1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 #include <inet/ip_netinfo.h> 85 #include <inet/mib2.h> 86 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/sadb.h> 90 #include <inet/ipsec_impl.h> 91 #include <sys/iphada.h> 92 93 94 #include <netinet/igmp.h> 95 #include <inet/ip_listutils.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 /* The character which tells where the ill_name ends */ 106 #define IPIF_SEPARATOR_CHAR ':' 107 108 /* IP ioctl function table entry */ 109 typedef struct ipft_s { 110 int ipft_cmd; 111 pfi_t ipft_pfi; 112 int ipft_min_size; 113 int ipft_flags; 114 } ipft_t; 115 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 116 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 117 118 typedef struct ip_sock_ar_s { 119 union { 120 area_t ip_sock_area; 121 ared_t ip_sock_ared; 122 areq_t ip_sock_areq; 123 } ip_sock_ar_u; 124 queue_t *ip_sock_ar_q; 125 } ip_sock_ar_t; 126 127 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 128 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 129 char *value, caddr_t cp, cred_t *ioc_cr); 130 131 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 132 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 133 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 138 queue_t *q, mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 142 mblk_t *mp); 143 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 144 queue_t *q, mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 146 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 147 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 148 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 149 static void ipsq_flush(ill_t *ill); 150 static void ipsq_clean_all(ill_t *ill); 151 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 152 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 153 queue_t *q, mblk_t *mp, boolean_t need_up); 154 static void ipsq_delete(ipsq_t *); 155 156 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 157 boolean_t initialize); 158 static void ipif_check_bcast_ires(ipif_t *test_ipif); 159 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 160 static void ipif_delete_cache_ire(ire_t *, char *); 161 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 162 static void ipif_free(ipif_t *ipif); 163 static void ipif_free_tail(ipif_t *ipif); 164 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 165 static void ipif_multicast_down(ipif_t *ipif); 166 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 167 static void ipif_set_default(ipif_t *ipif); 168 static int ipif_set_values(queue_t *q, mblk_t *mp, 169 char *interf_name, uint_t *ppa); 170 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 171 queue_t *q); 172 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 173 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 174 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 175 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 176 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 177 178 static int ill_alloc_ppa(ill_if_t *, ill_t *); 179 static int ill_arp_off(ill_t *ill); 180 static int ill_arp_on(ill_t *ill); 181 static void ill_delete_interface_type(ill_if_t *); 182 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 183 static void ill_dl_down(ill_t *ill); 184 static void ill_down(ill_t *ill); 185 static void ill_downi(ire_t *ire, char *ill_arg); 186 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 187 static void ill_down_tail(ill_t *ill); 188 static void ill_free_mib(ill_t *ill); 189 static void ill_glist_delete(ill_t *); 190 static boolean_t ill_has_usable_ipif(ill_t *); 191 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 192 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 193 static void ill_phyint_free(ill_t *ill); 194 static void ill_phyint_reinit(ill_t *ill); 195 static void ill_set_nce_router_flags(ill_t *, boolean_t); 196 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 197 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 198 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 199 static void ill_stq_cache_delete(ire_t *, char *); 200 201 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 202 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 203 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 204 in6_addr_t *); 205 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 ipaddr_t *); 207 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 208 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 in6_addr_t *); 210 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 ipaddr_t *); 212 213 static void ipif_save_ire(ipif_t *, ire_t *); 214 static void ipif_remove_ire(ipif_t *, ire_t *); 215 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 216 static void ip_cgtp_bcast_delete(ire_t *); 217 218 /* 219 * Per-ill IPsec capabilities management. 220 */ 221 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 222 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 223 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 224 static void ill_ipsec_capab_delete(ill_t *, uint_t); 225 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 226 static void ill_capability_proto(ill_t *, int, mblk_t *); 227 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 228 boolean_t); 229 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 232 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 234 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 236 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 237 dl_capability_sub_t *); 238 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 239 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 240 static void ill_capability_lso_reset(ill_t *, mblk_t **); 241 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 243 static void ill_capability_dls_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_disable(ill_t *); 245 246 static void illgrp_cache_delete(ire_t *, char *); 247 static void illgrp_delete(ill_t *ill); 248 static void illgrp_reset_schednext(ill_t *ill); 249 250 static ill_t *ill_prev_usesrc(ill_t *); 251 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 252 static void ill_disband_usesrc_group(ill_t *); 253 254 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 255 256 /* 257 * if we go over the memory footprint limit more than once in this msec 258 * interval, we'll start pruning aggressively. 259 */ 260 int ip_min_frag_prune_time = 0; 261 262 /* 263 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 264 * and the IPsec DOI 265 */ 266 #define MAX_IPSEC_ALGS 256 267 268 #define BITSPERBYTE 8 269 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 270 271 #define IPSEC_ALG_ENABLE(algs, algid) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 276 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 277 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 278 279 typedef uint8_t ipsec_capab_elem_t; 280 281 /* 282 * Per-algorithm parameters. Note that at present, only encryption 283 * algorithms have variable keysize (IKE does not provide a way to negotiate 284 * auth algorithm keysize). 285 * 286 * All sizes here are in bits. 287 */ 288 typedef struct 289 { 290 uint16_t minkeylen; 291 uint16_t maxkeylen; 292 } ipsec_capab_algparm_t; 293 294 /* 295 * Per-ill capabilities. 296 */ 297 struct ill_ipsec_capab_s { 298 ipsec_capab_elem_t *encr_hw_algs; 299 ipsec_capab_elem_t *auth_hw_algs; 300 uint32_t algs_size; /* size of _hw_algs in bytes */ 301 /* algorithm key lengths */ 302 ipsec_capab_algparm_t *encr_algparm; 303 uint32_t encr_algparm_size; 304 uint32_t encr_algparm_end; 305 }; 306 307 /* 308 * List of AH and ESP IPsec acceleration capable ills 309 */ 310 typedef struct ipsec_capab_ill_s { 311 uint_t ill_index; 312 boolean_t ill_isv6; 313 struct ipsec_capab_ill_s *next; 314 } ipsec_capab_ill_t; 315 316 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 317 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 318 krwlock_t ipsec_capab_ills_lock; 319 320 /* 321 * The field values are larger than strictly necessary for simple 322 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 323 */ 324 static area_t ip_area_template = { 325 AR_ENTRY_ADD, /* area_cmd */ 326 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 327 /* area_name_offset */ 328 /* area_name_length temporarily holds this structure length */ 329 sizeof (area_t), /* area_name_length */ 330 IP_ARP_PROTO_TYPE, /* area_proto */ 331 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 332 IP_ADDR_LEN, /* area_proto_addr_length */ 333 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 334 /* area_proto_mask_offset */ 335 0, /* area_flags */ 336 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 337 /* area_hw_addr_offset */ 338 /* Zero length hw_addr_length means 'use your idea of the address' */ 339 0 /* area_hw_addr_length */ 340 }; 341 342 /* 343 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 344 * support 345 */ 346 static area_t ip6_area_template = { 347 AR_ENTRY_ADD, /* area_cmd */ 348 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 349 /* area_name_offset */ 350 /* area_name_length temporarily holds this structure length */ 351 sizeof (area_t), /* area_name_length */ 352 IP_ARP_PROTO_TYPE, /* area_proto */ 353 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 354 IPV6_ADDR_LEN, /* area_proto_addr_length */ 355 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 356 /* area_proto_mask_offset */ 357 0, /* area_flags */ 358 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 359 /* area_hw_addr_offset */ 360 /* Zero length hw_addr_length means 'use your idea of the address' */ 361 0 /* area_hw_addr_length */ 362 }; 363 364 static ared_t ip_ared_template = { 365 AR_ENTRY_DELETE, 366 sizeof (ared_t) + IP_ADDR_LEN, 367 sizeof (ared_t), 368 IP_ARP_PROTO_TYPE, 369 sizeof (ared_t), 370 IP_ADDR_LEN 371 }; 372 373 static ared_t ip6_ared_template = { 374 AR_ENTRY_DELETE, 375 sizeof (ared_t) + IPV6_ADDR_LEN, 376 sizeof (ared_t), 377 IP_ARP_PROTO_TYPE, 378 sizeof (ared_t), 379 IPV6_ADDR_LEN 380 }; 381 382 /* 383 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 384 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 385 * areq is used). 386 */ 387 static areq_t ip_areq_template = { 388 AR_ENTRY_QUERY, /* cmd */ 389 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 390 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 391 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 392 sizeof (areq_t), /* target addr offset */ 393 IP_ADDR_LEN, /* target addr_length */ 394 0, /* flags */ 395 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 396 IP_ADDR_LEN, /* sender addr length */ 397 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 398 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 399 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 400 /* anything else filled in by the code */ 401 }; 402 403 static arc_t ip_aru_template = { 404 AR_INTERFACE_UP, 405 sizeof (arc_t), /* Name offset */ 406 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 407 }; 408 409 static arc_t ip_ard_template = { 410 AR_INTERFACE_DOWN, 411 sizeof (arc_t), /* Name offset */ 412 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 413 }; 414 415 static arc_t ip_aron_template = { 416 AR_INTERFACE_ON, 417 sizeof (arc_t), /* Name offset */ 418 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 419 }; 420 421 static arc_t ip_aroff_template = { 422 AR_INTERFACE_OFF, 423 sizeof (arc_t), /* Name offset */ 424 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 425 }; 426 427 428 static arma_t ip_arma_multi_template = { 429 AR_MAPPING_ADD, 430 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 431 /* Name offset */ 432 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 433 IP_ARP_PROTO_TYPE, 434 sizeof (arma_t), /* proto_addr_offset */ 435 IP_ADDR_LEN, /* proto_addr_length */ 436 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 437 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 438 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 439 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 440 IP_MAX_HW_LEN, /* hw_addr_length */ 441 0, /* hw_mapping_start */ 442 }; 443 444 static ipft_t ip_ioctl_ftbl[] = { 445 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 446 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 447 IPFT_F_NO_REPLY }, 448 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 449 IPFT_F_NO_REPLY }, 450 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 451 { 0 } 452 }; 453 454 /* Simple ICMP IP Header Template */ 455 static ipha_t icmp_ipha = { 456 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 457 }; 458 459 /* Flag descriptors for ip_ipif_report */ 460 static nv_t ipif_nv_tbl[] = { 461 { IPIF_UP, "UP" }, 462 { IPIF_BROADCAST, "BROADCAST" }, 463 { ILLF_DEBUG, "DEBUG" }, 464 { PHYI_LOOPBACK, "LOOPBACK" }, 465 { IPIF_POINTOPOINT, "POINTOPOINT" }, 466 { ILLF_NOTRAILERS, "NOTRAILERS" }, 467 { PHYI_RUNNING, "RUNNING" }, 468 { ILLF_NOARP, "NOARP" }, 469 { PHYI_PROMISC, "PROMISC" }, 470 { PHYI_ALLMULTI, "ALLMULTI" }, 471 { PHYI_INTELLIGENT, "INTELLIGENT" }, 472 { ILLF_MULTICAST, "MULTICAST" }, 473 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 474 { IPIF_UNNUMBERED, "UNNUMBERED" }, 475 { IPIF_DHCPRUNNING, "DHCP" }, 476 { IPIF_PRIVATE, "PRIVATE" }, 477 { IPIF_NOXMIT, "NOXMIT" }, 478 { IPIF_NOLOCAL, "NOLOCAL" }, 479 { IPIF_DEPRECATED, "DEPRECATED" }, 480 { IPIF_PREFERRED, "PREFERRED" }, 481 { IPIF_TEMPORARY, "TEMPORARY" }, 482 { IPIF_ADDRCONF, "ADDRCONF" }, 483 { PHYI_VIRTUAL, "VIRTUAL" }, 484 { ILLF_ROUTER, "ROUTER" }, 485 { ILLF_NONUD, "NONUD" }, 486 { IPIF_ANYCAST, "ANYCAST" }, 487 { ILLF_NORTEXCH, "NORTEXCH" }, 488 { ILLF_IPV4, "IPV4" }, 489 { ILLF_IPV6, "IPV6" }, 490 { IPIF_MIPRUNNING, "MIP" }, 491 { IPIF_NOFAILOVER, "NOFAILOVER" }, 492 { PHYI_FAILED, "FAILED" }, 493 { PHYI_STANDBY, "STANDBY" }, 494 { PHYI_INACTIVE, "INACTIVE" }, 495 { PHYI_OFFLINE, "OFFLINE" }, 496 }; 497 498 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 499 500 static ip_m_t ip_m_tbl[] = { 501 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_ether_v6intfid }, 503 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_nodef_v6intfid }, 507 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_nodef_v6intfid }, 509 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_ether_v6intfid }, 511 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 512 ip_ib_v6intfid }, 513 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 514 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 515 ip_nodef_v6intfid } 516 }; 517 518 static ill_t ill_null; /* Empty ILL for init. */ 519 char ipif_loopback_name[] = "lo0"; 520 static char *ipv4_forward_suffix = ":ip_forwarding"; 521 static char *ipv6_forward_suffix = ":ip6_forwarding"; 522 static kstat_t *loopback_ksp = NULL; 523 static sin6_t sin6_null; /* Zero address for quick clears */ 524 static sin_t sin_null; /* Zero address for quick clears */ 525 static uint_t ill_index = 1; /* Used to assign interface indicies */ 526 /* When set search for unused index */ 527 static boolean_t ill_index_wrap = B_FALSE; 528 /* When set search for unused ipif_seqid */ 529 static ipif_t ipif_zero; 530 uint_t ipif_src_random; 531 532 /* 533 * For details on the protection offered by these locks please refer 534 * to the notes under the Synchronization section at the start of ip.c 535 */ 536 krwlock_t ill_g_lock; /* The global ill_g_lock */ 537 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 538 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 539 540 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 541 542 /* 543 * illgrp_head/ifgrp_head is protected by IP's perimeter. 544 */ 545 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 546 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 547 548 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 549 550 /* 551 * ppa arena is created after these many 552 * interfaces have been plumbed. 553 */ 554 uint_t ill_no_arena = 12; 555 556 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 557 static phyint_list_t phyint_g_list; /* start of phyint list */ 558 559 /* 560 * Reflects value of FAILBACK variable in IPMP config file 561 * /etc/default/mpathd. Default value is B_TRUE. 562 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 563 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 564 */ 565 static boolean_t ipmp_enable_failback = B_TRUE; 566 567 /* 568 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 569 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 570 * set through platform specific code (Niagara/Ontario). 571 */ 572 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 573 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 574 575 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 576 577 static uint_t 578 ipif_rand(void) 579 { 580 ipif_src_random = ipif_src_random * 1103515245 + 12345; 581 return ((ipif_src_random >> 16) & 0x7fff); 582 } 583 584 /* 585 * Allocate per-interface mibs. 586 * Returns true if ok. False otherwise. 587 * ipsq may not yet be allocated (loopback case ). 588 */ 589 static boolean_t 590 ill_allocate_mibs(ill_t *ill) 591 { 592 /* Already allocated? */ 593 if (ill->ill_ip_mib != NULL) { 594 if (ill->ill_isv6) 595 ASSERT(ill->ill_icmp6_mib != NULL); 596 return (B_TRUE); 597 } 598 599 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 600 KM_NOSLEEP); 601 if (ill->ill_ip_mib == NULL) { 602 return (B_FALSE); 603 } 604 605 /* Setup static information */ 606 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 607 sizeof (mib2_ipIfStatsEntry_t)); 608 if (ill->ill_isv6) { 609 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 610 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 611 sizeof (mib2_ipv6AddrEntry_t)); 612 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 613 sizeof (mib2_ipv6RouteEntry_t)); 614 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 615 sizeof (mib2_ipv6NetToMediaEntry_t)); 616 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 617 sizeof (ipv6_member_t)); 618 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 619 sizeof (ipv6_grpsrc_t)); 620 } else { 621 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 622 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 623 sizeof (mib2_ipAddrEntry_t)); 624 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 625 sizeof (mib2_ipRouteEntry_t)); 626 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 627 sizeof (mib2_ipNetToMediaEntry_t)); 628 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 629 sizeof (ip_member_t)); 630 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 631 sizeof (ip_grpsrc_t)); 632 633 /* 634 * For a v4 ill, we are done at this point, because per ill 635 * icmp mibs are only used for v6. 636 */ 637 return (B_TRUE); 638 } 639 640 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 641 KM_NOSLEEP); 642 if (ill->ill_icmp6_mib == NULL) { 643 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 644 ill->ill_ip_mib = NULL; 645 return (B_FALSE); 646 } 647 /* static icmp info */ 648 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 649 sizeof (mib2_ipv6IfIcmpEntry_t); 650 /* 651 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 652 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 653 * -> ill_phyint_reinit 654 */ 655 return (B_TRUE); 656 } 657 658 /* 659 * Common code for preparation of ARP commands. Two points to remember: 660 * 1) The ill_name is tacked on at the end of the allocated space so 661 * the templates name_offset field must contain the total space 662 * to allocate less the name length. 663 * 664 * 2) The templates name_length field should contain the *template* 665 * length. We use it as a parameter to bcopy() and then write 666 * the real ill_name_length into the name_length field of the copy. 667 * (Always called as writer.) 668 */ 669 mblk_t * 670 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 671 { 672 arc_t *arc = (arc_t *)template; 673 char *cp; 674 int len; 675 mblk_t *mp; 676 uint_t name_length = ill->ill_name_length; 677 uint_t template_len = arc->arc_name_length; 678 679 len = arc->arc_name_offset + name_length; 680 mp = allocb(len, BPRI_HI); 681 if (mp == NULL) 682 return (NULL); 683 cp = (char *)mp->b_rptr; 684 mp->b_wptr = (uchar_t *)&cp[len]; 685 if (template_len) 686 bcopy(template, cp, template_len); 687 if (len > template_len) 688 bzero(&cp[template_len], len - template_len); 689 mp->b_datap->db_type = M_PROTO; 690 691 arc = (arc_t *)cp; 692 arc->arc_name_length = name_length; 693 cp = (char *)arc + arc->arc_name_offset; 694 bcopy(ill->ill_name, cp, name_length); 695 696 if (addr) { 697 area_t *area = (area_t *)mp->b_rptr; 698 699 cp = (char *)area + area->area_proto_addr_offset; 700 bcopy(addr, cp, area->area_proto_addr_length); 701 if (area->area_cmd == AR_ENTRY_ADD) { 702 cp = (char *)area; 703 len = area->area_proto_addr_length; 704 if (area->area_proto_mask_offset) 705 cp += area->area_proto_mask_offset; 706 else 707 cp += area->area_proto_addr_offset + len; 708 while (len-- > 0) 709 *cp++ = (char)~0; 710 } 711 } 712 return (mp); 713 } 714 715 mblk_t * 716 ipif_area_alloc(ipif_t *ipif) 717 { 718 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 719 (char *)&ipif->ipif_lcl_addr)); 720 } 721 722 mblk_t * 723 ipif_ared_alloc(ipif_t *ipif) 724 { 725 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 726 (char *)&ipif->ipif_lcl_addr)); 727 } 728 729 mblk_t * 730 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 731 { 732 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 733 (char *)&addr)); 734 } 735 736 /* 737 * Completely vaporize a lower level tap and all associated interfaces. 738 * ill_delete is called only out of ip_close when the device control 739 * stream is being closed. 740 */ 741 void 742 ill_delete(ill_t *ill) 743 { 744 ipif_t *ipif; 745 ill_t *prev_ill; 746 747 /* 748 * ill_delete may be forcibly entering the ipsq. The previous 749 * ioctl may not have completed and may need to be aborted. 750 * ipsq_flush takes care of it. If we don't need to enter the 751 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 752 * ill_delete_tail is sufficient. 753 */ 754 ipsq_flush(ill); 755 756 /* 757 * Nuke all interfaces. ipif_free will take down the interface, 758 * remove it from the list, and free the data structure. 759 * Walk down the ipif list and remove the logical interfaces 760 * first before removing the main ipif. We can't unplumb 761 * zeroth interface first in the case of IPv6 as reset_conn_ill 762 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 763 * POINTOPOINT. 764 * 765 * If ill_ipif was not properly initialized (i.e low on memory), 766 * then no interfaces to clean up. In this case just clean up the 767 * ill. 768 */ 769 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 770 ipif_free(ipif); 771 772 /* 773 * Used only by ill_arp_on and ill_arp_off, which are writers. 774 * So nobody can be using this mp now. Free the mp allocated for 775 * honoring ILLF_NOARP 776 */ 777 freemsg(ill->ill_arp_on_mp); 778 ill->ill_arp_on_mp = NULL; 779 780 /* Clean up msgs on pending upcalls for mrouted */ 781 reset_mrt_ill(ill); 782 783 /* 784 * ipif_free -> reset_conn_ipif will remove all multicast 785 * references for IPv4. For IPv6, we need to do it here as 786 * it points only at ills. 787 */ 788 reset_conn_ill(ill); 789 790 /* 791 * ill_down will arrange to blow off any IRE's dependent on this 792 * ILL, and shut down fragmentation reassembly. 793 */ 794 ill_down(ill); 795 796 /* Let SCTP know, so that it can remove this from its list. */ 797 sctp_update_ill(ill, SCTP_ILL_REMOVE); 798 799 /* 800 * If an address on this ILL is being used as a source address then 801 * clear out the pointers in other ILLs that point to this ILL. 802 */ 803 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 804 if (ill->ill_usesrc_grp_next != NULL) { 805 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 806 ill_disband_usesrc_group(ill); 807 } else { /* consumer of the usesrc ILL */ 808 prev_ill = ill_prev_usesrc(ill); 809 prev_ill->ill_usesrc_grp_next = 810 ill->ill_usesrc_grp_next; 811 } 812 } 813 rw_exit(&ill_g_usesrc_lock); 814 } 815 816 static void 817 ipif_non_duplicate(ipif_t *ipif) 818 { 819 ill_t *ill = ipif->ipif_ill; 820 mutex_enter(&ill->ill_lock); 821 if (ipif->ipif_flags & IPIF_DUPLICATE) { 822 ipif->ipif_flags &= ~IPIF_DUPLICATE; 823 ASSERT(ill->ill_ipif_dup_count > 0); 824 ill->ill_ipif_dup_count--; 825 } 826 mutex_exit(&ill->ill_lock); 827 } 828 829 /* 830 * Send all deferred messages without waiting for their ACKs. 831 */ 832 void 833 ill_send_all_deferred_mp(ill_t *ill) 834 { 835 mblk_t *mp, *next; 836 837 /* 838 * Clear ill_dlpi_pending so that the message is not queued in 839 * ill_dlpi_send(). 840 */ 841 ill->ill_dlpi_pending = DL_PRIM_INVAL; 842 843 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 844 next = mp->b_next; 845 mp->b_next = NULL; 846 ill_dlpi_send(ill, mp); 847 } 848 ill->ill_dlpi_deferred = NULL; 849 } 850 851 /* 852 * ill_delete_tail is called from ip_modclose after all references 853 * to the closing ill are gone. The wait is done in ip_modclose 854 */ 855 void 856 ill_delete_tail(ill_t *ill) 857 { 858 mblk_t **mpp; 859 ipif_t *ipif; 860 861 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 862 ipif_non_duplicate(ipif); 863 ipif_down_tail(ipif); 864 } 865 866 ASSERT(ill->ill_ipif_dup_count == 0 && 867 ill->ill_arp_down_mp == NULL && 868 ill->ill_arp_del_mapping_mp == NULL); 869 870 /* 871 * If polling capability is enabled (which signifies direct 872 * upcall into IP and driver has ill saved as a handle), 873 * we need to make sure that unbind has completed before we 874 * let the ill disappear and driver no longer has any reference 875 * to this ill. 876 */ 877 mutex_enter(&ill->ill_lock); 878 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 879 cv_wait(&ill->ill_cv, &ill->ill_lock); 880 mutex_exit(&ill->ill_lock); 881 882 /* 883 * Clean up polling and soft ring capabilities 884 */ 885 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 886 ill_capability_dls_disable(ill); 887 888 /* 889 * Send the detach if there's one to send (i.e., if we're above a 890 * style 2 DLPI driver). 891 */ 892 if (ill->ill_detach_mp != NULL) { 893 ill_dlpi_send(ill, ill->ill_detach_mp); 894 ill->ill_detach_mp = NULL; 895 } 896 897 if (ill->ill_net_type != IRE_LOOPBACK) 898 qprocsoff(ill->ill_rq); 899 900 /* 901 * We do an ipsq_flush once again now. New messages could have 902 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 903 * could also have landed up if an ioctl thread had looked up 904 * the ill before we set the ILL_CONDEMNED flag, but not yet 905 * enqueued the ioctl when we did the ipsq_flush last time. 906 */ 907 ipsq_flush(ill); 908 909 /* 910 * Free capabilities. 911 */ 912 if (ill->ill_ipsec_capab_ah != NULL) { 913 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 914 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 915 ill->ill_ipsec_capab_ah = NULL; 916 } 917 918 if (ill->ill_ipsec_capab_esp != NULL) { 919 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 920 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 921 ill->ill_ipsec_capab_esp = NULL; 922 } 923 924 if (ill->ill_mdt_capab != NULL) { 925 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 926 ill->ill_mdt_capab = NULL; 927 } 928 929 if (ill->ill_hcksum_capab != NULL) { 930 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 931 ill->ill_hcksum_capab = NULL; 932 } 933 934 if (ill->ill_zerocopy_capab != NULL) { 935 kmem_free(ill->ill_zerocopy_capab, 936 sizeof (ill_zerocopy_capab_t)); 937 ill->ill_zerocopy_capab = NULL; 938 } 939 940 if (ill->ill_lso_capab != NULL) { 941 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 942 ill->ill_lso_capab = NULL; 943 } 944 945 if (ill->ill_dls_capab != NULL) { 946 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 947 ill->ill_dls_capab->ill_unbind_conn = NULL; 948 kmem_free(ill->ill_dls_capab, 949 sizeof (ill_dls_capab_t) + 950 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 951 ill->ill_dls_capab = NULL; 952 } 953 954 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 955 956 while (ill->ill_ipif != NULL) 957 ipif_free_tail(ill->ill_ipif); 958 959 ill_down_tail(ill); 960 961 /* 962 * We have removed all references to ilm from conn and the ones joined 963 * within the kernel. 964 * 965 * We don't walk conns, mrts and ires because 966 * 967 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 968 * 2) ill_down ->ill_downi walks all the ires and cleans up 969 * ill references. 970 */ 971 ASSERT(ilm_walk_ill(ill) == 0); 972 /* 973 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 974 * could free the phyint. No more reference to the phyint after this 975 * point. 976 */ 977 (void) ill_glist_delete(ill); 978 979 rw_enter(&ip_g_nd_lock, RW_WRITER); 980 if (ill->ill_ndd_name != NULL) 981 nd_unload(&ip_g_nd, ill->ill_ndd_name); 982 rw_exit(&ip_g_nd_lock); 983 984 985 if (ill->ill_frag_ptr != NULL) { 986 uint_t count; 987 988 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 989 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 990 } 991 mi_free(ill->ill_frag_ptr); 992 ill->ill_frag_ptr = NULL; 993 ill->ill_frag_hash_tbl = NULL; 994 } 995 996 freemsg(ill->ill_nd_lla_mp); 997 /* Free all retained control messages. */ 998 mpp = &ill->ill_first_mp_to_free; 999 do { 1000 while (mpp[0]) { 1001 mblk_t *mp; 1002 mblk_t *mp1; 1003 1004 mp = mpp[0]; 1005 mpp[0] = mp->b_next; 1006 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 1007 mp1->b_next = NULL; 1008 mp1->b_prev = NULL; 1009 } 1010 freemsg(mp); 1011 } 1012 } while (mpp++ != &ill->ill_last_mp_to_free); 1013 1014 ill_free_mib(ill); 1015 ILL_TRACE_CLEANUP(ill); 1016 } 1017 1018 static void 1019 ill_free_mib(ill_t *ill) 1020 { 1021 /* 1022 * MIB statistics must not be lost, so when an interface 1023 * goes away the counter values will be added to the global 1024 * MIBs. 1025 */ 1026 if (ill->ill_ip_mib != NULL) { 1027 if (ill->ill_isv6) 1028 ip_mib2_add_ip_stats(&ip6_mib, ill->ill_ip_mib); 1029 else 1030 ip_mib2_add_ip_stats(&ip_mib, ill->ill_ip_mib); 1031 1032 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1033 ill->ill_ip_mib = NULL; 1034 } 1035 if (ill->ill_icmp6_mib != NULL) { 1036 ip_mib2_add_icmp6_stats(&icmp6_mib, ill->ill_icmp6_mib); 1037 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1038 ill->ill_icmp6_mib = NULL; 1039 } 1040 } 1041 1042 /* 1043 * Concatenate together a physical address and a sap. 1044 * 1045 * Sap_lengths are interpreted as follows: 1046 * sap_length == 0 ==> no sap 1047 * sap_length > 0 ==> sap is at the head of the dlpi address 1048 * sap_length < 0 ==> sap is at the tail of the dlpi address 1049 */ 1050 static void 1051 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1052 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1053 { 1054 uint16_t sap_addr = (uint16_t)sap_src; 1055 1056 if (sap_length == 0) { 1057 if (phys_src == NULL) 1058 bzero(dst, phys_length); 1059 else 1060 bcopy(phys_src, dst, phys_length); 1061 } else if (sap_length < 0) { 1062 if (phys_src == NULL) 1063 bzero(dst, phys_length); 1064 else 1065 bcopy(phys_src, dst, phys_length); 1066 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1067 } else { 1068 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1069 if (phys_src == NULL) 1070 bzero((char *)dst + sap_length, phys_length); 1071 else 1072 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1073 } 1074 } 1075 1076 /* 1077 * Generate a dl_unitdata_req mblk for the device and address given. 1078 * addr_length is the length of the physical portion of the address. 1079 * If addr is NULL include an all zero address of the specified length. 1080 * TRUE? In any case, addr_length is taken to be the entire length of the 1081 * dlpi address, including the absolute value of sap_length. 1082 */ 1083 mblk_t * 1084 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1085 t_scalar_t sap_length) 1086 { 1087 dl_unitdata_req_t *dlur; 1088 mblk_t *mp; 1089 t_scalar_t abs_sap_length; /* absolute value */ 1090 1091 abs_sap_length = ABS(sap_length); 1092 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1093 DL_UNITDATA_REQ); 1094 if (mp == NULL) 1095 return (NULL); 1096 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1097 /* HACK: accomodate incompatible DLPI drivers */ 1098 if (addr_length == 8) 1099 addr_length = 6; 1100 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1101 dlur->dl_dest_addr_offset = sizeof (*dlur); 1102 dlur->dl_priority.dl_min = 0; 1103 dlur->dl_priority.dl_max = 0; 1104 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1105 (uchar_t *)&dlur[1]); 1106 return (mp); 1107 } 1108 1109 /* 1110 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1111 * Return an error if we already have 1 or more ioctls in progress. 1112 * This is used only for non-exclusive ioctls. Currently this is used 1113 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1114 * and thus need to use ipsq_pending_mp_add. 1115 */ 1116 boolean_t 1117 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1118 { 1119 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1120 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1121 /* 1122 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1123 */ 1124 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1125 (add_mp->b_datap->db_type == M_IOCTL)); 1126 1127 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1128 /* 1129 * Return error if the conn has started closing. The conn 1130 * could have finished cleaning up the pending mp list, 1131 * If so we should not add another mp to the list negating 1132 * the cleanup. 1133 */ 1134 if (connp->conn_state_flags & CONN_CLOSING) 1135 return (B_FALSE); 1136 /* 1137 * Add the pending mp to the head of the list, chained by b_next. 1138 * Note down the conn on which the ioctl request came, in b_prev. 1139 * This will be used to later get the conn, when we get a response 1140 * on the ill queue, from some other module (typically arp) 1141 */ 1142 add_mp->b_next = (void *)ill->ill_pending_mp; 1143 add_mp->b_queue = CONNP_TO_WQ(connp); 1144 ill->ill_pending_mp = add_mp; 1145 if (connp != NULL) 1146 connp->conn_oper_pending_ill = ill; 1147 return (B_TRUE); 1148 } 1149 1150 /* 1151 * Retrieve the ill_pending_mp and return it. We have to walk the list 1152 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1153 */ 1154 mblk_t * 1155 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1156 { 1157 mblk_t *prev = NULL; 1158 mblk_t *curr = NULL; 1159 uint_t id; 1160 conn_t *connp; 1161 1162 /* 1163 * When the conn closes, conn_ioctl_cleanup needs to clean 1164 * up the pending mp, but it does not know the ioc_id and 1165 * passes in a zero for it. 1166 */ 1167 mutex_enter(&ill->ill_lock); 1168 if (ioc_id != 0) 1169 *connpp = NULL; 1170 1171 /* Search the list for the appropriate ioctl based on ioc_id */ 1172 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1173 prev = curr, curr = curr->b_next) { 1174 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1175 connp = Q_TO_CONN(curr->b_queue); 1176 /* Match based on the ioc_id or based on the conn */ 1177 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1178 break; 1179 } 1180 1181 if (curr != NULL) { 1182 /* Unlink the mblk from the pending mp list */ 1183 if (prev != NULL) { 1184 prev->b_next = curr->b_next; 1185 } else { 1186 ASSERT(ill->ill_pending_mp == curr); 1187 ill->ill_pending_mp = curr->b_next; 1188 } 1189 1190 /* 1191 * conn refcnt must have been bumped up at the start of 1192 * the ioctl. So we can safely access the conn. 1193 */ 1194 ASSERT(CONN_Q(curr->b_queue)); 1195 *connpp = Q_TO_CONN(curr->b_queue); 1196 curr->b_next = NULL; 1197 curr->b_queue = NULL; 1198 } 1199 1200 mutex_exit(&ill->ill_lock); 1201 1202 return (curr); 1203 } 1204 1205 /* 1206 * Add the pending mp to the list. There can be only 1 pending mp 1207 * in the list. Any exclusive ioctl that needs to wait for a response 1208 * from another module or driver needs to use this function to set 1209 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1210 * the other module/driver. This is also used while waiting for the 1211 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1212 */ 1213 boolean_t 1214 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1215 int waitfor) 1216 { 1217 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1218 1219 ASSERT(IAM_WRITER_IPIF(ipif)); 1220 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1221 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1222 ASSERT(ipsq->ipsq_pending_mp == NULL); 1223 /* 1224 * The caller may be using a different ipif than the one passed into 1225 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1226 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1227 * that `ipsq_current_ipif == ipif'. 1228 */ 1229 ASSERT(ipsq->ipsq_current_ipif != NULL); 1230 1231 /* 1232 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1233 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1234 */ 1235 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1236 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1237 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1238 1239 if (connp != NULL) { 1240 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1241 /* 1242 * Return error if the conn has started closing. The conn 1243 * could have finished cleaning up the pending mp list, 1244 * If so we should not add another mp to the list negating 1245 * the cleanup. 1246 */ 1247 if (connp->conn_state_flags & CONN_CLOSING) 1248 return (B_FALSE); 1249 } 1250 mutex_enter(&ipsq->ipsq_lock); 1251 ipsq->ipsq_pending_ipif = ipif; 1252 /* 1253 * Note down the queue in b_queue. This will be returned by 1254 * ipsq_pending_mp_get. Caller will then use these values to restart 1255 * the processing 1256 */ 1257 add_mp->b_next = NULL; 1258 add_mp->b_queue = q; 1259 ipsq->ipsq_pending_mp = add_mp; 1260 ipsq->ipsq_waitfor = waitfor; 1261 1262 if (connp != NULL) 1263 connp->conn_oper_pending_ill = ipif->ipif_ill; 1264 mutex_exit(&ipsq->ipsq_lock); 1265 return (B_TRUE); 1266 } 1267 1268 /* 1269 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1270 * queued in the list. 1271 */ 1272 mblk_t * 1273 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1274 { 1275 mblk_t *curr = NULL; 1276 1277 mutex_enter(&ipsq->ipsq_lock); 1278 *connpp = NULL; 1279 if (ipsq->ipsq_pending_mp == NULL) { 1280 mutex_exit(&ipsq->ipsq_lock); 1281 return (NULL); 1282 } 1283 1284 /* There can be only 1 such excl message */ 1285 curr = ipsq->ipsq_pending_mp; 1286 ASSERT(curr != NULL && curr->b_next == NULL); 1287 ipsq->ipsq_pending_ipif = NULL; 1288 ipsq->ipsq_pending_mp = NULL; 1289 ipsq->ipsq_waitfor = 0; 1290 mutex_exit(&ipsq->ipsq_lock); 1291 1292 if (CONN_Q(curr->b_queue)) { 1293 /* 1294 * This mp did a refhold on the conn, at the start of the ioctl. 1295 * So we can safely return a pointer to the conn to the caller. 1296 */ 1297 *connpp = Q_TO_CONN(curr->b_queue); 1298 } else { 1299 *connpp = NULL; 1300 } 1301 curr->b_next = NULL; 1302 curr->b_prev = NULL; 1303 return (curr); 1304 } 1305 1306 /* 1307 * Cleanup the ioctl mp queued in ipsq_pending_mp 1308 * - Called in the ill_delete path 1309 * - Called in the M_ERROR or M_HANGUP path on the ill. 1310 * - Called in the conn close path. 1311 */ 1312 boolean_t 1313 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1314 { 1315 mblk_t *mp; 1316 ipsq_t *ipsq; 1317 queue_t *q; 1318 ipif_t *ipif; 1319 1320 ASSERT(IAM_WRITER_ILL(ill)); 1321 ipsq = ill->ill_phyint->phyint_ipsq; 1322 mutex_enter(&ipsq->ipsq_lock); 1323 /* 1324 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1325 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1326 * even if it is meant for another ill, since we have to enqueue 1327 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1328 * If connp is non-null we are called from the conn close path. 1329 */ 1330 mp = ipsq->ipsq_pending_mp; 1331 if (mp == NULL || (connp != NULL && 1332 mp->b_queue != CONNP_TO_WQ(connp))) { 1333 mutex_exit(&ipsq->ipsq_lock); 1334 return (B_FALSE); 1335 } 1336 /* Now remove from the ipsq_pending_mp */ 1337 ipsq->ipsq_pending_mp = NULL; 1338 q = mp->b_queue; 1339 mp->b_next = NULL; 1340 mp->b_prev = NULL; 1341 mp->b_queue = NULL; 1342 1343 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1344 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1345 if (ill->ill_move_in_progress) { 1346 ILL_CLEAR_MOVE(ill); 1347 } else if (ill->ill_up_ipifs) { 1348 ill_group_cleanup(ill); 1349 } 1350 1351 ipif = ipsq->ipsq_pending_ipif; 1352 ipsq->ipsq_pending_ipif = NULL; 1353 ipsq->ipsq_waitfor = 0; 1354 ipsq->ipsq_current_ipif = NULL; 1355 ipsq->ipsq_current_ioctl = 0; 1356 mutex_exit(&ipsq->ipsq_lock); 1357 1358 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1359 if (connp == NULL) { 1360 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1361 } else { 1362 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1363 mutex_enter(&ipif->ipif_ill->ill_lock); 1364 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1365 mutex_exit(&ipif->ipif_ill->ill_lock); 1366 } 1367 } else { 1368 /* 1369 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1370 * be just inet_freemsg. we have to restart it 1371 * otherwise the thread will be stuck. 1372 */ 1373 inet_freemsg(mp); 1374 } 1375 return (B_TRUE); 1376 } 1377 1378 /* 1379 * The ill is closing. Cleanup all the pending mps. Called exclusively 1380 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1381 * knows this ill, and hence nobody can add an mp to this list 1382 */ 1383 static void 1384 ill_pending_mp_cleanup(ill_t *ill) 1385 { 1386 mblk_t *mp; 1387 queue_t *q; 1388 1389 ASSERT(IAM_WRITER_ILL(ill)); 1390 1391 mutex_enter(&ill->ill_lock); 1392 /* 1393 * Every mp on the pending mp list originating from an ioctl 1394 * added 1 to the conn refcnt, at the start of the ioctl. 1395 * So bump it down now. See comments in ip_wput_nondata() 1396 */ 1397 while (ill->ill_pending_mp != NULL) { 1398 mp = ill->ill_pending_mp; 1399 ill->ill_pending_mp = mp->b_next; 1400 mutex_exit(&ill->ill_lock); 1401 1402 q = mp->b_queue; 1403 ASSERT(CONN_Q(q)); 1404 mp->b_next = NULL; 1405 mp->b_prev = NULL; 1406 mp->b_queue = NULL; 1407 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1408 mutex_enter(&ill->ill_lock); 1409 } 1410 ill->ill_pending_ipif = NULL; 1411 1412 mutex_exit(&ill->ill_lock); 1413 } 1414 1415 /* 1416 * Called in the conn close path and ill delete path 1417 */ 1418 static void 1419 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1420 { 1421 ipsq_t *ipsq; 1422 mblk_t *prev; 1423 mblk_t *curr; 1424 mblk_t *next; 1425 queue_t *q; 1426 mblk_t *tmp_list = NULL; 1427 1428 ASSERT(IAM_WRITER_ILL(ill)); 1429 if (connp != NULL) 1430 q = CONNP_TO_WQ(connp); 1431 else 1432 q = ill->ill_wq; 1433 1434 ipsq = ill->ill_phyint->phyint_ipsq; 1435 /* 1436 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1437 * In the case of ioctl from a conn, there can be only 1 mp 1438 * queued on the ipsq. If an ill is being unplumbed, only messages 1439 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1440 * ioctls meant for this ill form conn's are not flushed. They will 1441 * be processed during ipsq_exit and will not find the ill and will 1442 * return error. 1443 */ 1444 mutex_enter(&ipsq->ipsq_lock); 1445 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1446 curr = next) { 1447 next = curr->b_next; 1448 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1449 /* Unlink the mblk from the pending mp list */ 1450 if (prev != NULL) { 1451 prev->b_next = curr->b_next; 1452 } else { 1453 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1454 ipsq->ipsq_xopq_mphead = curr->b_next; 1455 } 1456 if (ipsq->ipsq_xopq_mptail == curr) 1457 ipsq->ipsq_xopq_mptail = prev; 1458 /* 1459 * Create a temporary list and release the ipsq lock 1460 * New elements are added to the head of the tmp_list 1461 */ 1462 curr->b_next = tmp_list; 1463 tmp_list = curr; 1464 } else { 1465 prev = curr; 1466 } 1467 } 1468 mutex_exit(&ipsq->ipsq_lock); 1469 1470 while (tmp_list != NULL) { 1471 curr = tmp_list; 1472 tmp_list = curr->b_next; 1473 curr->b_next = NULL; 1474 curr->b_prev = NULL; 1475 curr->b_queue = NULL; 1476 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1477 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1478 CONN_CLOSE : NO_COPYOUT, NULL); 1479 } else { 1480 /* 1481 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1482 * this can't be just inet_freemsg. we have to 1483 * restart it otherwise the thread will be stuck. 1484 */ 1485 inet_freemsg(curr); 1486 } 1487 } 1488 } 1489 1490 /* 1491 * This conn has started closing. Cleanup any pending ioctl from this conn. 1492 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1493 */ 1494 void 1495 conn_ioctl_cleanup(conn_t *connp) 1496 { 1497 mblk_t *curr; 1498 ipsq_t *ipsq; 1499 ill_t *ill; 1500 boolean_t refheld; 1501 1502 /* 1503 * Is any exclusive ioctl pending ? If so clean it up. If the 1504 * ioctl has not yet started, the mp is pending in the list headed by 1505 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1506 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1507 * is currently executing now the mp is not queued anywhere but 1508 * conn_oper_pending_ill is null. The conn close will wait 1509 * till the conn_ref drops to zero. 1510 */ 1511 mutex_enter(&connp->conn_lock); 1512 ill = connp->conn_oper_pending_ill; 1513 if (ill == NULL) { 1514 mutex_exit(&connp->conn_lock); 1515 return; 1516 } 1517 1518 curr = ill_pending_mp_get(ill, &connp, 0); 1519 if (curr != NULL) { 1520 mutex_exit(&connp->conn_lock); 1521 CONN_DEC_REF(connp); 1522 inet_freemsg(curr); 1523 return; 1524 } 1525 /* 1526 * We may not be able to refhold the ill if the ill/ipif 1527 * is changing. But we need to make sure that the ill will 1528 * not vanish. So we just bump up the ill_waiter count. 1529 */ 1530 refheld = ill_waiter_inc(ill); 1531 mutex_exit(&connp->conn_lock); 1532 if (refheld) { 1533 if (ipsq_enter(ill, B_TRUE)) { 1534 ill_waiter_dcr(ill); 1535 /* 1536 * Check whether this ioctl has started and is 1537 * pending now in ipsq_pending_mp. If it is not 1538 * found there then check whether this ioctl has 1539 * not even started and is in the ipsq_xopq list. 1540 */ 1541 if (!ipsq_pending_mp_cleanup(ill, connp)) 1542 ipsq_xopq_mp_cleanup(ill, connp); 1543 ipsq = ill->ill_phyint->phyint_ipsq; 1544 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1545 return; 1546 } 1547 } 1548 1549 /* 1550 * The ill is also closing and we could not bump up the 1551 * ill_waiter_count or we could not enter the ipsq. Leave 1552 * the cleanup to ill_delete 1553 */ 1554 mutex_enter(&connp->conn_lock); 1555 while (connp->conn_oper_pending_ill != NULL) 1556 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1557 mutex_exit(&connp->conn_lock); 1558 if (refheld) 1559 ill_waiter_dcr(ill); 1560 } 1561 1562 /* 1563 * ipcl_walk function for cleaning up conn_*_ill fields. 1564 */ 1565 static void 1566 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1567 { 1568 ill_t *ill = (ill_t *)arg; 1569 ire_t *ire; 1570 1571 mutex_enter(&connp->conn_lock); 1572 if (connp->conn_multicast_ill == ill) { 1573 /* Revert to late binding */ 1574 connp->conn_multicast_ill = NULL; 1575 connp->conn_orig_multicast_ifindex = 0; 1576 } 1577 if (connp->conn_incoming_ill == ill) 1578 connp->conn_incoming_ill = NULL; 1579 if (connp->conn_outgoing_ill == ill) 1580 connp->conn_outgoing_ill = NULL; 1581 if (connp->conn_outgoing_pill == ill) 1582 connp->conn_outgoing_pill = NULL; 1583 if (connp->conn_nofailover_ill == ill) 1584 connp->conn_nofailover_ill = NULL; 1585 if (connp->conn_xmit_if_ill == ill) 1586 connp->conn_xmit_if_ill = NULL; 1587 if (connp->conn_ire_cache != NULL) { 1588 ire = connp->conn_ire_cache; 1589 /* 1590 * ip_newroute creates IRE_CACHE with ire_stq coming from 1591 * interface X and ipif coming from interface Y, if interface 1592 * X and Y are part of the same IPMPgroup. Thus whenever 1593 * interface X goes down, remove all references to it by 1594 * checking both on ire_ipif and ire_stq. 1595 */ 1596 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1597 (ire->ire_type == IRE_CACHE && 1598 ire->ire_stq == ill->ill_wq)) { 1599 connp->conn_ire_cache = NULL; 1600 mutex_exit(&connp->conn_lock); 1601 ire_refrele_notr(ire); 1602 return; 1603 } 1604 } 1605 mutex_exit(&connp->conn_lock); 1606 1607 } 1608 1609 /* ARGSUSED */ 1610 void 1611 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1612 { 1613 ill_t *ill = q->q_ptr; 1614 ipif_t *ipif; 1615 1616 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1617 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1618 ipif_non_duplicate(ipif); 1619 ipif_down_tail(ipif); 1620 } 1621 ill_down_tail(ill); 1622 freemsg(mp); 1623 ipsq_current_finish(ipsq); 1624 } 1625 1626 /* 1627 * ill_down_start is called when we want to down this ill and bring it up again 1628 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1629 * all interfaces, but don't tear down any plumbing. 1630 */ 1631 boolean_t 1632 ill_down_start(queue_t *q, mblk_t *mp) 1633 { 1634 ill_t *ill = q->q_ptr; 1635 ipif_t *ipif; 1636 1637 ASSERT(IAM_WRITER_ILL(ill)); 1638 1639 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1640 (void) ipif_down(ipif, NULL, NULL); 1641 1642 ill_down(ill); 1643 1644 (void) ipsq_pending_mp_cleanup(ill, NULL); 1645 1646 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1647 1648 /* 1649 * Atomically test and add the pending mp if references are active. 1650 */ 1651 mutex_enter(&ill->ill_lock); 1652 if (!ill_is_quiescent(ill)) { 1653 /* call cannot fail since `conn_t *' argument is NULL */ 1654 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1655 mp, ILL_DOWN); 1656 mutex_exit(&ill->ill_lock); 1657 return (B_FALSE); 1658 } 1659 mutex_exit(&ill->ill_lock); 1660 return (B_TRUE); 1661 } 1662 1663 static void 1664 ill_down(ill_t *ill) 1665 { 1666 /* Blow off any IREs dependent on this ILL. */ 1667 ire_walk(ill_downi, (char *)ill); 1668 1669 mutex_enter(&ire_mrtun_lock); 1670 if (ire_mrtun_count != 0) { 1671 mutex_exit(&ire_mrtun_lock); 1672 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1673 (char *)ill, NULL); 1674 } else { 1675 mutex_exit(&ire_mrtun_lock); 1676 } 1677 1678 /* 1679 * If any interface based forwarding table exists 1680 * Blow off the ires there dependent on this ill 1681 */ 1682 mutex_enter(&ire_srcif_table_lock); 1683 if (ire_srcif_table_count > 0) { 1684 mutex_exit(&ire_srcif_table_lock); 1685 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1686 } else { 1687 mutex_exit(&ire_srcif_table_lock); 1688 } 1689 1690 /* Remove any conn_*_ill depending on this ill */ 1691 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1692 1693 if (ill->ill_group != NULL) { 1694 illgrp_delete(ill); 1695 } 1696 1697 } 1698 1699 static void 1700 ill_down_tail(ill_t *ill) 1701 { 1702 int i; 1703 1704 /* Destroy ill_srcif_table if it exists */ 1705 /* Lock not reqd really because nobody should be able to access */ 1706 mutex_enter(&ill->ill_lock); 1707 if (ill->ill_srcif_table != NULL) { 1708 ill->ill_srcif_refcnt = 0; 1709 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1710 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1711 } 1712 kmem_free(ill->ill_srcif_table, 1713 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1714 ill->ill_srcif_table = NULL; 1715 ill->ill_srcif_refcnt = 0; 1716 ill->ill_mrtun_refcnt = 0; 1717 } 1718 mutex_exit(&ill->ill_lock); 1719 } 1720 1721 /* 1722 * ire_walk routine used to delete every IRE that depends on queues 1723 * associated with 'ill'. (Always called as writer.) 1724 */ 1725 static void 1726 ill_downi(ire_t *ire, char *ill_arg) 1727 { 1728 ill_t *ill = (ill_t *)ill_arg; 1729 1730 /* 1731 * ip_newroute creates IRE_CACHE with ire_stq coming from 1732 * interface X and ipif coming from interface Y, if interface 1733 * X and Y are part of the same IPMP group. Thus whenever interface 1734 * X goes down, remove all references to it by checking both 1735 * on ire_ipif and ire_stq. 1736 */ 1737 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1738 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1739 ire_delete(ire); 1740 } 1741 } 1742 1743 /* 1744 * A seperate routine for deleting revtun and srcif based routes 1745 * are needed because the ires only deleted when the interface 1746 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1747 * we want to keep mobile IP specific code separate. 1748 */ 1749 static void 1750 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1751 { 1752 ill_t *ill = (ill_t *)ill_arg; 1753 1754 ASSERT(ire->ire_in_ill != NULL); 1755 1756 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1757 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1758 ire_delete(ire); 1759 } 1760 } 1761 1762 /* 1763 * Remove ire/nce from the fastpath list. 1764 */ 1765 void 1766 ill_fastpath_nack(ill_t *ill) 1767 { 1768 nce_fastpath_list_dispatch(ill, NULL, NULL); 1769 } 1770 1771 /* Consume an M_IOCACK of the fastpath probe. */ 1772 void 1773 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1774 { 1775 mblk_t *mp1 = mp; 1776 1777 /* 1778 * If this was the first attempt turn on the fastpath probing. 1779 */ 1780 mutex_enter(&ill->ill_lock); 1781 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1782 ill->ill_dlpi_fastpath_state = IDS_OK; 1783 mutex_exit(&ill->ill_lock); 1784 1785 /* Free the M_IOCACK mblk, hold on to the data */ 1786 mp = mp->b_cont; 1787 freeb(mp1); 1788 if (mp == NULL) 1789 return; 1790 if (mp->b_cont != NULL) { 1791 /* 1792 * Update all IRE's or NCE's that are waiting for 1793 * fastpath update. 1794 */ 1795 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1796 mp1 = mp->b_cont; 1797 freeb(mp); 1798 mp = mp1; 1799 } else { 1800 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1801 } 1802 1803 freeb(mp); 1804 } 1805 1806 /* 1807 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1808 * The data portion of the request is a dl_unitdata_req_t template for 1809 * what we would send downstream in the absence of a fastpath confirmation. 1810 */ 1811 int 1812 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1813 { 1814 struct iocblk *ioc; 1815 mblk_t *mp; 1816 1817 if (dlur_mp == NULL) 1818 return (EINVAL); 1819 1820 mutex_enter(&ill->ill_lock); 1821 switch (ill->ill_dlpi_fastpath_state) { 1822 case IDS_FAILED: 1823 /* 1824 * Driver NAKed the first fastpath ioctl - assume it doesn't 1825 * support it. 1826 */ 1827 mutex_exit(&ill->ill_lock); 1828 return (ENOTSUP); 1829 case IDS_UNKNOWN: 1830 /* This is the first probe */ 1831 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1832 break; 1833 default: 1834 break; 1835 } 1836 mutex_exit(&ill->ill_lock); 1837 1838 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1839 return (EAGAIN); 1840 1841 mp->b_cont = copyb(dlur_mp); 1842 if (mp->b_cont == NULL) { 1843 freeb(mp); 1844 return (EAGAIN); 1845 } 1846 1847 ioc = (struct iocblk *)mp->b_rptr; 1848 ioc->ioc_count = msgdsize(mp->b_cont); 1849 1850 putnext(ill->ill_wq, mp); 1851 return (0); 1852 } 1853 1854 void 1855 ill_capability_probe(ill_t *ill) 1856 { 1857 /* 1858 * Do so only if negotiation is enabled, capabilities are unknown, 1859 * and a capability negotiation is not already in progress. 1860 */ 1861 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1862 ill->ill_dlpi_capab_state != IDS_RENEG) 1863 return; 1864 1865 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1866 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1867 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1868 } 1869 1870 void 1871 ill_capability_reset(ill_t *ill) 1872 { 1873 mblk_t *sc_mp = NULL; 1874 mblk_t *tmp; 1875 1876 /* 1877 * Note here that we reset the state to UNKNOWN, and later send 1878 * down the DL_CAPABILITY_REQ without first setting the state to 1879 * INPROGRESS. We do this in order to distinguish the 1880 * DL_CAPABILITY_ACK response which may come back in response to 1881 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1882 * also handle the case where the driver doesn't send us back 1883 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1884 * requires the state to be in UNKNOWN anyway. In any case, all 1885 * features are turned off until the state reaches IDS_OK. 1886 */ 1887 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1888 1889 /* 1890 * Disable sub-capabilities and request a list of sub-capability 1891 * messages which will be sent down to the driver. Each handler 1892 * allocates the corresponding dl_capability_sub_t inside an 1893 * mblk, and links it to the existing sc_mp mblk, or return it 1894 * as sc_mp if it's the first sub-capability (the passed in 1895 * sc_mp is NULL). Upon returning from all capability handlers, 1896 * sc_mp will be pulled-up, before passing it downstream. 1897 */ 1898 ill_capability_mdt_reset(ill, &sc_mp); 1899 ill_capability_hcksum_reset(ill, &sc_mp); 1900 ill_capability_zerocopy_reset(ill, &sc_mp); 1901 ill_capability_ipsec_reset(ill, &sc_mp); 1902 ill_capability_dls_reset(ill, &sc_mp); 1903 ill_capability_lso_reset(ill, &sc_mp); 1904 1905 /* Nothing to send down in order to disable the capabilities? */ 1906 if (sc_mp == NULL) 1907 return; 1908 1909 tmp = msgpullup(sc_mp, -1); 1910 freemsg(sc_mp); 1911 if ((sc_mp = tmp) == NULL) { 1912 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1913 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1914 return; 1915 } 1916 1917 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1918 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1919 } 1920 1921 /* 1922 * Request or set new-style hardware capabilities supported by DLS provider. 1923 */ 1924 static void 1925 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1926 { 1927 mblk_t *mp; 1928 dl_capability_req_t *capb; 1929 size_t size = 0; 1930 uint8_t *ptr; 1931 1932 if (reqp != NULL) 1933 size = MBLKL(reqp); 1934 1935 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1936 if (mp == NULL) { 1937 freemsg(reqp); 1938 return; 1939 } 1940 ptr = mp->b_rptr; 1941 1942 capb = (dl_capability_req_t *)ptr; 1943 ptr += sizeof (dl_capability_req_t); 1944 1945 if (reqp != NULL) { 1946 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1947 capb->dl_sub_length = size; 1948 bcopy(reqp->b_rptr, ptr, size); 1949 ptr += size; 1950 mp->b_cont = reqp->b_cont; 1951 freeb(reqp); 1952 } 1953 ASSERT(ptr == mp->b_wptr); 1954 1955 ill_dlpi_send(ill, mp); 1956 } 1957 1958 static void 1959 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1960 { 1961 dl_capab_id_t *id_ic; 1962 uint_t sub_dl_cap = outers->dl_cap; 1963 dl_capability_sub_t *inners; 1964 uint8_t *capend; 1965 1966 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1967 1968 /* 1969 * Note: range checks here are not absolutely sufficient to 1970 * make us robust against malformed messages sent by drivers; 1971 * this is in keeping with the rest of IP's dlpi handling. 1972 * (Remember, it's coming from something else in the kernel 1973 * address space) 1974 */ 1975 1976 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1977 if (capend > mp->b_wptr) { 1978 cmn_err(CE_WARN, "ill_capability_id_ack: " 1979 "malformed sub-capability too long for mblk"); 1980 return; 1981 } 1982 1983 id_ic = (dl_capab_id_t *)(outers + 1); 1984 1985 if (outers->dl_length < sizeof (*id_ic) || 1986 (inners = &id_ic->id_subcap, 1987 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1988 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1989 "encapsulated capab type %d too long for mblk", 1990 inners->dl_cap); 1991 return; 1992 } 1993 1994 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1995 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1996 "isn't as expected; pass-thru module(s) detected, " 1997 "discarding capability\n", inners->dl_cap)); 1998 return; 1999 } 2000 2001 /* Process the encapsulated sub-capability */ 2002 ill_capability_dispatch(ill, mp, inners, B_TRUE); 2003 } 2004 2005 /* 2006 * Process Multidata Transmit capability negotiation ack received from a 2007 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 2008 * DL_CAPABILITY_ACK message. 2009 */ 2010 static void 2011 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2012 { 2013 mblk_t *nmp = NULL; 2014 dl_capability_req_t *oc; 2015 dl_capab_mdt_t *mdt_ic, *mdt_oc; 2016 ill_mdt_capab_t **ill_mdt_capab; 2017 uint_t sub_dl_cap = isub->dl_cap; 2018 uint8_t *capend; 2019 2020 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 2021 2022 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 2023 2024 /* 2025 * Note: range checks here are not absolutely sufficient to 2026 * make us robust against malformed messages sent by drivers; 2027 * this is in keeping with the rest of IP's dlpi handling. 2028 * (Remember, it's coming from something else in the kernel 2029 * address space) 2030 */ 2031 2032 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2033 if (capend > mp->b_wptr) { 2034 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2035 "malformed sub-capability too long for mblk"); 2036 return; 2037 } 2038 2039 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2040 2041 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2042 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2043 "unsupported MDT sub-capability (version %d, expected %d)", 2044 mdt_ic->mdt_version, MDT_VERSION_2); 2045 return; 2046 } 2047 2048 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2049 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2050 "capability isn't as expected; pass-thru module(s) " 2051 "detected, discarding capability\n")); 2052 return; 2053 } 2054 2055 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2056 2057 if (*ill_mdt_capab == NULL) { 2058 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2059 KM_NOSLEEP); 2060 2061 if (*ill_mdt_capab == NULL) { 2062 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2063 "could not enable MDT version %d " 2064 "for %s (ENOMEM)\n", MDT_VERSION_2, 2065 ill->ill_name); 2066 return; 2067 } 2068 } 2069 2070 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2071 "MDT version %d (%d bytes leading, %d bytes trailing " 2072 "header spaces, %d max pld bufs, %d span limit)\n", 2073 ill->ill_name, MDT_VERSION_2, 2074 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2075 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2076 2077 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2078 (*ill_mdt_capab)->ill_mdt_on = 1; 2079 /* 2080 * Round the following values to the nearest 32-bit; ULP 2081 * may further adjust them to accomodate for additional 2082 * protocol headers. We pass these values to ULP during 2083 * bind time. 2084 */ 2085 (*ill_mdt_capab)->ill_mdt_hdr_head = 2086 roundup(mdt_ic->mdt_hdr_head, 4); 2087 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2088 roundup(mdt_ic->mdt_hdr_tail, 4); 2089 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2090 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2091 2092 ill->ill_capabilities |= ILL_CAPAB_MDT; 2093 } else { 2094 uint_t size; 2095 uchar_t *rptr; 2096 2097 size = sizeof (dl_capability_req_t) + 2098 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2099 2100 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2101 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2102 "could not enable MDT for %s (ENOMEM)\n", 2103 ill->ill_name); 2104 return; 2105 } 2106 2107 rptr = nmp->b_rptr; 2108 /* initialize dl_capability_req_t */ 2109 oc = (dl_capability_req_t *)nmp->b_rptr; 2110 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2111 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2112 sizeof (dl_capab_mdt_t); 2113 nmp->b_rptr += sizeof (dl_capability_req_t); 2114 2115 /* initialize dl_capability_sub_t */ 2116 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2117 nmp->b_rptr += sizeof (*isub); 2118 2119 /* initialize dl_capab_mdt_t */ 2120 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2121 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2122 2123 nmp->b_rptr = rptr; 2124 2125 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2126 "to enable MDT version %d\n", ill->ill_name, 2127 MDT_VERSION_2)); 2128 2129 /* set ENABLE flag */ 2130 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2131 2132 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2133 ill_dlpi_send(ill, nmp); 2134 } 2135 } 2136 2137 static void 2138 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2139 { 2140 mblk_t *mp; 2141 dl_capab_mdt_t *mdt_subcap; 2142 dl_capability_sub_t *dl_subcap; 2143 int size; 2144 2145 if (!ILL_MDT_CAPABLE(ill)) 2146 return; 2147 2148 ASSERT(ill->ill_mdt_capab != NULL); 2149 /* 2150 * Clear the capability flag for MDT but retain the ill_mdt_capab 2151 * structure since it's possible that another thread is still 2152 * referring to it. The structure only gets deallocated when 2153 * we destroy the ill. 2154 */ 2155 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2156 2157 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2158 2159 mp = allocb(size, BPRI_HI); 2160 if (mp == NULL) { 2161 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2162 "request to disable MDT\n")); 2163 return; 2164 } 2165 2166 mp->b_wptr = mp->b_rptr + size; 2167 2168 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2169 dl_subcap->dl_cap = DL_CAPAB_MDT; 2170 dl_subcap->dl_length = sizeof (*mdt_subcap); 2171 2172 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2173 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2174 mdt_subcap->mdt_flags = 0; 2175 mdt_subcap->mdt_hdr_head = 0; 2176 mdt_subcap->mdt_hdr_tail = 0; 2177 2178 if (*sc_mp != NULL) 2179 linkb(*sc_mp, mp); 2180 else 2181 *sc_mp = mp; 2182 } 2183 2184 /* 2185 * Send a DL_NOTIFY_REQ to the specified ill to enable 2186 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2187 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2188 * acceleration. 2189 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2190 */ 2191 static boolean_t 2192 ill_enable_promisc_notify(ill_t *ill) 2193 { 2194 mblk_t *mp; 2195 dl_notify_req_t *req; 2196 2197 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2198 2199 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2200 if (mp == NULL) 2201 return (B_FALSE); 2202 2203 req = (dl_notify_req_t *)mp->b_rptr; 2204 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2205 DL_NOTE_PROMISC_OFF_PHYS; 2206 2207 ill_dlpi_send(ill, mp); 2208 2209 return (B_TRUE); 2210 } 2211 2212 2213 /* 2214 * Allocate an IPsec capability request which will be filled by our 2215 * caller to turn on support for one or more algorithms. 2216 */ 2217 static mblk_t * 2218 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2219 { 2220 mblk_t *nmp; 2221 dl_capability_req_t *ocap; 2222 dl_capab_ipsec_t *ocip; 2223 dl_capab_ipsec_t *icip; 2224 uint8_t *ptr; 2225 icip = (dl_capab_ipsec_t *)(isub + 1); 2226 2227 /* 2228 * The first time around, we send a DL_NOTIFY_REQ to enable 2229 * PROMISC_ON/OFF notification from the provider. We need to 2230 * do this before enabling the algorithms to avoid leakage of 2231 * cleartext packets. 2232 */ 2233 2234 if (!ill_enable_promisc_notify(ill)) 2235 return (NULL); 2236 2237 /* 2238 * Allocate new mblk which will contain a new capability 2239 * request to enable the capabilities. 2240 */ 2241 2242 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2243 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2244 if (nmp == NULL) 2245 return (NULL); 2246 2247 ptr = nmp->b_rptr; 2248 2249 /* initialize dl_capability_req_t */ 2250 ocap = (dl_capability_req_t *)ptr; 2251 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2252 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2253 ptr += sizeof (dl_capability_req_t); 2254 2255 /* initialize dl_capability_sub_t */ 2256 bcopy(isub, ptr, sizeof (*isub)); 2257 ptr += sizeof (*isub); 2258 2259 /* initialize dl_capab_ipsec_t */ 2260 ocip = (dl_capab_ipsec_t *)ptr; 2261 bcopy(icip, ocip, sizeof (*icip)); 2262 2263 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2264 return (nmp); 2265 } 2266 2267 /* 2268 * Process an IPsec capability negotiation ack received from a DLS Provider. 2269 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2270 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2271 */ 2272 static void 2273 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2274 { 2275 dl_capab_ipsec_t *icip; 2276 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2277 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2278 uint_t cipher, nciphers; 2279 mblk_t *nmp; 2280 uint_t alg_len; 2281 boolean_t need_sadb_dump; 2282 uint_t sub_dl_cap = isub->dl_cap; 2283 ill_ipsec_capab_t **ill_capab; 2284 uint64_t ill_capab_flag; 2285 uint8_t *capend, *ciphend; 2286 boolean_t sadb_resync; 2287 2288 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2289 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2290 2291 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2292 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2293 ill_capab_flag = ILL_CAPAB_AH; 2294 } else { 2295 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2296 ill_capab_flag = ILL_CAPAB_ESP; 2297 } 2298 2299 /* 2300 * If the ill capability structure exists, then this incoming 2301 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2302 * If this is so, then we'd need to resynchronize the SADB 2303 * after re-enabling the offloaded ciphers. 2304 */ 2305 sadb_resync = (*ill_capab != NULL); 2306 2307 /* 2308 * Note: range checks here are not absolutely sufficient to 2309 * make us robust against malformed messages sent by drivers; 2310 * this is in keeping with the rest of IP's dlpi handling. 2311 * (Remember, it's coming from something else in the kernel 2312 * address space) 2313 */ 2314 2315 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2316 if (capend > mp->b_wptr) { 2317 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2318 "malformed sub-capability too long for mblk"); 2319 return; 2320 } 2321 2322 /* 2323 * There are two types of acks we process here: 2324 * 1. acks in reply to a (first form) generic capability req 2325 * (no ENABLE flag set) 2326 * 2. acks in reply to a ENABLE capability req. 2327 * (ENABLE flag set) 2328 * 2329 * We process the subcapability passed as argument as follows: 2330 * 1 do initializations 2331 * 1.1 initialize nmp = NULL 2332 * 1.2 set need_sadb_dump to B_FALSE 2333 * 2 for each cipher in subcapability: 2334 * 2.1 if ENABLE flag is set: 2335 * 2.1.1 update per-ill ipsec capabilities info 2336 * 2.1.2 set need_sadb_dump to B_TRUE 2337 * 2.2 if ENABLE flag is not set: 2338 * 2.2.1 if nmp is NULL: 2339 * 2.2.1.1 allocate and initialize nmp 2340 * 2.2.1.2 init current pos in nmp 2341 * 2.2.2 copy current cipher to current pos in nmp 2342 * 2.2.3 set ENABLE flag in nmp 2343 * 2.2.4 update current pos 2344 * 3 if nmp is not equal to NULL, send enable request 2345 * 3.1 send capability request 2346 * 4 if need_sadb_dump is B_TRUE 2347 * 4.1 enable promiscuous on/off notifications 2348 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2349 * AH or ESP SA's to interface. 2350 */ 2351 2352 nmp = NULL; 2353 oalg = NULL; 2354 need_sadb_dump = B_FALSE; 2355 icip = (dl_capab_ipsec_t *)(isub + 1); 2356 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2357 2358 nciphers = icip->cip_nciphers; 2359 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2360 2361 if (ciphend > capend) { 2362 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2363 "too many ciphers for sub-capability len"); 2364 return; 2365 } 2366 2367 for (cipher = 0; cipher < nciphers; cipher++) { 2368 alg_len = sizeof (dl_capab_ipsec_alg_t); 2369 2370 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2371 /* 2372 * TBD: when we provide a way to disable capabilities 2373 * from above, need to manage the request-pending state 2374 * and fail if we were not expecting this ACK. 2375 */ 2376 IPSECHW_DEBUG(IPSECHW_CAPAB, 2377 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2378 2379 /* 2380 * Update IPsec capabilities for this ill 2381 */ 2382 2383 if (*ill_capab == NULL) { 2384 IPSECHW_DEBUG(IPSECHW_CAPAB, 2385 ("ill_capability_ipsec_ack: " 2386 "allocating ipsec_capab for ill\n")); 2387 *ill_capab = ill_ipsec_capab_alloc(); 2388 2389 if (*ill_capab == NULL) { 2390 cmn_err(CE_WARN, 2391 "ill_capability_ipsec_ack: " 2392 "could not enable IPsec Hardware " 2393 "acceleration for %s (ENOMEM)\n", 2394 ill->ill_name); 2395 return; 2396 } 2397 } 2398 2399 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2400 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2401 2402 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2403 cmn_err(CE_WARN, 2404 "ill_capability_ipsec_ack: " 2405 "malformed IPsec algorithm id %d", 2406 ialg->alg_prim); 2407 continue; 2408 } 2409 2410 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2411 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2412 ialg->alg_prim); 2413 } else { 2414 ipsec_capab_algparm_t *alp; 2415 2416 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2417 ialg->alg_prim); 2418 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2419 ialg->alg_prim)) { 2420 cmn_err(CE_WARN, 2421 "ill_capability_ipsec_ack: " 2422 "no space for IPsec alg id %d", 2423 ialg->alg_prim); 2424 continue; 2425 } 2426 alp = &((*ill_capab)->encr_algparm[ 2427 ialg->alg_prim]); 2428 alp->minkeylen = ialg->alg_minbits; 2429 alp->maxkeylen = ialg->alg_maxbits; 2430 } 2431 ill->ill_capabilities |= ill_capab_flag; 2432 /* 2433 * indicate that a capability was enabled, which 2434 * will be used below to kick off a SADB dump 2435 * to the ill. 2436 */ 2437 need_sadb_dump = B_TRUE; 2438 } else { 2439 IPSECHW_DEBUG(IPSECHW_CAPAB, 2440 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2441 ialg->alg_prim)); 2442 2443 if (nmp == NULL) { 2444 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2445 if (nmp == NULL) { 2446 /* 2447 * Sending the PROMISC_ON/OFF 2448 * notification request failed. 2449 * We cannot enable the algorithms 2450 * since the Provider will not 2451 * notify IP of promiscous mode 2452 * changes, which could lead 2453 * to leakage of packets. 2454 */ 2455 cmn_err(CE_WARN, 2456 "ill_capability_ipsec_ack: " 2457 "could not enable IPsec Hardware " 2458 "acceleration for %s (ENOMEM)\n", 2459 ill->ill_name); 2460 return; 2461 } 2462 /* ptr to current output alg specifier */ 2463 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2464 } 2465 2466 /* 2467 * Copy current alg specifier, set ENABLE 2468 * flag, and advance to next output alg. 2469 * For now we enable all IPsec capabilities. 2470 */ 2471 ASSERT(oalg != NULL); 2472 bcopy(ialg, oalg, alg_len); 2473 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2474 nmp->b_wptr += alg_len; 2475 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2476 } 2477 2478 /* move to next input algorithm specifier */ 2479 ialg = (dl_capab_ipsec_alg_t *) 2480 ((char *)ialg + alg_len); 2481 } 2482 2483 if (nmp != NULL) 2484 /* 2485 * nmp points to a DL_CAPABILITY_REQ message to enable 2486 * IPsec hardware acceleration. 2487 */ 2488 ill_dlpi_send(ill, nmp); 2489 2490 if (need_sadb_dump) 2491 /* 2492 * An acknowledgement corresponding to a request to 2493 * enable acceleration was received, notify SADB. 2494 */ 2495 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2496 } 2497 2498 /* 2499 * Given an mblk with enough space in it, create sub-capability entries for 2500 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2501 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2502 * in preparation for the reset the DL_CAPABILITY_REQ message. 2503 */ 2504 static void 2505 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2506 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2507 { 2508 dl_capab_ipsec_t *oipsec; 2509 dl_capab_ipsec_alg_t *oalg; 2510 dl_capability_sub_t *dl_subcap; 2511 int i, k; 2512 2513 ASSERT(nciphers > 0); 2514 ASSERT(ill_cap != NULL); 2515 ASSERT(mp != NULL); 2516 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2517 2518 /* dl_capability_sub_t for "stype" */ 2519 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2520 dl_subcap->dl_cap = stype; 2521 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2522 mp->b_wptr += sizeof (dl_capability_sub_t); 2523 2524 /* dl_capab_ipsec_t for "stype" */ 2525 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2526 oipsec->cip_version = 1; 2527 oipsec->cip_nciphers = nciphers; 2528 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2529 2530 /* create entries for "stype" AUTH ciphers */ 2531 for (i = 0; i < ill_cap->algs_size; i++) { 2532 for (k = 0; k < BITSPERBYTE; k++) { 2533 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2534 continue; 2535 2536 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2537 bzero((void *)oalg, sizeof (*oalg)); 2538 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2539 oalg->alg_prim = k + (BITSPERBYTE * i); 2540 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2541 } 2542 } 2543 /* create entries for "stype" ENCR ciphers */ 2544 for (i = 0; i < ill_cap->algs_size; i++) { 2545 for (k = 0; k < BITSPERBYTE; k++) { 2546 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2547 continue; 2548 2549 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2550 bzero((void *)oalg, sizeof (*oalg)); 2551 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2552 oalg->alg_prim = k + (BITSPERBYTE * i); 2553 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2554 } 2555 } 2556 } 2557 2558 /* 2559 * Macro to count number of 1s in a byte (8-bit word). The total count is 2560 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2561 * POPC instruction, but our macro is more flexible for an arbitrary length 2562 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2563 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2564 * stays that way, we can reduce the number of iterations required. 2565 */ 2566 #define COUNT_1S(val, sum) { \ 2567 uint8_t x = val & 0xff; \ 2568 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2569 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2570 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2571 } 2572 2573 /* ARGSUSED */ 2574 static void 2575 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2576 { 2577 mblk_t *mp; 2578 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2579 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2580 uint64_t ill_capabilities = ill->ill_capabilities; 2581 int ah_cnt = 0, esp_cnt = 0; 2582 int ah_len = 0, esp_len = 0; 2583 int i, size = 0; 2584 2585 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2586 return; 2587 2588 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2589 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2590 2591 /* Find out the number of ciphers for AH */ 2592 if (cap_ah != NULL) { 2593 for (i = 0; i < cap_ah->algs_size; i++) { 2594 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2595 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2596 } 2597 if (ah_cnt > 0) { 2598 size += sizeof (dl_capability_sub_t) + 2599 sizeof (dl_capab_ipsec_t); 2600 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2601 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2602 size += ah_len; 2603 } 2604 } 2605 2606 /* Find out the number of ciphers for ESP */ 2607 if (cap_esp != NULL) { 2608 for (i = 0; i < cap_esp->algs_size; i++) { 2609 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2610 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2611 } 2612 if (esp_cnt > 0) { 2613 size += sizeof (dl_capability_sub_t) + 2614 sizeof (dl_capab_ipsec_t); 2615 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2616 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2617 size += esp_len; 2618 } 2619 } 2620 2621 if (size == 0) { 2622 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2623 "there's nothing to reset\n")); 2624 return; 2625 } 2626 2627 mp = allocb(size, BPRI_HI); 2628 if (mp == NULL) { 2629 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2630 "request to disable IPSEC Hardware Acceleration\n")); 2631 return; 2632 } 2633 2634 /* 2635 * Clear the capability flags for IPSec HA but retain the ill 2636 * capability structures since it's possible that another thread 2637 * is still referring to them. The structures only get deallocated 2638 * when we destroy the ill. 2639 * 2640 * Various places check the flags to see if the ill is capable of 2641 * hardware acceleration, and by clearing them we ensure that new 2642 * outbound IPSec packets are sent down encrypted. 2643 */ 2644 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2645 2646 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2647 if (ah_cnt > 0) { 2648 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2649 cap_ah, mp); 2650 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2651 } 2652 2653 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2654 if (esp_cnt > 0) { 2655 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2656 cap_esp, mp); 2657 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2658 } 2659 2660 /* 2661 * At this point we've composed a bunch of sub-capabilities to be 2662 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2663 * by the caller. Upon receiving this reset message, the driver 2664 * must stop inbound decryption (by destroying all inbound SAs) 2665 * and let the corresponding packets come in encrypted. 2666 */ 2667 2668 if (*sc_mp != NULL) 2669 linkb(*sc_mp, mp); 2670 else 2671 *sc_mp = mp; 2672 } 2673 2674 static void 2675 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2676 boolean_t encapsulated) 2677 { 2678 boolean_t legacy = B_FALSE; 2679 2680 /* 2681 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2682 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2683 * instructed the driver to disable its advertised capabilities, 2684 * so there's no point in accepting any response at this moment. 2685 */ 2686 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2687 return; 2688 2689 /* 2690 * Note that only the following two sub-capabilities may be 2691 * considered as "legacy", since their original definitions 2692 * do not incorporate the dl_mid_t module ID token, and hence 2693 * may require the use of the wrapper sub-capability. 2694 */ 2695 switch (subp->dl_cap) { 2696 case DL_CAPAB_IPSEC_AH: 2697 case DL_CAPAB_IPSEC_ESP: 2698 legacy = B_TRUE; 2699 break; 2700 } 2701 2702 /* 2703 * For legacy sub-capabilities which don't incorporate a queue_t 2704 * pointer in their structures, discard them if we detect that 2705 * there are intermediate modules in between IP and the driver. 2706 */ 2707 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2708 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2709 "%d discarded; %d module(s) present below IP\n", 2710 subp->dl_cap, ill->ill_lmod_cnt)); 2711 return; 2712 } 2713 2714 switch (subp->dl_cap) { 2715 case DL_CAPAB_IPSEC_AH: 2716 case DL_CAPAB_IPSEC_ESP: 2717 ill_capability_ipsec_ack(ill, mp, subp); 2718 break; 2719 case DL_CAPAB_MDT: 2720 ill_capability_mdt_ack(ill, mp, subp); 2721 break; 2722 case DL_CAPAB_HCKSUM: 2723 ill_capability_hcksum_ack(ill, mp, subp); 2724 break; 2725 case DL_CAPAB_ZEROCOPY: 2726 ill_capability_zerocopy_ack(ill, mp, subp); 2727 break; 2728 case DL_CAPAB_POLL: 2729 if (!SOFT_RINGS_ENABLED()) 2730 ill_capability_dls_ack(ill, mp, subp); 2731 break; 2732 case DL_CAPAB_SOFT_RING: 2733 if (SOFT_RINGS_ENABLED()) 2734 ill_capability_dls_ack(ill, mp, subp); 2735 break; 2736 case DL_CAPAB_LSO: 2737 ill_capability_lso_ack(ill, mp, subp); 2738 break; 2739 default: 2740 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2741 subp->dl_cap)); 2742 } 2743 } 2744 2745 /* 2746 * As part of negotiating polling capability, the driver tells us 2747 * the default (or normal) blanking interval and packet threshold 2748 * (the receive timer fires if blanking interval is reached or 2749 * the packet threshold is reached). 2750 * 2751 * As part of manipulating the polling interval, we always use our 2752 * estimated interval (avg service time * number of packets queued 2753 * on the squeue) but we try to blank for a minimum of 2754 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2755 * packet threshold during this time. When we are not in polling mode 2756 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2757 * rr_min_blank_ratio but up the packet cnt by a ratio of 2758 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2759 * possible although for a shorter interval. 2760 */ 2761 #define RR_MAX_BLANK_RATIO 20 2762 #define RR_MIN_BLANK_RATIO 10 2763 #define RR_MAX_PKT_CNT_RATIO 3 2764 #define RR_MIN_PKT_CNT_RATIO 3 2765 2766 /* 2767 * These can be tuned via /etc/system. 2768 */ 2769 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2770 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2771 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2772 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2773 2774 static mac_resource_handle_t 2775 ill_ring_add(void *arg, mac_resource_t *mrp) 2776 { 2777 ill_t *ill = (ill_t *)arg; 2778 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2779 ill_rx_ring_t *rx_ring; 2780 int ip_rx_index; 2781 2782 ASSERT(mrp != NULL); 2783 if (mrp->mr_type != MAC_RX_FIFO) { 2784 return (NULL); 2785 } 2786 ASSERT(ill != NULL); 2787 ASSERT(ill->ill_dls_capab != NULL); 2788 2789 mutex_enter(&ill->ill_lock); 2790 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2791 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2792 ASSERT(rx_ring != NULL); 2793 2794 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2795 time_t normal_blank_time = 2796 mrfp->mrf_normal_blank_time; 2797 uint_t normal_pkt_cnt = 2798 mrfp->mrf_normal_pkt_count; 2799 2800 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2801 2802 rx_ring->rr_blank = mrfp->mrf_blank; 2803 rx_ring->rr_handle = mrfp->mrf_arg; 2804 rx_ring->rr_ill = ill; 2805 rx_ring->rr_normal_blank_time = normal_blank_time; 2806 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2807 2808 rx_ring->rr_max_blank_time = 2809 normal_blank_time * rr_max_blank_ratio; 2810 rx_ring->rr_min_blank_time = 2811 normal_blank_time * rr_min_blank_ratio; 2812 rx_ring->rr_max_pkt_cnt = 2813 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2814 rx_ring->rr_min_pkt_cnt = 2815 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2816 2817 rx_ring->rr_ring_state = ILL_RING_INUSE; 2818 mutex_exit(&ill->ill_lock); 2819 2820 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2821 (int), ip_rx_index); 2822 return ((mac_resource_handle_t)rx_ring); 2823 } 2824 } 2825 2826 /* 2827 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2828 * we have devices which can overwhelm this limit, ILL_MAX_RING 2829 * should be made configurable. Meanwhile it cause no panic because 2830 * driver will pass ip_input a NULL handle which will make 2831 * IP allocate the default squeue and Polling mode will not 2832 * be used for this ring. 2833 */ 2834 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2835 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2836 2837 mutex_exit(&ill->ill_lock); 2838 return (NULL); 2839 } 2840 2841 static boolean_t 2842 ill_capability_dls_init(ill_t *ill) 2843 { 2844 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2845 conn_t *connp; 2846 size_t sz; 2847 2848 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2849 if (ill_dls == NULL) { 2850 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2851 "soft_ring enabled for ill=%s (%p) but data " 2852 "structs uninitialized\n", ill->ill_name, 2853 (void *)ill); 2854 } 2855 return (B_TRUE); 2856 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2857 if (ill_dls == NULL) { 2858 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2859 "polling enabled for ill=%s (%p) but data " 2860 "structs uninitialized\n", ill->ill_name, 2861 (void *)ill); 2862 } 2863 return (B_TRUE); 2864 } 2865 2866 if (ill_dls != NULL) { 2867 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2868 /* Soft_Ring or polling is being re-enabled */ 2869 2870 connp = ill_dls->ill_unbind_conn; 2871 ASSERT(rx_ring != NULL); 2872 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2873 bzero((void *)rx_ring, 2874 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2875 ill_dls->ill_ring_tbl = rx_ring; 2876 ill_dls->ill_unbind_conn = connp; 2877 return (B_TRUE); 2878 } 2879 2880 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2881 return (B_FALSE); 2882 2883 sz = sizeof (ill_dls_capab_t); 2884 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2885 2886 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2887 if (ill_dls == NULL) { 2888 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2889 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2890 (void *)ill); 2891 CONN_DEC_REF(connp); 2892 return (B_FALSE); 2893 } 2894 2895 /* Allocate space to hold ring table */ 2896 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2897 ill->ill_dls_capab = ill_dls; 2898 ill_dls->ill_unbind_conn = connp; 2899 return (B_TRUE); 2900 } 2901 2902 /* 2903 * ill_capability_dls_disable: disable soft_ring and/or polling 2904 * capability. Since any of the rings might already be in use, need 2905 * to call ipsq_clean_all() which gets behind the squeue to disable 2906 * direct calls if necessary. 2907 */ 2908 static void 2909 ill_capability_dls_disable(ill_t *ill) 2910 { 2911 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2912 2913 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2914 ipsq_clean_all(ill); 2915 ill_dls->ill_tx = NULL; 2916 ill_dls->ill_tx_handle = NULL; 2917 ill_dls->ill_dls_change_status = NULL; 2918 ill_dls->ill_dls_bind = NULL; 2919 ill_dls->ill_dls_unbind = NULL; 2920 } 2921 2922 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2923 } 2924 2925 static void 2926 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2927 dl_capability_sub_t *isub) 2928 { 2929 uint_t size; 2930 uchar_t *rptr; 2931 dl_capab_dls_t dls, *odls; 2932 ill_dls_capab_t *ill_dls; 2933 mblk_t *nmp = NULL; 2934 dl_capability_req_t *ocap; 2935 uint_t sub_dl_cap = isub->dl_cap; 2936 2937 if (!ill_capability_dls_init(ill)) 2938 return; 2939 ill_dls = ill->ill_dls_capab; 2940 2941 /* Copy locally to get the members aligned */ 2942 bcopy((void *)idls, (void *)&dls, 2943 sizeof (dl_capab_dls_t)); 2944 2945 /* Get the tx function and handle from dld */ 2946 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2947 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2948 2949 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2950 ill_dls->ill_dls_change_status = 2951 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2952 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2953 ill_dls->ill_dls_unbind = 2954 (ip_dls_unbind_t)dls.dls_ring_unbind; 2955 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2956 } 2957 2958 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2959 isub->dl_length; 2960 2961 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2962 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2963 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2964 ill->ill_name, (void *)ill); 2965 return; 2966 } 2967 2968 /* initialize dl_capability_req_t */ 2969 rptr = nmp->b_rptr; 2970 ocap = (dl_capability_req_t *)rptr; 2971 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2972 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2973 rptr += sizeof (dl_capability_req_t); 2974 2975 /* initialize dl_capability_sub_t */ 2976 bcopy(isub, rptr, sizeof (*isub)); 2977 rptr += sizeof (*isub); 2978 2979 odls = (dl_capab_dls_t *)rptr; 2980 rptr += sizeof (dl_capab_dls_t); 2981 2982 /* initialize dl_capab_dls_t to be sent down */ 2983 dls.dls_rx_handle = (uintptr_t)ill; 2984 dls.dls_rx = (uintptr_t)ip_input; 2985 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2986 2987 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2988 dls.dls_ring_cnt = ip_soft_rings_cnt; 2989 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2990 dls.dls_flags = SOFT_RING_ENABLE; 2991 } else { 2992 dls.dls_flags = POLL_ENABLE; 2993 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2994 "to enable polling\n", ill->ill_name)); 2995 } 2996 bcopy((void *)&dls, (void *)odls, 2997 sizeof (dl_capab_dls_t)); 2998 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2999 /* 3000 * nmp points to a DL_CAPABILITY_REQ message to 3001 * enable either soft_ring or polling 3002 */ 3003 ill_dlpi_send(ill, nmp); 3004 } 3005 3006 static void 3007 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 3008 { 3009 mblk_t *mp; 3010 dl_capab_dls_t *idls; 3011 dl_capability_sub_t *dl_subcap; 3012 int size; 3013 3014 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 3015 return; 3016 3017 ASSERT(ill->ill_dls_capab != NULL); 3018 3019 size = sizeof (*dl_subcap) + sizeof (*idls); 3020 3021 mp = allocb(size, BPRI_HI); 3022 if (mp == NULL) { 3023 ip1dbg(("ill_capability_dls_reset: unable to allocate " 3024 "request to disable soft_ring\n")); 3025 return; 3026 } 3027 3028 mp->b_wptr = mp->b_rptr + size; 3029 3030 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3031 dl_subcap->dl_length = sizeof (*idls); 3032 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3033 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3034 else 3035 dl_subcap->dl_cap = DL_CAPAB_POLL; 3036 3037 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3038 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3039 idls->dls_flags = SOFT_RING_DISABLE; 3040 else 3041 idls->dls_flags = POLL_DISABLE; 3042 3043 if (*sc_mp != NULL) 3044 linkb(*sc_mp, mp); 3045 else 3046 *sc_mp = mp; 3047 } 3048 3049 /* 3050 * Process a soft_ring/poll capability negotiation ack received 3051 * from a DLS Provider.isub must point to the sub-capability 3052 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3053 */ 3054 static void 3055 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3056 { 3057 dl_capab_dls_t *idls; 3058 uint_t sub_dl_cap = isub->dl_cap; 3059 uint8_t *capend; 3060 3061 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3062 sub_dl_cap == DL_CAPAB_POLL); 3063 3064 if (ill->ill_isv6) 3065 return; 3066 3067 /* 3068 * Note: range checks here are not absolutely sufficient to 3069 * make us robust against malformed messages sent by drivers; 3070 * this is in keeping with the rest of IP's dlpi handling. 3071 * (Remember, it's coming from something else in the kernel 3072 * address space) 3073 */ 3074 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3075 if (capend > mp->b_wptr) { 3076 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3077 "malformed sub-capability too long for mblk"); 3078 return; 3079 } 3080 3081 /* 3082 * There are two types of acks we process here: 3083 * 1. acks in reply to a (first form) generic capability req 3084 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3085 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3086 * capability req. 3087 */ 3088 idls = (dl_capab_dls_t *)(isub + 1); 3089 3090 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3091 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3092 "capability isn't as expected; pass-thru " 3093 "module(s) detected, discarding capability\n")); 3094 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3095 /* 3096 * This is a capability renegotitation case. 3097 * The interface better be unusable at this 3098 * point other wise bad things will happen 3099 * if we disable direct calls on a running 3100 * and up interface. 