1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/arp.h> 74 #include <inet/mib2.h> 75 #include <inet/ip.h> 76 #include <inet/ip6.h> 77 #include <inet/ip6_asp.h> 78 #include <inet/tcp.h> 79 #include <inet/ip_multi.h> 80 #include <inet/ip_ire.h> 81 #include <inet/ip_ftable.h> 82 #include <inet/ip_rts.h> 83 #include <inet/ip_ndp.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_impl.h> 86 #include <inet/tun.h> 87 #include <inet/sctp_ip.h> 88 #include <inet/ip_netinfo.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac_client.h> 100 #include <sys/dld.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize, boolean_t insert); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 195 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 196 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 197 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 198 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 199 static void ipif_save_ire(ipif_t *, ire_t *); 200 static void ipif_remove_ire(ipif_t *, ire_t *); 201 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 202 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 203 static void phyint_free(phyint_t *); 204 205 /* 206 * Per-ill IPsec capabilities management. 207 */ 208 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 209 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 210 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 211 static void ill_ipsec_capab_delete(ill_t *, uint_t); 212 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 213 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 214 boolean_t); 215 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 216 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 217 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 218 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 220 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 221 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 222 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 223 dl_capability_sub_t *); 224 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 225 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 226 int *); 227 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 228 static void ill_capability_dld_ack(ill_t *, mblk_t *, 229 dl_capability_sub_t *); 230 static void ill_capability_dld_enable(ill_t *); 231 static void ill_capability_ack_thr(void *); 232 static void ill_capability_lso_enable(ill_t *); 233 static void ill_capability_send(ill_t *, mblk_t *); 234 235 static ill_t *ill_prev_usesrc(ill_t *); 236 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 237 static void ill_disband_usesrc_group(ill_t *); 238 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 239 240 #ifdef DEBUG 241 static void ill_trace_cleanup(const ill_t *); 242 static void ipif_trace_cleanup(const ipif_t *); 243 #endif 244 245 /* 246 * if we go over the memory footprint limit more than once in this msec 247 * interval, we'll start pruning aggressively. 248 */ 249 int ip_min_frag_prune_time = 0; 250 251 /* 252 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 253 * and the IPsec DOI 254 */ 255 #define MAX_IPSEC_ALGS 256 256 257 #define BITSPERBYTE 8 258 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 259 260 #define IPSEC_ALG_ENABLE(algs, algid) \ 261 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 262 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 263 264 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 265 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 266 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 267 268 typedef uint8_t ipsec_capab_elem_t; 269 270 /* 271 * Per-algorithm parameters. Note that at present, only encryption 272 * algorithms have variable keysize (IKE does not provide a way to negotiate 273 * auth algorithm keysize). 274 * 275 * All sizes here are in bits. 276 */ 277 typedef struct 278 { 279 uint16_t minkeylen; 280 uint16_t maxkeylen; 281 } ipsec_capab_algparm_t; 282 283 /* 284 * Per-ill capabilities. 285 */ 286 struct ill_ipsec_capab_s { 287 ipsec_capab_elem_t *encr_hw_algs; 288 ipsec_capab_elem_t *auth_hw_algs; 289 uint32_t algs_size; /* size of _hw_algs in bytes */ 290 /* algorithm key lengths */ 291 ipsec_capab_algparm_t *encr_algparm; 292 uint32_t encr_algparm_size; 293 uint32_t encr_algparm_end; 294 }; 295 296 /* 297 * The field values are larger than strictly necessary for simple 298 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 299 */ 300 static area_t ip_area_template = { 301 AR_ENTRY_ADD, /* area_cmd */ 302 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 303 /* area_name_offset */ 304 /* area_name_length temporarily holds this structure length */ 305 sizeof (area_t), /* area_name_length */ 306 IP_ARP_PROTO_TYPE, /* area_proto */ 307 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 308 IP_ADDR_LEN, /* area_proto_addr_length */ 309 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 310 /* area_proto_mask_offset */ 311 0, /* area_flags */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 313 /* area_hw_addr_offset */ 314 /* Zero length hw_addr_length means 'use your idea of the address' */ 315 0 /* area_hw_addr_length */ 316 }; 317 318 /* 319 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 320 * support 321 */ 322 static area_t ip6_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IPV6_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 static ared_t ip_ared_template = { 341 AR_ENTRY_DELETE, 342 sizeof (ared_t) + IP_ADDR_LEN, 343 sizeof (ared_t), 344 IP_ARP_PROTO_TYPE, 345 sizeof (ared_t), 346 IP_ADDR_LEN, 347 0 348 }; 349 350 static ared_t ip6_ared_template = { 351 AR_ENTRY_DELETE, 352 sizeof (ared_t) + IPV6_ADDR_LEN, 353 sizeof (ared_t), 354 IP_ARP_PROTO_TYPE, 355 sizeof (ared_t), 356 IPV6_ADDR_LEN, 357 0 358 }; 359 360 /* 361 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 362 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 363 * areq is used). 364 */ 365 static areq_t ip_areq_template = { 366 AR_ENTRY_QUERY, /* cmd */ 367 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 368 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 369 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 370 sizeof (areq_t), /* target addr offset */ 371 IP_ADDR_LEN, /* target addr_length */ 372 0, /* flags */ 373 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 374 IP_ADDR_LEN, /* sender addr length */ 375 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 376 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 377 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 378 /* anything else filled in by the code */ 379 }; 380 381 static arc_t ip_aru_template = { 382 AR_INTERFACE_UP, 383 sizeof (arc_t), /* Name offset */ 384 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 385 }; 386 387 static arc_t ip_ard_template = { 388 AR_INTERFACE_DOWN, 389 sizeof (arc_t), /* Name offset */ 390 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 391 }; 392 393 static arc_t ip_aron_template = { 394 AR_INTERFACE_ON, 395 sizeof (arc_t), /* Name offset */ 396 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 397 }; 398 399 static arc_t ip_aroff_template = { 400 AR_INTERFACE_OFF, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arma_t ip_arma_multi_template = { 406 AR_MAPPING_ADD, 407 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 408 /* Name offset */ 409 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 410 IP_ARP_PROTO_TYPE, 411 sizeof (arma_t), /* proto_addr_offset */ 412 IP_ADDR_LEN, /* proto_addr_length */ 413 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 414 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 415 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 416 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 417 IP_MAX_HW_LEN, /* hw_addr_length */ 418 0, /* hw_mapping_start */ 419 }; 420 421 static ipft_t ip_ioctl_ftbl[] = { 422 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 423 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 424 IPFT_F_NO_REPLY }, 425 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 426 IPFT_F_NO_REPLY }, 427 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 428 { 0 } 429 }; 430 431 /* Simple ICMP IP Header Template */ 432 static ipha_t icmp_ipha = { 433 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 434 }; 435 436 /* Flag descriptors for ip_ipif_report */ 437 static nv_t ipif_nv_tbl[] = { 438 { IPIF_UP, "UP" }, 439 { IPIF_BROADCAST, "BROADCAST" }, 440 { ILLF_DEBUG, "DEBUG" }, 441 { PHYI_LOOPBACK, "LOOPBACK" }, 442 { IPIF_POINTOPOINT, "POINTOPOINT" }, 443 { ILLF_NOTRAILERS, "NOTRAILERS" }, 444 { PHYI_RUNNING, "RUNNING" }, 445 { ILLF_NOARP, "NOARP" }, 446 { PHYI_PROMISC, "PROMISC" }, 447 { PHYI_ALLMULTI, "ALLMULTI" }, 448 { PHYI_INTELLIGENT, "INTELLIGENT" }, 449 { ILLF_MULTICAST, "MULTICAST" }, 450 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 451 { IPIF_UNNUMBERED, "UNNUMBERED" }, 452 { IPIF_DHCPRUNNING, "DHCP" }, 453 { IPIF_PRIVATE, "PRIVATE" }, 454 { IPIF_NOXMIT, "NOXMIT" }, 455 { IPIF_NOLOCAL, "NOLOCAL" }, 456 { IPIF_DEPRECATED, "DEPRECATED" }, 457 { IPIF_PREFERRED, "PREFERRED" }, 458 { IPIF_TEMPORARY, "TEMPORARY" }, 459 { IPIF_ADDRCONF, "ADDRCONF" }, 460 { PHYI_VIRTUAL, "VIRTUAL" }, 461 { ILLF_ROUTER, "ROUTER" }, 462 { ILLF_NONUD, "NONUD" }, 463 { IPIF_ANYCAST, "ANYCAST" }, 464 { ILLF_NORTEXCH, "NORTEXCH" }, 465 { ILLF_IPV4, "IPV4" }, 466 { ILLF_IPV6, "IPV6" }, 467 { IPIF_NOFAILOVER, "NOFAILOVER" }, 468 { PHYI_FAILED, "FAILED" }, 469 { PHYI_STANDBY, "STANDBY" }, 470 { PHYI_INACTIVE, "INACTIVE" }, 471 { PHYI_OFFLINE, "OFFLINE" }, 472 { PHYI_IPMP, "IPMP" } 473 }; 474 475 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 476 477 static ip_m_t ip_m_tbl[] = { 478 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 479 ip_ether_v6intfid }, 480 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 481 ip_nodef_v6intfid }, 482 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 483 ip_nodef_v6intfid }, 484 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 485 ip_nodef_v6intfid }, 486 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 487 ip_ether_v6intfid }, 488 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 489 ip_ib_v6intfid }, 490 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 491 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 492 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid } 494 }; 495 496 static ill_t ill_null; /* Empty ILL for init. */ 497 char ipif_loopback_name[] = "lo0"; 498 static char *ipv4_forward_suffix = ":ip_forwarding"; 499 static char *ipv6_forward_suffix = ":ip6_forwarding"; 500 static sin6_t sin6_null; /* Zero address for quick clears */ 501 static sin_t sin_null; /* Zero address for quick clears */ 502 503 /* When set search for unused ipif_seqid */ 504 static ipif_t ipif_zero; 505 506 /* 507 * ppa arena is created after these many 508 * interfaces have been plumbed. 509 */ 510 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 511 512 /* 513 * Allocate per-interface mibs. 514 * Returns true if ok. False otherwise. 515 * ipsq may not yet be allocated (loopback case ). 516 */ 517 static boolean_t 518 ill_allocate_mibs(ill_t *ill) 519 { 520 /* Already allocated? */ 521 if (ill->ill_ip_mib != NULL) { 522 if (ill->ill_isv6) 523 ASSERT(ill->ill_icmp6_mib != NULL); 524 return (B_TRUE); 525 } 526 527 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 528 KM_NOSLEEP); 529 if (ill->ill_ip_mib == NULL) { 530 return (B_FALSE); 531 } 532 533 /* Setup static information */ 534 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 535 sizeof (mib2_ipIfStatsEntry_t)); 536 if (ill->ill_isv6) { 537 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 538 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 539 sizeof (mib2_ipv6AddrEntry_t)); 540 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 541 sizeof (mib2_ipv6RouteEntry_t)); 542 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 543 sizeof (mib2_ipv6NetToMediaEntry_t)); 544 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 545 sizeof (ipv6_member_t)); 546 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 547 sizeof (ipv6_grpsrc_t)); 548 } else { 549 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 550 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 551 sizeof (mib2_ipAddrEntry_t)); 552 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 553 sizeof (mib2_ipRouteEntry_t)); 554 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 555 sizeof (mib2_ipNetToMediaEntry_t)); 556 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 557 sizeof (ip_member_t)); 558 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 559 sizeof (ip_grpsrc_t)); 560 561 /* 562 * For a v4 ill, we are done at this point, because per ill 563 * icmp mibs are only used for v6. 564 */ 565 return (B_TRUE); 566 } 567 568 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 569 KM_NOSLEEP); 570 if (ill->ill_icmp6_mib == NULL) { 571 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 572 ill->ill_ip_mib = NULL; 573 return (B_FALSE); 574 } 575 /* static icmp info */ 576 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 577 sizeof (mib2_ipv6IfIcmpEntry_t); 578 /* 579 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 580 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 581 * -> ill_phyint_reinit 582 */ 583 return (B_TRUE); 584 } 585 586 /* 587 * Common code for preparation of ARP commands. Two points to remember: 588 * 1) The ill_name is tacked on at the end of the allocated space so 589 * the templates name_offset field must contain the total space 590 * to allocate less the name length. 591 * 592 * 2) The templates name_length field should contain the *template* 593 * length. We use it as a parameter to bcopy() and then write 594 * the real ill_name_length into the name_length field of the copy. 595 * (Always called as writer.) 596 */ 597 mblk_t * 598 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 599 { 600 arc_t *arc = (arc_t *)template; 601 char *cp; 602 int len; 603 mblk_t *mp; 604 uint_t name_length = ill->ill_name_length; 605 uint_t template_len = arc->arc_name_length; 606 607 len = arc->arc_name_offset + name_length; 608 mp = allocb(len, BPRI_HI); 609 if (mp == NULL) 610 return (NULL); 611 cp = (char *)mp->b_rptr; 612 mp->b_wptr = (uchar_t *)&cp[len]; 613 if (template_len) 614 bcopy(template, cp, template_len); 615 if (len > template_len) 616 bzero(&cp[template_len], len - template_len); 617 mp->b_datap->db_type = M_PROTO; 618 619 arc = (arc_t *)cp; 620 arc->arc_name_length = name_length; 621 cp = (char *)arc + arc->arc_name_offset; 622 bcopy(ill->ill_name, cp, name_length); 623 624 if (addr) { 625 area_t *area = (area_t *)mp->b_rptr; 626 627 cp = (char *)area + area->area_proto_addr_offset; 628 bcopy(addr, cp, area->area_proto_addr_length); 629 if (area->area_cmd == AR_ENTRY_ADD) { 630 cp = (char *)area; 631 len = area->area_proto_addr_length; 632 if (area->area_proto_mask_offset) 633 cp += area->area_proto_mask_offset; 634 else 635 cp += area->area_proto_addr_offset + len; 636 while (len-- > 0) 637 *cp++ = (char)~0; 638 } 639 } 640 return (mp); 641 } 642 643 mblk_t * 644 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 645 { 646 caddr_t addr; 647 mblk_t *mp; 648 area_t *area; 649 uchar_t *areap; 650 ill_t *ill = ipif->ipif_ill; 651 652 if (ill->ill_isv6) { 653 ASSERT(ill->ill_flags & ILLF_XRESOLV); 654 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 655 areap = (uchar_t *)&ip6_area_template; 656 } else { 657 addr = (caddr_t)&ipif->ipif_lcl_addr; 658 areap = (uchar_t *)&ip_area_template; 659 } 660 661 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 662 return (NULL); 663 664 /* 665 * IPMP requires that the hardware address be included in all 666 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 667 * If there are no active underlying ills in the group (and thus no 668 * hardware address, DAD will be deferred until an underlying ill 669 * becomes active. 670 */ 671 if (IS_IPMP(ill)) { 672 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 673 freemsg(mp); 674 return (NULL); 675 } 676 } else { 677 ill_refhold(ill); 678 } 679 680 area = (area_t *)mp->b_rptr; 681 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 682 area->area_flags |= optflags; 683 area->area_hw_addr_length = ill->ill_phys_addr_length; 684 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 685 area->area_hw_addr_length); 686 687 ill_refrele(ill); 688 return (mp); 689 } 690 691 mblk_t * 692 ipif_ared_alloc(ipif_t *ipif) 693 { 694 caddr_t addr; 695 uchar_t *aredp; 696 697 if (ipif->ipif_ill->ill_isv6) { 698 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 699 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 700 aredp = (uchar_t *)&ip6_ared_template; 701 } else { 702 addr = (caddr_t)&ipif->ipif_lcl_addr; 703 aredp = (uchar_t *)&ip_ared_template; 704 } 705 706 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 707 } 708 709 mblk_t * 710 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 711 { 712 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 713 (char *)&addr)); 714 } 715 716 mblk_t * 717 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 718 { 719 mblk_t *mp = ill_arp_alloc(ill, template, 0); 720 arie_t *arie; 721 722 if (mp != NULL) { 723 arie = (arie_t *)mp->b_rptr; 724 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 725 } 726 return (mp); 727 } 728 729 /* 730 * Completely vaporize a lower level tap and all associated interfaces. 731 * ill_delete is called only out of ip_close when the device control 732 * stream is being closed. 733 */ 734 void 735 ill_delete(ill_t *ill) 736 { 737 ipif_t *ipif; 738 ill_t *prev_ill; 739 ip_stack_t *ipst = ill->ill_ipst; 740 741 /* 742 * ill_delete may be forcibly entering the ipsq. The previous 743 * ioctl may not have completed and may need to be aborted. 744 * ipsq_flush takes care of it. If we don't need to enter the 745 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 746 * ill_delete_tail is sufficient. 747 */ 748 ipsq_flush(ill); 749 750 /* 751 * Nuke all interfaces. ipif_free will take down the interface, 752 * remove it from the list, and free the data structure. 753 * Walk down the ipif list and remove the logical interfaces 754 * first before removing the main ipif. We can't unplumb 755 * zeroth interface first in the case of IPv6 as reset_conn_ill 756 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 757 * POINTOPOINT. 758 * 759 * If ill_ipif was not properly initialized (i.e low on memory), 760 * then no interfaces to clean up. In this case just clean up the 761 * ill. 762 */ 763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 764 ipif_free(ipif); 765 766 /* 767 * Used only by ill_arp_on and ill_arp_off, which are writers. 768 * So nobody can be using this mp now. Free the mp allocated for 769 * honoring ILLF_NOARP 770 */ 771 freemsg(ill->ill_arp_on_mp); 772 ill->ill_arp_on_mp = NULL; 773 774 /* Clean up msgs on pending upcalls for mrouted */ 775 reset_mrt_ill(ill); 776 777 /* 778 * ipif_free -> reset_conn_ipif will remove all multicast 779 * references for IPv4. For IPv6, we need to do it here as 780 * it points only at ills. 781 */ 782 reset_conn_ill(ill); 783 784 /* 785 * Remove multicast references added as a result of calls to 786 * ip_join_allmulti(). 787 */ 788 ip_purge_allmulti(ill); 789 790 /* 791 * If the ill being deleted is under IPMP, boot it out of the illgrp. 792 */ 793 if (IS_UNDER_IPMP(ill)) 794 ipmp_ill_leave_illgrp(ill); 795 796 /* 797 * ill_down will arrange to blow off any IRE's dependent on this 798 * ILL, and shut down fragmentation reassembly. 799 */ 800 ill_down(ill); 801 802 /* Let SCTP know, so that it can remove this from its list. */ 803 sctp_update_ill(ill, SCTP_ILL_REMOVE); 804 805 /* 806 * If an address on this ILL is being used as a source address then 807 * clear out the pointers in other ILLs that point to this ILL. 808 */ 809 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 810 if (ill->ill_usesrc_grp_next != NULL) { 811 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 812 ill_disband_usesrc_group(ill); 813 } else { /* consumer of the usesrc ILL */ 814 prev_ill = ill_prev_usesrc(ill); 815 prev_ill->ill_usesrc_grp_next = 816 ill->ill_usesrc_grp_next; 817 } 818 } 819 rw_exit(&ipst->ips_ill_g_usesrc_lock); 820 } 821 822 static void 823 ipif_non_duplicate(ipif_t *ipif) 824 { 825 ill_t *ill = ipif->ipif_ill; 826 mutex_enter(&ill->ill_lock); 827 if (ipif->ipif_flags & IPIF_DUPLICATE) { 828 ipif->ipif_flags &= ~IPIF_DUPLICATE; 829 ASSERT(ill->ill_ipif_dup_count > 0); 830 ill->ill_ipif_dup_count--; 831 } 832 mutex_exit(&ill->ill_lock); 833 } 834 835 /* 836 * ill_delete_tail is called from ip_modclose after all references 837 * to the closing ill are gone. The wait is done in ip_modclose 838 */ 839 void 840 ill_delete_tail(ill_t *ill) 841 { 842 mblk_t **mpp; 843 ipif_t *ipif; 844 ip_stack_t *ipst = ill->ill_ipst; 845 846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 847 ipif_non_duplicate(ipif); 848 ipif_down_tail(ipif); 849 } 850 851 ASSERT(ill->ill_ipif_dup_count == 0 && 852 ill->ill_arp_down_mp == NULL && 853 ill->ill_arp_del_mapping_mp == NULL); 854 855 /* 856 * If polling capability is enabled (which signifies direct 857 * upcall into IP and driver has ill saved as a handle), 858 * we need to make sure that unbind has completed before we 859 * let the ill disappear and driver no longer has any reference 860 * to this ill. 861 */ 862 mutex_enter(&ill->ill_lock); 863 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 864 cv_wait(&ill->ill_cv, &ill->ill_lock); 865 mutex_exit(&ill->ill_lock); 866 ASSERT(!(ill->ill_capabilities & 867 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 868 869 if (ill->ill_net_type != IRE_LOOPBACK) 870 qprocsoff(ill->ill_rq); 871 872 /* 873 * We do an ipsq_flush once again now. New messages could have 874 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 875 * could also have landed up if an ioctl thread had looked up 876 * the ill before we set the ILL_CONDEMNED flag, but not yet 877 * enqueued the ioctl when we did the ipsq_flush last time. 878 */ 879 ipsq_flush(ill); 880 881 /* 882 * Free capabilities. 883 */ 884 if (ill->ill_ipsec_capab_ah != NULL) { 885 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 886 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 887 ill->ill_ipsec_capab_ah = NULL; 888 } 889 890 if (ill->ill_ipsec_capab_esp != NULL) { 891 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 892 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 893 ill->ill_ipsec_capab_esp = NULL; 894 } 895 896 if (ill->ill_mdt_capab != NULL) { 897 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 898 ill->ill_mdt_capab = NULL; 899 } 900 901 if (ill->ill_hcksum_capab != NULL) { 902 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 903 ill->ill_hcksum_capab = NULL; 904 } 905 906 if (ill->ill_zerocopy_capab != NULL) { 907 kmem_free(ill->ill_zerocopy_capab, 908 sizeof (ill_zerocopy_capab_t)); 909 ill->ill_zerocopy_capab = NULL; 910 } 911 912 if (ill->ill_lso_capab != NULL) { 913 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 914 ill->ill_lso_capab = NULL; 915 } 916 917 if (ill->ill_dld_capab != NULL) { 918 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 919 ill->ill_dld_capab = NULL; 920 } 921 922 while (ill->ill_ipif != NULL) 923 ipif_free_tail(ill->ill_ipif); 924 925 /* 926 * We have removed all references to ilm from conn and the ones joined 927 * within the kernel. 928 * 929 * We don't walk conns, mrts and ires because 930 * 931 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 932 * 2) ill_down ->ill_downi walks all the ires and cleans up 933 * ill references. 934 */ 935 ASSERT(ilm_walk_ill(ill) == 0); 936 937 /* 938 * If this ill is an IPMP meta-interface, blow away the illgrp. This 939 * is safe to do because the illgrp has already been unlinked from the 940 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 941 */ 942 if (IS_IPMP(ill)) { 943 ipmp_illgrp_destroy(ill->ill_grp); 944 ill->ill_grp = NULL; 945 } 946 947 /* 948 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 949 * could free the phyint. No more reference to the phyint after this 950 * point. 951 */ 952 (void) ill_glist_delete(ill); 953 954 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 955 if (ill->ill_ndd_name != NULL) 956 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 957 rw_exit(&ipst->ips_ip_g_nd_lock); 958 959 if (ill->ill_frag_ptr != NULL) { 960 uint_t count; 961 962 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 963 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 964 } 965 mi_free(ill->ill_frag_ptr); 966 ill->ill_frag_ptr = NULL; 967 ill->ill_frag_hash_tbl = NULL; 968 } 969 970 freemsg(ill->ill_nd_lla_mp); 971 /* Free all retained control messages. */ 972 mpp = &ill->ill_first_mp_to_free; 973 do { 974 while (mpp[0]) { 975 mblk_t *mp; 976 mblk_t *mp1; 977 978 mp = mpp[0]; 979 mpp[0] = mp->b_next; 980 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 981 mp1->b_next = NULL; 982 mp1->b_prev = NULL; 983 } 984 freemsg(mp); 985 } 986 } while (mpp++ != &ill->ill_last_mp_to_free); 987 988 ill_free_mib(ill); 989 990 #ifdef DEBUG 991 ill_trace_cleanup(ill); 992 #endif 993 994 /* Drop refcnt here */ 995 netstack_rele(ill->ill_ipst->ips_netstack); 996 ill->ill_ipst = NULL; 997 } 998 999 static void 1000 ill_free_mib(ill_t *ill) 1001 { 1002 ip_stack_t *ipst = ill->ill_ipst; 1003 1004 /* 1005 * MIB statistics must not be lost, so when an interface 1006 * goes away the counter values will be added to the global 1007 * MIBs. 1008 */ 1009 if (ill->ill_ip_mib != NULL) { 1010 if (ill->ill_isv6) { 1011 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 1012 ill->ill_ip_mib); 1013 } else { 1014 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 1015 ill->ill_ip_mib); 1016 } 1017 1018 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1019 ill->ill_ip_mib = NULL; 1020 } 1021 if (ill->ill_icmp6_mib != NULL) { 1022 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1023 ill->ill_icmp6_mib); 1024 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1025 ill->ill_icmp6_mib = NULL; 1026 } 1027 } 1028 1029 /* 1030 * Concatenate together a physical address and a sap. 1031 * 1032 * Sap_lengths are interpreted as follows: 1033 * sap_length == 0 ==> no sap 1034 * sap_length > 0 ==> sap is at the head of the dlpi address 1035 * sap_length < 0 ==> sap is at the tail of the dlpi address 1036 */ 1037 static void 1038 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1039 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1040 { 1041 uint16_t sap_addr = (uint16_t)sap_src; 1042 1043 if (sap_length == 0) { 1044 if (phys_src == NULL) 1045 bzero(dst, phys_length); 1046 else 1047 bcopy(phys_src, dst, phys_length); 1048 } else if (sap_length < 0) { 1049 if (phys_src == NULL) 1050 bzero(dst, phys_length); 1051 else 1052 bcopy(phys_src, dst, phys_length); 1053 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1054 } else { 1055 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1056 if (phys_src == NULL) 1057 bzero((char *)dst + sap_length, phys_length); 1058 else 1059 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1060 } 1061 } 1062 1063 /* 1064 * Generate a dl_unitdata_req mblk for the device and address given. 1065 * addr_length is the length of the physical portion of the address. 1066 * If addr is NULL include an all zero address of the specified length. 1067 * TRUE? In any case, addr_length is taken to be the entire length of the 1068 * dlpi address, including the absolute value of sap_length. 1069 */ 1070 mblk_t * 1071 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1072 t_scalar_t sap_length) 1073 { 1074 dl_unitdata_req_t *dlur; 1075 mblk_t *mp; 1076 t_scalar_t abs_sap_length; /* absolute value */ 1077 1078 abs_sap_length = ABS(sap_length); 1079 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1080 DL_UNITDATA_REQ); 1081 if (mp == NULL) 1082 return (NULL); 1083 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1084 /* HACK: accomodate incompatible DLPI drivers */ 1085 if (addr_length == 8) 1086 addr_length = 6; 1087 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1088 dlur->dl_dest_addr_offset = sizeof (*dlur); 1089 dlur->dl_priority.dl_min = 0; 1090 dlur->dl_priority.dl_max = 0; 1091 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1092 (uchar_t *)&dlur[1]); 1093 return (mp); 1094 } 1095 1096 /* 1097 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1098 * Return an error if we already have 1 or more ioctls in progress. 1099 * This is used only for non-exclusive ioctls. Currently this is used 1100 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1101 * and thus need to use ipsq_pending_mp_add. 1102 */ 1103 boolean_t 1104 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1105 { 1106 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1107 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1108 /* 1109 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1110 */ 1111 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1112 (add_mp->b_datap->db_type == M_IOCTL)); 1113 1114 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1115 /* 1116 * Return error if the conn has started closing. The conn 1117 * could have finished cleaning up the pending mp list, 1118 * If so we should not add another mp to the list negating 1119 * the cleanup. 1120 */ 1121 if (connp->conn_state_flags & CONN_CLOSING) 1122 return (B_FALSE); 1123 /* 1124 * Add the pending mp to the head of the list, chained by b_next. 1125 * Note down the conn on which the ioctl request came, in b_prev. 1126 * This will be used to later get the conn, when we get a response 1127 * on the ill queue, from some other module (typically arp) 1128 */ 1129 add_mp->b_next = (void *)ill->ill_pending_mp; 1130 add_mp->b_queue = CONNP_TO_WQ(connp); 1131 ill->ill_pending_mp = add_mp; 1132 if (connp != NULL) 1133 connp->conn_oper_pending_ill = ill; 1134 return (B_TRUE); 1135 } 1136 1137 /* 1138 * Retrieve the ill_pending_mp and return it. We have to walk the list 1139 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1140 */ 1141 mblk_t * 1142 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1143 { 1144 mblk_t *prev = NULL; 1145 mblk_t *curr = NULL; 1146 uint_t id; 1147 conn_t *connp; 1148 1149 /* 1150 * When the conn closes, conn_ioctl_cleanup needs to clean 1151 * up the pending mp, but it does not know the ioc_id and 1152 * passes in a zero for it. 1153 */ 1154 mutex_enter(&ill->ill_lock); 1155 if (ioc_id != 0) 1156 *connpp = NULL; 1157 1158 /* Search the list for the appropriate ioctl based on ioc_id */ 1159 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1160 prev = curr, curr = curr->b_next) { 1161 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1162 connp = Q_TO_CONN(curr->b_queue); 1163 /* Match based on the ioc_id or based on the conn */ 1164 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1165 break; 1166 } 1167 1168 if (curr != NULL) { 1169 /* Unlink the mblk from the pending mp list */ 1170 if (prev != NULL) { 1171 prev->b_next = curr->b_next; 1172 } else { 1173 ASSERT(ill->ill_pending_mp == curr); 1174 ill->ill_pending_mp = curr->b_next; 1175 } 1176 1177 /* 1178 * conn refcnt must have been bumped up at the start of 1179 * the ioctl. So we can safely access the conn. 1180 */ 1181 ASSERT(CONN_Q(curr->b_queue)); 1182 *connpp = Q_TO_CONN(curr->b_queue); 1183 curr->b_next = NULL; 1184 curr->b_queue = NULL; 1185 } 1186 1187 mutex_exit(&ill->ill_lock); 1188 1189 return (curr); 1190 } 1191 1192 /* 1193 * Add the pending mp to the list. There can be only 1 pending mp 1194 * in the list. Any exclusive ioctl that needs to wait for a response 1195 * from another module or driver needs to use this function to set 1196 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1197 * the other module/driver. This is also used while waiting for the 1198 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1199 */ 1200 boolean_t 1201 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1202 int waitfor) 1203 { 1204 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1205 1206 ASSERT(IAM_WRITER_IPIF(ipif)); 1207 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1208 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1209 ASSERT(ipx->ipx_pending_mp == NULL); 1210 /* 1211 * The caller may be using a different ipif than the one passed into 1212 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1213 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1214 * that `ipx_current_ipif == ipif'. 1215 */ 1216 ASSERT(ipx->ipx_current_ipif != NULL); 1217 1218 /* 1219 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1220 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1221 */ 1222 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1223 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1224 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1225 1226 if (connp != NULL) { 1227 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1228 /* 1229 * Return error if the conn has started closing. The conn 1230 * could have finished cleaning up the pending mp list, 1231 * If so we should not add another mp to the list negating 1232 * the cleanup. 1233 */ 1234 if (connp->conn_state_flags & CONN_CLOSING) 1235 return (B_FALSE); 1236 } 1237 mutex_enter(&ipx->ipx_lock); 1238 ipx->ipx_pending_ipif = ipif; 1239 /* 1240 * Note down the queue in b_queue. This will be returned by 1241 * ipsq_pending_mp_get. Caller will then use these values to restart 1242 * the processing 1243 */ 1244 add_mp->b_next = NULL; 1245 add_mp->b_queue = q; 1246 ipx->ipx_pending_mp = add_mp; 1247 ipx->ipx_waitfor = waitfor; 1248 mutex_exit(&ipx->ipx_lock); 1249 1250 if (connp != NULL) 1251 connp->conn_oper_pending_ill = ipif->ipif_ill; 1252 1253 return (B_TRUE); 1254 } 1255 1256 /* 1257 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1258 * queued in the list. 1259 */ 1260 mblk_t * 1261 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1262 { 1263 mblk_t *curr = NULL; 1264 ipxop_t *ipx = ipsq->ipsq_xop; 1265 1266 *connpp = NULL; 1267 mutex_enter(&ipx->ipx_lock); 1268 if (ipx->ipx_pending_mp == NULL) { 1269 mutex_exit(&ipx->ipx_lock); 1270 return (NULL); 1271 } 1272 1273 /* There can be only 1 such excl message */ 1274 curr = ipx->ipx_pending_mp; 1275 ASSERT(curr->b_next == NULL); 1276 ipx->ipx_pending_ipif = NULL; 1277 ipx->ipx_pending_mp = NULL; 1278 ipx->ipx_waitfor = 0; 1279 mutex_exit(&ipx->ipx_lock); 1280 1281 if (CONN_Q(curr->b_queue)) { 1282 /* 1283 * This mp did a refhold on the conn, at the start of the ioctl. 1284 * So we can safely return a pointer to the conn to the caller. 1285 */ 1286 *connpp = Q_TO_CONN(curr->b_queue); 1287 } else { 1288 *connpp = NULL; 1289 } 1290 curr->b_next = NULL; 1291 curr->b_prev = NULL; 1292 return (curr); 1293 } 1294 1295 /* 1296 * Cleanup the ioctl mp queued in ipx_pending_mp 1297 * - Called in the ill_delete path 1298 * - Called in the M_ERROR or M_HANGUP path on the ill. 1299 * - Called in the conn close path. 1300 */ 1301 boolean_t 1302 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1303 { 1304 mblk_t *mp; 1305 ipxop_t *ipx; 1306 queue_t *q; 1307 ipif_t *ipif; 1308 1309 ASSERT(IAM_WRITER_ILL(ill)); 1310 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1311 1312 /* 1313 * If connp is null, unconditionally clean up the ipx_pending_mp. 1314 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1315 * even if it is meant for another ill, since we have to enqueue 1316 * a new mp now in ipx_pending_mp to complete the ipif_down. 1317 * If connp is non-null we are called from the conn close path. 1318 */ 1319 mutex_enter(&ipx->ipx_lock); 1320 mp = ipx->ipx_pending_mp; 1321 if (mp == NULL || (connp != NULL && 1322 mp->b_queue != CONNP_TO_WQ(connp))) { 1323 mutex_exit(&ipx->ipx_lock); 1324 return (B_FALSE); 1325 } 1326 /* Now remove from the ipx_pending_mp */ 1327 ipx->ipx_pending_mp = NULL; 1328 q = mp->b_queue; 1329 mp->b_next = NULL; 1330 mp->b_prev = NULL; 1331 mp->b_queue = NULL; 1332 1333 ipif = ipx->ipx_pending_ipif; 1334 ipx->ipx_pending_ipif = NULL; 1335 ipx->ipx_waitfor = 0; 1336 ipx->ipx_current_ipif = NULL; 1337 ipx->ipx_current_ioctl = 0; 1338 ipx->ipx_current_done = B_TRUE; 1339 mutex_exit(&ipx->ipx_lock); 1340 1341 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1342 if (connp == NULL) { 1343 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1344 } else { 1345 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1346 mutex_enter(&ipif->ipif_ill->ill_lock); 1347 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1348 mutex_exit(&ipif->ipif_ill->ill_lock); 1349 } 1350 } else { 1351 /* 1352 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1353 * be just inet_freemsg. we have to restart it 1354 * otherwise the thread will be stuck. 1355 */ 1356 inet_freemsg(mp); 1357 } 1358 return (B_TRUE); 1359 } 1360 1361 /* 1362 * The ill is closing. Cleanup all the pending mps. Called exclusively 1363 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1364 * knows this ill, and hence nobody can add an mp to this list 1365 */ 1366 static void 1367 ill_pending_mp_cleanup(ill_t *ill) 1368 { 1369 mblk_t *mp; 1370 queue_t *q; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 1374 mutex_enter(&ill->ill_lock); 1375 /* 1376 * Every mp on the pending mp list originating from an ioctl 1377 * added 1 to the conn refcnt, at the start of the ioctl. 1378 * So bump it down now. See comments in ip_wput_nondata() 1379 */ 1380 while (ill->ill_pending_mp != NULL) { 1381 mp = ill->ill_pending_mp; 1382 ill->ill_pending_mp = mp->b_next; 1383 mutex_exit(&ill->ill_lock); 1384 1385 q = mp->b_queue; 1386 ASSERT(CONN_Q(q)); 1387 mp->b_next = NULL; 1388 mp->b_prev = NULL; 1389 mp->b_queue = NULL; 1390 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1391 mutex_enter(&ill->ill_lock); 1392 } 1393 ill->ill_pending_ipif = NULL; 1394 1395 mutex_exit(&ill->ill_lock); 1396 } 1397 1398 /* 1399 * Called in the conn close path and ill delete path 1400 */ 1401 static void 1402 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1403 { 1404 ipsq_t *ipsq; 1405 mblk_t *prev; 1406 mblk_t *curr; 1407 mblk_t *next; 1408 queue_t *q; 1409 mblk_t *tmp_list = NULL; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 if (connp != NULL) 1413 q = CONNP_TO_WQ(connp); 1414 else 1415 q = ill->ill_wq; 1416 1417 ipsq = ill->ill_phyint->phyint_ipsq; 1418 /* 1419 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1420 * In the case of ioctl from a conn, there can be only 1 mp 1421 * queued on the ipsq. If an ill is being unplumbed, only messages 1422 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1423 * ioctls meant for this ill form conn's are not flushed. They will 1424 * be processed during ipsq_exit and will not find the ill and will 1425 * return error. 1426 */ 1427 mutex_enter(&ipsq->ipsq_lock); 1428 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1429 curr = next) { 1430 next = curr->b_next; 1431 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1432 /* Unlink the mblk from the pending mp list */ 1433 if (prev != NULL) { 1434 prev->b_next = curr->b_next; 1435 } else { 1436 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1437 ipsq->ipsq_xopq_mphead = curr->b_next; 1438 } 1439 if (ipsq->ipsq_xopq_mptail == curr) 1440 ipsq->ipsq_xopq_mptail = prev; 1441 /* 1442 * Create a temporary list and release the ipsq lock 1443 * New elements are added to the head of the tmp_list 1444 */ 1445 curr->b_next = tmp_list; 1446 tmp_list = curr; 1447 } else { 1448 prev = curr; 1449 } 1450 } 1451 mutex_exit(&ipsq->ipsq_lock); 1452 1453 while (tmp_list != NULL) { 1454 curr = tmp_list; 1455 tmp_list = curr->b_next; 1456 curr->b_next = NULL; 1457 curr->b_prev = NULL; 1458 curr->b_queue = NULL; 1459 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1460 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1461 CONN_CLOSE : NO_COPYOUT, NULL); 1462 } else { 1463 /* 1464 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1465 * this can't be just inet_freemsg. we have to 1466 * restart it otherwise the thread will be stuck. 1467 */ 1468 inet_freemsg(curr); 1469 } 1470 } 1471 } 1472 1473 /* 1474 * This conn has started closing. Cleanup any pending ioctl from this conn. 1475 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1476 */ 1477 void 1478 conn_ioctl_cleanup(conn_t *connp) 1479 { 1480 mblk_t *curr; 1481 ipsq_t *ipsq; 1482 ill_t *ill; 1483 boolean_t refheld; 1484 1485 /* 1486 * Is any exclusive ioctl pending ? If so clean it up. If the 1487 * ioctl has not yet started, the mp is pending in the list headed by 1488 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1489 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1490 * is currently executing now the mp is not queued anywhere but 1491 * conn_oper_pending_ill is null. The conn close will wait 1492 * till the conn_ref drops to zero. 1493 */ 1494 mutex_enter(&connp->conn_lock); 1495 ill = connp->conn_oper_pending_ill; 1496 if (ill == NULL) { 1497 mutex_exit(&connp->conn_lock); 1498 return; 1499 } 1500 1501 curr = ill_pending_mp_get(ill, &connp, 0); 1502 if (curr != NULL) { 1503 mutex_exit(&connp->conn_lock); 1504 CONN_DEC_REF(connp); 1505 inet_freemsg(curr); 1506 return; 1507 } 1508 /* 1509 * We may not be able to refhold the ill if the ill/ipif 1510 * is changing. But we need to make sure that the ill will 1511 * not vanish. So we just bump up the ill_waiter count. 1512 */ 1513 refheld = ill_waiter_inc(ill); 1514 mutex_exit(&connp->conn_lock); 1515 if (refheld) { 1516 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1517 ill_waiter_dcr(ill); 1518 /* 1519 * Check whether this ioctl has started and is 1520 * pending. If it is not found there then check 1521 * whether this ioctl has not even started and is in 1522 * the ipsq_xopq list. 1523 */ 1524 if (!ipsq_pending_mp_cleanup(ill, connp)) 1525 ipsq_xopq_mp_cleanup(ill, connp); 1526 ipsq = ill->ill_phyint->phyint_ipsq; 1527 ipsq_exit(ipsq); 1528 return; 1529 } 1530 } 1531 1532 /* 1533 * The ill is also closing and we could not bump up the 1534 * ill_waiter_count or we could not enter the ipsq. Leave 1535 * the cleanup to ill_delete 1536 */ 1537 mutex_enter(&connp->conn_lock); 1538 while (connp->conn_oper_pending_ill != NULL) 1539 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1540 mutex_exit(&connp->conn_lock); 1541 if (refheld) 1542 ill_waiter_dcr(ill); 1543 } 1544 1545 /* 1546 * ipcl_walk function for cleaning up conn_*_ill fields. 1547 */ 1548 static void 1549 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1550 { 1551 ill_t *ill = (ill_t *)arg; 1552 ire_t *ire; 1553 1554 mutex_enter(&connp->conn_lock); 1555 if (connp->conn_multicast_ill == ill) { 1556 /* Revert to late binding */ 1557 connp->conn_multicast_ill = NULL; 1558 } 1559 if (connp->conn_incoming_ill == ill) 1560 connp->conn_incoming_ill = NULL; 1561 if (connp->conn_outgoing_ill == ill) 1562 connp->conn_outgoing_ill = NULL; 1563 if (connp->conn_dhcpinit_ill == ill) { 1564 connp->conn_dhcpinit_ill = NULL; 1565 ASSERT(ill->ill_dhcpinit != 0); 1566 atomic_dec_32(&ill->ill_dhcpinit); 1567 } 1568 if (connp->conn_ire_cache != NULL) { 1569 ire = connp->conn_ire_cache; 1570 /* 1571 * Source address selection makes it possible for IRE_CACHE 1572 * entries to be created with ire_stq coming from interface X 1573 * and ipif coming from interface Y. Thus whenever interface 1574 * X goes down, remove all references to it by checking both 1575 * on ire_ipif and ire_stq. 1576 */ 1577 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1578 (ire->ire_type == IRE_CACHE && 1579 ire->ire_stq == ill->ill_wq)) { 1580 connp->conn_ire_cache = NULL; 1581 mutex_exit(&connp->conn_lock); 1582 ire_refrele_notr(ire); 1583 return; 1584 } 1585 } 1586 mutex_exit(&connp->conn_lock); 1587 } 1588 1589 /* ARGSUSED */ 1590 void 1591 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1592 { 1593 ill_t *ill = q->q_ptr; 1594 ipif_t *ipif; 1595 1596 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1597 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1598 ipif_non_duplicate(ipif); 1599 ipif_down_tail(ipif); 1600 } 1601 freemsg(mp); 1602 ipsq_current_finish(ipsq); 1603 } 1604 1605 /* 1606 * ill_down_start is called when we want to down this ill and bring it up again 1607 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1608 * all interfaces, but don't tear down any plumbing. 1609 */ 1610 boolean_t 1611 ill_down_start(queue_t *q, mblk_t *mp) 1612 { 1613 ill_t *ill = q->q_ptr; 1614 ipif_t *ipif; 1615 1616 ASSERT(IAM_WRITER_ILL(ill)); 1617 1618 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1619 (void) ipif_down(ipif, NULL, NULL); 1620 1621 ill_down(ill); 1622 1623 (void) ipsq_pending_mp_cleanup(ill, NULL); 1624 1625 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1626 1627 /* 1628 * Atomically test and add the pending mp if references are active. 1629 */ 1630 mutex_enter(&ill->ill_lock); 1631 if (!ill_is_quiescent(ill)) { 1632 /* call cannot fail since `conn_t *' argument is NULL */ 1633 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1634 mp, ILL_DOWN); 1635 mutex_exit(&ill->ill_lock); 1636 return (B_FALSE); 1637 } 1638 mutex_exit(&ill->ill_lock); 1639 return (B_TRUE); 1640 } 1641 1642 static void 1643 ill_down(ill_t *ill) 1644 { 1645 ip_stack_t *ipst = ill->ill_ipst; 1646 1647 /* Blow off any IREs dependent on this ILL. */ 1648 ire_walk(ill_downi, ill, ipst); 1649 1650 /* Remove any conn_*_ill depending on this ill */ 1651 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1652 } 1653 1654 /* 1655 * ire_walk routine used to delete every IRE that depends on queues 1656 * associated with 'ill'. (Always called as writer.) 1657 */ 1658 static void 1659 ill_downi(ire_t *ire, char *ill_arg) 1660 { 1661 ill_t *ill = (ill_t *)ill_arg; 1662 1663 /* 1664 * Source address selection makes it possible for IRE_CACHE 1665 * entries to be created with ire_stq coming from interface X 1666 * and ipif coming from interface Y. Thus whenever interface 1667 * X goes down, remove all references to it by checking both 1668 * on ire_ipif and ire_stq. 1669 */ 1670 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1671 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1672 ire_delete(ire); 1673 } 1674 } 1675 1676 /* 1677 * Remove ire/nce from the fastpath list. 1678 */ 1679 void 1680 ill_fastpath_nack(ill_t *ill) 1681 { 1682 nce_fastpath_list_dispatch(ill, NULL, NULL); 1683 } 1684 1685 /* Consume an M_IOCACK of the fastpath probe. */ 1686 void 1687 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1688 { 1689 mblk_t *mp1 = mp; 1690 1691 /* 1692 * If this was the first attempt turn on the fastpath probing. 1693 */ 1694 mutex_enter(&ill->ill_lock); 1695 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1696 ill->ill_dlpi_fastpath_state = IDS_OK; 1697 mutex_exit(&ill->ill_lock); 1698 1699 /* Free the M_IOCACK mblk, hold on to the data */ 1700 mp = mp->b_cont; 1701 freeb(mp1); 1702 if (mp == NULL) 1703 return; 1704 if (mp->b_cont != NULL) { 1705 /* 1706 * Update all IRE's or NCE's that are waiting for 1707 * fastpath update. 1708 */ 1709 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1710 mp1 = mp->b_cont; 1711 freeb(mp); 1712 mp = mp1; 1713 } else { 1714 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1715 } 1716 1717 freeb(mp); 1718 } 1719 1720 /* 1721 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1722 * The data portion of the request is a dl_unitdata_req_t template for 1723 * what we would send downstream in the absence of a fastpath confirmation. 1724 */ 1725 int 1726 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1727 { 1728 struct iocblk *ioc; 1729 mblk_t *mp; 1730 1731 if (dlur_mp == NULL) 1732 return (EINVAL); 1733 1734 mutex_enter(&ill->ill_lock); 1735 switch (ill->ill_dlpi_fastpath_state) { 1736 case IDS_FAILED: 1737 /* 1738 * Driver NAKed the first fastpath ioctl - assume it doesn't 1739 * support it. 1740 */ 1741 mutex_exit(&ill->ill_lock); 1742 return (ENOTSUP); 1743 case IDS_UNKNOWN: 1744 /* This is the first probe */ 1745 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1746 break; 1747 default: 1748 break; 1749 } 1750 mutex_exit(&ill->ill_lock); 1751 1752 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1753 return (EAGAIN); 1754 1755 mp->b_cont = copyb(dlur_mp); 1756 if (mp->b_cont == NULL) { 1757 freeb(mp); 1758 return (EAGAIN); 1759 } 1760 1761 ioc = (struct iocblk *)mp->b_rptr; 1762 ioc->ioc_count = msgdsize(mp->b_cont); 1763 1764 putnext(ill->ill_wq, mp); 1765 return (0); 1766 } 1767 1768 void 1769 ill_capability_probe(ill_t *ill) 1770 { 1771 mblk_t *mp; 1772 1773 ASSERT(IAM_WRITER_ILL(ill)); 1774 1775 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1776 ill->ill_dlpi_capab_state != IDCS_FAILED) 1777 return; 1778 1779 /* 1780 * We are starting a new cycle of capability negotiation. 1781 * Free up the capab reset messages of any previous incarnation. 1782 * We will do a fresh allocation when we get the response to our probe 1783 */ 1784 if (ill->ill_capab_reset_mp != NULL) { 1785 freemsg(ill->ill_capab_reset_mp); 1786 ill->ill_capab_reset_mp = NULL; 1787 } 1788 1789 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1790 1791 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1792 if (mp == NULL) 1793 return; 1794 1795 ill_capability_send(ill, mp); 1796 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1797 } 1798 1799 void 1800 ill_capability_reset(ill_t *ill, boolean_t reneg) 1801 { 1802 ASSERT(IAM_WRITER_ILL(ill)); 1803 1804 if (ill->ill_dlpi_capab_state != IDCS_OK) 1805 return; 1806 1807 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1808 1809 ill_capability_send(ill, ill->ill_capab_reset_mp); 1810 ill->ill_capab_reset_mp = NULL; 1811 /* 1812 * We turn off all capabilities except those pertaining to 1813 * direct function call capabilities viz. ILL_CAPAB_DLD* 1814 * which will be turned off by the corresponding reset functions. 1815 */ 1816 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1817 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1818 } 1819 1820 static void 1821 ill_capability_reset_alloc(ill_t *ill) 1822 { 1823 mblk_t *mp; 1824 size_t size = 0; 1825 int err; 1826 dl_capability_req_t *capb; 1827 1828 ASSERT(IAM_WRITER_ILL(ill)); 1829 ASSERT(ill->ill_capab_reset_mp == NULL); 1830 1831 if (ILL_MDT_CAPABLE(ill)) 1832 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1833 1834 if (ILL_HCKSUM_CAPABLE(ill)) { 1835 size += sizeof (dl_capability_sub_t) + 1836 sizeof (dl_capab_hcksum_t); 1837 } 1838 1839 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1840 size += sizeof (dl_capability_sub_t) + 1841 sizeof (dl_capab_zerocopy_t); 1842 } 1843 1844 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1845 size += sizeof (dl_capability_sub_t); 1846 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1847 NULL, NULL); 1848 } 1849 1850 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1851 size += sizeof (dl_capability_sub_t) + 1852 sizeof (dl_capab_dld_t); 1853 } 1854 1855 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1856 STR_NOSIG, &err); 1857 1858 mp->b_datap->db_type = M_PROTO; 1859 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1860 1861 capb = (dl_capability_req_t *)mp->b_rptr; 1862 capb->dl_primitive = DL_CAPABILITY_REQ; 1863 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1864 capb->dl_sub_length = size; 1865 1866 mp->b_wptr += sizeof (dl_capability_req_t); 1867 1868 /* 1869 * Each handler fills in the corresponding dl_capability_sub_t 1870 * inside the mblk, 1871 */ 1872 ill_capability_mdt_reset_fill(ill, mp); 1873 ill_capability_hcksum_reset_fill(ill, mp); 1874 ill_capability_zerocopy_reset_fill(ill, mp); 1875 ill_capability_ipsec_reset_fill(ill, mp); 1876 ill_capability_dld_reset_fill(ill, mp); 1877 1878 ill->ill_capab_reset_mp = mp; 1879 } 1880 1881 static void 1882 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1883 { 1884 dl_capab_id_t *id_ic; 1885 uint_t sub_dl_cap = outers->dl_cap; 1886 dl_capability_sub_t *inners; 1887 uint8_t *capend; 1888 1889 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1890 1891 /* 1892 * Note: range checks here are not absolutely sufficient to 1893 * make us robust against malformed messages sent by drivers; 1894 * this is in keeping with the rest of IP's dlpi handling. 1895 * (Remember, it's coming from something else in the kernel 1896 * address space) 1897 */ 1898 1899 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1900 if (capend > mp->b_wptr) { 1901 cmn_err(CE_WARN, "ill_capability_id_ack: " 1902 "malformed sub-capability too long for mblk"); 1903 return; 1904 } 1905 1906 id_ic = (dl_capab_id_t *)(outers + 1); 1907 1908 if (outers->dl_length < sizeof (*id_ic) || 1909 (inners = &id_ic->id_subcap, 1910 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1911 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1912 "encapsulated capab type %d too long for mblk", 1913 inners->dl_cap); 1914 return; 1915 } 1916 1917 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1918 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1919 "isn't as expected; pass-thru module(s) detected, " 1920 "discarding capability\n", inners->dl_cap)); 1921 return; 1922 } 1923 1924 /* Process the encapsulated sub-capability */ 1925 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1926 } 1927 1928 /* 1929 * Process Multidata Transmit capability negotiation ack received from a 1930 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1931 * DL_CAPABILITY_ACK message. 1932 */ 1933 static void 1934 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1935 { 1936 mblk_t *nmp = NULL; 1937 dl_capability_req_t *oc; 1938 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1939 ill_mdt_capab_t **ill_mdt_capab; 1940 uint_t sub_dl_cap = isub->dl_cap; 1941 uint8_t *capend; 1942 1943 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1944 1945 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1946 1947 /* 1948 * Note: range checks here are not absolutely sufficient to 1949 * make us robust against malformed messages sent by drivers; 1950 * this is in keeping with the rest of IP's dlpi handling. 1951 * (Remember, it's coming from something else in the kernel 1952 * address space) 1953 */ 1954 1955 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1956 if (capend > mp->b_wptr) { 1957 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1958 "malformed sub-capability too long for mblk"); 1959 return; 1960 } 1961 1962 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1963 1964 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1965 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1966 "unsupported MDT sub-capability (version %d, expected %d)", 1967 mdt_ic->mdt_version, MDT_VERSION_2); 1968 return; 1969 } 1970 1971 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1972 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1973 "capability isn't as expected; pass-thru module(s) " 1974 "detected, discarding capability\n")); 1975 return; 1976 } 1977 1978 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1979 1980 if (*ill_mdt_capab == NULL) { 1981 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1982 KM_NOSLEEP); 1983 if (*ill_mdt_capab == NULL) { 1984 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1985 "could not enable MDT version %d " 1986 "for %s (ENOMEM)\n", MDT_VERSION_2, 1987 ill->ill_name); 1988 return; 1989 } 1990 } 1991 1992 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1993 "MDT version %d (%d bytes leading, %d bytes trailing " 1994 "header spaces, %d max pld bufs, %d span limit)\n", 1995 ill->ill_name, MDT_VERSION_2, 1996 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1997 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1998 1999 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2000 (*ill_mdt_capab)->ill_mdt_on = 1; 2001 /* 2002 * Round the following values to the nearest 32-bit; ULP 2003 * may further adjust them to accomodate for additional 2004 * protocol headers. We pass these values to ULP during 2005 * bind time. 2006 */ 2007 (*ill_mdt_capab)->ill_mdt_hdr_head = 2008 roundup(mdt_ic->mdt_hdr_head, 4); 2009 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2010 roundup(mdt_ic->mdt_hdr_tail, 4); 2011 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2012 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2013 2014 ill->ill_capabilities |= ILL_CAPAB_MDT; 2015 } else { 2016 uint_t size; 2017 uchar_t *rptr; 2018 2019 size = sizeof (dl_capability_req_t) + 2020 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2021 2022 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2023 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2024 "could not enable MDT for %s (ENOMEM)\n", 2025 ill->ill_name); 2026 return; 2027 } 2028 2029 rptr = nmp->b_rptr; 2030 /* initialize dl_capability_req_t */ 2031 oc = (dl_capability_req_t *)nmp->b_rptr; 2032 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2033 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2034 sizeof (dl_capab_mdt_t); 2035 nmp->b_rptr += sizeof (dl_capability_req_t); 2036 2037 /* initialize dl_capability_sub_t */ 2038 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2039 nmp->b_rptr += sizeof (*isub); 2040 2041 /* initialize dl_capab_mdt_t */ 2042 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2043 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2044 2045 nmp->b_rptr = rptr; 2046 2047 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2048 "to enable MDT version %d\n", ill->ill_name, 2049 MDT_VERSION_2)); 2050 2051 /* set ENABLE flag */ 2052 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2053 2054 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2055 ill_capability_send(ill, nmp); 2056 } 2057 } 2058 2059 static void 2060 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2061 { 2062 dl_capab_mdt_t *mdt_subcap; 2063 dl_capability_sub_t *dl_subcap; 2064 2065 if (!ILL_MDT_CAPABLE(ill)) 2066 return; 2067 2068 ASSERT(ill->ill_mdt_capab != NULL); 2069 2070 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2071 dl_subcap->dl_cap = DL_CAPAB_MDT; 2072 dl_subcap->dl_length = sizeof (*mdt_subcap); 2073 2074 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2075 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2076 mdt_subcap->mdt_flags = 0; 2077 mdt_subcap->mdt_hdr_head = 0; 2078 mdt_subcap->mdt_hdr_tail = 0; 2079 2080 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2081 } 2082 2083 static void 2084 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2085 { 2086 dl_capability_sub_t *dl_subcap; 2087 2088 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2089 return; 2090 2091 /* 2092 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2093 * initialized below since it is not used by DLD. 2094 */ 2095 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2096 dl_subcap->dl_cap = DL_CAPAB_DLD; 2097 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2098 2099 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2100 } 2101 2102 /* 2103 * Send a DL_NOTIFY_REQ to the specified ill to enable 2104 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2105 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2106 * acceleration. 2107 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2108 */ 2109 static boolean_t 2110 ill_enable_promisc_notify(ill_t *ill) 2111 { 2112 mblk_t *mp; 2113 dl_notify_req_t *req; 2114 2115 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2116 2117 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2118 if (mp == NULL) 2119 return (B_FALSE); 2120 2121 req = (dl_notify_req_t *)mp->b_rptr; 2122 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2123 DL_NOTE_PROMISC_OFF_PHYS; 2124 2125 ill_dlpi_send(ill, mp); 2126 2127 return (B_TRUE); 2128 } 2129 2130 /* 2131 * Allocate an IPsec capability request which will be filled by our 2132 * caller to turn on support for one or more algorithms. 2133 */ 2134 static mblk_t * 2135 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2136 { 2137 mblk_t *nmp; 2138 dl_capability_req_t *ocap; 2139 dl_capab_ipsec_t *ocip; 2140 dl_capab_ipsec_t *icip; 2141 uint8_t *ptr; 2142 icip = (dl_capab_ipsec_t *)(isub + 1); 2143 2144 /* 2145 * The first time around, we send a DL_NOTIFY_REQ to enable 2146 * PROMISC_ON/OFF notification from the provider. We need to 2147 * do this before enabling the algorithms to avoid leakage of 2148 * cleartext packets. 2149 */ 2150 2151 if (!ill_enable_promisc_notify(ill)) 2152 return (NULL); 2153 2154 /* 2155 * Allocate new mblk which will contain a new capability 2156 * request to enable the capabilities. 2157 */ 2158 2159 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2160 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2161 if (nmp == NULL) 2162 return (NULL); 2163 2164 ptr = nmp->b_rptr; 2165 2166 /* initialize dl_capability_req_t */ 2167 ocap = (dl_capability_req_t *)ptr; 2168 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2169 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2170 ptr += sizeof (dl_capability_req_t); 2171 2172 /* initialize dl_capability_sub_t */ 2173 bcopy(isub, ptr, sizeof (*isub)); 2174 ptr += sizeof (*isub); 2175 2176 /* initialize dl_capab_ipsec_t */ 2177 ocip = (dl_capab_ipsec_t *)ptr; 2178 bcopy(icip, ocip, sizeof (*icip)); 2179 2180 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2181 return (nmp); 2182 } 2183 2184 /* 2185 * Process an IPsec capability negotiation ack received from a DLS Provider. 2186 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2187 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2188 */ 2189 static void 2190 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2191 { 2192 dl_capab_ipsec_t *icip; 2193 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2194 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2195 uint_t cipher, nciphers; 2196 mblk_t *nmp; 2197 uint_t alg_len; 2198 boolean_t need_sadb_dump; 2199 uint_t sub_dl_cap = isub->dl_cap; 2200 ill_ipsec_capab_t **ill_capab; 2201 uint64_t ill_capab_flag; 2202 uint8_t *capend, *ciphend; 2203 boolean_t sadb_resync; 2204 2205 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2206 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2207 2208 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2209 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2210 ill_capab_flag = ILL_CAPAB_AH; 2211 } else { 2212 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2213 ill_capab_flag = ILL_CAPAB_ESP; 2214 } 2215 2216 /* 2217 * If the ill capability structure exists, then this incoming 2218 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2219 * If this is so, then we'd need to resynchronize the SADB 2220 * after re-enabling the offloaded ciphers. 2221 */ 2222 sadb_resync = (*ill_capab != NULL); 2223 2224 /* 2225 * Note: range checks here are not absolutely sufficient to 2226 * make us robust against malformed messages sent by drivers; 2227 * this is in keeping with the rest of IP's dlpi handling. 2228 * (Remember, it's coming from something else in the kernel 2229 * address space) 2230 */ 2231 2232 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2233 if (capend > mp->b_wptr) { 2234 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2235 "malformed sub-capability too long for mblk"); 2236 return; 2237 } 2238 2239 /* 2240 * There are two types of acks we process here: 2241 * 1. acks in reply to a (first form) generic capability req 2242 * (no ENABLE flag set) 2243 * 2. acks in reply to a ENABLE capability req. 2244 * (ENABLE flag set) 2245 * 2246 * We process the subcapability passed as argument as follows: 2247 * 1 do initializations 2248 * 1.1 initialize nmp = NULL 2249 * 1.2 set need_sadb_dump to B_FALSE 2250 * 2 for each cipher in subcapability: 2251 * 2.1 if ENABLE flag is set: 2252 * 2.1.1 update per-ill ipsec capabilities info 2253 * 2.1.2 set need_sadb_dump to B_TRUE 2254 * 2.2 if ENABLE flag is not set: 2255 * 2.2.1 if nmp is NULL: 2256 * 2.2.1.1 allocate and initialize nmp 2257 * 2.2.1.2 init current pos in nmp 2258 * 2.2.2 copy current cipher to current pos in nmp 2259 * 2.2.3 set ENABLE flag in nmp 2260 * 2.2.4 update current pos 2261 * 3 if nmp is not equal to NULL, send enable request 2262 * 3.1 send capability request 2263 * 4 if need_sadb_dump is B_TRUE 2264 * 4.1 enable promiscuous on/off notifications 2265 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2266 * AH or ESP SA's to interface. 2267 */ 2268 2269 nmp = NULL; 2270 oalg = NULL; 2271 need_sadb_dump = B_FALSE; 2272 icip = (dl_capab_ipsec_t *)(isub + 1); 2273 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2274 2275 nciphers = icip->cip_nciphers; 2276 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2277 2278 if (ciphend > capend) { 2279 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2280 "too many ciphers for sub-capability len"); 2281 return; 2282 } 2283 2284 for (cipher = 0; cipher < nciphers; cipher++) { 2285 alg_len = sizeof (dl_capab_ipsec_alg_t); 2286 2287 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2288 /* 2289 * TBD: when we provide a way to disable capabilities 2290 * from above, need to manage the request-pending state 2291 * and fail if we were not expecting this ACK. 2292 */ 2293 IPSECHW_DEBUG(IPSECHW_CAPAB, 2294 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2295 2296 /* 2297 * Update IPsec capabilities for this ill 2298 */ 2299 2300 if (*ill_capab == NULL) { 2301 IPSECHW_DEBUG(IPSECHW_CAPAB, 2302 ("ill_capability_ipsec_ack: " 2303 "allocating ipsec_capab for ill\n")); 2304 *ill_capab = ill_ipsec_capab_alloc(); 2305 2306 if (*ill_capab == NULL) { 2307 cmn_err(CE_WARN, 2308 "ill_capability_ipsec_ack: " 2309 "could not enable IPsec Hardware " 2310 "acceleration for %s (ENOMEM)\n", 2311 ill->ill_name); 2312 return; 2313 } 2314 } 2315 2316 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2317 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2318 2319 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2320 cmn_err(CE_WARN, 2321 "ill_capability_ipsec_ack: " 2322 "malformed IPsec algorithm id %d", 2323 ialg->alg_prim); 2324 continue; 2325 } 2326 2327 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2328 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2329 ialg->alg_prim); 2330 } else { 2331 ipsec_capab_algparm_t *alp; 2332 2333 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2334 ialg->alg_prim); 2335 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2336 ialg->alg_prim)) { 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "no space for IPsec alg id %d", 2340 ialg->alg_prim); 2341 continue; 2342 } 2343 alp = &((*ill_capab)->encr_algparm[ 2344 ialg->alg_prim]); 2345 alp->minkeylen = ialg->alg_minbits; 2346 alp->maxkeylen = ialg->alg_maxbits; 2347 } 2348 ill->ill_capabilities |= ill_capab_flag; 2349 /* 2350 * indicate that a capability was enabled, which 2351 * will be used below to kick off a SADB dump 2352 * to the ill. 2353 */ 2354 need_sadb_dump = B_TRUE; 2355 } else { 2356 IPSECHW_DEBUG(IPSECHW_CAPAB, 2357 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2358 ialg->alg_prim)); 2359 2360 if (nmp == NULL) { 2361 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2362 if (nmp == NULL) { 2363 /* 2364 * Sending the PROMISC_ON/OFF 2365 * notification request failed. 2366 * We cannot enable the algorithms 2367 * since the Provider will not 2368 * notify IP of promiscous mode 2369 * changes, which could lead 2370 * to leakage of packets. 2371 */ 2372 cmn_err(CE_WARN, 2373 "ill_capability_ipsec_ack: " 2374 "could not enable IPsec Hardware " 2375 "acceleration for %s (ENOMEM)\n", 2376 ill->ill_name); 2377 return; 2378 } 2379 /* ptr to current output alg specifier */ 2380 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2381 } 2382 2383 /* 2384 * Copy current alg specifier, set ENABLE 2385 * flag, and advance to next output alg. 2386 * For now we enable all IPsec capabilities. 2387 */ 2388 ASSERT(oalg != NULL); 2389 bcopy(ialg, oalg, alg_len); 2390 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2391 nmp->b_wptr += alg_len; 2392 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2393 } 2394 2395 /* move to next input algorithm specifier */ 2396 ialg = (dl_capab_ipsec_alg_t *) 2397 ((char *)ialg + alg_len); 2398 } 2399 2400 if (nmp != NULL) 2401 /* 2402 * nmp points to a DL_CAPABILITY_REQ message to enable 2403 * IPsec hardware acceleration. 