possible the ill is part of an "anonymous" IPMP group 10632 * rather than a real group. In that case, there are no other 10633 * interfaces in the group and thus no need for us to call 10634 * ipmp_phyint_refresh_active(). 10635 */ 10636 if (IS_UNDER_IPMP(ill)) 10637 ipmp_phyint_refresh_active(phyi); 10638 } 10639 10640 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10641 /* 10642 * If the ILLF_NOACCEPT flag is changed, bring up all the 10643 * ipifs that were brought down. 10644 * 10645 * The routing sockets messages are sent as the result 10646 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10647 * as well. 10648 */ 10649 err = ill_up_ipifs(ill, q, mp); 10650 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10651 /* 10652 * XXX ipif_up really does not know whether a phyint flags 10653 * was modified or not. So, it sends up information on 10654 * only one routing sockets message. As we don't bring up 10655 * the interface and also set PHYI_ flags simultaneously 10656 * it should be okay. 10657 */ 10658 err = ipif_up(ipif, q, mp); 10659 } else { 10660 /* 10661 * Make sure routing socket sees all changes to the flags. 10662 * ipif_up_done* handles this when we use ipif_up. 10663 */ 10664 if (phyint_flags_modified) { 10665 if (phyi->phyint_illv4 != NULL) { 10666 ip_rts_ifmsg(phyi->phyint_illv4-> 10667 ill_ipif, RTSQ_DEFAULT); 10668 } 10669 if (phyi->phyint_illv6 != NULL) { 10670 ip_rts_ifmsg(phyi->phyint_illv6-> 10671 ill_ipif, RTSQ_DEFAULT); 10672 } 10673 } else { 10674 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10675 } 10676 /* 10677 * Update the flags in SCTP's IPIF list, ipif_up() will do 10678 * this in need_up case. 10679 */ 10680 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10681 } 10682 10683 /* The default multicast interface might have changed */ 10684 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10685 return (err); 10686 } 10687 10688 /* 10689 * Restart the flags operation now that the refcounts have dropped to zero. 10690 */ 10691 /* ARGSUSED */ 10692 int 10693 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10694 ip_ioctl_cmd_t *ipip, void *if_req) 10695 { 10696 uint64_t flags; 10697 struct ifreq *ifr = if_req; 10698 struct lifreq *lifr = if_req; 10699 uint64_t turn_on, turn_off; 10700 10701 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10703 10704 if (ipip->ipi_cmd_type == IF_CMD) { 10705 /* cast to uint16_t prevents unwanted sign extension */ 10706 flags = (uint16_t)ifr->ifr_flags; 10707 } else { 10708 flags = lifr->lifr_flags; 10709 } 10710 10711 /* 10712 * If this function call is a result of the ILLF_NOACCEPT flag 10713 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10714 */ 10715 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10716 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10717 (void) ipif_down_tail(ipif); 10718 10719 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10720 } 10721 10722 /* 10723 * Can operate on either a module or a driver queue. 10724 */ 10725 /* ARGSUSED */ 10726 int 10727 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10728 ip_ioctl_cmd_t *ipip, void *if_req) 10729 { 10730 /* 10731 * Has the flags been set correctly till now ? 10732 */ 10733 ill_t *ill = ipif->ipif_ill; 10734 phyint_t *phyi = ill->ill_phyint; 10735 10736 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10737 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10738 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10739 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10740 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10741 10742 /* 10743 * Need a lock since some flags can be set even when there are 10744 * references to the ipif. 10745 */ 10746 mutex_enter(&ill->ill_lock); 10747 if (ipip->ipi_cmd_type == IF_CMD) { 10748 struct ifreq *ifr = (struct ifreq *)if_req; 10749 10750 /* Get interface flags (low 16 only). */ 10751 ifr->ifr_flags = ((ipif->ipif_flags | 10752 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10753 } else { 10754 struct lifreq *lifr = (struct lifreq *)if_req; 10755 10756 /* Get interface flags. */ 10757 lifr->lifr_flags = ipif->ipif_flags | 10758 ill->ill_flags | phyi->phyint_flags; 10759 } 10760 mutex_exit(&ill->ill_lock); 10761 return (0); 10762 } 10763 10764 /* 10765 * We allow the MTU to be set on an ILL, but not have it be different 10766 * for different IPIFs since we don't actually send packets on IPIFs. 10767 */ 10768 /* ARGSUSED */ 10769 int 10770 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10771 ip_ioctl_cmd_t *ipip, void *if_req) 10772 { 10773 int mtu; 10774 int ip_min_mtu; 10775 struct ifreq *ifr; 10776 struct lifreq *lifr; 10777 ill_t *ill; 10778 10779 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10780 ipif->ipif_id, (void *)ipif)); 10781 if (ipip->ipi_cmd_type == IF_CMD) { 10782 ifr = (struct ifreq *)if_req; 10783 mtu = ifr->ifr_metric; 10784 } else { 10785 lifr = (struct lifreq *)if_req; 10786 mtu = lifr->lifr_mtu; 10787 } 10788 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10789 if (ipif->ipif_id != 0) 10790 return (EINVAL); 10791 10792 ill = ipif->ipif_ill; 10793 if (ipif->ipif_isv6) 10794 ip_min_mtu = IPV6_MIN_MTU; 10795 else 10796 ip_min_mtu = IP_MIN_MTU; 10797 10798 mutex_enter(&ill->ill_lock); 10799 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10800 mutex_exit(&ill->ill_lock); 10801 return (EINVAL); 10802 } 10803 /* Avoid increasing ill_mc_mtu */ 10804 if (ill->ill_mc_mtu > mtu) 10805 ill->ill_mc_mtu = mtu; 10806 10807 /* 10808 * The dce and fragmentation code can handle changes to ill_mtu 10809 * concurrent with sending/fragmenting packets. 10810 */ 10811 ill->ill_mtu = mtu; 10812 ill->ill_flags |= ILLF_FIXEDMTU; 10813 mutex_exit(&ill->ill_lock); 10814 10815 /* 10816 * Make sure all dce_generation checks find out 10817 * that ill_mtu/ill_mc_mtu has changed. 10818 */ 10819 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10820 10821 /* 10822 * Refresh IPMP meta-interface MTU if necessary. 10823 */ 10824 if (IS_UNDER_IPMP(ill)) 10825 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10826 10827 /* Update the MTU in SCTP's list */ 10828 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10829 return (0); 10830 } 10831 10832 /* Get interface MTU. */ 10833 /* ARGSUSED */ 10834 int 10835 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10836 ip_ioctl_cmd_t *ipip, void *if_req) 10837 { 10838 struct ifreq *ifr; 10839 struct lifreq *lifr; 10840 10841 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10842 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10843 10844 /* 10845 * We allow a get on any logical interface even though the set 10846 * can only be done on logical unit 0. 10847 */ 10848 if (ipip->ipi_cmd_type == IF_CMD) { 10849 ifr = (struct ifreq *)if_req; 10850 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10851 } else { 10852 lifr = (struct lifreq *)if_req; 10853 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10854 } 10855 return (0); 10856 } 10857 10858 /* Set interface broadcast address. */ 10859 /* ARGSUSED2 */ 10860 int 10861 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10862 ip_ioctl_cmd_t *ipip, void *if_req) 10863 { 10864 ipaddr_t addr; 10865 ire_t *ire; 10866 ill_t *ill = ipif->ipif_ill; 10867 ip_stack_t *ipst = ill->ill_ipst; 10868 10869 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10870 ipif->ipif_id)); 10871 10872 ASSERT(IAM_WRITER_IPIF(ipif)); 10873 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10874 return (EADDRNOTAVAIL); 10875 10876 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10877 10878 if (sin->sin_family != AF_INET) 10879 return (EAFNOSUPPORT); 10880 10881 addr = sin->sin_addr.s_addr; 10882 10883 if (ipif->ipif_flags & IPIF_UP) { 10884 /* 10885 * If we are already up, make sure the new 10886 * broadcast address makes sense. If it does, 10887 * there should be an IRE for it already. 10888 */ 10889 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10890 ill, ipif->ipif_zoneid, NULL, 10891 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10892 if (ire == NULL) { 10893 return (EINVAL); 10894 } else { 10895 ire_refrele(ire); 10896 } 10897 } 10898 /* 10899 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10900 * needs to already exist we never need to change the set of 10901 * IRE_BROADCASTs when we are UP. 10902 */ 10903 if (addr != ipif->ipif_brd_addr) 10904 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10905 10906 return (0); 10907 } 10908 10909 /* Get interface broadcast address. */ 10910 /* ARGSUSED */ 10911 int 10912 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10913 ip_ioctl_cmd_t *ipip, void *if_req) 10914 { 10915 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10917 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10918 return (EADDRNOTAVAIL); 10919 10920 /* IPIF_BROADCAST not possible with IPv6 */ 10921 ASSERT(!ipif->ipif_isv6); 10922 *sin = sin_null; 10923 sin->sin_family = AF_INET; 10924 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10925 return (0); 10926 } 10927 10928 /* 10929 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10930 */ 10931 /* ARGSUSED */ 10932 int 10933 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10934 ip_ioctl_cmd_t *ipip, void *if_req) 10935 { 10936 int err = 0; 10937 in6_addr_t v6mask; 10938 10939 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10940 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10941 10942 ASSERT(IAM_WRITER_IPIF(ipif)); 10943 10944 if (ipif->ipif_isv6) { 10945 sin6_t *sin6; 10946 10947 if (sin->sin_family != AF_INET6) 10948 return (EAFNOSUPPORT); 10949 10950 sin6 = (sin6_t *)sin; 10951 v6mask = sin6->sin6_addr; 10952 } else { 10953 ipaddr_t mask; 10954 10955 if (sin->sin_family != AF_INET) 10956 return (EAFNOSUPPORT); 10957 10958 mask = sin->sin_addr.s_addr; 10959 if (!ip_contiguous_mask(ntohl(mask))) 10960 return (ENOTSUP); 10961 V4MASK_TO_V6(mask, v6mask); 10962 } 10963 10964 /* 10965 * No big deal if the interface isn't already up, or the mask 10966 * isn't really changing, or this is pt-pt. 10967 */ 10968 if (!(ipif->ipif_flags & IPIF_UP) || 10969 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10970 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10971 ipif->ipif_v6net_mask = v6mask; 10972 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10973 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10974 ipif->ipif_v6net_mask, 10975 ipif->ipif_v6subnet); 10976 } 10977 return (0); 10978 } 10979 /* 10980 * Make sure we have valid net and subnet broadcast ire's 10981 * for the old netmask, if needed by other logical interfaces. 10982 */ 10983 err = ipif_logical_down(ipif, q, mp); 10984 if (err == EINPROGRESS) 10985 return (err); 10986 (void) ipif_down_tail(ipif); 10987 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10988 return (err); 10989 } 10990 10991 static int 10992 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10993 { 10994 in6_addr_t v6mask; 10995 int err = 0; 10996 10997 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10998 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10999 11000 if (ipif->ipif_isv6) { 11001 sin6_t *sin6; 11002 11003 sin6 = (sin6_t *)sin; 11004 v6mask = sin6->sin6_addr; 11005 } else { 11006 ipaddr_t mask; 11007 11008 mask = sin->sin_addr.s_addr; 11009 V4MASK_TO_V6(mask, v6mask); 11010 } 11011 11012 ipif->ipif_v6net_mask = v6mask; 11013 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11014 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11015 ipif->ipif_v6subnet); 11016 } 11017 err = ipif_up(ipif, q, mp); 11018 11019 if (err == 0 || err == EINPROGRESS) { 11020 /* 11021 * The interface must be DL_BOUND if this packet has to 11022 * go out on the wire. Since we only go through a logical 11023 * down and are bound with the driver during an internal 11024 * down/up that is satisfied. 11025 */ 11026 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11027 /* Potentially broadcast an address mask reply. */ 11028 ipif_mask_reply(ipif); 11029 } 11030 } 11031 return (err); 11032 } 11033 11034 /* ARGSUSED */ 11035 int 11036 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11037 ip_ioctl_cmd_t *ipip, void *if_req) 11038 { 11039 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11041 (void) ipif_down_tail(ipif); 11042 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11043 } 11044 11045 /* Get interface net mask. */ 11046 /* ARGSUSED */ 11047 int 11048 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11049 ip_ioctl_cmd_t *ipip, void *if_req) 11050 { 11051 struct lifreq *lifr = (struct lifreq *)if_req; 11052 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11053 11054 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11055 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11056 11057 /* 11058 * net mask can't change since we have a reference to the ipif. 11059 */ 11060 if (ipif->ipif_isv6) { 11061 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11062 *sin6 = sin6_null; 11063 sin6->sin6_family = AF_INET6; 11064 sin6->sin6_addr = ipif->ipif_v6net_mask; 11065 lifr->lifr_addrlen = 11066 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11067 } else { 11068 *sin = sin_null; 11069 sin->sin_family = AF_INET; 11070 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11071 if (ipip->ipi_cmd_type == LIF_CMD) { 11072 lifr->lifr_addrlen = 11073 ip_mask_to_plen(ipif->ipif_net_mask); 11074 } 11075 } 11076 return (0); 11077 } 11078 11079 /* ARGSUSED */ 11080 int 11081 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11082 ip_ioctl_cmd_t *ipip, void *if_req) 11083 { 11084 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11085 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11086 11087 /* 11088 * Since no applications should ever be setting metrics on underlying 11089 * interfaces, we explicitly fail to smoke 'em out. 11090 */ 11091 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11092 return (EINVAL); 11093 11094 /* 11095 * Set interface metric. We don't use this for 11096 * anything but we keep track of it in case it is 11097 * important to routing applications or such. 11098 */ 11099 if (ipip->ipi_cmd_type == IF_CMD) { 11100 struct ifreq *ifr; 11101 11102 ifr = (struct ifreq *)if_req; 11103 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11104 } else { 11105 struct lifreq *lifr; 11106 11107 lifr = (struct lifreq *)if_req; 11108 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11109 } 11110 return (0); 11111 } 11112 11113 /* ARGSUSED */ 11114 int 11115 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11116 ip_ioctl_cmd_t *ipip, void *if_req) 11117 { 11118 /* Get interface metric. */ 11119 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11120 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11121 11122 if (ipip->ipi_cmd_type == IF_CMD) { 11123 struct ifreq *ifr; 11124 11125 ifr = (struct ifreq *)if_req; 11126 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11127 } else { 11128 struct lifreq *lifr; 11129 11130 lifr = (struct lifreq *)if_req; 11131 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11132 } 11133 11134 return (0); 11135 } 11136 11137 /* ARGSUSED */ 11138 int 11139 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11140 ip_ioctl_cmd_t *ipip, void *if_req) 11141 { 11142 int arp_muxid; 11143 11144 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11145 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11146 /* 11147 * Set the muxid returned from I_PLINK. 11148 */ 11149 if (ipip->ipi_cmd_type == IF_CMD) { 11150 struct ifreq *ifr = (struct ifreq *)if_req; 11151 11152 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11153 arp_muxid = ifr->ifr_arp_muxid; 11154 } else { 11155 struct lifreq *lifr = (struct lifreq *)if_req; 11156 11157 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11158 arp_muxid = lifr->lifr_arp_muxid; 11159 } 11160 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11161 return (0); 11162 } 11163 11164 /* ARGSUSED */ 11165 int 11166 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11167 ip_ioctl_cmd_t *ipip, void *if_req) 11168 { 11169 int arp_muxid = 0; 11170 11171 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11173 /* 11174 * Get the muxid saved in ill for I_PUNLINK. 11175 */ 11176 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11177 if (ipip->ipi_cmd_type == IF_CMD) { 11178 struct ifreq *ifr = (struct ifreq *)if_req; 11179 11180 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11181 ifr->ifr_arp_muxid = arp_muxid; 11182 } else { 11183 struct lifreq *lifr = (struct lifreq *)if_req; 11184 11185 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11186 lifr->lifr_arp_muxid = arp_muxid; 11187 } 11188 return (0); 11189 } 11190 11191 /* 11192 * Set the subnet prefix. Does not modify the broadcast address. 11193 */ 11194 /* ARGSUSED */ 11195 int 11196 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11197 ip_ioctl_cmd_t *ipip, void *if_req) 11198 { 11199 int err = 0; 11200 in6_addr_t v6addr; 11201 in6_addr_t v6mask; 11202 boolean_t need_up = B_FALSE; 11203 int addrlen; 11204 11205 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11206 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11207 11208 ASSERT(IAM_WRITER_IPIF(ipif)); 11209 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11210 11211 if (ipif->ipif_isv6) { 11212 sin6_t *sin6; 11213 11214 if (sin->sin_family != AF_INET6) 11215 return (EAFNOSUPPORT); 11216 11217 sin6 = (sin6_t *)sin; 11218 v6addr = sin6->sin6_addr; 11219 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11220 return (EADDRNOTAVAIL); 11221 } else { 11222 ipaddr_t addr; 11223 11224 if (sin->sin_family != AF_INET) 11225 return (EAFNOSUPPORT); 11226 11227 addr = sin->sin_addr.s_addr; 11228 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11229 return (EADDRNOTAVAIL); 11230 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11231 /* Add 96 bits */ 11232 addrlen += IPV6_ABITS - IP_ABITS; 11233 } 11234 11235 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11236 return (EINVAL); 11237 11238 /* Check if bits in the address is set past the mask */ 11239 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11240 return (EINVAL); 11241 11242 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11243 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11244 return (0); /* No change */ 11245 11246 if (ipif->ipif_flags & IPIF_UP) { 11247 /* 11248 * If the interface is already marked up, 11249 * we call ipif_down which will take care 11250 * of ditching any IREs that have been set 11251 * up based on the old interface address. 11252 */ 11253 err = ipif_logical_down(ipif, q, mp); 11254 if (err == EINPROGRESS) 11255 return (err); 11256 (void) ipif_down_tail(ipif); 11257 need_up = B_TRUE; 11258 } 11259 11260 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11261 return (err); 11262 } 11263 11264 static int 11265 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11266 queue_t *q, mblk_t *mp, boolean_t need_up) 11267 { 11268 ill_t *ill = ipif->ipif_ill; 11269 int err = 0; 11270 11271 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11272 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11273 11274 /* Set the new address. */ 11275 mutex_enter(&ill->ill_lock); 11276 ipif->ipif_v6net_mask = v6mask; 11277 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11278 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11279 ipif->ipif_v6subnet); 11280 } 11281 mutex_exit(&ill->ill_lock); 11282 11283 if (need_up) { 11284 /* 11285 * Now bring the interface back up. If this 11286 * is the only IPIF for the ILL, ipif_up 11287 * will have to re-bind to the device, so 11288 * we may get back EINPROGRESS, in which 11289 * case, this IOCTL will get completed in 11290 * ip_rput_dlpi when we see the DL_BIND_ACK. 11291 */ 11292 err = ipif_up(ipif, q, mp); 11293 if (err == EINPROGRESS) 11294 return (err); 11295 } 11296 return (err); 11297 } 11298 11299 /* ARGSUSED */ 11300 int 11301 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11302 ip_ioctl_cmd_t *ipip, void *if_req) 11303 { 11304 int addrlen; 11305 in6_addr_t v6addr; 11306 in6_addr_t v6mask; 11307 struct lifreq *lifr = (struct lifreq *)if_req; 11308 11309 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11310 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11311 (void) ipif_down_tail(ipif); 11312 11313 addrlen = lifr->lifr_addrlen; 11314 if (ipif->ipif_isv6) { 11315 sin6_t *sin6; 11316 11317 sin6 = (sin6_t *)sin; 11318 v6addr = sin6->sin6_addr; 11319 } else { 11320 ipaddr_t addr; 11321 11322 addr = sin->sin_addr.s_addr; 11323 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11324 addrlen += IPV6_ABITS - IP_ABITS; 11325 } 11326 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11327 11328 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11329 } 11330 11331 /* ARGSUSED */ 11332 int 11333 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11334 ip_ioctl_cmd_t *ipip, void *if_req) 11335 { 11336 struct lifreq *lifr = (struct lifreq *)if_req; 11337 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11338 11339 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11340 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11341 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11342 11343 if (ipif->ipif_isv6) { 11344 *sin6 = sin6_null; 11345 sin6->sin6_family = AF_INET6; 11346 sin6->sin6_addr = ipif->ipif_v6subnet; 11347 lifr->lifr_addrlen = 11348 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11349 } else { 11350 *sin = sin_null; 11351 sin->sin_family = AF_INET; 11352 sin->sin_addr.s_addr = ipif->ipif_subnet; 11353 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11354 } 11355 return (0); 11356 } 11357 11358 /* 11359 * Set the IPv6 address token. 11360 */ 11361 /* ARGSUSED */ 11362 int 11363 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11364 ip_ioctl_cmd_t *ipi, void *if_req) 11365 { 11366 ill_t *ill = ipif->ipif_ill; 11367 int err; 11368 in6_addr_t v6addr; 11369 in6_addr_t v6mask; 11370 boolean_t need_up = B_FALSE; 11371 int i; 11372 sin6_t *sin6 = (sin6_t *)sin; 11373 struct lifreq *lifr = (struct lifreq *)if_req; 11374 int addrlen; 11375 11376 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11377 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11378 ASSERT(IAM_WRITER_IPIF(ipif)); 11379 11380 addrlen = lifr->lifr_addrlen; 11381 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11382 if (ipif->ipif_id != 0) 11383 return (EINVAL); 11384 11385 if (!ipif->ipif_isv6) 11386 return (EINVAL); 11387 11388 if (addrlen > IPV6_ABITS) 11389 return (EINVAL); 11390 11391 v6addr = sin6->sin6_addr; 11392 11393 /* 11394 * The length of the token is the length from the end. To get 11395 * the proper mask for this, compute the mask of the bits not 11396 * in the token; ie. the prefix, and then xor to get the mask. 11397 */ 11398 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11399 return (EINVAL); 11400 for (i = 0; i < 4; i++) { 11401 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11402 } 11403 11404 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11405 ill->ill_token_length == addrlen) 11406 return (0); /* No change */ 11407 11408 if (ipif->ipif_flags & IPIF_UP) { 11409 err = ipif_logical_down(ipif, q, mp); 11410 if (err == EINPROGRESS) 11411 return (err); 11412 (void) ipif_down_tail(ipif); 11413 need_up = B_TRUE; 11414 } 11415 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11416 return (err); 11417 } 11418 11419 static int 11420 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11421 mblk_t *mp, boolean_t need_up) 11422 { 11423 in6_addr_t v6addr; 11424 in6_addr_t v6mask; 11425 ill_t *ill = ipif->ipif_ill; 11426 int i; 11427 int err = 0; 11428 11429 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11430 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11431 v6addr = sin6->sin6_addr; 11432 /* 11433 * The length of the token is the length from the end. To get 11434 * the proper mask for this, compute the mask of the bits not 11435 * in the token; ie. the prefix, and then xor to get the mask. 11436 */ 11437 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11438 for (i = 0; i < 4; i++) 11439 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11440 11441 mutex_enter(&ill->ill_lock); 11442 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11443 ill->ill_token_length = addrlen; 11444 ill->ill_manual_token = 1; 11445 11446 /* Reconfigure the link-local address based on this new token */ 11447 ipif_setlinklocal(ill->ill_ipif); 11448 11449 mutex_exit(&ill->ill_lock); 11450 11451 if (need_up) { 11452 /* 11453 * Now bring the interface back up. If this 11454 * is the only IPIF for the ILL, ipif_up 11455 * will have to re-bind to the device, so 11456 * we may get back EINPROGRESS, in which 11457 * case, this IOCTL will get completed in 11458 * ip_rput_dlpi when we see the DL_BIND_ACK. 11459 */ 11460 err = ipif_up(ipif, q, mp); 11461 if (err == EINPROGRESS) 11462 return (err); 11463 } 11464 return (err); 11465 } 11466 11467 /* ARGSUSED */ 11468 int 11469 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11470 ip_ioctl_cmd_t *ipi, void *if_req) 11471 { 11472 ill_t *ill; 11473 sin6_t *sin6 = (sin6_t *)sin; 11474 struct lifreq *lifr = (struct lifreq *)if_req; 11475 11476 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11477 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11478 if (ipif->ipif_id != 0) 11479 return (EINVAL); 11480 11481 ill = ipif->ipif_ill; 11482 if (!ill->ill_isv6) 11483 return (ENXIO); 11484 11485 *sin6 = sin6_null; 11486 sin6->sin6_family = AF_INET6; 11487 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11488 sin6->sin6_addr = ill->ill_token; 11489 lifr->lifr_addrlen = ill->ill_token_length; 11490 return (0); 11491 } 11492 11493 /* 11494 * Set (hardware) link specific information that might override 11495 * what was acquired through the DL_INFO_ACK. 11496 */ 11497 /* ARGSUSED */ 11498 int 11499 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11500 ip_ioctl_cmd_t *ipi, void *if_req) 11501 { 11502 ill_t *ill = ipif->ipif_ill; 11503 int ip_min_mtu; 11504 struct lifreq *lifr = (struct lifreq *)if_req; 11505 lif_ifinfo_req_t *lir; 11506 11507 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11508 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11509 lir = &lifr->lifr_ifinfo; 11510 ASSERT(IAM_WRITER_IPIF(ipif)); 11511 11512 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11513 if (ipif->ipif_id != 0) 11514 return (EINVAL); 11515 11516 /* Set interface MTU. */ 11517 if (ipif->ipif_isv6) 11518 ip_min_mtu = IPV6_MIN_MTU; 11519 else 11520 ip_min_mtu = IP_MIN_MTU; 11521 11522 /* 11523 * Verify values before we set anything. Allow zero to 11524 * mean unspecified. 11525 * 11526 * XXX We should be able to set the user-defined lir_mtu to some value 11527 * that is greater than ill_current_frag but less than ill_max_frag- the 11528 * ill_max_frag value tells us the max MTU that can be handled by the 11529 * datalink, whereas the ill_current_frag is dynamically computed for 11530 * some link-types like tunnels, based on the tunnel PMTU. However, 11531 * since there is currently no way of distinguishing between 11532 * administratively fixed link mtu values (e.g., those set via 11533 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11534 * for tunnels) we conservatively choose the ill_current_frag as the 11535 * upper-bound. 11536 */ 11537 if (lir->lir_maxmtu != 0 && 11538 (lir->lir_maxmtu > ill->ill_current_frag || 11539 lir->lir_maxmtu < ip_min_mtu)) 11540 return (EINVAL); 11541 if (lir->lir_reachtime != 0 && 11542 lir->lir_reachtime > ND_MAX_REACHTIME) 11543 return (EINVAL); 11544 if (lir->lir_reachretrans != 0 && 11545 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11546 return (EINVAL); 11547 11548 mutex_enter(&ill->ill_lock); 11549 /* 11550 * The dce and fragmentation code can handle changes to ill_mtu 11551 * concurrent with sending/fragmenting packets. 11552 */ 11553 if (lir->lir_maxmtu != 0) 11554 ill->ill_user_mtu = lir->lir_maxmtu; 11555 11556 if (lir->lir_reachtime != 0) 11557 ill->ill_reachable_time = lir->lir_reachtime; 11558 11559 if (lir->lir_reachretrans != 0) 11560 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11561 11562 ill->ill_max_hops = lir->lir_maxhops; 11563 ill->ill_max_buf = ND_MAX_Q; 11564 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11565 /* 11566 * ill_mtu is the actual interface MTU, obtained as the min 11567 * of user-configured mtu and the value announced by the 11568 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11569 * we have already made the choice of requiring 11570 * ill_user_mtu < ill_current_frag by the time we get here, 11571 * the ill_mtu effectively gets assigned to the ill_user_mtu 11572 * here. 11573 */ 11574 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11575 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11576 } 11577 mutex_exit(&ill->ill_lock); 11578 11579 /* 11580 * Make sure all dce_generation checks find out 11581 * that ill_mtu/ill_mc_mtu has changed. 11582 */ 11583 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11584 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11585 11586 /* 11587 * Refresh IPMP meta-interface MTU if necessary. 11588 */ 11589 if (IS_UNDER_IPMP(ill)) 11590 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11591 11592 return (0); 11593 } 11594 11595 /* ARGSUSED */ 11596 int 11597 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11598 ip_ioctl_cmd_t *ipi, void *if_req) 11599 { 11600 struct lif_ifinfo_req *lir; 11601 ill_t *ill = ipif->ipif_ill; 11602 11603 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11604 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11605 if (ipif->ipif_id != 0) 11606 return (EINVAL); 11607 11608 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11609 lir->lir_maxhops = ill->ill_max_hops; 11610 lir->lir_reachtime = ill->ill_reachable_time; 11611 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11612 lir->lir_maxmtu = ill->ill_mtu; 11613 11614 return (0); 11615 } 11616 11617 /* 11618 * Return best guess as to the subnet mask for the specified address. 11619 * Based on the subnet masks for all the configured interfaces. 11620 * 11621 * We end up returning a zero mask in the case of default, multicast or 11622 * experimental. 11623 */ 11624 static ipaddr_t 11625 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11626 { 11627 ipaddr_t net_mask; 11628 ill_t *ill; 11629 ipif_t *ipif; 11630 ill_walk_context_t ctx; 11631 ipif_t *fallback_ipif = NULL; 11632 11633 net_mask = ip_net_mask(addr); 11634 if (net_mask == 0) { 11635 *ipifp = NULL; 11636 return (0); 11637 } 11638 11639 /* Let's check to see if this is maybe a local subnet route. */ 11640 /* this function only applies to IPv4 interfaces */ 11641 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11642 ill = ILL_START_WALK_V4(&ctx, ipst); 11643 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11644 mutex_enter(&ill->ill_lock); 11645 for (ipif = ill->ill_ipif; ipif != NULL; 11646 ipif = ipif->ipif_next) { 11647 if (IPIF_IS_CONDEMNED(ipif)) 11648 continue; 11649 if (!(ipif->ipif_flags & IPIF_UP)) 11650 continue; 11651 if ((ipif->ipif_subnet & net_mask) == 11652 (addr & net_mask)) { 11653 /* 11654 * Don't trust pt-pt interfaces if there are 11655 * other interfaces. 11656 */ 11657 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11658 if (fallback_ipif == NULL) { 11659 ipif_refhold_locked(ipif); 11660 fallback_ipif = ipif; 11661 } 11662 continue; 11663 } 11664 11665 /* 11666 * Fine. Just assume the same net mask as the 11667 * directly attached subnet interface is using. 11668 */ 11669 ipif_refhold_locked(ipif); 11670 mutex_exit(&ill->ill_lock); 11671 rw_exit(&ipst->ips_ill_g_lock); 11672 if (fallback_ipif != NULL) 11673 ipif_refrele(fallback_ipif); 11674 *ipifp = ipif; 11675 return (ipif->ipif_net_mask); 11676 } 11677 } 11678 mutex_exit(&ill->ill_lock); 11679 } 11680 rw_exit(&ipst->ips_ill_g_lock); 11681 11682 *ipifp = fallback_ipif; 11683 return ((fallback_ipif != NULL) ? 11684 fallback_ipif->ipif_net_mask : net_mask); 11685 } 11686 11687 /* 11688 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11689 */ 11690 static void 11691 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11692 { 11693 IOCP iocp; 11694 ipft_t *ipft; 11695 ipllc_t *ipllc; 11696 mblk_t *mp1; 11697 cred_t *cr; 11698 int error = 0; 11699 conn_t *connp; 11700 11701 ip1dbg(("ip_wput_ioctl")); 11702 iocp = (IOCP)mp->b_rptr; 11703 mp1 = mp->b_cont; 11704 if (mp1 == NULL) { 11705 iocp->ioc_error = EINVAL; 11706 mp->b_datap->db_type = M_IOCNAK; 11707 iocp->ioc_count = 0; 11708 qreply(q, mp); 11709 return; 11710 } 11711 11712 /* 11713 * These IOCTLs provide various control capabilities to 11714 * upstream agents such as ULPs and processes. There 11715 * are currently two such IOCTLs implemented. They 11716 * are used by TCP to provide update information for 11717 * existing IREs and to forcibly delete an IRE for a 11718 * host that is not responding, thereby forcing an 11719 * attempt at a new route. 