3101 */ 3102 ill_capability_dls_disable(ill); 3103 } 3104 return; 3105 } 3106 3107 switch (idls->dls_flags) { 3108 default: 3109 /* Disable if unknown flag */ 3110 case SOFT_RING_DISABLE: 3111 case POLL_DISABLE: 3112 ill_capability_dls_disable(ill); 3113 break; 3114 case SOFT_RING_CAPABLE: 3115 case POLL_CAPABLE: 3116 /* 3117 * If the capability was already enabled, its safe 3118 * to disable it first to get rid of stale information 3119 * and then start enabling it again. 3120 */ 3121 ill_capability_dls_disable(ill); 3122 ill_capability_dls_capable(ill, idls, isub); 3123 break; 3124 case SOFT_RING_ENABLE: 3125 case POLL_ENABLE: 3126 mutex_enter(&ill->ill_lock); 3127 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3128 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3129 ASSERT(ill->ill_dls_capab != NULL); 3130 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3131 } 3132 if (sub_dl_cap == DL_CAPAB_POLL && 3133 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3134 ASSERT(ill->ill_dls_capab != NULL); 3135 ill->ill_capabilities |= ILL_CAPAB_POLL; 3136 ip1dbg(("ill_capability_dls_ack: interface %s " 3137 "has enabled polling\n", ill->ill_name)); 3138 } 3139 mutex_exit(&ill->ill_lock); 3140 break; 3141 } 3142 } 3143 3144 /* 3145 * Process a hardware checksum offload capability negotiation ack received 3146 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3147 * of a DL_CAPABILITY_ACK message. 3148 */ 3149 static void 3150 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3151 { 3152 dl_capability_req_t *ocap; 3153 dl_capab_hcksum_t *ihck, *ohck; 3154 ill_hcksum_capab_t **ill_hcksum; 3155 mblk_t *nmp = NULL; 3156 uint_t sub_dl_cap = isub->dl_cap; 3157 uint8_t *capend; 3158 3159 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3160 3161 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3162 3163 /* 3164 * Note: range checks here are not absolutely sufficient to 3165 * make us robust against malformed messages sent by drivers; 3166 * this is in keeping with the rest of IP's dlpi handling. 3167 * (Remember, it's coming from something else in the kernel 3168 * address space) 3169 */ 3170 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3171 if (capend > mp->b_wptr) { 3172 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3173 "malformed sub-capability too long for mblk"); 3174 return; 3175 } 3176 3177 /* 3178 * There are two types of acks we process here: 3179 * 1. acks in reply to a (first form) generic capability req 3180 * (no ENABLE flag set) 3181 * 2. acks in reply to a ENABLE capability req. 3182 * (ENABLE flag set) 3183 */ 3184 ihck = (dl_capab_hcksum_t *)(isub + 1); 3185 3186 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3187 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3188 "unsupported hardware checksum " 3189 "sub-capability (version %d, expected %d)", 3190 ihck->hcksum_version, HCKSUM_VERSION_1); 3191 return; 3192 } 3193 3194 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3195 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3196 "checksum capability isn't as expected; pass-thru " 3197 "module(s) detected, discarding capability\n")); 3198 return; 3199 } 3200 3201 #define CURR_HCKSUM_CAPAB \ 3202 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3203 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3204 3205 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3206 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3207 /* do ENABLE processing */ 3208 if (*ill_hcksum == NULL) { 3209 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3210 KM_NOSLEEP); 3211 3212 if (*ill_hcksum == NULL) { 3213 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3214 "could not enable hcksum version %d " 3215 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3216 ill->ill_name); 3217 return; 3218 } 3219 } 3220 3221 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3222 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3223 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3224 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3225 "has enabled hardware checksumming\n ", 3226 ill->ill_name)); 3227 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3228 /* 3229 * Enabling hardware checksum offload 3230 * Currently IP supports {TCP,UDP}/IPv4 3231 * partial and full cksum offload and 3232 * IPv4 header checksum offload. 3233 * Allocate new mblk which will 3234 * contain a new capability request 3235 * to enable hardware checksum offload. 3236 */ 3237 uint_t size; 3238 uchar_t *rptr; 3239 3240 size = sizeof (dl_capability_req_t) + 3241 sizeof (dl_capability_sub_t) + isub->dl_length; 3242 3243 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3244 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3245 "could not enable hardware cksum for %s (ENOMEM)\n", 3246 ill->ill_name); 3247 return; 3248 } 3249 3250 rptr = nmp->b_rptr; 3251 /* initialize dl_capability_req_t */ 3252 ocap = (dl_capability_req_t *)nmp->b_rptr; 3253 ocap->dl_sub_offset = 3254 sizeof (dl_capability_req_t); 3255 ocap->dl_sub_length = 3256 sizeof (dl_capability_sub_t) + 3257 isub->dl_length; 3258 nmp->b_rptr += sizeof (dl_capability_req_t); 3259 3260 /* initialize dl_capability_sub_t */ 3261 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3262 nmp->b_rptr += sizeof (*isub); 3263 3264 /* initialize dl_capab_hcksum_t */ 3265 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3266 bcopy(ihck, ohck, sizeof (*ihck)); 3267 3268 nmp->b_rptr = rptr; 3269 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3270 3271 /* Set ENABLE flag */ 3272 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3273 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3274 3275 /* 3276 * nmp points to a DL_CAPABILITY_REQ message to enable 3277 * hardware checksum acceleration. 3278 */ 3279 ill_dlpi_send(ill, nmp); 3280 } else { 3281 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3282 "advertised %x hardware checksum capability flags\n", 3283 ill->ill_name, ihck->hcksum_txflags)); 3284 } 3285 } 3286 3287 static void 3288 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3289 { 3290 mblk_t *mp; 3291 dl_capab_hcksum_t *hck_subcap; 3292 dl_capability_sub_t *dl_subcap; 3293 int size; 3294 3295 if (!ILL_HCKSUM_CAPABLE(ill)) 3296 return; 3297 3298 ASSERT(ill->ill_hcksum_capab != NULL); 3299 /* 3300 * Clear the capability flag for hardware checksum offload but 3301 * retain the ill_hcksum_capab structure since it's possible that 3302 * another thread is still referring to it. The structure only 3303 * gets deallocated when we destroy the ill. 3304 */ 3305 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3306 3307 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3308 3309 mp = allocb(size, BPRI_HI); 3310 if (mp == NULL) { 3311 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3312 "request to disable hardware checksum offload\n")); 3313 return; 3314 } 3315 3316 mp->b_wptr = mp->b_rptr + size; 3317 3318 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3319 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3320 dl_subcap->dl_length = sizeof (*hck_subcap); 3321 3322 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3323 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3324 hck_subcap->hcksum_txflags = 0; 3325 3326 if (*sc_mp != NULL) 3327 linkb(*sc_mp, mp); 3328 else 3329 *sc_mp = mp; 3330 } 3331 3332 static void 3333 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3334 { 3335 mblk_t *nmp = NULL; 3336 dl_capability_req_t *oc; 3337 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3338 ill_zerocopy_capab_t **ill_zerocopy_capab; 3339 uint_t sub_dl_cap = isub->dl_cap; 3340 uint8_t *capend; 3341 3342 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3343 3344 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3345 3346 /* 3347 * Note: range checks here are not absolutely sufficient to 3348 * make us robust against malformed messages sent by drivers; 3349 * this is in keeping with the rest of IP's dlpi handling. 3350 * (Remember, it's coming from something else in the kernel 3351 * address space) 3352 */ 3353 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3354 if (capend > mp->b_wptr) { 3355 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3356 "malformed sub-capability too long for mblk"); 3357 return; 3358 } 3359 3360 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3361 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3362 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3363 "unsupported ZEROCOPY sub-capability (version %d, " 3364 "expected %d)", zc_ic->zerocopy_version, 3365 ZEROCOPY_VERSION_1); 3366 return; 3367 } 3368 3369 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3370 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3371 "capability isn't as expected; pass-thru module(s) " 3372 "detected, discarding capability\n")); 3373 return; 3374 } 3375 3376 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3377 if (*ill_zerocopy_capab == NULL) { 3378 *ill_zerocopy_capab = 3379 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3380 KM_NOSLEEP); 3381 3382 if (*ill_zerocopy_capab == NULL) { 3383 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3384 "could not enable Zero-copy version %d " 3385 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3386 ill->ill_name); 3387 return; 3388 } 3389 } 3390 3391 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3392 "supports Zero-copy version %d\n", ill->ill_name, 3393 ZEROCOPY_VERSION_1)); 3394 3395 (*ill_zerocopy_capab)->ill_zerocopy_version = 3396 zc_ic->zerocopy_version; 3397 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3398 zc_ic->zerocopy_flags; 3399 3400 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3401 } else { 3402 uint_t size; 3403 uchar_t *rptr; 3404 3405 size = sizeof (dl_capability_req_t) + 3406 sizeof (dl_capability_sub_t) + 3407 sizeof (dl_capab_zerocopy_t); 3408 3409 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3410 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3411 "could not enable zerocopy for %s (ENOMEM)\n", 3412 ill->ill_name); 3413 return; 3414 } 3415 3416 rptr = nmp->b_rptr; 3417 /* initialize dl_capability_req_t */ 3418 oc = (dl_capability_req_t *)rptr; 3419 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3420 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3421 sizeof (dl_capab_zerocopy_t); 3422 rptr += sizeof (dl_capability_req_t); 3423 3424 /* initialize dl_capability_sub_t */ 3425 bcopy(isub, rptr, sizeof (*isub)); 3426 rptr += sizeof (*isub); 3427 3428 /* initialize dl_capab_zerocopy_t */ 3429 zc_oc = (dl_capab_zerocopy_t *)rptr; 3430 *zc_oc = *zc_ic; 3431 3432 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3433 "to enable zero-copy version %d\n", ill->ill_name, 3434 ZEROCOPY_VERSION_1)); 3435 3436 /* set VMSAFE_MEM flag */ 3437 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3438 3439 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3440 ill_dlpi_send(ill, nmp); 3441 } 3442 } 3443 3444 static void 3445 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3446 { 3447 mblk_t *mp; 3448 dl_capab_zerocopy_t *zerocopy_subcap; 3449 dl_capability_sub_t *dl_subcap; 3450 int size; 3451 3452 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3453 return; 3454 3455 ASSERT(ill->ill_zerocopy_capab != NULL); 3456 /* 3457 * Clear the capability flag for Zero-copy but retain the 3458 * ill_zerocopy_capab structure since it's possible that another 3459 * thread is still referring to it. The structure only gets 3460 * deallocated when we destroy the ill. 3461 */ 3462 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3463 3464 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3465 3466 mp = allocb(size, BPRI_HI); 3467 if (mp == NULL) { 3468 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3469 "request to disable Zero-copy\n")); 3470 return; 3471 } 3472 3473 mp->b_wptr = mp->b_rptr + size; 3474 3475 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3476 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3477 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3478 3479 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3480 zerocopy_subcap->zerocopy_version = 3481 ill->ill_zerocopy_capab->ill_zerocopy_version; 3482 zerocopy_subcap->zerocopy_flags = 0; 3483 3484 if (*sc_mp != NULL) 3485 linkb(*sc_mp, mp); 3486 else 3487 *sc_mp = mp; 3488 } 3489 3490 /* 3491 * Process Large Segment Offload capability negotiation ack received from a 3492 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3493 * DL_CAPABILITY_ACK message. 3494 */ 3495 static void 3496 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3497 { 3498 mblk_t *nmp = NULL; 3499 dl_capability_req_t *oc; 3500 dl_capab_lso_t *lso_ic, *lso_oc; 3501 ill_lso_capab_t **ill_lso_capab; 3502 uint_t sub_dl_cap = isub->dl_cap; 3503 uint8_t *capend; 3504 3505 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3506 3507 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3508 3509 /* 3510 * Note: range checks here are not absolutely sufficient to 3511 * make us robust against malformed messages sent by drivers; 3512 * this is in keeping with the rest of IP's dlpi handling. 3513 * (Remember, it's coming from something else in the kernel 3514 * address space) 3515 */ 3516 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3517 if (capend > mp->b_wptr) { 3518 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3519 "malformed sub-capability too long for mblk"); 3520 return; 3521 } 3522 3523 lso_ic = (dl_capab_lso_t *)(isub + 1); 3524 3525 if (lso_ic->lso_version != LSO_VERSION_1) { 3526 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3527 "unsupported LSO sub-capability (version %d, expected %d)", 3528 lso_ic->lso_version, LSO_VERSION_1); 3529 return; 3530 } 3531 3532 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3533 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3534 "capability isn't as expected; pass-thru module(s) " 3535 "detected, discarding capability\n")); 3536 return; 3537 } 3538 3539 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3540 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3541 if (*ill_lso_capab == NULL) { 3542 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3543 KM_NOSLEEP); 3544 3545 if (*ill_lso_capab == NULL) { 3546 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3547 "could not enable LSO version %d " 3548 "for %s (ENOMEM)\n", LSO_VERSION_1, 3549 ill->ill_name); 3550 return; 3551 } 3552 } 3553 3554 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3555 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3556 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3557 ill->ill_capabilities |= ILL_CAPAB_LSO; 3558 3559 ip1dbg(("ill_capability_lso_ack: interface %s " 3560 "has enabled LSO\n ", ill->ill_name)); 3561 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3562 uint_t size; 3563 uchar_t *rptr; 3564 3565 size = sizeof (dl_capability_req_t) + 3566 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3567 3568 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3569 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3570 "could not enable LSO for %s (ENOMEM)\n", 3571 ill->ill_name); 3572 return; 3573 } 3574 3575 rptr = nmp->b_rptr; 3576 /* initialize dl_capability_req_t */ 3577 oc = (dl_capability_req_t *)nmp->b_rptr; 3578 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3579 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3580 sizeof (dl_capab_lso_t); 3581 nmp->b_rptr += sizeof (dl_capability_req_t); 3582 3583 /* initialize dl_capability_sub_t */ 3584 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3585 nmp->b_rptr += sizeof (*isub); 3586 3587 /* initialize dl_capab_lso_t */ 3588 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3589 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3590 3591 nmp->b_rptr = rptr; 3592 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3593 3594 /* set ENABLE flag */ 3595 lso_oc->lso_flags |= LSO_TX_ENABLE; 3596 3597 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3598 ill_dlpi_send(ill, nmp); 3599 } else { 3600 ip1dbg(("ill_capability_lso_ack: interface %s has " 3601 "advertised %x LSO capability flags\n", 3602 ill->ill_name, lso_ic->lso_flags)); 3603 } 3604 } 3605 3606 3607 static void 3608 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3609 { 3610 mblk_t *mp; 3611 dl_capab_lso_t *lso_subcap; 3612 dl_capability_sub_t *dl_subcap; 3613 int size; 3614 3615 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3616 return; 3617 3618 ASSERT(ill->ill_lso_capab != NULL); 3619 /* 3620 * Clear the capability flag for LSO but retain the 3621 * ill_lso_capab structure since it's possible that another 3622 * thread is still referring to it. The structure only gets 3623 * deallocated when we destroy the ill. 3624 */ 3625 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3626 3627 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3628 3629 mp = allocb(size, BPRI_HI); 3630 if (mp == NULL) { 3631 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3632 "request to disable LSO\n")); 3633 return; 3634 } 3635 3636 mp->b_wptr = mp->b_rptr + size; 3637 3638 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3639 dl_subcap->dl_cap = DL_CAPAB_LSO; 3640 dl_subcap->dl_length = sizeof (*lso_subcap); 3641 3642 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3643 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3644 lso_subcap->lso_flags = 0; 3645 3646 if (*sc_mp != NULL) 3647 linkb(*sc_mp, mp); 3648 else 3649 *sc_mp = mp; 3650 } 3651 3652 /* 3653 * Consume a new-style hardware capabilities negotiation ack. 3654 * Called from ip_rput_dlpi_writer(). 3655 */ 3656 void 3657 ill_capability_ack(ill_t *ill, mblk_t *mp) 3658 { 3659 dl_capability_ack_t *capp; 3660 dl_capability_sub_t *subp, *endp; 3661 3662 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3663 ill->ill_dlpi_capab_state = IDS_OK; 3664 3665 capp = (dl_capability_ack_t *)mp->b_rptr; 3666 3667 if (capp->dl_sub_length == 0) 3668 /* no new-style capabilities */ 3669 return; 3670 3671 /* make sure the driver supplied correct dl_sub_length */ 3672 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3673 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3674 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3675 return; 3676 } 3677 3678 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3679 /* 3680 * There are sub-capabilities. Process the ones we know about. 3681 * Loop until we don't have room for another sub-cap header.. 3682 */ 3683 for (subp = SC(capp, capp->dl_sub_offset), 3684 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3685 subp <= endp; 3686 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3687 3688 switch (subp->dl_cap) { 3689 case DL_CAPAB_ID_WRAPPER: 3690 ill_capability_id_ack(ill, mp, subp); 3691 break; 3692 default: 3693 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3694 break; 3695 } 3696 } 3697 #undef SC 3698 } 3699 3700 /* 3701 * This routine is called to scan the fragmentation reassembly table for 3702 * the specified ILL for any packets that are starting to smell. 3703 * dead_interval is the maximum time in seconds that will be tolerated. It 3704 * will either be the value specified in ip_g_frag_timeout, or zero if the 3705 * ILL is shutting down and it is time to blow everything off. 3706 * 3707 * It returns the number of seconds (as a time_t) that the next frag timer 3708 * should be scheduled for, 0 meaning that the timer doesn't need to be 3709 * re-started. Note that the method of calculating next_timeout isn't 3710 * entirely accurate since time will flow between the time we grab 3711 * current_time and the time we schedule the next timeout. This isn't a 3712 * big problem since this is the timer for sending an ICMP reassembly time 3713 * exceeded messages, and it doesn't have to be exactly accurate. 3714 * 3715 * This function is 3716 * sometimes called as writer, although this is not required. 3717 */ 3718 time_t 3719 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3720 { 3721 ipfb_t *ipfb; 3722 ipfb_t *endp; 3723 ipf_t *ipf; 3724 ipf_t *ipfnext; 3725 mblk_t *mp; 3726 time_t current_time = gethrestime_sec(); 3727 time_t next_timeout = 0; 3728 uint32_t hdr_length; 3729 mblk_t *send_icmp_head; 3730 mblk_t *send_icmp_head_v6; 3731 zoneid_t zoneid; 3732 3733 ipfb = ill->ill_frag_hash_tbl; 3734 if (ipfb == NULL) 3735 return (B_FALSE); 3736 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3737 /* Walk the frag hash table. */ 3738 for (; ipfb < endp; ipfb++) { 3739 send_icmp_head = NULL; 3740 send_icmp_head_v6 = NULL; 3741 mutex_enter(&ipfb->ipfb_lock); 3742 while ((ipf = ipfb->ipfb_ipf) != 0) { 3743 time_t frag_time = current_time - ipf->ipf_timestamp; 3744 time_t frag_timeout; 3745 3746 if (frag_time < dead_interval) { 3747 /* 3748 * There are some outstanding fragments 3749 * that will timeout later. Make note of 3750 * the time so that we can reschedule the 3751 * next timeout appropriately. 3752 */ 3753 frag_timeout = dead_interval - frag_time; 3754 if (next_timeout == 0 || 3755 frag_timeout < next_timeout) { 3756 next_timeout = frag_timeout; 3757 } 3758 break; 3759 } 3760 /* Time's up. Get it out of here. */ 3761 hdr_length = ipf->ipf_nf_hdr_len; 3762 ipfnext = ipf->ipf_hash_next; 3763 if (ipfnext) 3764 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3765 *ipf->ipf_ptphn = ipfnext; 3766 mp = ipf->ipf_mp->b_cont; 3767 for (; mp; mp = mp->b_cont) { 3768 /* Extra points for neatness. */ 3769 IP_REASS_SET_START(mp, 0); 3770 IP_REASS_SET_END(mp, 0); 3771 } 3772 mp = ipf->ipf_mp->b_cont; 3773 ill->ill_frag_count -= ipf->ipf_count; 3774 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3775 ipfb->ipfb_count -= ipf->ipf_count; 3776 ASSERT(ipfb->ipfb_frag_pkts > 0); 3777 ipfb->ipfb_frag_pkts--; 3778 /* 3779 * We do not send any icmp message from here because 3780 * we currently are holding the ipfb_lock for this 3781 * hash chain. If we try and send any icmp messages 3782 * from here we may end up via a put back into ip 3783 * trying to get the same lock, causing a recursive 3784 * mutex panic. Instead we build a list and send all 3785 * the icmp messages after we have dropped the lock. 3786 */ 3787 if (ill->ill_isv6) { 3788 if (hdr_length != 0) { 3789 mp->b_next = send_icmp_head_v6; 3790 send_icmp_head_v6 = mp; 3791 } else { 3792 freemsg(mp); 3793 } 3794 } else { 3795 if (hdr_length != 0) { 3796 mp->b_next = send_icmp_head; 3797 send_icmp_head = mp; 3798 } else { 3799 freemsg(mp); 3800 } 3801 } 3802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3803 freeb(ipf->ipf_mp); 3804 } 3805 mutex_exit(&ipfb->ipfb_lock); 3806 /* 3807 * Now need to send any icmp messages that we delayed from 3808 * above. 3809 */ 3810 while (send_icmp_head_v6 != NULL) { 3811 ip6_t *ip6h; 3812 3813 mp = send_icmp_head_v6; 3814 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3815 mp->b_next = NULL; 3816 if (mp->b_datap->db_type == M_CTL) 3817 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3818 else 3819 ip6h = (ip6_t *)mp->b_rptr; 3820 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3821 ill); 3822 if (zoneid == ALL_ZONES) { 3823 freemsg(mp); 3824 } else { 3825 icmp_time_exceeded_v6(ill->ill_wq, mp, 3826 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3827 B_FALSE, zoneid); 3828 } 3829 } 3830 while (send_icmp_head != NULL) { 3831 ipaddr_t dst; 3832 3833 mp = send_icmp_head; 3834 send_icmp_head = send_icmp_head->b_next; 3835 mp->b_next = NULL; 3836 3837 if (mp->b_datap->db_type == M_CTL) 3838 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3839 else 3840 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3841 3842 zoneid = ipif_lookup_addr_zoneid(dst, ill); 3843 if (zoneid == ALL_ZONES) { 3844 freemsg(mp); 3845 } else { 3846 icmp_time_exceeded(ill->ill_wq, mp, 3847 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid); 3848 } 3849 } 3850 } 3851 /* 3852 * A non-dying ILL will use the return value to decide whether to 3853 * restart the frag timer, and for how long. 3854 */ 3855 return (next_timeout); 3856 } 3857 3858 /* 3859 * This routine is called when the approximate count of mblk memory used 3860 * for the specified ILL has exceeded max_count. 3861 */ 3862 void 3863 ill_frag_prune(ill_t *ill, uint_t max_count) 3864 { 3865 ipfb_t *ipfb; 3866 ipf_t *ipf; 3867 size_t count; 3868 3869 /* 3870 * If we are here within ip_min_frag_prune_time msecs remove 3871 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3872 * ill_frag_free_num_pkts. 3873 */ 3874 mutex_enter(&ill->ill_lock); 3875 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3876 (ip_min_frag_prune_time != 0 ? 3877 ip_min_frag_prune_time : msec_per_tick)) { 3878 3879 ill->ill_frag_free_num_pkts++; 3880 3881 } else { 3882 ill->ill_frag_free_num_pkts = 0; 3883 } 3884 ill->ill_last_frag_clean_time = lbolt; 3885 mutex_exit(&ill->ill_lock); 3886 3887 /* 3888 * free ill_frag_free_num_pkts oldest packets from each bucket. 3889 */ 3890 if (ill->ill_frag_free_num_pkts != 0) { 3891 int ix; 3892 3893 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3894 ipfb = &ill->ill_frag_hash_tbl[ix]; 3895 mutex_enter(&ipfb->ipfb_lock); 3896 if (ipfb->ipfb_ipf != NULL) { 3897 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3898 ill->ill_frag_free_num_pkts); 3899 } 3900 mutex_exit(&ipfb->ipfb_lock); 3901 } 3902 } 3903 /* 3904 * While the reassembly list for this ILL is too big, prune a fragment 3905 * queue by age, oldest first. Note that the per ILL count is 3906 * approximate, while the per frag hash bucket counts are accurate. 3907 */ 3908 while (ill->ill_frag_count > max_count) { 3909 int ix; 3910 ipfb_t *oipfb = NULL; 3911 uint_t oldest = UINT_MAX; 3912 3913 count = 0; 3914 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3915 ipfb = &ill->ill_frag_hash_tbl[ix]; 3916 mutex_enter(&ipfb->ipfb_lock); 3917 ipf = ipfb->ipfb_ipf; 3918 if (ipf != NULL && ipf->ipf_gen < oldest) { 3919 oldest = ipf->ipf_gen; 3920 oipfb = ipfb; 3921 } 3922 count += ipfb->ipfb_count; 3923 mutex_exit(&ipfb->ipfb_lock); 3924 } 3925 /* Refresh the per ILL count */ 3926 ill->ill_frag_count = count; 3927 if (oipfb == NULL) { 3928 ill->ill_frag_count = 0; 3929 break; 3930 } 3931 if (count <= max_count) 3932 return; /* Somebody beat us to it, nothing to do */ 3933 mutex_enter(&oipfb->ipfb_lock); 3934 ipf = oipfb->ipfb_ipf; 3935 if (ipf != NULL) { 3936 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3937 } 3938 mutex_exit(&oipfb->ipfb_lock); 3939 } 3940 } 3941 3942 /* 3943 * free 'free_cnt' fragmented packets starting at ipf. 3944 */ 3945 void 3946 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3947 { 3948 size_t count; 3949 mblk_t *mp; 3950 mblk_t *tmp; 3951 ipf_t **ipfp = ipf->ipf_ptphn; 3952 3953 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3954 ASSERT(ipfp != NULL); 3955 ASSERT(ipf != NULL); 3956 3957 while (ipf != NULL && free_cnt-- > 0) { 3958 count = ipf->ipf_count; 3959 mp = ipf->ipf_mp; 3960 ipf = ipf->ipf_hash_next; 3961 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3962 IP_REASS_SET_START(tmp, 0); 3963 IP_REASS_SET_END(tmp, 0); 3964 } 3965 ill->ill_frag_count -= count; 3966 ASSERT(ipfb->ipfb_count >= count); 3967 ipfb->ipfb_count -= count; 3968 ASSERT(ipfb->ipfb_frag_pkts > 0); 3969 ipfb->ipfb_frag_pkts--; 3970 freemsg(mp); 3971 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3972 } 3973 3974 if (ipf) 3975 ipf->ipf_ptphn = ipfp; 3976 ipfp[0] = ipf; 3977 } 3978 3979 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3980 "obsolete and may be removed in a future release of Solaris. Use " \ 3981 "ifconfig(1M) to manipulate the forwarding status of an interface." 3982 3983 /* 3984 * For obsolete per-interface forwarding configuration; 3985 * called in response to ND_GET. 3986 */ 3987 /* ARGSUSED */ 3988 static int 3989 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3990 { 3991 ill_t *ill = (ill_t *)cp; 3992 3993 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3994 3995 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3996 return (0); 3997 } 3998 3999 /* 4000 * For obsolete per-interface forwarding configuration; 4001 * called in response to ND_SET. 4002 */ 4003 /* ARGSUSED */ 4004 static int 4005 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 4006 cred_t *ioc_cr) 4007 { 4008 long value; 4009 int retval; 4010 4011 cmn_err(CE_WARN, ND_FORWARD_WARNING); 4012 4013 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 4014 value < 0 || value > 1) { 4015 return (EINVAL); 4016 } 4017 4018 rw_enter(&ill_g_lock, RW_READER); 4019 retval = ill_forward_set(q, mp, (value != 0), cp); 4020 rw_exit(&ill_g_lock); 4021 return (retval); 4022 } 4023 4024 /* 4025 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4026 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4027 * up RTS_IFINFO routing socket messages for each interface whose flags we 4028 * change. 4029 */ 4030 /* ARGSUSED */ 4031 int 4032 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4033 { 4034 ill_t *ill = (ill_t *)cp; 4035 ill_group_t *illgrp; 4036 4037 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 4038 4039 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4040 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4041 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4042 return (EINVAL); 4043 4044 /* 4045 * If the ill is in an IPMP group, set the forwarding policy on all 4046 * members of the group to the same value. 4047 */ 4048 illgrp = ill->ill_group; 4049 if (illgrp != NULL) { 4050 ill_t *tmp_ill; 4051 4052 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4053 tmp_ill = tmp_ill->ill_group_next) { 4054 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4055 (enable ? "Enabling" : "Disabling"), 4056 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4057 tmp_ill->ill_name)); 4058 mutex_enter(&tmp_ill->ill_lock); 4059 if (enable) 4060 tmp_ill->ill_flags |= ILLF_ROUTER; 4061 else 4062 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4063 mutex_exit(&tmp_ill->ill_lock); 4064 if (tmp_ill->ill_isv6) 4065 ill_set_nce_router_flags(tmp_ill, enable); 4066 /* Notify routing socket listeners of this change. */ 4067 ip_rts_ifmsg(tmp_ill->ill_ipif); 4068 } 4069 } else { 4070 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4071 (enable ? "Enabling" : "Disabling"), 4072 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4073 mutex_enter(&ill->ill_lock); 4074 if (enable) 4075 ill->ill_flags |= ILLF_ROUTER; 4076 else 4077 ill->ill_flags &= ~ILLF_ROUTER; 4078 mutex_exit(&ill->ill_lock); 4079 if (ill->ill_isv6) 4080 ill_set_nce_router_flags(ill, enable); 4081 /* Notify routing socket listeners of this change. */ 4082 ip_rts_ifmsg(ill->ill_ipif); 4083 } 4084 4085 return (0); 4086 } 4087 4088 /* 4089 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4090 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4091 * set or clear. 4092 */ 4093 static void 4094 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4095 { 4096 ipif_t *ipif; 4097 nce_t *nce; 4098 4099 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4100 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4101 if (nce != NULL) { 4102 mutex_enter(&nce->nce_lock); 4103 if (enable) 4104 nce->nce_flags |= NCE_F_ISROUTER; 4105 else 4106 nce->nce_flags &= ~NCE_F_ISROUTER; 4107 mutex_exit(&nce->nce_lock); 4108 NCE_REFRELE(nce); 4109 } 4110 } 4111 } 4112 4113 /* 4114 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4115 * for this ill. Make sure the v6/v4 question has been answered about this 4116 * ill. The creation of this ndd variable is only for backwards compatibility. 4117 * The preferred way to control per-interface IP forwarding is through the 4118 * ILLF_ROUTER interface flag. 4119 */ 4120 static int 4121 ill_set_ndd_name(ill_t *ill) 4122 { 4123 char *suffix; 4124 4125 ASSERT(IAM_WRITER_ILL(ill)); 4126 4127 if (ill->ill_isv6) 4128 suffix = ipv6_forward_suffix; 4129 else 4130 suffix = ipv4_forward_suffix; 4131 4132 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4133 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4134 /* 4135 * Copies over the '\0'. 4136 * Note that strlen(suffix) is always bounded. 4137 */ 4138 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4139 strlen(suffix) + 1); 4140 4141 /* 4142 * Use of the nd table requires holding the reader lock. 4143 * Modifying the nd table thru nd_load/nd_unload requires 4144 * the writer lock. 4145 */ 4146 rw_enter(&ip_g_nd_lock, RW_WRITER); 4147 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4148 nd_ill_forward_set, (caddr_t)ill)) { 4149 /* 4150 * If the nd_load failed, it only meant that it could not 4151 * allocate a new bunch of room for further NDD expansion. 4152 * Because of that, the ill_ndd_name will be set to 0, and 4153 * this interface is at the mercy of the global ip_forwarding 4154 * variable. 4155 */ 4156 rw_exit(&ip_g_nd_lock); 4157 ill->ill_ndd_name = NULL; 4158 return (ENOMEM); 4159 } 4160 rw_exit(&ip_g_nd_lock); 4161 return (0); 4162 } 4163 4164 /* 4165 * Intializes the context structure and returns the first ill in the list 4166 * cuurently start_list and end_list can have values: 4167 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4168 * IP_V4_G_HEAD Traverse IPV4 list only. 4169 * IP_V6_G_HEAD Traverse IPV6 list only. 4170 */ 4171 4172 /* 4173 * We don't check for CONDEMNED ills here. Caller must do that if 4174 * necessary under the ill lock. 4175 */ 4176 ill_t * 4177 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 4178 { 4179 ill_if_t *ifp; 4180 ill_t *ill; 4181 avl_tree_t *avl_tree; 4182 4183 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4184 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4185 4186 /* 4187 * setup the lists to search 4188 */ 4189 if (end_list != MAX_G_HEADS) { 4190 ctx->ctx_current_list = start_list; 4191 ctx->ctx_last_list = end_list; 4192 } else { 4193 ctx->ctx_last_list = MAX_G_HEADS - 1; 4194 ctx->ctx_current_list = 0; 4195 } 4196 4197 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4198 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4199 if (ifp != (ill_if_t *) 4200 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4201 avl_tree = &ifp->illif_avl_by_ppa; 4202 ill = avl_first(avl_tree); 4203 /* 4204 * ill is guaranteed to be non NULL or ifp should have 4205 * not existed. 4206 */ 4207 ASSERT(ill != NULL); 4208 return (ill); 4209 } 4210 ctx->ctx_current_list++; 4211 } 4212 4213 return (NULL); 4214 } 4215 4216 /* 4217 * returns the next ill in the list. ill_first() must have been called 4218 * before calling ill_next() or bad things will happen. 4219 */ 4220 4221 /* 4222 * We don't check for CONDEMNED ills here. Caller must do that if 4223 * necessary under the ill lock. 4224 */ 4225 ill_t * 4226 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4227 { 4228 ill_if_t *ifp; 4229 ill_t *ill; 4230 4231 4232 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4233 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4234 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 4235 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4236 AVL_AFTER)) != NULL) { 4237 return (ill); 4238 } 4239 4240 /* goto next ill_ifp in the list. */ 4241 ifp = lastill->ill_ifptr->illif_next; 4242 4243 /* make sure not at end of circular list */ 4244 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4245 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4246 return (NULL); 4247 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4248 } 4249 4250 return (avl_first(&ifp->illif_avl_by_ppa)); 4251 } 4252 4253 /* 4254 * Check interface name for correct format which is name+ppa. 4255 * name can contain characters and digits, the right most digits 4256 * make up the ppa number. use of octal is not allowed, name must contain 4257 * a ppa, return pointer to the start of ppa. 4258 * In case of error return NULL. 4259 */ 4260 static char * 4261 ill_get_ppa_ptr(char *name) 4262 { 4263 int namelen = mi_strlen(name); 4264 4265 int len = namelen; 4266 4267 name += len; 4268 while (len > 0) { 4269 name--; 4270 if (*name < '0' || *name > '9') 4271 break; 4272 len--; 4273 } 4274 4275 /* empty string, all digits, or no trailing digits */ 4276 if (len == 0 || len == (int)namelen) 4277 return (NULL); 4278 4279 name++; 4280 /* check for attempted use of octal */ 4281 if (*name == '0' && len != (int)namelen - 1) 4282 return (NULL); 4283 return (name); 4284 } 4285 4286 /* 4287 * use avl tree to locate the ill. 4288 */ 4289 static ill_t * 4290 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4291 ipsq_func_t func, int *error) 4292 { 4293 char *ppa_ptr = NULL; 4294 int len; 4295 uint_t ppa; 4296 ill_t *ill = NULL; 4297 ill_if_t *ifp; 4298 int list; 4299 ipsq_t *ipsq; 4300 4301 if (error != NULL) 4302 *error = 0; 4303 4304 /* 4305 * get ppa ptr 4306 */ 4307 if (isv6) 4308 list = IP_V6_G_HEAD; 4309 else 4310 list = IP_V4_G_HEAD; 4311 4312 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4313 if (error != NULL) 4314 *error = ENXIO; 4315 return (NULL); 4316 } 4317 4318 len = ppa_ptr - name + 1; 4319 4320 ppa = stoi(&ppa_ptr); 4321 4322 ifp = IP_VX_ILL_G_LIST(list); 4323 4324 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4325 /* 4326 * match is done on len - 1 as the name is not null 4327 * terminated it contains ppa in addition to the interface 4328 * name. 4329 */ 4330 if ((ifp->illif_name_len == len) && 4331 bcmp(ifp->illif_name, name, len - 1) == 0) { 4332 break; 4333 } else { 4334 ifp = ifp->illif_next; 4335 } 4336 } 4337 4338 4339 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4340 /* 4341 * Even the interface type does not exist. 4342 */ 4343 if (error != NULL) 4344 *error = ENXIO; 4345 return (NULL); 4346 } 4347 4348 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4349 if (ill != NULL) { 4350 /* 4351 * The block comment at the start of ipif_down 4352 * explains the use of the macros used below 4353 */ 4354 GRAB_CONN_LOCK(q); 4355 mutex_enter(&ill->ill_lock); 4356 if (ILL_CAN_LOOKUP(ill)) { 4357 ill_refhold_locked(ill); 4358 mutex_exit(&ill->ill_lock); 4359 RELEASE_CONN_LOCK(q); 4360 return (ill); 4361 } else if (ILL_CAN_WAIT(ill, q)) { 4362 ipsq = ill->ill_phyint->phyint_ipsq; 4363 mutex_enter(&ipsq->ipsq_lock); 4364 mutex_exit(&ill->ill_lock); 4365 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4366 mutex_exit(&ipsq->ipsq_lock); 4367 RELEASE_CONN_LOCK(q); 4368 *error = EINPROGRESS; 4369 return (NULL); 4370 } 4371 mutex_exit(&ill->ill_lock); 4372 RELEASE_CONN_LOCK(q); 4373 } 4374 if (error != NULL) 4375 *error = ENXIO; 4376 return (NULL); 4377 } 4378 4379 /* 4380 * comparison function for use with avl. 4381 */ 4382 static int 4383 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4384 { 4385 uint_t ppa; 4386 uint_t ill_ppa; 4387 4388 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4389 4390 ppa = *((uint_t *)ppa_ptr); 4391 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4392 /* 4393 * We want the ill with the lowest ppa to be on the 4394 * top. 4395 */ 4396 if (ill_ppa < ppa) 4397 return (1); 4398 if (ill_ppa > ppa) 4399 return (-1); 4400 return (0); 4401 } 4402 4403 /* 4404 * remove an interface type from the global list. 4405 */ 4406 static void 4407 ill_delete_interface_type(ill_if_t *interface) 4408 { 4409 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4410 4411 ASSERT(interface != NULL); 4412 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4413 4414 avl_destroy(&interface->illif_avl_by_ppa); 4415 if (interface->illif_ppa_arena != NULL) 4416 vmem_destroy(interface->illif_ppa_arena); 4417 4418 remque(interface); 4419 4420 mi_free(interface); 4421 } 4422 4423 /* Defined in ip_netinfo.c */ 4424 extern ddi_taskq_t *eventq_queue_nic; 4425 4426 /* 4427 * remove ill from the global list. 4428 */ 4429 static void 4430 ill_glist_delete(ill_t *ill) 4431 { 4432 char *nicname; 4433 size_t nicnamelen; 4434 hook_nic_event_t *info; 4435 4436 if (ill == NULL) 4437 return; 4438 4439 rw_enter(&ill_g_lock, RW_WRITER); 4440 4441 if (ill->ill_name != NULL) { 4442 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4443 if (nicname != NULL) { 4444 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4445 nicnamelen = ill->ill_name_length; 4446 } 4447 } else { 4448 nicname = NULL; 4449 nicnamelen = 0; 4450 } 4451 4452 /* 4453 * If the ill was never inserted into the AVL tree 4454 * we skip the if branch. 4455 */ 4456 if (ill->ill_ifptr != NULL) { 4457 /* 4458 * remove from AVL tree and free ppa number 4459 */ 4460 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4461 4462 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4463 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4464 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4465 } 4466 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4467 ill_delete_interface_type(ill->ill_ifptr); 4468 } 4469 4470 /* 4471 * Indicate ill is no longer in the list. 4472 */ 4473 ill->ill_ifptr = NULL; 4474 ill->ill_name_length = 0; 4475 ill->ill_name[0] = '\0'; 4476 ill->ill_ppa = UINT_MAX; 4477 } 4478 4479 /* 4480 * Run the unplumb hook after the NIC has disappeared from being 4481 * visible so that attempts to revalidate its existance will fail. 4482 * 4483 * This needs to be run inside the ill_g_lock perimeter to ensure 4484 * that the ordering of delivered events to listeners matches the 4485 * order of them in the kernel. 4486 */ 4487 if ((info = ill->ill_nic_event_info) != NULL) { 4488 if (info->hne_event != NE_DOWN) { 4489 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4490 "attached for %s\n", info->hne_event, 4491 ill->ill_name)); 4492 if (info->hne_data != NULL) 4493 kmem_free(info->hne_data, info->hne_datalen); 4494 kmem_free(info, sizeof (hook_nic_event_t)); 4495 } else { 4496 if (ddi_taskq_dispatch(eventq_queue_nic, 4497 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4498 == DDI_FAILURE) { 4499 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4500 "failed\n")); 4501 if (info->hne_data != NULL) 4502 kmem_free(info->hne_data, 4503 info->hne_datalen); 4504 kmem_free(info, sizeof (hook_nic_event_t)); 4505 } 4506 } 4507 } 4508 4509 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4510 if (info != NULL) { 4511 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4512 info->hne_lif = 0; 4513 info->hne_event = NE_UNPLUMB; 4514 info->hne_data = nicname; 4515 info->hne_datalen = nicnamelen; 4516 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 4517 } else { 4518 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4519 "information for %s (ENOMEM)\n", ill->ill_name)); 4520 if (nicname != NULL) 4521 kmem_free(nicname, nicnamelen); 4522 } 4523 4524 ill->ill_nic_event_info = info; 4525 4526 ill_phyint_free(ill); 4527 4528 rw_exit(&ill_g_lock); 4529 } 4530 4531 /* 4532 * allocate a ppa, if the number of plumbed interfaces of this type are 4533 * less than ill_no_arena do a linear search to find a unused ppa. 4534 * When the number goes beyond ill_no_arena switch to using an arena. 4535 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4536 * is the return value for an error condition, so allocation starts at one 4537 * and is decremented by one. 4538 */ 4539 static int 4540 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4541 { 4542 ill_t *tmp_ill; 4543 uint_t start, end; 4544 int ppa; 4545 4546 if (ifp->illif_ppa_arena == NULL && 4547 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4548 /* 4549 * Create an arena. 4550 */ 4551 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4552 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4553 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4554 /* allocate what has already been assigned */ 4555 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4556 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4557 tmp_ill, AVL_AFTER)) { 4558 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4559 1, /* size */ 4560 1, /* align/quantum */ 4561 0, /* phase */ 4562 0, /* nocross */ 4563 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4564 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4565 VM_NOSLEEP|VM_FIRSTFIT); 4566 if (ppa == 0) { 4567 ip1dbg(("ill_alloc_ppa: ppa allocation" 4568 " failed while switching")); 4569 vmem_destroy(ifp->illif_ppa_arena); 4570 ifp->illif_ppa_arena = NULL; 4571 break; 4572 } 4573 } 4574 } 4575 4576 if (ifp->illif_ppa_arena != NULL) { 4577 if (ill->ill_ppa == UINT_MAX) { 4578 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4579 1, VM_NOSLEEP|VM_FIRSTFIT); 4580 if (ppa == 0) 4581 return (EAGAIN); 4582 ill->ill_ppa = --ppa; 4583 } else { 4584 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4585 1, /* size */ 4586 1, /* align/quantum */ 4587 0, /* phase */ 4588 0, /* nocross */ 4589 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4590 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4591 VM_NOSLEEP|VM_FIRSTFIT); 4592 /* 4593 * Most likely the allocation failed because 4594 * the requested ppa was in use. 4595 */ 4596 if (ppa == 0) 4597 return (EEXIST); 4598 } 4599 return (0); 4600 } 4601 4602 /* 4603 * No arena is in use and not enough (>ill_no_arena) interfaces have 4604 * been plumbed to create one. Do a linear search to get a unused ppa. 4605 */ 4606 if (ill->ill_ppa == UINT_MAX) { 4607 end = UINT_MAX - 1; 4608 start = 0; 4609 } else { 4610 end = start = ill->ill_ppa; 4611 } 4612 4613 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4614 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4615 if (start++ >= end) { 4616 if (ill->ill_ppa == UINT_MAX) 4617 return (EAGAIN); 4618 else 4619 return (EEXIST); 4620 } 4621 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4622 } 4623 ill->ill_ppa = start; 4624 return (0); 4625 } 4626 4627 /* 4628 * Insert ill into the list of configured ill's. Once this function completes, 4629 * the ill is globally visible and is available through lookups. More precisely 4630 * this happens after the caller drops the ill_g_lock. 4631 */ 4632 static int 4633 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4634 { 4635 ill_if_t *ill_interface; 4636 avl_index_t where = 0; 4637 int error; 4638 int name_length; 4639 int index; 4640 boolean_t check_length = B_FALSE; 4641 4642 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4643 4644 name_length = mi_strlen(name) + 1; 4645 4646 if (isv6) 4647 index = IP_V6_G_HEAD; 4648 else 4649 index = IP_V4_G_HEAD; 4650 4651 ill_interface = IP_VX_ILL_G_LIST(index); 4652 /* 4653 * Search for interface type based on name 4654 */ 4655 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4656 if ((ill_interface->illif_name_len == name_length) && 4657 (strcmp(ill_interface->illif_name, name) == 0)) { 4658 break; 4659 } 4660 ill_interface = ill_interface->illif_next; 4661 } 4662 4663 /* 4664 * Interface type not found, create one. 4665 */ 4666 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4667 4668 ill_g_head_t ghead; 4669 4670 /* 4671 * allocate ill_if_t structure 4672 */ 4673 4674 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4675 if (ill_interface == NULL) { 4676 return (ENOMEM); 4677 } 4678 4679 4680 4681 (void) strcpy(ill_interface->illif_name, name); 4682 ill_interface->illif_name_len = name_length; 4683 4684 avl_create(&ill_interface->illif_avl_by_ppa, 4685 ill_compare_ppa, sizeof (ill_t), 4686 offsetof(struct ill_s, ill_avl_byppa)); 4687 4688 /* 4689 * link the structure in the back to maintain order 4690 * of configuration for ifconfig output. 4691 */ 4692 ghead = ill_g_heads[index]; 4693 insque(ill_interface, ghead.ill_g_list_tail); 4694 4695 } 4696 4697 if (ill->ill_ppa == UINT_MAX) 4698 check_length = B_TRUE; 4699 4700 error = ill_alloc_ppa(ill_interface, ill); 4701 if (error != 0) { 4702 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4703 ill_delete_interface_type(ill->ill_ifptr); 4704 return (error); 4705 } 4706 4707 /* 4708 * When the ppa is choosen by the system, check that there is 4709 * enough space to insert ppa. if a specific ppa was passed in this 4710 * check is not required as the interface name passed in will have 4711 * the right ppa in it. 4712 */ 4713 if (check_length) { 4714 /* 4715 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4716 */ 4717 char buf[sizeof (uint_t) * 3]; 4718 4719 /* 4720 * convert ppa to string to calculate the amount of space 4721 * required for it in the name. 4722 */ 4723 numtos(ill->ill_ppa, buf); 4724 4725 /* Do we have enough space to insert ppa ? */ 4726 4727 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4728 /* Free ppa and interface type struct */ 4729 if (ill_interface->illif_ppa_arena != NULL) { 4730 vmem_free(ill_interface->illif_ppa_arena, 4731 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4732 } 4733 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4734 0) { 4735 ill_delete_interface_type(ill->ill_ifptr); 4736 } 4737 4738 return (EINVAL); 4739 } 4740 } 4741 4742 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4743 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4744 4745 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4746 &where); 4747 ill->ill_ifptr = ill_interface; 4748 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4749 4750 ill_phyint_reinit(ill); 4751 return (0); 4752 } 4753 4754 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4755 static boolean_t 4756 ipsq_init(ill_t *ill) 4757 { 4758 ipsq_t *ipsq; 4759 4760 /* Init the ipsq and impicitly enter as writer */ 4761 ill->ill_phyint->phyint_ipsq = 4762 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4763 if (ill->ill_phyint->phyint_ipsq == NULL) 4764 return (B_FALSE); 4765 ipsq = ill->ill_phyint->phyint_ipsq; 4766 ipsq->ipsq_phyint_list = ill->ill_phyint; 4767 ill->ill_phyint->phyint_ipsq_next = NULL; 4768 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4769 ipsq->ipsq_refs = 1; 4770 ipsq->ipsq_writer = curthread; 4771 ipsq->ipsq_reentry_cnt = 1; 4772 #ifdef ILL_DEBUG 4773 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4774 #endif 4775 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4776 return (B_TRUE); 4777 } 4778 4779 /* 4780 * ill_init is called by ip_open when a device control stream is opened. 4781 * It does a few initializations, and shoots a DL_INFO_REQ message down 4782 * to the driver. The response is later picked up in ip_rput_dlpi and 4783 * used to set up default mechanisms for talking to the driver. (Always 4784 * called as writer.) 4785 * 4786 * If this function returns error, ip_open will call ip_close which in 4787 * turn will call ill_delete to clean up any memory allocated here that 4788 * is not yet freed. 4789 */ 4790 int 4791 ill_init(queue_t *q, ill_t *ill) 4792 { 4793 int count; 4794 dl_info_req_t *dlir; 4795 mblk_t *info_mp; 4796 uchar_t *frag_ptr; 4797 4798 /* 4799 * The ill is initialized to zero by mi_alloc*(). In addition 4800 * some fields already contain valid values, initialized in 4801 * ip_open(), before we reach here. 4802 */ 4803 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4804 4805 ill->ill_rq = q; 4806 ill->ill_wq = WR(q); 4807 4808 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4809 BPRI_HI); 4810 if (info_mp == NULL) 4811 return (ENOMEM); 4812 4813 /* 4814 * Allocate sufficient space to contain our fragment hash table and 4815 * the device name. 4816 */ 4817 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4818 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4819 if (frag_ptr == NULL) { 4820 freemsg(info_mp); 4821 return (ENOMEM); 4822 } 4823 ill->ill_frag_ptr = frag_ptr; 4824 ill->ill_frag_free_num_pkts = 0; 4825 ill->ill_last_frag_clean_time = 0; 4826 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4827 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4828 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4829 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4830 NULL, MUTEX_DEFAULT, NULL); 4831 } 4832 4833 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4834 if (ill->ill_phyint == NULL) { 4835 freemsg(info_mp); 4836 mi_free(frag_ptr); 4837 return (ENOMEM); 4838 } 4839 4840 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4841 /* 4842 * For now pretend this is a v4 ill. We need to set phyint_ill* 4843 * at this point because of the following reason. If we can't 4844 * enter the ipsq at some point and cv_wait, the writer that 4845 * wakes us up tries to locate us using the list of all phyints 4846 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4847 * If we don't set it now, we risk a missed wakeup. 4848 */ 4849 ill->ill_phyint->phyint_illv4 = ill; 4850 ill->ill_ppa = UINT_MAX; 4851 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4852 4853 if (!ipsq_init(ill)) { 4854 freemsg(info_mp); 4855 mi_free(frag_ptr); 4856 mi_free(ill->ill_phyint); 4857 return (ENOMEM); 4858 } 4859 4860 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4861 4862 4863 /* Frag queue limit stuff */ 4864 ill->ill_frag_count = 0; 4865 ill->ill_ipf_gen = 0; 4866 4867 ill->ill_global_timer = INFINITY; 4868 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4869 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4870 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4871 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4872 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4873 4874 /* 4875 * Initialize IPv6 configuration variables. The IP module is always 4876 * opened as an IPv4 module. Instead tracking down the cases where 4877 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4878 * here for convenience, this has no effect until the ill is set to do 4879 * IPv6. 4880 */ 4881 ill->ill_reachable_time = ND_REACHABLE_TIME; 4882 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4883 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4884 ill->ill_max_buf = ND_MAX_Q; 4885 ill->ill_refcnt = 0; 4886 4887 /* Send down the Info Request to the driver. */ 4888 info_mp->b_datap->db_type = M_PCPROTO; 4889 dlir = (dl_info_req_t *)info_mp->b_rptr; 4890 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4891 dlir->dl_primitive = DL_INFO_REQ; 4892 4893 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4894 4895 qprocson(q); 4896 ill_dlpi_send(ill, info_mp); 4897 4898 return (0); 4899 } 4900 4901 /* 4902 * ill_dls_info 4903 * creates datalink socket info from the device. 4904 */ 4905 int 4906 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4907 { 4908 size_t len; 4909 ill_t *ill = ipif->ipif_ill; 4910 4911 sdl->sdl_family = AF_LINK; 4912 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4913 sdl->sdl_type = ill->ill_type; 4914 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4915 len = strlen(sdl->sdl_data); 4916 ASSERT(len < 256); 4917 sdl->sdl_nlen = (uchar_t)len; 4918 sdl->sdl_alen = ill->ill_phys_addr_length; 4919 sdl->sdl_slen = 0; 4920 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4921 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4922 4923 return (sizeof (struct sockaddr_dl)); 4924 } 4925 4926 /* 4927 * ill_xarp_info 4928 * creates xarp info from the device. 4929 */ 4930 static int 4931 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4932 { 4933 sdl->sdl_family = AF_LINK; 4934 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4935 sdl->sdl_type = ill->ill_type; 4936 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4937 sizeof (sdl->sdl_data)); 4938 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4939 sdl->sdl_alen = ill->ill_phys_addr_length; 4940 sdl->sdl_slen = 0; 4941 return (sdl->sdl_nlen); 4942 } 4943 4944 static int 4945 loopback_kstat_update(kstat_t *ksp, int rw) 4946 { 4947 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4948 4949 if (rw == KSTAT_WRITE) 4950 return (EACCES); 4951 kn[0].value.ui32 = loopback_packets; 4952 kn[1].value.ui32 = loopback_packets; 4953 return (0); 4954 } 4955 4956 4957 /* 4958 * Has ifindex been plumbed already. 4959 */ 4960 static boolean_t 4961 phyint_exists(uint_t index) 4962 { 4963 phyint_t *phyi; 4964 4965 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4966 /* 4967 * Indexes are stored in the phyint - a common structure 4968 * to both IPv4 and IPv6. 4969 */ 4970 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4971 (void *) &index, NULL); 4972 return (phyi != NULL); 4973 } 4974 4975 /* 4976 * Assign a unique interface index for the phyint. 4977 */ 4978 static boolean_t 4979 phyint_assign_ifindex(phyint_t *phyi) 4980 { 4981 uint_t starting_index; 4982 4983 ASSERT(phyi->phyint_ifindex == 0); 4984 if (!ill_index_wrap) { 4985 phyi->phyint_ifindex = ill_index++; 4986 if (ill_index == 0) { 4987 /* Reached the uint_t limit Next time wrap */ 4988 ill_index_wrap = B_TRUE; 4989 } 4990 return (B_TRUE); 4991 } 4992 4993 /* 4994 * Start reusing unused indexes. Note that we hold the ill_g_lock 4995 * at this point and don't want to call any function that attempts 4996 * to get the lock again. 4997 */ 4998 starting_index = ill_index++; 4999 for (; ill_index != starting_index; ill_index++) { 5000 if (ill_index != 0 && !phyint_exists(ill_index)) { 5001 /* found unused index - use it */ 5002 phyi->phyint_ifindex = ill_index; 5003 return (B_TRUE); 5004 } 5005 } 5006 5007 /* 5008 * all interface indicies are inuse. 5009 */ 5010 return (B_FALSE); 5011 } 5012 5013 /* 5014 * Return a pointer to the ill which matches the supplied name. Note that 5015 * the ill name length includes the null termination character. (May be 5016 * called as writer.) 5017 * If do_alloc and the interface is "lo0" it will be automatically created. 5018 * Cannot bump up reference on condemned ills. So dup detect can't be done 5019 * using this func. 5020 */ 5021 ill_t * 5022 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5023 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 5024 { 5025 ill_t *ill; 5026 ipif_t *ipif; 5027 kstat_named_t *kn; 5028 boolean_t isloopback; 5029 ipsq_t *old_ipsq; 5030 5031 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5032 5033 rw_enter(&ill_g_lock, RW_READER); 5034 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5035 rw_exit(&ill_g_lock); 5036 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5037 return (ill); 5038 5039 /* 5040 * Couldn't find it. Does this happen to be a lookup for the 5041 * loopback device and are we allowed to allocate it? 5042 */ 5043 if (!isloopback || !do_alloc) 5044 return (NULL); 5045 5046 rw_enter(&ill_g_lock, RW_WRITER); 5047 5048 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5049 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5050 rw_exit(&ill_g_lock); 5051 return (ill); 5052 } 5053 5054 /* Create the loopback device on demand */ 5055 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5056 sizeof (ipif_loopback_name), BPRI_MED)); 5057 if (ill == NULL) 5058 goto done; 5059 5060 *ill = ill_null; 5061 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5062 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5063 if (ill->ill_phyint == NULL) 5064 goto done; 5065 5066 if (isv6) 5067 ill->ill_phyint->phyint_illv6 = ill; 5068 else 5069 ill->ill_phyint->phyint_illv4 = ill; 5070 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5071 ill->ill_max_frag = IP_LOOPBACK_MTU; 5072 /* Add room for tcp+ip headers */ 5073 if (isv6) { 5074 ill->ill_isv6 = B_TRUE; 5075 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5076 } else { 5077 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5078 } 5079 if (!ill_allocate_mibs(ill)) 5080 goto done; 5081 ill->ill_max_mtu = ill->ill_max_frag; 5082 /* 5083 * ipif_loopback_name can't be pointed at directly because its used 5084 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5085 * from the glist, ill_glist_delete() sets the first character of 5086 * ill_name to '\0'. 5087 */ 5088 ill->ill_name = (char *)ill + sizeof (*ill); 5089 (void) strcpy(ill->ill_name, ipif_loopback_name); 5090 ill->ill_name_length = sizeof (ipif_loopback_name); 5091 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5092 5093 ill->ill_global_timer = INFINITY; 5094 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5095 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5096 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5097 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5098 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5099 5100 /* No resolver here. */ 5101 ill->ill_net_type = IRE_LOOPBACK; 5102 5103 /* Initialize the ipsq */ 5104 if (!ipsq_init(ill)) 5105 goto done; 5106 5107 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5108 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5109 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5110 #ifdef ILL_DEBUG 5111 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5112 #endif 5113 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5114 if (ipif == NULL) 5115 goto done; 5116 5117 ill->ill_flags = ILLF_MULTICAST; 5118 5119 /* Set up default loopback address and mask. */ 5120 if (!isv6) { 5121 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5122 5123 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5124 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5125 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5126 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5127 ipif->ipif_v6subnet); 5128 ill->ill_flags |= ILLF_IPV4; 5129 } else { 5130 ipif->ipif_v6lcl_addr = ipv6_loopback; 5131 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5132 ipif->ipif_v6net_mask = ipv6_all_ones; 5133 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5134 ipif->ipif_v6subnet); 5135 ill->ill_flags |= ILLF_IPV6; 5136 } 5137 5138 /* 5139 * Chain us in at the end of the ill list. hold the ill 5140 * before we make it globally visible. 1 for the lookup. 5141 */ 5142 ill->ill_refcnt = 0; 5143 ill_refhold(ill); 5144 5145 ill->ill_frag_count = 0; 5146 ill->ill_frag_free_num_pkts = 0; 5147 ill->ill_last_frag_clean_time = 0; 5148 5149 old_ipsq = ill->ill_phyint->phyint_ipsq; 5150 5151 if (ill_glist_insert(ill, "lo", isv6) != 0) 5152 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5153 5154 /* Let SCTP know so that it can add this to its list */ 5155 sctp_update_ill(ill, SCTP_ILL_INSERT); 5156 5157 /* Let SCTP know about this IPIF, so that it can add it to its list */ 5158 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 5159 5160 /* 5161 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5162 */ 5163 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5164 /* Loopback ills aren't in any IPMP group */ 5165 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5166 ipsq_delete(old_ipsq); 5167 } 5168 5169 /* 5170 * Delay this till the ipif is allocated as ipif_allocate 5171 * de-references ill_phyint for getting the ifindex. We 5172 * can't do this before ipif_allocate because ill_phyint_reinit 5173 * -> phyint_assign_ifindex expects ipif to be present. 5174 */ 5175 mutex_enter(&ill->ill_phyint->phyint_lock); 5176 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5177 mutex_exit(&ill->ill_phyint->phyint_lock); 5178 5179 if (loopback_ksp == NULL) { 5180 /* Export loopback interface statistics */ 5181 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 5182 KSTAT_TYPE_NAMED, 2, 0); 5183 if (loopback_ksp != NULL) { 5184 loopback_ksp->ks_update = loopback_kstat_update; 5185 kn = KSTAT_NAMED_PTR(loopback_ksp); 5186 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5187 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5188 kstat_install(loopback_ksp); 5189 } 5190 } 5191 5192 if (error != NULL) 5193 *error = 0; 5194 *did_alloc = B_TRUE; 5195 rw_exit(&ill_g_lock); 5196 return (ill); 5197 done: 5198 if (ill != NULL) { 5199 if (ill->ill_phyint != NULL) { 5200 ipsq_t *ipsq; 5201 5202 ipsq = ill->ill_phyint->phyint_ipsq; 5203 if (ipsq != NULL) 5204 kmem_free(ipsq, sizeof (ipsq_t)); 5205 mi_free(ill->ill_phyint); 5206 } 5207 ill_free_mib(ill); 5208 mi_free(ill); 5209 } 5210 rw_exit(&ill_g_lock); 5211 if (error != NULL) 5212 *error = ENOMEM; 5213 return (NULL); 5214 } 5215 5216 /* 5217 * Return a pointer to the ill which matches the index and IP version type. 5218 */ 5219 ill_t * 5220 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5221 ipsq_func_t func, int *err) 5222 { 5223 ill_t *ill; 5224 ipsq_t *ipsq; 5225 phyint_t *phyi; 5226 5227 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5228 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5229 5230 if (err != NULL) 5231 *err = 0; 5232 5233 /* 5234 * Indexes are stored in the phyint - a common structure 5235 * to both IPv4 and IPv6. 5236 */ 5237 rw_enter(&ill_g_lock, RW_READER); 5238 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 5239 (void *) &index, NULL); 5240 if (phyi != NULL) { 5241 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5242 if (ill != NULL) { 5243 /* 5244 * The block comment at the start of ipif_down 5245 * explains the use of the macros used below 5246 */ 5247 GRAB_CONN_LOCK(q); 5248 mutex_enter(&ill->ill_lock); 5249 if (ILL_CAN_LOOKUP(ill)) { 5250 ill_refhold_locked(ill); 5251 mutex_exit(&ill->ill_lock); 5252 RELEASE_CONN_LOCK(q); 5253 rw_exit(&ill_g_lock); 5254 return (ill); 5255 } else if (ILL_CAN_WAIT(ill, q)) { 5256 ipsq = ill->ill_phyint->phyint_ipsq; 5257 mutex_enter(&ipsq->ipsq_lock); 5258 rw_exit(&ill_g_lock); 5259 mutex_exit(&ill->ill_lock); 5260 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5261 mutex_exit(&ipsq->ipsq_lock); 5262 RELEASE_CONN_LOCK(q); 5263 *err = EINPROGRESS; 5264 return (NULL); 5265 } 5266 RELEASE_CONN_LOCK(q); 5267 mutex_exit(&ill->ill_lock); 5268 } 5269 } 5270 rw_exit(&ill_g_lock); 5271 if (err != NULL) 5272 *err = ENXIO; 5273 return (NULL); 5274 } 5275 5276 /* 5277 * Return the ifindex next in sequence after the passed in ifindex. 5278 * If there is no next ifindex for the given protocol, return 0. 5279 */ 5280 uint_t 5281 ill_get_next_ifindex(uint_t index, boolean_t isv6) 5282 { 5283 phyint_t *phyi; 5284 phyint_t *phyi_initial; 5285 uint_t ifindex; 5286 5287 rw_enter(&ill_g_lock, RW_READER); 5288 5289 if (index == 0) { 5290 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 5291 } else { 5292 phyi = phyi_initial = avl_find( 5293 &phyint_g_list.phyint_list_avl_by_index, 5294 (void *) &index, NULL); 5295 } 5296 5297 for (; phyi != NULL; 5298 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 5299 phyi, AVL_AFTER)) { 5300 /* 5301 * If we're not returning the first interface in the tree 5302 * and we still haven't moved past the phyint_t that 5303 * corresponds to index, avl_walk needs to be called again 5304 */ 5305 if (!((index != 0) && (phyi == phyi_initial))) { 5306 if (isv6) { 5307 if ((phyi->phyint_illv6) && 5308 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5309 (phyi->phyint_illv6->ill_isv6 == 1)) 5310 break; 5311 } else { 5312 if ((phyi->phyint_illv4) && 5313 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5314 (phyi->phyint_illv4->ill_isv6 == 0)) 5315 break; 5316 } 5317 } 5318 } 5319 5320 rw_exit(&ill_g_lock); 5321 5322 if (phyi != NULL) 5323 ifindex = phyi->phyint_ifindex; 5324 else 5325 ifindex = 0; 5326 5327 return (ifindex); 5328 } 5329 5330 5331 /* 5332 * Return the ifindex for the named interface. 5333 * If there is no next ifindex for the interface, return 0. 5334 */ 5335 uint_t 5336 ill_get_ifindex_by_name(char *name) 5337 { 5338 phyint_t *phyi; 5339 avl_index_t where = 0; 5340 uint_t ifindex; 5341 5342 rw_enter(&ill_g_lock, RW_READER); 5343 5344 if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 5345 name, &where)) == NULL) { 5346 rw_exit(&ill_g_lock); 5347 return (0); 5348 } 5349 5350 ifindex = phyi->phyint_ifindex; 5351 5352 rw_exit(&ill_g_lock); 5353 5354 return (ifindex); 5355 } 5356 5357 5358 /* 5359 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5360 * that gives a running thread a reference to the ill. This reference must be 5361 * released by the thread when it is done accessing the ill and related 5362 * objects. ill_refcnt can not be used to account for static references 5363 * such as other structures pointing to an ill. Callers must generally 5364 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5365 * or be sure that the ill is not being deleted or changing state before 5366 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5367 * ill won't change any of its critical state such as address, netmask etc. 5368 */ 5369 void 5370 ill_refhold(ill_t *ill) 5371 { 5372 mutex_enter(&ill->ill_lock); 5373 ill->ill_refcnt++; 5374 ILL_TRACE_REF(ill); 5375 mutex_exit(&ill->ill_lock); 5376 } 5377 5378 void 5379 ill_refhold_locked(ill_t *ill) 5380 { 5381 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5382 ill->ill_refcnt++; 5383 ILL_TRACE_REF(ill); 5384 } 5385 5386 int 5387 ill_check_and_refhold(ill_t *ill) 5388 { 5389 mutex_enter(&ill->ill_lock); 5390 if (ILL_CAN_LOOKUP(ill)) { 5391 ill_refhold_locked(ill); 5392 mutex_exit(&ill->ill_lock); 5393 return (0); 5394 } 5395 mutex_exit(&ill->ill_lock); 5396 return (ILL_LOOKUP_FAILED); 5397 } 5398 5399 /* 5400 * Must not be called while holding any locks. Otherwise if this is 5401 * the last reference to be released, there is a chance of recursive mutex 5402 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5403 * to restart an ioctl. 5404 */ 5405 void 5406 ill_refrele(ill_t *ill) 5407 { 5408 mutex_enter(&ill->ill_lock); 5409 ASSERT(ill->ill_refcnt != 0); 5410 ill->ill_refcnt--; 5411 ILL_UNTRACE_REF(ill); 5412 if (ill->ill_refcnt != 0) { 5413 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5414 mutex_exit(&ill->ill_lock); 5415 return; 5416 } 5417 5418 /* Drops the ill_lock */ 5419 ipif_ill_refrele_tail(ill); 5420 } 5421 5422 /* 5423 * Obtain a weak reference count on the ill. This reference ensures the 5424 * ill won't be freed, but the ill may change any of its critical state 5425 * such as netmask, address etc. Returns an error if the ill has started 5426 * closing. 5427 */ 5428 boolean_t 5429 ill_waiter_inc(ill_t *ill) 5430 { 5431 mutex_enter(&ill->ill_lock); 5432 if (ill->ill_state_flags & ILL_CONDEMNED) { 5433 mutex_exit(&ill->ill_lock); 5434 return (B_FALSE); 5435 } 5436 ill->ill_waiters++; 5437 mutex_exit(&ill->ill_lock); 5438 return (B_TRUE); 5439 } 5440 5441 void 5442 ill_waiter_dcr(ill_t *ill) 5443 { 5444 mutex_enter(&ill->ill_lock); 5445 ill->ill_waiters--; 5446 if (ill->ill_waiters == 0) 5447 cv_broadcast(&ill->ill_cv); 5448 mutex_exit(&ill->ill_lock); 5449 } 5450 5451 /* 5452 * Named Dispatch routine to produce a formatted report on all ILLs. 5453 * This report is accessed by using the ndd utility to "get" ND variable 5454 * "ip_ill_status". 5455 */ 5456 /* ARGSUSED */ 5457 int 5458 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5459 { 5460 ill_t *ill; 5461 ill_walk_context_t ctx; 5462 5463 (void) mi_mpprintf(mp, 5464 "ILL " MI_COL_HDRPAD_STR 5465 /* 01234567[89ABCDEF] */ 5466 "rq " MI_COL_HDRPAD_STR 5467 /* 01234567[89ABCDEF] */ 5468 "wq " MI_COL_HDRPAD_STR 5469 /* 01234567[89ABCDEF] */ 5470 "upcnt mxfrg err name"); 5471 /* 12345 12345 123 xxxxxxxx */ 5472 5473 rw_enter(&ill_g_lock, RW_READER); 5474 ill = ILL_START_WALK_ALL(&ctx); 5475 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5476 (void) mi_mpprintf(mp, 5477 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5478 "%05u %05u %03d %s", 5479 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5480 ill->ill_ipif_up_count, 5481 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5482 } 5483 rw_exit(&ill_g_lock); 5484 5485 return (0); 5486 } 5487 5488 /* 5489 * Named Dispatch routine to produce a formatted report on all IPIFs. 5490 * This report is accessed by using the ndd utility to "get" ND variable 5491 * "ip_ipif_status". 5492 */ 5493 /* ARGSUSED */ 5494 int 5495 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5496 { 5497 char buf1[INET6_ADDRSTRLEN]; 5498 char buf2[INET6_ADDRSTRLEN]; 5499 char buf3[INET6_ADDRSTRLEN]; 5500 char buf4[INET6_ADDRSTRLEN]; 5501 char buf5[INET6_ADDRSTRLEN]; 5502 char buf6[INET6_ADDRSTRLEN]; 5503 char buf[LIFNAMSIZ]; 5504 ill_t *ill; 5505 ipif_t *ipif; 5506 nv_t *nvp; 5507 uint64_t flags; 5508 zoneid_t zoneid; 5509 ill_walk_context_t ctx; 5510 5511 (void) mi_mpprintf(mp, 5512 "IPIF metric mtu in/out/forward name zone flags...\n" 5513 "\tlocal address\n" 5514 "\tsrc address\n" 5515 "\tsubnet\n" 5516 "\tmask\n" 5517 "\tbroadcast\n" 5518 "\tp-p-dst"); 5519 5520 ASSERT(q->q_next == NULL); 5521 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5522 5523 rw_enter(&ill_g_lock, RW_READER); 5524 ill = ILL_START_WALK_ALL(&ctx); 5525 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5526 for (ipif = ill->ill_ipif; ipif != NULL; 5527 ipif = ipif->ipif_next) { 5528 if (zoneid != GLOBAL_ZONEID && 5529 zoneid != ipif->ipif_zoneid && 5530 ipif->ipif_zoneid != ALL_ZONES) 5531 continue; 5532 (void) mi_mpprintf(mp, 5533 MI_COL_PTRFMT_STR 5534 "%04u %05u %u/%u/%u %s %d", 5535 (void *)ipif, 5536 ipif->ipif_metric, ipif->ipif_mtu, 5537 ipif->ipif_ib_pkt_count, 5538 ipif->ipif_ob_pkt_count, 5539 ipif->ipif_fo_pkt_count, 5540 ipif_get_name(ipif, buf, sizeof (buf)), 5541 ipif->ipif_zoneid); 5542 5543 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5544 ipif->ipif_ill->ill_phyint->phyint_flags; 5545 5546 /* Tack on text strings for any flags. */ 5547 nvp = ipif_nv_tbl; 5548 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5549 if (nvp->nv_value & flags) 5550 (void) mi_mpprintf_nr(mp, " %s", 5551 nvp->nv_name); 5552 } 5553 (void) mi_mpprintf(mp, 5554 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5555 inet_ntop(AF_INET6, 5556 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5557 inet_ntop(AF_INET6, 5558 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5559 inet_ntop(AF_INET6, 5560 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5561 inet_ntop(AF_INET6, 5562 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5563 inet_ntop(AF_INET6, 5564 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5565 inet_ntop(AF_INET6, 5566 &ipif->ipif_v6pp_dst_addr, 5567 buf6, sizeof (buf6))); 5568 } 5569 } 5570 rw_exit(&ill_g_lock); 5571 return (0); 5572 } 5573 5574 /* 5575 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5576 * driver. We construct best guess defaults for lower level information that 5577 * we need. If an interface is brought up without injection of any overriding 5578 * information from outside, we have to be ready to go with these defaults. 5579 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5580 * we primarely want the dl_provider_style. 5581 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5582 * at which point we assume the other part of the information is valid. 5583 */ 5584 void 5585 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5586 { 5587 uchar_t *brdcst_addr; 5588 uint_t brdcst_addr_length, phys_addr_length; 5589 t_scalar_t sap_length; 5590 dl_info_ack_t *dlia; 5591 ip_m_t *ipm; 5592 dl_qos_cl_sel1_t *sel1; 5593 5594 ASSERT(IAM_WRITER_ILL(ill)); 5595 5596 /* 5597 * Till the ill is fully up ILL_CHANGING will be set and 5598 * the ill is not globally visible. So no need for a lock. 5599 */ 5600 dlia = (dl_info_ack_t *)mp->b_rptr; 5601 ill->ill_mactype = dlia->dl_mac_type; 5602 5603 ipm = ip_m_lookup(dlia->dl_mac_type); 5604 if (ipm == NULL) { 5605 ipm = ip_m_lookup(DL_OTHER); 5606 ASSERT(ipm != NULL); 5607 } 5608 ill->ill_media = ipm; 5609 5610 /* 5611 * When the new DLPI stuff is ready we'll pull lengths 5612 * from dlia. 5613 */ 5614 if (dlia->dl_version == DL_VERSION_2) { 5615 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5616 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5617 brdcst_addr_length); 5618 if (brdcst_addr == NULL) { 5619 brdcst_addr_length = 0; 5620 } 5621 sap_length = dlia->dl_sap_length; 5622 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5623 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5624 brdcst_addr_length, sap_length, phys_addr_length)); 5625 } else { 5626 brdcst_addr_length = 6; 5627 brdcst_addr = ip_six_byte_all_ones; 5628 sap_length = -2; 5629 phys_addr_length = brdcst_addr_length; 5630 } 5631 5632 ill->ill_bcast_addr_length = brdcst_addr_length; 5633 ill->ill_phys_addr_length = phys_addr_length; 5634 ill->ill_sap_length = sap_length; 5635 ill->ill_max_frag = dlia->dl_max_sdu; 5636 ill->ill_max_mtu = ill->ill_max_frag; 5637 5638 ill->ill_type = ipm->ip_m_type; 5639 5640 if (!ill->ill_dlpi_style_set) { 5641 if (dlia->dl_provider_style == DL_STYLE2) 5642 ill->ill_needs_attach = 1; 5643 5644 /* 5645 * Allocate the first ipif on this ill. We don't delay it 5646 * further as ioctl handling assumes atleast one ipif to 5647 * be present. 5648 * 5649 * At this point we don't know whether the ill is v4 or v6. 5650 * We will know this whan the SIOCSLIFNAME happens and 5651 * the correct value for ill_isv6 will be assigned in 5652 * ipif_set_values(). We need to hold the ill lock and 5653 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5654 * the wakeup. 5655 */ 5656 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5657 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5658 mutex_enter(&ill->ill_lock); 5659 ASSERT(ill->ill_dlpi_style_set == 0); 5660 ill->ill_dlpi_style_set = 1; 5661 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5662 cv_broadcast(&ill->ill_cv); 5663 mutex_exit(&ill->ill_lock); 5664 freemsg(mp); 5665 return; 5666 } 5667 ASSERT(ill->ill_ipif != NULL); 5668 /* 5669 * We know whether it is IPv4 or IPv6 now, as this is the 5670 * second DL_INFO_ACK we are recieving in response to the 5671 * DL_INFO_REQ sent in ipif_set_values. 5672 */ 5673 if (ill->ill_isv6) 5674 ill->ill_sap = IP6_DL_SAP; 5675 else 5676 ill->ill_sap = IP_DL_SAP; 5677 /* 5678 * Set ipif_mtu which is used to set the IRE's 5679 * ire_max_frag value. The driver could have sent 5680 * a different mtu from what it sent last time. No 5681 * need to call ipif_mtu_change because IREs have 5682 * not yet been created. 5683 */ 5684 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5685 /* 5686 * Clear all the flags that were set based on ill_bcast_addr_length 5687 * and ill_phys_addr_length (in ipif_set_values) as these could have 5688 * changed now and we need to re-evaluate. 5689 */ 5690 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5691 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5692 5693 /* 5694 * Free ill_resolver_mp and ill_bcast_mp as things could have 5695 * changed now. 5696 */ 5697 if (ill->ill_bcast_addr_length == 0) { 5698 if (ill->ill_resolver_mp != NULL) 5699 freemsg(ill->ill_resolver_mp); 5700 if (ill->ill_bcast_mp != NULL) 5701 freemsg(ill->ill_bcast_mp); 5702 if (ill->ill_flags & ILLF_XRESOLV) 5703 ill->ill_net_type = IRE_IF_RESOLVER; 5704 else 5705 ill->ill_net_type = IRE_IF_NORESOLVER; 5706 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5707 ill->ill_phys_addr_length, 5708 ill->ill_sap, 5709 ill->ill_sap_length); 5710 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5711 5712 if (ill->ill_isv6) 5713 /* 5714 * Note: xresolv interfaces will eventually need NOARP 5715 * set here as well, but that will require those 5716 * external resolvers to have some knowledge of 5717 * that flag and act appropriately. Not to be changed 5718 * at present. 5719 */ 5720 ill->ill_flags |= ILLF_NONUD; 5721 else 5722 ill->ill_flags |= ILLF_NOARP; 5723 5724 if (ill->ill_phys_addr_length == 0) { 5725 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5726 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5727 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5728 } else { 5729 /* pt-pt supports multicast. */ 5730 ill->ill_flags |= ILLF_MULTICAST; 5731 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5732 } 5733 } 5734 } else { 5735 ill->ill_net_type = IRE_IF_RESOLVER; 5736 if (ill->ill_bcast_mp != NULL) 5737 freemsg(ill->ill_bcast_mp); 5738 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5739 ill->ill_bcast_addr_length, ill->ill_sap, 5740 ill->ill_sap_length); 5741 /* 5742 * Later detect lack of DLPI driver multicast 5743 * capability by catching DL_ENABMULTI errors in 5744 * ip_rput_dlpi. 5745 */ 5746 ill->ill_flags |= ILLF_MULTICAST; 5747 if (!ill->ill_isv6) 5748 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5749 } 5750 /* By default an interface does not support any CoS marking */ 5751 ill->ill_flags &= ~ILLF_COS_ENABLED; 5752 5753 /* 5754 * If we get QoS information in DL_INFO_ACK, the device supports 5755 * some form of CoS marking, set ILLF_COS_ENABLED. 5756 */ 5757 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5758 dlia->dl_qos_length); 5759 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5760 ill->ill_flags |= ILLF_COS_ENABLED; 5761 } 5762 5763 /* Clear any previous error indication. */ 5764 ill->ill_error = 0; 5765 freemsg(mp); 5766 } 5767 5768 /* 5769 * Perform various checks to verify that an address would make sense as a 5770 * local, remote, or subnet interface address. 5771 */ 5772 static boolean_t 5773 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5774 { 5775 ipaddr_t net_mask; 5776 5777 /* 5778 * Don't allow all zeroes, all ones or experimental address, but allow 5779 * all ones netmask. 5780 */ 5781 if ((net_mask = ip_net_mask(addr)) == 0) 5782 return (B_FALSE); 5783 /* A given netmask overrides the "guess" netmask */ 5784 if (subnet_mask != 0) 5785 net_mask = subnet_mask; 5786 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5787 (addr == (addr | ~net_mask)))) { 5788 return (B_FALSE); 5789 } 5790 if (CLASSD(addr)) 5791 return (B_FALSE); 5792 5793 return (B_TRUE); 5794 } 5795 5796 /* 5797 * ipif_lookup_group 5798 * Returns held ipif 5799 */ 5800 ipif_t * 5801 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5802 { 5803 ire_t *ire; 5804 ipif_t *ipif; 5805 5806 ire = ire_lookup_multi(group, zoneid); 5807 if (ire == NULL) 5808 return (NULL); 5809 ipif = ire->ire_ipif; 5810 ipif_refhold(ipif); 5811 ire_refrele(ire); 5812 return (ipif); 5813 } 5814 5815 /* 5816 * Look for an ipif with the specified interface address and destination. 5817 * The destination address is used only for matching point-to-point interfaces. 5818 */ 5819 ipif_t * 5820 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5821 ipsq_func_t func, int *error) 5822 { 5823 ipif_t *ipif; 5824 ill_t *ill; 5825 ill_walk_context_t ctx; 5826 ipsq_t *ipsq; 5827 5828 if (error != NULL) 5829 *error = 0; 5830 5831 /* 5832 * First match all the point-to-point interfaces 5833 * before looking at non-point-to-point interfaces. 5834 * This is done to avoid returning non-point-to-point 5835 * ipif instead of unnumbered point-to-point ipif. 5836 */ 5837 rw_enter(&ill_g_lock, RW_READER); 5838 ill = ILL_START_WALK_V4(&ctx); 5839 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5840 GRAB_CONN_LOCK(q); 5841 mutex_enter(&ill->ill_lock); 5842 for (ipif = ill->ill_ipif; ipif != NULL; 5843 ipif = ipif->ipif_next) { 5844 /* Allow the ipif to be down */ 5845 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5846 (ipif->ipif_lcl_addr == if_addr) && 5847 (ipif->ipif_pp_dst_addr == dst)) { 5848 /* 5849 * The block comment at the start of ipif_down 5850 * explains the use of the macros used below 5851 */ 5852 if (IPIF_CAN_LOOKUP(ipif)) { 5853 ipif_refhold_locked(ipif); 5854 mutex_exit(&ill->ill_lock); 5855 RELEASE_CONN_LOCK(q); 5856 rw_exit(&ill_g_lock); 5857 return (ipif); 5858 } else if (IPIF_CAN_WAIT(ipif, q)) { 5859 ipsq = ill->ill_phyint->phyint_ipsq; 5860 mutex_enter(&ipsq->ipsq_lock); 5861 mutex_exit(&ill->ill_lock); 5862 rw_exit(&ill_g_lock); 5863 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5864 ill); 5865 mutex_exit(&ipsq->ipsq_lock); 5866 RELEASE_CONN_LOCK(q); 5867 *error = EINPROGRESS; 5868 return (NULL); 5869 } 5870 } 5871 } 5872 mutex_exit(&ill->ill_lock); 5873 RELEASE_CONN_LOCK(q); 5874 } 5875 rw_exit(&ill_g_lock); 5876 5877 /* lookup the ipif based on interface address */ 5878 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5879 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5880 return (ipif); 5881 } 5882 5883 /* 5884 * Look for an ipif with the specified address. For point-point links 5885 * we look for matches on either the destination address and the local 5886 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5887 * is set. 5888 * Matches on a specific ill if match_ill is set. 5889 */ 5890 ipif_t * 5891 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5892 mblk_t *mp, ipsq_func_t func, int *error) 5893 { 5894 ipif_t *ipif; 5895 ill_t *ill; 5896 boolean_t ptp = B_FALSE; 5897 ipsq_t *ipsq; 5898 ill_walk_context_t ctx; 5899 5900 if (error != NULL) 5901 *error = 0; 5902 5903 rw_enter(&ill_g_lock, RW_READER); 5904 /* 5905 * Repeat twice, first based on local addresses and 5906 * next time for pointopoint. 5907 */ 5908 repeat: 5909 ill = ILL_START_WALK_V4(&ctx); 5910 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5911 if (match_ill != NULL && ill != match_ill) { 5912 continue; 5913 } 5914 GRAB_CONN_LOCK(q); 5915 mutex_enter(&ill->ill_lock); 5916 for (ipif = ill->ill_ipif; ipif != NULL; 5917 ipif = ipif->ipif_next) { 5918 if (zoneid != ALL_ZONES && 5919 zoneid != ipif->ipif_zoneid && 5920 ipif->ipif_zoneid != ALL_ZONES) 5921 continue; 5922 /* Allow the ipif to be down */ 5923 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5924 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5925 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5926 (ipif->ipif_pp_dst_addr == addr))) { 5927 /* 5928 * The block comment at the start of ipif_down 5929 * explains the use of the macros used below 5930 */ 5931 if (IPIF_CAN_LOOKUP(ipif)) { 5932 ipif_refhold_locked(ipif); 5933 mutex_exit(&ill->ill_lock); 5934 RELEASE_CONN_LOCK(q); 5935 rw_exit(&ill_g_lock); 5936 return (ipif); 5937 } else if (IPIF_CAN_WAIT(ipif, q)) { 5938 ipsq = ill->ill_phyint->phyint_ipsq; 5939 mutex_enter(&ipsq->ipsq_lock); 5940 mutex_exit(&ill->ill_lock); 5941 rw_exit(&ill_g_lock); 5942 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5943 ill); 5944 mutex_exit(&ipsq->ipsq_lock); 5945 RELEASE_CONN_LOCK(q); 5946 *error = EINPROGRESS; 5947 return (NULL); 5948 } 5949 } 5950 } 5951 mutex_exit(&ill->ill_lock); 5952 RELEASE_CONN_LOCK(q); 5953 } 5954 5955 /* If we already did the ptp case, then we are done */ 5956 if (ptp) { 5957 rw_exit(&ill_g_lock); 5958 if (error != NULL) 5959 *error = ENXIO; 5960 return (NULL); 5961 } 5962 ptp = B_TRUE; 5963 goto repeat; 5964 } 5965 5966 /* 5967 * Look for an ipif with the specified address. For point-point links 5968 * we look for matches on either the destination address and the local 5969 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5970 * is set. 5971 * Matches on a specific ill if match_ill is set. 5972 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5973 */ 5974 zoneid_t 5975 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill) 5976 { 5977 zoneid_t zoneid; 5978 ipif_t *ipif; 5979 ill_t *ill; 5980 boolean_t ptp = B_FALSE; 5981 ill_walk_context_t ctx; 5982 5983 rw_enter(&ill_g_lock, RW_READER); 5984 /* 5985 * Repeat twice, first based on local addresses and 5986 * next time for pointopoint. 5987 */ 5988 repeat: 5989 ill = ILL_START_WALK_V4(&ctx); 5990 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5991 if (match_ill != NULL && ill != match_ill) { 5992 continue; 5993 } 5994 mutex_enter(&ill->ill_lock); 5995 for (ipif = ill->ill_ipif; ipif != NULL; 5996 ipif = ipif->ipif_next) { 5997 /* Allow the ipif to be down */ 5998 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5999 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6000 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6001 (ipif->ipif_pp_dst_addr == addr)) && 6002 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6003 zoneid = ipif->ipif_zoneid; 6004 mutex_exit(&ill->ill_lock); 6005 rw_exit(&ill_g_lock); 6006 /* 6007 * If ipif_zoneid was ALL_ZONES then we have 6008 * a trusted extensions shared IP address. 6009 * In that case GLOBAL_ZONEID works to send. 6010 */ 6011 if (zoneid == ALL_ZONES) 6012 zoneid = GLOBAL_ZONEID; 6013 return (zoneid); 6014 } 6015 } 6016 mutex_exit(&ill->ill_lock); 6017 } 6018 6019 /* If we already did the ptp case, then we are done */ 6020 if (ptp) { 6021 rw_exit(&ill_g_lock); 6022 return (ALL_ZONES); 6023 } 6024 ptp = B_TRUE; 6025 goto repeat; 6026 } 6027 6028 /* 6029 * Look for an ipif that matches the specified remote address i.e. the 6030 * ipif that would receive the specified packet. 6031 * First look for directly connected interfaces and then do a recursive 6032 * IRE lookup and pick the first ipif corresponding to the source address in the 6033 * ire. 6034 * Returns: held ipif 6035 */ 6036 ipif_t * 6037 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6038 { 6039 ipif_t *ipif; 6040 ire_t *ire; 6041 6042 ASSERT(!ill->ill_isv6); 6043 6044 /* 6045 * Someone could be changing this ipif currently or change it 6046 * after we return this. Thus a few packets could use the old 6047 * old values. However structure updates/creates (ire, ilg, ilm etc) 6048 * will atomically be updated or cleaned up with the new value 6049 * Thus we don't need a lock to check the flags or other attrs below. 6050 */ 6051 mutex_enter(&ill->ill_lock); 6052 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6053 if (!IPIF_CAN_LOOKUP(ipif)) 6054 continue; 6055 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6056 ipif->ipif_zoneid != ALL_ZONES) 6057 continue; 6058 /* Allow the ipif to be down */ 6059 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6060 if ((ipif->ipif_pp_dst_addr == addr) || 6061 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6062 ipif->ipif_lcl_addr == addr)) { 6063 ipif_refhold_locked(ipif); 6064 mutex_exit(&ill->ill_lock); 6065 return (ipif); 6066 } 6067 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6068 ipif_refhold_locked(ipif); 6069 mutex_exit(&ill->ill_lock); 6070 return (ipif); 6071 } 6072 } 6073 mutex_exit(&ill->ill_lock); 6074 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6075 NULL, MATCH_IRE_RECURSIVE); 6076 if (ire != NULL) { 6077 /* 6078 * The callers of this function wants to know the 6079 * interface on which they have to send the replies 6080 * back. For IRE_CACHES that have ire_stq and ire_ipif 6081 * derived from different ills, we really don't care 6082 * what we return here. 6083 */ 6084 ipif = ire->ire_ipif; 6085 if (ipif != NULL) { 6086 ipif_refhold(ipif); 6087 ire_refrele(ire); 6088 return (ipif); 6089 } 6090 ire_refrele(ire); 6091 } 6092 /* Pick the first interface */ 6093 ipif = ipif_get_next_ipif(NULL, ill); 6094 return (ipif); 6095 } 6096 6097 /* 6098 * This func does not prevent refcnt from increasing. But if 6099 * the caller has taken steps to that effect, then this func 6100 * can be used to determine whether the ill has become quiescent 6101 */ 6102 boolean_t 6103 ill_is_quiescent(ill_t *ill) 6104 { 6105 ipif_t *ipif; 6106 6107 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6108 6109 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6110 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6111 return (B_FALSE); 6112 } 6113 } 6114 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6115 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6116 ill->ill_mrtun_refcnt != 0) { 6117 return (B_FALSE); 6118 } 6119 return (B_TRUE); 6120 } 6121 6122 /* 6123 * This func does not prevent refcnt from increasing. But if 6124 * the caller has taken steps to that effect, then this func 6125 * can be used to determine whether the ipif has become quiescent 6126 */ 6127 static boolean_t 6128 ipif_is_quiescent(ipif_t *ipif) 6129 { 6130 ill_t *ill; 6131 6132 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6133 6134 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6135 return (B_FALSE); 6136 } 6137 6138 ill = ipif->ipif_ill; 6139 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6140 ill->ill_logical_down) { 6141 return (B_TRUE); 6142 } 6143 6144 /* This is the last ipif going down or being deleted on this ill */ 6145 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6146 return (B_FALSE); 6147 } 6148 6149 return (B_TRUE); 6150 } 6151 6152 /* 6153 * This func does not prevent refcnt from increasing. But if 6154 * the caller has taken steps to that effect, then this func 6155 * can be used to determine whether the ipifs marked with IPIF_MOVING 6156 * have become quiescent and can be moved in a failover/failback. 6157 */ 6158 static ipif_t * 6159 ill_quiescent_to_move(ill_t *ill) 6160 { 6161 ipif_t *ipif; 6162 6163 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6164 6165 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6166 if (ipif->ipif_state_flags & IPIF_MOVING) { 6167 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6168 return (ipif); 6169 } 6170 } 6171 } 6172 return (NULL); 6173 } 6174 6175 /* 6176 * The ipif/ill/ire has been refreled. Do the tail processing. 6177 * Determine if the ipif or ill in question has become quiescent and if so 6178 * wakeup close and/or restart any queued pending ioctl that is waiting 6179 * for the ipif_down (or ill_down) 6180 */ 6181 void 6182 ipif_ill_refrele_tail(ill_t *ill) 6183 { 6184 mblk_t *mp; 6185 conn_t *connp; 6186 ipsq_t *ipsq; 6187 ipif_t *ipif; 6188 dl_notify_ind_t *dlindp; 6189 6190 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6191 6192 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6193 ill_is_quiescent(ill)) { 6194 /* ill_close may be waiting */ 6195 cv_broadcast(&ill->ill_cv); 6196 } 6197 6198 /* ipsq can't change because ill_lock is held */ 6199 ipsq = ill->ill_phyint->phyint_ipsq; 6200 if (ipsq->ipsq_waitfor == 0) { 6201 /* Not waiting for anything, just return. */ 6202 mutex_exit(&ill->ill_lock); 6203 return; 6204 } 6205 ASSERT(ipsq->ipsq_pending_mp != NULL && 6206 ipsq->ipsq_pending_ipif != NULL); 6207 /* 6208 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6209 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6210 * be zero for restarting an ioctl that ends up downing the ill. 6211 */ 6212 ipif = ipsq->ipsq_pending_ipif; 6213 if (ipif->ipif_ill != ill) { 6214 /* The ioctl is pending on some other ill. */ 6215 mutex_exit(&ill->ill_lock); 6216 return; 6217 } 6218 6219 switch (ipsq->ipsq_waitfor) { 6220 case IPIF_DOWN: 6221 case IPIF_FREE: 6222 if (!ipif_is_quiescent(ipif)) { 6223 mutex_exit(&ill->ill_lock); 6224 return; 6225 } 6226 break; 6227 6228 case ILL_DOWN: 6229 case ILL_FREE: 6230 /* 6231 * case ILL_FREE arises only for loopback. otherwise ill_delete 6232 * waits synchronously in ip_close, and no message is queued in 6233 * ipsq_pending_mp at all in this case 6234 */ 6235 if (!ill_is_quiescent(ill)) { 6236 mutex_exit(&ill->ill_lock); 6237 return; 6238 } 6239 6240 break; 6241 6242 case ILL_MOVE_OK: 6243 if (ill_quiescent_to_move(ill) != NULL) { 6244 mutex_exit(&ill->ill_lock); 6245 return; 6246 } 6247 6248 break; 6249 default: 6250 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6251 (void *)ipsq, ipsq->ipsq_waitfor); 6252 } 6253 6254 /* 6255 * Incr refcnt for the qwriter_ip call below which 6256 * does a refrele 6257 */ 6258 ill_refhold_locked(ill); 6259 mutex_exit(&ill->ill_lock); 6260 6261 mp = ipsq_pending_mp_get(ipsq, &connp); 6262 ASSERT(mp != NULL); 6263 6264 switch (mp->b_datap->db_type) { 6265 case M_PCPROTO: 6266 case M_PROTO: 6267 /* 6268 * For now, only DL_NOTIFY_IND messages can use this facility. 