2404 */ 2405 ill_capability_send(ill, nmp); 2406 2407 if (need_sadb_dump) 2408 /* 2409 * An acknowledgement corresponding to a request to 2410 * enable acceleration was received, notify SADB. 2411 */ 2412 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2413 } 2414 2415 /* 2416 * Given an mblk with enough space in it, create sub-capability entries for 2417 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2418 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2419 * in preparation for the reset the DL_CAPABILITY_REQ message. 2420 */ 2421 static void 2422 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2423 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2424 { 2425 dl_capab_ipsec_t *oipsec; 2426 dl_capab_ipsec_alg_t *oalg; 2427 dl_capability_sub_t *dl_subcap; 2428 int i, k; 2429 2430 ASSERT(nciphers > 0); 2431 ASSERT(ill_cap != NULL); 2432 ASSERT(mp != NULL); 2433 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2434 2435 /* dl_capability_sub_t for "stype" */ 2436 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2437 dl_subcap->dl_cap = stype; 2438 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2439 mp->b_wptr += sizeof (dl_capability_sub_t); 2440 2441 /* dl_capab_ipsec_t for "stype" */ 2442 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2443 oipsec->cip_version = 1; 2444 oipsec->cip_nciphers = nciphers; 2445 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2446 2447 /* create entries for "stype" AUTH ciphers */ 2448 for (i = 0; i < ill_cap->algs_size; i++) { 2449 for (k = 0; k < BITSPERBYTE; k++) { 2450 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2451 continue; 2452 2453 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2454 bzero((void *)oalg, sizeof (*oalg)); 2455 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2456 oalg->alg_prim = k + (BITSPERBYTE * i); 2457 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2458 } 2459 } 2460 /* create entries for "stype" ENCR ciphers */ 2461 for (i = 0; i < ill_cap->algs_size; i++) { 2462 for (k = 0; k < BITSPERBYTE; k++) { 2463 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2464 continue; 2465 2466 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2467 bzero((void *)oalg, sizeof (*oalg)); 2468 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2469 oalg->alg_prim = k + (BITSPERBYTE * i); 2470 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2471 } 2472 } 2473 } 2474 2475 /* 2476 * Macro to count number of 1s in a byte (8-bit word). The total count is 2477 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2478 * POPC instruction, but our macro is more flexible for an arbitrary length 2479 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2480 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2481 * stays that way, we can reduce the number of iterations required. 2482 */ 2483 #define COUNT_1S(val, sum) { \ 2484 uint8_t x = val & 0xff; \ 2485 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2486 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2487 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2488 } 2489 2490 /* ARGSUSED */ 2491 static int 2492 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2493 int *esp_cntp, int *esp_lenp) 2494 { 2495 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2496 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2497 uint64_t ill_capabilities = ill->ill_capabilities; 2498 int ah_cnt = 0, esp_cnt = 0; 2499 int ah_len = 0, esp_len = 0; 2500 int i, size = 0; 2501 2502 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2503 return (0); 2504 2505 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2506 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2507 2508 /* Find out the number of ciphers for AH */ 2509 if (cap_ah != NULL) { 2510 for (i = 0; i < cap_ah->algs_size; i++) { 2511 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2512 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2513 } 2514 if (ah_cnt > 0) { 2515 size += sizeof (dl_capability_sub_t) + 2516 sizeof (dl_capab_ipsec_t); 2517 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2518 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2519 size += ah_len; 2520 } 2521 } 2522 2523 /* Find out the number of ciphers for ESP */ 2524 if (cap_esp != NULL) { 2525 for (i = 0; i < cap_esp->algs_size; i++) { 2526 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2527 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2528 } 2529 if (esp_cnt > 0) { 2530 size += sizeof (dl_capability_sub_t) + 2531 sizeof (dl_capab_ipsec_t); 2532 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2533 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2534 size += esp_len; 2535 } 2536 } 2537 2538 if (ah_cntp != NULL) 2539 *ah_cntp = ah_cnt; 2540 if (ah_lenp != NULL) 2541 *ah_lenp = ah_len; 2542 if (esp_cntp != NULL) 2543 *esp_cntp = esp_cnt; 2544 if (esp_lenp != NULL) 2545 *esp_lenp = esp_len; 2546 2547 return (size); 2548 } 2549 2550 /* ARGSUSED */ 2551 static void 2552 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2553 { 2554 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2555 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2556 int ah_cnt = 0, esp_cnt = 0; 2557 int ah_len = 0, esp_len = 0; 2558 int size; 2559 2560 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2561 &esp_cnt, &esp_len); 2562 if (size == 0) 2563 return; 2564 2565 /* 2566 * Clear the capability flags for IPsec HA but retain the ill 2567 * capability structures since it's possible that another thread 2568 * is still referring to them. The structures only get deallocated 2569 * when we destroy the ill. 2570 * 2571 * Various places check the flags to see if the ill is capable of 2572 * hardware acceleration, and by clearing them we ensure that new 2573 * outbound IPsec packets are sent down encrypted. 2574 */ 2575 2576 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2577 if (ah_cnt > 0) { 2578 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2579 cap_ah, mp); 2580 } 2581 2582 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2583 if (esp_cnt > 0) { 2584 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2585 cap_esp, mp); 2586 } 2587 2588 /* 2589 * At this point we've composed a bunch of sub-capabilities to be 2590 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2591 * by the caller. Upon receiving this reset message, the driver 2592 * must stop inbound decryption (by destroying all inbound SAs) 2593 * and let the corresponding packets come in encrypted. 2594 */ 2595 } 2596 2597 static void 2598 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2599 boolean_t encapsulated) 2600 { 2601 boolean_t legacy = B_FALSE; 2602 2603 /* 2604 * Note that only the following two sub-capabilities may be 2605 * considered as "legacy", since their original definitions 2606 * do not incorporate the dl_mid_t module ID token, and hence 2607 * may require the use of the wrapper sub-capability. 2608 */ 2609 switch (subp->dl_cap) { 2610 case DL_CAPAB_IPSEC_AH: 2611 case DL_CAPAB_IPSEC_ESP: 2612 legacy = B_TRUE; 2613 break; 2614 } 2615 2616 /* 2617 * For legacy sub-capabilities which don't incorporate a queue_t 2618 * pointer in their structures, discard them if we detect that 2619 * there are intermediate modules in between IP and the driver. 2620 */ 2621 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2622 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2623 "%d discarded; %d module(s) present below IP\n", 2624 subp->dl_cap, ill->ill_lmod_cnt)); 2625 return; 2626 } 2627 2628 switch (subp->dl_cap) { 2629 case DL_CAPAB_IPSEC_AH: 2630 case DL_CAPAB_IPSEC_ESP: 2631 ill_capability_ipsec_ack(ill, mp, subp); 2632 break; 2633 case DL_CAPAB_MDT: 2634 ill_capability_mdt_ack(ill, mp, subp); 2635 break; 2636 case DL_CAPAB_HCKSUM: 2637 ill_capability_hcksum_ack(ill, mp, subp); 2638 break; 2639 case DL_CAPAB_ZEROCOPY: 2640 ill_capability_zerocopy_ack(ill, mp, subp); 2641 break; 2642 case DL_CAPAB_DLD: 2643 ill_capability_dld_ack(ill, mp, subp); 2644 break; 2645 default: 2646 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2647 subp->dl_cap)); 2648 } 2649 } 2650 2651 /* 2652 * Process a hardware checksum offload capability negotiation ack received 2653 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2654 * of a DL_CAPABILITY_ACK message. 2655 */ 2656 static void 2657 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2658 { 2659 dl_capability_req_t *ocap; 2660 dl_capab_hcksum_t *ihck, *ohck; 2661 ill_hcksum_capab_t **ill_hcksum; 2662 mblk_t *nmp = NULL; 2663 uint_t sub_dl_cap = isub->dl_cap; 2664 uint8_t *capend; 2665 2666 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2667 2668 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2669 2670 /* 2671 * Note: range checks here are not absolutely sufficient to 2672 * make us robust against malformed messages sent by drivers; 2673 * this is in keeping with the rest of IP's dlpi handling. 2674 * (Remember, it's coming from something else in the kernel 2675 * address space) 2676 */ 2677 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2678 if (capend > mp->b_wptr) { 2679 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2680 "malformed sub-capability too long for mblk"); 2681 return; 2682 } 2683 2684 /* 2685 * There are two types of acks we process here: 2686 * 1. acks in reply to a (first form) generic capability req 2687 * (no ENABLE flag set) 2688 * 2. acks in reply to a ENABLE capability req. 2689 * (ENABLE flag set) 2690 */ 2691 ihck = (dl_capab_hcksum_t *)(isub + 1); 2692 2693 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2694 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2695 "unsupported hardware checksum " 2696 "sub-capability (version %d, expected %d)", 2697 ihck->hcksum_version, HCKSUM_VERSION_1); 2698 return; 2699 } 2700 2701 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2702 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2703 "checksum capability isn't as expected; pass-thru " 2704 "module(s) detected, discarding capability\n")); 2705 return; 2706 } 2707 2708 #define CURR_HCKSUM_CAPAB \ 2709 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2710 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2711 2712 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2713 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2714 /* do ENABLE processing */ 2715 if (*ill_hcksum == NULL) { 2716 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2717 KM_NOSLEEP); 2718 2719 if (*ill_hcksum == NULL) { 2720 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2721 "could not enable hcksum version %d " 2722 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2723 ill->ill_name); 2724 return; 2725 } 2726 } 2727 2728 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2729 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2730 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2731 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2732 "has enabled hardware checksumming\n ", 2733 ill->ill_name)); 2734 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2735 /* 2736 * Enabling hardware checksum offload 2737 * Currently IP supports {TCP,UDP}/IPv4 2738 * partial and full cksum offload and 2739 * IPv4 header checksum offload. 2740 * Allocate new mblk which will 2741 * contain a new capability request 2742 * to enable hardware checksum offload. 2743 */ 2744 uint_t size; 2745 uchar_t *rptr; 2746 2747 size = sizeof (dl_capability_req_t) + 2748 sizeof (dl_capability_sub_t) + isub->dl_length; 2749 2750 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2751 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2752 "could not enable hardware cksum for %s (ENOMEM)\n", 2753 ill->ill_name); 2754 return; 2755 } 2756 2757 rptr = nmp->b_rptr; 2758 /* initialize dl_capability_req_t */ 2759 ocap = (dl_capability_req_t *)nmp->b_rptr; 2760 ocap->dl_sub_offset = 2761 sizeof (dl_capability_req_t); 2762 ocap->dl_sub_length = 2763 sizeof (dl_capability_sub_t) + 2764 isub->dl_length; 2765 nmp->b_rptr += sizeof (dl_capability_req_t); 2766 2767 /* initialize dl_capability_sub_t */ 2768 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2769 nmp->b_rptr += sizeof (*isub); 2770 2771 /* initialize dl_capab_hcksum_t */ 2772 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2773 bcopy(ihck, ohck, sizeof (*ihck)); 2774 2775 nmp->b_rptr = rptr; 2776 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2777 2778 /* Set ENABLE flag */ 2779 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2780 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2781 2782 /* 2783 * nmp points to a DL_CAPABILITY_REQ message to enable 2784 * hardware checksum acceleration. 2785 */ 2786 ill_capability_send(ill, nmp); 2787 } else { 2788 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2789 "advertised %x hardware checksum capability flags\n", 2790 ill->ill_name, ihck->hcksum_txflags)); 2791 } 2792 } 2793 2794 static void 2795 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2796 { 2797 dl_capab_hcksum_t *hck_subcap; 2798 dl_capability_sub_t *dl_subcap; 2799 2800 if (!ILL_HCKSUM_CAPABLE(ill)) 2801 return; 2802 2803 ASSERT(ill->ill_hcksum_capab != NULL); 2804 2805 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2806 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2807 dl_subcap->dl_length = sizeof (*hck_subcap); 2808 2809 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2810 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2811 hck_subcap->hcksum_txflags = 0; 2812 2813 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2814 } 2815 2816 static void 2817 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2818 { 2819 mblk_t *nmp = NULL; 2820 dl_capability_req_t *oc; 2821 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2822 ill_zerocopy_capab_t **ill_zerocopy_capab; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 uint8_t *capend; 2825 2826 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2827 2828 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2829 2830 /* 2831 * Note: range checks here are not absolutely sufficient to 2832 * make us robust against malformed messages sent by drivers; 2833 * this is in keeping with the rest of IP's dlpi handling. 2834 * (Remember, it's coming from something else in the kernel 2835 * address space) 2836 */ 2837 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2838 if (capend > mp->b_wptr) { 2839 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2840 "malformed sub-capability too long for mblk"); 2841 return; 2842 } 2843 2844 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2845 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2846 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2847 "unsupported ZEROCOPY sub-capability (version %d, " 2848 "expected %d)", zc_ic->zerocopy_version, 2849 ZEROCOPY_VERSION_1); 2850 return; 2851 } 2852 2853 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2854 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2855 "capability isn't as expected; pass-thru module(s) " 2856 "detected, discarding capability\n")); 2857 return; 2858 } 2859 2860 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2861 if (*ill_zerocopy_capab == NULL) { 2862 *ill_zerocopy_capab = 2863 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2864 KM_NOSLEEP); 2865 2866 if (*ill_zerocopy_capab == NULL) { 2867 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2868 "could not enable Zero-copy version %d " 2869 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2870 ill->ill_name); 2871 return; 2872 } 2873 } 2874 2875 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2876 "supports Zero-copy version %d\n", ill->ill_name, 2877 ZEROCOPY_VERSION_1)); 2878 2879 (*ill_zerocopy_capab)->ill_zerocopy_version = 2880 zc_ic->zerocopy_version; 2881 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2882 zc_ic->zerocopy_flags; 2883 2884 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2885 } else { 2886 uint_t size; 2887 uchar_t *rptr; 2888 2889 size = sizeof (dl_capability_req_t) + 2890 sizeof (dl_capability_sub_t) + 2891 sizeof (dl_capab_zerocopy_t); 2892 2893 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2894 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2895 "could not enable zerocopy for %s (ENOMEM)\n", 2896 ill->ill_name); 2897 return; 2898 } 2899 2900 rptr = nmp->b_rptr; 2901 /* initialize dl_capability_req_t */ 2902 oc = (dl_capability_req_t *)rptr; 2903 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2904 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2905 sizeof (dl_capab_zerocopy_t); 2906 rptr += sizeof (dl_capability_req_t); 2907 2908 /* initialize dl_capability_sub_t */ 2909 bcopy(isub, rptr, sizeof (*isub)); 2910 rptr += sizeof (*isub); 2911 2912 /* initialize dl_capab_zerocopy_t */ 2913 zc_oc = (dl_capab_zerocopy_t *)rptr; 2914 *zc_oc = *zc_ic; 2915 2916 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2917 "to enable zero-copy version %d\n", ill->ill_name, 2918 ZEROCOPY_VERSION_1)); 2919 2920 /* set VMSAFE_MEM flag */ 2921 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2922 2923 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2924 ill_capability_send(ill, nmp); 2925 } 2926 } 2927 2928 static void 2929 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2930 { 2931 dl_capab_zerocopy_t *zerocopy_subcap; 2932 dl_capability_sub_t *dl_subcap; 2933 2934 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2935 return; 2936 2937 ASSERT(ill->ill_zerocopy_capab != NULL); 2938 2939 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2940 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2941 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2942 2943 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2944 zerocopy_subcap->zerocopy_version = 2945 ill->ill_zerocopy_capab->ill_zerocopy_version; 2946 zerocopy_subcap->zerocopy_flags = 0; 2947 2948 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2949 } 2950 2951 /* 2952 * DLD capability 2953 * Refer to dld.h for more information regarding the purpose and usage 2954 * of this capability. 2955 */ 2956 static void 2957 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2958 { 2959 dl_capab_dld_t *dld_ic, dld; 2960 uint_t sub_dl_cap = isub->dl_cap; 2961 uint8_t *capend; 2962 ill_dld_capab_t *idc; 2963 2964 ASSERT(IAM_WRITER_ILL(ill)); 2965 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2966 2967 /* 2968 * Note: range checks here are not absolutely sufficient to 2969 * make us robust against malformed messages sent by drivers; 2970 * this is in keeping with the rest of IP's dlpi handling. 2971 * (Remember, it's coming from something else in the kernel 2972 * address space) 2973 */ 2974 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2975 if (capend > mp->b_wptr) { 2976 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2977 "malformed sub-capability too long for mblk"); 2978 return; 2979 } 2980 dld_ic = (dl_capab_dld_t *)(isub + 1); 2981 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2982 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2983 "unsupported DLD sub-capability (version %d, " 2984 "expected %d)", dld_ic->dld_version, 2985 DLD_CURRENT_VERSION); 2986 return; 2987 } 2988 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2989 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2990 "capability isn't as expected; pass-thru module(s) " 2991 "detected, discarding capability\n")); 2992 return; 2993 } 2994 2995 /* 2996 * Copy locally to ensure alignment. 2997 */ 2998 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2999 3000 if ((idc = ill->ill_dld_capab) == NULL) { 3001 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 3002 if (idc == NULL) { 3003 cmn_err(CE_WARN, "ill_capability_dld_ack: " 3004 "could not enable DLD version %d " 3005 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 3006 ill->ill_name); 3007 return; 3008 } 3009 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 3010 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 3011 ill->ill_dld_capab = idc; 3012 } 3013 ip1dbg(("ill_capability_dld_ack: interface %s " 3014 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 3015 3016 ill_capability_dld_enable(ill); 3017 } 3018 3019 /* 3020 * Typically capability negotiation between IP and the driver happens via 3021 * DLPI message exchange. However GLD also offers a direct function call 3022 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 3023 * But arbitrary function calls into IP or GLD are not permitted, since both 3024 * of them are protected by their own perimeter mechanism. The perimeter can 3025 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 3026 * these perimeters is IP -> MAC. Thus for example to enable the squeue 3027 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 3028 * to enter the mac perimeter and then do the direct function calls into 3029 * GLD to enable squeue polling. The ring related callbacks from the mac into 3030 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3031 * protected by the mac perimeter. 3032 */ 3033 static void 3034 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3035 { 3036 ill_dld_capab_t *idc = ill->ill_dld_capab; 3037 int err; 3038 3039 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3040 DLD_ENABLE); 3041 ASSERT(err == 0); 3042 } 3043 3044 static void 3045 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3046 { 3047 ill_dld_capab_t *idc = ill->ill_dld_capab; 3048 int err; 3049 3050 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3051 DLD_DISABLE); 3052 ASSERT(err == 0); 3053 } 3054 3055 boolean_t 3056 ill_mac_perim_held(ill_t *ill) 3057 { 3058 ill_dld_capab_t *idc = ill->ill_dld_capab; 3059 3060 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3061 DLD_QUERY)); 3062 } 3063 3064 static void 3065 ill_capability_direct_enable(ill_t *ill) 3066 { 3067 ill_dld_capab_t *idc = ill->ill_dld_capab; 3068 ill_dld_direct_t *idd = &idc->idc_direct; 3069 dld_capab_direct_t direct; 3070 int rc; 3071 3072 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3073 3074 bzero(&direct, sizeof (direct)); 3075 direct.di_rx_cf = (uintptr_t)ip_input; 3076 direct.di_rx_ch = ill; 3077 3078 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3079 DLD_ENABLE); 3080 if (rc == 0) { 3081 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3082 idd->idd_tx_dh = direct.di_tx_dh; 3083 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3084 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3085 /* 3086 * One time registration of flow enable callback function 3087 */ 3088 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3089 ill_flow_enable, ill); 3090 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3091 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3092 } else { 3093 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3094 "capability, rc = %d\n", rc); 3095 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3096 } 3097 } 3098 3099 static void 3100 ill_capability_poll_enable(ill_t *ill) 3101 { 3102 ill_dld_capab_t *idc = ill->ill_dld_capab; 3103 dld_capab_poll_t poll; 3104 int rc; 3105 3106 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3107 3108 bzero(&poll, sizeof (poll)); 3109 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3110 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3111 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3112 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3113 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3114 poll.poll_ring_ch = ill; 3115 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3116 DLD_ENABLE); 3117 if (rc == 0) { 3118 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3119 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3120 } else { 3121 ip1dbg(("warning: could not enable POLL " 3122 "capability, rc = %d\n", rc)); 3123 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3124 } 3125 } 3126 3127 /* 3128 * Enable the LSO capability. 3129 */ 3130 static void 3131 ill_capability_lso_enable(ill_t *ill) 3132 { 3133 ill_dld_capab_t *idc = ill->ill_dld_capab; 3134 dld_capab_lso_t lso; 3135 int rc; 3136 3137 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3138 3139 if (ill->ill_lso_capab == NULL) { 3140 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3141 KM_NOSLEEP); 3142 if (ill->ill_lso_capab == NULL) { 3143 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3144 "could not enable LSO for %s (ENOMEM)\n", 3145 ill->ill_name); 3146 return; 3147 } 3148 } 3149 3150 bzero(&lso, sizeof (lso)); 3151 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3152 DLD_ENABLE)) == 0) { 3153 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3154 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3155 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3156 ip1dbg(("ill_capability_lso_enable: interface %s " 3157 "has enabled LSO\n ", ill->ill_name)); 3158 } else { 3159 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3160 ill->ill_lso_capab = NULL; 3161 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3162 } 3163 } 3164 3165 static void 3166 ill_capability_dld_enable(ill_t *ill) 3167 { 3168 mac_perim_handle_t mph; 3169 3170 ASSERT(IAM_WRITER_ILL(ill)); 3171 3172 if (ill->ill_isv6) 3173 return; 3174 3175 ill_mac_perim_enter(ill, &mph); 3176 if (!ill->ill_isv6) { 3177 ill_capability_direct_enable(ill); 3178 ill_capability_poll_enable(ill); 3179 ill_capability_lso_enable(ill); 3180 } 3181 ill->ill_capabilities |= ILL_CAPAB_DLD; 3182 ill_mac_perim_exit(ill, mph); 3183 } 3184 3185 static void 3186 ill_capability_dld_disable(ill_t *ill) 3187 { 3188 ill_dld_capab_t *idc; 3189 ill_dld_direct_t *idd; 3190 mac_perim_handle_t mph; 3191 3192 ASSERT(IAM_WRITER_ILL(ill)); 3193 3194 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3195 return; 3196 3197 ill_mac_perim_enter(ill, &mph); 3198 3199 idc = ill->ill_dld_capab; 3200 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3201 /* 3202 * For performance we avoid locks in the transmit data path 3203 * and don't maintain a count of the number of threads using 3204 * direct calls. Thus some threads could be using direct 3205 * transmit calls to GLD, even after the capability mechanism 3206 * turns it off. This is still safe since the handles used in 3207 * the direct calls continue to be valid until the unplumb is 3208 * completed. Remove the callback that was added (1-time) at 3209 * capab enable time. 3210 */ 3211 mutex_enter(&ill->ill_lock); 3212 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3213 mutex_exit(&ill->ill_lock); 3214 if (ill->ill_flownotify_mh != NULL) { 3215 idd = &idc->idc_direct; 3216 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3217 ill->ill_flownotify_mh); 3218 ill->ill_flownotify_mh = NULL; 3219 } 3220 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3221 NULL, DLD_DISABLE); 3222 } 3223 3224 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3225 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3226 ip_squeue_clean_all(ill); 3227 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3228 NULL, DLD_DISABLE); 3229 } 3230 3231 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3232 ASSERT(ill->ill_lso_capab != NULL); 3233 /* 3234 * Clear the capability flag for LSO but retain the 3235 * ill_lso_capab structure since it's possible that another 3236 * thread is still referring to it. The structure only gets 3237 * deallocated when we destroy the ill. 3238 */ 3239 3240 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3241 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3242 NULL, DLD_DISABLE); 3243 } 3244 3245 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3246 ill_mac_perim_exit(ill, mph); 3247 } 3248 3249 /* 3250 * Capability Negotiation protocol 3251 * 3252 * We don't wait for DLPI capability operations to finish during interface 3253 * bringup or teardown. Doing so would introduce more asynchrony and the 3254 * interface up/down operations will need multiple return and restarts. 3255 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3256 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3257 * exclusive operation won't start until the DLPI operations of the previous 3258 * exclusive operation complete. 3259 * 3260 * The capability state machine is shown below. 3261 * 3262 * state next state event, action 3263 * 3264 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3265 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3266 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3267 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3268 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3269 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3270 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3271 * ill_capability_probe. 3272 */ 3273 3274 /* 3275 * Dedicated thread started from ip_stack_init that handles capability 3276 * disable. This thread ensures the taskq dispatch does not fail by waiting 3277 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3278 * that direct calls to DLD are done in a cv_waitable context. 3279 */ 3280 void 3281 ill_taskq_dispatch(ip_stack_t *ipst) 3282 { 3283 callb_cpr_t cprinfo; 3284 char name[64]; 3285 mblk_t *mp; 3286 3287 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3288 ipst->ips_netstack->netstack_stackid); 3289 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3290 name); 3291 mutex_enter(&ipst->ips_capab_taskq_lock); 3292 3293 for (;;) { 3294 mp = list_head(&ipst->ips_capab_taskq_list); 3295 while (mp != NULL) { 3296 list_remove(&ipst->ips_capab_taskq_list, mp); 3297 mutex_exit(&ipst->ips_capab_taskq_lock); 3298 VERIFY(taskq_dispatch(system_taskq, 3299 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3300 mutex_enter(&ipst->ips_capab_taskq_lock); 3301 mp = list_head(&ipst->ips_capab_taskq_list); 3302 } 3303 3304 if (ipst->ips_capab_taskq_quit) 3305 break; 3306 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3307 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3308 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3309 } 3310 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3311 CALLB_CPR_EXIT(&cprinfo); 3312 thread_exit(); 3313 } 3314 3315 /* 3316 * Consume a new-style hardware capabilities negotiation ack. 3317 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3318 */ 3319 static void 3320 ill_capability_ack_thr(void *arg) 3321 { 3322 mblk_t *mp = arg; 3323 dl_capability_ack_t *capp; 3324 dl_capability_sub_t *subp, *endp; 3325 ill_t *ill; 3326 boolean_t reneg; 3327 3328 ill = (ill_t *)mp->b_prev; 3329 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3330 3331 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3332 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3333 /* 3334 * We have received the ack for our DL_CAPAB reset request. 3335 * There isnt' anything in the message that needs processing. 3336 * All message based capabilities have been disabled, now 3337 * do the function call based capability disable. 3338 */ 3339 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3340 ill_capability_dld_disable(ill); 3341 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3342 if (reneg) 3343 ill_capability_probe(ill); 3344 goto done; 3345 } 3346 3347 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3348 ill->ill_dlpi_capab_state = IDCS_OK; 3349 3350 capp = (dl_capability_ack_t *)mp->b_rptr; 3351 3352 if (capp->dl_sub_length == 0) { 3353 /* no new-style capabilities */ 3354 goto done; 3355 } 3356 3357 /* make sure the driver supplied correct dl_sub_length */ 3358 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3359 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3360 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3361 goto done; 3362 } 3363 3364 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3365 /* 3366 * There are sub-capabilities. Process the ones we know about. 3367 * Loop until we don't have room for another sub-cap header.. 3368 */ 3369 for (subp = SC(capp, capp->dl_sub_offset), 3370 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3371 subp <= endp; 3372 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3373 3374 switch (subp->dl_cap) { 3375 case DL_CAPAB_ID_WRAPPER: 3376 ill_capability_id_ack(ill, mp, subp); 3377 break; 3378 default: 3379 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3380 break; 3381 } 3382 } 3383 #undef SC 3384 done: 3385 inet_freemsg(mp); 3386 ill_capability_done(ill); 3387 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3388 } 3389 3390 /* 3391 * This needs to be started in a taskq thread to provide a cv_waitable 3392 * context. 3393 */ 3394 void 3395 ill_capability_ack(ill_t *ill, mblk_t *mp) 3396 { 3397 ip_stack_t *ipst = ill->ill_ipst; 3398 3399 mp->b_prev = (mblk_t *)ill; 3400 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3401 TQ_NOSLEEP) != 0) 3402 return; 3403 3404 /* 3405 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3406 * which will do the dispatch using TQ_SLEEP to guarantee success. 3407 */ 3408 mutex_enter(&ipst->ips_capab_taskq_lock); 3409 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3410 cv_signal(&ipst->ips_capab_taskq_cv); 3411 mutex_exit(&ipst->ips_capab_taskq_lock); 3412 } 3413 3414 /* 3415 * This routine is called to scan the fragmentation reassembly table for 3416 * the specified ILL for any packets that are starting to smell. 3417 * dead_interval is the maximum time in seconds that will be tolerated. It 3418 * will either be the value specified in ip_g_frag_timeout, or zero if the 3419 * ILL is shutting down and it is time to blow everything off. 3420 * 3421 * It returns the number of seconds (as a time_t) that the next frag timer 3422 * should be scheduled for, 0 meaning that the timer doesn't need to be 3423 * re-started. Note that the method of calculating next_timeout isn't 3424 * entirely accurate since time will flow between the time we grab 3425 * current_time and the time we schedule the next timeout. This isn't a 3426 * big problem since this is the timer for sending an ICMP reassembly time 3427 * exceeded messages, and it doesn't have to be exactly accurate. 3428 * 3429 * This function is 3430 * sometimes called as writer, although this is not required. 3431 */ 3432 time_t 3433 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3434 { 3435 ipfb_t *ipfb; 3436 ipfb_t *endp; 3437 ipf_t *ipf; 3438 ipf_t *ipfnext; 3439 mblk_t *mp; 3440 time_t current_time = gethrestime_sec(); 3441 time_t next_timeout = 0; 3442 uint32_t hdr_length; 3443 mblk_t *send_icmp_head; 3444 mblk_t *send_icmp_head_v6; 3445 zoneid_t zoneid; 3446 ip_stack_t *ipst = ill->ill_ipst; 3447 3448 ipfb = ill->ill_frag_hash_tbl; 3449 if (ipfb == NULL) 3450 return (B_FALSE); 3451 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3452 /* Walk the frag hash table. */ 3453 for (; ipfb < endp; ipfb++) { 3454 send_icmp_head = NULL; 3455 send_icmp_head_v6 = NULL; 3456 mutex_enter(&ipfb->ipfb_lock); 3457 while ((ipf = ipfb->ipfb_ipf) != 0) { 3458 time_t frag_time = current_time - ipf->ipf_timestamp; 3459 time_t frag_timeout; 3460 3461 if (frag_time < dead_interval) { 3462 /* 3463 * There are some outstanding fragments 3464 * that will timeout later. Make note of 3465 * the time so that we can reschedule the 3466 * next timeout appropriately. 3467 */ 3468 frag_timeout = dead_interval - frag_time; 3469 if (next_timeout == 0 || 3470 frag_timeout < next_timeout) { 3471 next_timeout = frag_timeout; 3472 } 3473 break; 3474 } 3475 /* Time's up. Get it out of here. */ 3476 hdr_length = ipf->ipf_nf_hdr_len; 3477 ipfnext = ipf->ipf_hash_next; 3478 if (ipfnext) 3479 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3480 *ipf->ipf_ptphn = ipfnext; 3481 mp = ipf->ipf_mp->b_cont; 3482 for (; mp; mp = mp->b_cont) { 3483 /* Extra points for neatness. */ 3484 IP_REASS_SET_START(mp, 0); 3485 IP_REASS_SET_END(mp, 0); 3486 } 3487 mp = ipf->ipf_mp->b_cont; 3488 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3489 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3490 ipfb->ipfb_count -= ipf->ipf_count; 3491 ASSERT(ipfb->ipfb_frag_pkts > 0); 3492 ipfb->ipfb_frag_pkts--; 3493 /* 3494 * We do not send any icmp message from here because 3495 * we currently are holding the ipfb_lock for this 3496 * hash chain. If we try and send any icmp messages 3497 * from here we may end up via a put back into ip 3498 * trying to get the same lock, causing a recursive 3499 * mutex panic. Instead we build a list and send all 3500 * the icmp messages after we have dropped the lock. 3501 */ 3502 if (ill->ill_isv6) { 3503 if (hdr_length != 0) { 3504 mp->b_next = send_icmp_head_v6; 3505 send_icmp_head_v6 = mp; 3506 } else { 3507 freemsg(mp); 3508 } 3509 } else { 3510 if (hdr_length != 0) { 3511 mp->b_next = send_icmp_head; 3512 send_icmp_head = mp; 3513 } else { 3514 freemsg(mp); 3515 } 3516 } 3517 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3518 freeb(ipf->ipf_mp); 3519 } 3520 mutex_exit(&ipfb->ipfb_lock); 3521 /* 3522 * Now need to send any icmp messages that we delayed from 3523 * above. 3524 */ 3525 while (send_icmp_head_v6 != NULL) { 3526 ip6_t *ip6h; 3527 3528 mp = send_icmp_head_v6; 3529 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3530 mp->b_next = NULL; 3531 if (mp->b_datap->db_type == M_CTL) 3532 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3533 else 3534 ip6h = (ip6_t *)mp->b_rptr; 3535 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3536 ill, ipst); 3537 if (zoneid == ALL_ZONES) { 3538 freemsg(mp); 3539 } else { 3540 icmp_time_exceeded_v6(ill->ill_wq, mp, 3541 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3542 B_FALSE, zoneid, ipst); 3543 } 3544 } 3545 while (send_icmp_head != NULL) { 3546 ipaddr_t dst; 3547 3548 mp = send_icmp_head; 3549 send_icmp_head = send_icmp_head->b_next; 3550 mp->b_next = NULL; 3551 3552 if (mp->b_datap->db_type == M_CTL) 3553 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3554 else 3555 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3556 3557 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3558 if (zoneid == ALL_ZONES) { 3559 freemsg(mp); 3560 } else { 3561 icmp_time_exceeded(ill->ill_wq, mp, 3562 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3563 ipst); 3564 } 3565 } 3566 } 3567 /* 3568 * A non-dying ILL will use the return value to decide whether to 3569 * restart the frag timer, and for how long. 3570 */ 3571 return (next_timeout); 3572 } 3573 3574 /* 3575 * This routine is called when the approximate count of mblk memory used 3576 * for the specified ILL has exceeded max_count. 3577 */ 3578 void 3579 ill_frag_prune(ill_t *ill, uint_t max_count) 3580 { 3581 ipfb_t *ipfb; 3582 ipf_t *ipf; 3583 size_t count; 3584 3585 /* 3586 * If we are here within ip_min_frag_prune_time msecs remove 3587 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3588 * ill_frag_free_num_pkts. 3589 */ 3590 mutex_enter(&ill->ill_lock); 3591 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3592 (ip_min_frag_prune_time != 0 ? 3593 ip_min_frag_prune_time : msec_per_tick)) { 3594 3595 ill->ill_frag_free_num_pkts++; 3596 3597 } else { 3598 ill->ill_frag_free_num_pkts = 0; 3599 } 3600 ill->ill_last_frag_clean_time = lbolt; 3601 mutex_exit(&ill->ill_lock); 3602 3603 /* 3604 * free ill_frag_free_num_pkts oldest packets from each bucket. 3605 */ 3606 if (ill->ill_frag_free_num_pkts != 0) { 3607 int ix; 3608 3609 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3610 ipfb = &ill->ill_frag_hash_tbl[ix]; 3611 mutex_enter(&ipfb->ipfb_lock); 3612 if (ipfb->ipfb_ipf != NULL) { 3613 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3614 ill->ill_frag_free_num_pkts); 3615 } 3616 mutex_exit(&ipfb->ipfb_lock); 3617 } 3618 } 3619 /* 3620 * While the reassembly list for this ILL is too big, prune a fragment 3621 * queue by age, oldest first. 3622 */ 3623 while (ill->ill_frag_count > max_count) { 3624 int ix; 3625 ipfb_t *oipfb = NULL; 3626 uint_t oldest = UINT_MAX; 3627 3628 count = 0; 3629 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3630 ipfb = &ill->ill_frag_hash_tbl[ix]; 3631 mutex_enter(&ipfb->ipfb_lock); 3632 ipf = ipfb->ipfb_ipf; 3633 if (ipf != NULL && ipf->ipf_gen < oldest) { 3634 oldest = ipf->ipf_gen; 3635 oipfb = ipfb; 3636 } 3637 count += ipfb->ipfb_count; 3638 mutex_exit(&ipfb->ipfb_lock); 3639 } 3640 if (oipfb == NULL) 3641 break; 3642 3643 if (count <= max_count) 3644 return; /* Somebody beat us to it, nothing to do */ 3645 mutex_enter(&oipfb->ipfb_lock); 3646 ipf = oipfb->ipfb_ipf; 3647 if (ipf != NULL) { 3648 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3649 } 3650 mutex_exit(&oipfb->ipfb_lock); 3651 } 3652 } 3653 3654 /* 3655 * free 'free_cnt' fragmented packets starting at ipf. 3656 */ 3657 void 3658 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3659 { 3660 size_t count; 3661 mblk_t *mp; 3662 mblk_t *tmp; 3663 ipf_t **ipfp = ipf->ipf_ptphn; 3664 3665 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3666 ASSERT(ipfp != NULL); 3667 ASSERT(ipf != NULL); 3668 3669 while (ipf != NULL && free_cnt-- > 0) { 3670 count = ipf->ipf_count; 3671 mp = ipf->ipf_mp; 3672 ipf = ipf->ipf_hash_next; 3673 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3674 IP_REASS_SET_START(tmp, 0); 3675 IP_REASS_SET_END(tmp, 0); 3676 } 3677 atomic_add_32(&ill->ill_frag_count, -count); 3678 ASSERT(ipfb->ipfb_count >= count); 3679 ipfb->ipfb_count -= count; 3680 ASSERT(ipfb->ipfb_frag_pkts > 0); 3681 ipfb->ipfb_frag_pkts--; 3682 freemsg(mp); 3683 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3684 } 3685 3686 if (ipf) 3687 ipf->ipf_ptphn = ipfp; 3688 ipfp[0] = ipf; 3689 } 3690 3691 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3692 "obsolete and may be removed in a future release of Solaris. Use " \ 3693 "ifconfig(1M) to manipulate the forwarding status of an interface." 3694 3695 /* 3696 * For obsolete per-interface forwarding configuration; 3697 * called in response to ND_GET. 3698 */ 3699 /* ARGSUSED */ 3700 static int 3701 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3702 { 3703 ill_t *ill = (ill_t *)cp; 3704 3705 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3706 3707 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3708 return (0); 3709 } 3710 3711 /* 3712 * For obsolete per-interface forwarding configuration; 3713 * called in response to ND_SET. 3714 */ 3715 /* ARGSUSED */ 3716 static int 3717 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3718 cred_t *ioc_cr) 3719 { 3720 long value; 3721 int retval; 3722 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3723 3724 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3725 3726 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3727 value < 0 || value > 1) { 3728 return (EINVAL); 3729 } 3730 3731 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3732 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3733 rw_exit(&ipst->ips_ill_g_lock); 3734 return (retval); 3735 } 3736 3737 /* 3738 * Helper function for ill_forward_set(). 3739 */ 3740 static void 3741 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3742 { 3743 ip_stack_t *ipst = ill->ill_ipst; 3744 3745 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3746 3747 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3748 (enable ? "Enabling" : "Disabling"), 3749 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3750 mutex_enter(&ill->ill_lock); 3751 if (enable) 3752 ill->ill_flags |= ILLF_ROUTER; 3753 else 3754 ill->ill_flags &= ~ILLF_ROUTER; 3755 mutex_exit(&ill->ill_lock); 3756 if (ill->ill_isv6) 3757 ill_set_nce_router_flags(ill, enable); 3758 /* Notify routing socket listeners of this change. */ 3759 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3760 } 3761 3762 /* 3763 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3764 * socket messages for each interface whose flags we change. 3765 */ 3766 int 3767 ill_forward_set(ill_t *ill, boolean_t enable) 3768 { 3769 ipmp_illgrp_t *illg; 3770 ip_stack_t *ipst = ill->ill_ipst; 3771 3772 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3773 3774 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3775 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3776 return (0); 3777 3778 if (IS_LOOPBACK(ill)) 3779 return (EINVAL); 3780 3781 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3782 /* 3783 * Update all of the interfaces in the group. 3784 */ 3785 illg = ill->ill_grp; 3786 ill = list_head(&illg->ig_if); 3787 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3788 ill_forward_set_on_ill(ill, enable); 3789 3790 /* 3791 * Update the IPMP meta-interface. 3792 */ 3793 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3794 return (0); 3795 } 3796 3797 ill_forward_set_on_ill(ill, enable); 3798 return (0); 3799 } 3800 3801 /* 3802 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3803 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3804 * set or clear. 3805 */ 3806 static void 3807 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3808 { 3809 ipif_t *ipif; 3810 nce_t *nce; 3811 3812 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3813 /* 3814 * NOTE: we match across the illgrp because nce's for 3815 * addresses on IPMP interfaces have an nce_ill that points to 3816 * the bound underlying ill. 3817 */ 3818 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3819 B_FALSE); 3820 if (nce != NULL) { 3821 mutex_enter(&nce->nce_lock); 3822 if (enable) 3823 nce->nce_flags |= NCE_F_ISROUTER; 3824 else 3825 nce->nce_flags &= ~NCE_F_ISROUTER; 3826 mutex_exit(&nce->nce_lock); 3827 NCE_REFRELE(nce); 3828 } 3829 } 3830 } 3831 3832 /* 3833 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3834 * for this ill. Make sure the v6/v4 question has been answered about this 3835 * ill. The creation of this ndd variable is only for backwards compatibility. 3836 * The preferred way to control per-interface IP forwarding is through the 3837 * ILLF_ROUTER interface flag. 3838 */ 3839 static int 3840 ill_set_ndd_name(ill_t *ill) 3841 { 3842 char *suffix; 3843 ip_stack_t *ipst = ill->ill_ipst; 3844 3845 ASSERT(IAM_WRITER_ILL(ill)); 3846 3847 if (ill->ill_isv6) 3848 suffix = ipv6_forward_suffix; 3849 else 3850 suffix = ipv4_forward_suffix; 3851 3852 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3853 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3854 /* 3855 * Copies over the '\0'. 3856 * Note that strlen(suffix) is always bounded. 3857 */ 3858 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3859 strlen(suffix) + 1); 3860 3861 /* 3862 * Use of the nd table requires holding the reader lock. 3863 * Modifying the nd table thru nd_load/nd_unload requires 3864 * the writer lock. 3865 */ 3866 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3867 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3868 nd_ill_forward_set, (caddr_t)ill)) { 3869 /* 3870 * If the nd_load failed, it only meant that it could not 3871 * allocate a new bunch of room for further NDD expansion. 3872 * Because of that, the ill_ndd_name will be set to 0, and 3873 * this interface is at the mercy of the global ip_forwarding 3874 * variable. 3875 */ 3876 rw_exit(&ipst->ips_ip_g_nd_lock); 3877 ill->ill_ndd_name = NULL; 3878 return (ENOMEM); 3879 } 3880 rw_exit(&ipst->ips_ip_g_nd_lock); 3881 return (0); 3882 } 3883 3884 /* 3885 * Intializes the context structure and returns the first ill in the list 3886 * cuurently start_list and end_list can have values: 3887 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3888 * IP_V4_G_HEAD Traverse IPV4 list only. 3889 * IP_V6_G_HEAD Traverse IPV6 list only. 3890 */ 3891 3892 /* 3893 * We don't check for CONDEMNED ills here. Caller must do that if 3894 * necessary under the ill lock. 3895 */ 3896 ill_t * 3897 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3898 ip_stack_t *ipst) 3899 { 3900 ill_if_t *ifp; 3901 ill_t *ill; 3902 avl_tree_t *avl_tree; 3903 3904 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3905 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3906 3907 /* 3908 * setup the lists to search 3909 */ 3910 if (end_list != MAX_G_HEADS) { 3911 ctx->ctx_current_list = start_list; 3912 ctx->ctx_last_list = end_list; 3913 } else { 3914 ctx->ctx_last_list = MAX_G_HEADS - 1; 3915 ctx->ctx_current_list = 0; 3916 } 3917 3918 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3919 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3920 if (ifp != (ill_if_t *) 3921 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3922 avl_tree = &ifp->illif_avl_by_ppa; 3923 ill = avl_first(avl_tree); 3924 /* 3925 * ill is guaranteed to be non NULL or ifp should have 3926 * not existed. 3927 */ 3928 ASSERT(ill != NULL); 3929 return (ill); 3930 } 3931 ctx->ctx_current_list++; 3932 } 3933 3934 return (NULL); 3935 } 3936 3937 /* 3938 * returns the next ill in the list. ill_first() must have been called 3939 * before calling ill_next() or bad things will happen. 3940 */ 3941 3942 /* 3943 * We don't check for CONDEMNED ills here. Caller must do that if 3944 * necessary under the ill lock. 3945 */ 3946 ill_t * 3947 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3948 { 3949 ill_if_t *ifp; 3950 ill_t *ill; 3951 ip_stack_t *ipst = lastill->ill_ipst; 3952 3953 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3954 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3955 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3956 AVL_AFTER)) != NULL) { 3957 return (ill); 3958 } 3959 3960 /* goto next ill_ifp in the list. */ 3961 ifp = lastill->ill_ifptr->illif_next; 3962 3963 /* make sure not at end of circular list */ 3964 while (ifp == 3965 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3966 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3967 return (NULL); 3968 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3969 } 3970 3971 return (avl_first(&ifp->illif_avl_by_ppa)); 3972 } 3973 3974 /* 3975 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3976 * The final number (PPA) must not have any leading zeros. Upon success, a 3977 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3978 */ 3979 static char * 3980 ill_get_ppa_ptr(char *name) 3981 { 3982 int namelen = strlen(name); 3983 int end_ndx = namelen - 1; 3984 int ppa_ndx, i; 3985 3986 /* 3987 * Check that the first character is [a-zA-Z], and that the last 3988 * character is [0-9]. 3989 */ 3990 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3991 return (NULL); 3992 3993 /* 3994 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3995 */ 3996 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3997 if (!isdigit(name[ppa_ndx - 1])) 3998 break; 3999 4000 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 4001 return (NULL); 4002 4003 /* 4004 * Check that the intermediate characters are [a-z0-9.] 4005 */ 4006 for (i = 1; i < ppa_ndx; i++) { 4007 if (!isalpha(name[i]) && !isdigit(name[i]) && 4008 name[i] != '.' && name[i] != '_') { 4009 return (NULL); 4010 } 4011 } 4012 4013 return (name + ppa_ndx); 4014 } 4015 4016 /* 4017 * use avl tree to locate the ill. 4018 */ 4019 static ill_t * 4020 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4021 ipsq_func_t func, int *error, ip_stack_t *ipst) 4022 { 4023 char *ppa_ptr = NULL; 4024 int len; 4025 uint_t ppa; 4026 ill_t *ill = NULL; 4027 ill_if_t *ifp; 4028 int list; 4029 ipsq_t *ipsq; 4030 4031 if (error != NULL) 4032 *error = 0; 4033 4034 /* 4035 * get ppa ptr 4036 */ 4037 if (isv6) 4038 list = IP_V6_G_HEAD; 4039 else 4040 list = IP_V4_G_HEAD; 4041 4042 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4043 if (error != NULL) 4044 *error = ENXIO; 4045 return (NULL); 4046 } 4047 4048 len = ppa_ptr - name + 1; 4049 4050 ppa = stoi(&ppa_ptr); 4051 4052 ifp = IP_VX_ILL_G_LIST(list, ipst); 4053 4054 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4055 /* 4056 * match is done on len - 1 as the name is not null 4057 * terminated it contains ppa in addition to the interface 4058 * name. 4059 */ 4060 if ((ifp->illif_name_len == len) && 4061 bcmp(ifp->illif_name, name, len - 1) == 0) { 4062 break; 4063 } else { 4064 ifp = ifp->illif_next; 4065 } 4066 } 4067 4068 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4069 /* 4070 * Even the interface type does not exist. 4071 */ 4072 if (error != NULL) 4073 *error = ENXIO; 4074 return (NULL); 4075 } 4076 4077 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4078 if (ill != NULL) { 4079 /* 4080 * The block comment at the start of ipif_down 4081 * explains the use of the macros used below 4082 */ 4083 GRAB_CONN_LOCK(q); 4084 mutex_enter(&ill->ill_lock); 4085 if (ILL_CAN_LOOKUP(ill)) { 4086 ill_refhold_locked(ill); 4087 mutex_exit(&ill->ill_lock); 4088 RELEASE_CONN_LOCK(q); 4089 return (ill); 4090 } else if (ILL_CAN_WAIT(ill, q)) { 4091 ipsq = ill->ill_phyint->phyint_ipsq; 4092 mutex_enter(&ipsq->ipsq_lock); 4093 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4094 mutex_exit(&ill->ill_lock); 4095 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4096 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4097 mutex_exit(&ipsq->ipsq_lock); 4098 RELEASE_CONN_LOCK(q); 4099 if (error != NULL) 4100 *error = EINPROGRESS; 4101 return (NULL); 4102 } 4103 mutex_exit(&ill->ill_lock); 4104 RELEASE_CONN_LOCK(q); 4105 } 4106 if (error != NULL) 4107 *error = ENXIO; 4108 return (NULL); 4109 } 4110 4111 /* 4112 * comparison function for use with avl. 4113 */ 4114 static int 4115 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4116 { 4117 uint_t ppa; 4118 uint_t ill_ppa; 4119 4120 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4121 4122 ppa = *((uint_t *)ppa_ptr); 4123 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4124 /* 4125 * We want the ill with the lowest ppa to be on the 4126 * top. 4127 */ 4128 if (ill_ppa < ppa) 4129 return (1); 4130 if (ill_ppa > ppa) 4131 return (-1); 4132 return (0); 4133 } 4134 4135 /* 4136 * remove an interface type from the global list. 4137 */ 4138 static void 4139 ill_delete_interface_type(ill_if_t *interface) 4140 { 4141 ASSERT(interface != NULL); 4142 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4143 4144 avl_destroy(&interface->illif_avl_by_ppa); 4145 if (interface->illif_ppa_arena != NULL) 4146 vmem_destroy(interface->illif_ppa_arena); 4147 4148 remque(interface); 4149 4150 mi_free(interface); 4151 } 4152 4153 /* 4154 * remove ill from the global list. 4155 */ 4156 static void 4157 ill_glist_delete(ill_t *ill) 4158 { 4159 ip_stack_t *ipst; 4160 phyint_t *phyi; 4161 4162 if (ill == NULL) 4163 return; 4164 ipst = ill->ill_ipst; 4165 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4166 4167 /* 4168 * If the ill was never inserted into the AVL tree 4169 * we skip the if branch. 4170 */ 4171 if (ill->ill_ifptr != NULL) { 4172 /* 4173 * remove from AVL tree and free ppa number 4174 */ 4175 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4176 4177 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4178 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4179 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4180 } 4181 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4182 ill_delete_interface_type(ill->ill_ifptr); 4183 } 4184 4185 /* 4186 * Indicate ill is no longer in the list. 4187 */ 4188 ill->ill_ifptr = NULL; 4189 ill->ill_name_length = 0; 4190 ill->ill_name[0] = '\0'; 4191 ill->ill_ppa = UINT_MAX; 4192 } 4193 4194 /* Generate one last event for this ill. */ 4195 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4196 ill->ill_name_length); 4197 4198 ASSERT(ill->ill_phyint != NULL); 4199 phyi = ill->ill_phyint; 4200 ill->ill_phyint = NULL; 4201 4202 /* 4203 * ill_init allocates a phyint always to store the copy 4204 * of flags relevant to phyint. At that point in time, we could 4205 * not assign the name and hence phyint_illv4/v6 could not be 4206 * initialized. Later in ipif_set_values, we assign the name to 4207 * the ill, at which point in time we assign phyint_illv4/v6. 4208 * Thus we don't rely on phyint_illv6 to be initialized always. 4209 */ 4210 if (ill->ill_flags & ILLF_IPV6) 4211 phyi->phyint_illv6 = NULL; 4212 else 4213 phyi->phyint_illv4 = NULL; 4214 4215 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4216 rw_exit(&ipst->ips_ill_g_lock); 4217 return; 4218 } 4219 4220 /* 4221 * There are no ills left on this phyint; pull it out of the phyint 4222 * avl trees, and free it. 4223 */ 4224 if (phyi->phyint_ifindex > 0) { 4225 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4226 phyi); 4227 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4228 phyi); 4229 } 4230 rw_exit(&ipst->ips_ill_g_lock); 4231 4232 phyint_free(phyi); 4233 } 4234 4235 /* 4236 * allocate a ppa, if the number of plumbed interfaces of this type are 4237 * less than ill_no_arena do a linear search to find a unused ppa. 4238 * When the number goes beyond ill_no_arena switch to using an arena. 4239 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4240 * is the return value for an error condition, so allocation starts at one 4241 * and is decremented by one. 4242 */ 4243 static int 4244 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4245 { 4246 ill_t *tmp_ill; 4247 uint_t start, end; 4248 int ppa; 4249 4250 if (ifp->illif_ppa_arena == NULL && 4251 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4252 /* 4253 * Create an arena. 4254 */ 4255 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4256 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4257 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4258 /* allocate what has already been assigned */ 4259 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4260 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4261 tmp_ill, AVL_AFTER)) { 4262 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4263 1, /* size */ 4264 1, /* align/quantum */ 4265 0, /* phase */ 4266 0, /* nocross */ 4267 /* minaddr */ 4268 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4269 /* maxaddr */ 4270 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4271 VM_NOSLEEP|VM_FIRSTFIT); 4272 if (ppa == 0) { 4273 ip1dbg(("ill_alloc_ppa: ppa allocation" 4274 " failed while switching")); 4275 vmem_destroy(ifp->illif_ppa_arena); 4276 ifp->illif_ppa_arena = NULL; 4277 break; 4278 } 4279 } 4280 } 4281 4282 if (ifp->illif_ppa_arena != NULL) { 4283 if (ill->ill_ppa == UINT_MAX) { 4284 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4285 1, VM_NOSLEEP|VM_FIRSTFIT); 4286 if (ppa == 0) 4287 return (EAGAIN); 4288 ill->ill_ppa = --ppa; 4289 } else { 4290 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4291 1, /* size */ 4292 1, /* align/quantum */ 4293 0, /* phase */ 4294 0, /* nocross */ 4295 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4296 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4297 VM_NOSLEEP|VM_FIRSTFIT); 4298 /* 4299 * Most likely the allocation failed because 4300 * the requested ppa was in use. 4301 */ 4302 if (ppa == 0) 4303 return (EEXIST); 4304 } 4305 return (0); 4306 } 4307 4308 /* 4309 * No arena is in use and not enough (>ill_no_arena) interfaces have 4310 * been plumbed to create one. Do a linear search to get a unused ppa. 4311 */ 4312 if (ill->ill_ppa == UINT_MAX) { 4313 end = UINT_MAX - 1; 4314 start = 0; 4315 } else { 4316 end = start = ill->ill_ppa; 4317 } 4318 4319 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4320 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4321 if (start++ >= end) { 4322 if (ill->ill_ppa == UINT_MAX) 4323 return (EAGAIN); 4324 else 4325 return (EEXIST); 4326 } 4327 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4328 } 4329 ill->ill_ppa = start; 4330 return (0); 4331 } 4332 4333 /* 4334 * Insert ill into the list of configured ill's. Once this function completes, 4335 * the ill is globally visible and is available through lookups. More precisely 4336 * this happens after the caller drops the ill_g_lock. 4337 */ 4338 static int 4339 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4340 { 4341 ill_if_t *ill_interface; 4342 avl_index_t where = 0; 4343 int error; 4344 int name_length; 4345 int index; 4346 boolean_t check_length = B_FALSE; 4347 ip_stack_t *ipst = ill->ill_ipst; 4348 4349 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4350 4351 name_length = mi_strlen(name) + 1; 4352 4353 if (isv6) 4354 index = IP_V6_G_HEAD; 4355 else 4356 index = IP_V4_G_HEAD; 4357 4358 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4359 /* 4360 * Search for interface type based on name 4361 */ 4362 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4363 if ((ill_interface->illif_name_len == name_length) && 4364 (strcmp(ill_interface->illif_name, name) == 0)) { 4365 break; 4366 } 4367 ill_interface = ill_interface->illif_next; 4368 } 4369 4370 /* 4371 * Interface type not found, create one. 4372 */ 4373 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4374 ill_g_head_t ghead; 4375 4376 /* 4377 * allocate ill_if_t structure 4378 */ 4379 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4380 if (ill_interface == NULL) { 4381 return (ENOMEM); 4382 } 4383 4384 (void) strcpy(ill_interface->illif_name, name); 4385 ill_interface->illif_name_len = name_length; 4386 4387 avl_create(&ill_interface->illif_avl_by_ppa, 4388 ill_compare_ppa, sizeof (ill_t), 4389 offsetof(struct ill_s, ill_avl_byppa)); 4390 4391 /* 4392 * link the structure in the back to maintain order 4393 * of configuration for ifconfig output. 4394 */ 4395 ghead = ipst->ips_ill_g_heads[index]; 4396 insque(ill_interface, ghead.ill_g_list_tail); 4397 } 4398 4399 if (ill->ill_ppa == UINT_MAX) 4400 check_length = B_TRUE; 4401 4402 error = ill_alloc_ppa(ill_interface, ill); 4403 if (error != 0) { 4404 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4405 ill_delete_interface_type(ill->ill_ifptr); 4406 return (error); 4407 } 4408 4409 /* 4410 * When the ppa is choosen by the system, check that there is 4411 * enough space to insert ppa. if a specific ppa was passed in this 4412 * check is not required as the interface name passed in will have 4413 * the right ppa in it. 4414 */ 4415 if (check_length) { 4416 /* 4417 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4418 */ 4419 char buf[sizeof (uint_t) * 3]; 4420 4421 /* 4422 * convert ppa to string to calculate the amount of space 4423 * required for it in the name. 4424 */ 4425 numtos(ill->ill_ppa, buf); 4426 4427 /* Do we have enough space to insert ppa ? */ 4428 4429 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4430 /* Free ppa and interface type struct */ 4431 if (ill_interface->illif_ppa_arena != NULL) { 4432 vmem_free(ill_interface->illif_ppa_arena, 4433 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4434 } 4435 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4436 ill_delete_interface_type(ill->ill_ifptr); 4437 4438 return (EINVAL); 4439 } 4440 } 4441 4442 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4443 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4444 4445 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4446 &where); 4447 ill->ill_ifptr = ill_interface; 4448 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4449 4450 ill_phyint_reinit(ill); 4451 return (0); 4452 } 4453 4454 /* Initialize the per phyint ipsq used for serialization */ 4455 static boolean_t 4456 ipsq_init(ill_t *ill, boolean_t enter) 4457 { 4458 ipsq_t *ipsq; 4459 ipxop_t *ipx; 4460 4461 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4462 return (B_FALSE); 4463 4464 ill->ill_phyint->phyint_ipsq = ipsq; 4465 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4466 ipx->ipx_ipsq = ipsq; 4467 ipsq->ipsq_next = ipsq; 4468 ipsq->ipsq_phyint = ill->ill_phyint; 4469 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4470 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4471 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4472 if (enter) { 4473 ipx->ipx_writer = curthread; 4474 ipx->ipx_forced = B_FALSE; 4475 ipx->ipx_reentry_cnt = 1; 4476 #ifdef DEBUG 4477 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4478 #endif 4479 } 4480 return (B_TRUE); 4481 } 4482 4483 /* 4484 * ill_init is called by ip_open when a device control stream is opened. 4485 * It does a few initializations, and shoots a DL_INFO_REQ message down 4486 * to the driver. The response is later picked up in ip_rput_dlpi and 4487 * used to set up default mechanisms for talking to the driver. (Always 4488 * called as writer.) 4489 * 4490 * If this function returns error, ip_open will call ip_close which in 4491 * turn will call ill_delete to clean up any memory allocated here that 4492 * is not yet freed. 4493 */ 4494 int 4495 ill_init(queue_t *q, ill_t *ill) 4496 { 4497 int count; 4498 dl_info_req_t *dlir; 4499 mblk_t *info_mp; 4500 uchar_t *frag_ptr; 4501 4502 /* 4503 * The ill is initialized to zero by mi_alloc*(). In addition 4504 * some fields already contain valid values, initialized in 4505 * ip_open(), before we reach here. 4506 */ 4507 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4508 4509 ill->ill_rq = q; 4510 ill->ill_wq = WR(q); 4511 4512 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4513 BPRI_HI); 4514 if (info_mp == NULL) 4515 return (ENOMEM); 4516 4517 /* 4518 * Allocate sufficient space to contain our fragment hash table and 4519 * the device name. 4520 */ 4521 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4522 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4523 if (frag_ptr == NULL) { 4524 freemsg(info_mp); 4525 return (ENOMEM); 4526 } 4527 ill->ill_frag_ptr = frag_ptr; 4528 ill->ill_frag_free_num_pkts = 0; 4529 ill->ill_last_frag_clean_time = 0; 4530 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4531 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4532 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4533 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4534 NULL, MUTEX_DEFAULT, NULL); 4535 } 4536 4537 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4538 if (ill->ill_phyint == NULL) { 4539 freemsg(info_mp); 4540 mi_free(frag_ptr); 4541 return (ENOMEM); 4542 } 4543 4544 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4545 /* 4546 * For now pretend this is a v4 ill. We need to set phyint_ill* 4547 * at this point because of the following reason. If we can't 4548 * enter the ipsq at some point and cv_wait, the writer that 4549 * wakes us up tries to locate us using the list of all phyints 4550 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4551 * If we don't set it now, we risk a missed wakeup. 4552 */ 4553 ill->ill_phyint->phyint_illv4 = ill; 4554 ill->ill_ppa = UINT_MAX; 4555 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4556 4557 if (!ipsq_init(ill, B_TRUE)) { 4558 freemsg(info_mp); 4559 mi_free(frag_ptr); 4560 mi_free(ill->ill_phyint); 4561 return (ENOMEM); 4562 } 4563 4564 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4565 4566 /* Frag queue limit stuff */ 4567 ill->ill_frag_count = 0; 4568 ill->ill_ipf_gen = 0; 4569 4570 ill->ill_global_timer = INFINITY; 4571 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4572 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4573 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4574 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4575 4576 /* 4577 * Initialize IPv6 configuration variables. The IP module is always 4578 * opened as an IPv4 module. Instead tracking down the cases where 4579 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4580 * here for convenience, this has no effect until the ill is set to do 4581 * IPv6. 4582 */ 4583 ill->ill_reachable_time = ND_REACHABLE_TIME; 4584 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4585 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4586 ill->ill_max_buf = ND_MAX_Q; 4587 ill->ill_refcnt = 0; 4588 4589 /* Send down the Info Request to the driver. */ 4590 info_mp->b_datap->db_type = M_PCPROTO; 4591 dlir = (dl_info_req_t *)info_mp->b_rptr; 4592 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4593 dlir->dl_primitive = DL_INFO_REQ; 4594 4595 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4596 4597 qprocson(q); 4598 ill_dlpi_send(ill, info_mp); 4599 4600 return (0); 4601 } 4602 4603 /* 4604 * ill_dls_info 4605 * creates datalink socket info from the device. 4606 */ 4607 int 4608 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4609 { 4610 size_t len; 4611 ill_t *ill = ipif->ipif_ill; 4612 4613 sdl->sdl_family = AF_LINK; 4614 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4615 sdl->sdl_type = ill->ill_type; 4616 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4617 len = strlen(sdl->sdl_data); 4618 ASSERT(len < 256); 4619 sdl->sdl_nlen = (uchar_t)len; 4620 sdl->sdl_alen = ill->ill_phys_addr_length; 4621 sdl->sdl_slen = 0; 4622 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4623 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4624 4625 return (sizeof (struct sockaddr_dl)); 4626 } 4627 4628 /* 4629 * ill_xarp_info 4630 * creates xarp info from the device. 