11720 */ 11721 iocp->ioc_error = EINVAL; 11722 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11723 goto done; 11724 11725 ipllc = (ipllc_t *)mp1->b_rptr; 11726 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11727 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11728 break; 11729 } 11730 /* 11731 * prefer credential from mblk over ioctl; 11732 * see ip_sioctl_copyin_setup 11733 */ 11734 cr = msg_getcred(mp, NULL); 11735 if (cr == NULL) 11736 cr = iocp->ioc_cr; 11737 11738 /* 11739 * Refhold the conn in case the request gets queued up in some lookup 11740 */ 11741 ASSERT(CONN_Q(q)); 11742 connp = Q_TO_CONN(q); 11743 CONN_INC_REF(connp); 11744 CONN_INC_IOCTLREF(connp); 11745 if (ipft->ipft_pfi && 11746 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11747 pullupmsg(mp1, ipft->ipft_min_size))) { 11748 error = (*ipft->ipft_pfi)(q, 11749 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11750 } 11751 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11752 /* 11753 * CONN_OPER_PENDING_DONE happens in the function called 11754 * through ipft_pfi above. 11755 */ 11756 return; 11757 } 11758 11759 CONN_DEC_IOCTLREF(connp); 11760 CONN_OPER_PENDING_DONE(connp); 11761 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11762 freemsg(mp); 11763 return; 11764 } 11765 iocp->ioc_error = error; 11766 11767 done: 11768 mp->b_datap->db_type = M_IOCACK; 11769 if (iocp->ioc_error) 11770 iocp->ioc_count = 0; 11771 qreply(q, mp); 11772 } 11773 11774 /* 11775 * Assign a unique id for the ipif. This is used by sctp_addr.c 11776 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11777 */ 11778 static void 11779 ipif_assign_seqid(ipif_t *ipif) 11780 { 11781 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11782 11783 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid); 11784 } 11785 11786 /* 11787 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11788 * administratively down (i.e., no DAD), of the same type, and locked. Note 11789 * that the clone is complete -- including the seqid -- and the expectation is 11790 * that the caller will either free or overwrite `sipif' before it's unlocked. 11791 */ 11792 static void 11793 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11794 { 11795 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11796 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11797 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11798 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11799 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11800 11801 dipif->ipif_flags = sipif->ipif_flags; 11802 dipif->ipif_zoneid = sipif->ipif_zoneid; 11803 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11804 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11805 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11806 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11807 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11808 11809 /* 11810 * As per the comment atop the function, we assume that these sipif 11811 * fields will be changed before sipif is unlocked. 11812 */ 11813 dipif->ipif_seqid = sipif->ipif_seqid; 11814 dipif->ipif_state_flags = sipif->ipif_state_flags; 11815 } 11816 11817 /* 11818 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11819 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11820 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11821 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11822 * down (i.e., no DAD), of the same type, and unlocked. 11823 */ 11824 static void 11825 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11826 { 11827 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11828 ipxop_t *ipx = ipsq->ipsq_xop; 11829 11830 ASSERT(sipif != dipif); 11831 ASSERT(sipif != virgipif); 11832 11833 /* 11834 * Grab all of the locks that protect the ipif in a defined order. 11835 */ 11836 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11837 11838 ipif_clone(sipif, dipif); 11839 if (virgipif != NULL) { 11840 ipif_clone(virgipif, sipif); 11841 mi_free(virgipif); 11842 } 11843 11844 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11845 11846 /* 11847 * Transfer ownership of the current xop, if necessary. 11848 */ 11849 if (ipx->ipx_current_ipif == sipif) { 11850 ASSERT(ipx->ipx_pending_ipif == NULL); 11851 mutex_enter(&ipx->ipx_lock); 11852 ipx->ipx_current_ipif = dipif; 11853 mutex_exit(&ipx->ipx_lock); 11854 } 11855 11856 if (virgipif == NULL) 11857 mi_free(sipif); 11858 } 11859 11860 /* 11861 * checks if: 11862 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11863 * - logical interface is within the allowed range 11864 */ 11865 static int 11866 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11867 { 11868 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11869 return (ENAMETOOLONG); 11870 11871 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11872 return (ERANGE); 11873 return (0); 11874 } 11875 11876 /* 11877 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11878 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11879 * be inserted into the first space available in the list. The value of 11880 * ipif_id will then be set to the appropriate value for its position. 11881 */ 11882 static int 11883 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11884 { 11885 ill_t *ill; 11886 ipif_t *tipif; 11887 ipif_t **tipifp; 11888 int id, err; 11889 ip_stack_t *ipst; 11890 11891 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11892 IAM_WRITER_IPIF(ipif)); 11893 11894 ill = ipif->ipif_ill; 11895 ASSERT(ill != NULL); 11896 ipst = ill->ill_ipst; 11897 11898 /* 11899 * In the case of lo0:0 we already hold the ill_g_lock. 11900 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11901 * ipif_insert. 11902 */ 11903 if (acquire_g_lock) 11904 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11905 mutex_enter(&ill->ill_lock); 11906 id = ipif->ipif_id; 11907 tipifp = &(ill->ill_ipif); 11908 if (id == -1) { /* need to find a real id */ 11909 id = 0; 11910 while ((tipif = *tipifp) != NULL) { 11911 ASSERT(tipif->ipif_id >= id); 11912 if (tipif->ipif_id != id) 11913 break; /* non-consecutive id */ 11914 id++; 11915 tipifp = &(tipif->ipif_next); 11916 } 11917 if ((err = is_lifname_valid(ill, id)) != 0) { 11918 mutex_exit(&ill->ill_lock); 11919 if (acquire_g_lock) 11920 rw_exit(&ipst->ips_ill_g_lock); 11921 return (err); 11922 } 11923 ipif->ipif_id = id; /* assign new id */ 11924 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11925 /* we have a real id; insert ipif in the right place */ 11926 while ((tipif = *tipifp) != NULL) { 11927 ASSERT(tipif->ipif_id != id); 11928 if (tipif->ipif_id > id) 11929 break; /* found correct location */ 11930 tipifp = &(tipif->ipif_next); 11931 } 11932 } else { 11933 mutex_exit(&ill->ill_lock); 11934 if (acquire_g_lock) 11935 rw_exit(&ipst->ips_ill_g_lock); 11936 return (err); 11937 } 11938 11939 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11940 11941 ipif->ipif_next = tipif; 11942 *tipifp = ipif; 11943 mutex_exit(&ill->ill_lock); 11944 if (acquire_g_lock) 11945 rw_exit(&ipst->ips_ill_g_lock); 11946 11947 return (0); 11948 } 11949 11950 static void 11951 ipif_remove(ipif_t *ipif) 11952 { 11953 ipif_t **ipifp; 11954 ill_t *ill = ipif->ipif_ill; 11955 11956 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11957 11958 mutex_enter(&ill->ill_lock); 11959 ipifp = &ill->ill_ipif; 11960 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11961 if (*ipifp == ipif) { 11962 *ipifp = ipif->ipif_next; 11963 break; 11964 } 11965 } 11966 mutex_exit(&ill->ill_lock); 11967 } 11968 11969 /* 11970 * Allocate and initialize a new interface control structure. (Always 11971 * called as writer.) 11972 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11973 * is not part of the global linked list of ills. ipif_seqid is unique 11974 * in the system and to preserve the uniqueness, it is assigned only 11975 * when ill becomes part of the global list. At that point ill will 11976 * have a name. If it doesn't get assigned here, it will get assigned 11977 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11978 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11979 * the interface flags or any other information from the DL_INFO_ACK for 11980 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11981 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11982 * second DL_INFO_ACK comes in from the driver. 11983 */ 11984 static ipif_t * 11985 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11986 boolean_t insert, int *errorp) 11987 { 11988 int err; 11989 ipif_t *ipif; 11990 ip_stack_t *ipst = ill->ill_ipst; 11991 11992 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11993 ill->ill_name, id, (void *)ill)); 11994 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11995 11996 if (errorp != NULL) 11997 *errorp = 0; 11998 11999 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 12000 if (errorp != NULL) 12001 *errorp = ENOMEM; 12002 return (NULL); 12003 } 12004 *ipif = ipif_zero; /* start clean */ 12005 12006 ipif->ipif_ill = ill; 12007 ipif->ipif_id = id; /* could be -1 */ 12008 /* 12009 * Inherit the zoneid from the ill; for the shared stack instance 12010 * this is always the global zone 12011 */ 12012 ipif->ipif_zoneid = ill->ill_zoneid; 12013 12014 ipif->ipif_refcnt = 0; 12015 12016 if (insert) { 12017 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12018 mi_free(ipif); 12019 if (errorp != NULL) 12020 *errorp = err; 12021 return (NULL); 12022 } 12023 /* -1 id should have been replaced by real id */ 12024 id = ipif->ipif_id; 12025 ASSERT(id >= 0); 12026 } 12027 12028 if (ill->ill_name[0] != '\0') 12029 ipif_assign_seqid(ipif); 12030 12031 /* 12032 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12033 * (which must not exist yet because the zeroth ipif is created once 12034 * per ill). However, do not not link it to the ipmp_grp_t until 12035 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12036 */ 12037 if (id == 0 && IS_IPMP(ill)) { 12038 if (ipmp_illgrp_create(ill) == NULL) { 12039 if (insert) { 12040 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12041 ipif_remove(ipif); 12042 rw_exit(&ipst->ips_ill_g_lock); 12043 } 12044 mi_free(ipif); 12045 if (errorp != NULL) 12046 *errorp = ENOMEM; 12047 return (NULL); 12048 } 12049 } 12050 12051 /* 12052 * We grab ill_lock to protect the flag changes. The ipif is still 12053 * not up and can't be looked up until the ioctl completes and the 12054 * IPIF_CHANGING flag is cleared. 12055 */ 12056 mutex_enter(&ill->ill_lock); 12057 12058 ipif->ipif_ire_type = ire_type; 12059 12060 if (ipif->ipif_isv6) { 12061 ill->ill_flags |= ILLF_IPV6; 12062 } else { 12063 ipaddr_t inaddr_any = INADDR_ANY; 12064 12065 ill->ill_flags |= ILLF_IPV4; 12066 12067 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12068 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12069 &ipif->ipif_v6lcl_addr); 12070 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12071 &ipif->ipif_v6subnet); 12072 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12073 &ipif->ipif_v6net_mask); 12074 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12075 &ipif->ipif_v6brd_addr); 12076 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12077 &ipif->ipif_v6pp_dst_addr); 12078 } 12079 12080 /* 12081 * Don't set the interface flags etc. now, will do it in 12082 * ip_ll_subnet_defaults. 12083 */ 12084 if (!initialize) 12085 goto out; 12086 12087 /* 12088 * NOTE: The IPMP meta-interface is special-cased because it starts 12089 * with no underlying interfaces (and thus an unknown broadcast 12090 * address length), but all interfaces that can be placed into an IPMP 12091 * group are required to be broadcast-capable. 12092 */ 12093 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12094 /* 12095 * Later detect lack of DLPI driver multicast capability by 12096 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12097 */ 12098 ill->ill_flags |= ILLF_MULTICAST; 12099 if (!ipif->ipif_isv6) 12100 ipif->ipif_flags |= IPIF_BROADCAST; 12101 } else { 12102 if (ill->ill_net_type != IRE_LOOPBACK) { 12103 if (ipif->ipif_isv6) 12104 /* 12105 * Note: xresolv interfaces will eventually need 12106 * NOARP set here as well, but that will require 12107 * those external resolvers to have some 12108 * knowledge of that flag and act appropriately. 12109 * Not to be changed at present. 12110 */ 12111 ill->ill_flags |= ILLF_NONUD; 12112 else 12113 ill->ill_flags |= ILLF_NOARP; 12114 } 12115 if (ill->ill_phys_addr_length == 0) { 12116 if (IS_VNI(ill)) { 12117 ipif->ipif_flags |= IPIF_NOXMIT; 12118 } else { 12119 /* pt-pt supports multicast. */ 12120 ill->ill_flags |= ILLF_MULTICAST; 12121 if (ill->ill_net_type != IRE_LOOPBACK) 12122 ipif->ipif_flags |= IPIF_POINTOPOINT; 12123 } 12124 } 12125 } 12126 out: 12127 mutex_exit(&ill->ill_lock); 12128 return (ipif); 12129 } 12130 12131 /* 12132 * Remove the neighbor cache entries associated with this logical 12133 * interface. 12134 */ 12135 int 12136 ipif_arp_down(ipif_t *ipif) 12137 { 12138 ill_t *ill = ipif->ipif_ill; 12139 int err = 0; 12140 12141 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12142 ASSERT(IAM_WRITER_IPIF(ipif)); 12143 12144 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12145 ill_t *, ill, ipif_t *, ipif); 12146 ipif_nce_down(ipif); 12147 12148 /* 12149 * If this is the last ipif that is going down and there are no 12150 * duplicate addresses we may yet attempt to re-probe, then we need to 12151 * clean up ARP completely. 12152 */ 12153 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12154 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12155 /* 12156 * If this was the last ipif on an IPMP interface, purge any 12157 * static ARP entries associated with it. 12158 */ 12159 if (IS_IPMP(ill)) 12160 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12161 12162 /* UNBIND, DETACH */ 12163 err = arp_ll_down(ill); 12164 } 12165 12166 return (err); 12167 } 12168 12169 /* 12170 * Get the resolver set up for a new IP address. (Always called as writer.) 12171 * Called both for IPv4 and IPv6 interfaces, though it only does some 12172 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12173 * 12174 * The enumerated value res_act tunes the behavior: 12175 * * Res_act_initial: set up all the resolver structures for a new 12176 * IP address. 12177 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12178 * ARP message in defense of the address. 12179 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12180 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12181 * 12182 * Returns zero on success, or an errno upon failure. 12183 */ 12184 int 12185 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12186 { 12187 ill_t *ill = ipif->ipif_ill; 12188 int err; 12189 boolean_t was_dup; 12190 12191 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12192 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12193 ASSERT(IAM_WRITER_IPIF(ipif)); 12194 12195 was_dup = B_FALSE; 12196 if (res_act == Res_act_initial) { 12197 ipif->ipif_addr_ready = 0; 12198 /* 12199 * We're bringing an interface up here. There's no way that we 12200 * should need to shut down ARP now. 12201 */ 12202 mutex_enter(&ill->ill_lock); 12203 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12204 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12205 ill->ill_ipif_dup_count--; 12206 was_dup = B_TRUE; 12207 } 12208 mutex_exit(&ill->ill_lock); 12209 } 12210 if (ipif->ipif_recovery_id != 0) 12211 (void) untimeout(ipif->ipif_recovery_id); 12212 ipif->ipif_recovery_id = 0; 12213 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12214 ipif->ipif_addr_ready = 1; 12215 return (0); 12216 } 12217 /* NDP will set the ipif_addr_ready flag when it's ready */ 12218 if (ill->ill_isv6) 12219 return (0); 12220 12221 err = ipif_arp_up(ipif, res_act, was_dup); 12222 return (err); 12223 } 12224 12225 /* 12226 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12227 * when a link has just gone back up. 12228 */ 12229 static void 12230 ipif_nce_start_dad(ipif_t *ipif) 12231 { 12232 ncec_t *ncec; 12233 ill_t *ill = ipif->ipif_ill; 12234 boolean_t isv6 = ill->ill_isv6; 12235 12236 if (isv6) { 12237 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12238 &ipif->ipif_v6lcl_addr); 12239 } else { 12240 ipaddr_t v4addr; 12241 12242 if (ill->ill_net_type != IRE_IF_RESOLVER || 12243 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12244 ipif->ipif_lcl_addr == INADDR_ANY) { 12245 /* 12246 * If we can't contact ARP for some reason, 12247 * that's not really a problem. Just send 12248 * out the routing socket notification that 12249 * DAD completion would have done, and continue. 12250 */ 12251 ipif_mask_reply(ipif); 12252 ipif_up_notify(ipif); 12253 ipif->ipif_addr_ready = 1; 12254 return; 12255 } 12256 12257 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12258 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12259 } 12260 12261 if (ncec == NULL) { 12262 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12263 (void *)ipif)); 12264 return; 12265 } 12266 if (!nce_restart_dad(ncec)) { 12267 /* 12268 * If we can't restart DAD for some reason, that's not really a 12269 * problem. Just send out the routing socket notification that 12270 * DAD completion would have done, and continue. 12271 */ 12272 ipif_up_notify(ipif); 12273 ipif->ipif_addr_ready = 1; 12274 } 12275 ncec_refrele(ncec); 12276 } 12277 12278 /* 12279 * Restart duplicate address detection on all interfaces on the given ill. 12280 * 12281 * This is called when an interface transitions from down to up 12282 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12283 * 12284 * Note that since the underlying physical link has transitioned, we must cause 12285 * at least one routing socket message to be sent here, either via DAD 12286 * completion or just by default on the first ipif. (If we don't do this, then 12287 * in.mpathd will see long delays when doing link-based failure recovery.) 12288 */ 12289 void 12290 ill_restart_dad(ill_t *ill, boolean_t went_up) 12291 { 12292 ipif_t *ipif; 12293 12294 if (ill == NULL) 12295 return; 12296 12297 /* 12298 * If layer two doesn't support duplicate address detection, then just 12299 * send the routing socket message now and be done with it. 12300 */ 12301 if (!ill->ill_isv6 && arp_no_defense) { 12302 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12303 return; 12304 } 12305 12306 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12307 if (went_up) { 12308 12309 if (ipif->ipif_flags & IPIF_UP) { 12310 ipif_nce_start_dad(ipif); 12311 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12312 /* 12313 * kick off the bring-up process now. 12314 */ 12315 ipif_do_recovery(ipif); 12316 } else { 12317 /* 12318 * Unfortunately, the first ipif is "special" 12319 * and represents the underlying ill in the 12320 * routing socket messages. Thus, when this 12321 * one ipif is down, we must still notify so 12322 * that the user knows the IFF_RUNNING status 12323 * change. (If the first ipif is up, then 12324 * we'll handle eventual routing socket 12325 * notification via DAD completion.) 12326 */ 12327 if (ipif == ill->ill_ipif) { 12328 ip_rts_ifmsg(ill->ill_ipif, 12329 RTSQ_DEFAULT); 12330 } 12331 } 12332 } else { 12333 /* 12334 * After link down, we'll need to send a new routing 12335 * message when the link comes back, so clear 12336 * ipif_addr_ready. 12337 */ 12338 ipif->ipif_addr_ready = 0; 12339 } 12340 } 12341 12342 /* 12343 * If we've torn down links, then notify the user right away. 12344 */ 12345 if (!went_up) 12346 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12347 } 12348 12349 static void 12350 ipsq_delete(ipsq_t *ipsq) 12351 { 12352 ipxop_t *ipx = ipsq->ipsq_xop; 12353 12354 ipsq->ipsq_ipst = NULL; 12355 ASSERT(ipsq->ipsq_phyint == NULL); 12356 ASSERT(ipsq->ipsq_xop != NULL); 12357 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12358 ASSERT(ipx->ipx_pending_mp == NULL); 12359 kmem_free(ipsq, sizeof (ipsq_t)); 12360 } 12361 12362 static int 12363 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12364 { 12365 int err = 0; 12366 ipif_t *ipif; 12367 12368 if (ill == NULL) 12369 return (0); 12370 12371 ASSERT(IAM_WRITER_ILL(ill)); 12372 ill->ill_up_ipifs = B_TRUE; 12373 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12374 if (ipif->ipif_was_up) { 12375 if (!(ipif->ipif_flags & IPIF_UP)) 12376 err = ipif_up(ipif, q, mp); 12377 ipif->ipif_was_up = B_FALSE; 12378 if (err != 0) { 12379 ASSERT(err == EINPROGRESS); 12380 return (err); 12381 } 12382 } 12383 } 12384 ill->ill_up_ipifs = B_FALSE; 12385 return (0); 12386 } 12387 12388 /* 12389 * This function is called to bring up all the ipifs that were up before 12390 * bringing the ill down via ill_down_ipifs(). 12391 */ 12392 int 12393 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12394 { 12395 int err; 12396 12397 ASSERT(IAM_WRITER_ILL(ill)); 12398 12399 if (ill->ill_replumbing) { 12400 ill->ill_replumbing = 0; 12401 /* 12402 * Send down REPLUMB_DONE notification followed by the 12403 * BIND_REQ on the arp stream. 12404 */ 12405 if (!ill->ill_isv6) 12406 arp_send_replumb_conf(ill); 12407 } 12408 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12409 if (err != 0) 12410 return (err); 12411 12412 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12413 } 12414 12415 /* 12416 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12417 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12418 */ 12419 static void 12420 ill_down_ipifs(ill_t *ill, boolean_t logical) 12421 { 12422 ipif_t *ipif; 12423 12424 ASSERT(IAM_WRITER_ILL(ill)); 12425 12426 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12427 /* 12428 * We go through the ipif_down logic even if the ipif 12429 * is already down, since routes can be added based 12430 * on down ipifs. Going through ipif_down once again 12431 * will delete any IREs created based on these routes. 12432 */ 12433 if (ipif->ipif_flags & IPIF_UP) 12434 ipif->ipif_was_up = B_TRUE; 12435 12436 if (logical) { 12437 (void) ipif_logical_down(ipif, NULL, NULL); 12438 ipif_non_duplicate(ipif); 12439 (void) ipif_down_tail(ipif); 12440 } else { 12441 (void) ipif_down(ipif, NULL, NULL); 12442 } 12443 } 12444 } 12445 12446 /* 12447 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12448 * a look again at valid source addresses. 12449 * This should be called each time after the set of source addresses has been 12450 * changed. 12451 */ 12452 void 12453 ip_update_source_selection(ip_stack_t *ipst) 12454 { 12455 /* We skip past SRC_GENERATION_VERIFY */ 12456 if (atomic_inc_32_nv(&ipst->ips_src_generation) == 12457 SRC_GENERATION_VERIFY) 12458 atomic_inc_32(&ipst->ips_src_generation); 12459 } 12460 12461 /* 12462 * Finish the group join started in ip_sioctl_groupname(). 12463 */ 12464 /* ARGSUSED */ 12465 static void 12466 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12467 { 12468 ill_t *ill = q->q_ptr; 12469 phyint_t *phyi = ill->ill_phyint; 12470 ipmp_grp_t *grp = phyi->phyint_grp; 12471 ip_stack_t *ipst = ill->ill_ipst; 12472 12473 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12474 ASSERT(!IS_IPMP(ill) && grp != NULL); 12475 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12476 12477 if (phyi->phyint_illv4 != NULL) { 12478 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12479 VERIFY(grp->gr_pendv4-- > 0); 12480 rw_exit(&ipst->ips_ipmp_lock); 12481 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12482 } 12483 if (phyi->phyint_illv6 != NULL) { 12484 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12485 VERIFY(grp->gr_pendv6-- > 0); 12486 rw_exit(&ipst->ips_ipmp_lock); 12487 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12488 } 12489 freemsg(mp); 12490 } 12491 12492 /* 12493 * Process an SIOCSLIFGROUPNAME request. 12494 */ 12495 /* ARGSUSED */ 12496 int 12497 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12498 ip_ioctl_cmd_t *ipip, void *ifreq) 12499 { 12500 struct lifreq *lifr = ifreq; 12501 ill_t *ill = ipif->ipif_ill; 12502 ip_stack_t *ipst = ill->ill_ipst; 12503 phyint_t *phyi = ill->ill_phyint; 12504 ipmp_grp_t *grp = phyi->phyint_grp; 12505 mblk_t *ipsq_mp; 12506 int err = 0; 12507 12508 /* 12509 * Note that phyint_grp can only change here, where we're exclusive. 12510 */ 12511 ASSERT(IAM_WRITER_ILL(ill)); 12512 12513 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12514 (phyi->phyint_flags & PHYI_VIRTUAL)) 12515 return (EINVAL); 12516 12517 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12518 12519 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12520 12521 /* 12522 * If the name hasn't changed, there's nothing to do. 12523 */ 12524 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12525 goto unlock; 12526 12527 /* 12528 * Handle requests to rename an IPMP meta-interface. 12529 * 12530 * Note that creation of the IPMP meta-interface is handled in 12531 * userland through the standard plumbing sequence. As part of the 12532 * plumbing the IPMP meta-interface, its initial groupname is set to 12533 * the name of the interface (see ipif_set_values_tail()). 12534 */ 12535 if (IS_IPMP(ill)) { 12536 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12537 goto unlock; 12538 } 12539 12540 /* 12541 * Handle requests to add or remove an IP interface from a group. 12542 */ 12543 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12544 /* 12545 * Moves are handled by first removing the interface from 12546 * its existing group, and then adding it to another group. 12547 * So, fail if it's already in a group. 12548 */ 12549 if (IS_UNDER_IPMP(ill)) { 12550 err = EALREADY; 12551 goto unlock; 12552 } 12553 12554 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12555 if (grp == NULL) { 12556 err = ENOENT; 12557 goto unlock; 12558 } 12559 12560 /* 12561 * Check if the phyint and its ills are suitable for 12562 * inclusion into the group. 12563 */ 12564 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12565 goto unlock; 12566 12567 /* 12568 * Checks pass; join the group, and enqueue the remaining 12569 * illgrp joins for when we've become part of the group xop 12570 * and are exclusive across its IPSQs. Since qwriter_ip() 12571 * requires an mblk_t to scribble on, and since `mp' will be 12572 * freed as part of completing the ioctl, allocate another. 12573 */ 12574 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12575 err = ENOMEM; 12576 goto unlock; 12577 } 12578 12579 /* 12580 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12581 * IPMP meta-interface ills needed by `phyi' cannot go away 12582 * before ip_join_illgrps() is called back. See the comments 12583 * in ip_sioctl_plink_ipmp() for more. 12584 */ 12585 if (phyi->phyint_illv4 != NULL) 12586 grp->gr_pendv4++; 12587 if (phyi->phyint_illv6 != NULL) 12588 grp->gr_pendv6++; 12589 12590 rw_exit(&ipst->ips_ipmp_lock); 12591 12592 ipmp_phyint_join_grp(phyi, grp); 12593 ill_refhold(ill); 12594 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12595 SWITCH_OP, B_FALSE); 12596 return (0); 12597 } else { 12598 /* 12599 * Request to remove the interface from a group. If the 12600 * interface is not in a group, this trivially succeeds. 12601 */ 12602 rw_exit(&ipst->ips_ipmp_lock); 12603 if (IS_UNDER_IPMP(ill)) 12604 ipmp_phyint_leave_grp(phyi); 12605 return (0); 12606 } 12607 unlock: 12608 rw_exit(&ipst->ips_ipmp_lock); 12609 return (err); 12610 } 12611 12612 /* 12613 * Process an SIOCGLIFBINDING request. 12614 */ 12615 /* ARGSUSED */ 12616 int 12617 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12618 ip_ioctl_cmd_t *ipip, void *ifreq) 12619 { 12620 ill_t *ill; 12621 struct lifreq *lifr = ifreq; 12622 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12623 12624 if (!IS_IPMP(ipif->ipif_ill)) 12625 return (EINVAL); 12626 12627 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12628 if ((ill = ipif->ipif_bound_ill) == NULL) 12629 lifr->lifr_binding[0] = '\0'; 12630 else 12631 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12632 rw_exit(&ipst->ips_ipmp_lock); 12633 return (0); 12634 } 12635 12636 /* 12637 * Process an SIOCGLIFGROUPNAME request. 12638 */ 12639 /* ARGSUSED */ 12640 int 12641 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12642 ip_ioctl_cmd_t *ipip, void *ifreq) 12643 { 12644 ipmp_grp_t *grp; 12645 struct lifreq *lifr = ifreq; 12646 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12647 12648 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12649 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12650 lifr->lifr_groupname[0] = '\0'; 12651 else 12652 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12653 rw_exit(&ipst->ips_ipmp_lock); 12654 return (0); 12655 } 12656 12657 /* 12658 * Process an SIOCGLIFGROUPINFO request. 12659 */ 12660 /* ARGSUSED */ 12661 int 12662 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12663 ip_ioctl_cmd_t *ipip, void *dummy) 12664 { 12665 ipmp_grp_t *grp; 12666 lifgroupinfo_t *lifgr; 12667 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12668 12669 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12670 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12671 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12672 12673 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12674 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12675 rw_exit(&ipst->ips_ipmp_lock); 12676 return (ENOENT); 12677 } 12678 ipmp_grp_info(grp, lifgr); 12679 rw_exit(&ipst->ips_ipmp_lock); 12680 return (0); 12681 } 12682 12683 static void 12684 ill_dl_down(ill_t *ill) 12685 { 12686 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12687 12688 /* 12689 * The ill is down; unbind but stay attached since we're still 12690 * associated with a PPA. If we have negotiated DLPI capabilites 12691 * with the data link service provider (IDS_OK) then reset them. 12692 * The interval between unbinding and rebinding is potentially 12693 * unbounded hence we cannot assume things will be the same. 12694 * The DLPI capabilities will be probed again when the data link 12695 * is brought up. 12696 */ 12697 mblk_t *mp = ill->ill_unbind_mp; 12698 12699 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12700 12701 if (!ill->ill_replumbing) { 12702 /* Free all ilms for this ill */ 12703 update_conn_ill(ill, ill->ill_ipst); 12704 } else { 12705 ill_leave_multicast(ill); 12706 } 12707 12708 ill->ill_unbind_mp = NULL; 12709 if (mp != NULL) { 12710 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12711 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12712 ill->ill_name)); 12713 mutex_enter(&ill->ill_lock); 12714 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12715 mutex_exit(&ill->ill_lock); 12716 /* 12717 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12718 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12719 * ill_capability_dld_disable disable rightaway. If this is not 12720 * an unplumb operation then the disable happens on receipt of 12721 * the capab ack via ip_rput_dlpi_writer -> 12722 * ill_capability_ack_thr. In both cases the order of 12723 * the operations seen by DLD is capability disable followed 12724 * by DL_UNBIND. Also the DLD capability disable needs a 12725 * cv_wait'able context. 12726 */ 12727 if (ill->ill_state_flags & ILL_CONDEMNED) 12728 ill_capability_dld_disable(ill); 12729 ill_capability_reset(ill, B_FALSE); 12730 ill_dlpi_send(ill, mp); 12731 } 12732 mutex_enter(&ill->ill_lock); 12733 ill->ill_dl_up = 0; 12734 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12735 mutex_exit(&ill->ill_lock); 12736 } 12737 12738 void 12739 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12740 { 12741 union DL_primitives *dlp; 12742 t_uscalar_t prim; 12743 boolean_t waitack = B_FALSE; 12744 12745 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12746 12747 dlp = (union DL_primitives *)mp->b_rptr; 12748 prim = dlp->dl_primitive; 12749 12750 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12751 dl_primstr(prim), prim, ill->ill_name)); 12752 12753 switch (prim) { 12754 case DL_PHYS_ADDR_REQ: 12755 { 12756 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12757 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12758 break; 12759 } 12760 case DL_BIND_REQ: 12761 mutex_enter(&ill->ill_lock); 12762 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12763 mutex_exit(&ill->ill_lock); 12764 break; 12765 } 12766 12767 /* 12768 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12769 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12770 * we only wait for the ACK of the DL_UNBIND_REQ. 12771 */ 12772 mutex_enter(&ill->ill_lock); 12773 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12774 (prim == DL_UNBIND_REQ)) { 12775 ill->ill_dlpi_pending = prim; 12776 waitack = B_TRUE; 12777 } 12778 12779 mutex_exit(&ill->ill_lock); 12780 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12781 char *, dl_primstr(prim), ill_t *, ill); 12782 putnext(ill->ill_wq, mp); 12783 12784 /* 12785 * There is no ack for DL_NOTIFY_CONF messages 12786 */ 12787 if (waitack && prim == DL_NOTIFY_CONF) 12788 ill_dlpi_done(ill, prim); 12789 } 12790 12791 /* 12792 * Helper function for ill_dlpi_send(). 12793 */ 12794 /* ARGSUSED */ 12795 static void 12796 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12797 { 12798 ill_dlpi_send(q->q_ptr, mp); 12799 } 12800 12801 /* 12802 * Send a DLPI control message to the driver but make sure there 12803 * is only one outstanding message. Uses ill_dlpi_pending to tell 12804 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12805 * when an ACK or a NAK is received to process the next queued message. 12806 */ 12807 void 12808 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12809 { 12810 mblk_t **mpp; 12811 12812 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12813 12814 /* 12815 * To ensure that any DLPI requests for current exclusive operation 12816 * are always completely sent before any DLPI messages for other 12817 * operations, require writer access before enqueuing. 