6269 */ 6270 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6271 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6272 6273 switch (dlindp->dl_notification) { 6274 case DL_NOTE_PHYS_ADDR: 6275 qwriter_ip(NULL, ill, ill->ill_rq, mp, 6276 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6277 return; 6278 default: 6279 ASSERT(0); 6280 } 6281 break; 6282 6283 case M_ERROR: 6284 case M_HANGUP: 6285 qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail, 6286 CUR_OP, B_TRUE); 6287 return; 6288 6289 case M_IOCTL: 6290 case M_IOCDATA: 6291 qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6292 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6293 return; 6294 6295 default: 6296 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6297 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6298 } 6299 } 6300 6301 #ifdef ILL_DEBUG 6302 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6303 void 6304 th_trace_rrecord(th_trace_t *th_trace) 6305 { 6306 tr_buf_t *tr_buf; 6307 uint_t lastref; 6308 6309 lastref = th_trace->th_trace_lastref; 6310 lastref++; 6311 if (lastref == TR_BUF_MAX) 6312 lastref = 0; 6313 th_trace->th_trace_lastref = lastref; 6314 tr_buf = &th_trace->th_trbuf[lastref]; 6315 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6316 } 6317 6318 th_trace_t * 6319 th_trace_ipif_lookup(ipif_t *ipif) 6320 { 6321 int bucket_id; 6322 th_trace_t *th_trace; 6323 6324 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6325 6326 bucket_id = IP_TR_HASH(curthread); 6327 ASSERT(bucket_id < IP_TR_HASH_MAX); 6328 6329 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6330 th_trace = th_trace->th_next) { 6331 if (th_trace->th_id == curthread) 6332 return (th_trace); 6333 } 6334 return (NULL); 6335 } 6336 6337 void 6338 ipif_trace_ref(ipif_t *ipif) 6339 { 6340 int bucket_id; 6341 th_trace_t *th_trace; 6342 6343 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6344 6345 if (ipif->ipif_trace_disable) 6346 return; 6347 6348 /* 6349 * Attempt to locate the trace buffer for the curthread. 6350 * If it does not exist, then allocate a new trace buffer 6351 * and link it in list of trace bufs for this ipif, at the head 6352 */ 6353 th_trace = th_trace_ipif_lookup(ipif); 6354 if (th_trace == NULL) { 6355 bucket_id = IP_TR_HASH(curthread); 6356 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6357 KM_NOSLEEP); 6358 if (th_trace == NULL) { 6359 ipif->ipif_trace_disable = B_TRUE; 6360 ipif_trace_cleanup(ipif); 6361 return; 6362 } 6363 th_trace->th_id = curthread; 6364 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6365 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6366 if (th_trace->th_next != NULL) 6367 th_trace->th_next->th_prev = &th_trace->th_next; 6368 ipif->ipif_trace[bucket_id] = th_trace; 6369 } 6370 ASSERT(th_trace->th_refcnt >= 0 && 6371 th_trace->th_refcnt < TR_BUF_MAX -1); 6372 th_trace->th_refcnt++; 6373 th_trace_rrecord(th_trace); 6374 } 6375 6376 void 6377 ipif_untrace_ref(ipif_t *ipif) 6378 { 6379 th_trace_t *th_trace; 6380 6381 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6382 6383 if (ipif->ipif_trace_disable) 6384 return; 6385 th_trace = th_trace_ipif_lookup(ipif); 6386 ASSERT(th_trace != NULL); 6387 ASSERT(th_trace->th_refcnt > 0); 6388 6389 th_trace->th_refcnt--; 6390 th_trace_rrecord(th_trace); 6391 } 6392 6393 th_trace_t * 6394 th_trace_ill_lookup(ill_t *ill) 6395 { 6396 th_trace_t *th_trace; 6397 int bucket_id; 6398 6399 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6400 6401 bucket_id = IP_TR_HASH(curthread); 6402 ASSERT(bucket_id < IP_TR_HASH_MAX); 6403 6404 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6405 th_trace = th_trace->th_next) { 6406 if (th_trace->th_id == curthread) 6407 return (th_trace); 6408 } 6409 return (NULL); 6410 } 6411 6412 void 6413 ill_trace_ref(ill_t *ill) 6414 { 6415 int bucket_id; 6416 th_trace_t *th_trace; 6417 6418 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6419 if (ill->ill_trace_disable) 6420 return; 6421 /* 6422 * Attempt to locate the trace buffer for the curthread. 6423 * If it does not exist, then allocate a new trace buffer 6424 * and link it in list of trace bufs for this ill, at the head 6425 */ 6426 th_trace = th_trace_ill_lookup(ill); 6427 if (th_trace == NULL) { 6428 bucket_id = IP_TR_HASH(curthread); 6429 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6430 KM_NOSLEEP); 6431 if (th_trace == NULL) { 6432 ill->ill_trace_disable = B_TRUE; 6433 ill_trace_cleanup(ill); 6434 return; 6435 } 6436 th_trace->th_id = curthread; 6437 th_trace->th_next = ill->ill_trace[bucket_id]; 6438 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6439 if (th_trace->th_next != NULL) 6440 th_trace->th_next->th_prev = &th_trace->th_next; 6441 ill->ill_trace[bucket_id] = th_trace; 6442 } 6443 ASSERT(th_trace->th_refcnt >= 0 && 6444 th_trace->th_refcnt < TR_BUF_MAX - 1); 6445 6446 th_trace->th_refcnt++; 6447 th_trace_rrecord(th_trace); 6448 } 6449 6450 void 6451 ill_untrace_ref(ill_t *ill) 6452 { 6453 th_trace_t *th_trace; 6454 6455 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6456 6457 if (ill->ill_trace_disable) 6458 return; 6459 th_trace = th_trace_ill_lookup(ill); 6460 ASSERT(th_trace != NULL); 6461 ASSERT(th_trace->th_refcnt > 0); 6462 6463 th_trace->th_refcnt--; 6464 th_trace_rrecord(th_trace); 6465 } 6466 6467 /* 6468 * Verify that this thread has no refs to the ipif and free 6469 * the trace buffers 6470 */ 6471 /* ARGSUSED */ 6472 void 6473 ipif_thread_exit(ipif_t *ipif, void *dummy) 6474 { 6475 th_trace_t *th_trace; 6476 6477 mutex_enter(&ipif->ipif_ill->ill_lock); 6478 6479 th_trace = th_trace_ipif_lookup(ipif); 6480 if (th_trace == NULL) { 6481 mutex_exit(&ipif->ipif_ill->ill_lock); 6482 return; 6483 } 6484 ASSERT(th_trace->th_refcnt == 0); 6485 /* unlink th_trace and free it */ 6486 *th_trace->th_prev = th_trace->th_next; 6487 if (th_trace->th_next != NULL) 6488 th_trace->th_next->th_prev = th_trace->th_prev; 6489 th_trace->th_next = NULL; 6490 th_trace->th_prev = NULL; 6491 kmem_free(th_trace, sizeof (th_trace_t)); 6492 6493 mutex_exit(&ipif->ipif_ill->ill_lock); 6494 } 6495 6496 /* 6497 * Verify that this thread has no refs to the ill and free 6498 * the trace buffers 6499 */ 6500 /* ARGSUSED */ 6501 void 6502 ill_thread_exit(ill_t *ill, void *dummy) 6503 { 6504 th_trace_t *th_trace; 6505 6506 mutex_enter(&ill->ill_lock); 6507 6508 th_trace = th_trace_ill_lookup(ill); 6509 if (th_trace == NULL) { 6510 mutex_exit(&ill->ill_lock); 6511 return; 6512 } 6513 ASSERT(th_trace->th_refcnt == 0); 6514 /* unlink th_trace and free it */ 6515 *th_trace->th_prev = th_trace->th_next; 6516 if (th_trace->th_next != NULL) 6517 th_trace->th_next->th_prev = th_trace->th_prev; 6518 th_trace->th_next = NULL; 6519 th_trace->th_prev = NULL; 6520 kmem_free(th_trace, sizeof (th_trace_t)); 6521 6522 mutex_exit(&ill->ill_lock); 6523 } 6524 #endif 6525 6526 #ifdef ILL_DEBUG 6527 void 6528 ip_thread_exit(void) 6529 { 6530 ill_t *ill; 6531 ipif_t *ipif; 6532 ill_walk_context_t ctx; 6533 6534 rw_enter(&ill_g_lock, RW_READER); 6535 ill = ILL_START_WALK_ALL(&ctx); 6536 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6537 for (ipif = ill->ill_ipif; ipif != NULL; 6538 ipif = ipif->ipif_next) { 6539 ipif_thread_exit(ipif, NULL); 6540 } 6541 ill_thread_exit(ill, NULL); 6542 } 6543 rw_exit(&ill_g_lock); 6544 6545 ire_walk(ire_thread_exit, NULL); 6546 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6547 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6548 } 6549 6550 /* 6551 * Called when ipif is unplumbed or when memory alloc fails 6552 */ 6553 void 6554 ipif_trace_cleanup(ipif_t *ipif) 6555 { 6556 int i; 6557 th_trace_t *th_trace; 6558 th_trace_t *th_trace_next; 6559 6560 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6561 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6562 th_trace = th_trace_next) { 6563 th_trace_next = th_trace->th_next; 6564 kmem_free(th_trace, sizeof (th_trace_t)); 6565 } 6566 ipif->ipif_trace[i] = NULL; 6567 } 6568 } 6569 6570 /* 6571 * Called when ill is unplumbed or when memory alloc fails 6572 */ 6573 void 6574 ill_trace_cleanup(ill_t *ill) 6575 { 6576 int i; 6577 th_trace_t *th_trace; 6578 th_trace_t *th_trace_next; 6579 6580 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6581 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6582 th_trace = th_trace_next) { 6583 th_trace_next = th_trace->th_next; 6584 kmem_free(th_trace, sizeof (th_trace_t)); 6585 } 6586 ill->ill_trace[i] = NULL; 6587 } 6588 } 6589 6590 #else 6591 void ip_thread_exit(void) {} 6592 #endif 6593 6594 void 6595 ipif_refhold_locked(ipif_t *ipif) 6596 { 6597 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6598 ipif->ipif_refcnt++; 6599 IPIF_TRACE_REF(ipif); 6600 } 6601 6602 void 6603 ipif_refhold(ipif_t *ipif) 6604 { 6605 ill_t *ill; 6606 6607 ill = ipif->ipif_ill; 6608 mutex_enter(&ill->ill_lock); 6609 ipif->ipif_refcnt++; 6610 IPIF_TRACE_REF(ipif); 6611 mutex_exit(&ill->ill_lock); 6612 } 6613 6614 /* 6615 * Must not be called while holding any locks. Otherwise if this is 6616 * the last reference to be released there is a chance of recursive mutex 6617 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6618 * to restart an ioctl. 6619 */ 6620 void 6621 ipif_refrele(ipif_t *ipif) 6622 { 6623 ill_t *ill; 6624 6625 ill = ipif->ipif_ill; 6626 6627 mutex_enter(&ill->ill_lock); 6628 ASSERT(ipif->ipif_refcnt != 0); 6629 ipif->ipif_refcnt--; 6630 IPIF_UNTRACE_REF(ipif); 6631 if (ipif->ipif_refcnt != 0) { 6632 mutex_exit(&ill->ill_lock); 6633 return; 6634 } 6635 6636 /* Drops the ill_lock */ 6637 ipif_ill_refrele_tail(ill); 6638 } 6639 6640 ipif_t * 6641 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6642 { 6643 ipif_t *ipif; 6644 6645 mutex_enter(&ill->ill_lock); 6646 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6647 ipif != NULL; ipif = ipif->ipif_next) { 6648 if (!IPIF_CAN_LOOKUP(ipif)) 6649 continue; 6650 ipif_refhold_locked(ipif); 6651 mutex_exit(&ill->ill_lock); 6652 return (ipif); 6653 } 6654 mutex_exit(&ill->ill_lock); 6655 return (NULL); 6656 } 6657 6658 /* 6659 * TODO: make this table extendible at run time 6660 * Return a pointer to the mac type info for 'mac_type' 6661 */ 6662 static ip_m_t * 6663 ip_m_lookup(t_uscalar_t mac_type) 6664 { 6665 ip_m_t *ipm; 6666 6667 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6668 if (ipm->ip_m_mac_type == mac_type) 6669 return (ipm); 6670 return (NULL); 6671 } 6672 6673 /* 6674 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6675 * ipif_arg is passed in to associate it with the correct interface. 6676 * We may need to restart this operation if the ipif cannot be looked up 6677 * due to an exclusive operation that is currently in progress. The restart 6678 * entry point is specified by 'func' 6679 */ 6680 int 6681 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6682 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6683 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6684 ipsq_func_t func, struct rtsa_s *sp) 6685 { 6686 ire_t *ire; 6687 ire_t *gw_ire = NULL; 6688 ipif_t *ipif = NULL; 6689 boolean_t ipif_refheld = B_FALSE; 6690 uint_t type; 6691 int match_flags = MATCH_IRE_TYPE; 6692 int error; 6693 tsol_gc_t *gc = NULL; 6694 tsol_gcgrp_t *gcgrp = NULL; 6695 boolean_t gcgrp_xtraref = B_FALSE; 6696 6697 ip1dbg(("ip_rt_add:")); 6698 6699 if (ire_arg != NULL) 6700 *ire_arg = NULL; 6701 6702 /* 6703 * If this is the case of RTF_HOST being set, then we set the netmask 6704 * to all ones (regardless if one was supplied). 6705 */ 6706 if (flags & RTF_HOST) 6707 mask = IP_HOST_MASK; 6708 6709 /* 6710 * Prevent routes with a zero gateway from being created (since 6711 * interfaces can currently be plumbed and brought up no assigned 6712 * address). 6713 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6714 */ 6715 if (gw_addr == 0 && src_ipif == NULL) 6716 return (ENETUNREACH); 6717 /* 6718 * Get the ipif, if any, corresponding to the gw_addr 6719 */ 6720 if (gw_addr != 0) { 6721 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6722 &error); 6723 if (ipif != NULL) { 6724 if (IS_VNI(ipif->ipif_ill)) { 6725 ipif_refrele(ipif); 6726 return (EINVAL); 6727 } 6728 ipif_refheld = B_TRUE; 6729 } else if (error == EINPROGRESS) { 6730 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6731 return (EINPROGRESS); 6732 } else { 6733 error = 0; 6734 } 6735 } 6736 6737 if (ipif != NULL) { 6738 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6739 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6740 } else { 6741 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6742 } 6743 6744 /* 6745 * GateD will attempt to create routes with a loopback interface 6746 * address as the gateway and with RTF_GATEWAY set. We allow 6747 * these routes to be added, but create them as interface routes 6748 * since the gateway is an interface address. 6749 */ 6750 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6751 flags &= ~RTF_GATEWAY; 6752 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6753 mask == IP_HOST_MASK) { 6754 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6755 ALL_ZONES, NULL, match_flags); 6756 if (ire != NULL) { 6757 ire_refrele(ire); 6758 if (ipif_refheld) 6759 ipif_refrele(ipif); 6760 return (EEXIST); 6761 } 6762 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6763 "for 0x%x\n", (void *)ipif, 6764 ipif->ipif_ire_type, 6765 ntohl(ipif->ipif_lcl_addr))); 6766 ire = ire_create( 6767 (uchar_t *)&dst_addr, /* dest address */ 6768 (uchar_t *)&mask, /* mask */ 6769 (uchar_t *)&ipif->ipif_src_addr, 6770 NULL, /* no gateway */ 6771 NULL, 6772 &ipif->ipif_mtu, 6773 NULL, 6774 ipif->ipif_rq, /* recv-from queue */ 6775 NULL, /* no send-to queue */ 6776 ipif->ipif_ire_type, /* LOOPBACK */ 6777 NULL, 6778 ipif, 6779 NULL, 6780 0, 6781 0, 6782 0, 6783 (ipif->ipif_flags & IPIF_PRIVATE) ? 6784 RTF_PRIVATE : 0, 6785 &ire_uinfo_null, 6786 NULL, 6787 NULL); 6788 6789 if (ire == NULL) { 6790 if (ipif_refheld) 6791 ipif_refrele(ipif); 6792 return (ENOMEM); 6793 } 6794 error = ire_add(&ire, q, mp, func, B_FALSE); 6795 if (error == 0) 6796 goto save_ire; 6797 if (ipif_refheld) 6798 ipif_refrele(ipif); 6799 return (error); 6800 6801 } 6802 } 6803 6804 /* 6805 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6806 * and the gateway address provided is one of the system's interface 6807 * addresses. By using the routing socket interface and supplying an 6808 * RTA_IFP sockaddr with an interface index, an alternate method of 6809 * specifying an interface route to be created is available which uses 6810 * the interface index that specifies the outgoing interface rather than 6811 * the address of an outgoing interface (which may not be able to 6812 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6813 * flag, routes can be specified which not only specify the next-hop to 6814 * be used when routing to a certain prefix, but also which outgoing 6815 * interface should be used. 6816 * 6817 * Previously, interfaces would have unique addresses assigned to them 6818 * and so the address assigned to a particular interface could be used 6819 * to identify a particular interface. One exception to this was the 6820 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6821 * 6822 * With the advent of IPv6 and its link-local addresses, this 6823 * restriction was relaxed and interfaces could share addresses between 6824 * themselves. In fact, typically all of the link-local interfaces on 6825 * an IPv6 node or router will have the same link-local address. In 6826 * order to differentiate between these interfaces, the use of an 6827 * interface index is necessary and this index can be carried inside a 6828 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6829 * of using the interface index, however, is that all of the ipif's that 6830 * are part of an ill have the same index and so the RTA_IFP sockaddr 6831 * cannot be used to differentiate between ipif's (or logical 6832 * interfaces) that belong to the same ill (physical interface). 6833 * 6834 * For example, in the following case involving IPv4 interfaces and 6835 * logical interfaces 6836 * 6837 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6838 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6839 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6840 * 6841 * the ipif's corresponding to each of these interface routes can be 6842 * uniquely identified by the "gateway" (actually interface address). 6843 * 6844 * In this case involving multiple IPv6 default routes to a particular 6845 * link-local gateway, the use of RTA_IFP is necessary to specify which 6846 * default route is of interest: 6847 * 6848 * default fe80::123:4567:89ab:cdef U if0 6849 * default fe80::123:4567:89ab:cdef U if1 6850 */ 6851 6852 /* RTF_GATEWAY not set */ 6853 if (!(flags & RTF_GATEWAY)) { 6854 queue_t *stq; 6855 queue_t *rfq = NULL; 6856 ill_t *in_ill = NULL; 6857 6858 if (sp != NULL) { 6859 ip2dbg(("ip_rt_add: gateway security attributes " 6860 "cannot be set with interface route\n")); 6861 if (ipif_refheld) 6862 ipif_refrele(ipif); 6863 return (EINVAL); 6864 } 6865 6866 /* 6867 * As the interface index specified with the RTA_IFP sockaddr is 6868 * the same for all ipif's off of an ill, the matching logic 6869 * below uses MATCH_IRE_ILL if such an index was specified. 6870 * This means that routes sharing the same prefix when added 6871 * using a RTA_IFP sockaddr must have distinct interface 6872 * indices (namely, they must be on distinct ill's). 6873 * 6874 * On the other hand, since the gateway address will usually be 6875 * different for each ipif on the system, the matching logic 6876 * uses MATCH_IRE_IPIF in the case of a traditional interface 6877 * route. This means that interface routes for the same prefix 6878 * can be created if they belong to distinct ipif's and if a 6879 * RTA_IFP sockaddr is not present. 6880 */ 6881 if (ipif_arg != NULL) { 6882 if (ipif_refheld) { 6883 ipif_refrele(ipif); 6884 ipif_refheld = B_FALSE; 6885 } 6886 ipif = ipif_arg; 6887 match_flags |= MATCH_IRE_ILL; 6888 } else { 6889 /* 6890 * Check the ipif corresponding to the gw_addr 6891 */ 6892 if (ipif == NULL) 6893 return (ENETUNREACH); 6894 match_flags |= MATCH_IRE_IPIF; 6895 } 6896 ASSERT(ipif != NULL); 6897 /* 6898 * If src_ipif is not NULL, we have to create 6899 * an ire with non-null ire_in_ill value 6900 */ 6901 if (src_ipif != NULL) { 6902 in_ill = src_ipif->ipif_ill; 6903 } 6904 6905 /* 6906 * We check for an existing entry at this point. 6907 * 6908 * Since a netmask isn't passed in via the ioctl interface 6909 * (SIOCADDRT), we don't check for a matching netmask in that 6910 * case. 6911 */ 6912 if (!ioctl_msg) 6913 match_flags |= MATCH_IRE_MASK; 6914 if (src_ipif != NULL) { 6915 /* Look up in the special table */ 6916 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6917 ipif, src_ipif->ipif_ill, match_flags); 6918 } else { 6919 ire = ire_ftable_lookup(dst_addr, mask, 0, 6920 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6921 NULL, match_flags); 6922 } 6923 if (ire != NULL) { 6924 ire_refrele(ire); 6925 if (ipif_refheld) 6926 ipif_refrele(ipif); 6927 return (EEXIST); 6928 } 6929 6930 if (src_ipif != NULL) { 6931 /* 6932 * Create the special ire for the IRE table 6933 * which hangs out of ire_in_ill. This ire 6934 * is in-between IRE_CACHE and IRE_INTERFACE. 6935 * Thus rfq is non-NULL. 6936 */ 6937 rfq = ipif->ipif_rq; 6938 } 6939 /* Create the usual interface ires */ 6940 6941 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6942 ? ipif->ipif_rq : ipif->ipif_wq; 6943 6944 /* 6945 * Create a copy of the IRE_LOOPBACK, 6946 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6947 * the modified address and netmask. 6948 */ 6949 ire = ire_create( 6950 (uchar_t *)&dst_addr, 6951 (uint8_t *)&mask, 6952 (uint8_t *)&ipif->ipif_src_addr, 6953 NULL, 6954 NULL, 6955 &ipif->ipif_mtu, 6956 NULL, 6957 rfq, 6958 stq, 6959 ipif->ipif_net_type, 6960 ipif->ipif_resolver_mp, 6961 ipif, 6962 in_ill, 6963 0, 6964 0, 6965 0, 6966 flags, 6967 &ire_uinfo_null, 6968 NULL, 6969 NULL); 6970 if (ire == NULL) { 6971 if (ipif_refheld) 6972 ipif_refrele(ipif); 6973 return (ENOMEM); 6974 } 6975 6976 /* 6977 * Some software (for example, GateD and Sun Cluster) attempts 6978 * to create (what amount to) IRE_PREFIX routes with the 6979 * loopback address as the gateway. This is primarily done to 6980 * set up prefixes with the RTF_REJECT flag set (for example, 6981 * when generating aggregate routes.) 6982 * 6983 * If the IRE type (as defined by ipif->ipif_net_type) is 6984 * IRE_LOOPBACK, then we map the request into a 6985 * IRE_IF_NORESOLVER. 6986 * 6987 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6988 * routine, but rather using ire_create() directly. 6989 * 6990 */ 6991 if (ipif->ipif_net_type == IRE_LOOPBACK) 6992 ire->ire_type = IRE_IF_NORESOLVER; 6993 6994 error = ire_add(&ire, q, mp, func, B_FALSE); 6995 if (error == 0) 6996 goto save_ire; 6997 6998 /* 6999 * In the result of failure, ire_add() will have already 7000 * deleted the ire in question, so there is no need to 7001 * do that here. 7002 */ 7003 if (ipif_refheld) 7004 ipif_refrele(ipif); 7005 return (error); 7006 } 7007 if (ipif_refheld) { 7008 ipif_refrele(ipif); 7009 ipif_refheld = B_FALSE; 7010 } 7011 7012 if (src_ipif != NULL) { 7013 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7014 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7015 return (EINVAL); 7016 } 7017 /* 7018 * Get an interface IRE for the specified gateway. 7019 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7020 * gateway, it is currently unreachable and we fail the request 7021 * accordingly. 7022 */ 7023 ipif = ipif_arg; 7024 if (ipif_arg != NULL) 7025 match_flags |= MATCH_IRE_ILL; 7026 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7027 ALL_ZONES, 0, NULL, match_flags); 7028 if (gw_ire == NULL) 7029 return (ENETUNREACH); 7030 7031 /* 7032 * We create one of three types of IREs as a result of this request 7033 * based on the netmask. A netmask of all ones (which is automatically 7034 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7035 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7036 * created. Otherwise, an IRE_PREFIX route is created for the 7037 * destination prefix. 7038 */ 7039 if (mask == IP_HOST_MASK) 7040 type = IRE_HOST; 7041 else if (mask == 0) 7042 type = IRE_DEFAULT; 7043 else 7044 type = IRE_PREFIX; 7045 7046 /* check for a duplicate entry */ 7047 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7048 NULL, ALL_ZONES, 0, NULL, 7049 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 7050 if (ire != NULL) { 7051 ire_refrele(gw_ire); 7052 ire_refrele(ire); 7053 return (EEXIST); 7054 } 7055 7056 /* Security attribute exists */ 7057 if (sp != NULL) { 7058 tsol_gcgrp_addr_t ga; 7059 7060 /* find or create the gateway credentials group */ 7061 ga.ga_af = AF_INET; 7062 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7063 7064 /* we hold reference to it upon success */ 7065 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7066 if (gcgrp == NULL) { 7067 ire_refrele(gw_ire); 7068 return (ENOMEM); 7069 } 7070 7071 /* 7072 * Create and add the security attribute to the group; a 7073 * reference to the group is made upon allocating a new 7074 * entry successfully. If it finds an already-existing 7075 * entry for the security attribute in the group, it simply 7076 * returns it and no new reference is made to the group. 7077 */ 7078 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7079 if (gc == NULL) { 7080 /* release reference held by gcgrp_lookup */ 7081 GCGRP_REFRELE(gcgrp); 7082 ire_refrele(gw_ire); 7083 return (ENOMEM); 7084 } 7085 } 7086 7087 /* Create the IRE. */ 7088 ire = ire_create( 7089 (uchar_t *)&dst_addr, /* dest address */ 7090 (uchar_t *)&mask, /* mask */ 7091 /* src address assigned by the caller? */ 7092 (uchar_t *)(((src_addr != INADDR_ANY) && 7093 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7094 (uchar_t *)&gw_addr, /* gateway address */ 7095 NULL, /* no in-srcaddress */ 7096 &gw_ire->ire_max_frag, 7097 NULL, /* no Fast Path header */ 7098 NULL, /* no recv-from queue */ 7099 NULL, /* no send-to queue */ 7100 (ushort_t)type, /* IRE type */ 7101 NULL, 7102 ipif_arg, 7103 NULL, 7104 0, 7105 0, 7106 0, 7107 flags, 7108 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7109 gc, /* security attribute */ 7110 NULL); 7111 /* 7112 * The ire holds a reference to the 'gc' and the 'gc' holds a 7113 * reference to the 'gcgrp'. We can now release the extra reference 7114 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7115 */ 7116 if (gcgrp_xtraref) 7117 GCGRP_REFRELE(gcgrp); 7118 if (ire == NULL) { 7119 if (gc != NULL) 7120 GC_REFRELE(gc); 7121 ire_refrele(gw_ire); 7122 return (ENOMEM); 7123 } 7124 7125 /* 7126 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7127 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7128 */ 7129 7130 /* Add the new IRE. */ 7131 error = ire_add(&ire, q, mp, func, B_FALSE); 7132 if (error != 0) { 7133 /* 7134 * In the result of failure, ire_add() will have already 7135 * deleted the ire in question, so there is no need to 7136 * do that here. 7137 */ 7138 ire_refrele(gw_ire); 7139 return (error); 7140 } 7141 7142 if (flags & RTF_MULTIRT) { 7143 /* 7144 * Invoke the CGTP (multirouting) filtering module 7145 * to add the dst address in the filtering database. 7146 * Replicated inbound packets coming from that address 7147 * will be filtered to discard the duplicates. 7148 * It is not necessary to call the CGTP filter hook 7149 * when the dst address is a broadcast or multicast, 7150 * because an IP source address cannot be a broadcast 7151 * or a multicast. 7152 */ 7153 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7154 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 7155 if (ire_dst != NULL) { 7156 ip_cgtp_bcast_add(ire, ire_dst); 7157 ire_refrele(ire_dst); 7158 goto save_ire; 7159 } 7160 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 7161 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7162 ire->ire_addr, 7163 ire->ire_gateway_addr, 7164 ire->ire_src_addr, 7165 gw_ire->ire_src_addr); 7166 if (res != 0) { 7167 ire_refrele(gw_ire); 7168 ire_delete(ire); 7169 return (res); 7170 } 7171 } 7172 } 7173 7174 /* 7175 * Now that the prefix IRE entry has been created, delete any 7176 * existing gateway IRE cache entries as well as any IRE caches 7177 * using the gateway, and force them to be created through 7178 * ip_newroute. 7179 */ 7180 if (gc != NULL) { 7181 ASSERT(gcgrp != NULL); 7182 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 7183 } 7184 7185 save_ire: 7186 if (gw_ire != NULL) { 7187 ire_refrele(gw_ire); 7188 } 7189 /* 7190 * We do not do save_ire for the routes added with RTA_SRCIFP 7191 * flag. This route is only added and deleted by mipagent. 7192 * So, for simplicity of design, we refrain from saving 7193 * ires that are created with srcif value. This may change 7194 * in future if we find more usage of srcifp feature. 7195 */ 7196 if (ipif != NULL && src_ipif == NULL) { 7197 /* 7198 * Save enough information so that we can recreate the IRE if 7199 * the interface goes down and then up. The metrics associated 7200 * with the route will be saved as well when rts_setmetrics() is 7201 * called after the IRE has been created. In the case where 7202 * memory cannot be allocated, none of this information will be 7203 * saved. 7204 */ 7205 ipif_save_ire(ipif, ire); 7206 } 7207 if (ioctl_msg) 7208 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 7209 if (ire_arg != NULL) { 7210 /* 7211 * Store the ire that was successfully added into where ire_arg 7212 * points to so that callers don't have to look it up 7213 * themselves (but they are responsible for ire_refrele()ing 7214 * the ire when they are finished with it). 7215 */ 7216 *ire_arg = ire; 7217 } else { 7218 ire_refrele(ire); /* Held in ire_add */ 7219 } 7220 if (ipif_refheld) 7221 ipif_refrele(ipif); 7222 return (0); 7223 } 7224 7225 /* 7226 * ip_rt_delete is called to delete an IPv4 route. 7227 * ipif_arg is passed in to associate it with the correct interface. 7228 * src_ipif is passed to associate the incoming interface of the packet. 7229 * We may need to restart this operation if the ipif cannot be looked up 7230 * due to an exclusive operation that is currently in progress. The restart 7231 * entry point is specified by 'func' 7232 */ 7233 /* ARGSUSED4 */ 7234 int 7235 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7236 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7237 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 7238 { 7239 ire_t *ire = NULL; 7240 ipif_t *ipif; 7241 boolean_t ipif_refheld = B_FALSE; 7242 uint_t type; 7243 uint_t match_flags = MATCH_IRE_TYPE; 7244 int err = 0; 7245 7246 ip1dbg(("ip_rt_delete:")); 7247 /* 7248 * If this is the case of RTF_HOST being set, then we set the netmask 7249 * to all ones. Otherwise, we use the netmask if one was supplied. 7250 */ 7251 if (flags & RTF_HOST) { 7252 mask = IP_HOST_MASK; 7253 match_flags |= MATCH_IRE_MASK; 7254 } else if (rtm_addrs & RTA_NETMASK) { 7255 match_flags |= MATCH_IRE_MASK; 7256 } 7257 7258 /* 7259 * Note that RTF_GATEWAY is never set on a delete, therefore 7260 * we check if the gateway address is one of our interfaces first, 7261 * and fall back on RTF_GATEWAY routes. 7262 * 7263 * This makes it possible to delete an original 7264 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7265 * 7266 * As the interface index specified with the RTA_IFP sockaddr is the 7267 * same for all ipif's off of an ill, the matching logic below uses 7268 * MATCH_IRE_ILL if such an index was specified. This means a route 7269 * sharing the same prefix and interface index as the the route 7270 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7271 * is specified in the request. 7272 * 7273 * On the other hand, since the gateway address will usually be 7274 * different for each ipif on the system, the matching logic 7275 * uses MATCH_IRE_IPIF in the case of a traditional interface 7276 * route. This means that interface routes for the same prefix can be 7277 * uniquely identified if they belong to distinct ipif's and if a 7278 * RTA_IFP sockaddr is not present. 7279 * 7280 * For more detail on specifying routes by gateway address and by 7281 * interface index, see the comments in ip_rt_add(). 7282 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7283 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7284 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7285 * succeed. 7286 */ 7287 if (src_ipif != NULL) { 7288 if (ipif_arg == NULL && gw_addr != 0) { 7289 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7290 q, mp, func, &err); 7291 if (ipif_arg != NULL) 7292 ipif_refheld = B_TRUE; 7293 } 7294 if (ipif_arg == NULL) { 7295 err = (err == EINPROGRESS) ? err : ESRCH; 7296 return (err); 7297 } 7298 ipif = ipif_arg; 7299 } else { 7300 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7301 q, mp, func, &err); 7302 if (ipif != NULL) 7303 ipif_refheld = B_TRUE; 7304 else if (err == EINPROGRESS) 7305 return (err); 7306 else 7307 err = 0; 7308 } 7309 if (ipif != NULL) { 7310 if (ipif_arg != NULL) { 7311 if (ipif_refheld) { 7312 ipif_refrele(ipif); 7313 ipif_refheld = B_FALSE; 7314 } 7315 ipif = ipif_arg; 7316 match_flags |= MATCH_IRE_ILL; 7317 } else { 7318 match_flags |= MATCH_IRE_IPIF; 7319 } 7320 if (src_ipif != NULL) { 7321 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7322 ipif, src_ipif->ipif_ill, match_flags); 7323 } else { 7324 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7325 ire = ire_ctable_lookup(dst_addr, 0, 7326 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7327 match_flags); 7328 } 7329 if (ire == NULL) { 7330 ire = ire_ftable_lookup(dst_addr, mask, 0, 7331 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7332 NULL, match_flags); 7333 } 7334 } 7335 } 7336 7337 if (ire == NULL) { 7338 /* 7339 * At this point, the gateway address is not one of our own 7340 * addresses or a matching interface route was not found. We 7341 * set the IRE type to lookup based on whether 7342 * this is a host route, a default route or just a prefix. 7343 * 7344 * If an ipif_arg was passed in, then the lookup is based on an 7345 * interface index so MATCH_IRE_ILL is added to match_flags. 7346 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7347 * set as the route being looked up is not a traditional 7348 * interface route. 7349 * Since we do not add gateway route with srcipif, we don't 7350 * expect to find it either. 7351 */ 7352 if (src_ipif != NULL) { 7353 if (ipif_refheld) 7354 ipif_refrele(ipif); 7355 return (ESRCH); 7356 } else { 7357 match_flags &= ~MATCH_IRE_IPIF; 7358 match_flags |= MATCH_IRE_GW; 7359 if (ipif_arg != NULL) 7360 match_flags |= MATCH_IRE_ILL; 7361 if (mask == IP_HOST_MASK) 7362 type = IRE_HOST; 7363 else if (mask == 0) 7364 type = IRE_DEFAULT; 7365 else 7366 type = IRE_PREFIX; 7367 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7368 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 7369 } 7370 } 7371 7372 if (ipif_refheld) 7373 ipif_refrele(ipif); 7374 7375 /* ipif is not refheld anymore */ 7376 if (ire == NULL) 7377 return (ESRCH); 7378 7379 if (ire->ire_flags & RTF_MULTIRT) { 7380 /* 7381 * Invoke the CGTP (multirouting) filtering module 7382 * to remove the dst address from the filtering database. 7383 * Packets coming from that address will no longer be 7384 * filtered to remove duplicates. 7385 */ 7386 if (ip_cgtp_filter_ops != NULL) { 7387 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 7388 ire->ire_gateway_addr); 7389 } 7390 ip_cgtp_bcast_delete(ire); 7391 } 7392 7393 ipif = ire->ire_ipif; 7394 /* 7395 * Removing from ipif_saved_ire_mp is not necessary 7396 * when src_ipif being non-NULL. ip_rt_add does not 7397 * save the ires which src_ipif being non-NULL. 7398 */ 7399 if (ipif != NULL && src_ipif == NULL) { 7400 ipif_remove_ire(ipif, ire); 7401 } 7402 if (ioctl_msg) 7403 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 7404 ire_delete(ire); 7405 ire_refrele(ire); 7406 return (err); 7407 } 7408 7409 /* 7410 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7411 */ 7412 /* ARGSUSED */ 7413 int 7414 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7415 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7416 { 7417 ipaddr_t dst_addr; 7418 ipaddr_t gw_addr; 7419 ipaddr_t mask; 7420 int error = 0; 7421 mblk_t *mp1; 7422 struct rtentry *rt; 7423 ipif_t *ipif = NULL; 7424 7425 ip1dbg(("ip_siocaddrt:")); 7426 /* Existence of mp1 verified in ip_wput_nondata */ 7427 mp1 = mp->b_cont->b_cont; 7428 rt = (struct rtentry *)mp1->b_rptr; 7429 7430 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7431 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7432 7433 /* 7434 * If the RTF_HOST flag is on, this is a request to assign a gateway 7435 * to a particular host address. In this case, we set the netmask to 7436 * all ones for the particular destination address. Otherwise, 7437 * determine the netmask to be used based on dst_addr and the interfaces 7438 * in use. 7439 */ 7440 if (rt->rt_flags & RTF_HOST) { 7441 mask = IP_HOST_MASK; 7442 } else { 7443 /* 7444 * Note that ip_subnet_mask returns a zero mask in the case of 7445 * default (an all-zeroes address). 7446 */ 7447 mask = ip_subnet_mask(dst_addr, &ipif); 7448 } 7449 7450 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7451 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 7452 if (ipif != NULL) 7453 ipif_refrele(ipif); 7454 return (error); 7455 } 7456 7457 /* 7458 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7459 */ 7460 /* ARGSUSED */ 7461 int 7462 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7463 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7464 { 7465 ipaddr_t dst_addr; 7466 ipaddr_t gw_addr; 7467 ipaddr_t mask; 7468 int error; 7469 mblk_t *mp1; 7470 struct rtentry *rt; 7471 ipif_t *ipif = NULL; 7472 7473 ip1dbg(("ip_siocdelrt:")); 7474 /* Existence of mp1 verified in ip_wput_nondata */ 7475 mp1 = mp->b_cont->b_cont; 7476 rt = (struct rtentry *)mp1->b_rptr; 7477 7478 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7479 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7480 7481 /* 7482 * If the RTF_HOST flag is on, this is a request to delete a gateway 7483 * to a particular host address. In this case, we set the netmask to 7484 * all ones for the particular destination address. Otherwise, 7485 * determine the netmask to be used based on dst_addr and the interfaces 7486 * in use. 7487 */ 7488 if (rt->rt_flags & RTF_HOST) { 7489 mask = IP_HOST_MASK; 7490 } else { 7491 /* 7492 * Note that ip_subnet_mask returns a zero mask in the case of 7493 * default (an all-zeroes address). 7494 */ 7495 mask = ip_subnet_mask(dst_addr, &ipif); 7496 } 7497 7498 error = ip_rt_delete(dst_addr, mask, gw_addr, 7499 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7500 B_TRUE, q, mp, ip_process_ioctl); 7501 if (ipif != NULL) 7502 ipif_refrele(ipif); 7503 return (error); 7504 } 7505 7506 /* 7507 * Enqueue the mp onto the ipsq, chained by b_next. 7508 * b_prev stores the function to be executed later, and b_queue the queue 7509 * where this mp originated. 7510 */ 7511 void 7512 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7513 ill_t *pending_ill) 7514 { 7515 conn_t *connp = NULL; 7516 7517 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7518 ASSERT(func != NULL); 7519 7520 mp->b_queue = q; 7521 mp->b_prev = (void *)func; 7522 mp->b_next = NULL; 7523 7524 switch (type) { 7525 case CUR_OP: 7526 if (ipsq->ipsq_mptail != NULL) { 7527 ASSERT(ipsq->ipsq_mphead != NULL); 7528 ipsq->ipsq_mptail->b_next = mp; 7529 } else { 7530 ASSERT(ipsq->ipsq_mphead == NULL); 7531 ipsq->ipsq_mphead = mp; 7532 } 7533 ipsq->ipsq_mptail = mp; 7534 break; 7535 7536 case NEW_OP: 7537 if (ipsq->ipsq_xopq_mptail != NULL) { 7538 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7539 ipsq->ipsq_xopq_mptail->b_next = mp; 7540 } else { 7541 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7542 ipsq->ipsq_xopq_mphead = mp; 7543 } 7544 ipsq->ipsq_xopq_mptail = mp; 7545 break; 7546 default: 7547 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7548 } 7549 7550 if (CONN_Q(q) && pending_ill != NULL) { 7551 connp = Q_TO_CONN(q); 7552 7553 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7554 connp->conn_oper_pending_ill = pending_ill; 7555 } 7556 } 7557 7558 /* 7559 * Return the mp at the head of the ipsq. After emptying the ipsq 7560 * look at the next ioctl, if this ioctl is complete. Otherwise 7561 * return, we will resume when we complete the current ioctl. 7562 * The current ioctl will wait till it gets a response from the 7563 * driver below. 7564 */ 7565 static mblk_t * 7566 ipsq_dq(ipsq_t *ipsq) 7567 { 7568 mblk_t *mp; 7569 7570 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7571 7572 mp = ipsq->ipsq_mphead; 7573 if (mp != NULL) { 7574 ipsq->ipsq_mphead = mp->b_next; 7575 if (ipsq->ipsq_mphead == NULL) 7576 ipsq->ipsq_mptail = NULL; 7577 mp->b_next = NULL; 7578 return (mp); 7579 } 7580 if (ipsq->ipsq_current_ipif != NULL) 7581 return (NULL); 7582 mp = ipsq->ipsq_xopq_mphead; 7583 if (mp != NULL) { 7584 ipsq->ipsq_xopq_mphead = mp->b_next; 7585 if (ipsq->ipsq_xopq_mphead == NULL) 7586 ipsq->ipsq_xopq_mptail = NULL; 7587 mp->b_next = NULL; 7588 return (mp); 7589 } 7590 return (NULL); 7591 } 7592 7593 /* 7594 * Enter the ipsq corresponding to ill, by waiting synchronously till 7595 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7596 * will have to drain completely before ipsq_enter returns success. 7597 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7598 * and the ipsq_exit logic will start the next enqueued ioctl after 7599 * completion of the current ioctl. If 'force' is used, we don't wait 7600 * for the enqueued ioctls. This is needed when a conn_close wants to 7601 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7602 * of an ill can also use this option. But we dont' use it currently. 7603 */ 7604 #define ENTER_SQ_WAIT_TICKS 100 7605 boolean_t 7606 ipsq_enter(ill_t *ill, boolean_t force) 7607 { 7608 ipsq_t *ipsq; 7609 boolean_t waited_enough = B_FALSE; 7610 7611 /* 7612 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7613 * Since the <ill-ipsq> assocs could change while we wait for the 7614 * writer, it is easier to wait on a fixed global rather than try to 7615 * cv_wait on a changing ipsq. 7616 */ 7617 mutex_enter(&ill->ill_lock); 7618 for (;;) { 7619 if (ill->ill_state_flags & ILL_CONDEMNED) { 7620 mutex_exit(&ill->ill_lock); 7621 return (B_FALSE); 7622 } 7623 7624 ipsq = ill->ill_phyint->phyint_ipsq; 7625 mutex_enter(&ipsq->ipsq_lock); 7626 if (ipsq->ipsq_writer == NULL && 7627 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7628 break; 7629 } else if (ipsq->ipsq_writer != NULL) { 7630 mutex_exit(&ipsq->ipsq_lock); 7631 cv_wait(&ill->ill_cv, &ill->ill_lock); 7632 } else { 7633 mutex_exit(&ipsq->ipsq_lock); 7634 if (force) { 7635 (void) cv_timedwait(&ill->ill_cv, 7636 &ill->ill_lock, 7637 lbolt + ENTER_SQ_WAIT_TICKS); 7638 waited_enough = B_TRUE; 7639 continue; 7640 } else { 7641 cv_wait(&ill->ill_cv, &ill->ill_lock); 7642 } 7643 } 7644 } 7645 7646 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7647 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7648 ipsq->ipsq_writer = curthread; 7649 ipsq->ipsq_reentry_cnt++; 7650 #ifdef ILL_DEBUG 7651 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7652 #endif 7653 mutex_exit(&ipsq->ipsq_lock); 7654 mutex_exit(&ill->ill_lock); 7655 return (B_TRUE); 7656 } 7657 7658 /* 7659 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7660 * certain critical operations like plumbing (i.e. most set ioctls), 7661 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7662 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7663 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7664 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7665 * threads executing in the ipsq. Responses from the driver pertain to the 7666 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7667 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7668 * 7669 * If a thread does not want to reenter the ipsq when it is already writer, 7670 * it must make sure that the specified reentry point to be called later 7671 * when the ipsq is empty, nor any code path starting from the specified reentry 7672 * point must never ever try to enter the ipsq again. Otherwise it can lead 7673 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7674 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7675 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7676 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7677 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7678 * ioctl if the current ioctl has completed. If the current ioctl is still 7679 * in progress it simply returns. The current ioctl could be waiting for 7680 * a response from another module (arp_ or the driver or could be waiting for 7681 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7682 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7683 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7684 * ipsq_current_ipif is clear which happens only on ioctl completion. 7685 */ 7686 7687 /* 7688 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7689 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7690 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7691 * completion. 7692 */ 7693 ipsq_t * 7694 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7695 ipsq_func_t func, int type, boolean_t reentry_ok) 7696 { 7697 ipsq_t *ipsq; 7698 7699 /* Only 1 of ipif or ill can be specified */ 7700 ASSERT((ipif != NULL) ^ (ill != NULL)); 7701 if (ipif != NULL) 7702 ill = ipif->ipif_ill; 7703 7704 /* 7705 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7706 * ipsq of an ill can't change when ill_lock is held. 7707 */ 7708 GRAB_CONN_LOCK(q); 7709 mutex_enter(&ill->ill_lock); 7710 ipsq = ill->ill_phyint->phyint_ipsq; 7711 mutex_enter(&ipsq->ipsq_lock); 7712 7713 /* 7714 * 1. Enter the ipsq if we are already writer and reentry is ok. 7715 * (Note: If the caller does not specify reentry_ok then neither 7716 * 'func' nor any of its callees must ever attempt to enter the ipsq 7717 * again. Otherwise it can lead to an infinite loop 7718 * 2. Enter the ipsq if there is no current writer and this attempted 7719 * entry is part of the current ioctl or operation 7720 * 3. Enter the ipsq if there is no current writer and this is a new 7721 * ioctl (or operation) and the ioctl (or operation) queue is 7722 * empty and there is no ioctl (or operation) currently in progress 7723 */ 7724 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7725 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7726 ipsq->ipsq_current_ipif == NULL))) || 7727 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7728 /* Success. */ 7729 ipsq->ipsq_reentry_cnt++; 7730 ipsq->ipsq_writer = curthread; 7731 mutex_exit(&ipsq->ipsq_lock); 7732 mutex_exit(&ill->ill_lock); 7733 RELEASE_CONN_LOCK(q); 7734 #ifdef ILL_DEBUG 7735 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7736 #endif 7737 return (ipsq); 7738 } 7739 7740 ipsq_enq(ipsq, q, mp, func, type, ill); 7741 7742 mutex_exit(&ipsq->ipsq_lock); 7743 mutex_exit(&ill->ill_lock); 7744 RELEASE_CONN_LOCK(q); 7745 return (NULL); 7746 } 7747 7748 /* 7749 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7750 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7751 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7752 * completion. 7753 * 7754 * This function does a refrele on the ipif/ill. 7755 */ 7756 void 7757 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7758 ipsq_func_t func, int type, boolean_t reentry_ok) 7759 { 7760 ipsq_t *ipsq; 7761 7762 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7763 /* 7764 * Caller must have done a refhold on the ipif. ipif_refrele 7765 * happens on the passed ipif. We can do this since we are 7766 * already exclusive, or we won't access ipif henceforth, Both 7767 * this func and caller will just return if we ipsq_try_enter 7768 * fails above. This is needed because func needs to 7769 * see the correct refcount. Eg. removeif can work only then. 7770 */ 7771 if (ipif != NULL) 7772 ipif_refrele(ipif); 7773 else 7774 ill_refrele(ill); 7775 if (ipsq != NULL) { 7776 (*func)(ipsq, q, mp, NULL); 7777 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7778 } 7779 } 7780 7781 /* 7782 * If there are more than ILL_GRP_CNT ills in a group, 7783 * we use kmem alloc'd buffers, else use the stack 7784 */ 7785 #define ILL_GRP_CNT 14 7786 /* 7787 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7788 * Called by a thread that is currently exclusive on this ipsq. 7789 */ 7790 void 7791 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7792 { 7793 queue_t *q; 7794 mblk_t *mp; 7795 ipsq_func_t func; 7796 int next; 7797 ill_t **ill_list = NULL; 7798 size_t ill_list_size = 0; 7799 int cnt = 0; 7800 boolean_t need_ipsq_free = B_FALSE; 7801 7802 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7803 mutex_enter(&ipsq->ipsq_lock); 7804 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7805 if (ipsq->ipsq_reentry_cnt != 1) { 7806 ipsq->ipsq_reentry_cnt--; 7807 mutex_exit(&ipsq->ipsq_lock); 7808 return; 7809 } 7810 7811 mp = ipsq_dq(ipsq); 7812 while (mp != NULL) { 7813 again: 7814 mutex_exit(&ipsq->ipsq_lock); 7815 func = (ipsq_func_t)mp->b_prev; 7816 q = (queue_t *)mp->b_queue; 7817 mp->b_prev = NULL; 7818 mp->b_queue = NULL; 7819 7820 /* 7821 * If 'q' is an conn queue, it is valid, since we did a 7822 * a refhold on the connp, at the start of the ioctl. 7823 * If 'q' is an ill queue, it is valid, since close of an 7824 * ill will clean up the 'ipsq'. 7825 */ 7826 (*func)(ipsq, q, mp, NULL); 7827 7828 mutex_enter(&ipsq->ipsq_lock); 7829 mp = ipsq_dq(ipsq); 7830 } 7831 7832 mutex_exit(&ipsq->ipsq_lock); 7833 7834 /* 7835 * Need to grab the locks in the right order. Need to 7836 * atomically check (under ipsq_lock) that there are no 7837 * messages before relinquishing the ipsq. Also need to 7838 * atomically wakeup waiters on ill_cv while holding ill_lock. 7839 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7840 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7841 * to grab ill_g_lock as writer. 7842 */ 7843 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7844 7845 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7846 if (ipsq->ipsq_refs != 0) { 7847 /* At most 2 ills v4/v6 per phyint */ 7848 cnt = ipsq->ipsq_refs << 1; 7849 ill_list_size = cnt * sizeof (ill_t *); 7850 /* 7851 * If memory allocation fails, we will do the split 7852 * the next time ipsq_exit is called for whatever reason. 7853 * As long as the ipsq_split flag is set the need to 7854 * split is remembered. 7855 */ 7856 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7857 if (ill_list != NULL) 7858 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7859 } 7860 mutex_enter(&ipsq->ipsq_lock); 7861 mp = ipsq_dq(ipsq); 7862 if (mp != NULL) { 7863 /* oops, some message has landed up, we can't get out */ 7864 if (ill_list != NULL) 7865 ill_unlock_ills(ill_list, cnt); 7866 rw_exit(&ill_g_lock); 7867 if (ill_list != NULL) 7868 kmem_free(ill_list, ill_list_size); 7869 ill_list = NULL; 7870 ill_list_size = 0; 7871 cnt = 0; 7872 goto again; 7873 } 7874 7875 /* 7876 * Split only if no ioctl is pending and if memory alloc succeeded 7877 * above. 7878 */ 7879 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7880 ill_list != NULL) { 7881 /* 7882 * No new ill can join this ipsq since we are holding the 7883 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7884 * ipsq. ill_split_ipsq may fail due to memory shortage. 7885 * If so we will retry on the next ipsq_exit. 7886 */ 7887 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7888 } 7889 7890 /* 7891 * We are holding the ipsq lock, hence no new messages can 7892 * land up on the ipsq, and there are no messages currently. 7893 * Now safe to get out. Wake up waiters and relinquish ipsq 7894 * atomically while holding ill locks. 7895 */ 7896 ipsq->ipsq_writer = NULL; 7897 ipsq->ipsq_reentry_cnt--; 7898 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7899 #ifdef ILL_DEBUG 7900 ipsq->ipsq_depth = 0; 7901 #endif 7902 mutex_exit(&ipsq->ipsq_lock); 7903 /* 7904 * For IPMP this should wake up all ills in this ipsq. 7905 * We need to hold the ill_lock while waking up waiters to 7906 * avoid missed wakeups. But there is no need to acquire all 7907 * the ill locks and then wakeup. If we have not acquired all 7908 * the locks (due to memory failure above) ill_signal_ipsq_ills 7909 * wakes up ills one at a time after getting the right ill_lock 7910 */ 7911 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7912 if (ill_list != NULL) 7913 ill_unlock_ills(ill_list, cnt); 7914 if (ipsq->ipsq_refs == 0) 7915 need_ipsq_free = B_TRUE; 7916 rw_exit(&ill_g_lock); 7917 if (ill_list != 0) 7918 kmem_free(ill_list, ill_list_size); 7919 7920 if (need_ipsq_free) { 7921 /* 7922 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7923 * looked up. ipsq can be looked up only thru ill or phyint 7924 * and there are no ills/phyint on this ipsq. 7925 */ 7926 ipsq_delete(ipsq); 7927 } 7928 /* 7929 * Now start any igmp or mld timers that could not be started 7930 * while inside the ipsq. The timers can't be started while inside 7931 * the ipsq, since igmp_start_timers may need to call untimeout() 7932 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7933 * there could be a deadlock since the timeout handlers 7934 * mld_timeout_handler / igmp_timeout_handler also synchronously 7935 * wait in ipsq_enter() trying to get the ipsq. 7936 * 7937 * However there is one exception to the above. If this thread is 7938 * itself the igmp/mld timeout handler thread, then we don't want 7939 * to start any new timer until the current handler is done. The 7940 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7941 * all others pass B_TRUE. 7942 */ 7943 if (start_igmp_timer) { 7944 mutex_enter(&igmp_timer_lock); 7945 next = igmp_deferred_next; 7946 igmp_deferred_next = INFINITY; 7947 mutex_exit(&igmp_timer_lock); 7948 7949 if (next != INFINITY) 7950 igmp_start_timers(next); 7951 } 7952 7953 if (start_mld_timer) { 7954 mutex_enter(&mld_timer_lock); 7955 next = mld_deferred_next; 7956 mld_deferred_next = INFINITY; 7957 mutex_exit(&mld_timer_lock); 7958 7959 if (next != INFINITY) 7960 mld_start_timers(next); 7961 } 7962 } 7963 7964 /* 7965 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7966 * and `ioccmd'. 7967 */ 7968 void 7969 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7970 { 7971 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7972 7973 mutex_enter(&ipsq->ipsq_lock); 7974 ASSERT(ipsq->ipsq_current_ipif == NULL); 7975 ASSERT(ipsq->ipsq_current_ioctl == 0); 7976 ipsq->ipsq_current_ipif = ipif; 7977 ipsq->ipsq_current_ioctl = ioccmd; 7978 mutex_exit(&ipsq->ipsq_lock); 7979 } 7980 7981 /* 7982 * Finish the current exclusive operation on `ipsq'. Note that other 7983 * operations will not be able to proceed until an ipsq_exit() is done. 7984 */ 7985 void 7986 ipsq_current_finish(ipsq_t *ipsq) 7987 { 7988 ipif_t *ipif = ipsq->ipsq_current_ipif; 7989 hook_nic_event_t *info; 7990 7991 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7992 7993 /* 7994 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 7995 * (but we're careful to never set IPIF_CHANGING in that case). 7996 */ 7997 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 7998 mutex_enter(&ipif->ipif_ill->ill_lock); 7999 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8000 /* 8001 * Unhook the nic event message from the ill and enqueue it 8002 * into the nic event taskq. 8003 */ 8004 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 8005 if (ddi_taskq_dispatch(eventq_queue_nic, 8006 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 8007 ip2dbg(("ipsq_current_finish: " 8008 "ddi_taskq_dispatch failed\n")); 8009 if (info->hne_data != NULL) 8010 kmem_free(info->hne_data, 8011 info->hne_datalen); 8012 kmem_free(info, sizeof (hook_nic_event_t)); 8013 } 8014 ipif->ipif_ill->ill_nic_event_info = NULL; 8015 } 8016 mutex_exit(&ipif->ipif_ill->ill_lock); 8017 } 8018 8019 mutex_enter(&ipsq->ipsq_lock); 8020 ASSERT(ipsq->ipsq_current_ipif != NULL); 8021 ipsq->ipsq_current_ipif = NULL; 8022 ipsq->ipsq_current_ioctl = 0; 8023 mutex_exit(&ipsq->ipsq_lock); 8024 } 8025 8026 /* 8027 * The ill is closing. Flush all messages on the ipsq that originated 8028 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8029 * for this ill since ipsq_enter could not have entered until then. 8030 * New messages can't be queued since the CONDEMNED flag is set. 8031 */ 8032 static void 8033 ipsq_flush(ill_t *ill) 8034 { 8035 queue_t *q; 8036 mblk_t *prev; 8037 mblk_t *mp; 8038 mblk_t *mp_next; 8039 ipsq_t *ipsq; 8040 8041 ASSERT(IAM_WRITER_ILL(ill)); 8042 ipsq = ill->ill_phyint->phyint_ipsq; 8043 /* 8044 * Flush any messages sent up by the driver. 8045 */ 8046 mutex_enter(&ipsq->ipsq_lock); 8047 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8048 mp_next = mp->b_next; 8049 q = mp->b_queue; 8050 if (q == ill->ill_rq || q == ill->ill_wq) { 8051 /* Remove the mp from the ipsq */ 8052 if (prev == NULL) 8053 ipsq->ipsq_mphead = mp->b_next; 8054 else 8055 prev->b_next = mp->b_next; 8056 if (ipsq->ipsq_mptail == mp) { 8057 ASSERT(mp_next == NULL); 8058 ipsq->ipsq_mptail = prev; 8059 } 8060 inet_freemsg(mp); 8061 } else { 8062 prev = mp; 8063 } 8064 } 8065 mutex_exit(&ipsq->ipsq_lock); 8066 (void) ipsq_pending_mp_cleanup(ill, NULL); 8067 ipsq_xopq_mp_cleanup(ill, NULL); 8068 ill_pending_mp_cleanup(ill); 8069 } 8070 8071 /* 8072 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8073 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8074 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8075 * time (possible with one port going down for aggr and someone tearing down the 8076 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8077 * to indicate when the cleanup has started (1 ref) and when the cleanup 8078 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8079 * putting 2 ref on ill_inuse_ref. 8080 */ 8081 static void 8082 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8083 { 8084 conn_t *connp; 8085 squeue_t *sqp; 8086 mblk_t *mp; 8087 8088 ASSERT(rx_ring != NULL); 8089 8090 /* Just clean one squeue */ 8091 mutex_enter(&ill->ill_lock); 8092 /* 8093 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8094 * ip_squeue_soft_ring_affinty() will not go 8095 * ahead with assigning rings. 8096 */ 8097 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8098 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8099 /* Some operations pending on the ring. Wait */ 8100 cv_wait(&ill->ill_cv, &ill->ill_lock); 8101 8102 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8103 /* 8104 * Someone already trying to clean 8105 * this squeue or its already been cleaned. 8106 */ 8107 mutex_exit(&ill->ill_lock); 8108 return; 8109 } 8110 sqp = rx_ring->rr_sqp; 8111 8112 if (sqp == NULL) { 8113 /* 8114 * The rx_ring never had a squeue assigned to it. 8115 * We are under ill_lock so we can clean it up 8116 * here itself since no one can get to it. 8117 */ 8118 rx_ring->rr_blank = NULL; 8119 rx_ring->rr_handle = NULL; 8120 rx_ring->rr_sqp = NULL; 8121 rx_ring->rr_ring_state = ILL_RING_FREE; 8122 mutex_exit(&ill->ill_lock); 8123 return; 8124 } 8125 8126 /* Set the state that its being cleaned */ 8127 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8128 ASSERT(sqp != NULL); 8129 mutex_exit(&ill->ill_lock); 8130 8131 /* 8132 * Use the preallocated ill_unbind_conn for this purpose 8133 */ 8134 connp = ill->ill_dls_capab->ill_unbind_conn; 8135 8136 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8137 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8138 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8139 connp->conn_tcp->tcp_closemp_used = 1; 8140 else 8141 connp->conn_tcp->tcp_closemp_used++; 8142 mp = &connp->conn_tcp->tcp_closemp; 8143 CONN_INC_REF(connp); 8144 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8145 8146 mutex_enter(&ill->ill_lock); 8147 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8148 cv_wait(&ill->ill_cv, &ill->ill_lock); 8149 8150 mutex_exit(&ill->ill_lock); 8151 } 8152 8153 static void 8154 ipsq_clean_all(ill_t *ill) 8155 { 8156 int idx; 8157 8158 /* 8159 * No need to clean if poll_capab isn't set for this ill 8160 */ 8161 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8162 return; 8163 8164 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8165 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8166 ipsq_clean_ring(ill, ipr); 8167 } 8168 8169 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8170 } 8171 8172 /* ARGSUSED */ 8173 int 8174 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8175 ip_ioctl_cmd_t *ipip, void *ifreq) 8176 { 8177 ill_t *ill; 8178 struct lifreq *lifr = (struct lifreq *)ifreq; 8179 boolean_t isv6; 8180 conn_t *connp; 8181 8182 connp = Q_TO_CONN(q); 8183 isv6 = connp->conn_af_isv6; 8184 /* 8185 * Set original index. 8186 * Failover and failback move logical interfaces 8187 * from one physical interface to another. The 8188 * original index indicates the parent of a logical 8189 * interface, in other words, the physical interface 8190 * the logical interface will be moved back to on 8191 * failback. 8192 */ 8193 8194 /* 8195 * Don't allow the original index to be changed 8196 * for non-failover addresses, autoconfigured 8197 * addresses, or IPv6 link local addresses. 8198 */ 8199 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8200 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8201 return (EINVAL); 8202 } 8203 /* 8204 * The new original index must be in use by some 8205 * physical interface. 8206 */ 8207 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8208 NULL, NULL); 8209 if (ill == NULL) 8210 return (ENXIO); 8211 ill_refrele(ill); 8212 8213 ipif->ipif_orig_ifindex = lifr->lifr_index; 8214 /* 8215 * When this ipif gets failed back, don't 8216 * preserve the original id, as it is no 8217 * longer applicable. 8218 */ 8219 ipif->ipif_orig_ipifid = 0; 8220 /* 8221 * For IPv4, change the original index of any 8222 * multicast addresses associated with the 8223 * ipif to the new value. 8224 */ 8225 if (!isv6) { 8226 ilm_t *ilm; 8227 8228 mutex_enter(&ipif->ipif_ill->ill_lock); 8229 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8230 ilm = ilm->ilm_next) { 8231 if (ilm->ilm_ipif == ipif) { 8232 ilm->ilm_orig_ifindex = lifr->lifr_index; 8233 } 8234 } 8235 mutex_exit(&ipif->ipif_ill->ill_lock); 8236 } 8237 return (0); 8238 } 8239 8240 /* ARGSUSED */ 8241 int 8242 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8243 ip_ioctl_cmd_t *ipip, void *ifreq) 8244 { 8245 struct lifreq *lifr = (struct lifreq *)ifreq; 8246 8247 /* 8248 * Get the original interface index i.e the one 8249 * before FAILOVER if it ever happened. 8250 */ 8251 lifr->lifr_index = ipif->ipif_orig_ifindex; 8252 return (0); 8253 } 8254 8255 /* 8256 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8257 * refhold and return the associated ipif 8258 */ 8259 int 8260 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8261 { 8262 boolean_t exists; 8263 struct iftun_req *ta; 8264 ipif_t *ipif; 8265 ill_t *ill; 8266 boolean_t isv6; 8267 mblk_t *mp1; 8268 int error; 8269 conn_t *connp; 8270 8271 /* Existence verified in ip_wput_nondata */ 8272 mp1 = mp->b_cont->b_cont; 8273 ta = (struct iftun_req *)mp1->b_rptr; 8274 /* 8275 * Null terminate the string to protect against buffer 8276 * overrun. String was generated by user code and may not 8277 * be trusted. 8278 */ 8279 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8280 8281 connp = Q_TO_CONN(q); 8282 isv6 = connp->conn_af_isv6; 8283 8284 /* Disallows implicit create */ 8285 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8286 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8287 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 8288 if (ipif == NULL) 8289 return (error); 8290 8291 if (ipif->ipif_id != 0) { 8292 /* 8293 * We really don't want to set/get tunnel parameters 8294 * on virtual tunnel interfaces. Only allow the 8295 * base tunnel to do these. 8296 */ 8297 ipif_refrele(ipif); 8298 return (EINVAL); 8299 } 8300 8301 /* 8302 * Send down to tunnel mod for ioctl processing. 8303 * Will finish ioctl in ip_rput_other(). 8304 */ 8305 ill = ipif->ipif_ill; 8306 if (ill->ill_net_type == IRE_LOOPBACK) { 8307 ipif_refrele(ipif); 8308 return (EOPNOTSUPP); 8309 } 8310 8311 if (ill->ill_wq == NULL) { 8312 ipif_refrele(ipif); 8313 return (ENXIO); 8314 } 8315 /* 8316 * Mark the ioctl as coming from an IPv6 interface for 8317 * tun's convenience. 8318 */ 8319 if (ill->ill_isv6) 8320 ta->ifta_flags |= 0x80000000; 8321 *ipifp = ipif; 8322 return (0); 8323 } 8324 8325 /* 8326 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8327 * and return the associated ipif. 8328 * Return value: 8329 * Non zero: An error has occurred. ci may not be filled out. 8330 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8331 * a held ipif in ci.ci_ipif. 8332 */ 8333 int 8334 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8335 cmd_info_t *ci, ipsq_func_t func) 8336 { 8337 sin_t *sin; 8338 sin6_t *sin6; 8339 char *name; 8340 struct ifreq *ifr; 8341 struct lifreq *lifr; 8342 ipif_t *ipif = NULL; 8343 ill_t *ill; 8344 conn_t *connp; 8345 boolean_t isv6; 8346 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8347 boolean_t exists; 8348 int err; 8349 mblk_t *mp1; 8350 zoneid_t zoneid; 8351 8352 if (q->q_next != NULL) { 8353 ill = (ill_t *)q->q_ptr; 8354 isv6 = ill->ill_isv6; 8355 connp = NULL; 8356 zoneid = ALL_ZONES; 8357 } else { 8358 ill = NULL; 8359 connp = Q_TO_CONN(q); 8360 isv6 = connp->conn_af_isv6; 8361 zoneid = connp->conn_zoneid; 8362 if (zoneid == GLOBAL_ZONEID) { 8363 /* global zone can access ipifs in all zones */ 8364 zoneid = ALL_ZONES; 8365 } 8366 } 8367 8368 /* Has been checked in ip_wput_nondata */ 8369 mp1 = mp->b_cont->b_cont; 8370 8371 8372 if (cmd_type == IF_CMD) { 8373 /* This a old style SIOC[GS]IF* command */ 8374 ifr = (struct ifreq *)mp1->b_rptr; 8375 /* 8376 * Null terminate the string to protect against buffer 8377 * overrun. String was generated by user code and may not 8378 * be trusted. 8379 */ 8380 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8381 sin = (sin_t *)&ifr->ifr_addr; 8382 name = ifr->ifr_name; 8383 ci->ci_sin = sin; 8384 ci->ci_sin6 = NULL; 8385 ci->ci_lifr = (struct lifreq *)ifr; 8386 } else { 8387 /* This a new style SIOC[GS]LIF* command */ 8388 ASSERT(cmd_type == LIF_CMD); 8389 lifr = (struct lifreq *)mp1->b_rptr; 8390 /* 8391 * Null terminate the string to protect against buffer 8392 * overrun. String was generated by user code and may not 8393 * be trusted. 8394 */ 8395 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8396 name = lifr->lifr_name; 8397 sin = (sin_t *)&lifr->lifr_addr; 8398 sin6 = (sin6_t *)&lifr->lifr_addr; 8399 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8400 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8401 LIFNAMSIZ); 8402 } 8403 ci->ci_sin = sin; 8404 ci->ci_sin6 = sin6; 8405 ci->ci_lifr = lifr; 8406 } 8407 8408 8409 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8410 /* 8411 * The ioctl will be failed if the ioctl comes down 8412 * an conn stream 8413 */ 8414 if (ill == NULL) { 8415 /* 8416 * Not an ill queue, return EINVAL same as the 8417 * old error code. 8418 */ 8419 return (ENXIO); 8420 } 8421 ipif = ill->ill_ipif; 8422 ipif_refhold(ipif); 8423 } else { 8424 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8425 &exists, isv6, zoneid, 8426 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 8427 if (ipif == NULL) { 8428 if (err == EINPROGRESS) 8429 return (err); 8430 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8431 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8432 /* 8433 * Need to try both v4 and v6 since this 8434 * ioctl can come down either v4 or v6 8435 * socket. The lifreq.lifr_family passed 8436 * down by this ioctl is AF_UNSPEC. 8437 */ 8438 ipif = ipif_lookup_on_name(name, 8439 mi_strlen(name), B_FALSE, &exists, !isv6, 8440 zoneid, (connp == NULL) ? q : 8441 CONNP_TO_WQ(connp), mp, func, &err); 8442 if (err == EINPROGRESS) 8443 return (err); 8444 } 8445 err = 0; /* Ensure we don't use it below */ 8446 } 8447 } 8448 8449 /* 8450 * Old style [GS]IFCMD does not admit IPv6 ipif 8451 */ 8452 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8453 ipif_refrele(ipif); 8454 return (ENXIO); 8455 } 8456 8457 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8458 name[0] == '\0') { 8459 /* 8460 * Handle a or a SIOC?IF* with a null name 8461 * during plumb (on the ill queue before the I_PLINK). 8462 */ 8463 ipif = ill->ill_ipif; 8464 ipif_refhold(ipif); 8465 } 8466 8467 if (ipif == NULL) 8468 return (ENXIO); 8469 8470 /* 8471 * Allow only GET operations if this ipif has been created 8472 * temporarily due to a MOVE operation. 8473 */ 8474 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8475 ipif_refrele(ipif); 8476 return (EINVAL); 8477 } 8478 8479 ci->ci_ipif = ipif; 8480 return (0); 8481 } 8482 8483 /* 8484 * Return the total number of ipifs. 8485 */ 8486 static uint_t 8487 ip_get_numifs(zoneid_t zoneid) 8488 { 8489 uint_t numifs = 0; 8490 ill_t *ill; 8491 ill_walk_context_t ctx; 8492 ipif_t *ipif; 8493 8494 rw_enter(&ill_g_lock, RW_READER); 8495 ill = ILL_START_WALK_V4(&ctx); 8496 8497 while (ill != NULL) { 8498 for (ipif = ill->ill_ipif; ipif != NULL; 8499 ipif = ipif->ipif_next) { 8500 if (ipif->ipif_zoneid == zoneid || 8501 ipif->ipif_zoneid == ALL_ZONES) 8502 numifs++; 8503 } 8504 ill = ill_next(&ctx, ill); 8505 } 8506 rw_exit(&ill_g_lock); 8507 return (numifs); 8508 } 8509 8510 /* 8511 * Return the total number of ipifs. 8512 */ 8513 static uint_t 8514 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 8515 { 8516 uint_t numifs = 0; 8517 ill_t *ill; 8518 ipif_t *ipif; 8519 ill_walk_context_t ctx; 8520 8521 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8522 8523 rw_enter(&ill_g_lock, RW_READER); 8524 if (family == AF_INET) 8525 ill = ILL_START_WALK_V4(&ctx); 8526 else if (family == AF_INET6) 8527 ill = ILL_START_WALK_V6(&ctx); 8528 else 8529 ill = ILL_START_WALK_ALL(&ctx); 8530 8531 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8532 for (ipif = ill->ill_ipif; ipif != NULL; 8533 ipif = ipif->ipif_next) { 8534 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8535 !(lifn_flags & LIFC_NOXMIT)) 8536 continue; 8537 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8538 !(lifn_flags & LIFC_TEMPORARY)) 8539 continue; 8540 if (((ipif->ipif_flags & 8541 (IPIF_NOXMIT|IPIF_NOLOCAL| 8542 IPIF_DEPRECATED)) || 8543 (ill->ill_phyint->phyint_flags & 8544 PHYI_LOOPBACK) || 8545 !(ipif->ipif_flags & IPIF_UP)) && 8546 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8547 continue; 8548 8549 if (zoneid != ipif->ipif_zoneid && 8550 ipif->ipif_zoneid != ALL_ZONES && 8551 (zoneid != GLOBAL_ZONEID || 8552 !(lifn_flags & LIFC_ALLZONES))) 8553 continue; 8554 8555 numifs++; 8556 } 8557 } 8558 rw_exit(&ill_g_lock); 8559 return (numifs); 8560 } 8561 8562 uint_t 8563 ip_get_lifsrcofnum(ill_t *ill) 8564 { 8565 uint_t numifs = 0; 8566 ill_t *ill_head = ill; 8567 8568 /* 8569 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8570 * other thread may be trying to relink the ILLs in this usesrc group 8571 * and adjusting the ill_usesrc_grp_next pointers 8572 */ 8573 rw_enter(&ill_g_usesrc_lock, RW_READER); 8574 if ((ill->ill_usesrc_ifindex == 0) && 8575 (ill->ill_usesrc_grp_next != NULL)) { 8576 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8577 ill = ill->ill_usesrc_grp_next) 8578 numifs++; 8579 } 8580 rw_exit(&ill_g_usesrc_lock); 8581 8582 return (numifs); 8583 } 8584 8585 /* Null values are passed in for ipif, sin, and ifreq */ 8586 /* ARGSUSED */ 8587 int 8588 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8589 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8590 { 8591 int *nump; 8592 8593 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8594 8595 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8596 nump = (int *)mp->b_cont->b_cont->b_rptr; 8597 8598 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8599 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8600 return (0); 8601 } 8602 8603 /* Null values are passed in for ipif, sin, and ifreq */ 8604 /* ARGSUSED */ 8605 int 8606 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8607 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8608 { 8609 struct lifnum *lifn; 8610 mblk_t *mp1; 8611 8612 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8613 8614 /* Existence checked in ip_wput_nondata */ 8615 mp1 = mp->b_cont->b_cont; 8616 8617 lifn = (struct lifnum *)mp1->b_rptr; 8618 switch (lifn->lifn_family) { 8619 case AF_UNSPEC: 8620 case AF_INET: 8621 case AF_INET6: 8622 break; 8623 default: 8624 return (EAFNOSUPPORT); 8625 } 8626 8627 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8628 Q_TO_CONN(q)->conn_zoneid); 8629 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8630 return (0); 8631 } 8632 8633 /* ARGSUSED */ 8634 int 8635 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8636 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8637 { 8638 STRUCT_HANDLE(ifconf, ifc); 8639 mblk_t *mp1; 8640 struct iocblk *iocp; 8641 struct ifreq *ifr; 8642 ill_walk_context_t ctx; 8643 ill_t *ill; 8644 ipif_t *ipif; 8645 struct sockaddr_in *sin; 8646 int32_t ifclen; 8647 zoneid_t zoneid; 8648 8649 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8650 8651 ip1dbg(("ip_sioctl_get_ifconf")); 8652 /* Existence verified in ip_wput_nondata */ 8653 mp1 = mp->b_cont->b_cont; 8654 iocp = (struct iocblk *)mp->b_rptr; 8655 zoneid = Q_TO_CONN(q)->conn_zoneid; 8656 8657 /* 8658 * The original SIOCGIFCONF passed in a struct ifconf which specified 8659 * the user buffer address and length into which the list of struct 8660 * ifreqs was to be copied. Since AT&T Streams does not seem to 8661 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8662 * the SIOCGIFCONF operation was redefined to simply provide 8663 * a large output buffer into which we are supposed to jam the ifreq 8664 * array. The same ioctl command code was used, despite the fact that 8665 * both the applications and the kernel code had to change, thus making 8666 * it impossible to support both interfaces. 8667 * 8668 * For reasons not good enough to try to explain, the following 8669 * algorithm is used for deciding what to do with one of these: 8670 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8671 * form with the output buffer coming down as the continuation message. 8672 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8673 * and we have to copy in the ifconf structure to find out how big the 8674 * output buffer is and where to copy out to. Sure no problem... 8675 * 8676 */ 8677 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8678 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8679 int numifs = 0; 8680 size_t ifc_bufsize; 8681 8682 /* 8683 * Must be (better be!) continuation of a TRANSPARENT 8684 * IOCTL. We just copied in the ifconf structure. 8685 */ 8686 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8687 (struct ifconf *)mp1->b_rptr); 8688 8689 /* 8690 * Allocate a buffer to hold requested information. 8691 * 8692 * If ifc_len is larger than what is needed, we only 8693 * allocate what we will use. 8694 * 8695 * If ifc_len is smaller than what is needed, return 8696 * EINVAL. 8697 * 8698 * XXX: the ill_t structure can hava 2 counters, for 8699 * v4 and v6 (not just ill_ipif_up_count) to store the 8700 * number of interfaces for a device, so we don't need 8701 * to count them here... 8702 */ 8703 numifs = ip_get_numifs(zoneid); 8704 8705 ifclen = STRUCT_FGET(ifc, ifc_len); 8706 ifc_bufsize = numifs * sizeof (struct ifreq); 8707 if (ifc_bufsize > ifclen) { 8708 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8709 /* old behaviour */ 8710 return (EINVAL); 8711 } else { 8712 ifc_bufsize = ifclen; 8713 } 8714 } 8715 8716 mp1 = mi_copyout_alloc(q, mp, 8717 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8718 if (mp1 == NULL) 8719 return (ENOMEM); 8720 8721 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8722 } 8723 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8724 /* 8725 * the SIOCGIFCONF ioctl only knows about 8726 * IPv4 addresses, so don't try to tell 8727 * it about interfaces with IPv6-only 8728 * addresses. (Last parm 'isv6' is B_FALSE) 8729 */ 8730 8731 ifr = (struct ifreq *)mp1->b_rptr; 8732 8733 rw_enter(&ill_g_lock, RW_READER); 8734 ill = ILL_START_WALK_V4(&ctx); 8735 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8736 for (ipif = ill->ill_ipif; ipif != NULL; 8737 ipif = ipif->ipif_next) { 8738 if (zoneid != ipif->ipif_zoneid && 8739 ipif->ipif_zoneid != ALL_ZONES) 8740 continue; 8741 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8742 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8743 /* old behaviour */ 8744 rw_exit(&ill_g_lock); 8745 return (EINVAL); 8746 } else { 8747 goto if_copydone; 8748 } 8749 } 8750 (void) ipif_get_name(ipif, 8751 ifr->ifr_name, 8752 sizeof (ifr->ifr_name)); 8753 sin = (sin_t *)&ifr->ifr_addr; 8754 *sin = sin_null; 8755 sin->sin_family = AF_INET; 8756 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8757 ifr++; 8758 } 8759 } 8760 if_copydone: 8761 rw_exit(&ill_g_lock); 8762 mp1->b_wptr = (uchar_t *)ifr; 8763 8764 if (STRUCT_BUF(ifc) != NULL) { 8765 STRUCT_FSET(ifc, ifc_len, 8766 (int)((uchar_t *)ifr - mp1->b_rptr)); 8767 } 8768 return (0); 8769 } 8770 8771 /* 8772 * Get the interfaces using the address hosted on the interface passed in, 8773 * as a source adddress 8774 */ 8775 /* ARGSUSED */ 8776 int 8777 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8778 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8779 { 8780 mblk_t *mp1; 8781 ill_t *ill, *ill_head; 8782 ipif_t *ipif, *orig_ipif; 8783 int numlifs = 0; 8784 size_t lifs_bufsize, lifsmaxlen; 8785 struct lifreq *lifr; 8786 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8787 uint_t ifindex; 8788 zoneid_t zoneid; 8789 int err = 0; 8790 boolean_t isv6 = B_FALSE; 8791 struct sockaddr_in *sin; 8792 struct sockaddr_in6 *sin6; 8793 8794 STRUCT_HANDLE(lifsrcof, lifs); 8795 8796 ASSERT(q->q_next == NULL); 8797 8798 zoneid = Q_TO_CONN(q)->conn_zoneid; 8799 8800 /* Existence verified in ip_wput_nondata */ 8801 mp1 = mp->b_cont->b_cont; 8802 8803 /* 8804 * Must be (better be!) continuation of a TRANSPARENT 8805 * IOCTL. We just copied in the lifsrcof structure. 8806 */ 8807 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8808 (struct lifsrcof *)mp1->b_rptr); 8809 8810 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8811 return (EINVAL); 8812 8813 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8814 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8815 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8816 ip_process_ioctl, &err); 8817 if (ipif == NULL) { 8818 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8819 ifindex)); 8820 return (err); 8821 } 8822 8823 8824 /* Allocate a buffer to hold requested information */ 8825 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8826 lifs_bufsize = numlifs * sizeof (struct lifreq); 8827 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8828 /* The actual size needed is always returned in lifs_len */ 8829 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8830 8831 /* If the amount we need is more than what is passed in, abort */ 8832 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8833 ipif_refrele(ipif); 8834 return (0); 8835 } 8836 8837 mp1 = mi_copyout_alloc(q, mp, 8838 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8839 if (mp1 == NULL) { 8840 ipif_refrele(ipif); 8841 return (ENOMEM); 8842 } 8843 8844 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8845 bzero(mp1->b_rptr, lifs_bufsize); 8846 8847 lifr = (struct lifreq *)mp1->b_rptr; 8848 8849 ill = ill_head = ipif->ipif_ill; 8850 orig_ipif = ipif; 8851 8852 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8853 rw_enter(&ill_g_usesrc_lock, RW_READER); 8854 rw_enter(&ill_g_lock, RW_READER); 8855 8856 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8857 for (; (ill != NULL) && (ill != ill_head); 8858 ill = ill->ill_usesrc_grp_next) { 8859 8860 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8861 break; 8862 8863 ipif = ill->ill_ipif; 8864 (void) ipif_get_name(ipif, 8865 lifr->lifr_name, sizeof (lifr->lifr_name)); 8866 if (ipif->ipif_isv6) { 8867 sin6 = (sin6_t *)&lifr->lifr_addr; 8868 *sin6 = sin6_null; 8869 sin6->sin6_family = AF_INET6; 8870 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8871 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8872 &ipif->ipif_v6net_mask); 8873 } else { 8874 sin = (sin_t *)&lifr->lifr_addr; 8875 *sin = sin_null; 8876 sin->sin_family = AF_INET; 8877 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8878 lifr->lifr_addrlen = ip_mask_to_plen( 8879 ipif->ipif_net_mask); 8880 } 8881 lifr++; 8882 } 8883 rw_exit(&ill_g_usesrc_lock); 8884 rw_exit(&ill_g_lock); 8885 ipif_refrele(orig_ipif); 8886 mp1->b_wptr = (uchar_t *)lifr; 8887 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8888 8889 return (0); 8890 } 8891 8892 /* ARGSUSED */ 8893 int 8894 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8895 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8896 { 8897 mblk_t *mp1; 8898 int list; 8899 ill_t *ill; 8900 ipif_t *ipif; 8901 int flags; 8902 int numlifs = 0; 8903 size_t lifc_bufsize; 8904 struct lifreq *lifr; 8905 sa_family_t family; 8906 struct sockaddr_in *sin; 8907 struct sockaddr_in6 *sin6; 8908 ill_walk_context_t ctx; 8909 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8910 int32_t lifclen; 8911 zoneid_t zoneid; 8912 STRUCT_HANDLE(lifconf, lifc); 8913 8914 ip1dbg(("ip_sioctl_get_lifconf")); 8915 8916 ASSERT(q->q_next == NULL); 8917 8918 zoneid = Q_TO_CONN(q)->conn_zoneid; 8919 8920 /* Existence verified in ip_wput_nondata */ 8921 mp1 = mp->b_cont->b_cont; 8922 8923 /* 8924 * An extended version of SIOCGIFCONF that takes an 8925 * additional address family and flags field. 8926 * AF_UNSPEC retrieve both IPv4 and IPv6. 8927 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8928 * interfaces are omitted. 8929 * Similarly, IPIF_TEMPORARY interfaces are omitted 8930 * unless LIFC_TEMPORARY is specified. 8931 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8932 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8933 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8934 * has priority over LIFC_NOXMIT. 8935 */ 8936 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8937 8938 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8939 return (EINVAL); 8940 8941 /* 8942 * Must be (better be!) continuation of a TRANSPARENT 8943 * IOCTL. We just copied in the lifconf structure. 8944 */ 8945 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8946 8947 family = STRUCT_FGET(lifc, lifc_family); 8948 flags = STRUCT_FGET(lifc, lifc_flags); 8949 8950 switch (family) { 8951 case AF_UNSPEC: 8952 /* 8953 * walk all ILL's. 8954 */ 8955 list = MAX_G_HEADS; 8956 break; 8957 case AF_INET: 8958 /* 8959 * walk only IPV4 ILL's. 8960 */ 8961 list = IP_V4_G_HEAD; 8962 break; 8963 case AF_INET6: 8964 /* 8965 * walk only IPV6 ILL's. 8966 */ 8967 list = IP_V6_G_HEAD; 8968 break; 8969 default: 8970 return (EAFNOSUPPORT); 8971 } 8972 8973 /* 8974 * Allocate a buffer to hold requested information. 8975 * 8976 * If lifc_len is larger than what is needed, we only 8977 * allocate what we will use. 8978 * 8979 * If lifc_len is smaller than what is needed, return 8980 * EINVAL. 8981 */ 8982 numlifs = ip_get_numlifs(family, flags, zoneid); 8983 lifc_bufsize = numlifs * sizeof (struct lifreq); 8984 lifclen = STRUCT_FGET(lifc, lifc_len); 8985 if (lifc_bufsize > lifclen) { 8986 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8987 return (EINVAL); 8988 else 8989 lifc_bufsize = lifclen; 8990 } 8991 8992 mp1 = mi_copyout_alloc(q, mp, 8993 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8994 if (mp1 == NULL) 8995 return (ENOMEM); 8996 8997 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8998 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8999 9000 lifr = (struct lifreq *)mp1->b_rptr; 9001 9002 rw_enter(&ill_g_lock, RW_READER); 9003 ill = ill_first(list, list, &ctx); 9004 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9005 for (ipif = ill->ill_ipif; ipif != NULL; 9006 ipif = ipif->ipif_next) { 9007 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9008 !(flags & LIFC_NOXMIT)) 9009 continue; 9010 9011 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9012 !(flags & LIFC_TEMPORARY)) 9013 continue; 9014 9015 if (((ipif->ipif_flags & 9016 (IPIF_NOXMIT|IPIF_NOLOCAL| 9017 IPIF_DEPRECATED)) || 9018 (ill->ill_phyint->phyint_flags & 9019 PHYI_LOOPBACK) || 9020 !(ipif->ipif_flags & IPIF_UP)) && 9021 (flags & LIFC_EXTERNAL_SOURCE)) 9022 continue; 9023 9024 if (zoneid != ipif->ipif_zoneid && 9025 ipif->ipif_zoneid != ALL_ZONES && 9026 (zoneid != GLOBAL_ZONEID || 9027 !(flags & LIFC_ALLZONES))) 9028 continue; 9029 9030 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9031 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9032 rw_exit(&ill_g_lock); 9033 return (EINVAL); 9034 } else { 9035 goto lif_copydone; 9036 } 9037 } 9038 9039 (void) ipif_get_name(ipif, 9040 lifr->lifr_name, 9041 sizeof (lifr->lifr_name)); 9042 if (ipif->ipif_isv6) { 9043 sin6 = (sin6_t *)&lifr->lifr_addr; 9044 *sin6 = sin6_null; 9045 sin6->sin6_family = AF_INET6; 9046 sin6->sin6_addr = 9047 ipif->ipif_v6lcl_addr; 9048 lifr->lifr_addrlen = 9049 ip_mask_to_plen_v6( 9050 &ipif->ipif_v6net_mask); 9051 } else { 9052 sin = (sin_t *)&lifr->lifr_addr; 9053 *sin = sin_null; 9054 sin->sin_family = AF_INET; 9055 sin->sin_addr.s_addr = 9056 ipif->ipif_lcl_addr; 9057 lifr->lifr_addrlen = 9058 ip_mask_to_plen( 9059 ipif->ipif_net_mask); 9060 } 9061 lifr++; 9062 } 9063 } 9064 lif_copydone: 9065 rw_exit(&ill_g_lock); 9066 9067 mp1->b_wptr = (uchar_t *)lifr; 9068 if (STRUCT_BUF(lifc) != NULL) { 9069 STRUCT_FSET(lifc, lifc_len, 9070 (int)((uchar_t *)lifr - mp1->b_rptr)); 9071 } 9072 return (0); 9073 } 9074 9075 /* ARGSUSED */ 9076 int 9077 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9078 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9079 { 9080 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9081 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9082 return (0); 9083 } 9084 9085 static void 9086 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9087 { 9088 ip6_asp_t *table; 9089 size_t table_size; 9090 mblk_t *data_mp; 9091 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9092 9093 /* These two ioctls are I_STR only */ 9094 if (iocp->ioc_count == TRANSPARENT) { 9095 miocnak(q, mp, 0, EINVAL); 9096 return; 9097 } 9098 9099 data_mp = mp->b_cont; 9100 if (data_mp == NULL) { 9101 /* The user passed us a NULL argument */ 9102 table = NULL; 9103 table_size = iocp->ioc_count; 9104 } else { 9105 /* 9106 * The user provided a table. The stream head 9107 * may have copied in the user data in chunks, 9108 * so make sure everything is pulled up 9109 * properly. 9110 */ 9111 if (MBLKL(data_mp) < iocp->ioc_count) { 9112 mblk_t *new_data_mp; 9113 if ((new_data_mp = msgpullup(data_mp, -1)) == 9114 NULL) { 9115 miocnak(q, mp, 0, ENOMEM); 9116 return; 9117 } 9118 freemsg(data_mp); 9119 data_mp = new_data_mp; 9120 mp->b_cont = data_mp; 9121 } 9122 table = (ip6_asp_t *)data_mp->b_rptr; 9123 table_size = iocp->ioc_count; 9124 } 9125 9126 switch (iocp->ioc_cmd) { 9127 case SIOCGIP6ADDRPOLICY: 9128 iocp->ioc_rval = ip6_asp_get(table, table_size); 9129 if (iocp->ioc_rval == -1) 9130 iocp->ioc_error = EINVAL; 9131 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9132 else if (table != NULL && 9133 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9134 ip6_asp_t *src = table; 9135 ip6_asp32_t *dst = (void *)table; 9136 int count = table_size / sizeof (ip6_asp_t); 9137 int i; 9138 9139 /* 9140 * We need to do an in-place shrink of the array 9141 * to match the alignment attributes of the 9142 * 32-bit ABI looking at it. 9143 */ 9144 /* LINTED: logical expression always true: op "||" */ 9145 ASSERT(sizeof (*src) > sizeof (*dst)); 9146 for (i = 1; i < count; i++) 9147 bcopy(src + i, dst + i, sizeof (*dst)); 9148 } 9149 #endif 9150 break; 9151 9152 case SIOCSIP6ADDRPOLICY: 9153 ASSERT(mp->b_prev == NULL); 9154 mp->b_prev = (void *)q; 9155 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9156 /* 9157 * We pass in the datamodel here so that the ip6_asp_replace() 9158 * routine can handle converting from 32-bit to native formats 9159 * where necessary. 9160 * 9161 * A better way to handle this might be to convert the inbound 9162 * data structure here, and hang it off a new 'mp'; thus the 9163 * ip6_asp_replace() logic would always be dealing with native 9164 * format data structures.. 9165 * 9166 * (An even simpler way to handle these ioctls is to just 9167 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9168 * and just recompile everything that depends on it.) 9169 */ 9170 #endif 9171 ip6_asp_replace(mp, table, table_size, B_FALSE, 9172 iocp->ioc_flag & IOC_MODELS); 9173 return; 9174 } 9175 9176 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9177 qreply(q, mp); 9178 } 9179 9180 static void 9181 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9182 { 9183 mblk_t *data_mp; 9184 struct dstinforeq *dir; 9185 uint8_t *end, *cur; 9186 in6_addr_t *daddr, *saddr; 9187 ipaddr_t v4daddr; 9188 ire_t *ire; 9189 char *slabel, *dlabel; 9190 boolean_t isipv4; 9191 int match_ire; 9192 ill_t *dst_ill; 9193 ipif_t *src_ipif, *ire_ipif; 9194 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9195 zoneid_t zoneid; 9196 9197 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9198 zoneid = Q_TO_CONN(q)->conn_zoneid; 9199 9200 /* 9201 * This ioctl is I_STR only, and must have a 9202 * data mblk following the M_IOCTL mblk. 9203 */ 9204 data_mp = mp->b_cont; 9205 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9206 miocnak(q, mp, 0, EINVAL); 9207 return; 9208 } 9209 9210 if (MBLKL(data_mp) < iocp->ioc_count) { 9211 mblk_t *new_data_mp; 9212 9213 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9214 miocnak(q, mp, 0, ENOMEM); 9215 return; 9216 } 9217 freemsg(data_mp); 9218 data_mp = new_data_mp; 9219 mp->b_cont = data_mp; 9220 } 9221 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9222 9223 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9224 end - cur >= sizeof (struct dstinforeq); 9225 cur += sizeof (struct dstinforeq)) { 9226 dir = (struct dstinforeq *)cur; 9227 daddr = &dir->dir_daddr; 9228 saddr = &dir->dir_saddr; 9229 9230 /* 9231 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9232 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9233 * and ipif_select_source[_v6]() do not. 9234 */ 9235 dir->dir_dscope = ip_addr_scope_v6(daddr); 9236 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 9237 9238 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9239 if (isipv4) { 9240 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9241 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9242 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9243 } else { 9244 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9245 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9246 } 9247 if (ire == NULL) { 9248 dir->dir_dreachable = 0; 9249 9250 /* move on to next dst addr */ 9251 continue; 9252 } 9253 dir->dir_dreachable = 1; 9254 9255 ire_ipif = ire->ire_ipif; 9256 if (ire_ipif == NULL) 9257 goto next_dst; 9258 9259 /* 9260 * We expect to get back an interface ire or a 9261 * gateway ire cache entry. For both types, the 9262 * output interface is ire_ipif->ipif_ill. 9263 */ 9264 dst_ill = ire_ipif->ipif_ill; 9265 dir->dir_dmactype = dst_ill->ill_mactype; 9266 9267 if (isipv4) { 9268 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9269 } else { 9270 src_ipif = ipif_select_source_v6(dst_ill, 9271 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9272 zoneid); 9273 } 9274 if (src_ipif == NULL) 9275 goto next_dst; 9276 9277 *saddr = src_ipif->ipif_v6lcl_addr; 9278 dir->dir_sscope = ip_addr_scope_v6(saddr); 9279 slabel = ip6_asp_lookup(saddr, NULL); 9280 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9281 dir->dir_sdeprecated = 9282 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9283 ipif_refrele(src_ipif); 9284 next_dst: 9285 ire_refrele(ire); 9286 } 9287 miocack(q, mp, iocp->ioc_count, 0); 9288 } 9289 9290 9291 /* 9292 * Check if this is an address assigned to this machine. 9293 * Skips interfaces that are down by using ire checks. 9294 * Translates mapped addresses to v4 addresses and then 9295 * treats them as such, returning true if the v4 address 9296 * associated with this mapped address is configured. 9297 * Note: Applications will have to be careful what they do 9298 * with the response; use of mapped addresses limits 9299 * what can be done with the socket, especially with 9300 * respect to socket options and ioctls - neither IPv4 9301 * options nor IPv6 sticky options/ancillary data options 9302 * may be used. 9303 */ 9304 /* ARGSUSED */ 9305 int 9306 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9307 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9308 { 9309 struct sioc_addrreq *sia; 9310 sin_t *sin; 9311 ire_t *ire; 9312 mblk_t *mp1; 9313 zoneid_t zoneid; 9314 9315 ip1dbg(("ip_sioctl_tmyaddr")); 9316 9317 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9318 zoneid = Q_TO_CONN(q)->conn_zoneid; 9319 9320 /* Existence verified in ip_wput_nondata */ 9321 mp1 = mp->b_cont->b_cont; 9322 sia = (struct sioc_addrreq *)mp1->b_rptr; 9323 sin = (sin_t *)&sia->sa_addr; 9324 switch (sin->sin_family) { 9325 case AF_INET6: { 9326 sin6_t *sin6 = (sin6_t *)sin; 9327 9328 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9329 ipaddr_t v4_addr; 9330 9331 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9332 v4_addr); 9333 ire = ire_ctable_lookup(v4_addr, 0, 9334 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9335 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9336 } else { 9337 in6_addr_t v6addr; 9338 9339 v6addr = sin6->sin6_addr; 9340 ire = ire_ctable_lookup_v6(&v6addr, 0, 9341 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9342 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9343 } 9344 break; 9345 } 9346 case AF_INET: { 9347 ipaddr_t v4addr; 9348 9349 v4addr = sin->sin_addr.s_addr; 9350 ire = ire_ctable_lookup(v4addr, 0, 9351 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9352 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9353 break; 9354 } 9355 default: 9356 return (EAFNOSUPPORT); 9357 } 9358 if (ire != NULL) { 9359 sia->sa_res = 1; 9360 ire_refrele(ire); 9361 } else { 9362 sia->sa_res = 0; 9363 } 9364 return (0); 9365 } 9366 9367 /* 9368 * Check if this is an address assigned on-link i.e. neighbor, 9369 * and makes sure it's reachable from the current zone. 9370 * Returns true for my addresses as well. 9371 * Translates mapped addresses to v4 addresses and then 9372 * treats them as such, returning true if the v4 address 9373 * associated with this mapped address is configured. 9374 * Note: Applications will have to be careful what they do 9375 * with the response; use of mapped addresses limits 9376 * what can be done with the socket, especially with 9377 * respect to socket options and ioctls - neither IPv4 9378 * options nor IPv6 sticky options/ancillary data options 9379 * may be used. 9380 */ 9381 /* ARGSUSED */ 9382 int 9383 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9384 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9385 { 9386 struct sioc_addrreq *sia; 9387 sin_t *sin; 9388 mblk_t *mp1; 9389 ire_t *ire = NULL; 9390 zoneid_t zoneid; 9391 9392 ip1dbg(("ip_sioctl_tonlink")); 9393 9394 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9395 zoneid = Q_TO_CONN(q)->conn_zoneid; 9396 9397 /* Existence verified in ip_wput_nondata */ 9398 mp1 = mp->b_cont->b_cont; 9399 sia = (struct sioc_addrreq *)mp1->b_rptr; 9400 sin = (sin_t *)&sia->sa_addr; 9401 9402 /* 9403 * Match addresses with a zero gateway field to avoid 9404 * routes going through a router. 9405 * Exclude broadcast and multicast addresses. 9406 */ 9407 switch (sin->sin_family) { 9408 case AF_INET6: { 9409 sin6_t *sin6 = (sin6_t *)sin; 9410 9411 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9412 ipaddr_t v4_addr; 9413 9414 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9415 v4_addr); 9416 if (!CLASSD(v4_addr)) { 9417 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9418 NULL, NULL, zoneid, NULL, 9419 MATCH_IRE_GW); 9420 } 9421 } else { 9422 in6_addr_t v6addr; 9423 in6_addr_t v6gw; 9424 9425 v6addr = sin6->sin6_addr; 9426 v6gw = ipv6_all_zeros; 9427 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9428 ire = ire_route_lookup_v6(&v6addr, 0, 9429 &v6gw, 0, NULL, NULL, zoneid, 9430 NULL, MATCH_IRE_GW); 9431 } 9432 } 9433 break; 9434 } 9435 case AF_INET: { 9436 ipaddr_t v4addr; 9437 9438 v4addr = sin->sin_addr.s_addr; 9439 if (!CLASSD(v4addr)) { 9440 ire = ire_route_lookup(v4addr, 0, 0, 0, 9441 NULL, NULL, zoneid, NULL, 9442 MATCH_IRE_GW); 9443 } 9444 break; 9445 } 9446 default: 9447 return (EAFNOSUPPORT); 9448 } 9449 sia->sa_res = 0; 9450 if (ire != NULL) { 9451 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9452 IRE_LOCAL|IRE_LOOPBACK)) { 9453 sia->sa_res = 1; 9454 } 9455 ire_refrele(ire); 9456 } 9457 return (0); 9458 } 9459 9460 /* 9461 * TBD: implement when kernel maintaines a list of site prefixes. 9462 */ 9463 /* ARGSUSED */ 9464 int 9465 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9466 ip_ioctl_cmd_t *ipip, void *ifreq) 9467 { 9468 return (ENXIO); 9469 } 9470 9471 /* ARGSUSED */ 9472 int 9473 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9474 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9475 { 9476 ill_t *ill; 9477 mblk_t *mp1; 9478 conn_t *connp; 9479 boolean_t success; 9480 9481 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9483 /* ioctl comes down on an conn */ 9484 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9485 connp = Q_TO_CONN(q); 9486 9487 mp->b_datap->db_type = M_IOCTL; 9488 9489 /* 9490 * Send down a copy. (copymsg does not copy b_next/b_prev). 