4631 */ 4632 static int 4633 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4634 { 4635 sdl->sdl_family = AF_LINK; 4636 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4637 sdl->sdl_type = ill->ill_type; 4638 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4639 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4640 sdl->sdl_alen = ill->ill_phys_addr_length; 4641 sdl->sdl_slen = 0; 4642 return (sdl->sdl_nlen); 4643 } 4644 4645 static int 4646 loopback_kstat_update(kstat_t *ksp, int rw) 4647 { 4648 kstat_named_t *kn; 4649 netstackid_t stackid; 4650 netstack_t *ns; 4651 ip_stack_t *ipst; 4652 4653 if (ksp == NULL || ksp->ks_data == NULL) 4654 return (EIO); 4655 4656 if (rw == KSTAT_WRITE) 4657 return (EACCES); 4658 4659 kn = KSTAT_NAMED_PTR(ksp); 4660 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4661 4662 ns = netstack_find_by_stackid(stackid); 4663 if (ns == NULL) 4664 return (-1); 4665 4666 ipst = ns->netstack_ip; 4667 if (ipst == NULL) { 4668 netstack_rele(ns); 4669 return (-1); 4670 } 4671 kn[0].value.ui32 = ipst->ips_loopback_packets; 4672 kn[1].value.ui32 = ipst->ips_loopback_packets; 4673 netstack_rele(ns); 4674 return (0); 4675 } 4676 4677 /* 4678 * Has ifindex been plumbed already? 4679 */ 4680 boolean_t 4681 phyint_exists(uint_t index, ip_stack_t *ipst) 4682 { 4683 ASSERT(index != 0); 4684 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4685 4686 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4687 &index, NULL) != NULL); 4688 } 4689 4690 /* Pick a unique ifindex */ 4691 boolean_t 4692 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4693 { 4694 uint_t starting_index; 4695 4696 if (!ipst->ips_ill_index_wrap) { 4697 *indexp = ipst->ips_ill_index++; 4698 if (ipst->ips_ill_index == 0) { 4699 /* Reached the uint_t limit Next time wrap */ 4700 ipst->ips_ill_index_wrap = B_TRUE; 4701 } 4702 return (B_TRUE); 4703 } 4704 4705 /* 4706 * Start reusing unused indexes. Note that we hold the ill_g_lock 4707 * at this point and don't want to call any function that attempts 4708 * to get the lock again. 4709 */ 4710 starting_index = ipst->ips_ill_index++; 4711 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4712 if (ipst->ips_ill_index != 0 && 4713 !phyint_exists(ipst->ips_ill_index, ipst)) { 4714 /* found unused index - use it */ 4715 *indexp = ipst->ips_ill_index; 4716 return (B_TRUE); 4717 } 4718 } 4719 4720 /* 4721 * all interface indicies are inuse. 4722 */ 4723 return (B_FALSE); 4724 } 4725 4726 /* 4727 * Assign a unique interface index for the phyint. 4728 */ 4729 static boolean_t 4730 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4731 { 4732 ASSERT(phyi->phyint_ifindex == 0); 4733 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4734 } 4735 4736 /* 4737 * Return a pointer to the ill which matches the supplied name. Note that 4738 * the ill name length includes the null termination character. (May be 4739 * called as writer.) 4740 * If do_alloc and the interface is "lo0" it will be automatically created. 4741 * Cannot bump up reference on condemned ills. So dup detect can't be done 4742 * using this func. 4743 */ 4744 ill_t * 4745 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4746 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4747 ip_stack_t *ipst) 4748 { 4749 ill_t *ill; 4750 ipif_t *ipif; 4751 ipsq_t *ipsq; 4752 kstat_named_t *kn; 4753 boolean_t isloopback; 4754 in6_addr_t ov6addr; 4755 4756 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4757 4758 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4759 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4760 rw_exit(&ipst->ips_ill_g_lock); 4761 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4762 return (ill); 4763 4764 /* 4765 * Couldn't find it. Does this happen to be a lookup for the 4766 * loopback device and are we allowed to allocate it? 4767 */ 4768 if (!isloopback || !do_alloc) 4769 return (NULL); 4770 4771 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4772 4773 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4774 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4775 rw_exit(&ipst->ips_ill_g_lock); 4776 return (ill); 4777 } 4778 4779 /* Create the loopback device on demand */ 4780 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4781 sizeof (ipif_loopback_name), BPRI_MED)); 4782 if (ill == NULL) 4783 goto done; 4784 4785 *ill = ill_null; 4786 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4787 ill->ill_ipst = ipst; 4788 netstack_hold(ipst->ips_netstack); 4789 /* 4790 * For exclusive stacks we set the zoneid to zero 4791 * to make IP operate as if in the global zone. 4792 */ 4793 ill->ill_zoneid = GLOBAL_ZONEID; 4794 4795 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4796 if (ill->ill_phyint == NULL) 4797 goto done; 4798 4799 if (isv6) 4800 ill->ill_phyint->phyint_illv6 = ill; 4801 else 4802 ill->ill_phyint->phyint_illv4 = ill; 4803 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4804 ill->ill_max_frag = IP_LOOPBACK_MTU; 4805 /* Add room for tcp+ip headers */ 4806 if (isv6) { 4807 ill->ill_isv6 = B_TRUE; 4808 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4809 } else { 4810 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4811 } 4812 if (!ill_allocate_mibs(ill)) 4813 goto done; 4814 ill->ill_max_mtu = ill->ill_max_frag; 4815 /* 4816 * ipif_loopback_name can't be pointed at directly because its used 4817 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4818 * from the glist, ill_glist_delete() sets the first character of 4819 * ill_name to '\0'. 4820 */ 4821 ill->ill_name = (char *)ill + sizeof (*ill); 4822 (void) strcpy(ill->ill_name, ipif_loopback_name); 4823 ill->ill_name_length = sizeof (ipif_loopback_name); 4824 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4825 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4826 4827 ill->ill_global_timer = INFINITY; 4828 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4829 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4830 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4831 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4832 4833 /* No resolver here. */ 4834 ill->ill_net_type = IRE_LOOPBACK; 4835 4836 /* Initialize the ipsq */ 4837 if (!ipsq_init(ill, B_FALSE)) 4838 goto done; 4839 4840 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4841 if (ipif == NULL) 4842 goto done; 4843 4844 ill->ill_flags = ILLF_MULTICAST; 4845 4846 ov6addr = ipif->ipif_v6lcl_addr; 4847 /* Set up default loopback address and mask. */ 4848 if (!isv6) { 4849 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4850 4851 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4852 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4853 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4854 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4855 ipif->ipif_v6subnet); 4856 ill->ill_flags |= ILLF_IPV4; 4857 } else { 4858 ipif->ipif_v6lcl_addr = ipv6_loopback; 4859 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4860 ipif->ipif_v6net_mask = ipv6_all_ones; 4861 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4862 ipif->ipif_v6subnet); 4863 ill->ill_flags |= ILLF_IPV6; 4864 } 4865 4866 /* 4867 * Chain us in at the end of the ill list. hold the ill 4868 * before we make it globally visible. 1 for the lookup. 4869 */ 4870 ill->ill_refcnt = 0; 4871 ill_refhold(ill); 4872 4873 ill->ill_frag_count = 0; 4874 ill->ill_frag_free_num_pkts = 0; 4875 ill->ill_last_frag_clean_time = 0; 4876 4877 ipsq = ill->ill_phyint->phyint_ipsq; 4878 4879 if (ill_glist_insert(ill, "lo", isv6) != 0) 4880 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4881 4882 /* Let SCTP know so that it can add this to its list */ 4883 sctp_update_ill(ill, SCTP_ILL_INSERT); 4884 4885 /* 4886 * We have already assigned ipif_v6lcl_addr above, but we need to 4887 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4888 * requires to be after ill_glist_insert() since we need the 4889 * ill_index set. Pass on ipv6_loopback as the old address. 4890 */ 4891 sctp_update_ipif_addr(ipif, ov6addr); 4892 4893 /* 4894 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4895 * If so, free our original one. 4896 */ 4897 if (ipsq != ill->ill_phyint->phyint_ipsq) 4898 ipsq_delete(ipsq); 4899 4900 /* 4901 * Delay this till the ipif is allocated as ipif_allocate 4902 * de-references ill_phyint for getting the ifindex. We 4903 * can't do this before ipif_allocate because ill_phyint_reinit 4904 * -> phyint_assign_ifindex expects ipif to be present. 4905 */ 4906 mutex_enter(&ill->ill_phyint->phyint_lock); 4907 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4908 mutex_exit(&ill->ill_phyint->phyint_lock); 4909 4910 if (ipst->ips_loopback_ksp == NULL) { 4911 /* Export loopback interface statistics */ 4912 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4913 ipif_loopback_name, "net", 4914 KSTAT_TYPE_NAMED, 2, 0, 4915 ipst->ips_netstack->netstack_stackid); 4916 if (ipst->ips_loopback_ksp != NULL) { 4917 ipst->ips_loopback_ksp->ks_update = 4918 loopback_kstat_update; 4919 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4920 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4921 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4922 ipst->ips_loopback_ksp->ks_private = 4923 (void *)(uintptr_t)ipst->ips_netstack-> 4924 netstack_stackid; 4925 kstat_install(ipst->ips_loopback_ksp); 4926 } 4927 } 4928 4929 if (error != NULL) 4930 *error = 0; 4931 *did_alloc = B_TRUE; 4932 rw_exit(&ipst->ips_ill_g_lock); 4933 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4934 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4935 return (ill); 4936 done: 4937 if (ill != NULL) { 4938 if (ill->ill_phyint != NULL) { 4939 ipsq = ill->ill_phyint->phyint_ipsq; 4940 if (ipsq != NULL) { 4941 ipsq->ipsq_phyint = NULL; 4942 ipsq_delete(ipsq); 4943 } 4944 mi_free(ill->ill_phyint); 4945 } 4946 ill_free_mib(ill); 4947 if (ill->ill_ipst != NULL) 4948 netstack_rele(ill->ill_ipst->ips_netstack); 4949 mi_free(ill); 4950 } 4951 rw_exit(&ipst->ips_ill_g_lock); 4952 if (error != NULL) 4953 *error = ENOMEM; 4954 return (NULL); 4955 } 4956 4957 /* 4958 * For IPP calls - use the ip_stack_t for global stack. 4959 */ 4960 ill_t * 4961 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4962 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4963 { 4964 ip_stack_t *ipst; 4965 ill_t *ill; 4966 4967 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4968 if (ipst == NULL) { 4969 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4970 return (NULL); 4971 } 4972 4973 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4974 netstack_rele(ipst->ips_netstack); 4975 return (ill); 4976 } 4977 4978 /* 4979 * Return a pointer to the ill which matches the index and IP version type. 4980 */ 4981 ill_t * 4982 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4983 ipsq_func_t func, int *err, ip_stack_t *ipst) 4984 { 4985 ill_t *ill; 4986 ipsq_t *ipsq; 4987 phyint_t *phyi; 4988 4989 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4990 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4991 4992 if (err != NULL) 4993 *err = 0; 4994 4995 /* 4996 * Indexes are stored in the phyint - a common structure 4997 * to both IPv4 and IPv6. 4998 */ 4999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5000 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5001 (void *) &index, NULL); 5002 if (phyi != NULL) { 5003 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5004 if (ill != NULL) { 5005 /* 5006 * The block comment at the start of ipif_down 5007 * explains the use of the macros used below 5008 */ 5009 GRAB_CONN_LOCK(q); 5010 mutex_enter(&ill->ill_lock); 5011 if (ILL_CAN_LOOKUP(ill)) { 5012 ill_refhold_locked(ill); 5013 mutex_exit(&ill->ill_lock); 5014 RELEASE_CONN_LOCK(q); 5015 rw_exit(&ipst->ips_ill_g_lock); 5016 return (ill); 5017 } else if (ILL_CAN_WAIT(ill, q)) { 5018 ipsq = ill->ill_phyint->phyint_ipsq; 5019 mutex_enter(&ipsq->ipsq_lock); 5020 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5021 rw_exit(&ipst->ips_ill_g_lock); 5022 mutex_exit(&ill->ill_lock); 5023 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5024 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5025 mutex_exit(&ipsq->ipsq_lock); 5026 RELEASE_CONN_LOCK(q); 5027 if (err != NULL) 5028 *err = EINPROGRESS; 5029 return (NULL); 5030 } 5031 RELEASE_CONN_LOCK(q); 5032 mutex_exit(&ill->ill_lock); 5033 } 5034 } 5035 rw_exit(&ipst->ips_ill_g_lock); 5036 if (err != NULL) 5037 *err = ENXIO; 5038 return (NULL); 5039 } 5040 5041 /* 5042 * Return the ifindex next in sequence after the passed in ifindex. 5043 * If there is no next ifindex for the given protocol, return 0. 5044 */ 5045 uint_t 5046 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5047 { 5048 phyint_t *phyi; 5049 phyint_t *phyi_initial; 5050 uint_t ifindex; 5051 5052 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5053 5054 if (index == 0) { 5055 phyi = avl_first( 5056 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5057 } else { 5058 phyi = phyi_initial = avl_find( 5059 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5060 (void *) &index, NULL); 5061 } 5062 5063 for (; phyi != NULL; 5064 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5065 phyi, AVL_AFTER)) { 5066 /* 5067 * If we're not returning the first interface in the tree 5068 * and we still haven't moved past the phyint_t that 5069 * corresponds to index, avl_walk needs to be called again 5070 */ 5071 if (!((index != 0) && (phyi == phyi_initial))) { 5072 if (isv6) { 5073 if ((phyi->phyint_illv6) && 5074 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5075 (phyi->phyint_illv6->ill_isv6 == 1)) 5076 break; 5077 } else { 5078 if ((phyi->phyint_illv4) && 5079 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5080 (phyi->phyint_illv4->ill_isv6 == 0)) 5081 break; 5082 } 5083 } 5084 } 5085 5086 rw_exit(&ipst->ips_ill_g_lock); 5087 5088 if (phyi != NULL) 5089 ifindex = phyi->phyint_ifindex; 5090 else 5091 ifindex = 0; 5092 5093 return (ifindex); 5094 } 5095 5096 /* 5097 * Return the ifindex for the named interface. 5098 * If there is no next ifindex for the interface, return 0. 5099 */ 5100 uint_t 5101 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5102 { 5103 phyint_t *phyi; 5104 avl_index_t where = 0; 5105 uint_t ifindex; 5106 5107 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5108 5109 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5110 name, &where)) == NULL) { 5111 rw_exit(&ipst->ips_ill_g_lock); 5112 return (0); 5113 } 5114 5115 ifindex = phyi->phyint_ifindex; 5116 5117 rw_exit(&ipst->ips_ill_g_lock); 5118 5119 return (ifindex); 5120 } 5121 5122 /* 5123 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5124 * that gives a running thread a reference to the ill. This reference must be 5125 * released by the thread when it is done accessing the ill and related 5126 * objects. ill_refcnt can not be used to account for static references 5127 * such as other structures pointing to an ill. Callers must generally 5128 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5129 * or be sure that the ill is not being deleted or changing state before 5130 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5131 * ill won't change any of its critical state such as address, netmask etc. 5132 */ 5133 void 5134 ill_refhold(ill_t *ill) 5135 { 5136 mutex_enter(&ill->ill_lock); 5137 ill->ill_refcnt++; 5138 ILL_TRACE_REF(ill); 5139 mutex_exit(&ill->ill_lock); 5140 } 5141 5142 void 5143 ill_refhold_locked(ill_t *ill) 5144 { 5145 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5146 ill->ill_refcnt++; 5147 ILL_TRACE_REF(ill); 5148 } 5149 5150 int 5151 ill_check_and_refhold(ill_t *ill) 5152 { 5153 mutex_enter(&ill->ill_lock); 5154 if (ILL_CAN_LOOKUP(ill)) { 5155 ill_refhold_locked(ill); 5156 mutex_exit(&ill->ill_lock); 5157 return (0); 5158 } 5159 mutex_exit(&ill->ill_lock); 5160 return (ILL_LOOKUP_FAILED); 5161 } 5162 5163 /* 5164 * Must not be called while holding any locks. Otherwise if this is 5165 * the last reference to be released, there is a chance of recursive mutex 5166 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5167 * to restart an ioctl. 5168 */ 5169 void 5170 ill_refrele(ill_t *ill) 5171 { 5172 mutex_enter(&ill->ill_lock); 5173 ASSERT(ill->ill_refcnt != 0); 5174 ill->ill_refcnt--; 5175 ILL_UNTRACE_REF(ill); 5176 if (ill->ill_refcnt != 0) { 5177 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5178 mutex_exit(&ill->ill_lock); 5179 return; 5180 } 5181 5182 /* Drops the ill_lock */ 5183 ipif_ill_refrele_tail(ill); 5184 } 5185 5186 /* 5187 * Obtain a weak reference count on the ill. This reference ensures the 5188 * ill won't be freed, but the ill may change any of its critical state 5189 * such as netmask, address etc. Returns an error if the ill has started 5190 * closing. 5191 */ 5192 boolean_t 5193 ill_waiter_inc(ill_t *ill) 5194 { 5195 mutex_enter(&ill->ill_lock); 5196 if (ill->ill_state_flags & ILL_CONDEMNED) { 5197 mutex_exit(&ill->ill_lock); 5198 return (B_FALSE); 5199 } 5200 ill->ill_waiters++; 5201 mutex_exit(&ill->ill_lock); 5202 return (B_TRUE); 5203 } 5204 5205 void 5206 ill_waiter_dcr(ill_t *ill) 5207 { 5208 mutex_enter(&ill->ill_lock); 5209 ill->ill_waiters--; 5210 if (ill->ill_waiters == 0) 5211 cv_broadcast(&ill->ill_cv); 5212 mutex_exit(&ill->ill_lock); 5213 } 5214 5215 /* 5216 * Named Dispatch routine to produce a formatted report on all ILLs. 5217 * This report is accessed by using the ndd utility to "get" ND variable 5218 * "ip_ill_status". 5219 */ 5220 /* ARGSUSED */ 5221 int 5222 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5223 { 5224 ill_t *ill; 5225 ill_walk_context_t ctx; 5226 ip_stack_t *ipst; 5227 5228 ipst = CONNQ_TO_IPST(q); 5229 5230 (void) mi_mpprintf(mp, 5231 "ILL " MI_COL_HDRPAD_STR 5232 /* 01234567[89ABCDEF] */ 5233 "rq " MI_COL_HDRPAD_STR 5234 /* 01234567[89ABCDEF] */ 5235 "wq " MI_COL_HDRPAD_STR 5236 /* 01234567[89ABCDEF] */ 5237 "upcnt mxfrg err name"); 5238 /* 12345 12345 123 xxxxxxxx */ 5239 5240 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5241 ill = ILL_START_WALK_ALL(&ctx, ipst); 5242 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5243 (void) mi_mpprintf(mp, 5244 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5245 "%05u %05u %03d %s", 5246 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5247 ill->ill_ipif_up_count, 5248 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5249 } 5250 rw_exit(&ipst->ips_ill_g_lock); 5251 5252 return (0); 5253 } 5254 5255 /* 5256 * Named Dispatch routine to produce a formatted report on all IPIFs. 5257 * This report is accessed by using the ndd utility to "get" ND variable 5258 * "ip_ipif_status". 5259 */ 5260 /* ARGSUSED */ 5261 int 5262 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5263 { 5264 char buf1[INET6_ADDRSTRLEN]; 5265 char buf2[INET6_ADDRSTRLEN]; 5266 char buf3[INET6_ADDRSTRLEN]; 5267 char buf4[INET6_ADDRSTRLEN]; 5268 char buf5[INET6_ADDRSTRLEN]; 5269 char buf6[INET6_ADDRSTRLEN]; 5270 char buf[LIFNAMSIZ]; 5271 ill_t *ill; 5272 ipif_t *ipif; 5273 nv_t *nvp; 5274 uint64_t flags; 5275 zoneid_t zoneid; 5276 ill_walk_context_t ctx; 5277 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5278 5279 (void) mi_mpprintf(mp, 5280 "IPIF metric mtu in/out/forward name zone flags...\n" 5281 "\tlocal address\n" 5282 "\tsrc address\n" 5283 "\tsubnet\n" 5284 "\tmask\n" 5285 "\tbroadcast\n" 5286 "\tp-p-dst"); 5287 5288 ASSERT(q->q_next == NULL); 5289 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5290 5291 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5292 ill = ILL_START_WALK_ALL(&ctx, ipst); 5293 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5294 for (ipif = ill->ill_ipif; ipif != NULL; 5295 ipif = ipif->ipif_next) { 5296 if (zoneid != GLOBAL_ZONEID && 5297 zoneid != ipif->ipif_zoneid && 5298 ipif->ipif_zoneid != ALL_ZONES) 5299 continue; 5300 5301 ipif_get_name(ipif, buf, sizeof (buf)); 5302 (void) mi_mpprintf(mp, 5303 MI_COL_PTRFMT_STR 5304 "%04u %05u %u/%u/%u %s %d", 5305 (void *)ipif, 5306 ipif->ipif_metric, ipif->ipif_mtu, 5307 ipif->ipif_ib_pkt_count, 5308 ipif->ipif_ob_pkt_count, 5309 ipif->ipif_fo_pkt_count, 5310 buf, 5311 ipif->ipif_zoneid); 5312 5313 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5314 ipif->ipif_ill->ill_phyint->phyint_flags; 5315 5316 /* Tack on text strings for any flags. */ 5317 nvp = ipif_nv_tbl; 5318 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5319 if (nvp->nv_value & flags) 5320 (void) mi_mpprintf_nr(mp, " %s", 5321 nvp->nv_name); 5322 } 5323 (void) mi_mpprintf(mp, 5324 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5325 inet_ntop(AF_INET6, 5326 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5327 inet_ntop(AF_INET6, 5328 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5329 inet_ntop(AF_INET6, 5330 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5331 inet_ntop(AF_INET6, 5332 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5333 inet_ntop(AF_INET6, 5334 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5335 inet_ntop(AF_INET6, 5336 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5337 } 5338 } 5339 rw_exit(&ipst->ips_ill_g_lock); 5340 return (0); 5341 } 5342 5343 /* 5344 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5345 * driver. We construct best guess defaults for lower level information that 5346 * we need. If an interface is brought up without injection of any overriding 5347 * information from outside, we have to be ready to go with these defaults. 5348 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5349 * we primarely want the dl_provider_style. 5350 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5351 * at which point we assume the other part of the information is valid. 5352 */ 5353 void 5354 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5355 { 5356 uchar_t *brdcst_addr; 5357 uint_t brdcst_addr_length, phys_addr_length; 5358 t_scalar_t sap_length; 5359 dl_info_ack_t *dlia; 5360 ip_m_t *ipm; 5361 dl_qos_cl_sel1_t *sel1; 5362 int min_mtu; 5363 5364 ASSERT(IAM_WRITER_ILL(ill)); 5365 5366 /* 5367 * Till the ill is fully up ILL_CHANGING will be set and 5368 * the ill is not globally visible. So no need for a lock. 5369 */ 5370 dlia = (dl_info_ack_t *)mp->b_rptr; 5371 ill->ill_mactype = dlia->dl_mac_type; 5372 5373 ipm = ip_m_lookup(dlia->dl_mac_type); 5374 if (ipm == NULL) { 5375 ipm = ip_m_lookup(DL_OTHER); 5376 ASSERT(ipm != NULL); 5377 } 5378 ill->ill_media = ipm; 5379 5380 /* 5381 * When the new DLPI stuff is ready we'll pull lengths 5382 * from dlia. 5383 */ 5384 if (dlia->dl_version == DL_VERSION_2) { 5385 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5386 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5387 brdcst_addr_length); 5388 if (brdcst_addr == NULL) { 5389 brdcst_addr_length = 0; 5390 } 5391 sap_length = dlia->dl_sap_length; 5392 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5393 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5394 brdcst_addr_length, sap_length, phys_addr_length)); 5395 } else { 5396 brdcst_addr_length = 6; 5397 brdcst_addr = ip_six_byte_all_ones; 5398 sap_length = -2; 5399 phys_addr_length = brdcst_addr_length; 5400 } 5401 5402 ill->ill_bcast_addr_length = brdcst_addr_length; 5403 ill->ill_phys_addr_length = phys_addr_length; 5404 ill->ill_sap_length = sap_length; 5405 5406 /* 5407 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5408 * but we must ensure a minimum IP MTU is used since other bits of 5409 * IP will fly apart otherwise. 5410 */ 5411 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5412 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5413 ill->ill_max_mtu = ill->ill_max_frag; 5414 5415 ill->ill_type = ipm->ip_m_type; 5416 5417 if (!ill->ill_dlpi_style_set) { 5418 if (dlia->dl_provider_style == DL_STYLE2) 5419 ill->ill_needs_attach = 1; 5420 5421 /* 5422 * Allocate the first ipif on this ill. We don't delay it 5423 * further as ioctl handling assumes atleast one ipif to 5424 * be present. 5425 * 5426 * At this point we don't know whether the ill is v4 or v6. 5427 * We will know this whan the SIOCSLIFNAME happens and 5428 * the correct value for ill_isv6 will be assigned in 5429 * ipif_set_values(). We need to hold the ill lock and 5430 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5431 * the wakeup. 5432 */ 5433 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5434 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5435 mutex_enter(&ill->ill_lock); 5436 ASSERT(ill->ill_dlpi_style_set == 0); 5437 ill->ill_dlpi_style_set = 1; 5438 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5439 cv_broadcast(&ill->ill_cv); 5440 mutex_exit(&ill->ill_lock); 5441 freemsg(mp); 5442 return; 5443 } 5444 ASSERT(ill->ill_ipif != NULL); 5445 /* 5446 * We know whether it is IPv4 or IPv6 now, as this is the 5447 * second DL_INFO_ACK we are recieving in response to the 5448 * DL_INFO_REQ sent in ipif_set_values. 5449 */ 5450 if (ill->ill_isv6) 5451 ill->ill_sap = IP6_DL_SAP; 5452 else 5453 ill->ill_sap = IP_DL_SAP; 5454 /* 5455 * Set ipif_mtu which is used to set the IRE's 5456 * ire_max_frag value. The driver could have sent 5457 * a different mtu from what it sent last time. No 5458 * need to call ipif_mtu_change because IREs have 5459 * not yet been created. 5460 */ 5461 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5462 /* 5463 * Clear all the flags that were set based on ill_bcast_addr_length 5464 * and ill_phys_addr_length (in ipif_set_values) as these could have 5465 * changed now and we need to re-evaluate. 5466 */ 5467 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5468 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5469 5470 /* 5471 * Free ill_resolver_mp and ill_bcast_mp as things could have 5472 * changed now. 5473 * 5474 * NOTE: The IPMP meta-interface is special-cased because it starts 5475 * with no underlying interfaces (and thus an unknown broadcast 5476 * address length), but we enforce that an interface is broadcast- 5477 * capable as part of allowing it to join a group. 5478 */ 5479 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5480 if (ill->ill_resolver_mp != NULL) 5481 freemsg(ill->ill_resolver_mp); 5482 if (ill->ill_bcast_mp != NULL) 5483 freemsg(ill->ill_bcast_mp); 5484 if (ill->ill_flags & ILLF_XRESOLV) 5485 ill->ill_net_type = IRE_IF_RESOLVER; 5486 else 5487 ill->ill_net_type = IRE_IF_NORESOLVER; 5488 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5489 ill->ill_phys_addr_length, 5490 ill->ill_sap, 5491 ill->ill_sap_length); 5492 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5493 5494 if (ill->ill_isv6) 5495 /* 5496 * Note: xresolv interfaces will eventually need NOARP 5497 * set here as well, but that will require those 5498 * external resolvers to have some knowledge of 5499 * that flag and act appropriately. Not to be changed 5500 * at present. 5501 */ 5502 ill->ill_flags |= ILLF_NONUD; 5503 else 5504 ill->ill_flags |= ILLF_NOARP; 5505 5506 if (ill->ill_phys_addr_length == 0) { 5507 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5508 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5509 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5510 } else { 5511 /* pt-pt supports multicast. */ 5512 ill->ill_flags |= ILLF_MULTICAST; 5513 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5514 } 5515 } 5516 } else { 5517 ill->ill_net_type = IRE_IF_RESOLVER; 5518 if (ill->ill_bcast_mp != NULL) 5519 freemsg(ill->ill_bcast_mp); 5520 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5521 ill->ill_bcast_addr_length, ill->ill_sap, 5522 ill->ill_sap_length); 5523 /* 5524 * Later detect lack of DLPI driver multicast 5525 * capability by catching DL_ENABMULTI errors in 5526 * ip_rput_dlpi. 5527 */ 5528 ill->ill_flags |= ILLF_MULTICAST; 5529 if (!ill->ill_isv6) 5530 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5531 } 5532 5533 /* For IPMP, PHYI_IPMP should already be set by ipif_allocate() */ 5534 if (ill->ill_mactype == SUNW_DL_IPMP) 5535 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5536 5537 /* By default an interface does not support any CoS marking */ 5538 ill->ill_flags &= ~ILLF_COS_ENABLED; 5539 5540 /* 5541 * If we get QoS information in DL_INFO_ACK, the device supports 5542 * some form of CoS marking, set ILLF_COS_ENABLED. 5543 */ 5544 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5545 dlia->dl_qos_length); 5546 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5547 ill->ill_flags |= ILLF_COS_ENABLED; 5548 } 5549 5550 /* Clear any previous error indication. */ 5551 ill->ill_error = 0; 5552 freemsg(mp); 5553 } 5554 5555 /* 5556 * Perform various checks to verify that an address would make sense as a 5557 * local, remote, or subnet interface address. 5558 */ 5559 static boolean_t 5560 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5561 { 5562 ipaddr_t net_mask; 5563 5564 /* 5565 * Don't allow all zeroes, or all ones, but allow 5566 * all ones netmask. 5567 */ 5568 if ((net_mask = ip_net_mask(addr)) == 0) 5569 return (B_FALSE); 5570 /* A given netmask overrides the "guess" netmask */ 5571 if (subnet_mask != 0) 5572 net_mask = subnet_mask; 5573 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5574 (addr == (addr | ~net_mask)))) { 5575 return (B_FALSE); 5576 } 5577 5578 /* 5579 * Even if the netmask is all ones, we do not allow address to be 5580 * 255.255.255.255 5581 */ 5582 if (addr == INADDR_BROADCAST) 5583 return (B_FALSE); 5584 5585 if (CLASSD(addr)) 5586 return (B_FALSE); 5587 5588 return (B_TRUE); 5589 } 5590 5591 #define V6_IPIF_LINKLOCAL(p) \ 5592 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5593 5594 /* 5595 * Compare two given ipifs and check if the second one is better than 5596 * the first one using the order of preference (not taking deprecated 5597 * into acount) specified in ipif_lookup_multicast(). 5598 */ 5599 static boolean_t 5600 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5601 { 5602 /* Check the least preferred first. */ 5603 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5604 /* If both ipifs are the same, use the first one. */ 5605 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5606 return (B_FALSE); 5607 else 5608 return (B_TRUE); 5609 } 5610 5611 /* For IPv6, check for link local address. */ 5612 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5613 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5614 V6_IPIF_LINKLOCAL(new_ipif)) { 5615 /* The second one is equal or less preferred. */ 5616 return (B_FALSE); 5617 } else { 5618 return (B_TRUE); 5619 } 5620 } 5621 5622 /* Then check for point to point interface. */ 5623 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5624 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5625 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5626 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5627 return (B_FALSE); 5628 } else { 5629 return (B_TRUE); 5630 } 5631 } 5632 5633 /* old_ipif is a normal interface, so no need to use the new one. */ 5634 return (B_FALSE); 5635 } 5636 5637 /* 5638 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5639 * The ipif must be up, and its ill must multicast-capable, not 5640 * condemned, not an underlying interface in an IPMP group, and 5641 * not a VNI interface. Order of preference: 5642 * 5643 * 1a. normal 5644 * 1b. normal, but deprecated 5645 * 2a. point to point 5646 * 2b. point to point, but deprecated 5647 * 3a. link local 5648 * 3b. link local, but deprecated 5649 * 4. loopback. 5650 */ 5651 ipif_t * 5652 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5653 { 5654 ill_t *ill; 5655 ill_walk_context_t ctx; 5656 ipif_t *ipif; 5657 ipif_t *saved_ipif = NULL; 5658 ipif_t *dep_ipif = NULL; 5659 5660 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5661 if (isv6) 5662 ill = ILL_START_WALK_V6(&ctx, ipst); 5663 else 5664 ill = ILL_START_WALK_V4(&ctx, ipst); 5665 5666 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5667 mutex_enter(&ill->ill_lock); 5668 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5669 !(ill->ill_flags & ILLF_MULTICAST)) { 5670 mutex_exit(&ill->ill_lock); 5671 continue; 5672 } 5673 for (ipif = ill->ill_ipif; ipif != NULL; 5674 ipif = ipif->ipif_next) { 5675 if (zoneid != ipif->ipif_zoneid && 5676 zoneid != ALL_ZONES && 5677 ipif->ipif_zoneid != ALL_ZONES) { 5678 continue; 5679 } 5680 if (!(ipif->ipif_flags & IPIF_UP) || 5681 !IPIF_CAN_LOOKUP(ipif)) { 5682 continue; 5683 } 5684 5685 /* 5686 * Found one candidate. If it is deprecated, 5687 * remember it in dep_ipif. If it is not deprecated, 5688 * remember it in saved_ipif. 5689 */ 5690 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5691 if (dep_ipif == NULL) { 5692 dep_ipif = ipif; 5693 } else if (ipif_comp_multi(dep_ipif, ipif, 5694 isv6)) { 5695 /* 5696 * If the previous dep_ipif does not 5697 * belong to the same ill, we've done 5698 * a ipif_refhold() on it. So we need 5699 * to release it. 5700 */ 5701 if (dep_ipif->ipif_ill != ill) 5702 ipif_refrele(dep_ipif); 5703 dep_ipif = ipif; 5704 } 5705 continue; 5706 } 5707 if (saved_ipif == NULL) { 5708 saved_ipif = ipif; 5709 } else { 5710 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5711 if (saved_ipif->ipif_ill != ill) 5712 ipif_refrele(saved_ipif); 5713 saved_ipif = ipif; 5714 } 5715 } 5716 } 5717 /* 5718 * Before going to the next ill, do a ipif_refhold() on the 5719 * saved ones. 5720 */ 5721 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5722 ipif_refhold_locked(saved_ipif); 5723 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5724 ipif_refhold_locked(dep_ipif); 5725 mutex_exit(&ill->ill_lock); 5726 } 5727 rw_exit(&ipst->ips_ill_g_lock); 5728 5729 /* 5730 * If we have only the saved_ipif, return it. But if we have both 5731 * saved_ipif and dep_ipif, check to see which one is better. 5732 */ 5733 if (saved_ipif != NULL) { 5734 if (dep_ipif != NULL) { 5735 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5736 ipif_refrele(saved_ipif); 5737 return (dep_ipif); 5738 } else { 5739 ipif_refrele(dep_ipif); 5740 return (saved_ipif); 5741 } 5742 } 5743 return (saved_ipif); 5744 } else { 5745 return (dep_ipif); 5746 } 5747 } 5748 5749 /* 5750 * This function is called when an application does not specify an interface 5751 * to be used for multicast traffic (joining a group/sending data). It 5752 * calls ire_lookup_multi() to look for an interface route for the 5753 * specified multicast group. Doing this allows the administrator to add 5754 * prefix routes for multicast to indicate which interface to be used for 5755 * multicast traffic in the above scenario. The route could be for all 5756 * multicast (224.0/4), for a single multicast group (a /32 route) or 5757 * anything in between. If there is no such multicast route, we just find 5758 * any multicast capable interface and return it. The returned ipif 5759 * is refhold'ed. 5760 */ 5761 ipif_t * 5762 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5763 { 5764 ire_t *ire; 5765 ipif_t *ipif; 5766 5767 ire = ire_lookup_multi(group, zoneid, ipst); 5768 if (ire != NULL) { 5769 ipif = ire->ire_ipif; 5770 ipif_refhold(ipif); 5771 ire_refrele(ire); 5772 return (ipif); 5773 } 5774 5775 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5776 } 5777 5778 /* 5779 * Look for an ipif with the specified interface address and destination. 5780 * The destination address is used only for matching point-to-point interfaces. 5781 */ 5782 ipif_t * 5783 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5784 ipsq_func_t func, int *error, ip_stack_t *ipst) 5785 { 5786 ipif_t *ipif; 5787 ill_t *ill; 5788 ill_walk_context_t ctx; 5789 ipsq_t *ipsq; 5790 5791 if (error != NULL) 5792 *error = 0; 5793 5794 /* 5795 * First match all the point-to-point interfaces 5796 * before looking at non-point-to-point interfaces. 5797 * This is done to avoid returning non-point-to-point 5798 * ipif instead of unnumbered point-to-point ipif. 5799 */ 5800 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5801 ill = ILL_START_WALK_V4(&ctx, ipst); 5802 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5803 GRAB_CONN_LOCK(q); 5804 mutex_enter(&ill->ill_lock); 5805 for (ipif = ill->ill_ipif; ipif != NULL; 5806 ipif = ipif->ipif_next) { 5807 /* Allow the ipif to be down */ 5808 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5809 (ipif->ipif_lcl_addr == if_addr) && 5810 (ipif->ipif_pp_dst_addr == dst)) { 5811 /* 5812 * The block comment at the start of ipif_down 5813 * explains the use of the macros used below 5814 */ 5815 if (IPIF_CAN_LOOKUP(ipif)) { 5816 ipif_refhold_locked(ipif); 5817 mutex_exit(&ill->ill_lock); 5818 RELEASE_CONN_LOCK(q); 5819 rw_exit(&ipst->ips_ill_g_lock); 5820 return (ipif); 5821 } else if (IPIF_CAN_WAIT(ipif, q)) { 5822 ipsq = ill->ill_phyint->phyint_ipsq; 5823 mutex_enter(&ipsq->ipsq_lock); 5824 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5825 mutex_exit(&ill->ill_lock); 5826 rw_exit(&ipst->ips_ill_g_lock); 5827 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5828 ill); 5829 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5830 mutex_exit(&ipsq->ipsq_lock); 5831 RELEASE_CONN_LOCK(q); 5832 if (error != NULL) 5833 *error = EINPROGRESS; 5834 return (NULL); 5835 } 5836 } 5837 } 5838 mutex_exit(&ill->ill_lock); 5839 RELEASE_CONN_LOCK(q); 5840 } 5841 rw_exit(&ipst->ips_ill_g_lock); 5842 5843 /* lookup the ipif based on interface address */ 5844 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5845 ipst); 5846 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5847 return (ipif); 5848 } 5849 5850 /* 5851 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5852 */ 5853 static ipif_t * 5854 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5855 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5856 ip_stack_t *ipst) 5857 { 5858 ipif_t *ipif; 5859 ill_t *ill; 5860 boolean_t ptp = B_FALSE; 5861 ipsq_t *ipsq; 5862 ill_walk_context_t ctx; 5863 5864 if (error != NULL) 5865 *error = 0; 5866 5867 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5868 /* 5869 * Repeat twice, first based on local addresses and 5870 * next time for pointopoint. 5871 */ 5872 repeat: 5873 ill = ILL_START_WALK_V4(&ctx, ipst); 5874 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5875 if (match_ill != NULL && ill != match_ill && 5876 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5877 continue; 5878 } 5879 GRAB_CONN_LOCK(q); 5880 mutex_enter(&ill->ill_lock); 5881 for (ipif = ill->ill_ipif; ipif != NULL; 5882 ipif = ipif->ipif_next) { 5883 if (zoneid != ALL_ZONES && 5884 zoneid != ipif->ipif_zoneid && 5885 ipif->ipif_zoneid != ALL_ZONES) 5886 continue; 5887 /* Allow the ipif to be down */ 5888 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5889 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5890 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5891 (ipif->ipif_pp_dst_addr == addr))) { 5892 /* 5893 * The block comment at the start of ipif_down 5894 * explains the use of the macros used below 5895 */ 5896 if (IPIF_CAN_LOOKUP(ipif)) { 5897 ipif_refhold_locked(ipif); 5898 mutex_exit(&ill->ill_lock); 5899 RELEASE_CONN_LOCK(q); 5900 rw_exit(&ipst->ips_ill_g_lock); 5901 return (ipif); 5902 } else if (IPIF_CAN_WAIT(ipif, q)) { 5903 ipsq = ill->ill_phyint->phyint_ipsq; 5904 mutex_enter(&ipsq->ipsq_lock); 5905 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5906 mutex_exit(&ill->ill_lock); 5907 rw_exit(&ipst->ips_ill_g_lock); 5908 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5909 ill); 5910 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5911 mutex_exit(&ipsq->ipsq_lock); 5912 RELEASE_CONN_LOCK(q); 5913 if (error != NULL) 5914 *error = EINPROGRESS; 5915 return (NULL); 5916 } 5917 } 5918 } 5919 mutex_exit(&ill->ill_lock); 5920 RELEASE_CONN_LOCK(q); 5921 } 5922 5923 /* If we already did the ptp case, then we are done */ 5924 if (ptp) { 5925 rw_exit(&ipst->ips_ill_g_lock); 5926 if (error != NULL) 5927 *error = ENXIO; 5928 return (NULL); 5929 } 5930 ptp = B_TRUE; 5931 goto repeat; 5932 } 5933 5934 /* 5935 * Check if the address exists in the system. 5936 * We don't hold the conn_lock as we will not perform defered ipsqueue 5937 * operation. 5938 */ 5939 boolean_t 5940 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5941 { 5942 ipif_t *ipif; 5943 ill_t *ill; 5944 ill_walk_context_t ctx; 5945 5946 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5947 5948 ill = ILL_START_WALK_V4(&ctx, ipst); 5949 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5950 mutex_enter(&ill->ill_lock); 5951 for (ipif = ill->ill_ipif; ipif != NULL; 5952 ipif = ipif->ipif_next) { 5953 if (zoneid != ALL_ZONES && 5954 zoneid != ipif->ipif_zoneid && 5955 ipif->ipif_zoneid != ALL_ZONES) 5956 continue; 5957 /* Allow the ipif to be down */ 5958 /* 5959 * XXX Different from ipif_lookup_addr(), we don't do 5960 * twice lookups. As from bind()'s point of view, we 5961 * may return once we find a match. 5962 */ 5963 if (((ipif->ipif_lcl_addr == addr) && 5964 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5965 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5966 (ipif->ipif_pp_dst_addr == addr))) { 5967 /* 5968 * Allow bind() to be successful even if the 5969 * ipif is with IPIF_CHANGING bit set. 5970 */ 5971 mutex_exit(&ill->ill_lock); 5972 rw_exit(&ipst->ips_ill_g_lock); 5973 return (B_TRUE); 5974 } 5975 } 5976 mutex_exit(&ill->ill_lock); 5977 } 5978 5979 rw_exit(&ipst->ips_ill_g_lock); 5980 return (B_FALSE); 5981 } 5982 5983 /* 5984 * Lookup an ipif with the specified address. For point-to-point links we 5985 * look for matches on either the destination address or the local address, 5986 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5987 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5988 * (or illgrp if `match_ill' is in an IPMP group). 5989 */ 5990 ipif_t * 5991 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5992 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5993 { 5994 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5995 func, error, ipst)); 5996 } 5997 5998 /* 5999 * Special abbreviated version of ipif_lookup_addr() that doesn't match 6000 * `match_ill' across the IPMP group. This function is only needed in some 6001 * corner-cases; almost everything should use ipif_lookup_addr(). 6002 */ 6003 static ipif_t * 6004 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6005 { 6006 ASSERT(match_ill != NULL); 6007 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 6008 NULL, NULL, NULL, NULL, ipst)); 6009 } 6010 6011 /* 6012 * Look for an ipif with the specified address. For point-point links 6013 * we look for matches on either the destination address and the local 6014 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6015 * is set. 6016 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 6017 * ill (or illgrp if `match_ill' is in an IPMP group). 6018 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6019 */ 6020 zoneid_t 6021 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6022 { 6023 zoneid_t zoneid; 6024 ipif_t *ipif; 6025 ill_t *ill; 6026 boolean_t ptp = B_FALSE; 6027 ill_walk_context_t ctx; 6028 6029 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6030 /* 6031 * Repeat twice, first based on local addresses and 6032 * next time for pointopoint. 6033 */ 6034 repeat: 6035 ill = ILL_START_WALK_V4(&ctx, ipst); 6036 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6037 if (match_ill != NULL && ill != match_ill && 6038 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 6039 continue; 6040 } 6041 mutex_enter(&ill->ill_lock); 6042 for (ipif = ill->ill_ipif; ipif != NULL; 6043 ipif = ipif->ipif_next) { 6044 /* Allow the ipif to be down */ 6045 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6046 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6047 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6048 (ipif->ipif_pp_dst_addr == addr)) && 6049 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6050 zoneid = ipif->ipif_zoneid; 6051 mutex_exit(&ill->ill_lock); 6052 rw_exit(&ipst->ips_ill_g_lock); 6053 /* 6054 * If ipif_zoneid was ALL_ZONES then we have 6055 * a trusted extensions shared IP address. 6056 * In that case GLOBAL_ZONEID works to send. 6057 */ 6058 if (zoneid == ALL_ZONES) 6059 zoneid = GLOBAL_ZONEID; 6060 return (zoneid); 6061 } 6062 } 6063 mutex_exit(&ill->ill_lock); 6064 } 6065 6066 /* If we already did the ptp case, then we are done */ 6067 if (ptp) { 6068 rw_exit(&ipst->ips_ill_g_lock); 6069 return (ALL_ZONES); 6070 } 6071 ptp = B_TRUE; 6072 goto repeat; 6073 } 6074 6075 /* 6076 * Look for an ipif that matches the specified remote address i.e. the 6077 * ipif that would receive the specified packet. 6078 * First look for directly connected interfaces and then do a recursive 6079 * IRE lookup and pick the first ipif corresponding to the source address in the 6080 * ire. 6081 * Returns: held ipif 6082 */ 6083 ipif_t * 6084 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6085 { 6086 ipif_t *ipif; 6087 ire_t *ire; 6088 ip_stack_t *ipst = ill->ill_ipst; 6089 6090 ASSERT(!ill->ill_isv6); 6091 6092 /* 6093 * Someone could be changing this ipif currently or change it 6094 * after we return this. Thus a few packets could use the old 6095 * old values. However structure updates/creates (ire, ilg, ilm etc) 6096 * will atomically be updated or cleaned up with the new value 6097 * Thus we don't need a lock to check the flags or other attrs below. 6098 */ 6099 mutex_enter(&ill->ill_lock); 6100 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6101 if (!IPIF_CAN_LOOKUP(ipif)) 6102 continue; 6103 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6104 ipif->ipif_zoneid != ALL_ZONES) 6105 continue; 6106 /* Allow the ipif to be down */ 6107 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6108 if ((ipif->ipif_pp_dst_addr == addr) || 6109 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6110 ipif->ipif_lcl_addr == addr)) { 6111 ipif_refhold_locked(ipif); 6112 mutex_exit(&ill->ill_lock); 6113 return (ipif); 6114 } 6115 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6116 ipif_refhold_locked(ipif); 6117 mutex_exit(&ill->ill_lock); 6118 return (ipif); 6119 } 6120 } 6121 mutex_exit(&ill->ill_lock); 6122 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6123 NULL, MATCH_IRE_RECURSIVE, ipst); 6124 if (ire != NULL) { 6125 /* 6126 * The callers of this function wants to know the 6127 * interface on which they have to send the replies 6128 * back. For IREs that have ire_stq and ire_ipif 6129 * derived from different ills, we really don't care 6130 * what we return here. 6131 */ 6132 ipif = ire->ire_ipif; 6133 if (ipif != NULL) { 6134 ipif_refhold(ipif); 6135 ire_refrele(ire); 6136 return (ipif); 6137 } 6138 ire_refrele(ire); 6139 } 6140 /* Pick the first interface */ 6141 ipif = ipif_get_next_ipif(NULL, ill); 6142 return (ipif); 6143 } 6144 6145 /* 6146 * This func does not prevent refcnt from increasing. But if 6147 * the caller has taken steps to that effect, then this func 6148 * can be used to determine whether the ill has become quiescent 6149 */ 6150 static boolean_t 6151 ill_is_quiescent(ill_t *ill) 6152 { 6153 ipif_t *ipif; 6154 6155 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6156 6157 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6158 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6159 return (B_FALSE); 6160 } 6161 } 6162 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6163 return (B_FALSE); 6164 } 6165 return (B_TRUE); 6166 } 6167 6168 boolean_t 6169 ill_is_freeable(ill_t *ill) 6170 { 6171 ipif_t *ipif; 6172 6173 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6174 6175 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6176 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6177 return (B_FALSE); 6178 } 6179 } 6180 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6181 return (B_FALSE); 6182 } 6183 return (B_TRUE); 6184 } 6185 6186 /* 6187 * This func does not prevent refcnt from increasing. But if 6188 * the caller has taken steps to that effect, then this func 6189 * can be used to determine whether the ipif has become quiescent 6190 */ 6191 static boolean_t 6192 ipif_is_quiescent(ipif_t *ipif) 6193 { 6194 ill_t *ill; 6195 6196 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6197 6198 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6199 return (B_FALSE); 6200 } 6201 6202 ill = ipif->ipif_ill; 6203 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6204 ill->ill_logical_down) { 6205 return (B_TRUE); 6206 } 6207 6208 /* This is the last ipif going down or being deleted on this ill */ 6209 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6210 return (B_FALSE); 6211 } 6212 6213 return (B_TRUE); 6214 } 6215 6216 /* 6217 * return true if the ipif can be destroyed: the ipif has to be quiescent 6218 * with zero references from ire/nce/ilm to it. 6219 */ 6220 static boolean_t 6221 ipif_is_freeable(ipif_t *ipif) 6222 { 6223 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6224 ASSERT(ipif->ipif_id != 0); 6225 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6226 } 6227 6228 /* 6229 * The ipif/ill/ire has been refreled. Do the tail processing. 6230 * Determine if the ipif or ill in question has become quiescent and if so 6231 * wakeup close and/or restart any queued pending ioctl that is waiting 6232 * for the ipif_down (or ill_down) 6233 */ 6234 void 6235 ipif_ill_refrele_tail(ill_t *ill) 6236 { 6237 mblk_t *mp; 6238 conn_t *connp; 6239 ipsq_t *ipsq; 6240 ipxop_t *ipx; 6241 ipif_t *ipif; 6242 dl_notify_ind_t *dlindp; 6243 6244 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6245 6246 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6247 /* ip_modclose() may be waiting */ 6248 cv_broadcast(&ill->ill_cv); 6249 } 6250 6251 ipsq = ill->ill_phyint->phyint_ipsq; 6252 mutex_enter(&ipsq->ipsq_lock); 6253 ipx = ipsq->ipsq_xop; 6254 mutex_enter(&ipx->ipx_lock); 6255 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6256 goto unlock; 6257 6258 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6259 6260 ipif = ipx->ipx_pending_ipif; 6261 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6262 goto unlock; 6263 6264 switch (ipx->ipx_waitfor) { 6265 case IPIF_DOWN: 6266 if (!ipif_is_quiescent(ipif)) 6267 goto unlock; 6268 break; 6269 case IPIF_FREE: 6270 if (!ipif_is_freeable(ipif)) 6271 goto unlock; 6272 break; 6273 case ILL_DOWN: 6274 if (!ill_is_quiescent(ill)) 6275 goto unlock; 6276 break; 6277 case ILL_FREE: 6278 /* 6279 * ILL_FREE is only for loopback; normal ill teardown waits 6280 * synchronously in ip_modclose() without using ipx_waitfor, 6281 * handled by the cv_broadcast() at the top of this function. 6282 */ 6283 if (!ill_is_freeable(ill)) 6284 goto unlock; 6285 break; 6286 default: 6287 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6288 (void *)ipsq, ipx->ipx_waitfor); 6289 } 6290 6291 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6292 mutex_exit(&ipx->ipx_lock); 6293 mp = ipsq_pending_mp_get(ipsq, &connp); 6294 mutex_exit(&ipsq->ipsq_lock); 6295 mutex_exit(&ill->ill_lock); 6296 6297 ASSERT(mp != NULL); 6298 /* 6299 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6300 * we can only get here when the current operation decides it 6301 * it needs to quiesce via ipsq_pending_mp_add(). 6302 */ 6303 switch (mp->b_datap->db_type) { 6304 case M_PCPROTO: 6305 case M_PROTO: 6306 /* 6307 * For now, only DL_NOTIFY_IND messages can use this facility. 6308 */ 6309 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6310 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6311 6312 switch (dlindp->dl_notification) { 6313 case DL_NOTE_PHYS_ADDR: 6314 qwriter_ip(ill, ill->ill_rq, mp, 6315 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6316 return; 6317 default: 6318 ASSERT(0); 6319 ill_refrele(ill); 6320 } 6321 break; 6322 6323 case M_ERROR: 6324 case M_HANGUP: 6325 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6326 B_TRUE); 6327 return; 6328 6329 case M_IOCTL: 6330 case M_IOCDATA: 6331 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6332 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6333 return; 6334 6335 default: 6336 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6337 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6338 } 6339 return; 6340 unlock: 6341 mutex_exit(&ipsq->ipsq_lock); 6342 mutex_exit(&ipx->ipx_lock); 6343 mutex_exit(&ill->ill_lock); 6344 } 6345 6346 #ifdef DEBUG 6347 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6348 static void 6349 th_trace_rrecord(th_trace_t *th_trace) 6350 { 6351 tr_buf_t *tr_buf; 6352 uint_t lastref; 6353 6354 lastref = th_trace->th_trace_lastref; 6355 lastref++; 6356 if (lastref == TR_BUF_MAX) 6357 lastref = 0; 6358 th_trace->th_trace_lastref = lastref; 6359 tr_buf = &th_trace->th_trbuf[lastref]; 6360 tr_buf->tr_time = lbolt; 6361 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6362 } 6363 6364 static void 6365 th_trace_free(void *value) 6366 { 6367 th_trace_t *th_trace = value; 6368 6369 ASSERT(th_trace->th_refcnt == 0); 6370 kmem_free(th_trace, sizeof (*th_trace)); 6371 } 6372 6373 /* 6374 * Find or create the per-thread hash table used to track object references. 6375 * The ipst argument is NULL if we shouldn't allocate. 6376 * 6377 * Accesses per-thread data, so there's no need to lock here. 6378 */ 6379 static mod_hash_t * 6380 th_trace_gethash(ip_stack_t *ipst) 6381 { 6382 th_hash_t *thh; 6383 6384 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6385 mod_hash_t *mh; 6386 char name[256]; 6387 size_t objsize, rshift; 6388 int retv; 6389 6390 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6391 return (NULL); 6392 (void) snprintf(name, sizeof (name), "th_trace_%p", 6393 (void *)curthread); 6394 6395 /* 6396 * We use mod_hash_create_extended here rather than the more 6397 * obvious mod_hash_create_ptrhash because the latter has a 6398 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6399 * block. 6400 */ 6401 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6402 MAX(sizeof (ire_t), sizeof (nce_t))); 6403 rshift = highbit(objsize); 6404 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6405 th_trace_free, mod_hash_byptr, (void *)rshift, 6406 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6407 if (mh == NULL) { 6408 kmem_free(thh, sizeof (*thh)); 6409 return (NULL); 6410 } 6411 thh->thh_hash = mh; 6412 thh->thh_ipst = ipst; 6413 /* 6414 * We trace ills, ipifs, ires, and nces. All of these are 6415 * per-IP-stack, so the lock on the thread list is as well. 6416 */ 6417 rw_enter(&ip_thread_rwlock, RW_WRITER); 6418 list_insert_tail(&ip_thread_list, thh); 6419 rw_exit(&ip_thread_rwlock); 6420 retv = tsd_set(ip_thread_data, thh); 6421 ASSERT(retv == 0); 6422 } 6423 return (thh != NULL ? thh->thh_hash : NULL); 6424 } 6425 6426 boolean_t 6427 th_trace_ref(const void *obj, ip_stack_t *ipst) 6428 { 6429 th_trace_t *th_trace; 6430 mod_hash_t *mh; 6431 mod_hash_val_t val; 6432 6433 if ((mh = th_trace_gethash(ipst)) == NULL) 6434 return (B_FALSE); 6435 6436 /* 6437 * Attempt to locate the trace buffer for this obj and thread. 6438 * If it does not exist, then allocate a new trace buffer and 6439 * insert into the hash. 6440 */ 6441 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6442 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6443 if (th_trace == NULL) 6444 return (B_FALSE); 6445 6446 th_trace->th_id = curthread; 6447 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6448 (mod_hash_val_t)th_trace) != 0) { 6449 kmem_free(th_trace, sizeof (th_trace_t)); 6450 return (B_FALSE); 6451 } 6452 } else { 6453 th_trace = (th_trace_t *)val; 6454 } 6455 6456 ASSERT(th_trace->th_refcnt >= 0 && 6457 th_trace->th_refcnt < TR_BUF_MAX - 1); 6458 6459 th_trace->th_refcnt++; 6460 th_trace_rrecord(th_trace); 6461 return (B_TRUE); 6462 } 6463 6464 /* 6465 * For the purpose of tracing a reference release, we assume that global 6466 * tracing is always on and that the same thread initiated the reference hold 6467 * is releasing. 6468 */ 6469 void 6470 th_trace_unref(const void *obj) 6471 { 6472 int retv; 6473 mod_hash_t *mh; 6474 th_trace_t *th_trace; 6475 mod_hash_val_t val; 6476 6477 mh = th_trace_gethash(NULL); 6478 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6479 ASSERT(retv == 0); 6480 th_trace = (th_trace_t *)val; 6481 6482 ASSERT(th_trace->th_refcnt > 0); 6483 th_trace->th_refcnt--; 6484 th_trace_rrecord(th_trace); 6485 } 6486 6487 /* 6488 * If tracing has been disabled, then we assume that the reference counts are 6489 * now useless, and we clear them out before destroying the entries. 6490 */ 6491 void 6492 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6493 { 6494 th_hash_t *thh; 6495 mod_hash_t *mh; 6496 mod_hash_val_t val; 6497 th_trace_t *th_trace; 6498 int retv; 6499 6500 rw_enter(&ip_thread_rwlock, RW_READER); 6501 for (thh = list_head(&ip_thread_list); thh != NULL; 6502 thh = list_next(&ip_thread_list, thh)) { 6503 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6504 &val) == 0) { 6505 th_trace = (th_trace_t *)val; 6506 if (trace_disable) 6507 th_trace->th_refcnt = 0; 6508 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6509 ASSERT(retv == 0); 6510 } 6511 } 6512 rw_exit(&ip_thread_rwlock); 6513 } 6514 6515 void 6516 ipif_trace_ref(ipif_t *ipif) 6517 { 6518 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6519 6520 if (ipif->ipif_trace_disable) 6521 return; 6522 6523 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6524 ipif->ipif_trace_disable = B_TRUE; 6525 ipif_trace_cleanup(ipif); 6526 } 6527 } 6528 6529 void 6530 ipif_untrace_ref(ipif_t *ipif) 6531 { 6532 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6533 6534 if (!ipif->ipif_trace_disable) 6535 th_trace_unref(ipif); 6536 } 6537 6538 void 6539 ill_trace_ref(ill_t *ill) 6540 { 6541 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6542 6543 if (ill->ill_trace_disable) 6544 return; 6545 6546 if (!th_trace_ref(ill, ill->ill_ipst)) { 6547 ill->ill_trace_disable = B_TRUE; 6548 ill_trace_cleanup(ill); 6549 } 6550 } 6551 6552 void 6553 ill_untrace_ref(ill_t *ill) 6554 { 6555 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6556 6557 if (!ill->ill_trace_disable) 6558 th_trace_unref(ill); 6559 } 6560 6561 /* 6562 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6563 * failure, ipif_trace_disable is set. 6564 */ 6565 static void 6566 ipif_trace_cleanup(const ipif_t *ipif) 6567 { 6568 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6569 } 6570 6571 /* 6572 * Called when ill is unplumbed or when memory alloc fails. Note that on 6573 * failure, ill_trace_disable is set. 6574 */ 6575 static void 6576 ill_trace_cleanup(const ill_t *ill) 6577 { 6578 th_trace_cleanup(ill, ill->ill_trace_disable); 6579 } 6580 #endif /* DEBUG */ 6581 6582 void 6583 ipif_refhold_locked(ipif_t *ipif) 6584 { 6585 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6586 ipif->ipif_refcnt++; 6587 IPIF_TRACE_REF(ipif); 6588 } 6589 6590 void 6591 ipif_refhold(ipif_t *ipif) 6592 { 6593 ill_t *ill; 6594 6595 ill = ipif->ipif_ill; 6596 mutex_enter(&ill->ill_lock); 6597 ipif->ipif_refcnt++; 6598 IPIF_TRACE_REF(ipif); 6599 mutex_exit(&ill->ill_lock); 6600 } 6601 6602 /* 6603 * Must not be called while holding any locks. Otherwise if this is 6604 * the last reference to be released there is a chance of recursive mutex 6605 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6606 * to restart an ioctl. 6607 */ 6608 void 6609 ipif_refrele(ipif_t *ipif) 6610 { 6611 ill_t *ill; 6612 6613 ill = ipif->ipif_ill; 6614 6615 mutex_enter(&ill->ill_lock); 6616 ASSERT(ipif->ipif_refcnt != 0); 6617 ipif->ipif_refcnt--; 6618 IPIF_UNTRACE_REF(ipif); 6619 if (ipif->ipif_refcnt != 0) { 6620 mutex_exit(&ill->ill_lock); 6621 return; 6622 } 6623 6624 /* Drops the ill_lock */ 6625 ipif_ill_refrele_tail(ill); 6626 } 6627 6628 ipif_t * 6629 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6630 { 6631 ipif_t *ipif; 6632 6633 mutex_enter(&ill->ill_lock); 6634 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6635 ipif != NULL; ipif = ipif->ipif_next) { 6636 if (!IPIF_CAN_LOOKUP(ipif)) 6637 continue; 6638 ipif_refhold_locked(ipif); 6639 mutex_exit(&ill->ill_lock); 6640 return (ipif); 6641 } 6642 mutex_exit(&ill->ill_lock); 6643 return (NULL); 6644 } 6645 6646 /* 6647 * TODO: make this table extendible at run time 6648 * Return a pointer to the mac type info for 'mac_type' 6649 */ 6650 static ip_m_t * 6651 ip_m_lookup(t_uscalar_t mac_type) 6652 { 6653 ip_m_t *ipm; 6654 6655 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6656 if (ipm->ip_m_mac_type == mac_type) 6657 return (ipm); 6658 return (NULL); 6659 } 6660 6661 /* 6662 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6663 * ipif_arg is passed in to associate it with the correct interface. 6664 * We may need to restart this operation if the ipif cannot be looked up 6665 * due to an exclusive operation that is currently in progress. The restart 6666 * entry point is specified by 'func' 6667 */ 6668 int 6669 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6670 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6671 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6672 struct rtsa_s *sp, ip_stack_t *ipst) 6673 { 6674 ire_t *ire; 6675 ire_t *gw_ire = NULL; 6676 ipif_t *ipif = NULL; 6677 boolean_t ipif_refheld = B_FALSE; 6678 uint_t type; 6679 int match_flags = MATCH_IRE_TYPE; 6680 int error; 6681 tsol_gc_t *gc = NULL; 6682 tsol_gcgrp_t *gcgrp = NULL; 6683 boolean_t gcgrp_xtraref = B_FALSE; 6684 6685 ip1dbg(("ip_rt_add:")); 6686 6687 if (ire_arg != NULL) 6688 *ire_arg = NULL; 6689 6690 /* 6691 * If this is the case of RTF_HOST being set, then we set the netmask 6692 * to all ones (regardless if one was supplied). 6693 */ 6694 if (flags & RTF_HOST) 6695 mask = IP_HOST_MASK; 6696 6697 /* 6698 * Prevent routes with a zero gateway from being created (since 6699 * interfaces can currently be plumbed and brought up no assigned 6700 * address). 6701 */ 6702 if (gw_addr == 0) 6703 return (ENETUNREACH); 6704 /* 6705 * Get the ipif, if any, corresponding to the gw_addr 6706 */ 6707 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6708 ipst); 6709 if (ipif != NULL) { 6710 if (IS_VNI(ipif->ipif_ill)) { 6711 ipif_refrele(ipif); 6712 return (EINVAL); 6713 } 6714 ipif_refheld = B_TRUE; 6715 } else if (error == EINPROGRESS) { 6716 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6717 return (EINPROGRESS); 6718 } else { 6719 error = 0; 6720 } 6721 6722 if (ipif != NULL) { 6723 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6724 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6725 } else { 6726 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6727 } 6728 6729 /* 6730 * GateD will attempt to create routes with a loopback interface 6731 * address as the gateway and with RTF_GATEWAY set. We allow 6732 * these routes to be added, but create them as interface routes 6733 * since the gateway is an interface address. 6734 */ 6735 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6736 flags &= ~RTF_GATEWAY; 6737 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6738 mask == IP_HOST_MASK) { 6739 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6740 ALL_ZONES, NULL, match_flags, ipst); 6741 if (ire != NULL) { 6742 ire_refrele(ire); 6743 if (ipif_refheld) 6744 ipif_refrele(ipif); 6745 return (EEXIST); 6746 } 6747 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6748 "for 0x%x\n", (void *)ipif, 6749 ipif->ipif_ire_type, 6750 ntohl(ipif->ipif_lcl_addr))); 6751 ire = ire_create( 6752 (uchar_t *)&dst_addr, /* dest address */ 6753 (uchar_t *)&mask, /* mask */ 6754 (uchar_t *)&ipif->ipif_src_addr, 6755 NULL, /* no gateway */ 6756 &ipif->ipif_mtu, 6757 NULL, 6758 ipif->ipif_rq, /* recv-from queue */ 6759 NULL, /* no send-to queue */ 6760 ipif->ipif_ire_type, /* LOOPBACK */ 6761 ipif, 6762 0, 6763 0, 6764 0, 6765 (ipif->ipif_flags & IPIF_PRIVATE) ? 6766 RTF_PRIVATE : 0, 6767 &ire_uinfo_null, 6768 NULL, 6769 NULL, 6770 ipst); 6771 6772 if (ire == NULL) { 6773 if (ipif_refheld) 6774 ipif_refrele(ipif); 6775 return (ENOMEM); 6776 } 6777 error = ire_add(&ire, q, mp, func, B_FALSE); 6778 if (error == 0) 6779 goto save_ire; 6780 if (ipif_refheld) 6781 ipif_refrele(ipif); 6782 return (error); 6783 6784 } 6785 } 6786 6787 /* 6788 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6789 * and the gateway address provided is one of the system's interface 6790 * addresses. By using the routing socket interface and supplying an 6791 * RTA_IFP sockaddr with an interface index, an alternate method of 6792 * specifying an interface route to be created is available which uses 6793 * the interface index that specifies the outgoing interface rather than 6794 * the address of an outgoing interface (which may not be able to 6795 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6796 * flag, routes can be specified which not only specify the next-hop to 6797 * be used when routing to a certain prefix, but also which outgoing 6798 * interface should be used. 6799 * 6800 * Previously, interfaces would have unique addresses assigned to them 6801 * and so the address assigned to a particular interface could be used 6802 * to identify a particular interface. One exception to this was the 6803 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6804 * 6805 * With the advent of IPv6 and its link-local addresses, this 6806 * restriction was relaxed and interfaces could share addresses between 6807 * themselves. In fact, typically all of the link-local interfaces on 6808 * an IPv6 node or router will have the same link-local address. In 6809 * order to differentiate between these interfaces, the use of an 6810 * interface index is necessary and this index can be carried inside a 6811 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6812 * of using the interface index, however, is that all of the ipif's that 6813 * are part of an ill have the same index and so the RTA_IFP sockaddr 6814 * cannot be used to differentiate between ipif's (or logical 6815 * interfaces) that belong to the same ill (physical interface). 6816 * 6817 * For example, in the following case involving IPv4 interfaces and 6818 * logical interfaces 6819 * 6820 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6821 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6822 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6823 * 6824 * the ipif's corresponding to each of these interface routes can be 6825 * uniquely identified by the "gateway" (actually interface address). 6826 * 6827 * In this case involving multiple IPv6 default routes to a particular 6828 * link-local gateway, the use of RTA_IFP is necessary to specify which 6829 * default route is of interest: 6830 * 6831 * default fe80::123:4567:89ab:cdef U if0 6832 * default fe80::123:4567:89ab:cdef U if1 6833 */ 6834 6835 /* RTF_GATEWAY not set */ 6836 if (!(flags & RTF_GATEWAY)) { 6837 queue_t *stq; 6838 6839 if (sp != NULL) { 6840 ip2dbg(("ip_rt_add: gateway security attributes " 6841 "cannot be set with interface route\n")); 6842 if (ipif_refheld) 6843 ipif_refrele(ipif); 6844 return (EINVAL); 6845 } 6846 6847 /* 6848 * As the interface index specified with the RTA_IFP sockaddr is 6849 * the same for all ipif's off of an ill, the matching logic 6850 * below uses MATCH_IRE_ILL if such an index was specified. 6851 * This means that routes sharing the same prefix when added 6852 * using a RTA_IFP sockaddr must have distinct interface 6853 * indices (namely, they must be on distinct ill's). 6854 * 6855 * On the other hand, since the gateway address will usually be 6856 * different for each ipif on the system, the matching logic 6857 * uses MATCH_IRE_IPIF in the case of a traditional interface 6858 * route. This means that interface routes for the same prefix 6859 * can be created if they belong to distinct ipif's and if a 6860 * RTA_IFP sockaddr is not present. 6861 */ 6862 if (ipif_arg != NULL) { 6863 if (ipif_refheld) { 6864 ipif_refrele(ipif); 6865 ipif_refheld = B_FALSE; 6866 } 6867 ipif = ipif_arg; 6868 match_flags |= MATCH_IRE_ILL; 6869 } else { 6870 /* 6871 * Check the ipif corresponding to the gw_addr 6872 */ 6873 if (ipif == NULL) 6874 return (ENETUNREACH); 6875 match_flags |= MATCH_IRE_IPIF; 6876 } 6877 ASSERT(ipif != NULL); 6878 6879 /* 6880 * We check for an existing entry at this point. 