12818 */ 12819 if (!IAM_WRITER_ILL(ill)) { 12820 ill_refhold(ill); 12821 /* qwriter_ip() does the ill_refrele() */ 12822 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12823 NEW_OP, B_TRUE); 12824 return; 12825 } 12826 12827 mutex_enter(&ill->ill_lock); 12828 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12829 /* Must queue message. Tail insertion */ 12830 mpp = &ill->ill_dlpi_deferred; 12831 while (*mpp != NULL) 12832 mpp = &((*mpp)->b_next); 12833 12834 ip1dbg(("ill_dlpi_send: deferring request for %s " 12835 "while %s pending\n", ill->ill_name, 12836 dl_primstr(ill->ill_dlpi_pending))); 12837 12838 *mpp = mp; 12839 mutex_exit(&ill->ill_lock); 12840 return; 12841 } 12842 mutex_exit(&ill->ill_lock); 12843 ill_dlpi_dispatch(ill, mp); 12844 } 12845 12846 void 12847 ill_capability_send(ill_t *ill, mblk_t *mp) 12848 { 12849 ill->ill_capab_pending_cnt++; 12850 ill_dlpi_send(ill, mp); 12851 } 12852 12853 void 12854 ill_capability_done(ill_t *ill) 12855 { 12856 ASSERT(ill->ill_capab_pending_cnt != 0); 12857 12858 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12859 12860 ill->ill_capab_pending_cnt--; 12861 if (ill->ill_capab_pending_cnt == 0 && 12862 ill->ill_dlpi_capab_state == IDCS_OK) 12863 ill_capability_reset_alloc(ill); 12864 } 12865 12866 /* 12867 * Send all deferred DLPI messages without waiting for their ACKs. 12868 */ 12869 void 12870 ill_dlpi_send_deferred(ill_t *ill) 12871 { 12872 mblk_t *mp, *nextmp; 12873 12874 /* 12875 * Clear ill_dlpi_pending so that the message is not queued in 12876 * ill_dlpi_send(). 12877 */ 12878 mutex_enter(&ill->ill_lock); 12879 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12880 mp = ill->ill_dlpi_deferred; 12881 ill->ill_dlpi_deferred = NULL; 12882 mutex_exit(&ill->ill_lock); 12883 12884 for (; mp != NULL; mp = nextmp) { 12885 nextmp = mp->b_next; 12886 mp->b_next = NULL; 12887 ill_dlpi_send(ill, mp); 12888 } 12889 } 12890 12891 /* 12892 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12893 * or M_HANGUP 12894 */ 12895 static void 12896 ill_dlpi_clear_deferred(ill_t *ill) 12897 { 12898 mblk_t *mp, *nextmp; 12899 12900 mutex_enter(&ill->ill_lock); 12901 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12902 mp = ill->ill_dlpi_deferred; 12903 ill->ill_dlpi_deferred = NULL; 12904 mutex_exit(&ill->ill_lock); 12905 12906 for (; mp != NULL; mp = nextmp) { 12907 nextmp = mp->b_next; 12908 inet_freemsg(mp); 12909 } 12910 } 12911 12912 /* 12913 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12914 */ 12915 boolean_t 12916 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12917 { 12918 t_uscalar_t pending; 12919 12920 mutex_enter(&ill->ill_lock); 12921 if (ill->ill_dlpi_pending == prim) { 12922 mutex_exit(&ill->ill_lock); 12923 return (B_TRUE); 12924 } 12925 12926 /* 12927 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12928 * without waiting, so don't print any warnings in that case. 12929 */ 12930 if (ill->ill_state_flags & ILL_CONDEMNED) { 12931 mutex_exit(&ill->ill_lock); 12932 return (B_FALSE); 12933 } 12934 pending = ill->ill_dlpi_pending; 12935 mutex_exit(&ill->ill_lock); 12936 12937 if (pending == DL_PRIM_INVAL) { 12938 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12939 "received unsolicited ack for %s on %s\n", 12940 dl_primstr(prim), ill->ill_name); 12941 } else { 12942 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12943 "received unexpected ack for %s on %s (expecting %s)\n", 12944 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12945 } 12946 return (B_FALSE); 12947 } 12948 12949 /* 12950 * Complete the current DLPI operation associated with `prim' on `ill' and 12951 * start the next queued DLPI operation (if any). If there are no queued DLPI 12952 * operations and the ill's current exclusive IPSQ operation has finished 12953 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12954 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12955 * the comments above ipsq_current_finish() for details. 12956 */ 12957 void 12958 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12959 { 12960 mblk_t *mp; 12961 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12962 ipxop_t *ipx = ipsq->ipsq_xop; 12963 12964 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12965 mutex_enter(&ill->ill_lock); 12966 12967 ASSERT(prim != DL_PRIM_INVAL); 12968 ASSERT(ill->ill_dlpi_pending == prim); 12969 12970 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12971 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12972 12973 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12974 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12975 if (ipx->ipx_current_done) { 12976 mutex_enter(&ipx->ipx_lock); 12977 ipx->ipx_current_ipif = NULL; 12978 mutex_exit(&ipx->ipx_lock); 12979 } 12980 cv_signal(&ill->ill_cv); 12981 mutex_exit(&ill->ill_lock); 12982 return; 12983 } 12984 12985 ill->ill_dlpi_deferred = mp->b_next; 12986 mp->b_next = NULL; 12987 mutex_exit(&ill->ill_lock); 12988 12989 ill_dlpi_dispatch(ill, mp); 12990 } 12991 12992 /* 12993 * Queue a (multicast) DLPI control message to be sent to the driver by 12994 * later calling ill_dlpi_send_queued. 12995 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12996 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12997 * for the same group to race. 12998 * We send DLPI control messages in order using ill_lock. 12999 * For IPMP we should be called on the cast_ill. 13000 */ 13001 void 13002 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13003 { 13004 mblk_t **mpp; 13005 13006 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13007 13008 mutex_enter(&ill->ill_lock); 13009 /* Must queue message. Tail insertion */ 13010 mpp = &ill->ill_dlpi_deferred; 13011 while (*mpp != NULL) 13012 mpp = &((*mpp)->b_next); 13013 13014 *mpp = mp; 13015 mutex_exit(&ill->ill_lock); 13016 } 13017 13018 /* 13019 * Send the messages that were queued. Make sure there is only 13020 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13021 * when an ACK or a NAK is received to process the next queued message. 13022 * For IPMP we are called on the upper ill, but when send what is queued 13023 * on the cast_ill. 13024 */ 13025 void 13026 ill_dlpi_send_queued(ill_t *ill) 13027 { 13028 mblk_t *mp; 13029 union DL_primitives *dlp; 13030 t_uscalar_t prim; 13031 ill_t *release_ill = NULL; 13032 13033 if (IS_IPMP(ill)) { 13034 /* On the upper IPMP ill. */ 13035 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13036 if (release_ill == NULL) { 13037 /* Avoid ever sending anything down to the ipmpstub */ 13038 return; 13039 } 13040 ill = release_ill; 13041 } 13042 mutex_enter(&ill->ill_lock); 13043 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13044 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13045 /* Can't send. Somebody else will send it */ 13046 mutex_exit(&ill->ill_lock); 13047 goto done; 13048 } 13049 ill->ill_dlpi_deferred = mp->b_next; 13050 mp->b_next = NULL; 13051 if (!ill->ill_dl_up) { 13052 /* 13053 * Nobody there. All multicast addresses will be 13054 * re-joined when we get the DL_BIND_ACK bringing the 13055 * interface up. 13056 */ 13057 freemsg(mp); 13058 continue; 13059 } 13060 dlp = (union DL_primitives *)mp->b_rptr; 13061 prim = dlp->dl_primitive; 13062 13063 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13064 (prim == DL_UNBIND_REQ)) { 13065 ill->ill_dlpi_pending = prim; 13066 } 13067 mutex_exit(&ill->ill_lock); 13068 13069 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13070 char *, dl_primstr(prim), ill_t *, ill); 13071 putnext(ill->ill_wq, mp); 13072 mutex_enter(&ill->ill_lock); 13073 } 13074 mutex_exit(&ill->ill_lock); 13075 done: 13076 if (release_ill != NULL) 13077 ill_refrele(release_ill); 13078 } 13079 13080 /* 13081 * Queue an IP (IGMP/MLD) message to be sent by IP from 13082 * ill_mcast_send_queued 13083 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13084 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13085 * group to race. 13086 * We send them in order using ill_lock. 13087 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13088 */ 13089 void 13090 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13091 { 13092 mblk_t **mpp; 13093 ill_t *release_ill = NULL; 13094 13095 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13096 13097 if (IS_IPMP(ill)) { 13098 /* On the upper IPMP ill. */ 13099 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13100 if (release_ill == NULL) { 13101 /* Discard instead of queuing for the ipmp interface */ 13102 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13103 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13104 mp, ill); 13105 freemsg(mp); 13106 return; 13107 } 13108 ill = release_ill; 13109 } 13110 13111 mutex_enter(&ill->ill_lock); 13112 /* Must queue message. Tail insertion */ 13113 mpp = &ill->ill_mcast_deferred; 13114 while (*mpp != NULL) 13115 mpp = &((*mpp)->b_next); 13116 13117 *mpp = mp; 13118 mutex_exit(&ill->ill_lock); 13119 if (release_ill != NULL) 13120 ill_refrele(release_ill); 13121 } 13122 13123 /* 13124 * Send the IP packets that were queued by ill_mcast_queue. 13125 * These are IGMP/MLD packets. 13126 * 13127 * For IPMP we are called on the upper ill, but when send what is queued 13128 * on the cast_ill. 13129 * 13130 * Request loopback of the report if we are acting as a multicast 13131 * router, so that the process-level routing demon can hear it. 13132 * This will run multiple times for the same group if there are members 13133 * on the same group for multiple ipif's on the same ill. The 13134 * igmp_input/mld_input code will suppress this due to the loopback thus we 13135 * always loopback membership report. 13136 * 13137 * We also need to make sure that this does not get load balanced 13138 * by IPMP. We do this by passing an ill to ip_output_simple. 13139 */ 13140 void 13141 ill_mcast_send_queued(ill_t *ill) 13142 { 13143 mblk_t *mp; 13144 ip_xmit_attr_t ixas; 13145 ill_t *release_ill = NULL; 13146 13147 if (IS_IPMP(ill)) { 13148 /* On the upper IPMP ill. */ 13149 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13150 if (release_ill == NULL) { 13151 /* 13152 * We should have no messages on the ipmp interface 13153 * but no point in trying to send them. 13154 */ 13155 return; 13156 } 13157 ill = release_ill; 13158 } 13159 bzero(&ixas, sizeof (ixas)); 13160 ixas.ixa_zoneid = ALL_ZONES; 13161 ixas.ixa_cred = kcred; 13162 ixas.ixa_cpid = NOPID; 13163 ixas.ixa_tsl = NULL; 13164 /* 13165 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13166 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13167 * That is necessary to handle IGMP/MLD snooping switches. 13168 */ 13169 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13170 ixas.ixa_ipst = ill->ill_ipst; 13171 13172 mutex_enter(&ill->ill_lock); 13173 while ((mp = ill->ill_mcast_deferred) != NULL) { 13174 ill->ill_mcast_deferred = mp->b_next; 13175 mp->b_next = NULL; 13176 if (!ill->ill_dl_up) { 13177 /* 13178 * Nobody there. Just drop the ip packets. 13179 * IGMP/MLD will resend later, if this is a replumb. 13180 */ 13181 freemsg(mp); 13182 continue; 13183 } 13184 mutex_enter(&ill->ill_phyint->phyint_lock); 13185 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13186 /* 13187 * When the ill is getting deactivated, we only want to 13188 * send the DLPI messages, so drop IGMP/MLD packets. 13189 * DLPI messages are handled by ill_dlpi_send_queued() 13190 */ 13191 mutex_exit(&ill->ill_phyint->phyint_lock); 13192 freemsg(mp); 13193 continue; 13194 } 13195 mutex_exit(&ill->ill_phyint->phyint_lock); 13196 mutex_exit(&ill->ill_lock); 13197 13198 /* Check whether we are sending IPv4 or IPv6. */ 13199 if (ill->ill_isv6) { 13200 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13201 13202 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13203 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13204 } else { 13205 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13206 13207 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13208 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13209 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13210 } 13211 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13212 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13213 (void) ip_output_simple(mp, &ixas); 13214 ixa_cleanup(&ixas); 13215 13216 mutex_enter(&ill->ill_lock); 13217 } 13218 mutex_exit(&ill->ill_lock); 13219 13220 done: 13221 if (release_ill != NULL) 13222 ill_refrele(release_ill); 13223 } 13224 13225 /* 13226 * Take down a specific interface, but don't lose any information about it. 13227 * (Always called as writer.) 13228 * This function goes through the down sequence even if the interface is 13229 * already down. There are 2 reasons. 13230 * a. Currently we permit interface routes that depend on down interfaces 13231 * to be added. This behaviour itself is questionable. However it appears 13232 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13233 * time. We go thru the cleanup in order to remove these routes. 13234 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13235 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13236 * down, but we need to cleanup i.e. do ill_dl_down and 13237 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13238 * 13239 * IP-MT notes: 13240 * 13241 * Model of reference to interfaces. 13242 * 13243 * The following members in ipif_t track references to the ipif. 13244 * int ipif_refcnt; Active reference count 13245 * 13246 * The following members in ill_t track references to the ill. 13247 * int ill_refcnt; active refcnt 13248 * uint_t ill_ire_cnt; Number of ires referencing ill 13249 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13250 * uint_t ill_nce_cnt; Number of nces referencing ill 13251 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13252 * 13253 * Reference to an ipif or ill can be obtained in any of the following ways. 13254 * 13255 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13256 * Pointers to ipif / ill from other data structures viz ire and conn. 13257 * Implicit reference to the ipif / ill by holding a reference to the ire. 13258 * 13259 * The ipif/ill lookup functions return a reference held ipif / ill. 13260 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13261 * This is a purely dynamic reference count associated with threads holding 13262 * references to the ipif / ill. Pointers from other structures do not 13263 * count towards this reference count. 13264 * 13265 * ill_ire_cnt is the number of ire's associated with the 13266 * ill. This is incremented whenever a new ire is created referencing the 13267 * ill. This is done atomically inside ire_add_v[46] where the ire is 13268 * actually added to the ire hash table. The count is decremented in 13269 * ire_inactive where the ire is destroyed. 13270 * 13271 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13272 * This is incremented atomically in 13273 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13274 * table. Similarly it is decremented in ncec_inactive() where the ncec 13275 * is destroyed. 13276 * 13277 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13278 * incremented atomically in nce_add() where the nce is actually added to the 13279 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13280 * is destroyed. 13281 * 13282 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13283 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13284 * 13285 * Flow of ioctls involving interface down/up 13286 * 13287 * The following is the sequence of an attempt to set some critical flags on an 13288 * up interface. 13289 * ip_sioctl_flags 13290 * ipif_down 13291 * wait for ipif to be quiescent 13292 * ipif_down_tail 13293 * ip_sioctl_flags_tail 13294 * 13295 * All set ioctls that involve down/up sequence would have a skeleton similar 13296 * to the above. All the *tail functions are called after the refcounts have 13297 * dropped to the appropriate values. 13298 * 13299 * SIOC ioctls during the IPIF_CHANGING interval. 13300 * 13301 * Threads handling SIOC set ioctls serialize on the squeue, but this 13302 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13303 * steps of internal changes to the state, some of which are visible in 13304 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13305 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13306 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13307 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13308 * the current exclusive operation completes. The IPIF_CHANGING check 13309 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13310 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13311 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13312 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13313 * until we release the ipsq_lock, even though the ill/ipif state flags 13314 * can change after we drop the ill_lock. 13315 */ 13316 int 13317 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13318 { 13319 ill_t *ill = ipif->ipif_ill; 13320 conn_t *connp; 13321 boolean_t success; 13322 boolean_t ipif_was_up = B_FALSE; 13323 ip_stack_t *ipst = ill->ill_ipst; 13324 13325 ASSERT(IAM_WRITER_IPIF(ipif)); 13326 13327 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13328 13329 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13330 ill_t *, ill, ipif_t *, ipif); 13331 13332 if (ipif->ipif_flags & IPIF_UP) { 13333 mutex_enter(&ill->ill_lock); 13334 ipif->ipif_flags &= ~IPIF_UP; 13335 ASSERT(ill->ill_ipif_up_count > 0); 13336 --ill->ill_ipif_up_count; 13337 mutex_exit(&ill->ill_lock); 13338 ipif_was_up = B_TRUE; 13339 /* Update status in SCTP's list */ 13340 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13341 ill_nic_event_dispatch(ipif->ipif_ill, 13342 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13343 } 13344 13345 /* 13346 * Removal of the last ipif from an ill may result in a DL_UNBIND 13347 * being sent to the driver, and we must not send any data packets to 13348 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13349 * ire and nce entries used in the data path will be cleaned 13350 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13351 * sure on new entries will be added until the ill is bound 13352 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13353 * receipt of a DL_BIND_ACK. 13354 */ 13355 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13356 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13357 ill->ill_dl_up) { 13358 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13359 } 13360 13361 /* 13362 * Blow away memberships we established in ipif_multicast_up(). 13363 */ 13364 ipif_multicast_down(ipif); 13365 13366 /* 13367 * Remove from the mapping for __sin6_src_id. We insert only 13368 * when the address is not INADDR_ANY. As IPv4 addresses are 13369 * stored as mapped addresses, we need to check for mapped 13370 * INADDR_ANY also. 13371 */ 13372 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13373 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13374 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13375 int err; 13376 13377 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13378 ipif->ipif_zoneid, ipst); 13379 if (err != 0) { 13380 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13381 } 13382 } 13383 13384 if (ipif_was_up) { 13385 /* only delete if we'd added ire's before */ 13386 if (ipif->ipif_isv6) 13387 ipif_delete_ires_v6(ipif); 13388 else 13389 ipif_delete_ires_v4(ipif); 13390 } 13391 13392 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13393 /* 13394 * Since the interface is now down, it may have just become 13395 * inactive. Note that this needs to be done even for a 13396 * lll_logical_down(), or ARP entries will not get correctly 13397 * restored when the interface comes back up. 13398 */ 13399 if (IS_UNDER_IPMP(ill)) 13400 ipmp_ill_refresh_active(ill); 13401 } 13402 13403 /* 13404 * neighbor-discovery or arp entries for this interface. The ipif 13405 * has to be quiesced, so we walk all the nce's and delete those 13406 * that point at the ipif->ipif_ill. At the same time, we also 13407 * update IPMP so that ipifs for data addresses are unbound. We dont 13408 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13409 * that for ipif_down_tail() 13410 */ 13411 ipif_nce_down(ipif); 13412 13413 /* 13414 * If this is the last ipif on the ill, we also need to remove 13415 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13416 * never succeed. 13417 */ 13418 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13419 ire_walk_ill(0, 0, ill_downi, ill, ill); 13420 13421 /* 13422 * Walk all CONNs that can have a reference on an ire for this 13423 * ipif (we actually walk all that now have stale references). 13424 */ 13425 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13426 13427 /* 13428 * If mp is NULL the caller will wait for the appropriate refcnt. 13429 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13430 * and ill_delete -> ipif_free -> ipif_down 13431 */ 13432 if (mp == NULL) { 13433 ASSERT(q == NULL); 13434 return (0); 13435 } 13436 13437 if (CONN_Q(q)) { 13438 connp = Q_TO_CONN(q); 13439 mutex_enter(&connp->conn_lock); 13440 } else { 13441 connp = NULL; 13442 } 13443 mutex_enter(&ill->ill_lock); 13444 /* 13445 * Are there any ire's pointing to this ipif that are still active ? 13446 * If this is the last ipif going down, are there any ire's pointing 13447 * to this ill that are still active ? 13448 */ 13449 if (ipif_is_quiescent(ipif)) { 13450 mutex_exit(&ill->ill_lock); 13451 if (connp != NULL) 13452 mutex_exit(&connp->conn_lock); 13453 return (0); 13454 } 13455 13456 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13457 ill->ill_name, (void *)ill)); 13458 /* 13459 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13460 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13461 * which in turn is called by the last refrele on the ipif/ill/ire. 13462 */ 13463 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13464 if (!success) { 13465 /* The conn is closing. So just return */ 13466 ASSERT(connp != NULL); 13467 mutex_exit(&ill->ill_lock); 13468 mutex_exit(&connp->conn_lock); 13469 return (EINTR); 13470 } 13471 13472 mutex_exit(&ill->ill_lock); 13473 if (connp != NULL) 13474 mutex_exit(&connp->conn_lock); 13475 return (EINPROGRESS); 13476 } 13477 13478 int 13479 ipif_down_tail(ipif_t *ipif) 13480 { 13481 ill_t *ill = ipif->ipif_ill; 13482 int err = 0; 13483 13484 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13485 ill_t *, ill, ipif_t *, ipif); 13486 13487 /* 13488 * Skip any loopback interface (null wq). 13489 * If this is the last logical interface on the ill 13490 * have ill_dl_down tell the driver we are gone (unbind) 13491 * Note that lun 0 can ipif_down even though 13492 * there are other logical units that are up. 13493 * This occurs e.g. when we change a "significant" IFF_ flag. 13494 */ 13495 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13496 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13497 ill->ill_dl_up) { 13498 ill_dl_down(ill); 13499 } 13500 if (!ipif->ipif_isv6) 13501 err = ipif_arp_down(ipif); 13502 13503 ill->ill_logical_down = 0; 13504 13505 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13506 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13507 return (err); 13508 } 13509 13510 /* 13511 * Bring interface logically down without bringing the physical interface 13512 * down e.g. when the netmask is changed. This avoids long lasting link 13513 * negotiations between an ethernet interface and a certain switches. 13514 */ 13515 static int 13516 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13517 { 13518 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13519 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13520 13521 /* 13522 * The ill_logical_down flag is a transient flag. It is set here 13523 * and is cleared once the down has completed in ipif_down_tail. 13524 * This flag does not indicate whether the ill stream is in the 13525 * DL_BOUND state with the driver. Instead this flag is used by 13526 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13527 * the driver. The state of the ill stream i.e. whether it is 13528 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13529 */ 13530 ipif->ipif_ill->ill_logical_down = 1; 13531 return (ipif_down(ipif, q, mp)); 13532 } 13533 13534 /* 13535 * Initiate deallocate of an IPIF. Always called as writer. Called by 13536 * ill_delete or ip_sioctl_removeif. 13537 */ 13538 static void 13539 ipif_free(ipif_t *ipif) 13540 { 13541 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13542 13543 ASSERT(IAM_WRITER_IPIF(ipif)); 13544 13545 if (ipif->ipif_recovery_id != 0) 13546 (void) untimeout(ipif->ipif_recovery_id); 13547 ipif->ipif_recovery_id = 0; 13548 13549 /* 13550 * Take down the interface. We can be called either from ill_delete 13551 * or from ip_sioctl_removeif. 13552 */ 13553 (void) ipif_down(ipif, NULL, NULL); 13554 13555 /* 13556 * Now that the interface is down, there's no chance it can still 13557 * become a duplicate. Cancel any timer that may have been set while 13558 * tearing down. 13559 */ 13560 if (ipif->ipif_recovery_id != 0) 13561 (void) untimeout(ipif->ipif_recovery_id); 13562 ipif->ipif_recovery_id = 0; 13563 13564 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13565 /* Remove pointers to this ill in the multicast routing tables */ 13566 reset_mrt_vif_ipif(ipif); 13567 /* If necessary, clear the cached source ipif rotor. */ 13568 if (ipif->ipif_ill->ill_src_ipif == ipif) 13569 ipif->ipif_ill->ill_src_ipif = NULL; 13570 rw_exit(&ipst->ips_ill_g_lock); 13571 } 13572 13573 static void 13574 ipif_free_tail(ipif_t *ipif) 13575 { 13576 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13577 13578 /* 13579 * Need to hold both ill_g_lock and ill_lock while 13580 * inserting or removing an ipif from the linked list 13581 * of ipifs hanging off the ill. 13582 */ 13583 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13584 13585 #ifdef DEBUG 13586 ipif_trace_cleanup(ipif); 13587 #endif 13588 13589 /* Ask SCTP to take it out of it list */ 13590 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13591 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13592 13593 /* Get it out of the ILL interface list. */ 13594 ipif_remove(ipif); 13595 rw_exit(&ipst->ips_ill_g_lock); 13596 13597 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13598 ASSERT(ipif->ipif_recovery_id == 0); 13599 ASSERT(ipif->ipif_ire_local == NULL); 13600 ASSERT(ipif->ipif_ire_if == NULL); 13601 13602 /* Free the memory. */ 13603 mi_free(ipif); 13604 } 13605 13606 /* 13607 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13608 * is zero. 13609 */ 13610 void 13611 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13612 { 13613 char lbuf[LIFNAMSIZ]; 13614 char *name; 13615 size_t name_len; 13616 13617 buf[0] = '\0'; 13618 name = ipif->ipif_ill->ill_name; 13619 name_len = ipif->ipif_ill->ill_name_length; 13620 if (ipif->ipif_id != 0) { 13621 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13622 ipif->ipif_id); 13623 name = lbuf; 13624 name_len = mi_strlen(name) + 1; 13625 } 13626 len -= 1; 13627 buf[len] = '\0'; 13628 len = MIN(len, name_len); 13629 bcopy(name, buf, len); 13630 } 13631 13632 /* 13633 * Sets `buf' to an ill name. 13634 */ 13635 void 13636 ill_get_name(const ill_t *ill, char *buf, int len) 13637 { 13638 char *name; 13639 size_t name_len; 13640 13641 name = ill->ill_name; 13642 name_len = ill->ill_name_length; 13643 len -= 1; 13644 buf[len] = '\0'; 13645 len = MIN(len, name_len); 13646 bcopy(name, buf, len); 13647 } 13648 13649 /* 13650 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13651 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13652 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13653 * (May be called as writer.) 13654 */ 13655 static ipif_t * 13656 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13657 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13658 { 13659 char *cp; 13660 char *endp; 13661 long id; 13662 ill_t *ill; 13663 ipif_t *ipif; 13664 uint_t ire_type; 13665 boolean_t did_alloc = B_FALSE; 13666 char last; 13667 13668 /* 13669 * If the caller wants to us to create the ipif, make sure we have a 13670 * valid zoneid 13671 */ 13672 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13673 13674 if (namelen == 0) { 13675 return (NULL); 13676 } 13677 13678 *exists = B_FALSE; 13679 /* Look for a colon in the name. */ 13680 endp = &name[namelen]; 13681 for (cp = endp; --cp > name; ) { 13682 if (*cp == IPIF_SEPARATOR_CHAR) 13683 break; 13684 } 13685 13686 if (*cp == IPIF_SEPARATOR_CHAR) { 13687 /* 13688 * Reject any non-decimal aliases for logical 13689 * interfaces. Aliases with leading zeroes 13690 * are also rejected as they introduce ambiguity 13691 * in the naming of the interfaces. 13692 * In order to confirm with existing semantics, 13693 * and to not break any programs/script relying 13694 * on that behaviour, if<0>:0 is considered to be 13695 * a valid interface. 13696 * 13697 * If alias has two or more digits and the first 13698 * is zero, fail. 13699 */ 13700 if (&cp[2] < endp && cp[1] == '0') { 13701 return (NULL); 13702 } 13703 } 13704 13705 if (cp <= name) { 13706 cp = endp; 13707 } 13708 last = *cp; 13709 *cp = '\0'; 13710 13711 /* 13712 * Look up the ILL, based on the portion of the name 13713 * before the slash. ill_lookup_on_name returns a held ill. 13714 * Temporary to check whether ill exists already. If so 13715 * ill_lookup_on_name will clear it. 13716 */ 13717 ill = ill_lookup_on_name(name, do_alloc, isv6, 13718 &did_alloc, ipst); 13719 *cp = last; 13720 if (ill == NULL) 13721 return (NULL); 13722 13723 /* Establish the unit number in the name. */ 13724 id = 0; 13725 if (cp < endp && *endp == '\0') { 13726 /* If there was a colon, the unit number follows. */ 13727 cp++; 13728 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13729 ill_refrele(ill); 13730 return (NULL); 13731 } 13732 } 13733 13734 mutex_enter(&ill->ill_lock); 13735 /* Now see if there is an IPIF with this unit number. */ 13736 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13737 if (ipif->ipif_id == id) { 13738 if (zoneid != ALL_ZONES && 13739 zoneid != ipif->ipif_zoneid && 13740 ipif->ipif_zoneid != ALL_ZONES) { 13741 mutex_exit(&ill->ill_lock); 13742 ill_refrele(ill); 13743 return (NULL); 13744 } 13745 if (IPIF_CAN_LOOKUP(ipif)) { 13746 ipif_refhold_locked(ipif); 13747 mutex_exit(&ill->ill_lock); 13748 if (!did_alloc) 13749 *exists = B_TRUE; 13750 /* 13751 * Drop locks before calling ill_refrele 13752 * since it can potentially call into 13753 * ipif_ill_refrele_tail which can end up 13754 * in trying to acquire any lock. 13755 */ 13756 ill_refrele(ill); 13757 return (ipif); 13758 } 13759 } 13760 } 13761 13762 if (!do_alloc) { 13763 mutex_exit(&ill->ill_lock); 13764 ill_refrele(ill); 13765 return (NULL); 13766 } 13767 13768 /* 13769 * If none found, atomically allocate and return a new one. 13770 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13771 * to support "receive only" use of lo0:1 etc. as is still done 13772 * below as an initial guess. 13773 * However, this is now likely to be overriden later in ipif_up_done() 13774 * when we know for sure what address has been configured on the 13775 * interface, since we might have more than one loopback interface 13776 * with a loopback address, e.g. in the case of zones, and all the 13777 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13778 */ 13779 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13780 ire_type = IRE_LOOPBACK; 13781 else 13782 ire_type = IRE_LOCAL; 13783 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13784 if (ipif != NULL) 13785 ipif_refhold_locked(ipif); 13786 mutex_exit(&ill->ill_lock); 13787 ill_refrele(ill); 13788 return (ipif); 13789 } 13790 13791 /* 13792 * Variant of the above that queues the request on the ipsq when 13793 * IPIF_CHANGING is set. 13794 */ 13795 static ipif_t * 13796 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13797 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13798 ip_stack_t *ipst) 13799 { 13800 char *cp; 13801 char *endp; 13802 long id; 13803 ill_t *ill; 13804 ipif_t *ipif; 13805 boolean_t did_alloc = B_FALSE; 13806 ipsq_t *ipsq; 13807 13808 if (error != NULL) 13809 *error = 0; 13810 13811 if (namelen == 0) { 13812 if (error != NULL) 13813 *error = ENXIO; 13814 return (NULL); 13815 } 13816 13817 /* Look for a colon in the name. */ 13818 endp = &name[namelen]; 13819 for (cp = endp; --cp > name; ) { 13820 if (*cp == IPIF_SEPARATOR_CHAR) 13821 break; 13822 } 13823 13824 if (*cp == IPIF_SEPARATOR_CHAR) { 13825 /* 13826 * Reject any non-decimal aliases for logical 13827 * interfaces. Aliases with leading zeroes 13828 * are also rejected as they introduce ambiguity 13829 * in the naming of the interfaces. 13830 * In order to confirm with existing semantics, 13831 * and to not break any programs/script relying 13832 * on that behaviour, if<0>:0 is considered to be 13833 * a valid interface. 