9491 * The original mp contains contaminated b_next values due to 'mi', 9492 * which is needed to do the mi_copy_done. Unfortunately if we 9493 * send down the original mblk itself and if we are popped due to an 9494 * an unplumb before the response comes back from tunnel, 9495 * the streamhead (which does a freemsg) will see this contaminated 9496 * message and the assertion in freemsg about non-null b_next/b_prev 9497 * will panic a DEBUG kernel. 9498 */ 9499 mp1 = copymsg(mp); 9500 if (mp1 == NULL) 9501 return (ENOMEM); 9502 9503 ill = ipif->ipif_ill; 9504 mutex_enter(&connp->conn_lock); 9505 mutex_enter(&ill->ill_lock); 9506 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9507 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9508 mp, 0); 9509 } else { 9510 success = ill_pending_mp_add(ill, connp, mp); 9511 } 9512 mutex_exit(&ill->ill_lock); 9513 mutex_exit(&connp->conn_lock); 9514 9515 if (success) { 9516 ip1dbg(("sending down tunparam request ")); 9517 putnext(ill->ill_wq, mp1); 9518 return (EINPROGRESS); 9519 } else { 9520 /* The conn has started closing */ 9521 freemsg(mp1); 9522 return (EINTR); 9523 } 9524 } 9525 9526 static int 9527 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9528 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9529 { 9530 mblk_t *mp1; 9531 mblk_t *mp2; 9532 mblk_t *pending_mp; 9533 ipaddr_t ipaddr; 9534 area_t *area; 9535 struct iocblk *iocp; 9536 conn_t *connp; 9537 struct arpreq *ar; 9538 struct xarpreq *xar; 9539 boolean_t success; 9540 int flags, alength; 9541 char *lladdr; 9542 9543 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9544 connp = Q_TO_CONN(q); 9545 9546 iocp = (struct iocblk *)mp->b_rptr; 9547 /* 9548 * ill has already been set depending on whether 9549 * bsd style or interface style ioctl. 9550 */ 9551 ASSERT(ill != NULL); 9552 9553 /* 9554 * Is this one of the new SIOC*XARP ioctls? 9555 */ 9556 if (x_arp_ioctl) { 9557 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9558 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9559 ar = NULL; 9560 9561 flags = xar->xarp_flags; 9562 lladdr = LLADDR(&xar->xarp_ha); 9563 /* 9564 * Validate against user's link layer address length 9565 * input and name and addr length limits. 9566 */ 9567 alength = ill->ill_phys_addr_length; 9568 if (iocp->ioc_cmd == SIOCSXARP) { 9569 if (alength != xar->xarp_ha.sdl_alen || 9570 (alength + xar->xarp_ha.sdl_nlen > 9571 sizeof (xar->xarp_ha.sdl_data))) 9572 return (EINVAL); 9573 } 9574 } else { 9575 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9576 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9577 xar = NULL; 9578 9579 flags = ar->arp_flags; 9580 lladdr = ar->arp_ha.sa_data; 9581 /* 9582 * Theoretically, the sa_family could tell us what link 9583 * layer type this operation is trying to deal with. By 9584 * common usage AF_UNSPEC means ethernet. We'll assume 9585 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9586 * for now. Our new SIOC*XARP ioctls can be used more 9587 * generally. 9588 * 9589 * If the underlying media happens to have a non 6 byte 9590 * address, arp module will fail set/get, but the del 9591 * operation will succeed. 9592 */ 9593 alength = 6; 9594 if ((iocp->ioc_cmd != SIOCDARP) && 9595 (alength != ill->ill_phys_addr_length)) { 9596 return (EINVAL); 9597 } 9598 } 9599 9600 /* 9601 * We are going to pass up to ARP a packet chain that looks 9602 * like: 9603 * 9604 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9605 * 9606 * Get a copy of the original IOCTL mblk to head the chain, 9607 * to be sent up (in mp1). Also get another copy to store 9608 * in the ill_pending_mp list, for matching the response 9609 * when it comes back from ARP. 9610 */ 9611 mp1 = copyb(mp); 9612 pending_mp = copymsg(mp); 9613 if (mp1 == NULL || pending_mp == NULL) { 9614 if (mp1 != NULL) 9615 freeb(mp1); 9616 if (pending_mp != NULL) 9617 inet_freemsg(pending_mp); 9618 return (ENOMEM); 9619 } 9620 9621 ipaddr = sin->sin_addr.s_addr; 9622 9623 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9624 (caddr_t)&ipaddr); 9625 if (mp2 == NULL) { 9626 freeb(mp1); 9627 inet_freemsg(pending_mp); 9628 return (ENOMEM); 9629 } 9630 /* Put together the chain. */ 9631 mp1->b_cont = mp2; 9632 mp1->b_datap->db_type = M_IOCTL; 9633 mp2->b_cont = mp; 9634 mp2->b_datap->db_type = M_DATA; 9635 9636 iocp = (struct iocblk *)mp1->b_rptr; 9637 9638 /* 9639 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9640 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9641 * cp_private field (or cp_rval on 32-bit systems) in place of the 9642 * ioc_count field; set ioc_count to be correct. 9643 */ 9644 iocp->ioc_count = MBLKL(mp1->b_cont); 9645 9646 /* 9647 * Set the proper command in the ARP message. 9648 * Convert the SIOC{G|S|D}ARP calls into our 9649 * AR_ENTRY_xxx calls. 9650 */ 9651 area = (area_t *)mp2->b_rptr; 9652 switch (iocp->ioc_cmd) { 9653 case SIOCDARP: 9654 case SIOCDXARP: 9655 /* 9656 * We defer deleting the corresponding IRE until 9657 * we return from arp. 9658 */ 9659 area->area_cmd = AR_ENTRY_DELETE; 9660 area->area_proto_mask_offset = 0; 9661 break; 9662 case SIOCGARP: 9663 case SIOCGXARP: 9664 area->area_cmd = AR_ENTRY_SQUERY; 9665 area->area_proto_mask_offset = 0; 9666 break; 9667 case SIOCSARP: 9668 case SIOCSXARP: { 9669 /* 9670 * Delete the corresponding ire to make sure IP will 9671 * pick up any change from arp. 9672 */ 9673 if (!if_arp_ioctl) { 9674 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9675 break; 9676 } else { 9677 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9678 if (ipif != NULL) { 9679 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9680 ipif_refrele(ipif); 9681 } 9682 break; 9683 } 9684 } 9685 } 9686 iocp->ioc_cmd = area->area_cmd; 9687 9688 /* 9689 * Before sending 'mp' to ARP, we have to clear the b_next 9690 * and b_prev. Otherwise if STREAMS encounters such a message 9691 * in freemsg(), (because ARP can close any time) it can cause 9692 * a panic. But mi code needs the b_next and b_prev values of 9693 * mp->b_cont, to complete the ioctl. So we store it here 9694 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9695 * when the response comes down from ARP. 9696 */ 9697 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9698 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9699 mp->b_cont->b_next = NULL; 9700 mp->b_cont->b_prev = NULL; 9701 9702 mutex_enter(&connp->conn_lock); 9703 mutex_enter(&ill->ill_lock); 9704 /* conn has not yet started closing, hence this can't fail */ 9705 success = ill_pending_mp_add(ill, connp, pending_mp); 9706 ASSERT(success); 9707 mutex_exit(&ill->ill_lock); 9708 mutex_exit(&connp->conn_lock); 9709 9710 /* 9711 * Fill in the rest of the ARP operation fields. 9712 */ 9713 area->area_hw_addr_length = alength; 9714 bcopy(lladdr, 9715 (char *)area + area->area_hw_addr_offset, 9716 area->area_hw_addr_length); 9717 /* Translate the flags. */ 9718 if (flags & ATF_PERM) 9719 area->area_flags |= ACE_F_PERMANENT; 9720 if (flags & ATF_PUBL) 9721 area->area_flags |= ACE_F_PUBLISH; 9722 if (flags & ATF_AUTHORITY) 9723 area->area_flags |= ACE_F_AUTHORITY; 9724 9725 /* 9726 * Up to ARP it goes. The response will come 9727 * back in ip_wput as an M_IOCACK message, and 9728 * will be handed to ip_sioctl_iocack for 9729 * completion. 9730 */ 9731 putnext(ill->ill_rq, mp1); 9732 return (EINPROGRESS); 9733 } 9734 9735 /* ARGSUSED */ 9736 int 9737 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9738 ip_ioctl_cmd_t *ipip, void *ifreq) 9739 { 9740 struct xarpreq *xar; 9741 boolean_t isv6; 9742 mblk_t *mp1; 9743 int err; 9744 conn_t *connp; 9745 int ifnamelen; 9746 ire_t *ire = NULL; 9747 ill_t *ill = NULL; 9748 struct sockaddr_in *sin; 9749 boolean_t if_arp_ioctl = B_FALSE; 9750 9751 /* ioctl comes down on an conn */ 9752 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9753 connp = Q_TO_CONN(q); 9754 isv6 = connp->conn_af_isv6; 9755 9756 /* Existance verified in ip_wput_nondata */ 9757 mp1 = mp->b_cont->b_cont; 9758 9759 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9760 xar = (struct xarpreq *)mp1->b_rptr; 9761 sin = (sin_t *)&xar->xarp_pa; 9762 9763 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9764 (xar->xarp_pa.ss_family != AF_INET)) 9765 return (ENXIO); 9766 9767 ifnamelen = xar->xarp_ha.sdl_nlen; 9768 if (ifnamelen != 0) { 9769 char *cptr, cval; 9770 9771 if (ifnamelen >= LIFNAMSIZ) 9772 return (EINVAL); 9773 9774 /* 9775 * Instead of bcopying a bunch of bytes, 9776 * null-terminate the string in-situ. 9777 */ 9778 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9779 cval = *cptr; 9780 *cptr = '\0'; 9781 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9782 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9783 &err, NULL); 9784 *cptr = cval; 9785 if (ill == NULL) 9786 return (err); 9787 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9788 ill_refrele(ill); 9789 return (ENXIO); 9790 } 9791 9792 if_arp_ioctl = B_TRUE; 9793 } else { 9794 /* 9795 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9796 * as an extended BSD ioctl. The kernel uses the IP address 9797 * to figure out the network interface. 9798 */ 9799 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9800 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9801 ((ill = ire_to_ill(ire)) == NULL) || 9802 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9803 if (ire != NULL) 9804 ire_refrele(ire); 9805 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9806 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9807 NULL, MATCH_IRE_TYPE); 9808 if ((ire == NULL) || 9809 ((ill = ire_to_ill(ire)) == NULL)) { 9810 if (ire != NULL) 9811 ire_refrele(ire); 9812 return (ENXIO); 9813 } 9814 } 9815 ASSERT(ire != NULL && ill != NULL); 9816 } 9817 9818 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9819 if (if_arp_ioctl) 9820 ill_refrele(ill); 9821 if (ire != NULL) 9822 ire_refrele(ire); 9823 9824 return (err); 9825 } 9826 9827 /* 9828 * ARP IOCTLs. 9829 * How does IP get in the business of fronting ARP configuration/queries? 9830 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9831 * are by tradition passed in through a datagram socket. That lands in IP. 9832 * As it happens, this is just as well since the interface is quite crude in 9833 * that it passes in no information about protocol or hardware types, or 9834 * interface association. After making the protocol assumption, IP is in 9835 * the position to look up the name of the ILL, which ARP will need, and 9836 * format a request that can be handled by ARP. The request is passed up 9837 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9838 * back a response. ARP supports its own set of more general IOCTLs, in 9839 * case anyone is interested. 9840 */ 9841 /* ARGSUSED */ 9842 int 9843 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9844 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9845 { 9846 struct arpreq *ar; 9847 struct sockaddr_in *sin; 9848 ire_t *ire; 9849 boolean_t isv6; 9850 mblk_t *mp1; 9851 int err; 9852 conn_t *connp; 9853 ill_t *ill; 9854 9855 /* ioctl comes down on an conn */ 9856 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9857 connp = Q_TO_CONN(q); 9858 isv6 = connp->conn_af_isv6; 9859 if (isv6) 9860 return (ENXIO); 9861 9862 /* Existance verified in ip_wput_nondata */ 9863 mp1 = mp->b_cont->b_cont; 9864 9865 ar = (struct arpreq *)mp1->b_rptr; 9866 sin = (sin_t *)&ar->arp_pa; 9867 9868 /* 9869 * We need to let ARP know on which interface the IP 9870 * address has an ARP mapping. In the IPMP case, a 9871 * simple forwarding table lookup will return the 9872 * IRE_IF_RESOLVER for the first interface in the group, 9873 * which might not be the interface on which the 9874 * requested IP address was resolved due to the ill 9875 * selection algorithm (see ip_newroute_get_dst_ill()). 9876 * So we do a cache table lookup first: if the IRE cache 9877 * entry for the IP address is still there, it will 9878 * contain the ill pointer for the right interface, so 9879 * we use that. If the cache entry has been flushed, we 9880 * fall back to the forwarding table lookup. This should 9881 * be rare enough since IRE cache entries have a longer 9882 * life expectancy than ARP cache entries. 9883 */ 9884 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9885 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9886 ((ill = ire_to_ill(ire)) == NULL)) { 9887 if (ire != NULL) 9888 ire_refrele(ire); 9889 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9890 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9891 NULL, MATCH_IRE_TYPE); 9892 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9893 if (ire != NULL) 9894 ire_refrele(ire); 9895 return (ENXIO); 9896 } 9897 } 9898 ASSERT(ire != NULL && ill != NULL); 9899 9900 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9901 ire_refrele(ire); 9902 return (err); 9903 } 9904 9905 /* 9906 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9907 * atomically set/clear the muxids. Also complete the ioctl by acking or 9908 * naking it. Note that the code is structured such that the link type, 9909 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9910 * its clones use the persistent link, while pppd(1M) and perhaps many 9911 * other daemons may use non-persistent link. When combined with some 9912 * ill_t states, linking and unlinking lower streams may be used as 9913 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9914 */ 9915 /* ARGSUSED */ 9916 void 9917 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9918 { 9919 mblk_t *mp1; 9920 mblk_t *mp2; 9921 struct linkblk *li; 9922 queue_t *ipwq; 9923 char *name; 9924 struct qinit *qinfo; 9925 struct ipmx_s *ipmxp; 9926 ill_t *ill = NULL; 9927 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9928 int err = 0; 9929 boolean_t entered_ipsq = B_FALSE; 9930 boolean_t islink; 9931 queue_t *dwq = NULL; 9932 9933 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9934 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9935 9936 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9937 B_TRUE : B_FALSE; 9938 9939 mp1 = mp->b_cont; /* This is the linkblk info */ 9940 li = (struct linkblk *)mp1->b_rptr; 9941 9942 /* 9943 * ARP has added this special mblk, and the utility is asking us 9944 * to perform consistency checks, and also atomically set the 9945 * muxid. Ifconfig is an example. It achieves this by using 9946 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9947 * to /dev/udp[6] stream for use as the mux when plinking the IP 9948 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9949 * and other comments in this routine for more details. 9950 */ 9951 mp2 = mp1->b_cont; /* This is added by ARP */ 9952 9953 /* 9954 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9955 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9956 * get the special mblk above. For backward compatibility, we just 9957 * return success. The utility will use SIOCSLIFMUXID to store 9958 * the muxids. This is not atomic, and can leave the streams 9959 * unplumbable if the utility is interrrupted, before it does the 9960 * SIOCSLIFMUXID. 9961 */ 9962 if (mp2 == NULL) { 9963 /* 9964 * At this point we don't know whether or not this is the 9965 * IP module stream or the ARP device stream. We need to 9966 * walk the lower stream in order to find this out, since 9967 * the capability negotiation is done only on the IP module 9968 * stream. IP module instance is identified by the module 9969 * name IP, non-null q_next, and it's wput not being ip_lwput. 9970 * STREAMS ensures that the lower stream (l_qbot) will not 9971 * vanish until this ioctl completes. So we can safely walk 9972 * the stream or refer to the q_ptr. 9973 */ 9974 ipwq = li->l_qbot; 9975 while (ipwq != NULL) { 9976 qinfo = ipwq->q_qinfo; 9977 name = qinfo->qi_minfo->mi_idname; 9978 if (name != NULL && name[0] != NULL && 9979 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9980 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9981 (ipwq->q_next != NULL)) { 9982 break; 9983 } 9984 ipwq = ipwq->q_next; 9985 } 9986 /* 9987 * This looks like an IP module stream, so trigger 9988 * the capability reset or re-negotiation if necessary. 9989 */ 9990 if (ipwq != NULL) { 9991 ill = ipwq->q_ptr; 9992 ASSERT(ill != NULL); 9993 9994 if (ipsq == NULL) { 9995 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9996 ip_sioctl_plink, NEW_OP, B_TRUE); 9997 if (ipsq == NULL) 9998 return; 9999 entered_ipsq = B_TRUE; 10000 } 10001 ASSERT(IAM_WRITER_ILL(ill)); 10002 /* 10003 * Store the upper read queue of the module 10004 * immediately below IP, and count the total 10005 * number of lower modules. Do this only 10006 * for I_PLINK or I_LINK event. 10007 */ 10008 ill->ill_lmod_rq = NULL; 10009 ill->ill_lmod_cnt = 0; 10010 if (islink && (dwq = ipwq->q_next) != NULL) { 10011 ill->ill_lmod_rq = RD(dwq); 10012 10013 while (dwq != NULL) { 10014 ill->ill_lmod_cnt++; 10015 dwq = dwq->q_next; 10016 } 10017 } 10018 /* 10019 * There's no point in resetting or re-negotiating if 10020 * we are not bound to the driver, so only do this if 10021 * the DLPI state is idle (up); we assume such state 10022 * since ill_ipif_up_count gets incremented in 10023 * ipif_up_done(), which is after we are bound to the 10024 * driver. Note that in the case of logical 10025 * interfaces, IP won't rebind to the driver unless 10026 * the ill_ipif_up_count is 0, meaning that all other 10027 * IP interfaces (including the main ipif) are in the 10028 * down state. Because of this, we use such counter 10029 * as an indicator, instead of relying on the IPIF_UP 10030 * flag, which is per ipif instance. 10031 */ 10032 if (ill->ill_ipif_up_count > 0) { 10033 if (islink) 10034 ill_capability_probe(ill); 10035 else 10036 ill_capability_reset(ill); 10037 } 10038 } 10039 goto done; 10040 } 10041 10042 /* 10043 * This is an I_{P}LINK sent down by ifconfig on 10044 * /dev/arp. ARP has appended this last (3rd) mblk, 10045 * giving more info. STREAMS ensures that the lower 10046 * stream (l_qbot) will not vanish until this ioctl 10047 * completes. So we can safely walk the stream or refer 10048 * to the q_ptr. 10049 */ 10050 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10051 if (ipmxp->ipmx_arpdev_stream) { 10052 /* 10053 * The operation is occuring on the arp-device 10054 * stream. 10055 */ 10056 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10057 q, mp, ip_sioctl_plink, &err, NULL); 10058 if (ill == NULL) { 10059 if (err == EINPROGRESS) { 10060 return; 10061 } else { 10062 err = EINVAL; 10063 goto done; 10064 } 10065 } 10066 10067 if (ipsq == NULL) { 10068 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10069 NEW_OP, B_TRUE); 10070 if (ipsq == NULL) { 10071 ill_refrele(ill); 10072 return; 10073 } 10074 entered_ipsq = B_TRUE; 10075 } 10076 ASSERT(IAM_WRITER_ILL(ill)); 10077 ill_refrele(ill); 10078 /* 10079 * To ensure consistency between IP and ARP, 10080 * the following LIFO scheme is used in 10081 * plink/punlink. (IP first, ARP last). 10082 * This is because the muxid's are stored 10083 * in the IP stream on the ill. 10084 * 10085 * I_{P}LINK: ifconfig plinks the IP stream before 10086 * plinking the ARP stream. On an arp-dev 10087 * stream, IP checks that it is not yet 10088 * plinked, and it also checks that the 10089 * corresponding IP stream is already plinked. 10090 * 10091 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10092 * before punlinking the IP stream. IP does 10093 * not allow punlink of the IP stream unless 10094 * the arp stream has been punlinked. 10095 * 10096 */ 10097 if ((islink && 10098 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10099 (!islink && 10100 ill->ill_arp_muxid != li->l_index)) { 10101 err = EINVAL; 10102 goto done; 10103 } 10104 if (islink) { 10105 ill->ill_arp_muxid = li->l_index; 10106 } else { 10107 ill->ill_arp_muxid = 0; 10108 } 10109 } else { 10110 /* 10111 * This must be the IP module stream with or 10112 * without arp. Walk the stream and locate the 10113 * IP module. An IP module instance is 10114 * identified by the module name IP, non-null 10115 * q_next, and it's wput not being ip_lwput. 10116 */ 10117 ipwq = li->l_qbot; 10118 while (ipwq != NULL) { 10119 qinfo = ipwq->q_qinfo; 10120 name = qinfo->qi_minfo->mi_idname; 10121 if (name != NULL && name[0] != NULL && 10122 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10123 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10124 (ipwq->q_next != NULL)) { 10125 break; 10126 } 10127 ipwq = ipwq->q_next; 10128 } 10129 if (ipwq != NULL) { 10130 ill = ipwq->q_ptr; 10131 ASSERT(ill != NULL); 10132 10133 if (ipsq == NULL) { 10134 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10135 ip_sioctl_plink, NEW_OP, B_TRUE); 10136 if (ipsq == NULL) 10137 return; 10138 entered_ipsq = B_TRUE; 10139 } 10140 ASSERT(IAM_WRITER_ILL(ill)); 10141 /* 10142 * Return error if the ip_mux_id is 10143 * non-zero and command is I_{P}LINK. 10144 * If command is I_{P}UNLINK, return 10145 * error if the arp-devstr is not 10146 * yet punlinked. 10147 */ 10148 if ((islink && ill->ill_ip_muxid != 0) || 10149 (!islink && ill->ill_arp_muxid != 0)) { 10150 err = EINVAL; 10151 goto done; 10152 } 10153 ill->ill_lmod_rq = NULL; 10154 ill->ill_lmod_cnt = 0; 10155 if (islink) { 10156 /* 10157 * Store the upper read queue of the module 10158 * immediately below IP, and count the total 10159 * number of lower modules. 10160 */ 10161 if ((dwq = ipwq->q_next) != NULL) { 10162 ill->ill_lmod_rq = RD(dwq); 10163 10164 while (dwq != NULL) { 10165 ill->ill_lmod_cnt++; 10166 dwq = dwq->q_next; 10167 } 10168 } 10169 ill->ill_ip_muxid = li->l_index; 10170 } else { 10171 ill->ill_ip_muxid = 0; 10172 } 10173 10174 /* 10175 * See comments above about resetting/re- 10176 * negotiating driver sub-capabilities. 10177 */ 10178 if (ill->ill_ipif_up_count > 0) { 10179 if (islink) 10180 ill_capability_probe(ill); 10181 else 10182 ill_capability_reset(ill); 10183 } 10184 } 10185 } 10186 done: 10187 iocp->ioc_count = 0; 10188 iocp->ioc_error = err; 10189 if (err == 0) 10190 mp->b_datap->db_type = M_IOCACK; 10191 else 10192 mp->b_datap->db_type = M_IOCNAK; 10193 qreply(q, mp); 10194 10195 /* Conn was refheld in ip_sioctl_copyin_setup */ 10196 if (CONN_Q(q)) 10197 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10198 if (entered_ipsq) 10199 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10200 } 10201 10202 /* 10203 * Search the ioctl command in the ioctl tables and return a pointer 10204 * to the ioctl command information. The ioctl command tables are 10205 * static and fully populated at compile time. 10206 */ 10207 ip_ioctl_cmd_t * 10208 ip_sioctl_lookup(int ioc_cmd) 10209 { 10210 int index; 10211 ip_ioctl_cmd_t *ipip; 10212 ip_ioctl_cmd_t *ipip_end; 10213 10214 if (ioc_cmd == IPI_DONTCARE) 10215 return (NULL); 10216 10217 /* 10218 * Do a 2 step search. First search the indexed table 10219 * based on the least significant byte of the ioctl cmd. 10220 * If we don't find a match, then search the misc table 10221 * serially. 10222 */ 10223 index = ioc_cmd & 0xFF; 10224 if (index < ip_ndx_ioctl_count) { 10225 ipip = &ip_ndx_ioctl_table[index]; 10226 if (ipip->ipi_cmd == ioc_cmd) { 10227 /* Found a match in the ndx table */ 10228 return (ipip); 10229 } 10230 } 10231 10232 /* Search the misc table */ 10233 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10234 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10235 if (ipip->ipi_cmd == ioc_cmd) 10236 /* Found a match in the misc table */ 10237 return (ipip); 10238 } 10239 10240 return (NULL); 10241 } 10242 10243 /* 10244 * Wrapper function for resuming deferred ioctl processing 10245 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10246 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10247 */ 10248 /* ARGSUSED */ 10249 void 10250 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10251 void *dummy_arg) 10252 { 10253 ip_sioctl_copyin_setup(q, mp); 10254 } 10255 10256 /* 10257 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10258 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10259 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10260 * We establish here the size of the block to be copied in. mi_copyin 10261 * arranges for this to happen, an processing continues in ip_wput with 10262 * an M_IOCDATA message. 10263 */ 10264 void 10265 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10266 { 10267 int copyin_size; 10268 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10269 ip_ioctl_cmd_t *ipip; 10270 cred_t *cr; 10271 10272 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10273 if (ipip == NULL) { 10274 /* 10275 * The ioctl is not one we understand or own. 10276 * Pass it along to be processed down stream, 10277 * if this is a module instance of IP, else nak 10278 * the ioctl. 10279 */ 10280 if (q->q_next == NULL) { 10281 goto nak; 10282 } else { 10283 putnext(q, mp); 10284 return; 10285 } 10286 } 10287 10288 /* 10289 * If this is deferred, then we will do all the checks when we 10290 * come back. 10291 */ 10292 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10293 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 10294 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10295 return; 10296 } 10297 10298 /* 10299 * Only allow a very small subset of IP ioctls on this stream if 10300 * IP is a module and not a driver. Allowing ioctls to be processed 10301 * in this case may cause assert failures or data corruption. 10302 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10303 * ioctls allowed on an IP module stream, after which this stream 10304 * normally becomes a multiplexor (at which time the stream head 10305 * will fail all ioctls). 10306 */ 10307 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10308 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10309 /* 10310 * Pass common Streams ioctls which the IP 10311 * module does not own or consume along to 10312 * be processed down stream. 10313 */ 10314 putnext(q, mp); 10315 return; 10316 } else { 10317 goto nak; 10318 } 10319 } 10320 10321 /* Make sure we have ioctl data to process. */ 10322 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10323 goto nak; 10324 10325 /* 10326 * Prefer dblk credential over ioctl credential; some synthesized 10327 * ioctls have kcred set because there's no way to crhold() 10328 * a credential in some contexts. (ioc_cr is not crfree() by 10329 * the framework; the caller of ioctl needs to hold the reference 10330 * for the duration of the call). 10331 */ 10332 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10333 10334 /* Make sure normal users don't send down privileged ioctls */ 10335 if ((ipip->ipi_flags & IPI_PRIV) && 10336 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 10337 /* We checked the privilege earlier but log it here */ 10338 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 10339 return; 10340 } 10341 10342 /* 10343 * The ioctl command tables can only encode fixed length 10344 * ioctl data. If the length is variable, the table will 10345 * encode the length as zero. Such special cases are handled 10346 * below in the switch. 10347 */ 10348 if (ipip->ipi_copyin_size != 0) { 10349 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10350 return; 10351 } 10352 10353 switch (iocp->ioc_cmd) { 10354 case O_SIOCGIFCONF: 10355 case SIOCGIFCONF: 10356 /* 10357 * This IOCTL is hilarious. See comments in 10358 * ip_sioctl_get_ifconf for the story. 10359 */ 10360 if (iocp->ioc_count == TRANSPARENT) 10361 copyin_size = SIZEOF_STRUCT(ifconf, 10362 iocp->ioc_flag); 10363 else 10364 copyin_size = iocp->ioc_count; 10365 mi_copyin(q, mp, NULL, copyin_size); 10366 return; 10367 10368 case O_SIOCGLIFCONF: 10369 case SIOCGLIFCONF: 10370 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10371 mi_copyin(q, mp, NULL, copyin_size); 10372 return; 10373 10374 case SIOCGLIFSRCOF: 10375 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10376 mi_copyin(q, mp, NULL, copyin_size); 10377 return; 10378 case SIOCGIP6ADDRPOLICY: 10379 ip_sioctl_ip6addrpolicy(q, mp); 10380 ip6_asp_table_refrele(); 10381 return; 10382 10383 case SIOCSIP6ADDRPOLICY: 10384 ip_sioctl_ip6addrpolicy(q, mp); 10385 return; 10386 10387 case SIOCGDSTINFO: 10388 ip_sioctl_dstinfo(q, mp); 10389 ip6_asp_table_refrele(); 10390 return; 10391 10392 case I_PLINK: 10393 case I_PUNLINK: 10394 case I_LINK: 10395 case I_UNLINK: 10396 /* 10397 * We treat non-persistent link similarly as the persistent 10398 * link case, in terms of plumbing/unplumbing, as well as 10399 * dynamic re-plumbing events indicator. See comments 10400 * in ip_sioctl_plink() for more. 10401 * 10402 * Request can be enqueued in the 'ipsq' while waiting 10403 * to become exclusive. So bump up the conn ref. 10404 */ 10405 if (CONN_Q(q)) 10406 CONN_INC_REF(Q_TO_CONN(q)); 10407 ip_sioctl_plink(NULL, q, mp, NULL); 10408 return; 10409 10410 case ND_GET: 10411 case ND_SET: 10412 /* 10413 * Use of the nd table requires holding the reader lock. 10414 * Modifying the nd table thru nd_load/nd_unload requires 10415 * the writer lock. 10416 */ 10417 rw_enter(&ip_g_nd_lock, RW_READER); 10418 if (nd_getset(q, ip_g_nd, mp)) { 10419 rw_exit(&ip_g_nd_lock); 10420 10421 if (iocp->ioc_error) 10422 iocp->ioc_count = 0; 10423 mp->b_datap->db_type = M_IOCACK; 10424 qreply(q, mp); 10425 return; 10426 } 10427 rw_exit(&ip_g_nd_lock); 10428 /* 10429 * We don't understand this subioctl of ND_GET / ND_SET. 10430 * Maybe intended for some driver / module below us 10431 */ 10432 if (q->q_next) { 10433 putnext(q, mp); 10434 } else { 10435 iocp->ioc_error = ENOENT; 10436 mp->b_datap->db_type = M_IOCNAK; 10437 iocp->ioc_count = 0; 10438 qreply(q, mp); 10439 } 10440 return; 10441 10442 case IP_IOCTL: 10443 ip_wput_ioctl(q, mp); 10444 return; 10445 default: 10446 cmn_err(CE_PANIC, "should not happen "); 10447 } 10448 nak: 10449 if (mp->b_cont != NULL) { 10450 freemsg(mp->b_cont); 10451 mp->b_cont = NULL; 10452 } 10453 iocp->ioc_error = EINVAL; 10454 mp->b_datap->db_type = M_IOCNAK; 10455 iocp->ioc_count = 0; 10456 qreply(q, mp); 10457 } 10458 10459 /* ip_wput hands off ARP IOCTL responses to us */ 10460 void 10461 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10462 { 10463 struct arpreq *ar; 10464 struct xarpreq *xar; 10465 area_t *area; 10466 mblk_t *area_mp; 10467 struct iocblk *iocp; 10468 mblk_t *orig_ioc_mp, *tmp; 10469 struct iocblk *orig_iocp; 10470 ill_t *ill; 10471 conn_t *connp = NULL; 10472 uint_t ioc_id; 10473 mblk_t *pending_mp; 10474 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10475 int *flagsp; 10476 char *storage = NULL; 10477 sin_t *sin; 10478 ipaddr_t addr; 10479 int err; 10480 10481 ill = q->q_ptr; 10482 ASSERT(ill != NULL); 10483 10484 /* 10485 * We should get back from ARP a packet chain that looks like: 10486 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10487 */ 10488 if (!(area_mp = mp->b_cont) || 10489 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10490 !(orig_ioc_mp = area_mp->b_cont) || 10491 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10492 freemsg(mp); 10493 return; 10494 } 10495 10496 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10497 10498 tmp = (orig_ioc_mp->b_cont)->b_cont; 10499 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10500 (orig_iocp->ioc_cmd == SIOCSXARP) || 10501 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10502 x_arp_ioctl = B_TRUE; 10503 xar = (struct xarpreq *)tmp->b_rptr; 10504 sin = (sin_t *)&xar->xarp_pa; 10505 flagsp = &xar->xarp_flags; 10506 storage = xar->xarp_ha.sdl_data; 10507 if (xar->xarp_ha.sdl_nlen != 0) 10508 ifx_arp_ioctl = B_TRUE; 10509 } else { 10510 ar = (struct arpreq *)tmp->b_rptr; 10511 sin = (sin_t *)&ar->arp_pa; 10512 flagsp = &ar->arp_flags; 10513 storage = ar->arp_ha.sa_data; 10514 } 10515 10516 iocp = (struct iocblk *)mp->b_rptr; 10517 10518 /* 10519 * Pick out the originating queue based on the ioc_id. 10520 */ 10521 ioc_id = iocp->ioc_id; 10522 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10523 if (pending_mp == NULL) { 10524 ASSERT(connp == NULL); 10525 inet_freemsg(mp); 10526 return; 10527 } 10528 ASSERT(connp != NULL); 10529 q = CONNP_TO_WQ(connp); 10530 10531 /* Uncouple the internally generated IOCTL from the original one */ 10532 area = (area_t *)area_mp->b_rptr; 10533 area_mp->b_cont = NULL; 10534 10535 /* 10536 * Restore the b_next and b_prev used by mi code. This is needed 10537 * to complete the ioctl using mi* functions. We stored them in 10538 * the pending mp prior to sending the request to ARP. 10539 */ 10540 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10541 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10542 inet_freemsg(pending_mp); 10543 10544 /* 10545 * We're done if there was an error or if this is not an SIOCG{X}ARP 10546 * Catch the case where there is an IRE_CACHE by no entry in the 10547 * arp table. 10548 */ 10549 addr = sin->sin_addr.s_addr; 10550 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10551 ire_t *ire; 10552 dl_unitdata_req_t *dlup; 10553 mblk_t *llmp; 10554 int addr_len; 10555 ill_t *ipsqill = NULL; 10556 10557 if (ifx_arp_ioctl) { 10558 /* 10559 * There's no need to lookup the ill, since 10560 * we've already done that when we started 10561 * processing the ioctl and sent the message 10562 * to ARP on that ill. So use the ill that 10563 * is stored in q->q_ptr. 10564 */ 10565 ipsqill = ill; 10566 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10567 ipsqill->ill_ipif, ALL_ZONES, 10568 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10569 } else { 10570 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10571 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10572 if (ire != NULL) 10573 ipsqill = ire_to_ill(ire); 10574 } 10575 10576 if ((x_arp_ioctl) && (ipsqill != NULL)) 10577 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10578 10579 if (ire != NULL) { 10580 /* 10581 * Since the ire obtained from cachetable is used for 10582 * mac addr copying below, treat an incomplete ire as if 10583 * as if we never found it. 10584 */ 10585 if (ire->ire_nce != NULL && 10586 ire->ire_nce->nce_state != ND_REACHABLE) { 10587 ire_refrele(ire); 10588 ire = NULL; 10589 ipsqill = NULL; 10590 goto errack; 10591 } 10592 *flagsp = ATF_INUSE; 10593 llmp = (ire->ire_nce != NULL ? 10594 ire->ire_nce->nce_res_mp : NULL); 10595 if (llmp != NULL && ipsqill != NULL) { 10596 uchar_t *macaddr; 10597 10598 addr_len = ipsqill->ill_phys_addr_length; 10599 if (x_arp_ioctl && ((addr_len + 10600 ipsqill->ill_name_length) > 10601 sizeof (xar->xarp_ha.sdl_data))) { 10602 ire_refrele(ire); 10603 freemsg(mp); 10604 ip_ioctl_finish(q, orig_ioc_mp, 10605 EINVAL, NO_COPYOUT, NULL); 10606 return; 10607 } 10608 *flagsp |= ATF_COM; 10609 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10610 if (ipsqill->ill_sap_length < 0) 10611 macaddr = llmp->b_rptr + 10612 dlup->dl_dest_addr_offset; 10613 else 10614 macaddr = llmp->b_rptr + 10615 dlup->dl_dest_addr_offset + 10616 ipsqill->ill_sap_length; 10617 /* 10618 * For SIOCGARP, MAC address length 10619 * validation has already been done 10620 * before the ioctl was issued to ARP to 10621 * allow it to progress only on 6 byte 10622 * addressable (ethernet like) media. Thus 10623 * the mac address copying can not overwrite 10624 * the sa_data area below. 10625 */ 10626 bcopy(macaddr, storage, addr_len); 10627 } 10628 /* Ditch the internal IOCTL. */ 10629 freemsg(mp); 10630 ire_refrele(ire); 10631 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10632 return; 10633 } 10634 } 10635 10636 /* 10637 * Delete the coresponding IRE_CACHE if any. 10638 * Reset the error if there was one (in case there was no entry 10639 * in arp.) 10640 */ 10641 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10642 ipif_t *ipintf = NULL; 10643 10644 if (ifx_arp_ioctl) { 10645 /* 10646 * There's no need to lookup the ill, since 10647 * we've already done that when we started 10648 * processing the ioctl and sent the message 10649 * to ARP on that ill. So use the ill that 10650 * is stored in q->q_ptr. 10651 */ 10652 ipintf = ill->ill_ipif; 10653 } 10654 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10655 /* 10656 * The address in "addr" may be an entry for a 10657 * router. If that's true, then any off-net 10658 * IRE_CACHE entries that go through the router 10659 * with address "addr" must be clobbered. Use 10660 * ire_walk to achieve this goal. 10661 */ 10662 if (ifx_arp_ioctl) 10663 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10664 ire_delete_cache_gw, (char *)&addr, ill); 10665 else 10666 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10667 ALL_ZONES); 10668 iocp->ioc_error = 0; 10669 } 10670 } 10671 errack: 10672 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10673 err = iocp->ioc_error; 10674 freemsg(mp); 10675 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10676 return; 10677 } 10678 10679 /* 10680 * Completion of an SIOCG{X}ARP. Translate the information from 10681 * the area_t into the struct {x}arpreq. 10682 */ 10683 if (x_arp_ioctl) { 10684 storage += ill_xarp_info(&xar->xarp_ha, ill); 10685 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10686 sizeof (xar->xarp_ha.sdl_data)) { 10687 freemsg(mp); 10688 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10689 NULL); 10690 return; 10691 } 10692 } 10693 *flagsp = ATF_INUSE; 10694 if (area->area_flags & ACE_F_PERMANENT) 10695 *flagsp |= ATF_PERM; 10696 if (area->area_flags & ACE_F_PUBLISH) 10697 *flagsp |= ATF_PUBL; 10698 if (area->area_flags & ACE_F_AUTHORITY) 10699 *flagsp |= ATF_AUTHORITY; 10700 if (area->area_hw_addr_length != 0) { 10701 *flagsp |= ATF_COM; 10702 /* 10703 * For SIOCGARP, MAC address length validation has 10704 * already been done before the ioctl was issued to ARP 10705 * to allow it to progress only on 6 byte addressable 10706 * (ethernet like) media. Thus the mac address copying 10707 * can not overwrite the sa_data area below. 10708 */ 10709 bcopy((char *)area + area->area_hw_addr_offset, 10710 storage, area->area_hw_addr_length); 10711 } 10712 10713 /* Ditch the internal IOCTL. */ 10714 freemsg(mp); 10715 /* Complete the original. */ 10716 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10717 } 10718 10719 /* 10720 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10721 * interface) create the next available logical interface for this 10722 * physical interface. 10723 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10724 * ipif with the specified name. 10725 * 10726 * If the address family is not AF_UNSPEC then set the address as well. 10727 * 10728 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10729 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10730 * 10731 * Executed as a writer on the ill or ill group. 10732 * So no lock is needed to traverse the ipif chain, or examine the 10733 * phyint flags. 10734 */ 10735 /* ARGSUSED */ 10736 int 10737 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10738 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10739 { 10740 mblk_t *mp1; 10741 struct lifreq *lifr; 10742 boolean_t isv6; 10743 boolean_t exists; 10744 char *name; 10745 char *endp; 10746 char *cp; 10747 int namelen; 10748 ipif_t *ipif; 10749 long id; 10750 ipsq_t *ipsq; 10751 ill_t *ill; 10752 sin_t *sin; 10753 int err = 0; 10754 boolean_t found_sep = B_FALSE; 10755 conn_t *connp; 10756 zoneid_t zoneid; 10757 int orig_ifindex = 0; 10758 10759 ip1dbg(("ip_sioctl_addif\n")); 10760 /* Existence of mp1 has been checked in ip_wput_nondata */ 10761 mp1 = mp->b_cont->b_cont; 10762 /* 10763 * Null terminate the string to protect against buffer 10764 * overrun. String was generated by user code and may not 10765 * be trusted. 10766 */ 10767 lifr = (struct lifreq *)mp1->b_rptr; 10768 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10769 name = lifr->lifr_name; 10770 ASSERT(CONN_Q(q)); 10771 connp = Q_TO_CONN(q); 10772 isv6 = connp->conn_af_isv6; 10773 zoneid = connp->conn_zoneid; 10774 namelen = mi_strlen(name); 10775 if (namelen == 0) 10776 return (EINVAL); 10777 10778 exists = B_FALSE; 10779 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10780 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10781 /* 10782 * Allow creating lo0 using SIOCLIFADDIF. 10783 * can't be any other writer thread. So can pass null below 10784 * for the last 4 args to ipif_lookup_name. 10785 */ 10786 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10787 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10788 /* Prevent any further action */ 10789 if (ipif == NULL) { 10790 return (ENOBUFS); 10791 } else if (!exists) { 10792 /* We created the ipif now and as writer */ 10793 ipif_refrele(ipif); 10794 return (0); 10795 } else { 10796 ill = ipif->ipif_ill; 10797 ill_refhold(ill); 10798 ipif_refrele(ipif); 10799 } 10800 } else { 10801 /* Look for a colon in the name. */ 10802 endp = &name[namelen]; 10803 for (cp = endp; --cp > name; ) { 10804 if (*cp == IPIF_SEPARATOR_CHAR) { 10805 found_sep = B_TRUE; 10806 /* 10807 * Reject any non-decimal aliases for plumbing 10808 * of logical interfaces. Aliases with leading 10809 * zeroes are also rejected as they introduce 10810 * ambiguity in the naming of the interfaces. 10811 * Comparing with "0" takes care of all such 10812 * cases. 10813 */ 10814 if ((strncmp("0", cp+1, 1)) == 0) 10815 return (EINVAL); 10816 10817 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10818 id <= 0 || *endp != '\0') { 10819 return (EINVAL); 10820 } 10821 *cp = '\0'; 10822 break; 10823 } 10824 } 10825 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10826 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10827 if (found_sep) 10828 *cp = IPIF_SEPARATOR_CHAR; 10829 if (ill == NULL) 10830 return (err); 10831 } 10832 10833 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10834 B_TRUE); 10835 10836 /* 10837 * Release the refhold due to the lookup, now that we are excl 10838 * or we are just returning 10839 */ 10840 ill_refrele(ill); 10841 10842 if (ipsq == NULL) 10843 return (EINPROGRESS); 10844 10845 /* 10846 * If the interface is failed, inactive or offlined, look for a working 10847 * interface in the ill group and create the ipif there. If we can't 10848 * find a good interface, create the ipif anyway so that in.mpathd can 10849 * move it to the first repaired interface. 10850 */ 10851 if ((ill->ill_phyint->phyint_flags & 10852 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10853 ill->ill_phyint->phyint_groupname_len != 0) { 10854 phyint_t *phyi; 10855 char *groupname = ill->ill_phyint->phyint_groupname; 10856 10857 /* 10858 * We're looking for a working interface, but it doesn't matter 10859 * if it's up or down; so instead of following the group lists, 10860 * we look at each physical interface and compare the groupname. 10861 * We're only interested in interfaces with IPv4 (resp. IPv6) 10862 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10863 * Otherwise we create the ipif on the failed interface. 10864 */ 10865 rw_enter(&ill_g_lock, RW_READER); 10866 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10867 for (; phyi != NULL; 10868 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10869 phyi, AVL_AFTER)) { 10870 if (phyi->phyint_groupname_len == 0) 10871 continue; 10872 ASSERT(phyi->phyint_groupname != NULL); 10873 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10874 !(phyi->phyint_flags & 10875 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10876 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10877 (phyi->phyint_illv4 != NULL))) { 10878 break; 10879 } 10880 } 10881 rw_exit(&ill_g_lock); 10882 10883 if (phyi != NULL) { 10884 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10885 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10886 phyi->phyint_illv4); 10887 } 10888 } 10889 10890 /* 10891 * We are now exclusive on the ipsq, so an ill move will be serialized 10892 * before or after us. 10893 */ 10894 ASSERT(IAM_WRITER_ILL(ill)); 10895 ASSERT(ill->ill_move_in_progress == B_FALSE); 10896 10897 if (found_sep && orig_ifindex == 0) { 10898 /* Now see if there is an IPIF with this unit number. */ 10899 for (ipif = ill->ill_ipif; ipif != NULL; 10900 ipif = ipif->ipif_next) { 10901 if (ipif->ipif_id == id) { 10902 err = EEXIST; 10903 goto done; 10904 } 10905 } 10906 } 10907 10908 /* 10909 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10910 * of lo0. We never come here when we plumb lo0:0. It 10911 * happens in ipif_lookup_on_name. 10912 * The specified unit number is ignored when we create the ipif on a 10913 * different interface. However, we save it in ipif_orig_ipifid below so 10914 * that the ipif fails back to the right position. 10915 */ 10916 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10917 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10918 err = ENOBUFS; 10919 goto done; 10920 } 10921 10922 /* Return created name with ioctl */ 10923 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10924 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10925 ip1dbg(("created %s\n", lifr->lifr_name)); 10926 10927 /* Set address */ 10928 sin = (sin_t *)&lifr->lifr_addr; 10929 if (sin->sin_family != AF_UNSPEC) { 10930 err = ip_sioctl_addr(ipif, sin, q, mp, 10931 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10932 } 10933 10934 /* Set ifindex and unit number for failback */ 10935 if (err == 0 && orig_ifindex != 0) { 10936 ipif->ipif_orig_ifindex = orig_ifindex; 10937 if (found_sep) { 10938 ipif->ipif_orig_ipifid = id; 10939 } 10940 } 10941 10942 done: 10943 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10944 return (err); 10945 } 10946 10947 /* 10948 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10949 * interface) delete it based on the IP address (on this physical interface). 10950 * Otherwise delete it based on the ipif_id. 10951 * Also, special handling to allow a removeif of lo0. 10952 */ 10953 /* ARGSUSED */ 10954 int 10955 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10956 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10957 { 10958 conn_t *connp; 10959 ill_t *ill = ipif->ipif_ill; 10960 boolean_t success; 10961 10962 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10963 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10964 ASSERT(IAM_WRITER_IPIF(ipif)); 10965 10966 connp = Q_TO_CONN(q); 10967 /* 10968 * Special case for unplumbing lo0 (the loopback physical interface). 10969 * If unplumbing lo0, the incoming address structure has been 10970 * initialized to all zeros. When unplumbing lo0, all its logical 10971 * interfaces must be removed too. 10972 * 10973 * Note that this interface may be called to remove a specific 10974 * loopback logical interface (eg, lo0:1). But in that case 10975 * ipif->ipif_id != 0 so that the code path for that case is the 10976 * same as any other interface (meaning it skips the code directly 10977 * below). 10978 */ 10979 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10980 if (sin->sin_family == AF_UNSPEC && 10981 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10982 /* 10983 * Mark it condemned. No new ref. will be made to ill. 10984 */ 10985 mutex_enter(&ill->ill_lock); 10986 ill->ill_state_flags |= ILL_CONDEMNED; 10987 for (ipif = ill->ill_ipif; ipif != NULL; 10988 ipif = ipif->ipif_next) { 10989 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10990 } 10991 mutex_exit(&ill->ill_lock); 10992 10993 ipif = ill->ill_ipif; 10994 /* unplumb the loopback interface */ 10995 ill_delete(ill); 10996 mutex_enter(&connp->conn_lock); 10997 mutex_enter(&ill->ill_lock); 10998 ASSERT(ill->ill_group == NULL); 10999 11000 /* Are any references to this ill active */ 11001 if (ill_is_quiescent(ill)) { 11002 mutex_exit(&ill->ill_lock); 11003 mutex_exit(&connp->conn_lock); 11004 ill_delete_tail(ill); 11005 mi_free(ill); 11006 return (0); 11007 } 11008 success = ipsq_pending_mp_add(connp, ipif, 11009 CONNP_TO_WQ(connp), mp, ILL_FREE); 11010 mutex_exit(&connp->conn_lock); 11011 mutex_exit(&ill->ill_lock); 11012 if (success) 11013 return (EINPROGRESS); 11014 else 11015 return (EINTR); 11016 } 11017 } 11018 11019 /* 11020 * We are exclusive on the ipsq, so an ill move will be serialized 11021 * before or after us. 11022 */ 11023 ASSERT(ill->ill_move_in_progress == B_FALSE); 11024 11025 if (ipif->ipif_id == 0) { 11026 /* Find based on address */ 11027 if (ipif->ipif_isv6) { 11028 sin6_t *sin6; 11029 11030 if (sin->sin_family != AF_INET6) 11031 return (EAFNOSUPPORT); 11032 11033 sin6 = (sin6_t *)sin; 11034 /* We are a writer, so we should be able to lookup */ 11035 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11036 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 11037 if (ipif == NULL) { 11038 /* 11039 * Maybe the address in on another interface in 11040 * the same IPMP group? We check this below. 11041 */ 11042 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11043 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 11044 } 11045 } else { 11046 ipaddr_t addr; 11047 11048 if (sin->sin_family != AF_INET) 11049 return (EAFNOSUPPORT); 11050 11051 addr = sin->sin_addr.s_addr; 11052 /* We are a writer, so we should be able to lookup */ 11053 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11054 NULL, NULL, NULL); 11055 if (ipif == NULL) { 11056 /* 11057 * Maybe the address in on another interface in 11058 * the same IPMP group? We check this below. 11059 */ 11060 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11061 NULL, NULL, NULL, NULL); 11062 } 11063 } 11064 if (ipif == NULL) { 11065 return (EADDRNOTAVAIL); 11066 } 11067 /* 11068 * When the address to be removed is hosted on a different 11069 * interface, we check if the interface is in the same IPMP 11070 * group as the specified one; if so we proceed with the 11071 * removal. 11072 * ill->ill_group is NULL when the ill is down, so we have to 11073 * compare the group names instead. 11074 */ 11075 if (ipif->ipif_ill != ill && 11076 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11077 ill->ill_phyint->phyint_groupname_len == 0 || 11078 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11079 ill->ill_phyint->phyint_groupname) != 0)) { 11080 ipif_refrele(ipif); 11081 return (EADDRNOTAVAIL); 11082 } 11083 11084 /* This is a writer */ 11085 ipif_refrele(ipif); 11086 } 11087 11088 /* 11089 * Can not delete instance zero since it is tied to the ill. 11090 */ 11091 if (ipif->ipif_id == 0) 11092 return (EBUSY); 11093 11094 mutex_enter(&ill->ill_lock); 11095 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11096 mutex_exit(&ill->ill_lock); 11097 11098 ipif_free(ipif); 11099 11100 mutex_enter(&connp->conn_lock); 11101 mutex_enter(&ill->ill_lock); 11102 11103 /* Are any references to this ipif active */ 11104 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11105 mutex_exit(&ill->ill_lock); 11106 mutex_exit(&connp->conn_lock); 11107 ipif_non_duplicate(ipif); 11108 ipif_down_tail(ipif); 11109 ipif_free_tail(ipif); 11110 return (0); 11111 } 11112 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11113 IPIF_FREE); 11114 mutex_exit(&ill->ill_lock); 11115 mutex_exit(&connp->conn_lock); 11116 if (success) 11117 return (EINPROGRESS); 11118 else 11119 return (EINTR); 11120 } 11121 11122 /* 11123 * Restart the removeif ioctl. The refcnt has gone down to 0. 11124 * The ipif is already condemned. So can't find it thru lookups. 11125 */ 11126 /* ARGSUSED */ 11127 int 11128 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11129 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11130 { 11131 ill_t *ill; 11132 11133 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11134 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11135 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11136 ill = ipif->ipif_ill; 11137 ASSERT(IAM_WRITER_ILL(ill)); 11138 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11139 (ill->ill_state_flags & IPIF_CONDEMNED)); 11140 ill_delete_tail(ill); 11141 mi_free(ill); 11142 return (0); 11143 } 11144 11145 ill = ipif->ipif_ill; 11146 ASSERT(IAM_WRITER_IPIF(ipif)); 11147 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11148 11149 ipif_non_duplicate(ipif); 11150 ipif_down_tail(ipif); 11151 ipif_free_tail(ipif); 11152 11153 ILL_UNMARK_CHANGING(ill); 11154 return (0); 11155 } 11156 11157 /* 11158 * Set the local interface address. 11159 * Allow an address of all zero when the interface is down. 11160 */ 11161 /* ARGSUSED */ 11162 int 11163 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11164 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11165 { 11166 int err = 0; 11167 in6_addr_t v6addr; 11168 boolean_t need_up = B_FALSE; 11169 11170 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11171 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11172 11173 ASSERT(IAM_WRITER_IPIF(ipif)); 11174 11175 if (ipif->ipif_isv6) { 11176 sin6_t *sin6; 11177 ill_t *ill; 11178 phyint_t *phyi; 11179 11180 if (sin->sin_family != AF_INET6) 11181 return (EAFNOSUPPORT); 11182 11183 sin6 = (sin6_t *)sin; 11184 v6addr = sin6->sin6_addr; 11185 ill = ipif->ipif_ill; 11186 phyi = ill->ill_phyint; 11187 11188 /* 11189 * Enforce that true multicast interfaces have a link-local 11190 * address for logical unit 0. 11191 */ 11192 if (ipif->ipif_id == 0 && 11193 (ill->ill_flags & ILLF_MULTICAST) && 11194 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11195 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11196 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11197 return (EADDRNOTAVAIL); 11198 } 11199 11200 /* 11201 * up interfaces shouldn't have the unspecified address 11202 * unless they also have the IPIF_NOLOCAL flags set and 11203 * have a subnet assigned. 11204 */ 11205 if ((ipif->ipif_flags & IPIF_UP) && 11206 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11207 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11208 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11209 return (EADDRNOTAVAIL); 11210 } 11211 11212 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11213 return (EADDRNOTAVAIL); 11214 } else { 11215 ipaddr_t addr; 11216 11217 if (sin->sin_family != AF_INET) 11218 return (EAFNOSUPPORT); 11219 11220 addr = sin->sin_addr.s_addr; 11221 11222 /* Allow 0 as the local address. */ 11223 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11224 return (EADDRNOTAVAIL); 11225 11226 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11227 } 11228 11229 11230 /* 11231 * Even if there is no change we redo things just to rerun 11232 * ipif_set_default. 11233 */ 11234 if (ipif->ipif_flags & IPIF_UP) { 11235 /* 11236 * Setting a new local address, make sure 11237 * we have net and subnet bcast ire's for 11238 * the old address if we need them. 11239 */ 11240 if (!ipif->ipif_isv6) 11241 ipif_check_bcast_ires(ipif); 11242 /* 11243 * If the interface is already marked up, 11244 * we call ipif_down which will take care 11245 * of ditching any IREs that have been set 11246 * up based on the old interface address. 11247 */ 11248 err = ipif_logical_down(ipif, q, mp); 11249 if (err == EINPROGRESS) 11250 return (err); 11251 ipif_down_tail(ipif); 11252 need_up = 1; 11253 } 11254 11255 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11256 return (err); 11257 } 11258 11259 int 11260 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11261 boolean_t need_up) 11262 { 11263 in6_addr_t v6addr; 11264 ipaddr_t addr; 11265 sin6_t *sin6; 11266 int sinlen; 11267 int err = 0; 11268 ill_t *ill = ipif->ipif_ill; 11269 boolean_t need_dl_down; 11270 boolean_t need_arp_down; 11271 struct iocblk *iocp; 11272 11273 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11274 11275 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11276 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11277 ASSERT(IAM_WRITER_IPIF(ipif)); 11278 11279 /* Must cancel any pending timer before taking the ill_lock */ 11280 if (ipif->ipif_recovery_id != 0) 11281 (void) untimeout(ipif->ipif_recovery_id); 11282 ipif->ipif_recovery_id = 0; 11283 11284 if (ipif->ipif_isv6) { 11285 sin6 = (sin6_t *)sin; 11286 v6addr = sin6->sin6_addr; 11287 sinlen = sizeof (struct sockaddr_in6); 11288 } else { 11289 addr = sin->sin_addr.s_addr; 11290 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11291 sinlen = sizeof (struct sockaddr_in); 11292 } 11293 mutex_enter(&ill->ill_lock); 11294 ipif->ipif_v6lcl_addr = v6addr; 11295 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11296 ipif->ipif_v6src_addr = ipv6_all_zeros; 11297 } else { 11298 ipif->ipif_v6src_addr = v6addr; 11299 } 11300 ipif->ipif_addr_ready = 0; 11301 11302 /* 11303 * If the interface was previously marked as a duplicate, then since 11304 * we've now got a "new" address, it should no longer be considered a 11305 * duplicate -- even if the "new" address is the same as the old one. 11306 * Note that if all ipifs are down, we may have a pending ARP down 11307 * event to handle. This is because we want to recover from duplicates 11308 * and thus delay tearing down ARP until the duplicates have been 11309 * removed or disabled. 11310 */ 11311 need_dl_down = need_arp_down = B_FALSE; 11312 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11313 need_arp_down = !need_up; 11314 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11315 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11316 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11317 need_dl_down = B_TRUE; 11318 } 11319 } 11320 11321 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11322 !ill->ill_is_6to4tun) { 11323 queue_t *wqp = ill->ill_wq; 11324 11325 /* 11326 * The local address of this interface is a 6to4 address, 11327 * check if this interface is in fact a 6to4 tunnel or just 11328 * an interface configured with a 6to4 address. We are only 11329 * interested in the former. 11330 */ 11331 if (wqp != NULL) { 11332 while ((wqp->q_next != NULL) && 11333 (wqp->q_next->q_qinfo != NULL) && 11334 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11335 11336 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11337 == TUN6TO4_MODID) { 11338 /* set for use in IP */ 11339 ill->ill_is_6to4tun = 1; 11340 break; 11341 } 11342 wqp = wqp->q_next; 11343 } 11344 } 11345 } 11346 11347 ipif_set_default(ipif); 11348 11349 /* 11350 * When publishing an interface address change event, we only notify 11351 * the event listeners of the new address. It is assumed that if they 11352 * actively care about the addresses assigned that they will have 11353 * already discovered the previous address assigned (if there was one.) 11354 * 11355 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11356 */ 11357 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11358 hook_nic_event_t *info; 11359 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11360 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11361 "attached for %s\n", info->hne_event, 11362 ill->ill_name)); 11363 if (info->hne_data != NULL) 11364 kmem_free(info->hne_data, info->hne_datalen); 11365 kmem_free(info, sizeof (hook_nic_event_t)); 11366 } 11367 11368 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11369 if (info != NULL) { 11370 info->hne_nic = 11371 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11372 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11373 info->hne_event = NE_ADDRESS_CHANGE; 11374 info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4; 11375 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11376 if (info->hne_data != NULL) { 11377 info->hne_datalen = sinlen; 11378 bcopy(sin, info->hne_data, sinlen); 11379 } else { 11380 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11381 "address information for ADDRESS_CHANGE nic" 11382 " event of %s (ENOMEM)\n", 11383 ipif->ipif_ill->ill_name)); 11384 kmem_free(info, sizeof (hook_nic_event_t)); 11385 } 11386 } else 11387 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11388 "ADDRESS_CHANGE nic event information for %s " 11389 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11390 11391 ipif->ipif_ill->ill_nic_event_info = info; 11392 } 11393 11394 mutex_exit(&ipif->ipif_ill->ill_lock); 11395 11396 if (need_up) { 11397 /* 11398 * Now bring the interface back up. If this 11399 * is the only IPIF for the ILL, ipif_up 11400 * will have to re-bind to the device, so 11401 * we may get back EINPROGRESS, in which 11402 * case, this IOCTL will get completed in 11403 * ip_rput_dlpi when we see the DL_BIND_ACK. 11404 */ 11405 err = ipif_up(ipif, q, mp); 11406 } else { 11407 /* 11408 * Update the IPIF list in SCTP, ipif_up_done() will do it 11409 * if need_up is true. 11410 */ 11411 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11412 } 11413 11414 if (need_dl_down) 11415 ill_dl_down(ill); 11416 if (need_arp_down) 11417 ipif_arp_down(ipif); 11418 11419 return (err); 11420 } 11421 11422 11423 /* 11424 * Restart entry point to restart the address set operation after the 11425 * refcounts have dropped to zero. 11426 */ 11427 /* ARGSUSED */ 11428 int 11429 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11430 ip_ioctl_cmd_t *ipip, void *ifreq) 11431 { 11432 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11433 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11434 ASSERT(IAM_WRITER_IPIF(ipif)); 11435 ipif_down_tail(ipif); 11436 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11437 } 11438 11439 /* ARGSUSED */ 11440 int 11441 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11442 ip_ioctl_cmd_t *ipip, void *if_req) 11443 { 11444 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11445 struct lifreq *lifr = (struct lifreq *)if_req; 11446 11447 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11448 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11449 /* 11450 * The net mask and address can't change since we have a 11451 * reference to the ipif. So no lock is necessary. 11452 */ 11453 if (ipif->ipif_isv6) { 11454 *sin6 = sin6_null; 11455 sin6->sin6_family = AF_INET6; 11456 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11457 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11458 lifr->lifr_addrlen = 11459 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11460 } else { 11461 *sin = sin_null; 11462 sin->sin_family = AF_INET; 11463 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11464 if (ipip->ipi_cmd_type == LIF_CMD) { 11465 lifr->lifr_addrlen = 11466 ip_mask_to_plen(ipif->ipif_net_mask); 11467 } 11468 } 11469 return (0); 11470 } 11471 11472 /* 11473 * Set the destination address for a pt-pt interface. 11474 */ 11475 /* ARGSUSED */ 11476 int 11477 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11478 ip_ioctl_cmd_t *ipip, void *if_req) 11479 { 11480 int err = 0; 11481 in6_addr_t v6addr; 11482 boolean_t need_up = B_FALSE; 11483 11484 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11485 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11486 ASSERT(IAM_WRITER_IPIF(ipif)); 11487 11488 if (ipif->ipif_isv6) { 11489 sin6_t *sin6; 11490 11491 if (sin->sin_family != AF_INET6) 11492 return (EAFNOSUPPORT); 11493 11494 sin6 = (sin6_t *)sin; 11495 v6addr = sin6->sin6_addr; 11496 11497 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11498 return (EADDRNOTAVAIL); 11499 } else { 11500 ipaddr_t addr; 11501 11502 if (sin->sin_family != AF_INET) 11503 return (EAFNOSUPPORT); 11504 11505 addr = sin->sin_addr.s_addr; 11506 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11507 return (EADDRNOTAVAIL); 11508 11509 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11510 } 11511 11512 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11513 return (0); /* No change */ 11514 11515 if (ipif->ipif_flags & IPIF_UP) { 11516 /* 11517 * If the interface is already marked up, 11518 * we call ipif_down which will take care 11519 * of ditching any IREs that have been set 11520 * up based on the old pp dst address. 11521 */ 11522 err = ipif_logical_down(ipif, q, mp); 11523 if (err == EINPROGRESS) 11524 return (err); 11525 ipif_down_tail(ipif); 11526 need_up = B_TRUE; 11527 } 11528 /* 11529 * could return EINPROGRESS. If so ioctl will complete in 11530 * ip_rput_dlpi_writer 11531 */ 11532 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11533 return (err); 11534 } 11535 11536 static int 11537 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11538 boolean_t need_up) 11539 { 11540 in6_addr_t v6addr; 11541 ill_t *ill = ipif->ipif_ill; 11542 int err = 0; 11543 boolean_t need_dl_down; 11544 boolean_t need_arp_down; 11545 11546 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11547 ipif->ipif_id, (void *)ipif)); 11548 11549 /* Must cancel any pending timer before taking the ill_lock */ 11550 if (ipif->ipif_recovery_id != 0) 11551 (void) untimeout(ipif->ipif_recovery_id); 11552 ipif->ipif_recovery_id = 0; 11553 11554 if (ipif->ipif_isv6) { 11555 sin6_t *sin6; 11556 11557 sin6 = (sin6_t *)sin; 11558 v6addr = sin6->sin6_addr; 11559 } else { 11560 ipaddr_t addr; 11561 11562 addr = sin->sin_addr.s_addr; 11563 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11564 } 11565 mutex_enter(&ill->ill_lock); 11566 /* Set point to point destination address. */ 11567 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11568 /* 11569 * Allow this as a means of creating logical 11570 * pt-pt interfaces on top of e.g. an Ethernet. 11571 * XXX Undocumented HACK for testing. 11572 * pt-pt interfaces are created with NUD disabled. 11573 */ 11574 ipif->ipif_flags |= IPIF_POINTOPOINT; 11575 ipif->ipif_flags &= ~IPIF_BROADCAST; 11576 if (ipif->ipif_isv6) 11577 ill->ill_flags |= ILLF_NONUD; 11578 } 11579 11580 /* 11581 * If the interface was previously marked as a duplicate, then since 11582 * we've now got a "new" address, it should no longer be considered a 11583 * duplicate -- even if the "new" address is the same as the old one. 11584 * Note that if all ipifs are down, we may have a pending ARP down 11585 * event to handle. 11586 */ 11587 need_dl_down = need_arp_down = B_FALSE; 11588 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11589 need_arp_down = !need_up; 11590 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11591 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11592 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11593 need_dl_down = B_TRUE; 11594 } 11595 } 11596 11597 /* Set the new address. */ 11598 ipif->ipif_v6pp_dst_addr = v6addr; 11599 /* Make sure subnet tracks pp_dst */ 11600 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11601 mutex_exit(&ill->ill_lock); 11602 11603 if (need_up) { 11604 /* 11605 * Now bring the interface back up. If this 11606 * is the only IPIF for the ILL, ipif_up 11607 * will have to re-bind to the device, so 11608 * we may get back EINPROGRESS, in which 11609 * case, this IOCTL will get completed in 11610 * ip_rput_dlpi when we see the DL_BIND_ACK. 11611 */ 11612 err = ipif_up(ipif, q, mp); 11613 } 11614 11615 if (need_dl_down) 11616 ill_dl_down(ill); 11617 11618 if (need_arp_down) 11619 ipif_arp_down(ipif); 11620 return (err); 11621 } 11622 11623 /* 11624 * Restart entry point to restart the dstaddress set operation after the 11625 * refcounts have dropped to zero. 11626 */ 11627 /* ARGSUSED */ 11628 int 11629 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11630 ip_ioctl_cmd_t *ipip, void *ifreq) 11631 { 11632 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11633 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11634 ipif_down_tail(ipif); 11635 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11636 } 11637 11638 /* ARGSUSED */ 11639 int 11640 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11641 ip_ioctl_cmd_t *ipip, void *if_req) 11642 { 11643 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11644 11645 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11646 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11647 /* 11648 * Get point to point destination address. The addresses can't 11649 * change since we hold a reference to the ipif. 11650 */ 11651 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11652 return (EADDRNOTAVAIL); 11653 11654 if (ipif->ipif_isv6) { 11655 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11656 *sin6 = sin6_null; 11657 sin6->sin6_family = AF_INET6; 11658 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11659 } else { 11660 *sin = sin_null; 11661 sin->sin_family = AF_INET; 11662 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11663 } 11664 return (0); 11665 } 11666 11667 /* 11668 * part of ipmp, make this func return the active/inactive state and 11669 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11670 */ 11671 /* 11672 * This function either sets or clears the IFF_INACTIVE flag. 11673 * 11674 * As long as there are some addresses or multicast memberships on the 11675 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11676 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11677 * will be used for outbound packets. 11678 * 11679 * Caller needs to verify the validity of setting IFF_INACTIVE. 11680 */ 11681 static void 11682 phyint_inactive(phyint_t *phyi) 11683 { 11684 ill_t *ill_v4; 11685 ill_t *ill_v6; 11686 ipif_t *ipif; 11687 ilm_t *ilm; 11688 11689 ill_v4 = phyi->phyint_illv4; 11690 ill_v6 = phyi->phyint_illv6; 11691 11692 /* 11693 * No need for a lock while traversing the list since iam 11694 * a writer 11695 */ 11696 if (ill_v4 != NULL) { 11697 ASSERT(IAM_WRITER_ILL(ill_v4)); 11698 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11699 ipif = ipif->ipif_next) { 11700 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11701 mutex_enter(&phyi->phyint_lock); 11702 phyi->phyint_flags &= ~PHYI_INACTIVE; 11703 mutex_exit(&phyi->phyint_lock); 11704 return; 11705 } 11706 } 11707 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11708 ilm = ilm->ilm_next) { 11709 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11710 mutex_enter(&phyi->phyint_lock); 11711 phyi->phyint_flags &= ~PHYI_INACTIVE; 11712 mutex_exit(&phyi->phyint_lock); 11713 return; 11714 } 11715 } 11716 } 11717 if (ill_v6 != NULL) { 11718 ill_v6 = phyi->phyint_illv6; 11719 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11720 ipif = ipif->ipif_next) { 11721 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11722 mutex_enter(&phyi->phyint_lock); 11723 phyi->phyint_flags &= ~PHYI_INACTIVE; 11724 mutex_exit(&phyi->phyint_lock); 11725 return; 11726 } 11727 } 11728 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11729 ilm = ilm->ilm_next) { 11730 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11731 mutex_enter(&phyi->phyint_lock); 11732 phyi->phyint_flags &= ~PHYI_INACTIVE; 11733 mutex_exit(&phyi->phyint_lock); 11734 return; 11735 } 11736 } 11737 } 11738 mutex_enter(&phyi->phyint_lock); 11739 phyi->phyint_flags |= PHYI_INACTIVE; 11740 mutex_exit(&phyi->phyint_lock); 11741 } 11742 11743 /* 11744 * This function is called only when the phyint flags change. Currently 11745 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11746 * that we can select a good ill. 11747 */ 11748 static void 11749 ip_redo_nomination(phyint_t *phyi) 11750 { 11751 ill_t *ill_v4; 11752 11753 ill_v4 = phyi->phyint_illv4; 11754 11755 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11756 ASSERT(IAM_WRITER_ILL(ill_v4)); 11757 if (ill_v4->ill_group->illgrp_ill_count > 1) 11758 ill_nominate_bcast_rcv(ill_v4->ill_group); 11759 } 11760 } 11761 11762 /* 11763 * Heuristic to check if ill is INACTIVE. 11764 * Checks if ill has an ipif with an usable ip address. 11765 * 11766 * Return values: 11767 * B_TRUE - ill is INACTIVE; has no usable ipif 11768 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11769 */ 11770 static boolean_t 11771 ill_is_inactive(ill_t *ill) 11772 { 11773 ipif_t *ipif; 11774 11775 /* Check whether it is in an IPMP group */ 11776 if (ill->ill_phyint->phyint_groupname == NULL) 11777 return (B_FALSE); 11778 11779 if (ill->ill_ipif_up_count == 0) 11780 return (B_TRUE); 11781 11782 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11783 uint64_t flags = ipif->ipif_flags; 11784 11785 /* 11786 * This ipif is usable if it is IPIF_UP and not a 11787 * dedicated test address. A dedicated test address 11788 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11789 * (note in particular that V6 test addresses are 11790 * link-local data addresses and thus are marked 11791 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11792 */ 11793 if ((flags & IPIF_UP) && 11794 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11795 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11796 return (B_FALSE); 11797 } 11798 return (B_TRUE); 11799 } 11800 11801 /* 11802 * Set interface flags. 11803 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11804 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11805 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11806 * 11807 * NOTE : We really don't enforce that ipif_id zero should be used 11808 * for setting any flags other than IFF_LOGINT_FLAGS. This 11809 * is because applications generally does SICGLIFFLAGS and 11810 * ORs in the new flags (that affects the logical) and does a 11811 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11812 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11813 * flags that will be turned on is correct with respect to 11814 * ipif_id 0. For backward compatibility reasons, it is not done. 11815 */ 11816 /* ARGSUSED */ 11817 int 11818 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11819 ip_ioctl_cmd_t *ipip, void *if_req) 11820 { 11821 uint64_t turn_on; 11822 uint64_t turn_off; 11823 int err; 11824 boolean_t need_up = B_FALSE; 11825 phyint_t *phyi; 11826 ill_t *ill; 11827 uint64_t intf_flags; 11828 boolean_t phyint_flags_modified = B_FALSE; 11829 uint64_t flags; 11830 struct ifreq *ifr; 11831 struct lifreq *lifr; 11832 boolean_t set_linklocal = B_FALSE; 11833 boolean_t zero_source = B_FALSE; 11834 11835 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11836 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11837 11838 ASSERT(IAM_WRITER_IPIF(ipif)); 11839 11840 ill = ipif->ipif_ill; 11841 phyi = ill->ill_phyint; 11842 11843 if (ipip->ipi_cmd_type == IF_CMD) { 11844 ifr = (struct ifreq *)if_req; 11845 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11846 } else { 11847 lifr = (struct lifreq *)if_req; 11848 flags = lifr->lifr_flags; 11849 } 11850 11851 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11852 11853 /* 11854 * Has the flags been set correctly till now ? 11855 */ 11856 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11857 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11858 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11859 /* 11860 * Compare the new flags to the old, and partition 11861 * into those coming on and those going off. 11862 * For the 16 bit command keep the bits above bit 16 unchanged. 11863 */ 11864 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11865 flags |= intf_flags & ~0xFFFF; 11866 11867 /* 11868 * First check which bits will change and then which will 11869 * go on and off 11870 */ 11871 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11872 if (!turn_on) 11873 return (0); /* No change */ 11874 11875 turn_off = intf_flags & turn_on; 11876 turn_on ^= turn_off; 11877 err = 0; 11878 11879 /* 11880 * Don't allow any bits belonging to the logical interface 11881 * to be set or cleared on the replacement ipif that was 11882 * created temporarily during a MOVE. 11883 */ 11884 if (ipif->ipif_replace_zero && 11885 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11886 return (EINVAL); 11887 } 11888 11889 /* 11890 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11891 * IPv6 interfaces. 11892 */ 11893 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11894 return (EINVAL); 11895 11896 /* 11897 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11898 * interfaces. It makes no sense in that context. 11899 */ 11900 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11901 return (EINVAL); 11902 11903 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11904 zero_source = B_TRUE; 11905 11906 /* 11907 * For IPv6 ipif_id 0, don't allow the interface to be up without 11908 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11909 * If the link local address isn't set, and can be set, it will get 11910 * set later on in this function. 11911 */ 11912 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11913 (flags & IFF_UP) && !zero_source && 11914 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11915 if (ipif_cant_setlinklocal(ipif)) 11916 return (EINVAL); 11917 set_linklocal = B_TRUE; 11918 } 11919 11920 /* 11921 * ILL cannot be part of a usesrc group and and IPMP group at the 11922 * same time. No need to grab ill_g_usesrc_lock here, see 11923 * synchronization notes in ip.c 11924 */ 11925 if (turn_on & PHYI_STANDBY && 11926 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11927 return (EINVAL); 11928 } 11929 11930 /* 11931 * If we modify physical interface flags, we'll potentially need to 11932 * send up two routing socket messages for the changes (one for the 11933 * IPv4 ill, and another for the IPv6 ill). Note that here. 11934 */ 11935 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11936 phyint_flags_modified = B_TRUE; 11937 11938 /* 11939 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11940 * we need to flush the IRE_CACHES belonging to this ill. 11941 * We handle this case here without doing the DOWN/UP dance 11942 * like it is done for other flags. If some other flags are 11943 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11944 * below will handle it by bringing it down and then 11945 * bringing it UP. 11946 */ 11947 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11948 ill_t *ill_v4, *ill_v6; 11949 11950 ill_v4 = phyi->phyint_illv4; 11951 ill_v6 = phyi->phyint_illv6; 11952 11953 /* 11954 * First set the INACTIVE flag if needed. Then delete the ires. 11955 * ire_add will atomically prevent creating new IRE_CACHEs 11956 * unless hidden flag is set. 11957 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11958 */ 11959 if ((turn_on & PHYI_FAILED) && 11960 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11961 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11962 phyi->phyint_flags &= ~PHYI_INACTIVE; 11963 } 11964 if ((turn_off & PHYI_FAILED) && 11965 ((intf_flags & PHYI_STANDBY) || 11966 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11967 phyint_inactive(phyi); 11968 } 11969 11970 if (turn_on & PHYI_STANDBY) { 11971 /* 11972 * We implicitly set INACTIVE only when STANDBY is set. 11973 * INACTIVE is also set on non-STANDBY phyint when user 11974 * disables FAILBACK using configuration file. 11975 * Do not allow STANDBY to be set on such INACTIVE 11976 * phyint 11977 */ 11978 if (phyi->phyint_flags & PHYI_INACTIVE) 11979 return (EINVAL); 11980 if (!(phyi->phyint_flags & PHYI_FAILED)) 11981 phyint_inactive(phyi); 11982 } 11983 if (turn_off & PHYI_STANDBY) { 11984 if (ipmp_enable_failback) { 11985 /* 11986 * Reset PHYI_INACTIVE. 11987 */ 11988 phyi->phyint_flags &= ~PHYI_INACTIVE; 11989 } else if (ill_is_inactive(ill) && 11990 !(phyi->phyint_flags & PHYI_FAILED)) { 11991 /* 11992 * Need to set INACTIVE, when user sets 11993 * STANDBY on a non-STANDBY phyint and 11994 * later resets STANDBY 11995 */ 11996 phyint_inactive(phyi); 11997 } 11998 } 11999 /* 12000 * We should always send up a message so that the 12001 * daemons come to know of it. Note that the zeroth 12002 * interface can be down and the check below for IPIF_UP 12003 * will not make sense as we are actually setting 12004 * a phyint flag here. We assume that the ipif used 12005 * is always the zeroth ipif. (ip_rts_ifmsg does not 12006 * send up any message for non-zero ipifs). 12007 */ 12008 phyint_flags_modified = B_TRUE; 12009 12010 if (ill_v4 != NULL) { 12011 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12012 IRE_CACHE, ill_stq_cache_delete, 12013 (char *)ill_v4, ill_v4); 12014 illgrp_reset_schednext(ill_v4); 12015 } 12016 if (ill_v6 != NULL) { 12017 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12018 IRE_CACHE, ill_stq_cache_delete, 12019 (char *)ill_v6, ill_v6); 12020 illgrp_reset_schednext(ill_v6); 12021 } 12022 } 12023 12024 /* 12025 * If ILLF_ROUTER changes, we need to change the ip forwarding 12026 * status of the interface and, if the interface is part of an IPMP 12027 * group, all other interfaces that are part of the same IPMP 12028 * group. 12029 */ 12030 if ((turn_on | turn_off) & ILLF_ROUTER) { 12031 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 12032 (caddr_t)ill); 12033 } 12034 12035 /* 12036 * If the interface is not UP and we are not going to 12037 * bring it UP, record the flags and return. When the 12038 * interface comes UP later, the right actions will be 12039 * taken. 12040 */ 12041 if (!(ipif->ipif_flags & IPIF_UP) && 12042 !(turn_on & IPIF_UP)) { 12043 /* Record new flags in their respective places. */ 12044 mutex_enter(&ill->ill_lock); 12045 mutex_enter(&ill->ill_phyint->phyint_lock); 12046 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12047 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12048 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12049 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12050 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12051 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12052 mutex_exit(&ill->ill_lock); 12053 mutex_exit(&ill->ill_phyint->phyint_lock); 12054 12055 /* 12056 * We do the broadcast and nomination here rather 12057 * than waiting for a FAILOVER/FAILBACK to happen. In 12058 * the case of FAILBACK from INACTIVE standby to the 12059 * interface that has been repaired, PHYI_FAILED has not 12060 * been cleared yet. If there are only two interfaces in 12061 * that group, all we have is a FAILED and INACTIVE 12062 * interface. If we do the nomination soon after a failback, 12063 * the broadcast nomination code would select the 12064 * INACTIVE interface for receiving broadcasts as FAILED is 12065 * not yet cleared. As we don't want STANDBY/INACTIVE to 12066 * receive broadcast packets, we need to redo nomination 12067 * when the FAILED is cleared here. Thus, in general we 12068 * always do the nomination here for FAILED, STANDBY 12069 * and OFFLINE. 12070 */ 12071 if (((turn_on | turn_off) & 12072 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12073 ip_redo_nomination(phyi); 12074 } 12075 if (phyint_flags_modified) { 12076 if (phyi->phyint_illv4 != NULL) { 12077 ip_rts_ifmsg(phyi->phyint_illv4-> 12078 ill_ipif); 12079 } 12080 if (phyi->phyint_illv6 != NULL) { 12081 ip_rts_ifmsg(phyi->phyint_illv6-> 12082 ill_ipif); 12083 } 12084 } 12085 return (0); 12086 } else if (set_linklocal || zero_source) { 12087 mutex_enter(&ill->ill_lock); 12088 if (set_linklocal) 12089 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12090 if (zero_source) 12091 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12092 mutex_exit(&ill->ill_lock); 12093 } 12094 12095 /* 12096 * Disallow IPv6 interfaces coming up that have the unspecified address, 12097 * or point-to-point interfaces with an unspecified destination. We do 12098 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12099 * have a subnet assigned, which is how in.ndpd currently manages its 12100 * onlink prefix list when no addresses are configured with those 12101 * prefixes. 12102 */ 12103 if (ipif->ipif_isv6 && 12104 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12105 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12106 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12107 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12108 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12109 return (EINVAL); 12110 } 12111 12112 /* 12113 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12114 * from being brought up. 12115 */ 12116 if (!ipif->ipif_isv6 && 12117 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12118 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12119 return (EINVAL); 12120 } 12121 12122 /* 12123 * The only flag changes that we currently take specific action on 12124 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12125 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12126 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12127 * the flags and bringing it back up again. 12128 */ 12129 if ((turn_on|turn_off) & 12130 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12131 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12132 /* 12133 * Taking this ipif down, make sure we have 12134 * valid net and subnet bcast ire's for other 12135 * logical interfaces, if we need them. 12136 */ 12137 if (!ipif->ipif_isv6) 12138 ipif_check_bcast_ires(ipif); 12139 12140 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12141 !(turn_off & IPIF_UP)) { 12142 need_up = B_TRUE; 12143 if (ipif->ipif_flags & IPIF_UP) 12144 ill->ill_logical_down = 1; 12145 turn_on &= ~IPIF_UP; 12146 } 12147 err = ipif_down(ipif, q, mp); 12148 ip1dbg(("ipif_down returns %d err ", err)); 12149 if (err == EINPROGRESS) 12150 return (err); 12151 ipif_down_tail(ipif); 12152 } 12153 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12154 } 12155 12156 static int 12157 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12158 boolean_t need_up) 12159 { 12160 ill_t *ill; 12161 phyint_t *phyi; 12162 uint64_t turn_on; 12163 uint64_t turn_off; 12164 uint64_t intf_flags; 12165 boolean_t phyint_flags_modified = B_FALSE; 12166 int err = 0; 12167 boolean_t set_linklocal = B_FALSE; 12168 boolean_t zero_source = B_FALSE; 12169 12170 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12171 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12172 12173 ASSERT(IAM_WRITER_IPIF(ipif)); 12174 12175 ill = ipif->ipif_ill; 12176 phyi = ill->ill_phyint; 12177 12178 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12179 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12180 12181 turn_off = intf_flags & turn_on; 12182 turn_on ^= turn_off; 12183 12184 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12185 phyint_flags_modified = B_TRUE; 12186 12187 /* 12188 * Now we change the flags. Track current value of 12189 * other flags in their respective places. 12190 */ 12191 mutex_enter(&ill->ill_lock); 12192 mutex_enter(&phyi->phyint_lock); 12193 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12194 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12195 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12196 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12197 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12198 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12199 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12200 set_linklocal = B_TRUE; 12201 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12202 } 12203 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12204 zero_source = B_TRUE; 12205 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12206 } 12207 mutex_exit(&ill->ill_lock); 12208 mutex_exit(&phyi->phyint_lock); 12209 12210 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12211 ip_redo_nomination(phyi); 12212 12213 if (set_linklocal) 12214 (void) ipif_setlinklocal(ipif); 12215 12216 if (zero_source) 12217 ipif->ipif_v6src_addr = ipv6_all_zeros; 12218 else 12219 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12220 12221 if (need_up) { 12222 /* 12223 * XXX ipif_up really does not know whether a phyint flags 12224 * was modified or not. So, it sends up information on 12225 * only one routing sockets message. As we don't bring up 12226 * the interface and also set STANDBY/FAILED simultaneously 12227 * it should be okay. 12228 */ 12229 err = ipif_up(ipif, q, mp); 12230 } else { 12231 /* 12232 * Make sure routing socket sees all changes to the flags. 12233 * ipif_up_done* handles this when we use ipif_up. 12234 */ 12235 if (phyint_flags_modified) { 12236 if (phyi->phyint_illv4 != NULL) { 12237 ip_rts_ifmsg(phyi->phyint_illv4-> 12238 ill_ipif); 12239 } 12240 if (phyi->phyint_illv6 != NULL) { 12241 ip_rts_ifmsg(phyi->phyint_illv6-> 12242 ill_ipif); 12243 } 12244 } else { 12245 ip_rts_ifmsg(ipif); 12246 } 12247 } 12248 return (err); 12249 } 12250 12251 /* 12252 * Restart entry point to restart the flags restart operation after the 12253 * refcounts have dropped to zero. 12254 */ 12255 /* ARGSUSED */ 12256 int 12257 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12258 ip_ioctl_cmd_t *ipip, void *if_req) 12259 { 12260 int err; 12261 struct ifreq *ifr = (struct ifreq *)if_req; 12262 struct lifreq *lifr = (struct lifreq *)if_req; 12263 12264 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12265 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12266 12267 ipif_down_tail(ipif); 12268 if (ipip->ipi_cmd_type == IF_CMD) { 12269 /* 12270 * Since ip_sioctl_flags expects an int and ifr_flags 12271 * is a short we need to cast ifr_flags into an int 12272 * to avoid having sign extension cause bits to get 12273 * set that should not be. 12274 */ 12275 err = ip_sioctl_flags_tail(ipif, 12276 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12277 q, mp, B_TRUE); 12278 } else { 12279 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12280 q, mp, B_TRUE); 12281 } 12282 return (err); 12283 } 12284 12285 /* ARGSUSED */ 12286 int 12287 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12288 ip_ioctl_cmd_t *ipip, void *if_req) 12289 { 12290 /* 12291 * Has the flags been set correctly till now ? 12292 */ 12293 ill_t *ill = ipif->ipif_ill; 12294 phyint_t *phyi = ill->ill_phyint; 12295 12296 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12297 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12298 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12299 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12300 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12301 12302 /* 12303 * Need a lock since some flags can be set even when there are 12304 * references to the ipif. 12305 */ 12306 mutex_enter(&ill->ill_lock); 12307 if (ipip->ipi_cmd_type == IF_CMD) { 12308 struct ifreq *ifr = (struct ifreq *)if_req; 12309 12310 /* Get interface flags (low 16 only). */ 12311 ifr->ifr_flags = ((ipif->ipif_flags | 12312 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12313 } else { 12314 struct lifreq *lifr = (struct lifreq *)if_req; 12315 12316 /* Get interface flags. */ 12317 lifr->lifr_flags = ipif->ipif_flags | 12318 ill->ill_flags | phyi->phyint_flags; 12319 } 12320 mutex_exit(&ill->ill_lock); 12321 return (0); 12322 } 12323 12324 /* ARGSUSED */ 12325 int 12326 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12327 ip_ioctl_cmd_t *ipip, void *if_req) 12328 { 12329 int mtu; 12330 int ip_min_mtu; 12331 struct ifreq *ifr; 12332 struct lifreq *lifr; 12333 ire_t *ire; 12334 12335 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12336 ipif->ipif_id, (void *)ipif)); 12337 if (ipip->ipi_cmd_type == IF_CMD) { 12338 ifr = (struct ifreq *)if_req; 12339 mtu = ifr->ifr_metric; 12340 } else { 12341 lifr = (struct lifreq *)if_req; 12342 mtu = lifr->lifr_mtu; 12343 } 12344 12345 if (ipif->ipif_isv6) 12346 ip_min_mtu = IPV6_MIN_MTU; 12347 else 12348 ip_min_mtu = IP_MIN_MTU; 12349 12350 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12351 return (EINVAL); 12352 12353 /* 12354 * Change the MTU size in all relevant ire's. 12355 * Mtu change Vs. new ire creation - protocol below. 12356 * First change ipif_mtu and the ire_max_frag of the 12357 * interface ire. Then do an ire walk and change the 12358 * ire_max_frag of all affected ires. During ire_add 12359 * under the bucket lock, set the ire_max_frag of the 12360 * new ire being created from the ipif/ire from which 12361 * it is being derived. If an mtu change happens after 12362 * the ire is added, the new ire will be cleaned up. 12363 * Conversely if the mtu change happens before the ire 12364 * is added, ire_add will see the new value of the mtu. 12365 */ 12366 ipif->ipif_mtu = mtu; 12367 ipif->ipif_flags |= IPIF_FIXEDMTU; 12368 12369 if (ipif->ipif_isv6) 12370 ire = ipif_to_ire_v6(ipif); 12371 else 12372 ire = ipif_to_ire(ipif); 12373 if (ire != NULL) { 12374 ire->ire_max_frag = ipif->ipif_mtu; 12375 ire_refrele(ire); 12376 } 12377 if (ipif->ipif_flags & IPIF_UP) { 12378 if (ipif->ipif_isv6) 12379 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12380 else 12381 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12382 } 12383 /* Update the MTU in SCTP's list */ 12384 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12385 return (0); 12386 } 12387 12388 /* Get interface MTU. */ 12389 /* ARGSUSED */ 12390 int 12391 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12392 ip_ioctl_cmd_t *ipip, void *if_req) 12393 { 12394 struct ifreq *ifr; 12395 struct lifreq *lifr; 12396 12397 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12398 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12399 if (ipip->ipi_cmd_type == IF_CMD) { 12400 ifr = (struct ifreq *)if_req; 12401 ifr->ifr_metric = ipif->ipif_mtu; 12402 } else { 12403 lifr = (struct lifreq *)if_req; 12404 lifr->lifr_mtu = ipif->ipif_mtu; 12405 } 12406 return (0); 12407 } 12408 12409 /* Set interface broadcast address. */ 12410 /* ARGSUSED2 */ 12411 int 12412 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12413 ip_ioctl_cmd_t *ipip, void *if_req) 12414 { 12415 ipaddr_t addr; 12416 ire_t *ire; 12417 12418 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12419 ipif->ipif_id)); 12420 12421 ASSERT(IAM_WRITER_IPIF(ipif)); 12422 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12423 return (EADDRNOTAVAIL); 12424 12425 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12426 12427 if (sin->sin_family != AF_INET) 12428 return (EAFNOSUPPORT); 12429 12430 addr = sin->sin_addr.s_addr; 12431 if (ipif->ipif_flags & IPIF_UP) { 12432 /* 12433 * If we are already up, make sure the new 12434 * broadcast address makes sense. If it does, 12435 * there should be an IRE for it already. 12436 * Don't match on ipif, only on the ill 12437 * since we are sharing these now. Don't use 12438 * MATCH_IRE_ILL_GROUP as we are looking for 12439 * the broadcast ire on this ill and each ill 12440 * in the group has its own broadcast ire. 12441 */ 12442 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12443 ipif, ALL_ZONES, NULL, 12444 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 12445 if (ire == NULL) { 12446 return (EINVAL); 12447 } else { 12448 ire_refrele(ire); 12449 } 12450 } 12451 /* 12452 * Changing the broadcast addr for this ipif. 12453 * Make sure we have valid net and subnet bcast 12454 * ire's for other logical interfaces, if needed. 12455 */ 12456 if (addr != ipif->ipif_brd_addr) 12457 ipif_check_bcast_ires(ipif); 12458 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12459 return (0); 12460 } 12461 12462 /* Get interface broadcast address. */ 12463 /* ARGSUSED */ 12464 int 12465 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12466 ip_ioctl_cmd_t *ipip, void *if_req) 12467 { 12468 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12469 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12470 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12471 return (EADDRNOTAVAIL); 12472 12473 /* IPIF_BROADCAST not possible with IPv6 */ 12474 ASSERT(!ipif->ipif_isv6); 12475 *sin = sin_null; 12476 sin->sin_family = AF_INET; 12477 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12478 return (0); 12479 } 12480 12481 /* 12482 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12483 */ 12484 /* ARGSUSED */ 12485 int 12486 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12487 ip_ioctl_cmd_t *ipip, void *if_req) 12488 { 12489 int err = 0; 12490 in6_addr_t v6mask; 12491 12492 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12493 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12494 12495 ASSERT(IAM_WRITER_IPIF(ipif)); 12496 12497 if (ipif->ipif_isv6) { 12498 sin6_t *sin6; 12499 12500 if (sin->sin_family != AF_INET6) 12501 return (EAFNOSUPPORT); 12502 12503 sin6 = (sin6_t *)sin; 12504 v6mask = sin6->sin6_addr; 12505 } else { 12506 ipaddr_t mask; 12507 12508 if (sin->sin_family != AF_INET) 12509 return (EAFNOSUPPORT); 12510 12511 mask = sin->sin_addr.s_addr; 12512 V4MASK_TO_V6(mask, v6mask); 12513 } 12514 12515 /* 12516 * No big deal if the interface isn't already up, or the mask 12517 * isn't really changing, or this is pt-pt. 12518 */ 12519 if (!