6881 * 6882 * Since a netmask isn't passed in via the ioctl interface 6883 * (SIOCADDRT), we don't check for a matching netmask in that 6884 * case. 6885 */ 6886 if (!ioctl_msg) 6887 match_flags |= MATCH_IRE_MASK; 6888 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6889 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6890 if (ire != NULL) { 6891 ire_refrele(ire); 6892 if (ipif_refheld) 6893 ipif_refrele(ipif); 6894 return (EEXIST); 6895 } 6896 6897 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6898 ? ipif->ipif_rq : ipif->ipif_wq; 6899 6900 /* 6901 * Create a copy of the IRE_LOOPBACK, 6902 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6903 * the modified address and netmask. 6904 */ 6905 ire = ire_create( 6906 (uchar_t *)&dst_addr, 6907 (uint8_t *)&mask, 6908 (uint8_t *)&ipif->ipif_src_addr, 6909 NULL, 6910 &ipif->ipif_mtu, 6911 NULL, 6912 NULL, 6913 stq, 6914 ipif->ipif_net_type, 6915 ipif, 6916 0, 6917 0, 6918 0, 6919 flags, 6920 &ire_uinfo_null, 6921 NULL, 6922 NULL, 6923 ipst); 6924 if (ire == NULL) { 6925 if (ipif_refheld) 6926 ipif_refrele(ipif); 6927 return (ENOMEM); 6928 } 6929 6930 /* 6931 * Some software (for example, GateD and Sun Cluster) attempts 6932 * to create (what amount to) IRE_PREFIX routes with the 6933 * loopback address as the gateway. This is primarily done to 6934 * set up prefixes with the RTF_REJECT flag set (for example, 6935 * when generating aggregate routes.) 6936 * 6937 * If the IRE type (as defined by ipif->ipif_net_type) is 6938 * IRE_LOOPBACK, then we map the request into a 6939 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6940 * these interface routes, by definition, can only be that. 6941 * 6942 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6943 * routine, but rather using ire_create() directly. 6944 * 6945 */ 6946 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6947 ire->ire_type = IRE_IF_NORESOLVER; 6948 ire->ire_flags |= RTF_BLACKHOLE; 6949 } 6950 6951 error = ire_add(&ire, q, mp, func, B_FALSE); 6952 if (error == 0) 6953 goto save_ire; 6954 6955 /* 6956 * In the result of failure, ire_add() will have already 6957 * deleted the ire in question, so there is no need to 6958 * do that here. 6959 */ 6960 if (ipif_refheld) 6961 ipif_refrele(ipif); 6962 return (error); 6963 } 6964 if (ipif_refheld) { 6965 ipif_refrele(ipif); 6966 ipif_refheld = B_FALSE; 6967 } 6968 6969 /* 6970 * Get an interface IRE for the specified gateway. 6971 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6972 * gateway, it is currently unreachable and we fail the request 6973 * accordingly. 6974 */ 6975 ipif = ipif_arg; 6976 if (ipif_arg != NULL) 6977 match_flags |= MATCH_IRE_ILL; 6978 again: 6979 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6980 ALL_ZONES, 0, NULL, match_flags, ipst); 6981 if (gw_ire == NULL) { 6982 /* 6983 * With IPMP, we allow host routes to influence in.mpathd's 6984 * target selection. However, if the test addresses are on 6985 * their own network, the above lookup will fail since the 6986 * underlying IRE_INTERFACEs are marked hidden. So allow 6987 * hidden test IREs to be found and try again. 6988 */ 6989 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6990 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6991 goto again; 6992 } 6993 return (ENETUNREACH); 6994 } 6995 6996 /* 6997 * We create one of three types of IREs as a result of this request 6998 * based on the netmask. A netmask of all ones (which is automatically 6999 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7000 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7001 * created. Otherwise, an IRE_PREFIX route is created for the 7002 * destination prefix. 7003 */ 7004 if (mask == IP_HOST_MASK) 7005 type = IRE_HOST; 7006 else if (mask == 0) 7007 type = IRE_DEFAULT; 7008 else 7009 type = IRE_PREFIX; 7010 7011 /* check for a duplicate entry */ 7012 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7013 NULL, ALL_ZONES, 0, NULL, 7014 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7015 if (ire != NULL) { 7016 ire_refrele(gw_ire); 7017 ire_refrele(ire); 7018 return (EEXIST); 7019 } 7020 7021 /* Security attribute exists */ 7022 if (sp != NULL) { 7023 tsol_gcgrp_addr_t ga; 7024 7025 /* find or create the gateway credentials group */ 7026 ga.ga_af = AF_INET; 7027 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7028 7029 /* we hold reference to it upon success */ 7030 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7031 if (gcgrp == NULL) { 7032 ire_refrele(gw_ire); 7033 return (ENOMEM); 7034 } 7035 7036 /* 7037 * Create and add the security attribute to the group; a 7038 * reference to the group is made upon allocating a new 7039 * entry successfully. If it finds an already-existing 7040 * entry for the security attribute in the group, it simply 7041 * returns it and no new reference is made to the group. 7042 */ 7043 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7044 if (gc == NULL) { 7045 /* release reference held by gcgrp_lookup */ 7046 GCGRP_REFRELE(gcgrp); 7047 ire_refrele(gw_ire); 7048 return (ENOMEM); 7049 } 7050 } 7051 7052 /* Create the IRE. */ 7053 ire = ire_create( 7054 (uchar_t *)&dst_addr, /* dest address */ 7055 (uchar_t *)&mask, /* mask */ 7056 /* src address assigned by the caller? */ 7057 (uchar_t *)(((src_addr != INADDR_ANY) && 7058 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7059 (uchar_t *)&gw_addr, /* gateway address */ 7060 &gw_ire->ire_max_frag, 7061 NULL, /* no src nce */ 7062 NULL, /* no recv-from queue */ 7063 NULL, /* no send-to queue */ 7064 (ushort_t)type, /* IRE type */ 7065 ipif_arg, 7066 0, 7067 0, 7068 0, 7069 flags, 7070 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7071 gc, /* security attribute */ 7072 NULL, 7073 ipst); 7074 7075 /* 7076 * The ire holds a reference to the 'gc' and the 'gc' holds a 7077 * reference to the 'gcgrp'. We can now release the extra reference 7078 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7079 */ 7080 if (gcgrp_xtraref) 7081 GCGRP_REFRELE(gcgrp); 7082 if (ire == NULL) { 7083 if (gc != NULL) 7084 GC_REFRELE(gc); 7085 ire_refrele(gw_ire); 7086 return (ENOMEM); 7087 } 7088 7089 /* 7090 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7091 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7092 */ 7093 7094 /* Add the new IRE. */ 7095 error = ire_add(&ire, q, mp, func, B_FALSE); 7096 if (error != 0) { 7097 /* 7098 * In the result of failure, ire_add() will have already 7099 * deleted the ire in question, so there is no need to 7100 * do that here. 7101 */ 7102 ire_refrele(gw_ire); 7103 return (error); 7104 } 7105 7106 if (flags & RTF_MULTIRT) { 7107 /* 7108 * Invoke the CGTP (multirouting) filtering module 7109 * to add the dst address in the filtering database. 7110 * Replicated inbound packets coming from that address 7111 * will be filtered to discard the duplicates. 7112 * It is not necessary to call the CGTP filter hook 7113 * when the dst address is a broadcast or multicast, 7114 * because an IP source address cannot be a broadcast 7115 * or a multicast. 7116 */ 7117 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7118 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7119 if (ire_dst != NULL) { 7120 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7121 ire_refrele(ire_dst); 7122 goto save_ire; 7123 } 7124 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7125 !CLASSD(ire->ire_addr)) { 7126 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7127 ipst->ips_netstack->netstack_stackid, 7128 ire->ire_addr, 7129 ire->ire_gateway_addr, 7130 ire->ire_src_addr, 7131 gw_ire->ire_src_addr); 7132 if (res != 0) { 7133 ire_refrele(gw_ire); 7134 ire_delete(ire); 7135 return (res); 7136 } 7137 } 7138 } 7139 7140 /* 7141 * Now that the prefix IRE entry has been created, delete any 7142 * existing gateway IRE cache entries as well as any IRE caches 7143 * using the gateway, and force them to be created through 7144 * ip_newroute. 7145 */ 7146 if (gc != NULL) { 7147 ASSERT(gcgrp != NULL); 7148 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7149 } 7150 7151 save_ire: 7152 if (gw_ire != NULL) { 7153 ire_refrele(gw_ire); 7154 } 7155 if (ipif != NULL) { 7156 /* 7157 * Save enough information so that we can recreate the IRE if 7158 * the interface goes down and then up. The metrics associated 7159 * with the route will be saved as well when rts_setmetrics() is 7160 * called after the IRE has been created. In the case where 7161 * memory cannot be allocated, none of this information will be 7162 * saved. 7163 */ 7164 ipif_save_ire(ipif, ire); 7165 } 7166 if (ioctl_msg) 7167 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7168 if (ire_arg != NULL) { 7169 /* 7170 * Store the ire that was successfully added into where ire_arg 7171 * points to so that callers don't have to look it up 7172 * themselves (but they are responsible for ire_refrele()ing 7173 * the ire when they are finished with it). 7174 */ 7175 *ire_arg = ire; 7176 } else { 7177 ire_refrele(ire); /* Held in ire_add */ 7178 } 7179 if (ipif_refheld) 7180 ipif_refrele(ipif); 7181 return (0); 7182 } 7183 7184 /* 7185 * ip_rt_delete is called to delete an IPv4 route. 7186 * ipif_arg is passed in to associate it with the correct interface. 7187 * We may need to restart this operation if the ipif cannot be looked up 7188 * due to an exclusive operation that is currently in progress. The restart 7189 * entry point is specified by 'func' 7190 */ 7191 /* ARGSUSED4 */ 7192 int 7193 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7194 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7195 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7196 { 7197 ire_t *ire = NULL; 7198 ipif_t *ipif; 7199 boolean_t ipif_refheld = B_FALSE; 7200 uint_t type; 7201 uint_t match_flags = MATCH_IRE_TYPE; 7202 int err = 0; 7203 7204 ip1dbg(("ip_rt_delete:")); 7205 /* 7206 * If this is the case of RTF_HOST being set, then we set the netmask 7207 * to all ones. Otherwise, we use the netmask if one was supplied. 7208 */ 7209 if (flags & RTF_HOST) { 7210 mask = IP_HOST_MASK; 7211 match_flags |= MATCH_IRE_MASK; 7212 } else if (rtm_addrs & RTA_NETMASK) { 7213 match_flags |= MATCH_IRE_MASK; 7214 } 7215 7216 /* 7217 * Note that RTF_GATEWAY is never set on a delete, therefore 7218 * we check if the gateway address is one of our interfaces first, 7219 * and fall back on RTF_GATEWAY routes. 7220 * 7221 * This makes it possible to delete an original 7222 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7223 * 7224 * As the interface index specified with the RTA_IFP sockaddr is the 7225 * same for all ipif's off of an ill, the matching logic below uses 7226 * MATCH_IRE_ILL if such an index was specified. This means a route 7227 * sharing the same prefix and interface index as the the route 7228 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7229 * is specified in the request. 7230 * 7231 * On the other hand, since the gateway address will usually be 7232 * different for each ipif on the system, the matching logic 7233 * uses MATCH_IRE_IPIF in the case of a traditional interface 7234 * route. This means that interface routes for the same prefix can be 7235 * uniquely identified if they belong to distinct ipif's and if a 7236 * RTA_IFP sockaddr is not present. 7237 * 7238 * For more detail on specifying routes by gateway address and by 7239 * interface index, see the comments in ip_rt_add(). 7240 */ 7241 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7242 ipst); 7243 if (ipif != NULL) 7244 ipif_refheld = B_TRUE; 7245 else if (err == EINPROGRESS) 7246 return (err); 7247 else 7248 err = 0; 7249 if (ipif != NULL) { 7250 if (ipif_arg != NULL) { 7251 if (ipif_refheld) { 7252 ipif_refrele(ipif); 7253 ipif_refheld = B_FALSE; 7254 } 7255 ipif = ipif_arg; 7256 match_flags |= MATCH_IRE_ILL; 7257 } else { 7258 match_flags |= MATCH_IRE_IPIF; 7259 } 7260 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7261 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7262 ALL_ZONES, NULL, match_flags, ipst); 7263 } 7264 if (ire == NULL) { 7265 ire = ire_ftable_lookup(dst_addr, mask, 0, 7266 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7267 match_flags, ipst); 7268 } 7269 } 7270 7271 if (ire == NULL) { 7272 /* 7273 * At this point, the gateway address is not one of our own 7274 * addresses or a matching interface route was not found. We 7275 * set the IRE type to lookup based on whether 7276 * this is a host route, a default route or just a prefix. 7277 * 7278 * If an ipif_arg was passed in, then the lookup is based on an 7279 * interface index so MATCH_IRE_ILL is added to match_flags. 7280 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7281 * set as the route being looked up is not a traditional 7282 * interface route. 7283 */ 7284 match_flags &= ~MATCH_IRE_IPIF; 7285 match_flags |= MATCH_IRE_GW; 7286 if (ipif_arg != NULL) 7287 match_flags |= MATCH_IRE_ILL; 7288 if (mask == IP_HOST_MASK) 7289 type = IRE_HOST; 7290 else if (mask == 0) 7291 type = IRE_DEFAULT; 7292 else 7293 type = IRE_PREFIX; 7294 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7295 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7296 } 7297 7298 if (ipif_refheld) 7299 ipif_refrele(ipif); 7300 7301 /* ipif is not refheld anymore */ 7302 if (ire == NULL) 7303 return (ESRCH); 7304 7305 if (ire->ire_flags & RTF_MULTIRT) { 7306 /* 7307 * Invoke the CGTP (multirouting) filtering module 7308 * to remove the dst address from the filtering database. 7309 * Packets coming from that address will no longer be 7310 * filtered to remove duplicates. 7311 */ 7312 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7313 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7314 ipst->ips_netstack->netstack_stackid, 7315 ire->ire_addr, ire->ire_gateway_addr); 7316 } 7317 ip_cgtp_bcast_delete(ire, ipst); 7318 } 7319 7320 ipif = ire->ire_ipif; 7321 if (ipif != NULL) 7322 ipif_remove_ire(ipif, ire); 7323 if (ioctl_msg) 7324 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7325 ire_delete(ire); 7326 ire_refrele(ire); 7327 return (err); 7328 } 7329 7330 /* 7331 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7332 */ 7333 /* ARGSUSED */ 7334 int 7335 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7336 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7337 { 7338 ipaddr_t dst_addr; 7339 ipaddr_t gw_addr; 7340 ipaddr_t mask; 7341 int error = 0; 7342 mblk_t *mp1; 7343 struct rtentry *rt; 7344 ipif_t *ipif = NULL; 7345 ip_stack_t *ipst; 7346 7347 ASSERT(q->q_next == NULL); 7348 ipst = CONNQ_TO_IPST(q); 7349 7350 ip1dbg(("ip_siocaddrt:")); 7351 /* Existence of mp1 verified in ip_wput_nondata */ 7352 mp1 = mp->b_cont->b_cont; 7353 rt = (struct rtentry *)mp1->b_rptr; 7354 7355 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7356 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7357 7358 /* 7359 * If the RTF_HOST flag is on, this is a request to assign a gateway 7360 * to a particular host address. In this case, we set the netmask to 7361 * all ones for the particular destination address. Otherwise, 7362 * determine the netmask to be used based on dst_addr and the interfaces 7363 * in use. 7364 */ 7365 if (rt->rt_flags & RTF_HOST) { 7366 mask = IP_HOST_MASK; 7367 } else { 7368 /* 7369 * Note that ip_subnet_mask returns a zero mask in the case of 7370 * default (an all-zeroes address). 7371 */ 7372 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7373 } 7374 7375 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7376 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7377 if (ipif != NULL) 7378 ipif_refrele(ipif); 7379 return (error); 7380 } 7381 7382 /* 7383 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7384 */ 7385 /* ARGSUSED */ 7386 int 7387 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7388 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7389 { 7390 ipaddr_t dst_addr; 7391 ipaddr_t gw_addr; 7392 ipaddr_t mask; 7393 int error; 7394 mblk_t *mp1; 7395 struct rtentry *rt; 7396 ipif_t *ipif = NULL; 7397 ip_stack_t *ipst; 7398 7399 ASSERT(q->q_next == NULL); 7400 ipst = CONNQ_TO_IPST(q); 7401 7402 ip1dbg(("ip_siocdelrt:")); 7403 /* Existence of mp1 verified in ip_wput_nondata */ 7404 mp1 = mp->b_cont->b_cont; 7405 rt = (struct rtentry *)mp1->b_rptr; 7406 7407 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7408 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7409 7410 /* 7411 * If the RTF_HOST flag is on, this is a request to delete a gateway 7412 * to a particular host address. In this case, we set the netmask to 7413 * all ones for the particular destination address. Otherwise, 7414 * determine the netmask to be used based on dst_addr and the interfaces 7415 * in use. 7416 */ 7417 if (rt->rt_flags & RTF_HOST) { 7418 mask = IP_HOST_MASK; 7419 } else { 7420 /* 7421 * Note that ip_subnet_mask returns a zero mask in the case of 7422 * default (an all-zeroes address). 7423 */ 7424 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7425 } 7426 7427 error = ip_rt_delete(dst_addr, mask, gw_addr, 7428 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7429 mp, ip_process_ioctl, ipst); 7430 if (ipif != NULL) 7431 ipif_refrele(ipif); 7432 return (error); 7433 } 7434 7435 /* 7436 * Enqueue the mp onto the ipsq, chained by b_next. 7437 * b_prev stores the function to be executed later, and b_queue the queue 7438 * where this mp originated. 7439 */ 7440 void 7441 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7442 ill_t *pending_ill) 7443 { 7444 conn_t *connp; 7445 ipxop_t *ipx = ipsq->ipsq_xop; 7446 7447 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7448 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7449 ASSERT(func != NULL); 7450 7451 mp->b_queue = q; 7452 mp->b_prev = (void *)func; 7453 mp->b_next = NULL; 7454 7455 switch (type) { 7456 case CUR_OP: 7457 if (ipx->ipx_mptail != NULL) { 7458 ASSERT(ipx->ipx_mphead != NULL); 7459 ipx->ipx_mptail->b_next = mp; 7460 } else { 7461 ASSERT(ipx->ipx_mphead == NULL); 7462 ipx->ipx_mphead = mp; 7463 } 7464 ipx->ipx_mptail = mp; 7465 break; 7466 7467 case NEW_OP: 7468 if (ipsq->ipsq_xopq_mptail != NULL) { 7469 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7470 ipsq->ipsq_xopq_mptail->b_next = mp; 7471 } else { 7472 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7473 ipsq->ipsq_xopq_mphead = mp; 7474 } 7475 ipsq->ipsq_xopq_mptail = mp; 7476 ipx->ipx_ipsq_queued = B_TRUE; 7477 break; 7478 7479 case SWITCH_OP: 7480 ASSERT(ipsq->ipsq_swxop != NULL); 7481 /* only one switch operation is currently allowed */ 7482 ASSERT(ipsq->ipsq_switch_mp == NULL); 7483 ipsq->ipsq_switch_mp = mp; 7484 ipx->ipx_ipsq_queued = B_TRUE; 7485 break; 7486 default: 7487 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7488 } 7489 7490 if (CONN_Q(q) && pending_ill != NULL) { 7491 connp = Q_TO_CONN(q); 7492 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7493 connp->conn_oper_pending_ill = pending_ill; 7494 } 7495 } 7496 7497 /* 7498 * Dequeue the next message that requested exclusive access to this IPSQ's 7499 * xop. Specifically: 7500 * 7501 * 1. If we're still processing the current operation on `ipsq', then 7502 * dequeue the next message for the operation (from ipx_mphead), or 7503 * return NULL if there are no queued messages for the operation. 7504 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7505 * 7506 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7507 * not set) see if the ipsq has requested an xop switch. If so, switch 7508 * `ipsq' to a different xop. Xop switches only happen when joining or 7509 * leaving IPMP groups and require a careful dance -- see the comments 7510 * in-line below for details. If we're leaving a group xop or if we're 7511 * joining a group xop and become writer on it, then we proceed to (3). 7512 * Otherwise, we return NULL and exit the xop. 7513 * 7514 * 3. For each IPSQ in the xop, return any switch operation stored on 7515 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7516 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7517 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7518 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7519 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7520 * each phyint in the group, including the IPMP meta-interface phyint. 7521 */ 7522 static mblk_t * 7523 ipsq_dq(ipsq_t *ipsq) 7524 { 7525 ill_t *illv4, *illv6; 7526 mblk_t *mp; 7527 ipsq_t *xopipsq; 7528 ipsq_t *leftipsq = NULL; 7529 ipxop_t *ipx; 7530 phyint_t *phyi = ipsq->ipsq_phyint; 7531 ip_stack_t *ipst = ipsq->ipsq_ipst; 7532 boolean_t emptied = B_FALSE; 7533 7534 /* 7535 * Grab all the locks we need in the defined order (ill_g_lock -> 7536 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7537 */ 7538 rw_enter(&ipst->ips_ill_g_lock, 7539 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7540 mutex_enter(&ipsq->ipsq_lock); 7541 ipx = ipsq->ipsq_xop; 7542 mutex_enter(&ipx->ipx_lock); 7543 7544 /* 7545 * Dequeue the next message associated with the current exclusive 7546 * operation, if any. 7547 */ 7548 if ((mp = ipx->ipx_mphead) != NULL) { 7549 ipx->ipx_mphead = mp->b_next; 7550 if (ipx->ipx_mphead == NULL) 7551 ipx->ipx_mptail = NULL; 7552 mp->b_next = (void *)ipsq; 7553 goto out; 7554 } 7555 7556 if (ipx->ipx_current_ipif != NULL) 7557 goto empty; 7558 7559 if (ipsq->ipsq_swxop != NULL) { 7560 /* 7561 * The exclusive operation that is now being completed has 7562 * requested a switch to a different xop. This happens 7563 * when an interface joins or leaves an IPMP group. Joins 7564 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7565 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7566 * (phyint_free()), or interface plumb for an ill type 7567 * not in the IPMP group (ip_rput_dlpi_writer()). 7568 * 7569 * Xop switches are not allowed on the IPMP meta-interface. 7570 */ 7571 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7572 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7573 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7574 7575 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7576 /* 7577 * We're switching back to our own xop, so we have two 7578 * xop's to drain/exit: our own, and the group xop 7579 * that we are leaving. 7580 * 7581 * First, pull ourselves out of the group ipsq list. 7582 * This is safe since we're writer on ill_g_lock. 7583 */ 7584 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7585 7586 xopipsq = ipx->ipx_ipsq; 7587 while (xopipsq->ipsq_next != ipsq) 7588 xopipsq = xopipsq->ipsq_next; 7589 7590 xopipsq->ipsq_next = ipsq->ipsq_next; 7591 ipsq->ipsq_next = ipsq; 7592 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7593 ipsq->ipsq_swxop = NULL; 7594 7595 /* 7596 * Second, prepare to exit the group xop. The actual 7597 * ipsq_exit() is done at the end of this function 7598 * since we cannot hold any locks across ipsq_exit(). 7599 * Note that although we drop the group's ipx_lock, no 7600 * threads can proceed since we're still ipx_writer. 7601 */ 7602 leftipsq = xopipsq; 7603 mutex_exit(&ipx->ipx_lock); 7604 7605 /* 7606 * Third, set ipx to point to our own xop (which was 7607 * inactive and therefore can be entered). 7608 */ 7609 ipx = ipsq->ipsq_xop; 7610 mutex_enter(&ipx->ipx_lock); 7611 ASSERT(ipx->ipx_writer == NULL); 7612 ASSERT(ipx->ipx_current_ipif == NULL); 7613 } else { 7614 /* 7615 * We're switching from our own xop to a group xop. 7616 * The requestor of the switch must ensure that the 7617 * group xop cannot go away (e.g. by ensuring the 7618 * phyint associated with the xop cannot go away). 7619 * 7620 * If we can become writer on our new xop, then we'll 7621 * do the drain. Otherwise, the current writer of our 7622 * new xop will do the drain when it exits. 7623 * 7624 * First, splice ourselves into the group IPSQ list. 7625 * This is safe since we're writer on ill_g_lock. 7626 */ 7627 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7628 7629 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7630 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7631 xopipsq = xopipsq->ipsq_next; 7632 7633 xopipsq->ipsq_next = ipsq; 7634 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7635 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7636 ipsq->ipsq_swxop = NULL; 7637 7638 /* 7639 * Second, exit our own xop, since it's now unused. 7640 * This is safe since we've got the only reference. 7641 */ 7642 ASSERT(ipx->ipx_writer == curthread); 7643 ipx->ipx_writer = NULL; 7644 VERIFY(--ipx->ipx_reentry_cnt == 0); 7645 ipx->ipx_ipsq_queued = B_FALSE; 7646 mutex_exit(&ipx->ipx_lock); 7647 7648 /* 7649 * Third, set ipx to point to our new xop, and check 7650 * if we can become writer on it. If we cannot, then 7651 * the current writer will drain the IPSQ group when 7652 * it exits. Our ipsq_xop is guaranteed to be stable 7653 * because we're still holding ipsq_lock. 7654 */ 7655 ipx = ipsq->ipsq_xop; 7656 mutex_enter(&ipx->ipx_lock); 7657 if (ipx->ipx_writer != NULL || 7658 ipx->ipx_current_ipif != NULL) { 7659 goto out; 7660 } 7661 } 7662 7663 /* 7664 * Fourth, become writer on our new ipx before we continue 7665 * with the drain. Note that we never dropped ipsq_lock 7666 * above, so no other thread could've raced with us to 7667 * become writer first. Also, we're holding ipx_lock, so 7668 * no other thread can examine the ipx right now. 7669 */ 7670 ASSERT(ipx->ipx_current_ipif == NULL); 7671 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7672 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7673 ipx->ipx_writer = curthread; 7674 ipx->ipx_forced = B_FALSE; 7675 #ifdef DEBUG 7676 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7677 #endif 7678 } 7679 7680 xopipsq = ipsq; 7681 do { 7682 /* 7683 * So that other operations operate on a consistent and 7684 * complete phyint, a switch message on an IPSQ must be 7685 * handled prior to any other operations on that IPSQ. 7686 */ 7687 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7688 xopipsq->ipsq_switch_mp = NULL; 7689 ASSERT(mp->b_next == NULL); 7690 mp->b_next = (void *)xopipsq; 7691 goto out; 7692 } 7693 7694 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7695 xopipsq->ipsq_xopq_mphead = mp->b_next; 7696 if (xopipsq->ipsq_xopq_mphead == NULL) 7697 xopipsq->ipsq_xopq_mptail = NULL; 7698 mp->b_next = (void *)xopipsq; 7699 goto out; 7700 } 7701 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7702 empty: 7703 /* 7704 * There are no messages. Further, we are holding ipx_lock, hence no 7705 * new messages can end up on any IPSQ in the xop. 7706 */ 7707 ipx->ipx_writer = NULL; 7708 ipx->ipx_forced = B_FALSE; 7709 VERIFY(--ipx->ipx_reentry_cnt == 0); 7710 ipx->ipx_ipsq_queued = B_FALSE; 7711 emptied = B_TRUE; 7712 #ifdef DEBUG 7713 ipx->ipx_depth = 0; 7714 #endif 7715 out: 7716 mutex_exit(&ipx->ipx_lock); 7717 mutex_exit(&ipsq->ipsq_lock); 7718 7719 /* 7720 * If we completely emptied the xop, then wake up any threads waiting 7721 * to enter any of the IPSQ's associated with it. 7722 */ 7723 if (emptied) { 7724 xopipsq = ipsq; 7725 do { 7726 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7727 continue; 7728 7729 illv4 = phyi->phyint_illv4; 7730 illv6 = phyi->phyint_illv6; 7731 7732 GRAB_ILL_LOCKS(illv4, illv6); 7733 if (illv4 != NULL) 7734 cv_broadcast(&illv4->ill_cv); 7735 if (illv6 != NULL) 7736 cv_broadcast(&illv6->ill_cv); 7737 RELEASE_ILL_LOCKS(illv4, illv6); 7738 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7739 } 7740 rw_exit(&ipst->ips_ill_g_lock); 7741 7742 /* 7743 * Now that all locks are dropped, exit the IPSQ we left. 7744 */ 7745 if (leftipsq != NULL) 7746 ipsq_exit(leftipsq); 7747 7748 return (mp); 7749 } 7750 7751 /* 7752 * Enter the ipsq corresponding to ill, by waiting synchronously till 7753 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7754 * will have to drain completely before ipsq_enter returns success. 7755 * ipx_current_ipif will be set if some exclusive op is in progress, 7756 * and the ipsq_exit logic will start the next enqueued op after 7757 * completion of the current op. If 'force' is used, we don't wait 7758 * for the enqueued ops. This is needed when a conn_close wants to 7759 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7760 * of an ill can also use this option. But we dont' use it currently. 7761 */ 7762 #define ENTER_SQ_WAIT_TICKS 100 7763 boolean_t 7764 ipsq_enter(ill_t *ill, boolean_t force, int type) 7765 { 7766 ipsq_t *ipsq; 7767 ipxop_t *ipx; 7768 boolean_t waited_enough = B_FALSE; 7769 7770 /* 7771 * Note that the relationship between ill and ipsq is fixed as long as 7772 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7773 * relationship between the IPSQ and xop cannot change. However, 7774 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7775 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7776 * waking up all ills in the xop when it becomes available. 7777 */ 7778 mutex_enter(&ill->ill_lock); 7779 for (;;) { 7780 if (ill->ill_state_flags & ILL_CONDEMNED) { 7781 mutex_exit(&ill->ill_lock); 7782 return (B_FALSE); 7783 } 7784 7785 ipsq = ill->ill_phyint->phyint_ipsq; 7786 mutex_enter(&ipsq->ipsq_lock); 7787 ipx = ipsq->ipsq_xop; 7788 mutex_enter(&ipx->ipx_lock); 7789 7790 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7791 ipx->ipx_current_ipif == NULL || waited_enough)) 7792 break; 7793 7794 if (!force || ipx->ipx_writer != NULL) { 7795 mutex_exit(&ipx->ipx_lock); 7796 mutex_exit(&ipsq->ipsq_lock); 7797 cv_wait(&ill->ill_cv, &ill->ill_lock); 7798 } else { 7799 mutex_exit(&ipx->ipx_lock); 7800 mutex_exit(&ipsq->ipsq_lock); 7801 (void) cv_timedwait(&ill->ill_cv, 7802 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7803 waited_enough = B_TRUE; 7804 } 7805 } 7806 7807 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7808 ASSERT(ipx->ipx_reentry_cnt == 0); 7809 ipx->ipx_writer = curthread; 7810 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7811 ipx->ipx_reentry_cnt++; 7812 #ifdef DEBUG 7813 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7814 #endif 7815 mutex_exit(&ipx->ipx_lock); 7816 mutex_exit(&ipsq->ipsq_lock); 7817 mutex_exit(&ill->ill_lock); 7818 return (B_TRUE); 7819 } 7820 7821 boolean_t 7822 ill_perim_enter(ill_t *ill) 7823 { 7824 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7825 } 7826 7827 void 7828 ill_perim_exit(ill_t *ill) 7829 { 7830 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7831 } 7832 7833 /* 7834 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7835 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7836 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7837 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7838 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7839 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7840 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7841 * up the interface) and are enqueued in ipx_mphead. 7842 * 7843 * If a thread does not want to reenter the ipsq when it is already writer, 7844 * it must make sure that the specified reentry point to be called later 7845 * when the ipsq is empty, nor any code path starting from the specified reentry 7846 * point must never ever try to enter the ipsq again. Otherwise it can lead 7847 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7848 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7849 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7850 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7851 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7852 * ioctl if the current ioctl has completed. If the current ioctl is still 7853 * in progress it simply returns. The current ioctl could be waiting for 7854 * a response from another module (arp or the driver or could be waiting for 7855 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7856 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7857 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7858 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7859 * all associated DLPI operations have completed. 7860 */ 7861 7862 /* 7863 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7864 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7865 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7866 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7867 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7868 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7869 */ 7870 ipsq_t * 7871 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7872 ipsq_func_t func, int type, boolean_t reentry_ok) 7873 { 7874 ipsq_t *ipsq; 7875 ipxop_t *ipx; 7876 7877 /* Only 1 of ipif or ill can be specified */ 7878 ASSERT((ipif != NULL) ^ (ill != NULL)); 7879 if (ipif != NULL) 7880 ill = ipif->ipif_ill; 7881 7882 /* 7883 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7884 * ipx of an ipsq can't change when ipsq_lock is held. 7885 */ 7886 GRAB_CONN_LOCK(q); 7887 mutex_enter(&ill->ill_lock); 7888 ipsq = ill->ill_phyint->phyint_ipsq; 7889 mutex_enter(&ipsq->ipsq_lock); 7890 ipx = ipsq->ipsq_xop; 7891 mutex_enter(&ipx->ipx_lock); 7892 7893 /* 7894 * 1. Enter the ipsq if we are already writer and reentry is ok. 7895 * (Note: If the caller does not specify reentry_ok then neither 7896 * 'func' nor any of its callees must ever attempt to enter the ipsq 7897 * again. Otherwise it can lead to an infinite loop 7898 * 2. Enter the ipsq if there is no current writer and this attempted 7899 * entry is part of the current operation 7900 * 3. Enter the ipsq if there is no current writer and this is a new 7901 * operation and the operation queue is empty and there is no 7902 * operation currently in progress 7903 */ 7904 if ((ipx->ipx_writer == curthread && reentry_ok) || 7905 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7906 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7907 /* Success. */ 7908 ipx->ipx_reentry_cnt++; 7909 ipx->ipx_writer = curthread; 7910 ipx->ipx_forced = B_FALSE; 7911 mutex_exit(&ipx->ipx_lock); 7912 mutex_exit(&ipsq->ipsq_lock); 7913 mutex_exit(&ill->ill_lock); 7914 RELEASE_CONN_LOCK(q); 7915 #ifdef DEBUG 7916 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7917 #endif 7918 return (ipsq); 7919 } 7920 7921 if (func != NULL) 7922 ipsq_enq(ipsq, q, mp, func, type, ill); 7923 7924 mutex_exit(&ipx->ipx_lock); 7925 mutex_exit(&ipsq->ipsq_lock); 7926 mutex_exit(&ill->ill_lock); 7927 RELEASE_CONN_LOCK(q); 7928 return (NULL); 7929 } 7930 7931 /* 7932 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7933 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7934 * cannot be entered, the mp is queued for completion. 7935 */ 7936 void 7937 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7938 boolean_t reentry_ok) 7939 { 7940 ipsq_t *ipsq; 7941 7942 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7943 7944 /* 7945 * Drop the caller's refhold on the ill. This is safe since we either 7946 * entered the IPSQ (and thus are exclusive), or failed to enter the 7947 * IPSQ, in which case we return without accessing ill anymore. This 7948 * is needed because func needs to see the correct refcount. 7949 * e.g. removeif can work only then. 7950 */ 7951 ill_refrele(ill); 7952 if (ipsq != NULL) { 7953 (*func)(ipsq, q, mp, NULL); 7954 ipsq_exit(ipsq); 7955 } 7956 } 7957 7958 /* 7959 * Exit the specified IPSQ. If this is the final exit on it then drain it 7960 * prior to exiting. Caller must be writer on the specified IPSQ. 7961 */ 7962 void 7963 ipsq_exit(ipsq_t *ipsq) 7964 { 7965 mblk_t *mp; 7966 ipsq_t *mp_ipsq; 7967 queue_t *q; 7968 phyint_t *phyi; 7969 ipsq_func_t func; 7970 7971 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7972 7973 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7974 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7975 ipsq->ipsq_xop->ipx_reentry_cnt--; 7976 return; 7977 } 7978 7979 for (;;) { 7980 phyi = ipsq->ipsq_phyint; 7981 mp = ipsq_dq(ipsq); 7982 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7983 7984 /* 7985 * If we've changed to a new IPSQ, and the phyint associated 7986 * with the old one has gone away, free the old IPSQ. Note 7987 * that this cannot happen while the IPSQ is in a group. 7988 */ 7989 if (mp_ipsq != ipsq && phyi == NULL) { 7990 ASSERT(ipsq->ipsq_next == ipsq); 7991 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7992 ipsq_delete(ipsq); 7993 } 7994 7995 if (mp == NULL) 7996 break; 7997 7998 q = mp->b_queue; 7999 func = (ipsq_func_t)mp->b_prev; 8000 ipsq = mp_ipsq; 8001 mp->b_next = mp->b_prev = NULL; 8002 mp->b_queue = NULL; 8003 8004 /* 8005 * If 'q' is an conn queue, it is valid, since we did a 8006 * a refhold on the conn at the start of the ioctl. 8007 * If 'q' is an ill queue, it is valid, since close of an 8008 * ill will clean up its IPSQ. 8009 */ 8010 (*func)(ipsq, q, mp, NULL); 8011 } 8012 } 8013 8014 /* 8015 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8016 * and `ioccmd'. 8017 */ 8018 void 8019 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8020 { 8021 ipxop_t *ipx = ipsq->ipsq_xop; 8022 8023 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8024 ASSERT(ipx->ipx_current_ipif == NULL); 8025 ASSERT(ipx->ipx_current_ioctl == 0); 8026 8027 ipx->ipx_current_done = B_FALSE; 8028 ipx->ipx_current_ioctl = ioccmd; 8029 mutex_enter(&ipx->ipx_lock); 8030 ipx->ipx_current_ipif = ipif; 8031 mutex_exit(&ipx->ipx_lock); 8032 } 8033 8034 /* 8035 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8036 * the next exclusive operation to begin once we ipsq_exit(). However, if 8037 * pending DLPI operations remain, then we will wait for the queue to drain 8038 * before allowing the next exclusive operation to begin. This ensures that 8039 * DLPI operations from one exclusive operation are never improperly processed 8040 * as part of a subsequent exclusive operation. 8041 */ 8042 void 8043 ipsq_current_finish(ipsq_t *ipsq) 8044 { 8045 ipxop_t *ipx = ipsq->ipsq_xop; 8046 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8047 ipif_t *ipif = ipx->ipx_current_ipif; 8048 8049 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8050 8051 /* 8052 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 8053 * (but in that case, IPIF_CHANGING will already be clear and no 8054 * pending DLPI messages can remain). 8055 */ 8056 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 8057 ill_t *ill = ipif->ipif_ill; 8058 8059 mutex_enter(&ill->ill_lock); 8060 dlpi_pending = ill->ill_dlpi_pending; 8061 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8062 mutex_exit(&ill->ill_lock); 8063 } 8064 8065 ASSERT(!ipx->ipx_current_done); 8066 ipx->ipx_current_done = B_TRUE; 8067 ipx->ipx_current_ioctl = 0; 8068 if (dlpi_pending == DL_PRIM_INVAL) { 8069 mutex_enter(&ipx->ipx_lock); 8070 ipx->ipx_current_ipif = NULL; 8071 mutex_exit(&ipx->ipx_lock); 8072 } 8073 } 8074 8075 /* 8076 * The ill is closing. Flush all messages on the ipsq that originated 8077 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8078 * for this ill since ipsq_enter could not have entered until then. 8079 * New messages can't be queued since the CONDEMNED flag is set. 8080 */ 8081 static void 8082 ipsq_flush(ill_t *ill) 8083 { 8084 queue_t *q; 8085 mblk_t *prev; 8086 mblk_t *mp; 8087 mblk_t *mp_next; 8088 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8089 8090 ASSERT(IAM_WRITER_ILL(ill)); 8091 8092 /* 8093 * Flush any messages sent up by the driver. 8094 */ 8095 mutex_enter(&ipx->ipx_lock); 8096 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8097 mp_next = mp->b_next; 8098 q = mp->b_queue; 8099 if (q == ill->ill_rq || q == ill->ill_wq) { 8100 /* dequeue mp */ 8101 if (prev == NULL) 8102 ipx->ipx_mphead = mp->b_next; 8103 else 8104 prev->b_next = mp->b_next; 8105 if (ipx->ipx_mptail == mp) { 8106 ASSERT(mp_next == NULL); 8107 ipx->ipx_mptail = prev; 8108 } 8109 inet_freemsg(mp); 8110 } else { 8111 prev = mp; 8112 } 8113 } 8114 mutex_exit(&ipx->ipx_lock); 8115 (void) ipsq_pending_mp_cleanup(ill, NULL); 8116 ipsq_xopq_mp_cleanup(ill, NULL); 8117 ill_pending_mp_cleanup(ill); 8118 } 8119 8120 /* 8121 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8122 * refhold and return the associated ipif 8123 */ 8124 /* ARGSUSED */ 8125 int 8126 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8127 cmd_info_t *ci, ipsq_func_t func) 8128 { 8129 boolean_t exists; 8130 struct iftun_req *ta; 8131 ipif_t *ipif; 8132 ill_t *ill; 8133 boolean_t isv6; 8134 mblk_t *mp1; 8135 int error; 8136 conn_t *connp; 8137 ip_stack_t *ipst; 8138 8139 /* Existence verified in ip_wput_nondata */ 8140 mp1 = mp->b_cont->b_cont; 8141 ta = (struct iftun_req *)mp1->b_rptr; 8142 /* 8143 * Null terminate the string to protect against buffer 8144 * overrun. String was generated by user code and may not 8145 * be trusted. 8146 */ 8147 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8148 8149 connp = Q_TO_CONN(q); 8150 isv6 = connp->conn_af_isv6; 8151 ipst = connp->conn_netstack->netstack_ip; 8152 8153 /* Disallows implicit create */ 8154 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8155 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8156 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8157 if (ipif == NULL) 8158 return (error); 8159 8160 if (ipif->ipif_id != 0) { 8161 /* 8162 * We really don't want to set/get tunnel parameters 8163 * on virtual tunnel interfaces. Only allow the 8164 * base tunnel to do these. 8165 */ 8166 ipif_refrele(ipif); 8167 return (EINVAL); 8168 } 8169 8170 /* 8171 * Send down to tunnel mod for ioctl processing. 8172 * Will finish ioctl in ip_rput_other(). 8173 */ 8174 ill = ipif->ipif_ill; 8175 if (ill->ill_net_type == IRE_LOOPBACK) { 8176 ipif_refrele(ipif); 8177 return (EOPNOTSUPP); 8178 } 8179 8180 if (ill->ill_wq == NULL) { 8181 ipif_refrele(ipif); 8182 return (ENXIO); 8183 } 8184 /* 8185 * Mark the ioctl as coming from an IPv6 interface for 8186 * tun's convenience. 8187 */ 8188 if (ill->ill_isv6) 8189 ta->ifta_flags |= 0x80000000; 8190 ci->ci_ipif = ipif; 8191 return (0); 8192 } 8193 8194 /* 8195 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8196 * and return the associated ipif. 8197 * Return value: 8198 * Non zero: An error has occurred. ci may not be filled out. 8199 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8200 * a held ipif in ci.ci_ipif. 8201 */ 8202 int 8203 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8204 cmd_info_t *ci, ipsq_func_t func) 8205 { 8206 char *name; 8207 struct ifreq *ifr; 8208 struct lifreq *lifr; 8209 ipif_t *ipif = NULL; 8210 ill_t *ill; 8211 conn_t *connp; 8212 boolean_t isv6; 8213 boolean_t exists; 8214 int err; 8215 mblk_t *mp1; 8216 zoneid_t zoneid; 8217 ip_stack_t *ipst; 8218 8219 if (q->q_next != NULL) { 8220 ill = (ill_t *)q->q_ptr; 8221 isv6 = ill->ill_isv6; 8222 connp = NULL; 8223 zoneid = ALL_ZONES; 8224 ipst = ill->ill_ipst; 8225 } else { 8226 ill = NULL; 8227 connp = Q_TO_CONN(q); 8228 isv6 = connp->conn_af_isv6; 8229 zoneid = connp->conn_zoneid; 8230 if (zoneid == GLOBAL_ZONEID) { 8231 /* global zone can access ipifs in all zones */ 8232 zoneid = ALL_ZONES; 8233 } 8234 ipst = connp->conn_netstack->netstack_ip; 8235 } 8236 8237 /* Has been checked in ip_wput_nondata */ 8238 mp1 = mp->b_cont->b_cont; 8239 8240 if (ipip->ipi_cmd_type == IF_CMD) { 8241 /* This a old style SIOC[GS]IF* command */ 8242 ifr = (struct ifreq *)mp1->b_rptr; 8243 /* 8244 * Null terminate the string to protect against buffer 8245 * overrun. String was generated by user code and may not 8246 * be trusted. 8247 */ 8248 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8249 name = ifr->ifr_name; 8250 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8251 ci->ci_sin6 = NULL; 8252 ci->ci_lifr = (struct lifreq *)ifr; 8253 } else { 8254 /* This a new style SIOC[GS]LIF* command */ 8255 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8256 lifr = (struct lifreq *)mp1->b_rptr; 8257 /* 8258 * Null terminate the string to protect against buffer 8259 * overrun. String was generated by user code and may not 8260 * be trusted. 8261 */ 8262 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8263 name = lifr->lifr_name; 8264 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8265 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8266 ci->ci_lifr = lifr; 8267 } 8268 8269 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8270 /* 8271 * The ioctl will be failed if the ioctl comes down 8272 * an conn stream 8273 */ 8274 if (ill == NULL) { 8275 /* 8276 * Not an ill queue, return EINVAL same as the 8277 * old error code. 8278 */ 8279 return (ENXIO); 8280 } 8281 ipif = ill->ill_ipif; 8282 ipif_refhold(ipif); 8283 } else { 8284 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8285 &exists, isv6, zoneid, 8286 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8287 ipst); 8288 if (ipif == NULL) { 8289 if (err == EINPROGRESS) 8290 return (err); 8291 err = 0; /* Ensure we don't use it below */ 8292 } 8293 } 8294 8295 /* 8296 * Old style [GS]IFCMD does not admit IPv6 ipif 8297 */ 8298 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8299 ipif_refrele(ipif); 8300 return (ENXIO); 8301 } 8302 8303 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8304 name[0] == '\0') { 8305 /* 8306 * Handle a or a SIOC?IF* with a null name 8307 * during plumb (on the ill queue before the I_PLINK). 8308 */ 8309 ipif = ill->ill_ipif; 8310 ipif_refhold(ipif); 8311 } 8312 8313 if (ipif == NULL) 8314 return (ENXIO); 8315 8316 ci->ci_ipif = ipif; 8317 return (0); 8318 } 8319 8320 /* 8321 * Return the total number of ipifs. 8322 */ 8323 static uint_t 8324 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8325 { 8326 uint_t numifs = 0; 8327 ill_t *ill; 8328 ill_walk_context_t ctx; 8329 ipif_t *ipif; 8330 8331 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8332 ill = ILL_START_WALK_V4(&ctx, ipst); 8333 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8334 if (IS_UNDER_IPMP(ill)) 8335 continue; 8336 for (ipif = ill->ill_ipif; ipif != NULL; 8337 ipif = ipif->ipif_next) { 8338 if (ipif->ipif_zoneid == zoneid || 8339 ipif->ipif_zoneid == ALL_ZONES) 8340 numifs++; 8341 } 8342 } 8343 rw_exit(&ipst->ips_ill_g_lock); 8344 return (numifs); 8345 } 8346 8347 /* 8348 * Return the total number of ipifs. 8349 */ 8350 static uint_t 8351 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8352 { 8353 uint_t numifs = 0; 8354 ill_t *ill; 8355 ipif_t *ipif; 8356 ill_walk_context_t ctx; 8357 8358 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8359 8360 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8361 if (family == AF_INET) 8362 ill = ILL_START_WALK_V4(&ctx, ipst); 8363 else if (family == AF_INET6) 8364 ill = ILL_START_WALK_V6(&ctx, ipst); 8365 else 8366 ill = ILL_START_WALK_ALL(&ctx, ipst); 8367 8368 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8369 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8370 continue; 8371 8372 for (ipif = ill->ill_ipif; ipif != NULL; 8373 ipif = ipif->ipif_next) { 8374 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8375 !(lifn_flags & LIFC_NOXMIT)) 8376 continue; 8377 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8378 !(lifn_flags & LIFC_TEMPORARY)) 8379 continue; 8380 if (((ipif->ipif_flags & 8381 (IPIF_NOXMIT|IPIF_NOLOCAL| 8382 IPIF_DEPRECATED)) || 8383 IS_LOOPBACK(ill) || 8384 !(ipif->ipif_flags & IPIF_UP)) && 8385 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8386 continue; 8387 8388 if (zoneid != ipif->ipif_zoneid && 8389 ipif->ipif_zoneid != ALL_ZONES && 8390 (zoneid != GLOBAL_ZONEID || 8391 !(lifn_flags & LIFC_ALLZONES))) 8392 continue; 8393 8394 numifs++; 8395 } 8396 } 8397 rw_exit(&ipst->ips_ill_g_lock); 8398 return (numifs); 8399 } 8400 8401 uint_t 8402 ip_get_lifsrcofnum(ill_t *ill) 8403 { 8404 uint_t numifs = 0; 8405 ill_t *ill_head = ill; 8406 ip_stack_t *ipst = ill->ill_ipst; 8407 8408 /* 8409 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8410 * other thread may be trying to relink the ILLs in this usesrc group 8411 * and adjusting the ill_usesrc_grp_next pointers 8412 */ 8413 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8414 if ((ill->ill_usesrc_ifindex == 0) && 8415 (ill->ill_usesrc_grp_next != NULL)) { 8416 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8417 ill = ill->ill_usesrc_grp_next) 8418 numifs++; 8419 } 8420 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8421 8422 return (numifs); 8423 } 8424 8425 /* Null values are passed in for ipif, sin, and ifreq */ 8426 /* ARGSUSED */ 8427 int 8428 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8429 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8430 { 8431 int *nump; 8432 conn_t *connp = Q_TO_CONN(q); 8433 8434 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8435 8436 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8437 nump = (int *)mp->b_cont->b_cont->b_rptr; 8438 8439 *nump = ip_get_numifs(connp->conn_zoneid, 8440 connp->conn_netstack->netstack_ip); 8441 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8442 return (0); 8443 } 8444 8445 /* Null values are passed in for ipif, sin, and ifreq */ 8446 /* ARGSUSED */ 8447 int 8448 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8449 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8450 { 8451 struct lifnum *lifn; 8452 mblk_t *mp1; 8453 conn_t *connp = Q_TO_CONN(q); 8454 8455 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8456 8457 /* Existence checked in ip_wput_nondata */ 8458 mp1 = mp->b_cont->b_cont; 8459 8460 lifn = (struct lifnum *)mp1->b_rptr; 8461 switch (lifn->lifn_family) { 8462 case AF_UNSPEC: 8463 case AF_INET: 8464 case AF_INET6: 8465 break; 8466 default: 8467 return (EAFNOSUPPORT); 8468 } 8469 8470 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8471 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8472 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8473 return (0); 8474 } 8475 8476 /* ARGSUSED */ 8477 int 8478 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8479 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8480 { 8481 STRUCT_HANDLE(ifconf, ifc); 8482 mblk_t *mp1; 8483 struct iocblk *iocp; 8484 struct ifreq *ifr; 8485 ill_walk_context_t ctx; 8486 ill_t *ill; 8487 ipif_t *ipif; 8488 struct sockaddr_in *sin; 8489 int32_t ifclen; 8490 zoneid_t zoneid; 8491 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8492 8493 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8494 8495 ip1dbg(("ip_sioctl_get_ifconf")); 8496 /* Existence verified in ip_wput_nondata */ 8497 mp1 = mp->b_cont->b_cont; 8498 iocp = (struct iocblk *)mp->b_rptr; 8499 zoneid = Q_TO_CONN(q)->conn_zoneid; 8500 8501 /* 8502 * The original SIOCGIFCONF passed in a struct ifconf which specified 8503 * the user buffer address and length into which the list of struct 8504 * ifreqs was to be copied. Since AT&T Streams does not seem to 8505 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8506 * the SIOCGIFCONF operation was redefined to simply provide 8507 * a large output buffer into which we are supposed to jam the ifreq 8508 * array. The same ioctl command code was used, despite the fact that 8509 * both the applications and the kernel code had to change, thus making 8510 * it impossible to support both interfaces. 8511 * 8512 * For reasons not good enough to try to explain, the following 8513 * algorithm is used for deciding what to do with one of these: 8514 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8515 * form with the output buffer coming down as the continuation message. 8516 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8517 * and we have to copy in the ifconf structure to find out how big the 8518 * output buffer is and where to copy out to. Sure no problem... 8519 * 8520 */ 8521 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8522 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8523 int numifs = 0; 8524 size_t ifc_bufsize; 8525 8526 /* 8527 * Must be (better be!) continuation of a TRANSPARENT 8528 * IOCTL. We just copied in the ifconf structure. 8529 */ 8530 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8531 (struct ifconf *)mp1->b_rptr); 8532 8533 /* 8534 * Allocate a buffer to hold requested information. 8535 * 8536 * If ifc_len is larger than what is needed, we only 8537 * allocate what we will use. 8538 * 8539 * If ifc_len is smaller than what is needed, return 8540 * EINVAL. 8541 * 8542 * XXX: the ill_t structure can hava 2 counters, for 8543 * v4 and v6 (not just ill_ipif_up_count) to store the 8544 * number of interfaces for a device, so we don't need 8545 * to count them here... 8546 */ 8547 numifs = ip_get_numifs(zoneid, ipst); 8548 8549 ifclen = STRUCT_FGET(ifc, ifc_len); 8550 ifc_bufsize = numifs * sizeof (struct ifreq); 8551 if (ifc_bufsize > ifclen) { 8552 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8553 /* old behaviour */ 8554 return (EINVAL); 8555 } else { 8556 ifc_bufsize = ifclen; 8557 } 8558 } 8559 8560 mp1 = mi_copyout_alloc(q, mp, 8561 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8562 if (mp1 == NULL) 8563 return (ENOMEM); 8564 8565 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8566 } 8567 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8568 /* 8569 * the SIOCGIFCONF ioctl only knows about 8570 * IPv4 addresses, so don't try to tell 8571 * it about interfaces with IPv6-only 8572 * addresses. (Last parm 'isv6' is B_FALSE) 8573 */ 8574 8575 ifr = (struct ifreq *)mp1->b_rptr; 8576 8577 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8578 ill = ILL_START_WALK_V4(&ctx, ipst); 8579 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8580 if (IS_UNDER_IPMP(ill)) 8581 continue; 8582 for (ipif = ill->ill_ipif; ipif != NULL; 8583 ipif = ipif->ipif_next) { 8584 if (zoneid != ipif->ipif_zoneid && 8585 ipif->ipif_zoneid != ALL_ZONES) 8586 continue; 8587 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8588 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8589 /* old behaviour */ 8590 rw_exit(&ipst->ips_ill_g_lock); 8591 return (EINVAL); 8592 } else { 8593 goto if_copydone; 8594 } 8595 } 8596 ipif_get_name(ipif, ifr->ifr_name, 8597 sizeof (ifr->ifr_name)); 8598 sin = (sin_t *)&ifr->ifr_addr; 8599 *sin = sin_null; 8600 sin->sin_family = AF_INET; 8601 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8602 ifr++; 8603 } 8604 } 8605 if_copydone: 8606 rw_exit(&ipst->ips_ill_g_lock); 8607 mp1->b_wptr = (uchar_t *)ifr; 8608 8609 if (STRUCT_BUF(ifc) != NULL) { 8610 STRUCT_FSET(ifc, ifc_len, 8611 (int)((uchar_t *)ifr - mp1->b_rptr)); 8612 } 8613 return (0); 8614 } 8615 8616 /* 8617 * Get the interfaces using the address hosted on the interface passed in, 8618 * as a source adddress 8619 */ 8620 /* ARGSUSED */ 8621 int 8622 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8623 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8624 { 8625 mblk_t *mp1; 8626 ill_t *ill, *ill_head; 8627 ipif_t *ipif, *orig_ipif; 8628 int numlifs = 0; 8629 size_t lifs_bufsize, lifsmaxlen; 8630 struct lifreq *lifr; 8631 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8632 uint_t ifindex; 8633 zoneid_t zoneid; 8634 int err = 0; 8635 boolean_t isv6 = B_FALSE; 8636 struct sockaddr_in *sin; 8637 struct sockaddr_in6 *sin6; 8638 STRUCT_HANDLE(lifsrcof, lifs); 8639 ip_stack_t *ipst; 8640 8641 ipst = CONNQ_TO_IPST(q); 8642 8643 ASSERT(q->q_next == NULL); 8644 8645 zoneid = Q_TO_CONN(q)->conn_zoneid; 8646 8647 /* Existence verified in ip_wput_nondata */ 8648 mp1 = mp->b_cont->b_cont; 8649 8650 /* 8651 * Must be (better be!) continuation of a TRANSPARENT 8652 * IOCTL. We just copied in the lifsrcof structure. 8653 */ 8654 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8655 (struct lifsrcof *)mp1->b_rptr); 8656 8657 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8658 return (EINVAL); 8659 8660 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8661 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8662 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8663 ip_process_ioctl, &err, ipst); 8664 if (ipif == NULL) { 8665 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8666 ifindex)); 8667 return (err); 8668 } 8669 8670 /* Allocate a buffer to hold requested information */ 8671 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8672 lifs_bufsize = numlifs * sizeof (struct lifreq); 8673 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8674 /* The actual size needed is always returned in lifs_len */ 8675 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8676 8677 /* If the amount we need is more than what is passed in, abort */ 8678 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8679 ipif_refrele(ipif); 8680 return (0); 8681 } 8682 8683 mp1 = mi_copyout_alloc(q, mp, 8684 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8685 if (mp1 == NULL) { 8686 ipif_refrele(ipif); 8687 return (ENOMEM); 8688 } 8689 8690 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8691 bzero(mp1->b_rptr, lifs_bufsize); 8692 8693 lifr = (struct lifreq *)mp1->b_rptr; 8694 8695 ill = ill_head = ipif->ipif_ill; 8696 orig_ipif = ipif; 8697 8698 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8699 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8700 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8701 8702 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8703 for (; (ill != NULL) && (ill != ill_head); 8704 ill = ill->ill_usesrc_grp_next) { 8705 8706 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8707 break; 8708 8709 ipif = ill->ill_ipif; 8710 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8711 if (ipif->ipif_isv6) { 8712 sin6 = (sin6_t *)&lifr->lifr_addr; 8713 *sin6 = sin6_null; 8714 sin6->sin6_family = AF_INET6; 8715 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8716 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8717 &ipif->ipif_v6net_mask); 8718 } else { 8719 sin = (sin_t *)&lifr->lifr_addr; 8720 *sin = sin_null; 8721 sin->sin_family = AF_INET; 8722 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8723 lifr->lifr_addrlen = ip_mask_to_plen( 8724 ipif->ipif_net_mask); 8725 } 8726 lifr++; 8727 } 8728 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8729 rw_exit(&ipst->ips_ill_g_lock); 8730 ipif_refrele(orig_ipif); 8731 mp1->b_wptr = (uchar_t *)lifr; 8732 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8733 8734 return (0); 8735 } 8736 8737 /* ARGSUSED */ 8738 int 8739 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8740 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8741 { 8742 mblk_t *mp1; 8743 int list; 8744 ill_t *ill; 8745 ipif_t *ipif; 8746 int flags; 8747 int numlifs = 0; 8748 size_t lifc_bufsize; 8749 struct lifreq *lifr; 8750 sa_family_t family; 8751 struct sockaddr_in *sin; 8752 struct sockaddr_in6 *sin6; 8753 ill_walk_context_t ctx; 8754 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8755 int32_t lifclen; 8756 zoneid_t zoneid; 8757 STRUCT_HANDLE(lifconf, lifc); 8758 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8759 8760 ip1dbg(("ip_sioctl_get_lifconf")); 8761 8762 ASSERT(q->q_next == NULL); 8763 8764 zoneid = Q_TO_CONN(q)->conn_zoneid; 8765 8766 /* Existence verified in ip_wput_nondata */ 8767 mp1 = mp->b_cont->b_cont; 8768 8769 /* 8770 * An extended version of SIOCGIFCONF that takes an 8771 * additional address family and flags field. 8772 * AF_UNSPEC retrieve both IPv4 and IPv6. 8773 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8774 * interfaces are omitted. 8775 * Similarly, IPIF_TEMPORARY interfaces are omitted 8776 * unless LIFC_TEMPORARY is specified. 8777 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8778 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8779 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8780 * has priority over LIFC_NOXMIT. 8781 */ 8782 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8783 8784 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8785 return (EINVAL); 8786 8787 /* 8788 * Must be (better be!) continuation of a TRANSPARENT 8789 * IOCTL. We just copied in the lifconf structure. 8790 */ 8791 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8792 8793 family = STRUCT_FGET(lifc, lifc_family); 8794 flags = STRUCT_FGET(lifc, lifc_flags); 8795 8796 switch (family) { 8797 case AF_UNSPEC: 8798 /* 8799 * walk all ILL's. 8800 */ 8801 list = MAX_G_HEADS; 8802 break; 8803 case AF_INET: 8804 /* 8805 * walk only IPV4 ILL's. 8806 */ 8807 list = IP_V4_G_HEAD; 8808 break; 8809 case AF_INET6: 8810 /* 8811 * walk only IPV6 ILL's. 8812 */ 8813 list = IP_V6_G_HEAD; 8814 break; 8815 default: 8816 return (EAFNOSUPPORT); 8817 } 8818 8819 /* 8820 * Allocate a buffer to hold requested information. 8821 * 8822 * If lifc_len is larger than what is needed, we only 8823 * allocate what we will use. 8824 * 8825 * If lifc_len is smaller than what is needed, return 8826 * EINVAL. 8827 */ 8828 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8829 lifc_bufsize = numlifs * sizeof (struct lifreq); 8830 lifclen = STRUCT_FGET(lifc, lifc_len); 8831 if (lifc_bufsize > lifclen) { 8832 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8833 return (EINVAL); 8834 else 8835 lifc_bufsize = lifclen; 8836 } 8837 8838 mp1 = mi_copyout_alloc(q, mp, 8839 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8840 if (mp1 == NULL) 8841 return (ENOMEM); 8842 8843 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8844 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8845 8846 lifr = (struct lifreq *)mp1->b_rptr; 8847 8848 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8849 ill = ill_first(list, list, &ctx, ipst); 8850 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8851 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8852 continue; 8853 8854 for (ipif = ill->ill_ipif; ipif != NULL; 8855 ipif = ipif->ipif_next) { 8856 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8857 !(flags & LIFC_NOXMIT)) 8858 continue; 8859 8860 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8861 !(flags & LIFC_TEMPORARY)) 8862 continue; 8863 8864 if (((ipif->ipif_flags & 8865 (IPIF_NOXMIT|IPIF_NOLOCAL| 8866 IPIF_DEPRECATED)) || 8867 IS_LOOPBACK(ill) || 8868 !(ipif->ipif_flags & IPIF_UP)) && 8869 (flags & LIFC_EXTERNAL_SOURCE)) 8870 continue; 8871 8872 if (zoneid != ipif->ipif_zoneid && 8873 ipif->ipif_zoneid != ALL_ZONES && 8874 (zoneid != GLOBAL_ZONEID || 8875 !(flags & LIFC_ALLZONES))) 8876 continue; 8877 8878 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8879 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8880 rw_exit(&ipst->ips_ill_g_lock); 8881 return (EINVAL); 8882 } else { 8883 goto lif_copydone; 8884 } 8885 } 8886 8887 ipif_get_name(ipif, lifr->lifr_name, 8888 sizeof (lifr->lifr_name)); 8889 lifr->lifr_type = ill->ill_type; 8890 if (ipif->ipif_isv6) { 8891 sin6 = (sin6_t *)&lifr->lifr_addr; 8892 *sin6 = sin6_null; 8893 sin6->sin6_family = AF_INET6; 8894 sin6->sin6_addr = 8895 ipif->ipif_v6lcl_addr; 8896 lifr->lifr_addrlen = 8897 ip_mask_to_plen_v6( 8898 &ipif->ipif_v6net_mask); 8899 } else { 8900 sin = (sin_t *)&lifr->lifr_addr; 8901 *sin = sin_null; 8902 sin->sin_family = AF_INET; 8903 sin->sin_addr.s_addr = 8904 ipif->ipif_lcl_addr; 8905 lifr->lifr_addrlen = 8906 ip_mask_to_plen( 8907 ipif->ipif_net_mask); 8908 } 8909 lifr++; 8910 } 8911 } 8912 lif_copydone: 8913 rw_exit(&ipst->ips_ill_g_lock); 8914 8915 mp1->b_wptr = (uchar_t *)lifr; 8916 if (STRUCT_BUF(lifc) != NULL) { 8917 STRUCT_FSET(lifc, lifc_len, 8918 (int)((uchar_t *)lifr - mp1->b_rptr)); 8919 } 8920 return (0); 8921 } 8922 8923 static void 8924 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8925 { 8926 ip6_asp_t *table; 8927 size_t table_size; 8928 mblk_t *data_mp; 8929 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8930 ip_stack_t *ipst; 8931 8932 if (q->q_next == NULL) 8933 ipst = CONNQ_TO_IPST(q); 8934 else 8935 ipst = ILLQ_TO_IPST(q); 8936 8937 /* These two ioctls are I_STR only */ 8938 if (iocp->ioc_count == TRANSPARENT) { 8939 miocnak(q, mp, 0, EINVAL); 8940 return; 8941 } 8942 8943 data_mp = mp->b_cont; 8944 if (data_mp == NULL) { 8945 /* The user passed us a NULL argument */ 8946 table = NULL; 8947 table_size = iocp->ioc_count; 8948 } else { 8949 /* 8950 * The user provided a table. The stream head 8951 * may have copied in the user data in chunks, 8952 * so make sure everything is pulled up 8953 * properly. 8954 */ 8955 if (MBLKL(data_mp) < iocp->ioc_count) { 8956 mblk_t *new_data_mp; 8957 if ((new_data_mp = msgpullup(data_mp, -1)) == 8958 NULL) { 8959 miocnak(q, mp, 0, ENOMEM); 8960 return; 8961 } 8962 freemsg(data_mp); 8963 data_mp = new_data_mp; 8964 mp->b_cont = data_mp; 8965 } 8966 table = (ip6_asp_t *)data_mp->b_rptr; 8967 table_size = iocp->ioc_count; 8968 } 8969 8970 switch (iocp->ioc_cmd) { 8971 case SIOCGIP6ADDRPOLICY: 8972 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8973 if (iocp->ioc_rval == -1) 8974 iocp->ioc_error = EINVAL; 8975 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8976 else if (table != NULL && 8977 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8978 ip6_asp_t *src = table; 8979 ip6_asp32_t *dst = (void *)table; 8980 int count = table_size / sizeof (ip6_asp_t); 8981 int i; 8982 8983 /* 8984 * We need to do an in-place shrink of the array 8985 * to match the alignment attributes of the 8986 * 32-bit ABI looking at it. 8987 */ 8988 /* LINTED: logical expression always true: op "||" */ 8989 ASSERT(sizeof (*src) > sizeof (*dst)); 8990 for (i = 1; i < count; i++) 8991 bcopy(src + i, dst + i, sizeof (*dst)); 8992 } 8993 #endif 8994 break; 8995 8996 case SIOCSIP6ADDRPOLICY: 8997 ASSERT(mp->b_prev == NULL); 8998 mp->b_prev = (void *)q; 8999 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9000 /* 9001 * We pass in the datamodel here so that the ip6_asp_replace() 9002 * routine can handle converting from 32-bit to native formats 9003 * where necessary. 9004 * 9005 * A better way to handle this might be to convert the inbound 9006 * data structure here, and hang it off a new 'mp'; thus the 9007 * ip6_asp_replace() logic would always be dealing with native 9008 * format data structures.. 9009 * 9010 * (An even simpler way to handle these ioctls is to just 9011 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9012 * and just recompile everything that depends on it.) 9013 */ 9014 #endif 9015 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9016 iocp->ioc_flag & IOC_MODELS); 9017 return; 9018 } 9019 9020 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9021 qreply(q, mp); 9022 } 9023 9024 static void 9025 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9026 { 9027 mblk_t *data_mp; 9028 struct dstinforeq *dir; 9029 uint8_t *end, *cur; 9030 in6_addr_t *daddr, *saddr; 9031 ipaddr_t v4daddr; 9032 ire_t *ire; 9033 char *slabel, *dlabel; 9034 boolean_t isipv4; 9035 int match_ire; 9036 ill_t *dst_ill; 9037 ipif_t *src_ipif, *ire_ipif; 9038 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9039 zoneid_t zoneid; 9040 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9041 9042 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9043 zoneid = Q_TO_CONN(q)->conn_zoneid; 9044 9045 /* 9046 * This ioctl is I_STR only, and must have a 9047 * data mblk following the M_IOCTL mblk. 9048 */ 9049 data_mp = mp->b_cont; 9050 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9051 miocnak(q, mp, 0, EINVAL); 9052 return; 9053 } 9054 9055 if (MBLKL(data_mp) < iocp->ioc_count) { 9056 mblk_t *new_data_mp; 9057 9058 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9059 miocnak(q, mp, 0, ENOMEM); 9060 return; 9061 } 9062 freemsg(data_mp); 9063 data_mp = new_data_mp; 9064 mp->b_cont = data_mp; 9065 } 9066 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9067 9068 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9069 end - cur >= sizeof (struct dstinforeq); 9070 cur += sizeof (struct dstinforeq)) { 9071 dir = (struct dstinforeq *)cur; 9072 daddr = &dir->dir_daddr; 9073 saddr = &dir->dir_saddr; 9074 9075 /* 9076 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9077 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9078 * and ipif_select_source[_v6]() do not. 9079 */ 9080 dir->dir_dscope = ip_addr_scope_v6(daddr); 9081 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9082 9083 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9084 if (isipv4) { 9085 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9086 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9087 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9088 } else { 9089 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9090 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9091 } 9092 if (ire == NULL) { 9093 dir->dir_dreachable = 0; 9094 9095 /* move on to next dst addr */ 9096 continue; 9097 } 9098 dir->dir_dreachable = 1; 9099 9100 ire_ipif = ire->ire_ipif; 9101 if (ire_ipif == NULL) 9102 goto next_dst; 9103 9104 /* 9105 * We expect to get back an interface ire or a 9106 * gateway ire cache entry. For both types, the 9107 * output interface is ire_ipif->ipif_ill. 9108 */ 9109 dst_ill = ire_ipif->ipif_ill; 9110 dir->dir_dmactype = dst_ill->ill_mactype; 9111 9112 if (isipv4) { 9113 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9114 } else { 9115 src_ipif = ipif_select_source_v6(dst_ill, 9116 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9117 } 9118 if (src_ipif == NULL) 9119 goto next_dst; 9120 9121 *saddr = src_ipif->ipif_v6lcl_addr; 9122 dir->dir_sscope = ip_addr_scope_v6(saddr); 9123 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9124 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9125 dir->dir_sdeprecated = 9126 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9127 ipif_refrele(src_ipif); 9128 next_dst: 9129 ire_refrele(ire); 9130 } 9131 miocack(q, mp, iocp->ioc_count, 0); 9132 } 9133 9134 /* 9135 * Check if this is an address assigned to this machine. 