13834 * 13835 * If alias has two or more digits and the first 13836 * is zero, fail. 13837 */ 13838 if (&cp[2] < endp && cp[1] == '0') { 13839 if (error != NULL) 13840 *error = EINVAL; 13841 return (NULL); 13842 } 13843 } 13844 13845 if (cp <= name) { 13846 cp = endp; 13847 } else { 13848 *cp = '\0'; 13849 } 13850 13851 /* 13852 * Look up the ILL, based on the portion of the name 13853 * before the slash. ill_lookup_on_name returns a held ill. 13854 * Temporary to check whether ill exists already. If so 13855 * ill_lookup_on_name will clear it. 13856 */ 13857 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13858 if (cp != endp) 13859 *cp = IPIF_SEPARATOR_CHAR; 13860 if (ill == NULL) 13861 return (NULL); 13862 13863 /* Establish the unit number in the name. */ 13864 id = 0; 13865 if (cp < endp && *endp == '\0') { 13866 /* If there was a colon, the unit number follows. */ 13867 cp++; 13868 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13869 ill_refrele(ill); 13870 if (error != NULL) 13871 *error = ENXIO; 13872 return (NULL); 13873 } 13874 } 13875 13876 GRAB_CONN_LOCK(q); 13877 mutex_enter(&ill->ill_lock); 13878 /* Now see if there is an IPIF with this unit number. */ 13879 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13880 if (ipif->ipif_id == id) { 13881 if (zoneid != ALL_ZONES && 13882 zoneid != ipif->ipif_zoneid && 13883 ipif->ipif_zoneid != ALL_ZONES) { 13884 mutex_exit(&ill->ill_lock); 13885 RELEASE_CONN_LOCK(q); 13886 ill_refrele(ill); 13887 if (error != NULL) 13888 *error = ENXIO; 13889 return (NULL); 13890 } 13891 13892 if (!(IPIF_IS_CHANGING(ipif) || 13893 IPIF_IS_CONDEMNED(ipif)) || 13894 IAM_WRITER_IPIF(ipif)) { 13895 ipif_refhold_locked(ipif); 13896 mutex_exit(&ill->ill_lock); 13897 /* 13898 * Drop locks before calling ill_refrele 13899 * since it can potentially call into 13900 * ipif_ill_refrele_tail which can end up 13901 * in trying to acquire any lock. 13902 */ 13903 RELEASE_CONN_LOCK(q); 13904 ill_refrele(ill); 13905 return (ipif); 13906 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13907 ipsq = ill->ill_phyint->phyint_ipsq; 13908 mutex_enter(&ipsq->ipsq_lock); 13909 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13910 mutex_exit(&ill->ill_lock); 13911 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13912 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13913 mutex_exit(&ipsq->ipsq_lock); 13914 RELEASE_CONN_LOCK(q); 13915 ill_refrele(ill); 13916 if (error != NULL) 13917 *error = EINPROGRESS; 13918 return (NULL); 13919 } 13920 } 13921 } 13922 RELEASE_CONN_LOCK(q); 13923 mutex_exit(&ill->ill_lock); 13924 ill_refrele(ill); 13925 if (error != NULL) 13926 *error = ENXIO; 13927 return (NULL); 13928 } 13929 13930 /* 13931 * This routine is called whenever a new address comes up on an ipif. If 13932 * we are configured to respond to address mask requests, then we are supposed 13933 * to broadcast an address mask reply at this time. This routine is also 13934 * called if we are already up, but a netmask change is made. This is legal 13935 * but might not make the system manager very popular. (May be called 13936 * as writer.) 13937 */ 13938 void 13939 ipif_mask_reply(ipif_t *ipif) 13940 { 13941 icmph_t *icmph; 13942 ipha_t *ipha; 13943 mblk_t *mp; 13944 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13945 ip_xmit_attr_t ixas; 13946 13947 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13948 13949 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13950 return; 13951 13952 /* ICMP mask reply is IPv4 only */ 13953 ASSERT(!ipif->ipif_isv6); 13954 /* ICMP mask reply is not for a loopback interface */ 13955 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13956 13957 if (ipif->ipif_lcl_addr == INADDR_ANY) 13958 return; 13959 13960 mp = allocb(REPLY_LEN, BPRI_HI); 13961 if (mp == NULL) 13962 return; 13963 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13964 13965 ipha = (ipha_t *)mp->b_rptr; 13966 bzero(ipha, REPLY_LEN); 13967 *ipha = icmp_ipha; 13968 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13969 ipha->ipha_src = ipif->ipif_lcl_addr; 13970 ipha->ipha_dst = ipif->ipif_brd_addr; 13971 ipha->ipha_length = htons(REPLY_LEN); 13972 ipha->ipha_ident = 0; 13973 13974 icmph = (icmph_t *)&ipha[1]; 13975 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13976 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13977 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13978 13979 bzero(&ixas, sizeof (ixas)); 13980 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13981 ixas.ixa_zoneid = ALL_ZONES; 13982 ixas.ixa_ifindex = 0; 13983 ixas.ixa_ipst = ipst; 13984 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13985 (void) ip_output_simple(mp, &ixas); 13986 ixa_cleanup(&ixas); 13987 #undef REPLY_LEN 13988 } 13989 13990 /* 13991 * Join the ipif specific multicast groups. 13992 * Must be called after a mapping has been set up in the resolver. (Always 13993 * called as writer.) 13994 */ 13995 void 13996 ipif_multicast_up(ipif_t *ipif) 13997 { 13998 int err; 13999 ill_t *ill; 14000 ilm_t *ilm; 14001 14002 ASSERT(IAM_WRITER_IPIF(ipif)); 14003 14004 ill = ipif->ipif_ill; 14005 14006 ip1dbg(("ipif_multicast_up\n")); 14007 if (!(ill->ill_flags & ILLF_MULTICAST) || 14008 ipif->ipif_allhosts_ilm != NULL) 14009 return; 14010 14011 if (ipif->ipif_isv6) { 14012 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14013 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14014 14015 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14016 14017 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14018 return; 14019 14020 ip1dbg(("ipif_multicast_up - addmulti\n")); 14021 14022 /* 14023 * Join the all hosts multicast address. We skip this for 14024 * underlying IPMP interfaces since they should be invisible. 14025 */ 14026 if (!IS_UNDER_IPMP(ill)) { 14027 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14028 &err); 14029 if (ilm == NULL) { 14030 ASSERT(err != 0); 14031 ip0dbg(("ipif_multicast_up: " 14032 "all_hosts_mcast failed %d\n", err)); 14033 return; 14034 } 14035 ipif->ipif_allhosts_ilm = ilm; 14036 } 14037 14038 /* 14039 * Enable multicast for the solicited node multicast address. 14040 * If IPMP we need to put the membership on the upper ill. 14041 */ 14042 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14043 ill_t *mcast_ill = NULL; 14044 boolean_t need_refrele; 14045 14046 if (IS_UNDER_IPMP(ill) && 14047 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14048 need_refrele = B_TRUE; 14049 } else { 14050 mcast_ill = ill; 14051 need_refrele = B_FALSE; 14052 } 14053 14054 ilm = ip_addmulti(&v6solmc, mcast_ill, 14055 ipif->ipif_zoneid, &err); 14056 if (need_refrele) 14057 ill_refrele(mcast_ill); 14058 14059 if (ilm == NULL) { 14060 ASSERT(err != 0); 14061 ip0dbg(("ipif_multicast_up: solicited MC" 14062 " failed %d\n", err)); 14063 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14064 ipif->ipif_allhosts_ilm = NULL; 14065 (void) ip_delmulti(ilm); 14066 } 14067 return; 14068 } 14069 ipif->ipif_solmulti_ilm = ilm; 14070 } 14071 } else { 14072 in6_addr_t v6group; 14073 14074 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14075 return; 14076 14077 /* Join the all hosts multicast address */ 14078 ip1dbg(("ipif_multicast_up - addmulti\n")); 14079 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14080 14081 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14082 if (ilm == NULL) { 14083 ASSERT(err != 0); 14084 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14085 return; 14086 } 14087 ipif->ipif_allhosts_ilm = ilm; 14088 } 14089 } 14090 14091 /* 14092 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14093 * (ilms from explicit memberships are handled in conn_update_ill.) 14094 */ 14095 void 14096 ipif_multicast_down(ipif_t *ipif) 14097 { 14098 ASSERT(IAM_WRITER_IPIF(ipif)); 14099 14100 ip1dbg(("ipif_multicast_down\n")); 14101 14102 if (ipif->ipif_allhosts_ilm != NULL) { 14103 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14104 ipif->ipif_allhosts_ilm = NULL; 14105 } 14106 if (ipif->ipif_solmulti_ilm != NULL) { 14107 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14108 ipif->ipif_solmulti_ilm = NULL; 14109 } 14110 } 14111 14112 /* 14113 * Used when an interface comes up to recreate any extra routes on this 14114 * interface. 14115 */ 14116 int 14117 ill_recover_saved_ire(ill_t *ill) 14118 { 14119 mblk_t *mp; 14120 ip_stack_t *ipst = ill->ill_ipst; 14121 14122 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14123 14124 mutex_enter(&ill->ill_saved_ire_lock); 14125 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14126 ire_t *ire, *nire; 14127 ifrt_t *ifrt; 14128 14129 ifrt = (ifrt_t *)mp->b_rptr; 14130 /* 14131 * Create a copy of the IRE with the saved address and netmask. 14132 */ 14133 if (ill->ill_isv6) { 14134 ire = ire_create_v6( 14135 &ifrt->ifrt_v6addr, 14136 &ifrt->ifrt_v6mask, 14137 &ifrt->ifrt_v6gateway_addr, 14138 ifrt->ifrt_type, 14139 ill, 14140 ifrt->ifrt_zoneid, 14141 ifrt->ifrt_flags, 14142 NULL, 14143 ipst); 14144 } else { 14145 ire = ire_create( 14146 (uint8_t *)&ifrt->ifrt_addr, 14147 (uint8_t *)&ifrt->ifrt_mask, 14148 (uint8_t *)&ifrt->ifrt_gateway_addr, 14149 ifrt->ifrt_type, 14150 ill, 14151 ifrt->ifrt_zoneid, 14152 ifrt->ifrt_flags, 14153 NULL, 14154 ipst); 14155 } 14156 if (ire == NULL) { 14157 mutex_exit(&ill->ill_saved_ire_lock); 14158 return (ENOMEM); 14159 } 14160 14161 if (ifrt->ifrt_flags & RTF_SETSRC) { 14162 if (ill->ill_isv6) { 14163 ire->ire_setsrc_addr_v6 = 14164 ifrt->ifrt_v6setsrc_addr; 14165 } else { 14166 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14167 } 14168 } 14169 14170 /* 14171 * Some software (for example, GateD and Sun Cluster) attempts 14172 * to create (what amount to) IRE_PREFIX routes with the 14173 * loopback address as the gateway. This is primarily done to 14174 * set up prefixes with the RTF_REJECT flag set (for example, 14175 * when generating aggregate routes.) 14176 * 14177 * If the IRE type (as defined by ill->ill_net_type) is 14178 * IRE_LOOPBACK, then we map the request into a 14179 * IRE_IF_NORESOLVER. 14180 */ 14181 if (ill->ill_net_type == IRE_LOOPBACK) 14182 ire->ire_type = IRE_IF_NORESOLVER; 14183 14184 /* 14185 * ire held by ire_add, will be refreled' towards the 14186 * the end of ipif_up_done 14187 */ 14188 nire = ire_add(ire); 14189 /* 14190 * Check if it was a duplicate entry. This handles 14191 * the case of two racing route adds for the same route 14192 */ 14193 if (nire == NULL) { 14194 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14195 } else if (nire != ire) { 14196 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14197 (void *)nire)); 14198 ire_delete(nire); 14199 } else { 14200 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14201 (void *)nire)); 14202 } 14203 if (nire != NULL) 14204 ire_refrele(nire); 14205 } 14206 mutex_exit(&ill->ill_saved_ire_lock); 14207 return (0); 14208 } 14209 14210 /* 14211 * Used to set the netmask and broadcast address to default values when the 14212 * interface is brought up. (Always called as writer.) 14213 */ 14214 static void 14215 ipif_set_default(ipif_t *ipif) 14216 { 14217 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14218 14219 if (!ipif->ipif_isv6) { 14220 /* 14221 * Interface holds an IPv4 address. Default 14222 * mask is the natural netmask. 14223 */ 14224 if (!ipif->ipif_net_mask) { 14225 ipaddr_t v4mask; 14226 14227 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14228 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14229 } 14230 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14231 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14232 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14233 } else { 14234 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14235 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14236 } 14237 /* 14238 * NOTE: SunOS 4.X does this even if the broadcast address 14239 * has been already set thus we do the same here. 14240 */ 14241 if (ipif->ipif_flags & IPIF_BROADCAST) { 14242 ipaddr_t v4addr; 14243 14244 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14245 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14246 } 14247 } else { 14248 /* 14249 * Interface holds an IPv6-only address. Default 14250 * mask is all-ones. 14251 */ 14252 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14253 ipif->ipif_v6net_mask = ipv6_all_ones; 14254 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14255 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14256 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14257 } else { 14258 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14259 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14260 } 14261 } 14262 } 14263 14264 /* 14265 * Return 0 if this address can be used as local address without causing 14266 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14267 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14268 * Note that the same IPv6 link-local address is allowed as long as the ills 14269 * are not on the same link. 14270 */ 14271 int 14272 ip_addr_availability_check(ipif_t *new_ipif) 14273 { 14274 in6_addr_t our_v6addr; 14275 ill_t *ill; 14276 ipif_t *ipif; 14277 ill_walk_context_t ctx; 14278 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14279 14280 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14281 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14282 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14283 14284 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14285 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14286 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14287 return (0); 14288 14289 our_v6addr = new_ipif->ipif_v6lcl_addr; 14290 14291 if (new_ipif->ipif_isv6) 14292 ill = ILL_START_WALK_V6(&ctx, ipst); 14293 else 14294 ill = ILL_START_WALK_V4(&ctx, ipst); 14295 14296 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14297 for (ipif = ill->ill_ipif; ipif != NULL; 14298 ipif = ipif->ipif_next) { 14299 if ((ipif == new_ipif) || 14300 !(ipif->ipif_flags & IPIF_UP) || 14301 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14302 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14303 &our_v6addr)) 14304 continue; 14305 14306 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14307 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14308 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14309 ipif->ipif_flags |= IPIF_UNNUMBERED; 14310 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14311 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14312 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14313 continue; 14314 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14315 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14316 continue; 14317 else if (new_ipif->ipif_ill == ill) 14318 return (EADDRINUSE); 14319 else 14320 return (EADDRNOTAVAIL); 14321 } 14322 } 14323 14324 return (0); 14325 } 14326 14327 /* 14328 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14329 * IREs for the ipif. 14330 * When the routine returns EINPROGRESS then mp has been consumed and 14331 * the ioctl will be acked from ip_rput_dlpi. 14332 */ 14333 int 14334 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14335 { 14336 ill_t *ill = ipif->ipif_ill; 14337 boolean_t isv6 = ipif->ipif_isv6; 14338 int err = 0; 14339 boolean_t success; 14340 uint_t ipif_orig_id; 14341 ip_stack_t *ipst = ill->ill_ipst; 14342 14343 ASSERT(IAM_WRITER_IPIF(ipif)); 14344 14345 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14346 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14347 ill_t *, ill, ipif_t *, ipif); 14348 14349 /* Shouldn't get here if it is already up. */ 14350 if (ipif->ipif_flags & IPIF_UP) 14351 return (EALREADY); 14352 14353 /* 14354 * If this is a request to bring up a data address on an interface 14355 * under IPMP, then move the address to its IPMP meta-interface and 14356 * try to bring it up. One complication is that the zeroth ipif for 14357 * an ill is special, in that every ill always has one, and that code 14358 * throughout IP deferences ill->ill_ipif without holding any locks. 14359 */ 14360 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14361 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14362 ipif_t *stubipif = NULL, *moveipif = NULL; 14363 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14364 14365 /* 14366 * The ipif being brought up should be quiesced. If it's not, 14367 * something has gone amiss and we need to bail out. (If it's 14368 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14369 */ 14370 mutex_enter(&ill->ill_lock); 14371 if (!ipif_is_quiescent(ipif)) { 14372 mutex_exit(&ill->ill_lock); 14373 return (EINVAL); 14374 } 14375 mutex_exit(&ill->ill_lock); 14376 14377 /* 14378 * If we're going to need to allocate ipifs, do it prior 14379 * to starting the move (and grabbing locks). 14380 */ 14381 if (ipif->ipif_id == 0) { 14382 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14383 B_FALSE, &err)) == NULL) { 14384 return (err); 14385 } 14386 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14387 B_FALSE, &err)) == NULL) { 14388 mi_free(moveipif); 14389 return (err); 14390 } 14391 } 14392 14393 /* 14394 * Grab or transfer the ipif to move. During the move, keep 14395 * ill_g_lock held to prevent any ill walker threads from 14396 * seeing things in an inconsistent state. 14397 */ 14398 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14399 if (ipif->ipif_id != 0) { 14400 ipif_remove(ipif); 14401 } else { 14402 ipif_transfer(ipif, moveipif, stubipif); 14403 ipif = moveipif; 14404 } 14405 14406 /* 14407 * Place the ipif on the IPMP ill. If the zeroth ipif on 14408 * the IPMP ill is a stub (0.0.0.0 down address) then we 14409 * replace that one. Otherwise, pick the next available slot. 14410 */ 14411 ipif->ipif_ill = ipmp_ill; 14412 ipif_orig_id = ipif->ipif_id; 14413 14414 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14415 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14416 ipif = ipmp_ill->ill_ipif; 14417 } else { 14418 ipif->ipif_id = -1; 14419 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14420 /* 14421 * No more available ipif_id's -- put it back 14422 * on the original ill and fail the operation. 14423 * Since we're writer on the ill, we can be 14424 * sure our old slot is still available. 14425 */ 14426 ipif->ipif_id = ipif_orig_id; 14427 ipif->ipif_ill = ill; 14428 if (ipif_orig_id == 0) { 14429 ipif_transfer(ipif, ill->ill_ipif, 14430 NULL); 14431 } else { 14432 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14433 } 14434 rw_exit(&ipst->ips_ill_g_lock); 14435 return (err); 14436 } 14437 } 14438 rw_exit(&ipst->ips_ill_g_lock); 14439 14440 /* 14441 * Tell SCTP that the ipif has moved. Note that even if we 14442 * had to allocate a new ipif, the original sequence id was 14443 * preserved and therefore SCTP won't know. 14444 */ 14445 sctp_move_ipif(ipif, ill, ipmp_ill); 14446 14447 /* 14448 * If the ipif being brought up was on slot zero, then we 14449 * first need to bring up the placeholder we stuck there. In 14450 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14451 * call to ipif_up() itself, if we successfully bring up the 14452 * placeholder, we'll check ill_move_ipif and bring it up too. 14453 */ 14454 if (ipif_orig_id == 0) { 14455 ASSERT(ill->ill_move_ipif == NULL); 14456 ill->ill_move_ipif = ipif; 14457 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14458 ASSERT(ill->ill_move_ipif == NULL); 14459 if (err != EINPROGRESS) 14460 ill->ill_move_ipif = NULL; 14461 return (err); 14462 } 14463 14464 /* 14465 * Bring it up on the IPMP ill. 14466 */ 14467 return (ipif_up(ipif, q, mp)); 14468 } 14469 14470 /* Skip arp/ndp for any loopback interface. */ 14471 if (ill->ill_wq != NULL) { 14472 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14473 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14474 14475 if (!ill->ill_dl_up) { 14476 /* 14477 * ill_dl_up is not yet set. i.e. we are yet to 14478 * DL_BIND with the driver and this is the first 14479 * logical interface on the ill to become "up". 14480 * Tell the driver to get going (via DL_BIND_REQ). 14481 * Note that changing "significant" IFF_ flags 14482 * address/netmask etc cause a down/up dance, but 14483 * does not cause an unbind (DL_UNBIND) with the driver 14484 */ 14485 return (ill_dl_up(ill, ipif, mp, q)); 14486 } 14487 14488 /* 14489 * ipif_resolver_up may end up needeing to bind/attach 14490 * the ARP stream, which in turn necessitates a 14491 * DLPI message exchange with the driver. ioctls are 14492 * serialized and so we cannot send more than one 14493 * interface up message at a time. If ipif_resolver_up 14494 * does need to wait for the DLPI handshake for the ARP stream, 14495 * we get EINPROGRESS and we will complete in arp_bringup_done. 14496 */ 14497 14498 ASSERT(connp != NULL || !CONN_Q(q)); 14499 if (connp != NULL) 14500 mutex_enter(&connp->conn_lock); 14501 mutex_enter(&ill->ill_lock); 14502 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14503 mutex_exit(&ill->ill_lock); 14504 if (connp != NULL) 14505 mutex_exit(&connp->conn_lock); 14506 if (!success) 14507 return (EINTR); 14508 14509 /* 14510 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14511 * complete when ipif_ndp_up returns. 14512 */ 14513 err = ipif_resolver_up(ipif, Res_act_initial); 14514 if (err == EINPROGRESS) { 14515 /* We will complete it in arp_bringup_done() */ 14516 return (err); 14517 } 14518 14519 if (isv6 && err == 0) 14520 err = ipif_ndp_up(ipif, B_TRUE); 14521 14522 ASSERT(err != EINPROGRESS); 14523 mp = ipsq_pending_mp_get(ipsq, &connp); 14524 ASSERT(mp != NULL); 14525 if (err != 0) 14526 return (err); 14527 } else { 14528 /* 14529 * Interfaces without underlying hardware don't do duplicate 14530 * address detection. 14531 */ 14532 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14533 ipif->ipif_addr_ready = 1; 14534 err = ill_add_ires(ill); 14535 /* allocation failure? */ 14536 if (err != 0) 14537 return (err); 14538 } 14539 14540 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14541 if (err == 0 && ill->ill_move_ipif != NULL) { 14542 ipif = ill->ill_move_ipif; 14543 ill->ill_move_ipif = NULL; 14544 return (ipif_up(ipif, q, mp)); 14545 } 14546 return (err); 14547 } 14548 14549 /* 14550 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14551 * The identical set of IREs need to be removed in ill_delete_ires(). 14552 */ 14553 int 14554 ill_add_ires(ill_t *ill) 14555 { 14556 ire_t *ire; 14557 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14558 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14559 14560 if (ill->ill_ire_multicast != NULL) 14561 return (0); 14562 14563 /* 14564 * provide some dummy ire_addr for creating the ire. 14565 */ 14566 if (ill->ill_isv6) { 14567 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14568 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14569 } else { 14570 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14571 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14572 } 14573 if (ire == NULL) 14574 return (ENOMEM); 14575 14576 ill->ill_ire_multicast = ire; 14577 return (0); 14578 } 14579 14580 void 14581 ill_delete_ires(ill_t *ill) 14582 { 14583 if (ill->ill_ire_multicast != NULL) { 14584 /* 14585 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14586 * which was taken without any th_tracing enabled. 14587 * We also mark it as condemned (note that it was never added) 14588 * so that caching conn's can move off of it. 14589 */ 14590 ire_make_condemned(ill->ill_ire_multicast); 14591 ire_refrele_notr(ill->ill_ire_multicast); 14592 ill->ill_ire_multicast = NULL; 14593 } 14594 } 14595 14596 /* 14597 * Perform a bind for the physical device. 14598 * When the routine returns EINPROGRESS then mp has been consumed and 14599 * the ioctl will be acked from ip_rput_dlpi. 14600 * Allocate an unbind message and save it until ipif_down. 14601 */ 14602 static int 14603 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14604 { 14605 mblk_t *bind_mp = NULL; 14606 mblk_t *unbind_mp = NULL; 14607 conn_t *connp; 14608 boolean_t success; 14609 int err; 14610 14611 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14612 14613 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14614 ASSERT(IAM_WRITER_ILL(ill)); 14615 ASSERT(mp != NULL); 14616 14617 /* 14618 * Make sure we have an IRE_MULTICAST in case we immediately 14619 * start receiving packets. 14620 */ 14621 err = ill_add_ires(ill); 14622 if (err != 0) 14623 goto bad; 14624 14625 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14626 DL_BIND_REQ); 14627 if (bind_mp == NULL) 14628 goto bad; 14629 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14630 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14631 14632 /* 14633 * ill_unbind_mp would be non-null if the following sequence had 14634 * happened: 14635 * - send DL_BIND_REQ to driver, wait for response 14636 * - multiple ioctls that need to bring the ipif up are encountered, 14637 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14638 * These ioctls will then be enqueued on the ipsq 14639 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14640 * At this point, the pending ioctls in the ipsq will be drained, and 14641 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14642 * a non-null ill->ill_unbind_mp 14643 */ 14644 if (ill->ill_unbind_mp == NULL) { 14645 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14646 DL_UNBIND_REQ); 14647 if (unbind_mp == NULL) 14648 goto bad; 14649 } 14650 /* 14651 * Record state needed to complete this operation when the 14652 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14653 */ 14654 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14655 ASSERT(connp != NULL || !CONN_Q(q)); 14656 GRAB_CONN_LOCK(q); 14657 mutex_enter(&ipif->ipif_ill->ill_lock); 14658 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14659 mutex_exit(&ipif->ipif_ill->ill_lock); 14660 RELEASE_CONN_LOCK(q); 14661 if (!success) 14662 goto bad; 14663 14664 /* 14665 * Save the unbind message for ill_dl_down(); it will be consumed when 14666 * the interface goes down. 14667 */ 14668 if (ill->ill_unbind_mp == NULL) 14669 ill->ill_unbind_mp = unbind_mp; 14670 14671 ill_dlpi_send(ill, bind_mp); 14672 /* Send down link-layer capabilities probe if not already done. */ 14673 ill_capability_probe(ill); 14674 14675 /* 14676 * Sysid used to rely on the fact that netboots set domainname 14677 * and the like. Now that miniroot boots aren't strictly netboots 14678 * and miniroot network configuration is driven from userland 14679 * these things still need to be set. This situation can be detected 14680 * by comparing the interface being configured here to the one 14681 * dhcifname was set to reference by the boot loader. Once sysid is 14682 * converted to use dhcp_ipc_getinfo() this call can go away. 14683 */ 14684 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14685 (strcmp(ill->ill_name, dhcifname) == 0) && 14686 (strlen(srpc_domain) == 0)) { 14687 if (dhcpinit() != 0) 14688 cmn_err(CE_WARN, "no cached dhcp response"); 14689 } 14690 14691 /* 14692 * This operation will complete in ip_rput_dlpi with either 14693 * a DL_BIND_ACK or DL_ERROR_ACK. 14694 */ 14695 return (EINPROGRESS); 14696 bad: 14697 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14698 14699 freemsg(bind_mp); 14700 freemsg(unbind_mp); 14701 return (ENOMEM); 14702 } 14703 14704 /* Add room for tcp+ip headers */ 14705 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14706 14707 /* 14708 * DLPI and ARP is up. 14709 * Create all the IREs associated with an interface. Bring up multicast. 14710 * Set the interface flag and finish other initialization 14711 * that potentially had to be deferred to after DL_BIND_ACK. 14712 */ 14713 int 14714 ipif_up_done(ipif_t *ipif) 14715 { 14716 ill_t *ill = ipif->ipif_ill; 14717 int err = 0; 14718 boolean_t loopback = B_FALSE; 14719 boolean_t update_src_selection = B_TRUE; 14720 ipif_t *tmp_ipif; 14721 14722 ip1dbg(("ipif_up_done(%s:%u)\n", 14723 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14724 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14725 ill_t *, ill, ipif_t *, ipif); 14726 14727 /* Check if this is a loopback interface */ 14728 if (ipif->ipif_ill->ill_wq == NULL) 14729 loopback = B_TRUE; 14730 14731 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14732 14733 /* 14734 * If all other interfaces for this ill are down or DEPRECATED, 14735 * or otherwise unsuitable for source address selection, 14736 * reset the src generation numbers to make sure source 14737 * address selection gets to take this new ipif into account. 14738 * No need to hold ill_lock while traversing the ipif list since 14739 * we are writer 14740 */ 14741 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14742 tmp_ipif = tmp_ipif->ipif_next) { 14743 if (((tmp_ipif->ipif_flags & 14744 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14745 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14746 (tmp_ipif == ipif)) 14747 continue; 14748 /* first useable pre-existing interface */ 14749 update_src_selection = B_FALSE; 14750 break; 14751 } 14752 if (update_src_selection) 14753 ip_update_source_selection(ill->ill_ipst); 14754 14755 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14756 nce_t *loop_nce = NULL; 14757 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14758 14759 /* 14760 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14761 * ipif_lookup_on_name(), but in the case of zones we can have 14762 * several loopback addresses on lo0. So all the interfaces with 14763 * loopback addresses need to be marked IRE_LOOPBACK. 14764 */ 14765 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14766 htonl(INADDR_LOOPBACK)) 14767 ipif->ipif_ire_type = IRE_LOOPBACK; 14768 else 14769 ipif->ipif_ire_type = IRE_LOCAL; 14770 if (ill->ill_net_type != IRE_LOOPBACK) 14771 flags |= NCE_F_PUBLISH; 14772 14773 /* add unicast nce for the local addr */ 14774 err = nce_lookup_then_add_v4(ill, NULL, 14775 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14776 ND_REACHABLE, &loop_nce); 14777 /* A shared-IP zone sees EEXIST for lo0:N */ 14778 if (err == 0 || err == EEXIST) { 14779 ipif->ipif_added_nce = 1; 14780 loop_nce->nce_ipif_cnt++; 14781 nce_refrele(loop_nce); 14782 err = 0; 14783 } else { 14784 ASSERT(loop_nce == NULL); 14785 return (err); 14786 } 14787 } 14788 14789 /* Create all the IREs associated with this interface */ 14790 err = ipif_add_ires_v4(ipif, loopback); 14791 if (err != 0) { 14792 /* 14793 * see comments about return value from 14794 * ip_addr_availability_check() in ipif_add_ires_v4(). 14795 */ 14796 if (err != EADDRINUSE) { 14797 (void) ipif_arp_down(ipif); 14798 } else { 14799 /* 14800 * Make IPMP aware of the deleted ipif so that 14801 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14802 * can be completed. Note that we do not want to 14803 * destroy the nce that was created on the ipmp_ill 14804 * for the active copy of the duplicate address in 14805 * use. 14806 */ 14807 if (IS_IPMP(ill)) 14808 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14809 err = EADDRNOTAVAIL; 14810 } 14811 return (err); 14812 } 14813 14814 if (ill->ill_ipif_up_count == 1 && !loopback) { 14815 /* Recover any additional IREs entries for this ill */ 14816 (void) ill_recover_saved_ire(ill); 14817 } 14818 14819 if (ill->ill_need_recover_multicast) { 14820 /* 14821 * Need to recover all multicast memberships in the driver. 14822 * This had to be deferred until we had attached. The same 14823 * code exists in ipif_up_done_v6() to recover IPv6 14824 * memberships. 14825 * 14826 * Note that it would be preferable to unconditionally do the 14827 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14828 * that since ill_join_allmulti() depends on ill_dl_up being 14829 * set, and it is not set until we receive a DL_BIND_ACK after 14830 * having called ill_dl_up(). 14831 */ 14832 ill_recover_multicast(ill); 14833 } 14834 14835 if (ill->ill_ipif_up_count == 1) { 14836 /* 14837 * Since the interface is now up, it may now be active. 14838 */ 14839 if (IS_UNDER_IPMP(ill)) 14840 ipmp_ill_refresh_active(ill); 14841 14842 /* 14843 * If this is an IPMP interface, we may now be able to 14844 * establish ARP entries. 14845 */ 14846 if (IS_IPMP(ill)) 14847 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14848 } 14849 14850 /* Join the allhosts multicast address */ 14851 ipif_multicast_up(ipif); 14852 14853 if (!loopback && !update_src_selection && 14854 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14855 ip_update_source_selection(ill->ill_ipst); 14856 14857 if (!loopback && ipif->ipif_addr_ready) { 14858 /* Broadcast an address mask reply. */ 14859 ipif_mask_reply(ipif); 14860 } 14861 /* Perhaps ilgs should use this ill */ 14862 update_conn_ill(NULL, ill->ill_ipst); 14863 14864 /* 14865 * This had to be deferred until we had bound. Tell routing sockets and 14866 * others that this interface is up if it looks like the address has 14867 * been validated. Otherwise, if it isn't ready yet, wait for 14868 * duplicate address detection to do its thing. 14869 */ 14870 if (ipif->ipif_addr_ready) 14871 ipif_up_notify(ipif); 14872 return (0); 14873 } 14874 14875 /* 14876 * Add the IREs associated with the ipif. 14877 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14878 */ 14879 static int 14880 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14881 { 14882 ill_t *ill = ipif->ipif_ill; 14883 ip_stack_t *ipst = ill->ill_ipst; 14884 ire_t *ire_array[20]; 14885 ire_t **irep = ire_array; 14886 ire_t **irep1; 14887 ipaddr_t net_mask = 0; 14888 ipaddr_t subnet_mask, route_mask; 14889 int err; 14890 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14891 ire_t *ire_if = NULL; 14892 uchar_t *gw; 14893 14894 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14895 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14896 /* 14897 * If we're on a labeled system then make sure that zone- 14898 * private addresses have proper remote host database entries. 