(ipif->ipif_flags & IPIF_UP) || 12520 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12521 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12522 ipif->ipif_v6net_mask = v6mask; 12523 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12524 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12525 ipif->ipif_v6net_mask, 12526 ipif->ipif_v6subnet); 12527 } 12528 return (0); 12529 } 12530 /* 12531 * Make sure we have valid net and subnet broadcast ire's 12532 * for the old netmask, if needed by other logical interfaces. 12533 */ 12534 if (!ipif->ipif_isv6) 12535 ipif_check_bcast_ires(ipif); 12536 12537 err = ipif_logical_down(ipif, q, mp); 12538 if (err == EINPROGRESS) 12539 return (err); 12540 ipif_down_tail(ipif); 12541 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12542 return (err); 12543 } 12544 12545 static int 12546 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12547 { 12548 in6_addr_t v6mask; 12549 int err = 0; 12550 12551 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12552 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12553 12554 if (ipif->ipif_isv6) { 12555 sin6_t *sin6; 12556 12557 sin6 = (sin6_t *)sin; 12558 v6mask = sin6->sin6_addr; 12559 } else { 12560 ipaddr_t mask; 12561 12562 mask = sin->sin_addr.s_addr; 12563 V4MASK_TO_V6(mask, v6mask); 12564 } 12565 12566 ipif->ipif_v6net_mask = v6mask; 12567 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12568 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12569 ipif->ipif_v6subnet); 12570 } 12571 err = ipif_up(ipif, q, mp); 12572 12573 if (err == 0 || err == EINPROGRESS) { 12574 /* 12575 * The interface must be DL_BOUND if this packet has to 12576 * go out on the wire. Since we only go through a logical 12577 * down and are bound with the driver during an internal 12578 * down/up that is satisfied. 12579 */ 12580 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12581 /* Potentially broadcast an address mask reply. */ 12582 ipif_mask_reply(ipif); 12583 } 12584 } 12585 return (err); 12586 } 12587 12588 /* ARGSUSED */ 12589 int 12590 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12591 ip_ioctl_cmd_t *ipip, void *if_req) 12592 { 12593 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12594 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12595 ipif_down_tail(ipif); 12596 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12597 } 12598 12599 /* Get interface net mask. */ 12600 /* ARGSUSED */ 12601 int 12602 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12603 ip_ioctl_cmd_t *ipip, void *if_req) 12604 { 12605 struct lifreq *lifr = (struct lifreq *)if_req; 12606 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12607 12608 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12609 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12610 12611 /* 12612 * net mask can't change since we have a reference to the ipif. 12613 */ 12614 if (ipif->ipif_isv6) { 12615 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12616 *sin6 = sin6_null; 12617 sin6->sin6_family = AF_INET6; 12618 sin6->sin6_addr = ipif->ipif_v6net_mask; 12619 lifr->lifr_addrlen = 12620 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12621 } else { 12622 *sin = sin_null; 12623 sin->sin_family = AF_INET; 12624 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12625 if (ipip->ipi_cmd_type == LIF_CMD) { 12626 lifr->lifr_addrlen = 12627 ip_mask_to_plen(ipif->ipif_net_mask); 12628 } 12629 } 12630 return (0); 12631 } 12632 12633 /* ARGSUSED */ 12634 int 12635 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12636 ip_ioctl_cmd_t *ipip, void *if_req) 12637 { 12638 12639 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12640 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12641 /* 12642 * Set interface metric. We don't use this for 12643 * anything but we keep track of it in case it is 12644 * important to routing applications or such. 12645 */ 12646 if (ipip->ipi_cmd_type == IF_CMD) { 12647 struct ifreq *ifr; 12648 12649 ifr = (struct ifreq *)if_req; 12650 ipif->ipif_metric = ifr->ifr_metric; 12651 } else { 12652 struct lifreq *lifr; 12653 12654 lifr = (struct lifreq *)if_req; 12655 ipif->ipif_metric = lifr->lifr_metric; 12656 } 12657 return (0); 12658 } 12659 12660 12661 /* ARGSUSED */ 12662 int 12663 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12664 ip_ioctl_cmd_t *ipip, void *if_req) 12665 { 12666 12667 /* Get interface metric. */ 12668 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12670 if (ipip->ipi_cmd_type == IF_CMD) { 12671 struct ifreq *ifr; 12672 12673 ifr = (struct ifreq *)if_req; 12674 ifr->ifr_metric = ipif->ipif_metric; 12675 } else { 12676 struct lifreq *lifr; 12677 12678 lifr = (struct lifreq *)if_req; 12679 lifr->lifr_metric = ipif->ipif_metric; 12680 } 12681 12682 return (0); 12683 } 12684 12685 /* ARGSUSED */ 12686 int 12687 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12688 ip_ioctl_cmd_t *ipip, void *if_req) 12689 { 12690 12691 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12692 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12693 /* 12694 * Set the muxid returned from I_PLINK. 12695 */ 12696 if (ipip->ipi_cmd_type == IF_CMD) { 12697 struct ifreq *ifr = (struct ifreq *)if_req; 12698 12699 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12700 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12701 } else { 12702 struct lifreq *lifr = (struct lifreq *)if_req; 12703 12704 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12705 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12706 } 12707 return (0); 12708 } 12709 12710 /* ARGSUSED */ 12711 int 12712 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12713 ip_ioctl_cmd_t *ipip, void *if_req) 12714 { 12715 12716 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12717 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12718 /* 12719 * Get the muxid saved in ill for I_PUNLINK. 12720 */ 12721 if (ipip->ipi_cmd_type == IF_CMD) { 12722 struct ifreq *ifr = (struct ifreq *)if_req; 12723 12724 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12725 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12726 } else { 12727 struct lifreq *lifr = (struct lifreq *)if_req; 12728 12729 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12730 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12731 } 12732 return (0); 12733 } 12734 12735 /* 12736 * Set the subnet prefix. Does not modify the broadcast address. 12737 */ 12738 /* ARGSUSED */ 12739 int 12740 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12741 ip_ioctl_cmd_t *ipip, void *if_req) 12742 { 12743 int err = 0; 12744 in6_addr_t v6addr; 12745 in6_addr_t v6mask; 12746 boolean_t need_up = B_FALSE; 12747 int addrlen; 12748 12749 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12750 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12751 12752 ASSERT(IAM_WRITER_IPIF(ipif)); 12753 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12754 12755 if (ipif->ipif_isv6) { 12756 sin6_t *sin6; 12757 12758 if (sin->sin_family != AF_INET6) 12759 return (EAFNOSUPPORT); 12760 12761 sin6 = (sin6_t *)sin; 12762 v6addr = sin6->sin6_addr; 12763 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12764 return (EADDRNOTAVAIL); 12765 } else { 12766 ipaddr_t addr; 12767 12768 if (sin->sin_family != AF_INET) 12769 return (EAFNOSUPPORT); 12770 12771 addr = sin->sin_addr.s_addr; 12772 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12773 return (EADDRNOTAVAIL); 12774 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12775 /* Add 96 bits */ 12776 addrlen += IPV6_ABITS - IP_ABITS; 12777 } 12778 12779 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12780 return (EINVAL); 12781 12782 /* Check if bits in the address is set past the mask */ 12783 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12784 return (EINVAL); 12785 12786 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12787 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12788 return (0); /* No change */ 12789 12790 if (ipif->ipif_flags & IPIF_UP) { 12791 /* 12792 * If the interface is already marked up, 12793 * we call ipif_down which will take care 12794 * of ditching any IREs that have been set 12795 * up based on the old interface address. 12796 */ 12797 err = ipif_logical_down(ipif, q, mp); 12798 if (err == EINPROGRESS) 12799 return (err); 12800 ipif_down_tail(ipif); 12801 need_up = B_TRUE; 12802 } 12803 12804 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12805 return (err); 12806 } 12807 12808 static int 12809 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12810 queue_t *q, mblk_t *mp, boolean_t need_up) 12811 { 12812 ill_t *ill = ipif->ipif_ill; 12813 int err = 0; 12814 12815 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12816 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12817 12818 /* Set the new address. */ 12819 mutex_enter(&ill->ill_lock); 12820 ipif->ipif_v6net_mask = v6mask; 12821 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12822 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12823 ipif->ipif_v6subnet); 12824 } 12825 mutex_exit(&ill->ill_lock); 12826 12827 if (need_up) { 12828 /* 12829 * Now bring the interface back up. If this 12830 * is the only IPIF for the ILL, ipif_up 12831 * will have to re-bind to the device, so 12832 * we may get back EINPROGRESS, in which 12833 * case, this IOCTL will get completed in 12834 * ip_rput_dlpi when we see the DL_BIND_ACK. 12835 */ 12836 err = ipif_up(ipif, q, mp); 12837 if (err == EINPROGRESS) 12838 return (err); 12839 } 12840 return (err); 12841 } 12842 12843 /* ARGSUSED */ 12844 int 12845 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12846 ip_ioctl_cmd_t *ipip, void *if_req) 12847 { 12848 int addrlen; 12849 in6_addr_t v6addr; 12850 in6_addr_t v6mask; 12851 struct lifreq *lifr = (struct lifreq *)if_req; 12852 12853 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12854 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12855 ipif_down_tail(ipif); 12856 12857 addrlen = lifr->lifr_addrlen; 12858 if (ipif->ipif_isv6) { 12859 sin6_t *sin6; 12860 12861 sin6 = (sin6_t *)sin; 12862 v6addr = sin6->sin6_addr; 12863 } else { 12864 ipaddr_t addr; 12865 12866 addr = sin->sin_addr.s_addr; 12867 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12868 addrlen += IPV6_ABITS - IP_ABITS; 12869 } 12870 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12871 12872 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12873 } 12874 12875 /* ARGSUSED */ 12876 int 12877 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12878 ip_ioctl_cmd_t *ipip, void *if_req) 12879 { 12880 struct lifreq *lifr = (struct lifreq *)if_req; 12881 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12882 12883 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12884 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12885 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12886 12887 if (ipif->ipif_isv6) { 12888 *sin6 = sin6_null; 12889 sin6->sin6_family = AF_INET6; 12890 sin6->sin6_addr = ipif->ipif_v6subnet; 12891 lifr->lifr_addrlen = 12892 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12893 } else { 12894 *sin = sin_null; 12895 sin->sin_family = AF_INET; 12896 sin->sin_addr.s_addr = ipif->ipif_subnet; 12897 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12898 } 12899 return (0); 12900 } 12901 12902 /* 12903 * Set the IPv6 address token. 12904 */ 12905 /* ARGSUSED */ 12906 int 12907 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12908 ip_ioctl_cmd_t *ipi, void *if_req) 12909 { 12910 ill_t *ill = ipif->ipif_ill; 12911 int err; 12912 in6_addr_t v6addr; 12913 in6_addr_t v6mask; 12914 boolean_t need_up = B_FALSE; 12915 int i; 12916 sin6_t *sin6 = (sin6_t *)sin; 12917 struct lifreq *lifr = (struct lifreq *)if_req; 12918 int addrlen; 12919 12920 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12921 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12922 ASSERT(IAM_WRITER_IPIF(ipif)); 12923 12924 addrlen = lifr->lifr_addrlen; 12925 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12926 if (ipif->ipif_id != 0) 12927 return (EINVAL); 12928 12929 if (!ipif->ipif_isv6) 12930 return (EINVAL); 12931 12932 if (addrlen > IPV6_ABITS) 12933 return (EINVAL); 12934 12935 v6addr = sin6->sin6_addr; 12936 12937 /* 12938 * The length of the token is the length from the end. To get 12939 * the proper mask for this, compute the mask of the bits not 12940 * in the token; ie. the prefix, and then xor to get the mask. 12941 */ 12942 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12943 return (EINVAL); 12944 for (i = 0; i < 4; i++) { 12945 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12946 } 12947 12948 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12949 ill->ill_token_length == addrlen) 12950 return (0); /* No change */ 12951 12952 if (ipif->ipif_flags & IPIF_UP) { 12953 err = ipif_logical_down(ipif, q, mp); 12954 if (err == EINPROGRESS) 12955 return (err); 12956 ipif_down_tail(ipif); 12957 need_up = B_TRUE; 12958 } 12959 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12960 return (err); 12961 } 12962 12963 static int 12964 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12965 mblk_t *mp, boolean_t need_up) 12966 { 12967 in6_addr_t v6addr; 12968 in6_addr_t v6mask; 12969 ill_t *ill = ipif->ipif_ill; 12970 int i; 12971 int err = 0; 12972 12973 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12974 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12975 v6addr = sin6->sin6_addr; 12976 /* 12977 * The length of the token is the length from the end. To get 12978 * the proper mask for this, compute the mask of the bits not 12979 * in the token; ie. the prefix, and then xor to get the mask. 12980 */ 12981 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12982 for (i = 0; i < 4; i++) 12983 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12984 12985 mutex_enter(&ill->ill_lock); 12986 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12987 ill->ill_token_length = addrlen; 12988 mutex_exit(&ill->ill_lock); 12989 12990 if (need_up) { 12991 /* 12992 * Now bring the interface back up. If this 12993 * is the only IPIF for the ILL, ipif_up 12994 * will have to re-bind to the device, so 12995 * we may get back EINPROGRESS, in which 12996 * case, this IOCTL will get completed in 12997 * ip_rput_dlpi when we see the DL_BIND_ACK. 12998 */ 12999 err = ipif_up(ipif, q, mp); 13000 if (err == EINPROGRESS) 13001 return (err); 13002 } 13003 return (err); 13004 } 13005 13006 /* ARGSUSED */ 13007 int 13008 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13009 ip_ioctl_cmd_t *ipi, void *if_req) 13010 { 13011 ill_t *ill; 13012 sin6_t *sin6 = (sin6_t *)sin; 13013 struct lifreq *lifr = (struct lifreq *)if_req; 13014 13015 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13016 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13017 if (ipif->ipif_id != 0) 13018 return (EINVAL); 13019 13020 ill = ipif->ipif_ill; 13021 if (!ill->ill_isv6) 13022 return (ENXIO); 13023 13024 *sin6 = sin6_null; 13025 sin6->sin6_family = AF_INET6; 13026 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13027 sin6->sin6_addr = ill->ill_token; 13028 lifr->lifr_addrlen = ill->ill_token_length; 13029 return (0); 13030 } 13031 13032 /* 13033 * Set (hardware) link specific information that might override 13034 * what was acquired through the DL_INFO_ACK. 13035 * The logic is as follows. 13036 * 13037 * become exclusive 13038 * set CHANGING flag 13039 * change mtu on affected IREs 13040 * clear CHANGING flag 13041 * 13042 * An ire add that occurs before the CHANGING flag is set will have its mtu 13043 * changed by the ip_sioctl_lnkinfo. 13044 * 13045 * During the time the CHANGING flag is set, no new ires will be added to the 13046 * bucket, and ire add will fail (due the CHANGING flag). 13047 * 13048 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13049 * before it is added to the bucket. 13050 * 13051 * Obviously only 1 thread can set the CHANGING flag and we need to become 13052 * exclusive to set the flag. 13053 */ 13054 /* ARGSUSED */ 13055 int 13056 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13057 ip_ioctl_cmd_t *ipi, void *if_req) 13058 { 13059 ill_t *ill = ipif->ipif_ill; 13060 ipif_t *nipif; 13061 int ip_min_mtu; 13062 boolean_t mtu_walk = B_FALSE; 13063 struct lifreq *lifr = (struct lifreq *)if_req; 13064 lif_ifinfo_req_t *lir; 13065 ire_t *ire; 13066 13067 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13068 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13069 lir = &lifr->lifr_ifinfo; 13070 ASSERT(IAM_WRITER_IPIF(ipif)); 13071 13072 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13073 if (ipif->ipif_id != 0) 13074 return (EINVAL); 13075 13076 /* Set interface MTU. */ 13077 if (ipif->ipif_isv6) 13078 ip_min_mtu = IPV6_MIN_MTU; 13079 else 13080 ip_min_mtu = IP_MIN_MTU; 13081 13082 /* 13083 * Verify values before we set anything. Allow zero to 13084 * mean unspecified. 13085 */ 13086 if (lir->lir_maxmtu != 0 && 13087 (lir->lir_maxmtu > ill->ill_max_frag || 13088 lir->lir_maxmtu < ip_min_mtu)) 13089 return (EINVAL); 13090 if (lir->lir_reachtime != 0 && 13091 lir->lir_reachtime > ND_MAX_REACHTIME) 13092 return (EINVAL); 13093 if (lir->lir_reachretrans != 0 && 13094 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13095 return (EINVAL); 13096 13097 mutex_enter(&ill->ill_lock); 13098 ill->ill_state_flags |= ILL_CHANGING; 13099 for (nipif = ill->ill_ipif; nipif != NULL; 13100 nipif = nipif->ipif_next) { 13101 nipif->ipif_state_flags |= IPIF_CHANGING; 13102 } 13103 13104 mutex_exit(&ill->ill_lock); 13105 13106 if (lir->lir_maxmtu != 0) { 13107 ill->ill_max_mtu = lir->lir_maxmtu; 13108 ill->ill_mtu_userspecified = 1; 13109 mtu_walk = B_TRUE; 13110 } 13111 13112 if (lir->lir_reachtime != 0) 13113 ill->ill_reachable_time = lir->lir_reachtime; 13114 13115 if (lir->lir_reachretrans != 0) 13116 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13117 13118 ill->ill_max_hops = lir->lir_maxhops; 13119 13120 ill->ill_max_buf = ND_MAX_Q; 13121 13122 if (mtu_walk) { 13123 /* 13124 * Set the MTU on all ipifs associated with this ill except 13125 * for those whose MTU was fixed via SIOCSLIFMTU. 13126 */ 13127 for (nipif = ill->ill_ipif; nipif != NULL; 13128 nipif = nipif->ipif_next) { 13129 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13130 continue; 13131 13132 nipif->ipif_mtu = ill->ill_max_mtu; 13133 13134 if (!(nipif->ipif_flags & IPIF_UP)) 13135 continue; 13136 13137 if (nipif->ipif_isv6) 13138 ire = ipif_to_ire_v6(nipif); 13139 else 13140 ire = ipif_to_ire(nipif); 13141 if (ire != NULL) { 13142 ire->ire_max_frag = ipif->ipif_mtu; 13143 ire_refrele(ire); 13144 } 13145 if (ill->ill_isv6) { 13146 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13147 ipif_mtu_change, (char *)nipif, 13148 ill); 13149 } else { 13150 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13151 ipif_mtu_change, (char *)nipif, 13152 ill); 13153 } 13154 } 13155 } 13156 13157 mutex_enter(&ill->ill_lock); 13158 for (nipif = ill->ill_ipif; nipif != NULL; 13159 nipif = nipif->ipif_next) { 13160 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13161 } 13162 ILL_UNMARK_CHANGING(ill); 13163 mutex_exit(&ill->ill_lock); 13164 13165 return (0); 13166 } 13167 13168 /* ARGSUSED */ 13169 int 13170 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13171 ip_ioctl_cmd_t *ipi, void *if_req) 13172 { 13173 struct lif_ifinfo_req *lir; 13174 ill_t *ill = ipif->ipif_ill; 13175 13176 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13177 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13178 if (ipif->ipif_id != 0) 13179 return (EINVAL); 13180 13181 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13182 lir->lir_maxhops = ill->ill_max_hops; 13183 lir->lir_reachtime = ill->ill_reachable_time; 13184 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13185 lir->lir_maxmtu = ill->ill_max_mtu; 13186 13187 return (0); 13188 } 13189 13190 /* 13191 * Return best guess as to the subnet mask for the specified address. 13192 * Based on the subnet masks for all the configured interfaces. 13193 * 13194 * We end up returning a zero mask in the case of default, multicast or 13195 * experimental. 13196 */ 13197 static ipaddr_t 13198 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 13199 { 13200 ipaddr_t net_mask; 13201 ill_t *ill; 13202 ipif_t *ipif; 13203 ill_walk_context_t ctx; 13204 ipif_t *fallback_ipif = NULL; 13205 13206 net_mask = ip_net_mask(addr); 13207 if (net_mask == 0) { 13208 *ipifp = NULL; 13209 return (0); 13210 } 13211 13212 /* Let's check to see if this is maybe a local subnet route. */ 13213 /* this function only applies to IPv4 interfaces */ 13214 rw_enter(&ill_g_lock, RW_READER); 13215 ill = ILL_START_WALK_V4(&ctx); 13216 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13217 mutex_enter(&ill->ill_lock); 13218 for (ipif = ill->ill_ipif; ipif != NULL; 13219 ipif = ipif->ipif_next) { 13220 if (!IPIF_CAN_LOOKUP(ipif)) 13221 continue; 13222 if (!(ipif->ipif_flags & IPIF_UP)) 13223 continue; 13224 if ((ipif->ipif_subnet & net_mask) == 13225 (addr & net_mask)) { 13226 /* 13227 * Don't trust pt-pt interfaces if there are 13228 * other interfaces. 13229 */ 13230 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13231 if (fallback_ipif == NULL) { 13232 ipif_refhold_locked(ipif); 13233 fallback_ipif = ipif; 13234 } 13235 continue; 13236 } 13237 13238 /* 13239 * Fine. Just assume the same net mask as the 13240 * directly attached subnet interface is using. 13241 */ 13242 ipif_refhold_locked(ipif); 13243 mutex_exit(&ill->ill_lock); 13244 rw_exit(&ill_g_lock); 13245 if (fallback_ipif != NULL) 13246 ipif_refrele(fallback_ipif); 13247 *ipifp = ipif; 13248 return (ipif->ipif_net_mask); 13249 } 13250 } 13251 mutex_exit(&ill->ill_lock); 13252 } 13253 rw_exit(&ill_g_lock); 13254 13255 *ipifp = fallback_ipif; 13256 return ((fallback_ipif != NULL) ? 13257 fallback_ipif->ipif_net_mask : net_mask); 13258 } 13259 13260 /* 13261 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13262 */ 13263 static void 13264 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13265 { 13266 IOCP iocp; 13267 ipft_t *ipft; 13268 ipllc_t *ipllc; 13269 mblk_t *mp1; 13270 cred_t *cr; 13271 int error = 0; 13272 conn_t *connp; 13273 13274 ip1dbg(("ip_wput_ioctl")); 13275 iocp = (IOCP)mp->b_rptr; 13276 mp1 = mp->b_cont; 13277 if (mp1 == NULL) { 13278 iocp->ioc_error = EINVAL; 13279 mp->b_datap->db_type = M_IOCNAK; 13280 iocp->ioc_count = 0; 13281 qreply(q, mp); 13282 return; 13283 } 13284 13285 /* 13286 * These IOCTLs provide various control capabilities to 13287 * upstream agents such as ULPs and processes. There 13288 * are currently two such IOCTLs implemented. They 13289 * are used by TCP to provide update information for 13290 * existing IREs and to forcibly delete an IRE for a 13291 * host that is not responding, thereby forcing an 13292 * attempt at a new route. 13293 */ 13294 iocp->ioc_error = EINVAL; 13295 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13296 goto done; 13297 13298 ipllc = (ipllc_t *)mp1->b_rptr; 13299 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13300 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13301 break; 13302 } 13303 /* 13304 * prefer credential from mblk over ioctl; 13305 * see ip_sioctl_copyin_setup 13306 */ 13307 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13308 13309 /* 13310 * Refhold the conn in case the request gets queued up in some lookup 13311 */ 13312 ASSERT(CONN_Q(q)); 13313 connp = Q_TO_CONN(q); 13314 CONN_INC_REF(connp); 13315 if (ipft->ipft_pfi && 13316 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13317 pullupmsg(mp1, ipft->ipft_min_size))) { 13318 error = (*ipft->ipft_pfi)(q, 13319 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13320 } 13321 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13322 /* 13323 * CONN_OPER_PENDING_DONE happens in the function called 13324 * through ipft_pfi above. 13325 */ 13326 return; 13327 } 13328 13329 CONN_OPER_PENDING_DONE(connp); 13330 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13331 freemsg(mp); 13332 return; 13333 } 13334 iocp->ioc_error = error; 13335 13336 done: 13337 mp->b_datap->db_type = M_IOCACK; 13338 if (iocp->ioc_error) 13339 iocp->ioc_count = 0; 13340 qreply(q, mp); 13341 } 13342 13343 /* 13344 * Lookup an ipif using the sequence id (ipif_seqid) 13345 */ 13346 ipif_t * 13347 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13348 { 13349 ipif_t *ipif; 13350 13351 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13352 13353 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13354 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13355 return (ipif); 13356 } 13357 return (NULL); 13358 } 13359 13360 uint64_t ipif_g_seqid; 13361 13362 /* 13363 * Assign a unique id for the ipif. This is used later when we send 13364 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13365 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13366 * IRE is added, we verify that ipif has not disappeared. 13367 */ 13368 13369 static void 13370 ipif_assign_seqid(ipif_t *ipif) 13371 { 13372 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 13373 } 13374 13375 /* 13376 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13377 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13378 * be inserted into the first space available in the list. The value of 13379 * ipif_id will then be set to the appropriate value for its position. 13380 */ 13381 static int 13382 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13383 { 13384 ill_t *ill; 13385 ipif_t *tipif; 13386 ipif_t **tipifp; 13387 int id; 13388 13389 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13390 IAM_WRITER_IPIF(ipif)); 13391 13392 ill = ipif->ipif_ill; 13393 ASSERT(ill != NULL); 13394 13395 /* 13396 * In the case of lo0:0 we already hold the ill_g_lock. 13397 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13398 * ipif_insert. Another such caller is ipif_move. 13399 */ 13400 if (acquire_g_lock) 13401 rw_enter(&ill_g_lock, RW_WRITER); 13402 if (acquire_ill_lock) 13403 mutex_enter(&ill->ill_lock); 13404 id = ipif->ipif_id; 13405 tipifp = &(ill->ill_ipif); 13406 if (id == -1) { /* need to find a real id */ 13407 id = 0; 13408 while ((tipif = *tipifp) != NULL) { 13409 ASSERT(tipif->ipif_id >= id); 13410 if (tipif->ipif_id != id) 13411 break; /* non-consecutive id */ 13412 id++; 13413 tipifp = &(tipif->ipif_next); 13414 } 13415 /* limit number of logical interfaces */ 13416 if (id >= ip_addrs_per_if) { 13417 if (acquire_ill_lock) 13418 mutex_exit(&ill->ill_lock); 13419 if (acquire_g_lock) 13420 rw_exit(&ill_g_lock); 13421 return (-1); 13422 } 13423 ipif->ipif_id = id; /* assign new id */ 13424 } else if (id < ip_addrs_per_if) { 13425 /* we have a real id; insert ipif in the right place */ 13426 while ((tipif = *tipifp) != NULL) { 13427 ASSERT(tipif->ipif_id != id); 13428 if (tipif->ipif_id > id) 13429 break; /* found correct location */ 13430 tipifp = &(tipif->ipif_next); 13431 } 13432 } else { 13433 if (acquire_ill_lock) 13434 mutex_exit(&ill->ill_lock); 13435 if (acquire_g_lock) 13436 rw_exit(&ill_g_lock); 13437 return (-1); 13438 } 13439 13440 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13441 13442 ipif->ipif_next = tipif; 13443 *tipifp = ipif; 13444 if (acquire_ill_lock) 13445 mutex_exit(&ill->ill_lock); 13446 if (acquire_g_lock) 13447 rw_exit(&ill_g_lock); 13448 return (0); 13449 } 13450 13451 /* 13452 * Allocate and initialize a new interface control structure. (Always 13453 * called as writer.) 13454 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13455 * is not part of the global linked list of ills. ipif_seqid is unique 13456 * in the system and to preserve the uniqueness, it is assigned only 13457 * when ill becomes part of the global list. At that point ill will 13458 * have a name. If it doesn't get assigned here, it will get assigned 13459 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13460 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13461 * the interface flags or any other information from the DL_INFO_ACK for 13462 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13463 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13464 * second DL_INFO_ACK comes in from the driver. 13465 */ 13466 static ipif_t * 13467 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13468 { 13469 ipif_t *ipif; 13470 phyint_t *phyi; 13471 13472 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13473 ill->ill_name, id, (void *)ill)); 13474 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13475 13476 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13477 return (NULL); 13478 *ipif = ipif_zero; /* start clean */ 13479 13480 ipif->ipif_ill = ill; 13481 ipif->ipif_id = id; /* could be -1 */ 13482 ipif->ipif_zoneid = GLOBAL_ZONEID; 13483 13484 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13485 13486 ipif->ipif_refcnt = 0; 13487 ipif->ipif_saved_ire_cnt = 0; 13488 13489 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13490 mi_free(ipif); 13491 return (NULL); 13492 } 13493 /* -1 id should have been replaced by real id */ 13494 id = ipif->ipif_id; 13495 ASSERT(id >= 0); 13496 13497 if (ill->ill_name[0] != '\0') { 13498 ipif_assign_seqid(ipif); 13499 if (ill->ill_phyint->phyint_ifindex != 0) 13500 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13501 } 13502 /* 13503 * Keep a copy of original id in ipif_orig_ipifid. Failback 13504 * will attempt to restore the original id. The SIOCSLIFOINDEX 13505 * ioctl sets ipif_orig_ipifid to zero. 13506 */ 13507 ipif->ipif_orig_ipifid = id; 13508 13509 /* 13510 * We grab the ill_lock and phyint_lock to protect the flag changes. 13511 * The ipif is still not up and can't be looked up until the 13512 * ioctl completes and the IPIF_CHANGING flag is cleared. 13513 */ 13514 mutex_enter(&ill->ill_lock); 13515 mutex_enter(&ill->ill_phyint->phyint_lock); 13516 /* 13517 * Set the running flag when logical interface zero is created. 13518 * For subsequent logical interfaces, a DLPI link down 13519 * notification message may have cleared the running flag to 13520 * indicate the link is down, so we shouldn't just blindly set it. 13521 */ 13522 if (id == 0) 13523 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13524 ipif->ipif_ire_type = ire_type; 13525 phyi = ill->ill_phyint; 13526 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13527 13528 if (ipif->ipif_isv6) { 13529 ill->ill_flags |= ILLF_IPV6; 13530 } else { 13531 ipaddr_t inaddr_any = INADDR_ANY; 13532 13533 ill->ill_flags |= ILLF_IPV4; 13534 13535 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13536 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13537 &ipif->ipif_v6lcl_addr); 13538 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13539 &ipif->ipif_v6src_addr); 13540 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13541 &ipif->ipif_v6subnet); 13542 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13543 &ipif->ipif_v6net_mask); 13544 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13545 &ipif->ipif_v6brd_addr); 13546 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13547 &ipif->ipif_v6pp_dst_addr); 13548 } 13549 13550 /* 13551 * Don't set the interface flags etc. now, will do it in 13552 * ip_ll_subnet_defaults. 13553 */ 13554 if (!initialize) { 13555 mutex_exit(&ill->ill_lock); 13556 mutex_exit(&ill->ill_phyint->phyint_lock); 13557 return (ipif); 13558 } 13559 ipif->ipif_mtu = ill->ill_max_mtu; 13560 13561 if (ill->ill_bcast_addr_length != 0) { 13562 /* 13563 * Later detect lack of DLPI driver multicast 13564 * capability by catching DL_ENABMULTI errors in 13565 * ip_rput_dlpi. 13566 */ 13567 ill->ill_flags |= ILLF_MULTICAST; 13568 if (!ipif->ipif_isv6) 13569 ipif->ipif_flags |= IPIF_BROADCAST; 13570 } else { 13571 if (ill->ill_net_type != IRE_LOOPBACK) { 13572 if (ipif->ipif_isv6) 13573 /* 13574 * Note: xresolv interfaces will eventually need 13575 * NOARP set here as well, but that will require 13576 * those external resolvers to have some 13577 * knowledge of that flag and act appropriately. 13578 * Not to be changed at present. 13579 */ 13580 ill->ill_flags |= ILLF_NONUD; 13581 else 13582 ill->ill_flags |= ILLF_NOARP; 13583 } 13584 if (ill->ill_phys_addr_length == 0) { 13585 if (ill->ill_media && 13586 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13587 ipif->ipif_flags |= IPIF_NOXMIT; 13588 phyi->phyint_flags |= PHYI_VIRTUAL; 13589 } else { 13590 /* pt-pt supports multicast. */ 13591 ill->ill_flags |= ILLF_MULTICAST; 13592 if (ill->ill_net_type == IRE_LOOPBACK) { 13593 phyi->phyint_flags |= 13594 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13595 } else { 13596 ipif->ipif_flags |= IPIF_POINTOPOINT; 13597 } 13598 } 13599 } 13600 } 13601 mutex_exit(&ill->ill_lock); 13602 mutex_exit(&ill->ill_phyint->phyint_lock); 13603 return (ipif); 13604 } 13605 13606 /* 13607 * If appropriate, send a message up to the resolver delete the entry 13608 * for the address of this interface which is going out of business. 13609 * (Always called as writer). 13610 * 13611 * NOTE : We need to check for NULL mps as some of the fields are 13612 * initialized only for some interface types. See ipif_resolver_up() 13613 * for details. 13614 */ 13615 void 13616 ipif_arp_down(ipif_t *ipif) 13617 { 13618 mblk_t *mp; 13619 ill_t *ill = ipif->ipif_ill; 13620 13621 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13622 ASSERT(IAM_WRITER_IPIF(ipif)); 13623 13624 /* Delete the mapping for the local address */ 13625 mp = ipif->ipif_arp_del_mp; 13626 if (mp != NULL) { 13627 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13628 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13629 putnext(ill->ill_rq, mp); 13630 ipif->ipif_arp_del_mp = NULL; 13631 } 13632 13633 /* 13634 * If this is the last ipif that is going down and there are no 13635 * duplicate addresses we may yet attempt to re-probe, then we need to 13636 * clean up ARP completely. 13637 */ 13638 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13639 13640 /* Send up AR_INTERFACE_DOWN message */ 13641 mp = ill->ill_arp_down_mp; 13642 if (mp != NULL) { 13643 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13644 *(unsigned *)mp->b_rptr, ill->ill_name, 13645 ipif->ipif_id)); 13646 putnext(ill->ill_rq, mp); 13647 ill->ill_arp_down_mp = NULL; 13648 } 13649 13650 /* Tell ARP to delete the multicast mappings */ 13651 mp = ill->ill_arp_del_mapping_mp; 13652 if (mp != NULL) { 13653 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13654 *(unsigned *)mp->b_rptr, ill->ill_name, 13655 ipif->ipif_id)); 13656 putnext(ill->ill_rq, mp); 13657 ill->ill_arp_del_mapping_mp = NULL; 13658 } 13659 } 13660 } 13661 13662 /* 13663 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13664 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13665 * that it wants the add_mp allocated in this function to be returned 13666 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13667 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13668 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13669 * as it does a ipif_arp_down after calling this function - which will 13670 * remove what we add here. 13671 * 13672 * Returns -1 on failures and 0 on success. 13673 */ 13674 int 13675 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13676 { 13677 mblk_t *del_mp = NULL; 13678 mblk_t *add_mp = NULL; 13679 mblk_t *mp; 13680 ill_t *ill = ipif->ipif_ill; 13681 phyint_t *phyi = ill->ill_phyint; 13682 ipaddr_t addr, mask, extract_mask = 0; 13683 arma_t *arma; 13684 uint8_t *maddr, *bphys_addr; 13685 uint32_t hw_start; 13686 dl_unitdata_req_t *dlur; 13687 13688 ASSERT(IAM_WRITER_IPIF(ipif)); 13689 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13690 return (0); 13691 13692 /* 13693 * Delete the existing mapping from ARP. Normally ipif_down 13694 * -> ipif_arp_down should send this up to ARP. The only 13695 * reason we would find this when we are switching from 13696 * Multicast to Broadcast where we did not do a down. 13697 */ 13698 mp = ill->ill_arp_del_mapping_mp; 13699 if (mp != NULL) { 13700 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13701 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13702 putnext(ill->ill_rq, mp); 13703 ill->ill_arp_del_mapping_mp = NULL; 13704 } 13705 13706 if (arp_add_mapping_mp != NULL) 13707 *arp_add_mapping_mp = NULL; 13708 13709 /* 13710 * Check that the address is not to long for the constant 13711 * length reserved in the template arma_t. 13712 */ 13713 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13714 return (-1); 13715 13716 /* Add mapping mblk */ 13717 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13718 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13719 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13720 (caddr_t)&addr); 13721 if (add_mp == NULL) 13722 return (-1); 13723 arma = (arma_t *)add_mp->b_rptr; 13724 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13725 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13726 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13727 13728 /* 13729 * Determine the broadcast address. 13730 */ 13731 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13732 if (ill->ill_sap_length < 0) 13733 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13734 else 13735 bphys_addr = (uchar_t *)dlur + 13736 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13737 /* 13738 * Check PHYI_MULTI_BCAST and length of physical 13739 * address to determine if we use the mapping or the 13740 * broadcast address. 13741 */ 13742 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13743 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13744 bphys_addr, maddr, &hw_start, &extract_mask)) 13745 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13746 13747 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13748 (ill->ill_flags & ILLF_MULTICAST)) { 13749 /* Make sure this will not match the "exact" entry. */ 13750 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13751 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13752 (caddr_t)&addr); 13753 if (del_mp == NULL) { 13754 freemsg(add_mp); 13755 return (-1); 13756 } 13757 bcopy(&extract_mask, (char *)arma + 13758 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13759 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13760 /* Use link-layer broadcast address for MULTI_BCAST */ 13761 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13762 ip2dbg(("ipif_arp_setup_multicast: adding" 13763 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13764 } else { 13765 arma->arma_hw_mapping_start = hw_start; 13766 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13767 " ARP setup for %s\n", ill->ill_name)); 13768 } 13769 } else { 13770 freemsg(add_mp); 13771 ASSERT(del_mp == NULL); 13772 /* It is neither MULTICAST nor MULTI_BCAST */ 13773 return (0); 13774 } 13775 ASSERT(add_mp != NULL && del_mp != NULL); 13776 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13777 ill->ill_arp_del_mapping_mp = del_mp; 13778 if (arp_add_mapping_mp != NULL) { 13779 /* The caller just wants the mblks allocated */ 13780 *arp_add_mapping_mp = add_mp; 13781 } else { 13782 /* The caller wants us to send it to arp */ 13783 putnext(ill->ill_rq, add_mp); 13784 } 13785 return (0); 13786 } 13787 13788 /* 13789 * Get the resolver set up for a new interface address. 13790 * (Always called as writer.) 13791 * Called both for IPv4 and IPv6 interfaces, 13792 * though it only sets up the resolver for v6 13793 * if it's an xresolv interface (one using an external resolver). 13794 * Honors ILLF_NOARP. 13795 * The enumerated value res_act is used to tune the behavior. 13796 * If set to Res_act_initial, then we set up all the resolver 13797 * structures for a new interface. If set to Res_act_move, then 13798 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13799 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13800 * asynchronous hardware address change notification. If set to 13801 * Res_act_defend, then we tell ARP that it needs to send a single 13802 * gratuitous message in defense of the address. 13803 * Returns error on failure. 13804 */ 13805 int 13806 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13807 { 13808 caddr_t addr; 13809 mblk_t *arp_up_mp = NULL; 13810 mblk_t *arp_down_mp = NULL; 13811 mblk_t *arp_add_mp = NULL; 13812 mblk_t *arp_del_mp = NULL; 13813 mblk_t *arp_add_mapping_mp = NULL; 13814 mblk_t *arp_del_mapping_mp = NULL; 13815 ill_t *ill = ipif->ipif_ill; 13816 uchar_t *area_p = NULL; 13817 uchar_t *ared_p = NULL; 13818 int err = ENOMEM; 13819 boolean_t was_dup; 13820 13821 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13822 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13823 ASSERT(IAM_WRITER_IPIF(ipif)); 13824 13825 was_dup = B_FALSE; 13826 if (res_act == Res_act_initial) { 13827 ipif->ipif_addr_ready = 0; 13828 /* 13829 * We're bringing an interface up here. There's no way that we 13830 * should need to shut down ARP now. 13831 */ 13832 mutex_enter(&ill->ill_lock); 13833 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13834 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13835 ill->ill_ipif_dup_count--; 13836 was_dup = B_TRUE; 13837 } 13838 mutex_exit(&ill->ill_lock); 13839 } 13840 if (ipif->ipif_recovery_id != 0) 13841 (void) untimeout(ipif->ipif_recovery_id); 13842 ipif->ipif_recovery_id = 0; 13843 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13844 ipif->ipif_addr_ready = 1; 13845 return (0); 13846 } 13847 /* NDP will set the ipif_addr_ready flag when it's ready */ 13848 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13849 return (0); 13850 13851 if (ill->ill_isv6) { 13852 /* 13853 * External resolver for IPv6 13854 */ 13855 ASSERT(res_act == Res_act_initial); 13856 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13857 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13858 area_p = (uchar_t *)&ip6_area_template; 13859 ared_p = (uchar_t *)&ip6_ared_template; 13860 } 13861 } else { 13862 /* 13863 * IPv4 arp case. If the ARP stream has already started 13864 * closing, fail this request for ARP bringup. Else 13865 * record the fact that an ARP bringup is pending. 13866 */ 13867 mutex_enter(&ill->ill_lock); 13868 if (ill->ill_arp_closing) { 13869 mutex_exit(&ill->ill_lock); 13870 err = EINVAL; 13871 goto failed; 13872 } else { 13873 if (ill->ill_ipif_up_count == 0 && 13874 ill->ill_ipif_dup_count == 0 && !was_dup) 13875 ill->ill_arp_bringup_pending = 1; 13876 mutex_exit(&ill->ill_lock); 13877 } 13878 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13879 addr = (caddr_t)&ipif->ipif_lcl_addr; 13880 area_p = (uchar_t *)&ip_area_template; 13881 ared_p = (uchar_t *)&ip_ared_template; 13882 } 13883 } 13884 13885 /* 13886 * Add an entry for the local address in ARP only if it 13887 * is not UNNUMBERED and the address is not INADDR_ANY. 13888 */ 13889 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13890 area_t *area; 13891 13892 /* Now ask ARP to publish our address. */ 13893 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13894 if (arp_add_mp == NULL) 13895 goto failed; 13896 area = (area_t *)arp_add_mp->b_rptr; 13897 if (res_act != Res_act_initial) { 13898 /* 13899 * Copy the new hardware address and length into 13900 * arp_add_mp to be sent to ARP. 13901 */ 13902 area->area_hw_addr_length = ill->ill_phys_addr_length; 13903 bcopy(ill->ill_phys_addr, 13904 ((char *)area + area->area_hw_addr_offset), 13905 area->area_hw_addr_length); 13906 } 13907 13908 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13909 ACE_F_MYADDR; 13910 13911 if (res_act == Res_act_defend) { 13912 area->area_flags |= ACE_F_DEFEND; 13913 /* 13914 * If we're just defending our address now, then 13915 * there's no need to set up ARP multicast mappings. 13916 * The publish command is enough. 13917 */ 13918 goto done; 13919 } 13920 13921 if (res_act != Res_act_initial) 13922 goto arp_setup_multicast; 13923 13924 /* 13925 * Allocate an ARP deletion message so we know we can tell ARP 13926 * when the interface goes down. 13927 */ 13928 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13929 if (arp_del_mp == NULL) 13930 goto failed; 13931 13932 } else { 13933 if (res_act != Res_act_initial) 13934 goto done; 13935 } 13936 /* 13937 * Need to bring up ARP or setup multicast mapping only 13938 * when the first interface is coming UP. 13939 */ 13940 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13941 was_dup) { 13942 goto done; 13943 } 13944 13945 /* 13946 * Allocate an ARP down message (to be saved) and an ARP up 13947 * message. 13948 */ 13949 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13950 if (arp_down_mp == NULL) 13951 goto failed; 13952 13953 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13954 if (arp_up_mp == NULL) 13955 goto failed; 13956 13957 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13958 goto done; 13959 13960 arp_setup_multicast: 13961 /* 13962 * Setup the multicast mappings. This function initializes 13963 * ill_arp_del_mapping_mp also. This does not need to be done for 13964 * IPv6. 13965 */ 13966 if (!ill->ill_isv6) { 13967 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13968 if (err != 0) 13969 goto failed; 13970 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13971 ASSERT(arp_add_mapping_mp != NULL); 13972 } 13973 13974 done: 13975 if (arp_del_mp != NULL) { 13976 ASSERT(ipif->ipif_arp_del_mp == NULL); 13977 ipif->ipif_arp_del_mp = arp_del_mp; 13978 } 13979 if (arp_down_mp != NULL) { 13980 ASSERT(ill->ill_arp_down_mp == NULL); 13981 ill->ill_arp_down_mp = arp_down_mp; 13982 } 13983 if (arp_del_mapping_mp != NULL) { 13984 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13985 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13986 } 13987 if (arp_up_mp != NULL) { 13988 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13989 ill->ill_name, ipif->ipif_id)); 13990 putnext(ill->ill_rq, arp_up_mp); 13991 } 13992 if (arp_add_mp != NULL) { 13993 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13994 ill->ill_name, ipif->ipif_id)); 13995 /* 13996 * If it's an extended ARP implementation, then we'll wait to 13997 * hear that DAD has finished before using the interface. 13998 */ 13999 if (!ill->ill_arp_extend) 14000 ipif->ipif_addr_ready = 1; 14001 putnext(ill->ill_rq, arp_add_mp); 14002 } else { 14003 ipif->ipif_addr_ready = 1; 14004 } 14005 if (arp_add_mapping_mp != NULL) { 14006 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14007 ill->ill_name, ipif->ipif_id)); 14008 putnext(ill->ill_rq, arp_add_mapping_mp); 14009 } 14010 if (res_act != Res_act_initial) 14011 return (0); 14012 14013 if (ill->ill_flags & ILLF_NOARP) 14014 err = ill_arp_off(ill); 14015 else 14016 err = ill_arp_on(ill); 14017 if (err != 0) { 14018 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14019 freemsg(ipif->ipif_arp_del_mp); 14020 freemsg(ill->ill_arp_down_mp); 14021 freemsg(ill->ill_arp_del_mapping_mp); 14022 ipif->ipif_arp_del_mp = NULL; 14023 ill->ill_arp_down_mp = NULL; 14024 ill->ill_arp_del_mapping_mp = NULL; 14025 return (err); 14026 } 14027 return ((ill->ill_ipif_up_count != 0 || was_dup || 14028 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14029 14030 failed: 14031 ip1dbg(("ipif_resolver_up: FAILED\n")); 14032 freemsg(arp_add_mp); 14033 freemsg(arp_del_mp); 14034 freemsg(arp_add_mapping_mp); 14035 freemsg(arp_up_mp); 14036 freemsg(arp_down_mp); 14037 ill->ill_arp_bringup_pending = 0; 14038 return (err); 14039 } 14040 14041 /* 14042 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14043 * just gone back up. 14044 */ 14045 static void 14046 ipif_arp_start_dad(ipif_t *ipif) 14047 { 14048 ill_t *ill = ipif->ipif_ill; 14049 mblk_t *arp_add_mp; 14050 area_t *area; 14051 14052 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14053 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14054 ipif->ipif_lcl_addr == INADDR_ANY || 14055 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14056 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14057 /* 14058 * If we can't contact ARP for some reason, that's not really a 14059 * problem. Just send out the routing socket notification that 14060 * DAD completion would have done, and continue. 14061 */ 14062 ipif_mask_reply(ipif); 14063 ip_rts_ifmsg(ipif); 14064 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14065 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14066 ipif->ipif_addr_ready = 1; 14067 return; 14068 } 14069 14070 /* Setting the 'unverified' flag restarts DAD */ 14071 area = (area_t *)arp_add_mp->b_rptr; 14072 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14073 ACE_F_UNVERIFIED; 14074 putnext(ill->ill_rq, arp_add_mp); 14075 } 14076 14077 static void 14078 ipif_ndp_start_dad(ipif_t *ipif) 14079 { 14080 nce_t *nce; 14081 14082 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14083 if (nce == NULL) 14084 return; 14085 14086 if (!ndp_restart_dad(nce)) { 14087 /* 14088 * If we can't restart DAD for some reason, that's not really a 14089 * problem. Just send out the routing socket notification that 14090 * DAD completion would have done, and continue. 14091 */ 14092 ip_rts_ifmsg(ipif); 14093 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14094 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14095 ipif->ipif_addr_ready = 1; 14096 } 14097 NCE_REFRELE(nce); 14098 } 14099 14100 /* 14101 * Restart duplicate address detection on all interfaces on the given ill. 14102 * 14103 * This is called when an interface transitions from down to up 14104 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14105 * 14106 * Note that since the underlying physical link has transitioned, we must cause 14107 * at least one routing socket message to be sent here, either via DAD 14108 * completion or just by default on the first ipif. (If we don't do this, then 14109 * in.mpathd will see long delays when doing link-based failure recovery.) 14110 */ 14111 void 14112 ill_restart_dad(ill_t *ill, boolean_t went_up) 14113 { 14114 ipif_t *ipif; 14115 14116 if (ill == NULL) 14117 return; 14118 14119 /* 14120 * If layer two doesn't support duplicate address detection, then just 14121 * send the routing socket message now and be done with it. 14122 */ 14123 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14124 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14125 ip_rts_ifmsg(ill->ill_ipif); 14126 return; 14127 } 14128 14129 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14130 if (went_up) { 14131 if (ipif->ipif_flags & IPIF_UP) { 14132 if (ill->ill_isv6) 14133 ipif_ndp_start_dad(ipif); 14134 else 14135 ipif_arp_start_dad(ipif); 14136 } else if (ill->ill_isv6 && 14137 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14138 /* 14139 * For IPv4, the ARP module itself will 14140 * automatically start the DAD process when it 14141 * sees DL_NOTE_LINK_UP. We respond to the 14142 * AR_CN_READY at the completion of that task. 14143 * For IPv6, we must kick off the bring-up 14144 * process now. 14145 */ 14146 ndp_do_recovery(ipif); 14147 } else { 14148 /* 14149 * Unfortunately, the first ipif is "special" 14150 * and represents the underlying ill in the 14151 * routing socket messages. Thus, when this 14152 * one ipif is down, we must still notify so 14153 * that the user knows the IFF_RUNNING status 14154 * change. (If the first ipif is up, then 14155 * we'll handle eventual routing socket 14156 * notification via DAD completion.) 14157 */ 14158 if (ipif == ill->ill_ipif) 14159 ip_rts_ifmsg(ill->ill_ipif); 14160 } 14161 } else { 14162 /* 14163 * After link down, we'll need to send a new routing 14164 * message when the link comes back, so clear 14165 * ipif_addr_ready. 14166 */ 14167 ipif->ipif_addr_ready = 0; 14168 } 14169 } 14170 14171 /* 14172 * If we've torn down links, then notify the user right away. 14173 */ 14174 if (!went_up) 14175 ip_rts_ifmsg(ill->ill_ipif); 14176 } 14177 14178 /* 14179 * Wakeup all threads waiting to enter the ipsq, and sleeping 14180 * on any of the ills in this ipsq. The ill_lock of the ill 14181 * must be held so that waiters don't miss wakeups 14182 */ 14183 static void 14184 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14185 { 14186 phyint_t *phyint; 14187 14188 phyint = ipsq->ipsq_phyint_list; 14189 while (phyint != NULL) { 14190 if (phyint->phyint_illv4) { 14191 if (!caller_holds_lock) 14192 mutex_enter(&phyint->phyint_illv4->ill_lock); 14193 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14194 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14195 if (!caller_holds_lock) 14196 mutex_exit(&phyint->phyint_illv4->ill_lock); 14197 } 14198 if (phyint->phyint_illv6) { 14199 if (!caller_holds_lock) 14200 mutex_enter(&phyint->phyint_illv6->ill_lock); 14201 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14202 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14203 if (!caller_holds_lock) 14204 mutex_exit(&phyint->phyint_illv6->ill_lock); 14205 } 14206 phyint = phyint->phyint_ipsq_next; 14207 } 14208 } 14209 14210 static ipsq_t * 14211 ipsq_create(char *groupname) 14212 { 14213 ipsq_t *ipsq; 14214 14215 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14216 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14217 if (ipsq == NULL) { 14218 return (NULL); 14219 } 14220 14221 if (groupname != NULL) 14222 (void) strcpy(ipsq->ipsq_name, groupname); 14223 else 14224 ipsq->ipsq_name[0] = '\0'; 14225 14226 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14227 ipsq->ipsq_flags |= IPSQ_GROUP; 14228 ipsq->ipsq_next = ipsq_g_head; 14229 ipsq_g_head = ipsq; 14230 return (ipsq); 14231 } 14232 14233 /* 14234 * Return an ipsq correspoding to the groupname. If 'create' is true 14235 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14236 * uniquely with an IPMP group. However during IPMP groupname operations, 14237 * multiple IPMP groups may be associated with a single ipsq. But no 14238 * IPMP group can be associated with more than 1 ipsq at any time. 14239 * For example 14240 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14241 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14242 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14243 * 14244 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14245 * status shown below during the execution of the above command. 14246 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14247 * 14248 * After the completion of the above groupname command we return to the stable 14249 * state shown below. 14250 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14251 * hme4 mpk17-85 ipsq2 mpk17-85 1 14252 * 14253 * Because of the above, we don't search based on the ipsq_name since that 14254 * would miss the correct ipsq during certain windows as shown above. 14255 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14256 * natural state. 14257 */ 14258 static ipsq_t * 14259 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 14260 { 14261 ipsq_t *ipsq; 14262 int group_len; 14263 phyint_t *phyint; 14264 14265 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14266 14267 group_len = strlen(groupname); 14268 ASSERT(group_len != 0); 14269 group_len++; 14270 14271 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 14272 /* 14273 * When an ipsq is being split, and ill_split_ipsq 14274 * calls this function, we exclude it from being considered. 14275 */ 14276 if (ipsq == exclude_ipsq) 14277 continue; 14278 14279 /* 14280 * Compare against the ipsq_name. The groupname change happens 14281 * in 2 phases. The 1st phase merges the from group into 14282 * the to group's ipsq, by calling ill_merge_groups and restarts 14283 * the ioctl. The 2nd phase then locates the ipsq again thru 14284 * ipsq_name. At this point the phyint_groupname has not been 14285 * updated. 14286 */ 14287 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14288 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14289 /* 14290 * Verify that an ipmp groupname is exactly 14291 * part of 1 ipsq and is not found in any other 14292 * ipsq. 14293 */ 14294 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 14295 NULL); 14296 return (ipsq); 14297 } 14298 14299 /* 14300 * Comparison against ipsq_name alone is not sufficient. 14301 * In the case when groups are currently being 14302 * merged, the ipsq could hold other IPMP groups temporarily. 14303 * so we walk the phyint list and compare against the 14304 * phyint_groupname as well. 14305 */ 14306 phyint = ipsq->ipsq_phyint_list; 14307 while (phyint != NULL) { 14308 if ((group_len == phyint->phyint_groupname_len) && 14309 (bcmp(phyint->phyint_groupname, groupname, 14310 group_len) == 0)) { 14311 /* 14312 * Verify that an ipmp groupname is exactly 14313 * part of 1 ipsq and is not found in any other 14314 * ipsq. 14315 */ 14316 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 14317 == NULL); 14318 return (ipsq); 14319 } 14320 phyint = phyint->phyint_ipsq_next; 14321 } 14322 } 14323 if (create) 14324 ipsq = ipsq_create(groupname); 14325 return (ipsq); 14326 } 14327 14328 static void 14329 ipsq_delete(ipsq_t *ipsq) 14330 { 14331 ipsq_t *nipsq; 14332 ipsq_t *pipsq = NULL; 14333 14334 /* 14335 * We don't hold the ipsq lock, but we are sure no new 14336 * messages can land up, since the ipsq_refs is zero. 14337 * i.e. this ipsq is unnamed and no phyint or phyint group 14338 * is associated with this ipsq. (Lookups are based on ill_name 14339 * or phyint_group_name) 14340 */ 14341 ASSERT(ipsq->ipsq_refs == 0); 14342 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14343 ASSERT(ipsq->ipsq_pending_mp == NULL); 14344 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14345 /* 14346 * This is not the ipsq of an IPMP group. 14347 */ 14348 kmem_free(ipsq, sizeof (ipsq_t)); 14349 return; 14350 } 14351 14352 rw_enter(&ill_g_lock, RW_WRITER); 14353 14354 /* 14355 * Locate the ipsq before we can remove it from 14356 * the singly linked list of ipsq's. 14357 */ 14358 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 14359 if (nipsq == ipsq) { 14360 break; 14361 } 14362 pipsq = nipsq; 14363 } 14364 14365 ASSERT(nipsq == ipsq); 14366 14367 /* unlink ipsq from the list */ 14368 if (pipsq != NULL) 14369 pipsq->ipsq_next = ipsq->ipsq_next; 14370 else 14371 ipsq_g_head = ipsq->ipsq_next; 14372 kmem_free(ipsq, sizeof (ipsq_t)); 14373 rw_exit(&ill_g_lock); 14374 } 14375 14376 static void 14377 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14378 queue_t *q) 14379 14380 { 14381 14382 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14383 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14384 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14385 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14386 ASSERT(current_mp != NULL); 14387 14388 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14389 NEW_OP, NULL); 14390 14391 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14392 new_ipsq->ipsq_xopq_mphead != NULL); 14393 14394 /* 14395 * move from old ipsq to the new ipsq. 14396 */ 14397 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14398 if (old_ipsq->ipsq_xopq_mphead != NULL) 14399 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14400 14401 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14402 } 14403 14404 void 14405 ill_group_cleanup(ill_t *ill) 14406 { 14407 ill_t *ill_v4; 14408 ill_t *ill_v6; 14409 ipif_t *ipif; 14410 14411 ill_v4 = ill->ill_phyint->phyint_illv4; 14412 ill_v6 = ill->ill_phyint->phyint_illv6; 14413 14414 if (ill_v4 != NULL) { 14415 mutex_enter(&ill_v4->ill_lock); 14416 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14417 ipif = ipif->ipif_next) { 14418 IPIF_UNMARK_MOVING(ipif); 14419 } 14420 ill_v4->ill_up_ipifs = B_FALSE; 14421 mutex_exit(&ill_v4->ill_lock); 14422 } 14423 14424 if (ill_v6 != NULL) { 14425 mutex_enter(&ill_v6->ill_lock); 14426 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14427 ipif = ipif->ipif_next) { 14428 IPIF_UNMARK_MOVING(ipif); 14429 } 14430 ill_v6->ill_up_ipifs = B_FALSE; 14431 mutex_exit(&ill_v6->ill_lock); 14432 } 14433 } 14434 /* 14435 * This function is called when an ill has had a change in its group status 14436 * to bring up all the ipifs that were up before the change. 14437 */ 14438 int 14439 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14440 { 14441 ipif_t *ipif; 14442 ill_t *ill_v4; 14443 ill_t *ill_v6; 14444 ill_t *from_ill; 14445 int err = 0; 14446 14447 14448 ASSERT(IAM_WRITER_ILL(ill)); 14449 14450 /* 14451 * Except for ipif_state_flags and ill_state_flags the other 14452 * fields of the ipif/ill that are modified below are protected 14453 * implicitly since we are a writer. We would have tried to down 14454 * even an ipif that was already down, in ill_down_ipifs. So we 14455 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14456 */ 14457 ill_v4 = ill->ill_phyint->phyint_illv4; 14458 ill_v6 = ill->ill_phyint->phyint_illv6; 14459 if (ill_v4 != NULL) { 14460 ill_v4->ill_up_ipifs = B_TRUE; 14461 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14462 ipif = ipif->ipif_next) { 14463 mutex_enter(&ill_v4->ill_lock); 14464 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14465 IPIF_UNMARK_MOVING(ipif); 14466 mutex_exit(&ill_v4->ill_lock); 14467 if (ipif->ipif_was_up) { 14468 if (!(ipif->ipif_flags & IPIF_UP)) 14469 err = ipif_up(ipif, q, mp); 14470 ipif->ipif_was_up = B_FALSE; 14471 if (err != 0) { 14472 /* 14473 * Can there be any other error ? 14474 */ 14475 ASSERT(err == EINPROGRESS); 14476 return (err); 14477 } 14478 } 14479 } 14480 mutex_enter(&ill_v4->ill_lock); 14481 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14482 mutex_exit(&ill_v4->ill_lock); 14483 ill_v4->ill_up_ipifs = B_FALSE; 14484 if (ill_v4->ill_move_in_progress) { 14485 ASSERT(ill_v4->ill_move_peer != NULL); 14486 ill_v4->ill_move_in_progress = B_FALSE; 14487 from_ill = ill_v4->ill_move_peer; 14488 from_ill->ill_move_in_progress = B_FALSE; 14489 from_ill->ill_move_peer = NULL; 14490 mutex_enter(&from_ill->ill_lock); 14491 from_ill->ill_state_flags &= ~ILL_CHANGING; 14492 mutex_exit(&from_ill->ill_lock); 14493 if (ill_v6 == NULL) { 14494 if (from_ill->ill_phyint->phyint_flags & 14495 PHYI_STANDBY) { 14496 phyint_inactive(from_ill->ill_phyint); 14497 } 14498 if (ill_v4->ill_phyint->phyint_flags & 14499 PHYI_STANDBY) { 14500 phyint_inactive(ill_v4->ill_phyint); 14501 } 14502 } 14503 ill_v4->ill_move_peer = NULL; 14504 } 14505 } 14506 14507 if (ill_v6 != NULL) { 14508 ill_v6->ill_up_ipifs = B_TRUE; 14509 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14510 ipif = ipif->ipif_next) { 14511 mutex_enter(&ill_v6->ill_lock); 14512 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14513 IPIF_UNMARK_MOVING(ipif); 14514 mutex_exit(&ill_v6->ill_lock); 14515 if (ipif->ipif_was_up) { 14516 if (!(ipif->ipif_flags & IPIF_UP)) 14517 err = ipif_up(ipif, q, mp); 14518 ipif->ipif_was_up = B_FALSE; 14519 if (err != 0) { 14520 /* 14521 * Can there be any other error ? 14522 */ 14523 ASSERT(err == EINPROGRESS); 14524 return (err); 14525 } 14526 } 14527 } 14528 mutex_enter(&ill_v6->ill_lock); 14529 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14530 mutex_exit(&ill_v6->ill_lock); 14531 ill_v6->ill_up_ipifs = B_FALSE; 14532 if (ill_v6->ill_move_in_progress) { 14533 ASSERT(ill_v6->ill_move_peer != NULL); 14534 ill_v6->ill_move_in_progress = B_FALSE; 14535 from_ill = ill_v6->ill_move_peer; 14536 from_ill->ill_move_in_progress = B_FALSE; 14537 from_ill->ill_move_peer = NULL; 14538 mutex_enter(&from_ill->ill_lock); 14539 from_ill->ill_state_flags &= ~ILL_CHANGING; 14540 mutex_exit(&from_ill->ill_lock); 14541 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14542 phyint_inactive(from_ill->ill_phyint); 14543 } 14544 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14545 phyint_inactive(ill_v6->ill_phyint); 14546 } 14547 ill_v6->ill_move_peer = NULL; 14548 } 14549 } 14550 return (0); 14551 } 14552 14553 /* 14554 * bring down all the approriate ipifs. 14555 */ 14556 /* ARGSUSED */ 14557 static void 14558 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14559 { 14560 ipif_t *ipif; 14561 14562 ASSERT(IAM_WRITER_ILL(ill)); 14563 14564 /* 14565 * Except for ipif_state_flags the other fields of the ipif/ill that 14566 * are modified below are protected implicitly since we are a writer 14567 */ 14568 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14569 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14570 continue; 14571 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14572 /* 14573 * We go through the ipif_down logic even if the ipif 14574 * is already down, since routes can be added based 14575 * on down ipifs. Going through ipif_down once again 14576 * will delete any IREs created based on these routes. 14577 */ 14578 if (ipif->ipif_flags & IPIF_UP) 14579 ipif->ipif_was_up = B_TRUE; 14580 /* 14581 * If called with chk_nofailover true ipif is moving. 14582 */ 14583 mutex_enter(&ill->ill_lock); 14584 if (chk_nofailover) { 14585 ipif->ipif_state_flags |= 14586 IPIF_MOVING | IPIF_CHANGING; 14587 } else { 14588 ipif->ipif_state_flags |= IPIF_CHANGING; 14589 } 14590 mutex_exit(&ill->ill_lock); 14591 /* 14592 * Need to re-create net/subnet bcast ires if 14593 * they are dependent on ipif. 14594 */ 14595 if (!ipif->ipif_isv6) 14596 ipif_check_bcast_ires(ipif); 14597 (void) ipif_logical_down(ipif, NULL, NULL); 14598 ipif_non_duplicate(ipif); 14599 ipif_down_tail(ipif); 14600 /* 14601 * We don't do ipif_multicast_down for IPv4 in 14602 * ipif_down. We need to set this so that 14603 * ipif_multicast_up will join the 14604 * ALLHOSTS_GROUP on to_ill. 14605 */ 14606 ipif->ipif_multicast_up = B_FALSE; 14607 } 14608 } 14609 } 14610 14611 #define IPSQ_INC_REF(ipsq) { \ 14612 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14613 (ipsq)->ipsq_refs++; \ 14614 } 14615 14616 #define IPSQ_DEC_REF(ipsq) { \ 14617 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14618 (ipsq)->ipsq_refs--; \ 14619 if ((ipsq)->ipsq_refs == 0) \ 14620 (ipsq)->ipsq_name[0] = '\0'; \ 14621 } 14622 14623 /* 14624 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14625 * new_ipsq. 14626 */ 14627 static void 14628 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14629 { 14630 phyint_t *phyint; 14631 phyint_t *next_phyint; 14632 14633 /* 14634 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14635 * writer and the ill_lock of the ill in question. Also the dest 14636 * ipsq can't vanish while we hold the ill_g_lock as writer. 14637 */ 14638 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14639 14640 phyint = cur_ipsq->ipsq_phyint_list; 14641 cur_ipsq->ipsq_phyint_list = NULL; 14642 while (phyint != NULL) { 14643 next_phyint = phyint->phyint_ipsq_next; 14644 IPSQ_DEC_REF(cur_ipsq); 14645 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14646 new_ipsq->ipsq_phyint_list = phyint; 14647 IPSQ_INC_REF(new_ipsq); 14648 phyint->phyint_ipsq = new_ipsq; 14649 phyint = next_phyint; 14650 } 14651 } 14652 14653 #define SPLIT_SUCCESS 0 14654 #define SPLIT_NOT_NEEDED 1 14655 #define SPLIT_FAILED 2 14656 14657 int 14658 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14659 { 14660 ipsq_t *newipsq = NULL; 14661 14662 /* 14663 * Assertions denote pre-requisites for changing the ipsq of 14664 * a phyint 14665 */ 14666 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14667 /* 14668 * <ill-phyint> assocs can't change while ill_g_lock 14669 * is held as writer. See ill_phyint_reinit() 14670 */ 14671 ASSERT(phyint->phyint_illv4 == NULL || 14672 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14673 ASSERT(phyint->phyint_illv6 == NULL || 14674 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14675 14676 if ((phyint->phyint_groupname_len != 14677 (strlen(cur_ipsq->ipsq_name) + 1) || 14678 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14679 phyint->phyint_groupname_len) != 0)) { 14680 /* 14681 * Once we fail in creating a new ipsq due to memory shortage, 14682 * don't attempt to create new ipsq again, based on another 14683 * phyint, since we want all phyints belonging to an IPMP group 14684 * to be in the same ipsq even in the event of mem alloc fails. 14685 */ 14686 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14687 cur_ipsq); 14688 if (newipsq == NULL) { 14689 /* Memory allocation failure */ 14690 return (SPLIT_FAILED); 14691 } else { 14692 /* ipsq_refs protected by ill_g_lock (writer) */ 14693 IPSQ_DEC_REF(cur_ipsq); 14694 phyint->phyint_ipsq = newipsq; 14695 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14696 newipsq->ipsq_phyint_list = phyint; 14697 IPSQ_INC_REF(newipsq); 14698 return (SPLIT_SUCCESS); 14699 } 14700 } 14701 return (SPLIT_NOT_NEEDED); 14702 } 14703 14704 /* 14705 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14706 * to do this split 14707 */ 14708 static int 14709 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14710 { 14711 ipsq_t *newipsq; 14712 14713 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14714 /* 14715 * <ill-phyint> assocs can't change while ill_g_lock 14716 * is held as writer. See ill_phyint_reinit() 14717 */ 14718 14719 ASSERT(phyint->phyint_illv4 == NULL || 14720 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14721 ASSERT(phyint->phyint_illv6 == NULL || 14722 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14723 14724 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14725 phyint->phyint_illv4: phyint->phyint_illv6)) { 14726 /* 14727 * ipsq_init failed due to no memory 14728 * caller will use the same ipsq 14729 */ 14730 return (SPLIT_FAILED); 14731 } 14732 14733 /* ipsq_ref is protected by ill_g_lock (writer) */ 14734 IPSQ_DEC_REF(cur_ipsq); 14735 14736 /* 14737 * This is a new ipsq that is unknown to the world. 14738 * So we don't need to hold ipsq_lock, 14739 */ 14740 newipsq = phyint->phyint_ipsq; 14741 newipsq->ipsq_writer = NULL; 14742 newipsq->ipsq_reentry_cnt--; 14743 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14744 #ifdef ILL_DEBUG 14745 newipsq->ipsq_depth = 0; 14746 #endif 14747 14748 return (SPLIT_SUCCESS); 14749 } 14750 14751 /* 14752 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14753 * ipsq's representing their individual groups or themselves. Return 14754 * whether split needs to be retried again later. 14755 */ 14756 static boolean_t 14757 ill_split_ipsq(ipsq_t *cur_ipsq) 14758 { 14759 phyint_t *phyint; 14760 phyint_t *next_phyint; 14761 int error; 14762 boolean_t need_retry = B_FALSE; 14763 14764 phyint = cur_ipsq->ipsq_phyint_list; 14765 cur_ipsq->ipsq_phyint_list = NULL; 14766 while (phyint != NULL) { 14767 next_phyint = phyint->phyint_ipsq_next; 14768 /* 14769 * 'created' will tell us whether the callee actually 14770 * created an ipsq. Lack of memory may force the callee 14771 * to return without creating an ipsq. 14772 */ 14773 if (phyint->phyint_groupname == NULL) { 14774 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14775 } else { 14776 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14777 need_retry); 14778 } 14779 14780 switch (error) { 14781 case SPLIT_FAILED: 14782 need_retry = B_TRUE; 14783 /* FALLTHRU */ 14784 case SPLIT_NOT_NEEDED: 14785 /* 14786 * Keep it on the list. 14787 */ 14788 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14789 cur_ipsq->ipsq_phyint_list = phyint; 14790 break; 14791 case SPLIT_SUCCESS: 14792 break; 14793 default: 14794 ASSERT(0); 14795 } 14796 14797 phyint = next_phyint; 14798 } 14799 return (need_retry); 14800 } 14801 14802 /* 14803 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14804 * and return the ills in the list. This list will be 14805 * needed to unlock all the ills later on by the caller. 14806 * The <ill-ipsq> associations could change between the 14807 * lock and unlock. Hence the unlock can't traverse the 14808 * ipsq to get the list of ills. 14809 */ 14810 static int 14811 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14812 { 14813 int cnt = 0; 14814 phyint_t *phyint; 14815 14816 /* 14817 * The caller holds ill_g_lock to ensure that the ill memberships 14818 * of the ipsq don't change 14819 */ 14820 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14821 14822 phyint = ipsq->ipsq_phyint_list; 14823 while (phyint != NULL) { 14824 if (phyint->phyint_illv4 != NULL) { 14825 ASSERT(cnt < list_max); 14826 list[cnt++] = phyint->phyint_illv4; 14827 } 14828 if (phyint->phyint_illv6 != NULL) { 14829 ASSERT(cnt < list_max); 14830 list[cnt++] = phyint->phyint_illv6; 14831 } 14832 phyint = phyint->phyint_ipsq_next; 14833 } 14834 ill_lock_ills(list, cnt); 14835 return (cnt); 14836 } 14837 14838 void 14839 ill_lock_ills(ill_t **list, int cnt) 14840 { 14841 int i; 14842 14843 if (cnt > 1) { 14844 boolean_t try_again; 14845 do { 14846 try_again = B_FALSE; 14847 for (i = 0; i < cnt - 1; i++) { 14848 if (list[i] < list[i + 1]) { 14849 ill_t *tmp; 14850 14851 /* swap the elements */ 14852 tmp = list[i]; 14853 list[i] = list[i + 1]; 14854 list[i + 1] = tmp; 14855 try_again = B_TRUE; 14856 } 14857 } 14858 } while (try_again); 14859 } 14860 14861 for (i = 0; i < cnt; i++) { 14862 if (i == 0) { 14863 if (list[i] != NULL) 14864 mutex_enter(&list[i]->ill_lock); 14865 else 14866 return; 14867 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14868 mutex_enter(&list[i]->ill_lock); 14869 } 14870 } 14871 } 14872 14873 void 14874 ill_unlock_ills(ill_t **list, int cnt) 14875 { 14876 int i; 14877 14878 for (i = 0; i < cnt; i++) { 14879 if ((i == 0) && (list[i] != NULL)) { 14880 mutex_exit(&list[i]->ill_lock); 14881 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14882 mutex_exit(&list[i]->ill_lock); 14883 } 14884 } 14885 } 14886 14887 /* 14888 * Merge all the ills from 1 ipsq group into another ipsq group. 14889 * The source ipsq group is specified by the ipsq associated with 14890 * 'from_ill'. The destination ipsq group is specified by the ipsq 14891 * associated with 'to_ill' or 'groupname' respectively. 14892 * Note that ipsq itself does not have a reference count mechanism 14893 * and functions don't look up an ipsq and pass it around. Instead 14894 * functions pass around an ill or groupname, and the ipsq is looked 14895 * up from the ill or groupname and the required operation performed 14896 * atomically with the lookup on the ipsq. 14897 */ 14898 static int 14899 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14900 queue_t *q) 14901 { 14902 ipsq_t *old_ipsq; 14903 ipsq_t *new_ipsq; 14904 ill_t **ill_list; 14905 int cnt; 14906 size_t ill_list_size; 14907 boolean_t became_writer_on_new_sq = B_FALSE; 14908 14909 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14910 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14911 14912 /* 14913 * Need to hold ill_g_lock as writer and also the ill_lock to 14914 * change the <ill-ipsq> assoc of an ill. Need to hold the 14915 * ipsq_lock to prevent new messages from landing on an ipsq. 14916 */ 14917 rw_enter(&ill_g_lock, RW_WRITER); 14918 14919 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14920 if (groupname != NULL) 14921 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14922 else { 14923 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14924 } 14925 14926 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14927 14928 /* 14929 * both groups are on the same ipsq. 14930 */ 14931 if (old_ipsq == new_ipsq) { 14932 rw_exit(&ill_g_lock); 14933 return (0); 14934 } 14935 14936 cnt = old_ipsq->ipsq_refs << 1; 14937 ill_list_size = cnt * sizeof (ill_t *); 14938 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14939 if (ill_list == NULL) { 14940 rw_exit(&ill_g_lock); 14941 return (ENOMEM); 14942 } 14943 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14944 14945 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14946 mutex_enter(&new_ipsq->ipsq_lock); 14947 if ((new_ipsq->ipsq_writer == NULL && 14948 new_ipsq->ipsq_current_ipif == NULL) || 14949 (new_ipsq->ipsq_writer == curthread)) { 14950 new_ipsq->ipsq_writer = curthread; 14951 new_ipsq->ipsq_reentry_cnt++; 14952 became_writer_on_new_sq = B_TRUE; 14953 } 14954 14955 /* 14956 * We are holding ill_g_lock as writer and all the ill locks of 14957 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14958 * message can land up on the old ipsq even though we don't hold the 14959 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14960 */ 14961 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14962 14963 /* 14964 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14965 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14966 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14967 */ 14968 ill_merge_ipsq(old_ipsq, new_ipsq); 14969 14970 /* 14971 * Mark the new ipsq as needing a split since it is currently 14972 * being shared by more than 1 IPMP group. The split will 14973 * occur at the end of ipsq_exit 14974 */ 14975 new_ipsq->ipsq_split = B_TRUE; 14976 14977 /* Now release all the locks */ 14978 mutex_exit(&new_ipsq->ipsq_lock); 14979 ill_unlock_ills(ill_list, cnt); 14980 rw_exit(&ill_g_lock); 14981 14982 kmem_free(ill_list, ill_list_size); 14983 14984 /* 14985 * If we succeeded in becoming writer on the new ipsq, then 14986 * drain the new ipsq and start processing all enqueued messages 14987 * including the current ioctl we are processing which is either 14988 * a set groupname or failover/failback. 14989 */ 14990 if (became_writer_on_new_sq) 14991 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14992 14993 /* 14994 * syncq has been changed and all the messages have been moved. 14995 */ 14996 mutex_enter(&old_ipsq->ipsq_lock); 14997 old_ipsq->ipsq_current_ipif = NULL; 14998 old_ipsq->ipsq_current_ioctl = 0; 14999 mutex_exit(&old_ipsq->ipsq_lock); 15000 return (EINPROGRESS); 15001 } 15002 15003 /* 15004 * Delete and add the loopback copy and non-loopback copy of 15005 * the BROADCAST ire corresponding to ill and addr. Used to 15006 * group broadcast ires together when ill becomes part of 15007 * a group. 15008 * 15009 * This function is also called when ill is leaving the group 15010 * so that the ires belonging to the group gets re-grouped. 15011 */ 15012 static void 15013 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15014 { 15015 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15016 ire_t **ire_ptpn = &ire_head; 15017 15018 /* 15019 * The loopback and non-loopback IREs are inserted in the order in which 15020 * they're found, on the basis that they are correctly ordered (loopback 15021 * first). 15022 */ 15023 for (;;) { 15024 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15025 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 15026 if (ire == NULL) 15027 break; 15028 15029 /* 15030 * we are passing in KM_SLEEP because it is not easy to 15031 * go back to a sane state in case of memory failure. 15032 */ 15033 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15034 ASSERT(nire != NULL); 15035 bzero(nire, sizeof (ire_t)); 15036 /* 15037 * Don't use ire_max_frag directly since we don't 15038 * hold on to 'ire' until we add the new ire 'nire' and 15039 * we don't want the new ire to have a dangling reference 15040 * to 'ire'. The ire_max_frag of a broadcast ire must 15041 * be in sync with the ipif_mtu of the associate ipif. 15042 * For eg. this happens as a result of SIOCSLIFNAME, 15043 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15044 * the driver. A change in ire_max_frag triggered as 15045 * as a result of path mtu discovery, or due to an 15046 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15047 * route change -mtu command does not apply to broadcast ires. 15048 * 15049 * XXX We need a recovery strategy here if ire_init fails 15050 */ 15051 if (ire_init(nire, 15052 (uchar_t *)&ire->ire_addr, 15053 (uchar_t *)&ire->ire_mask, 15054 (uchar_t *)&ire->ire_src_addr, 15055 (uchar_t *)&ire->ire_gateway_addr, 15056 (uchar_t *)&ire->ire_in_src_addr, 15057 ire->ire_stq == NULL ? &ip_loopback_mtu : 15058 &ire->ire_ipif->ipif_mtu, 15059 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15060 ire->ire_rfq, 15061 ire->ire_stq, 15062 ire->ire_type, 15063 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15064 ire->ire_ipif, 15065 ire->ire_in_ill, 15066 ire->ire_cmask, 15067 ire->ire_phandle, 15068 ire->ire_ihandle, 15069 ire->ire_flags, 15070 &ire->ire_uinfo, 15071 NULL, 15072 NULL) == NULL) { 15073 cmn_err(CE_PANIC, "ire_init() failed"); 15074 } 15075 ire_delete(ire); 15076 ire_refrele(ire); 15077 15078 /* 15079 * The newly created IREs are inserted at the tail of the list 15080 * starting with ire_head. As we've just allocated them no one 15081 * knows about them so it's safe. 15082 */ 15083 *ire_ptpn = nire; 15084 ire_ptpn = &nire->ire_next; 15085 } 15086 15087 for (nire = ire_head; nire != NULL; nire = nire_next) { 15088 int error; 15089 ire_t *oire; 15090 /* unlink the IRE from our list before calling ire_add() */ 15091 nire_next = nire->ire_next; 15092 nire->ire_next = NULL; 15093 15094 /* ire_add adds the ire at the right place in the list */ 15095 oire = nire; 15096 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15097 ASSERT(error == 0); 15098 ASSERT(oire == nire); 15099 ire_refrele(nire); /* Held in ire_add */ 15100 } 15101 } 15102 15103 /* 15104 * This function is usually called when an ill is inserted in 15105 * a group and all the ipifs are already UP. As all the ipifs 15106 * are already UP, the broadcast ires have already been created 15107 * and been inserted. But, ire_add_v4 would not have grouped properly. 15108 * We need to re-group for the benefit of ip_wput_ire which 15109 * expects BROADCAST ires to be grouped properly to avoid sending 15110 * more than one copy of the broadcast packet per group. 15111 * 15112 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15113 * because when ipif_up_done ends up calling this, ires have 15114 * already been added before illgrp_insert i.e before ill_group 15115 * has been initialized. 15116 */ 15117 static void 15118 ill_group_bcast_for_xmit(ill_t *ill) 15119 { 15120 ill_group_t *illgrp; 15121 ipif_t *ipif; 15122 ipaddr_t addr; 15123 ipaddr_t net_mask; 15124 ipaddr_t subnet_netmask; 15125 15126 illgrp = ill->ill_group; 15127 15128 /* 15129 * This function is called even when an ill is deleted from 15130 * the group. Hence, illgrp could be null. 15131 */ 15132 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15133 return; 15134 15135 /* 15136 * Delete all the BROADCAST ires matching this ill and add 15137 * them back. This time, ire_add_v4 should take care of 15138 * grouping them with others because ill is part of the 15139 * group. 15140 */ 15141 ill_bcast_delete_and_add(ill, 0); 15142 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15143 15144 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15145 15146 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15147 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15148 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15149 } else { 15150 net_mask = htonl(IN_CLASSA_NET); 15151 } 15152 addr = net_mask & ipif->ipif_subnet; 15153 ill_bcast_delete_and_add(ill, addr); 15154 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15155 15156 subnet_netmask = ipif->ipif_net_mask; 15157 addr = ipif->ipif_subnet; 15158 ill_bcast_delete_and_add(ill, addr); 15159 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15160 } 15161 } 15162 15163 /* 15164 * This function is called from illgrp_delete when ill is being deleted 15165 * from the group. 15166 * 15167 * As ill is not there in the group anymore, any address belonging 15168 * to this ill should be cleared of IRE_MARK_NORECV. 15169 */ 15170 static void 15171 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15172 { 15173 ire_t *ire; 15174 irb_t *irb; 15175 15176 ASSERT(ill->ill_group == NULL); 15177 15178 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15179 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 15180 15181 if (ire != NULL) { 15182 /* 15183 * IPMP and plumbing operations are serialized on the ipsq, so 15184 * no one will insert or delete a broadcast ire under our feet. 15185 */ 15186 irb = ire->ire_bucket; 15187 rw_enter(&irb->irb_lock, RW_READER); 15188 ire_refrele(ire); 15189 15190 for (; ire != NULL; ire = ire->ire_next) { 15191 if (ire->ire_addr != addr) 15192 break; 15193 if (ire_to_ill(ire) != ill) 15194 continue; 15195 15196 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15197 ire->ire_marks &= ~IRE_MARK_NORECV; 15198 } 15199 rw_exit(&irb->irb_lock); 15200 } 15201 } 15202 15203 /* 15204 * This function must be called only after the broadcast ires 15205 * have been grouped together. For a given address addr, nominate 15206 * only one of the ires whose interface is not FAILED or OFFLINE. 15207 * 15208 * This is also called when an ipif goes down, so that we can nominate 15209 * a different ire with the same address for receiving. 15210 */ 15211 static void 15212 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 15213 { 15214 irb_t *irb; 15215 ire_t *ire; 15216 ire_t *ire1; 15217 ire_t *save_ire; 15218 ire_t **irep = NULL; 15219 boolean_t first = B_TRUE; 15220 ire_t *clear_ire = NULL; 15221 ire_t *start_ire = NULL; 15222 ire_t *new_lb_ire; 15223 ire_t *new_nlb_ire; 15224 boolean_t new_lb_ire_used = B_FALSE; 15225 boolean_t new_nlb_ire_used = B_FALSE; 15226 uint64_t match_flags; 15227 uint64_t phyi_flags; 15228 boolean_t fallback = B_FALSE; 15229 15230 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15231 NULL, MATCH_IRE_TYPE); 15232 /* 15233 * We may not be able to find some ires if a previous 15234 * ire_create failed. This happens when an ipif goes 15235 * down and we are unable to create BROADCAST ires due 15236 * to memory failure. Thus, we have to check for NULL 15237 * below. This should handle the case for LOOPBACK, 15238 * POINTOPOINT and interfaces with some POINTOPOINT 15239 * logicals for which there are no BROADCAST ires. 15240 */ 15241 if (ire == NULL) 15242 return; 15243 /* 15244 * Currently IRE_BROADCASTS are deleted when an ipif 15245 * goes down which runs exclusively. Thus, setting 15246 * IRE_MARK_RCVD should not race with ire_delete marking 15247 * IRE_MARK_CONDEMNED. We grab the lock below just to 15248 * be consistent with other parts of the code that walks 15249 * a given bucket. 15250 */ 15251 save_ire = ire; 15252 irb = ire->ire_bucket; 15253 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15254 if (new_lb_ire == NULL) { 15255 ire_refrele(ire); 15256 return; 15257 } 15258 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15259 if (new_nlb_ire == NULL) { 15260 ire_refrele(ire); 15261 kmem_cache_free(ire_cache, new_lb_ire); 15262 return; 15263 } 15264 IRB_REFHOLD(irb); 15265 rw_enter(&irb->irb_lock, RW_WRITER); 15266 /* 15267 * Get to the first ire matching the address and the 15268 * group. If the address does not match we are done 15269 * as we could not find the IRE. If the address matches 15270 * we should get to the first one matching the group. 15271 */ 15272 while (ire != NULL) { 15273 if (ire->ire_addr != addr || 15274 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15275 break; 15276 } 15277 ire = ire->ire_next; 15278 } 15279 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15280 start_ire = ire; 15281 redo: 15282 while (ire != NULL && ire->ire_addr == addr && 15283 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15284 /* 15285 * The first ire for any address within a group 15286 * should always be the one with IRE_MARK_NORECV cleared 15287 * so that ip_wput_ire can avoid searching for one. 15288 * Note down the insertion point which will be used 15289 * later. 15290 */ 15291 if (first && (irep == NULL)) 15292 irep = ire->ire_ptpn; 15293 /* 15294 * PHYI_FAILED is set when the interface fails. 15295 * This interface might have become good, but the 15296 * daemon has not yet detected. We should still 15297 * not receive on this. PHYI_OFFLINE should never 15298 * be picked as this has been offlined and soon 15299 * be removed. 15300 */ 15301 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15302 if (phyi_flags & PHYI_OFFLINE) { 15303 ire->ire_marks |= IRE_MARK_NORECV; 15304 ire = ire->ire_next; 15305 continue; 15306 } 15307 if (phyi_flags & match_flags) { 15308 ire->ire_marks |= IRE_MARK_NORECV; 15309 ire = ire->ire_next; 15310 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15311 PHYI_INACTIVE) { 15312 fallback = B_TRUE; 15313 } 15314 continue; 15315 } 15316 if (first) { 15317 /* 15318 * We will move this to the front of the list later 15319 * on. 15320 */ 15321 clear_ire = ire; 15322 ire->ire_marks &= ~IRE_MARK_NORECV; 15323 } else { 15324 ire->ire_marks |= IRE_MARK_NORECV; 15325 } 15326 first = B_FALSE; 15327 ire = ire->ire_next; 15328 } 15329 /* 15330 * If we never nominated anybody, try nominating at least 15331 * an INACTIVE, if we found one. Do it only once though. 15332 */ 15333 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15334 fallback) { 15335 match_flags = PHYI_FAILED; 15336 ire = start_ire; 15337 irep = NULL; 15338 goto redo; 15339 } 15340 ire_refrele(save_ire); 15341 15342 /* 15343 * irep non-NULL indicates that we entered the while loop 15344 * above. If clear_ire is at the insertion point, we don't 15345 * have to do anything. clear_ire will be NULL if all the 15346 * interfaces are failed. 15347 * 15348 * We cannot unlink and reinsert the ire at the right place 15349 * in the list since there can be other walkers of this bucket. 15350 * Instead we delete and recreate the ire 15351 */ 15352 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15353 ire_t *clear_ire_stq = NULL; 15354 mblk_t *fp_mp = NULL, *res_mp = NULL; 15355 15356 bzero(new_lb_ire, sizeof (ire_t)); 15357 if (clear_ire->ire_nce != NULL) { 15358 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15359 res_mp = clear_ire->ire_nce->nce_res_mp; 15360 } 15361 /* XXX We need a recovery strategy here. */ 15362 if (ire_init(new_lb_ire, 15363 (uchar_t *)&clear_ire->ire_addr, 15364 (uchar_t *)&clear_ire->ire_mask, 15365 (uchar_t *)&clear_ire->ire_src_addr, 15366 (uchar_t *)&clear_ire->ire_gateway_addr, 15367 (uchar_t *)&clear_ire->ire_in_src_addr, 15368 &clear_ire->ire_max_frag, 15369 fp_mp, 15370 clear_ire->ire_rfq, 15371 clear_ire->ire_stq, 15372 clear_ire->ire_type, 15373 res_mp, 15374 clear_ire->ire_ipif, 15375 clear_ire->ire_in_ill, 15376 clear_ire->ire_cmask, 15377 clear_ire->ire_phandle, 15378 clear_ire->ire_ihandle, 15379 clear_ire->ire_flags, 15380 &clear_ire->ire_uinfo, 15381 NULL, 15382 NULL) == NULL) 15383 cmn_err(CE_PANIC, "ire_init() failed"); 15384 if (clear_ire->ire_stq == NULL) { 15385 ire_t *ire_next = clear_ire->ire_next; 15386 if (ire_next != NULL && 15387 ire_next->ire_stq != NULL && 15388 ire_next->ire_addr == clear_ire->ire_addr && 15389 ire_next->ire_ipif->ipif_ill == 15390 clear_ire->ire_ipif->ipif_ill) { 15391 clear_ire_stq = ire_next; 15392 15393 bzero(new_nlb_ire, sizeof (ire_t)); 15394 if (clear_ire_stq->ire_nce != NULL) { 15395 fp_mp = 15396 clear_ire_stq->ire_nce->nce_fp_mp; 15397 res_mp = 15398 clear_ire_stq->ire_nce->nce_res_mp; 15399 } else { 15400 fp_mp = res_mp = NULL; 15401 } 15402 /* XXX We need a recovery strategy here. */ 15403 if (ire_init(new_nlb_ire, 15404 (uchar_t *)&clear_ire_stq->ire_addr, 15405 (uchar_t *)&clear_ire_stq->ire_mask, 15406 (uchar_t *)&clear_ire_stq->ire_src_addr, 15407 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15408 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15409 &clear_ire_stq->ire_max_frag, 15410 fp_mp, 15411 clear_ire_stq->ire_rfq, 15412 clear_ire_stq->ire_stq, 15413 clear_ire_stq->ire_type, 15414 res_mp, 15415 clear_ire_stq->ire_ipif, 15416 clear_ire_stq->ire_in_ill, 15417 clear_ire_stq->ire_cmask, 15418 clear_ire_stq->ire_phandle, 15419 clear_ire_stq->ire_ihandle, 15420 clear_ire_stq->ire_flags, 15421 &clear_ire_stq->ire_uinfo, 15422 NULL, 15423 NULL) == NULL) 15424 cmn_err(CE_PANIC, "ire_init() failed"); 15425 } 15426 } 15427 15428 /* 15429 * Delete the ire. We can't call ire_delete() since 15430 * we are holding the bucket lock. We can't release the 15431 * bucket lock since we can't allow irep to change. So just 15432 * mark it CONDEMNED. The IRB_REFRELE will delete the 15433 * ire from the list and do the refrele. 15434 */ 15435 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15436 irb->irb_marks |= IRB_MARK_CONDEMNED; 15437 15438 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15439 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15440 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15441 } 15442 15443 /* 15444 * Also take care of otherfields like ib/ob pkt count 15445 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15446 */ 15447 15448 /* Add the new ire's. Insert at *irep */ 15449 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15450 ire1 = *irep; 15451 if (ire1 != NULL) 15452 ire1->ire_ptpn = &new_lb_ire->ire_next; 15453 new_lb_ire->ire_next = ire1; 15454 /* Link the new one in. */ 15455 new_lb_ire->ire_ptpn = irep; 15456 membar_producer(); 15457 *irep = new_lb_ire; 15458 new_lb_ire_used = B_TRUE; 15459 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15460 new_lb_ire->ire_bucket->irb_ire_cnt++; 15461 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15462 15463 if (clear_ire_stq != NULL) { 15464 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15465 irep = &new_lb_ire->ire_next; 15466 /* Add the new ire. Insert at *irep */ 15467 ire1 = *irep; 15468 if (ire1 != NULL) 15469 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15470 new_nlb_ire->ire_next = ire1; 15471 /* Link the new one in. */ 15472 new_nlb_ire->ire_ptpn = irep; 15473 membar_producer(); 15474 *irep = new_nlb_ire; 15475 new_nlb_ire_used = B_TRUE; 15476 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15477 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15478 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15479 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15480 } 15481 } 15482 rw_exit(&irb->irb_lock); 15483 if (!new_lb_ire_used) 15484 kmem_cache_free(ire_cache, new_lb_ire); 15485 if (!new_nlb_ire_used) 15486 kmem_cache_free(ire_cache, new_nlb_ire); 15487 IRB_REFRELE(irb); 15488 } 15489 15490 /* 15491 * Whenever an ipif goes down we have to renominate a different 15492 * broadcast ire to receive. Whenever an ipif comes up, we need 15493 * to make sure that we have only one nominated to receive. 15494 */ 15495 static void 15496 ipif_renominate_bcast(ipif_t *ipif) 15497 { 15498 ill_t *ill = ipif->ipif_ill; 15499 ipaddr_t subnet_addr; 15500 ipaddr_t net_addr; 15501 ipaddr_t net_mask = 0; 15502 ipaddr_t subnet_netmask; 15503 ipaddr_t addr; 15504 ill_group_t *illgrp; 15505 15506 illgrp = ill->ill_group; 15507 /* 15508 * If this is the last ipif going down, it might take 15509 * the ill out of the group. In that case ipif_down -> 15510 * illgrp_delete takes care of doing the nomination. 