9136 * Skips interfaces that are down by using ire checks. 9137 * Translates mapped addresses to v4 addresses and then 9138 * treats them as such, returning true if the v4 address 9139 * associated with this mapped address is configured. 9140 * Note: Applications will have to be careful what they do 9141 * with the response; use of mapped addresses limits 9142 * what can be done with the socket, especially with 9143 * respect to socket options and ioctls - neither IPv4 9144 * options nor IPv6 sticky options/ancillary data options 9145 * may be used. 9146 */ 9147 /* ARGSUSED */ 9148 int 9149 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9150 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9151 { 9152 struct sioc_addrreq *sia; 9153 sin_t *sin; 9154 ire_t *ire; 9155 mblk_t *mp1; 9156 zoneid_t zoneid; 9157 ip_stack_t *ipst; 9158 9159 ip1dbg(("ip_sioctl_tmyaddr")); 9160 9161 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9162 zoneid = Q_TO_CONN(q)->conn_zoneid; 9163 ipst = CONNQ_TO_IPST(q); 9164 9165 /* Existence verified in ip_wput_nondata */ 9166 mp1 = mp->b_cont->b_cont; 9167 sia = (struct sioc_addrreq *)mp1->b_rptr; 9168 sin = (sin_t *)&sia->sa_addr; 9169 switch (sin->sin_family) { 9170 case AF_INET6: { 9171 sin6_t *sin6 = (sin6_t *)sin; 9172 9173 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9174 ipaddr_t v4_addr; 9175 9176 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9177 v4_addr); 9178 ire = ire_ctable_lookup(v4_addr, 0, 9179 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9180 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9181 } else { 9182 in6_addr_t v6addr; 9183 9184 v6addr = sin6->sin6_addr; 9185 ire = ire_ctable_lookup_v6(&v6addr, 0, 9186 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9187 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9188 } 9189 break; 9190 } 9191 case AF_INET: { 9192 ipaddr_t v4addr; 9193 9194 v4addr = sin->sin_addr.s_addr; 9195 ire = ire_ctable_lookup(v4addr, 0, 9196 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9197 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9198 break; 9199 } 9200 default: 9201 return (EAFNOSUPPORT); 9202 } 9203 if (ire != NULL) { 9204 sia->sa_res = 1; 9205 ire_refrele(ire); 9206 } else { 9207 sia->sa_res = 0; 9208 } 9209 return (0); 9210 } 9211 9212 /* 9213 * Check if this is an address assigned on-link i.e. neighbor, 9214 * and makes sure it's reachable from the current zone. 9215 * Returns true for my addresses as well. 9216 * Translates mapped addresses to v4 addresses and then 9217 * treats them as such, returning true if the v4 address 9218 * associated with this mapped address is configured. 9219 * Note: Applications will have to be careful what they do 9220 * with the response; use of mapped addresses limits 9221 * what can be done with the socket, especially with 9222 * respect to socket options and ioctls - neither IPv4 9223 * options nor IPv6 sticky options/ancillary data options 9224 * may be used. 9225 */ 9226 /* ARGSUSED */ 9227 int 9228 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9229 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9230 { 9231 struct sioc_addrreq *sia; 9232 sin_t *sin; 9233 mblk_t *mp1; 9234 ire_t *ire = NULL; 9235 zoneid_t zoneid; 9236 ip_stack_t *ipst; 9237 9238 ip1dbg(("ip_sioctl_tonlink")); 9239 9240 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9241 zoneid = Q_TO_CONN(q)->conn_zoneid; 9242 ipst = CONNQ_TO_IPST(q); 9243 9244 /* Existence verified in ip_wput_nondata */ 9245 mp1 = mp->b_cont->b_cont; 9246 sia = (struct sioc_addrreq *)mp1->b_rptr; 9247 sin = (sin_t *)&sia->sa_addr; 9248 9249 /* 9250 * Match addresses with a zero gateway field to avoid 9251 * routes going through a router. 9252 * Exclude broadcast and multicast addresses. 9253 */ 9254 switch (sin->sin_family) { 9255 case AF_INET6: { 9256 sin6_t *sin6 = (sin6_t *)sin; 9257 9258 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9259 ipaddr_t v4_addr; 9260 9261 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9262 v4_addr); 9263 if (!CLASSD(v4_addr)) { 9264 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9265 NULL, NULL, zoneid, NULL, 9266 MATCH_IRE_GW, ipst); 9267 } 9268 } else { 9269 in6_addr_t v6addr; 9270 in6_addr_t v6gw; 9271 9272 v6addr = sin6->sin6_addr; 9273 v6gw = ipv6_all_zeros; 9274 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9275 ire = ire_route_lookup_v6(&v6addr, 0, 9276 &v6gw, 0, NULL, NULL, zoneid, 9277 NULL, MATCH_IRE_GW, ipst); 9278 } 9279 } 9280 break; 9281 } 9282 case AF_INET: { 9283 ipaddr_t v4addr; 9284 9285 v4addr = sin->sin_addr.s_addr; 9286 if (!CLASSD(v4addr)) { 9287 ire = ire_route_lookup(v4addr, 0, 0, 0, 9288 NULL, NULL, zoneid, NULL, 9289 MATCH_IRE_GW, ipst); 9290 } 9291 break; 9292 } 9293 default: 9294 return (EAFNOSUPPORT); 9295 } 9296 sia->sa_res = 0; 9297 if (ire != NULL) { 9298 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9299 IRE_LOCAL|IRE_LOOPBACK)) { 9300 sia->sa_res = 1; 9301 } 9302 ire_refrele(ire); 9303 } 9304 return (0); 9305 } 9306 9307 /* 9308 * TBD: implement when kernel maintaines a list of site prefixes. 9309 */ 9310 /* ARGSUSED */ 9311 int 9312 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9313 ip_ioctl_cmd_t *ipip, void *ifreq) 9314 { 9315 return (ENXIO); 9316 } 9317 9318 /* ARGSUSED */ 9319 int 9320 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9321 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9322 { 9323 ill_t *ill; 9324 mblk_t *mp1; 9325 conn_t *connp; 9326 boolean_t success; 9327 9328 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9329 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9330 /* ioctl comes down on an conn */ 9331 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9332 connp = Q_TO_CONN(q); 9333 9334 mp->b_datap->db_type = M_IOCTL; 9335 9336 /* 9337 * Send down a copy. (copymsg does not copy b_next/b_prev). 9338 * The original mp contains contaminated b_next values due to 'mi', 9339 * which is needed to do the mi_copy_done. Unfortunately if we 9340 * send down the original mblk itself and if we are popped due to an 9341 * an unplumb before the response comes back from tunnel, 9342 * the streamhead (which does a freemsg) will see this contaminated 9343 * message and the assertion in freemsg about non-null b_next/b_prev 9344 * will panic a DEBUG kernel. 9345 */ 9346 mp1 = copymsg(mp); 9347 if (mp1 == NULL) 9348 return (ENOMEM); 9349 9350 ill = ipif->ipif_ill; 9351 mutex_enter(&connp->conn_lock); 9352 mutex_enter(&ill->ill_lock); 9353 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9354 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9355 mp, 0); 9356 } else { 9357 success = ill_pending_mp_add(ill, connp, mp); 9358 } 9359 mutex_exit(&ill->ill_lock); 9360 mutex_exit(&connp->conn_lock); 9361 9362 if (success) { 9363 ip1dbg(("sending down tunparam request ")); 9364 putnext(ill->ill_wq, mp1); 9365 return (EINPROGRESS); 9366 } else { 9367 /* The conn has started closing */ 9368 freemsg(mp1); 9369 return (EINTR); 9370 } 9371 } 9372 9373 /* 9374 * ARP IOCTLs. 9375 * How does IP get in the business of fronting ARP configuration/queries? 9376 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9377 * are by tradition passed in through a datagram socket. That lands in IP. 9378 * As it happens, this is just as well since the interface is quite crude in 9379 * that it passes in no information about protocol or hardware types, or 9380 * interface association. After making the protocol assumption, IP is in 9381 * the position to look up the name of the ILL, which ARP will need, and 9382 * format a request that can be handled by ARP. The request is passed up 9383 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9384 * back a response. ARP supports its own set of more general IOCTLs, in 9385 * case anyone is interested. 9386 */ 9387 /* ARGSUSED */ 9388 int 9389 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9390 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9391 { 9392 mblk_t *mp1; 9393 mblk_t *mp2; 9394 mblk_t *pending_mp; 9395 ipaddr_t ipaddr; 9396 area_t *area; 9397 struct iocblk *iocp; 9398 conn_t *connp; 9399 struct arpreq *ar; 9400 struct xarpreq *xar; 9401 int flags, alength; 9402 uchar_t *lladdr; 9403 ire_t *ire; 9404 ip_stack_t *ipst; 9405 ill_t *ill = ipif->ipif_ill; 9406 ill_t *proxy_ill = NULL; 9407 ipmp_arpent_t *entp = NULL; 9408 boolean_t if_arp_ioctl = B_FALSE; 9409 boolean_t proxyarp = B_FALSE; 9410 9411 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9412 connp = Q_TO_CONN(q); 9413 ipst = connp->conn_netstack->netstack_ip; 9414 9415 if (ipip->ipi_cmd_type == XARP_CMD) { 9416 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9417 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9418 ar = NULL; 9419 9420 flags = xar->xarp_flags; 9421 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9422 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9423 /* 9424 * Validate against user's link layer address length 9425 * input and name and addr length limits. 9426 */ 9427 alength = ill->ill_phys_addr_length; 9428 if (ipip->ipi_cmd == SIOCSXARP) { 9429 if (alength != xar->xarp_ha.sdl_alen || 9430 (alength + xar->xarp_ha.sdl_nlen > 9431 sizeof (xar->xarp_ha.sdl_data))) 9432 return (EINVAL); 9433 } 9434 } else { 9435 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9436 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9437 xar = NULL; 9438 9439 flags = ar->arp_flags; 9440 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9441 /* 9442 * Theoretically, the sa_family could tell us what link 9443 * layer type this operation is trying to deal with. By 9444 * common usage AF_UNSPEC means ethernet. We'll assume 9445 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9446 * for now. Our new SIOC*XARP ioctls can be used more 9447 * generally. 9448 * 9449 * If the underlying media happens to have a non 6 byte 9450 * address, arp module will fail set/get, but the del 9451 * operation will succeed. 9452 */ 9453 alength = 6; 9454 if ((ipip->ipi_cmd != SIOCDARP) && 9455 (alength != ill->ill_phys_addr_length)) { 9456 return (EINVAL); 9457 } 9458 } 9459 9460 ipaddr = sin->sin_addr.s_addr; 9461 9462 /* 9463 * IPMP ARP special handling: 9464 * 9465 * 1. Since ARP mappings must appear consistent across the group, 9466 * prohibit changing ARP mappings on the underlying interfaces. 9467 * 9468 * 2. Since ARP mappings for IPMP data addresses are maintained by 9469 * IP itself, prohibit changing them. 9470 * 9471 * 3. For proxy ARP, use a functioning hardware address in the group, 9472 * provided one exists. If one doesn't, just add the entry as-is; 9473 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9474 */ 9475 if (IS_UNDER_IPMP(ill)) { 9476 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9477 return (EPERM); 9478 } 9479 if (IS_IPMP(ill)) { 9480 ipmp_illgrp_t *illg = ill->ill_grp; 9481 9482 switch (ipip->ipi_cmd) { 9483 case SIOCSARP: 9484 case SIOCSXARP: 9485 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9486 if (proxy_ill != NULL) { 9487 proxyarp = B_TRUE; 9488 if (!ipmp_ill_is_active(proxy_ill)) 9489 proxy_ill = ipmp_illgrp_next_ill(illg); 9490 if (proxy_ill != NULL) 9491 lladdr = proxy_ill->ill_phys_addr; 9492 } 9493 /* FALLTHRU */ 9494 case SIOCDARP: 9495 case SIOCDXARP: 9496 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9497 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9498 if (ire != NULL) { 9499 ire_refrele(ire); 9500 return (EPERM); 9501 } 9502 } 9503 } 9504 9505 /* 9506 * We are going to pass up to ARP a packet chain that looks 9507 * like: 9508 * 9509 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9510 * 9511 * Get a copy of the original IOCTL mblk to head the chain, 9512 * to be sent up (in mp1). Also get another copy to store 9513 * in the ill_pending_mp list, for matching the response 9514 * when it comes back from ARP. 9515 */ 9516 mp1 = copyb(mp); 9517 pending_mp = copymsg(mp); 9518 if (mp1 == NULL || pending_mp == NULL) { 9519 if (mp1 != NULL) 9520 freeb(mp1); 9521 if (pending_mp != NULL) 9522 inet_freemsg(pending_mp); 9523 return (ENOMEM); 9524 } 9525 9526 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9527 (caddr_t)&ipaddr); 9528 if (mp2 == NULL) { 9529 freeb(mp1); 9530 inet_freemsg(pending_mp); 9531 return (ENOMEM); 9532 } 9533 /* Put together the chain. */ 9534 mp1->b_cont = mp2; 9535 mp1->b_datap->db_type = M_IOCTL; 9536 mp2->b_cont = mp; 9537 mp2->b_datap->db_type = M_DATA; 9538 9539 iocp = (struct iocblk *)mp1->b_rptr; 9540 9541 /* 9542 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9543 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9544 * cp_private field (or cp_rval on 32-bit systems) in place of the 9545 * ioc_count field; set ioc_count to be correct. 9546 */ 9547 iocp->ioc_count = MBLKL(mp1->b_cont); 9548 9549 /* 9550 * Set the proper command in the ARP message. 9551 * Convert the SIOC{G|S|D}ARP calls into our 9552 * AR_ENTRY_xxx calls. 9553 */ 9554 area = (area_t *)mp2->b_rptr; 9555 switch (iocp->ioc_cmd) { 9556 case SIOCDARP: 9557 case SIOCDXARP: 9558 /* 9559 * We defer deleting the corresponding IRE until 9560 * we return from arp. 9561 */ 9562 area->area_cmd = AR_ENTRY_DELETE; 9563 area->area_proto_mask_offset = 0; 9564 break; 9565 case SIOCGARP: 9566 case SIOCGXARP: 9567 area->area_cmd = AR_ENTRY_SQUERY; 9568 area->area_proto_mask_offset = 0; 9569 break; 9570 case SIOCSARP: 9571 case SIOCSXARP: 9572 /* 9573 * Delete the corresponding ire to make sure IP will 9574 * pick up any change from arp. 9575 */ 9576 if (!if_arp_ioctl) { 9577 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9578 } else { 9579 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9580 if (ipif != NULL) { 9581 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9582 ipst); 9583 ipif_refrele(ipif); 9584 } 9585 } 9586 break; 9587 } 9588 iocp->ioc_cmd = area->area_cmd; 9589 9590 /* 9591 * Fill in the rest of the ARP operation fields. 9592 */ 9593 area->area_hw_addr_length = alength; 9594 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9595 9596 /* Translate the flags. */ 9597 if (flags & ATF_PERM) 9598 area->area_flags |= ACE_F_PERMANENT; 9599 if (flags & ATF_PUBL) 9600 area->area_flags |= ACE_F_PUBLISH; 9601 if (flags & ATF_AUTHORITY) 9602 area->area_flags |= ACE_F_AUTHORITY; 9603 9604 /* 9605 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9606 * so that IP can update ARP as the active ills in the group change. 9607 */ 9608 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9609 (area->area_flags & ACE_F_PERMANENT)) { 9610 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9611 9612 /* 9613 * The second part of the conditional below handles a corner 9614 * case: if this is proxy ARP and the IPMP group has no active 9615 * interfaces, we can't send the request to ARP now since it 9616 * won't be able to build an ACE. So we return success and 9617 * notify ARP about the proxy ARP entry once an interface 9618 * becomes active. 9619 */ 9620 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9621 mp2->b_cont = NULL; 9622 inet_freemsg(mp1); 9623 inet_freemsg(pending_mp); 9624 return (entp == NULL ? ENOMEM : 0); 9625 } 9626 } 9627 9628 /* 9629 * Before sending 'mp' to ARP, we have to clear the b_next 9630 * and b_prev. Otherwise if STREAMS encounters such a message 9631 * in freemsg(), (because ARP can close any time) it can cause 9632 * a panic. But mi code needs the b_next and b_prev values of 9633 * mp->b_cont, to complete the ioctl. So we store it here 9634 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9635 * when the response comes down from ARP. 9636 */ 9637 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9638 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9639 mp->b_cont->b_next = NULL; 9640 mp->b_cont->b_prev = NULL; 9641 9642 mutex_enter(&connp->conn_lock); 9643 mutex_enter(&ill->ill_lock); 9644 /* conn has not yet started closing, hence this can't fail */ 9645 if (ipip->ipi_flags & IPI_WR) { 9646 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9647 pending_mp, 0) != 0); 9648 } else { 9649 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9650 } 9651 mutex_exit(&ill->ill_lock); 9652 mutex_exit(&connp->conn_lock); 9653 9654 /* 9655 * Up to ARP it goes. The response will come back in ip_wput() as an 9656 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9657 */ 9658 putnext(ill->ill_rq, mp1); 9659 9660 /* 9661 * If we created an IPMP ARP entry, mark that we've notified ARP. 9662 */ 9663 if (entp != NULL) 9664 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9665 9666 return (EINPROGRESS); 9667 } 9668 9669 /* 9670 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9671 * the associated sin and refhold and return the associated ipif via `ci'. 9672 */ 9673 int 9674 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9675 cmd_info_t *ci, ipsq_func_t func) 9676 { 9677 mblk_t *mp1; 9678 int err; 9679 sin_t *sin; 9680 conn_t *connp; 9681 ipif_t *ipif; 9682 ire_t *ire = NULL; 9683 ill_t *ill = NULL; 9684 boolean_t exists; 9685 ip_stack_t *ipst; 9686 struct arpreq *ar; 9687 struct xarpreq *xar; 9688 struct sockaddr_dl *sdl; 9689 9690 /* ioctl comes down on a conn */ 9691 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9692 connp = Q_TO_CONN(q); 9693 if (connp->conn_af_isv6) 9694 return (ENXIO); 9695 9696 ipst = connp->conn_netstack->netstack_ip; 9697 9698 /* Verified in ip_wput_nondata */ 9699 mp1 = mp->b_cont->b_cont; 9700 9701 if (ipip->ipi_cmd_type == XARP_CMD) { 9702 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9703 xar = (struct xarpreq *)mp1->b_rptr; 9704 sin = (sin_t *)&xar->xarp_pa; 9705 sdl = &xar->xarp_ha; 9706 9707 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9708 return (ENXIO); 9709 if (sdl->sdl_nlen >= LIFNAMSIZ) 9710 return (EINVAL); 9711 } else { 9712 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9713 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9714 ar = (struct arpreq *)mp1->b_rptr; 9715 sin = (sin_t *)&ar->arp_pa; 9716 } 9717 9718 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9719 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9720 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9721 mp, func, &err, ipst); 9722 if (ipif == NULL) 9723 return (err); 9724 if (ipif->ipif_id != 0) { 9725 ipif_refrele(ipif); 9726 return (ENXIO); 9727 } 9728 } else { 9729 /* 9730 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9731 * of 0: use the IP address to find the ipif. If the IP 9732 * address is an IPMP test address, ire_ftable_lookup() will 9733 * find the wrong ill, so we first do an ipif_lookup_addr(). 9734 */ 9735 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9736 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9737 if (ipif == NULL) { 9738 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9739 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9740 MATCH_IRE_TYPE, ipst); 9741 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9742 if (ire != NULL) 9743 ire_refrele(ire); 9744 return (ENXIO); 9745 } 9746 ipif = ill->ill_ipif; 9747 ipif_refhold(ipif); 9748 ire_refrele(ire); 9749 } 9750 } 9751 9752 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9753 ipif_refrele(ipif); 9754 return (ENXIO); 9755 } 9756 9757 ci->ci_sin = sin; 9758 ci->ci_ipif = ipif; 9759 return (0); 9760 } 9761 9762 /* 9763 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9764 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9765 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9766 * up and thus an ill can join that illgrp. 9767 * 9768 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9769 * open()/close() primarily because close() is not allowed to fail or block 9770 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9771 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9772 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9773 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9774 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9775 * state if I_UNLINK didn't occur. 9776 * 9777 * Note that for each plumb/unplumb operation, we may end up here more than 9778 * once because of the way ifconfig works. However, it's OK to link the same 9779 * illgrp more than once, or unlink an illgrp that's already unlinked. 9780 */ 9781 static int 9782 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9783 { 9784 int err; 9785 ip_stack_t *ipst = ill->ill_ipst; 9786 9787 ASSERT(IS_IPMP(ill)); 9788 ASSERT(IAM_WRITER_ILL(ill)); 9789 9790 switch (ioccmd) { 9791 case I_LINK: 9792 return (ENOTSUP); 9793 9794 case I_PLINK: 9795 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9796 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9797 rw_exit(&ipst->ips_ipmp_lock); 9798 break; 9799 9800 case I_PUNLINK: 9801 /* 9802 * Require all UP ipifs be brought down prior to unlinking the 9803 * illgrp so any associated IREs (and other state) is torched. 9804 */ 9805 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9806 return (EBUSY); 9807 9808 /* 9809 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9810 * with an SIOCSLIFGROUPNAME request from an ill trying to 9811 * join this group. Specifically: ills trying to join grab 9812 * ipmp_lock and bump a "pending join" counter checked by 9813 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9814 * joins can occur (since we have ipmp_lock). Once we drop 9815 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9816 * find the illgrp (since we unlinked it) and will return 9817 * EAFNOSUPPORT. This will then take them back through the 9818 * IPMP meta-interface plumbing logic in ifconfig, and thus 9819 * back through I_PLINK above. 9820 */ 9821 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9822 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9823 rw_exit(&ipst->ips_ipmp_lock); 9824 return (err); 9825 default: 9826 break; 9827 } 9828 return (0); 9829 } 9830 9831 /* 9832 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9833 * atomically set/clear the muxids. Also complete the ioctl by acking or 9834 * naking it. Note that the code is structured such that the link type, 9835 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9836 * its clones use the persistent link, while pppd(1M) and perhaps many 9837 * other daemons may use non-persistent link. When combined with some 9838 * ill_t states, linking and unlinking lower streams may be used as 9839 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9840 */ 9841 /* ARGSUSED */ 9842 void 9843 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9844 { 9845 mblk_t *mp1, *mp2; 9846 struct linkblk *li; 9847 struct ipmx_s *ipmxp; 9848 ill_t *ill; 9849 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9850 int err = 0; 9851 boolean_t entered_ipsq = B_FALSE; 9852 boolean_t islink; 9853 ip_stack_t *ipst; 9854 9855 if (CONN_Q(q)) 9856 ipst = CONNQ_TO_IPST(q); 9857 else 9858 ipst = ILLQ_TO_IPST(q); 9859 9860 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9861 ioccmd == I_LINK || ioccmd == I_UNLINK); 9862 9863 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9864 9865 mp1 = mp->b_cont; /* This is the linkblk info */ 9866 li = (struct linkblk *)mp1->b_rptr; 9867 9868 /* 9869 * ARP has added this special mblk, and the utility is asking us 9870 * to perform consistency checks, and also atomically set the 9871 * muxid. Ifconfig is an example. It achieves this by using 9872 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9873 * to /dev/udp[6] stream for use as the mux when plinking the IP 9874 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9875 * and other comments in this routine for more details. 9876 */ 9877 mp2 = mp1->b_cont; /* This is added by ARP */ 9878 9879 /* 9880 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9881 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9882 * get the special mblk above. For backward compatibility, we 9883 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9884 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9885 * not atomic, and can leave the streams unplumbable if the utility 9886 * is interrupted before it does the SIOCSLIFMUXID. 9887 */ 9888 if (mp2 == NULL) { 9889 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9890 if (err == EINPROGRESS) 9891 return; 9892 goto done; 9893 } 9894 9895 /* 9896 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9897 * ARP has appended this last mblk to tell us whether the lower stream 9898 * is an arp-dev stream or an IP module stream. 9899 */ 9900 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9901 if (ipmxp->ipmx_arpdev_stream) { 9902 /* 9903 * The lower stream is the arp-dev stream. 9904 */ 9905 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9906 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9907 if (ill == NULL) { 9908 if (err == EINPROGRESS) 9909 return; 9910 err = EINVAL; 9911 goto done; 9912 } 9913 9914 if (ipsq == NULL) { 9915 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9916 NEW_OP, B_FALSE); 9917 if (ipsq == NULL) { 9918 ill_refrele(ill); 9919 return; 9920 } 9921 entered_ipsq = B_TRUE; 9922 } 9923 ASSERT(IAM_WRITER_ILL(ill)); 9924 ill_refrele(ill); 9925 9926 /* 9927 * To ensure consistency between IP and ARP, the following 9928 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9929 * This is because the muxid's are stored in the IP stream on 9930 * the ill. 9931 * 9932 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9933 * the ARP stream. On an arp-dev stream, IP checks that it is 9934 * not yet plinked, and it also checks that the corresponding 9935 * IP stream is already plinked. 9936 * 9937 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9938 * punlinking the IP stream. IP does not allow punlink of the 9939 * IP stream unless the arp stream has been punlinked. 9940 */ 9941 if ((islink && 9942 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9943 (!islink && ill->ill_arp_muxid != li->l_index)) { 9944 err = EINVAL; 9945 goto done; 9946 } 9947 9948 if (IS_IPMP(ill) && 9949 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9950 goto done; 9951 9952 ill->ill_arp_muxid = islink ? li->l_index : 0; 9953 } else { 9954 /* 9955 * The lower stream is probably an IP module stream. Do 9956 * consistency checking. 9957 */ 9958 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9959 if (err == EINPROGRESS) 9960 return; 9961 } 9962 done: 9963 if (err == 0) 9964 miocack(q, mp, 0, 0); 9965 else 9966 miocnak(q, mp, 0, err); 9967 9968 /* Conn was refheld in ip_sioctl_copyin_setup */ 9969 if (CONN_Q(q)) 9970 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9971 if (entered_ipsq) 9972 ipsq_exit(ipsq); 9973 } 9974 9975 /* 9976 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9977 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9978 * module stream). If `doconsist' is set, then do the extended consistency 9979 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9980 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9981 * an error code on failure. 9982 */ 9983 static int 9984 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9985 struct linkblk *li, boolean_t doconsist) 9986 { 9987 int err = 0; 9988 ill_t *ill; 9989 queue_t *ipwq, *dwq; 9990 const char *name; 9991 struct qinit *qinfo; 9992 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9993 boolean_t entered_ipsq = B_FALSE; 9994 9995 /* 9996 * Walk the lower stream to verify it's the IP module stream. 9997 * The IP module is identified by its name, wput function, 9998 * and non-NULL q_next. STREAMS ensures that the lower stream 9999 * (li->l_qbot) will not vanish until this ioctl completes. 10000 */ 10001 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10002 qinfo = ipwq->q_qinfo; 10003 name = qinfo->qi_minfo->mi_idname; 10004 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10005 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10006 break; 10007 } 10008 } 10009 10010 /* 10011 * If this isn't an IP module stream, bail. 10012 */ 10013 if (ipwq == NULL) 10014 return (0); 10015 10016 ill = ipwq->q_ptr; 10017 ASSERT(ill != NULL); 10018 10019 if (ipsq == NULL) { 10020 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10021 NEW_OP, B_FALSE); 10022 if (ipsq == NULL) 10023 return (EINPROGRESS); 10024 entered_ipsq = B_TRUE; 10025 } 10026 ASSERT(IAM_WRITER_ILL(ill)); 10027 10028 if (doconsist) { 10029 /* 10030 * Consistency checking requires that I_{P}LINK occurs 10031 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10032 * occurs prior to clearing ill_arp_muxid. 10033 */ 10034 if ((islink && ill->ill_ip_muxid != 0) || 10035 (!islink && ill->ill_arp_muxid != 0)) { 10036 err = EINVAL; 10037 goto done; 10038 } 10039 } 10040 10041 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 10042 goto done; 10043 10044 /* 10045 * As part of I_{P}LINKing, stash the number of downstream modules and 10046 * the read queue of the module immediately below IP in the ill. 10047 * These are used during the capability negotiation below. 10048 */ 10049 ill->ill_lmod_rq = NULL; 10050 ill->ill_lmod_cnt = 0; 10051 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10052 ill->ill_lmod_rq = RD(dwq); 10053 for (; dwq != NULL; dwq = dwq->q_next) 10054 ill->ill_lmod_cnt++; 10055 } 10056 10057 if (doconsist) 10058 ill->ill_ip_muxid = islink ? li->l_index : 0; 10059 10060 /* 10061 * Mark the ipsq busy until the capability operations initiated below 10062 * complete. The PLINK/UNLINK ioctl itself completes when our caller 10063 * returns, but the capability operation may complete asynchronously 10064 * much later. 10065 */ 10066 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 10067 /* 10068 * If there's at least one up ipif on this ill, then we're bound to 10069 * the underlying driver via DLPI. In that case, renegotiate 10070 * capabilities to account for any possible change in modules 10071 * interposed between IP and the driver. 10072 */ 10073 if (ill->ill_ipif_up_count > 0) { 10074 if (islink) 10075 ill_capability_probe(ill); 10076 else 10077 ill_capability_reset(ill, B_FALSE); 10078 } 10079 ipsq_current_finish(ipsq); 10080 done: 10081 if (entered_ipsq) 10082 ipsq_exit(ipsq); 10083 10084 return (err); 10085 } 10086 10087 /* 10088 * Search the ioctl command in the ioctl tables and return a pointer 10089 * to the ioctl command information. The ioctl command tables are 10090 * static and fully populated at compile time. 10091 */ 10092 ip_ioctl_cmd_t * 10093 ip_sioctl_lookup(int ioc_cmd) 10094 { 10095 int index; 10096 ip_ioctl_cmd_t *ipip; 10097 ip_ioctl_cmd_t *ipip_end; 10098 10099 if (ioc_cmd == IPI_DONTCARE) 10100 return (NULL); 10101 10102 /* 10103 * Do a 2 step search. First search the indexed table 10104 * based on the least significant byte of the ioctl cmd. 10105 * If we don't find a match, then search the misc table 10106 * serially. 10107 */ 10108 index = ioc_cmd & 0xFF; 10109 if (index < ip_ndx_ioctl_count) { 10110 ipip = &ip_ndx_ioctl_table[index]; 10111 if (ipip->ipi_cmd == ioc_cmd) { 10112 /* Found a match in the ndx table */ 10113 return (ipip); 10114 } 10115 } 10116 10117 /* Search the misc table */ 10118 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10119 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10120 if (ipip->ipi_cmd == ioc_cmd) 10121 /* Found a match in the misc table */ 10122 return (ipip); 10123 } 10124 10125 return (NULL); 10126 } 10127 10128 /* 10129 * Wrapper function for resuming deferred ioctl processing 10130 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10131 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10132 */ 10133 /* ARGSUSED */ 10134 void 10135 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10136 void *dummy_arg) 10137 { 10138 ip_sioctl_copyin_setup(q, mp); 10139 } 10140 10141 /* 10142 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10143 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10144 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10145 * We establish here the size of the block to be copied in. mi_copyin 10146 * arranges for this to happen, an processing continues in ip_wput with 10147 * an M_IOCDATA message. 10148 */ 10149 void 10150 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10151 { 10152 int copyin_size; 10153 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10154 ip_ioctl_cmd_t *ipip; 10155 cred_t *cr; 10156 ip_stack_t *ipst; 10157 10158 if (CONN_Q(q)) 10159 ipst = CONNQ_TO_IPST(q); 10160 else 10161 ipst = ILLQ_TO_IPST(q); 10162 10163 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10164 if (ipip == NULL) { 10165 /* 10166 * The ioctl is not one we understand or own. 10167 * Pass it along to be processed down stream, 10168 * if this is a module instance of IP, else nak 10169 * the ioctl. 10170 */ 10171 if (q->q_next == NULL) { 10172 goto nak; 10173 } else { 10174 putnext(q, mp); 10175 return; 10176 } 10177 } 10178 10179 /* 10180 * If this is deferred, then we will do all the checks when we 10181 * come back. 10182 */ 10183 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10184 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10185 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10186 return; 10187 } 10188 10189 /* 10190 * Only allow a very small subset of IP ioctls on this stream if 10191 * IP is a module and not a driver. Allowing ioctls to be processed 10192 * in this case may cause assert failures or data corruption. 10193 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10194 * ioctls allowed on an IP module stream, after which this stream 10195 * normally becomes a multiplexor (at which time the stream head 10196 * will fail all ioctls). 10197 */ 10198 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10199 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10200 /* 10201 * Pass common Streams ioctls which the IP 10202 * module does not own or consume along to 10203 * be processed down stream. 10204 */ 10205 putnext(q, mp); 10206 return; 10207 } else { 10208 goto nak; 10209 } 10210 } 10211 10212 /* Make sure we have ioctl data to process. */ 10213 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10214 goto nak; 10215 10216 /* 10217 * Prefer dblk credential over ioctl credential; some synthesized 10218 * ioctls have kcred set because there's no way to crhold() 10219 * a credential in some contexts. (ioc_cr is not crfree() by 10220 * the framework; the caller of ioctl needs to hold the reference 10221 * for the duration of the call). 10222 */ 10223 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10224 10225 /* Make sure normal users don't send down privileged ioctls */ 10226 if ((ipip->ipi_flags & IPI_PRIV) && 10227 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10228 /* We checked the privilege earlier but log it here */ 10229 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10230 return; 10231 } 10232 10233 /* 10234 * The ioctl command tables can only encode fixed length 10235 * ioctl data. If the length is variable, the table will 10236 * encode the length as zero. Such special cases are handled 10237 * below in the switch. 10238 */ 10239 if (ipip->ipi_copyin_size != 0) { 10240 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10241 return; 10242 } 10243 10244 switch (iocp->ioc_cmd) { 10245 case O_SIOCGIFCONF: 10246 case SIOCGIFCONF: 10247 /* 10248 * This IOCTL is hilarious. See comments in 10249 * ip_sioctl_get_ifconf for the story. 10250 */ 10251 if (iocp->ioc_count == TRANSPARENT) 10252 copyin_size = SIZEOF_STRUCT(ifconf, 10253 iocp->ioc_flag); 10254 else 10255 copyin_size = iocp->ioc_count; 10256 mi_copyin(q, mp, NULL, copyin_size); 10257 return; 10258 10259 case O_SIOCGLIFCONF: 10260 case SIOCGLIFCONF: 10261 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10262 mi_copyin(q, mp, NULL, copyin_size); 10263 return; 10264 10265 case SIOCGLIFSRCOF: 10266 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10267 mi_copyin(q, mp, NULL, copyin_size); 10268 return; 10269 case SIOCGIP6ADDRPOLICY: 10270 ip_sioctl_ip6addrpolicy(q, mp); 10271 ip6_asp_table_refrele(ipst); 10272 return; 10273 10274 case SIOCSIP6ADDRPOLICY: 10275 ip_sioctl_ip6addrpolicy(q, mp); 10276 return; 10277 10278 case SIOCGDSTINFO: 10279 ip_sioctl_dstinfo(q, mp); 10280 ip6_asp_table_refrele(ipst); 10281 return; 10282 10283 case I_PLINK: 10284 case I_PUNLINK: 10285 case I_LINK: 10286 case I_UNLINK: 10287 /* 10288 * We treat non-persistent link similarly as the persistent 10289 * link case, in terms of plumbing/unplumbing, as well as 10290 * dynamic re-plumbing events indicator. See comments 10291 * in ip_sioctl_plink() for more. 10292 * 10293 * Request can be enqueued in the 'ipsq' while waiting 10294 * to become exclusive. So bump up the conn ref. 10295 */ 10296 if (CONN_Q(q)) 10297 CONN_INC_REF(Q_TO_CONN(q)); 10298 ip_sioctl_plink(NULL, q, mp, NULL); 10299 return; 10300 10301 case ND_GET: 10302 case ND_SET: 10303 /* 10304 * Use of the nd table requires holding the reader lock. 10305 * Modifying the nd table thru nd_load/nd_unload requires 10306 * the writer lock. 10307 */ 10308 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10309 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10310 rw_exit(&ipst->ips_ip_g_nd_lock); 10311 10312 if (iocp->ioc_error) 10313 iocp->ioc_count = 0; 10314 mp->b_datap->db_type = M_IOCACK; 10315 qreply(q, mp); 10316 return; 10317 } 10318 rw_exit(&ipst->ips_ip_g_nd_lock); 10319 /* 10320 * We don't understand this subioctl of ND_GET / ND_SET. 10321 * Maybe intended for some driver / module below us 10322 */ 10323 if (q->q_next) { 10324 putnext(q, mp); 10325 } else { 10326 iocp->ioc_error = ENOENT; 10327 mp->b_datap->db_type = M_IOCNAK; 10328 iocp->ioc_count = 0; 10329 qreply(q, mp); 10330 } 10331 return; 10332 10333 case IP_IOCTL: 10334 ip_wput_ioctl(q, mp); 10335 return; 10336 default: 10337 cmn_err(CE_PANIC, "should not happen "); 10338 } 10339 nak: 10340 if (mp->b_cont != NULL) { 10341 freemsg(mp->b_cont); 10342 mp->b_cont = NULL; 10343 } 10344 iocp->ioc_error = EINVAL; 10345 mp->b_datap->db_type = M_IOCNAK; 10346 iocp->ioc_count = 0; 10347 qreply(q, mp); 10348 } 10349 10350 /* ip_wput hands off ARP IOCTL responses to us */ 10351 /* ARGSUSED3 */ 10352 void 10353 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10354 { 10355 struct arpreq *ar; 10356 struct xarpreq *xar; 10357 area_t *area; 10358 mblk_t *area_mp; 10359 struct iocblk *iocp; 10360 mblk_t *orig_ioc_mp, *tmp; 10361 struct iocblk *orig_iocp; 10362 ill_t *ill; 10363 conn_t *connp = NULL; 10364 mblk_t *pending_mp; 10365 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10366 int *flagsp; 10367 char *storage = NULL; 10368 sin_t *sin; 10369 ipaddr_t addr; 10370 int err; 10371 ip_stack_t *ipst; 10372 10373 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10374 ill = q->q_ptr; 10375 ASSERT(ill != NULL); 10376 ipst = ill->ill_ipst; 10377 10378 /* 10379 * We should get back from ARP a packet chain that looks like: 10380 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10381 */ 10382 if (!(area_mp = mp->b_cont) || 10383 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10384 !(orig_ioc_mp = area_mp->b_cont) || 10385 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10386 freemsg(mp); 10387 return; 10388 } 10389 10390 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10391 10392 tmp = (orig_ioc_mp->b_cont)->b_cont; 10393 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10394 (orig_iocp->ioc_cmd == SIOCSXARP) || 10395 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10396 x_arp_ioctl = B_TRUE; 10397 xar = (struct xarpreq *)tmp->b_rptr; 10398 sin = (sin_t *)&xar->xarp_pa; 10399 flagsp = &xar->xarp_flags; 10400 storage = xar->xarp_ha.sdl_data; 10401 if (xar->xarp_ha.sdl_nlen != 0) 10402 ifx_arp_ioctl = B_TRUE; 10403 } else { 10404 ar = (struct arpreq *)tmp->b_rptr; 10405 sin = (sin_t *)&ar->arp_pa; 10406 flagsp = &ar->arp_flags; 10407 storage = ar->arp_ha.sa_data; 10408 } 10409 10410 iocp = (struct iocblk *)mp->b_rptr; 10411 10412 /* 10413 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10414 * Otherwise, we can find it from our ioc_id. 10415 */ 10416 if (ipsq != NULL) 10417 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10418 else 10419 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10420 10421 if (pending_mp == NULL) { 10422 ASSERT(connp == NULL); 10423 inet_freemsg(mp); 10424 return; 10425 } 10426 ASSERT(connp != NULL); 10427 q = CONNP_TO_WQ(connp); 10428 10429 /* Uncouple the internally generated IOCTL from the original one */ 10430 area = (area_t *)area_mp->b_rptr; 10431 area_mp->b_cont = NULL; 10432 10433 /* 10434 * Restore the b_next and b_prev used by mi code. This is needed 10435 * to complete the ioctl using mi* functions. We stored them in 10436 * the pending mp prior to sending the request to ARP. 10437 */ 10438 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10439 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10440 inet_freemsg(pending_mp); 10441 10442 /* 10443 * We're done if there was an error or if this is not an SIOCG{X}ARP 10444 * Catch the case where there is an IRE_CACHE by no entry in the 10445 * arp table. 10446 */ 10447 addr = sin->sin_addr.s_addr; 10448 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10449 ire_t *ire; 10450 dl_unitdata_req_t *dlup; 10451 mblk_t *llmp; 10452 int addr_len; 10453 ill_t *ipsqill = NULL; 10454 10455 if (ifx_arp_ioctl) { 10456 /* 10457 * There's no need to lookup the ill, since 10458 * we've already done that when we started 10459 * processing the ioctl and sent the message 10460 * to ARP on that ill. So use the ill that 10461 * is stored in q->q_ptr. 10462 */ 10463 ipsqill = ill; 10464 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10465 ipsqill->ill_ipif, ALL_ZONES, 10466 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10467 } else { 10468 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10469 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10470 if (ire != NULL) 10471 ipsqill = ire_to_ill(ire); 10472 } 10473 10474 if ((x_arp_ioctl) && (ipsqill != NULL)) 10475 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10476 10477 if (ire != NULL) { 10478 /* 10479 * Since the ire obtained from cachetable is used for 10480 * mac addr copying below, treat an incomplete ire as if 10481 * as if we never found it. 10482 */ 10483 if (ire->ire_nce != NULL && 10484 ire->ire_nce->nce_state != ND_REACHABLE) { 10485 ire_refrele(ire); 10486 ire = NULL; 10487 ipsqill = NULL; 10488 goto errack; 10489 } 10490 *flagsp = ATF_INUSE; 10491 llmp = (ire->ire_nce != NULL ? 10492 ire->ire_nce->nce_res_mp : NULL); 10493 if (llmp != NULL && ipsqill != NULL) { 10494 uchar_t *macaddr; 10495 10496 addr_len = ipsqill->ill_phys_addr_length; 10497 if (x_arp_ioctl && ((addr_len + 10498 ipsqill->ill_name_length) > 10499 sizeof (xar->xarp_ha.sdl_data))) { 10500 ire_refrele(ire); 10501 freemsg(mp); 10502 ip_ioctl_finish(q, orig_ioc_mp, 10503 EINVAL, NO_COPYOUT, ipsq); 10504 return; 10505 } 10506 *flagsp |= ATF_COM; 10507 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10508 if (ipsqill->ill_sap_length < 0) 10509 macaddr = llmp->b_rptr + 10510 dlup->dl_dest_addr_offset; 10511 else 10512 macaddr = llmp->b_rptr + 10513 dlup->dl_dest_addr_offset + 10514 ipsqill->ill_sap_length; 10515 /* 10516 * For SIOCGARP, MAC address length 10517 * validation has already been done 10518 * before the ioctl was issued to ARP to 10519 * allow it to progress only on 6 byte 10520 * addressable (ethernet like) media. Thus 10521 * the mac address copying can not overwrite 10522 * the sa_data area below. 10523 */ 10524 bcopy(macaddr, storage, addr_len); 10525 } 10526 /* Ditch the internal IOCTL. */ 10527 freemsg(mp); 10528 ire_refrele(ire); 10529 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10530 return; 10531 } 10532 } 10533 10534 /* 10535 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10536 * on the IPMP meta-interface, ensure any ARP entries added in 10537 * ip_sioctl_arp() are deleted. 10538 */ 10539 if (IS_IPMP(ill) && 10540 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10541 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10542 ipmp_illgrp_t *illg = ill->ill_grp; 10543 ipmp_arpent_t *entp; 10544 10545 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10546 ipmp_illgrp_destroy_arpent(illg, entp); 10547 } 10548 10549 /* 10550 * Delete the coresponding IRE_CACHE if any. 10551 * Reset the error if there was one (in case there was no entry 10552 * in arp.) 10553 */ 10554 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10555 ipif_t *ipintf = NULL; 10556 10557 if (ifx_arp_ioctl) { 10558 /* 10559 * There's no need to lookup the ill, since 10560 * we've already done that when we started 10561 * processing the ioctl and sent the message 10562 * to ARP on that ill. So use the ill that 10563 * is stored in q->q_ptr. 10564 */ 10565 ipintf = ill->ill_ipif; 10566 } 10567 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10568 /* 10569 * The address in "addr" may be an entry for a 10570 * router. If that's true, then any off-net 10571 * IRE_CACHE entries that go through the router 10572 * with address "addr" must be clobbered. Use 10573 * ire_walk to achieve this goal. 10574 */ 10575 if (ifx_arp_ioctl) 10576 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10577 ire_delete_cache_gw, (char *)&addr, ill); 10578 else 10579 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10580 ALL_ZONES, ipst); 10581 iocp->ioc_error = 0; 10582 } 10583 } 10584 errack: 10585 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10586 err = iocp->ioc_error; 10587 freemsg(mp); 10588 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10589 return; 10590 } 10591 10592 /* 10593 * Completion of an SIOCG{X}ARP. Translate the information from 10594 * the area_t into the struct {x}arpreq. 10595 */ 10596 if (x_arp_ioctl) { 10597 storage += ill_xarp_info(&xar->xarp_ha, ill); 10598 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10599 sizeof (xar->xarp_ha.sdl_data)) { 10600 freemsg(mp); 10601 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10602 ipsq); 10603 return; 10604 } 10605 } 10606 *flagsp = ATF_INUSE; 10607 if (area->area_flags & ACE_F_PERMANENT) 10608 *flagsp |= ATF_PERM; 10609 if (area->area_flags & ACE_F_PUBLISH) 10610 *flagsp |= ATF_PUBL; 10611 if (area->area_flags & ACE_F_AUTHORITY) 10612 *flagsp |= ATF_AUTHORITY; 10613 if (area->area_hw_addr_length != 0) { 10614 *flagsp |= ATF_COM; 10615 /* 10616 * For SIOCGARP, MAC address length validation has 10617 * already been done before the ioctl was issued to ARP 10618 * to allow it to progress only on 6 byte addressable 10619 * (ethernet like) media. Thus the mac address copying 10620 * can not overwrite the sa_data area below. 10621 */ 10622 bcopy((char *)area + area->area_hw_addr_offset, 10623 storage, area->area_hw_addr_length); 10624 } 10625 10626 /* Ditch the internal IOCTL. */ 10627 freemsg(mp); 10628 /* Complete the original. */ 10629 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10630 } 10631 10632 /* 10633 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10634 * interface) create the next available logical interface for this 10635 * physical interface. 10636 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10637 * ipif with the specified name. 10638 * 10639 * If the address family is not AF_UNSPEC then set the address as well. 10640 * 10641 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10642 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10643 * 10644 * Executed as a writer on the ill. 10645 * So no lock is needed to traverse the ipif chain, or examine the 10646 * phyint flags. 10647 */ 10648 /* ARGSUSED */ 10649 int 10650 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10651 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10652 { 10653 mblk_t *mp1; 10654 struct lifreq *lifr; 10655 boolean_t isv6; 10656 boolean_t exists; 10657 char *name; 10658 char *endp; 10659 char *cp; 10660 int namelen; 10661 ipif_t *ipif; 10662 long id; 10663 ipsq_t *ipsq; 10664 ill_t *ill; 10665 sin_t *sin; 10666 int err = 0; 10667 boolean_t found_sep = B_FALSE; 10668 conn_t *connp; 10669 zoneid_t zoneid; 10670 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10671 10672 ASSERT(q->q_next == NULL); 10673 ip1dbg(("ip_sioctl_addif\n")); 10674 /* Existence of mp1 has been checked in ip_wput_nondata */ 10675 mp1 = mp->b_cont->b_cont; 10676 /* 10677 * Null terminate the string to protect against buffer 10678 * overrun. String was generated by user code and may not 10679 * be trusted. 10680 */ 10681 lifr = (struct lifreq *)mp1->b_rptr; 10682 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10683 name = lifr->lifr_name; 10684 ASSERT(CONN_Q(q)); 10685 connp = Q_TO_CONN(q); 10686 isv6 = connp->conn_af_isv6; 10687 zoneid = connp->conn_zoneid; 10688 namelen = mi_strlen(name); 10689 if (namelen == 0) 10690 return (EINVAL); 10691 10692 exists = B_FALSE; 10693 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10694 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10695 /* 10696 * Allow creating lo0 using SIOCLIFADDIF. 10697 * can't be any other writer thread. So can pass null below 10698 * for the last 4 args to ipif_lookup_name. 10699 */ 10700 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10701 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10702 /* Prevent any further action */ 10703 if (ipif == NULL) { 10704 return (ENOBUFS); 10705 } else if (!exists) { 10706 /* We created the ipif now and as writer */ 10707 ipif_refrele(ipif); 10708 return (0); 10709 } else { 10710 ill = ipif->ipif_ill; 10711 ill_refhold(ill); 10712 ipif_refrele(ipif); 10713 } 10714 } else { 10715 /* Look for a colon in the name. */ 10716 endp = &name[namelen]; 10717 for (cp = endp; --cp > name; ) { 10718 if (*cp == IPIF_SEPARATOR_CHAR) { 10719 found_sep = B_TRUE; 10720 /* 10721 * Reject any non-decimal aliases for plumbing 10722 * of logical interfaces. Aliases with leading 10723 * zeroes are also rejected as they introduce 10724 * ambiguity in the naming of the interfaces. 10725 * Comparing with "0" takes care of all such 10726 * cases. 10727 */ 10728 if ((strncmp("0", cp+1, 1)) == 0) 10729 return (EINVAL); 10730 10731 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10732 id <= 0 || *endp != '\0') { 10733 return (EINVAL); 10734 } 10735 *cp = '\0'; 10736 break; 10737 } 10738 } 10739 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10740 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10741 if (found_sep) 10742 *cp = IPIF_SEPARATOR_CHAR; 10743 if (ill == NULL) 10744 return (err); 10745 } 10746 10747 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10748 B_TRUE); 10749 10750 /* 10751 * Release the refhold due to the lookup, now that we are excl 10752 * or we are just returning 10753 */ 10754 ill_refrele(ill); 10755 10756 if (ipsq == NULL) 10757 return (EINPROGRESS); 10758 10759 /* We are now exclusive on the IPSQ */ 10760 ASSERT(IAM_WRITER_ILL(ill)); 10761 10762 if (found_sep) { 10763 /* Now see if there is an IPIF with this unit number. */ 10764 for (ipif = ill->ill_ipif; ipif != NULL; 10765 ipif = ipif->ipif_next) { 10766 if (ipif->ipif_id == id) { 10767 err = EEXIST; 10768 goto done; 10769 } 10770 } 10771 } 10772 10773 /* 10774 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10775 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10776 * instead. 10777 */ 10778 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10779 B_TRUE, B_TRUE)) == NULL) { 10780 err = ENOBUFS; 10781 goto done; 10782 } 10783 10784 /* Return created name with ioctl */ 10785 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10786 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10787 ip1dbg(("created %s\n", lifr->lifr_name)); 10788 10789 /* Set address */ 10790 sin = (sin_t *)&lifr->lifr_addr; 10791 if (sin->sin_family != AF_UNSPEC) { 10792 err = ip_sioctl_addr(ipif, sin, q, mp, 10793 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10794 } 10795 10796 done: 10797 ipsq_exit(ipsq); 10798 return (err); 10799 } 10800 10801 /* 10802 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10803 * interface) delete it based on the IP address (on this physical interface). 10804 * Otherwise delete it based on the ipif_id. 10805 * Also, special handling to allow a removeif of lo0. 10806 */ 10807 /* ARGSUSED */ 10808 int 10809 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10810 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10811 { 10812 conn_t *connp; 10813 ill_t *ill = ipif->ipif_ill; 10814 boolean_t success; 10815 ip_stack_t *ipst; 10816 10817 ipst = CONNQ_TO_IPST(q); 10818 10819 ASSERT(q->q_next == NULL); 10820 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10821 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10822 ASSERT(IAM_WRITER_IPIF(ipif)); 10823 10824 connp = Q_TO_CONN(q); 10825 /* 10826 * Special case for unplumbing lo0 (the loopback physical interface). 10827 * If unplumbing lo0, the incoming address structure has been 10828 * initialized to all zeros. When unplumbing lo0, all its logical 10829 * interfaces must be removed too. 10830 * 10831 * Note that this interface may be called to remove a specific 10832 * loopback logical interface (eg, lo0:1). But in that case 10833 * ipif->ipif_id != 0 so that the code path for that case is the 10834 * same as any other interface (meaning it skips the code directly 10835 * below). 10836 */ 10837 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10838 if (sin->sin_family == AF_UNSPEC && 10839 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10840 /* 10841 * Mark it condemned. No new ref. will be made to ill. 10842 */ 10843 mutex_enter(&ill->ill_lock); 10844 ill->ill_state_flags |= ILL_CONDEMNED; 10845 for (ipif = ill->ill_ipif; ipif != NULL; 10846 ipif = ipif->ipif_next) { 10847 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10848 } 10849 mutex_exit(&ill->ill_lock); 10850 10851 ipif = ill->ill_ipif; 10852 /* unplumb the loopback interface */ 10853 ill_delete(ill); 10854 mutex_enter(&connp->conn_lock); 10855 mutex_enter(&ill->ill_lock); 10856 10857 /* Are any references to this ill active */ 10858 if (ill_is_freeable(ill)) { 10859 mutex_exit(&ill->ill_lock); 10860 mutex_exit(&connp->conn_lock); 10861 ill_delete_tail(ill); 10862 mi_free(ill); 10863 return (0); 10864 } 10865 success = ipsq_pending_mp_add(connp, ipif, 10866 CONNP_TO_WQ(connp), mp, ILL_FREE); 10867 mutex_exit(&connp->conn_lock); 10868 mutex_exit(&ill->ill_lock); 10869 if (success) 10870 return (EINPROGRESS); 10871 else 10872 return (EINTR); 10873 } 10874 } 10875 10876 if (ipif->ipif_id == 0) { 10877 ipsq_t *ipsq; 10878 10879 /* Find based on address */ 10880 if (ipif->ipif_isv6) { 10881 sin6_t *sin6; 10882 10883 if (sin->sin_family != AF_INET6) 10884 return (EAFNOSUPPORT); 10885 10886 sin6 = (sin6_t *)sin; 10887 /* We are a writer, so we should be able to lookup */ 10888 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10889 ipst); 10890 } else { 10891 if (sin->sin_family != AF_INET) 10892 return (EAFNOSUPPORT); 10893 10894 /* We are a writer, so we should be able to lookup */ 10895 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10896 ipst); 10897 } 10898 if (ipif == NULL) { 10899 return (EADDRNOTAVAIL); 10900 } 10901 10902 /* 10903 * It is possible for a user to send an SIOCLIFREMOVEIF with 10904 * lifr_name of the physical interface but with an ip address 10905 * lifr_addr of a logical interface plumbed over it. 10906 * So update ipx_current_ipif now that ipif points to the 10907 * correct one. 10908 */ 10909 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10910 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10911 10912 /* This is a writer */ 10913 ipif_refrele(ipif); 10914 } 10915 10916 /* 10917 * Can not delete instance zero since it is tied to the ill. 10918 */ 10919 if (ipif->ipif_id == 0) 10920 return (EBUSY); 10921 10922 mutex_enter(&ill->ill_lock); 10923 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10924 mutex_exit(&ill->ill_lock); 10925 10926 ipif_free(ipif); 10927 10928 mutex_enter(&connp->conn_lock); 10929 mutex_enter(&ill->ill_lock); 10930 10931 /* Are any references to this ipif active */ 10932 if (ipif_is_freeable(ipif)) { 10933 mutex_exit(&ill->ill_lock); 10934 mutex_exit(&connp->conn_lock); 10935 ipif_non_duplicate(ipif); 10936 ipif_down_tail(ipif); 10937 ipif_free_tail(ipif); /* frees ipif */ 10938 return (0); 10939 } 10940 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10941 IPIF_FREE); 10942 mutex_exit(&ill->ill_lock); 10943 mutex_exit(&connp->conn_lock); 10944 if (success) 10945 return (EINPROGRESS); 10946 else 10947 return (EINTR); 10948 } 10949 10950 /* 10951 * Restart the removeif ioctl. The refcnt has gone down to 0. 10952 * The ipif is already condemned. So can't find it thru lookups. 10953 */ 10954 /* ARGSUSED */ 10955 int 10956 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10957 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10958 { 10959 ill_t *ill = ipif->ipif_ill; 10960 10961 ASSERT(IAM_WRITER_IPIF(ipif)); 10962 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10963 10964 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10965 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10966 10967 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10968 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10969 ill_delete_tail(ill); 10970 mi_free(ill); 10971 return (0); 10972 } 10973 10974 ipif_non_duplicate(ipif); 10975 ipif_down_tail(ipif); 10976 ipif_free_tail(ipif); 10977 10978 ILL_UNMARK_CHANGING(ill); 10979 return (0); 10980 } 10981 10982 /* 10983 * Set the local interface address. 10984 * Allow an address of all zero when the interface is down. 10985 */ 10986 /* ARGSUSED */ 10987 int 10988 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10989 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10990 { 10991 int err = 0; 10992 in6_addr_t v6addr; 10993 boolean_t need_up = B_FALSE; 10994 10995 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10996 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10997 10998 ASSERT(IAM_WRITER_IPIF(ipif)); 10999 11000 if (ipif->ipif_isv6) { 11001 sin6_t *sin6; 11002 ill_t *ill; 11003 phyint_t *phyi; 11004 11005 if (sin->sin_family != AF_INET6) 11006 return (EAFNOSUPPORT); 11007 11008 sin6 = (sin6_t *)sin; 11009 v6addr = sin6->sin6_addr; 11010 ill = ipif->ipif_ill; 11011 phyi = ill->ill_phyint; 11012 11013 /* 11014 * Enforce that true multicast interfaces have a link-local 11015 * address for logical unit 0. 11016 */ 11017 if (ipif->ipif_id == 0 && 11018 (ill->ill_flags & ILLF_MULTICAST) && 11019 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11020 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11021 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11022 return (EADDRNOTAVAIL); 11023 } 11024 11025 /* 11026 * up interfaces shouldn't have the unspecified address 11027 * unless they also have the IPIF_NOLOCAL flags set and 11028 * have a subnet assigned. 11029 */ 11030 if ((ipif->ipif_flags & IPIF_UP) && 11031 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11032 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11033 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11034 return (EADDRNOTAVAIL); 11035 } 11036 11037 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11038 return (EADDRNOTAVAIL); 11039 } else { 11040 ipaddr_t addr; 11041 11042 if (sin->sin_family != AF_INET) 11043 return (EAFNOSUPPORT); 11044 11045 addr = sin->sin_addr.s_addr; 11046 11047 /* Allow 0 as the local address. */ 11048 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11049 return (EADDRNOTAVAIL); 11050 11051 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11052 } 11053 11054 /* 11055 * Even if there is no change we redo things just to rerun 11056 * ipif_set_default. 11057 */ 11058 if (ipif->ipif_flags & IPIF_UP) { 11059 /* 11060 * Setting a new local address, make sure 11061 * we have net and subnet bcast ire's for 11062 * the old address if we need them. 11063 */ 11064 if (!ipif->ipif_isv6) 11065 ipif_check_bcast_ires(ipif); 11066 /* 11067 * If the interface is already marked up, 11068 * we call ipif_down which will take care 11069 * of ditching any IREs that have been set 11070 * up based on the old interface address. 11071 */ 11072 err = ipif_logical_down(ipif, q, mp); 11073 if (err == EINPROGRESS) 11074 return (err); 11075 ipif_down_tail(ipif); 11076 need_up = 1; 11077 } 11078 11079 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11080 return (err); 11081 } 11082 11083 int 11084 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11085 boolean_t need_up) 11086 { 11087 in6_addr_t v6addr; 11088 in6_addr_t ov6addr; 11089 ipaddr_t addr; 11090 sin6_t *sin6; 11091 int sinlen; 11092 int err = 0; 11093 ill_t *ill = ipif->ipif_ill; 11094 boolean_t need_dl_down; 11095 boolean_t need_arp_down; 11096 struct iocblk *iocp; 11097 11098 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11099 11100 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11101 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11102 ASSERT(IAM_WRITER_IPIF(ipif)); 11103 11104 /* Must cancel any pending timer before taking the ill_lock */ 11105 if (ipif->ipif_recovery_id != 0) 11106 (void) untimeout(ipif->ipif_recovery_id); 11107 ipif->ipif_recovery_id = 0; 11108 11109 if (ipif->ipif_isv6) { 11110 sin6 = (sin6_t *)sin; 11111 v6addr = sin6->sin6_addr; 11112 sinlen = sizeof (struct sockaddr_in6); 11113 } else { 11114 addr = sin->sin_addr.s_addr; 11115 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11116 sinlen = sizeof (struct sockaddr_in); 11117 } 11118 mutex_enter(&ill->ill_lock); 11119 ov6addr = ipif->ipif_v6lcl_addr; 11120 ipif->ipif_v6lcl_addr = v6addr; 11121 sctp_update_ipif_addr(ipif, ov6addr); 11122 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11123 ipif->ipif_v6src_addr = ipv6_all_zeros; 11124 } else { 11125 ipif->ipif_v6src_addr = v6addr; 11126 } 11127 ipif->ipif_addr_ready = 0; 11128 11129 /* 11130 * If the interface was previously marked as a duplicate, then since 11131 * we've now got a "new" address, it should no longer be considered a 11132 * duplicate -- even if the "new" address is the same as the old one. 11133 * Note that if all ipifs are down, we may have a pending ARP down 11134 * event to handle. This is because we want to recover from duplicates 11135 * and thus delay tearing down ARP until the duplicates have been 11136 * removed or disabled. 11137 */ 11138 need_dl_down = need_arp_down = B_FALSE; 11139 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11140 need_arp_down = !need_up; 11141 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11142 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11143 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11144 need_dl_down = B_TRUE; 11145 } 11146 } 11147 11148 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11149 !ill->ill_is_6to4tun) { 11150 queue_t *wqp = ill->ill_wq; 11151 11152 /* 11153 * The local address of this interface is a 6to4 address, 11154 * check if this interface is in fact a 6to4 tunnel or just 11155 * an interface configured with a 6to4 address. We are only 11156 * interested in the former. 11157 */ 11158 if (wqp != NULL) { 11159 while ((wqp->q_next != NULL) && 11160 (wqp->q_next->q_qinfo != NULL) && 11161 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11162 11163 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11164 == TUN6TO4_MODID) { 11165 /* set for use in IP */ 11166 ill->ill_is_6to4tun = 1; 11167 break; 11168 } 11169 wqp = wqp->q_next; 11170 } 11171 } 11172 } 11173 11174 ipif_set_default(ipif); 11175 11176 /* 11177 * When publishing an interface address change event, we only notify 11178 * the event listeners of the new address. It is assumed that if they 11179 * actively care about the addresses assigned that they will have 11180 * already discovered the previous address assigned (if there was one.) 11181 * 11182 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11183 */ 11184 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11185 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11186 NE_ADDRESS_CHANGE, sin, sinlen); 11187 } 11188 11189 mutex_exit(&ill->ill_lock); 11190 11191 if (need_up) { 11192 /* 11193 * Now bring the interface back up. If this 11194 * is the only IPIF for the ILL, ipif_up 11195 * will have to re-bind to the device, so 11196 * we may get back EINPROGRESS, in which 11197 * case, this IOCTL will get completed in 11198 * ip_rput_dlpi when we see the DL_BIND_ACK. 11199 */ 11200 err = ipif_up(ipif, q, mp); 11201 } 11202 11203 if (need_dl_down) 11204 ill_dl_down(ill); 11205 if (need_arp_down) 11206 ipif_resolver_down(ipif); 11207 11208 return (err); 11209 } 11210 11211 /* 11212 * Restart entry point to restart the address set operation after the 11213 * refcounts have dropped to zero. 11214 */ 11215 /* ARGSUSED */ 11216 int 11217 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11218 ip_ioctl_cmd_t *ipip, void *ifreq) 11219 { 11220 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11221 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11222 ASSERT(IAM_WRITER_IPIF(ipif)); 11223 ipif_down_tail(ipif); 11224 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11225 } 11226 11227 /* ARGSUSED */ 11228 int 11229 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11230 ip_ioctl_cmd_t *ipip, void *if_req) 11231 { 11232 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11233 struct lifreq *lifr = (struct lifreq *)if_req; 11234 11235 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11236 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11237 /* 11238 * The net mask and address can't change since we have a 11239 * reference to the ipif. So no lock is necessary. 11240 */ 11241 if (ipif->ipif_isv6) { 11242 *sin6 = sin6_null; 11243 sin6->sin6_family = AF_INET6; 11244 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11245 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11246 lifr->lifr_addrlen = 11247 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11248 } else { 11249 *sin = sin_null; 11250 sin->sin_family = AF_INET; 11251 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11252 if (ipip->ipi_cmd_type == LIF_CMD) { 11253 lifr->lifr_addrlen = 11254 ip_mask_to_plen(ipif->ipif_net_mask); 11255 } 11256 } 11257 return (0); 11258 } 11259 11260 /* 11261 * Set the destination address for a pt-pt interface. 11262 */ 11263 /* ARGSUSED */ 11264 int 11265 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11266 ip_ioctl_cmd_t *ipip, void *if_req) 11267 { 11268 int err = 0; 11269 in6_addr_t v6addr; 11270 boolean_t need_up = B_FALSE; 11271 11272 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11273 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11274 ASSERT(IAM_WRITER_IPIF(ipif)); 11275 11276 if (ipif->ipif_isv6) { 11277 sin6_t *sin6; 11278 11279 if (sin->sin_family != AF_INET6) 11280 return (EAFNOSUPPORT); 11281 11282 sin6 = (sin6_t *)sin; 11283 v6addr = sin6->sin6_addr; 11284 11285 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11286 return (EADDRNOTAVAIL); 11287 } else { 11288 ipaddr_t addr; 11289 11290 if (sin->sin_family != AF_INET) 11291 return (EAFNOSUPPORT); 11292 11293 addr = sin->sin_addr.s_addr; 11294 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11295 return (EADDRNOTAVAIL); 11296 11297 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11298 } 11299 11300 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11301 return (0); /* No change */ 11302 11303 if (ipif->ipif_flags & IPIF_UP) { 11304 /* 11305 * If the interface is already marked up, 11306 * we call ipif_down which will take care 11307 * of ditching any IREs that have been set 11308 * up based on the old pp dst address. 