14899 */ 14900 if (is_system_labeled() && 14901 ipif->ipif_ire_type != IRE_LOOPBACK && 14902 !tsol_check_interface_address(ipif)) 14903 return (EINVAL); 14904 14905 /* Register the source address for __sin6_src_id */ 14906 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14907 ipif->ipif_zoneid, ipst); 14908 if (err != 0) { 14909 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14910 return (err); 14911 } 14912 14913 if (loopback) 14914 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14915 else 14916 gw = NULL; 14917 14918 /* If the interface address is set, create the local IRE. */ 14919 ire_local = ire_create( 14920 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14921 (uchar_t *)&ip_g_all_ones, /* mask */ 14922 gw, /* gateway */ 14923 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14924 ipif->ipif_ill, 14925 ipif->ipif_zoneid, 14926 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14927 RTF_PRIVATE : 0) | RTF_KERNEL, 14928 NULL, 14929 ipst); 14930 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14931 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14932 ipif->ipif_ire_type, 14933 ntohl(ipif->ipif_lcl_addr))); 14934 if (ire_local == NULL) { 14935 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14936 err = ENOMEM; 14937 goto bad; 14938 } 14939 } else { 14940 ip1dbg(( 14941 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14942 ipif->ipif_ire_type, 14943 ntohl(ipif->ipif_lcl_addr), 14944 (uint_t)ipif->ipif_flags)); 14945 } 14946 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14947 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14948 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14949 } else { 14950 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14951 } 14952 14953 subnet_mask = ipif->ipif_net_mask; 14954 14955 /* 14956 * If mask was not specified, use natural netmask of 14957 * interface address. Also, store this mask back into the 14958 * ipif struct. 14959 */ 14960 if (subnet_mask == 0) { 14961 subnet_mask = net_mask; 14962 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14963 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14964 ipif->ipif_v6subnet); 14965 } 14966 14967 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14968 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14969 ipif->ipif_subnet != INADDR_ANY) { 14970 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14971 14972 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14973 route_mask = IP_HOST_MASK; 14974 } else { 14975 route_mask = subnet_mask; 14976 } 14977 14978 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14979 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14980 (void *)ipif, (void *)ill, ill->ill_net_type, 14981 ntohl(ipif->ipif_subnet))); 14982 ire_if = ire_create( 14983 (uchar_t *)&ipif->ipif_subnet, 14984 (uchar_t *)&route_mask, 14985 (uchar_t *)&ipif->ipif_lcl_addr, 14986 ill->ill_net_type, 14987 ill, 14988 ipif->ipif_zoneid, 14989 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14990 RTF_PRIVATE: 0) | RTF_KERNEL, 14991 NULL, 14992 ipst); 14993 if (ire_if == NULL) { 14994 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14995 err = ENOMEM; 14996 goto bad; 14997 } 14998 } 14999 15000 /* 15001 * Create any necessary broadcast IREs. 15002 */ 15003 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15004 !(ipif->ipif_flags & IPIF_NOXMIT)) 15005 irep = ipif_create_bcast_ires(ipif, irep); 15006 15007 /* If an earlier ire_create failed, get out now */ 15008 for (irep1 = irep; irep1 > ire_array; ) { 15009 irep1--; 15010 if (*irep1 == NULL) { 15011 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15012 err = ENOMEM; 15013 goto bad; 15014 } 15015 } 15016 15017 /* 15018 * Need to atomically check for IP address availability under 15019 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15020 * ills or new ipifs can be added while we are checking availability. 15021 */ 15022 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15023 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15024 /* Mark it up, and increment counters. */ 15025 ipif->ipif_flags |= IPIF_UP; 15026 ill->ill_ipif_up_count++; 15027 err = ip_addr_availability_check(ipif); 15028 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15029 rw_exit(&ipst->ips_ill_g_lock); 15030 15031 if (err != 0) { 15032 /* 15033 * Our address may already be up on the same ill. In this case, 15034 * the ARP entry for our ipif replaced the one for the other 15035 * ipif. So we don't want to delete it (otherwise the other ipif 15036 * would be unable to send packets). 15037 * ip_addr_availability_check() identifies this case for us and 15038 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15039 * which is the expected error code. 15040 */ 15041 ill->ill_ipif_up_count--; 15042 ipif->ipif_flags &= ~IPIF_UP; 15043 goto bad; 15044 } 15045 15046 /* 15047 * Add in all newly created IREs. ire_create_bcast() has 15048 * already checked for duplicates of the IRE_BROADCAST type. 15049 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15050 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15051 * a /32 route. 15052 */ 15053 if (ire_if != NULL) { 15054 ire_if = ire_add(ire_if); 15055 if (ire_if == NULL) { 15056 err = ENOMEM; 15057 goto bad2; 15058 } 15059 #ifdef DEBUG 15060 ire_refhold_notr(ire_if); 15061 ire_refrele(ire_if); 15062 #endif 15063 } 15064 if (ire_local != NULL) { 15065 ire_local = ire_add(ire_local); 15066 if (ire_local == NULL) { 15067 err = ENOMEM; 15068 goto bad2; 15069 } 15070 #ifdef DEBUG 15071 ire_refhold_notr(ire_local); 15072 ire_refrele(ire_local); 15073 #endif 15074 } 15075 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15076 if (ire_local != NULL) 15077 ipif->ipif_ire_local = ire_local; 15078 if (ire_if != NULL) 15079 ipif->ipif_ire_if = ire_if; 15080 rw_exit(&ipst->ips_ill_g_lock); 15081 ire_local = NULL; 15082 ire_if = NULL; 15083 15084 /* 15085 * We first add all of them, and if that succeeds we refrele the 15086 * bunch. That enables us to delete all of them should any of the 15087 * ire_adds fail. 15088 */ 15089 for (irep1 = irep; irep1 > ire_array; ) { 15090 irep1--; 15091 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15092 *irep1 = ire_add(*irep1); 15093 if (*irep1 == NULL) { 15094 err = ENOMEM; 15095 goto bad2; 15096 } 15097 } 15098 15099 for (irep1 = irep; irep1 > ire_array; ) { 15100 irep1--; 15101 /* refheld by ire_add. */ 15102 if (*irep1 != NULL) { 15103 ire_refrele(*irep1); 15104 *irep1 = NULL; 15105 } 15106 } 15107 15108 if (!loopback) { 15109 /* 15110 * If the broadcast address has been set, make sure it makes 15111 * sense based on the interface address. 15112 * Only match on ill since we are sharing broadcast addresses. 15113 */ 15114 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15115 (ipif->ipif_flags & IPIF_BROADCAST)) { 15116 ire_t *ire; 15117 15118 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15119 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15120 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15121 15122 if (ire == NULL) { 15123 /* 15124 * If there isn't a matching broadcast IRE, 15125 * revert to the default for this netmask. 15126 */ 15127 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15128 mutex_enter(&ipif->ipif_ill->ill_lock); 15129 ipif_set_default(ipif); 15130 mutex_exit(&ipif->ipif_ill->ill_lock); 15131 } else { 15132 ire_refrele(ire); 15133 } 15134 } 15135 15136 } 15137 return (0); 15138 15139 bad2: 15140 ill->ill_ipif_up_count--; 15141 ipif->ipif_flags &= ~IPIF_UP; 15142 15143 bad: 15144 ip1dbg(("ipif_add_ires: FAILED \n")); 15145 if (ire_local != NULL) 15146 ire_delete(ire_local); 15147 if (ire_if != NULL) 15148 ire_delete(ire_if); 15149 15150 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15151 ire_local = ipif->ipif_ire_local; 15152 ipif->ipif_ire_local = NULL; 15153 ire_if = ipif->ipif_ire_if; 15154 ipif->ipif_ire_if = NULL; 15155 rw_exit(&ipst->ips_ill_g_lock); 15156 if (ire_local != NULL) { 15157 ire_delete(ire_local); 15158 ire_refrele_notr(ire_local); 15159 } 15160 if (ire_if != NULL) { 15161 ire_delete(ire_if); 15162 ire_refrele_notr(ire_if); 15163 } 15164 15165 while (irep > ire_array) { 15166 irep--; 15167 if (*irep != NULL) { 15168 ire_delete(*irep); 15169 } 15170 } 15171 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15172 15173 return (err); 15174 } 15175 15176 /* Remove all the IREs created by ipif_add_ires_v4 */ 15177 void 15178 ipif_delete_ires_v4(ipif_t *ipif) 15179 { 15180 ill_t *ill = ipif->ipif_ill; 15181 ip_stack_t *ipst = ill->ill_ipst; 15182 ire_t *ire; 15183 15184 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15185 ire = ipif->ipif_ire_local; 15186 ipif->ipif_ire_local = NULL; 15187 rw_exit(&ipst->ips_ill_g_lock); 15188 if (ire != NULL) { 15189 /* 15190 * Move count to ipif so we don't loose the count due to 15191 * a down/up dance. 15192 */ 15193 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15194 15195 ire_delete(ire); 15196 ire_refrele_notr(ire); 15197 } 15198 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15199 ire = ipif->ipif_ire_if; 15200 ipif->ipif_ire_if = NULL; 15201 rw_exit(&ipst->ips_ill_g_lock); 15202 if (ire != NULL) { 15203 ire_delete(ire); 15204 ire_refrele_notr(ire); 15205 } 15206 15207 /* 15208 * Delete the broadcast IREs. 15209 */ 15210 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15211 !(ipif->ipif_flags & IPIF_NOXMIT)) 15212 ipif_delete_bcast_ires(ipif); 15213 } 15214 15215 /* 15216 * Checks for availbility of a usable source address (if there is one) when the 15217 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15218 * this selection is done regardless of the destination. 15219 */ 15220 boolean_t 15221 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15222 ip_stack_t *ipst) 15223 { 15224 ipif_t *ipif = NULL; 15225 ill_t *uill; 15226 15227 ASSERT(ifindex != 0); 15228 15229 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15230 if (uill == NULL) 15231 return (B_FALSE); 15232 15233 mutex_enter(&uill->ill_lock); 15234 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15235 if (IPIF_IS_CONDEMNED(ipif)) 15236 continue; 15237 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15238 continue; 15239 if (!(ipif->ipif_flags & IPIF_UP)) 15240 continue; 15241 if (ipif->ipif_zoneid != zoneid) 15242 continue; 15243 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15244 ipif->ipif_lcl_addr == INADDR_ANY) 15245 continue; 15246 mutex_exit(&uill->ill_lock); 15247 ill_refrele(uill); 15248 return (B_TRUE); 15249 } 15250 mutex_exit(&uill->ill_lock); 15251 ill_refrele(uill); 15252 return (B_FALSE); 15253 } 15254 15255 /* 15256 * Find an ipif with a good local address on the ill+zoneid. 15257 */ 15258 ipif_t * 15259 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15260 { 15261 ipif_t *ipif; 15262 15263 mutex_enter(&ill->ill_lock); 15264 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15265 if (IPIF_IS_CONDEMNED(ipif)) 15266 continue; 15267 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15268 continue; 15269 if (!(ipif->ipif_flags & IPIF_UP)) 15270 continue; 15271 if (ipif->ipif_zoneid != zoneid && 15272 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15273 continue; 15274 if (ill->ill_isv6 ? 15275 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15276 ipif->ipif_lcl_addr == INADDR_ANY) 15277 continue; 15278 ipif_refhold_locked(ipif); 15279 mutex_exit(&ill->ill_lock); 15280 return (ipif); 15281 } 15282 mutex_exit(&ill->ill_lock); 15283 return (NULL); 15284 } 15285 15286 /* 15287 * IP source address type, sorted from worst to best. For a given type, 15288 * always prefer IP addresses on the same subnet. All-zones addresses are 15289 * suboptimal because they pose problems with unlabeled destinations. 15290 */ 15291 typedef enum { 15292 IPIF_NONE, 15293 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15294 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15295 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15296 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15297 IPIF_DIFFNET, /* normal and different subnet */ 15298 IPIF_SAMENET, /* normal and same subnet */ 15299 IPIF_LOCALADDR /* local loopback */ 15300 } ipif_type_t; 15301 15302 /* 15303 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15304 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15305 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15306 * the first one, unless IPMP is used in which case we round-robin among them; 15307 * see below for more. 15308 * 15309 * Returns NULL if there is no suitable source address for the ill. 15310 * This only occurs when there is no valid source address for the ill. 15311 */ 15312 ipif_t * 15313 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15314 boolean_t allow_usesrc, boolean_t *notreadyp) 15315 { 15316 ill_t *usill = NULL; 15317 ill_t *ipmp_ill = NULL; 15318 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15319 ipif_type_t type, best_type; 15320 tsol_tpc_t *src_rhtp, *dst_rhtp; 15321 ip_stack_t *ipst = ill->ill_ipst; 15322 boolean_t samenet; 15323 15324 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15325 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15326 B_FALSE, ipst); 15327 if (usill != NULL) 15328 ill = usill; /* Select source from usesrc ILL */ 15329 else 15330 return (NULL); 15331 } 15332 15333 /* 15334 * Test addresses should never be used for source address selection, 15335 * so if we were passed one, switch to the IPMP meta-interface. 15336 */ 15337 if (IS_UNDER_IPMP(ill)) { 15338 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15339 ill = ipmp_ill; /* Select source from IPMP ill */ 15340 else 15341 return (NULL); 15342 } 15343 15344 /* 15345 * If we're dealing with an unlabeled destination on a labeled system, 15346 * make sure that we ignore source addresses that are incompatible with 15347 * the destination's default label. That destination's default label 15348 * must dominate the minimum label on the source address. 15349 */ 15350 dst_rhtp = NULL; 15351 if (is_system_labeled()) { 15352 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15353 if (dst_rhtp == NULL) 15354 return (NULL); 15355 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15356 TPC_RELE(dst_rhtp); 15357 dst_rhtp = NULL; 15358 } 15359 } 15360 15361 /* 15362 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15363 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15364 * After selecting the right ipif, under ill_lock make sure ipif is 15365 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15366 * we retry. Inside the loop we still need to check for CONDEMNED, 15367 * but not under a lock. 15368 */ 15369 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15370 retry: 15371 /* 15372 * For source address selection, we treat the ipif list as circular 15373 * and continue until we get back to where we started. This allows 15374 * IPMP to vary source address selection (which improves inbound load 15375 * spreading) by caching its last ending point and starting from 15376 * there. NOTE: we don't have to worry about ill_src_ipif changing 15377 * ills since that can't happen on the IPMP ill. 15378 */ 15379 start_ipif = ill->ill_ipif; 15380 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15381 start_ipif = ill->ill_src_ipif; 15382 15383 ipif = start_ipif; 15384 best_ipif = NULL; 15385 best_type = IPIF_NONE; 15386 do { 15387 if ((next_ipif = ipif->ipif_next) == NULL) 15388 next_ipif = ill->ill_ipif; 15389 15390 if (IPIF_IS_CONDEMNED(ipif)) 15391 continue; 15392 /* Always skip NOLOCAL and ANYCAST interfaces */ 15393 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15394 continue; 15395 /* Always skip NOACCEPT interfaces */ 15396 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15397 continue; 15398 if (!(ipif->ipif_flags & IPIF_UP)) 15399 continue; 15400 15401 if (!ipif->ipif_addr_ready) { 15402 if (notreadyp != NULL) 15403 *notreadyp = B_TRUE; 15404 continue; 15405 } 15406 15407 if (zoneid != ALL_ZONES && 15408 ipif->ipif_zoneid != zoneid && 15409 ipif->ipif_zoneid != ALL_ZONES) 15410 continue; 15411 15412 /* 15413 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15414 * are not valid as source addresses. 15415 */ 15416 if (ipif->ipif_lcl_addr == INADDR_ANY) 15417 continue; 15418 15419 /* 15420 * Check compatibility of local address for destination's 15421 * default label if we're on a labeled system. Incompatible 15422 * addresses can't be used at all. 15423 */ 15424 if (dst_rhtp != NULL) { 15425 boolean_t incompat; 15426 15427 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15428 IPV4_VERSION, B_FALSE); 15429 if (src_rhtp == NULL) 15430 continue; 15431 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15432 src_rhtp->tpc_tp.tp_doi != 15433 dst_rhtp->tpc_tp.tp_doi || 15434 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15435 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15436 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15437 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15438 TPC_RELE(src_rhtp); 15439 if (incompat) 15440 continue; 15441 } 15442 15443 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15444 15445 if (ipif->ipif_lcl_addr == dst) { 15446 type = IPIF_LOCALADDR; 15447 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15448 type = samenet ? IPIF_SAMENET_DEPRECATED : 15449 IPIF_DIFFNET_DEPRECATED; 15450 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15451 type = samenet ? IPIF_SAMENET_ALLZONES : 15452 IPIF_DIFFNET_ALLZONES; 15453 } else { 15454 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15455 } 15456 15457 if (type > best_type) { 15458 best_type = type; 15459 best_ipif = ipif; 15460 if (best_type == IPIF_LOCALADDR) 15461 break; /* can't get better */ 15462 } 15463 } while ((ipif = next_ipif) != start_ipif); 15464 15465 if ((ipif = best_ipif) != NULL) { 15466 mutex_enter(&ipif->ipif_ill->ill_lock); 15467 if (IPIF_IS_CONDEMNED(ipif)) { 15468 mutex_exit(&ipif->ipif_ill->ill_lock); 15469 goto retry; 15470 } 15471 ipif_refhold_locked(ipif); 15472 15473 /* 15474 * For IPMP, update the source ipif rotor to the next ipif, 15475 * provided we can look it up. (We must not use it if it's 15476 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15477 * ipif_free() checked ill_src_ipif.) 15478 */ 15479 if (IS_IPMP(ill) && ipif != NULL) { 15480 next_ipif = ipif->ipif_next; 15481 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15482 ill->ill_src_ipif = next_ipif; 15483 else 15484 ill->ill_src_ipif = NULL; 15485 } 15486 mutex_exit(&ipif->ipif_ill->ill_lock); 15487 } 15488 15489 rw_exit(&ipst->ips_ill_g_lock); 15490 if (usill != NULL) 15491 ill_refrele(usill); 15492 if (ipmp_ill != NULL) 15493 ill_refrele(ipmp_ill); 15494 if (dst_rhtp != NULL) 15495 TPC_RELE(dst_rhtp); 15496 15497 #ifdef DEBUG 15498 if (ipif == NULL) { 15499 char buf1[INET6_ADDRSTRLEN]; 15500 15501 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15502 ill->ill_name, 15503 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15504 } else { 15505 char buf1[INET6_ADDRSTRLEN]; 15506 char buf2[INET6_ADDRSTRLEN]; 15507 15508 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15509 ipif->ipif_ill->ill_name, 15510 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15511 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15512 buf2, sizeof (buf2)))); 15513 } 15514 #endif /* DEBUG */ 15515 return (ipif); 15516 } 15517 15518 /* 15519 * Pick a source address based on the destination ill and an optional setsrc 15520 * address. 15521 * The result is stored in srcp. If generation is set, then put the source 15522 * generation number there before we look for the source address (to avoid 15523 * missing changes in the set of source addresses. 15524 * If flagsp is set, then us it to pass back ipif_flags. 15525 * 15526 * If the caller wants to cache the returned source address and detect when 15527 * that might be stale, the caller should pass in a generation argument, 15528 * which the caller can later compare against ips_src_generation 15529 * 15530 * The precedence order for selecting an IPv4 source address is: 15531 * - RTF_SETSRC on the offlink ire always wins. 15532 * - If usrsrc is set, swap the ill to be the usesrc one. 15533 * - If IPMP is used on the ill, select a random address from the most 15534 * preferred ones below: 15535 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15536 * 2. Not deprecated, not ALL_ZONES 15537 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15538 * 4. Not deprecated, ALL_ZONES 15539 * 5. If onlink destination, same subnet and deprecated 15540 * 6. Deprecated. 15541 * 15542 * We have lower preference for ALL_ZONES IP addresses, 15543 * as they pose problems with unlabeled destinations. 15544 * 15545 * Note that when multiple IP addresses match e.g., #1 we pick 15546 * the first one if IPMP is not in use. With IPMP we randomize. 15547 */ 15548 int 15549 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15550 ipaddr_t multicast_ifaddr, 15551 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15552 uint32_t *generation, uint64_t *flagsp) 15553 { 15554 ipif_t *ipif; 15555 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15556 15557 if (flagsp != NULL) 15558 *flagsp = 0; 15559 15560 /* 15561 * Need to grab the generation number before we check to 15562 * avoid a race with a change to the set of local addresses. 15563 * No lock needed since the thread which updates the set of local 15564 * addresses use ipif/ill locks and exit those (hence a store memory 15565 * barrier) before doing the atomic increase of ips_src_generation. 15566 */ 15567 if (generation != NULL) { 15568 *generation = ipst->ips_src_generation; 15569 } 15570 15571 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15572 *srcp = multicast_ifaddr; 15573 return (0); 15574 } 15575 15576 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15577 if (setsrc != INADDR_ANY) { 15578 *srcp = setsrc; 15579 return (0); 15580 } 15581 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15582 if (ipif == NULL) { 15583 if (notready) 15584 return (ENETDOWN); 15585 else 15586 return (EADDRNOTAVAIL); 15587 } 15588 *srcp = ipif->ipif_lcl_addr; 15589 if (flagsp != NULL) 15590 *flagsp = ipif->ipif_flags; 15591 ipif_refrele(ipif); 15592 return (0); 15593 } 15594 15595 /* ARGSUSED */ 15596 int 15597 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15598 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15599 { 15600 /* 15601 * ill_phyint_reinit merged the v4 and v6 into a single 15602 * ipsq. We might not have been able to complete the 15603 * operation in ipif_set_values, if we could not become 15604 * exclusive. If so restart it here. 15605 */ 15606 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15607 } 15608 15609 /* 15610 * Can operate on either a module or a driver queue. 15611 * Returns an error if not a module queue. 15612 */ 15613 /* ARGSUSED */ 15614 int 15615 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15616 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15617 { 15618 queue_t *q1 = q; 15619 char *cp; 15620 char interf_name[LIFNAMSIZ]; 15621 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15622 15623 if (q->q_next == NULL) { 15624 ip1dbg(( 15625 "if_unitsel: IF_UNITSEL: no q_next\n")); 15626 return (EINVAL); 15627 } 15628 15629 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15630 return (EALREADY); 15631 15632 do { 15633 q1 = q1->q_next; 15634 } while (q1->q_next); 15635 cp = q1->q_qinfo->qi_minfo->mi_idname; 15636 (void) sprintf(interf_name, "%s%d", cp, ppa); 15637 15638 /* 15639 * Here we are not going to delay the ioack until after 15640 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15641 * original ioctl message before sending the requests. 15642 */ 15643 return (ipif_set_values(q, mp, interf_name, &ppa)); 15644 } 15645 15646 /* ARGSUSED */ 15647 int 15648 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15649 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15650 { 15651 return (ENXIO); 15652 } 15653 15654 /* 15655 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15656 * `irep'. Returns a pointer to the next free `irep' entry 15657 * A mirror exists in ipif_delete_bcast_ires(). 15658 * 15659 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15660 * done in ire_add. 15661 */ 15662 static ire_t ** 15663 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15664 { 15665 ipaddr_t addr; 15666 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15667 ipaddr_t subnetmask = ipif->ipif_net_mask; 15668 ill_t *ill = ipif->ipif_ill; 15669 zoneid_t zoneid = ipif->ipif_zoneid; 15670 15671 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15672 15673 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15674 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15675 15676 if (ipif->ipif_lcl_addr == INADDR_ANY || 15677 (ipif->ipif_flags & IPIF_NOLOCAL)) 15678 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15679 15680 irep = ire_create_bcast(ill, 0, zoneid, irep); 15681 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15682 15683 /* 15684 * For backward compatibility, we create net broadcast IREs based on 15685 * the old "IP address class system", since some old machines only 15686 * respond to these class derived net broadcast. However, we must not 15687 * create these net broadcast IREs if the subnetmask is shorter than 15688 * the IP address class based derived netmask. Otherwise, we may 15689 * create a net broadcast address which is the same as an IP address 15690 * on the subnet -- and then TCP will refuse to talk to that address. 15691 */ 15692 if (netmask < subnetmask) { 15693 addr = netmask & ipif->ipif_subnet; 15694 irep = ire_create_bcast(ill, addr, zoneid, irep); 15695 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15696 } 15697 15698 /* 15699 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15700 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15701 * created. Creating these broadcast IREs will only create confusion 15702 * as `addr' will be the same as the IP address. 15703 */ 15704 if (subnetmask != 0xFFFFFFFF) { 15705 addr = ipif->ipif_subnet; 15706 irep = ire_create_bcast(ill, addr, zoneid, irep); 15707 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15708 } 15709 15710 return (irep); 15711 } 15712 15713 /* 15714 * Mirror of ipif_create_bcast_ires() 15715 */ 15716 static void 15717 ipif_delete_bcast_ires(ipif_t *ipif) 15718 { 15719 ipaddr_t addr; 15720 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15721 ipaddr_t subnetmask = ipif->ipif_net_mask; 15722 ill_t *ill = ipif->ipif_ill; 15723 zoneid_t zoneid = ipif->ipif_zoneid; 15724 ire_t *ire; 15725 15726 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15727 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15728 15729 if (ipif->ipif_lcl_addr == INADDR_ANY || 15730 (ipif->ipif_flags & IPIF_NOLOCAL)) 15731 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15732 15733 ire = ire_lookup_bcast(ill, 0, zoneid); 15734 ASSERT(ire != NULL); 15735 ire_delete(ire); ire_refrele(ire); 15736 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15737 ASSERT(ire != NULL); 15738 ire_delete(ire); ire_refrele(ire); 15739 15740 /* 15741 * For backward compatibility, we create net broadcast IREs based on 15742 * the old "IP address class system", since some old machines only 15743 * respond to these class derived net broadcast. However, we must not 15744 * create these net broadcast IREs if the subnetmask is shorter than 15745 * the IP address class based derived netmask. Otherwise, we may 15746 * create a net broadcast address which is the same as an IP address 15747 * on the subnet -- and then TCP will refuse to talk to that address. 15748 */ 15749 if (netmask < subnetmask) { 15750 addr = netmask & ipif->ipif_subnet; 15751 ire = ire_lookup_bcast(ill, addr, zoneid); 15752 ASSERT(ire != NULL); 15753 ire_delete(ire); ire_refrele(ire); 15754 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15755 ASSERT(ire != NULL); 15756 ire_delete(ire); ire_refrele(ire); 15757 } 15758 15759 /* 15760 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15761 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15762 * created. Creating these broadcast IREs will only create confusion 15763 * as `addr' will be the same as the IP address. 15764 */ 15765 if (subnetmask != 0xFFFFFFFF) { 15766 addr = ipif->ipif_subnet; 15767 ire = ire_lookup_bcast(ill, addr, zoneid); 15768 ASSERT(ire != NULL); 15769 ire_delete(ire); ire_refrele(ire); 15770 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15771 ASSERT(ire != NULL); 15772 ire_delete(ire); ire_refrele(ire); 15773 } 15774 } 15775 15776 /* 15777 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15778 * from lifr_flags and the name from lifr_name. 15779 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15780 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15781 * Returns EINPROGRESS when mp has been consumed by queueing it on 15782 * ipx_pending_mp and the ioctl will complete in ip_rput. 15783 * 15784 * Can operate on either a module or a driver queue. 15785 * Returns an error if not a module queue. 15786 */ 15787 /* ARGSUSED */ 15788 int 15789 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15790 ip_ioctl_cmd_t *ipip, void *if_req) 15791 { 15792 ill_t *ill = q->q_ptr; 15793 phyint_t *phyi; 15794 ip_stack_t *ipst; 15795 struct lifreq *lifr = if_req; 15796 uint64_t new_flags; 15797 15798 ASSERT(ipif != NULL); 15799 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15800 15801 if (q->q_next == NULL) { 15802 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15803 return (EINVAL); 15804 } 15805 15806 /* 15807 * If we are not writer on 'q' then this interface exists already 15808 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15809 * so return EALREADY. 15810 */ 15811 if (ill != ipif->ipif_ill) 15812 return (EALREADY); 15813 15814 if (ill->ill_name[0] != '\0') 15815 return (EALREADY); 15816 15817 /* 15818 * If there's another ill already with the requested name, ensure 15819 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15820 * fuse together two unrelated ills, which will cause chaos. 15821 */ 15822 ipst = ill->ill_ipst; 15823 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15824 lifr->lifr_name, NULL); 15825 if (phyi != NULL) { 15826 ill_t *ill_mate = phyi->phyint_illv4; 15827 15828 if (ill_mate == NULL) 15829 ill_mate = phyi->phyint_illv6; 15830 ASSERT(ill_mate != NULL); 15831 15832 if (ill_mate->ill_media->ip_m_mac_type != 15833 ill->ill_media->ip_m_mac_type) { 15834 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15835 "use the same ill name on differing media\n")); 15836 return (EINVAL); 15837 } 15838 } 15839 15840 /* 15841 * We start off as IFF_IPV4 in ipif_allocate and become 15842 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15843 * The only flags that we read from user space are IFF_IPV4, 15844 * IFF_IPV6, and IFF_BROADCAST. 15845 * 15846 * This ill has not been inserted into the global list. 15847 * So we are still single threaded and don't need any lock 15848 * 15849 * Saniy check the flags. 15850 */ 15851 15852 if ((lifr->lifr_flags & IFF_BROADCAST) && 15853 ((lifr->lifr_flags & IFF_IPV6) || 15854 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15855 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15856 "or IPv6 i.e., no broadcast \n")); 15857 return (EINVAL); 15858 } 15859 15860 new_flags = 15861 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15862 15863 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15864 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15865 "IFF_IPV4 or IFF_IPV6\n")); 15866 return (EINVAL); 15867 } 15868 15869 /* 15870 * We always start off as IPv4, so only need to check for IPv6. 15871 */ 15872 if ((new_flags & IFF_IPV6) != 0) { 15873 ill->ill_flags |= ILLF_IPV6; 15874 ill->ill_flags &= ~ILLF_IPV4; 15875 15876 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15877 ill->ill_flags |= ILLF_NOLINKLOCAL; 15878 } 15879 15880 if ((new_flags & IFF_BROADCAST) != 0) 15881 ipif->ipif_flags |= IPIF_BROADCAST; 15882 else 15883 ipif->ipif_flags &= ~IPIF_BROADCAST; 15884 15885 /* We started off as V4. */ 15886 if (ill->ill_flags & ILLF_IPV6) { 15887 ill->ill_phyint->phyint_illv6 = ill; 15888 ill->ill_phyint->phyint_illv4 = NULL; 15889 } 15890 15891 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15892 } 15893 15894 /* ARGSUSED */ 15895 int 15896 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15897 ip_ioctl_cmd_t *ipip, void *if_req) 15898 { 15899 /* 15900 * ill_phyint_reinit merged the v4 and v6 into a single 15901 * ipsq. We might not have been able to complete the 15902 * slifname in ipif_set_values, if we could not become 15903 * exclusive. If so restart it here 15904 */ 15905 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15906 } 15907 15908 /* 15909 * Return a pointer to the ipif which matches the index, IP version type and 15910 * zoneid. 15911 */ 15912 ipif_t * 15913 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15914 ip_stack_t *ipst) 15915 { 15916 ill_t *ill; 15917 ipif_t *ipif = NULL; 15918 15919 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15920 if (ill != NULL) { 15921 mutex_enter(&ill->ill_lock); 15922 for (ipif = ill->ill_ipif; ipif != NULL; 15923 ipif = ipif->ipif_next) { 15924 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15925 zoneid == ipif->ipif_zoneid || 15926 ipif->ipif_zoneid == ALL_ZONES)) { 15927 ipif_refhold_locked(ipif); 15928 break; 15929 } 15930 } 15931 mutex_exit(&ill->ill_lock); 15932 ill_refrele(ill); 15933 } 15934 return (ipif); 15935 } 15936 15937 /* 15938 * Change an existing physical interface's index. If the new index 15939 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15940 * Finally, we update other systems which may have a dependence on the 15941 * index value. 