15511 * ipif_down does not call for this case. 15512 */ 15513 ASSERT(illgrp != NULL); 15514 15515 /* There could not have been any ires associated with this */ 15516 if (ipif->ipif_subnet == 0) 15517 return; 15518 15519 ill_mark_bcast(illgrp, 0); 15520 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15521 15522 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15523 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15524 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15525 } else { 15526 net_mask = htonl(IN_CLASSA_NET); 15527 } 15528 addr = net_mask & ipif->ipif_subnet; 15529 ill_mark_bcast(illgrp, addr); 15530 15531 net_addr = ~net_mask | addr; 15532 ill_mark_bcast(illgrp, net_addr); 15533 15534 subnet_netmask = ipif->ipif_net_mask; 15535 addr = ipif->ipif_subnet; 15536 ill_mark_bcast(illgrp, addr); 15537 15538 subnet_addr = ~subnet_netmask | addr; 15539 ill_mark_bcast(illgrp, subnet_addr); 15540 } 15541 15542 /* 15543 * Whenever we form or delete ill groups, we need to nominate one set of 15544 * BROADCAST ires for receiving in the group. 15545 * 15546 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15547 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15548 * for ill_ipif_up_count to be non-zero. This is the only case where 15549 * ill_ipif_up_count is zero and we would still find the ires. 15550 * 15551 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15552 * ipif is UP and we just have to do the nomination. 15553 * 15554 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15555 * from the group. So, we have to do the nomination. 15556 * 15557 * Because of (3), there could be just one ill in the group. But we have 15558 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15559 * Thus, this function does not optimize when there is only one ill as 15560 * it is not correct for (3). 15561 */ 15562 static void 15563 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15564 { 15565 ill_t *ill; 15566 ipif_t *ipif; 15567 ipaddr_t subnet_addr; 15568 ipaddr_t prev_subnet_addr = 0; 15569 ipaddr_t net_addr; 15570 ipaddr_t prev_net_addr = 0; 15571 ipaddr_t net_mask = 0; 15572 ipaddr_t subnet_netmask; 15573 ipaddr_t addr; 15574 15575 /* 15576 * When the last memeber is leaving, there is nothing to 15577 * nominate. 15578 */ 15579 if (illgrp->illgrp_ill_count == 0) { 15580 ASSERT(illgrp->illgrp_ill == NULL); 15581 return; 15582 } 15583 15584 ill = illgrp->illgrp_ill; 15585 ASSERT(!ill->ill_isv6); 15586 /* 15587 * We assume that ires with same address and belonging to the 15588 * same group, has been grouped together. Nominating a *single* 15589 * ill in the group for sending and receiving broadcast is done 15590 * by making sure that the first BROADCAST ire (which will be 15591 * the one returned by ire_ctable_lookup for ip_rput and the 15592 * one that will be used in ip_wput_ire) will be the one that 15593 * will not have IRE_MARK_NORECV set. 15594 * 15595 * 1) ip_rput checks and discards packets received on ires marked 15596 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15597 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15598 * first ire in the group for every broadcast address in the group. 15599 * ip_rput will accept packets only on the first ire i.e only 15600 * one copy of the ill. 15601 * 15602 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15603 * packet for the whole group. It needs to send out on the ill 15604 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15605 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15606 * the copy echoed back on other port where the ire is not marked 15607 * with IRE_MARK_NORECV. 15608 * 15609 * Note that we just need to have the first IRE either loopback or 15610 * non-loopback (either of them may not exist if ire_create failed 15611 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15612 * always hit the first one and hence will always accept one copy. 15613 * 15614 * We have a broadcast ire per ill for all the unique prefixes 15615 * hosted on that ill. As we don't have a way of knowing the 15616 * unique prefixes on a given ill and hence in the whole group, 15617 * we just call ill_mark_bcast on all the prefixes that exist 15618 * in the group. For the common case of one prefix, the code 15619 * below optimizes by remebering the last address used for 15620 * markng. In the case of multiple prefixes, this will still 15621 * optimize depending the order of prefixes. 15622 * 15623 * The only unique address across the whole group is 0.0.0.0 and 15624 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15625 * the first ire in the bucket for receiving and disables the 15626 * others. 15627 */ 15628 ill_mark_bcast(illgrp, 0); 15629 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15630 for (; ill != NULL; ill = ill->ill_group_next) { 15631 15632 for (ipif = ill->ill_ipif; ipif != NULL; 15633 ipif = ipif->ipif_next) { 15634 15635 if (!(ipif->ipif_flags & IPIF_UP) || 15636 ipif->ipif_subnet == 0) { 15637 continue; 15638 } 15639 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15640 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15641 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15642 } else { 15643 net_mask = htonl(IN_CLASSA_NET); 15644 } 15645 addr = net_mask & ipif->ipif_subnet; 15646 if (prev_net_addr == 0 || prev_net_addr != addr) { 15647 ill_mark_bcast(illgrp, addr); 15648 net_addr = ~net_mask | addr; 15649 ill_mark_bcast(illgrp, net_addr); 15650 } 15651 prev_net_addr = addr; 15652 15653 subnet_netmask = ipif->ipif_net_mask; 15654 addr = ipif->ipif_subnet; 15655 if (prev_subnet_addr == 0 || 15656 prev_subnet_addr != addr) { 15657 ill_mark_bcast(illgrp, addr); 15658 subnet_addr = ~subnet_netmask | addr; 15659 ill_mark_bcast(illgrp, subnet_addr); 15660 } 15661 prev_subnet_addr = addr; 15662 } 15663 } 15664 } 15665 15666 /* 15667 * This function is called while forming ill groups. 15668 * 15669 * Currently, we handle only allmulti groups. We want to join 15670 * allmulti on only one of the ills in the groups. In future, 15671 * when we have link aggregation, we may have to join normal 15672 * multicast groups on multiple ills as switch does inbound load 15673 * balancing. Following are the functions that calls this 15674 * function : 15675 * 15676 * 1) ill_recover_multicast : Interface is coming back UP. 15677 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15678 * will call ill_recover_multicast to recover all the multicast 15679 * groups. We need to make sure that only one member is joined 15680 * in the ill group. 15681 * 15682 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15683 * Somebody is joining allmulti. We need to make sure that only one 15684 * member is joined in the group. 15685 * 15686 * 3) illgrp_insert : If allmulti has already joined, we need to make 15687 * sure that only one member is joined in the group. 15688 * 15689 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15690 * allmulti who we have nominated. We need to pick someother ill. 15691 * 15692 * 5) illgrp_delete : The ill we nominated is leaving the group, 15693 * we need to pick a new ill to join the group. 15694 * 15695 * For (1), (2), (5) - we just have to check whether there is 15696 * a good ill joined in the group. If we could not find any ills 15697 * joined the group, we should join. 15698 * 15699 * For (4), the one that was nominated to receive, left the group. 15700 * There could be nobody joined in the group when this function is 15701 * called. 15702 * 15703 * For (3) - we need to explicitly check whether there are multiple 15704 * ills joined in the group. 15705 * 15706 * For simplicity, we don't differentiate any of the above cases. We 15707 * just leave the group if it is joined on any of them and join on 15708 * the first good ill. 15709 */ 15710 int 15711 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15712 { 15713 ilm_t *ilm; 15714 ill_t *ill; 15715 ill_t *fallback_inactive_ill = NULL; 15716 ill_t *fallback_failed_ill = NULL; 15717 int ret = 0; 15718 15719 /* 15720 * Leave the allmulti on all the ills and start fresh. 15721 */ 15722 for (ill = illgrp->illgrp_ill; ill != NULL; 15723 ill = ill->ill_group_next) { 15724 if (ill->ill_join_allmulti) 15725 (void) ip_leave_allmulti(ill->ill_ipif); 15726 } 15727 15728 /* 15729 * Choose a good ill. Fallback to inactive or failed if 15730 * none available. We need to fallback to FAILED in the 15731 * case where we have 2 interfaces in a group - where 15732 * one of them is failed and another is a good one and 15733 * the good one (not marked inactive) is leaving the group. 15734 */ 15735 ret = 0; 15736 for (ill = illgrp->illgrp_ill; ill != NULL; 15737 ill = ill->ill_group_next) { 15738 /* Never pick an offline interface */ 15739 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15740 continue; 15741 15742 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15743 fallback_failed_ill = ill; 15744 continue; 15745 } 15746 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15747 fallback_inactive_ill = ill; 15748 continue; 15749 } 15750 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15751 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15752 ret = ip_join_allmulti(ill->ill_ipif); 15753 /* 15754 * ip_join_allmulti can fail because of memory 15755 * failures. So, make sure we join at least 15756 * on one ill. 15757 */ 15758 if (ill->ill_join_allmulti) 15759 return (0); 15760 } 15761 } 15762 } 15763 if (ret != 0) { 15764 /* 15765 * If we tried nominating above and failed to do so, 15766 * return error. We might have tried multiple times. 15767 * But, return the latest error. 15768 */ 15769 return (ret); 15770 } 15771 if ((ill = fallback_inactive_ill) != NULL) { 15772 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15773 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15774 ret = ip_join_allmulti(ill->ill_ipif); 15775 return (ret); 15776 } 15777 } 15778 } else if ((ill = fallback_failed_ill) != NULL) { 15779 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15780 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15781 ret = ip_join_allmulti(ill->ill_ipif); 15782 return (ret); 15783 } 15784 } 15785 } 15786 return (0); 15787 } 15788 15789 /* 15790 * This function is called from illgrp_delete after it is 15791 * deleted from the group to reschedule responsibilities 15792 * to a different ill. 15793 */ 15794 static void 15795 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15796 { 15797 ilm_t *ilm; 15798 ipif_t *ipif; 15799 ipaddr_t subnet_addr; 15800 ipaddr_t net_addr; 15801 ipaddr_t net_mask = 0; 15802 ipaddr_t subnet_netmask; 15803 ipaddr_t addr; 15804 15805 ASSERT(ill->ill_group == NULL); 15806 /* 15807 * Broadcast Responsibility: 15808 * 15809 * 1. If this ill has been nominated for receiving broadcast 15810 * packets, we need to find a new one. Before we find a new 15811 * one, we need to re-group the ires that are part of this new 15812 * group (assumed by ill_nominate_bcast_rcv). We do this by 15813 * calling ill_group_bcast_for_xmit(ill) which will do the right 15814 * thing for us. 15815 * 15816 * 2. If this ill was not nominated for receiving broadcast 15817 * packets, we need to clear the IRE_MARK_NORECV flag 15818 * so that we continue to send up broadcast packets. 15819 */ 15820 if (!ill->ill_isv6) { 15821 /* 15822 * Case 1 above : No optimization here. Just redo the 15823 * nomination. 15824 */ 15825 ill_group_bcast_for_xmit(ill); 15826 ill_nominate_bcast_rcv(illgrp); 15827 15828 /* 15829 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15830 */ 15831 ill_clear_bcast_mark(ill, 0); 15832 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15833 15834 for (ipif = ill->ill_ipif; ipif != NULL; 15835 ipif = ipif->ipif_next) { 15836 15837 if (!(ipif->ipif_flags & IPIF_UP) || 15838 ipif->ipif_subnet == 0) { 15839 continue; 15840 } 15841 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15842 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15843 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15844 } else { 15845 net_mask = htonl(IN_CLASSA_NET); 15846 } 15847 addr = net_mask & ipif->ipif_subnet; 15848 ill_clear_bcast_mark(ill, addr); 15849 15850 net_addr = ~net_mask | addr; 15851 ill_clear_bcast_mark(ill, net_addr); 15852 15853 subnet_netmask = ipif->ipif_net_mask; 15854 addr = ipif->ipif_subnet; 15855 ill_clear_bcast_mark(ill, addr); 15856 15857 subnet_addr = ~subnet_netmask | addr; 15858 ill_clear_bcast_mark(ill, subnet_addr); 15859 } 15860 } 15861 15862 /* 15863 * Multicast Responsibility. 15864 * 15865 * If we have joined allmulti on this one, find a new member 15866 * in the group to join allmulti. As this ill is already part 15867 * of allmulti, we don't have to join on this one. 15868 * 15869 * If we have not joined allmulti on this one, there is no 15870 * responsibility to handoff. But we need to take new 15871 * responsibility i.e, join allmulti on this one if we need 15872 * to. 15873 */ 15874 if (ill->ill_join_allmulti) { 15875 (void) ill_nominate_mcast_rcv(illgrp); 15876 } else { 15877 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15878 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15879 (void) ip_join_allmulti(ill->ill_ipif); 15880 break; 15881 } 15882 } 15883 } 15884 15885 /* 15886 * We intentionally do the flushing of IRE_CACHES only matching 15887 * on the ill and not on groups. Note that we are already deleted 15888 * from the group. 15889 * 15890 * This will make sure that all IRE_CACHES whose stq is pointing 15891 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15892 * deleted and IRE_CACHES that are not pointing at this ill will 15893 * be left alone. 15894 */ 15895 if (ill->ill_isv6) { 15896 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15897 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15898 } else { 15899 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15900 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15901 } 15902 15903 /* 15904 * Some conn may have cached one of the IREs deleted above. By removing 15905 * the ire reference, we clean up the extra reference to the ill held in 15906 * ire->ire_stq. 15907 */ 15908 ipcl_walk(conn_cleanup_stale_ire, NULL); 15909 15910 /* 15911 * Re-do source address selection for all the members in the 15912 * group, if they borrowed source address from one of the ipifs 15913 * in this ill. 15914 */ 15915 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15916 if (ill->ill_isv6) { 15917 ipif_update_other_ipifs_v6(ipif, illgrp); 15918 } else { 15919 ipif_update_other_ipifs(ipif, illgrp); 15920 } 15921 } 15922 } 15923 15924 /* 15925 * Delete the ill from the group. The caller makes sure that it is 15926 * in a group and it okay to delete from the group. So, we always 15927 * delete here. 15928 */ 15929 static void 15930 illgrp_delete(ill_t *ill) 15931 { 15932 ill_group_t *illgrp; 15933 ill_group_t *tmpg; 15934 ill_t *tmp_ill; 15935 15936 /* 15937 * Reset illgrp_ill_schednext if it was pointing at us. 15938 * We need to do this before we set ill_group to NULL. 15939 */ 15940 rw_enter(&ill_g_lock, RW_WRITER); 15941 mutex_enter(&ill->ill_lock); 15942 15943 illgrp_reset_schednext(ill); 15944 15945 illgrp = ill->ill_group; 15946 15947 /* Delete the ill from illgrp. */ 15948 if (illgrp->illgrp_ill == ill) { 15949 illgrp->illgrp_ill = ill->ill_group_next; 15950 } else { 15951 tmp_ill = illgrp->illgrp_ill; 15952 while (tmp_ill->ill_group_next != ill) { 15953 tmp_ill = tmp_ill->ill_group_next; 15954 ASSERT(tmp_ill != NULL); 15955 } 15956 tmp_ill->ill_group_next = ill->ill_group_next; 15957 } 15958 ill->ill_group = NULL; 15959 ill->ill_group_next = NULL; 15960 15961 illgrp->illgrp_ill_count--; 15962 mutex_exit(&ill->ill_lock); 15963 rw_exit(&ill_g_lock); 15964 15965 /* 15966 * As this ill is leaving the group, we need to hand off 15967 * the responsibilities to the other ills in the group, if 15968 * this ill had some responsibilities. 15969 */ 15970 15971 ill_handoff_responsibility(ill, illgrp); 15972 15973 rw_enter(&ill_g_lock, RW_WRITER); 15974 15975 if (illgrp->illgrp_ill_count == 0) { 15976 15977 ASSERT(illgrp->illgrp_ill == NULL); 15978 if (ill->ill_isv6) { 15979 if (illgrp == illgrp_head_v6) { 15980 illgrp_head_v6 = illgrp->illgrp_next; 15981 } else { 15982 tmpg = illgrp_head_v6; 15983 while (tmpg->illgrp_next != illgrp) { 15984 tmpg = tmpg->illgrp_next; 15985 ASSERT(tmpg != NULL); 15986 } 15987 tmpg->illgrp_next = illgrp->illgrp_next; 15988 } 15989 } else { 15990 if (illgrp == illgrp_head_v4) { 15991 illgrp_head_v4 = illgrp->illgrp_next; 15992 } else { 15993 tmpg = illgrp_head_v4; 15994 while (tmpg->illgrp_next != illgrp) { 15995 tmpg = tmpg->illgrp_next; 15996 ASSERT(tmpg != NULL); 15997 } 15998 tmpg->illgrp_next = illgrp->illgrp_next; 15999 } 16000 } 16001 mutex_destroy(&illgrp->illgrp_lock); 16002 mi_free(illgrp); 16003 } 16004 rw_exit(&ill_g_lock); 16005 16006 /* 16007 * Even though the ill is out of the group its not necessary 16008 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16009 * We will split the ipsq when phyint_groupname is set to NULL. 16010 */ 16011 16012 /* 16013 * Send a routing sockets message if we are deleting from 16014 * groups with names. 16015 */ 16016 if (ill->ill_phyint->phyint_groupname_len != 0) 16017 ip_rts_ifmsg(ill->ill_ipif); 16018 } 16019 16020 /* 16021 * Re-do source address selection. This is normally called when 16022 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16023 * ipif comes up. 16024 */ 16025 void 16026 ill_update_source_selection(ill_t *ill) 16027 { 16028 ipif_t *ipif; 16029 16030 ASSERT(IAM_WRITER_ILL(ill)); 16031 16032 if (ill->ill_group != NULL) 16033 ill = ill->ill_group->illgrp_ill; 16034 16035 for (; ill != NULL; ill = ill->ill_group_next) { 16036 for (ipif = ill->ill_ipif; ipif != NULL; 16037 ipif = ipif->ipif_next) { 16038 if (ill->ill_isv6) 16039 ipif_recreate_interface_routes_v6(NULL, ipif); 16040 else 16041 ipif_recreate_interface_routes(NULL, ipif); 16042 } 16043 } 16044 } 16045 16046 /* 16047 * Insert ill in a group headed by illgrp_head. The caller can either 16048 * pass a groupname in which case we search for a group with the 16049 * same name to insert in or pass a group to insert in. This function 16050 * would only search groups with names. 16051 * 16052 * NOTE : The caller should make sure that there is at least one ipif 16053 * UP on this ill so that illgrp_scheduler can pick this ill 16054 * for outbound packets. If ill_ipif_up_count is zero, we have 16055 * already sent a DL_UNBIND to the driver and we don't want to 16056 * send anymore packets. We don't assert for ipif_up_count 16057 * to be greater than zero, because ipif_up_done wants to call 16058 * this function before bumping up the ipif_up_count. See 16059 * ipif_up_done() for details. 16060 */ 16061 int 16062 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16063 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16064 { 16065 ill_group_t *illgrp; 16066 ill_t *prev_ill; 16067 phyint_t *phyi; 16068 16069 ASSERT(ill->ill_group == NULL); 16070 16071 rw_enter(&ill_g_lock, RW_WRITER); 16072 mutex_enter(&ill->ill_lock); 16073 16074 if (groupname != NULL) { 16075 /* 16076 * Look for a group with a matching groupname to insert. 16077 */ 16078 for (illgrp = *illgrp_head; illgrp != NULL; 16079 illgrp = illgrp->illgrp_next) { 16080 16081 ill_t *tmp_ill; 16082 16083 /* 16084 * If we have an ill_group_t in the list which has 16085 * no ill_t assigned then we must be in the process of 16086 * removing this group. We skip this as illgrp_delete() 16087 * will remove it from the list. 16088 */ 16089 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16090 ASSERT(illgrp->illgrp_ill_count == 0); 16091 continue; 16092 } 16093 16094 ASSERT(tmp_ill->ill_phyint != NULL); 16095 phyi = tmp_ill->ill_phyint; 16096 /* 16097 * Look at groups which has names only. 16098 */ 16099 if (phyi->phyint_groupname_len == 0) 16100 continue; 16101 /* 16102 * Names are stored in the phyint common to both 16103 * IPv4 and IPv6. 16104 */ 16105 if (mi_strcmp(phyi->phyint_groupname, 16106 groupname) == 0) { 16107 break; 16108 } 16109 } 16110 } else { 16111 /* 16112 * If the caller passes in a NULL "grp_to_insert", we 16113 * allocate one below and insert this singleton. 16114 */ 16115 illgrp = grp_to_insert; 16116 } 16117 16118 ill->ill_group_next = NULL; 16119 16120 if (illgrp == NULL) { 16121 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16122 if (illgrp == NULL) { 16123 return (ENOMEM); 16124 } 16125 illgrp->illgrp_next = *illgrp_head; 16126 *illgrp_head = illgrp; 16127 illgrp->illgrp_ill = ill; 16128 illgrp->illgrp_ill_count = 1; 16129 ill->ill_group = illgrp; 16130 /* 16131 * Used in illgrp_scheduler to protect multiple threads 16132 * from traversing the list. 16133 */ 16134 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16135 } else { 16136 ASSERT(ill->ill_net_type == 16137 illgrp->illgrp_ill->ill_net_type); 16138 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16139 16140 /* Insert ill at tail of this group */ 16141 prev_ill = illgrp->illgrp_ill; 16142 while (prev_ill->ill_group_next != NULL) 16143 prev_ill = prev_ill->ill_group_next; 16144 prev_ill->ill_group_next = ill; 16145 ill->ill_group = illgrp; 16146 illgrp->illgrp_ill_count++; 16147 /* 16148 * Inherit group properties. Currently only forwarding 16149 * is the property we try to keep the same with all the 16150 * ills. When there are more, we will abstract this into 16151 * a function. 16152 */ 16153 ill->ill_flags &= ~ILLF_ROUTER; 16154 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16155 } 16156 mutex_exit(&ill->ill_lock); 16157 rw_exit(&ill_g_lock); 16158 16159 /* 16160 * 1) When ipif_up_done() calls this function, ipif_up_count 16161 * may be zero as it has not yet been bumped. But the ires 16162 * have already been added. So, we do the nomination here 16163 * itself. But, when ip_sioctl_groupname calls this, it checks 16164 * for ill_ipif_up_count != 0. Thus we don't check for 16165 * ill_ipif_up_count here while nominating broadcast ires for 16166 * receive. 16167 * 16168 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16169 * to group them properly as ire_add() has already happened 16170 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16171 * case, we need to do it here anyway. 16172 */ 16173 if (!ill->ill_isv6) { 16174 ill_group_bcast_for_xmit(ill); 16175 ill_nominate_bcast_rcv(illgrp); 16176 } 16177 16178 if (!ipif_is_coming_up) { 16179 /* 16180 * When ipif_up_done() calls this function, the multicast 16181 * groups have not been joined yet. So, there is no point in 16182 * nomination. ip_join_allmulti will handle groups when 16183 * ill_recover_multicast is called from ipif_up_done() later. 16184 */ 16185 (void) ill_nominate_mcast_rcv(illgrp); 16186 /* 16187 * ipif_up_done calls ill_update_source_selection 16188 * anyway. Moreover, we don't want to re-create 16189 * interface routes while ipif_up_done() still has reference 16190 * to them. Refer to ipif_up_done() for more details. 16191 */ 16192 ill_update_source_selection(ill); 16193 } 16194 16195 /* 16196 * Send a routing sockets message if we are inserting into 16197 * groups with names. 16198 */ 16199 if (groupname != NULL) 16200 ip_rts_ifmsg(ill->ill_ipif); 16201 return (0); 16202 } 16203 16204 /* 16205 * Return the first phyint matching the groupname. There could 16206 * be more than one when there are ill groups. 16207 * 16208 * Needs work: called only from ip_sioctl_groupname 16209 */ 16210 static phyint_t * 16211 phyint_lookup_group(char *groupname) 16212 { 16213 phyint_t *phyi; 16214 16215 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 16216 /* 16217 * Group names are stored in the phyint - a common structure 16218 * to both IPv4 and IPv6. 16219 */ 16220 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 16221 for (; phyi != NULL; 16222 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 16223 phyi, AVL_AFTER)) { 16224 if (phyi->phyint_groupname_len == 0) 16225 continue; 16226 ASSERT(phyi->phyint_groupname != NULL); 16227 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16228 return (phyi); 16229 } 16230 return (NULL); 16231 } 16232 16233 16234 16235 /* 16236 * MT notes on creation and deletion of IPMP groups 16237 * 16238 * Creation and deletion of IPMP groups introduce the need to merge or 16239 * split the associated serialization objects i.e the ipsq's. Normally all 16240 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16241 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16242 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16243 * is a need to change the <ill-ipsq> association and we have to operate on both 16244 * the source and destination IPMP groups. For eg. attempting to set the 16245 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16246 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16247 * source or destination IPMP group are mapped to a single ipsq for executing 16248 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16249 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16250 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16251 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16252 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16253 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16254 * 16255 * In the above example the ioctl handling code locates the current ipsq of hme0 16256 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16257 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16258 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16259 * the destination ipsq. If the destination ipsq is not busy, it also enters 16260 * the destination ipsq exclusively. Now the actual groupname setting operation 16261 * can proceed. If the destination ipsq is busy, the operation is enqueued 16262 * on the destination (merged) ipsq and will be handled in the unwind from 16263 * ipsq_exit. 16264 * 16265 * To prevent other threads accessing the ill while the group name change is 16266 * in progres, we bring down the ipifs which also removes the ill from the 16267 * group. The group is changed in phyint and when the first ipif on the ill 16268 * is brought up, the ill is inserted into the right IPMP group by 16269 * illgrp_insert. 16270 */ 16271 /* ARGSUSED */ 16272 int 16273 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16274 ip_ioctl_cmd_t *ipip, void *ifreq) 16275 { 16276 int i; 16277 char *tmp; 16278 int namelen; 16279 ill_t *ill = ipif->ipif_ill; 16280 ill_t *ill_v4, *ill_v6; 16281 int err = 0; 16282 phyint_t *phyi; 16283 phyint_t *phyi_tmp; 16284 struct lifreq *lifr; 16285 mblk_t *mp1; 16286 char *groupname; 16287 ipsq_t *ipsq; 16288 16289 ASSERT(IAM_WRITER_IPIF(ipif)); 16290 16291 /* Existance verified in ip_wput_nondata */ 16292 mp1 = mp->b_cont->b_cont; 16293 lifr = (struct lifreq *)mp1->b_rptr; 16294 groupname = lifr->lifr_groupname; 16295 16296 if (ipif->ipif_id != 0) 16297 return (EINVAL); 16298 16299 phyi = ill->ill_phyint; 16300 ASSERT(phyi != NULL); 16301 16302 if (phyi->phyint_flags & PHYI_VIRTUAL) 16303 return (EINVAL); 16304 16305 tmp = groupname; 16306 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16307 ; 16308 16309 if (i == LIFNAMSIZ) { 16310 /* no null termination */ 16311 return (EINVAL); 16312 } 16313 16314 /* 16315 * Calculate the namelen exclusive of the null 16316 * termination character. 16317 */ 16318 namelen = tmp - groupname; 16319 16320 ill_v4 = phyi->phyint_illv4; 16321 ill_v6 = phyi->phyint_illv6; 16322 16323 /* 16324 * ILL cannot be part of a usesrc group and and IPMP group at the 16325 * same time. No need to grab the ill_g_usesrc_lock here, see 16326 * synchronization notes in ip.c 16327 */ 16328 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16329 return (EINVAL); 16330 } 16331 16332 /* 16333 * mark the ill as changing. 16334 * this should queue all new requests on the syncq. 16335 */ 16336 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16337 16338 if (ill_v4 != NULL) 16339 ill_v4->ill_state_flags |= ILL_CHANGING; 16340 if (ill_v6 != NULL) 16341 ill_v6->ill_state_flags |= ILL_CHANGING; 16342 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16343 16344 if (namelen == 0) { 16345 /* 16346 * Null string means remove this interface from the 16347 * existing group. 16348 */ 16349 if (phyi->phyint_groupname_len == 0) { 16350 /* 16351 * Never was in a group. 16352 */ 16353 err = 0; 16354 goto done; 16355 } 16356 16357 /* 16358 * IPv4 or IPv6 may be temporarily out of the group when all 16359 * the ipifs are down. Thus, we need to check for ill_group to 16360 * be non-NULL. 16361 */ 16362 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16363 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16364 mutex_enter(&ill_v4->ill_lock); 16365 if (!ill_is_quiescent(ill_v4)) { 16366 /* 16367 * ipsq_pending_mp_add will not fail since 16368 * connp is NULL 16369 */ 16370 (void) ipsq_pending_mp_add(NULL, 16371 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16372 mutex_exit(&ill_v4->ill_lock); 16373 err = EINPROGRESS; 16374 goto done; 16375 } 16376 mutex_exit(&ill_v4->ill_lock); 16377 } 16378 16379 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16380 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16381 mutex_enter(&ill_v6->ill_lock); 16382 if (!ill_is_quiescent(ill_v6)) { 16383 (void) ipsq_pending_mp_add(NULL, 16384 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16385 mutex_exit(&ill_v6->ill_lock); 16386 err = EINPROGRESS; 16387 goto done; 16388 } 16389 mutex_exit(&ill_v6->ill_lock); 16390 } 16391 16392 rw_enter(&ill_g_lock, RW_WRITER); 16393 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16394 mutex_enter(&phyi->phyint_lock); 16395 ASSERT(phyi->phyint_groupname != NULL); 16396 mi_free(phyi->phyint_groupname); 16397 phyi->phyint_groupname = NULL; 16398 phyi->phyint_groupname_len = 0; 16399 mutex_exit(&phyi->phyint_lock); 16400 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16401 rw_exit(&ill_g_lock); 16402 err = ill_up_ipifs(ill, q, mp); 16403 16404 /* 16405 * set the split flag so that the ipsq can be split 16406 */ 16407 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16408 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16409 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16410 16411 } else { 16412 if (phyi->phyint_groupname_len != 0) { 16413 ASSERT(phyi->phyint_groupname != NULL); 16414 /* Are we inserting in the same group ? */ 16415 if (mi_strcmp(groupname, 16416 phyi->phyint_groupname) == 0) { 16417 err = 0; 16418 goto done; 16419 } 16420 } 16421 16422 rw_enter(&ill_g_lock, RW_READER); 16423 /* 16424 * Merge ipsq for the group's. 16425 * This check is here as multiple groups/ills might be 16426 * sharing the same ipsq. 16427 * If we have to merege than the operation is restarted 16428 * on the new ipsq. 16429 */ 16430 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 16431 if (phyi->phyint_ipsq != ipsq) { 16432 rw_exit(&ill_g_lock); 16433 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16434 goto done; 16435 } 16436 /* 16437 * Running exclusive on new ipsq. 16438 */ 16439 16440 ASSERT(ipsq != NULL); 16441 ASSERT(ipsq->ipsq_writer == curthread); 16442 16443 /* 16444 * Check whether the ill_type and ill_net_type matches before 16445 * we allocate any memory so that the cleanup is easier. 16446 * 16447 * We can't group dissimilar ones as we can't load spread 16448 * packets across the group because of potential link-level 16449 * header differences. 16450 */ 16451 phyi_tmp = phyint_lookup_group(groupname); 16452 if (phyi_tmp != NULL) { 16453 if ((ill_v4 != NULL && 16454 phyi_tmp->phyint_illv4 != NULL) && 16455 ((ill_v4->ill_net_type != 16456 phyi_tmp->phyint_illv4->ill_net_type) || 16457 (ill_v4->ill_type != 16458 phyi_tmp->phyint_illv4->ill_type))) { 16459 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16460 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16461 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16462 rw_exit(&ill_g_lock); 16463 return (EINVAL); 16464 } 16465 if ((ill_v6 != NULL && 16466 phyi_tmp->phyint_illv6 != NULL) && 16467 ((ill_v6->ill_net_type != 16468 phyi_tmp->phyint_illv6->ill_net_type) || 16469 (ill_v6->ill_type != 16470 phyi_tmp->phyint_illv6->ill_type))) { 16471 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16472 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16473 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16474 rw_exit(&ill_g_lock); 16475 return (EINVAL); 16476 } 16477 } 16478 16479 rw_exit(&ill_g_lock); 16480 16481 /* 16482 * bring down all v4 ipifs. 16483 */ 16484 if (ill_v4 != NULL) { 16485 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16486 } 16487 16488 /* 16489 * bring down all v6 ipifs. 16490 */ 16491 if (ill_v6 != NULL) { 16492 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16493 } 16494 16495 /* 16496 * make sure all ipifs are down and there are no active 16497 * references. Call to ipsq_pending_mp_add will not fail 16498 * since connp is NULL. 16499 */ 16500 if (ill_v4 != NULL) { 16501 mutex_enter(&ill_v4->ill_lock); 16502 if (!ill_is_quiescent(ill_v4)) { 16503 (void) ipsq_pending_mp_add(NULL, 16504 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16505 mutex_exit(&ill_v4->ill_lock); 16506 err = EINPROGRESS; 16507 goto done; 16508 } 16509 mutex_exit(&ill_v4->ill_lock); 16510 } 16511 16512 if (ill_v6 != NULL) { 16513 mutex_enter(&ill_v6->ill_lock); 16514 if (!ill_is_quiescent(ill_v6)) { 16515 (void) ipsq_pending_mp_add(NULL, 16516 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16517 mutex_exit(&ill_v6->ill_lock); 16518 err = EINPROGRESS; 16519 goto done; 16520 } 16521 mutex_exit(&ill_v6->ill_lock); 16522 } 16523 16524 /* 16525 * allocate including space for null terminator 16526 * before we insert. 16527 */ 16528 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16529 if (tmp == NULL) 16530 return (ENOMEM); 16531 16532 rw_enter(&ill_g_lock, RW_WRITER); 16533 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16534 mutex_enter(&phyi->phyint_lock); 16535 if (phyi->phyint_groupname_len != 0) { 16536 ASSERT(phyi->phyint_groupname != NULL); 16537 mi_free(phyi->phyint_groupname); 16538 } 16539 16540 /* 16541 * setup the new group name. 16542 */ 16543 phyi->phyint_groupname = tmp; 16544 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16545 phyi->phyint_groupname_len = namelen + 1; 16546 mutex_exit(&phyi->phyint_lock); 16547 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16548 rw_exit(&ill_g_lock); 16549 16550 err = ill_up_ipifs(ill, q, mp); 16551 } 16552 16553 done: 16554 /* 16555 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16556 */ 16557 if (err != EINPROGRESS) { 16558 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16559 if (ill_v4 != NULL) 16560 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16561 if (ill_v6 != NULL) 16562 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16563 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16564 } 16565 return (err); 16566 } 16567 16568 /* ARGSUSED */ 16569 int 16570 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16571 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16572 { 16573 ill_t *ill; 16574 phyint_t *phyi; 16575 struct lifreq *lifr; 16576 mblk_t *mp1; 16577 16578 /* Existence verified in ip_wput_nondata */ 16579 mp1 = mp->b_cont->b_cont; 16580 lifr = (struct lifreq *)mp1->b_rptr; 16581 ill = ipif->ipif_ill; 16582 phyi = ill->ill_phyint; 16583 16584 lifr->lifr_groupname[0] = '\0'; 16585 /* 16586 * ill_group may be null if all the interfaces 16587 * are down. But still, the phyint should always 16588 * hold the name. 16589 */ 16590 if (phyi->phyint_groupname_len != 0) { 16591 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16592 phyi->phyint_groupname_len); 16593 } 16594 16595 return (0); 16596 } 16597 16598 16599 typedef struct conn_move_s { 16600 ill_t *cm_from_ill; 16601 ill_t *cm_to_ill; 16602 int cm_ifindex; 16603 } conn_move_t; 16604 16605 /* 16606 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16607 */ 16608 static void 16609 conn_move(conn_t *connp, caddr_t arg) 16610 { 16611 conn_move_t *connm; 16612 int ifindex; 16613 int i; 16614 ill_t *from_ill; 16615 ill_t *to_ill; 16616 ilg_t *ilg; 16617 ilm_t *ret_ilm; 16618 16619 connm = (conn_move_t *)arg; 16620 ifindex = connm->cm_ifindex; 16621 from_ill = connm->cm_from_ill; 16622 to_ill = connm->cm_to_ill; 16623 16624 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16625 16626 /* All multicast fields protected by conn_lock */ 16627 mutex_enter(&connp->conn_lock); 16628 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16629 if ((connp->conn_outgoing_ill == from_ill) && 16630 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16631 connp->conn_outgoing_ill = to_ill; 16632 connp->conn_incoming_ill = to_ill; 16633 } 16634 16635 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16636 16637 if ((connp->conn_multicast_ill == from_ill) && 16638 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16639 connp->conn_multicast_ill = connm->cm_to_ill; 16640 } 16641 16642 /* Change IP_XMIT_IF associations */ 16643 if ((connp->conn_xmit_if_ill == from_ill) && 16644 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16645 connp->conn_xmit_if_ill = to_ill; 16646 } 16647 /* 16648 * Change the ilg_ill to point to the new one. This assumes 16649 * ilm_move_v6 has moved the ilms to new_ill and the driver 16650 * has been told to receive packets on this interface. 16651 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16652 * But when doing a FAILOVER, it might fail with ENOMEM and so 16653 * some ilms may not have moved. We check to see whether 16654 * the ilms have moved to to_ill. We can't check on from_ill 16655 * as in the process of moving, we could have split an ilm 16656 * in to two - which has the same orig_ifindex and v6group. 16657 * 16658 * For IPv4, ilg_ipif moves implicitly. The code below really 16659 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16660 */ 16661 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16662 ilg = &connp->conn_ilg[i]; 16663 if ((ilg->ilg_ill == from_ill) && 16664 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16665 /* ifindex != 0 indicates failback */ 16666 if (ifindex != 0) { 16667 connp->conn_ilg[i].ilg_ill = to_ill; 16668 continue; 16669 } 16670 16671 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16672 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16673 connp->conn_zoneid); 16674 16675 if (ret_ilm != NULL) 16676 connp->conn_ilg[i].ilg_ill = to_ill; 16677 } 16678 } 16679 mutex_exit(&connp->conn_lock); 16680 } 16681 16682 static void 16683 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16684 { 16685 conn_move_t connm; 16686 16687 connm.cm_from_ill = from_ill; 16688 connm.cm_to_ill = to_ill; 16689 connm.cm_ifindex = ifindex; 16690 16691 ipcl_walk(conn_move, (caddr_t)&connm); 16692 } 16693 16694 /* 16695 * ilm has been moved from from_ill to to_ill. 16696 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16697 * appropriately. 16698 * 16699 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16700 * the code there de-references ipif_ill to get the ill to 16701 * send multicast requests. It does not work as ipif is on its 16702 * move and already moved when this function is called. 16703 * Thus, we need to use from_ill and to_ill send down multicast 16704 * requests. 16705 */ 16706 static void 16707 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16708 { 16709 ipif_t *ipif; 16710 ilm_t *ilm; 16711 16712 /* 16713 * See whether we need to send down DL_ENABMULTI_REQ on 16714 * to_ill as ilm has just been added. 16715 */ 16716 ASSERT(IAM_WRITER_ILL(to_ill)); 16717 ASSERT(IAM_WRITER_ILL(from_ill)); 16718 16719 ILM_WALKER_HOLD(to_ill); 16720 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16721 16722 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16723 continue; 16724 /* 16725 * no locks held, ill/ipif cannot dissappear as long 16726 * as we are writer. 16727 */ 16728 ipif = to_ill->ill_ipif; 16729 /* 16730 * No need to hold any lock as we are the writer and this 16731 * can only be changed by a writer. 16732 */ 16733 ilm->ilm_is_new = B_FALSE; 16734 16735 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16736 ipif->ipif_flags & IPIF_POINTOPOINT) { 16737 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16738 "resolver\n")); 16739 continue; /* Must be IRE_IF_NORESOLVER */ 16740 } 16741 16742 16743 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16744 ip1dbg(("ilm_send_multicast_reqs: " 16745 "to_ill MULTI_BCAST\n")); 16746 goto from; 16747 } 16748 16749 if (to_ill->ill_isv6) 16750 mld_joingroup(ilm); 16751 else 16752 igmp_joingroup(ilm); 16753 16754 if (to_ill->ill_ipif_up_count == 0) { 16755 /* 16756 * Nobody there. All multicast addresses will be 16757 * re-joined when we get the DL_BIND_ACK bringing the 16758 * interface up. 16759 */ 16760 ilm->ilm_notify_driver = B_FALSE; 16761 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16762 goto from; 16763 } 16764 16765 /* 16766 * For allmulti address, we want to join on only one interface. 16767 * Checking for ilm_numentries_v6 is not correct as you may 16768 * find an ilm with zero address on to_ill, but we may not 16769 * have nominated to_ill for receiving. Thus, if we have 16770 * nominated from_ill (ill_join_allmulti is set), nominate 16771 * only if to_ill is not already nominated (to_ill normally 16772 * should not have been nominated if "from_ill" has already 16773 * been nominated. As we don't prevent failovers from happening 16774 * across groups, we don't assert). 16775 */ 16776 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16777 /* 16778 * There is no need to hold ill locks as we are 16779 * writer on both ills and when ill_join_allmulti 16780 * is changed the thread is always a writer. 16781 */ 16782 if (from_ill->ill_join_allmulti && 16783 !to_ill->ill_join_allmulti) { 16784 (void) ip_join_allmulti(to_ill->ill_ipif); 16785 } 16786 } else if (ilm->ilm_notify_driver) { 16787 16788 /* 16789 * This is a newly moved ilm so we need to tell the 16790 * driver about the new group. There can be more than 16791 * one ilm's for the same group in the list each with a 16792 * different orig_ifindex. We have to inform the driver 16793 * once. In ilm_move_v[4,6] we only set the flag 16794 * ilm_notify_driver for the first ilm. 16795 */ 16796 16797 (void) ip_ll_send_enabmulti_req(to_ill, 16798 &ilm->ilm_v6addr); 16799 } 16800 16801 ilm->ilm_notify_driver = B_FALSE; 16802 16803 /* 16804 * See whether we need to send down DL_DISABMULTI_REQ on 16805 * from_ill as ilm has just been removed. 16806 */ 16807 from: 16808 ipif = from_ill->ill_ipif; 16809 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16810 ipif->ipif_flags & IPIF_POINTOPOINT) { 16811 ip1dbg(("ilm_send_multicast_reqs: " 16812 "from_ill not resolver\n")); 16813 continue; /* Must be IRE_IF_NORESOLVER */ 16814 } 16815 16816 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16817 ip1dbg(("ilm_send_multicast_reqs: " 16818 "from_ill MULTI_BCAST\n")); 16819 continue; 16820 } 16821 16822 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16823 if (from_ill->ill_join_allmulti) 16824 (void) ip_leave_allmulti(from_ill->ill_ipif); 16825 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16826 (void) ip_ll_send_disabmulti_req(from_ill, 16827 &ilm->ilm_v6addr); 16828 } 16829 } 16830 ILM_WALKER_RELE(to_ill); 16831 } 16832 16833 /* 16834 * This function is called when all multicast memberships needs 16835 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16836 * called only once unlike the IPv4 counterpart where it is called after 16837 * every logical interface is moved. The reason is due to multicast 16838 * memberships are joined using an interface address in IPv4 while in 16839 * IPv6, interface index is used. 16840 */ 16841 static void 16842 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16843 { 16844 ilm_t *ilm; 16845 ilm_t *ilm_next; 16846 ilm_t *new_ilm; 16847 ilm_t **ilmp; 16848 int count; 16849 char buf[INET6_ADDRSTRLEN]; 16850 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16851 16852 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16853 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16854 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16855 16856 if (ifindex == 0) { 16857 /* 16858 * Form the solicited node mcast address which is used later. 16859 */ 16860 ipif_t *ipif; 16861 16862 ipif = from_ill->ill_ipif; 16863 ASSERT(ipif->ipif_id == 0); 16864 16865 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16866 } 16867 16868 ilmp = &from_ill->ill_ilm; 16869 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16870 ilm_next = ilm->ilm_next; 16871 16872 if (ilm->ilm_flags & ILM_DELETED) { 16873 ilmp = &ilm->ilm_next; 16874 continue; 16875 } 16876 16877 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16878 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16879 ASSERT(ilm->ilm_orig_ifindex != 0); 16880 if (ilm->ilm_orig_ifindex == ifindex) { 16881 /* 16882 * We are failing back multicast memberships. 16883 * If the same ilm exists in to_ill, it means somebody 16884 * has joined the same group there e.g. ff02::1 16885 * is joined within the kernel when the interfaces 16886 * came UP. 16887 */ 16888 ASSERT(ilm->ilm_ipif == NULL); 16889 if (new_ilm != NULL) { 16890 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16891 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16892 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16893 new_ilm->ilm_is_new = B_TRUE; 16894 } 16895 } else { 16896 /* 16897 * check if we can just move the ilm 16898 */ 16899 if (from_ill->ill_ilm_walker_cnt != 0) { 16900 /* 16901 * We have walkers we cannot move 16902 * the ilm, so allocate a new ilm, 16903 * this (old) ilm will be marked 16904 * ILM_DELETED at the end of the loop 16905 * and will be freed when the 16906 * last walker exits. 16907 */ 16908 new_ilm = (ilm_t *)mi_zalloc 16909 (sizeof (ilm_t)); 16910 if (new_ilm == NULL) { 16911 ip0dbg(("ilm_move_v6: " 16912 "FAILBACK of IPv6" 16913 " multicast address %s : " 16914 "from %s to" 16915 " %s failed : ENOMEM \n", 16916 inet_ntop(AF_INET6, 16917 &ilm->ilm_v6addr, buf, 16918 sizeof (buf)), 16919 from_ill->ill_name, 16920 to_ill->ill_name)); 16921 16922 ilmp = &ilm->ilm_next; 16923 continue; 16924 } 16925 *new_ilm = *ilm; 16926 /* 16927 * we don't want new_ilm linked to 16928 * ilm's filter list. 16929 */ 16930 new_ilm->ilm_filter = NULL; 16931 } else { 16932 /* 16933 * No walkers we can move the ilm. 16934 * lets take it out of the list. 16935 */ 16936 *ilmp = ilm->ilm_next; 16937 ilm->ilm_next = NULL; 16938 new_ilm = ilm; 16939 } 16940 16941 /* 16942 * if this is the first ilm for the group 16943 * set ilm_notify_driver so that we notify the 16944 * driver in ilm_send_multicast_reqs. 16945 */ 16946 if (ilm_lookup_ill_v6(to_ill, 16947 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16948 new_ilm->ilm_notify_driver = B_TRUE; 16949 16950 new_ilm->ilm_ill = to_ill; 16951 /* Add to the to_ill's list */ 16952 new_ilm->ilm_next = to_ill->ill_ilm; 16953 to_ill->ill_ilm = new_ilm; 16954 /* 16955 * set the flag so that mld_joingroup is 16956 * called in ilm_send_multicast_reqs(). 16957 */ 16958 new_ilm->ilm_is_new = B_TRUE; 16959 } 16960 goto bottom; 16961 } else if (ifindex != 0) { 16962 /* 16963 * If this is FAILBACK (ifindex != 0) and the ifindex 16964 * has not matched above, look at the next ilm. 16965 */ 16966 ilmp = &ilm->ilm_next; 16967 continue; 16968 } 16969 /* 16970 * If we are here, it means ifindex is 0. Failover 16971 * everything. 16972 * 16973 * We need to handle solicited node mcast address 16974 * and all_nodes mcast address differently as they 16975 * are joined witin the kenrel (ipif_multicast_up) 16976 * and potentially from the userland. We are called 16977 * after the ipifs of from_ill has been moved. 16978 * If we still find ilms on ill with solicited node 16979 * mcast address or all_nodes mcast address, it must 16980 * belong to the UP interface that has not moved e.g. 16981 * ipif_id 0 with the link local prefix does not move. 16982 * We join this on the new ill accounting for all the 16983 * userland memberships so that applications don't 16984 * see any failure. 16985 * 16986 * We need to make sure that we account only for the 16987 * solicited node and all node multicast addresses 16988 * that was brought UP on these. In the case of 16989 * a failover from A to B, we might have ilms belonging 16990 * to A (ilm_orig_ifindex pointing at A) on B accounting 16991 * for the membership from the userland. If we are failing 16992 * over from B to C now, we will find the ones belonging 16993 * to A on B. These don't account for the ill_ipif_up_count. 16994 * They just move from B to C. The check below on 16995 * ilm_orig_ifindex ensures that. 16996 */ 16997 if ((ilm->ilm_orig_ifindex == 16998 from_ill->ill_phyint->phyint_ifindex) && 16999 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17000 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17001 &ilm->ilm_v6addr))) { 17002 ASSERT(ilm->ilm_refcnt > 0); 17003 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17004 /* 17005 * For indentation reasons, we are not using a 17006 * "else" here. 17007 */ 17008 if (count == 0) { 17009 ilmp = &ilm->ilm_next; 17010 continue; 17011 } 17012 ilm->ilm_refcnt -= count; 17013 if (new_ilm != NULL) { 17014 /* 17015 * Can find one with the same 17016 * ilm_orig_ifindex, if we are failing 17017 * over to a STANDBY. This happens 17018 * when somebody wants to join a group 17019 * on a STANDBY interface and we 17020 * internally join on a different one. 17021 * If we had joined on from_ill then, a 17022 * failover now will find a new ilm 17023 * with this index. 17024 */ 17025 ip1dbg(("ilm_move_v6: FAILOVER, found" 17026 " new ilm on %s, group address %s\n", 17027 to_ill->ill_name, 17028 inet_ntop(AF_INET6, 17029 &ilm->ilm_v6addr, buf, 17030 sizeof (buf)))); 17031 new_ilm->ilm_refcnt += count; 17032 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17033 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17034 new_ilm->ilm_is_new = B_TRUE; 17035 } 17036 } else { 17037 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17038 if (new_ilm == NULL) { 17039 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17040 " multicast address %s : from %s to" 17041 " %s failed : ENOMEM \n", 17042 inet_ntop(AF_INET6, 17043 &ilm->ilm_v6addr, buf, 17044 sizeof (buf)), from_ill->ill_name, 17045 to_ill->ill_name)); 17046 ilmp = &ilm->ilm_next; 17047 continue; 17048 } 17049 *new_ilm = *ilm; 17050 new_ilm->ilm_filter = NULL; 17051 new_ilm->ilm_refcnt = count; 17052 new_ilm->ilm_timer = INFINITY; 17053 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17054 new_ilm->ilm_is_new = B_TRUE; 17055 /* 17056 * If the to_ill has not joined this 17057 * group we need to tell the driver in 17058 * ill_send_multicast_reqs. 17059 */ 17060 if (ilm_lookup_ill_v6(to_ill, 17061 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17062 new_ilm->ilm_notify_driver = B_TRUE; 17063 17064 new_ilm->ilm_ill = to_ill; 17065 /* Add to the to_ill's list */ 17066 new_ilm->ilm_next = to_ill->ill_ilm; 17067 to_ill->ill_ilm = new_ilm; 17068 ASSERT(new_ilm->ilm_ipif == NULL); 17069 } 17070 if (ilm->ilm_refcnt == 0) { 17071 goto bottom; 17072 } else { 17073 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17074 CLEAR_SLIST(new_ilm->ilm_filter); 17075 ilmp = &ilm->ilm_next; 17076 } 17077 continue; 17078 } else { 17079 /* 17080 * ifindex = 0 means, move everything pointing at 17081 * from_ill. We are doing this becuase ill has 17082 * either FAILED or became INACTIVE. 17083 * 17084 * As we would like to move things later back to 17085 * from_ill, we want to retain the identity of this 17086 * ilm. Thus, we don't blindly increment the reference 17087 * count on the ilms matching the address alone. We 17088 * need to match on the ilm_orig_index also. new_ilm 17089 * was obtained by matching ilm_orig_index also. 17090 */ 17091 if (new_ilm != NULL) { 17092 /* 17093 * This is possible only if a previous restore 17094 * was incomplete i.e restore to 17095 * ilm_orig_ifindex left some ilms because 17096 * of some failures. Thus when we are failing 17097 * again, we might find our old friends there. 17098 */ 17099 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17100 " on %s, group address %s\n", 17101 to_ill->ill_name, 17102 inet_ntop(AF_INET6, 17103 &ilm->ilm_v6addr, buf, 17104 sizeof (buf)))); 17105 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17106 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17107 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17108 new_ilm->ilm_is_new = B_TRUE; 17109 } 17110 } else { 17111 if (from_ill->ill_ilm_walker_cnt != 0) { 17112 new_ilm = (ilm_t *) 17113 mi_zalloc(sizeof (ilm_t)); 17114 if (new_ilm == NULL) { 17115 ip0dbg(("ilm_move_v6: " 17116 "FAILOVER of IPv6" 17117 " multicast address %s : " 17118 "from %s to" 17119 " %s failed : ENOMEM \n", 17120 inet_ntop(AF_INET6, 17121 &ilm->ilm_v6addr, buf, 17122 sizeof (buf)), 17123 from_ill->ill_name, 17124 to_ill->ill_name)); 17125 17126 ilmp = &ilm->ilm_next; 17127 continue; 17128 } 17129 *new_ilm = *ilm; 17130 new_ilm->ilm_filter = NULL; 17131 } else { 17132 *ilmp = ilm->ilm_next; 17133 new_ilm = ilm; 17134 } 17135 /* 17136 * If the to_ill has not joined this 17137 * group we need to tell the driver in 17138 * ill_send_multicast_reqs. 17139 */ 17140 if (ilm_lookup_ill_v6(to_ill, 17141 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17142 new_ilm->ilm_notify_driver = B_TRUE; 17143 17144 /* Add to the to_ill's list */ 17145 new_ilm->ilm_next = to_ill->ill_ilm; 17146 to_ill->ill_ilm = new_ilm; 17147 ASSERT(ilm->ilm_ipif == NULL); 17148 new_ilm->ilm_ill = to_ill; 17149 new_ilm->ilm_is_new = B_TRUE; 17150 } 17151 17152 } 17153 17154 bottom: 17155 /* 17156 * Revert multicast filter state to (EXCLUDE, NULL). 17157 * new_ilm->ilm_is_new should already be set if needed. 17158 */ 17159 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17160 CLEAR_SLIST(new_ilm->ilm_filter); 17161 /* 17162 * We allocated/got a new ilm, free the old one. 17163 */ 17164 if (new_ilm != ilm) { 17165 if (from_ill->ill_ilm_walker_cnt == 0) { 17166 *ilmp = ilm->ilm_next; 17167 ilm->ilm_next = NULL; 17168 FREE_SLIST(ilm->ilm_filter); 17169 FREE_SLIST(ilm->ilm_pendsrcs); 17170 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17171 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17172 mi_free((char *)ilm); 17173 } else { 17174 ilm->ilm_flags |= ILM_DELETED; 17175 from_ill->ill_ilm_cleanup_reqd = 1; 17176 ilmp = &ilm->ilm_next; 17177 } 17178 } 17179 } 17180 } 17181 17182 /* 17183 * Move all the multicast memberships to to_ill. Called when 17184 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17185 * different from IPv6 counterpart as multicast memberships are associated 17186 * with ills in IPv6. This function is called after every ipif is moved 17187 * unlike IPv6, where it is moved only once. 17188 */ 17189 static void 17190 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17191 { 17192 ilm_t *ilm; 17193 ilm_t *ilm_next; 17194 ilm_t *new_ilm; 17195 ilm_t **ilmp; 17196 17197 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17198 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17199 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17200 17201 ilmp = &from_ill->ill_ilm; 17202 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17203 ilm_next = ilm->ilm_next; 17204 17205 if (ilm->ilm_flags & ILM_DELETED) { 17206 ilmp = &ilm->ilm_next; 17207 continue; 17208 } 17209 17210 ASSERT(ilm->ilm_ipif != NULL); 17211 17212 if (ilm->ilm_ipif != ipif) { 17213 ilmp = &ilm->ilm_next; 17214 continue; 17215 } 17216 17217 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17218 htonl(INADDR_ALLHOSTS_GROUP)) { 17219 /* 17220 * We joined this in ipif_multicast_up 17221 * and we never did an ipif_multicast_down 17222 * for IPv4. If nobody else from the userland 17223 * has reference, we free the ilm, and later 17224 * when this ipif comes up on the new ill, 17225 * we will join this again. 17226 */ 17227 if (--ilm->ilm_refcnt == 0) 17228 goto delete_ilm; 17229 17230 new_ilm = ilm_lookup_ipif(ipif, 17231 V4_PART_OF_V6(ilm->ilm_v6addr)); 17232 if (new_ilm != NULL) { 17233 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17234 /* 17235 * We still need to deal with the from_ill. 17236 */ 17237 new_ilm->ilm_is_new = B_TRUE; 17238 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17239 CLEAR_SLIST(new_ilm->ilm_filter); 17240 goto delete_ilm; 17241 } 17242 /* 17243 * If we could not find one e.g. ipif is 17244 * still down on to_ill, we add this ilm 17245 * on ill_new to preserve the reference 17246 * count. 17247 */ 17248 } 17249 /* 17250 * When ipifs move, ilms always move with it 17251 * to the NEW ill. Thus we should never be 17252 * able to find ilm till we really move it here. 17253 */ 17254 ASSERT(ilm_lookup_ipif(ipif, 17255 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17256 17257 if (from_ill->ill_ilm_walker_cnt != 0) { 17258 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17259 if (new_ilm == NULL) { 17260 char buf[INET6_ADDRSTRLEN]; 17261 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17262 " multicast address %s : " 17263 "from %s to" 17264 " %s failed : ENOMEM \n", 17265 inet_ntop(AF_INET, 17266 &ilm->ilm_v6addr, buf, 17267 sizeof (buf)), 17268 from_ill->ill_name, 17269 to_ill->ill_name)); 17270 17271 ilmp = &ilm->ilm_next; 17272 continue; 17273 } 17274 *new_ilm = *ilm; 17275 /* We don't want new_ilm linked to ilm's filter list */ 17276 new_ilm->ilm_filter = NULL; 17277 } else { 17278 /* Remove from the list */ 17279 *ilmp = ilm->ilm_next; 17280 new_ilm = ilm; 17281 } 17282 17283 /* 17284 * If we have never joined this group on the to_ill 17285 * make sure we tell the driver. 17286 */ 17287 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17288 ALL_ZONES) == NULL) 17289 new_ilm->ilm_notify_driver = B_TRUE; 17290 17291 /* Add to the to_ill's list */ 17292 new_ilm->ilm_next = to_ill->ill_ilm; 17293 to_ill->ill_ilm = new_ilm; 17294 new_ilm->ilm_is_new = B_TRUE; 17295 17296 /* 17297 * Revert multicast filter state to (EXCLUDE, NULL) 17298 */ 17299 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17300 CLEAR_SLIST(new_ilm->ilm_filter); 17301 17302 /* 17303 * Delete only if we have allocated a new ilm. 17304 */ 17305 if (new_ilm != ilm) { 17306 delete_ilm: 17307 if (from_ill->ill_ilm_walker_cnt == 0) { 17308 /* Remove from the list */ 17309 *ilmp = ilm->ilm_next; 17310 ilm->ilm_next = NULL; 17311 FREE_SLIST(ilm->ilm_filter); 17312 FREE_SLIST(ilm->ilm_pendsrcs); 17313 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17314 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17315 mi_free((char *)ilm); 17316 } else { 17317 ilm->ilm_flags |= ILM_DELETED; 17318 from_ill->ill_ilm_cleanup_reqd = 1; 17319 ilmp = &ilm->ilm_next; 17320 } 17321 } 17322 } 17323 } 17324 17325 static uint_t 17326 ipif_get_id(ill_t *ill, uint_t id) 17327 { 17328 uint_t unit; 17329 ipif_t *tipif; 17330 boolean_t found = B_FALSE; 17331 17332 /* 17333 * During failback, we want to go back to the same id 17334 * instead of the smallest id so that the original 17335 * configuration is maintained. id is non-zero in that 17336 * case. 17337 */ 17338 if (id != 0) { 17339 /* 17340 * While failing back, if we still have an ipif with 17341 * MAX_ADDRS_PER_IF, it means this will be replaced 17342 * as soon as we return from this function. It was 17343 * to set to MAX_ADDRS_PER_IF by the caller so that 17344 * we can choose the smallest id. Thus we return zero 17345 * in that case ignoring the hint. 17346 */ 17347 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17348 return (0); 17349 for (tipif = ill->ill_ipif; tipif != NULL; 17350 tipif = tipif->ipif_next) { 17351 if (tipif->ipif_id == id) { 17352 found = B_TRUE; 17353 break; 17354 } 17355 } 17356 /* 17357 * If somebody already plumbed another logical 17358 * with the same id, we won't be able to find it. 17359 */ 17360 if (!found) 17361 return (id); 17362 } 17363 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 17364 found = B_FALSE; 17365 for (tipif = ill->ill_ipif; tipif != NULL; 17366 tipif = tipif->ipif_next) { 17367 if (tipif->ipif_id == unit) { 17368 found = B_TRUE; 17369 break; 17370 } 17371 } 17372 if (!found) 17373 break; 17374 } 17375 return (unit); 17376 } 17377 17378 /* ARGSUSED */ 17379 static int 17380 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17381 ipif_t **rep_ipif_ptr) 17382 { 17383 ill_t *from_ill; 17384 ipif_t *rep_ipif; 17385 ipif_t **ipifp; 17386 uint_t unit; 17387 int err = 0; 17388 ipif_t *to_ipif; 17389 struct iocblk *iocp; 17390 boolean_t failback_cmd; 17391 boolean_t remove_ipif; 17392 int rc; 17393 17394 ASSERT(IAM_WRITER_ILL(to_ill)); 17395 ASSERT(IAM_WRITER_IPIF(ipif)); 17396 17397 iocp = (struct iocblk *)mp->b_rptr; 17398 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17399 remove_ipif = B_FALSE; 17400 17401 from_ill = ipif->ipif_ill; 17402 17403 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17404 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17405 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17406 17407 /* 17408 * Don't move LINK LOCAL addresses as they are tied to 17409 * physical interface. 17410 */ 17411 if (from_ill->ill_isv6 && 17412 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17413 ipif->ipif_was_up = B_FALSE; 17414 IPIF_UNMARK_MOVING(ipif); 17415 return (0); 17416 } 17417 17418 /* 17419 * We set the ipif_id to maximum so that the search for 17420 * ipif_id will pick the lowest number i.e 0 in the 17421 * following 2 cases : 17422 * 17423 * 1) We have a replacement ipif at the head of to_ill. 17424 * We can't remove it yet as we can exceed ip_addrs_per_if 17425 * on to_ill and hence the MOVE might fail. We want to 17426 * remove it only if we could move the ipif. Thus, by 17427 * setting it to the MAX value, we make the search in 17428 * ipif_get_id return the zeroth id. 17429 * 17430 * 2) When DR pulls out the NIC and re-plumbs the interface, 17431 * we might just have a zero address plumbed on the ipif 17432 * with zero id in the case of IPv4. We remove that while 17433 * doing the failback. We want to remove it only if we 17434 * could move the ipif. Thus, by setting it to the MAX 17435 * value, we make the search in ipif_get_id return the 17436 * zeroth id. 17437 * 17438 * Both (1) and (2) are done only when when we are moving 17439 * an ipif (either due to failover/failback) which originally 17440 * belonged to this interface i.e the ipif_orig_ifindex is 17441 * the same as to_ill's ifindex. This is needed so that 17442 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17443 * from B -> A (B is being removed from the group) and 17444 * FAILBACK from A -> B restores the original configuration. 17445 * Without the check for orig_ifindex, the second FAILOVER 17446 * could make the ipif belonging to B replace the A's zeroth 17447 * ipif and the subsequent failback re-creating the replacement 17448 * ipif again. 17449 * 17450 * NOTE : We created the replacement ipif when we did a 17451 * FAILOVER (See below). We could check for FAILBACK and 17452 * then look for replacement ipif to be removed. But we don't 17453 * want to do that because we wan't to allow the possibility 17454 * of a FAILOVER from A -> B (which creates the replacement ipif), 17455 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17456 * from B -> A. 17457 */ 17458 to_ipif = to_ill->ill_ipif; 17459 if ((to_ill->ill_phyint->phyint_ifindex == 17460 ipif->ipif_orig_ifindex) && 17461 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17462 ASSERT(to_ipif->ipif_id == 0); 17463 remove_ipif = B_TRUE; 17464 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17465 } 17466 /* 17467 * Find the lowest logical unit number on the to_ill. 17468 * If we are failing back, try to get the original id 17469 * rather than the lowest one so that the original 17470 * configuration is maintained. 17471 * 17472 * XXX need a better scheme for this. 17473 */ 17474 if (failback_cmd) { 17475 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17476 } else { 17477 unit = ipif_get_id(to_ill, 0); 17478 } 17479 17480 /* Reset back to zero in case we fail below */ 17481 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17482 to_ipif->ipif_id = 0; 17483 17484 if (unit == ip_addrs_per_if) { 17485 ipif->ipif_was_up = B_FALSE; 17486 IPIF_UNMARK_MOVING(ipif); 17487 return (EINVAL); 17488 } 17489 17490 /* 17491 * ipif is ready to move from "from_ill" to "to_ill". 17492 * 17493 * 1) If we are moving ipif with id zero, create a 17494 * replacement ipif for this ipif on from_ill. If this fails 17495 * fail the MOVE operation. 17496 * 17497 * 2) Remove the replacement ipif on to_ill if any. 17498 * We could remove the replacement ipif when we are moving 17499 * the ipif with id zero. But what if somebody already 17500 * unplumbed it ? Thus we always remove it if it is present. 17501 * We want to do it only if we are sure we are going to 17502 * move the ipif to to_ill which is why there are no 17503 * returns due to error till ipif is linked to to_ill. 17504 * Note that the first ipif that we failback will always 17505 * be zero if it is present. 17506 */ 17507 if (ipif->ipif_id == 0) { 17508 ipaddr_t inaddr_any = INADDR_ANY; 17509 17510 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17511 if (rep_ipif == NULL) { 17512 ipif->ipif_was_up = B_FALSE; 17513 IPIF_UNMARK_MOVING(ipif); 17514 return (ENOMEM); 17515 } 17516 *rep_ipif = ipif_zero; 17517 /* 17518 * Before we put the ipif on the list, store the addresses 17519 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17520 * assumes so. This logic is not any different from what 17521 * ipif_allocate does. 17522 */ 17523 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17524 &rep_ipif->ipif_v6lcl_addr); 17525 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17526 &rep_ipif->ipif_v6src_addr); 17527 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17528 &rep_ipif->ipif_v6subnet); 17529 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17530 &rep_ipif->ipif_v6net_mask); 17531 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17532 &rep_ipif->ipif_v6brd_addr); 17533 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17534 &rep_ipif->ipif_v6pp_dst_addr); 17535 /* 17536 * We mark IPIF_NOFAILOVER so that this can never 17537 * move. 17538 */ 17539 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17540 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17541 rep_ipif->ipif_replace_zero = B_TRUE; 17542 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17543 MUTEX_DEFAULT, NULL); 17544 rep_ipif->ipif_id = 0; 17545 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17546 rep_ipif->ipif_ill = from_ill; 17547 rep_ipif->ipif_orig_ifindex = 17548 from_ill->ill_phyint->phyint_ifindex; 17549 /* Insert at head */ 17550 rep_ipif->ipif_next = from_ill->ill_ipif; 17551 from_ill->ill_ipif = rep_ipif; 17552 /* 17553 * We don't really care to let apps know about 17554 * this interface. 17555 */ 17556 } 17557 17558 if (remove_ipif) { 17559 /* 17560 * We set to a max value above for this case to get 17561 * id zero. ASSERT that we did get one. 17562 */ 17563 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17564 rep_ipif = to_ipif; 17565 to_ill->ill_ipif = rep_ipif->ipif_next; 17566 rep_ipif->ipif_next = NULL; 17567 /* 17568 * If some apps scanned and find this interface, 17569 * it is time to let them know, so that they can 17570 * delete it. 17571 */ 17572 17573 *rep_ipif_ptr = rep_ipif; 17574 } 17575 17576 /* Get it out of the ILL interface list. */ 17577 ipifp = &ipif->ipif_ill->ill_ipif; 17578 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17579 if (*ipifp == ipif) { 17580 *ipifp = ipif->ipif_next; 17581 break; 17582 } 17583 } 17584 17585 /* Assign the new ill */ 17586 ipif->ipif_ill = to_ill; 17587 ipif->ipif_id = unit; 17588 /* id has already been checked */ 17589 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17590 ASSERT(rc == 0); 17591 /* Let SCTP update its list */ 17592 sctp_move_ipif(ipif, from_ill, to_ill); 17593 /* 17594 * Handle the failover and failback of ipif_t between 17595 * ill_t that have differing maximum mtu values. 17596 */ 17597 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17598 if (ipif->ipif_saved_mtu == 0) { 17599 /* 17600 * As this ipif_t is moving to an ill_t 17601 * that has a lower ill_max_mtu, its 17602 * ipif_mtu needs to be saved so it can 17603 * be restored during failback or during 17604 * failover to an ill_t which has a 17605 * higher ill_max_mtu. 17606 */ 17607 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17608 ipif->ipif_mtu = to_ill->ill_max_mtu; 17609 } else { 17610 /* 17611 * The ipif_t is, once again, moving to 17612 * an ill_t that has a lower maximum mtu 17613 * value. 17614 */ 17615 ipif->ipif_mtu = to_ill->ill_max_mtu; 17616 } 17617 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17618 ipif->ipif_saved_mtu != 0) { 17619 /* 17620 * The mtu of this ipif_t had to be reduced 17621 * during an earlier failover; this is an 17622 * opportunity for it to be increased (either as 17623 * part of another failover or a failback). 17624 */ 17625 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17626 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17627 ipif->ipif_saved_mtu = 0; 17628 } else { 17629 ipif->ipif_mtu = to_ill->ill_max_mtu; 17630 } 17631 } 17632 17633 /* 17634 * We preserve all the other fields of the ipif including 17635 * ipif_saved_ire_mp. The routes that are saved here will 17636 * be recreated on the new interface and back on the old 17637 * interface when we move back. 17638 */ 17639 ASSERT(ipif->ipif_arp_del_mp == NULL); 17640 17641 return (err); 17642 } 17643 17644 static int 17645 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17646 int ifindex, ipif_t **rep_ipif_ptr) 17647 { 17648 ipif_t *mipif; 17649 ipif_t *ipif_next; 17650 int err; 17651 17652 /* 17653 * We don't really try to MOVE back things if some of the 17654 * operations fail. The daemon will take care of moving again 17655 * later on. 17656 */ 17657 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17658 ipif_next = mipif->ipif_next; 17659 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17660 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17661 17662 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17663 17664 /* 17665 * When the MOVE fails, it is the job of the 17666 * application to take care of this properly 17667 * i.e try again if it is ENOMEM. 17668 */ 17669 if (mipif->ipif_ill != from_ill) { 17670 /* 17671 * ipif has moved. 17672 * 17673 * Move the multicast memberships associated 17674 * with this ipif to the new ill. For IPv6, we 17675 * do it once after all the ipifs are moved 17676 * (in ill_move) as they are not associated 17677 * with ipifs. 17678 * 17679 * We need to move the ilms as the ipif has 17680 * already been moved to a new ill even 17681 * in the case of errors. Neither 17682 * ilm_free(ipif) will find the ilm 17683 * when somebody unplumbs this ipif nor 17684 * ilm_delete(ilm) will be able to find the 17685 * ilm, if we don't move now. 17686 */ 17687 if (!from_ill->ill_isv6) 17688 ilm_move_v4(from_ill, to_ill, mipif); 17689 } 17690 17691 if (err != 0) 17692 return (err); 17693 } 17694 } 17695 return (0); 17696 } 17697 17698 static int 17699 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17700 { 17701 int ifindex; 17702 int err; 17703 struct iocblk *iocp; 17704 ipif_t *ipif; 17705 ipif_t *rep_ipif_ptr = NULL; 17706 ipif_t *from_ipif = NULL; 17707 boolean_t check_rep_if = B_FALSE; 17708 17709 iocp = (struct iocblk *)mp->b_rptr; 17710 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17711 /* 17712 * Move everything pointing at from_ill to to_ill. 17713 * We acheive this by passing in 0 as ifindex. 17714 */ 17715 ifindex = 0; 17716 } else { 17717 /* 17718 * Move everything pointing at from_ill whose original 17719 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17720 * We acheive this by passing in ifindex rather than 0. 17721 * Multicast vifs, ilgs move implicitly because ipifs move. 17722 */ 17723 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17724 ifindex = to_ill->ill_phyint->phyint_ifindex; 17725 } 17726 17727 /* 17728 * Determine if there is at least one ipif that would move from 17729 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17730 * ipif (if it exists) on the to_ill would be consumed as a result of 17731 * the move, in which case we need to quiesce the replacement ipif also. 17732 */ 17733 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17734 from_ipif = from_ipif->ipif_next) { 17735 if (((ifindex == 0) || 17736 (ifindex == from_ipif->ipif_orig_ifindex)) && 17737 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17738 check_rep_if = B_TRUE; 17739 break; 17740 } 17741 } 17742 17743 17744 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17745 17746 GRAB_ILL_LOCKS(from_ill, to_ill); 17747 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17748 (void) ipsq_pending_mp_add(NULL, ipif, q, 17749 mp, ILL_MOVE_OK); 17750 RELEASE_ILL_LOCKS(from_ill, to_ill); 17751 return (EINPROGRESS); 17752 } 17753 17754 /* Check if the replacement ipif is quiescent to delete */ 17755 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17756 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17757 to_ill->ill_ipif->ipif_state_flags |= 17758 IPIF_MOVING | IPIF_CHANGING; 17759 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17760 (void) ipsq_pending_mp_add(NULL, ipif, q, 17761 mp, ILL_MOVE_OK); 17762 RELEASE_ILL_LOCKS(from_ill, to_ill); 17763 return (EINPROGRESS); 17764 } 17765 } 17766 RELEASE_ILL_LOCKS(from_ill, to_ill); 17767 17768 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17769 rw_enter(&ill_g_lock, RW_WRITER); 17770 GRAB_ILL_LOCKS(from_ill, to_ill); 17771 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17772 17773 /* ilm_move is done inside ipif_move for IPv4 */ 17774 if (err == 0 && from_ill->ill_isv6) 17775 ilm_move_v6(from_ill, to_ill, ifindex); 17776 17777 RELEASE_ILL_LOCKS(from_ill, to_ill); 17778 rw_exit(&ill_g_lock); 17779 17780 /* 17781 * send rts messages and multicast messages. 17782 */ 17783 if (rep_ipif_ptr != NULL) { 17784 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17785 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17786 rep_ipif_ptr->ipif_recovery_id = 0; 17787 } 17788 ip_rts_ifmsg(rep_ipif_ptr); 17789 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17790 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17791 mi_free(rep_ipif_ptr); 17792 } 17793 17794 conn_move_ill(from_ill, to_ill, ifindex); 17795 17796 return (err); 17797 } 17798 17799 /* 17800 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17801 * Also checks for the validity of the arguments. 17802 * Note: We are already exclusive inside the from group. 17803 * It is upto the caller to release refcnt on the to_ill's. 17804 */ 17805 static int 17806 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17807 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17808 { 17809 int dst_index; 17810 ipif_t *ipif_v4, *ipif_v6; 17811 struct lifreq *lifr; 17812 mblk_t *mp1; 17813 boolean_t exists; 17814 sin_t *sin; 17815 int err = 0; 17816 17817 if ((mp1 = mp->b_cont) == NULL) 17818 return (EPROTO); 17819 17820 if ((mp1 = mp1->b_cont) == NULL) 17821 return (EPROTO); 17822 17823 lifr = (struct lifreq *)mp1->b_rptr; 17824 sin = (sin_t *)&lifr->lifr_addr; 17825 17826 /* 17827 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17828 * specific operations. 17829 */ 17830 if (sin->sin_family != AF_UNSPEC) 17831 return (EINVAL); 17832 17833 /* 17834 * Get ipif with id 0. We are writer on the from ill. So we can pass 17835 * NULLs for the last 4 args and we know the lookup won't fail 17836 * with EINPROGRESS. 17837 */ 17838 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17839 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17840 ALL_ZONES, NULL, NULL, NULL, NULL); 17841 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17842 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17843 ALL_ZONES, NULL, NULL, NULL, NULL); 17844 17845 if (ipif_v4 == NULL && ipif_v6 == NULL) 17846 return (ENXIO); 17847 17848 if (ipif_v4 != NULL) { 17849 ASSERT(ipif_v4->ipif_refcnt != 0); 17850 if (ipif_v4->ipif_id != 0) { 17851 err = EINVAL; 17852 goto done; 17853 } 17854 17855 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17856 *ill_from_v4 = ipif_v4->ipif_ill; 17857 } 17858 17859 if (ipif_v6 != NULL) { 17860 ASSERT(ipif_v6->ipif_refcnt != 0); 17861 if (ipif_v6->ipif_id != 0) { 17862 err = EINVAL; 17863 goto done; 17864 } 17865 17866 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17867 *ill_from_v6 = ipif_v6->ipif_ill; 17868 } 17869 17870 err = 0; 17871 dst_index = lifr->lifr_movetoindex; 17872 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17873 q, mp, ip_process_ioctl, &err); 17874 if (err != 0) { 17875 /* 17876 * There could be only v6. 17877 */ 17878 if (err != ENXIO) 17879 goto done; 17880 err = 0; 17881 } 17882 17883 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17884 q, mp, ip_process_ioctl, &err); 17885 if (err != 0) { 17886 if (err != ENXIO) 17887 goto done; 17888 if (*ill_to_v4 == NULL) { 17889 err = ENXIO; 17890 goto done; 17891 } 17892 err = 0; 17893 } 17894 17895 /* 17896 * If we have something to MOVE i.e "from" not NULL, 17897 * "to" should be non-NULL. 17898 */ 17899 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17900 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17901 err = EINVAL; 17902 } 17903 17904 done: 17905 if (ipif_v4 != NULL) 17906 ipif_refrele(ipif_v4); 17907 if (ipif_v6 != NULL) 17908 ipif_refrele(ipif_v6); 17909 return (err); 17910 } 17911 17912 /* 17913 * FAILOVER and FAILBACK are modelled as MOVE operations. 17914 * 17915 * We don't check whether the MOVE is within the same group or 17916 * not, because this ioctl can be used as a generic mechanism 17917 * to failover from interface A to B, though things will function 17918 * only if they are really part of the same group. Moreover, 17919 * all ipifs may be down and hence temporarily out of the group. 17920 * 17921 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17922 * down first and then V6. For each we wait for the ipif's to become quiescent. 17923 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17924 * have been deleted and there are no active references. Once quiescent the 17925 * ipif's are moved and brought up on the new ill. 17926 * 17927 * Normally the source ill and destination ill belong to the same IPMP group 17928 * and hence the same ipsq_t. In the event they don't belong to the same 17929 * same group the two ipsq's are first merged into one ipsq - that of the 17930 * to_ill. The multicast memberships on the source and destination ill cannot 17931 * change during the move operation since multicast joins/leaves also have to 17932 * execute on the same ipsq and are hence serialized. 17933 */ 17934 /* ARGSUSED */ 17935 int 17936 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17937 ip_ioctl_cmd_t *ipip, void *ifreq) 17938 { 17939 ill_t *ill_to_v4 = NULL; 17940 ill_t *ill_to_v6 = NULL; 17941 ill_t *ill_from_v4 = NULL; 17942 ill_t *ill_from_v6 = NULL; 17943 int err = 0; 17944 17945 /* 17946 * setup from and to ill's, we can get EINPROGRESS only for 17947 * to_ill's. 17948 */ 17949 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17950 &ill_to_v4, &ill_to_v6); 17951 17952 if (err != 0) { 17953 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17954 goto done; 17955 } 17956 17957 /* 17958 * nothing to do. 17959 */ 17960 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17961 goto done; 17962 } 17963 17964 /* 17965 * nothing to do. 17966 */ 17967 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17968 goto done; 17969 } 17970 17971 /* 17972 * Mark the ill as changing. 17973 * ILL_CHANGING flag is cleared when the ipif's are brought up 17974 * in ill_up_ipifs in case of error they are cleared below. 17975 */ 17976 17977 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17978 if (ill_from_v4 != NULL) 17979 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17980 if (ill_from_v6 != NULL) 17981 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17982 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17983 17984 /* 17985 * Make sure that both src and dst are 17986 * in the same syncq group. If not make it happen. 17987 * We are not holding any locks because we are the writer 17988 * on the from_ipsq and we will hold locks in ill_merge_groups 17989 * to protect to_ipsq against changing. 17990 */ 17991 if (ill_from_v4 != NULL) { 17992 if (ill_from_v4->ill_phyint->phyint_ipsq != 17993 ill_to_v4->ill_phyint->phyint_ipsq) { 17994 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17995 NULL, mp, q); 17996 goto err_ret; 17997 17998 } 17999 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18000 } else { 18001 18002 if (ill_from_v6->ill_phyint->phyint_ipsq != 18003 ill_to_v6->ill_phyint->phyint_ipsq) { 18004 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18005 NULL, mp, q); 18006 goto err_ret; 18007 18008 } 18009 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18010 } 18011 18012 /* 18013 * Now that the ipsq's have been merged and we are the writer 18014 * lets mark to_ill as changing as well. 18015 */ 18016 18017 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18018 if (ill_to_v4 != NULL) 18019 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18020 if (ill_to_v6 != NULL) 18021 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18022 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18023 18024 /* 18025 * Its ok for us to proceed with the move even if 18026 * ill_pending_mp is non null on one of the from ill's as the reply 18027 * should not be looking at the ipif, it should only care about the 18028 * ill itself. 18029 */ 18030 18031 /* 18032 * lets move ipv4 first. 18033 */ 18034 if (ill_from_v4 != NULL) { 18035 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18036 ill_from_v4->ill_move_in_progress = B_TRUE; 18037 ill_to_v4->ill_move_in_progress = B_TRUE; 18038 ill_to_v4->ill_move_peer = ill_from_v4; 18039 ill_from_v4->ill_move_peer = ill_to_v4; 18040 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18041 } 18042 18043 /* 18044 * Now lets move ipv6. 18045 */ 18046 if (err == 0 && ill_from_v6 != NULL) { 18047 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18048 ill_from_v6->ill_move_in_progress = B_TRUE; 18049 ill_to_v6->ill_move_in_progress = B_TRUE; 18050 ill_to_v6->ill_move_peer = ill_from_v6; 18051 ill_from_v6->ill_move_peer = ill_to_v6; 18052 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18053 } 18054 18055 err_ret: 18056 /* 18057 * EINPROGRESS means we are waiting for the ipif's that need to be 18058 * moved to become quiescent. 18059 */ 18060 if (err == EINPROGRESS) { 18061 goto done; 18062 } 18063 18064 /* 18065 * if err is set ill_up_ipifs will not be called 18066 * lets clear the flags. 18067 */ 18068 18069 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18070 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18071 /* 18072 * Some of the clearing may be redundant. But it is simple 18073 * not making any extra checks. 18074 */ 18075 if (ill_from_v6 != NULL) { 18076 ill_from_v6->ill_move_in_progress = B_FALSE; 18077 ill_from_v6->ill_move_peer = NULL; 18078 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18079 } 18080 if (ill_from_v4 != NULL) { 18081 ill_from_v4->ill_move_in_progress = B_FALSE; 18082 ill_from_v4->ill_move_peer = NULL; 18083 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18084 } 18085 if (ill_to_v6 != NULL) { 18086 ill_to_v6->ill_move_in_progress = B_FALSE; 18087 ill_to_v6->ill_move_peer = NULL; 18088 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18089 } 18090 if (ill_to_v4 != NULL) { 18091 ill_to_v4->ill_move_in_progress = B_FALSE; 18092 ill_to_v4->ill_move_peer = NULL; 18093 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18094 } 18095 18096 /* 18097 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18098 * Do this always to maintain proper state i.e even in case of errors. 18099 * As phyint_inactive looks at both v4 and v6 interfaces, 18100 * we need not call on both v4 and v6 interfaces. 18101 */ 18102 if (ill_from_v4 != NULL) { 18103 if ((ill_from_v4->ill_phyint->phyint_flags & 18104 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18105 phyint_inactive(ill_from_v4->ill_phyint); 18106 } 18107 } else if (ill_from_v6 != NULL) { 18108 if ((ill_from_v6->ill_phyint->phyint_flags & 18109 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18110 phyint_inactive(ill_from_v6->ill_phyint); 18111 } 18112 } 18113 18114 if (ill_to_v4 != NULL) { 18115 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18116 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18117 } 18118 } else if (ill_to_v6 != NULL) { 18119 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18120 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18121 } 18122 } 18123 18124 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18125 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18126 18127 no_err: 18128 /* 18129 * lets bring the interfaces up on the to_ill. 18130 */ 18131 if (err == 0) { 18132 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18133 q, mp); 18134 } 18135 18136 if (err == 0) { 18137 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18138 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18139 18140 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18141 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18142 } 18143 done: 18144 18145 if (ill_to_v4 != NULL) { 18146 ill_refrele(ill_to_v4); 18147 } 18148 if (ill_to_v6 != NULL) { 18149 ill_refrele(ill_to_v6); 18150 } 18151 18152 return (err); 18153 } 18154 18155 static void 18156 ill_dl_down(ill_t *ill) 18157 { 18158 /* 18159 * The ill is down; unbind but stay attached since we're still 18160 * associated with a PPA. If we have negotiated DLPI capabilites 18161 * with the data link service provider (IDS_OK) then reset them. 18162 * The interval between unbinding and rebinding is potentially 18163 * unbounded hence we cannot assume things will be the same. 18164 * The DLPI capabilities will be probed again when the data link 18165 * is brought up. 18166 */ 18167 mblk_t *mp = ill->ill_unbind_mp; 18168 hook_nic_event_t *info; 18169 18170 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18171 18172 ill->ill_unbind_mp = NULL; 18173 if (mp != NULL) { 18174 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18175 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18176 ill->ill_name)); 18177 mutex_enter(&ill->ill_lock); 18178 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18179 mutex_exit(&ill->ill_lock); 18180 if (ill->ill_dlpi_capab_state == IDS_OK) 18181 ill_capability_reset(ill); 18182 ill_dlpi_send(ill, mp); 18183 } 18184 18185 /* 18186 * Toss all of our multicast memberships. We could keep them, but 18187 * then we'd have to do bookkeeping of any joins and leaves performed 18188 * by the application while the the interface is down (we can't just 18189 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18190 * on a downed interface). 18191 */ 18192 ill_leave_multicast(ill); 18193 18194 mutex_enter(&ill->ill_lock); 18195 18196 ill->ill_dl_up = 0; 18197 18198 if ((info = ill->ill_nic_event_info) != NULL) { 18199 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18200 info->hne_event, ill->ill_name)); 18201 if (info->hne_data != NULL) 18202 kmem_free(info->hne_data, info->hne_datalen); 18203 kmem_free(info, sizeof (hook_nic_event_t)); 18204 } 18205 18206 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18207 if (info != NULL) { 18208 info->hne_nic = ill->ill_phyint->phyint_ifindex; 18209 info->hne_lif = 0; 18210 info->hne_event = NE_DOWN; 18211 info->hne_data = NULL; 18212 info->hne_datalen = 0; 18213 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 18214 } else 18215 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18216 "information for %s (ENOMEM)\n", ill->ill_name)); 18217 18218 ill->ill_nic_event_info = info; 18219 18220 mutex_exit(&ill->ill_lock); 18221 } 18222 18223 void 18224 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18225 { 18226 union DL_primitives *dlp; 18227 t_uscalar_t prim; 18228 18229 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18230 18231 dlp = (union DL_primitives *)mp->b_rptr; 18232 prim = dlp->dl_primitive; 18233 18234 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18235 dlpi_prim_str(prim), prim, ill->ill_name)); 18236 18237 switch (prim) { 18238 case DL_PHYS_ADDR_REQ: 18239 { 18240 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18241 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18242 break; 18243 } 18244 case DL_BIND_REQ: 18245 mutex_enter(&ill->ill_lock); 18246 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18247 mutex_exit(&ill->ill_lock); 18248 break; 18249 } 18250 18251 /* 18252 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18253 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18254 * we only wait for the ACK of the DL_UNBIND_REQ. 18255 */ 18256 mutex_enter(&ill->ill_lock); 18257 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18258 (prim == DL_UNBIND_REQ)) { 18259 ill->ill_dlpi_pending = prim; 18260 } 18261 mutex_exit(&ill->ill_lock); 18262 18263 /* 18264 * Some drivers send M_FLUSH up to IP as part of unbind 18265 * request. When this M_FLUSH is sent back to the driver, 18266 * this can go after we send the detach request if the 18267 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18268 * to the M_FLUSH in ip_rput and locally generate another 18269 * M_FLUSH for the correctness. This will get freed in 18270 * ip_wput_nondata. 18271 */ 18272 if (prim == DL_UNBIND_REQ) 18273 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18274 18275 putnext(ill->ill_wq, mp); 18276 } 18277 18278 /* 18279 * Send a DLPI control message to the driver but make sure there 18280 * is only one outstanding message. Uses ill_dlpi_pending to tell 18281 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18282 * when an ACK or a NAK is received to process the next queued message. 18283 * 18284 * We don't protect ill_dlpi_pending with any lock. This is okay as 18285 * every place where its accessed, ip is exclusive while accessing 18286 * ill_dlpi_pending except when this function is called from ill_init() 18287 */ 18288 void 18289 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18290 { 18291 mblk_t **mpp; 18292 18293 ASSERT(IAM_WRITER_ILL(ill)); 18294 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18295 18296 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18297 /* Must queue message. Tail insertion */ 18298 mpp = &ill->ill_dlpi_deferred; 18299 while (*mpp != NULL) 18300 mpp = &((*mpp)->b_next); 18301 18302 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18303 ill->ill_name)); 18304 18305 *mpp = mp; 18306 return; 18307 } 18308 18309 ill_dlpi_dispatch(ill, mp); 18310 } 18311 18312 /* 18313 * Called when an DLPI control message has been acked or nacked to 18314 * send down the next queued message (if any). 18315 */ 18316 void 18317 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18318 { 18319 mblk_t *mp; 18320 18321 ASSERT(IAM_WRITER_ILL(ill)); 18322 18323 ASSERT(prim != DL_PRIM_INVAL); 18324 if (ill->ill_dlpi_pending != prim) { 18325 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18326 (void) mi_strlog(ill->ill_rq, 1, 18327 SL_CONSOLE|SL_ERROR|SL_TRACE, 18328 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18329 dlpi_prim_str(prim), ill->ill_name); 18330 } else { 18331 (void) mi_strlog(ill->ill_rq, 1, 18332 SL_CONSOLE|SL_ERROR|SL_TRACE, 18333 "ill_dlpi_done: unexpected ack for %s from %s " 18334 "(expecting ack for %s)\n", 18335 dlpi_prim_str(prim), ill->ill_name, 18336 dlpi_prim_str(ill->ill_dlpi_pending)); 18337 } 18338 return; 18339 } 18340 18341 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18342 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18343 18344 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18345 mutex_enter(&ill->ill_lock); 18346 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18347 cv_signal(&ill->ill_cv); 18348 mutex_exit(&ill->ill_lock); 18349 return; 18350 } 18351 18352 ill->ill_dlpi_deferred = mp->b_next; 18353 mp->b_next = NULL; 18354 18355 ill_dlpi_dispatch(ill, mp); 18356 } 18357 18358 void 18359 conn_delete_ire(conn_t *connp, caddr_t arg) 18360 { 18361 ipif_t *ipif = (ipif_t *)arg; 18362 ire_t *ire; 18363 18364 /* 18365 * Look at the cached ires on conns which has pointers to ipifs. 18366 * We just call ire_refrele which clears up the reference 18367 * to ire. Called when a conn closes. Also called from ipif_free 18368 * to cleanup indirect references to the stale ipif via the cached ire. 18369 */ 18370 mutex_enter(&connp->conn_lock); 18371 ire = connp->conn_ire_cache; 18372 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18373 connp->conn_ire_cache = NULL; 18374 mutex_exit(&connp->conn_lock); 18375 IRE_REFRELE_NOTR(ire); 18376 return; 18377 } 18378 mutex_exit(&connp->conn_lock); 18379 18380 } 18381 18382 /* 18383 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18384 * of IREs. Those IREs may have been previously cached in the conn structure. 18385 * This ipcl_walk() walker function releases all references to such IREs based 18386 * on the condemned flag. 18387 */ 18388 /* ARGSUSED */ 18389 void 18390 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18391 { 18392 ire_t *ire; 18393 18394 mutex_enter(&connp->conn_lock); 18395 ire = connp->conn_ire_cache; 18396 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18397 connp->conn_ire_cache = NULL; 18398 mutex_exit(&connp->conn_lock); 18399 IRE_REFRELE_NOTR(ire); 18400 return; 18401 } 18402 mutex_exit(&connp->conn_lock); 18403 } 18404 18405 /* 18406 * Take down a specific interface, but don't lose any information about it. 18407 * Also delete interface from its interface group (ifgrp). 18408 * (Always called as writer.) 18409 * This function goes through the down sequence even if the interface is 18410 * already down. There are 2 reasons. 18411 * a. Currently we permit interface routes that depend on down interfaces 18412 * to be added. This behaviour itself is questionable. However it appears 18413 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18414 * time. We go thru the cleanup in order to remove these routes. 18415 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18416 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18417 * down, but we need to cleanup i.e. do ill_dl_down and 18418 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18419 * 18420 * IP-MT notes: 18421 * 18422 * Model of reference to interfaces. 18423 * 18424 * The following members in ipif_t track references to the ipif. 18425 * int ipif_refcnt; Active reference count 18426 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18427 * The following members in ill_t track references to the ill. 18428 * int ill_refcnt; active refcnt 18429 * uint_t ill_ire_cnt; Number of ires referencing ill 18430 * uint_t ill_nce_cnt; Number of nces referencing ill 18431 * 18432 * Reference to an ipif or ill can be obtained in any of the following ways. 18433 * 18434 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18435 * Pointers to ipif / ill from other data structures viz ire and conn. 18436 * Implicit reference to the ipif / ill by holding a reference to the ire. 18437 * 18438 * The ipif/ill lookup functions return a reference held ipif / ill. 18439 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18440 * This is a purely dynamic reference count associated with threads holding 18441 * references to the ipif / ill. Pointers from other structures do not 18442 * count towards this reference count. 