11309 */ 11310 err = ipif_logical_down(ipif, q, mp); 11311 if (err == EINPROGRESS) 11312 return (err); 11313 ipif_down_tail(ipif); 11314 need_up = B_TRUE; 11315 } 11316 /* 11317 * could return EINPROGRESS. If so ioctl will complete in 11318 * ip_rput_dlpi_writer 11319 */ 11320 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11321 return (err); 11322 } 11323 11324 static int 11325 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11326 boolean_t need_up) 11327 { 11328 in6_addr_t v6addr; 11329 ill_t *ill = ipif->ipif_ill; 11330 int err = 0; 11331 boolean_t need_dl_down; 11332 boolean_t need_arp_down; 11333 11334 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11335 ipif->ipif_id, (void *)ipif)); 11336 11337 /* Must cancel any pending timer before taking the ill_lock */ 11338 if (ipif->ipif_recovery_id != 0) 11339 (void) untimeout(ipif->ipif_recovery_id); 11340 ipif->ipif_recovery_id = 0; 11341 11342 if (ipif->ipif_isv6) { 11343 sin6_t *sin6; 11344 11345 sin6 = (sin6_t *)sin; 11346 v6addr = sin6->sin6_addr; 11347 } else { 11348 ipaddr_t addr; 11349 11350 addr = sin->sin_addr.s_addr; 11351 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11352 } 11353 mutex_enter(&ill->ill_lock); 11354 /* Set point to point destination address. */ 11355 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11356 /* 11357 * Allow this as a means of creating logical 11358 * pt-pt interfaces on top of e.g. an Ethernet. 11359 * XXX Undocumented HACK for testing. 11360 * pt-pt interfaces are created with NUD disabled. 11361 */ 11362 ipif->ipif_flags |= IPIF_POINTOPOINT; 11363 ipif->ipif_flags &= ~IPIF_BROADCAST; 11364 if (ipif->ipif_isv6) 11365 ill->ill_flags |= ILLF_NONUD; 11366 } 11367 11368 /* 11369 * If the interface was previously marked as a duplicate, then since 11370 * we've now got a "new" address, it should no longer be considered a 11371 * duplicate -- even if the "new" address is the same as the old one. 11372 * Note that if all ipifs are down, we may have a pending ARP down 11373 * event to handle. 11374 */ 11375 need_dl_down = need_arp_down = B_FALSE; 11376 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11377 need_arp_down = !need_up; 11378 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11379 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11380 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11381 need_dl_down = B_TRUE; 11382 } 11383 } 11384 11385 /* Set the new address. */ 11386 ipif->ipif_v6pp_dst_addr = v6addr; 11387 /* Make sure subnet tracks pp_dst */ 11388 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11389 mutex_exit(&ill->ill_lock); 11390 11391 if (need_up) { 11392 /* 11393 * Now bring the interface back up. If this 11394 * is the only IPIF for the ILL, ipif_up 11395 * will have to re-bind to the device, so 11396 * we may get back EINPROGRESS, in which 11397 * case, this IOCTL will get completed in 11398 * ip_rput_dlpi when we see the DL_BIND_ACK. 11399 */ 11400 err = ipif_up(ipif, q, mp); 11401 } 11402 11403 if (need_dl_down) 11404 ill_dl_down(ill); 11405 if (need_arp_down) 11406 ipif_resolver_down(ipif); 11407 11408 return (err); 11409 } 11410 11411 /* 11412 * Restart entry point to restart the dstaddress set operation after the 11413 * refcounts have dropped to zero. 11414 */ 11415 /* ARGSUSED */ 11416 int 11417 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11418 ip_ioctl_cmd_t *ipip, void *ifreq) 11419 { 11420 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11421 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11422 ipif_down_tail(ipif); 11423 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11424 } 11425 11426 /* ARGSUSED */ 11427 int 11428 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11429 ip_ioctl_cmd_t *ipip, void *if_req) 11430 { 11431 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11432 11433 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11434 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11435 /* 11436 * Get point to point destination address. The addresses can't 11437 * change since we hold a reference to the ipif. 11438 */ 11439 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11440 return (EADDRNOTAVAIL); 11441 11442 if (ipif->ipif_isv6) { 11443 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11444 *sin6 = sin6_null; 11445 sin6->sin6_family = AF_INET6; 11446 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11447 } else { 11448 *sin = sin_null; 11449 sin->sin_family = AF_INET; 11450 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11451 } 11452 return (0); 11453 } 11454 11455 /* 11456 * Set interface flags. Many flags require special handling (e.g., 11457 * bringing the interface down); see below for details. 11458 * 11459 * NOTE : We really don't enforce that ipif_id zero should be used 11460 * for setting any flags other than IFF_LOGINT_FLAGS. This 11461 * is because applications generally does SICGLIFFLAGS and 11462 * ORs in the new flags (that affects the logical) and does a 11463 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11464 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11465 * flags that will be turned on is correct with respect to 11466 * ipif_id 0. For backward compatibility reasons, it is not done. 11467 */ 11468 /* ARGSUSED */ 11469 int 11470 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11471 ip_ioctl_cmd_t *ipip, void *if_req) 11472 { 11473 uint64_t turn_on; 11474 uint64_t turn_off; 11475 int err = 0; 11476 phyint_t *phyi; 11477 ill_t *ill; 11478 uint64_t intf_flags, cantchange_flags; 11479 boolean_t phyint_flags_modified = B_FALSE; 11480 uint64_t flags; 11481 struct ifreq *ifr; 11482 struct lifreq *lifr; 11483 boolean_t set_linklocal = B_FALSE; 11484 boolean_t zero_source = B_FALSE; 11485 11486 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11487 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11488 11489 ASSERT(IAM_WRITER_IPIF(ipif)); 11490 11491 ill = ipif->ipif_ill; 11492 phyi = ill->ill_phyint; 11493 11494 if (ipip->ipi_cmd_type == IF_CMD) { 11495 ifr = (struct ifreq *)if_req; 11496 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11497 } else { 11498 lifr = (struct lifreq *)if_req; 11499 flags = lifr->lifr_flags; 11500 } 11501 11502 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11503 11504 /* 11505 * Have the flags been set correctly until now? 11506 */ 11507 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11508 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11509 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11510 /* 11511 * Compare the new flags to the old, and partition 11512 * into those coming on and those going off. 11513 * For the 16 bit command keep the bits above bit 16 unchanged. 11514 */ 11515 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11516 flags |= intf_flags & ~0xFFFF; 11517 11518 /* 11519 * Explicitly fail attempts to change flags that are always invalid on 11520 * an IPMP meta-interface. 11521 */ 11522 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11523 return (EINVAL); 11524 11525 /* 11526 * Check which flags will change; silently ignore flags which userland 11527 * is not allowed to control. (Because these flags may change between 11528 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11529 * control, we need to silently ignore them rather than fail.) 11530 */ 11531 cantchange_flags = IFF_CANTCHANGE; 11532 if (IS_IPMP(ill)) 11533 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11534 11535 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11536 if (turn_on == 0) 11537 return (0); /* No change */ 11538 11539 turn_off = intf_flags & turn_on; 11540 turn_on ^= turn_off; 11541 11542 /* 11543 * All test addresses must be IFF_DEPRECATED (to ensure source address 11544 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11545 * allow it to be turned off. 11546 */ 11547 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11548 (turn_on|intf_flags) & IFF_NOFAILOVER) 11549 return (EINVAL); 11550 11551 if (turn_on & IFF_NOFAILOVER) { 11552 turn_on |= IFF_DEPRECATED; 11553 flags |= IFF_DEPRECATED; 11554 } 11555 11556 /* 11557 * On underlying interfaces, only allow applications to manage test 11558 * addresses -- otherwise, they may get confused when the address 11559 * moves as part of being brought up. Likewise, prevent an 11560 * application-managed test address from being converted to a data 11561 * address. To prevent migration of administratively up addresses in 11562 * the kernel, we don't allow them to be converted either. 11563 */ 11564 if (IS_UNDER_IPMP(ill)) { 11565 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11566 11567 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11568 return (EINVAL); 11569 11570 if ((turn_off & IFF_NOFAILOVER) && 11571 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11572 return (EINVAL); 11573 } 11574 11575 /* 11576 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11577 * IPv6 interfaces. 11578 */ 11579 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11580 return (EINVAL); 11581 11582 /* 11583 * cannot turn off IFF_NOXMIT on VNI interfaces. 11584 */ 11585 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11586 return (EINVAL); 11587 11588 /* 11589 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11590 * interfaces. It makes no sense in that context. 11591 */ 11592 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11593 return (EINVAL); 11594 11595 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11596 zero_source = B_TRUE; 11597 11598 /* 11599 * For IPv6 ipif_id 0, don't allow the interface to be up without 11600 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11601 * If the link local address isn't set, and can be set, it will get 11602 * set later on in this function. 11603 */ 11604 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11605 (flags & IFF_UP) && !zero_source && 11606 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11607 if (ipif_cant_setlinklocal(ipif)) 11608 return (EINVAL); 11609 set_linklocal = B_TRUE; 11610 } 11611 11612 /* 11613 * If we modify physical interface flags, we'll potentially need to 11614 * send up two routing socket messages for the changes (one for the 11615 * IPv4 ill, and another for the IPv6 ill). Note that here. 11616 */ 11617 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11618 phyint_flags_modified = B_TRUE; 11619 11620 /* 11621 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11622 * (otherwise, we'd immediately use them, defeating standby). Also, 11623 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11624 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11625 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11626 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11627 * will not be honored. 11628 */ 11629 if (turn_on & PHYI_STANDBY) { 11630 /* 11631 * No need to grab ill_g_usesrc_lock here; see the 11632 * synchronization notes in ip.c. 11633 */ 11634 if (ill->ill_usesrc_grp_next != NULL || 11635 intf_flags & PHYI_INACTIVE) 11636 return (EINVAL); 11637 if (!(flags & PHYI_FAILED)) { 11638 flags |= PHYI_INACTIVE; 11639 turn_on |= PHYI_INACTIVE; 11640 } 11641 } 11642 11643 if (turn_off & PHYI_STANDBY) { 11644 flags &= ~PHYI_INACTIVE; 11645 turn_off |= PHYI_INACTIVE; 11646 } 11647 11648 /* 11649 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11650 * would end up on. 11651 */ 11652 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11653 (PHYI_FAILED | PHYI_INACTIVE)) 11654 return (EINVAL); 11655 11656 /* 11657 * If ILLF_ROUTER changes, we need to change the ip forwarding 11658 * status of the interface. 11659 */ 11660 if ((turn_on | turn_off) & ILLF_ROUTER) 11661 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11662 11663 /* 11664 * If the interface is not UP and we are not going to 11665 * bring it UP, record the flags and return. When the 11666 * interface comes UP later, the right actions will be 11667 * taken. 11668 */ 11669 if (!(ipif->ipif_flags & IPIF_UP) && 11670 !(turn_on & IPIF_UP)) { 11671 /* Record new flags in their respective places. */ 11672 mutex_enter(&ill->ill_lock); 11673 mutex_enter(&ill->ill_phyint->phyint_lock); 11674 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11675 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11676 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11677 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11678 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11679 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11680 mutex_exit(&ill->ill_lock); 11681 mutex_exit(&ill->ill_phyint->phyint_lock); 11682 11683 /* 11684 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11685 * same to the kernel: if any of them has been set by 11686 * userland, the interface cannot be used for data traffic. 11687 */ 11688 if ((turn_on|turn_off) & 11689 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11690 ASSERT(!IS_IPMP(ill)); 11691 /* 11692 * It's possible the ill is part of an "anonymous" 11693 * IPMP group rather than a real group. In that case, 11694 * there are no other interfaces in the group and thus 11695 * no need to call ipmp_phyint_refresh_active(). 11696 */ 11697 if (IS_UNDER_IPMP(ill)) 11698 ipmp_phyint_refresh_active(phyi); 11699 } 11700 11701 if (phyint_flags_modified) { 11702 if (phyi->phyint_illv4 != NULL) { 11703 ip_rts_ifmsg(phyi->phyint_illv4-> 11704 ill_ipif, RTSQ_DEFAULT); 11705 } 11706 if (phyi->phyint_illv6 != NULL) { 11707 ip_rts_ifmsg(phyi->phyint_illv6-> 11708 ill_ipif, RTSQ_DEFAULT); 11709 } 11710 } 11711 return (0); 11712 } else if (set_linklocal || zero_source) { 11713 mutex_enter(&ill->ill_lock); 11714 if (set_linklocal) 11715 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11716 if (zero_source) 11717 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11718 mutex_exit(&ill->ill_lock); 11719 } 11720 11721 /* 11722 * Disallow IPv6 interfaces coming up that have the unspecified address, 11723 * or point-to-point interfaces with an unspecified destination. We do 11724 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11725 * have a subnet assigned, which is how in.ndpd currently manages its 11726 * onlink prefix list when no addresses are configured with those 11727 * prefixes. 11728 */ 11729 if (ipif->ipif_isv6 && 11730 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11731 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11732 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11733 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11734 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11735 return (EINVAL); 11736 } 11737 11738 /* 11739 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11740 * from being brought up. 11741 */ 11742 if (!ipif->ipif_isv6 && 11743 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11744 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11745 return (EINVAL); 11746 } 11747 11748 /* 11749 * The only flag changes that we currently take specific action on are 11750 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11751 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11752 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11753 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11754 * of bringing it back up will trigger the address to be moved. 11755 */ 11756 if ((turn_on|turn_off) & 11757 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11758 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11759 IPIF_NOFAILOVER)) { 11760 /* 11761 * Taking this ipif down, make sure we have 11762 * valid net and subnet bcast ire's for other 11763 * logical interfaces, if we need them. 11764 */ 11765 if (!ipif->ipif_isv6) 11766 ipif_check_bcast_ires(ipif); 11767 11768 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11769 !(turn_off & IPIF_UP)) { 11770 if (ipif->ipif_flags & IPIF_UP) 11771 ill->ill_logical_down = 1; 11772 turn_on &= ~IPIF_UP; 11773 } 11774 err = ipif_down(ipif, q, mp); 11775 ip1dbg(("ipif_down returns %d err ", err)); 11776 if (err == EINPROGRESS) 11777 return (err); 11778 ipif_down_tail(ipif); 11779 } 11780 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11781 } 11782 11783 static int 11784 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11785 { 11786 ill_t *ill; 11787 phyint_t *phyi; 11788 uint64_t turn_on, turn_off; 11789 uint64_t intf_flags, cantchange_flags; 11790 boolean_t phyint_flags_modified = B_FALSE; 11791 int err = 0; 11792 boolean_t set_linklocal = B_FALSE; 11793 boolean_t zero_source = B_FALSE; 11794 11795 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11796 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11797 11798 ASSERT(IAM_WRITER_IPIF(ipif)); 11799 11800 ill = ipif->ipif_ill; 11801 phyi = ill->ill_phyint; 11802 11803 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11804 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11805 if (IS_IPMP(ill)) 11806 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11807 11808 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11809 turn_off = intf_flags & turn_on; 11810 turn_on ^= turn_off; 11811 11812 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11813 phyint_flags_modified = B_TRUE; 11814 11815 /* 11816 * Now we change the flags. Track current value of 11817 * other flags in their respective places. 11818 */ 11819 mutex_enter(&ill->ill_lock); 11820 mutex_enter(&phyi->phyint_lock); 11821 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11822 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11823 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11824 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11825 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11826 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11827 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11828 set_linklocal = B_TRUE; 11829 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11830 } 11831 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11832 zero_source = B_TRUE; 11833 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11834 } 11835 mutex_exit(&ill->ill_lock); 11836 mutex_exit(&phyi->phyint_lock); 11837 11838 if (set_linklocal) 11839 (void) ipif_setlinklocal(ipif); 11840 11841 if (zero_source) 11842 ipif->ipif_v6src_addr = ipv6_all_zeros; 11843 else 11844 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11845 11846 /* 11847 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11848 * the kernel: if any of them has been set by userland, the interface 11849 * cannot be used for data traffic. 11850 */ 11851 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11852 ASSERT(!IS_IPMP(ill)); 11853 /* 11854 * It's possible the ill is part of an "anonymous" IPMP group 11855 * rather than a real group. In that case, there are no other 11856 * interfaces in the group and thus no need for us to call 11857 * ipmp_phyint_refresh_active(). 11858 */ 11859 if (IS_UNDER_IPMP(ill)) 11860 ipmp_phyint_refresh_active(phyi); 11861 } 11862 11863 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11864 /* 11865 * XXX ipif_up really does not know whether a phyint flags 11866 * was modified or not. So, it sends up information on 11867 * only one routing sockets message. As we don't bring up 11868 * the interface and also set PHYI_ flags simultaneously 11869 * it should be okay. 11870 */ 11871 err = ipif_up(ipif, q, mp); 11872 } else { 11873 /* 11874 * Make sure routing socket sees all changes to the flags. 11875 * ipif_up_done* handles this when we use ipif_up. 11876 */ 11877 if (phyint_flags_modified) { 11878 if (phyi->phyint_illv4 != NULL) { 11879 ip_rts_ifmsg(phyi->phyint_illv4-> 11880 ill_ipif, RTSQ_DEFAULT); 11881 } 11882 if (phyi->phyint_illv6 != NULL) { 11883 ip_rts_ifmsg(phyi->phyint_illv6-> 11884 ill_ipif, RTSQ_DEFAULT); 11885 } 11886 } else { 11887 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11888 } 11889 /* 11890 * Update the flags in SCTP's IPIF list, ipif_up() will do 11891 * this in need_up case. 11892 */ 11893 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11894 } 11895 return (err); 11896 } 11897 11898 /* 11899 * Restart the flags operation now that the refcounts have dropped to zero. 11900 */ 11901 /* ARGSUSED */ 11902 int 11903 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11904 ip_ioctl_cmd_t *ipip, void *if_req) 11905 { 11906 uint64_t flags; 11907 struct ifreq *ifr = if_req; 11908 struct lifreq *lifr = if_req; 11909 11910 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11912 11913 ipif_down_tail(ipif); 11914 if (ipip->ipi_cmd_type == IF_CMD) { 11915 /* cast to uint16_t prevents unwanted sign extension */ 11916 flags = (uint16_t)ifr->ifr_flags; 11917 } else { 11918 flags = lifr->lifr_flags; 11919 } 11920 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11921 } 11922 11923 /* 11924 * Can operate on either a module or a driver queue. 11925 */ 11926 /* ARGSUSED */ 11927 int 11928 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11929 ip_ioctl_cmd_t *ipip, void *if_req) 11930 { 11931 /* 11932 * Has the flags been set correctly till now ? 11933 */ 11934 ill_t *ill = ipif->ipif_ill; 11935 phyint_t *phyi = ill->ill_phyint; 11936 11937 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11938 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11939 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11940 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11941 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11942 11943 /* 11944 * Need a lock since some flags can be set even when there are 11945 * references to the ipif. 11946 */ 11947 mutex_enter(&ill->ill_lock); 11948 if (ipip->ipi_cmd_type == IF_CMD) { 11949 struct ifreq *ifr = (struct ifreq *)if_req; 11950 11951 /* Get interface flags (low 16 only). */ 11952 ifr->ifr_flags = ((ipif->ipif_flags | 11953 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11954 } else { 11955 struct lifreq *lifr = (struct lifreq *)if_req; 11956 11957 /* Get interface flags. */ 11958 lifr->lifr_flags = ipif->ipif_flags | 11959 ill->ill_flags | phyi->phyint_flags; 11960 } 11961 mutex_exit(&ill->ill_lock); 11962 return (0); 11963 } 11964 11965 /* ARGSUSED */ 11966 int 11967 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11968 ip_ioctl_cmd_t *ipip, void *if_req) 11969 { 11970 int mtu; 11971 int ip_min_mtu; 11972 struct ifreq *ifr; 11973 struct lifreq *lifr; 11974 ire_t *ire; 11975 ip_stack_t *ipst; 11976 11977 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11978 ipif->ipif_id, (void *)ipif)); 11979 if (ipip->ipi_cmd_type == IF_CMD) { 11980 ifr = (struct ifreq *)if_req; 11981 mtu = ifr->ifr_metric; 11982 } else { 11983 lifr = (struct lifreq *)if_req; 11984 mtu = lifr->lifr_mtu; 11985 } 11986 11987 if (ipif->ipif_isv6) 11988 ip_min_mtu = IPV6_MIN_MTU; 11989 else 11990 ip_min_mtu = IP_MIN_MTU; 11991 11992 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11993 return (EINVAL); 11994 11995 /* 11996 * Change the MTU size in all relevant ire's. 11997 * Mtu change Vs. new ire creation - protocol below. 11998 * First change ipif_mtu and the ire_max_frag of the 11999 * interface ire. Then do an ire walk and change the 12000 * ire_max_frag of all affected ires. During ire_add 12001 * under the bucket lock, set the ire_max_frag of the 12002 * new ire being created from the ipif/ire from which 12003 * it is being derived. If an mtu change happens after 12004 * the ire is added, the new ire will be cleaned up. 12005 * Conversely if the mtu change happens before the ire 12006 * is added, ire_add will see the new value of the mtu. 12007 */ 12008 ipif->ipif_mtu = mtu; 12009 ipif->ipif_flags |= IPIF_FIXEDMTU; 12010 12011 if (ipif->ipif_isv6) 12012 ire = ipif_to_ire_v6(ipif); 12013 else 12014 ire = ipif_to_ire(ipif); 12015 if (ire != NULL) { 12016 ire->ire_max_frag = ipif->ipif_mtu; 12017 ire_refrele(ire); 12018 } 12019 ipst = ipif->ipif_ill->ill_ipst; 12020 if (ipif->ipif_flags & IPIF_UP) { 12021 if (ipif->ipif_isv6) 12022 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12023 ipst); 12024 else 12025 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12026 ipst); 12027 } 12028 /* Update the MTU in SCTP's list */ 12029 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12030 return (0); 12031 } 12032 12033 /* Get interface MTU. */ 12034 /* ARGSUSED */ 12035 int 12036 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12037 ip_ioctl_cmd_t *ipip, void *if_req) 12038 { 12039 struct ifreq *ifr; 12040 struct lifreq *lifr; 12041 12042 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12043 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12044 if (ipip->ipi_cmd_type == IF_CMD) { 12045 ifr = (struct ifreq *)if_req; 12046 ifr->ifr_metric = ipif->ipif_mtu; 12047 } else { 12048 lifr = (struct lifreq *)if_req; 12049 lifr->lifr_mtu = ipif->ipif_mtu; 12050 } 12051 return (0); 12052 } 12053 12054 /* Set interface broadcast address. */ 12055 /* ARGSUSED2 */ 12056 int 12057 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12058 ip_ioctl_cmd_t *ipip, void *if_req) 12059 { 12060 ipaddr_t addr; 12061 ire_t *ire; 12062 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12063 12064 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12065 ipif->ipif_id)); 12066 12067 ASSERT(IAM_WRITER_IPIF(ipif)); 12068 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12069 return (EADDRNOTAVAIL); 12070 12071 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12072 12073 if (sin->sin_family != AF_INET) 12074 return (EAFNOSUPPORT); 12075 12076 addr = sin->sin_addr.s_addr; 12077 if (ipif->ipif_flags & IPIF_UP) { 12078 /* 12079 * If we are already up, make sure the new 12080 * broadcast address makes sense. If it does, 12081 * there should be an IRE for it already. 12082 * Don't match on ipif, only on the ill 12083 * since we are sharing these now. 12084 */ 12085 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12086 ipif, ALL_ZONES, NULL, 12087 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12088 if (ire == NULL) { 12089 return (EINVAL); 12090 } else { 12091 ire_refrele(ire); 12092 } 12093 } 12094 /* 12095 * Changing the broadcast addr for this ipif. 12096 * Make sure we have valid net and subnet bcast 12097 * ire's for other logical interfaces, if needed. 12098 */ 12099 if (addr != ipif->ipif_brd_addr) 12100 ipif_check_bcast_ires(ipif); 12101 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12102 return (0); 12103 } 12104 12105 /* Get interface broadcast address. */ 12106 /* ARGSUSED */ 12107 int 12108 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12109 ip_ioctl_cmd_t *ipip, void *if_req) 12110 { 12111 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12112 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12113 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12114 return (EADDRNOTAVAIL); 12115 12116 /* IPIF_BROADCAST not possible with IPv6 */ 12117 ASSERT(!ipif->ipif_isv6); 12118 *sin = sin_null; 12119 sin->sin_family = AF_INET; 12120 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12121 return (0); 12122 } 12123 12124 /* 12125 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12126 */ 12127 /* ARGSUSED */ 12128 int 12129 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12130 ip_ioctl_cmd_t *ipip, void *if_req) 12131 { 12132 int err = 0; 12133 in6_addr_t v6mask; 12134 12135 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12137 12138 ASSERT(IAM_WRITER_IPIF(ipif)); 12139 12140 if (ipif->ipif_isv6) { 12141 sin6_t *sin6; 12142 12143 if (sin->sin_family != AF_INET6) 12144 return (EAFNOSUPPORT); 12145 12146 sin6 = (sin6_t *)sin; 12147 v6mask = sin6->sin6_addr; 12148 } else { 12149 ipaddr_t mask; 12150 12151 if (sin->sin_family != AF_INET) 12152 return (EAFNOSUPPORT); 12153 12154 mask = sin->sin_addr.s_addr; 12155 V4MASK_TO_V6(mask, v6mask); 12156 } 12157 12158 /* 12159 * No big deal if the interface isn't already up, or the mask 12160 * isn't really changing, or this is pt-pt. 12161 */ 12162 if (!(ipif->ipif_flags & IPIF_UP) || 12163 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12164 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12165 ipif->ipif_v6net_mask = v6mask; 12166 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12167 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12168 ipif->ipif_v6net_mask, 12169 ipif->ipif_v6subnet); 12170 } 12171 return (0); 12172 } 12173 /* 12174 * Make sure we have valid net and subnet broadcast ire's 12175 * for the old netmask, if needed by other logical interfaces. 12176 */ 12177 if (!ipif->ipif_isv6) 12178 ipif_check_bcast_ires(ipif); 12179 12180 err = ipif_logical_down(ipif, q, mp); 12181 if (err == EINPROGRESS) 12182 return (err); 12183 ipif_down_tail(ipif); 12184 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12185 return (err); 12186 } 12187 12188 static int 12189 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12190 { 12191 in6_addr_t v6mask; 12192 int err = 0; 12193 12194 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12195 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12196 12197 if (ipif->ipif_isv6) { 12198 sin6_t *sin6; 12199 12200 sin6 = (sin6_t *)sin; 12201 v6mask = sin6->sin6_addr; 12202 } else { 12203 ipaddr_t mask; 12204 12205 mask = sin->sin_addr.s_addr; 12206 V4MASK_TO_V6(mask, v6mask); 12207 } 12208 12209 ipif->ipif_v6net_mask = v6mask; 12210 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12211 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12212 ipif->ipif_v6subnet); 12213 } 12214 err = ipif_up(ipif, q, mp); 12215 12216 if (err == 0 || err == EINPROGRESS) { 12217 /* 12218 * The interface must be DL_BOUND if this packet has to 12219 * go out on the wire. Since we only go through a logical 12220 * down and are bound with the driver during an internal 12221 * down/up that is satisfied. 12222 */ 12223 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12224 /* Potentially broadcast an address mask reply. */ 12225 ipif_mask_reply(ipif); 12226 } 12227 } 12228 return (err); 12229 } 12230 12231 /* ARGSUSED */ 12232 int 12233 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12234 ip_ioctl_cmd_t *ipip, void *if_req) 12235 { 12236 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12237 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12238 ipif_down_tail(ipif); 12239 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12240 } 12241 12242 /* Get interface net mask. */ 12243 /* ARGSUSED */ 12244 int 12245 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12246 ip_ioctl_cmd_t *ipip, void *if_req) 12247 { 12248 struct lifreq *lifr = (struct lifreq *)if_req; 12249 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12250 12251 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12252 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12253 12254 /* 12255 * net mask can't change since we have a reference to the ipif. 12256 */ 12257 if (ipif->ipif_isv6) { 12258 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12259 *sin6 = sin6_null; 12260 sin6->sin6_family = AF_INET6; 12261 sin6->sin6_addr = ipif->ipif_v6net_mask; 12262 lifr->lifr_addrlen = 12263 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12264 } else { 12265 *sin = sin_null; 12266 sin->sin_family = AF_INET; 12267 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12268 if (ipip->ipi_cmd_type == LIF_CMD) { 12269 lifr->lifr_addrlen = 12270 ip_mask_to_plen(ipif->ipif_net_mask); 12271 } 12272 } 12273 return (0); 12274 } 12275 12276 /* ARGSUSED */ 12277 int 12278 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12279 ip_ioctl_cmd_t *ipip, void *if_req) 12280 { 12281 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12282 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12283 12284 /* 12285 * Since no applications should ever be setting metrics on underlying 12286 * interfaces, we explicitly fail to smoke 'em out. 12287 */ 12288 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12289 return (EINVAL); 12290 12291 /* 12292 * Set interface metric. We don't use this for 12293 * anything but we keep track of it in case it is 12294 * important to routing applications or such. 12295 */ 12296 if (ipip->ipi_cmd_type == IF_CMD) { 12297 struct ifreq *ifr; 12298 12299 ifr = (struct ifreq *)if_req; 12300 ipif->ipif_metric = ifr->ifr_metric; 12301 } else { 12302 struct lifreq *lifr; 12303 12304 lifr = (struct lifreq *)if_req; 12305 ipif->ipif_metric = lifr->lifr_metric; 12306 } 12307 return (0); 12308 } 12309 12310 /* ARGSUSED */ 12311 int 12312 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12313 ip_ioctl_cmd_t *ipip, void *if_req) 12314 { 12315 /* Get interface metric. */ 12316 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12317 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12318 12319 if (ipip->ipi_cmd_type == IF_CMD) { 12320 struct ifreq *ifr; 12321 12322 ifr = (struct ifreq *)if_req; 12323 ifr->ifr_metric = ipif->ipif_metric; 12324 } else { 12325 struct lifreq *lifr; 12326 12327 lifr = (struct lifreq *)if_req; 12328 lifr->lifr_metric = ipif->ipif_metric; 12329 } 12330 12331 return (0); 12332 } 12333 12334 /* ARGSUSED */ 12335 int 12336 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12337 ip_ioctl_cmd_t *ipip, void *if_req) 12338 { 12339 12340 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12341 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12342 /* 12343 * Set the muxid returned from I_PLINK. 12344 */ 12345 if (ipip->ipi_cmd_type == IF_CMD) { 12346 struct ifreq *ifr = (struct ifreq *)if_req; 12347 12348 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12349 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12350 } else { 12351 struct lifreq *lifr = (struct lifreq *)if_req; 12352 12353 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12354 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12355 } 12356 return (0); 12357 } 12358 12359 /* ARGSUSED */ 12360 int 12361 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12362 ip_ioctl_cmd_t *ipip, void *if_req) 12363 { 12364 12365 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12366 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12367 /* 12368 * Get the muxid saved in ill for I_PUNLINK. 12369 */ 12370 if (ipip->ipi_cmd_type == IF_CMD) { 12371 struct ifreq *ifr = (struct ifreq *)if_req; 12372 12373 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12374 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12375 } else { 12376 struct lifreq *lifr = (struct lifreq *)if_req; 12377 12378 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12379 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12380 } 12381 return (0); 12382 } 12383 12384 /* 12385 * Set the subnet prefix. Does not modify the broadcast address. 12386 */ 12387 /* ARGSUSED */ 12388 int 12389 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12390 ip_ioctl_cmd_t *ipip, void *if_req) 12391 { 12392 int err = 0; 12393 in6_addr_t v6addr; 12394 in6_addr_t v6mask; 12395 boolean_t need_up = B_FALSE; 12396 int addrlen; 12397 12398 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12399 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12400 12401 ASSERT(IAM_WRITER_IPIF(ipif)); 12402 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12403 12404 if (ipif->ipif_isv6) { 12405 sin6_t *sin6; 12406 12407 if (sin->sin_family != AF_INET6) 12408 return (EAFNOSUPPORT); 12409 12410 sin6 = (sin6_t *)sin; 12411 v6addr = sin6->sin6_addr; 12412 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12413 return (EADDRNOTAVAIL); 12414 } else { 12415 ipaddr_t addr; 12416 12417 if (sin->sin_family != AF_INET) 12418 return (EAFNOSUPPORT); 12419 12420 addr = sin->sin_addr.s_addr; 12421 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12422 return (EADDRNOTAVAIL); 12423 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12424 /* Add 96 bits */ 12425 addrlen += IPV6_ABITS - IP_ABITS; 12426 } 12427 12428 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12429 return (EINVAL); 12430 12431 /* Check if bits in the address is set past the mask */ 12432 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12433 return (EINVAL); 12434 12435 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12436 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12437 return (0); /* No change */ 12438 12439 if (ipif->ipif_flags & IPIF_UP) { 12440 /* 12441 * If the interface is already marked up, 12442 * we call ipif_down which will take care 12443 * of ditching any IREs that have been set 12444 * up based on the old interface address. 12445 */ 12446 err = ipif_logical_down(ipif, q, mp); 12447 if (err == EINPROGRESS) 12448 return (err); 12449 ipif_down_tail(ipif); 12450 need_up = B_TRUE; 12451 } 12452 12453 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12454 return (err); 12455 } 12456 12457 static int 12458 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12459 queue_t *q, mblk_t *mp, boolean_t need_up) 12460 { 12461 ill_t *ill = ipif->ipif_ill; 12462 int err = 0; 12463 12464 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12465 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12466 12467 /* Set the new address. */ 12468 mutex_enter(&ill->ill_lock); 12469 ipif->ipif_v6net_mask = v6mask; 12470 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12471 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12472 ipif->ipif_v6subnet); 12473 } 12474 mutex_exit(&ill->ill_lock); 12475 12476 if (need_up) { 12477 /* 12478 * Now bring the interface back up. If this 12479 * is the only IPIF for the ILL, ipif_up 12480 * will have to re-bind to the device, so 12481 * we may get back EINPROGRESS, in which 12482 * case, this IOCTL will get completed in 12483 * ip_rput_dlpi when we see the DL_BIND_ACK. 12484 */ 12485 err = ipif_up(ipif, q, mp); 12486 if (err == EINPROGRESS) 12487 return (err); 12488 } 12489 return (err); 12490 } 12491 12492 /* ARGSUSED */ 12493 int 12494 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12495 ip_ioctl_cmd_t *ipip, void *if_req) 12496 { 12497 int addrlen; 12498 in6_addr_t v6addr; 12499 in6_addr_t v6mask; 12500 struct lifreq *lifr = (struct lifreq *)if_req; 12501 12502 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12503 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12504 ipif_down_tail(ipif); 12505 12506 addrlen = lifr->lifr_addrlen; 12507 if (ipif->ipif_isv6) { 12508 sin6_t *sin6; 12509 12510 sin6 = (sin6_t *)sin; 12511 v6addr = sin6->sin6_addr; 12512 } else { 12513 ipaddr_t addr; 12514 12515 addr = sin->sin_addr.s_addr; 12516 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12517 addrlen += IPV6_ABITS - IP_ABITS; 12518 } 12519 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12520 12521 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12522 } 12523 12524 /* ARGSUSED */ 12525 int 12526 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12527 ip_ioctl_cmd_t *ipip, void *if_req) 12528 { 12529 struct lifreq *lifr = (struct lifreq *)if_req; 12530 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12531 12532 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12533 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12534 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12535 12536 if (ipif->ipif_isv6) { 12537 *sin6 = sin6_null; 12538 sin6->sin6_family = AF_INET6; 12539 sin6->sin6_addr = ipif->ipif_v6subnet; 12540 lifr->lifr_addrlen = 12541 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12542 } else { 12543 *sin = sin_null; 12544 sin->sin_family = AF_INET; 12545 sin->sin_addr.s_addr = ipif->ipif_subnet; 12546 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12547 } 12548 return (0); 12549 } 12550 12551 /* 12552 * Set the IPv6 address token. 12553 */ 12554 /* ARGSUSED */ 12555 int 12556 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12557 ip_ioctl_cmd_t *ipi, void *if_req) 12558 { 12559 ill_t *ill = ipif->ipif_ill; 12560 int err; 12561 in6_addr_t v6addr; 12562 in6_addr_t v6mask; 12563 boolean_t need_up = B_FALSE; 12564 int i; 12565 sin6_t *sin6 = (sin6_t *)sin; 12566 struct lifreq *lifr = (struct lifreq *)if_req; 12567 int addrlen; 12568 12569 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12570 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12571 ASSERT(IAM_WRITER_IPIF(ipif)); 12572 12573 addrlen = lifr->lifr_addrlen; 12574 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12575 if (ipif->ipif_id != 0) 12576 return (EINVAL); 12577 12578 if (!ipif->ipif_isv6) 12579 return (EINVAL); 12580 12581 if (addrlen > IPV6_ABITS) 12582 return (EINVAL); 12583 12584 v6addr = sin6->sin6_addr; 12585 12586 /* 12587 * The length of the token is the length from the end. To get 12588 * the proper mask for this, compute the mask of the bits not 12589 * in the token; ie. the prefix, and then xor to get the mask. 12590 */ 12591 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12592 return (EINVAL); 12593 for (i = 0; i < 4; i++) { 12594 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12595 } 12596 12597 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12598 ill->ill_token_length == addrlen) 12599 return (0); /* No change */ 12600 12601 if (ipif->ipif_flags & IPIF_UP) { 12602 err = ipif_logical_down(ipif, q, mp); 12603 if (err == EINPROGRESS) 12604 return (err); 12605 ipif_down_tail(ipif); 12606 need_up = B_TRUE; 12607 } 12608 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12609 return (err); 12610 } 12611 12612 static int 12613 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12614 mblk_t *mp, boolean_t need_up) 12615 { 12616 in6_addr_t v6addr; 12617 in6_addr_t v6mask; 12618 ill_t *ill = ipif->ipif_ill; 12619 int i; 12620 int err = 0; 12621 12622 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12624 v6addr = sin6->sin6_addr; 12625 /* 12626 * The length of the token is the length from the end. To get 12627 * the proper mask for this, compute the mask of the bits not 12628 * in the token; ie. the prefix, and then xor to get the mask. 12629 */ 12630 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12631 for (i = 0; i < 4; i++) 12632 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12633 12634 mutex_enter(&ill->ill_lock); 12635 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12636 ill->ill_token_length = addrlen; 12637 mutex_exit(&ill->ill_lock); 12638 12639 if (need_up) { 12640 /* 12641 * Now bring the interface back up. If this 12642 * is the only IPIF for the ILL, ipif_up 12643 * will have to re-bind to the device, so 12644 * we may get back EINPROGRESS, in which 12645 * case, this IOCTL will get completed in 12646 * ip_rput_dlpi when we see the DL_BIND_ACK. 12647 */ 12648 err = ipif_up(ipif, q, mp); 12649 if (err == EINPROGRESS) 12650 return (err); 12651 } 12652 return (err); 12653 } 12654 12655 /* ARGSUSED */ 12656 int 12657 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12658 ip_ioctl_cmd_t *ipi, void *if_req) 12659 { 12660 ill_t *ill; 12661 sin6_t *sin6 = (sin6_t *)sin; 12662 struct lifreq *lifr = (struct lifreq *)if_req; 12663 12664 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12665 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12666 if (ipif->ipif_id != 0) 12667 return (EINVAL); 12668 12669 ill = ipif->ipif_ill; 12670 if (!ill->ill_isv6) 12671 return (ENXIO); 12672 12673 *sin6 = sin6_null; 12674 sin6->sin6_family = AF_INET6; 12675 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12676 sin6->sin6_addr = ill->ill_token; 12677 lifr->lifr_addrlen = ill->ill_token_length; 12678 return (0); 12679 } 12680 12681 /* 12682 * Set (hardware) link specific information that might override 12683 * what was acquired through the DL_INFO_ACK. 12684 * The logic is as follows. 12685 * 12686 * become exclusive 12687 * set CHANGING flag 12688 * change mtu on affected IREs 12689 * clear CHANGING flag 12690 * 12691 * An ire add that occurs before the CHANGING flag is set will have its mtu 12692 * changed by the ip_sioctl_lnkinfo. 12693 * 12694 * During the time the CHANGING flag is set, no new ires will be added to the 12695 * bucket, and ire add will fail (due the CHANGING flag). 12696 * 12697 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12698 * before it is added to the bucket. 12699 * 12700 * Obviously only 1 thread can set the CHANGING flag and we need to become 12701 * exclusive to set the flag. 12702 */ 12703 /* ARGSUSED */ 12704 int 12705 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12706 ip_ioctl_cmd_t *ipi, void *if_req) 12707 { 12708 ill_t *ill = ipif->ipif_ill; 12709 ipif_t *nipif; 12710 int ip_min_mtu; 12711 boolean_t mtu_walk = B_FALSE; 12712 struct lifreq *lifr = (struct lifreq *)if_req; 12713 lif_ifinfo_req_t *lir; 12714 ire_t *ire; 12715 12716 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12717 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12718 lir = &lifr->lifr_ifinfo; 12719 ASSERT(IAM_WRITER_IPIF(ipif)); 12720 12721 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12722 if (ipif->ipif_id != 0) 12723 return (EINVAL); 12724 12725 /* Set interface MTU. */ 12726 if (ipif->ipif_isv6) 12727 ip_min_mtu = IPV6_MIN_MTU; 12728 else 12729 ip_min_mtu = IP_MIN_MTU; 12730 12731 /* 12732 * Verify values before we set anything. Allow zero to 12733 * mean unspecified. 12734 */ 12735 if (lir->lir_maxmtu != 0 && 12736 (lir->lir_maxmtu > ill->ill_max_frag || 12737 lir->lir_maxmtu < ip_min_mtu)) 12738 return (EINVAL); 12739 if (lir->lir_reachtime != 0 && 12740 lir->lir_reachtime > ND_MAX_REACHTIME) 12741 return (EINVAL); 12742 if (lir->lir_reachretrans != 0 && 12743 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12744 return (EINVAL); 12745 12746 mutex_enter(&ill->ill_lock); 12747 ill->ill_state_flags |= ILL_CHANGING; 12748 for (nipif = ill->ill_ipif; nipif != NULL; 12749 nipif = nipif->ipif_next) { 12750 nipif->ipif_state_flags |= IPIF_CHANGING; 12751 } 12752 12753 if (lir->lir_maxmtu != 0) { 12754 ill->ill_max_mtu = lir->lir_maxmtu; 12755 ill->ill_user_mtu = lir->lir_maxmtu; 12756 mtu_walk = B_TRUE; 12757 } 12758 mutex_exit(&ill->ill_lock); 12759 12760 if (lir->lir_reachtime != 0) 12761 ill->ill_reachable_time = lir->lir_reachtime; 12762 12763 if (lir->lir_reachretrans != 0) 12764 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12765 12766 ill->ill_max_hops = lir->lir_maxhops; 12767 12768 ill->ill_max_buf = ND_MAX_Q; 12769 12770 if (mtu_walk) { 12771 /* 12772 * Set the MTU on all ipifs associated with this ill except 12773 * for those whose MTU was fixed via SIOCSLIFMTU. 12774 */ 12775 for (nipif = ill->ill_ipif; nipif != NULL; 12776 nipif = nipif->ipif_next) { 12777 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12778 continue; 12779 12780 nipif->ipif_mtu = ill->ill_max_mtu; 12781 12782 if (!(nipif->ipif_flags & IPIF_UP)) 12783 continue; 12784 12785 if (nipif->ipif_isv6) 12786 ire = ipif_to_ire_v6(nipif); 12787 else 12788 ire = ipif_to_ire(nipif); 12789 if (ire != NULL) { 12790 ire->ire_max_frag = ipif->ipif_mtu; 12791 ire_refrele(ire); 12792 } 12793 12794 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12795 nipif, ill); 12796 } 12797 } 12798 12799 mutex_enter(&ill->ill_lock); 12800 for (nipif = ill->ill_ipif; nipif != NULL; 12801 nipif = nipif->ipif_next) { 12802 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12803 } 12804 ILL_UNMARK_CHANGING(ill); 12805 mutex_exit(&ill->ill_lock); 12806 12807 /* 12808 * Refresh IPMP meta-interface MTU if necessary. 12809 */ 12810 if (IS_UNDER_IPMP(ill)) 12811 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12812 12813 return (0); 12814 } 12815 12816 /* ARGSUSED */ 12817 int 12818 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12819 ip_ioctl_cmd_t *ipi, void *if_req) 12820 { 12821 struct lif_ifinfo_req *lir; 12822 ill_t *ill = ipif->ipif_ill; 12823 12824 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12825 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12826 if (ipif->ipif_id != 0) 12827 return (EINVAL); 12828 12829 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12830 lir->lir_maxhops = ill->ill_max_hops; 12831 lir->lir_reachtime = ill->ill_reachable_time; 12832 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12833 lir->lir_maxmtu = ill->ill_max_mtu; 12834 12835 return (0); 12836 } 12837 12838 /* 12839 * Return best guess as to the subnet mask for the specified address. 12840 * Based on the subnet masks for all the configured interfaces. 12841 * 12842 * We end up returning a zero mask in the case of default, multicast or 12843 * experimental. 12844 */ 12845 static ipaddr_t 12846 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12847 { 12848 ipaddr_t net_mask; 12849 ill_t *ill; 12850 ipif_t *ipif; 12851 ill_walk_context_t ctx; 12852 ipif_t *fallback_ipif = NULL; 12853 12854 net_mask = ip_net_mask(addr); 12855 if (net_mask == 0) { 12856 *ipifp = NULL; 12857 return (0); 12858 } 12859 12860 /* Let's check to see if this is maybe a local subnet route. */ 12861 /* this function only applies to IPv4 interfaces */ 12862 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12863 ill = ILL_START_WALK_V4(&ctx, ipst); 12864 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12865 mutex_enter(&ill->ill_lock); 12866 for (ipif = ill->ill_ipif; ipif != NULL; 12867 ipif = ipif->ipif_next) { 12868 if (!IPIF_CAN_LOOKUP(ipif)) 12869 continue; 12870 if (!(ipif->ipif_flags & IPIF_UP)) 12871 continue; 12872 if ((ipif->ipif_subnet & net_mask) == 12873 (addr & net_mask)) { 12874 /* 12875 * Don't trust pt-pt interfaces if there are 12876 * other interfaces. 12877 */ 12878 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12879 if (fallback_ipif == NULL) { 12880 ipif_refhold_locked(ipif); 12881 fallback_ipif = ipif; 12882 } 12883 continue; 12884 } 12885 12886 /* 12887 * Fine. Just assume the same net mask as the 12888 * directly attached subnet interface is using. 12889 */ 12890 ipif_refhold_locked(ipif); 12891 mutex_exit(&ill->ill_lock); 12892 rw_exit(&ipst->ips_ill_g_lock); 12893 if (fallback_ipif != NULL) 12894 ipif_refrele(fallback_ipif); 12895 *ipifp = ipif; 12896 return (ipif->ipif_net_mask); 12897 } 12898 } 12899 mutex_exit(&ill->ill_lock); 12900 } 12901 rw_exit(&ipst->ips_ill_g_lock); 12902 12903 *ipifp = fallback_ipif; 12904 return ((fallback_ipif != NULL) ? 12905 fallback_ipif->ipif_net_mask : net_mask); 12906 } 12907 12908 /* 12909 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12910 */ 12911 static void 12912 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12913 { 12914 IOCP iocp; 12915 ipft_t *ipft; 12916 ipllc_t *ipllc; 12917 mblk_t *mp1; 12918 cred_t *cr; 12919 int error = 0; 12920 conn_t *connp; 12921 12922 ip1dbg(("ip_wput_ioctl")); 12923 iocp = (IOCP)mp->b_rptr; 12924 mp1 = mp->b_cont; 12925 if (mp1 == NULL) { 12926 iocp->ioc_error = EINVAL; 12927 mp->b_datap->db_type = M_IOCNAK; 12928 iocp->ioc_count = 0; 12929 qreply(q, mp); 12930 return; 12931 } 12932 12933 /* 12934 * These IOCTLs provide various control capabilities to 12935 * upstream agents such as ULPs and processes. There 12936 * are currently two such IOCTLs implemented. They 12937 * are used by TCP to provide update information for 12938 * existing IREs and to forcibly delete an IRE for a 12939 * host that is not responding, thereby forcing an 12940 * attempt at a new route. 12941 */ 12942 iocp->ioc_error = EINVAL; 12943 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12944 goto done; 12945 12946 ipllc = (ipllc_t *)mp1->b_rptr; 12947 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12948 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12949 break; 12950 } 12951 /* 12952 * prefer credential from mblk over ioctl; 12953 * see ip_sioctl_copyin_setup 12954 */ 12955 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12956 12957 /* 12958 * Refhold the conn in case the request gets queued up in some lookup 12959 */ 12960 ASSERT(CONN_Q(q)); 12961 connp = Q_TO_CONN(q); 12962 CONN_INC_REF(connp); 12963 if (ipft->ipft_pfi && 12964 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12965 pullupmsg(mp1, ipft->ipft_min_size))) { 12966 error = (*ipft->ipft_pfi)(q, 12967 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12968 } 12969 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12970 /* 12971 * CONN_OPER_PENDING_DONE happens in the function called 12972 * through ipft_pfi above. 12973 */ 12974 return; 12975 } 12976 12977 CONN_OPER_PENDING_DONE(connp); 12978 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12979 freemsg(mp); 12980 return; 12981 } 12982 iocp->ioc_error = error; 12983 12984 done: 12985 mp->b_datap->db_type = M_IOCACK; 12986 if (iocp->ioc_error) 12987 iocp->ioc_count = 0; 12988 qreply(q, mp); 12989 } 12990 12991 /* 12992 * Lookup an ipif using the sequence id (ipif_seqid) 12993 */ 12994 ipif_t * 12995 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12996 { 12997 ipif_t *ipif; 12998 12999 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13000 13001 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13002 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13003 return (ipif); 13004 } 13005 return (NULL); 13006 } 13007 13008 /* 13009 * Assign a unique id for the ipif. This is used later when we send 13010 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13011 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13012 * IRE is added, we verify that ipif has not disappeared. 13013 */ 13014 13015 static void 13016 ipif_assign_seqid(ipif_t *ipif) 13017 { 13018 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13019 13020 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13021 } 13022 13023 /* 13024 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 13025 * administratively down (i.e., no DAD), of the same type, and locked. Note 13026 * that the clone is complete -- including the seqid -- and the expectation is 13027 * that the caller will either free or overwrite `sipif' before it's unlocked. 13028 */ 13029 static void 13030 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 13031 { 13032 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 13033 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 13034 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13035 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13036 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 13037 ASSERT(sipif->ipif_arp_del_mp == NULL); 13038 ASSERT(dipif->ipif_arp_del_mp == NULL); 13039 ASSERT(sipif->ipif_igmp_rpt == NULL); 13040 ASSERT(dipif->ipif_igmp_rpt == NULL); 13041 ASSERT(sipif->ipif_multicast_up == 0); 13042 ASSERT(dipif->ipif_multicast_up == 0); 13043 ASSERT(sipif->ipif_joined_allhosts == 0); 13044 ASSERT(dipif->ipif_joined_allhosts == 0); 13045 13046 dipif->ipif_mtu = sipif->ipif_mtu; 13047 dipif->ipif_flags = sipif->ipif_flags; 13048 dipif->ipif_metric = sipif->ipif_metric; 13049 dipif->ipif_zoneid = sipif->ipif_zoneid; 13050 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 13051 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 13052 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 13053 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 13054 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 13055 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 13056 13057 /* 13058 * While dipif is down right now, it might've been up before. Since 13059 * it's changing identity, its packet counters need to be reset. 13060 */ 13061 dipif->ipif_ib_pkt_count = 0; 13062 dipif->ipif_ob_pkt_count = 0; 13063 dipif->ipif_fo_pkt_count = 0; 13064 13065 /* 13066 * As per the comment atop the function, we assume that these sipif 13067 * fields will be changed before sipif is unlocked. 13068 */ 13069 dipif->ipif_seqid = sipif->ipif_seqid; 13070 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 13071 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 13072 dipif->ipif_state_flags = sipif->ipif_state_flags; 13073 } 13074 13075 /* 13076 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 13077 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 13078 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13079 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13080 * down (i.e., no DAD), of the same type, and unlocked. 13081 */ 13082 static void 13083 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13084 { 13085 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13086 ipxop_t *ipx = ipsq->ipsq_xop; 13087 13088 ASSERT(sipif != dipif); 13089 ASSERT(sipif != virgipif); 13090 13091 /* 13092 * Grab all of the locks that protect the ipif in a defined order. 13093 */ 13094 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13095 if (sipif > dipif) { 13096 mutex_enter(&sipif->ipif_saved_ire_lock); 13097 mutex_enter(&dipif->ipif_saved_ire_lock); 13098 } else { 13099 mutex_enter(&dipif->ipif_saved_ire_lock); 13100 mutex_enter(&sipif->ipif_saved_ire_lock); 13101 } 13102 13103 ipif_clone(sipif, dipif); 13104 if (virgipif != NULL) { 13105 ipif_clone(virgipif, sipif); 13106 mi_free(virgipif); 13107 } 13108 13109 mutex_exit(&sipif->ipif_saved_ire_lock); 13110 mutex_exit(&dipif->ipif_saved_ire_lock); 13111 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13112 13113 /* 13114 * Transfer ownership of the current xop, if necessary. 13115 */ 13116 if (ipx->ipx_current_ipif == sipif) { 13117 ASSERT(ipx->ipx_pending_ipif == NULL); 13118 mutex_enter(&ipx->ipx_lock); 13119 ipx->ipx_current_ipif = dipif; 13120 mutex_exit(&ipx->ipx_lock); 13121 } 13122 13123 if (virgipif == NULL) 13124 mi_free(sipif); 13125 } 13126 13127 /* 13128 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13129 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13130 * be inserted into the first space available in the list. The value of 13131 * ipif_id will then be set to the appropriate value for its position. 13132 */ 13133 static int 13134 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13135 { 13136 ill_t *ill; 13137 ipif_t *tipif; 13138 ipif_t **tipifp; 13139 int id; 13140 ip_stack_t *ipst; 13141 13142 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13143 IAM_WRITER_IPIF(ipif)); 13144 13145 ill = ipif->ipif_ill; 13146 ASSERT(ill != NULL); 13147 ipst = ill->ill_ipst; 13148 13149 /* 13150 * In the case of lo0:0 we already hold the ill_g_lock. 13151 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13152 * ipif_insert. 13153 */ 13154 if (acquire_g_lock) 13155 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13156 mutex_enter(&ill->ill_lock); 13157 id = ipif->ipif_id; 13158 tipifp = &(ill->ill_ipif); 13159 if (id == -1) { /* need to find a real id */ 13160 id = 0; 13161 while ((tipif = *tipifp) != NULL) { 13162 ASSERT(tipif->ipif_id >= id); 13163 if (tipif->ipif_id != id) 13164 break; /* non-consecutive id */ 13165 id++; 13166 tipifp = &(tipif->ipif_next); 13167 } 13168 /* limit number of logical interfaces */ 13169 if (id >= ipst->ips_ip_addrs_per_if) { 13170 mutex_exit(&ill->ill_lock); 13171 if (acquire_g_lock) 13172 rw_exit(&ipst->ips_ill_g_lock); 13173 return (-1); 13174 } 13175 ipif->ipif_id = id; /* assign new id */ 13176 } else if (id < ipst->ips_ip_addrs_per_if) { 13177 /* we have a real id; insert ipif in the right place */ 13178 while ((tipif = *tipifp) != NULL) { 13179 ASSERT(tipif->ipif_id != id); 13180 if (tipif->ipif_id > id) 13181 break; /* found correct location */ 13182 tipifp = &(tipif->ipif_next); 13183 } 13184 } else { 13185 mutex_exit(&ill->ill_lock); 13186 if (acquire_g_lock) 13187 rw_exit(&ipst->ips_ill_g_lock); 13188 return (-1); 13189 } 13190 13191 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13192 13193 ipif->ipif_next = tipif; 13194 *tipifp = ipif; 13195 mutex_exit(&ill->ill_lock); 13196 if (acquire_g_lock) 13197 rw_exit(&ipst->ips_ill_g_lock); 13198 13199 return (0); 13200 } 13201 13202 static void 13203 ipif_remove(ipif_t *ipif) 13204 { 13205 ipif_t **ipifp; 13206 ill_t *ill = ipif->ipif_ill; 13207 13208 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13209 13210 mutex_enter(&ill->ill_lock); 13211 ipifp = &ill->ill_ipif; 13212 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13213 if (*ipifp == ipif) { 13214 *ipifp = ipif->ipif_next; 13215 break; 13216 } 13217 } 13218 mutex_exit(&ill->ill_lock); 13219 } 13220 13221 /* 13222 * Allocate and initialize a new interface control structure. (Always 13223 * called as writer.) 13224 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13225 * is not part of the global linked list of ills. ipif_seqid is unique 13226 * in the system and to preserve the uniqueness, it is assigned only 13227 * when ill becomes part of the global list. At that point ill will 13228 * have a name. If it doesn't get assigned here, it will get assigned 13229 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13230 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13231 * the interface flags or any other information from the DL_INFO_ACK for 13232 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13233 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13234 * second DL_INFO_ACK comes in from the driver. 13235 */ 13236 static ipif_t * 13237 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13238 boolean_t insert) 13239 { 13240 ipif_t *ipif; 13241 phyint_t *phyi = ill->ill_phyint; 13242 ip_stack_t *ipst = ill->ill_ipst; 13243 13244 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13245 ill->ill_name, id, (void *)ill)); 13246 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13247 13248 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13249 return (NULL); 13250 *ipif = ipif_zero; /* start clean */ 13251 13252 ipif->ipif_ill = ill; 13253 ipif->ipif_id = id; /* could be -1 */ 13254 /* 13255 * Inherit the zoneid from the ill; for the shared stack instance 13256 * this is always the global zone 13257 */ 13258 ipif->ipif_zoneid = ill->ill_zoneid; 13259 13260 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13261 13262 ipif->ipif_refcnt = 0; 13263 ipif->ipif_saved_ire_cnt = 0; 13264 13265 if (insert) { 13266 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13267 mi_free(ipif); 13268 return (NULL); 13269 } 13270 /* -1 id should have been replaced by real id */ 13271 id = ipif->ipif_id; 13272 ASSERT(id >= 0); 13273 } 13274 13275 if (ill->ill_name[0] != '\0') 13276 ipif_assign_seqid(ipif); 13277 13278 /* 13279 * If this is ipif zero, configure ill/phyint-wide information. 13280 * Defer most configuration until we're guaranteed we're attached. 13281 */ 13282 if (id == 0) { 13283 if (ill->ill_mactype == SUNW_DL_IPMP) { 13284 /* 13285 * Set PHYI_IPMP and also set PHYI_FAILED since there 13286 * are no active interfaces. Similarly, PHYI_RUNNING 13287 * isn't set until the group has an active interface. 13288 */ 13289 mutex_enter(&phyi->phyint_lock); 13290 phyi->phyint_flags |= (PHYI_IPMP | PHYI_FAILED); 13291 mutex_exit(&phyi->phyint_lock); 13292 13293 /* 13294 * Create the illgrp (which must not exist yet because 13295 * the zeroth ipif is created once per ill). However, 13296 * do not not link it to the ipmp_grp_t until I_PLINK 13297 * is called; see ip_sioctl_plink_ipmp() for details. 13298 */ 13299 if (ipmp_illgrp_create(ill) == NULL) { 13300 if (insert) { 13301 rw_enter(&ipst->ips_ill_g_lock, 13302 RW_WRITER); 13303 ipif_remove(ipif); 13304 rw_exit(&ipst->ips_ill_g_lock); 13305 } 13306 mi_free(ipif); 13307 return (NULL); 13308 } 13309 } else { 13310 /* 13311 * By default, PHYI_RUNNING is set when the zeroth 13312 * ipif is created. For other ipifs, we don't touch 13313 * it since DLPI notifications may have changed it. 13314 */ 13315 mutex_enter(&phyi->phyint_lock); 13316 phyi->phyint_flags |= PHYI_RUNNING; 13317 mutex_exit(&phyi->phyint_lock); 13318 } 13319 } 13320 13321 /* 13322 * We grab the ill_lock and phyint_lock to protect the flag changes. 13323 * The ipif is still not up and can't be looked up until the 13324 * ioctl completes and the IPIF_CHANGING flag is cleared. 13325 */ 13326 mutex_enter(&ill->ill_lock); 13327 mutex_enter(&phyi->phyint_lock); 13328 13329 ipif->ipif_ire_type = ire_type; 13330 13331 if (ipif->ipif_isv6) { 13332 ill->ill_flags |= ILLF_IPV6; 13333 } else { 13334 ipaddr_t inaddr_any = INADDR_ANY; 13335 13336 ill->ill_flags |= ILLF_IPV4; 13337 13338 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13339 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13340 &ipif->ipif_v6lcl_addr); 13341 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13342 &ipif->ipif_v6src_addr); 13343 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13344 &ipif->ipif_v6subnet); 13345 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13346 &ipif->ipif_v6net_mask); 13347 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13348 &ipif->ipif_v6brd_addr); 13349 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13350 &ipif->ipif_v6pp_dst_addr); 13351 } 13352 13353 /* 13354 * Don't set the interface flags etc. now, will do it in 13355 * ip_ll_subnet_defaults. 13356 */ 13357 if (!initialize) 13358 goto out; 13359 13360 ipif->ipif_mtu = ill->ill_max_mtu; 13361 13362 /* 13363 * NOTE: The IPMP meta-interface is special-cased because it starts 13364 * with no underlying interfaces (and thus an unknown broadcast 13365 * address length), but all interfaces that can be placed into an IPMP 13366 * group are required to be broadcast-capable. 13367 */ 13368 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13369 /* 13370 * Later detect lack of DLPI driver multicast 13371 * capability by catching DL_ENABMULTI errors in 13372 * ip_rput_dlpi. 13373 */ 13374 ill->ill_flags |= ILLF_MULTICAST; 13375 if (!ipif->ipif_isv6) 13376 ipif->ipif_flags |= IPIF_BROADCAST; 13377 } else { 13378 if (ill->ill_net_type != IRE_LOOPBACK) { 13379 if (ipif->ipif_isv6) 13380 /* 13381 * Note: xresolv interfaces will eventually need 13382 * NOARP set here as well, but that will require 13383 * those external resolvers to have some 13384 * knowledge of that flag and act appropriately. 13385 * Not to be changed at present. 13386 */ 13387 ill->ill_flags |= ILLF_NONUD; 13388 else 13389 ill->ill_flags |= ILLF_NOARP; 13390 } 13391 if (ill->ill_phys_addr_length == 0) { 13392 if (ill->ill_mactype == SUNW_DL_VNI) { 13393 ipif->ipif_flags |= IPIF_NOXMIT; 13394 phyi->phyint_flags |= PHYI_VIRTUAL; 13395 } else { 13396 /* pt-pt supports multicast. */ 13397 ill->ill_flags |= ILLF_MULTICAST; 13398 if (ill->ill_net_type == IRE_LOOPBACK) { 13399 phyi->phyint_flags |= 13400 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13401 } else { 13402 ipif->ipif_flags |= IPIF_POINTOPOINT; 13403 } 13404 } 13405 } 13406 } 13407 out: 13408 mutex_exit(&phyi->phyint_lock); 13409 mutex_exit(&ill->ill_lock); 13410 return (ipif); 13411 } 13412 13413 /* 13414 * If appropriate, send a message up to the resolver delete the entry 13415 * for the address of this interface which is going out of business. 13416 * (Always called as writer). 13417 * 13418 * NOTE : We need to check for NULL mps as some of the fields are 13419 * initialized only for some interface types. See ipif_resolver_up() 13420 * for details. 13421 */ 13422 void 13423 ipif_resolver_down(ipif_t *ipif) 13424 { 13425 mblk_t *mp; 13426 ill_t *ill = ipif->ipif_ill; 13427 13428 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13429 ASSERT(IAM_WRITER_IPIF(ipif)); 13430 13431 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13432 return; 13433 13434 /* Delete the mapping for the local address */ 13435 mp = ipif->ipif_arp_del_mp; 13436 if (mp != NULL) { 13437 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13438 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13439 putnext(ill->ill_rq, mp); 13440 ipif->ipif_arp_del_mp = NULL; 13441 } 13442 13443 /* 13444 * Make IPMP aware of the deleted data address. 13445 */ 13446 if (IS_IPMP(ill)) 13447 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13448 13449 /* 13450 * If this is the last ipif that is going down and there are no 13451 * duplicate addresses we may yet attempt to re-probe, then we need to 13452 * clean up ARP completely. 13453 */ 13454 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13455 /* 13456 * If this was the last ipif on an IPMP interface, purge any 13457 * IPMP ARP entries associated with it. 13458 */ 13459 if (IS_IPMP(ill)) 13460 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13461 13462 /* Send up AR_INTERFACE_DOWN message */ 13463 mp = ill->ill_arp_down_mp; 13464 if (mp != NULL) { 13465 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13466 *(unsigned *)mp->b_rptr, ill->ill_name, 13467 ipif->ipif_id)); 13468 putnext(ill->ill_rq, mp); 13469 ill->ill_arp_down_mp = NULL; 13470 } 13471 13472 /* Tell ARP to delete the multicast mappings */ 13473 mp = ill->ill_arp_del_mapping_mp; 13474 if (mp != NULL) { 13475 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13476 *(unsigned *)mp->b_rptr, ill->ill_name, 13477 ipif->ipif_id)); 13478 putnext(ill->ill_rq, mp); 13479 ill->ill_arp_del_mapping_mp = NULL; 13480 } 13481 } 13482 } 13483 13484 /* 13485 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13486 * is non-NULL, then upon success it will contain an mblk that can be passed 13487 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13488 * will have already been notified to create the mapping. Returns zero on 13489 * success, -1 upon failure. 