15942 */ 15943 /* ARGSUSED */ 15944 int 15945 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15946 ip_ioctl_cmd_t *ipip, void *ifreq) 15947 { 15948 ill_t *ill; 15949 phyint_t *phyi; 15950 struct ifreq *ifr = (struct ifreq *)ifreq; 15951 struct lifreq *lifr = (struct lifreq *)ifreq; 15952 uint_t old_index, index; 15953 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15954 avl_index_t where; 15955 15956 if (ipip->ipi_cmd_type == IF_CMD) 15957 index = ifr->ifr_index; 15958 else 15959 index = lifr->lifr_index; 15960 15961 /* 15962 * Only allow on physical interface. Also, index zero is illegal. 15963 */ 15964 ill = ipif->ipif_ill; 15965 phyi = ill->ill_phyint; 15966 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15967 return (EINVAL); 15968 } 15969 15970 /* If the index is not changing, no work to do */ 15971 if (phyi->phyint_ifindex == index) 15972 return (0); 15973 15974 /* 15975 * Use phyint_exists() to determine if the new interface index 15976 * is already in use. If the index is unused then we need to 15977 * change the phyint's position in the phyint_list_avl_by_index 15978 * tree. If we do not do this, subsequent lookups (using the new 15979 * index value) will not find the phyint. 15980 */ 15981 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15982 if (phyint_exists(index, ipst)) { 15983 rw_exit(&ipst->ips_ill_g_lock); 15984 return (EEXIST); 15985 } 15986 15987 /* 15988 * The new index is unused. Set it in the phyint. However we must not 15989 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15990 * changes. The event must be bound to old ifindex value. 15991 */ 15992 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15993 &index, sizeof (index)); 15994 15995 old_index = phyi->phyint_ifindex; 15996 phyi->phyint_ifindex = index; 15997 15998 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15999 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16000 &index, &where); 16001 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16002 phyi, where); 16003 rw_exit(&ipst->ips_ill_g_lock); 16004 16005 /* Update SCTP's ILL list */ 16006 sctp_ill_reindex(ill, old_index); 16007 16008 /* Send the routing sockets message */ 16009 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16010 if (ILL_OTHER(ill)) 16011 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16012 16013 /* Perhaps ilgs should use this ill */ 16014 update_conn_ill(NULL, ill->ill_ipst); 16015 return (0); 16016 } 16017 16018 /* ARGSUSED */ 16019 int 16020 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16021 ip_ioctl_cmd_t *ipip, void *ifreq) 16022 { 16023 struct ifreq *ifr = (struct ifreq *)ifreq; 16024 struct lifreq *lifr = (struct lifreq *)ifreq; 16025 16026 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16027 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16028 /* Get the interface index */ 16029 if (ipip->ipi_cmd_type == IF_CMD) { 16030 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16031 } else { 16032 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16033 } 16034 return (0); 16035 } 16036 16037 /* ARGSUSED */ 16038 int 16039 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16040 ip_ioctl_cmd_t *ipip, void *ifreq) 16041 { 16042 struct lifreq *lifr = (struct lifreq *)ifreq; 16043 16044 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16045 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16046 /* Get the interface zone */ 16047 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16048 lifr->lifr_zoneid = ipif->ipif_zoneid; 16049 return (0); 16050 } 16051 16052 /* 16053 * Set the zoneid of an interface. 16054 */ 16055 /* ARGSUSED */ 16056 int 16057 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16058 ip_ioctl_cmd_t *ipip, void *ifreq) 16059 { 16060 struct lifreq *lifr = (struct lifreq *)ifreq; 16061 int err = 0; 16062 boolean_t need_up = B_FALSE; 16063 zone_t *zptr; 16064 zone_status_t status; 16065 zoneid_t zoneid; 16066 16067 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16068 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16069 if (!is_system_labeled()) 16070 return (ENOTSUP); 16071 zoneid = GLOBAL_ZONEID; 16072 } 16073 16074 /* cannot assign instance zero to a non-global zone */ 16075 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16076 return (ENOTSUP); 16077 16078 /* 16079 * Cannot assign to a zone that doesn't exist or is shutting down. In 16080 * the event of a race with the zone shutdown processing, since IP 16081 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16082 * interface will be cleaned up even if the zone is shut down 16083 * immediately after the status check. If the interface can't be brought 16084 * down right away, and the zone is shut down before the restart 16085 * function is called, we resolve the possible races by rechecking the 16086 * zone status in the restart function. 16087 */ 16088 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16089 return (EINVAL); 16090 status = zone_status_get(zptr); 16091 zone_rele(zptr); 16092 16093 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16094 return (EINVAL); 16095 16096 if (ipif->ipif_flags & IPIF_UP) { 16097 /* 16098 * If the interface is already marked up, 16099 * we call ipif_down which will take care 16100 * of ditching any IREs that have been set 16101 * up based on the old interface address. 16102 */ 16103 err = ipif_logical_down(ipif, q, mp); 16104 if (err == EINPROGRESS) 16105 return (err); 16106 (void) ipif_down_tail(ipif); 16107 need_up = B_TRUE; 16108 } 16109 16110 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16111 return (err); 16112 } 16113 16114 static int 16115 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16116 queue_t *q, mblk_t *mp, boolean_t need_up) 16117 { 16118 int err = 0; 16119 ip_stack_t *ipst; 16120 16121 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16122 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16123 16124 if (CONN_Q(q)) 16125 ipst = CONNQ_TO_IPST(q); 16126 else 16127 ipst = ILLQ_TO_IPST(q); 16128 16129 /* 16130 * For exclusive stacks we don't allow a different zoneid than 16131 * global. 16132 */ 16133 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16134 zoneid != GLOBAL_ZONEID) 16135 return (EINVAL); 16136 16137 /* Set the new zone id. */ 16138 ipif->ipif_zoneid = zoneid; 16139 16140 /* Update sctp list */ 16141 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16142 16143 /* The default multicast interface might have changed */ 16144 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16145 16146 if (need_up) { 16147 /* 16148 * Now bring the interface back up. If this 16149 * is the only IPIF for the ILL, ipif_up 16150 * will have to re-bind to the device, so 16151 * we may get back EINPROGRESS, in which 16152 * case, this IOCTL will get completed in 16153 * ip_rput_dlpi when we see the DL_BIND_ACK. 16154 */ 16155 err = ipif_up(ipif, q, mp); 16156 } 16157 return (err); 16158 } 16159 16160 /* ARGSUSED */ 16161 int 16162 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16163 ip_ioctl_cmd_t *ipip, void *if_req) 16164 { 16165 struct lifreq *lifr = (struct lifreq *)if_req; 16166 zoneid_t zoneid; 16167 zone_t *zptr; 16168 zone_status_t status; 16169 16170 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16171 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16172 zoneid = GLOBAL_ZONEID; 16173 16174 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16176 16177 /* 16178 * We recheck the zone status to resolve the following race condition: 16179 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16180 * 2) hme0:1 is up and can't be brought down right away; 16181 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16182 * 3) zone "myzone" is halted; the zone status switches to 16183 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16184 * the interfaces to remove - hme0:1 is not returned because it's not 16185 * yet in "myzone", so it won't be removed; 16186 * 4) the restart function for SIOCSLIFZONE is called; without the 16187 * status check here, we would have hme0:1 in "myzone" after it's been 16188 * destroyed. 16189 * Note that if the status check fails, we need to bring the interface 16190 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16191 * ipif_up_done[_v6](). 16192 */ 16193 status = ZONE_IS_UNINITIALIZED; 16194 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16195 status = zone_status_get(zptr); 16196 zone_rele(zptr); 16197 } 16198 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16199 if (ipif->ipif_isv6) { 16200 (void) ipif_up_done_v6(ipif); 16201 } else { 16202 (void) ipif_up_done(ipif); 16203 } 16204 return (EINVAL); 16205 } 16206 16207 (void) ipif_down_tail(ipif); 16208 16209 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16210 B_TRUE)); 16211 } 16212 16213 /* 16214 * Return the number of addresses on `ill' with one or more of the values 16215 * in `set' set and all of the values in `clear' clear. 16216 */ 16217 static uint_t 16218 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16219 { 16220 ipif_t *ipif; 16221 uint_t cnt = 0; 16222 16223 ASSERT(IAM_WRITER_ILL(ill)); 16224 16225 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16226 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16227 cnt++; 16228 16229 return (cnt); 16230 } 16231 16232 /* 16233 * Return the number of migratable addresses on `ill' that are under 16234 * application control. 16235 */ 16236 uint_t 16237 ill_appaddr_cnt(const ill_t *ill) 16238 { 16239 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16240 IPIF_NOFAILOVER)); 16241 } 16242 16243 /* 16244 * Return the number of point-to-point addresses on `ill'. 16245 */ 16246 uint_t 16247 ill_ptpaddr_cnt(const ill_t *ill) 16248 { 16249 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16250 } 16251 16252 /* ARGSUSED */ 16253 int 16254 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16255 ip_ioctl_cmd_t *ipip, void *ifreq) 16256 { 16257 struct lifreq *lifr = ifreq; 16258 16259 ASSERT(q->q_next == NULL); 16260 ASSERT(CONN_Q(q)); 16261 16262 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16263 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16264 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16265 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16266 16267 return (0); 16268 } 16269 16270 /* Find the previous ILL in this usesrc group */ 16271 static ill_t * 16272 ill_prev_usesrc(ill_t *uill) 16273 { 16274 ill_t *ill; 16275 16276 for (ill = uill->ill_usesrc_grp_next; 16277 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16278 ill = ill->ill_usesrc_grp_next) 16279 /* do nothing */; 16280 return (ill); 16281 } 16282 16283 /* 16284 * Release all members of the usesrc group. This routine is called 16285 * from ill_delete when the interface being unplumbed is the 16286 * group head. 16287 * 16288 * This silently clears the usesrc that ifconfig setup. 16289 * An alternative would be to keep that ifindex, and drop packets on the floor 16290 * since no source address can be selected. 16291 * Even if we keep the current semantics, don't need a lock and a linked list. 16292 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16293 * the one that is being removed. Issue is how we return the usesrc users 16294 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16295 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16296 * ill walk, but the walker would need to insert in the ioctl response. 16297 */ 16298 static void 16299 ill_disband_usesrc_group(ill_t *uill) 16300 { 16301 ill_t *next_ill, *tmp_ill; 16302 ip_stack_t *ipst = uill->ill_ipst; 16303 16304 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16305 next_ill = uill->ill_usesrc_grp_next; 16306 16307 do { 16308 ASSERT(next_ill != NULL); 16309 tmp_ill = next_ill->ill_usesrc_grp_next; 16310 ASSERT(tmp_ill != NULL); 16311 next_ill->ill_usesrc_grp_next = NULL; 16312 next_ill->ill_usesrc_ifindex = 0; 16313 next_ill = tmp_ill; 16314 } while (next_ill->ill_usesrc_ifindex != 0); 16315 uill->ill_usesrc_grp_next = NULL; 16316 } 16317 16318 /* 16319 * Remove the client usesrc ILL from the list and relink to a new list 16320 */ 16321 int 16322 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16323 { 16324 ill_t *ill, *tmp_ill; 16325 ip_stack_t *ipst = ucill->ill_ipst; 16326 16327 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16328 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16329 16330 /* 16331 * Check if the usesrc client ILL passed in is not already 16332 * in use as a usesrc ILL i.e one whose source address is 16333 * in use OR a usesrc ILL is not already in use as a usesrc 16334 * client ILL 16335 */ 16336 if ((ucill->ill_usesrc_ifindex == 0) || 16337 (uill->ill_usesrc_ifindex != 0)) { 16338 return (-1); 16339 } 16340 16341 ill = ill_prev_usesrc(ucill); 16342 ASSERT(ill->ill_usesrc_grp_next != NULL); 16343 16344 /* Remove from the current list */ 16345 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16346 /* Only two elements in the list */ 16347 ASSERT(ill->ill_usesrc_ifindex == 0); 16348 ill->ill_usesrc_grp_next = NULL; 16349 } else { 16350 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16351 } 16352 16353 if (ifindex == 0) { 16354 ucill->ill_usesrc_ifindex = 0; 16355 ucill->ill_usesrc_grp_next = NULL; 16356 return (0); 16357 } 16358 16359 ucill->ill_usesrc_ifindex = ifindex; 16360 tmp_ill = uill->ill_usesrc_grp_next; 16361 uill->ill_usesrc_grp_next = ucill; 16362 ucill->ill_usesrc_grp_next = 16363 (tmp_ill != NULL) ? tmp_ill : uill; 16364 return (0); 16365 } 16366 16367 /* 16368 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16369 * ip.c for locking details. 16370 */ 16371 /* ARGSUSED */ 16372 int 16373 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16374 ip_ioctl_cmd_t *ipip, void *ifreq) 16375 { 16376 struct lifreq *lifr = (struct lifreq *)ifreq; 16377 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16378 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16379 int err = 0, ret; 16380 uint_t ifindex; 16381 ipsq_t *ipsq = NULL; 16382 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16383 16384 ASSERT(IAM_WRITER_IPIF(ipif)); 16385 ASSERT(q->q_next == NULL); 16386 ASSERT(CONN_Q(q)); 16387 16388 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16389 16390 ifindex = lifr->lifr_index; 16391 if (ifindex == 0) { 16392 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16393 /* non usesrc group interface, nothing to reset */ 16394 return (0); 16395 } 16396 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16397 /* valid reset request */ 16398 reset_flg = B_TRUE; 16399 } 16400 16401 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16402 if (usesrc_ill == NULL) 16403 return (ENXIO); 16404 if (usesrc_ill == ipif->ipif_ill) { 16405 ill_refrele(usesrc_ill); 16406 return (EINVAL); 16407 } 16408 16409 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16410 NEW_OP, B_TRUE); 16411 if (ipsq == NULL) { 16412 err = EINPROGRESS; 16413 /* Operation enqueued on the ipsq of the usesrc ILL */ 16414 goto done; 16415 } 16416 16417 /* USESRC isn't currently supported with IPMP */ 16418 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16419 err = ENOTSUP; 16420 goto done; 16421 } 16422 16423 /* 16424 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16425 * used by IPMP underlying interfaces, but someone might think it's 16426 * more general and try to use it independently with VNI.) 16427 */ 16428 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16429 err = ENOTSUP; 16430 goto done; 16431 } 16432 16433 /* 16434 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16435 * already a client then return EINVAL 16436 */ 16437 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16438 err = EINVAL; 16439 goto done; 16440 } 16441 16442 /* 16443 * If the ill_usesrc_ifindex field is already set to what it needs to 16444 * be then this is a duplicate operation. 16445 */ 16446 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16447 err = 0; 16448 goto done; 16449 } 16450 16451 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16452 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16453 usesrc_ill->ill_isv6)); 16454 16455 /* 16456 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16457 * and the ill_usesrc_ifindex fields 16458 */ 16459 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16460 16461 if (reset_flg) { 16462 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16463 if (ret != 0) { 16464 err = EINVAL; 16465 } 16466 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16467 goto done; 16468 } 16469 16470 /* 16471 * Four possibilities to consider: 16472 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16473 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16474 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16475 * 4. Both are part of their respective usesrc groups 16476 */ 16477 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16478 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16479 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16480 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16481 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16482 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16483 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16484 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16485 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16486 /* Insert at head of list */ 16487 usesrc_cli_ill->ill_usesrc_grp_next = 16488 usesrc_ill->ill_usesrc_grp_next; 16489 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16490 } else { 16491 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16492 ifindex); 16493 if (ret != 0) 16494 err = EINVAL; 16495 } 16496 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16497 16498 done: 16499 if (ipsq != NULL) 16500 ipsq_exit(ipsq); 16501 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16502 ill_refrele(usesrc_ill); 16503 16504 /* Let conn_ixa caching know that source address selection changed */ 16505 ip_update_source_selection(ipst); 16506 16507 return (err); 16508 } 16509 16510 /* ARGSUSED */ 16511 int 16512 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16513 ip_ioctl_cmd_t *ipip, void *if_req) 16514 { 16515 struct lifreq *lifr = (struct lifreq *)if_req; 16516 ill_t *ill = ipif->ipif_ill; 16517 16518 /* 16519 * Need a lock since IFF_UP can be set even when there are 16520 * references to the ipif. 16521 */ 16522 mutex_enter(&ill->ill_lock); 16523 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16524 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16525 else 16526 lifr->lifr_dadstate = DAD_DONE; 16527 mutex_exit(&ill->ill_lock); 16528 return (0); 16529 } 16530 16531 /* 16532 * comparison function used by avl. 16533 */ 16534 static int 16535 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16536 { 16537 16538 uint_t index; 16539 16540 ASSERT(phyip != NULL && index_ptr != NULL); 16541 16542 index = *((uint_t *)index_ptr); 16543 /* 16544 * let the phyint with the lowest index be on top. 16545 */ 16546 if (((phyint_t *)phyip)->phyint_ifindex < index) 16547 return (1); 16548 if (((phyint_t *)phyip)->phyint_ifindex > index) 16549 return (-1); 16550 return (0); 16551 } 16552 16553 /* 16554 * comparison function used by avl. 16555 */ 16556 static int 16557 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16558 { 16559 ill_t *ill; 16560 int res = 0; 16561 16562 ASSERT(phyip != NULL && name_ptr != NULL); 16563 16564 if (((phyint_t *)phyip)->phyint_illv4) 16565 ill = ((phyint_t *)phyip)->phyint_illv4; 16566 else 16567 ill = ((phyint_t *)phyip)->phyint_illv6; 16568 ASSERT(ill != NULL); 16569 16570 res = strcmp(ill->ill_name, (char *)name_ptr); 16571 if (res > 0) 16572 return (1); 16573 else if (res < 0) 16574 return (-1); 16575 return (0); 16576 } 16577 16578 /* 16579 * This function is called on the unplumb path via ill_glist_delete() when 16580 * there are no ills left on the phyint and thus the phyint can be freed. 16581 */ 16582 static void 16583 phyint_free(phyint_t *phyi) 16584 { 16585 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16586 16587 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16588 16589 /* 16590 * If this phyint was an IPMP meta-interface, blow away the group. 16591 * This is safe to do because all of the illgrps have already been 16592 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16593 * If we're cleaning up as a result of failed initialization, 16594 * phyint_grp may be NULL. 16595 */ 16596 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16597 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16598 ipmp_grp_destroy(phyi->phyint_grp); 16599 phyi->phyint_grp = NULL; 16600 rw_exit(&ipst->ips_ipmp_lock); 16601 } 16602 16603 /* 16604 * If this interface was under IPMP, take it out of the group. 16605 */ 16606 if (phyi->phyint_grp != NULL) 16607 ipmp_phyint_leave_grp(phyi); 16608 16609 /* 16610 * Delete the phyint and disassociate its ipsq. The ipsq itself 16611 * will be freed in ipsq_exit(). 16612 */ 16613 phyi->phyint_ipsq->ipsq_phyint = NULL; 16614 phyi->phyint_name[0] = '\0'; 16615 16616 mi_free(phyi); 16617 } 16618 16619 /* 16620 * Attach the ill to the phyint structure which can be shared by both 16621 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16622 * function is called from ipif_set_values and ill_lookup_on_name (for 16623 * loopback) where we know the name of the ill. We lookup the ill and if 16624 * there is one present already with the name use that phyint. Otherwise 16625 * reuse the one allocated by ill_init. 16626 */ 16627 static void 16628 ill_phyint_reinit(ill_t *ill) 16629 { 16630 boolean_t isv6 = ill->ill_isv6; 16631 phyint_t *phyi_old; 16632 phyint_t *phyi; 16633 avl_index_t where = 0; 16634 ill_t *ill_other = NULL; 16635 ip_stack_t *ipst = ill->ill_ipst; 16636 16637 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16638 16639 phyi_old = ill->ill_phyint; 16640 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16641 phyi_old->phyint_illv6 == NULL)); 16642 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16643 phyi_old->phyint_illv4 == NULL)); 16644 ASSERT(phyi_old->phyint_ifindex == 0); 16645 16646 /* 16647 * Now that our ill has a name, set it in the phyint. 16648 */ 16649 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16650 16651 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16652 ill->ill_name, &where); 16653 16654 /* 16655 * 1. We grabbed the ill_g_lock before inserting this ill into 16656 * the global list of ills. So no other thread could have located 16657 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16658 * 2. Now locate the other protocol instance of this ill. 16659 * 3. Now grab both ill locks in the right order, and the phyint lock of 16660 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16661 * of neither ill can change. 16662 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16663 * other ill. 16664 * 5. Release all locks. 16665 */ 16666 16667 /* 16668 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16669 * we are initializing IPv4. 16670 */ 16671 if (phyi != NULL) { 16672 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16673 ASSERT(ill_other->ill_phyint != NULL); 16674 ASSERT((isv6 && !ill_other->ill_isv6) || 16675 (!isv6 && ill_other->ill_isv6)); 16676 GRAB_ILL_LOCKS(ill, ill_other); 16677 /* 16678 * We are potentially throwing away phyint_flags which 16679 * could be different from the one that we obtain from 16680 * ill_other->ill_phyint. But it is okay as we are assuming 16681 * that the state maintained within IP is correct. 16682 */ 16683 mutex_enter(&phyi->phyint_lock); 16684 if (isv6) { 16685 ASSERT(phyi->phyint_illv6 == NULL); 16686 phyi->phyint_illv6 = ill; 16687 } else { 16688 ASSERT(phyi->phyint_illv4 == NULL); 16689 phyi->phyint_illv4 = ill; 16690 } 16691 16692 /* 16693 * Delete the old phyint and make its ipsq eligible 16694 * to be freed in ipsq_exit(). 16695 */ 16696 phyi_old->phyint_illv4 = NULL; 16697 phyi_old->phyint_illv6 = NULL; 16698 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16699 phyi_old->phyint_name[0] = '\0'; 16700 mi_free(phyi_old); 16701 } else { 16702 mutex_enter(&ill->ill_lock); 16703 /* 16704 * We don't need to acquire any lock, since 16705 * the ill is not yet visible globally and we 16706 * have not yet released the ill_g_lock. 16707 */ 16708 phyi = phyi_old; 16709 mutex_enter(&phyi->phyint_lock); 16710 /* XXX We need a recovery strategy here. */ 16711 if (!phyint_assign_ifindex(phyi, ipst)) 16712 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16713 16714 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16715 (void *)phyi, where); 16716 16717 (void) avl_find(&ipst->ips_phyint_g_list-> 16718 phyint_list_avl_by_index, 16719 &phyi->phyint_ifindex, &where); 16720 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16721 (void *)phyi, where); 16722 } 16723 16724 /* 16725 * Reassigning ill_phyint automatically reassigns the ipsq also. 16726 * pending mp is not affected because that is per ill basis. 16727 */ 16728 ill->ill_phyint = phyi; 16729 16730 /* 16731 * Now that the phyint's ifindex has been assigned, complete the 16732 * remaining 16733 */ 16734 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16735 if (ill->ill_isv6) { 16736 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16737 ill->ill_phyint->phyint_ifindex; 16738 ill->ill_mcast_type = ipst->ips_mld_max_version; 16739 } else { 16740 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16741 } 16742 16743 /* 16744 * Generate an event within the hooks framework to indicate that 16745 * a new interface has just been added to IP. For this event to 16746 * be generated, the network interface must, at least, have an 16747 * ifindex assigned to it. (We don't generate the event for 16748 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16749 * 16750 * This needs to be run inside the ill_g_lock perimeter to ensure 16751 * that the ordering of delivered events to listeners matches the 16752 * order of them in the kernel. 16753 */ 16754 if (!IS_LOOPBACK(ill)) { 16755 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16756 ill->ill_name_length); 16757 } 16758 RELEASE_ILL_LOCKS(ill, ill_other); 16759 mutex_exit(&phyi->phyint_lock); 16760 } 16761 16762 /* 16763 * Notify any downstream modules of the name of this interface. 16764 * An M_IOCTL is used even though we don't expect a successful reply. 16765 * Any reply message from the driver (presumably an M_IOCNAK) will 16766 * eventually get discarded somewhere upstream. The message format is 16767 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16768 * to IP. 16769 */ 16770 static void 16771 ip_ifname_notify(ill_t *ill, queue_t *q) 16772 { 16773 mblk_t *mp1, *mp2; 16774 struct iocblk *iocp; 16775 struct lifreq *lifr; 16776 16777 mp1 = mkiocb(SIOCSLIFNAME); 16778 if (mp1 == NULL) 16779 return; 16780 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16781 if (mp2 == NULL) { 16782 freeb(mp1); 16783 return; 16784 } 16785 16786 mp1->b_cont = mp2; 16787 iocp = (struct iocblk *)mp1->b_rptr; 16788 iocp->ioc_count = sizeof (struct lifreq); 16789 16790 lifr = (struct lifreq *)mp2->b_rptr; 16791 mp2->b_wptr += sizeof (struct lifreq); 16792 bzero(lifr, sizeof (struct lifreq)); 16793 16794 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16795 lifr->lifr_ppa = ill->ill_ppa; 16796 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16797 16798 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16799 char *, "SIOCSLIFNAME", ill_t *, ill); 16800 putnext(q, mp1); 16801 } 16802 16803 static int 16804 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16805 { 16806 int err; 16807 ip_stack_t *ipst = ill->ill_ipst; 16808 phyint_t *phyi = ill->ill_phyint; 16809 16810 /* 16811 * Now that ill_name is set, the configuration for the IPMP 16812 * meta-interface can be performed. 16813 */ 16814 if (IS_IPMP(ill)) { 16815 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16816 /* 16817 * If phyi->phyint_grp is NULL, then this is the first IPMP 16818 * meta-interface and we need to create the IPMP group. 16819 */ 16820 if (phyi->phyint_grp == NULL) { 16821 /* 16822 * If someone has renamed another IPMP group to have 16823 * the same name as our interface, bail. 16824 */ 16825 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16826 rw_exit(&ipst->ips_ipmp_lock); 16827 return (EEXIST); 16828 } 16829 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16830 if (phyi->phyint_grp == NULL) { 16831 rw_exit(&ipst->ips_ipmp_lock); 16832 return (ENOMEM); 16833 } 16834 } 16835 rw_exit(&ipst->ips_ipmp_lock); 16836 } 16837 16838 /* Tell downstream modules where they are. */ 16839 ip_ifname_notify(ill, q); 16840 16841 /* 16842 * ill_dl_phys returns EINPROGRESS in the usual case. 16843 * Error cases are ENOMEM ... 16844 */ 16845 err = ill_dl_phys(ill, ipif, mp, q); 16846 16847 if (ill->ill_isv6) { 16848 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16849 if (ipst->ips_mld_slowtimeout_id == 0) { 16850 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16851 (void *)ipst, 16852 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16853 } 16854 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16855 } else { 16856 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16857 if (ipst->ips_igmp_slowtimeout_id == 0) { 16858 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16859 (void *)ipst, 16860 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16861 } 16862 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16863 } 16864 16865 return (err); 16866 } 16867 16868 /* 16869 * Common routine for ppa and ifname setting. Should be called exclusive. 16870 * 16871 * Returns EINPROGRESS when mp has been consumed by queueing it on 16872 * ipx_pending_mp and the ioctl will complete in ip_rput. 16873 * 16874 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16875 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16876 * For SLIFNAME, we pass these values back to the userland. 16877 */ 16878 static int 16879 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16880 { 16881 ill_t *ill; 16882 ipif_t *ipif; 16883 ipsq_t *ipsq; 16884 char *ppa_ptr; 16885 char *old_ptr; 16886 char old_char; 16887 int error; 16888 ip_stack_t *ipst; 16889 16890 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16891 ASSERT(q->q_next != NULL); 16892 ASSERT(interf_name != NULL); 16893 16894 ill = (ill_t *)q->q_ptr; 16895 ipst = ill->ill_ipst; 16896 16897 ASSERT(ill->ill_ipst != NULL); 16898 ASSERT(ill->ill_name[0] == '\0'); 16899 ASSERT(IAM_WRITER_ILL(ill)); 16900 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16901 ASSERT(ill->ill_ppa == UINT_MAX); 16902 16903 ill->ill_defend_start = ill->ill_defend_count = 0; 16904 /* The ppa is sent down by ifconfig or is chosen */ 16905 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16906 return (EINVAL); 16907 } 16908 16909 /* 16910 * make sure ppa passed in is same as ppa in the name. 16911 * This check is not made when ppa == UINT_MAX in that case ppa 16912 * in the name could be anything. System will choose a ppa and 16913 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16914 */ 16915 if (*new_ppa_ptr != UINT_MAX) { 16916 /* stoi changes the pointer */ 16917 old_ptr = ppa_ptr; 16918 /* 16919 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16920 * (they don't have an externally visible ppa). We assign one 16921 * here so that we can manage the interface. Note that in 16922 * the past this value was always 0 for DLPI 1 drivers. 16923 */ 16924 if (*new_ppa_ptr == 0) 16925 *new_ppa_ptr = stoi(&old_ptr); 16926 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16927 return (EINVAL); 16928 } 16929 /* 16930 * terminate string before ppa 16931 * save char at that location. 16932 */ 16933 old_char = ppa_ptr[0]; 16934 ppa_ptr[0] = '\0'; 16935 16936 ill->ill_ppa = *new_ppa_ptr; 16937 /* 16938 * Finish as much work now as possible before calling ill_glist_insert 16939 * which makes the ill globally visible and also merges it with the 16940 * other protocol instance of this phyint. The remaining work is 16941 * done after entering the ipsq which may happen sometime later. 16942 */ 16943 ipif = ill->ill_ipif; 16944 16945 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16946 ipif_assign_seqid(ipif); 16947 16948 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16949 ill->ill_flags |= ILLF_IPV4; 16950 16951 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16952 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16953 16954 if (ill->ill_flags & ILLF_IPV6) { 16955 16956 ill->ill_isv6 = B_TRUE; 16957 ill_set_inputfn(ill); 16958 if (ill->ill_rq != NULL) { 16959 ill->ill_rq->q_qinfo = &iprinitv6; 16960 } 16961 16962 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16963 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16964 ipif->ipif_v6subnet = ipv6_all_zeros; 16965 ipif->ipif_v6net_mask = ipv6_all_zeros; 16966 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16967 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16968 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16969 /* 16970 * point-to-point or Non-mulicast capable 16971 * interfaces won't do NUD unless explicitly 16972 * configured to do so. 16973 */ 16974 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16975 !