18443 * 18444 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18445 * ipif/ill. This is incremented whenever a new ire is created referencing the 18446 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18447 * actually added to the ire hash table. The count is decremented in 18448 * ire_inactive where the ire is destroyed. 18449 * 18450 * nce's reference ill's thru nce_ill and the count of nce's associated with 18451 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18452 * ndp_add() where the nce is actually added to the table. Similarly it is 18453 * decremented in ndp_inactive where the nce is destroyed. 18454 * 18455 * Flow of ioctls involving interface down/up 18456 * 18457 * The following is the sequence of an attempt to set some critical flags on an 18458 * up interface. 18459 * ip_sioctl_flags 18460 * ipif_down 18461 * wait for ipif to be quiescent 18462 * ipif_down_tail 18463 * ip_sioctl_flags_tail 18464 * 18465 * All set ioctls that involve down/up sequence would have a skeleton similar 18466 * to the above. All the *tail functions are called after the refcounts have 18467 * dropped to the appropriate values. 18468 * 18469 * The mechanism to quiesce an ipif is as follows. 18470 * 18471 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18472 * on the ipif. Callers either pass a flag requesting wait or the lookup 18473 * functions will return NULL. 18474 * 18475 * Delete all ires referencing this ipif 18476 * 18477 * Any thread attempting to do an ipif_refhold on an ipif that has been 18478 * obtained thru a cached pointer will first make sure that 18479 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18480 * increment the refcount. 18481 * 18482 * The above guarantees that the ipif refcount will eventually come down to 18483 * zero and the ipif will quiesce, once all threads that currently hold a 18484 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18485 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18486 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18487 * drop to zero. 18488 * 18489 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18490 * 18491 * Threads trying to lookup an ipif or ill can pass a flag requesting 18492 * wait and restart if the ipif / ill cannot be looked up currently. 18493 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18494 * failure if the ipif is currently undergoing an exclusive operation, and 18495 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18496 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18497 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18498 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18499 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18500 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18501 * until we release the ipsq_lock, even though the the ill/ipif state flags 18502 * can change after we drop the ill_lock. 18503 * 18504 * An attempt to send out a packet using an ipif that is currently 18505 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18506 * operation and restart it later when the exclusive condition on the ipif ends. 18507 * This is an example of not passing the wait flag to the lookup functions. For 18508 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18509 * out a multicast packet on that ipif will fail while the ipif is 18510 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18511 * currently IPIF_CHANGING will also fail. 18512 */ 18513 int 18514 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18515 { 18516 ill_t *ill = ipif->ipif_ill; 18517 phyint_t *phyi; 18518 conn_t *connp; 18519 boolean_t success; 18520 boolean_t ipif_was_up = B_FALSE; 18521 18522 ASSERT(IAM_WRITER_IPIF(ipif)); 18523 18524 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18525 18526 if (ipif->ipif_flags & IPIF_UP) { 18527 mutex_enter(&ill->ill_lock); 18528 ipif->ipif_flags &= ~IPIF_UP; 18529 ASSERT(ill->ill_ipif_up_count > 0); 18530 --ill->ill_ipif_up_count; 18531 mutex_exit(&ill->ill_lock); 18532 ipif_was_up = B_TRUE; 18533 /* Update status in SCTP's list */ 18534 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18535 } 18536 18537 /* 18538 * Blow away v6 memberships we established in ipif_multicast_up(); the 18539 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18540 * know not to rejoin when the interface is brought back up). 18541 */ 18542 if (ipif->ipif_isv6) 18543 ipif_multicast_down(ipif); 18544 /* 18545 * Remove from the mapping for __sin6_src_id. We insert only 18546 * when the address is not INADDR_ANY. As IPv4 addresses are 18547 * stored as mapped addresses, we need to check for mapped 18548 * INADDR_ANY also. 18549 */ 18550 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18551 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18552 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18553 int err; 18554 18555 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18556 ipif->ipif_zoneid); 18557 if (err != 0) { 18558 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18559 } 18560 } 18561 18562 /* 18563 * Before we delete the ill from the group (if any), we need 18564 * to make sure that we delete all the routes dependent on 18565 * this and also any ipifs dependent on this ipif for 18566 * source address. We need to do before we delete from 18567 * the group because 18568 * 18569 * 1) ipif_down_delete_ire de-references ill->ill_group. 18570 * 18571 * 2) ipif_update_other_ipifs needs to walk the whole group 18572 * for re-doing source address selection. Note that 18573 * ipif_select_source[_v6] called from 18574 * ipif_update_other_ipifs[_v6] will not pick this ipif 18575 * because we have already marked down here i.e cleared 18576 * IPIF_UP. 18577 */ 18578 if (ipif->ipif_isv6) 18579 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18580 else 18581 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18582 18583 /* 18584 * Need to add these also to be saved and restored when the 18585 * ipif is brought down and up 18586 */ 18587 mutex_enter(&ire_mrtun_lock); 18588 if (ire_mrtun_count != 0) { 18589 mutex_exit(&ire_mrtun_lock); 18590 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18591 (char *)ipif, NULL); 18592 } else { 18593 mutex_exit(&ire_mrtun_lock); 18594 } 18595 18596 mutex_enter(&ire_srcif_table_lock); 18597 if (ire_srcif_table_count > 0) { 18598 mutex_exit(&ire_srcif_table_lock); 18599 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 18600 } else { 18601 mutex_exit(&ire_srcif_table_lock); 18602 } 18603 18604 /* 18605 * Cleaning up the conn_ire_cache or conns must be done only after the 18606 * ires have been deleted above. Otherwise a thread could end up 18607 * caching an ire in a conn after we have finished the cleanup of the 18608 * conn. The caching is done after making sure that the ire is not yet 18609 * condemned. Also documented in the block comment above ip_output 18610 */ 18611 ipcl_walk(conn_cleanup_stale_ire, NULL); 18612 /* Also, delete the ires cached in SCTP */ 18613 sctp_ire_cache_flush(ipif); 18614 18615 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18616 nattymod_clean_ipif(ipif); 18617 18618 /* 18619 * Update any other ipifs which have used "our" local address as 18620 * a source address. This entails removing and recreating IRE_INTERFACE 18621 * entries for such ipifs. 18622 */ 18623 if (ipif->ipif_isv6) 18624 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18625 else 18626 ipif_update_other_ipifs(ipif, ill->ill_group); 18627 18628 if (ipif_was_up) { 18629 /* 18630 * Check whether it is last ipif to leave this group. 18631 * If this is the last ipif to leave, we should remove 18632 * this ill from the group as ipif_select_source will not 18633 * be able to find any useful ipifs if this ill is selected 18634 * for load balancing. 18635 * 18636 * For nameless groups, we should call ifgrp_delete if this 18637 * belongs to some group. As this ipif is going down, we may 18638 * need to reconstruct groups. 18639 */ 18640 phyi = ill->ill_phyint; 18641 /* 18642 * If the phyint_groupname_len is 0, it may or may not 18643 * be in the nameless group. If the phyint_groupname_len is 18644 * not 0, then this ill should be part of some group. 18645 * As we always insert this ill in the group if 18646 * phyint_groupname_len is not zero when the first ipif 18647 * comes up (in ipif_up_done), it should be in a group 18648 * when the namelen is not 0. 18649 * 18650 * NOTE : When we delete the ill from the group,it will 18651 * blow away all the IRE_CACHES pointing either at this ipif or 18652 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18653 * should be pointing at this ill. 18654 */ 18655 ASSERT(phyi->phyint_groupname_len == 0 || 18656 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18657 18658 if (phyi->phyint_groupname_len != 0) { 18659 if (ill->ill_ipif_up_count == 0) 18660 illgrp_delete(ill); 18661 } 18662 18663 /* 18664 * If we have deleted some of the broadcast ires associated 18665 * with this ipif, we need to re-nominate somebody else if 18666 * the ires that we deleted were the nominated ones. 18667 */ 18668 if (ill->ill_group != NULL && !ill->ill_isv6) 18669 ipif_renominate_bcast(ipif); 18670 } 18671 18672 /* 18673 * neighbor-discovery or arp entries for this interface. 18674 */ 18675 ipif_ndp_down(ipif); 18676 18677 /* 18678 * If mp is NULL the caller will wait for the appropriate refcnt. 18679 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18680 * and ill_delete -> ipif_free -> ipif_down 18681 */ 18682 if (mp == NULL) { 18683 ASSERT(q == NULL); 18684 return (0); 18685 } 18686 18687 if (CONN_Q(q)) { 18688 connp = Q_TO_CONN(q); 18689 mutex_enter(&connp->conn_lock); 18690 } else { 18691 connp = NULL; 18692 } 18693 mutex_enter(&ill->ill_lock); 18694 /* 18695 * Are there any ire's pointing to this ipif that are still active ? 18696 * If this is the last ipif going down, are there any ire's pointing 18697 * to this ill that are still active ? 18698 */ 18699 if (ipif_is_quiescent(ipif)) { 18700 mutex_exit(&ill->ill_lock); 18701 if (connp != NULL) 18702 mutex_exit(&connp->conn_lock); 18703 return (0); 18704 } 18705 18706 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18707 ill->ill_name, (void *)ill)); 18708 /* 18709 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18710 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18711 * which in turn is called by the last refrele on the ipif/ill/ire. 18712 */ 18713 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18714 if (!success) { 18715 /* The conn is closing. So just return */ 18716 ASSERT(connp != NULL); 18717 mutex_exit(&ill->ill_lock); 18718 mutex_exit(&connp->conn_lock); 18719 return (EINTR); 18720 } 18721 18722 mutex_exit(&ill->ill_lock); 18723 if (connp != NULL) 18724 mutex_exit(&connp->conn_lock); 18725 return (EINPROGRESS); 18726 } 18727 18728 void 18729 ipif_down_tail(ipif_t *ipif) 18730 { 18731 ill_t *ill = ipif->ipif_ill; 18732 18733 /* 18734 * Skip any loopback interface (null wq). 18735 * If this is the last logical interface on the ill 18736 * have ill_dl_down tell the driver we are gone (unbind) 18737 * Note that lun 0 can ipif_down even though 18738 * there are other logical units that are up. 18739 * This occurs e.g. when we change a "significant" IFF_ flag. 18740 */ 18741 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18742 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18743 ill->ill_dl_up) { 18744 ill_dl_down(ill); 18745 } 18746 ill->ill_logical_down = 0; 18747 18748 /* 18749 * Have to be after removing the routes in ipif_down_delete_ire. 18750 */ 18751 if (ipif->ipif_isv6) { 18752 if (ill->ill_flags & ILLF_XRESOLV) 18753 ipif_arp_down(ipif); 18754 } else { 18755 ipif_arp_down(ipif); 18756 } 18757 18758 ip_rts_ifmsg(ipif); 18759 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18760 } 18761 18762 /* 18763 * Bring interface logically down without bringing the physical interface 18764 * down e.g. when the netmask is changed. This avoids long lasting link 18765 * negotiations between an ethernet interface and a certain switches. 18766 */ 18767 static int 18768 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18769 { 18770 /* 18771 * The ill_logical_down flag is a transient flag. It is set here 18772 * and is cleared once the down has completed in ipif_down_tail. 18773 * This flag does not indicate whether the ill stream is in the 18774 * DL_BOUND state with the driver. Instead this flag is used by 18775 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18776 * the driver. The state of the ill stream i.e. whether it is 18777 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18778 */ 18779 ipif->ipif_ill->ill_logical_down = 1; 18780 return (ipif_down(ipif, q, mp)); 18781 } 18782 18783 /* 18784 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18785 * If the usesrc client ILL is already part of a usesrc group or not, 18786 * in either case a ire_stq with the matching usesrc client ILL will 18787 * locate the IRE's that need to be deleted. We want IREs to be created 18788 * with the new source address. 18789 */ 18790 static void 18791 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18792 { 18793 ill_t *ucill = (ill_t *)ill_arg; 18794 18795 ASSERT(IAM_WRITER_ILL(ucill)); 18796 18797 if (ire->ire_stq == NULL) 18798 return; 18799 18800 if ((ire->ire_type == IRE_CACHE) && 18801 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18802 ire_delete(ire); 18803 } 18804 18805 /* 18806 * ire_walk routine to delete every IRE dependent on the interface 18807 * address that is going down. (Always called as writer.) 18808 * Works for both v4 and v6. 18809 * In addition for checking for ire_ipif matches it also checks for 18810 * IRE_CACHE entries which have the same source address as the 18811 * disappearing ipif since ipif_select_source might have picked 18812 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18813 * care of any IRE_INTERFACE with the disappearing source address. 18814 */ 18815 static void 18816 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18817 { 18818 ipif_t *ipif = (ipif_t *)ipif_arg; 18819 ill_t *ire_ill; 18820 ill_t *ipif_ill; 18821 18822 ASSERT(IAM_WRITER_IPIF(ipif)); 18823 if (ire->ire_ipif == NULL) 18824 return; 18825 18826 /* 18827 * For IPv4, we derive source addresses for an IRE from ipif's 18828 * belonging to the same IPMP group as the IRE's outgoing 18829 * interface. If an IRE's outgoing interface isn't in the 18830 * same IPMP group as a particular ipif, then that ipif 18831 * couldn't have been used as a source address for this IRE. 18832 * 18833 * For IPv6, source addresses are only restricted to the IPMP group 18834 * if the IRE is for a link-local address or a multicast address. 18835 * Otherwise, source addresses for an IRE can be chosen from 18836 * interfaces other than the the outgoing interface for that IRE. 18837 * 18838 * For source address selection details, see ipif_select_source() 18839 * and ipif_select_source_v6(). 18840 */ 18841 if (ire->ire_ipversion == IPV4_VERSION || 18842 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18843 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18844 ire_ill = ire->ire_ipif->ipif_ill; 18845 ipif_ill = ipif->ipif_ill; 18846 18847 if (ire_ill->ill_group != ipif_ill->ill_group) { 18848 return; 18849 } 18850 } 18851 18852 18853 if (ire->ire_ipif != ipif) { 18854 /* 18855 * Look for a matching source address. 18856 */ 18857 if (ire->ire_type != IRE_CACHE) 18858 return; 18859 if (ipif->ipif_flags & IPIF_NOLOCAL) 18860 return; 18861 18862 if (ire->ire_ipversion == IPV4_VERSION) { 18863 if (ire->ire_src_addr != ipif->ipif_src_addr) 18864 return; 18865 } else { 18866 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18867 &ipif->ipif_v6lcl_addr)) 18868 return; 18869 } 18870 ire_delete(ire); 18871 return; 18872 } 18873 /* 18874 * ire_delete() will do an ire_flush_cache which will delete 18875 * all ire_ipif matches 18876 */ 18877 ire_delete(ire); 18878 } 18879 18880 /* 18881 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18882 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18883 * 2) when an interface is brought up or down (on that ill). 18884 * This ensures that the IRE_CACHE entries don't retain stale source 18885 * address selection results. 18886 */ 18887 void 18888 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18889 { 18890 ill_t *ill = (ill_t *)ill_arg; 18891 ill_t *ipif_ill; 18892 18893 ASSERT(IAM_WRITER_ILL(ill)); 18894 /* 18895 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18896 * Hence this should be IRE_CACHE. 18897 */ 18898 ASSERT(ire->ire_type == IRE_CACHE); 18899 18900 /* 18901 * We are called for IRE_CACHES whose ire_ipif matches ill. 18902 * We are only interested in IRE_CACHES that has borrowed 18903 * the source address from ill_arg e.g. ipif_up_done[_v6] 18904 * for which we need to look at ire_ipif->ipif_ill match 18905 * with ill. 18906 */ 18907 ASSERT(ire->ire_ipif != NULL); 18908 ipif_ill = ire->ire_ipif->ipif_ill; 18909 if (ipif_ill == ill || (ill->ill_group != NULL && 18910 ipif_ill->ill_group == ill->ill_group)) { 18911 ire_delete(ire); 18912 } 18913 } 18914 18915 /* 18916 * Delete all the ire whose stq references ill_arg. 18917 */ 18918 static void 18919 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18920 { 18921 ill_t *ill = (ill_t *)ill_arg; 18922 ill_t *ire_ill; 18923 18924 ASSERT(IAM_WRITER_ILL(ill)); 18925 /* 18926 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18927 * Hence this should be IRE_CACHE. 18928 */ 18929 ASSERT(ire->ire_type == IRE_CACHE); 18930 18931 /* 18932 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18933 * matches ill. We are only interested in IRE_CACHES that 18934 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18935 * filtering here. 18936 */ 18937 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18938 18939 if (ire_ill == ill) 18940 ire_delete(ire); 18941 } 18942 18943 /* 18944 * This is called when an ill leaves the group. We want to delete 18945 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18946 * pointing at ill. 18947 */ 18948 static void 18949 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18950 { 18951 ill_t *ill = (ill_t *)ill_arg; 18952 18953 ASSERT(IAM_WRITER_ILL(ill)); 18954 ASSERT(ill->ill_group == NULL); 18955 /* 18956 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18957 * Hence this should be IRE_CACHE. 18958 */ 18959 ASSERT(ire->ire_type == IRE_CACHE); 18960 /* 18961 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18962 * matches ill. We are interested in both. 18963 */ 18964 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18965 (ire->ire_ipif->ipif_ill == ill)); 18966 18967 ire_delete(ire); 18968 } 18969 18970 /* 18971 * Initiate deallocate of an IPIF. Always called as writer. Called by 18972 * ill_delete or ip_sioctl_removeif. 18973 */ 18974 static void 18975 ipif_free(ipif_t *ipif) 18976 { 18977 ASSERT(IAM_WRITER_IPIF(ipif)); 18978 18979 if (ipif->ipif_recovery_id != 0) 18980 (void) untimeout(ipif->ipif_recovery_id); 18981 ipif->ipif_recovery_id = 0; 18982 18983 /* Remove conn references */ 18984 reset_conn_ipif(ipif); 18985 18986 /* 18987 * Make sure we have valid net and subnet broadcast ire's for the 18988 * other ipif's which share them with this ipif. 18989 */ 18990 if (!ipif->ipif_isv6) 18991 ipif_check_bcast_ires(ipif); 18992 18993 /* 18994 * Take down the interface. We can be called either from ill_delete 18995 * or from ip_sioctl_removeif. 18996 */ 18997 (void) ipif_down(ipif, NULL, NULL); 18998 18999 /* 19000 * Now that the interface is down, there's no chance it can still 19001 * become a duplicate. Cancel any timer that may have been set while 19002 * tearing down. 19003 */ 19004 if (ipif->ipif_recovery_id != 0) 19005 (void) untimeout(ipif->ipif_recovery_id); 19006 ipif->ipif_recovery_id = 0; 19007 19008 rw_enter(&ill_g_lock, RW_WRITER); 19009 /* Remove pointers to this ill in the multicast routing tables */ 19010 reset_mrt_vif_ipif(ipif); 19011 rw_exit(&ill_g_lock); 19012 } 19013 19014 /* 19015 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19016 * also ill_move(). 19017 */ 19018 static void 19019 ipif_free_tail(ipif_t *ipif) 19020 { 19021 mblk_t *mp; 19022 ipif_t **ipifp; 19023 19024 /* 19025 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19026 */ 19027 mutex_enter(&ipif->ipif_saved_ire_lock); 19028 mp = ipif->ipif_saved_ire_mp; 19029 ipif->ipif_saved_ire_mp = NULL; 19030 mutex_exit(&ipif->ipif_saved_ire_lock); 19031 freemsg(mp); 19032 19033 /* 19034 * Need to hold both ill_g_lock and ill_lock while 19035 * inserting or removing an ipif from the linked list 19036 * of ipifs hanging off the ill. 19037 */ 19038 rw_enter(&ill_g_lock, RW_WRITER); 19039 /* 19040 * Remove all multicast memberships on the interface now. 19041 * This removes IPv4 multicast memberships joined within 19042 * the kernel as ipif_down does not do ipif_multicast_down 19043 * for IPv4. IPv6 is not handled here as the multicast memberships 19044 * are based on ill and not on ipif. 19045 */ 19046 ilm_free(ipif); 19047 19048 /* 19049 * Since we held the ill_g_lock while doing the ilm_free above, 19050 * we can assert the ilms were really deleted and not just marked 19051 * ILM_DELETED. 19052 */ 19053 ASSERT(ilm_walk_ipif(ipif) == 0); 19054 19055 19056 IPIF_TRACE_CLEANUP(ipif); 19057 19058 /* Ask SCTP to take it out of it list */ 19059 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19060 19061 mutex_enter(&ipif->ipif_ill->ill_lock); 19062 /* Get it out of the ILL interface list. */ 19063 ipifp = &ipif->ipif_ill->ill_ipif; 19064 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19065 if (*ipifp == ipif) { 19066 *ipifp = ipif->ipif_next; 19067 break; 19068 } 19069 } 19070 19071 mutex_exit(&ipif->ipif_ill->ill_lock); 19072 rw_exit(&ill_g_lock); 19073 19074 mutex_destroy(&ipif->ipif_saved_ire_lock); 19075 19076 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19077 ASSERT(ipif->ipif_recovery_id == 0); 19078 19079 /* Free the memory. */ 19080 mi_free((char *)ipif); 19081 } 19082 19083 /* 19084 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19085 * "ill_name" otherwise. 19086 */ 19087 char * 19088 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19089 { 19090 char lbuf[32]; 19091 char *name; 19092 size_t name_len; 19093 19094 buf[0] = '\0'; 19095 if (!ipif) 19096 return (buf); 19097 name = ipif->ipif_ill->ill_name; 19098 name_len = ipif->ipif_ill->ill_name_length; 19099 if (ipif->ipif_id != 0) { 19100 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19101 ipif->ipif_id); 19102 name = lbuf; 19103 name_len = mi_strlen(name) + 1; 19104 } 19105 len -= 1; 19106 buf[len] = '\0'; 19107 len = MIN(len, name_len); 19108 bcopy(name, buf, len); 19109 return (buf); 19110 } 19111 19112 /* 19113 * Find an IPIF based on the name passed in. Names can be of the 19114 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19115 * The <phys> string can have forms like <dev><#> (e.g., le0), 19116 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19117 * When there is no colon, the implied unit id is zero. <phys> must 19118 * correspond to the name of an ILL. (May be called as writer.) 19119 */ 19120 static ipif_t * 19121 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19122 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19123 mblk_t *mp, ipsq_func_t func, int *error) 19124 { 19125 char *cp; 19126 char *endp; 19127 long id; 19128 ill_t *ill; 19129 ipif_t *ipif; 19130 uint_t ire_type; 19131 boolean_t did_alloc = B_FALSE; 19132 ipsq_t *ipsq; 19133 19134 if (error != NULL) 19135 *error = 0; 19136 19137 /* 19138 * If the caller wants to us to create the ipif, make sure we have a 19139 * valid zoneid 19140 */ 19141 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19142 19143 if (namelen == 0) { 19144 if (error != NULL) 19145 *error = ENXIO; 19146 return (NULL); 19147 } 19148 19149 *exists = B_FALSE; 19150 /* Look for a colon in the name. */ 19151 endp = &name[namelen]; 19152 for (cp = endp; --cp > name; ) { 19153 if (*cp == IPIF_SEPARATOR_CHAR) 19154 break; 19155 } 19156 19157 if (*cp == IPIF_SEPARATOR_CHAR) { 19158 /* 19159 * Reject any non-decimal aliases for logical 19160 * interfaces. Aliases with leading zeroes 19161 * are also rejected as they introduce ambiguity 19162 * in the naming of the interfaces. 19163 * In order to confirm with existing semantics, 19164 * and to not break any programs/script relying 19165 * on that behaviour, if<0>:0 is considered to be 19166 * a valid interface. 19167 * 19168 * If alias has two or more digits and the first 19169 * is zero, fail. 19170 */ 19171 if (&cp[2] < endp && cp[1] == '0') 19172 return (NULL); 19173 } 19174 19175 if (cp <= name) { 19176 cp = endp; 19177 } else { 19178 *cp = '\0'; 19179 } 19180 19181 /* 19182 * Look up the ILL, based on the portion of the name 19183 * before the slash. ill_lookup_on_name returns a held ill. 19184 * Temporary to check whether ill exists already. If so 19185 * ill_lookup_on_name will clear it. 19186 */ 19187 ill = ill_lookup_on_name(name, do_alloc, isv6, 19188 q, mp, func, error, &did_alloc); 19189 if (cp != endp) 19190 *cp = IPIF_SEPARATOR_CHAR; 19191 if (ill == NULL) 19192 return (NULL); 19193 19194 /* Establish the unit number in the name. */ 19195 id = 0; 19196 if (cp < endp && *endp == '\0') { 19197 /* If there was a colon, the unit number follows. */ 19198 cp++; 19199 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19200 ill_refrele(ill); 19201 if (error != NULL) 19202 *error = ENXIO; 19203 return (NULL); 19204 } 19205 } 19206 19207 GRAB_CONN_LOCK(q); 19208 mutex_enter(&ill->ill_lock); 19209 /* Now see if there is an IPIF with this unit number. */ 19210 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19211 if (ipif->ipif_id == id) { 19212 if (zoneid != ALL_ZONES && 19213 zoneid != ipif->ipif_zoneid && 19214 ipif->ipif_zoneid != ALL_ZONES) { 19215 mutex_exit(&ill->ill_lock); 19216 RELEASE_CONN_LOCK(q); 19217 ill_refrele(ill); 19218 if (error != NULL) 19219 *error = ENXIO; 19220 return (NULL); 19221 } 19222 /* 19223 * The block comment at the start of ipif_down 19224 * explains the use of the macros used below 19225 */ 19226 if (IPIF_CAN_LOOKUP(ipif)) { 19227 ipif_refhold_locked(ipif); 19228 mutex_exit(&ill->ill_lock); 19229 if (!did_alloc) 19230 *exists = B_TRUE; 19231 /* 19232 * Drop locks before calling ill_refrele 19233 * since it can potentially call into 19234 * ipif_ill_refrele_tail which can end up 19235 * in trying to acquire any lock. 19236 */ 19237 RELEASE_CONN_LOCK(q); 19238 ill_refrele(ill); 19239 return (ipif); 19240 } else if (IPIF_CAN_WAIT(ipif, q)) { 19241 ipsq = ill->ill_phyint->phyint_ipsq; 19242 mutex_enter(&ipsq->ipsq_lock); 19243 mutex_exit(&ill->ill_lock); 19244 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19245 mutex_exit(&ipsq->ipsq_lock); 19246 RELEASE_CONN_LOCK(q); 19247 ill_refrele(ill); 19248 *error = EINPROGRESS; 19249 return (NULL); 19250 } 19251 } 19252 } 19253 RELEASE_CONN_LOCK(q); 19254 19255 if (!do_alloc) { 19256 mutex_exit(&ill->ill_lock); 19257 ill_refrele(ill); 19258 if (error != NULL) 19259 *error = ENXIO; 19260 return (NULL); 19261 } 19262 19263 /* 19264 * If none found, atomically allocate and return a new one. 19265 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19266 * to support "receive only" use of lo0:1 etc. as is still done 19267 * below as an initial guess. 19268 * However, this is now likely to be overriden later in ipif_up_done() 19269 * when we know for sure what address has been configured on the 19270 * interface, since we might have more than one loopback interface 19271 * with a loopback address, e.g. in the case of zones, and all the 19272 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19273 */ 19274 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19275 ire_type = IRE_LOOPBACK; 19276 else 19277 ire_type = IRE_LOCAL; 19278 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19279 if (ipif != NULL) 19280 ipif_refhold_locked(ipif); 19281 else if (error != NULL) 19282 *error = ENOMEM; 19283 mutex_exit(&ill->ill_lock); 19284 ill_refrele(ill); 19285 return (ipif); 19286 } 19287 19288 /* 19289 * This routine is called whenever a new address comes up on an ipif. If 19290 * we are configured to respond to address mask requests, then we are supposed 19291 * to broadcast an address mask reply at this time. This routine is also 19292 * called if we are already up, but a netmask change is made. This is legal 19293 * but might not make the system manager very popular. (May be called 19294 * as writer.) 19295 */ 19296 void 19297 ipif_mask_reply(ipif_t *ipif) 19298 { 19299 icmph_t *icmph; 19300 ipha_t *ipha; 19301 mblk_t *mp; 19302 19303 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19304 19305 if (!ip_respond_to_address_mask_broadcast) 19306 return; 19307 19308 /* ICMP mask reply is IPv4 only */ 19309 ASSERT(!ipif->ipif_isv6); 19310 /* ICMP mask reply is not for a loopback interface */ 19311 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19312 19313 mp = allocb(REPLY_LEN, BPRI_HI); 19314 if (mp == NULL) 19315 return; 19316 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19317 19318 ipha = (ipha_t *)mp->b_rptr; 19319 bzero(ipha, REPLY_LEN); 19320 *ipha = icmp_ipha; 19321 ipha->ipha_ttl = ip_broadcast_ttl; 19322 ipha->ipha_src = ipif->ipif_src_addr; 19323 ipha->ipha_dst = ipif->ipif_brd_addr; 19324 ipha->ipha_length = htons(REPLY_LEN); 19325 ipha->ipha_ident = 0; 19326 19327 icmph = (icmph_t *)&ipha[1]; 19328 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19329 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19330 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19331 if (icmph->icmph_checksum == 0) 19332 icmph->icmph_checksum = 0xffff; 19333 19334 put(ipif->ipif_wq, mp); 19335 19336 #undef REPLY_LEN 19337 } 19338 19339 /* 19340 * When the mtu in the ipif changes, we call this routine through ire_walk 19341 * to update all the relevant IREs. 19342 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19343 */ 19344 static void 19345 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19346 { 19347 ipif_t *ipif = (ipif_t *)ipif_arg; 19348 19349 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19350 return; 19351 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19352 } 19353 19354 /* 19355 * When the mtu in the ill changes, we call this routine through ire_walk 19356 * to update all the relevant IREs. 19357 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19358 */ 19359 void 19360 ill_mtu_change(ire_t *ire, char *ill_arg) 19361 { 19362 ill_t *ill = (ill_t *)ill_arg; 19363 19364 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19365 return; 19366 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19367 } 19368 19369 /* 19370 * Join the ipif specific multicast groups. 19371 * Must be called after a mapping has been set up in the resolver. (Always 19372 * called as writer.) 19373 */ 19374 void 19375 ipif_multicast_up(ipif_t *ipif) 19376 { 19377 int err, index; 19378 ill_t *ill; 19379 19380 ASSERT(IAM_WRITER_IPIF(ipif)); 19381 19382 ill = ipif->ipif_ill; 19383 index = ill->ill_phyint->phyint_ifindex; 19384 19385 ip1dbg(("ipif_multicast_up\n")); 19386 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19387 return; 19388 19389 if (ipif->ipif_isv6) { 19390 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19391 return; 19392 19393 /* Join the all hosts multicast address */ 19394 ip1dbg(("ipif_multicast_up - addmulti\n")); 19395 /* 19396 * Passing B_TRUE means we have to join the multicast 19397 * membership on this interface even though this is 19398 * FAILED. If we join on a different one in the group, 19399 * we will not be able to delete the membership later 19400 * as we currently don't track where we join when we 19401 * join within the kernel unlike applications where 19402 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19403 * for more on this. 19404 */ 19405 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19406 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19407 if (err != 0) { 19408 ip0dbg(("ipif_multicast_up: " 19409 "all_hosts_mcast failed %d\n", 19410 err)); 19411 return; 19412 } 19413 /* 19414 * Enable multicast for the solicited node multicast address 19415 */ 19416 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19417 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19418 19419 ipv6_multi.s6_addr32[3] |= 19420 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19421 19422 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19423 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19424 NULL); 19425 if (err != 0) { 19426 ip0dbg(("ipif_multicast_up: solicited MC" 19427 " failed %d\n", err)); 19428 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19429 ill, ill->ill_phyint->phyint_ifindex, 19430 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19431 return; 19432 } 19433 } 19434 } else { 19435 if (ipif->ipif_lcl_addr == INADDR_ANY) 19436 return; 19437 19438 /* Join the all hosts multicast address */ 19439 ip1dbg(("ipif_multicast_up - addmulti\n")); 19440 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19441 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19442 if (err) { 19443 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19444 return; 19445 } 19446 } 19447 ipif->ipif_multicast_up = 1; 19448 } 19449 19450 /* 19451 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19452 * any explicit memberships are blown away in ill_leave_multicast() when the 19453 * ill is brought down. 19454 */ 19455 static void 19456 ipif_multicast_down(ipif_t *ipif) 19457 { 19458 int err; 19459 19460 ASSERT(IAM_WRITER_IPIF(ipif)); 19461 19462 ip1dbg(("ipif_multicast_down\n")); 19463 if (!ipif->ipif_multicast_up) 19464 return; 19465 19466 ASSERT(ipif->ipif_isv6); 19467 19468 ip1dbg(("ipif_multicast_down - delmulti\n")); 19469 19470 /* 19471 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19472 * we should look for ilms on this ill rather than the ones that have 19473 * been failed over here. They are here temporarily. As 19474 * ipif_multicast_up has joined on this ill, we should delete only 19475 * from this ill. 19476 */ 19477 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19478 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19479 B_TRUE, B_TRUE); 19480 if (err != 0) { 19481 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19482 err)); 19483 } 19484 /* 19485 * Disable multicast for the solicited node multicast address 19486 */ 19487 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19488 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19489 19490 ipv6_multi.s6_addr32[3] |= 19491 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19492 19493 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19494 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19495 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19496 19497 if (err != 0) { 19498 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19499 err)); 19500 } 19501 } 19502 19503 ipif->ipif_multicast_up = 0; 19504 } 19505 19506 /* 19507 * Used when an interface comes up to recreate any extra routes on this 19508 * interface. 19509 */ 19510 static ire_t ** 19511 ipif_recover_ire(ipif_t *ipif) 19512 { 19513 mblk_t *mp; 19514 ire_t **ipif_saved_irep; 19515 ire_t **irep; 19516 19517 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19518 ipif->ipif_id)); 19519 19520 mutex_enter(&ipif->ipif_saved_ire_lock); 19521 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19522 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19523 if (ipif_saved_irep == NULL) { 19524 mutex_exit(&ipif->ipif_saved_ire_lock); 19525 return (NULL); 19526 } 19527 19528 irep = ipif_saved_irep; 19529 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19530 ire_t *ire; 19531 queue_t *rfq; 19532 queue_t *stq; 19533 ifrt_t *ifrt; 19534 uchar_t *src_addr; 19535 uchar_t *gateway_addr; 19536 mblk_t *resolver_mp; 19537 ushort_t type; 19538 19539 /* 19540 * When the ire was initially created and then added in 19541 * ip_rt_add(), it was created either using ipif->ipif_net_type 19542 * in the case of a traditional interface route, or as one of 19543 * the IRE_OFFSUBNET types (with the exception of 19544 * IRE_HOST types ire which is created by icmp_redirect() and 19545 * which we don't need to save or recover). In the case where 19546 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19547 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19548 * to satisfy software like GateD and Sun Cluster which creates 19549 * routes using the the loopback interface's address as a 19550 * gateway. 19551 * 19552 * As ifrt->ifrt_type reflects the already updated ire_type and 19553 * since ire_create() expects that IRE_IF_NORESOLVER will have 19554 * a valid nce_res_mp field (which doesn't make sense for a 19555 * IRE_LOOPBACK), ire_create() will be called in the same way 19556 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19557 * the route looks like a traditional interface route (where 19558 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19559 * the saved ifrt->ifrt_type. This means that in the case where 19560 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19561 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19562 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19563 */ 19564 ifrt = (ifrt_t *)mp->b_rptr; 19565 if (ifrt->ifrt_type & IRE_INTERFACE) { 19566 rfq = NULL; 19567 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19568 ? ipif->ipif_rq : ipif->ipif_wq; 19569 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19570 ? (uint8_t *)&ifrt->ifrt_src_addr 19571 : (uint8_t *)&ipif->ipif_src_addr; 19572 gateway_addr = NULL; 19573 resolver_mp = ipif->ipif_resolver_mp; 19574 type = ipif->ipif_net_type; 19575 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19576 /* Recover multiroute broadcast IRE. */ 19577 rfq = ipif->ipif_rq; 19578 stq = ipif->ipif_wq; 19579 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19580 ? (uint8_t *)&ifrt->ifrt_src_addr 19581 : (uint8_t *)&ipif->ipif_src_addr; 19582 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19583 resolver_mp = ipif->ipif_bcast_mp; 19584 type = ifrt->ifrt_type; 19585 } else { 19586 rfq = NULL; 19587 stq = NULL; 19588 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19589 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19590 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19591 resolver_mp = NULL; 19592 type = ifrt->ifrt_type; 19593 } 19594 19595 /* 19596 * Create a copy of the IRE with the saved address and netmask. 19597 */ 19598 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19599 "0x%x/0x%x\n", 19600 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19601 ntohl(ifrt->ifrt_addr), 19602 ntohl(ifrt->ifrt_mask))); 19603 ire = ire_create( 19604 (uint8_t *)&ifrt->ifrt_addr, 19605 (uint8_t *)&ifrt->ifrt_mask, 19606 src_addr, 19607 gateway_addr, 19608 NULL, 19609 &ifrt->ifrt_max_frag, 19610 NULL, 19611 rfq, 19612 stq, 19613 type, 19614 resolver_mp, 19615 ipif, 19616 NULL, 19617 0, 19618 0, 19619 0, 19620 ifrt->ifrt_flags, 19621 &ifrt->ifrt_iulp_info, 19622 NULL, 19623 NULL); 19624 19625 if (ire == NULL) { 19626 mutex_exit(&ipif->ipif_saved_ire_lock); 19627 kmem_free(ipif_saved_irep, 19628 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19629 return (NULL); 19630 } 19631 19632 /* 19633 * Some software (for example, GateD and Sun Cluster) attempts 19634 * to create (what amount to) IRE_PREFIX routes with the 19635 * loopback address as the gateway. This is primarily done to 19636 * set up prefixes with the RTF_REJECT flag set (for example, 19637 * when generating aggregate routes.) 19638 * 19639 * If the IRE type (as defined by ipif->ipif_net_type) is 19640 * IRE_LOOPBACK, then we map the request into a 19641 * IRE_IF_NORESOLVER. 19642 */ 19643 if (ipif->ipif_net_type == IRE_LOOPBACK) 19644 ire->ire_type = IRE_IF_NORESOLVER; 19645 /* 19646 * ire held by ire_add, will be refreled' towards the 19647 * the end of ipif_up_done 19648 */ 19649 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19650 *irep = ire; 19651 irep++; 19652 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19653 } 19654 mutex_exit(&ipif->ipif_saved_ire_lock); 19655 return (ipif_saved_irep); 19656 } 19657 19658 /* 19659 * Used to set the netmask and broadcast address to default values when the 19660 * interface is brought up. (Always called as writer.) 19661 */ 19662 static void 19663 ipif_set_default(ipif_t *ipif) 19664 { 19665 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19666 19667 if (!ipif->ipif_isv6) { 19668 /* 19669 * Interface holds an IPv4 address. Default 19670 * mask is the natural netmask. 19671 */ 19672 if (!ipif->ipif_net_mask) { 19673 ipaddr_t v4mask; 19674 19675 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19676 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19677 } 19678 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19679 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19680 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19681 } else { 19682 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19683 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19684 } 19685 /* 19686 * NOTE: SunOS 4.X does this even if the broadcast address 19687 * has been already set thus we do the same here. 19688 */ 19689 if (ipif->ipif_flags & IPIF_BROADCAST) { 19690 ipaddr_t v4addr; 19691 19692 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19693 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19694 } 19695 } else { 19696 /* 19697 * Interface holds an IPv6-only address. Default 19698 * mask is all-ones. 19699 */ 19700 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19701 ipif->ipif_v6net_mask = ipv6_all_ones; 19702 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19703 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19704 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19705 } else { 19706 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19707 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19708 } 19709 } 19710 } 19711 19712 /* 19713 * Return 0 if this address can be used as local address without causing 19714 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19715 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19716 * Special checks are needed to allow the same IPv6 link-local address 19717 * on different ills. 19718 * TODO: allowing the same site-local address on different ill's. 19719 */ 19720 int 19721 ip_addr_availability_check(ipif_t *new_ipif) 19722 { 19723 in6_addr_t our_v6addr; 19724 ill_t *ill; 19725 ipif_t *ipif; 19726 ill_walk_context_t ctx; 19727 19728 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19729 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19730 ASSERT(RW_READ_HELD(&ill_g_lock)); 19731 19732 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19733 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19734 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19735 return (0); 19736 19737 our_v6addr = new_ipif->ipif_v6lcl_addr; 19738 19739 if (new_ipif->ipif_isv6) 19740 ill = ILL_START_WALK_V6(&ctx); 19741 else 19742 ill = ILL_START_WALK_V4(&ctx); 19743 19744 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19745 for (ipif = ill->ill_ipif; ipif != NULL; 19746 ipif = ipif->ipif_next) { 19747 if ((ipif == new_ipif) || 19748 !(ipif->ipif_flags & IPIF_UP) || 19749 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19750 continue; 19751 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19752 &our_v6addr)) { 19753 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19754 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19755 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19756 ipif->ipif_flags |= IPIF_UNNUMBERED; 19757 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19758 new_ipif->ipif_ill != ill) 19759 continue; 19760 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19761 new_ipif->ipif_ill != ill) 19762 continue; 19763 else if (new_ipif->ipif_zoneid != 19764 ipif->ipif_zoneid && 19765 ipif->ipif_zoneid != ALL_ZONES && 19766 (ill->ill_phyint->phyint_flags & 19767 PHYI_LOOPBACK)) 19768 continue; 19769 else if (new_ipif->ipif_ill == ill) 19770 return (EADDRINUSE); 19771 else 19772 return (EADDRNOTAVAIL); 19773 } 19774 } 19775 } 19776 19777 return (0); 19778 } 19779 19780 /* 19781 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19782 * IREs for the ipif. 19783 * When the routine returns EINPROGRESS then mp has been consumed and 19784 * the ioctl will be acked from ip_rput_dlpi. 19785 */ 19786 static int 19787 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19788 { 19789 ill_t *ill = ipif->ipif_ill; 19790 boolean_t isv6 = ipif->ipif_isv6; 19791 int err = 0; 19792 boolean_t success; 19793 19794 ASSERT(IAM_WRITER_IPIF(ipif)); 19795 19796 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19797 19798 /* Shouldn't get here if it is already up. */ 19799 if (ipif->ipif_flags & IPIF_UP) 19800 return (EALREADY); 19801 19802 /* Skip arp/ndp for any loopback interface. */ 19803 if (ill->ill_wq != NULL) { 19804 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19805 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19806 19807 if (!ill->ill_dl_up) { 19808 /* 19809 * ill_dl_up is not yet set. i.e. we are yet to 19810 * DL_BIND with the driver and this is the first 19811 * logical interface on the ill to become "up". 19812 * Tell the driver to get going (via DL_BIND_REQ). 19813 * Note that changing "significant" IFF_ flags 19814 * address/netmask etc cause a down/up dance, but 19815 * does not cause an unbind (DL_UNBIND) with the driver 19816 */ 19817 return (ill_dl_up(ill, ipif, mp, q)); 19818 } 19819 19820 /* 19821 * ipif_resolver_up may end up sending an 19822 * AR_INTERFACE_UP message to ARP, which would, in 19823 * turn send a DLPI message to the driver. ioctls are 19824 * serialized and so we cannot send more than one 19825 * interface up message at a time. If ipif_resolver_up 19826 * does send an interface up message to ARP, we get 19827 * EINPROGRESS and we will complete in ip_arp_done. 19828 */ 19829 19830 ASSERT(connp != NULL || !CONN_Q(q)); 19831 ASSERT(ipsq->ipsq_pending_mp == NULL); 19832 if (connp != NULL) 19833 mutex_enter(&connp->conn_lock); 19834 mutex_enter(&ill->ill_lock); 19835 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19836 mutex_exit(&ill->ill_lock); 19837 if (connp != NULL) 19838 mutex_exit(&connp->conn_lock); 19839 if (!success) 19840 return (EINTR); 19841 19842 /* 19843 * Crank up IPv6 neighbor discovery 19844 * Unlike ARP, this should complete when 19845 * ipif_ndp_up returns. However, for 19846 * ILLF_XRESOLV interfaces we also send a 19847 * AR_INTERFACE_UP to the external resolver. 19848 * That ioctl will complete in ip_rput. 19849 */ 19850 if (isv6) { 19851 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 19852 if (err != 0) { 19853 if (err != EINPROGRESS) 19854 mp = ipsq_pending_mp_get(ipsq, &connp); 19855 return (err); 19856 } 19857 } 19858 /* Now, ARP */ 19859 err = ipif_resolver_up(ipif, Res_act_initial); 19860 if (err == EINPROGRESS) { 19861 /* We will complete it in ip_arp_done */ 19862 return (err); 19863 } 19864 mp = ipsq_pending_mp_get(ipsq, &connp); 19865 ASSERT(mp != NULL); 19866 if (err != 0) 19867 return (err); 19868 } else { 19869 /* 19870 * Interfaces without underlying hardware don't do duplicate 19871 * address detection. 19872 */ 19873 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19874 ipif->ipif_addr_ready = 1; 19875 } 19876 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19877 } 19878 19879 /* 19880 * Perform a bind for the physical device. 19881 * When the routine returns EINPROGRESS then mp has been consumed and 19882 * the ioctl will be acked from ip_rput_dlpi. 19883 * Allocate an unbind message and save it until ipif_down. 19884 */ 19885 static int 19886 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19887 { 19888 mblk_t *areq_mp = NULL; 19889 mblk_t *bind_mp = NULL; 19890 mblk_t *unbind_mp = NULL; 19891 conn_t *connp; 19892 boolean_t success; 19893 19894 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19895 ASSERT(IAM_WRITER_ILL(ill)); 19896 19897 ASSERT(mp != NULL); 19898 19899 /* Create a resolver cookie for ARP */ 19900 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19901 areq_t *areq; 19902 uint16_t sap_addr; 19903 19904 areq_mp = ill_arp_alloc(ill, 19905 (uchar_t *)&ip_areq_template, 0); 19906 if (areq_mp == NULL) { 19907 return (ENOMEM); 19908 } 19909 freemsg(ill->ill_resolver_mp); 19910 ill->ill_resolver_mp = areq_mp; 19911 areq = (areq_t *)areq_mp->b_rptr; 19912 sap_addr = ill->ill_sap; 19913 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19914 /* 19915 * Wait till we call ill_pending_mp_add to determine 19916 * the success before we free the ill_resolver_mp and 19917 * attach areq_mp in it's place. 19918 */ 19919 } 19920 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19921 DL_BIND_REQ); 19922 if (bind_mp == NULL) 19923 goto bad; 19924 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19925 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19926 19927 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19928 if (unbind_mp == NULL) 19929 goto bad; 19930 19931 /* 19932 * Record state needed to complete this operation when the 19933 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19934 */ 19935 ASSERT(WR(q)->q_next == NULL); 19936 connp = Q_TO_CONN(q); 19937 19938 mutex_enter(&connp->conn_lock); 19939 mutex_enter(&ipif->ipif_ill->ill_lock); 19940 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19941 mutex_exit(&ipif->ipif_ill->ill_lock); 19942 mutex_exit(&connp->conn_lock); 19943 if (!success) 19944 goto bad; 19945 19946 /* 19947 * Save the unbind message for ill_dl_down(); it will be consumed when 19948 * the interface goes down. 19949 */ 19950 ASSERT(ill->ill_unbind_mp == NULL); 19951 ill->ill_unbind_mp = unbind_mp; 19952 19953 ill_dlpi_send(ill, bind_mp); 19954 /* Send down link-layer capabilities probe if not already done. */ 19955 ill_capability_probe(ill); 19956 19957 /* 19958 * Sysid used to rely on the fact that netboots set domainname 19959 * and the like. Now that miniroot boots aren't strictly netboots 19960 * and miniroot network configuration is driven from userland 19961 * these things still need to be set. This situation can be detected 19962 * by comparing the interface being configured here to the one 19963 * dhcack was set to reference by the boot loader. Once sysid is 19964 * converted to use dhcp_ipc_getinfo() this call can go away. 19965 */ 19966 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19967 (strcmp(ill->ill_name, dhcack) == 0) && 19968 (strlen(srpc_domain) == 0)) { 19969 if (dhcpinit() != 0) 19970 cmn_err(CE_WARN, "no cached dhcp response"); 19971 } 19972 19973 /* 19974 * This operation will complete in ip_rput_dlpi with either 19975 * a DL_BIND_ACK or DL_ERROR_ACK. 19976 */ 19977 return (EINPROGRESS); 19978 bad: 19979 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19980 /* 19981 * We don't have to check for possible removal from illgrp 19982 * as we have not yet inserted in illgrp. For groups 19983 * without names, this ipif is still not UP and hence 19984 * this could not have possibly had any influence in forming 19985 * groups. 19986 */ 19987 19988 freemsg(bind_mp); 19989 freemsg(unbind_mp); 19990 return (ENOMEM); 19991 } 19992 19993 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19994 19995 /* 19996 * DLPI and ARP is up. 19997 * Create all the IREs associated with an interface bring up multicast. 19998 * Set the interface flag and finish other initialization 19999 * that potentially had to be differed to after DL_BIND_ACK. 20000 */ 20001 int 20002 ipif_up_done(ipif_t *ipif) 20003 { 20004 ire_t *ire_array[20]; 20005 ire_t **irep = ire_array; 20006 ire_t **irep1; 20007 ipaddr_t net_mask = 0; 20008 ipaddr_t subnet_mask, route_mask; 20009 ill_t *ill = ipif->ipif_ill; 20010 queue_t *stq; 20011 ipif_t *src_ipif; 20012 ipif_t *tmp_ipif; 20013 boolean_t flush_ire_cache = B_TRUE; 20014 int err = 0; 20015 phyint_t *phyi; 20016 ire_t **ipif_saved_irep = NULL; 20017 int ipif_saved_ire_cnt; 20018 int cnt; 20019 boolean_t src_ipif_held = B_FALSE; 20020 boolean_t ire_added = B_FALSE; 20021 boolean_t loopback = B_FALSE; 20022 20023 ip1dbg(("ipif_up_done(%s:%u)\n", 20024 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20025 /* Check if this is a loopback interface */ 20026 if (ipif->ipif_ill->ill_wq == NULL) 20027 loopback = B_TRUE; 20028 20029 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20030 /* 20031 * If all other interfaces for this ill are down or DEPRECATED, 20032 * or otherwise unsuitable for source address selection, remove 20033 * any IRE_CACHE entries for this ill to make sure source 20034 * address selection gets to take this new ipif into account. 20035 * No need to hold ill_lock while traversing the ipif list since 20036 * we are writer 20037 */ 20038 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20039 tmp_ipif = tmp_ipif->ipif_next) { 20040 if (((tmp_ipif->ipif_flags & 20041 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20042 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20043 (tmp_ipif == ipif)) 20044 continue; 20045 /* first useable pre-existing interface */ 20046 flush_ire_cache = B_FALSE; 20047 break; 20048 } 20049 if (flush_ire_cache) 20050 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20051 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20052 20053 /* 20054 * Figure out which way the send-to queue should go. Only 20055 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20056 * should show up here. 20057 */ 20058 switch (ill->ill_net_type) { 20059 case IRE_IF_RESOLVER: 20060 stq = ill->ill_rq; 20061 break; 20062 case IRE_IF_NORESOLVER: 20063 case IRE_LOOPBACK: 20064 stq = ill->ill_wq; 20065 break; 20066 default: 20067 return (EINVAL); 20068 } 20069 20070 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20071 /* 20072 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20073 * ipif_lookup_on_name(), but in the case of zones we can have 20074 * several loopback addresses on lo0. So all the interfaces with 20075 * loopback addresses need to be marked IRE_LOOPBACK. 20076 */ 20077 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20078 htonl(INADDR_LOOPBACK)) 20079 ipif->ipif_ire_type = IRE_LOOPBACK; 20080 else 20081 ipif->ipif_ire_type = IRE_LOCAL; 20082 } 20083 20084 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20085 /* 20086 * Can't use our source address. Select a different 20087 * source address for the IRE_INTERFACE and IRE_LOCAL 20088 */ 20089 src_ipif = ipif_select_source(ipif->ipif_ill, 20090 ipif->ipif_subnet, ipif->ipif_zoneid); 20091 if (src_ipif == NULL) 20092 src_ipif = ipif; /* Last resort */ 20093 else 20094 src_ipif_held = B_TRUE; 20095 } else { 20096 src_ipif = ipif; 20097 } 20098 20099 /* Create all the IREs associated with this interface */ 20100 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20101 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20102 20103 /* 20104 * If we're on a labeled system then make sure that zone- 20105 * private addresses have proper remote host database entries. 20106 */ 20107 if (is_system_labeled() && 20108 ipif->ipif_ire_type != IRE_LOOPBACK && 20109 !tsol_check_interface_address(ipif)) 20110 return (EINVAL); 20111 20112 /* Register the source address for __sin6_src_id */ 20113 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20114 ipif->ipif_zoneid); 20115 if (err != 0) { 20116 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20117 return (err); 20118 } 20119 20120 /* If the interface address is set, create the local IRE. */ 20121 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20122 (void *)ipif, 20123 ipif->ipif_ire_type, 20124 ntohl(ipif->ipif_lcl_addr))); 20125 *irep++ = ire_create( 20126 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20127 (uchar_t *)&ip_g_all_ones, /* mask */ 20128 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20129 NULL, /* no gateway */ 20130 NULL, 20131 &ip_loopback_mtuplus, /* max frag size */ 20132 NULL, 20133 ipif->ipif_rq, /* recv-from queue */ 20134 NULL, /* no send-to queue */ 20135 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20136 NULL, 20137 ipif, 20138 NULL, 20139 0, 20140 0, 20141 0, 20142 (ipif->ipif_flags & IPIF_PRIVATE) ? 20143 RTF_PRIVATE : 0, 20144 &ire_uinfo_null, 20145 NULL, 20146 NULL); 20147 } else { 20148 ip1dbg(( 20149 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20150 ipif->ipif_ire_type, 20151 ntohl(ipif->ipif_lcl_addr), 20152 (uint_t)ipif->ipif_flags)); 20153 } 20154 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20155 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20156 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20157 } else { 20158 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20159 } 20160 20161 subnet_mask = ipif->ipif_net_mask; 20162 20163 /* 20164 * If mask was not specified, use natural netmask of 20165 * interface address. Also, store this mask back into the 20166 * ipif struct. 20167 */ 20168 if (subnet_mask == 0) { 20169 subnet_mask = net_mask; 20170 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20171 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20172 ipif->ipif_v6subnet); 20173 } 20174 20175 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20176 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20177 ipif->ipif_subnet != INADDR_ANY) { 20178 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20179 20180 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20181 route_mask = IP_HOST_MASK; 20182 } else { 20183 route_mask = subnet_mask; 20184 } 20185 20186 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20187 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20188 (void *)ipif, (void *)ill, 20189 ill->ill_net_type, 20190 ntohl(ipif->ipif_subnet))); 20191 *irep++ = ire_create( 20192 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20193 (uchar_t *)&route_mask, /* mask */ 20194 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20195 NULL, /* no gateway */ 20196 NULL, 20197 &ipif->ipif_mtu, /* max frag */ 20198 NULL, 20199 NULL, /* no recv queue */ 20200 stq, /* send-to queue */ 20201 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20202 ill->ill_resolver_mp, /* xmit header */ 20203 ipif, 20204 NULL, 20205 0, 20206 0, 20207 0, 20208 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20209 &ire_uinfo_null, 20210 NULL, 20211 NULL); 20212 } 20213 20214 /* 20215 * If the interface address is set, create the broadcast IREs. 20216 * 20217 * ire_create_bcast checks if the proposed new IRE matches 20218 * any existing IRE's with the same physical interface (ILL). 20219 * This should get rid of duplicates. 20220 * ire_create_bcast also check IPIF_NOXMIT and does not create 20221 * any broadcast ires. 20222 */ 20223 if ((ipif->ipif_subnet != INADDR_ANY) && 20224 (ipif->ipif_flags & IPIF_BROADCAST)) { 20225 ipaddr_t addr; 20226 20227 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20228 irep = ire_check_and_create_bcast(ipif, 0, irep, 20229 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20230 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20231 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20232 20233 /* 20234 * For backward compatibility, we need to create net 20235 * broadcast ire's based on the old "IP address class 20236 * system." The reason is that some old machines only 20237 * respond to these class derived net broadcast. 20238 * 20239 * But we should not create these net broadcast ire's if 20240 * the subnet_mask is shorter than the IP address class based 20241 * derived netmask. Otherwise, we may create a net 20242 * broadcast address which is the same as an IP address 20243 * on the subnet. Then TCP will refuse to talk to that 20244 * address. 20245 * 20246 * Nor do we need IRE_BROADCAST ire's for the interface 20247 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20248 * interface is already created. Creating these broadcast 20249 * ire's will only create confusion as the "addr" is going 20250 * to be same as that of the IP address of the interface. 20251 */ 20252 if (net_mask < subnet_mask) { 20253 addr = net_mask & ipif->ipif_subnet; 20254 irep = ire_check_and_create_bcast(ipif, addr, irep, 20255 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20256 irep = ire_check_and_create_bcast(ipif, 20257 ~net_mask | addr, irep, 20258 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20259 } 20260 20261 if (subnet_mask != 0xFFFFFFFF) { 20262 addr = ipif->ipif_subnet; 20263 irep = ire_check_and_create_bcast(ipif, addr, irep, 20264 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20265 irep = ire_check_and_create_bcast(ipif, 20266 ~subnet_mask|addr, irep, 20267 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20268 } 20269 } 20270 20271 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20272 20273 /* If an earlier ire_create failed, get out now */ 20274 for (irep1 = irep; irep1 > ire_array; ) { 20275 irep1--; 20276 if (*irep1 == NULL) { 20277 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20278 err = ENOMEM; 20279 goto bad; 20280 } 20281 } 20282 20283 /* 20284 * Need to atomically check for ip_addr_availablity_check 20285 * under ip_addr_avail_lock, and if it fails got bad, and remove 20286 * from group also.The ill_g_lock is grabbed as reader 20287 * just to make sure no new ills or new ipifs are being added 20288 * to the system while we are checking the uniqueness of addresses. 20289 */ 20290 rw_enter(&ill_g_lock, RW_READER); 20291 mutex_enter(&ip_addr_avail_lock); 20292 /* Mark it up, and increment counters. */ 20293 ipif->ipif_flags |= IPIF_UP; 20294 ill->ill_ipif_up_count++; 20295 err = ip_addr_availability_check(ipif); 20296 mutex_exit(&ip_addr_avail_lock); 20297 rw_exit(&ill_g_lock); 20298 20299 if (err != 0) { 20300 /* 20301 * Our address may already be up on the same ill. In this case, 20302 * the ARP entry for our ipif replaced the one for the other 20303 * ipif. So we don't want to delete it (otherwise the other ipif 20304 * would be unable to send packets). 20305 * ip_addr_availability_check() identifies this case for us and 20306 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20307 * which is the expected error code. 20308 */ 20309 if (err == EADDRINUSE) { 20310 freemsg(ipif->ipif_arp_del_mp); 20311 ipif->ipif_arp_del_mp = NULL; 20312 err = EADDRNOTAVAIL; 20313 } 20314 ill->ill_ipif_up_count--; 20315 ipif->ipif_flags &= ~IPIF_UP; 20316 goto bad; 20317 } 20318 20319 /* 20320 * Add in all newly created IREs. ire_create_bcast() has 20321 * already checked for duplicates of the IRE_BROADCAST type. 20322 * We want to add before we call ifgrp_insert which wants 20323 * to know whether IRE_IF_RESOLVER exists or not. 20324 * 20325 * NOTE : We refrele the ire though we may branch to "bad" 20326 * later on where we do ire_delete. This is okay 20327 * because nobody can delete it as we are running 20328 * exclusively. 20329 */ 20330 for (irep1 = irep; irep1 > ire_array; ) { 20331 irep1--; 20332 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20333 /* 20334 * refheld by ire_add. refele towards the end of the func 20335 */ 20336 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20337 } 20338 ire_added = B_TRUE; 20339 /* 20340 * Form groups if possible. 20341 * 20342 * If we are supposed to be in a ill_group with a name, insert it 20343 * now as we know that at least one ipif is UP. Otherwise form 20344 * nameless groups. 20345 * 20346 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20347 * this ipif into the appropriate interface group, or create a 20348 * new one. If this is already in a nameless group, we try to form 20349 * a bigger group looking at other ills potentially sharing this 20350 * ipif's prefix. 20351 */ 20352 phyi = ill->ill_phyint; 20353 if (phyi->phyint_groupname_len != 0) { 20354 ASSERT(phyi->phyint_groupname != NULL); 20355 if (ill->ill_ipif_up_count == 1) { 20356 ASSERT(ill->ill_group == NULL); 20357 err = illgrp_insert(&illgrp_head_v4, ill, 20358 phyi->phyint_groupname, NULL, B_TRUE); 20359 if (err != 0) { 20360 ip1dbg(("ipif_up_done: illgrp allocation " 20361 "failed, error %d\n", err)); 20362 goto bad; 20363 } 20364 } 20365 ASSERT(ill->ill_group != NULL); 20366 } 20367 20368 /* 20369 * When this is part of group, we need to make sure that 20370 * any broadcast ires created because of this ipif coming 20371 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20372 * so that we don't receive duplicate broadcast packets. 20373 */ 20374 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20375 ipif_renominate_bcast(ipif); 20376 20377 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20378 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20379 ipif_saved_irep = ipif_recover_ire(ipif); 20380 20381 if (!loopback) { 20382 /* 20383 * If the broadcast address has been set, make sure it makes 20384 * sense based on the interface address. 20385 * Only match on ill since we are sharing broadcast addresses. 20386 */ 20387 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20388 (ipif->ipif_flags & IPIF_BROADCAST)) { 20389 ire_t *ire; 20390 20391 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20392 IRE_BROADCAST, ipif, ALL_ZONES, 20393 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20394 20395 if (ire == NULL) { 20396 /* 20397 * If there isn't a matching broadcast IRE, 20398 * revert to the default for this netmask. 20399 */ 20400 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20401 mutex_enter(&ipif->ipif_ill->ill_lock); 20402 ipif_set_default(ipif); 20403 mutex_exit(&ipif->ipif_ill->ill_lock); 20404 } else { 20405 ire_refrele(ire); 20406 } 20407 } 20408 20409 } 20410 20411 /* This is the first interface on this ill */ 20412 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20413 /* 20414 * Need to recover all multicast memberships in the driver. 20415 * This had to be deferred until we had attached. 20416 */ 20417 ill_recover_multicast(ill); 20418 } 20419 /* Join the allhosts multicast address */ 20420 ipif_multicast_up(ipif); 20421 20422 if (!loopback) { 20423 /* 20424 * See whether anybody else would benefit from the 20425 * new ipif that we added. We call this always rather 20426 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20427 * ipif is for the benefit of illgrp_insert (done above) 20428 * which does not do source address selection as it does 20429 * not want to re-create interface routes that we are 20430 * having reference to it here. 20431 */ 20432 ill_update_source_selection(ill); 20433 } 20434 20435 for (irep1 = irep; irep1 > ire_array; ) { 20436 irep1--; 20437 if (*irep1 != NULL) { 20438 /* was held in ire_add */ 20439 ire_refrele(*irep1); 20440 } 20441 } 20442 20443 cnt = ipif_saved_ire_cnt; 20444 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20445 if (*irep1 != NULL) { 20446 /* was held in ire_add */ 20447 ire_refrele(*irep1); 20448 } 20449 } 20450 20451 if (!loopback && ipif->ipif_addr_ready) { 20452 /* Broadcast an address mask reply. */ 20453 ipif_mask_reply(ipif); 20454 } 20455 if (ipif_saved_irep != NULL) { 20456 kmem_free(ipif_saved_irep, 20457 ipif_saved_ire_cnt * sizeof (ire_t *)); 20458 } 20459 if (src_ipif_held) 20460 ipif_refrele(src_ipif); 20461 20462 /* 20463 * This had to be deferred until we had bound. Tell routing sockets and 20464 * others that this interface is up if it looks like the address has 20465 * been validated. Otherwise, if it isn't ready yet, wait for 20466 * duplicate address detection to do its thing. 20467 */ 20468 if (ipif->ipif_addr_ready) { 20469 ip_rts_ifmsg(ipif); 20470 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20471 /* Let SCTP update the status for this ipif */ 20472 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20473 } 20474 return (0); 20475 20476 bad: 20477 ip1dbg(("ipif_up_done: FAILED \n")); 20478 /* 20479 * We don't have to bother removing from ill groups because 20480 * 20481 * 1) For groups with names, we insert only when the first ipif 20482 * comes up. In that case if it fails, it will not be in any 20483 * group. So, we need not try to remove for that case. 20484 * 20485 * 2) For groups without names, either we tried to insert ipif_ill 20486 * in a group as singleton or found some other group to become 20487 * a bigger group. For the former, if it fails we don't have 20488 * anything to do as ipif_ill is not in the group and for the 20489 * latter, there are no failures in illgrp_insert/illgrp_delete 20490 * (ENOMEM can't occur for this. Check ifgrp_insert). 20491 */ 20492 while (irep > ire_array) { 20493 irep--; 20494 if (*irep != NULL) { 20495 ire_delete(*irep); 20496 if (ire_added) 20497 ire_refrele(*irep); 20498 } 20499 } 20500 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 20501 20502 if (ipif_saved_irep != NULL) { 20503 kmem_free(ipif_saved_irep, 20504 ipif_saved_ire_cnt * sizeof (ire_t *)); 20505 } 20506 if (src_ipif_held) 20507 ipif_refrele(src_ipif); 20508 20509 ipif_arp_down(ipif); 20510 return (err); 20511 } 20512 20513 /* 20514 * Turn off the ARP with the ILLF_NOARP flag. 20515 */ 20516 static int 20517 ill_arp_off(ill_t *ill) 20518 { 20519 mblk_t *arp_off_mp = NULL; 20520 mblk_t *arp_on_mp = NULL; 20521 20522 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20523 20524 ASSERT(IAM_WRITER_ILL(ill)); 20525 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20526 20527 /* 20528 * If the on message is still around we've already done 20529 * an arp_off without doing an arp_on thus there is no 20530 * work needed. 20531 */ 20532 if (ill->ill_arp_on_mp != NULL) 20533 return (0); 20534 20535 /* 20536 * Allocate an ARP on message (to be saved) and an ARP off message 20537 */ 20538 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20539 if (!arp_off_mp) 20540 return (ENOMEM); 20541 20542 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20543 if (!arp_on_mp) 20544 goto failed; 20545 20546 ASSERT(ill->ill_arp_on_mp == NULL); 20547 ill->ill_arp_on_mp = arp_on_mp; 20548 20549 /* Send an AR_INTERFACE_OFF request */ 20550 putnext(ill->ill_rq, arp_off_mp); 20551 return (0); 20552 failed: 20553 20554 if (arp_off_mp) 20555 freemsg(arp_off_mp); 20556 return (ENOMEM); 20557 } 20558 20559 /* 20560 * Turn on ARP by turning off the ILLF_NOARP flag. 20561 */ 20562 static int 20563 ill_arp_on(ill_t *ill) 20564 { 20565 mblk_t *mp; 20566 20567 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20568 20569 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20570 20571 ASSERT(IAM_WRITER_ILL(ill)); 20572 /* 20573 * Send an AR_INTERFACE_ON request if we have already done 20574 * an arp_off (which allocated the message). 20575 */ 20576 if (ill->ill_arp_on_mp != NULL) { 20577 mp = ill->ill_arp_on_mp; 20578 ill->ill_arp_on_mp = NULL; 20579 putnext(ill->ill_rq, mp); 20580 } 20581 return (0); 20582 } 20583 20584 /* 20585 * Called after either deleting ill from the group or when setting 20586 * FAILED or STANDBY on the interface. 20587 */ 20588 static void 20589 illgrp_reset_schednext(ill_t *ill) 20590 { 20591 ill_group_t *illgrp; 20592 ill_t *save_ill; 20593 20594 ASSERT(IAM_WRITER_ILL(ill)); 20595 /* 20596 * When called from illgrp_delete, ill_group will be non-NULL. 20597 * But when called from ip_sioctl_flags, it could be NULL if 20598 * somebody is setting FAILED/INACTIVE on some interface which 20599 * is not part of a group. 20600 */ 20601 illgrp = ill->ill_group; 20602 if (illgrp == NULL) 20603 return; 20604 if (illgrp->illgrp_ill_schednext != ill) 20605 return; 20606 20607 illgrp->illgrp_ill_schednext = NULL; 20608 save_ill = ill; 20609 /* 20610 * Choose a good ill to be the next one for 20611 * outbound traffic. As the flags FAILED/STANDBY is 20612 * not yet marked when called from ip_sioctl_flags, 20613 * we check for ill separately. 20614 */ 20615 for (ill = illgrp->illgrp_ill; ill != NULL; 20616 ill = ill->ill_group_next) { 20617 if ((ill != save_ill) && 20618 !(ill->ill_phyint->phyint_flags & 20619 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20620 illgrp->illgrp_ill_schednext = ill; 20621 return; 20622 } 20623 } 20624 } 20625 20626 /* 20627 * Given an ill, find the next ill in the group to be scheduled. 20628 * (This should be called by ip_newroute() before ire_create().) 20629 * The passed in ill may be pulled out of the group, after we have picked 20630 * up a different outgoing ill from the same group. However ire add will 20631 * atomically check this. 20632 */ 20633 ill_t * 20634 illgrp_scheduler(ill_t *ill) 20635 { 20636 ill_t *retill; 20637 ill_group_t *illgrp; 20638 int illcnt; 20639 int i; 20640 uint64_t flags; 20641 20642 /* 20643 * We don't use a lock to check for the ill_group. If this ill 20644 * is currently being inserted we may end up just returning this 20645 * ill itself. That is ok. 20646 */ 20647 if (ill->ill_group == NULL) { 20648 ill_refhold(ill); 20649 return (ill); 20650 } 20651 20652 /* 20653 * Grab the ill_g_lock as reader to make sure we are dealing with 20654 * a set of stable ills. No ill can be added or deleted or change 20655 * group while we hold the reader lock. 20656 */ 20657 rw_enter(&ill_g_lock, RW_READER); 20658 if ((illgrp = ill->ill_group) == NULL) { 20659 rw_exit(&ill_g_lock); 20660 ill_refhold(ill); 20661 return (ill); 20662 } 20663 20664 illcnt = illgrp->illgrp_ill_count; 20665 mutex_enter(&illgrp->illgrp_lock); 20666 retill = illgrp->illgrp_ill_schednext; 20667 20668 if (retill == NULL) 20669 retill = illgrp->illgrp_ill; 20670 20671 /* 20672 * We do a circular search beginning at illgrp_ill_schednext 20673 * or illgrp_ill. We don't check the flags against the ill lock 20674 * since it can change anytime. The ire creation will be atomic 20675 * and will fail if the ill is FAILED or OFFLINE. 20676 */ 20677 for (i = 0; i < illcnt; i++) { 20678 flags = retill->ill_phyint->phyint_flags; 20679 20680 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20681 ILL_CAN_LOOKUP(retill)) { 20682 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20683 ill_refhold(retill); 20684 break; 20685 } 20686 retill = retill->ill_group_next; 20687 if (retill == NULL) 20688 retill = illgrp->illgrp_ill; 20689 } 20690 mutex_exit(&illgrp->illgrp_lock); 20691 rw_exit(&ill_g_lock); 20692 20693 return (i == illcnt ? NULL : retill); 20694 } 20695 20696 /* 20697 * Checks for availbility of a usable source address (if there is one) when the 20698 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20699 * this selection is done regardless of the destination. 20700 */ 20701 boolean_t 20702 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20703 { 20704 uint_t ifindex; 20705 ipif_t *ipif = NULL; 20706 ill_t *uill; 20707 boolean_t isv6; 20708 20709 ASSERT(ill != NULL); 20710 20711 isv6 = ill->ill_isv6; 20712 ifindex = ill->ill_usesrc_ifindex; 20713 if (ifindex != 0) { 20714 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20715 NULL); 20716 if (uill == NULL) 20717 return (NULL); 20718 mutex_enter(&uill->ill_lock); 20719 for (ipif = uill->ill_ipif; ipif != NULL; 20720 ipif = ipif->ipif_next) { 20721 if (!IPIF_CAN_LOOKUP(ipif)) 20722 continue; 20723 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20724 continue; 20725 if (!(ipif->ipif_flags & IPIF_UP)) 20726 continue; 20727 if (ipif->ipif_zoneid != zoneid) 20728 continue; 20729 if ((isv6 && 20730 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20731 (ipif->ipif_lcl_addr == INADDR_ANY)) 20732 continue; 20733 mutex_exit(&uill->ill_lock); 20734 ill_refrele(uill); 20735 return (B_TRUE); 20736 } 20737 mutex_exit(&uill->ill_lock); 20738 ill_refrele(uill); 20739 } 20740 return (B_FALSE); 20741 } 20742 20743 /* 20744 * Determine the best source address given a destination address and an ill. 20745 * Prefers non-deprecated over deprecated but will return a deprecated 20746 * address if there is no other choice. If there is a usable source address 20747 * on the interface pointed to by ill_usesrc_ifindex then that is given 20748 * first preference. 20749 * 20750 * Returns NULL if there is no suitable source address for the ill. 20751 * This only occurs when there is no valid source address for the ill. 20752 */ 20753 ipif_t * 20754 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20755 { 20756 ipif_t *ipif; 20757 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20758 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20759 int index = 0; 20760 boolean_t wrapped = B_FALSE; 20761 boolean_t same_subnet_only = B_FALSE; 20762 boolean_t ipif_same_found, ipif_other_found; 20763 boolean_t specific_found; 20764 ill_t *till, *usill = NULL; 20765 tsol_tpc_t *src_rhtp, *dst_rhtp; 20766 20767 if (ill->ill_usesrc_ifindex != 0) { 20768 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20769 NULL, NULL, NULL, NULL); 20770 if (usill != NULL) 20771 ill = usill; /* Select source from usesrc ILL */ 20772 else 20773 return (NULL); 20774 } 20775 20776 /* 20777 * If we're dealing with an unlabeled destination on a labeled system, 20778 * make sure that we ignore source addresses that are incompatible with 20779 * the destination's default label. That destination's default label 20780 * must dominate the minimum label on the source address. 20781 */ 20782 dst_rhtp = NULL; 20783 if (is_system_labeled()) { 20784 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20785 if (dst_rhtp == NULL) 20786 return (NULL); 20787 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20788 TPC_RELE(dst_rhtp); 20789 dst_rhtp = NULL; 20790 } 20791 } 20792 20793 /* 20794 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20795 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20796 * After selecting the right ipif, under ill_lock make sure ipif is 20797 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20798 * we retry. Inside the loop we still need to check for CONDEMNED, 20799 * but not under a lock. 20800 */ 20801 rw_enter(&ill_g_lock, RW_READER); 20802 20803 retry: 20804 till = ill; 20805 ipif_arr[0] = NULL; 20806 20807 if (till->ill_group != NULL) 20808 till = till->ill_group->illgrp_ill; 20809 20810 /* 20811 * Choose one good source address from each ill across the group. 20812 * If possible choose a source address in the same subnet as 20813 * the destination address. 20814 * 20815 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20816 * This is okay because of the following. 20817 * 20818 * If PHYI_FAILED is set and we still have non-deprecated 20819 * addresses, it means the addresses have not yet been 20820 * failed over to a different interface. We potentially 20821 * select them to create IRE_CACHES, which will be later 20822 * flushed when the addresses move over. 20823 * 20824 * If PHYI_INACTIVE is set and we still have non-deprecated 20825 * addresses, it means either the user has configured them 20826 * or PHYI_INACTIVE has not been cleared after the addresses 20827 * been moved over. For the former, in.mpathd does a failover 20828 * when the interface becomes INACTIVE and hence we should 20829 * not find them. Once INACTIVE is set, we don't allow them 20830 * to create logical interfaces anymore. For the latter, a 20831 * flush will happen when INACTIVE is cleared which will 20832 * flush the IRE_CACHES. 20833 * 20834 * If PHYI_OFFLINE is set, all the addresses will be failed 20835 * over soon. We potentially select them to create IRE_CACHEs, 20836 * which will be later flushed when the addresses move over. 20837 * 20838 * NOTE : As ipif_select_source is called to borrow source address 20839 * for an ipif that is part of a group, source address selection 20840 * will be re-done whenever the group changes i.e either an 20841 * insertion/deletion in the group. 20842 * 20843 * Fill ipif_arr[] with source addresses, using these rules: 20844 * 20845 * 1. At most one source address from a given ill ends up 20846 * in ipif_arr[] -- that is, at most one of the ipif's 20847 * associated with a given ill ends up in ipif_arr[]. 20848 * 20849 * 2. If there is at least one non-deprecated ipif in the 20850 * IPMP group with a source address on the same subnet as 20851 * our destination, then fill ipif_arr[] only with 20852 * source addresses on the same subnet as our destination. 20853 * Note that because of (1), only the first 20854 * non-deprecated ipif found with a source address 20855 * matching the destination ends up in ipif_arr[]. 20856 * 20857 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20858 * addresses not in the same subnet as our destination. 20859 * Again, because of (1), only the first off-subnet source 20860 * address will be chosen. 20861 * 20862 * 4. If there are no non-deprecated ipifs, then just use 20863 * the source address associated with the last deprecated 20864 * one we find that happens to be on the same subnet, 20865 * otherwise the first one not in the same subnet. 20866 */ 20867 specific_found = B_FALSE; 20868 for (; till != NULL; till = till->ill_group_next) { 20869 ipif_same_found = B_FALSE; 20870 ipif_other_found = B_FALSE; 20871 for (ipif = till->ill_ipif; ipif != NULL; 20872 ipif = ipif->ipif_next) { 20873 if (!IPIF_CAN_LOOKUP(ipif)) 20874 continue; 20875 /* Always skip NOLOCAL and ANYCAST interfaces */ 20876 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20877 continue; 20878 if (!(ipif->ipif_flags & IPIF_UP) || 20879 !ipif->ipif_addr_ready) 20880 continue; 20881 if (ipif->ipif_zoneid != zoneid && 20882 ipif->ipif_zoneid != ALL_ZONES) 20883 continue; 20884 /* 20885 * Interfaces with 0.0.0.0 address are allowed to be UP, 20886 * but are not valid as source addresses. 20887 */ 20888 if (ipif->ipif_lcl_addr == INADDR_ANY) 20889 continue; 20890 20891 /* 20892 * Check compatibility of local address for 20893 * destination's default label if we're on a labeled 20894 * system. Incompatible addresses can't be used at 20895 * all. 20896 */ 20897 if (dst_rhtp != NULL) { 20898 boolean_t incompat; 20899 20900 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20901 IPV4_VERSION, B_FALSE); 20902 if (src_rhtp == NULL) 20903 continue; 20904 incompat = 20905 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20906 src_rhtp->tpc_tp.tp_doi != 20907 dst_rhtp->tpc_tp.tp_doi || 20908 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20909 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20910 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20911 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20912 TPC_RELE(src_rhtp); 20913 if (incompat) 20914 continue; 20915 } 20916 20917 /* 20918 * We prefer not to use all all-zones addresses, if we 20919 * can avoid it, as they pose problems with unlabeled 20920 * destinations. 20921 */ 20922 if (ipif->ipif_zoneid != ALL_ZONES) { 20923 if (!specific_found && 20924 (!same_subnet_only || 20925 (ipif->ipif_net_mask & dst) == 20926 ipif->ipif_subnet)) { 20927 index = 0; 20928 specific_found = B_TRUE; 20929 ipif_other_found = B_FALSE; 20930 } 20931 } else { 20932 if (specific_found) 20933 continue; 20934 } 20935 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20936 if (ipif_dep == NULL || 20937 (ipif->ipif_net_mask & dst) == 20938 ipif->ipif_subnet) 20939 ipif_dep = ipif; 20940 continue; 20941 } 20942 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20943 /* found a source address in the same subnet */ 20944 if (!same_subnet_only) { 20945 same_subnet_only = B_TRUE; 20946 index = 0; 20947 } 20948 ipif_same_found = B_TRUE; 20949 } else { 20950 if (same_subnet_only || ipif_other_found) 20951 continue; 20952 ipif_other_found = B_TRUE; 20953 } 20954 ipif_arr[index++] = ipif; 20955 if (index == MAX_IPIF_SELECT_SOURCE) { 20956 wrapped = B_TRUE; 20957 index = 0; 20958 } 20959 if (ipif_same_found) 20960 break; 20961 } 20962 } 20963 20964 if (ipif_arr[0] == NULL) { 20965 ipif = ipif_dep; 20966 } else { 20967 if (wrapped) 20968 index = MAX_IPIF_SELECT_SOURCE; 20969 ipif = ipif_arr[ipif_rand() % index]; 20970 ASSERT(ipif != NULL); 20971 } 20972 20973 if (ipif != NULL) { 20974 mutex_enter(&ipif->ipif_ill->ill_lock); 20975 if (!IPIF_CAN_LOOKUP(ipif)) { 20976 mutex_exit(&ipif->ipif_ill->ill_lock); 20977 goto retry; 20978 } 20979 ipif_refhold_locked(ipif); 20980 mutex_exit(&ipif->ipif_ill->ill_lock); 20981 } 20982 20983 rw_exit(&ill_g_lock); 20984 if (usill != NULL) 20985 ill_refrele(usill); 20986 if (dst_rhtp != NULL) 20987 TPC_RELE(dst_rhtp); 20988 20989 #ifdef DEBUG 20990 if (ipif == NULL) { 20991 char buf1[INET6_ADDRSTRLEN]; 20992 20993 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20994 ill->ill_name, 20995 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20996 } else { 20997 char buf1[INET6_ADDRSTRLEN]; 20998 char buf2[INET6_ADDRSTRLEN]; 20999 21000 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21001 ipif->ipif_ill->ill_name, 21002 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21003 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21004 buf2, sizeof (buf2)))); 21005 } 21006 #endif /* DEBUG */ 21007 return (ipif); 21008 } 21009 21010 21011 /* 21012 * If old_ipif is not NULL, see if ipif was derived from old 21013 * ipif and if so, recreate the interface route by re-doing 21014 * source address selection. This happens when ipif_down -> 21015 * ipif_update_other_ipifs calls us. 21016 * 21017 * If old_ipif is NULL, just redo the source address selection 21018 * if needed. This happens when illgrp_insert or ipif_up_done 21019 * calls us. 21020 */ 21021 static void 21022 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21023 { 21024 ire_t *ire; 21025 ire_t *ipif_ire; 21026 queue_t *stq; 21027 ipif_t *nipif; 21028 ill_t *ill; 21029 boolean_t need_rele = B_FALSE; 21030 21031 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21032 ASSERT(IAM_WRITER_IPIF(ipif)); 21033 21034 ill = ipif->ipif_ill; 21035 if (!(ipif->ipif_flags & 21036 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21037 /* 21038 * Can't possibly have borrowed the source 21039 * from old_ipif. 21040 */ 21041 return; 21042 } 21043 21044 /* 21045 * Is there any work to be done? No work if the address 21046 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21047 * ipif_select_source() does not borrow addresses from 21048 * NOLOCAL and ANYCAST interfaces). 21049 */ 21050 if ((old_ipif != NULL) && 21051 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21052 (old_ipif->ipif_ill->ill_wq == NULL) || 21053 (old_ipif->ipif_flags & 21054 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21055 return; 21056 } 21057 21058 /* 21059 * Perform the same checks as when creating the 21060 * IRE_INTERFACE in ipif_up_done. 21061 */ 21062 if (!(ipif->ipif_flags & IPIF_UP)) 21063 return; 21064 21065 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21066 (ipif->ipif_subnet == INADDR_ANY)) 21067 return; 21068 21069 ipif_ire = ipif_to_ire(ipif); 21070 if (ipif_ire == NULL) 21071 return; 21072 21073 /* 21074 * We know that ipif uses some other source for its 21075 * IRE_INTERFACE. Is it using the source of this 21076 * old_ipif? 21077 */ 21078 if (old_ipif != NULL && 21079 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21080 ire_refrele(ipif_ire); 21081 return; 21082 } 21083 if (ip_debug > 2) { 21084 /* ip1dbg */ 21085 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21086 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21087 } 21088 21089 stq = ipif_ire->ire_stq; 21090 21091 /* 21092 * Can't use our source address. Select a different 21093 * source address for the IRE_INTERFACE. 21094 */ 21095 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21096 if (nipif == NULL) { 21097 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21098 nipif = ipif; 21099 } else { 21100 need_rele = B_TRUE; 21101 } 21102 21103 ire = ire_create( 21104 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21105 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21106 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21107 NULL, /* no gateway */ 21108 NULL, 21109 &ipif->ipif_mtu, /* max frag */ 21110 NULL, /* fast path header */ 21111 NULL, /* no recv from queue */ 21112 stq, /* send-to queue */ 21113 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21114 ill->ill_resolver_mp, /* xmit header */ 21115 ipif, 21116 NULL, 21117 0, 21118 0, 21119 0, 21120 0, 21121 &ire_uinfo_null, 21122 NULL, 21123 NULL); 21124 21125 if (ire != NULL) { 21126 ire_t *ret_ire; 21127 int error; 21128 21129 /* 21130 * We don't need ipif_ire anymore. We need to delete 21131 * before we add so that ire_add does not detect 21132 * duplicates. 21133 */ 21134 ire_delete(ipif_ire); 21135 ret_ire = ire; 21136 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21137 ASSERT(error == 0); 21138 ASSERT(ire == ret_ire); 21139 /* Held in ire_add */ 21140 ire_refrele(ret_ire); 21141 } 21142 /* 21143 * Either we are falling through from above or could not 21144 * allocate a replacement. 21145 */ 21146 ire_refrele(ipif_ire); 21147 if (need_rele) 21148 ipif_refrele(nipif); 21149 } 21150 21151 /* 21152 * This old_ipif is going away. 21153 * 21154 * Determine if any other ipif's is using our address as 21155 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21156 * IPIF_DEPRECATED). 21157 * Find the IRE_INTERFACE for such ipifs and recreate them 21158 * to use an different source address following the rules in 21159 * ipif_up_done. 21160 * 21161 * This function takes an illgrp as an argument so that illgrp_delete 21162 * can call this to update source address even after deleting the 21163 * old_ipif->ipif_ill from the ill group. 21164 */ 21165 static void 21166 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21167 { 21168 ipif_t *ipif; 21169 ill_t *ill; 21170 char buf[INET6_ADDRSTRLEN]; 21171 21172 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21173 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21174 21175 ill = old_ipif->ipif_ill; 21176 21177 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21178 ill->ill_name, 21179 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21180 buf, sizeof (buf)))); 21181 /* 21182 * If this part of a group, look at all ills as ipif_select_source 21183 * borrows source address across all the ills in the group. 21184 */ 21185 if (illgrp != NULL) 21186 ill = illgrp->illgrp_ill; 21187 21188 for (; ill != NULL; ill = ill->ill_group_next) { 21189 for (ipif = ill->ill_ipif; ipif != NULL; 21190 ipif = ipif->ipif_next) { 21191 21192 if (ipif == old_ipif) 21193 continue; 21194 21195 ipif_recreate_interface_routes(old_ipif, ipif); 21196 } 21197 } 21198 } 21199 21200 /* ARGSUSED */ 21201 int 21202 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21203 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21204 { 21205 /* 21206 * ill_phyint_reinit merged the v4 and v6 into a single 21207 * ipsq. Could also have become part of a ipmp group in the 21208 * process, and we might not have been able to complete the 21209 * operation in ipif_set_values, if we could not become 21210 * exclusive. If so restart it here. 21211 */ 21212 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21213 } 21214 21215 21216 /* ARGSUSED */ 21217 int 21218 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21219 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21220 { 21221 queue_t *q1 = q; 21222 char *cp; 21223 char interf_name[LIFNAMSIZ]; 21224 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21225 21226 if (!q->q_next) { 21227 ip1dbg(( 21228 "if_unitsel: IF_UNITSEL: no q_next\n")); 21229 return (EINVAL); 21230 } 21231 21232 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21233 return (EALREADY); 21234 21235 do { 21236 q1 = q1->q_next; 21237 } while (q1->q_next); 21238 cp = q1->q_qinfo->qi_minfo->mi_idname; 21239 (void) sprintf(interf_name, "%s%d", cp, ppa); 21240 21241 /* 21242 * Here we are not going to delay the ioack until after 21243 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21244 * original ioctl message before sending the requests. 21245 */ 21246 return (ipif_set_values(q, mp, interf_name, &ppa)); 21247 } 21248 21249 /* ARGSUSED */ 21250 int 21251 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21252 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21253 { 21254 return (ENXIO); 21255 } 21256 21257 /* 21258 * Net and subnet broadcast ire's are now specific to the particular 21259 * physical interface (ill) and not to any one locigal interface (ipif). 21260 * However, if a particular logical interface is being taken down, it's 21261 * associated ire's will be taken down as well. Hence, when we go to 21262 * take down or change the local address, broadcast address or netmask 21263 * of a specific logical interface, we must check to make sure that we 21264 * have valid net and subnet broadcast ire's for the other logical 21265 * interfaces which may have been shared with the logical interface 21266 * being brought down or changed. 21267 * 21268 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21269 * is tied to the first interface coming UP. If that ipif is going down, 21270 * we need to recreate them on the next valid ipif. 21271 * 21272 * Note: assume that the ipif passed in is still up so that it's IRE 21273 * entries are still valid. 21274 */ 21275 static void 21276 ipif_check_bcast_ires(ipif_t *test_ipif) 21277 { 21278 ipif_t *ipif; 21279 ire_t *test_subnet_ire, *test_net_ire; 21280 ire_t *test_allzero_ire, *test_allone_ire; 21281 ire_t *ire_array[12]; 21282 ire_t **irep = &ire_array[0]; 21283 ire_t **irep1; 21284 21285 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21286 ipaddr_t test_net_addr, test_subnet_addr; 21287 ipaddr_t test_net_mask, test_subnet_mask; 21288 boolean_t need_net_bcast_ire = B_FALSE; 21289 boolean_t need_subnet_bcast_ire = B_FALSE; 21290 boolean_t allzero_bcast_ire_created = B_FALSE; 21291 boolean_t allone_bcast_ire_created = B_FALSE; 21292 boolean_t net_bcast_ire_created = B_FALSE; 21293 boolean_t subnet_bcast_ire_created = B_FALSE; 21294 21295 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21296 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21297 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21298 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21299 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21300 21301 ASSERT(!test_ipif->ipif_isv6); 21302 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21303 21304 /* 21305 * No broadcast IREs for the LOOPBACK interface 21306 * or others such as point to point and IPIF_NOXMIT. 21307 */ 21308 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21309 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21310 return; 21311 21312 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21313 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21314 21315 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21316 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21317 21318 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21319 test_subnet_mask = test_ipif->ipif_net_mask; 21320 21321 /* 21322 * If no net mask set, assume the default based on net class. 