13490 */ 13491 int 13492 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13493 { 13494 mblk_t *del_mp = NULL; 13495 mblk_t *add_mp = NULL; 13496 mblk_t *mp; 13497 ill_t *ill = ipif->ipif_ill; 13498 phyint_t *phyi = ill->ill_phyint; 13499 ipaddr_t addr, mask, extract_mask = 0; 13500 arma_t *arma; 13501 uint8_t *maddr, *bphys_addr; 13502 uint32_t hw_start; 13503 dl_unitdata_req_t *dlur; 13504 13505 ASSERT(IAM_WRITER_IPIF(ipif)); 13506 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13507 return (0); 13508 13509 /* 13510 * IPMP meta-interfaces don't have any inherent multicast mappings, 13511 * and instead use the ones on the underlying interfaces. 13512 */ 13513 if (IS_IPMP(ill)) 13514 return (0); 13515 13516 /* 13517 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13518 * ipif_resolver_down() will send this up to ARP, but it may be that 13519 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13520 */ 13521 mp = ill->ill_arp_del_mapping_mp; 13522 if (mp != NULL) { 13523 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13524 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13525 putnext(ill->ill_rq, mp); 13526 ill->ill_arp_del_mapping_mp = NULL; 13527 } 13528 13529 if (arp_add_mapping_mp != NULL) 13530 *arp_add_mapping_mp = NULL; 13531 13532 /* 13533 * Check that the address is not to long for the constant 13534 * length reserved in the template arma_t. 13535 */ 13536 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13537 return (-1); 13538 13539 /* Add mapping mblk */ 13540 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13541 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13542 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13543 (caddr_t)&addr); 13544 if (add_mp == NULL) 13545 return (-1); 13546 arma = (arma_t *)add_mp->b_rptr; 13547 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13548 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13549 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13550 13551 /* 13552 * Determine the broadcast address. 13553 */ 13554 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13555 if (ill->ill_sap_length < 0) 13556 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13557 else 13558 bphys_addr = (uchar_t *)dlur + 13559 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13560 /* 13561 * Check PHYI_MULTI_BCAST and length of physical 13562 * address to determine if we use the mapping or the 13563 * broadcast address. 13564 */ 13565 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13566 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13567 bphys_addr, maddr, &hw_start, &extract_mask)) 13568 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13569 13570 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13571 (ill->ill_flags & ILLF_MULTICAST)) { 13572 /* Make sure this will not match the "exact" entry. */ 13573 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13574 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13575 (caddr_t)&addr); 13576 if (del_mp == NULL) { 13577 freemsg(add_mp); 13578 return (-1); 13579 } 13580 bcopy(&extract_mask, (char *)arma + 13581 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13582 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13583 /* Use link-layer broadcast address for MULTI_BCAST */ 13584 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13585 ip2dbg(("ipif_arp_setup_multicast: adding" 13586 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13587 } else { 13588 arma->arma_hw_mapping_start = hw_start; 13589 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13590 " ARP setup for %s\n", ill->ill_name)); 13591 } 13592 } else { 13593 freemsg(add_mp); 13594 ASSERT(del_mp == NULL); 13595 /* It is neither MULTICAST nor MULTI_BCAST */ 13596 return (0); 13597 } 13598 ASSERT(add_mp != NULL && del_mp != NULL); 13599 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13600 ill->ill_arp_del_mapping_mp = del_mp; 13601 if (arp_add_mapping_mp != NULL) { 13602 /* The caller just wants the mblks allocated */ 13603 *arp_add_mapping_mp = add_mp; 13604 } else { 13605 /* The caller wants us to send it to arp */ 13606 putnext(ill->ill_rq, add_mp); 13607 } 13608 return (0); 13609 } 13610 13611 /* 13612 * Get the resolver set up for a new IP address. (Always called as writer.) 13613 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13614 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13615 * 13616 * The enumerated value res_act tunes the behavior: 13617 * * Res_act_initial: set up all the resolver structures for a new 13618 * IP address. 13619 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13620 * ARP message in defense of the address. 13621 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13622 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13623 * 13624 * Returns zero on success, or an errno upon failure. 13625 */ 13626 int 13627 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13628 { 13629 mblk_t *arp_up_mp = NULL; 13630 mblk_t *arp_down_mp = NULL; 13631 mblk_t *arp_add_mp = NULL; 13632 mblk_t *arp_del_mp = NULL; 13633 mblk_t *arp_add_mapping_mp = NULL; 13634 mblk_t *arp_del_mapping_mp = NULL; 13635 ill_t *ill = ipif->ipif_ill; 13636 int err = ENOMEM; 13637 boolean_t added_ipif = B_FALSE; 13638 boolean_t publish; 13639 boolean_t was_dup; 13640 13641 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13642 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13643 ASSERT(IAM_WRITER_IPIF(ipif)); 13644 13645 was_dup = B_FALSE; 13646 if (res_act == Res_act_initial) { 13647 ipif->ipif_addr_ready = 0; 13648 /* 13649 * We're bringing an interface up here. There's no way that we 13650 * should need to shut down ARP now. 13651 */ 13652 mutex_enter(&ill->ill_lock); 13653 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13654 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13655 ill->ill_ipif_dup_count--; 13656 was_dup = B_TRUE; 13657 } 13658 mutex_exit(&ill->ill_lock); 13659 } 13660 if (ipif->ipif_recovery_id != 0) 13661 (void) untimeout(ipif->ipif_recovery_id); 13662 ipif->ipif_recovery_id = 0; 13663 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13664 ipif->ipif_addr_ready = 1; 13665 return (0); 13666 } 13667 /* NDP will set the ipif_addr_ready flag when it's ready */ 13668 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13669 return (0); 13670 13671 if (ill->ill_isv6) { 13672 /* 13673 * External resolver for IPv6 13674 */ 13675 ASSERT(res_act == Res_act_initial); 13676 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13677 } else { 13678 /* 13679 * IPv4 arp case. If the ARP stream has already started 13680 * closing, fail this request for ARP bringup. Else 13681 * record the fact that an ARP bringup is pending. 13682 */ 13683 mutex_enter(&ill->ill_lock); 13684 if (ill->ill_arp_closing) { 13685 mutex_exit(&ill->ill_lock); 13686 err = EINVAL; 13687 goto failed; 13688 } else { 13689 if (ill->ill_ipif_up_count == 0 && 13690 ill->ill_ipif_dup_count == 0 && !was_dup) 13691 ill->ill_arp_bringup_pending = 1; 13692 mutex_exit(&ill->ill_lock); 13693 } 13694 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13695 } 13696 13697 if (IS_IPMP(ill) && publish) { 13698 /* 13699 * If we're here via ipif_up(), then the ipif won't be bound 13700 * yet -- add it to the group, which will bind it if possible. 13701 * (We would add it in ipif_up(), but deleting on failure 13702 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13703 * then the ipif has already been added to the group and we 13704 * just need to use the binding. 13705 */ 13706 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13707 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13708 /* 13709 * We couldn't bind the ipif to an ill yet, 13710 * so we have nothing to publish. 13711 */ 13712 publish = B_FALSE; 13713 } 13714 added_ipif = B_TRUE; 13715 } 13716 } 13717 13718 /* 13719 * Add an entry for the local address in ARP only if it 13720 * is not UNNUMBERED and it is suitable for publishing. 13721 */ 13722 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13723 if (res_act == Res_act_defend) { 13724 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13725 if (arp_add_mp == NULL) 13726 goto failed; 13727 /* 13728 * If we're just defending our address now, then 13729 * there's no need to set up ARP multicast mappings. 13730 * The publish command is enough. 13731 */ 13732 goto done; 13733 } 13734 13735 /* 13736 * Allocate an ARP add message and an ARP delete message (the 13737 * latter is saved for use when the address goes down). 13738 */ 13739 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13740 goto failed; 13741 13742 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13743 goto failed; 13744 13745 if (res_act != Res_act_initial) 13746 goto arp_setup_multicast; 13747 } else { 13748 if (res_act != Res_act_initial) 13749 goto done; 13750 } 13751 /* 13752 * Need to bring up ARP or setup multicast mapping only 13753 * when the first interface is coming UP. 13754 */ 13755 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13756 goto done; 13757 13758 /* 13759 * Allocate an ARP down message (to be saved) and an ARP up message. 13760 */ 13761 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13762 if (arp_down_mp == NULL) 13763 goto failed; 13764 13765 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13766 if (arp_up_mp == NULL) 13767 goto failed; 13768 13769 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13770 goto done; 13771 13772 arp_setup_multicast: 13773 /* 13774 * Setup the multicast mappings. This function initializes 13775 * ill_arp_del_mapping_mp also. This does not need to be done for 13776 * IPv6, or for the IPMP interface (since it has no link-layer). 13777 */ 13778 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13779 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13780 if (err != 0) 13781 goto failed; 13782 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13783 ASSERT(arp_add_mapping_mp != NULL); 13784 } 13785 done: 13786 if (arp_up_mp != NULL) { 13787 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13788 ill->ill_name, ipif->ipif_id)); 13789 putnext(ill->ill_rq, arp_up_mp); 13790 arp_up_mp = NULL; 13791 } 13792 if (arp_add_mp != NULL) { 13793 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13794 ill->ill_name, ipif->ipif_id)); 13795 /* 13796 * If it's an extended ARP implementation, then we'll wait to 13797 * hear that DAD has finished before using the interface. 13798 */ 13799 if (!ill->ill_arp_extend) 13800 ipif->ipif_addr_ready = 1; 13801 putnext(ill->ill_rq, arp_add_mp); 13802 arp_add_mp = NULL; 13803 } else { 13804 ipif->ipif_addr_ready = 1; 13805 } 13806 if (arp_add_mapping_mp != NULL) { 13807 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13808 ill->ill_name, ipif->ipif_id)); 13809 putnext(ill->ill_rq, arp_add_mapping_mp); 13810 arp_add_mapping_mp = NULL; 13811 } 13812 13813 if (res_act == Res_act_initial) { 13814 if (ill->ill_flags & ILLF_NOARP) 13815 err = ill_arp_off(ill); 13816 else 13817 err = ill_arp_on(ill); 13818 if (err != 0) { 13819 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13820 err)); 13821 goto failed; 13822 } 13823 } 13824 13825 if (arp_del_mp != NULL) { 13826 ASSERT(ipif->ipif_arp_del_mp == NULL); 13827 ipif->ipif_arp_del_mp = arp_del_mp; 13828 } 13829 if (arp_down_mp != NULL) { 13830 ASSERT(ill->ill_arp_down_mp == NULL); 13831 ill->ill_arp_down_mp = arp_down_mp; 13832 } 13833 if (arp_del_mapping_mp != NULL) { 13834 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13835 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13836 } 13837 13838 return ((ill->ill_ipif_up_count != 0 || was_dup || 13839 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13840 failed: 13841 ip1dbg(("ipif_resolver_up: FAILED\n")); 13842 if (added_ipif) 13843 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13844 freemsg(arp_add_mp); 13845 freemsg(arp_del_mp); 13846 freemsg(arp_add_mapping_mp); 13847 freemsg(arp_up_mp); 13848 freemsg(arp_down_mp); 13849 ill->ill_arp_bringup_pending = 0; 13850 return (err); 13851 } 13852 13853 /* 13854 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13855 * just gone back up. 13856 */ 13857 static void 13858 ipif_arp_start_dad(ipif_t *ipif) 13859 { 13860 ill_t *ill = ipif->ipif_ill; 13861 mblk_t *arp_add_mp; 13862 13863 /* ACE_F_UNVERIFIED restarts DAD */ 13864 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13865 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13866 ipif->ipif_lcl_addr == INADDR_ANY || 13867 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13868 /* 13869 * If we can't contact ARP for some reason, that's not really a 13870 * problem. Just send out the routing socket notification that 13871 * DAD completion would have done, and continue. 13872 */ 13873 ipif_mask_reply(ipif); 13874 ipif_up_notify(ipif); 13875 ipif->ipif_addr_ready = 1; 13876 return; 13877 } 13878 13879 putnext(ill->ill_rq, arp_add_mp); 13880 } 13881 13882 static void 13883 ipif_ndp_start_dad(ipif_t *ipif) 13884 { 13885 nce_t *nce; 13886 13887 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13888 B_FALSE); 13889 if (nce == NULL) 13890 return; 13891 13892 if (!ndp_restart_dad(nce)) { 13893 /* 13894 * If we can't restart DAD for some reason, that's not really a 13895 * problem. Just send out the routing socket notification that 13896 * DAD completion would have done, and continue. 13897 */ 13898 ipif_up_notify(ipif); 13899 ipif->ipif_addr_ready = 1; 13900 } 13901 NCE_REFRELE(nce); 13902 } 13903 13904 /* 13905 * Restart duplicate address detection on all interfaces on the given ill. 13906 * 13907 * This is called when an interface transitions from down to up 13908 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13909 * 13910 * Note that since the underlying physical link has transitioned, we must cause 13911 * at least one routing socket message to be sent here, either via DAD 13912 * completion or just by default on the first ipif. (If we don't do this, then 13913 * in.mpathd will see long delays when doing link-based failure recovery.) 13914 */ 13915 void 13916 ill_restart_dad(ill_t *ill, boolean_t went_up) 13917 { 13918 ipif_t *ipif; 13919 13920 if (ill == NULL) 13921 return; 13922 13923 /* 13924 * If layer two doesn't support duplicate address detection, then just 13925 * send the routing socket message now and be done with it. 13926 */ 13927 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13928 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13929 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13930 return; 13931 } 13932 13933 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13934 if (went_up) { 13935 if (ipif->ipif_flags & IPIF_UP) { 13936 if (ill->ill_isv6) 13937 ipif_ndp_start_dad(ipif); 13938 else 13939 ipif_arp_start_dad(ipif); 13940 } else if (ill->ill_isv6 && 13941 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13942 /* 13943 * For IPv4, the ARP module itself will 13944 * automatically start the DAD process when it 13945 * sees DL_NOTE_LINK_UP. We respond to the 13946 * AR_CN_READY at the completion of that task. 13947 * For IPv6, we must kick off the bring-up 13948 * process now. 13949 */ 13950 ndp_do_recovery(ipif); 13951 } else { 13952 /* 13953 * Unfortunately, the first ipif is "special" 13954 * and represents the underlying ill in the 13955 * routing socket messages. Thus, when this 13956 * one ipif is down, we must still notify so 13957 * that the user knows the IFF_RUNNING status 13958 * change. (If the first ipif is up, then 13959 * we'll handle eventual routing socket 13960 * notification via DAD completion.) 13961 */ 13962 if (ipif == ill->ill_ipif) { 13963 ip_rts_ifmsg(ill->ill_ipif, 13964 RTSQ_DEFAULT); 13965 } 13966 } 13967 } else { 13968 /* 13969 * After link down, we'll need to send a new routing 13970 * message when the link comes back, so clear 13971 * ipif_addr_ready. 13972 */ 13973 ipif->ipif_addr_ready = 0; 13974 } 13975 } 13976 13977 /* 13978 * If we've torn down links, then notify the user right away. 13979 */ 13980 if (!went_up) 13981 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13982 } 13983 13984 static void 13985 ipsq_delete(ipsq_t *ipsq) 13986 { 13987 ipxop_t *ipx = ipsq->ipsq_xop; 13988 13989 ipsq->ipsq_ipst = NULL; 13990 ASSERT(ipsq->ipsq_phyint == NULL); 13991 ASSERT(ipsq->ipsq_xop != NULL); 13992 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 13993 ASSERT(ipx->ipx_pending_mp == NULL); 13994 kmem_free(ipsq, sizeof (ipsq_t)); 13995 } 13996 13997 static int 13998 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 13999 { 14000 int err; 14001 ipif_t *ipif; 14002 14003 if (ill == NULL) 14004 return (0); 14005 14006 /* 14007 * Except for ipif_state_flags and ill_state_flags the other 14008 * fields of the ipif/ill that are modified below are protected 14009 * implicitly since we are a writer. We would have tried to down 14010 * even an ipif that was already down, in ill_down_ipifs. So we 14011 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14012 */ 14013 ASSERT(IAM_WRITER_ILL(ill)); 14014 14015 ill->ill_up_ipifs = B_TRUE; 14016 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14017 mutex_enter(&ill->ill_lock); 14018 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14019 mutex_exit(&ill->ill_lock); 14020 if (ipif->ipif_was_up) { 14021 if (!(ipif->ipif_flags & IPIF_UP)) 14022 err = ipif_up(ipif, q, mp); 14023 ipif->ipif_was_up = B_FALSE; 14024 if (err != 0) { 14025 ASSERT(err == EINPROGRESS); 14026 return (err); 14027 } 14028 } 14029 } 14030 mutex_enter(&ill->ill_lock); 14031 ill->ill_state_flags &= ~ILL_CHANGING; 14032 mutex_exit(&ill->ill_lock); 14033 ill->ill_up_ipifs = B_FALSE; 14034 return (0); 14035 } 14036 14037 /* 14038 * This function is called to bring up all the ipifs that were up before 14039 * bringing the ill down via ill_down_ipifs(). 14040 */ 14041 int 14042 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14043 { 14044 int err; 14045 14046 ASSERT(IAM_WRITER_ILL(ill)); 14047 14048 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 14049 if (err != 0) 14050 return (err); 14051 14052 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 14053 } 14054 14055 /* 14056 * Bring down any IPIF_UP ipifs on ill. 14057 */ 14058 static void 14059 ill_down_ipifs(ill_t *ill) 14060 { 14061 ipif_t *ipif; 14062 14063 ASSERT(IAM_WRITER_ILL(ill)); 14064 14065 /* 14066 * Except for ipif_state_flags the other fields of the ipif/ill that 14067 * are modified below are protected implicitly since we are a writer 14068 */ 14069 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14070 /* 14071 * We go through the ipif_down logic even if the ipif 14072 * is already down, since routes can be added based 14073 * on down ipifs. Going through ipif_down once again 14074 * will delete any IREs created based on these routes. 14075 */ 14076 if (ipif->ipif_flags & IPIF_UP) 14077 ipif->ipif_was_up = B_TRUE; 14078 14079 mutex_enter(&ill->ill_lock); 14080 ipif->ipif_state_flags |= IPIF_CHANGING; 14081 mutex_exit(&ill->ill_lock); 14082 14083 /* 14084 * Need to re-create net/subnet bcast ires if 14085 * they are dependent on ipif. 14086 */ 14087 if (!ipif->ipif_isv6) 14088 ipif_check_bcast_ires(ipif); 14089 (void) ipif_logical_down(ipif, NULL, NULL); 14090 ipif_non_duplicate(ipif); 14091 ipif_down_tail(ipif); 14092 } 14093 } 14094 14095 /* 14096 * Redo source address selection. This is called when a 14097 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 14098 */ 14099 void 14100 ill_update_source_selection(ill_t *ill) 14101 { 14102 ipif_t *ipif; 14103 14104 ASSERT(IAM_WRITER_ILL(ill)); 14105 14106 /* 14107 * Underlying interfaces are only used for test traffic and thus 14108 * should always send with their (deprecated) source addresses. 14109 */ 14110 if (IS_UNDER_IPMP(ill)) 14111 return; 14112 14113 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14114 if (ill->ill_isv6) 14115 ipif_recreate_interface_routes_v6(NULL, ipif); 14116 else 14117 ipif_recreate_interface_routes(NULL, ipif); 14118 } 14119 } 14120 14121 /* 14122 * Finish the group join started in ip_sioctl_groupname(). 14123 */ 14124 /* ARGSUSED */ 14125 static void 14126 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14127 { 14128 ill_t *ill = q->q_ptr; 14129 phyint_t *phyi = ill->ill_phyint; 14130 ipmp_grp_t *grp = phyi->phyint_grp; 14131 ip_stack_t *ipst = ill->ill_ipst; 14132 14133 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14134 ASSERT(!IS_IPMP(ill) && grp != NULL); 14135 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14136 14137 if (phyi->phyint_illv4 != NULL) { 14138 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14139 VERIFY(grp->gr_pendv4-- > 0); 14140 rw_exit(&ipst->ips_ipmp_lock); 14141 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14142 } 14143 if (phyi->phyint_illv6 != NULL) { 14144 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14145 VERIFY(grp->gr_pendv6-- > 0); 14146 rw_exit(&ipst->ips_ipmp_lock); 14147 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14148 } 14149 freemsg(mp); 14150 } 14151 14152 /* 14153 * Process an SIOCSLIFGROUPNAME request. 14154 */ 14155 /* ARGSUSED */ 14156 int 14157 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14158 ip_ioctl_cmd_t *ipip, void *ifreq) 14159 { 14160 struct lifreq *lifr = ifreq; 14161 ill_t *ill = ipif->ipif_ill; 14162 ip_stack_t *ipst = ill->ill_ipst; 14163 phyint_t *phyi = ill->ill_phyint; 14164 ipmp_grp_t *grp = phyi->phyint_grp; 14165 mblk_t *ipsq_mp; 14166 int err = 0; 14167 14168 /* 14169 * Note that phyint_grp can only change here, where we're exclusive. 14170 */ 14171 ASSERT(IAM_WRITER_ILL(ill)); 14172 14173 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14174 (phyi->phyint_flags & PHYI_VIRTUAL)) 14175 return (EINVAL); 14176 14177 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14178 14179 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14180 14181 /* 14182 * If the name hasn't changed, there's nothing to do. 14183 */ 14184 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14185 goto unlock; 14186 14187 /* 14188 * Handle requests to rename an IPMP meta-interface. 14189 * 14190 * Note that creation of the IPMP meta-interface is handled in 14191 * userland through the standard plumbing sequence. As part of the 14192 * plumbing the IPMP meta-interface, its initial groupname is set to 14193 * the name of the interface (see ipif_set_values_tail()). 14194 */ 14195 if (IS_IPMP(ill)) { 14196 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14197 goto unlock; 14198 } 14199 14200 /* 14201 * Handle requests to add or remove an IP interface from a group. 14202 */ 14203 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14204 /* 14205 * Moves are handled by first removing the interface from 14206 * its existing group, and then adding it to another group. 14207 * So, fail if it's already in a group. 14208 */ 14209 if (IS_UNDER_IPMP(ill)) { 14210 err = EALREADY; 14211 goto unlock; 14212 } 14213 14214 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14215 if (grp == NULL) { 14216 err = ENOENT; 14217 goto unlock; 14218 } 14219 14220 /* 14221 * Check if the phyint and its ills are suitable for 14222 * inclusion into the group. 14223 */ 14224 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14225 goto unlock; 14226 14227 /* 14228 * Checks pass; join the group, and enqueue the remaining 14229 * illgrp joins for when we've become part of the group xop 14230 * and are exclusive across its IPSQs. Since qwriter_ip() 14231 * requires an mblk_t to scribble on, and since `mp' will be 14232 * freed as part of completing the ioctl, allocate another. 14233 */ 14234 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14235 err = ENOMEM; 14236 goto unlock; 14237 } 14238 14239 /* 14240 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14241 * IPMP meta-interface ills needed by `phyi' cannot go away 14242 * before ip_join_illgrps() is called back. See the comments 14243 * in ip_sioctl_plink_ipmp() for more. 14244 */ 14245 if (phyi->phyint_illv4 != NULL) 14246 grp->gr_pendv4++; 14247 if (phyi->phyint_illv6 != NULL) 14248 grp->gr_pendv6++; 14249 14250 rw_exit(&ipst->ips_ipmp_lock); 14251 14252 ipmp_phyint_join_grp(phyi, grp); 14253 ill_refhold(ill); 14254 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14255 SWITCH_OP, B_FALSE); 14256 return (0); 14257 } else { 14258 /* 14259 * Request to remove the interface from a group. If the 14260 * interface is not in a group, this trivially succeeds. 14261 */ 14262 rw_exit(&ipst->ips_ipmp_lock); 14263 if (IS_UNDER_IPMP(ill)) 14264 ipmp_phyint_leave_grp(phyi); 14265 return (0); 14266 } 14267 unlock: 14268 rw_exit(&ipst->ips_ipmp_lock); 14269 return (err); 14270 } 14271 14272 /* 14273 * Process an SIOCGLIFBINDING request. 14274 */ 14275 /* ARGSUSED */ 14276 int 14277 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14278 ip_ioctl_cmd_t *ipip, void *ifreq) 14279 { 14280 ill_t *ill; 14281 struct lifreq *lifr = ifreq; 14282 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14283 14284 if (!IS_IPMP(ipif->ipif_ill)) 14285 return (EINVAL); 14286 14287 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14288 if ((ill = ipif->ipif_bound_ill) == NULL) 14289 lifr->lifr_binding[0] = '\0'; 14290 else 14291 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14292 rw_exit(&ipst->ips_ipmp_lock); 14293 return (0); 14294 } 14295 14296 /* 14297 * Process an SIOCGLIFGROUPNAME request. 14298 */ 14299 /* ARGSUSED */ 14300 int 14301 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14302 ip_ioctl_cmd_t *ipip, void *ifreq) 14303 { 14304 ipmp_grp_t *grp; 14305 struct lifreq *lifr = ifreq; 14306 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14307 14308 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14309 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14310 lifr->lifr_groupname[0] = '\0'; 14311 else 14312 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14313 rw_exit(&ipst->ips_ipmp_lock); 14314 return (0); 14315 } 14316 14317 /* 14318 * Process an SIOCGLIFGROUPINFO request. 14319 */ 14320 /* ARGSUSED */ 14321 int 14322 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14323 ip_ioctl_cmd_t *ipip, void *dummy) 14324 { 14325 ipmp_grp_t *grp; 14326 lifgroupinfo_t *lifgr; 14327 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14328 14329 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14330 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14331 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14332 14333 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14334 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14335 rw_exit(&ipst->ips_ipmp_lock); 14336 return (ENOENT); 14337 } 14338 ipmp_grp_info(grp, lifgr); 14339 rw_exit(&ipst->ips_ipmp_lock); 14340 return (0); 14341 } 14342 14343 static void 14344 ill_dl_down(ill_t *ill) 14345 { 14346 /* 14347 * The ill is down; unbind but stay attached since we're still 14348 * associated with a PPA. If we have negotiated DLPI capabilites 14349 * with the data link service provider (IDS_OK) then reset them. 14350 * The interval between unbinding and rebinding is potentially 14351 * unbounded hence we cannot assume things will be the same. 14352 * The DLPI capabilities will be probed again when the data link 14353 * is brought up. 14354 */ 14355 mblk_t *mp = ill->ill_unbind_mp; 14356 14357 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14358 14359 ill->ill_unbind_mp = NULL; 14360 if (mp != NULL) { 14361 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14362 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14363 ill->ill_name)); 14364 mutex_enter(&ill->ill_lock); 14365 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14366 mutex_exit(&ill->ill_lock); 14367 /* 14368 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14369 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14370 * ill_capability_dld_disable disable rightaway. If this is not 14371 * an unplumb operation then the disable happens on receipt of 14372 * the capab ack via ip_rput_dlpi_writer -> 14373 * ill_capability_ack_thr. In both cases the order of 14374 * the operations seen by DLD is capability disable followed 14375 * by DL_UNBIND. Also the DLD capability disable needs a 14376 * cv_wait'able context. 14377 */ 14378 if (ill->ill_state_flags & ILL_CONDEMNED) 14379 ill_capability_dld_disable(ill); 14380 ill_capability_reset(ill, B_FALSE); 14381 ill_dlpi_send(ill, mp); 14382 } 14383 14384 /* 14385 * Toss all of our multicast memberships. We could keep them, but 14386 * then we'd have to do bookkeeping of any joins and leaves performed 14387 * by the application while the the interface is down (we can't just 14388 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14389 * on a downed interface). 14390 */ 14391 ill_leave_multicast(ill); 14392 14393 mutex_enter(&ill->ill_lock); 14394 ill->ill_dl_up = 0; 14395 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14396 mutex_exit(&ill->ill_lock); 14397 } 14398 14399 static void 14400 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14401 { 14402 union DL_primitives *dlp; 14403 t_uscalar_t prim; 14404 14405 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14406 14407 dlp = (union DL_primitives *)mp->b_rptr; 14408 prim = dlp->dl_primitive; 14409 14410 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14411 dl_primstr(prim), prim, ill->ill_name)); 14412 14413 switch (prim) { 14414 case DL_PHYS_ADDR_REQ: 14415 { 14416 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14417 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14418 break; 14419 } 14420 case DL_BIND_REQ: 14421 mutex_enter(&ill->ill_lock); 14422 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14423 mutex_exit(&ill->ill_lock); 14424 break; 14425 } 14426 14427 /* 14428 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14429 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14430 * we only wait for the ACK of the DL_UNBIND_REQ. 14431 */ 14432 mutex_enter(&ill->ill_lock); 14433 if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) 14434 ill->ill_dlpi_pending = prim; 14435 14436 mutex_exit(&ill->ill_lock); 14437 putnext(ill->ill_wq, mp); 14438 } 14439 14440 /* 14441 * Helper function for ill_dlpi_send(). 14442 */ 14443 /* ARGSUSED */ 14444 static void 14445 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14446 { 14447 ill_dlpi_send(q->q_ptr, mp); 14448 } 14449 14450 /* 14451 * Send a DLPI control message to the driver but make sure there 14452 * is only one outstanding message. Uses ill_dlpi_pending to tell 14453 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14454 * when an ACK or a NAK is received to process the next queued message. 14455 */ 14456 void 14457 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14458 { 14459 mblk_t **mpp; 14460 14461 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14462 14463 /* 14464 * To ensure that any DLPI requests for current exclusive operation 14465 * are always completely sent before any DLPI messages for other 14466 * operations, require writer access before enqueuing. 14467 */ 14468 if (!IAM_WRITER_ILL(ill)) { 14469 ill_refhold(ill); 14470 /* qwriter_ip() does the ill_refrele() */ 14471 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14472 NEW_OP, B_TRUE); 14473 return; 14474 } 14475 14476 mutex_enter(&ill->ill_lock); 14477 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14478 /* Must queue message. Tail insertion */ 14479 mpp = &ill->ill_dlpi_deferred; 14480 while (*mpp != NULL) 14481 mpp = &((*mpp)->b_next); 14482 14483 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14484 ill->ill_name)); 14485 14486 *mpp = mp; 14487 mutex_exit(&ill->ill_lock); 14488 return; 14489 } 14490 mutex_exit(&ill->ill_lock); 14491 ill_dlpi_dispatch(ill, mp); 14492 } 14493 14494 static void 14495 ill_capability_send(ill_t *ill, mblk_t *mp) 14496 { 14497 ill->ill_capab_pending_cnt++; 14498 ill_dlpi_send(ill, mp); 14499 } 14500 14501 void 14502 ill_capability_done(ill_t *ill) 14503 { 14504 ASSERT(ill->ill_capab_pending_cnt != 0); 14505 14506 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14507 14508 ill->ill_capab_pending_cnt--; 14509 if (ill->ill_capab_pending_cnt == 0 && 14510 ill->ill_dlpi_capab_state == IDCS_OK) 14511 ill_capability_reset_alloc(ill); 14512 } 14513 14514 /* 14515 * Send all deferred DLPI messages without waiting for their ACKs. 14516 */ 14517 void 14518 ill_dlpi_send_deferred(ill_t *ill) 14519 { 14520 mblk_t *mp, *nextmp; 14521 14522 /* 14523 * Clear ill_dlpi_pending so that the message is not queued in 14524 * ill_dlpi_send(). 14525 */ 14526 mutex_enter(&ill->ill_lock); 14527 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14528 mp = ill->ill_dlpi_deferred; 14529 ill->ill_dlpi_deferred = NULL; 14530 mutex_exit(&ill->ill_lock); 14531 14532 for (; mp != NULL; mp = nextmp) { 14533 nextmp = mp->b_next; 14534 mp->b_next = NULL; 14535 ill_dlpi_send(ill, mp); 14536 } 14537 } 14538 14539 /* 14540 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14541 */ 14542 boolean_t 14543 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14544 { 14545 t_uscalar_t pending; 14546 14547 mutex_enter(&ill->ill_lock); 14548 if (ill->ill_dlpi_pending == prim) { 14549 mutex_exit(&ill->ill_lock); 14550 return (B_TRUE); 14551 } 14552 14553 /* 14554 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14555 * without waiting, so don't print any warnings in that case. 14556 */ 14557 if (ill->ill_state_flags & ILL_CONDEMNED) { 14558 mutex_exit(&ill->ill_lock); 14559 return (B_FALSE); 14560 } 14561 pending = ill->ill_dlpi_pending; 14562 mutex_exit(&ill->ill_lock); 14563 14564 if (pending == DL_PRIM_INVAL) { 14565 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14566 "received unsolicited ack for %s on %s\n", 14567 dl_primstr(prim), ill->ill_name); 14568 } else { 14569 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14570 "received unexpected ack for %s on %s (expecting %s)\n", 14571 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14572 } 14573 return (B_FALSE); 14574 } 14575 14576 /* 14577 * Complete the current DLPI operation associated with `prim' on `ill' and 14578 * start the next queued DLPI operation (if any). If there are no queued DLPI 14579 * operations and the ill's current exclusive IPSQ operation has finished 14580 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14581 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14582 * the comments above ipsq_current_finish() for details. 14583 */ 14584 void 14585 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14586 { 14587 mblk_t *mp; 14588 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14589 ipxop_t *ipx = ipsq->ipsq_xop; 14590 14591 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14592 mutex_enter(&ill->ill_lock); 14593 14594 ASSERT(prim != DL_PRIM_INVAL); 14595 ASSERT(ill->ill_dlpi_pending == prim); 14596 14597 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14598 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14599 14600 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14601 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14602 if (ipx->ipx_current_done) { 14603 mutex_enter(&ipx->ipx_lock); 14604 ipx->ipx_current_ipif = NULL; 14605 mutex_exit(&ipx->ipx_lock); 14606 } 14607 cv_signal(&ill->ill_cv); 14608 mutex_exit(&ill->ill_lock); 14609 return; 14610 } 14611 14612 ill->ill_dlpi_deferred = mp->b_next; 14613 mp->b_next = NULL; 14614 mutex_exit(&ill->ill_lock); 14615 14616 ill_dlpi_dispatch(ill, mp); 14617 } 14618 14619 void 14620 conn_delete_ire(conn_t *connp, caddr_t arg) 14621 { 14622 ipif_t *ipif = (ipif_t *)arg; 14623 ire_t *ire; 14624 14625 /* 14626 * Look at the cached ires on conns which has pointers to ipifs. 14627 * We just call ire_refrele which clears up the reference 14628 * to ire. Called when a conn closes. Also called from ipif_free 14629 * to cleanup indirect references to the stale ipif via the cached ire. 14630 */ 14631 mutex_enter(&connp->conn_lock); 14632 ire = connp->conn_ire_cache; 14633 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14634 connp->conn_ire_cache = NULL; 14635 mutex_exit(&connp->conn_lock); 14636 IRE_REFRELE_NOTR(ire); 14637 return; 14638 } 14639 mutex_exit(&connp->conn_lock); 14640 14641 } 14642 14643 /* 14644 * Some operations (e.g., ipif_down()) conditionally delete a number 14645 * of IREs. Those IREs may have been previously cached in the conn structure. 14646 * This ipcl_walk() walker function releases all references to such IREs based 14647 * on the condemned flag. 14648 */ 14649 /* ARGSUSED */ 14650 void 14651 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14652 { 14653 ire_t *ire; 14654 14655 mutex_enter(&connp->conn_lock); 14656 ire = connp->conn_ire_cache; 14657 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14658 connp->conn_ire_cache = NULL; 14659 mutex_exit(&connp->conn_lock); 14660 IRE_REFRELE_NOTR(ire); 14661 return; 14662 } 14663 mutex_exit(&connp->conn_lock); 14664 } 14665 14666 /* 14667 * Take down a specific interface, but don't lose any information about it. 14668 * (Always called as writer.) 14669 * This function goes through the down sequence even if the interface is 14670 * already down. There are 2 reasons. 14671 * a. Currently we permit interface routes that depend on down interfaces 14672 * to be added. This behaviour itself is questionable. However it appears 14673 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14674 * time. We go thru the cleanup in order to remove these routes. 14675 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14676 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14677 * down, but we need to cleanup i.e. do ill_dl_down and 14678 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14679 * 14680 * IP-MT notes: 14681 * 14682 * Model of reference to interfaces. 14683 * 14684 * The following members in ipif_t track references to the ipif. 14685 * int ipif_refcnt; Active reference count 14686 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14687 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14688 * 14689 * The following members in ill_t track references to the ill. 14690 * int ill_refcnt; active refcnt 14691 * uint_t ill_ire_cnt; Number of ires referencing ill 14692 * uint_t ill_nce_cnt; Number of nces referencing ill 14693 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14694 * 14695 * Reference to an ipif or ill can be obtained in any of the following ways. 14696 * 14697 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14698 * Pointers to ipif / ill from other data structures viz ire and conn. 14699 * Implicit reference to the ipif / ill by holding a reference to the ire. 14700 * 14701 * The ipif/ill lookup functions return a reference held ipif / ill. 14702 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14703 * This is a purely dynamic reference count associated with threads holding 14704 * references to the ipif / ill. Pointers from other structures do not 14705 * count towards this reference count. 14706 * 14707 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14708 * associated with the ipif/ill. This is incremented whenever a new 14709 * ire is created referencing the ipif/ill. This is done atomically inside 14710 * ire_add_v[46] where the ire is actually added to the ire hash table. 14711 * The count is decremented in ire_inactive where the ire is destroyed. 14712 * 14713 * nce's reference ill's thru nce_ill and the count of nce's associated with 14714 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14715 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14716 * table. Similarly it is decremented in ndp_inactive() where the nce 14717 * is destroyed. 14718 * 14719 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14720 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14721 * in ilm_walker_cleanup() or ilm_delete(). 14722 * 14723 * Flow of ioctls involving interface down/up 14724 * 14725 * The following is the sequence of an attempt to set some critical flags on an 14726 * up interface. 14727 * ip_sioctl_flags 14728 * ipif_down 14729 * wait for ipif to be quiescent 14730 * ipif_down_tail 14731 * ip_sioctl_flags_tail 14732 * 14733 * All set ioctls that involve down/up sequence would have a skeleton similar 14734 * to the above. All the *tail functions are called after the refcounts have 14735 * dropped to the appropriate values. 14736 * 14737 * The mechanism to quiesce an ipif is as follows. 14738 * 14739 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14740 * on the ipif. Callers either pass a flag requesting wait or the lookup 14741 * functions will return NULL. 14742 * 14743 * Delete all ires referencing this ipif 14744 * 14745 * Any thread attempting to do an ipif_refhold on an ipif that has been 14746 * obtained thru a cached pointer will first make sure that 14747 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14748 * increment the refcount. 14749 * 14750 * The above guarantees that the ipif refcount will eventually come down to 14751 * zero and the ipif will quiesce, once all threads that currently hold a 14752 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14753 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14754 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14755 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14756 * in ip.h 14757 * 14758 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14759 * 14760 * Threads trying to lookup an ipif or ill can pass a flag requesting 14761 * wait and restart if the ipif / ill cannot be looked up currently. 14762 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14763 * failure if the ipif is currently undergoing an exclusive operation, and 14764 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14765 * is restarted by ipsq_exit() when the current exclusive operation completes. 14766 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14767 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14768 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14769 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14770 * until we release the ipsq_lock, even though the the ill/ipif state flags 14771 * can change after we drop the ill_lock. 14772 * 14773 * An attempt to send out a packet using an ipif that is currently 14774 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14775 * operation and restart it later when the exclusive condition on the ipif ends. 14776 * This is an example of not passing the wait flag to the lookup functions. For 14777 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14778 * out a multicast packet on that ipif will fail while the ipif is 14779 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14780 * currently IPIF_CHANGING will also fail. 14781 */ 14782 int 14783 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14784 { 14785 ill_t *ill = ipif->ipif_ill; 14786 conn_t *connp; 14787 boolean_t success; 14788 boolean_t ipif_was_up = B_FALSE; 14789 ip_stack_t *ipst = ill->ill_ipst; 14790 14791 ASSERT(IAM_WRITER_IPIF(ipif)); 14792 14793 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14794 14795 if (ipif->ipif_flags & IPIF_UP) { 14796 mutex_enter(&ill->ill_lock); 14797 ipif->ipif_flags &= ~IPIF_UP; 14798 ASSERT(ill->ill_ipif_up_count > 0); 14799 --ill->ill_ipif_up_count; 14800 mutex_exit(&ill->ill_lock); 14801 ipif_was_up = B_TRUE; 14802 /* Update status in SCTP's list */ 14803 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14804 ill_nic_event_dispatch(ipif->ipif_ill, 14805 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14806 } 14807 14808 /* 14809 * Blow away memberships we established in ipif_multicast_up(). 14810 */ 14811 ipif_multicast_down(ipif); 14812 14813 /* 14814 * Remove from the mapping for __sin6_src_id. We insert only 14815 * when the address is not INADDR_ANY. As IPv4 addresses are 14816 * stored as mapped addresses, we need to check for mapped 14817 * INADDR_ANY also. 14818 */ 14819 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14820 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14821 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14822 int err; 14823 14824 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14825 ipif->ipif_zoneid, ipst); 14826 if (err != 0) { 14827 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14828 } 14829 } 14830 14831 /* 14832 * Delete all IRE's pointing at this ipif or its source address. 14833 */ 14834 if (ipif->ipif_isv6) { 14835 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14836 ipst); 14837 } else { 14838 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14839 ipst); 14840 } 14841 14842 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14843 /* 14844 * Since the interface is now down, it may have just become 14845 * inactive. Note that this needs to be done even for a 14846 * lll_logical_down(), or ARP entries will not get correctly 14847 * restored when the interface comes back up. 14848 */ 14849 if (IS_UNDER_IPMP(ill)) 14850 ipmp_ill_refresh_active(ill); 14851 } 14852 14853 /* 14854 * Cleaning up the conn_ire_cache or conns must be done only after the 14855 * ires have been deleted above. Otherwise a thread could end up 14856 * caching an ire in a conn after we have finished the cleanup of the 14857 * conn. The caching is done after making sure that the ire is not yet 14858 * condemned. Also documented in the block comment above ip_output 14859 */ 14860 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14861 /* Also, delete the ires cached in SCTP */ 14862 sctp_ire_cache_flush(ipif); 14863 14864 /* 14865 * Update any other ipifs which have used "our" local address as 14866 * a source address. This entails removing and recreating IRE_INTERFACE 14867 * entries for such ipifs. 14868 */ 14869 if (ipif->ipif_isv6) 14870 ipif_update_other_ipifs_v6(ipif); 14871 else 14872 ipif_update_other_ipifs(ipif); 14873 14874 /* 14875 * neighbor-discovery or arp entries for this interface. 14876 */ 14877 ipif_ndp_down(ipif); 14878 14879 /* 14880 * If mp is NULL the caller will wait for the appropriate refcnt. 14881 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14882 * and ill_delete -> ipif_free -> ipif_down 14883 */ 14884 if (mp == NULL) { 14885 ASSERT(q == NULL); 14886 return (0); 14887 } 14888 14889 if (CONN_Q(q)) { 14890 connp = Q_TO_CONN(q); 14891 mutex_enter(&connp->conn_lock); 14892 } else { 14893 connp = NULL; 14894 } 14895 mutex_enter(&ill->ill_lock); 14896 /* 14897 * Are there any ire's pointing to this ipif that are still active ? 14898 * If this is the last ipif going down, are there any ire's pointing 14899 * to this ill that are still active ? 14900 */ 14901 if (ipif_is_quiescent(ipif)) { 14902 mutex_exit(&ill->ill_lock); 14903 if (connp != NULL) 14904 mutex_exit(&connp->conn_lock); 14905 return (0); 14906 } 14907 14908 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14909 ill->ill_name, (void *)ill)); 14910 /* 14911 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14912 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14913 * which in turn is called by the last refrele on the ipif/ill/ire. 14914 */ 14915 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14916 if (!success) { 14917 /* The conn is closing. So just return */ 14918 ASSERT(connp != NULL); 14919 mutex_exit(&ill->ill_lock); 14920 mutex_exit(&connp->conn_lock); 14921 return (EINTR); 14922 } 14923 14924 mutex_exit(&ill->ill_lock); 14925 if (connp != NULL) 14926 mutex_exit(&connp->conn_lock); 14927 return (EINPROGRESS); 14928 } 14929 14930 void 14931 ipif_down_tail(ipif_t *ipif) 14932 { 14933 ill_t *ill = ipif->ipif_ill; 14934 14935 /* 14936 * Skip any loopback interface (null wq). 14937 * If this is the last logical interface on the ill 14938 * have ill_dl_down tell the driver we are gone (unbind) 14939 * Note that lun 0 can ipif_down even though 14940 * there are other logical units that are up. 14941 * This occurs e.g. when we change a "significant" IFF_ flag. 14942 */ 14943 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14944 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14945 ill->ill_dl_up) { 14946 ill_dl_down(ill); 14947 } 14948 ill->ill_logical_down = 0; 14949 14950 /* 14951 * Has to be after removing the routes in ipif_down_delete_ire. 14952 */ 14953 ipif_resolver_down(ipif); 14954 14955 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14956 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14957 } 14958 14959 /* 14960 * Bring interface logically down without bringing the physical interface 14961 * down e.g. when the netmask is changed. This avoids long lasting link 14962 * negotiations between an ethernet interface and a certain switches. 14963 */ 14964 static int 14965 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14966 { 14967 /* 14968 * The ill_logical_down flag is a transient flag. It is set here 14969 * and is cleared once the down has completed in ipif_down_tail. 14970 * This flag does not indicate whether the ill stream is in the 14971 * DL_BOUND state with the driver. Instead this flag is used by 14972 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14973 * the driver. The state of the ill stream i.e. whether it is 14974 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14975 */ 14976 ipif->ipif_ill->ill_logical_down = 1; 14977 return (ipif_down(ipif, q, mp)); 14978 } 14979 14980 /* 14981 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14982 * If the usesrc client ILL is already part of a usesrc group or not, 14983 * in either case a ire_stq with the matching usesrc client ILL will 14984 * locate the IRE's that need to be deleted. We want IREs to be created 14985 * with the new source address. 14986 */ 14987 static void 14988 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14989 { 14990 ill_t *ucill = (ill_t *)ill_arg; 14991 14992 ASSERT(IAM_WRITER_ILL(ucill)); 14993 14994 if (ire->ire_stq == NULL) 14995 return; 14996 14997 if ((ire->ire_type == IRE_CACHE) && 14998 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 14999 ire_delete(ire); 15000 } 15001 15002 /* 15003 * ire_walk routine to delete every IRE dependent on the interface 15004 * address that is going down. (Always called as writer.) 15005 * Works for both v4 and v6. 15006 * In addition for checking for ire_ipif matches it also checks for 15007 * IRE_CACHE entries which have the same source address as the 15008 * disappearing ipif since ipif_select_source might have picked 15009 * that source. Note that ipif_down/ipif_update_other_ipifs takes 15010 * care of any IRE_INTERFACE with the disappearing source address. 15011 */ 15012 static void 15013 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 15014 { 15015 ipif_t *ipif = (ipif_t *)ipif_arg; 15016 15017 ASSERT(IAM_WRITER_IPIF(ipif)); 15018 if (ire->ire_ipif == NULL) 15019 return; 15020 15021 if (ire->ire_ipif != ipif) { 15022 /* 15023 * Look for a matching source address. 15024 */ 15025 if (ire->ire_type != IRE_CACHE) 15026 return; 15027 if (ipif->ipif_flags & IPIF_NOLOCAL) 15028 return; 15029 15030 if (ire->ire_ipversion == IPV4_VERSION) { 15031 if (ire->ire_src_addr != ipif->ipif_src_addr) 15032 return; 15033 } else { 15034 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 15035 &ipif->ipif_v6lcl_addr)) 15036 return; 15037 } 15038 ire_delete(ire); 15039 return; 15040 } 15041 /* 15042 * ire_delete() will do an ire_flush_cache which will delete 15043 * all ire_ipif matches 15044 */ 15045 ire_delete(ire); 15046 } 15047 15048 /* 15049 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 15050 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 15051 * 2) when an interface is brought up or down (on that ill). 15052 * This ensures that the IRE_CACHE entries don't retain stale source 15053 * address selection results. 15054 */ 15055 void 15056 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 15057 { 15058 ill_t *ill = (ill_t *)ill_arg; 15059 15060 ASSERT(IAM_WRITER_ILL(ill)); 15061 ASSERT(ire->ire_type == IRE_CACHE); 15062 15063 /* 15064 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15065 * ill, but we only want to delete the IRE if ire_ipif matches. 15066 */ 15067 ASSERT(ire->ire_ipif != NULL); 15068 if (ill == ire->ire_ipif->ipif_ill) 15069 ire_delete(ire); 15070 } 15071 15072 /* 15073 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 15074 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 15075 * the IPMP ill. 15076 */ 15077 void 15078 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 15079 { 15080 ill_t *ill = (ill_t *)ill_arg; 15081 15082 ASSERT(IAM_WRITER_ILL(ill)); 15083 ASSERT(ire->ire_type == IRE_CACHE); 15084 15085 /* 15086 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15087 * ill, but we only want to delete the IRE if ire_stq matches. 15088 */ 15089 if (ire->ire_stq->q_ptr == ill_arg) 15090 ire_delete(ire); 15091 } 15092 15093 /* 15094 * Delete all broadcast IREs with a source address on `ill_arg'. 15095 */ 15096 static void 15097 ill_broadcast_delete(ire_t *ire, char *ill_arg) 15098 { 15099 ill_t *ill = (ill_t *)ill_arg; 15100 15101 ASSERT(IAM_WRITER_ILL(ill)); 15102 ASSERT(ire->ire_type == IRE_BROADCAST); 15103 15104 if (ire->ire_ipif->ipif_ill == ill) 15105 ire_delete(ire); 15106 } 15107 15108 /* 15109 * Initiate deallocate of an IPIF. Always called as writer. Called by 15110 * ill_delete or ip_sioctl_removeif. 15111 */ 15112 static void 15113 ipif_free(ipif_t *ipif) 15114 { 15115 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15116 15117 ASSERT(IAM_WRITER_IPIF(ipif)); 15118 15119 if (ipif->ipif_recovery_id != 0) 15120 (void) untimeout(ipif->ipif_recovery_id); 15121 ipif->ipif_recovery_id = 0; 15122 15123 /* Remove conn references */ 15124 reset_conn_ipif(ipif); 15125 15126 /* 15127 * Make sure we have valid net and subnet broadcast ire's for the 15128 * other ipif's which share them with this ipif. 15129 */ 15130 if (!ipif->ipif_isv6) 15131 ipif_check_bcast_ires(ipif); 15132 15133 /* 15134 * Take down the interface. We can be called either from ill_delete 15135 * or from ip_sioctl_removeif. 15136 */ 15137 (void) ipif_down(ipif, NULL, NULL); 15138 15139 /* 15140 * Now that the interface is down, there's no chance it can still 15141 * become a duplicate. Cancel any timer that may have been set while 15142 * tearing down. 15143 */ 15144 if (ipif->ipif_recovery_id != 0) 15145 (void) untimeout(ipif->ipif_recovery_id); 15146 ipif->ipif_recovery_id = 0; 15147 15148 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15149 /* Remove pointers to this ill in the multicast routing tables */ 15150 reset_mrt_vif_ipif(ipif); 15151 /* If necessary, clear the cached source ipif rotor. */ 15152 if (ipif->ipif_ill->ill_src_ipif == ipif) 15153 ipif->ipif_ill->ill_src_ipif = NULL; 15154 rw_exit(&ipst->ips_ill_g_lock); 15155 } 15156 15157 static void 15158 ipif_free_tail(ipif_t *ipif) 15159 { 15160 mblk_t *mp; 15161 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15162 15163 /* 15164 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15165 */ 15166 mutex_enter(&ipif->ipif_saved_ire_lock); 15167 mp = ipif->ipif_saved_ire_mp; 15168 ipif->ipif_saved_ire_mp = NULL; 15169 mutex_exit(&ipif->ipif_saved_ire_lock); 15170 freemsg(mp); 15171 15172 /* 15173 * Need to hold both ill_g_lock and ill_lock while 15174 * inserting or removing an ipif from the linked list 15175 * of ipifs hanging off the ill. 15176 */ 15177 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15178 15179 ASSERT(ilm_walk_ipif(ipif) == 0); 15180 15181 #ifdef DEBUG 15182 ipif_trace_cleanup(ipif); 15183 #endif 15184 15185 /* Ask SCTP to take it out of it list */ 15186 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15187 15188 /* Get it out of the ILL interface list. */ 15189 ipif_remove(ipif); 15190 rw_exit(&ipst->ips_ill_g_lock); 15191 15192 mutex_destroy(&ipif->ipif_saved_ire_lock); 15193 15194 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15195 ASSERT(ipif->ipif_recovery_id == 0); 15196 15197 /* Free the memory. */ 15198 mi_free(ipif); 15199 } 15200 15201 /* 15202 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15203 * is zero. 15204 */ 15205 void 15206 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15207 { 15208 char lbuf[LIFNAMSIZ]; 15209 char *name; 15210 size_t name_len; 15211 15212 buf[0] = '\0'; 15213 name = ipif->ipif_ill->ill_name; 15214 name_len = ipif->ipif_ill->ill_name_length; 15215 if (ipif->ipif_id != 0) { 15216 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15217 ipif->ipif_id); 15218 name = lbuf; 15219 name_len = mi_strlen(name) + 1; 15220 } 15221 len -= 1; 15222 buf[len] = '\0'; 15223 len = MIN(len, name_len); 15224 bcopy(name, buf, len); 15225 } 15226 15227 /* 15228 * Find an IPIF based on the name passed in. Names can be of the 15229 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15230 * The <phys> string can have forms like <dev><#> (e.g., le0), 15231 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15232 * When there is no colon, the implied unit id is zero. <phys> must 15233 * correspond to the name of an ILL. (May be called as writer.) 15234 */ 15235 static ipif_t * 15236 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15237 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15238 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15239 { 15240 char *cp; 15241 char *endp; 15242 long id; 15243 ill_t *ill; 15244 ipif_t *ipif; 15245 uint_t ire_type; 15246 boolean_t did_alloc = B_FALSE; 15247 ipsq_t *ipsq; 15248 15249 if (error != NULL) 15250 *error = 0; 15251 15252 /* 15253 * If the caller wants to us to create the ipif, make sure we have a 15254 * valid zoneid 15255 */ 15256 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15257 15258 if (namelen == 0) { 15259 if (error != NULL) 15260 *error = ENXIO; 15261 return (NULL); 15262 } 15263 15264 *exists = B_FALSE; 15265 /* Look for a colon in the name. */ 15266 endp = &name[namelen]; 15267 for (cp = endp; --cp > name; ) { 15268 if (*cp == IPIF_SEPARATOR_CHAR) 15269 break; 15270 } 15271 15272 if (*cp == IPIF_SEPARATOR_CHAR) { 15273 /* 15274 * Reject any non-decimal aliases for logical 15275 * interfaces. Aliases with leading zeroes 15276 * are also rejected as they introduce ambiguity 15277 * in the naming of the interfaces. 15278 * In order to confirm with existing semantics, 15279 * and to not break any programs/script relying 15280 * on that behaviour, if<0>:0 is considered to be 15281 * a valid interface. 15282 * 15283 * If alias has two or more digits and the first 15284 * is zero, fail. 15285 */ 15286 if (&cp[2] < endp && cp[1] == '0') { 15287 if (error != NULL) 15288 *error = EINVAL; 15289 return (NULL); 15290 } 15291 } 15292 15293 if (cp <= name) { 15294 cp = endp; 15295 } else { 15296 *cp = '\0'; 15297 } 15298 15299 /* 15300 * Look up the ILL, based on the portion of the name 15301 * before the slash. ill_lookup_on_name returns a held ill. 15302 * Temporary to check whether ill exists already. If so 15303 * ill_lookup_on_name will clear it. 15304 */ 15305 ill = ill_lookup_on_name(name, do_alloc, isv6, 15306 q, mp, func, error, &did_alloc, ipst); 15307 if (cp != endp) 15308 *cp = IPIF_SEPARATOR_CHAR; 15309 if (ill == NULL) 15310 return (NULL); 15311 15312 /* Establish the unit number in the name. */ 15313 id = 0; 15314 if (cp < endp && *endp == '\0') { 15315 /* If there was a colon, the unit number follows. */ 15316 cp++; 15317 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15318 ill_refrele(ill); 15319 if (error != NULL) 15320 *error = ENXIO; 15321 return (NULL); 15322 } 15323 } 15324 15325 GRAB_CONN_LOCK(q); 15326 mutex_enter(&ill->ill_lock); 15327 /* Now see if there is an IPIF with this unit number. */ 15328 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15329 if (ipif->ipif_id == id) { 15330 if (zoneid != ALL_ZONES && 15331 zoneid != ipif->ipif_zoneid && 15332 ipif->ipif_zoneid != ALL_ZONES) { 15333 mutex_exit(&ill->ill_lock); 15334 RELEASE_CONN_LOCK(q); 15335 ill_refrele(ill); 15336 if (error != NULL) 15337 *error = ENXIO; 15338 return (NULL); 15339 } 15340 /* 15341 * The block comment at the start of ipif_down 15342 * explains the use of the macros used below 15343 */ 15344 if (IPIF_CAN_LOOKUP(ipif)) { 15345 ipif_refhold_locked(ipif); 15346 mutex_exit(&ill->ill_lock); 15347 if (!did_alloc) 15348 *exists = B_TRUE; 15349 /* 15350 * Drop locks before calling ill_refrele 15351 * since it can potentially call into 15352 * ipif_ill_refrele_tail which can end up 15353 * in trying to acquire any lock. 15354 */ 15355 RELEASE_CONN_LOCK(q); 15356 ill_refrele(ill); 15357 return (ipif); 15358 } else if (IPIF_CAN_WAIT(ipif, q)) { 15359 ipsq = ill->ill_phyint->phyint_ipsq; 15360 mutex_enter(&ipsq->ipsq_lock); 15361 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15362 mutex_exit(&ill->ill_lock); 15363 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15364 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15365 mutex_exit(&ipsq->ipsq_lock); 15366 RELEASE_CONN_LOCK(q); 15367 ill_refrele(ill); 15368 if (error != NULL) 15369 *error = EINPROGRESS; 15370 return (NULL); 15371 } 15372 } 15373 } 15374 RELEASE_CONN_LOCK(q); 15375 15376 if (!do_alloc) { 15377 mutex_exit(&ill->ill_lock); 15378 ill_refrele(ill); 15379 if (error != NULL) 15380 *error = ENXIO; 15381 return (NULL); 15382 } 15383 15384 /* 15385 * If none found, atomically allocate and return a new one. 15386 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15387 * to support "receive only" use of lo0:1 etc. as is still done 15388 * below as an initial guess. 15389 * However, this is now likely to be overriden later in ipif_up_done() 15390 * when we know for sure what address has been configured on the 15391 * interface, since we might have more than one loopback interface 15392 * with a loopback address, e.g. in the case of zones, and all the 15393 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15394 */ 15395 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15396 ire_type = IRE_LOOPBACK; 15397 else 15398 ire_type = IRE_LOCAL; 15399 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15400 if (ipif != NULL) 15401 ipif_refhold_locked(ipif); 15402 else if (error != NULL) 15403 *error = ENOMEM; 15404 mutex_exit(&ill->ill_lock); 15405 ill_refrele(ill); 15406 return (ipif); 15407 } 15408 15409 /* 15410 * This routine is called whenever a new address comes up on an ipif. If 15411 * we are configured to respond to address mask requests, then we are supposed 15412 * to broadcast an address mask reply at this time. This routine is also 15413 * called if we are already up, but a netmask change is made. This is legal 15414 * but might not make the system manager very popular. (May be called 15415 * as writer.) 15416 */ 15417 void 15418 ipif_mask_reply(ipif_t *ipif) 15419 { 15420 icmph_t *icmph; 15421 ipha_t *ipha; 15422 mblk_t *mp; 15423 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15424 15425 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15426 15427 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15428 return; 15429 15430 /* ICMP mask reply is IPv4 only */ 15431 ASSERT(!ipif->ipif_isv6); 15432 /* ICMP mask reply is not for a loopback interface */ 15433 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15434 15435 mp = allocb(REPLY_LEN, BPRI_HI); 15436 if (mp == NULL) 15437 return; 15438 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15439 15440 ipha = (ipha_t *)mp->b_rptr; 15441 bzero(ipha, REPLY_LEN); 15442 *ipha = icmp_ipha; 15443 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15444 ipha->ipha_src = ipif->ipif_src_addr; 15445 ipha->ipha_dst = ipif->ipif_brd_addr; 15446 ipha->ipha_length = htons(REPLY_LEN); 15447 ipha->ipha_ident = 0; 15448 15449 icmph = (icmph_t *)&ipha[1]; 15450 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15451 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15452 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15453 15454 put(ipif->ipif_wq, mp); 15455 15456 #undef REPLY_LEN 15457 } 15458 15459 /* 15460 * When the mtu in the ipif changes, we call this routine through ire_walk 15461 * to update all the relevant IREs. 15462 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15463 */ 15464 static void 15465 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15466 { 15467 ipif_t *ipif = (ipif_t *)ipif_arg; 15468 15469 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15470 return; 15471 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15472 } 15473 15474 /* 15475 * When the mtu in the ill changes, we call this routine through ire_walk 15476 * to update all the relevant IREs. 15477 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15478 */ 15479 void 15480 ill_mtu_change(ire_t *ire, char *ill_arg) 15481 { 15482 ill_t *ill = (ill_t *)ill_arg; 15483 15484 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15485 return; 15486 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15487 } 15488 15489 /* 15490 * Join the ipif specific multicast groups. 15491 * Must be called after a mapping has been set up in the resolver. (Always 15492 * called as writer.) 15493 */ 15494 void 15495 ipif_multicast_up(ipif_t *ipif) 15496 { 15497 int err; 15498 ill_t *ill; 15499 15500 ASSERT(IAM_WRITER_IPIF(ipif)); 15501 15502 ill = ipif->ipif_ill; 15503 15504 ip1dbg(("ipif_multicast_up\n")); 15505 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15506 return; 15507 15508 if (ipif->ipif_isv6) { 15509 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15510 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15511 15512 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15513 15514 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15515 return; 15516 15517 ip1dbg(("ipif_multicast_up - addmulti\n")); 15518 15519 /* 15520 * Join the all hosts multicast address. We skip this for 15521 * underlying IPMP interfaces since they should be invisible. 15522 */ 15523 if (!IS_UNDER_IPMP(ill)) { 15524 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15525 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15526 if (err != 0) { 15527 ip0dbg(("ipif_multicast_up: " 15528 "all_hosts_mcast failed %d\n", err)); 15529 return; 15530 } 15531 ipif->ipif_joined_allhosts = 1; 15532 } 15533 15534 /* 15535 * Enable multicast for the solicited node multicast address 15536 */ 15537 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15538 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15539 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15540 if (err != 0) { 15541 ip0dbg(("ipif_multicast_up: solicited MC" 15542 " failed %d\n", err)); 15543 if (ipif->ipif_joined_allhosts) { 15544 (void) ip_delmulti_v6(&v6allmc, ill, 15545 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15546 ipif->ipif_joined_allhosts = 0; 15547 } 15548 return; 15549 } 15550 } 15551 } else { 15552 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15553 return; 15554 15555 /* Join the all hosts multicast address */ 15556 ip1dbg(("ipif_multicast_up - addmulti\n")); 15557 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15558 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15559 if (err) { 15560 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15561 return; 15562 } 15563 } 15564 ipif->ipif_multicast_up = 1; 15565 } 15566 15567 /* 15568 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15569 * (Explicit memberships are blown away in ill_leave_multicast() when the 15570 * ill is brought down.) 15571 */ 15572 void 15573 ipif_multicast_down(ipif_t *ipif) 15574 { 15575 int err; 15576 15577 ASSERT(IAM_WRITER_IPIF(ipif)); 15578 15579 ip1dbg(("ipif_multicast_down\n")); 15580 if (!ipif->ipif_multicast_up) 15581 return; 15582 15583 ip1dbg(("ipif_multicast_down - delmulti\n")); 15584 15585 if (!ipif->ipif_isv6) { 15586 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15587 B_TRUE); 15588 if (err != 0) 15589 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15590 15591 ipif->ipif_multicast_up = 0; 15592 return; 15593 } 15594 15595 /* 15596 * Leave the all-hosts multicast address. 