(ill->ill_flags & ILLF_MULTICAST)) { 16976 ill->ill_flags |= ILLF_NONUD; 16977 } 16978 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16979 if (ill->ill_flags & ILLF_NOARP) { 16980 /* 16981 * Note: xresolv interfaces will eventually need 16982 * NOARP set here as well, but that will require 16983 * those external resolvers to have some 16984 * knowledge of that flag and act appropriately. 16985 * Not to be changed at present. 16986 */ 16987 ill->ill_flags &= ~ILLF_NOARP; 16988 } 16989 /* 16990 * Set the ILLF_ROUTER flag according to the global 16991 * IPv6 forwarding policy. 16992 */ 16993 if (ipst->ips_ipv6_forwarding != 0) 16994 ill->ill_flags |= ILLF_ROUTER; 16995 } else if (ill->ill_flags & ILLF_IPV4) { 16996 ill->ill_isv6 = B_FALSE; 16997 ill_set_inputfn(ill); 16998 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 17000 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17001 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17003 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17004 /* 17005 * Set the ILLF_ROUTER flag according to the global 17006 * IPv4 forwarding policy. 17007 */ 17008 if (ipst->ips_ip_forwarding != 0) 17009 ill->ill_flags |= ILLF_ROUTER; 17010 } 17011 17012 ASSERT(ill->ill_phyint != NULL); 17013 17014 /* 17015 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17016 * be completed in ill_glist_insert -> ill_phyint_reinit 17017 */ 17018 if (!ill_allocate_mibs(ill)) 17019 return (ENOMEM); 17020 17021 /* 17022 * Pick a default sap until we get the DL_INFO_ACK back from 17023 * the driver. 17024 */ 17025 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17026 ill->ill_media->ip_m_ipv4sap; 17027 17028 ill->ill_ifname_pending = 1; 17029 ill->ill_ifname_pending_err = 0; 17030 17031 /* 17032 * When the first ipif comes up in ipif_up_done(), multicast groups 17033 * that were joined while this ill was not bound to the DLPI link need 17034 * to be recovered by ill_recover_multicast(). 17035 */ 17036 ill->ill_need_recover_multicast = 1; 17037 17038 ill_refhold(ill); 17039 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17040 if ((error = ill_glist_insert(ill, interf_name, 17041 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17042 ill->ill_ppa = UINT_MAX; 17043 ill->ill_name[0] = '\0'; 17044 /* 17045 * undo null termination done above. 17046 */ 17047 ppa_ptr[0] = old_char; 17048 rw_exit(&ipst->ips_ill_g_lock); 17049 ill_refrele(ill); 17050 return (error); 17051 } 17052 17053 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17054 17055 /* 17056 * When we return the buffer pointed to by interf_name should contain 17057 * the same name as in ill_name. 17058 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17059 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17060 * so copy full name and update the ppa ptr. 17061 * When ppa passed in != UINT_MAX all values are correct just undo 17062 * null termination, this saves a bcopy. 17063 */ 17064 if (*new_ppa_ptr == UINT_MAX) { 17065 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17066 *new_ppa_ptr = ill->ill_ppa; 17067 } else { 17068 /* 17069 * undo null termination done above. 17070 */ 17071 ppa_ptr[0] = old_char; 17072 } 17073 17074 /* Let SCTP know about this ILL */ 17075 sctp_update_ill(ill, SCTP_ILL_INSERT); 17076 17077 /* 17078 * ill_glist_insert has made the ill visible globally, and 17079 * ill_phyint_reinit could have changed the ipsq. At this point, 17080 * we need to hold the ips_ill_g_lock across the call to enter the 17081 * ipsq to enforce atomicity and prevent reordering. In the event 17082 * the ipsq has changed, and if the new ipsq is currently busy, 17083 * we need to make sure that this half-completed ioctl is ahead of 17084 * any subsequent ioctl. We achieve this by not dropping the 17085 * ips_ill_g_lock which prevents any ill lookup itself thereby 17086 * ensuring that new ioctls can't start. 17087 */ 17088 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17089 B_TRUE); 17090 17091 rw_exit(&ipst->ips_ill_g_lock); 17092 ill_refrele(ill); 17093 if (ipsq == NULL) 17094 return (EINPROGRESS); 17095 17096 /* 17097 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17098 */ 17099 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17100 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17101 else 17102 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17103 17104 error = ipif_set_values_tail(ill, ipif, mp, q); 17105 ipsq_exit(ipsq); 17106 if (error != 0 && error != EINPROGRESS) { 17107 /* 17108 * restore previous values 17109 */ 17110 ill->ill_isv6 = B_FALSE; 17111 ill_set_inputfn(ill); 17112 } 17113 return (error); 17114 } 17115 17116 void 17117 ipif_init(ip_stack_t *ipst) 17118 { 17119 int i; 17120 17121 for (i = 0; i < MAX_G_HEADS; i++) { 17122 ipst->ips_ill_g_heads[i].ill_g_list_head = 17123 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17124 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17125 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17126 } 17127 17128 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17129 ill_phyint_compare_index, 17130 sizeof (phyint_t), 17131 offsetof(struct phyint, phyint_avl_by_index)); 17132 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17133 ill_phyint_compare_name, 17134 sizeof (phyint_t), 17135 offsetof(struct phyint, phyint_avl_by_name)); 17136 } 17137 17138 /* 17139 * Save enough information so that we can recreate the IRE if 17140 * the interface goes down and then up. 17141 */ 17142 void 17143 ill_save_ire(ill_t *ill, ire_t *ire) 17144 { 17145 mblk_t *save_mp; 17146 17147 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17148 if (save_mp != NULL) { 17149 ifrt_t *ifrt; 17150 17151 save_mp->b_wptr += sizeof (ifrt_t); 17152 ifrt = (ifrt_t *)save_mp->b_rptr; 17153 bzero(ifrt, sizeof (ifrt_t)); 17154 ifrt->ifrt_type = ire->ire_type; 17155 if (ire->ire_ipversion == IPV4_VERSION) { 17156 ASSERT(!ill->ill_isv6); 17157 ifrt->ifrt_addr = ire->ire_addr; 17158 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17159 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17160 ifrt->ifrt_mask = ire->ire_mask; 17161 } else { 17162 ASSERT(ill->ill_isv6); 17163 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17164 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17165 mutex_enter(&ire->ire_lock); 17166 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17167 mutex_exit(&ire->ire_lock); 17168 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17169 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17170 } 17171 ifrt->ifrt_flags = ire->ire_flags; 17172 ifrt->ifrt_zoneid = ire->ire_zoneid; 17173 mutex_enter(&ill->ill_saved_ire_lock); 17174 save_mp->b_cont = ill->ill_saved_ire_mp; 17175 ill->ill_saved_ire_mp = save_mp; 17176 ill->ill_saved_ire_cnt++; 17177 mutex_exit(&ill->ill_saved_ire_lock); 17178 } 17179 } 17180 17181 /* 17182 * Remove one entry from ill_saved_ire_mp. 17183 */ 17184 void 17185 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17186 { 17187 mblk_t **mpp; 17188 mblk_t *mp; 17189 ifrt_t *ifrt; 17190 17191 /* Remove from ill_saved_ire_mp list if it is there */ 17192 mutex_enter(&ill->ill_saved_ire_lock); 17193 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17194 mpp = &(*mpp)->b_cont) { 17195 in6_addr_t gw_addr_v6; 17196 17197 /* 17198 * On a given ill, the tuple of address, gateway, mask, 17199 * ire_type, and zoneid is unique for each saved IRE. 17200 */ 17201 mp = *mpp; 17202 ifrt = (ifrt_t *)mp->b_rptr; 17203 /* ire_gateway_addr_v6 can change - need lock */ 17204 mutex_enter(&ire->ire_lock); 17205 gw_addr_v6 = ire->ire_gateway_addr_v6; 17206 mutex_exit(&ire->ire_lock); 17207 17208 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17209 ifrt->ifrt_type != ire->ire_type) 17210 continue; 17211 17212 if (ill->ill_isv6 ? 17213 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17214 &ire->ire_addr_v6) && 17215 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17216 &gw_addr_v6) && 17217 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17218 &ire->ire_mask_v6)) : 17219 (ifrt->ifrt_addr == ire->ire_addr && 17220 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17221 ifrt->ifrt_mask == ire->ire_mask)) { 17222 *mpp = mp->b_cont; 17223 ill->ill_saved_ire_cnt--; 17224 freeb(mp); 17225 break; 17226 } 17227 } 17228 mutex_exit(&ill->ill_saved_ire_lock); 17229 } 17230 17231 /* 17232 * IP multirouting broadcast routes handling 17233 * Append CGTP broadcast IREs to regular ones created 17234 * at ifconfig time. 17235 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17236 * the destination and the gateway are broadcast addresses. 17237 * The caller has verified that the destination is an IRE_BROADCAST and that 17238 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17239 * we create a MULTIRT IRE_BROADCAST. 17240 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17241 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17242 */ 17243 static void 17244 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17245 { 17246 ire_t *ire_prim; 17247 17248 ASSERT(ire != NULL); 17249 17250 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17251 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17252 NULL); 17253 if (ire_prim != NULL) { 17254 /* 17255 * We are in the special case of broadcasts for 17256 * CGTP. We add an IRE_BROADCAST that holds 17257 * the RTF_MULTIRT flag, the destination 17258 * address and the low level 17259 * info of ire_prim. In other words, CGTP 17260 * broadcast is added to the redundant ipif. 17261 */ 17262 ill_t *ill_prim; 17263 ire_t *bcast_ire; 17264 17265 ill_prim = ire_prim->ire_ill; 17266 17267 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17268 (void *)ire_prim, (void *)ill_prim)); 17269 17270 bcast_ire = ire_create( 17271 (uchar_t *)&ire->ire_addr, 17272 (uchar_t *)&ip_g_all_ones, 17273 (uchar_t *)&ire->ire_gateway_addr, 17274 IRE_BROADCAST, 17275 ill_prim, 17276 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17277 ire->ire_flags | RTF_KERNEL, 17278 NULL, 17279 ipst); 17280 17281 /* 17282 * Here we assume that ire_add does head insertion so that 17283 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17284 */ 17285 if (bcast_ire != NULL) { 17286 if (ire->ire_flags & RTF_SETSRC) { 17287 bcast_ire->ire_setsrc_addr = 17288 ire->ire_setsrc_addr; 17289 } 17290 bcast_ire = ire_add(bcast_ire); 17291 if (bcast_ire != NULL) { 17292 ip2dbg(("ip_cgtp_filter_bcast_add: " 17293 "added bcast_ire %p\n", 17294 (void *)bcast_ire)); 17295 17296 ill_save_ire(ill_prim, bcast_ire); 17297 ire_refrele(bcast_ire); 17298 } 17299 } 17300 ire_refrele(ire_prim); 17301 } 17302 } 17303 17304 /* 17305 * IP multirouting broadcast routes handling 17306 * Remove the broadcast ire. 17307 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17308 * the destination and the gateway are broadcast addresses. 17309 * The caller has only verified that RTF_MULTIRT was set. We check 17310 * that the destination is broadcast and that the gateway is a broadcast 17311 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17312 */ 17313 static void 17314 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17315 { 17316 ASSERT(ire != NULL); 17317 17318 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17319 ire_t *ire_prim; 17320 17321 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17322 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17323 ipst, NULL); 17324 if (ire_prim != NULL) { 17325 ill_t *ill_prim; 17326 ire_t *bcast_ire; 17327 17328 ill_prim = ire_prim->ire_ill; 17329 17330 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17331 "ire_prim %p, ill_prim %p\n", 17332 (void *)ire_prim, (void *)ill_prim)); 17333 17334 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17335 ire->ire_gateway_addr, IRE_BROADCAST, 17336 ill_prim, ALL_ZONES, NULL, 17337 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17338 MATCH_IRE_MASK, 0, ipst, NULL); 17339 17340 if (bcast_ire != NULL) { 17341 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17342 "looked up bcast_ire %p\n", 17343 (void *)bcast_ire)); 17344 ill_remove_saved_ire(bcast_ire->ire_ill, 17345 bcast_ire); 17346 ire_delete(bcast_ire); 17347 ire_refrele(bcast_ire); 17348 } 17349 ire_refrele(ire_prim); 17350 } 17351 } 17352 } 17353 17354 /* 17355 * Derive an interface id from the link layer address. 17356 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17357 */ 17358 static void 17359 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17360 { 17361 char *addr; 17362 17363 /* 17364 * Note that some IPv6 interfaces get plumbed over links that claim to 17365 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17366 * PPP links). The ETHERADDRL check here ensures that we only set the 17367 * interface ID on IPv6 interfaces above links that actually have real 17368 * Ethernet addresses. 17369 */ 17370 if (ill->ill_phys_addr_length == ETHERADDRL) { 17371 /* Form EUI-64 like address */ 17372 addr = (char *)&v6addr->s6_addr32[2]; 17373 bcopy(ill->ill_phys_addr, addr, 3); 17374 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17375 addr[3] = (char)0xff; 17376 addr[4] = (char)0xfe; 17377 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17378 } 17379 } 17380 17381 /* ARGSUSED */ 17382 static void 17383 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17384 { 17385 } 17386 17387 typedef struct ipmp_ifcookie { 17388 uint32_t ic_hostid; 17389 char ic_ifname[LIFNAMSIZ]; 17390 char ic_zonename[ZONENAME_MAX]; 17391 } ipmp_ifcookie_t; 17392 17393 /* 17394 * Construct a pseudo-random interface ID for the IPMP interface that's both 17395 * predictable and (almost) guaranteed to be unique. 17396 */ 17397 static void 17398 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17399 { 17400 zone_t *zp; 17401 uint8_t *addr; 17402 uchar_t hash[16]; 17403 ulong_t hostid; 17404 MD5_CTX ctx; 17405 ipmp_ifcookie_t ic = { 0 }; 17406 17407 ASSERT(IS_IPMP(ill)); 17408 17409 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17410 ic.ic_hostid = htonl((uint32_t)hostid); 17411 17412 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17413 17414 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17415 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17416 zone_rele(zp); 17417 } 17418 17419 MD5Init(&ctx); 17420 MD5Update(&ctx, &ic, sizeof (ic)); 17421 MD5Final(hash, &ctx); 17422 17423 /* 17424 * Map the hash to an interface ID per the basic approach in RFC3041. 17425 */ 17426 addr = &v6addr->s6_addr8[8]; 17427 bcopy(hash + 8, addr, sizeof (uint64_t)); 17428 addr[0] &= ~0x2; /* set local bit */ 17429 } 17430 17431 /* 17432 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17433 */ 17434 static void 17435 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17436 { 17437 phyint_t *phyi = ill->ill_phyint; 17438 17439 /* 17440 * Check PHYI_MULTI_BCAST and length of physical 17441 * address to determine if we use the mapping or the 17442 * broadcast address. 17443 */ 17444 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17445 ill->ill_phys_addr_length != ETHERADDRL) { 17446 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17447 return; 17448 } 17449 m_physaddr[0] = 0x33; 17450 m_physaddr[1] = 0x33; 17451 m_physaddr[2] = m_ip6addr[12]; 17452 m_physaddr[3] = m_ip6addr[13]; 17453 m_physaddr[4] = m_ip6addr[14]; 17454 m_physaddr[5] = m_ip6addr[15]; 17455 } 17456 17457 /* 17458 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17459 */ 17460 static void 17461 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17462 { 17463 phyint_t *phyi = ill->ill_phyint; 17464 17465 /* 17466 * Check PHYI_MULTI_BCAST and length of physical 17467 * address to determine if we use the mapping or the 17468 * broadcast address. 17469 */ 17470 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17471 ill->ill_phys_addr_length != ETHERADDRL) { 17472 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17473 return; 17474 } 17475 m_physaddr[0] = 0x01; 17476 m_physaddr[1] = 0x00; 17477 m_physaddr[2] = 0x5e; 17478 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17479 m_physaddr[4] = m_ipaddr[2]; 17480 m_physaddr[5] = m_ipaddr[3]; 17481 } 17482 17483 /* ARGSUSED */ 17484 static void 17485 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17486 { 17487 /* 17488 * for the MULTI_BCAST case and other cases when we want to 17489 * use the link-layer broadcast address for multicast. 17490 */ 17491 uint8_t *bphys_addr; 17492 dl_unitdata_req_t *dlur; 17493 17494 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17495 if (ill->ill_sap_length < 0) { 17496 bphys_addr = (uchar_t *)dlur + 17497 dlur->dl_dest_addr_offset; 17498 } else { 17499 bphys_addr = (uchar_t *)dlur + 17500 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17501 } 17502 17503 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17504 } 17505 17506 /* 17507 * Derive IPoIB interface id from the link layer address. 17508 */ 17509 static void 17510 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17511 { 17512 char *addr; 17513 17514 ASSERT(ill->ill_phys_addr_length == 20); 17515 addr = (char *)&v6addr->s6_addr32[2]; 17516 bcopy(ill->ill_phys_addr + 12, addr, 8); 17517 /* 17518 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17519 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17520 * rules. In these cases, the IBA considers these GUIDs to be in 17521 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17522 * required; vendors are required not to assign global EUI-64's 17523 * that differ only in u/l bit values, thus guaranteeing uniqueness 17524 * of the interface identifier. Whether the GUID is in modified 17525 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17526 * bit set to 1. 17527 */ 17528 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17529 } 17530 17531 /* 17532 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17533 * Note on mapping from multicast IP addresses to IPoIB multicast link 17534 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17535 * The format of an IPoIB multicast address is: 17536 * 17537 * 4 byte QPN Scope Sign. Pkey 17538 * +--------------------------------------------+ 17539 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17540 * +--------------------------------------------+ 17541 * 17542 * The Scope and Pkey components are properties of the IBA port and 17543 * network interface. They can be ascertained from the broadcast address. 17544 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17545 */ 17546 static void 17547 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17548 { 17549 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17550 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17551 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17552 uint8_t *bphys_addr; 17553 dl_unitdata_req_t *dlur; 17554 17555 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17556 17557 /* 17558 * RFC 4391: IPv4 MGID is 28-bit long. 17559 */ 17560 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17561 m_physaddr[17] = m_ipaddr[1]; 17562 m_physaddr[18] = m_ipaddr[2]; 17563 m_physaddr[19] = m_ipaddr[3]; 17564 17565 17566 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17567 if (ill->ill_sap_length < 0) { 17568 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17569 } else { 17570 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17571 ill->ill_sap_length; 17572 } 17573 /* 17574 * Now fill in the IBA scope/Pkey values from the broadcast address. 17575 */ 17576 m_physaddr[5] = bphys_addr[5]; 17577 m_physaddr[8] = bphys_addr[8]; 17578 m_physaddr[9] = bphys_addr[9]; 17579 } 17580 17581 static void 17582 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17583 { 17584 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17585 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17586 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17587 uint8_t *bphys_addr; 17588 dl_unitdata_req_t *dlur; 17589 17590 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17591 17592 /* 17593 * RFC 4391: IPv4 MGID is 80-bit long. 17594 */ 17595 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17596 17597 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17598 if (ill->ill_sap_length < 0) { 17599 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17600 } else { 17601 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17602 ill->ill_sap_length; 17603 } 17604 /* 17605 * Now fill in the IBA scope/Pkey values from the broadcast address. 17606 */ 17607 m_physaddr[5] = bphys_addr[5]; 17608 m_physaddr[8] = bphys_addr[8]; 17609 m_physaddr[9] = bphys_addr[9]; 17610 } 17611 17612 /* 17613 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17614 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17615 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17616 * of RFC4213. 17617 */ 17618 static void 17619 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17620 { 17621 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17622 v6addr->s6_addr32[2] = 0; 17623 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17624 } 17625 17626 /* 17627 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17628 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17629 * id. 17630 */ 17631 static void 17632 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17633 { 17634 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17635 17636 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17637 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17638 } 17639 17640 static void 17641 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17642 { 17643 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17644 } 17645 17646 static void 17647 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17648 { 17649 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17650 } 17651 17652 static void 17653 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17654 { 17655 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17656 } 17657 17658 static void 17659 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17660 { 17661 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17662 } 17663 17664 /* 17665 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17666 * Returns an held ill, or NULL. 17667 */ 17668 ill_t * 17669 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17670 ip_stack_t *ipst) 17671 { 17672 ill_t *ill; 17673 ipif_t *ipif; 17674 17675 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17676 if (ill == NULL) 17677 return (NULL); 17678 17679 mutex_enter(&ill->ill_lock); 17680 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17681 if (IPIF_IS_CONDEMNED(ipif)) 17682 continue; 17683 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17684 ipif->ipif_zoneid != ALL_ZONES) 17685 continue; 17686 17687 mutex_exit(&ill->ill_lock); 17688 return (ill); 17689 } 17690 mutex_exit(&ill->ill_lock); 17691 ill_refrele(ill); 17692 return (NULL); 17693 } 17694 17695 /* 17696 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17697 * If a pointer to an ipif_t is returned then the caller will need to do 17698 * an ill_refrele(). 17699 */ 17700 ipif_t * 17701 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17702 ip_stack_t *ipst) 17703 { 17704 ipif_t *ipif; 17705 ill_t *ill; 17706 17707 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17708 if (ill == NULL) 17709 return (NULL); 17710 17711 mutex_enter(&ill->ill_lock); 17712 if (ill->ill_state_flags & ILL_CONDEMNED) { 17713 mutex_exit(&ill->ill_lock); 17714 ill_refrele(ill); 17715 return (NULL); 17716 } 17717 17718 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17719 if (!IPIF_CAN_LOOKUP(ipif)) 17720 continue; 17721 if (lifidx == ipif->ipif_id) { 17722 ipif_refhold_locked(ipif); 17723 break; 17724 } 17725 } 17726 17727 mutex_exit(&ill->ill_lock); 17728 ill_refrele(ill); 17729 return (ipif); 17730 } 17731 17732 /* 17733 * Set ill_inputfn based on the current know state. 17734 * This needs to be called when any of the factors taken into 17735 * account changes. 17736 */ 17737 void 17738 ill_set_inputfn(ill_t *ill) 17739 { 17740 ip_stack_t *ipst = ill->ill_ipst; 17741 17742 if (ill->ill_isv6) { 17743 if (is_system_labeled()) 17744 ill->ill_inputfn = ill_input_full_v6; 17745 else 17746 ill->ill_inputfn = ill_input_short_v6; 17747 } else { 17748 if (is_system_labeled()) 17749 ill->ill_inputfn = ill_input_full_v4; 17750 else if (ill->ill_dhcpinit != 0) 17751 ill->ill_inputfn = ill_input_full_v4; 17752 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17753 != NULL) 17754 ill->ill_inputfn = ill_input_full_v4; 17755 else if (ipst->ips_ip_cgtp_filter && 17756 ipst->ips_ip_cgtp_filter_ops != NULL) 17757 ill->ill_inputfn = ill_input_full_v4; 17758 else 17759 ill->ill_inputfn = ill_input_short_v4; 17760 } 17761 } 17762 17763 /* 17764 * Re-evaluate ill_inputfn for all the IPv4 ills. 17765 * Used when RSVP and CGTP comes and goes. 17766 */ 17767 void 17768 ill_set_inputfn_all(ip_stack_t *ipst) 17769 { 17770 ill_walk_context_t ctx; 17771 ill_t *ill; 17772 17773 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17774 ill = ILL_START_WALK_V4(&ctx, ipst); 17775 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17776 ill_set_inputfn(ill); 17777 17778 rw_exit(&ipst->ips_ill_g_lock); 17779 } 17780 17781 /* 17782 * Set the physical address information for `ill' to the contents of the 17783 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17784 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17785 * EINPROGRESS will be returned. 17786 */ 17787 int 17788 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17789 { 17790 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17791 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17792 17793 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17794 17795 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17796 dlindp->dl_data != DL_CURR_DEST_ADDR && 17797 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17798 /* Changing DL_IPV6_TOKEN is not yet supported */ 17799 return (0); 17800 } 17801 17802 /* 17803 * We need to store up to two copies of `mp' in `ill'. Due to the 17804 * design of ipsq_pending_mp_add(), we can't pass them as separate 17805 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17806 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17807 */ 17808 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17809 freemsg(mp); 17810 return (ENOMEM); 17811 } 17812 17813 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17814 17815 /* 17816 * Since we'll only do a logical down, we can't rely on ipif_down 17817 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17818 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17819 * case, to quiesce ire's and nce's for ill_is_quiescent. 17820 */ 17821 mutex_enter(&ill->ill_lock); 17822 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17823 /* no more ire/nce addition allowed */ 17824 mutex_exit(&ill->ill_lock); 17825 17826 /* 17827 * If we can quiesce the ill, then set the address. If not, then 17828 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17829 */ 17830 ill_down_ipifs(ill, B_TRUE); 17831 mutex_enter(&ill->ill_lock); 17832 if (!ill_is_quiescent(ill)) { 17833 /* call cannot fail since `conn_t *' argument is NULL */ 17834 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17835 mp, ILL_DOWN); 17836 mutex_exit(&ill->ill_lock); 17837 return (EINPROGRESS); 17838 } 17839 mutex_exit(&ill->ill_lock); 17840 17841 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17842 return (0); 17843 } 17844 17845 /* 17846 * When the allowed-ips link property is set on the datalink, IP receives a 17847 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17848 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17849 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17850 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17851 * array. 17852 */ 17853 void 17854 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17855 { 17856 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17857 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17858 mac_protect_t *mrp; 17859 int i; 17860 17861 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17862 mrp = (mac_protect_t *)&dlip[1]; 17863 17864 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17865 kmem_free(ill->ill_allowed_ips, 17866 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17867 ill->ill_allowed_ips_cnt = 0; 17868 ill->ill_allowed_ips = NULL; 17869 mutex_enter(&ill->ill_phyint->phyint_lock); 17870 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17871 mutex_exit(&ill->ill_phyint->phyint_lock); 17872 return; 17873 } 17874 17875 if (ill->ill_allowed_ips != NULL) { 17876 kmem_free(ill->ill_allowed_ips, 17877 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17878 } 17879 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17880 ill->ill_allowed_ips = kmem_alloc( 17881 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17882 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17883 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17884 17885 mutex_enter(&ill->ill_phyint->phyint_lock); 17886 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17887 mutex_exit(&ill->ill_phyint->phyint_lock); 17888 } 17889 17890 /* 17891 * Once the ill associated with `q' has quiesced, set its physical address 17892 * information to the values in `addrmp'. Note that two copies of `addrmp' 17893 * are passed (linked by b_cont), since we sometimes need to save two distinct 17894 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17895 * failure (we'll free the other copy if it's not needed). Since the ill_t 17896 * is quiesced, we know any stale nce's with the old address information have 17897 * already been removed, so we don't need to call nce_flush(). 17898 */ 17899 /* ARGSUSED */ 17900 static void 17901 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17902 { 17903 ill_t *ill = q->q_ptr; 17904 mblk_t *addrmp2 = unlinkb(addrmp); 17905 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17906 uint_t addrlen, addroff; 17907 int status; 17908 17909 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17910 17911 addroff = dlindp->dl_addr_offset; 17912 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17913 17914 switch (dlindp->dl_data) { 17915 case DL_IPV6_LINK_LAYER_ADDR: 17916 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17917 freemsg(addrmp2); 17918 break; 17919 17920 case DL_CURR_DEST_ADDR: 17921 freemsg(ill->ill_dest_addr_mp); 17922 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17923 ill->ill_dest_addr_mp = addrmp; 17924 if (ill->ill_isv6) { 17925 ill_setdesttoken(ill); 17926 ipif_setdestlinklocal(ill->ill_ipif); 17927 } 17928 freemsg(addrmp2); 17929 break; 17930 17931 case DL_CURR_PHYS_ADDR: 17932 freemsg(ill->ill_phys_addr_mp); 17933 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17934 ill->ill_phys_addr_mp = addrmp; 17935 ill->ill_phys_addr_length = addrlen; 17936 if (ill->ill_isv6) 17937 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17938 else 17939 freemsg(addrmp2); 17940 if (ill->ill_isv6) { 17941 ill_setdefaulttoken(ill); 17942 ipif_setlinklocal(ill->ill_ipif); 17943 } 17944 break; 17945 default: 17946 ASSERT(0); 17947 } 17948 17949 /* 17950 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17951 * as we bring the ipifs up again. 17952 */ 17953 mutex_enter(&ill->ill_lock); 17954 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17955 mutex_exit(&ill->ill_lock); 17956 /* 17957 * If there are ipifs to bring up, ill_up_ipifs() will return 17958 * EINPROGRESS, and ipsq_current_finish() will be called by 17959 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17960 * brought up. 17961 */ 17962 status = ill_up_ipifs(ill, q, addrmp); 17963 if (status != EINPROGRESS) 17964 ipsq_current_finish(ipsq); 17965 } 17966 17967 /* 17968 * Helper routine for setting the ill_nd_lla fields. 17969 */ 17970 void 17971 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17972 { 17973 freemsg(ill->ill_nd_lla_mp); 17974 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17975 ill->ill_nd_lla_mp = ndmp; 17976 ill->ill_nd_lla_len = addrlen; 17977 } 17978 17979 /* 17980 * Replumb the ill. 17981 */ 17982 int 17983 ill_replumb(ill_t *ill, mblk_t *mp) 17984 { 17985 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17986 17987 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17988 17989 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17990 17991 /* 17992 * If we can quiesce the ill, then continue. If not, then 17993 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17994 */ 17995 ill_down_ipifs(ill, B_FALSE); 17996 17997 mutex_enter(&ill->ill_lock); 17998 if (!ill_is_quiescent(ill)) { 17999 /* call cannot fail since `conn_t *' argument is NULL */ 18000 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18001 mp, ILL_DOWN); 18002 mutex_exit(&ill->ill_lock); 18003 return (EINPROGRESS); 18004 } 18005 mutex_exit(&ill->ill_lock); 18006 18007 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18008 return (0); 18009 } 18010 18011 /* ARGSUSED */ 18012 static void 18013 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18014 { 18015 ill_t *ill = q->q_ptr; 18016 int err; 18017 conn_t *connp = NULL; 18018 18019 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18020 freemsg(ill->ill_replumb_mp); 18021 ill->ill_replumb_mp = copyb(mp); 18022 18023 if (ill->ill_replumb_mp == NULL) { 18024 /* out of memory */ 18025 ipsq_current_finish(ipsq); 18026 return; 18027 } 18028 18029 mutex_enter(&ill->ill_lock); 18030 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18031 ill->ill_rq, ill->ill_replumb_mp, 0); 18032 mutex_exit(&ill->ill_lock); 18033 18034 if (!ill->ill_up_ipifs) { 18035 /* already closing */ 18036 ipsq_current_finish(ipsq); 18037 return; 18038 } 18039 ill->ill_replumbing = 1; 18040 err = ill_down_ipifs_tail(ill); 18041 18042 /* 18043 * Successfully quiesced and brought down the interface, now we send 18044 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18045 * DL_NOTE_REPLUMB message. 