21323 */ 21324 if (test_subnet_mask == 0) 21325 test_subnet_mask = test_net_mask; 21326 21327 /* 21328 * Check if there is a network broadcast ire associated with this ipif 21329 */ 21330 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21331 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21332 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21333 21334 /* 21335 * Check if there is a subnet broadcast IRE associated with this ipif 21336 */ 21337 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21338 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21339 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21340 21341 /* 21342 * No broadcast ire's associated with this ipif. 21343 */ 21344 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21345 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21346 return; 21347 } 21348 21349 /* 21350 * We have established which bcast ires have to be replaced. 21351 * Next we try to locate ipifs that match there ires. 21352 * The rules are simple: If we find an ipif that matches on the subnet 21353 * address it will also match on the net address, the allzeros and 21354 * allones address. Any ipif that matches only on the net address will 21355 * also match the allzeros and allones addresses. 21356 * The other criterion is the ipif_flags. We look for non-deprecated 21357 * (and non-anycast and non-nolocal) ipifs as the best choice. 21358 * ipifs with check_flags matching (deprecated, etc) are used only 21359 * if good ipifs are not available. While looping, we save existing 21360 * deprecated ipifs as backup_ipif. 21361 * We loop through all the ipifs for this ill looking for ipifs 21362 * whose broadcast addr match the ipif passed in, but do not have 21363 * their own broadcast ires. For creating 0.0.0.0 and 21364 * 255.255.255.255 we just need an ipif on this ill to create. 21365 */ 21366 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21367 ipif = ipif->ipif_next) { 21368 21369 ASSERT(!ipif->ipif_isv6); 21370 /* 21371 * Already checked the ipif passed in. 21372 */ 21373 if (ipif == test_ipif) { 21374 continue; 21375 } 21376 21377 /* 21378 * We only need to recreate broadcast ires if another ipif in 21379 * the same zone uses them. The new ires must be created in the 21380 * same zone. 21381 */ 21382 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21383 continue; 21384 } 21385 21386 /* 21387 * Only interested in logical interfaces with valid local 21388 * addresses or with the ability to broadcast. 21389 */ 21390 if ((ipif->ipif_subnet == 0) || 21391 !(ipif->ipif_flags & IPIF_BROADCAST) || 21392 (ipif->ipif_flags & IPIF_NOXMIT) || 21393 !(ipif->ipif_flags & IPIF_UP)) { 21394 continue; 21395 } 21396 /* 21397 * Check if there is a net broadcast ire for this 21398 * net address. If it turns out that the ipif we are 21399 * about to take down owns this ire, we must make a 21400 * new one because it is potentially going away. 21401 */ 21402 if (test_net_ire && (!net_bcast_ire_created)) { 21403 net_mask = ip_net_mask(ipif->ipif_subnet); 21404 net_addr = net_mask & ipif->ipif_subnet; 21405 if (net_addr == test_net_addr) { 21406 need_net_bcast_ire = B_TRUE; 21407 /* 21408 * Use DEPRECATED ipif only if no good 21409 * ires are available. subnet_addr is 21410 * a better match than net_addr. 21411 */ 21412 if ((ipif->ipif_flags & check_flags) && 21413 (backup_ipif_net == NULL)) { 21414 backup_ipif_net = ipif; 21415 } 21416 } 21417 } 21418 /* 21419 * Check if there is a subnet broadcast ire for this 21420 * net address. If it turns out that the ipif we are 21421 * about to take down owns this ire, we must make a 21422 * new one because it is potentially going away. 21423 */ 21424 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21425 subnet_mask = ipif->ipif_net_mask; 21426 subnet_addr = ipif->ipif_subnet; 21427 if (subnet_addr == test_subnet_addr) { 21428 need_subnet_bcast_ire = B_TRUE; 21429 if ((ipif->ipif_flags & check_flags) && 21430 (backup_ipif_subnet == NULL)) { 21431 backup_ipif_subnet = ipif; 21432 } 21433 } 21434 } 21435 21436 21437 /* Short circuit here if this ipif is deprecated */ 21438 if (ipif->ipif_flags & check_flags) { 21439 if ((test_allzero_ire != NULL) && 21440 (!allzero_bcast_ire_created) && 21441 (backup_ipif_allzeros == NULL)) { 21442 backup_ipif_allzeros = ipif; 21443 } 21444 if ((test_allone_ire != NULL) && 21445 (!allone_bcast_ire_created) && 21446 (backup_ipif_allones == NULL)) { 21447 backup_ipif_allones = ipif; 21448 } 21449 continue; 21450 } 21451 21452 /* 21453 * Found an ipif which has the same broadcast ire as the 21454 * ipif passed in and the ipif passed in "owns" the ire. 21455 * Create new broadcast ire's for this broadcast addr. 21456 */ 21457 if (need_net_bcast_ire && !net_bcast_ire_created) { 21458 irep = ire_create_bcast(ipif, net_addr, irep); 21459 irep = ire_create_bcast(ipif, 21460 ~net_mask | net_addr, irep); 21461 net_bcast_ire_created = B_TRUE; 21462 } 21463 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21464 irep = ire_create_bcast(ipif, subnet_addr, irep); 21465 irep = ire_create_bcast(ipif, 21466 ~subnet_mask | subnet_addr, irep); 21467 subnet_bcast_ire_created = B_TRUE; 21468 } 21469 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21470 irep = ire_create_bcast(ipif, 0, irep); 21471 allzero_bcast_ire_created = B_TRUE; 21472 } 21473 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21474 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21475 allone_bcast_ire_created = B_TRUE; 21476 } 21477 /* 21478 * Once we have created all the appropriate ires, we 21479 * just break out of this loop to add what we have created. 21480 * This has been indented similar to ire_match_args for 21481 * readability. 21482 */ 21483 if (((test_net_ire == NULL) || 21484 (net_bcast_ire_created)) && 21485 ((test_subnet_ire == NULL) || 21486 (subnet_bcast_ire_created)) && 21487 ((test_allzero_ire == NULL) || 21488 (allzero_bcast_ire_created)) && 21489 ((test_allone_ire == NULL) || 21490 (allone_bcast_ire_created))) { 21491 break; 21492 } 21493 } 21494 21495 /* 21496 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21497 * exist. 6 pairs of bcast ires are needed. 21498 * Note - the old ires are deleted in ipif_down. 21499 */ 21500 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21501 ipif = backup_ipif_net; 21502 irep = ire_create_bcast(ipif, net_addr, irep); 21503 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21504 net_bcast_ire_created = B_TRUE; 21505 } 21506 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21507 backup_ipif_subnet) { 21508 ipif = backup_ipif_subnet; 21509 irep = ire_create_bcast(ipif, subnet_addr, irep); 21510 irep = ire_create_bcast(ipif, 21511 ~subnet_mask | subnet_addr, irep); 21512 subnet_bcast_ire_created = B_TRUE; 21513 } 21514 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21515 backup_ipif_allzeros) { 21516 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21517 allzero_bcast_ire_created = B_TRUE; 21518 } 21519 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21520 backup_ipif_allones) { 21521 irep = ire_create_bcast(backup_ipif_allones, 21522 INADDR_BROADCAST, irep); 21523 allone_bcast_ire_created = B_TRUE; 21524 } 21525 21526 /* 21527 * If we can't create all of them, don't add any of them. 21528 * Code in ip_wput_ire and ire_to_ill assumes that we 21529 * always have a non-loopback copy and loopback copy 21530 * for a given address. 21531 */ 21532 for (irep1 = irep; irep1 > ire_array; ) { 21533 irep1--; 21534 if (*irep1 == NULL) { 21535 ip0dbg(("ipif_check_bcast_ires: can't create " 21536 "IRE_BROADCAST, memory allocation failure\n")); 21537 while (irep > ire_array) { 21538 irep--; 21539 if (*irep != NULL) 21540 ire_delete(*irep); 21541 } 21542 goto bad; 21543 } 21544 } 21545 for (irep1 = irep; irep1 > ire_array; ) { 21546 int error; 21547 21548 irep1--; 21549 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21550 if (error == 0) { 21551 ire_refrele(*irep1); /* Held in ire_add */ 21552 } 21553 } 21554 bad: 21555 if (test_allzero_ire != NULL) 21556 ire_refrele(test_allzero_ire); 21557 if (test_allone_ire != NULL) 21558 ire_refrele(test_allone_ire); 21559 if (test_net_ire != NULL) 21560 ire_refrele(test_net_ire); 21561 if (test_subnet_ire != NULL) 21562 ire_refrele(test_subnet_ire); 21563 } 21564 21565 /* 21566 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21567 * from lifr_flags and the name from lifr_name. 21568 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21569 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21570 * Returns EINPROGRESS when mp has been consumed by queueing it on 21571 * ill_pending_mp and the ioctl will complete in ip_rput. 21572 */ 21573 /* ARGSUSED */ 21574 int 21575 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21576 ip_ioctl_cmd_t *ipip, void *if_req) 21577 { 21578 int err; 21579 ill_t *ill; 21580 struct lifreq *lifr = (struct lifreq *)if_req; 21581 21582 ASSERT(ipif != NULL); 21583 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21584 ASSERT(q->q_next != NULL); 21585 21586 ill = (ill_t *)q->q_ptr; 21587 /* 21588 * If we are not writer on 'q' then this interface exists already 21589 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21590 * So return EALREADY 21591 */ 21592 if (ill != ipif->ipif_ill) 21593 return (EALREADY); 21594 21595 if (ill->ill_name[0] != '\0') 21596 return (EALREADY); 21597 21598 /* 21599 * Set all the flags. Allows all kinds of override. Provide some 21600 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21601 * unless there is either multicast/broadcast support in the driver 21602 * or it is a pt-pt link. 21603 */ 21604 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21605 /* Meaningless to IP thus don't allow them to be set. */ 21606 ip1dbg(("ip_setname: EINVAL 1\n")); 21607 return (EINVAL); 21608 } 21609 /* 21610 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21611 * ill_bcast_addr_length info. 21612 */ 21613 if (!ill->ill_needs_attach && 21614 ((lifr->lifr_flags & IFF_MULTICAST) && 21615 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21616 ill->ill_bcast_addr_length == 0)) { 21617 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21618 ip1dbg(("ip_setname: EINVAL 2\n")); 21619 return (EINVAL); 21620 } 21621 if ((lifr->lifr_flags & IFF_BROADCAST) && 21622 ((lifr->lifr_flags & IFF_IPV6) || 21623 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21624 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21625 ip1dbg(("ip_setname: EINVAL 3\n")); 21626 return (EINVAL); 21627 } 21628 if (lifr->lifr_flags & IFF_UP) { 21629 /* Can only be set with SIOCSLIFFLAGS */ 21630 ip1dbg(("ip_setname: EINVAL 4\n")); 21631 return (EINVAL); 21632 } 21633 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21634 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21635 ip1dbg(("ip_setname: EINVAL 5\n")); 21636 return (EINVAL); 21637 } 21638 /* 21639 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21640 */ 21641 if ((lifr->lifr_flags & IFF_XRESOLV) && 21642 !(lifr->lifr_flags & IFF_IPV6) && 21643 !(ipif->ipif_isv6)) { 21644 ip1dbg(("ip_setname: EINVAL 6\n")); 21645 return (EINVAL); 21646 } 21647 21648 /* 21649 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21650 * we have all the flags here. So, we assign rather than we OR. 21651 * We can't OR the flags here because we don't want to set 21652 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21653 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21654 * on lifr_flags value here. 21655 */ 21656 /* 21657 * This ill has not been inserted into the global list. 21658 * So we are still single threaded and don't need any lock 21659 */ 21660 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21661 ~IFF_DUPLICATE; 21662 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21663 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21664 21665 /* We started off as V4. */ 21666 if (ill->ill_flags & ILLF_IPV6) { 21667 ill->ill_phyint->phyint_illv6 = ill; 21668 ill->ill_phyint->phyint_illv4 = NULL; 21669 } 21670 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21671 return (err); 21672 } 21673 21674 /* ARGSUSED */ 21675 int 21676 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21677 ip_ioctl_cmd_t *ipip, void *if_req) 21678 { 21679 /* 21680 * ill_phyint_reinit merged the v4 and v6 into a single 21681 * ipsq. Could also have become part of a ipmp group in the 21682 * process, and we might not have been able to complete the 21683 * slifname in ipif_set_values, if we could not become 21684 * exclusive. If so restart it here 21685 */ 21686 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21687 } 21688 21689 /* 21690 * Return a pointer to the ipif which matches the index, IP version type and 21691 * zoneid. 21692 */ 21693 ipif_t * 21694 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21695 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21696 { 21697 ill_t *ill; 21698 ipsq_t *ipsq; 21699 phyint_t *phyi; 21700 ipif_t *ipif; 21701 21702 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21703 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21704 21705 if (err != NULL) 21706 *err = 0; 21707 21708 /* 21709 * Indexes are stored in the phyint - a common structure 21710 * to both IPv4 and IPv6. 21711 */ 21712 21713 rw_enter(&ill_g_lock, RW_READER); 21714 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21715 (void *) &index, NULL); 21716 if (phyi != NULL) { 21717 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21718 if (ill == NULL) { 21719 rw_exit(&ill_g_lock); 21720 if (err != NULL) 21721 *err = ENXIO; 21722 return (NULL); 21723 } 21724 GRAB_CONN_LOCK(q); 21725 mutex_enter(&ill->ill_lock); 21726 if (ILL_CAN_LOOKUP(ill)) { 21727 for (ipif = ill->ill_ipif; ipif != NULL; 21728 ipif = ipif->ipif_next) { 21729 if (IPIF_CAN_LOOKUP(ipif) && 21730 (zoneid == ALL_ZONES || 21731 zoneid == ipif->ipif_zoneid || 21732 ipif->ipif_zoneid == ALL_ZONES)) { 21733 ipif_refhold_locked(ipif); 21734 mutex_exit(&ill->ill_lock); 21735 RELEASE_CONN_LOCK(q); 21736 rw_exit(&ill_g_lock); 21737 return (ipif); 21738 } 21739 } 21740 } else if (ILL_CAN_WAIT(ill, q)) { 21741 ipsq = ill->ill_phyint->phyint_ipsq; 21742 mutex_enter(&ipsq->ipsq_lock); 21743 rw_exit(&ill_g_lock); 21744 mutex_exit(&ill->ill_lock); 21745 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21746 mutex_exit(&ipsq->ipsq_lock); 21747 RELEASE_CONN_LOCK(q); 21748 *err = EINPROGRESS; 21749 return (NULL); 21750 } 21751 mutex_exit(&ill->ill_lock); 21752 RELEASE_CONN_LOCK(q); 21753 } 21754 rw_exit(&ill_g_lock); 21755 if (err != NULL) 21756 *err = ENXIO; 21757 return (NULL); 21758 } 21759 21760 typedef struct conn_change_s { 21761 uint_t cc_old_ifindex; 21762 uint_t cc_new_ifindex; 21763 } conn_change_t; 21764 21765 /* 21766 * ipcl_walk function for changing interface index. 21767 */ 21768 static void 21769 conn_change_ifindex(conn_t *connp, caddr_t arg) 21770 { 21771 conn_change_t *connc; 21772 uint_t old_ifindex; 21773 uint_t new_ifindex; 21774 int i; 21775 ilg_t *ilg; 21776 21777 connc = (conn_change_t *)arg; 21778 old_ifindex = connc->cc_old_ifindex; 21779 new_ifindex = connc->cc_new_ifindex; 21780 21781 if (connp->conn_orig_bound_ifindex == old_ifindex) 21782 connp->conn_orig_bound_ifindex = new_ifindex; 21783 21784 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21785 connp->conn_orig_multicast_ifindex = new_ifindex; 21786 21787 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21788 connp->conn_orig_xmit_ifindex = new_ifindex; 21789 21790 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21791 ilg = &connp->conn_ilg[i]; 21792 if (ilg->ilg_orig_ifindex == old_ifindex) 21793 ilg->ilg_orig_ifindex = new_ifindex; 21794 } 21795 } 21796 21797 /* 21798 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21799 * to new_index if it matches the old_index. 21800 * 21801 * Failovers typically happen within a group of ills. But somebody 21802 * can remove an ill from the group after a failover happened. If 21803 * we are setting the ifindex after this, we potentially need to 21804 * look at all the ills rather than just the ones in the group. 21805 * We cut down the work by looking at matching ill_net_types 21806 * and ill_types as we could not possibly grouped them together. 21807 */ 21808 static void 21809 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21810 { 21811 ill_t *ill; 21812 ipif_t *ipif; 21813 uint_t old_ifindex; 21814 uint_t new_ifindex; 21815 ilm_t *ilm; 21816 ill_walk_context_t ctx; 21817 21818 old_ifindex = connc->cc_old_ifindex; 21819 new_ifindex = connc->cc_new_ifindex; 21820 21821 rw_enter(&ill_g_lock, RW_READER); 21822 ill = ILL_START_WALK_ALL(&ctx); 21823 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21824 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21825 (ill_orig->ill_type != ill->ill_type)) { 21826 continue; 21827 } 21828 for (ipif = ill->ill_ipif; ipif != NULL; 21829 ipif = ipif->ipif_next) { 21830 if (ipif->ipif_orig_ifindex == old_ifindex) 21831 ipif->ipif_orig_ifindex = new_ifindex; 21832 } 21833 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21834 if (ilm->ilm_orig_ifindex == old_ifindex) 21835 ilm->ilm_orig_ifindex = new_ifindex; 21836 } 21837 } 21838 rw_exit(&ill_g_lock); 21839 } 21840 21841 /* 21842 * We first need to ensure that the new index is unique, and 21843 * then carry the change across both v4 and v6 ill representation 21844 * of the physical interface. 21845 */ 21846 /* ARGSUSED */ 21847 int 21848 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21849 ip_ioctl_cmd_t *ipip, void *ifreq) 21850 { 21851 ill_t *ill; 21852 ill_t *ill_other; 21853 phyint_t *phyi; 21854 int old_index; 21855 conn_change_t connc; 21856 struct ifreq *ifr = (struct ifreq *)ifreq; 21857 struct lifreq *lifr = (struct lifreq *)ifreq; 21858 uint_t index; 21859 ill_t *ill_v4; 21860 ill_t *ill_v6; 21861 21862 if (ipip->ipi_cmd_type == IF_CMD) 21863 index = ifr->ifr_index; 21864 else 21865 index = lifr->lifr_index; 21866 21867 /* 21868 * Only allow on physical interface. Also, index zero is illegal. 21869 * 21870 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21871 * 21872 * 1) If PHYI_FAILED is set, a failover could have happened which 21873 * implies a possible failback might have to happen. As failback 21874 * depends on the old index, we should fail setting the index. 21875 * 21876 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21877 * any addresses or multicast memberships are failed over to 21878 * a non-STANDBY interface. As failback depends on the old 21879 * index, we should fail setting the index for this case also. 21880 * 21881 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21882 * Be consistent with PHYI_FAILED and fail the ioctl. 21883 */ 21884 ill = ipif->ipif_ill; 21885 phyi = ill->ill_phyint; 21886 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21887 ipif->ipif_id != 0 || index == 0) { 21888 return (EINVAL); 21889 } 21890 old_index = phyi->phyint_ifindex; 21891 21892 /* If the index is not changing, no work to do */ 21893 if (old_index == index) 21894 return (0); 21895 21896 /* 21897 * Use ill_lookup_on_ifindex to determine if the 21898 * new index is unused and if so allow the change. 21899 */ 21900 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21901 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21902 if (ill_v6 != NULL || ill_v4 != NULL) { 21903 if (ill_v4 != NULL) 21904 ill_refrele(ill_v4); 21905 if (ill_v6 != NULL) 21906 ill_refrele(ill_v6); 21907 return (EBUSY); 21908 } 21909 21910 /* 21911 * The new index is unused. Set it in the phyint. 21912 * Locate the other ill so that we can send a routing 21913 * sockets message. 21914 */ 21915 if (ill->ill_isv6) { 21916 ill_other = phyi->phyint_illv4; 21917 } else { 21918 ill_other = phyi->phyint_illv6; 21919 } 21920 21921 phyi->phyint_ifindex = index; 21922 21923 connc.cc_old_ifindex = old_index; 21924 connc.cc_new_ifindex = index; 21925 ip_change_ifindex(ill, &connc); 21926 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21927 21928 /* Send the routing sockets message */ 21929 ip_rts_ifmsg(ipif); 21930 if (ill_other != NULL) 21931 ip_rts_ifmsg(ill_other->ill_ipif); 21932 21933 return (0); 21934 } 21935 21936 /* ARGSUSED */ 21937 int 21938 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21939 ip_ioctl_cmd_t *ipip, void *ifreq) 21940 { 21941 struct ifreq *ifr = (struct ifreq *)ifreq; 21942 struct lifreq *lifr = (struct lifreq *)ifreq; 21943 21944 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21946 /* Get the interface index */ 21947 if (ipip->ipi_cmd_type == IF_CMD) { 21948 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21949 } else { 21950 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21951 } 21952 return (0); 21953 } 21954 21955 /* ARGSUSED */ 21956 int 21957 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21958 ip_ioctl_cmd_t *ipip, void *ifreq) 21959 { 21960 struct lifreq *lifr = (struct lifreq *)ifreq; 21961 21962 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21963 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21964 /* Get the interface zone */ 21965 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21966 lifr->lifr_zoneid = ipif->ipif_zoneid; 21967 return (0); 21968 } 21969 21970 /* 21971 * Set the zoneid of an interface. 21972 */ 21973 /* ARGSUSED */ 21974 int 21975 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21976 ip_ioctl_cmd_t *ipip, void *ifreq) 21977 { 21978 struct lifreq *lifr = (struct lifreq *)ifreq; 21979 int err = 0; 21980 boolean_t need_up = B_FALSE; 21981 zone_t *zptr; 21982 zone_status_t status; 21983 zoneid_t zoneid; 21984 21985 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21986 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21987 if (!is_system_labeled()) 21988 return (ENOTSUP); 21989 zoneid = GLOBAL_ZONEID; 21990 } 21991 21992 /* cannot assign instance zero to a non-global zone */ 21993 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21994 return (ENOTSUP); 21995 21996 /* 21997 * Cannot assign to a zone that doesn't exist or is shutting down. In 21998 * the event of a race with the zone shutdown processing, since IP 21999 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22000 * interface will be cleaned up even if the zone is shut down 22001 * immediately after the status check. If the interface can't be brought 22002 * down right away, and the zone is shut down before the restart 22003 * function is called, we resolve the possible races by rechecking the 22004 * zone status in the restart function. 22005 */ 22006 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22007 return (EINVAL); 22008 status = zone_status_get(zptr); 22009 zone_rele(zptr); 22010 22011 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22012 return (EINVAL); 22013 22014 if (ipif->ipif_flags & IPIF_UP) { 22015 /* 22016 * If the interface is already marked up, 22017 * we call ipif_down which will take care 22018 * of ditching any IREs that have been set 22019 * up based on the old interface address. 22020 */ 22021 err = ipif_logical_down(ipif, q, mp); 22022 if (err == EINPROGRESS) 22023 return (err); 22024 ipif_down_tail(ipif); 22025 need_up = B_TRUE; 22026 } 22027 22028 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22029 return (err); 22030 } 22031 22032 static int 22033 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22034 queue_t *q, mblk_t *mp, boolean_t need_up) 22035 { 22036 int err = 0; 22037 22038 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22040 22041 /* Set the new zone id. */ 22042 ipif->ipif_zoneid = zoneid; 22043 22044 /* Update sctp list */ 22045 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22046 22047 if (need_up) { 22048 /* 22049 * Now bring the interface back up. If this 22050 * is the only IPIF for the ILL, ipif_up 22051 * will have to re-bind to the device, so 22052 * we may get back EINPROGRESS, in which 22053 * case, this IOCTL will get completed in 22054 * ip_rput_dlpi when we see the DL_BIND_ACK. 22055 */ 22056 err = ipif_up(ipif, q, mp); 22057 } 22058 return (err); 22059 } 22060 22061 /* ARGSUSED */ 22062 int 22063 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22064 ip_ioctl_cmd_t *ipip, void *if_req) 22065 { 22066 struct lifreq *lifr = (struct lifreq *)if_req; 22067 zoneid_t zoneid; 22068 zone_t *zptr; 22069 zone_status_t status; 22070 22071 ASSERT(ipif->ipif_id != 0); 22072 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22073 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22074 zoneid = GLOBAL_ZONEID; 22075 22076 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22077 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22078 22079 /* 22080 * We recheck the zone status to resolve the following race condition: 22081 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22082 * 2) hme0:1 is up and can't be brought down right away; 22083 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22084 * 3) zone "myzone" is halted; the zone status switches to 22085 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22086 * the interfaces to remove - hme0:1 is not returned because it's not 22087 * yet in "myzone", so it won't be removed; 22088 * 4) the restart function for SIOCSLIFZONE is called; without the 22089 * status check here, we would have hme0:1 in "myzone" after it's been 22090 * destroyed. 22091 * Note that if the status check fails, we need to bring the interface 22092 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22093 * ipif_up_done[_v6](). 22094 */ 22095 status = ZONE_IS_UNINITIALIZED; 22096 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22097 status = zone_status_get(zptr); 22098 zone_rele(zptr); 22099 } 22100 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22101 if (ipif->ipif_isv6) { 22102 (void) ipif_up_done_v6(ipif); 22103 } else { 22104 (void) ipif_up_done(ipif); 22105 } 22106 return (EINVAL); 22107 } 22108 22109 ipif_down_tail(ipif); 22110 22111 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22112 B_TRUE)); 22113 } 22114 22115 /* ARGSUSED */ 22116 int 22117 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22118 ip_ioctl_cmd_t *ipip, void *ifreq) 22119 { 22120 struct lifreq *lifr = ifreq; 22121 22122 ASSERT(q->q_next == NULL); 22123 ASSERT(CONN_Q(q)); 22124 22125 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22126 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22127 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22128 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22129 22130 return (0); 22131 } 22132 22133 22134 /* Find the previous ILL in this usesrc group */ 22135 static ill_t * 22136 ill_prev_usesrc(ill_t *uill) 22137 { 22138 ill_t *ill; 22139 22140 for (ill = uill->ill_usesrc_grp_next; 22141 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22142 ill = ill->ill_usesrc_grp_next) 22143 /* do nothing */; 22144 return (ill); 22145 } 22146 22147 /* 22148 * Release all members of the usesrc group. This routine is called 22149 * from ill_delete when the interface being unplumbed is the 22150 * group head. 22151 */ 22152 static void 22153 ill_disband_usesrc_group(ill_t *uill) 22154 { 22155 ill_t *next_ill, *tmp_ill; 22156 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 22157 next_ill = uill->ill_usesrc_grp_next; 22158 22159 do { 22160 ASSERT(next_ill != NULL); 22161 tmp_ill = next_ill->ill_usesrc_grp_next; 22162 ASSERT(tmp_ill != NULL); 22163 next_ill->ill_usesrc_grp_next = NULL; 22164 next_ill->ill_usesrc_ifindex = 0; 22165 next_ill = tmp_ill; 22166 } while (next_ill->ill_usesrc_ifindex != 0); 22167 uill->ill_usesrc_grp_next = NULL; 22168 } 22169 22170 /* 22171 * Remove the client usesrc ILL from the list and relink to a new list 22172 */ 22173 int 22174 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22175 { 22176 ill_t *ill, *tmp_ill; 22177 22178 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22179 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 22180 22181 /* 22182 * Check if the usesrc client ILL passed in is not already 22183 * in use as a usesrc ILL i.e one whose source address is 22184 * in use OR a usesrc ILL is not already in use as a usesrc 22185 * client ILL 22186 */ 22187 if ((ucill->ill_usesrc_ifindex == 0) || 22188 (uill->ill_usesrc_ifindex != 0)) { 22189 return (-1); 22190 } 22191 22192 ill = ill_prev_usesrc(ucill); 22193 ASSERT(ill->ill_usesrc_grp_next != NULL); 22194 22195 /* Remove from the current list */ 22196 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22197 /* Only two elements in the list */ 22198 ASSERT(ill->ill_usesrc_ifindex == 0); 22199 ill->ill_usesrc_grp_next = NULL; 22200 } else { 22201 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22202 } 22203 22204 if (ifindex == 0) { 22205 ucill->ill_usesrc_ifindex = 0; 22206 ucill->ill_usesrc_grp_next = NULL; 22207 return (0); 22208 } 22209 22210 ucill->ill_usesrc_ifindex = ifindex; 22211 tmp_ill = uill->ill_usesrc_grp_next; 22212 uill->ill_usesrc_grp_next = ucill; 22213 ucill->ill_usesrc_grp_next = 22214 (tmp_ill != NULL) ? tmp_ill : uill; 22215 return (0); 22216 } 22217 22218 /* 22219 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22220 * ip.c for locking details. 22221 */ 22222 /* ARGSUSED */ 22223 int 22224 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22225 ip_ioctl_cmd_t *ipip, void *ifreq) 22226 { 22227 struct lifreq *lifr = (struct lifreq *)ifreq; 22228 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22229 ill_flag_changed = B_FALSE; 22230 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22231 int err = 0, ret; 22232 uint_t ifindex; 22233 phyint_t *us_phyint, *us_cli_phyint; 22234 ipsq_t *ipsq = NULL; 22235 22236 ASSERT(IAM_WRITER_IPIF(ipif)); 22237 ASSERT(q->q_next == NULL); 22238 ASSERT(CONN_Q(q)); 22239 22240 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22241 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22242 22243 ASSERT(us_cli_phyint != NULL); 22244 22245 /* 22246 * If the client ILL is being used for IPMP, abort. 22247 * Note, this can be done before ipsq_try_enter since we are already 22248 * exclusive on this ILL 22249 */ 22250 if ((us_cli_phyint->phyint_groupname != NULL) || 22251 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22252 return (EINVAL); 22253 } 22254 22255 ifindex = lifr->lifr_index; 22256 if (ifindex == 0) { 22257 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22258 /* non usesrc group interface, nothing to reset */ 22259 return (0); 22260 } 22261 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22262 /* valid reset request */ 22263 reset_flg = B_TRUE; 22264 } 22265 22266 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22267 ip_process_ioctl, &err); 22268 22269 if (usesrc_ill == NULL) { 22270 return (err); 22271 } 22272 22273 /* 22274 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22275 * group nor can either of the interfaces be used for standy. So 22276 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22277 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22278 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22279 * We are already exlusive on this ipsq i.e ipsq corresponding to 22280 * the usesrc_cli_ill 22281 */ 22282 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22283 NEW_OP, B_TRUE); 22284 if (ipsq == NULL) { 22285 err = EINPROGRESS; 22286 /* Operation enqueued on the ipsq of the usesrc ILL */ 22287 goto done; 22288 } 22289 22290 /* Check if the usesrc_ill is used for IPMP */ 22291 us_phyint = usesrc_ill->ill_phyint; 22292 if ((us_phyint->phyint_groupname != NULL) || 22293 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22294 err = EINVAL; 22295 goto done; 22296 } 22297 22298 /* 22299 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22300 * already a client then return EINVAL 22301 */ 22302 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22303 err = EINVAL; 22304 goto done; 22305 } 22306 22307 /* 22308 * If the ill_usesrc_ifindex field is already set to what it needs to 22309 * be then this is a duplicate operation. 22310 */ 22311 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22312 err = 0; 22313 goto done; 22314 } 22315 22316 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22317 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22318 usesrc_ill->ill_isv6)); 22319 22320 /* 22321 * The next step ensures that no new ires will be created referencing 22322 * the client ill, until the ILL_CHANGING flag is cleared. Then 22323 * we go through an ire walk deleting all ire caches that reference 22324 * the client ill. New ires referencing the client ill that are added 22325 * to the ire table before the ILL_CHANGING flag is set, will be 22326 * cleaned up by the ire walk below. Attempt to add new ires referencing 22327 * the client ill while the ILL_CHANGING flag is set will be failed 22328 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22329 * checks (under the ill_g_usesrc_lock) that the ire being added 22330 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22331 * belong to the same usesrc group. 22332 */ 22333 mutex_enter(&usesrc_cli_ill->ill_lock); 22334 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22335 mutex_exit(&usesrc_cli_ill->ill_lock); 22336 ill_flag_changed = B_TRUE; 22337 22338 if (ipif->ipif_isv6) 22339 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22340 ALL_ZONES); 22341 else 22342 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22343 ALL_ZONES); 22344 22345 /* 22346 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22347 * and the ill_usesrc_ifindex fields 22348 */ 22349 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 22350 22351 if (reset_flg) { 22352 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22353 if (ret != 0) { 22354 err = EINVAL; 22355 } 22356 rw_exit(&ill_g_usesrc_lock); 22357 goto done; 22358 } 22359 22360 /* 22361 * Four possibilities to consider: 22362 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22363 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22364 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22365 * 4. Both are part of their respective usesrc groups 22366 */ 22367 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22368 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22369 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22370 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22371 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22372 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22373 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22374 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22375 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22376 /* Insert at head of list */ 22377 usesrc_cli_ill->ill_usesrc_grp_next = 22378 usesrc_ill->ill_usesrc_grp_next; 22379 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22380 } else { 22381 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22382 ifindex); 22383 if (ret != 0) 22384 err = EINVAL; 22385 } 22386 rw_exit(&ill_g_usesrc_lock); 22387 22388 done: 22389 if (ill_flag_changed) { 22390 mutex_enter(&usesrc_cli_ill->ill_lock); 22391 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22392 mutex_exit(&usesrc_cli_ill->ill_lock); 22393 } 22394 if (ipsq != NULL) 22395 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22396 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22397 ill_refrele(usesrc_ill); 22398 return (err); 22399 } 22400 22401 /* 22402 * comparison function used by avl. 22403 */ 22404 static int 22405 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22406 { 22407 22408 uint_t index; 22409 22410 ASSERT(phyip != NULL && index_ptr != NULL); 22411 22412 index = *((uint_t *)index_ptr); 22413 /* 22414 * let the phyint with the lowest index be on top. 22415 */ 22416 if (((phyint_t *)phyip)->phyint_ifindex < index) 22417 return (1); 22418 if (((phyint_t *)phyip)->phyint_ifindex > index) 22419 return (-1); 22420 return (0); 22421 } 22422 22423 /* 22424 * comparison function used by avl. 22425 */ 22426 static int 22427 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22428 { 22429 ill_t *ill; 22430 int res = 0; 22431 22432 ASSERT(phyip != NULL && name_ptr != NULL); 22433 22434 if (((phyint_t *)phyip)->phyint_illv4) 22435 ill = ((phyint_t *)phyip)->phyint_illv4; 22436 else 22437 ill = ((phyint_t *)phyip)->phyint_illv6; 22438 ASSERT(ill != NULL); 22439 22440 res = strcmp(ill->ill_name, (char *)name_ptr); 22441 if (res > 0) 22442 return (1); 22443 else if (res < 0) 22444 return (-1); 22445 return (0); 22446 } 22447 /* 22448 * This function is called from ill_delete when the ill is being 22449 * unplumbed. We remove the reference from the phyint and we also 22450 * free the phyint when there are no more references to it. 22451 */ 22452 static void 22453 ill_phyint_free(ill_t *ill) 22454 { 22455 phyint_t *phyi; 22456 phyint_t *next_phyint; 22457 ipsq_t *cur_ipsq; 22458 22459 ASSERT(ill->ill_phyint != NULL); 22460 22461 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22462 phyi = ill->ill_phyint; 22463 ill->ill_phyint = NULL; 22464 /* 22465 * ill_init allocates a phyint always to store the copy 22466 * of flags relevant to phyint. At that point in time, we could 22467 * not assign the name and hence phyint_illv4/v6 could not be 22468 * initialized. Later in ipif_set_values, we assign the name to 22469 * the ill, at which point in time we assign phyint_illv4/v6. 22470 * Thus we don't rely on phyint_illv6 to be initialized always. 22471 */ 22472 if (ill->ill_flags & ILLF_IPV6) { 22473 phyi->phyint_illv6 = NULL; 22474 } else { 22475 phyi->phyint_illv4 = NULL; 22476 } 22477 /* 22478 * ipif_down removes it from the group when the last ipif goes 22479 * down. 22480 */ 22481 ASSERT(ill->ill_group == NULL); 22482 22483 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22484 return; 22485 22486 /* 22487 * Make sure this phyint was put in the list. 22488 */ 22489 if (phyi->phyint_ifindex > 0) { 22490 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 22491 phyi); 22492 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 22493 phyi); 22494 } 22495 /* 22496 * remove phyint from the ipsq list. 22497 */ 22498 cur_ipsq = phyi->phyint_ipsq; 22499 if (phyi == cur_ipsq->ipsq_phyint_list) { 22500 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22501 } else { 22502 next_phyint = cur_ipsq->ipsq_phyint_list; 22503 while (next_phyint != NULL) { 22504 if (next_phyint->phyint_ipsq_next == phyi) { 22505 next_phyint->phyint_ipsq_next = 22506 phyi->phyint_ipsq_next; 22507 break; 22508 } 22509 next_phyint = next_phyint->phyint_ipsq_next; 22510 } 22511 ASSERT(next_phyint != NULL); 22512 } 22513 IPSQ_DEC_REF(cur_ipsq); 22514 22515 if (phyi->phyint_groupname_len != 0) { 22516 ASSERT(phyi->phyint_groupname != NULL); 22517 mi_free(phyi->phyint_groupname); 22518 } 22519 mi_free(phyi); 22520 } 22521 22522 /* 22523 * Attach the ill to the phyint structure which can be shared by both 22524 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22525 * function is called from ipif_set_values and ill_lookup_on_name (for 22526 * loopback) where we know the name of the ill. We lookup the ill and if 22527 * there is one present already with the name use that phyint. Otherwise 22528 * reuse the one allocated by ill_init. 22529 */ 22530 static void 22531 ill_phyint_reinit(ill_t *ill) 22532 { 22533 boolean_t isv6 = ill->ill_isv6; 22534 phyint_t *phyi_old; 22535 phyint_t *phyi; 22536 avl_index_t where = 0; 22537 ill_t *ill_other = NULL; 22538 ipsq_t *ipsq; 22539 22540 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22541 22542 phyi_old = ill->ill_phyint; 22543 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22544 phyi_old->phyint_illv6 == NULL)); 22545 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22546 phyi_old->phyint_illv4 == NULL)); 22547 ASSERT(phyi_old->phyint_ifindex == 0); 22548 22549 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 22550 ill->ill_name, &where); 22551 22552 /* 22553 * 1. We grabbed the ill_g_lock before inserting this ill into 22554 * the global list of ills. So no other thread could have located 22555 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22556 * 2. Now locate the other protocol instance of this ill. 22557 * 3. Now grab both ill locks in the right order, and the phyint lock of 22558 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22559 * of neither ill can change. 22560 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22561 * other ill. 22562 * 5. Release all locks. 22563 */ 22564 22565 /* 22566 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22567 * we are initializing IPv4. 22568 */ 22569 if (phyi != NULL) { 22570 ill_other = (isv6) ? phyi->phyint_illv4 : 22571 phyi->phyint_illv6; 22572 ASSERT(ill_other->ill_phyint != NULL); 22573 ASSERT((isv6 && !ill_other->ill_isv6) || 22574 (!isv6 && ill_other->ill_isv6)); 22575 GRAB_ILL_LOCKS(ill, ill_other); 22576 /* 22577 * We are potentially throwing away phyint_flags which 22578 * could be different from the one that we obtain from 22579 * ill_other->ill_phyint. But it is okay as we are assuming 22580 * that the state maintained within IP is correct. 22581 */ 22582 mutex_enter(&phyi->phyint_lock); 22583 if (isv6) { 22584 ASSERT(phyi->phyint_illv6 == NULL); 22585 phyi->phyint_illv6 = ill; 22586 } else { 22587 ASSERT(phyi->phyint_illv4 == NULL); 22588 phyi->phyint_illv4 = ill; 22589 } 22590 /* 22591 * This is a new ill, currently undergoing SLIFNAME 22592 * So we could not have joined an IPMP group until now. 22593 */ 22594 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22595 phyi_old->phyint_groupname == NULL); 22596 22597 /* 22598 * This phyi_old is going away. Decref ipsq_refs and 22599 * assert it is zero. The ipsq itself will be freed in 22600 * ipsq_exit 22601 */ 22602 ipsq = phyi_old->phyint_ipsq; 22603 IPSQ_DEC_REF(ipsq); 22604 ASSERT(ipsq->ipsq_refs == 0); 22605 /* Get the singleton phyint out of the ipsq list */ 22606 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22607 ipsq->ipsq_phyint_list = NULL; 22608 phyi_old->phyint_illv4 = NULL; 22609 phyi_old->phyint_illv6 = NULL; 22610 mi_free(phyi_old); 22611 } else { 22612 mutex_enter(&ill->ill_lock); 22613 /* 22614 * We don't need to acquire any lock, since 22615 * the ill is not yet visible globally and we 22616 * have not yet released the ill_g_lock. 22617 */ 22618 phyi = phyi_old; 22619 mutex_enter(&phyi->phyint_lock); 22620 /* XXX We need a recovery strategy here. */ 22621 if (!phyint_assign_ifindex(phyi)) 22622 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22623 22624 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 22625 (void *)phyi, where); 22626 22627 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 22628 &phyi->phyint_ifindex, &where); 22629 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 22630 (void *)phyi, where); 22631 } 22632 22633 /* 22634 * Reassigning ill_phyint automatically reassigns the ipsq also. 22635 * pending mp is not affected because that is per ill basis. 22636 */ 22637 ill->ill_phyint = phyi; 22638 22639 /* 22640 * Keep the index on ipif_orig_index to be used by FAILOVER. 22641 * We do this here as when the first ipif was allocated, 22642 * ipif_allocate does not know the right interface index. 22643 */ 22644 22645 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22646 /* 22647 * Now that the phyint's ifindex has been assigned, complete the 22648 * remaining 22649 */ 22650 22651 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22652 if (ill->ill_isv6) { 22653 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22654 ill->ill_phyint->phyint_ifindex; 22655 } 22656 22657 /* 22658 * Generate an event within the hooks framework to indicate that 22659 * a new interface has just been added to IP. For this event to 22660 * be generated, the network interface must, at least, have an 22661 * ifindex assigned to it. 22662 * 22663 * This needs to be run inside the ill_g_lock perimeter to ensure 22664 * that the ordering of delivered events to listeners matches the 22665 * order of them in the kernel. 22666 * 22667 * This function could be called from ill_lookup_on_name. In that case 22668 * the interface is loopback "lo", which will not generate a NIC event. 22669 */ 22670 if (ill->ill_name_length <= 2 || 22671 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22672 hook_nic_event_t *info; 22673 if ((info = ill->ill_nic_event_info) != NULL) { 22674 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22675 "attached for %s\n", info->hne_event, 22676 ill->ill_name)); 22677 if (info->hne_data != NULL) 22678 kmem_free(info->hne_data, info->hne_datalen); 22679 kmem_free(info, sizeof (hook_nic_event_t)); 22680 } 22681 22682 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22683 if (info != NULL) { 22684 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22685 info->hne_lif = 0; 22686 info->hne_event = NE_PLUMB; 22687 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 22688 info->hne_data = kmem_alloc(ill->ill_name_length, 22689 KM_NOSLEEP); 22690 if (info->hne_data != NULL) { 22691 info->hne_datalen = ill->ill_name_length; 22692 bcopy(ill->ill_name, info->hne_data, 22693 info->hne_datalen); 22694 } else { 22695 ip2dbg(("ill_phyint_reinit: could not attach " 22696 "ill_name information for PLUMB nic event " 22697 "of %s (ENOMEM)\n", ill->ill_name)); 22698 kmem_free(info, sizeof (hook_nic_event_t)); 22699 } 22700 } else 22701 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22702 "event information for %s (ENOMEM)\n", 22703 ill->ill_name)); 22704 22705 ill->ill_nic_event_info = info; 22706 } 22707 22708 RELEASE_ILL_LOCKS(ill, ill_other); 22709 mutex_exit(&phyi->phyint_lock); 22710 } 22711 22712 /* 22713 * Notify any downstream modules of the name of this interface. 22714 * An M_IOCTL is used even though we don't expect a successful reply. 22715 * Any reply message from the driver (presumably an M_IOCNAK) will 22716 * eventually get discarded somewhere upstream. The message format is 22717 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22718 * to IP. 22719 */ 22720 static void 22721 ip_ifname_notify(ill_t *ill, queue_t *q) 22722 { 22723 mblk_t *mp1, *mp2; 22724 struct iocblk *iocp; 22725 struct lifreq *lifr; 22726 22727 mp1 = mkiocb(SIOCSLIFNAME); 22728 if (mp1 == NULL) 22729 return; 22730 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22731 if (mp2 == NULL) { 22732 freeb(mp1); 22733 return; 22734 } 22735 22736 mp1->b_cont = mp2; 22737 iocp = (struct iocblk *)mp1->b_rptr; 22738 iocp->ioc_count = sizeof (struct lifreq); 22739 22740 lifr = (struct lifreq *)mp2->b_rptr; 22741 mp2->b_wptr += sizeof (struct lifreq); 22742 bzero(lifr, sizeof (struct lifreq)); 22743 22744 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22745 lifr->lifr_ppa = ill->ill_ppa; 22746 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22747 22748 putnext(q, mp1); 22749 } 22750 22751 static boolean_t ip_trash_timer_started = B_FALSE; 22752 22753 static int 22754 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22755 { 22756 int err; 22757 22758 /* Set the obsolete NDD per-interface forwarding name. */ 22759 err = ill_set_ndd_name(ill); 22760 if (err != 0) { 22761 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22762 err); 22763 } 22764 22765 /* Tell downstream modules where they are. */ 22766 ip_ifname_notify(ill, q); 22767 22768 /* 22769 * ill_dl_phys returns EINPROGRESS in the usual case. 22770 * Error cases are ENOMEM ... 22771 */ 22772 err = ill_dl_phys(ill, ipif, mp, q); 22773 22774 /* 22775 * If there is no IRE expiration timer running, get one started. 22776 * igmp and mld timers will be triggered by the first multicast 22777 */ 22778 if (!ip_trash_timer_started) { 22779 /* 22780 * acquire the lock and check again. 22781 */ 22782 mutex_enter(&ip_trash_timer_lock); 22783 if (!ip_trash_timer_started) { 22784 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22785 MSEC_TO_TICK(ip_timer_interval)); 22786 ip_trash_timer_started = B_TRUE; 22787 } 22788 mutex_exit(&ip_trash_timer_lock); 22789 } 22790 22791 if (ill->ill_isv6) { 22792 mutex_enter(&mld_slowtimeout_lock); 22793 if (mld_slowtimeout_id == 0) { 22794 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22795 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22796 } 22797 mutex_exit(&mld_slowtimeout_lock); 22798 } else { 22799 mutex_enter(&igmp_slowtimeout_lock); 22800 if (igmp_slowtimeout_id == 0) { 22801 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22802 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22803 } 22804 mutex_exit(&igmp_slowtimeout_lock); 22805 } 22806 22807 return (err); 22808 } 22809 22810 /* 22811 * Common routine for ppa and ifname setting. Should be called exclusive. 22812 * 22813 * Returns EINPROGRESS when mp has been consumed by queueing it on 22814 * ill_pending_mp and the ioctl will complete in ip_rput. 22815 * 22816 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22817 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22818 * For SLIFNAME, we pass these values back to the userland. 22819 */ 22820 static int 22821 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22822 { 22823 ill_t *ill; 22824 ipif_t *ipif; 22825 ipsq_t *ipsq; 22826 char *ppa_ptr; 22827 char *old_ptr; 22828 char old_char; 22829 int error; 22830 22831 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22832 ASSERT(q->q_next != NULL); 22833 ASSERT(interf_name != NULL); 22834 22835 ill = (ill_t *)q->q_ptr; 22836 22837 ASSERT(ill->ill_name[0] == '\0'); 22838 ASSERT(IAM_WRITER_ILL(ill)); 22839 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22840 ASSERT(ill->ill_ppa == UINT_MAX); 22841 22842 /* The ppa is sent down by ifconfig or is chosen */ 22843 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22844 return (EINVAL); 22845 } 22846 22847 /* 22848 * make sure ppa passed in is same as ppa in the name. 22849 * This check is not made when ppa == UINT_MAX in that case ppa 22850 * in the name could be anything. System will choose a ppa and 22851 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22852 */ 22853 if (*new_ppa_ptr != UINT_MAX) { 22854 /* stoi changes the pointer */ 22855 old_ptr = ppa_ptr; 22856 /* 22857 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22858 * (they don't have an externally visible ppa). We assign one 22859 * here so that we can manage the interface. Note that in 22860 * the past this value was always 0 for DLPI 1 drivers. 22861 */ 22862 if (*new_ppa_ptr == 0) 22863 *new_ppa_ptr = stoi(&old_ptr); 22864 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22865 return (EINVAL); 22866 } 22867 /* 22868 * terminate string before ppa 22869 * save char at that location. 22870 */ 22871 old_char = ppa_ptr[0]; 22872 ppa_ptr[0] = '\0'; 22873 22874 ill->ill_ppa = *new_ppa_ptr; 22875 /* 22876 * Finish as much work now as possible before calling ill_glist_insert 22877 * which makes the ill globally visible and also merges it with the 22878 * other protocol instance of this phyint. The remaining work is 22879 * done after entering the ipsq which may happen sometime later. 22880 * ill_set_ndd_name occurs after the ill has been made globally visible. 22881 */ 22882 ipif = ill->ill_ipif; 22883 22884 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22885 ipif_assign_seqid(ipif); 22886 22887 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22888 ill->ill_flags |= ILLF_IPV4; 22889 22890 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22891 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22892 22893 if (ill->ill_flags & ILLF_IPV6) { 22894 22895 ill->ill_isv6 = B_TRUE; 22896 if (ill->ill_rq != NULL) { 22897 ill->ill_rq->q_qinfo = &rinit_ipv6; 22898 ill->ill_wq->q_qinfo = &winit_ipv6; 22899 } 22900 22901 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22902 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22903 ipif->ipif_v6src_addr = ipv6_all_zeros; 22904 ipif->ipif_v6subnet = ipv6_all_zeros; 22905 ipif->ipif_v6net_mask = ipv6_all_zeros; 22906 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22907 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22908 /* 22909 * point-to-point or Non-mulicast capable 22910 * interfaces won't do NUD unless explicitly 22911 * configured to do so. 22912 */ 22913 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22914 !(ill->ill_flags & ILLF_MULTICAST)) { 22915 ill->ill_flags |= ILLF_NONUD; 22916 } 22917 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22918 if (ill->ill_flags & ILLF_NOARP) { 22919 /* 22920 * Note: xresolv interfaces will eventually need 22921 * NOARP set here as well, but that will require 22922 * those external resolvers to have some 22923 * knowledge of that flag and act appropriately. 22924 * Not to be changed at present. 22925 */ 22926 ill->ill_flags &= ~ILLF_NOARP; 22927 } 22928 /* 22929 * Set the ILLF_ROUTER flag according to the global 22930 * IPv6 forwarding policy. 22931 */ 22932 if (ipv6_forward != 0) 22933 ill->ill_flags |= ILLF_ROUTER; 22934 } else if (ill->ill_flags & ILLF_IPV4) { 22935 ill->ill_isv6 = B_FALSE; 22936 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22937 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22938 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22939 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22940 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22941 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22942 /* 22943 * Set the ILLF_ROUTER flag according to the global 22944 * IPv4 forwarding policy. 22945 */ 22946 if (ip_g_forward != 0) 22947 ill->ill_flags |= ILLF_ROUTER; 22948 } 22949 22950 ASSERT(ill->ill_phyint != NULL); 22951 22952 /* 22953 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22954 * be completed in ill_glist_insert -> ill_phyint_reinit 22955 */ 22956 if (!ill_allocate_mibs(ill)) 22957 return (ENOMEM); 22958 22959 /* 22960 * Pick a default sap until we get the DL_INFO_ACK back from 22961 * the driver. 22962 */ 22963 if (ill->ill_sap == 0) { 22964 if (ill->ill_isv6) 22965 ill->ill_sap = IP6_DL_SAP; 22966 else 22967 ill->ill_sap = IP_DL_SAP; 22968 } 22969 22970 ill->ill_ifname_pending = 1; 22971 ill->ill_ifname_pending_err = 0; 22972 22973 ill_refhold(ill); 22974 rw_enter(&ill_g_lock, RW_WRITER); 22975 if ((error = ill_glist_insert(ill, interf_name, 22976 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22977 ill->ill_ppa = UINT_MAX; 22978 ill->ill_name[0] = '\0'; 22979 /* 22980 * undo null termination done above. 22981 */ 22982 ppa_ptr[0] = old_char; 22983 rw_exit(&ill_g_lock); 22984 ill_refrele(ill); 22985 return (error); 22986 } 22987 22988 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22989 22990 /* 22991 * When we return the buffer pointed to by interf_name should contain 22992 * the same name as in ill_name. 22993 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22994 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22995 * so copy full name and update the ppa ptr. 22996 * When ppa passed in != UINT_MAX all values are correct just undo 22997 * null termination, this saves a bcopy. 22998 */ 22999 if (*new_ppa_ptr == UINT_MAX) { 23000 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23001 *new_ppa_ptr = ill->ill_ppa; 23002 } else { 23003 /* 23004 * undo null termination done above. 23005 */ 23006 ppa_ptr[0] = old_char; 23007 } 23008 23009 /* Let SCTP know about this ILL */ 23010 sctp_update_ill(ill, SCTP_ILL_INSERT); 23011 23012 /* and also about the first ipif */ 23013 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 23014 23015 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23016 B_TRUE); 23017 23018 rw_exit(&ill_g_lock); 23019 ill_refrele(ill); 23020 if (ipsq == NULL) 23021 return (EINPROGRESS); 23022 23023 /* 23024 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23025 */ 23026 if (ipsq->ipsq_current_ipif == NULL) 23027 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23028 else 23029 ASSERT(ipsq->ipsq_current_ipif == ipif); 23030 23031 error = ipif_set_values_tail(ill, ipif, mp, q); 23032 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23033 if (error != 0 && error != EINPROGRESS) { 23034 /* 23035 * restore previous values 23036 */ 23037 ill->ill_isv6 = B_FALSE; 23038 } 23039 return (error); 23040 } 23041 23042 23043 extern void (*ip_cleanup_func)(void); 23044 23045 void 23046 ipif_init(void) 23047 { 23048 hrtime_t hrt; 23049 int i; 23050 23051 /* 23052 * Can't call drv_getparm here as it is too early in the boot. 23053 * As we use ipif_src_random just for picking a different 23054 * source address everytime, this need not be really random. 23055 */ 23056 hrt = gethrtime(); 23057 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23058 23059 for (i = 0; i < MAX_G_HEADS; i++) { 23060 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 23061 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 23062 } 23063 23064 avl_create(&phyint_g_list.phyint_list_avl_by_index, 23065 ill_phyint_compare_index, 23066 sizeof (phyint_t), 23067 offsetof(struct phyint, phyint_avl_by_index)); 23068 avl_create(&phyint_g_list.phyint_list_avl_by_name, 23069 ill_phyint_compare_name, 23070 sizeof (phyint_t), 23071 offsetof(struct phyint, phyint_avl_by_name)); 23072 23073 ip_cleanup_func = ip_thread_exit; 23074 } 23075 23076 /* 23077 * This is called by ip_rt_add when src_addr value is other than zero. 23078 * src_addr signifies the source address of the incoming packet. For 23079 * reverse tunnel route we need to create a source addr based routing 23080 * table. This routine creates ip_mrtun_table if it's empty and then 23081 * it adds the route entry hashed by source address. It verifies that 23082 * the outgoing interface is always a non-resolver interface (tunnel). 23083 */ 23084 int 23085 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23086 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 23087 { 23088 ire_t *ire; 23089 ire_t *save_ire; 23090 ipif_t *ipif; 23091 ill_t *in_ill = NULL; 23092 ill_t *out_ill; 23093 queue_t *stq; 23094 mblk_t *dlureq_mp; 23095 int error; 23096 23097 if (ire_arg != NULL) 23098 *ire_arg = NULL; 23099 ASSERT(in_src_addr != INADDR_ANY); 23100 23101 ipif = ipif_arg; 23102 if (ipif != NULL) { 23103 out_ill = ipif->ipif_ill; 23104 } else { 23105 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23106 return (EINVAL); 23107 } 23108 23109 if (src_ipif == NULL) { 23110 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23111 return (EINVAL); 23112 } 23113 in_ill = src_ipif->ipif_ill; 23114 23115 /* 23116 * Check for duplicates. We don't need to 23117 * match out_ill, because the uniqueness of 23118 * a route is only dependent on src_addr and 23119 * in_ill. 23120 */ 23121 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23122 if (ire != NULL) { 23123 ire_refrele(ire); 23124 return (EEXIST); 23125 } 23126 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23127 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23128 ipif->ipif_net_type)); 23129 return (EINVAL); 23130 } 23131 23132 stq = ipif->ipif_wq; 23133 ASSERT(stq != NULL); 23134 23135 /* 23136 * The outgoing interface must be non-resolver 23137 * interface. 23138 */ 23139 dlureq_mp = ill_dlur_gen(NULL, 23140 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23141 out_ill->ill_sap_length); 23142 23143 if (dlureq_mp == NULL) { 23144 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23145 return (ENOMEM); 23146 } 23147 23148 /* Create the IRE. */ 23149 23150 ire = ire_create( 23151 NULL, /* Zero dst addr */ 23152 NULL, /* Zero mask */ 23153 NULL, /* Zero gateway addr */ 23154 NULL, /* Zero ipif_src addr */ 23155 (uint8_t *)&in_src_addr, /* in_src-addr */ 23156 &ipif->ipif_mtu, 23157 NULL, 23158 NULL, /* rfq */ 23159 stq, 23160 IRE_MIPRTUN, 23161 dlureq_mp, 23162 ipif, 23163 in_ill, 23164 0, 23165 0, 23166 0, 23167 flags, 23168 &ire_uinfo_null, 23169 NULL, 23170 NULL); 23171 23172 if (ire == NULL) { 23173 freeb(dlureq_mp); 23174 return (ENOMEM); 23175 } 23176 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23177 ire->ire_type)); 23178 save_ire = ire; 23179 ASSERT(save_ire != NULL); 23180 error = ire_add_mrtun(&ire, q, mp, func); 23181 /* 23182 * If ire_add_mrtun() failed, the ire passed in was freed 23183 * so there is no need to do so here. 23184 */ 23185 if (error != 0) { 23186 return (error); 23187 } 23188 23189 /* Duplicate check */ 23190 if (ire != save_ire) { 23191 /* route already exists by now */ 23192 ire_refrele(ire); 23193 return (EEXIST); 23194 } 23195 23196 if (ire_arg != NULL) { 23197 /* 23198 * Store the ire that was just added. the caller 23199 * ip_rts_request responsible for doing ire_refrele() 23200 * on it. 23201 */ 23202 *ire_arg = ire; 23203 } else { 23204 ire_refrele(ire); /* held in ire_add_mrtun */ 23205 } 23206 23207 return (0); 23208 } 23209 23210 /* 23211 * It is called by ip_rt_delete() only when mipagent requests to delete 23212 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23213 */ 23214 23215 int 23216 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23217 { 23218 ire_t *ire = NULL; 23219 23220 if (in_src_addr == INADDR_ANY) 23221 return (EINVAL); 23222 if (src_ipif == NULL) 23223 return (EINVAL); 23224 23225 /* search if this route exists in the ip_mrtun_table */ 23226 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23227 if (ire == NULL) { 23228 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23229 return (ESRCH); 23230 } 23231 ire_delete(ire); 23232 ire_refrele(ire); 23233 return (0); 23234 } 23235 23236 /* 23237 * Lookup the ipif corresponding to the onlink destination address. For 23238 * point-to-point interfaces, it matches with remote endpoint destination 23239 * address. For point-to-multipoint interfaces it only tries to match the 23240 * destination with the interface's subnet address. The longest, most specific 23241 * match is found to take care of such rare network configurations like - 23242 * le0: 129.146.1.1/16 23243 * le1: 129.146.2.2/24 23244 * It is used only by SO_DONTROUTE at the moment. 23245 */ 23246 ipif_t * 23247 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 23248 { 23249 ipif_t *ipif, *best_ipif; 23250 ill_t *ill; 23251 ill_walk_context_t ctx; 23252 23253 ASSERT(zoneid != ALL_ZONES); 23254 best_ipif = NULL; 23255 23256 rw_enter(&ill_g_lock, RW_READER); 23257 ill = ILL_START_WALK_V4(&ctx); 23258 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23259 mutex_enter(&ill->ill_lock); 23260 for (ipif = ill->ill_ipif; ipif != NULL; 23261 ipif = ipif->ipif_next) { 23262 if (!IPIF_CAN_LOOKUP(ipif)) 23263 continue; 23264 if (ipif->ipif_zoneid != zoneid && 23265 ipif->ipif_zoneid != ALL_ZONES) 23266 continue; 23267 /* 23268 * Point-to-point case. Look for exact match with 23269 * destination address. 23270 */ 23271 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23272 if (ipif->ipif_pp_dst_addr == addr) { 23273 ipif_refhold_locked(ipif); 23274 mutex_exit(&ill->ill_lock); 23275 rw_exit(&ill_g_lock); 23276 if (best_ipif != NULL) 23277 ipif_refrele(best_ipif); 23278 return (ipif); 23279 } 23280 } else if (ipif->ipif_subnet == (addr & 23281 ipif->ipif_net_mask)) { 23282 /* 23283 * Point-to-multipoint case. Looping through to 23284 * find the most specific match. If there are 23285 * multiple best match ipif's then prefer ipif's 23286 * that are UP. If there is only one best match 23287 * ipif and it is DOWN we must still return it. 23288 */ 23289 if ((best_ipif == NULL) || 23290 (ipif->ipif_net_mask > 23291 best_ipif->ipif_net_mask) || 23292 ((ipif->ipif_net_mask == 23293 best_ipif->ipif_net_mask) && 23294 ((ipif->ipif_flags & IPIF_UP) && 23295 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23296 ipif_refhold_locked(ipif); 23297 mutex_exit(&ill->ill_lock); 23298 rw_exit(&ill_g_lock); 23299 if (best_ipif != NULL) 23300 ipif_refrele(best_ipif); 23301 best_ipif = ipif; 23302 rw_enter(&ill_g_lock, RW_READER); 23303 mutex_enter(&ill->ill_lock); 23304 } 23305 } 23306 } 23307 mutex_exit(&ill->ill_lock); 23308 } 23309 rw_exit(&ill_g_lock); 23310 return (best_ipif); 23311 } 23312 23313 23314 /* 23315 * Save enough information so that we can recreate the IRE if 23316 * the interface goes down and then up. 23317 */ 23318 static void 23319 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23320 { 23321 mblk_t *save_mp; 23322 23323 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23324 if (save_mp != NULL) { 23325 ifrt_t *ifrt; 23326 23327 save_mp->b_wptr += sizeof (ifrt_t); 23328 ifrt = (ifrt_t *)save_mp->b_rptr; 23329 bzero(ifrt, sizeof (ifrt_t)); 23330 ifrt->ifrt_type = ire->ire_type; 23331 ifrt->ifrt_addr = ire->ire_addr; 23332 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23333 ifrt->ifrt_src_addr = ire->ire_src_addr; 23334 ifrt->ifrt_mask = ire->ire_mask; 23335 ifrt->ifrt_flags = ire->ire_flags; 23336 ifrt->ifrt_max_frag = ire->ire_max_frag; 23337 mutex_enter(&ipif->ipif_saved_ire_lock); 23338 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23339 ipif->ipif_saved_ire_mp = save_mp; 23340 ipif->ipif_saved_ire_cnt++; 23341 mutex_exit(&ipif->ipif_saved_ire_lock); 23342 } 23343 } 23344 23345 23346 static void 23347 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23348 { 23349 mblk_t **mpp; 23350 mblk_t *mp; 23351 ifrt_t *ifrt; 23352 23353 /* Remove from ipif_saved_ire_mp list if it is there */ 23354 mutex_enter(&ipif->ipif_saved_ire_lock); 23355 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23356 mpp = &(*mpp)->b_cont) { 23357 /* 23358 * On a given ipif, the triple of address, gateway and 23359 * mask is unique for each saved IRE (in the case of 23360 * ordinary interface routes, the gateway address is 23361 * all-zeroes). 23362 */ 23363 mp = *mpp; 23364 ifrt = (ifrt_t *)mp->b_rptr; 23365 if (ifrt->ifrt_addr == ire->ire_addr && 23366 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23367 ifrt->ifrt_mask == ire->ire_mask) { 23368 *mpp = mp->b_cont; 23369 ipif->ipif_saved_ire_cnt--; 23370 freeb(mp); 23371 break; 23372 } 23373 } 23374 mutex_exit(&ipif->ipif_saved_ire_lock); 23375 } 23376 23377 23378 /* 23379 * IP multirouting broadcast routes handling 23380 * Append CGTP broadcast IREs to regular ones created 23381 * at ifconfig time. 23382 */ 23383 static void 23384 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 23385 { 23386 ire_t *ire_prim; 23387 23388 ASSERT(ire != NULL); 23389 ASSERT(ire_dst != NULL); 23390 23391 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23392 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23393 if (ire_prim != NULL) { 23394 /* 23395 * We are in the special case of broadcasts for 23396 * CGTP. We add an IRE_BROADCAST that holds 23397 * the RTF_MULTIRT flag, the destination 23398 * address of ire_dst and the low level 23399 * info of ire_prim. In other words, CGTP 23400 * broadcast is added to the redundant ipif. 23401 */ 23402 ipif_t *ipif_prim; 23403 ire_t *bcast_ire; 23404 23405 ipif_prim = ire_prim->ire_ipif; 23406 23407 ip2dbg(("ip_cgtp_filter_bcast_add: " 23408 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23409 (void *)ire_dst, (void *)ire_prim, 23410 (void *)ipif_prim)); 23411 23412 bcast_ire = ire_create( 23413 (uchar_t *)&ire->ire_addr, 23414 (uchar_t *)&ip_g_all_ones, 23415 (uchar_t *)&ire_dst->ire_src_addr, 23416 (uchar_t *)&ire->ire_gateway_addr, 23417 NULL, 23418 &ipif_prim->ipif_mtu, 23419 NULL, 23420 ipif_prim->ipif_rq, 23421 ipif_prim->ipif_wq, 23422 IRE_BROADCAST, 23423 ipif_prim->ipif_bcast_mp, 23424 ipif_prim, 23425 NULL, 23426 0, 23427 0, 23428 0, 23429 ire->ire_flags, 23430 &ire_uinfo_null, 23431 NULL, 23432 NULL); 23433 23434 if (bcast_ire != NULL) { 23435 23436 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23437 B_FALSE) == 0) { 23438 ip2dbg(("ip_cgtp_filter_bcast_add: " 23439 "added bcast_ire %p\n", 23440 (void *)bcast_ire)); 23441 23442 ipif_save_ire(bcast_ire->ire_ipif, 23443 bcast_ire); 23444 ire_refrele(bcast_ire); 23445 } 23446 } 23447 ire_refrele(ire_prim); 23448 } 23449 } 23450 23451 23452 /* 23453 * IP multirouting broadcast routes handling 23454 * Remove the broadcast ire 23455 */ 23456 static void 23457 ip_cgtp_bcast_delete(ire_t *ire) 23458 { 23459 ire_t *ire_dst; 23460 23461 ASSERT(ire != NULL); 23462 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23463 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23464 if (ire_dst != NULL) { 23465 ire_t *ire_prim; 23466 23467 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23468 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23469 if (ire_prim != NULL) { 23470 ipif_t *ipif_prim; 23471 ire_t *bcast_ire; 23472 23473 ipif_prim = ire_prim->ire_ipif; 23474 23475 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23476 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23477 (void *)ire_dst, (void *)ire_prim, 23478 (void *)ipif_prim)); 23479 23480 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23481 ire->ire_gateway_addr, 23482 IRE_BROADCAST, 23483 ipif_prim, ALL_ZONES, 23484 NULL, 23485 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23486 MATCH_IRE_MASK); 23487 23488 if (bcast_ire != NULL) { 23489 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23490 "looked up bcast_ire %p\n", 23491 (void *)bcast_ire)); 23492 ipif_remove_ire(bcast_ire->ire_ipif, 23493 bcast_ire); 23494 ire_delete(bcast_ire); 23495 } 23496 ire_refrele(ire_prim); 23497 } 23498 ire_refrele(ire_dst); 23499 } 23500 } 23501 23502 /* 23503 * IPsec hardware acceleration capabilities related functions. 23504 */ 23505 23506 /* 23507 * Free a per-ill IPsec capabilities structure. 23508 */ 23509 static void 23510 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23511 { 23512 if (capab->auth_hw_algs != NULL) 23513 kmem_free(capab->auth_hw_algs, capab->algs_size); 23514 if (capab->encr_hw_algs != NULL) 23515 kmem_free(capab->encr_hw_algs, capab->algs_size); 23516 if (capab->encr_algparm != NULL) 23517 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23518 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23519 } 23520 23521 /* 23522 * Allocate a new per-ill IPsec capabilities structure. This structure 23523 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23524 * an array which specifies, for each algorithm, whether this algorithm 23525 * is supported by the ill or not. 23526 */ 23527 static ill_ipsec_capab_t * 23528 ill_ipsec_capab_alloc(void) 23529 { 23530 ill_ipsec_capab_t *capab; 23531 uint_t nelems; 23532 23533 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23534 if (capab == NULL) 23535 return (NULL); 23536 23537 /* we need one bit per algorithm */ 23538 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23539 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23540 23541 /* allocate memory to store algorithm flags */ 23542 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23543 if (capab->encr_hw_algs == NULL) 23544 goto nomem; 23545 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23546 if (capab->auth_hw_algs == NULL) 23547 goto nomem; 23548 /* 23549 * Leave encr_algparm NULL for now since we won't need it half 23550 * the time 23551 */ 23552 return (capab); 23553 23554 nomem: 23555 ill_ipsec_capab_free(capab); 23556 return (NULL); 23557 } 23558 23559 /* 23560 * Resize capability array. Since we're exclusive, this is OK. 23561 */ 23562 static boolean_t 23563 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23564 { 23565 ipsec_capab_algparm_t *nalp, *oalp; 23566 uint32_t olen, nlen; 23567 23568 oalp = capab->encr_algparm; 23569 olen = capab->encr_algparm_size; 23570 23571 if (oalp != NULL) { 23572 if (algid < capab->encr_algparm_end) 23573 return (B_TRUE); 23574 } 23575 23576 nlen = (algid + 1) * sizeof (*nalp); 23577 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23578 if (nalp == NULL) 23579 return (B_FALSE); 23580 23581 if (oalp != NULL) { 23582 bcopy(oalp, nalp, olen); 23583 kmem_free(oalp, olen); 23584 } 23585 capab->encr_algparm = nalp; 23586 capab->encr_algparm_size = nlen; 23587 capab->encr_algparm_end = algid + 1; 23588 23589 return (B_TRUE); 23590 } 23591 23592 /* 23593 * Compare the capabilities of the specified ill with the protocol 23594 * and algorithms specified by the SA passed as argument. 23595 * If they match, returns B_TRUE, B_FALSE if they do not match. 23596 * 23597 * The ill can be passed as a pointer to it, or by specifying its index 23598 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23599 * 23600 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23601 * packet is eligible for hardware acceleration, and by 23602 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23603 * to a particular ill. 23604 */ 23605 boolean_t 23606 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23607 ipsa_t *sa) 23608 { 23609 boolean_t sa_isv6; 23610 uint_t algid; 23611 struct ill_ipsec_capab_s *cpp; 23612 boolean_t need_refrele = B_FALSE; 23613 23614 if (ill == NULL) { 23615 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23616 NULL, NULL, NULL); 23617 if (ill == NULL) { 23618 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23619 return (B_FALSE); 23620 } 23621 need_refrele = B_TRUE; 23622 } 23623 23624 /* 23625 * Use the address length specified by the SA to determine 23626 * if it corresponds to a IPv6 address, and fail the matching 23627 * if the isv6 flag passed as argument does not match. 23628 * Note: this check is used for SADB capability checking before 23629 * sending SA information to an ill. 23630 */ 23631 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23632 if (sa_isv6 != ill_isv6) 23633 /* protocol mismatch */ 23634 goto done; 23635 23636 /* 23637 * Check if the ill supports the protocol, algorithm(s) and 23638 * key size(s) specified by the SA, and get the pointers to 23639 * the algorithms supported by the ill. 23640 */ 23641 switch (sa->ipsa_type) { 23642 23643 case SADB_SATYPE_ESP: 23644 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23645 /* ill does not support ESP acceleration */ 23646 goto done; 23647 cpp = ill->ill_ipsec_capab_esp; 23648 algid = sa->ipsa_auth_alg; 23649 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23650 goto done; 23651 algid = sa->ipsa_encr_alg; 23652 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23653 goto done; 23654 if (algid < cpp->encr_algparm_end) { 23655 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23656 if (sa->ipsa_encrkeybits < alp->minkeylen) 23657 goto done; 23658 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23659 goto done; 23660 } 23661 break; 23662 23663 case SADB_SATYPE_AH: 23664 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23665 /* ill does not support AH acceleration */ 23666 goto done; 23667 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23668 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23669 goto done; 23670 break; 23671 } 23672 23673 if (need_refrele) 23674 ill_refrele(ill); 23675 return (B_TRUE); 23676 done: 23677 if (need_refrele) 23678 ill_refrele(ill); 23679 return (B_FALSE); 23680 } 23681 23682 23683 /* 23684 * Add a new ill to the list of IPsec capable ills. 23685 * Called from ill_capability_ipsec_ack() when an ACK was received 23686 * indicating that IPsec hardware processing was enabled for an ill. 23687 * 23688 * ill must point to the ill for which acceleration was enabled. 23689 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23690 */ 23691 static void 23692 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23693 { 23694 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23695 uint_t sa_type; 23696 uint_t ipproto; 23697 23698 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23699 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23700 23701 switch (dl_cap) { 23702 case DL_CAPAB_IPSEC_AH: 23703 sa_type = SADB_SATYPE_AH; 23704 ills = &ipsec_capab_ills_ah; 23705 ipproto = IPPROTO_AH; 23706 break; 23707 case DL_CAPAB_IPSEC_ESP: 23708 sa_type = SADB_SATYPE_ESP; 23709 ills = &ipsec_capab_ills_esp; 23710 ipproto = IPPROTO_ESP; 23711 break; 23712 } 23713 23714 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23715 23716 /* 23717 * Add ill index to list of hardware accelerators. If 23718 * already in list, do nothing. 23719 */ 23720 for (cur_ill = *ills; cur_ill != NULL && 23721 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23722 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23723 ; 23724 23725 if (cur_ill == NULL) { 23726 /* if this is a new entry for this ill */ 23727 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23728 if (new_ill == NULL) { 23729 rw_exit(&ipsec_capab_ills_lock); 23730 return; 23731 } 23732 23733 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23734 new_ill->ill_isv6 = ill->ill_isv6; 23735 new_ill->next = *ills; 23736 *ills = new_ill; 23737 } else if (!sadb_resync) { 23738 /* not resync'ing SADB and an entry exists for this ill */ 23739 rw_exit(&ipsec_capab_ills_lock); 23740 return; 23741 } 23742 23743 rw_exit(&ipsec_capab_ills_lock); 23744 23745 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23746 /* 23747 * IPsec module for protocol loaded, initiate dump 23748 * of the SADB to this ill. 23749 */ 23750 sadb_ill_download(ill, sa_type); 23751 } 23752 23753 /* 23754 * Remove an ill from the list of IPsec capable ills. 23755 */ 23756 static void 23757 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23758 { 23759 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23760 23761 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23762 dl_cap == DL_CAPAB_IPSEC_ESP); 23763 23764 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23765 &ipsec_capab_ills_esp; 23766 23767 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23768 23769 prev_ill = NULL; 23770 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23771 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23772 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23773 ; 23774 if (cur_ill == NULL) { 23775 /* entry not found */ 23776 rw_exit(&ipsec_capab_ills_lock); 23777 return; 23778 } 23779 if (prev_ill == NULL) { 23780 /* entry at front of list */ 23781 *ills = NULL; 23782 } else { 23783 prev_ill->next = cur_ill->next; 23784 } 23785 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23786 rw_exit(&ipsec_capab_ills_lock); 23787 } 23788 23789 23790 /* 23791 * Handling of DL_CONTROL_REQ messages that must be sent down to 23792 * an ill while having exclusive access. 23793 */ 23794 /* ARGSUSED */ 23795 static void 23796 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23797 { 23798 ill_t *ill = (ill_t *)q->q_ptr; 23799 23800 ill_dlpi_send(ill, mp); 23801 } 23802 23803 23804 /* 23805 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23806 * supporting the specified IPsec protocol acceleration. 23807 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23808 * We free the mblk and, if sa is non-null, release the held referece. 23809 */ 23810 void 23811 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23812 { 23813 ipsec_capab_ill_t *ici, *cur_ici; 23814 ill_t *ill; 23815 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23816 23817 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23818 ipsec_capab_ills_esp; 23819 23820 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23821 23822 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23823 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23824 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23825 23826 /* 23827 * Handle the case where the ill goes away while the SADB is 23828 * attempting to send messages. If it's going away, it's 23829 * nuking its shadow SADB, so we don't care.. 23830 */ 23831 23832 if (ill == NULL) 23833 continue; 23834 23835 if (sa != NULL) { 23836 /* 23837 * Make sure capabilities match before 23838 * sending SA to ill. 23839 */ 23840 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23841 cur_ici->ill_isv6, sa)) { 23842 ill_refrele(ill); 23843 continue; 23844 } 23845 23846 mutex_enter(&sa->ipsa_lock); 23847 sa->ipsa_flags |= IPSA_F_HW; 23848 mutex_exit(&sa->ipsa_lock); 23849 } 23850 23851 /* 23852 * Copy template message, and add it to the front 23853 * of the mblk ship list. We want to avoid holding 23854 * the ipsec_capab_ills_lock while sending the 23855 * message to the ills. 23856 * 23857 * The b_next and b_prev are temporarily used 23858 * to build a list of mblks to be sent down, and to 23859 * save the ill to which they must be sent. 23860 */ 23861 nmp = copymsg(mp); 23862 if (nmp == NULL) { 23863 ill_refrele(ill); 23864 continue; 23865 } 23866 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23867 nmp->b_next = mp_ship_list; 23868 mp_ship_list = nmp; 23869 nmp->b_prev = (mblk_t *)ill; 23870 } 23871 23872 rw_exit(&ipsec_capab_ills_lock); 23873 23874 nmp = mp_ship_list; 23875 while (nmp != NULL) { 23876 /* restore the mblk to a sane state */ 23877 next_mp = nmp->b_next; 23878 nmp->b_next = NULL; 23879 ill = (ill_t *)nmp->b_prev; 23880 nmp->b_prev = NULL; 23881 23882 /* 23883 * Ship the mblk to the ill, must be exclusive. Keep the 23884 * reference to the ill as qwriter_ip() does a ill_referele(). 23885 */ 23886 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23887 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23888 23889 nmp = next_mp; 23890 } 23891 23892 if (sa != NULL) 23893 IPSA_REFRELE(sa); 23894 freemsg(mp); 23895 } 23896 23897 23898 /* 23899 * Derive an interface id from the link layer address. 23900 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23901 */ 23902 static boolean_t 23903 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23904 { 23905 char *addr; 23906 23907 if (phys_length != ETHERADDRL) 23908 return (B_FALSE); 23909 23910 /* Form EUI-64 like address */ 23911 addr = (char *)&v6addr->s6_addr32[2]; 23912 bcopy((char *)phys_addr, addr, 3); 23913 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23914 addr[3] = (char)0xff; 23915 addr[4] = (char)0xfe; 23916 bcopy((char *)phys_addr + 3, addr + 5, 3); 23917 return (B_TRUE); 23918 } 23919 23920 /* ARGSUSED */ 23921 static boolean_t 23922 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23923 { 23924 return (B_FALSE); 23925 } 23926 23927 /* ARGSUSED */ 23928 static boolean_t 23929 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23930 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23931 { 23932 /* 23933 * Multicast address mappings used over Ethernet/802.X. 23934 * This address is used as a base for mappings. 23935 */ 23936 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23937 0x00, 0x00, 0x00}; 23938 23939 /* 23940 * Extract low order 32 bits from IPv6 multicast address. 23941 * Or that into the link layer address, starting from the 23942 * second byte. 23943 */ 23944 *hw_start = 2; 23945 v6_extract_mask->s6_addr32[0] = 0; 23946 v6_extract_mask->s6_addr32[1] = 0; 23947 v6_extract_mask->s6_addr32[2] = 0; 23948 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23949 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23950 return (B_TRUE); 23951 } 23952 23953 /* 23954 * Indicate by return value whether multicast is supported. If not, 23955 * this code should not touch/change any parameters. 23956 */ 23957 /* ARGSUSED */ 23958 static boolean_t 23959 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23960 uint32_t *hw_start, ipaddr_t *extract_mask) 23961 { 23962 /* 23963 * Multicast address mappings used over Ethernet/802.X. 23964 * This address is used as a base for mappings. 23965 */ 23966 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23967 0x00, 0x00, 0x00 }; 23968 23969 if (phys_length != ETHERADDRL) 23970 return (B_FALSE); 23971 23972 *extract_mask = htonl(0x007fffff); 23973 *hw_start = 2; 23974 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23975 return (B_TRUE); 23976 } 23977 23978 /* 23979 * Derive IPoIB interface id from the link layer address. 23980 */ 23981 static boolean_t 23982 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23983 { 23984 char *addr; 23985 23986 if (phys_length != 20) 23987 return (B_FALSE); 23988 addr = (char *)&v6addr->s6_addr32[2]; 23989 bcopy(phys_addr + 12, addr, 8); 23990 /* 23991 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23992 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23993 * rules. In these cases, the IBA considers these GUIDs to be in 23994 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23995 * required; vendors are required not to assign global EUI-64's 23996 * that differ only in u/l bit values, thus guaranteeing uniqueness 23997 * of the interface identifier. Whether the GUID is in modified 23998 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23999 * bit set to 1. 24000 */ 24001 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24002 return (B_TRUE); 24003 } 24004 24005 /* 24006 * Note on mapping from multicast IP addresses to IPoIB multicast link 24007 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24008 * The format of an IPoIB multicast address is: 24009 * 24010 * 4 byte QPN Scope Sign. Pkey 24011 * +--------------------------------------------+ 24012 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24013 * +--------------------------------------------+ 24014 * 24015 * The Scope and Pkey components are properties of the IBA port and 24016 * network interface. They can be ascertained from the broadcast address. 24017 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24018 */ 24019 24020 static boolean_t 24021 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24022 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24023 { 24024 /* 24025 * Base IPoIB IPv6 multicast address used for mappings. 24026 * Does not contain the IBA scope/Pkey values. 24027 */ 24028 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24029 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24030 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24031 24032 /* 24033 * Extract low order 80 bits from IPv6 multicast address. 24034 * Or that into the link layer address, starting from the 24035 * sixth byte. 24036 */ 24037 *hw_start = 6; 24038 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24039 24040 /* 24041 * Now fill in the IBA scope/Pkey values from the broadcast address. 24042 */ 24043 *(maddr + 5) = *(bphys_addr + 5); 24044 *(maddr + 8) = *(bphys_addr + 8); 24045 *(maddr + 9) = *(bphys_addr + 9); 24046 24047 v6_extract_mask->s6_addr32[0] = 0; 24048 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24049 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24050 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24051 return (B_TRUE); 24052 } 24053 24054 static boolean_t 24055 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24056 uint32_t *hw_start, ipaddr_t *extract_mask) 24057 { 24058 /* 24059 * Base IPoIB IPv4 multicast address used for mappings. 24060 * Does not contain the IBA scope/Pkey values. 24061 */ 24062 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24063 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24064 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24065 24066 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24067 return (B_FALSE); 24068 24069 /* 24070 * Extract low order 28 bits from IPv4 multicast address. 24071 * Or that into the link layer address, starting from the 24072 * sixteenth byte. 24073 */ 24074 *extract_mask = htonl(0x0fffffff); 24075 *hw_start = 16; 24076 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24077 24078 /* 24079 * Now fill in the IBA scope/Pkey values from the broadcast address. 24080 */ 24081 *(maddr + 5) = *(bphys_addr + 5); 24082 *(maddr + 8) = *(bphys_addr + 8); 24083 *(maddr + 9) = *(bphys_addr + 9); 24084 return (B_TRUE); 24085 } 24086 24087 /* 24088 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24089 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24090 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24091 * the link-local address is preferred. 24092 */ 24093 boolean_t 24094 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24095 { 24096 ipif_t *ipif; 24097 ipif_t *maybe_ipif = NULL; 24098 24099 mutex_enter(&ill->ill_lock); 24100 if (ill->ill_state_flags & ILL_CONDEMNED) { 24101 mutex_exit(&ill->ill_lock); 24102 if (ipifp != NULL) 24103 *ipifp = NULL; 24104 return (B_FALSE); 24105 } 24106 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24107 if (!IPIF_CAN_LOOKUP(ipif)) 24108 continue; 24109 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24110 ipif->ipif_zoneid != ALL_ZONES) 24111 continue; 24112 if ((ipif->ipif_flags & flags) != flags) 24113 continue; 24114 24115 if (ipifp == NULL) { 24116 mutex_exit(&ill->ill_lock); 24117 ASSERT(maybe_ipif == NULL); 24118 return (B_TRUE); 24119 } 24120 if (!ill->ill_isv6 || 24121 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24122 ipif_refhold_locked(ipif); 24123 mutex_exit(&ill->ill_lock); 24124 *ipifp = ipif; 24125 return (B_TRUE); 24126 } 24127 if (maybe_ipif == NULL) 24128 maybe_ipif = ipif; 24129 } 24130 if (ipifp != NULL) { 24131 if (maybe_ipif != NULL) 24132 ipif_refhold_locked(maybe_ipif); 24133 *ipifp = maybe_ipif; 24134 } 24135 mutex_exit(&ill->ill_lock); 24136 return (maybe_ipif != NULL); 24137 } 24138 24139 /* 24140 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24141 */ 24142 boolean_t 24143 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24144 { 24145 ill_t *illg; 24146 24147 /* 24148 * We look at the passed-in ill first without grabbing ill_g_lock. 24149 */ 24150 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24151 return (B_TRUE); 24152 } 24153 rw_enter(&ill_g_lock, RW_READER); 24154 if (ill->ill_group == NULL) { 24155 /* ill not in a group */ 24156 rw_exit(&ill_g_lock); 24157 return (B_FALSE); 24158 } 24159 24160 /* 24161 * There's no ipif in the zone on ill, however ill is part of an IPMP 24162 * group. We need to look for an ipif in the zone on all the ills in the 24163 * group. 24164 */ 24165 illg = ill->ill_group->illgrp_ill; 24166 do { 24167 /* 24168 * We don't call ipif_lookup_zoneid() on ill as we already know 24169 * that it's not there. 24170 */ 24171 if (illg != ill && 24172 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24173 break; 24174 } 24175 } while ((illg = illg->ill_group_next) != NULL); 24176 rw_exit(&ill_g_lock); 24177 return (illg != NULL); 24178 } 24179 24180 /* 24181 * Check if this ill is only being used to send ICMP probes for IPMP 24182 */ 24183 boolean_t 24184 ill_is_probeonly(ill_t *ill) 24185 { 24186 /* 24187 * Check if the interface is FAILED, or INACTIVE 24188 */ 24189 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24190 return (B_TRUE); 24191 24192 return (B_FALSE); 24193 } 24194 24195 /* 24196 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24197 * If a pointer to an ipif_t is returned then the caller will need to do 24198 * an ill_refrele(). 24199 */ 24200 ipif_t * 24201 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6) 24202 { 24203 ipif_t *ipif; 24204 ill_t *ill; 24205 24206 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 24207 24208 if (ill == NULL) 24209 return (NULL); 24210 24211 mutex_enter(&ill->ill_lock); 24212 if (ill->ill_state_flags & ILL_CONDEMNED) { 24213 mutex_exit(&ill->ill_lock); 24214 ill_refrele(ill); 24215 return (NULL); 24216 } 24217 24218 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24219 if (!IPIF_CAN_LOOKUP(ipif)) 24220 continue; 24221 if (lifidx == ipif->ipif_id) { 24222 ipif_refhold_locked(ipif); 24223 break; 24224 } 24225 } 24226 24227 mutex_exit(&ill->ill_lock); 24228 ill_refrele(ill); 24229 return (ipif); 24230 } 24231 24232 /* 24233 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24234 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24235 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24236 * for details. 24237 */ 24238 void 24239 ill_fastpath_flush(ill_t *ill) 24240 { 24241 nce_fastpath_list_dispatch(ill, NULL, NULL); 24242 ndp_walk_common((ill->ill_isv6 ? &ndp6 : &ndp4), ill, 24243 (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24244 } 24245 24246 /* 24247 * Set the physical address information for `ill' to the contents of the 24248 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24249 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24250 * EINPROGRESS will be returned. 24251 */ 24252 int 24253 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24254 { 24255 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24256 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24257 24258 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24259 24260 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24261 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24262 /* Changing DL_IPV6_TOKEN is not yet supported */ 24263 return (0); 24264 } 24265 24266 /* 24267 * We need to store up to two copies of `mp' in `ill'. Due to the 24268 * design of ipsq_pending_mp_add(), we can't pass them as separate 24269 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24270 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24271 */ 24272 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24273 freemsg(mp); 24274 return (ENOMEM); 24275 } 24276 24277 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24278 24279 /* 24280 * If we can quiesce the ill, then set the address. If not, then 24281 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24282 */ 24283 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24284 mutex_enter(&ill->ill_lock); 24285 if (!ill_is_quiescent(ill)) { 24286 /* call cannot fail since `conn_t *' argument is NULL */ 24287 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24288 mp, ILL_DOWN); 24289 mutex_exit(&ill->ill_lock); 24290 return (EINPROGRESS); 24291 } 24292 mutex_exit(&ill->ill_lock); 24293 24294 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24295 return (0); 24296 } 24297 24298 /* 24299 * Once the ill associated with `q' has quiesced, set its physical address 24300 * information to the values in `addrmp'. Note that two copies of `addrmp' 24301 * are passed (linked by b_cont), since we sometimes need to save two distinct 24302 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24303 * failure (we'll free the other copy if it's not needed). Since the ill_t 24304 * is quiesced, we know any stale IREs with the old address information have 24305 * already been removed, so we don't need to call ill_fastpath_flush(). 24306 */ 24307 /* ARGSUSED */ 24308 static void 24309 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24310 { 24311 ill_t *ill = q->q_ptr; 24312 mblk_t *addrmp2 = unlinkb(addrmp); 24313 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24314 uint_t addrlen, addroff; 24315 24316 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24317 mutex_enter(&ill->ill_lock); 24318 ASSERT(ill_is_quiescent(ill)); 24319 mutex_exit(&ill->ill_lock); 24320 24321 addroff = dlindp->dl_addr_offset; 24322 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24323 24324 switch (dlindp->dl_data) { 24325 case DL_IPV6_LINK_LAYER_ADDR: 24326 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24327 freemsg(addrmp2); 24328 break; 24329 24330 case DL_CURR_PHYS_ADDR: 24331 freemsg(ill->ill_phys_addr_mp); 24332 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24333 ill->ill_phys_addr_mp = addrmp; 24334 ill->ill_phys_addr_length = addrlen; 24335 24336 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24337 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24338 else 24339 freemsg(addrmp2); 24340 break; 24341 default: 24342 ASSERT(0); 24343 } 24344 24345 /* 24346 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero, 24347 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer() 24348 * or ip_arp_done() when the last ipif is brought up. 24349 */ 24350 if (ill_up_ipifs(ill, q, addrmp) == 0) 24351 ipsq_current_finish(ipsq); 24352 } 24353 24354 /* 24355 * Helper routine for setting the ill_nd_lla fields. 24356 */ 24357 void 24358 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24359 { 24360 freemsg(ill->ill_nd_lla_mp); 24361 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24362 ill->ill_nd_lla_mp = ndmp; 24363 ill->ill_nd_lla_len = addrlen; 24364 } 24365