18046 */ 18047 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18048 DL_NOTIFY_CONF); 18049 ASSERT(mp != NULL); 18050 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18051 DL_NOTE_REPLUMB_DONE; 18052 ill_dlpi_send(ill, mp); 18053 18054 /* 18055 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18056 * streams have to be unbound. When all the DLPI exchanges are done, 18057 * ipsq_current_finish() will be called by arp_bringup_done(). The 18058 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18059 * arp_bringup_done(). 18060 */ 18061 ASSERT(ill->ill_replumb_mp != NULL); 18062 if (err == EINPROGRESS) 18063 return; 18064 else 18065 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18066 ASSERT(connp == NULL); 18067 if (err == 0 && ill->ill_replumb_mp != NULL && 18068 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18069 return; 18070 } 18071 ipsq_current_finish(ipsq); 18072 } 18073 18074 /* 18075 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18076 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18077 * as per the ioctl. On failure, an errno is returned. 18078 */ 18079 static int 18080 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18081 { 18082 int rval; 18083 struct strioctl iocb; 18084 18085 iocb.ic_cmd = cmd; 18086 iocb.ic_timout = 15; 18087 iocb.ic_len = bufsize; 18088 iocb.ic_dp = buf; 18089 18090 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18091 } 18092 18093 /* 18094 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18095 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18096 */ 18097 static int 18098 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18099 uint_t *bufsizep, cred_t *cr) 18100 { 18101 int err; 18102 struct lifnum lifn; 18103 18104 bzero(&lifn, sizeof (lifn)); 18105 lifn.lifn_family = af; 18106 lifn.lifn_flags = LIFC_UNDER_IPMP; 18107 18108 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18109 return (err); 18110 18111 /* 18112 * Pad the interface count to account for additional interfaces that 18113 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18114 */ 18115 lifn.lifn_count += 4; 18116 bzero(lifcp, sizeof (*lifcp)); 18117 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18118 lifcp->lifc_family = af; 18119 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18120 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18121 18122 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18123 if (err != 0) { 18124 kmem_free(lifcp->lifc_buf, *bufsizep); 18125 return (err); 18126 } 18127 18128 return (0); 18129 } 18130 18131 /* 18132 * Helper for ip_interface_cleanup() that removes the loopback interface. 18133 */ 18134 static void 18135 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18136 { 18137 int err; 18138 struct lifreq lifr; 18139 18140 bzero(&lifr, sizeof (lifr)); 18141 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18142 18143 /* 18144 * Attempt to remove the interface. It may legitimately not exist 18145 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18146 */ 18147 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18148 if (err != 0 && err != ENXIO) { 18149 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18150 "error %d\n", isv6 ? "v6" : "v4", err)); 18151 } 18152 } 18153 18154 /* 18155 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18156 * groups and that IPMP data addresses are down. These conditions must be met 18157 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18158 */ 18159 static void 18160 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18161 { 18162 int af = isv6 ? AF_INET6 : AF_INET; 18163 int i, nifs; 18164 int err; 18165 uint_t bufsize; 18166 uint_t lifrsize = sizeof (struct lifreq); 18167 struct lifconf lifc; 18168 struct lifreq *lifrp; 18169 18170 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18171 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18172 "(error %d); any IPMP interfaces cannot be shutdown", err); 18173 return; 18174 } 18175 18176 nifs = lifc.lifc_len / lifrsize; 18177 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18178 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18179 if (err != 0) { 18180 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18181 "flags: error %d", lifrp->lifr_name, err); 18182 continue; 18183 } 18184 18185 if (lifrp->lifr_flags & IFF_IPMP) { 18186 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18187 continue; 18188 18189 lifrp->lifr_flags &= ~IFF_UP; 18190 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18191 if (err != 0) { 18192 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18193 "bring down (error %d); IPMP interface may " 18194 "not be shutdown", lifrp->lifr_name, err); 18195 } 18196 18197 /* 18198 * Check if IFF_DUPLICATE is still set -- and if so, 18199 * reset the address to clear it. 18200 */ 18201 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18202 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18203 continue; 18204 18205 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18206 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18207 lifrp, lifrsize, cr)) != 0) { 18208 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18209 "reset DAD (error %d); IPMP interface may " 18210 "not be shutdown", lifrp->lifr_name, err); 18211 } 18212 continue; 18213 } 18214 18215 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18216 lifrp->lifr_groupname[0] = '\0'; 18217 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18218 lifrsize, cr)) != 0) { 18219 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18220 "leave IPMP group (error %d); associated " 18221 "IPMP interface may not be shutdown", 18222 lifrp->lifr_name, err); 18223 continue; 18224 } 18225 } 18226 } 18227 18228 kmem_free(lifc.lifc_buf, bufsize); 18229 } 18230 18231 #define UDPDEV "/devices/pseudo/udp@0:udp" 18232 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18233 18234 /* 18235 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18236 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18237 * when the user-level processes in the zone are killed and the latter are 18238 * cleaned up by str_stack_shutdown(). 18239 */ 18240 void 18241 ip_interface_cleanup(ip_stack_t *ipst) 18242 { 18243 ldi_handle_t lh; 18244 ldi_ident_t li; 18245 cred_t *cr; 18246 int err; 18247 int i; 18248 char *devs[] = { UDP6DEV, UDPDEV }; 18249 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18250 18251 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18252 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18253 " error %d", err); 18254 return; 18255 } 18256 18257 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18258 ASSERT(cr != NULL); 18259 18260 /* 18261 * NOTE: loop executes exactly twice and is hardcoded to know that the 18262 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18263 * the loop.) 18264 */ 18265 for (i = 0; i < 2; i++) { 18266 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18267 if (err != 0) { 18268 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18269 " error %d", devs[i], err); 18270 continue; 18271 } 18272 18273 ip_loopback_removeif(lh, i == 0, cr); 18274 ip_ipmp_cleanup(lh, i == 0, cr); 18275 18276 (void) ldi_close(lh, FREAD|FWRITE, cr); 18277 } 18278 18279 ldi_ident_release(li); 18280 crfree(cr); 18281 } 18282 18283 /* 18284 * This needs to be in-sync with nic_event_t definition 18285 */ 18286 static const char * 18287 ill_hook_event2str(nic_event_t event) 18288 { 18289 switch (event) { 18290 case NE_PLUMB: 18291 return ("PLUMB"); 18292 case NE_UNPLUMB: 18293 return ("UNPLUMB"); 18294 case NE_UP: 18295 return ("UP"); 18296 case NE_DOWN: 18297 return ("DOWN"); 18298 case NE_ADDRESS_CHANGE: 18299 return ("ADDRESS_CHANGE"); 18300 case NE_LIF_UP: 18301 return ("LIF_UP"); 18302 case NE_LIF_DOWN: 18303 return ("LIF_DOWN"); 18304 case NE_IFINDEX_CHANGE: 18305 return ("IFINDEX_CHANGE"); 18306 default: 18307 return ("UNKNOWN"); 18308 } 18309 } 18310 18311 void 18312 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18313 nic_event_data_t data, size_t datalen) 18314 { 18315 ip_stack_t *ipst = ill->ill_ipst; 18316 hook_nic_event_int_t *info; 18317 const char *str = NULL; 18318 18319 /* create a new nic event info */ 18320 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18321 goto fail; 18322 18323 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18324 info->hnei_event.hne_lif = lif; 18325 info->hnei_event.hne_event = event; 18326 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18327 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18328 info->hnei_event.hne_data = NULL; 18329 info->hnei_event.hne_datalen = 0; 18330 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18331 18332 if (data != NULL && datalen != 0) { 18333 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18334 if (info->hnei_event.hne_data == NULL) 18335 goto fail; 18336 bcopy(data, info->hnei_event.hne_data, datalen); 18337 info->hnei_event.hne_datalen = datalen; 18338 } 18339 18340 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18341 DDI_NOSLEEP) == DDI_SUCCESS) 18342 return; 18343 18344 fail: 18345 if (info != NULL) { 18346 if (info->hnei_event.hne_data != NULL) { 18347 kmem_free(info->hnei_event.hne_data, 18348 info->hnei_event.hne_datalen); 18349 } 18350 kmem_free(info, sizeof (hook_nic_event_t)); 18351 } 18352 str = ill_hook_event2str(event); 18353 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18354 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18355 } 18356 18357 static int 18358 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18359 { 18360 int err = 0; 18361 const in_addr_t *addr = NULL; 18362 nce_t *nce = NULL; 18363 ill_t *ill = ipif->ipif_ill; 18364 ill_t *bound_ill; 18365 boolean_t added_ipif = B_FALSE; 18366 uint16_t state; 18367 uint16_t flags; 18368 18369 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18370 ill_t *, ill, ipif_t *, ipif); 18371 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18372 addr = &ipif->ipif_lcl_addr; 18373 } 18374 18375 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18376 if (res_act != Res_act_initial) 18377 return (EINVAL); 18378 } 18379 18380 if (addr != NULL) { 18381 ipmp_illgrp_t *illg = ill->ill_grp; 18382 18383 /* add unicast nce for the local addr */ 18384 18385 if (IS_IPMP(ill)) { 18386 /* 18387 * If we're here via ipif_up(), then the ipif 18388 * won't be bound yet -- add it to the group, 18389 * which will bind it if possible. (We would 18390 * add it in ipif_up(), but deleting on failure 18391 * there is gruesome.) If we're here via 18392 * ipmp_ill_bind_ipif(), then the ipif has 18393 * already been added to the group and we 18394 * just need to use the binding. 18395 */ 18396 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18397 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18398 if (bound_ill == NULL) { 18399 /* 18400 * We couldn't bind the ipif to an ill 18401 * yet, so we have nothing to publish. 18402 * Mark the address as ready and return. 18403 */ 18404 ipif->ipif_addr_ready = 1; 18405 return (0); 18406 } 18407 added_ipif = B_TRUE; 18408 } 18409 } else { 18410 bound_ill = ill; 18411 } 18412 18413 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18414 NCE_F_NONUD); 18415 /* 18416 * If this is an initial bring-up (or the ipif was never 18417 * completely brought up), do DAD. Otherwise, we're here 18418 * because IPMP has rebound an address to this ill: send 18419 * unsolicited advertisements (ARP announcements) to 18420 * inform others. 18421 */ 18422 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18423 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18424 } else { 18425 state = ND_REACHABLE; 18426 flags |= NCE_F_UNSOL_ADV; 18427 } 18428 18429 retry: 18430 err = nce_lookup_then_add_v4(ill, 18431 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18432 addr, flags, state, &nce); 18433 18434 /* 18435 * note that we may encounter EEXIST if we are moving 18436 * the nce as a result of a rebind operation. 18437 */ 18438 switch (err) { 18439 case 0: 18440 ipif->ipif_added_nce = 1; 18441 nce->nce_ipif_cnt++; 18442 break; 18443 case EEXIST: 18444 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18445 ill->ill_name)); 18446 if (!NCE_MYADDR(nce->nce_common)) { 18447 /* 18448 * A leftover nce from before this address 18449 * existed 18450 */ 18451 ncec_delete(nce->nce_common); 18452 nce_refrele(nce); 18453 nce = NULL; 18454 goto retry; 18455 } 18456 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18457 nce_refrele(nce); 18458 nce = NULL; 18459 ip1dbg(("ipif_arp_up: NCE already exists " 18460 "for %s:%u\n", ill->ill_name, 18461 ipif->ipif_id)); 18462 goto arp_up_done; 18463 } 18464 /* 18465 * Duplicate local addresses are permissible for 18466 * IPIF_POINTOPOINT interfaces which will get marked 18467 * IPIF_UNNUMBERED later in 18468 * ip_addr_availability_check(). 18469 * 18470 * The nce_ipif_cnt field tracks the number of 18471 * ipifs that have nce_addr as their local address. 18472 */ 18473 ipif->ipif_addr_ready = 1; 18474 ipif->ipif_added_nce = 1; 18475 nce->nce_ipif_cnt++; 18476 err = 0; 18477 break; 18478 default: 18479 ASSERT(nce == NULL); 18480 goto arp_up_done; 18481 } 18482 if (arp_no_defense) { 18483 if ((ipif->ipif_flags & IPIF_UP) && 18484 !ipif->ipif_addr_ready) 18485 ipif_up_notify(ipif); 18486 ipif->ipif_addr_ready = 1; 18487 } 18488 } else { 18489 /* zero address. nothing to publish */ 18490 ipif->ipif_addr_ready = 1; 18491 } 18492 if (nce != NULL) 18493 nce_refrele(nce); 18494 arp_up_done: 18495 if (added_ipif && err != 0) 18496 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18497 return (err); 18498 } 18499 18500 int 18501 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18502 { 18503 int err = 0; 18504 ill_t *ill = ipif->ipif_ill; 18505 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18506 18507 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18508 ill_t *, ill, ipif_t *, ipif); 18509 18510 /* 18511 * need to bring up ARP or setup mcast mapping only 18512 * when the first interface is coming UP. 18513 */ 18514 first_interface = (ill->ill_ipif_up_count == 0 && 18515 ill->ill_ipif_dup_count == 0 && !was_dup); 18516 18517 if (res_act == Res_act_initial && first_interface) { 18518 /* 18519 * Send ATTACH + BIND 18520 */ 18521 err = arp_ll_up(ill); 18522 if (err != EINPROGRESS && err != 0) 18523 return (err); 18524 18525 /* 18526 * Add NCE for local address. Start DAD. 18527 * we'll wait to hear that DAD has finished 18528 * before using the interface. 18529 */ 18530 if (err == EINPROGRESS) 18531 wait_for_dlpi = B_TRUE; 18532 } 18533 18534 if (!wait_for_dlpi) 18535 (void) ipif_arp_up_done_tail(ipif, res_act); 18536 18537 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18538 } 18539 18540 /* 18541 * Finish processing of "arp_up" after all the DLPI message 18542 * exchanges have completed between arp and the driver. 18543 */ 18544 void 18545 arp_bringup_done(ill_t *ill, int err) 18546 { 18547 mblk_t *mp1; 18548 ipif_t *ipif; 18549 conn_t *connp = NULL; 18550 ipsq_t *ipsq; 18551 queue_t *q; 18552 18553 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18554 18555 ASSERT(IAM_WRITER_ILL(ill)); 18556 18557 ipsq = ill->ill_phyint->phyint_ipsq; 18558 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18559 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18560 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18561 if (mp1 == NULL) /* bringup was aborted by the user */ 18562 return; 18563 18564 /* 18565 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18566 * must have an associated conn_t. Otherwise, we're bringing this 18567 * interface back up as part of handling an asynchronous event (e.g., 18568 * physical address change). 18569 */ 18570 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18571 ASSERT(connp != NULL); 18572 q = CONNP_TO_WQ(connp); 18573 } else { 18574 ASSERT(connp == NULL); 18575 q = ill->ill_rq; 18576 } 18577 if (err == 0) { 18578 if (ipif->ipif_isv6) { 18579 if ((err = ipif_up_done_v6(ipif)) != 0) 18580 ip0dbg(("arp_bringup_done: init failed\n")); 18581 } else { 18582 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18583 if (err != 0 || 18584 (err = ipif_up_done(ipif)) != 0) { 18585 ip0dbg(("arp_bringup_done: " 18586 "init failed err %x\n", err)); 18587 (void) ipif_arp_down(ipif); 18588 } 18589 18590 } 18591 } else { 18592 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18593 } 18594 18595 if ((err == 0) && (ill->ill_up_ipifs)) { 18596 err = ill_up_ipifs(ill, q, mp1); 18597 if (err == EINPROGRESS) 18598 return; 18599 } 18600 18601 /* 18602 * If we have a moved ipif to bring up, and everything has succeeded 18603 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18604 * down -- the admin can try to bring it up by hand if need be. 18605 */ 18606 if (ill->ill_move_ipif != NULL) { 18607 ipif = ill->ill_move_ipif; 18608 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18609 ipif->ipif_ill->ill_name)); 18610 ill->ill_move_ipif = NULL; 18611 if (err == 0) { 18612 err = ipif_up(ipif, q, mp1); 18613 if (err == EINPROGRESS) 18614 return; 18615 } 18616 } 18617 18618 /* 18619 * The operation must complete without EINPROGRESS since 18620 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18621 * Otherwise, the operation will be stuck forever in the ipsq. 18622 */ 18623 ASSERT(err != EINPROGRESS); 18624 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18625 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18626 int, ipsq->ipsq_xop->ipx_current_ioctl, 18627 ill_t *, ill, ipif_t *, ipif); 18628 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18629 } else { 18630 ipsq_current_finish(ipsq); 18631 } 18632 } 18633 18634 /* 18635 * Finish processing of arp replumb after all the DLPI message 18636 * exchanges have completed between arp and the driver. 18637 */ 18638 void 18639 arp_replumb_done(ill_t *ill, int err) 18640 { 18641 mblk_t *mp1; 18642 ipif_t *ipif; 18643 conn_t *connp = NULL; 18644 ipsq_t *ipsq; 18645 queue_t *q; 18646 18647 ASSERT(IAM_WRITER_ILL(ill)); 18648 18649 ipsq = ill->ill_phyint->phyint_ipsq; 18650 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18651 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18652 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18653 if (mp1 == NULL) { 18654 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18655 ipsq->ipsq_xop->ipx_current_ioctl)); 18656 /* bringup was aborted by the user */ 18657 return; 18658 } 18659 /* 18660 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18661 * must have an associated conn_t. Otherwise, we're bringing this 18662 * interface back up as part of handling an asynchronous event (e.g., 18663 * physical address change). 18664 */ 18665 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18666 ASSERT(connp != NULL); 18667 q = CONNP_TO_WQ(connp); 18668 } else { 18669 ASSERT(connp == NULL); 18670 q = ill->ill_rq; 18671 } 18672 if ((err == 0) && (ill->ill_up_ipifs)) { 18673 err = ill_up_ipifs(ill, q, mp1); 18674 if (err == EINPROGRESS) 18675 return; 18676 } 18677 /* 18678 * The operation must complete without EINPROGRESS since 18679 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18680 * Otherwise, the operation will be stuck forever in the ipsq. 18681 */ 18682 ASSERT(err != EINPROGRESS); 18683 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18684 DTRACE_PROBE4(ipif__ioctl, char *, 18685 "arp_replumb_done finish", 18686 int, ipsq->ipsq_xop->ipx_current_ioctl, 18687 ill_t *, ill, ipif_t *, ipif); 18688 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18689 } else { 18690 ipsq_current_finish(ipsq); 18691 } 18692 } 18693 18694 void 18695 ipif_up_notify(ipif_t *ipif) 18696 { 18697 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18698 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18699 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18700 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18701 NE_LIF_UP, NULL, 0); 18702 } 18703 18704 /* 18705 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18706 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18707 * TPI end points with STREAMS modules pushed above. This is assured by not 18708 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18709 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18710 * while unwinding from the ispq and that could be a thread from the bottom. 18711 */ 18712 /* ARGSUSED */ 18713 int 18714 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18715 ip_ioctl_cmd_t *ipip, void *arg) 18716 { 18717 mblk_t *cmd_mp = mp->b_cont->b_cont; 18718 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18719 int ret = 0; 18720 int i; 18721 size_t size; 18722 ip_stack_t *ipst; 18723 zoneid_t zoneid; 18724 ilb_stack_t *ilbs; 18725 18726 ipst = CONNQ_TO_IPST(q); 18727 ilbs = ipst->ips_netstack->netstack_ilb; 18728 zoneid = Q_TO_CONN(q)->conn_zoneid; 18729 18730 switch (command) { 18731 case ILB_CREATE_RULE: { 18732 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18733 18734 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18735 ret = EINVAL; 18736 break; 18737 } 18738 18739 ret = ilb_rule_add(ilbs, zoneid, cmd); 18740 break; 18741 } 18742 case ILB_DESTROY_RULE: 18743 case ILB_ENABLE_RULE: 18744 case ILB_DISABLE_RULE: { 18745 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18746 18747 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18748 ret = EINVAL; 18749 break; 18750 } 18751 18752 if (cmd->flags & ILB_RULE_ALLRULES) { 18753 if (command == ILB_DESTROY_RULE) { 18754 ilb_rule_del_all(ilbs, zoneid); 18755 break; 18756 } else if (command == ILB_ENABLE_RULE) { 18757 ilb_rule_enable_all(ilbs, zoneid); 18758 break; 18759 } else if (command == ILB_DISABLE_RULE) { 18760 ilb_rule_disable_all(ilbs, zoneid); 18761 break; 18762 } 18763 } else { 18764 if (command == ILB_DESTROY_RULE) { 18765 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18766 } else if (command == ILB_ENABLE_RULE) { 18767 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18768 NULL); 18769 } else if (command == ILB_DISABLE_RULE) { 18770 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18771 NULL); 18772 } 18773 } 18774 break; 18775 } 18776 case ILB_NUM_RULES: { 18777 ilb_num_rules_cmd_t *cmd; 18778 18779 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18780 ret = EINVAL; 18781 break; 18782 } 18783 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18784 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18785 break; 18786 } 18787 case ILB_RULE_NAMES: { 18788 ilb_rule_names_cmd_t *cmd; 18789 18790 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18791 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18792 cmd->num_names == 0) { 18793 ret = EINVAL; 18794 break; 18795 } 18796 size = cmd->num_names * ILB_RULE_NAMESZ; 18797 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18798 size != cmd_mp->b_wptr) { 18799 ret = EINVAL; 18800 break; 18801 } 18802 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18803 break; 18804 } 18805 case ILB_NUM_SERVERS: { 18806 ilb_num_servers_cmd_t *cmd; 18807 18808 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18809 ret = EINVAL; 18810 break; 18811 } 18812 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18813 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18814 &(cmd->num)); 18815 break; 18816 } 18817 case ILB_LIST_RULE: { 18818 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18819 18820 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18821 ret = EINVAL; 18822 break; 18823 } 18824 ret = ilb_rule_list(ilbs, zoneid, cmd); 18825 break; 18826 } 18827 case ILB_LIST_SERVERS: { 18828 ilb_servers_info_cmd_t *cmd; 18829 18830 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18831 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18832 cmd->num_servers == 0) { 18833 ret = EINVAL; 18834 break; 18835 } 18836 size = cmd->num_servers * sizeof (ilb_server_info_t); 18837 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18838 size != cmd_mp->b_wptr) { 18839 ret = EINVAL; 18840 break; 18841 } 18842 18843 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18844 &cmd->num_servers); 18845 break; 18846 } 18847 case ILB_ADD_SERVERS: { 18848 ilb_servers_info_cmd_t *cmd; 18849 ilb_rule_t *rule; 18850 18851 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18852 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18853 ret = EINVAL; 18854 break; 18855 } 18856 size = cmd->num_servers * sizeof (ilb_server_info_t); 18857 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18858 size != cmd_mp->b_wptr) { 18859 ret = EINVAL; 18860 break; 18861 } 18862 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18863 if (rule == NULL) { 18864 ASSERT(ret != 0); 18865 break; 18866 } 18867 for (i = 0; i < cmd->num_servers; i++) { 18868 ilb_server_info_t *s; 18869 18870 s = &cmd->servers[i]; 18871 s->err = ilb_server_add(ilbs, rule, s); 18872 } 18873 ILB_RULE_REFRELE(rule); 18874 break; 18875 } 18876 case ILB_DEL_SERVERS: 18877 case ILB_ENABLE_SERVERS: 18878 case ILB_DISABLE_SERVERS: { 18879 ilb_servers_cmd_t *cmd; 18880 ilb_rule_t *rule; 18881 int (*f)(); 18882 18883 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18884 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18885 ret = EINVAL; 18886 break; 18887 } 18888 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18889 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18890 size != cmd_mp->b_wptr) { 18891 ret = EINVAL; 18892 break; 18893 } 18894 18895 if (command == ILB_DEL_SERVERS) 18896 f = ilb_server_del; 18897 else if (command == ILB_ENABLE_SERVERS) 18898 f = ilb_server_enable; 18899 else if (command == ILB_DISABLE_SERVERS) 18900 f = ilb_server_disable; 18901 18902 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18903 if (rule == NULL) { 18904 ASSERT(ret != 0); 18905 break; 18906 } 18907 18908 for (i = 0; i < cmd->num_servers; i++) { 18909 ilb_server_arg_t *s; 18910 18911 s = &cmd->servers[i]; 18912 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18913 } 18914 ILB_RULE_REFRELE(rule); 18915 break; 18916 } 18917 case ILB_LIST_NAT_TABLE: { 18918 ilb_list_nat_cmd_t *cmd; 18919 18920 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18921 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18922 ret = EINVAL; 18923 break; 18924 } 18925 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18926 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18927 size != cmd_mp->b_wptr) { 18928 ret = EINVAL; 18929 break; 18930 } 18931 18932 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18933 &cmd->flags); 18934 break; 18935 } 18936 case ILB_LIST_STICKY_TABLE: { 18937 ilb_list_sticky_cmd_t *cmd; 18938 18939 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18940 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18941 ret = EINVAL; 18942 break; 18943 } 18944 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18945 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18946 size != cmd_mp->b_wptr) { 18947 ret = EINVAL; 18948 break; 18949 } 18950 18951 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18952 &cmd->num_sticky, &cmd->flags); 18953 break; 18954 } 18955 default: 18956 ret = EINVAL; 18957 break; 18958 } 18959 done: 18960 return (ret); 18961 } 18962 18963 /* Remove all cache entries for this logical interface */ 18964 void 18965 ipif_nce_down(ipif_t *ipif) 18966 { 18967 ill_t *ill = ipif->ipif_ill; 18968 nce_t *nce; 18969 18970 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18971 ill_t *, ill, ipif_t *, ipif); 18972 if (ipif->ipif_added_nce) { 18973 if (ipif->ipif_isv6) 18974 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18975 else 18976 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18977 if (nce != NULL) { 18978 if (--nce->nce_ipif_cnt == 0) 18979 ncec_delete(nce->nce_common); 18980 ipif->ipif_added_nce = 0; 18981 nce_refrele(nce); 18982 } else { 18983 /* 18984 * nce may already be NULL because it was already 18985 * flushed, e.g., due to a call to nce_flush 18986 */ 18987 ipif->ipif_added_nce = 0; 18988 } 18989 } 18990 /* 18991 * Make IPMP aware of the deleted data address. 18992 */ 18993 if (IS_IPMP(ill)) 18994 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18995 18996 /* 18997 * Remove all other nces dependent on this ill when the last ipif 18998 * is going away. 18999 */ 19000 if (ill->ill_ipif_up_count == 0) { 19001 ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst); 19002 if (IS_UNDER_IPMP(ill)) 19003 nce_flush(ill, B_TRUE); 19004 } 19005 } 19006 19007 /* 19008 * find the first interface that uses usill for its source address. 19009 */ 19010 ill_t * 19011 ill_lookup_usesrc(ill_t *usill) 19012 { 19013 ip_stack_t *ipst = usill->ill_ipst; 19014 ill_t *ill; 19015 19016 ASSERT(usill != NULL); 19017 19018 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19019 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19020 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19021 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19022 ill = ill->ill_usesrc_grp_next) { 19023 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19024 !ILL_IS_CONDEMNED(ill)) { 19025 ill_refhold(ill); 19026 break; 19027 } 19028 } 19029 rw_exit(&ipst->ips_ill_g_lock); 19030 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19031 return (ill); 19032 } 19033 19034 /* 19035 * This comment applies to both ip_sioctl_get_ifhwaddr and 19036 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19037 * is the same. 19038 * 19039 * The goal here is to find an IP interface that corresponds to the name 19040 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19041 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19042 * mac address. 19043 * 19044 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19045 * of different reasons: 19046 * ENXIO - the device name is not known to IP. 19047 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19048 * by ill_phys_addr not pointing to an actual address. 19049 * EPFNOSUPPORT - this will indicate that a request is being made for a 19050 * mac address that will not fit in the data structure supplier (struct 19051 * sockaddr). 19052 * 19053 */ 19054 /* ARGSUSED */ 19055 int 19056 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19057 ip_ioctl_cmd_t *ipip, void *if_req) 19058 { 19059 struct sockaddr *sock; 19060 struct ifreq *ifr; 19061 mblk_t *mp1; 19062 ill_t *ill; 19063 19064 ASSERT(ipif != NULL); 19065 ill = ipif->ipif_ill; 19066 19067 if (ill->ill_phys_addr == NULL) { 19068 return (EADDRNOTAVAIL); 19069 } 19070 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19071 return (EPFNOSUPPORT); 19072 } 19073 19074 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19075 19076 /* Existence of mp1 has been checked in ip_wput_nondata */ 19077 mp1 = mp->b_cont->b_cont; 19078 ifr = (struct ifreq *)mp1->b_rptr; 19079 19080 sock = &ifr->ifr_addr; 19081 /* 19082 * The "family" field in the returned structure is set to a value 19083 * that represents the type of device to which the address belongs. 19084 * The value returned may differ to that on Linux but it will still 19085 * represent the correct symbol on Solaris. 19086 */ 19087 sock->sa_family = arp_hw_type(ill->ill_mactype); 19088 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19089 19090 return (0); 19091 } 19092 19093 /* 19094 * The expection of applications using SIOCGIFHWADDR is that data will 19095 * be returned in the sa_data field of the sockaddr structure. With 19096 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19097 * equivalent. In light of this, struct sockaddr_dl is used as it 19098 * offers more space for address storage in sll_data. 19099 */ 19100 /* ARGSUSED */ 19101 int 19102 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19103 ip_ioctl_cmd_t *ipip, void *if_req) 19104 { 19105 struct sockaddr_dl *sock; 19106 struct lifreq *lifr; 19107 mblk_t *mp1; 19108 ill_t *ill; 19109 19110 ASSERT(ipif != NULL); 19111 ill = ipif->ipif_ill; 19112 19113 if (ill->ill_phys_addr == NULL) { 19114 return (EADDRNOTAVAIL); 19115 } 19116 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19117 return (EPFNOSUPPORT); 19118 } 19119 19120 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19121 19122 /* Existence of mp1 has been checked in ip_wput_nondata */ 19123 mp1 = mp->b_cont->b_cont; 19124 lifr = (struct lifreq *)mp1->b_rptr; 19125 19126 /* 19127 * sockaddr_ll is used here because it is also the structure used in 19128 * responding to the same ioctl in sockpfp. The only other choice is 19129 * sockaddr_dl which contains fields that are not required here 19130 * because its purpose is different. 19131 */ 19132 lifr->lifr_type = ill->ill_type; 19133 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19134 sock->sdl_family = AF_LINK; 19135 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19136 sock->sdl_type = ill->ill_mactype; 19137 sock->sdl_nlen = 0; 19138 sock->sdl_slen = 0; 19139 sock->sdl_alen = ill->ill_phys_addr_length; 19140 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19141 19142 return (0); 19143 } 19144