15597 */ 15598 if (ipif->ipif_joined_allhosts) { 15599 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15600 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15601 if (err != 0) { 15602 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15603 "failed %d\n", err)); 15604 } 15605 ipif->ipif_joined_allhosts = 0; 15606 } 15607 15608 /* 15609 * Disable multicast for the solicited node multicast address 15610 */ 15611 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15612 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15613 15614 ipv6_multi.s6_addr32[3] |= 15615 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15616 15617 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15618 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15619 if (err != 0) { 15620 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15621 err)); 15622 } 15623 } 15624 15625 ipif->ipif_multicast_up = 0; 15626 } 15627 15628 /* 15629 * Used when an interface comes up to recreate any extra routes on this 15630 * interface. 15631 */ 15632 static ire_t ** 15633 ipif_recover_ire(ipif_t *ipif) 15634 { 15635 mblk_t *mp; 15636 ire_t **ipif_saved_irep; 15637 ire_t **irep; 15638 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15639 15640 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15641 ipif->ipif_id)); 15642 15643 mutex_enter(&ipif->ipif_saved_ire_lock); 15644 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15645 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15646 if (ipif_saved_irep == NULL) { 15647 mutex_exit(&ipif->ipif_saved_ire_lock); 15648 return (NULL); 15649 } 15650 15651 irep = ipif_saved_irep; 15652 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15653 ire_t *ire; 15654 queue_t *rfq; 15655 queue_t *stq; 15656 ifrt_t *ifrt; 15657 uchar_t *src_addr; 15658 uchar_t *gateway_addr; 15659 ushort_t type; 15660 15661 /* 15662 * When the ire was initially created and then added in 15663 * ip_rt_add(), it was created either using ipif->ipif_net_type 15664 * in the case of a traditional interface route, or as one of 15665 * the IRE_OFFSUBNET types (with the exception of 15666 * IRE_HOST types ire which is created by icmp_redirect() and 15667 * which we don't need to save or recover). In the case where 15668 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15669 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15670 * to satisfy software like GateD and Sun Cluster which creates 15671 * routes using the the loopback interface's address as a 15672 * gateway. 15673 * 15674 * As ifrt->ifrt_type reflects the already updated ire_type, 15675 * ire_create() will be called in the same way here as 15676 * in ip_rt_add(), namely using ipif->ipif_net_type when 15677 * the route looks like a traditional interface route (where 15678 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15679 * the saved ifrt->ifrt_type. This means that in the case where 15680 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15681 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15682 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15683 */ 15684 ifrt = (ifrt_t *)mp->b_rptr; 15685 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15686 if (ifrt->ifrt_type & IRE_INTERFACE) { 15687 rfq = NULL; 15688 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15689 ? ipif->ipif_rq : ipif->ipif_wq; 15690 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15691 ? (uint8_t *)&ifrt->ifrt_src_addr 15692 : (uint8_t *)&ipif->ipif_src_addr; 15693 gateway_addr = NULL; 15694 type = ipif->ipif_net_type; 15695 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15696 /* Recover multiroute broadcast IRE. */ 15697 rfq = ipif->ipif_rq; 15698 stq = ipif->ipif_wq; 15699 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15700 ? (uint8_t *)&ifrt->ifrt_src_addr 15701 : (uint8_t *)&ipif->ipif_src_addr; 15702 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15703 type = ifrt->ifrt_type; 15704 } else { 15705 rfq = NULL; 15706 stq = NULL; 15707 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15708 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15709 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15710 type = ifrt->ifrt_type; 15711 } 15712 15713 /* 15714 * Create a copy of the IRE with the saved address and netmask. 15715 */ 15716 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15717 "0x%x/0x%x\n", 15718 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15719 ntohl(ifrt->ifrt_addr), 15720 ntohl(ifrt->ifrt_mask))); 15721 ire = ire_create( 15722 (uint8_t *)&ifrt->ifrt_addr, 15723 (uint8_t *)&ifrt->ifrt_mask, 15724 src_addr, 15725 gateway_addr, 15726 &ifrt->ifrt_max_frag, 15727 NULL, 15728 rfq, 15729 stq, 15730 type, 15731 ipif, 15732 0, 15733 0, 15734 0, 15735 ifrt->ifrt_flags, 15736 &ifrt->ifrt_iulp_info, 15737 NULL, 15738 NULL, 15739 ipst); 15740 15741 if (ire == NULL) { 15742 mutex_exit(&ipif->ipif_saved_ire_lock); 15743 kmem_free(ipif_saved_irep, 15744 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15745 return (NULL); 15746 } 15747 15748 /* 15749 * Some software (for example, GateD and Sun Cluster) attempts 15750 * to create (what amount to) IRE_PREFIX routes with the 15751 * loopback address as the gateway. This is primarily done to 15752 * set up prefixes with the RTF_REJECT flag set (for example, 15753 * when generating aggregate routes.) 15754 * 15755 * If the IRE type (as defined by ipif->ipif_net_type) is 15756 * IRE_LOOPBACK, then we map the request into a 15757 * IRE_IF_NORESOLVER. 15758 */ 15759 if (ipif->ipif_net_type == IRE_LOOPBACK) 15760 ire->ire_type = IRE_IF_NORESOLVER; 15761 /* 15762 * ire held by ire_add, will be refreled' towards the 15763 * the end of ipif_up_done 15764 */ 15765 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15766 *irep = ire; 15767 irep++; 15768 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15769 } 15770 mutex_exit(&ipif->ipif_saved_ire_lock); 15771 return (ipif_saved_irep); 15772 } 15773 15774 /* 15775 * Used to set the netmask and broadcast address to default values when the 15776 * interface is brought up. (Always called as writer.) 15777 */ 15778 static void 15779 ipif_set_default(ipif_t *ipif) 15780 { 15781 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15782 15783 if (!ipif->ipif_isv6) { 15784 /* 15785 * Interface holds an IPv4 address. Default 15786 * mask is the natural netmask. 15787 */ 15788 if (!ipif->ipif_net_mask) { 15789 ipaddr_t v4mask; 15790 15791 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15792 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15793 } 15794 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15795 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15796 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15797 } else { 15798 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15799 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15800 } 15801 /* 15802 * NOTE: SunOS 4.X does this even if the broadcast address 15803 * has been already set thus we do the same here. 15804 */ 15805 if (ipif->ipif_flags & IPIF_BROADCAST) { 15806 ipaddr_t v4addr; 15807 15808 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15809 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15810 } 15811 } else { 15812 /* 15813 * Interface holds an IPv6-only address. Default 15814 * mask is all-ones. 15815 */ 15816 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15817 ipif->ipif_v6net_mask = ipv6_all_ones; 15818 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15819 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15820 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15821 } else { 15822 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15823 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15824 } 15825 } 15826 } 15827 15828 /* 15829 * Return 0 if this address can be used as local address without causing 15830 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15831 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15832 * Note that the same IPv6 link-local address is allowed as long as the ills 15833 * are not on the same link. 15834 */ 15835 int 15836 ip_addr_availability_check(ipif_t *new_ipif) 15837 { 15838 in6_addr_t our_v6addr; 15839 ill_t *ill; 15840 ipif_t *ipif; 15841 ill_walk_context_t ctx; 15842 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15843 15844 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15845 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15846 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15847 15848 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15849 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15850 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15851 return (0); 15852 15853 our_v6addr = new_ipif->ipif_v6lcl_addr; 15854 15855 if (new_ipif->ipif_isv6) 15856 ill = ILL_START_WALK_V6(&ctx, ipst); 15857 else 15858 ill = ILL_START_WALK_V4(&ctx, ipst); 15859 15860 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15861 for (ipif = ill->ill_ipif; ipif != NULL; 15862 ipif = ipif->ipif_next) { 15863 if ((ipif == new_ipif) || 15864 !(ipif->ipif_flags & IPIF_UP) || 15865 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15866 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15867 &our_v6addr)) 15868 continue; 15869 15870 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15871 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15872 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15873 ipif->ipif_flags |= IPIF_UNNUMBERED; 15874 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15875 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15876 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15877 continue; 15878 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15879 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15880 continue; 15881 else if (new_ipif->ipif_ill == ill) 15882 return (EADDRINUSE); 15883 else 15884 return (EADDRNOTAVAIL); 15885 } 15886 } 15887 15888 return (0); 15889 } 15890 15891 /* 15892 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15893 * IREs for the ipif. 15894 * When the routine returns EINPROGRESS then mp has been consumed and 15895 * the ioctl will be acked from ip_rput_dlpi. 15896 */ 15897 int 15898 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15899 { 15900 ill_t *ill = ipif->ipif_ill; 15901 boolean_t isv6 = ipif->ipif_isv6; 15902 int err = 0; 15903 boolean_t success; 15904 uint_t ipif_orig_id; 15905 ip_stack_t *ipst = ill->ill_ipst; 15906 15907 ASSERT(IAM_WRITER_IPIF(ipif)); 15908 15909 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15910 15911 /* Shouldn't get here if it is already up. */ 15912 if (ipif->ipif_flags & IPIF_UP) 15913 return (EALREADY); 15914 15915 /* 15916 * If this is a request to bring up a data address on an interface 15917 * under IPMP, then move the address to its IPMP meta-interface and 15918 * try to bring it up. One complication is that the zeroth ipif for 15919 * an ill is special, in that every ill always has one, and that code 15920 * throughout IP deferences ill->ill_ipif without holding any locks. 15921 */ 15922 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15923 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15924 ipif_t *stubipif = NULL, *moveipif = NULL; 15925 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15926 15927 /* 15928 * The ipif being brought up should be quiesced. If it's not, 15929 * something has gone amiss and we need to bail out. (If it's 15930 * quiesced, we know it will remain so via IPIF_CHANGING.) 15931 */ 15932 mutex_enter(&ill->ill_lock); 15933 if (!ipif_is_quiescent(ipif)) { 15934 mutex_exit(&ill->ill_lock); 15935 return (EINVAL); 15936 } 15937 mutex_exit(&ill->ill_lock); 15938 15939 /* 15940 * If we're going to need to allocate ipifs, do it prior 15941 * to starting the move (and grabbing locks). 15942 */ 15943 if (ipif->ipif_id == 0) { 15944 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15945 B_FALSE); 15946 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15947 B_FALSE); 15948 if (moveipif == NULL || stubipif == NULL) { 15949 mi_free(moveipif); 15950 mi_free(stubipif); 15951 return (ENOMEM); 15952 } 15953 } 15954 15955 /* 15956 * Grab or transfer the ipif to move. During the move, keep 15957 * ill_g_lock held to prevent any ill walker threads from 15958 * seeing things in an inconsistent state. 15959 */ 15960 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15961 if (ipif->ipif_id != 0) { 15962 ipif_remove(ipif); 15963 } else { 15964 ipif_transfer(ipif, moveipif, stubipif); 15965 ipif = moveipif; 15966 } 15967 15968 /* 15969 * Place the ipif on the IPMP ill. If the zeroth ipif on 15970 * the IPMP ill is a stub (0.0.0.0 down address) then we 15971 * replace that one. Otherwise, pick the next available slot. 15972 */ 15973 ipif->ipif_ill = ipmp_ill; 15974 ipif_orig_id = ipif->ipif_id; 15975 15976 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15977 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15978 ipif = ipmp_ill->ill_ipif; 15979 } else { 15980 ipif->ipif_id = -1; 15981 if (ipif_insert(ipif, B_FALSE) != 0) { 15982 /* 15983 * No more available ipif_id's -- put it back 15984 * on the original ill and fail the operation. 15985 * Since we're writer on the ill, we can be 15986 * sure our old slot is still available. 15987 */ 15988 ipif->ipif_id = ipif_orig_id; 15989 ipif->ipif_ill = ill; 15990 if (ipif_orig_id == 0) { 15991 ipif_transfer(ipif, ill->ill_ipif, 15992 NULL); 15993 } else { 15994 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 15995 } 15996 rw_exit(&ipst->ips_ill_g_lock); 15997 return (ENOMEM); 15998 } 15999 } 16000 rw_exit(&ipst->ips_ill_g_lock); 16001 16002 /* 16003 * Tell SCTP that the ipif has moved. Note that even if we 16004 * had to allocate a new ipif, the original sequence id was 16005 * preserved and therefore SCTP won't know. 16006 */ 16007 sctp_move_ipif(ipif, ill, ipmp_ill); 16008 16009 /* 16010 * If the ipif being brought up was on slot zero, then we 16011 * first need to bring up the placeholder we stuck there. In 16012 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 16013 * to ipif_up() itself, if we successfully bring up the 16014 * placeholder, we'll check ill_move_ipif and bring it up too. 16015 */ 16016 if (ipif_orig_id == 0) { 16017 ASSERT(ill->ill_move_ipif == NULL); 16018 ill->ill_move_ipif = ipif; 16019 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 16020 ASSERT(ill->ill_move_ipif == NULL); 16021 if (err != EINPROGRESS) 16022 ill->ill_move_ipif = NULL; 16023 return (err); 16024 } 16025 16026 /* 16027 * Bring it up on the IPMP ill. 16028 */ 16029 return (ipif_up(ipif, q, mp)); 16030 } 16031 16032 /* Skip arp/ndp for any loopback interface. */ 16033 if (ill->ill_wq != NULL) { 16034 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16035 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 16036 16037 if (!ill->ill_dl_up) { 16038 /* 16039 * ill_dl_up is not yet set. i.e. we are yet to 16040 * DL_BIND with the driver and this is the first 16041 * logical interface on the ill to become "up". 16042 * Tell the driver to get going (via DL_BIND_REQ). 16043 * Note that changing "significant" IFF_ flags 16044 * address/netmask etc cause a down/up dance, but 16045 * does not cause an unbind (DL_UNBIND) with the driver 16046 */ 16047 return (ill_dl_up(ill, ipif, mp, q)); 16048 } 16049 16050 /* 16051 * ipif_resolver_up may end up sending an 16052 * AR_INTERFACE_UP message to ARP, which would, in 16053 * turn send a DLPI message to the driver. ioctls are 16054 * serialized and so we cannot send more than one 16055 * interface up message at a time. If ipif_resolver_up 16056 * does send an interface up message to ARP, we get 16057 * EINPROGRESS and we will complete in ip_arp_done. 16058 */ 16059 16060 ASSERT(connp != NULL || !CONN_Q(q)); 16061 if (connp != NULL) 16062 mutex_enter(&connp->conn_lock); 16063 mutex_enter(&ill->ill_lock); 16064 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16065 mutex_exit(&ill->ill_lock); 16066 if (connp != NULL) 16067 mutex_exit(&connp->conn_lock); 16068 if (!success) 16069 return (EINTR); 16070 16071 /* 16072 * Crank up the resolver. For IPv6, this cranks up the 16073 * external resolver if one is configured, but even if an 16074 * external resolver isn't configured, it must be called to 16075 * reset DAD state. For IPv6, if an external resolver is not 16076 * being used, ipif_resolver_up() will never return 16077 * EINPROGRESS, so we can always call ipif_ndp_up() here. 16078 * Note that if an external resolver is being used, there's no 16079 * need to call ipif_ndp_up() since it will do nothing. 16080 */ 16081 err = ipif_resolver_up(ipif, Res_act_initial); 16082 if (err == EINPROGRESS) { 16083 /* We will complete it in ip_arp_done() */ 16084 return (err); 16085 } 16086 16087 if (isv6 && err == 0) 16088 err = ipif_ndp_up(ipif, B_TRUE); 16089 16090 ASSERT(err != EINPROGRESS); 16091 mp = ipsq_pending_mp_get(ipsq, &connp); 16092 ASSERT(mp != NULL); 16093 if (err != 0) 16094 return (err); 16095 } else { 16096 /* 16097 * Interfaces without underlying hardware don't do duplicate 16098 * address detection. 16099 */ 16100 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16101 ipif->ipif_addr_ready = 1; 16102 } 16103 16104 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16105 if (err == 0 && ill->ill_move_ipif != NULL) { 16106 ipif = ill->ill_move_ipif; 16107 ill->ill_move_ipif = NULL; 16108 return (ipif_up(ipif, q, mp)); 16109 } 16110 return (err); 16111 } 16112 16113 /* 16114 * Perform a bind for the physical device. 16115 * When the routine returns EINPROGRESS then mp has been consumed and 16116 * the ioctl will be acked from ip_rput_dlpi. 16117 * Allocate an unbind message and save it until ipif_down. 16118 */ 16119 static int 16120 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16121 { 16122 areq_t *areq; 16123 mblk_t *areq_mp = NULL; 16124 mblk_t *bind_mp = NULL; 16125 mblk_t *unbind_mp = NULL; 16126 conn_t *connp; 16127 boolean_t success; 16128 uint16_t sap_addr; 16129 16130 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16131 ASSERT(IAM_WRITER_ILL(ill)); 16132 ASSERT(mp != NULL); 16133 16134 /* Create a resolver cookie for ARP */ 16135 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16136 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16137 if (areq_mp == NULL) 16138 return (ENOMEM); 16139 16140 freemsg(ill->ill_resolver_mp); 16141 ill->ill_resolver_mp = areq_mp; 16142 areq = (areq_t *)areq_mp->b_rptr; 16143 sap_addr = ill->ill_sap; 16144 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16145 } 16146 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16147 DL_BIND_REQ); 16148 if (bind_mp == NULL) 16149 goto bad; 16150 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16151 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16152 16153 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16154 if (unbind_mp == NULL) 16155 goto bad; 16156 16157 /* 16158 * Record state needed to complete this operation when the 16159 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16160 */ 16161 ASSERT(WR(q)->q_next == NULL); 16162 connp = Q_TO_CONN(q); 16163 16164 mutex_enter(&connp->conn_lock); 16165 mutex_enter(&ipif->ipif_ill->ill_lock); 16166 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16167 mutex_exit(&ipif->ipif_ill->ill_lock); 16168 mutex_exit(&connp->conn_lock); 16169 if (!success) 16170 goto bad; 16171 16172 /* 16173 * Save the unbind message for ill_dl_down(); it will be consumed when 16174 * the interface goes down. 16175 */ 16176 ASSERT(ill->ill_unbind_mp == NULL); 16177 ill->ill_unbind_mp = unbind_mp; 16178 16179 ill_dlpi_send(ill, bind_mp); 16180 /* Send down link-layer capabilities probe if not already done. */ 16181 ill_capability_probe(ill); 16182 16183 /* 16184 * Sysid used to rely on the fact that netboots set domainname 16185 * and the like. Now that miniroot boots aren't strictly netboots 16186 * and miniroot network configuration is driven from userland 16187 * these things still need to be set. This situation can be detected 16188 * by comparing the interface being configured here to the one 16189 * dhcifname was set to reference by the boot loader. Once sysid is 16190 * converted to use dhcp_ipc_getinfo() this call can go away. 16191 */ 16192 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16193 (strcmp(ill->ill_name, dhcifname) == 0) && 16194 (strlen(srpc_domain) == 0)) { 16195 if (dhcpinit() != 0) 16196 cmn_err(CE_WARN, "no cached dhcp response"); 16197 } 16198 16199 /* 16200 * This operation will complete in ip_rput_dlpi with either 16201 * a DL_BIND_ACK or DL_ERROR_ACK. 16202 */ 16203 return (EINPROGRESS); 16204 bad: 16205 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16206 16207 freemsg(bind_mp); 16208 freemsg(unbind_mp); 16209 return (ENOMEM); 16210 } 16211 16212 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16213 16214 /* 16215 * DLPI and ARP is up. 16216 * Create all the IREs associated with an interface bring up multicast. 16217 * Set the interface flag and finish other initialization 16218 * that potentially had to be differed to after DL_BIND_ACK. 16219 */ 16220 int 16221 ipif_up_done(ipif_t *ipif) 16222 { 16223 ire_t *ire_array[20]; 16224 ire_t **irep = ire_array; 16225 ire_t **irep1; 16226 ipaddr_t net_mask = 0; 16227 ipaddr_t subnet_mask, route_mask; 16228 ill_t *ill = ipif->ipif_ill; 16229 queue_t *stq; 16230 ipif_t *src_ipif; 16231 ipif_t *tmp_ipif; 16232 boolean_t flush_ire_cache = B_TRUE; 16233 int err = 0; 16234 ire_t **ipif_saved_irep = NULL; 16235 int ipif_saved_ire_cnt; 16236 int cnt; 16237 boolean_t src_ipif_held = B_FALSE; 16238 boolean_t loopback = B_FALSE; 16239 ip_stack_t *ipst = ill->ill_ipst; 16240 16241 ip1dbg(("ipif_up_done(%s:%u)\n", 16242 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16243 /* Check if this is a loopback interface */ 16244 if (ipif->ipif_ill->ill_wq == NULL) 16245 loopback = B_TRUE; 16246 16247 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16248 /* 16249 * If all other interfaces for this ill are down or DEPRECATED, 16250 * or otherwise unsuitable for source address selection, remove 16251 * any IRE_CACHE entries for this ill to make sure source 16252 * address selection gets to take this new ipif into account. 16253 * No need to hold ill_lock while traversing the ipif list since 16254 * we are writer 16255 */ 16256 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16257 tmp_ipif = tmp_ipif->ipif_next) { 16258 if (((tmp_ipif->ipif_flags & 16259 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16260 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16261 (tmp_ipif == ipif)) 16262 continue; 16263 /* first useable pre-existing interface */ 16264 flush_ire_cache = B_FALSE; 16265 break; 16266 } 16267 if (flush_ire_cache) 16268 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16269 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16270 16271 /* 16272 * Figure out which way the send-to queue should go. Only 16273 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16274 * should show up here. 16275 */ 16276 switch (ill->ill_net_type) { 16277 case IRE_IF_RESOLVER: 16278 stq = ill->ill_rq; 16279 break; 16280 case IRE_IF_NORESOLVER: 16281 case IRE_LOOPBACK: 16282 stq = ill->ill_wq; 16283 break; 16284 default: 16285 return (EINVAL); 16286 } 16287 16288 if (IS_LOOPBACK(ill)) { 16289 /* 16290 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16291 * ipif_lookup_on_name(), but in the case of zones we can have 16292 * several loopback addresses on lo0. So all the interfaces with 16293 * loopback addresses need to be marked IRE_LOOPBACK. 16294 */ 16295 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16296 htonl(INADDR_LOOPBACK)) 16297 ipif->ipif_ire_type = IRE_LOOPBACK; 16298 else 16299 ipif->ipif_ire_type = IRE_LOCAL; 16300 } 16301 16302 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16303 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16304 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16305 /* 16306 * Can't use our source address. Select a different 16307 * source address for the IRE_INTERFACE and IRE_LOCAL 16308 */ 16309 src_ipif = ipif_select_source(ipif->ipif_ill, 16310 ipif->ipif_subnet, ipif->ipif_zoneid); 16311 if (src_ipif == NULL) 16312 src_ipif = ipif; /* Last resort */ 16313 else 16314 src_ipif_held = B_TRUE; 16315 } else { 16316 src_ipif = ipif; 16317 } 16318 16319 /* Create all the IREs associated with this interface */ 16320 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16321 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16322 16323 /* 16324 * If we're on a labeled system then make sure that zone- 16325 * private addresses have proper remote host database entries. 16326 */ 16327 if (is_system_labeled() && 16328 ipif->ipif_ire_type != IRE_LOOPBACK && 16329 !tsol_check_interface_address(ipif)) 16330 return (EINVAL); 16331 16332 /* Register the source address for __sin6_src_id */ 16333 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16334 ipif->ipif_zoneid, ipst); 16335 if (err != 0) { 16336 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16337 return (err); 16338 } 16339 16340 /* If the interface address is set, create the local IRE. */ 16341 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16342 (void *)ipif, 16343 ipif->ipif_ire_type, 16344 ntohl(ipif->ipif_lcl_addr))); 16345 *irep++ = ire_create( 16346 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16347 (uchar_t *)&ip_g_all_ones, /* mask */ 16348 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16349 NULL, /* no gateway */ 16350 &ip_loopback_mtuplus, /* max frag size */ 16351 NULL, 16352 ipif->ipif_rq, /* recv-from queue */ 16353 NULL, /* no send-to queue */ 16354 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16355 ipif, 16356 0, 16357 0, 16358 0, 16359 (ipif->ipif_flags & IPIF_PRIVATE) ? 16360 RTF_PRIVATE : 0, 16361 &ire_uinfo_null, 16362 NULL, 16363 NULL, 16364 ipst); 16365 } else { 16366 ip1dbg(( 16367 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16368 ipif->ipif_ire_type, 16369 ntohl(ipif->ipif_lcl_addr), 16370 (uint_t)ipif->ipif_flags)); 16371 } 16372 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16373 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16374 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16375 } else { 16376 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16377 } 16378 16379 subnet_mask = ipif->ipif_net_mask; 16380 16381 /* 16382 * If mask was not specified, use natural netmask of 16383 * interface address. Also, store this mask back into the 16384 * ipif struct. 16385 */ 16386 if (subnet_mask == 0) { 16387 subnet_mask = net_mask; 16388 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16389 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16390 ipif->ipif_v6subnet); 16391 } 16392 16393 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16394 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16395 ipif->ipif_subnet != INADDR_ANY) { 16396 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16397 16398 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16399 route_mask = IP_HOST_MASK; 16400 } else { 16401 route_mask = subnet_mask; 16402 } 16403 16404 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16405 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16406 (void *)ipif, (void *)ill, 16407 ill->ill_net_type, 16408 ntohl(ipif->ipif_subnet))); 16409 *irep++ = ire_create( 16410 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16411 (uchar_t *)&route_mask, /* mask */ 16412 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16413 NULL, /* no gateway */ 16414 &ipif->ipif_mtu, /* max frag */ 16415 NULL, 16416 NULL, /* no recv queue */ 16417 stq, /* send-to queue */ 16418 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16419 ipif, 16420 0, 16421 0, 16422 0, 16423 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16424 &ire_uinfo_null, 16425 NULL, 16426 NULL, 16427 ipst); 16428 } 16429 16430 /* 16431 * Create any necessary broadcast IREs. 16432 */ 16433 if (ipif->ipif_flags & IPIF_BROADCAST) 16434 irep = ipif_create_bcast_ires(ipif, irep); 16435 16436 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16437 16438 /* If an earlier ire_create failed, get out now */ 16439 for (irep1 = irep; irep1 > ire_array; ) { 16440 irep1--; 16441 if (*irep1 == NULL) { 16442 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16443 err = ENOMEM; 16444 goto bad; 16445 } 16446 } 16447 16448 /* 16449 * Need to atomically check for IP address availability under 16450 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16451 * ills or new ipifs can be added while we are checking availability. 16452 */ 16453 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16454 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16455 /* Mark it up, and increment counters. */ 16456 ipif->ipif_flags |= IPIF_UP; 16457 ill->ill_ipif_up_count++; 16458 err = ip_addr_availability_check(ipif); 16459 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16460 rw_exit(&ipst->ips_ill_g_lock); 16461 16462 if (err != 0) { 16463 /* 16464 * Our address may already be up on the same ill. In this case, 16465 * the ARP entry for our ipif replaced the one for the other 16466 * ipif. So we don't want to delete it (otherwise the other ipif 16467 * would be unable to send packets). 16468 * ip_addr_availability_check() identifies this case for us and 16469 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16470 * which is the expected error code. 16471 */ 16472 if (err == EADDRINUSE) { 16473 freemsg(ipif->ipif_arp_del_mp); 16474 ipif->ipif_arp_del_mp = NULL; 16475 err = EADDRNOTAVAIL; 16476 } 16477 ill->ill_ipif_up_count--; 16478 ipif->ipif_flags &= ~IPIF_UP; 16479 goto bad; 16480 } 16481 16482 /* 16483 * Add in all newly created IREs. ire_create_bcast() has 16484 * already checked for duplicates of the IRE_BROADCAST type. 16485 */ 16486 for (irep1 = irep; irep1 > ire_array; ) { 16487 irep1--; 16488 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16489 /* 16490 * refheld by ire_add. refele towards the end of the func 16491 */ 16492 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16493 } 16494 16495 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16496 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16497 ipif_saved_irep = ipif_recover_ire(ipif); 16498 16499 if (!loopback) { 16500 /* 16501 * If the broadcast address has been set, make sure it makes 16502 * sense based on the interface address. 16503 * Only match on ill since we are sharing broadcast addresses. 16504 */ 16505 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16506 (ipif->ipif_flags & IPIF_BROADCAST)) { 16507 ire_t *ire; 16508 16509 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16510 IRE_BROADCAST, ipif, ALL_ZONES, 16511 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16512 16513 if (ire == NULL) { 16514 /* 16515 * If there isn't a matching broadcast IRE, 16516 * revert to the default for this netmask. 16517 */ 16518 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16519 mutex_enter(&ipif->ipif_ill->ill_lock); 16520 ipif_set_default(ipif); 16521 mutex_exit(&ipif->ipif_ill->ill_lock); 16522 } else { 16523 ire_refrele(ire); 16524 } 16525 } 16526 16527 } 16528 16529 if (ill->ill_need_recover_multicast) { 16530 /* 16531 * Need to recover all multicast memberships in the driver. 16532 * This had to be deferred until we had attached. The same 16533 * code exists in ipif_up_done_v6() to recover IPv6 16534 * memberships. 16535 * 16536 * Note that it would be preferable to unconditionally do the 16537 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16538 * that since ill_join_allmulti() depends on ill_dl_up being 16539 * set, and it is not set until we receive a DL_BIND_ACK after 16540 * having called ill_dl_up(). 16541 */ 16542 ill_recover_multicast(ill); 16543 } 16544 16545 if (ill->ill_ipif_up_count == 1) { 16546 /* 16547 * Since the interface is now up, it may now be active. 16548 */ 16549 if (IS_UNDER_IPMP(ill)) 16550 ipmp_ill_refresh_active(ill); 16551 16552 /* 16553 * If this is an IPMP interface, we may now be able to 16554 * establish ARP entries. 16555 */ 16556 if (IS_IPMP(ill)) 16557 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16558 } 16559 16560 /* Join the allhosts multicast address */ 16561 ipif_multicast_up(ipif); 16562 16563 /* 16564 * See if anybody else would benefit from our new ipif. 16565 */ 16566 if (!loopback && 16567 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16568 ill_update_source_selection(ill); 16569 } 16570 16571 for (irep1 = irep; irep1 > ire_array; ) { 16572 irep1--; 16573 if (*irep1 != NULL) { 16574 /* was held in ire_add */ 16575 ire_refrele(*irep1); 16576 } 16577 } 16578 16579 cnt = ipif_saved_ire_cnt; 16580 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16581 if (*irep1 != NULL) { 16582 /* was held in ire_add */ 16583 ire_refrele(*irep1); 16584 } 16585 } 16586 16587 if (!loopback && ipif->ipif_addr_ready) { 16588 /* Broadcast an address mask reply. */ 16589 ipif_mask_reply(ipif); 16590 } 16591 if (ipif_saved_irep != NULL) { 16592 kmem_free(ipif_saved_irep, 16593 ipif_saved_ire_cnt * sizeof (ire_t *)); 16594 } 16595 if (src_ipif_held) 16596 ipif_refrele(src_ipif); 16597 16598 /* 16599 * This had to be deferred until we had bound. Tell routing sockets and 16600 * others that this interface is up if it looks like the address has 16601 * been validated. Otherwise, if it isn't ready yet, wait for 16602 * duplicate address detection to do its thing. 16603 */ 16604 if (ipif->ipif_addr_ready) 16605 ipif_up_notify(ipif); 16606 return (0); 16607 16608 bad: 16609 ip1dbg(("ipif_up_done: FAILED \n")); 16610 16611 while (irep > ire_array) { 16612 irep--; 16613 if (*irep != NULL) 16614 ire_delete(*irep); 16615 } 16616 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16617 16618 if (ipif_saved_irep != NULL) { 16619 kmem_free(ipif_saved_irep, 16620 ipif_saved_ire_cnt * sizeof (ire_t *)); 16621 } 16622 if (src_ipif_held) 16623 ipif_refrele(src_ipif); 16624 16625 ipif_resolver_down(ipif); 16626 return (err); 16627 } 16628 16629 /* 16630 * Turn off the ARP with the ILLF_NOARP flag. 16631 */ 16632 static int 16633 ill_arp_off(ill_t *ill) 16634 { 16635 mblk_t *arp_off_mp = NULL; 16636 mblk_t *arp_on_mp = NULL; 16637 16638 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16639 16640 ASSERT(IAM_WRITER_ILL(ill)); 16641 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16642 16643 /* 16644 * If the on message is still around we've already done 16645 * an arp_off without doing an arp_on thus there is no 16646 * work needed. 16647 */ 16648 if (ill->ill_arp_on_mp != NULL) 16649 return (0); 16650 16651 /* 16652 * Allocate an ARP on message (to be saved) and an ARP off message 16653 */ 16654 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16655 if (!arp_off_mp) 16656 return (ENOMEM); 16657 16658 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16659 if (!arp_on_mp) 16660 goto failed; 16661 16662 ASSERT(ill->ill_arp_on_mp == NULL); 16663 ill->ill_arp_on_mp = arp_on_mp; 16664 16665 /* Send an AR_INTERFACE_OFF request */ 16666 putnext(ill->ill_rq, arp_off_mp); 16667 return (0); 16668 failed: 16669 16670 if (arp_off_mp) 16671 freemsg(arp_off_mp); 16672 return (ENOMEM); 16673 } 16674 16675 /* 16676 * Turn on ARP by turning off the ILLF_NOARP flag. 16677 */ 16678 static int 16679 ill_arp_on(ill_t *ill) 16680 { 16681 mblk_t *mp; 16682 16683 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16684 16685 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16686 16687 ASSERT(IAM_WRITER_ILL(ill)); 16688 /* 16689 * Send an AR_INTERFACE_ON request if we have already done 16690 * an arp_off (which allocated the message). 16691 */ 16692 if (ill->ill_arp_on_mp != NULL) { 16693 mp = ill->ill_arp_on_mp; 16694 ill->ill_arp_on_mp = NULL; 16695 putnext(ill->ill_rq, mp); 16696 } 16697 return (0); 16698 } 16699 16700 /* 16701 * Checks for availbility of a usable source address (if there is one) when the 16702 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16703 * this selection is done regardless of the destination. 16704 */ 16705 boolean_t 16706 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16707 { 16708 uint_t ifindex; 16709 ipif_t *ipif = NULL; 16710 ill_t *uill; 16711 boolean_t isv6; 16712 ip_stack_t *ipst = ill->ill_ipst; 16713 16714 ASSERT(ill != NULL); 16715 16716 isv6 = ill->ill_isv6; 16717 ifindex = ill->ill_usesrc_ifindex; 16718 if (ifindex != 0) { 16719 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16720 NULL, ipst); 16721 if (uill == NULL) 16722 return (NULL); 16723 mutex_enter(&uill->ill_lock); 16724 for (ipif = uill->ill_ipif; ipif != NULL; 16725 ipif = ipif->ipif_next) { 16726 if (!IPIF_CAN_LOOKUP(ipif)) 16727 continue; 16728 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16729 continue; 16730 if (!(ipif->ipif_flags & IPIF_UP)) 16731 continue; 16732 if (ipif->ipif_zoneid != zoneid) 16733 continue; 16734 if ((isv6 && 16735 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16736 (ipif->ipif_lcl_addr == INADDR_ANY)) 16737 continue; 16738 mutex_exit(&uill->ill_lock); 16739 ill_refrele(uill); 16740 return (B_TRUE); 16741 } 16742 mutex_exit(&uill->ill_lock); 16743 ill_refrele(uill); 16744 } 16745 return (B_FALSE); 16746 } 16747 16748 /* 16749 * IP source address type, sorted from worst to best. For a given type, 16750 * always prefer IP addresses on the same subnet. All-zones addresses are 16751 * suboptimal because they pose problems with unlabeled destinations. 16752 */ 16753 typedef enum { 16754 IPIF_NONE, 16755 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16756 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16757 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16758 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16759 IPIF_DIFFNET, /* normal and different subnet */ 16760 IPIF_SAMENET /* normal and same subnet */ 16761 } ipif_type_t; 16762 16763 /* 16764 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16765 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16766 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16767 * the first one, unless IPMP is used in which case we round-robin among them; 16768 * see below for more. 16769 * 16770 * Returns NULL if there is no suitable source address for the ill. 16771 * This only occurs when there is no valid source address for the ill. 16772 */ 16773 ipif_t * 16774 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16775 { 16776 ill_t *usill = NULL; 16777 ill_t *ipmp_ill = NULL; 16778 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16779 ipif_type_t type, best_type; 16780 tsol_tpc_t *src_rhtp, *dst_rhtp; 16781 ip_stack_t *ipst = ill->ill_ipst; 16782 boolean_t samenet; 16783 16784 if (ill->ill_usesrc_ifindex != 0) { 16785 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16786 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16787 if (usill != NULL) 16788 ill = usill; /* Select source from usesrc ILL */ 16789 else 16790 return (NULL); 16791 } 16792 16793 /* 16794 * Test addresses should never be used for source address selection, 16795 * so if we were passed one, switch to the IPMP meta-interface. 16796 */ 16797 if (IS_UNDER_IPMP(ill)) { 16798 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16799 ill = ipmp_ill; /* Select source from IPMP ill */ 16800 else 16801 return (NULL); 16802 } 16803 16804 /* 16805 * If we're dealing with an unlabeled destination on a labeled system, 16806 * make sure that we ignore source addresses that are incompatible with 16807 * the destination's default label. That destination's default label 16808 * must dominate the minimum label on the source address. 16809 */ 16810 dst_rhtp = NULL; 16811 if (is_system_labeled()) { 16812 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16813 if (dst_rhtp == NULL) 16814 return (NULL); 16815 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16816 TPC_RELE(dst_rhtp); 16817 dst_rhtp = NULL; 16818 } 16819 } 16820 16821 /* 16822 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16823 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16824 * After selecting the right ipif, under ill_lock make sure ipif is 16825 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16826 * we retry. Inside the loop we still need to check for CONDEMNED, 16827 * but not under a lock. 16828 */ 16829 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16830 retry: 16831 /* 16832 * For source address selection, we treat the ipif list as circular 16833 * and continue until we get back to where we started. This allows 16834 * IPMP to vary source address selection (which improves inbound load 16835 * spreading) by caching its last ending point and starting from 16836 * there. NOTE: we don't have to worry about ill_src_ipif changing 16837 * ills since that can't happen on the IPMP ill. 16838 */ 16839 start_ipif = ill->ill_ipif; 16840 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16841 start_ipif = ill->ill_src_ipif; 16842 16843 ipif = start_ipif; 16844 best_ipif = NULL; 16845 best_type = IPIF_NONE; 16846 do { 16847 if ((next_ipif = ipif->ipif_next) == NULL) 16848 next_ipif = ill->ill_ipif; 16849 16850 if (!IPIF_CAN_LOOKUP(ipif)) 16851 continue; 16852 /* Always skip NOLOCAL and ANYCAST interfaces */ 16853 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16854 continue; 16855 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16856 continue; 16857 if (ipif->ipif_zoneid != zoneid && 16858 ipif->ipif_zoneid != ALL_ZONES) 16859 continue; 16860 16861 /* 16862 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16863 * are not valid as source addresses. 16864 */ 16865 if (ipif->ipif_lcl_addr == INADDR_ANY) 16866 continue; 16867 16868 /* 16869 * Check compatibility of local address for destination's 16870 * default label if we're on a labeled system. Incompatible 16871 * addresses can't be used at all. 16872 */ 16873 if (dst_rhtp != NULL) { 16874 boolean_t incompat; 16875 16876 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16877 IPV4_VERSION, B_FALSE); 16878 if (src_rhtp == NULL) 16879 continue; 16880 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16881 src_rhtp->tpc_tp.tp_doi != 16882 dst_rhtp->tpc_tp.tp_doi || 16883 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16884 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16885 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16886 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16887 TPC_RELE(src_rhtp); 16888 if (incompat) 16889 continue; 16890 } 16891 16892 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16893 16894 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16895 type = samenet ? IPIF_SAMENET_DEPRECATED : 16896 IPIF_DIFFNET_DEPRECATED; 16897 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16898 type = samenet ? IPIF_SAMENET_ALLZONES : 16899 IPIF_DIFFNET_ALLZONES; 16900 } else { 16901 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16902 } 16903 16904 if (type > best_type) { 16905 best_type = type; 16906 best_ipif = ipif; 16907 if (best_type == IPIF_SAMENET) 16908 break; /* can't get better */ 16909 } 16910 } while ((ipif = next_ipif) != start_ipif); 16911 16912 if ((ipif = best_ipif) != NULL) { 16913 mutex_enter(&ipif->ipif_ill->ill_lock); 16914 if (!IPIF_CAN_LOOKUP(ipif)) { 16915 mutex_exit(&ipif->ipif_ill->ill_lock); 16916 goto retry; 16917 } 16918 ipif_refhold_locked(ipif); 16919 16920 /* 16921 * For IPMP, update the source ipif rotor to the next ipif, 16922 * provided we can look it up. (We must not use it if it's 16923 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16924 * ipif_free() checked ill_src_ipif.) 16925 */ 16926 if (IS_IPMP(ill) && ipif != NULL) { 16927 next_ipif = ipif->ipif_next; 16928 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16929 ill->ill_src_ipif = next_ipif; 16930 else 16931 ill->ill_src_ipif = NULL; 16932 } 16933 mutex_exit(&ipif->ipif_ill->ill_lock); 16934 } 16935 16936 rw_exit(&ipst->ips_ill_g_lock); 16937 if (usill != NULL) 16938 ill_refrele(usill); 16939 if (ipmp_ill != NULL) 16940 ill_refrele(ipmp_ill); 16941 if (dst_rhtp != NULL) 16942 TPC_RELE(dst_rhtp); 16943 16944 #ifdef DEBUG 16945 if (ipif == NULL) { 16946 char buf1[INET6_ADDRSTRLEN]; 16947 16948 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16949 ill->ill_name, 16950 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16951 } else { 16952 char buf1[INET6_ADDRSTRLEN]; 16953 char buf2[INET6_ADDRSTRLEN]; 16954 16955 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16956 ipif->ipif_ill->ill_name, 16957 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16958 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16959 buf2, sizeof (buf2)))); 16960 } 16961 #endif /* DEBUG */ 16962 return (ipif); 16963 } 16964 16965 /* 16966 * If old_ipif is not NULL, see if ipif was derived from old 16967 * ipif and if so, recreate the interface route by re-doing 16968 * source address selection. This happens when ipif_down -> 16969 * ipif_update_other_ipifs calls us. 16970 * 16971 * If old_ipif is NULL, just redo the source address selection 16972 * if needed. This happens when ipif_up_done calls us. 16973 */ 16974 static void 16975 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16976 { 16977 ire_t *ire; 16978 ire_t *ipif_ire; 16979 queue_t *stq; 16980 ipif_t *nipif; 16981 ill_t *ill; 16982 boolean_t need_rele = B_FALSE; 16983 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16984 16985 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16986 ASSERT(IAM_WRITER_IPIF(ipif)); 16987 16988 ill = ipif->ipif_ill; 16989 if (!(ipif->ipif_flags & 16990 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16991 /* 16992 * Can't possibly have borrowed the source 16993 * from old_ipif. 16994 */ 16995 return; 16996 } 16997 16998 /* 16999 * Is there any work to be done? No work if the address 17000 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 17001 * ipif_select_source() does not borrow addresses from 17002 * NOLOCAL and ANYCAST interfaces). 17003 */ 17004 if ((old_ipif != NULL) && 17005 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 17006 (old_ipif->ipif_ill->ill_wq == NULL) || 17007 (old_ipif->ipif_flags & 17008 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 17009 return; 17010 } 17011 17012 /* 17013 * Perform the same checks as when creating the 17014 * IRE_INTERFACE in ipif_up_done. 17015 */ 17016 if (!(ipif->ipif_flags & IPIF_UP)) 17017 return; 17018 17019 if ((ipif->ipif_flags & IPIF_NOXMIT) || 17020 (ipif->ipif_subnet == INADDR_ANY)) 17021 return; 17022 17023 ipif_ire = ipif_to_ire(ipif); 17024 if (ipif_ire == NULL) 17025 return; 17026 17027 /* 17028 * We know that ipif uses some other source for its 17029 * IRE_INTERFACE. Is it using the source of this 17030 * old_ipif? 17031 */ 17032 if (old_ipif != NULL && 17033 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 17034 ire_refrele(ipif_ire); 17035 return; 17036 } 17037 if (ip_debug > 2) { 17038 /* ip1dbg */ 17039 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 17040 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 17041 } 17042 17043 stq = ipif_ire->ire_stq; 17044 17045 /* 17046 * Can't use our source address. Select a different 17047 * source address for the IRE_INTERFACE. 17048 */ 17049 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 17050 if (nipif == NULL) { 17051 /* Last resort - all ipif's have IPIF_NOLOCAL */ 17052 nipif = ipif; 17053 } else { 17054 need_rele = B_TRUE; 17055 } 17056 17057 ire = ire_create( 17058 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 17059 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 17060 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 17061 NULL, /* no gateway */ 17062 &ipif->ipif_mtu, /* max frag */ 17063 NULL, /* no src nce */ 17064 NULL, /* no recv from queue */ 17065 stq, /* send-to queue */ 17066 ill->ill_net_type, /* IF_[NO]RESOLVER */ 17067 ipif, 17068 0, 17069 0, 17070 0, 17071 0, 17072 &ire_uinfo_null, 17073 NULL, 17074 NULL, 17075 ipst); 17076 17077 if (ire != NULL) { 17078 ire_t *ret_ire; 17079 int error; 17080 17081 /* 17082 * We don't need ipif_ire anymore. We need to delete 17083 * before we add so that ire_add does not detect 17084 * duplicates. 17085 */ 17086 ire_delete(ipif_ire); 17087 ret_ire = ire; 17088 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 17089 ASSERT(error == 0); 17090 ASSERT(ire == ret_ire); 17091 /* Held in ire_add */ 17092 ire_refrele(ret_ire); 17093 } 17094 /* 17095 * Either we are falling through from above or could not 17096 * allocate a replacement. 17097 */ 17098 ire_refrele(ipif_ire); 17099 if (need_rele) 17100 ipif_refrele(nipif); 17101 } 17102 17103 /* 17104 * This old_ipif is going away. 17105 * 17106 * Determine if any other ipif's are using our address as 17107 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17108 * IPIF_DEPRECATED). 17109 * Find the IRE_INTERFACE for such ipifs and recreate them 17110 * to use an different source address following the rules in 17111 * ipif_up_done. 17112 */ 17113 static void 17114 ipif_update_other_ipifs(ipif_t *old_ipif) 17115 { 17116 ipif_t *ipif; 17117 ill_t *ill; 17118 char buf[INET6_ADDRSTRLEN]; 17119 17120 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17121 17122 ill = old_ipif->ipif_ill; 17123 17124 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17125 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17126 17127 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17128 if (ipif == old_ipif) 17129 continue; 17130 ipif_recreate_interface_routes(old_ipif, ipif); 17131 } 17132 } 17133 17134 /* ARGSUSED */ 17135 int 17136 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17137 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17138 { 17139 /* 17140 * ill_phyint_reinit merged the v4 and v6 into a single 17141 * ipsq. We might not have been able to complete the 17142 * operation in ipif_set_values, if we could not become 17143 * exclusive. If so restart it here. 17144 */ 17145 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17146 } 17147 17148 /* 17149 * Can operate on either a module or a driver queue. 17150 * Returns an error if not a module queue. 17151 */ 17152 /* ARGSUSED */ 17153 int 17154 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17155 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17156 { 17157 queue_t *q1 = q; 17158 char *cp; 17159 char interf_name[LIFNAMSIZ]; 17160 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17161 17162 if (q->q_next == NULL) { 17163 ip1dbg(( 17164 "if_unitsel: IF_UNITSEL: no q_next\n")); 17165 return (EINVAL); 17166 } 17167 17168 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17169 return (EALREADY); 17170 17171 do { 17172 q1 = q1->q_next; 17173 } while (q1->q_next); 17174 cp = q1->q_qinfo->qi_minfo->mi_idname; 17175 (void) sprintf(interf_name, "%s%d", cp, ppa); 17176 17177 /* 17178 * Here we are not going to delay the ioack until after 17179 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17180 * original ioctl message before sending the requests. 17181 */ 17182 return (ipif_set_values(q, mp, interf_name, &ppa)); 17183 } 17184 17185 /* ARGSUSED */ 17186 int 17187 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17188 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17189 { 17190 return (ENXIO); 17191 } 17192 17193 /* 17194 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17195 * minimum (but complete) set exist. This is necessary when adding or 17196 * removing an interface to/from an IPMP group, since interfaces in an 17197 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17198 * its test address subnets overlap with IPMP data addresses). It's also 17199 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17200 * interface when the nominated broadcast interface changes. 17201 */ 17202 void 17203 ill_refresh_bcast(ill_t *ill) 17204 { 17205 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17206 ire_t **irep; 17207 ipif_t *ipif; 17208 17209 ASSERT(!ill->ill_isv6); 17210 ASSERT(IAM_WRITER_ILL(ill)); 17211 17212 /* 17213 * Remove any old broadcast IREs. 17214 */ 17215 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17216 ill_broadcast_delete, ill, ill); 17217 17218 /* 17219 * Create new ones for any ipifs that are up and broadcast-capable. 17220 */ 17221 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17222 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17223 (IPIF_UP|IPIF_BROADCAST)) 17224 continue; 17225 17226 irep = ipif_create_bcast_ires(ipif, ire_array); 17227 while (irep-- > ire_array) { 17228 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17229 if (*irep != NULL) 17230 ire_refrele(*irep); 17231 } 17232 } 17233 } 17234 17235 /* 17236 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17237 * `irep'. Returns a pointer to the next free `irep' entry (just like 17238 * ire_check_and_create_bcast()). 17239 */ 17240 static ire_t ** 17241 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17242 { 17243 ipaddr_t addr; 17244 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17245 ipaddr_t subnetmask = ipif->ipif_net_mask; 17246 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17247 17248 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17249 17250 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17251 17252 if (ipif->ipif_lcl_addr == INADDR_ANY || 17253 (ipif->ipif_flags & IPIF_NOLOCAL)) 17254 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17255 17256 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17257 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17258 17259 /* 17260 * For backward compatibility, we create net broadcast IREs based on 17261 * the old "IP address class system", since some old machines only 17262 * respond to these class derived net broadcast. However, we must not 17263 * create these net broadcast IREs if the subnetmask is shorter than 17264 * the IP address class based derived netmask. Otherwise, we may 17265 * create a net broadcast address which is the same as an IP address 17266 * on the subnet -- and then TCP will refuse to talk to that address. 17267 */ 17268 if (netmask < subnetmask) { 17269 addr = netmask & ipif->ipif_subnet; 17270 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17271 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17272 flags); 17273 } 17274 17275 /* 17276 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17277 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17278 * created. Creating these broadcast IREs will only create confusion 17279 * as `addr' will be the same as the IP address. 17280 */ 17281 if (subnetmask != 0xFFFFFFFF) { 17282 addr = ipif->ipif_subnet; 17283 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17284 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17285 irep, flags); 17286 } 17287 17288 return (irep); 17289 } 17290 17291 /* 17292 * Broadcast IRE info structure used in the functions below. Since we 17293 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17294 */ 17295 typedef struct bcast_ireinfo { 17296 uchar_t bi_type; /* BCAST_* value from below */ 17297 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17298 bi_needrep:1, /* do we need to replace it? */ 17299 bi_haverep:1, /* have we replaced it? */ 17300 bi_pad:5; 17301 ipaddr_t bi_addr; /* IRE address */ 17302 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17303 } bcast_ireinfo_t; 17304 17305 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17306 17307 /* 17308 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17309 * return B_TRUE if it should immediately be used to recreate the IRE. 17310 */ 17311 static boolean_t 17312 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17313 { 17314 ipaddr_t addr; 17315 17316 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17317 17318 switch (bireinfop->bi_type) { 17319 case BCAST_NET: 17320 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17321 if (addr != bireinfop->bi_addr) 17322 return (B_FALSE); 17323 break; 17324 case BCAST_SUBNET: 17325 if (ipif->ipif_subnet != bireinfop->bi_addr) 17326 return (B_FALSE); 17327 break; 17328 } 17329 17330 bireinfop->bi_needrep = 1; 17331 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17332 if (bireinfop->bi_backup == NULL) 17333 bireinfop->bi_backup = ipif; 17334 return (B_FALSE); 17335 } 17336 return (B_TRUE); 17337 } 17338 17339 /* 17340 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17341 * them ala ire_check_and_create_bcast(). 17342 */ 17343 static ire_t ** 17344 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17345 { 17346 ipaddr_t mask, addr; 17347 17348 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17349 17350 addr = bireinfop->bi_addr; 17351 irep = ire_create_bcast(ipif, addr, irep); 17352 17353 switch (bireinfop->bi_type) { 17354 case BCAST_NET: 17355 mask = ip_net_mask(ipif->ipif_subnet); 17356 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17357 break; 17358 case BCAST_SUBNET: 17359 mask = ipif->ipif_net_mask; 17360 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17361 break; 17362 } 17363 17364 bireinfop->bi_haverep = 1; 17365 return (irep); 17366 } 17367 17368 /* 17369 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17370 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17371 * that are going away are still needed. If so, have ipif_create_bcast() 17372 * recreate them (except for the deprecated case, as explained below). 17373 */ 17374 static ire_t ** 17375 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17376 ire_t **irep) 17377 { 17378 int i; 17379 ipif_t *ipif; 17380 17381 ASSERT(!ill->ill_isv6); 17382 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17383 /* 17384 * Skip this ipif if it's (a) the one being taken down, (b) 17385 * not in the same zone, or (c) has no valid local address. 17386 */ 17387 if (ipif == test_ipif || 17388 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17389 ipif->ipif_subnet == 0 || 17390 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17391 (IPIF_UP|IPIF_BROADCAST)) 17392 continue; 17393 17394 /* 17395 * For each dying IRE that hasn't yet been replaced, see if 17396 * `ipif' needs it and whether the IRE should be recreated on 17397 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17398 * will return B_FALSE even if `ipif' needs the IRE on the 17399 * hopes that we'll later find a needy non-deprecated ipif. 17400 * However, the ipif is recorded in bi_backup for possible 17401 * subsequent use by ipif_check_bcast_ires(). 17402 */ 17403 for (i = 0; i < BCAST_COUNT; i++) { 17404 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17405 continue; 17406 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17407 continue; 17408 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17409 } 17410 17411 /* 17412 * If we've replaced all of the broadcast IREs that are going 17413 * to be taken down, we know we're done. 17414 */ 17415 for (i = 0; i < BCAST_COUNT; i++) { 17416 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17417 break; 17418 } 17419 if (i == BCAST_COUNT) 17420 break; 17421 } 17422 return (irep); 17423 } 17424 17425 /* 17426 * Check if `test_ipif' (which is going away) is associated with any existing 17427 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17428 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17429 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17430 * 17431 * This is necessary because broadcast IREs are shared. In particular, a 17432 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17433 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17434 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17435 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17436 * same zone, they will share the same set of broadcast IREs. 17437 * 17438 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17439 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17440 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17441 */ 17442 static void 17443 ipif_check_bcast_ires(ipif_t *test_ipif) 17444 { 17445 ill_t *ill = test_ipif->ipif_ill; 17446 ire_t *ire, *ire_array[12]; /* see note above */ 17447 ire_t **irep1, **irep = &ire_array[0]; 17448 uint_t i, willdie; 17449 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17450 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17451 17452 ASSERT(!test_ipif->ipif_isv6); 17453 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17454 17455 /* 17456 * No broadcast IREs for the LOOPBACK interface 17457 * or others such as point to point and IPIF_NOXMIT. 17458 */ 17459 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17460 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17461 return; 17462 17463 bzero(bireinfo, sizeof (bireinfo)); 17464 bireinfo[0].bi_type = BCAST_ALLZEROES; 17465 bireinfo[0].bi_addr = 0; 17466 17467 bireinfo[1].bi_type = BCAST_ALLONES; 17468 bireinfo[1].bi_addr = INADDR_BROADCAST; 17469 17470 bireinfo[2].bi_type = BCAST_NET; 17471 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17472 17473 if (test_ipif->ipif_net_mask != 0) 17474 mask = test_ipif->ipif_net_mask; 17475 bireinfo[3].bi_type = BCAST_SUBNET; 17476 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17477 17478 /* 17479 * Figure out what (if any) broadcast IREs will die as a result of 17480 * `test_ipif' going away. If none will die, we're done. 17481 */ 17482 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17483 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17484 test_ipif, ALL_ZONES, NULL, 17485 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17486 if (ire != NULL) { 17487 willdie++; 17488 bireinfo[i].bi_willdie = 1; 17489 ire_refrele(ire); 17490 } 17491 } 17492 17493 if (willdie == 0) 17494 return; 17495 17496 /* 17497 * Walk through all the ipifs that will be affected by the dying IREs, 17498 * and recreate the IREs as necessary. Note that all interfaces in an 17499 * IPMP illgrp share the same broadcast IREs, and thus the entire 17500 * illgrp must be walked, starting with the IPMP meta-interface (so 17501 * that broadcast IREs end up on it whenever possible). 17502 */ 17503 if (IS_UNDER_IPMP(ill)) 17504 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17505 17506 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17507 17508 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17509 ipmp_illgrp_t *illg = ill->ill_grp; 17510 17511 ill = list_head(&illg->ig_if); 17512 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17513 for (i = 0; i < BCAST_COUNT; i++) { 17514 if (bireinfo[i].bi_willdie && 17515 !bireinfo[i].bi_haverep) 17516 break; 17517 } 17518 if (i == BCAST_COUNT) 17519 break; 17520 17521 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17522 } 17523 } 17524 17525 /* 17526 * Scan through the set of broadcast IREs and see if there are any 17527 * that we need to replace that have not yet been replaced. If so, 17528 * replace them using the appropriate backup ipif. 17529 */ 17530 for (i = 0; i < BCAST_COUNT; i++) { 17531 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17532 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17533 &bireinfo[i], irep); 17534 } 17535 17536 /* 17537 * If we can't create all of them, don't add any of them. (Code in 17538 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17539 * non-loopback copy and loopback copy for a given address.) 17540 */ 17541 for (irep1 = irep; irep1 > ire_array; ) { 17542 irep1--; 17543 if (*irep1 == NULL) { 17544 ip0dbg(("ipif_check_bcast_ires: can't create " 17545 "IRE_BROADCAST, memory allocation failure\n")); 17546 while (irep > ire_array) { 17547 irep--; 17548 if (*irep != NULL) 17549 ire_delete(*irep); 17550 } 17551 return; 17552 } 17553 } 17554 17555 for (irep1 = irep; irep1 > ire_array; ) { 17556 irep1--; 17557 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17558 ire_refrele(*irep1); /* Held in ire_add */ 17559 } 17560 } 17561 17562 /* 17563 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17564 * from lifr_flags and the name from lifr_name. 17565 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17566 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17567 * Returns EINPROGRESS when mp has been consumed by queueing it on 17568 * ill_pending_mp and the ioctl will complete in ip_rput. 17569 * 17570 * Can operate on either a module or a driver queue. 17571 * Returns an error if not a module queue. 17572 */ 17573 /* ARGSUSED */ 17574 int 17575 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17576 ip_ioctl_cmd_t *ipip, void *if_req) 17577 { 17578 ill_t *ill = q->q_ptr; 17579 phyint_t *phyi; 17580 ip_stack_t *ipst; 17581 struct lifreq *lifr = if_req; 17582 17583 ASSERT(ipif != NULL); 17584 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17585 17586 if (q->q_next == NULL) { 17587 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17588 return (EINVAL); 17589 } 17590 17591 /* 17592 * If we are not writer on 'q' then this interface exists already 17593 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17594 * so return EALREADY. 17595 */ 17596 if (ill != ipif->ipif_ill) 17597 return (EALREADY); 17598 17599 if (ill->ill_name[0] != '\0') 17600 return (EALREADY); 17601 17602 /* 17603 * Set all the flags. Allows all kinds of override. Provide some 17604 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17605 * unless there is either multicast/broadcast support in the driver 17606 * or it is a pt-pt link. 17607 */ 17608 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17609 /* Meaningless to IP thus don't allow them to be set. */ 17610 ip1dbg(("ip_setname: EINVAL 1\n")); 17611 return (EINVAL); 17612 } 17613 17614 /* 17615 * If there's another ill already with the requested name, ensure 17616 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17617 * fuse together two unrelated ills, which will cause chaos. 17618 */ 17619 ipst = ill->ill_ipst; 17620 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17621 lifr->lifr_name, NULL); 17622 if (phyi != NULL) { 17623 ill_t *ill_mate = phyi->phyint_illv4; 17624 17625 if (ill_mate == NULL) 17626 ill_mate = phyi->phyint_illv6; 17627 ASSERT(ill_mate != NULL); 17628 17629 if (ill_mate->ill_media->ip_m_mac_type != 17630 ill->ill_media->ip_m_mac_type) { 17631 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17632 "use the same ill name on differing media\n")); 17633 return (EINVAL); 17634 } 17635 } 17636 17637 /* 17638 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17639 * ill_bcast_addr_length info. 17640 */ 17641 if (!ill->ill_needs_attach && 17642 ((lifr->lifr_flags & IFF_MULTICAST) && 17643 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17644 ill->ill_bcast_addr_length == 0)) { 17645 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17646 ip1dbg(("ip_setname: EINVAL 2\n")); 17647 return (EINVAL); 17648 } 17649 if ((lifr->lifr_flags & IFF_BROADCAST) && 17650 ((lifr->lifr_flags & IFF_IPV6) || 17651 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17652 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17653 ip1dbg(("ip_setname: EINVAL 3\n")); 17654 return (EINVAL); 17655 } 17656 if (lifr->lifr_flags & IFF_UP) { 17657 /* Can only be set with SIOCSLIFFLAGS */ 17658 ip1dbg(("ip_setname: EINVAL 4\n")); 17659 return (EINVAL); 17660 } 17661 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17662 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17663 ip1dbg(("ip_setname: EINVAL 5\n")); 17664 return (EINVAL); 17665 } 17666 /* 17667 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17668 */ 17669 if ((lifr->lifr_flags & IFF_XRESOLV) && 17670 !(lifr->lifr_flags & IFF_IPV6) && 17671 !(ipif->ipif_isv6)) { 17672 ip1dbg(("ip_setname: EINVAL 6\n")); 17673 return (EINVAL); 17674 } 17675 17676 /* 17677 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17678 * we have all the flags here. So, we assign rather than we OR. 17679 * We can't OR the flags here because we don't want to set 17680 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17681 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17682 * on lifr_flags value here. 17683 */ 17684 /* 17685 * This ill has not been inserted into the global list. 17686 * So we are still single threaded and don't need any lock 17687 */ 17688 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17689 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17690 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17691 17692 /* We started off as V4. */ 17693 if (ill->ill_flags & ILLF_IPV6) { 17694 ill->ill_phyint->phyint_illv6 = ill; 17695 ill->ill_phyint->phyint_illv4 = NULL; 17696 } 17697 17698 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17699 } 17700 17701 /* ARGSUSED */ 17702 int 17703 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17704 ip_ioctl_cmd_t *ipip, void *if_req) 17705 { 17706 /* 17707 * ill_phyint_reinit merged the v4 and v6 into a single 17708 * ipsq. We might not have been able to complete the 17709 * slifname in ipif_set_values, if we could not become 17710 * exclusive. If so restart it here 17711 */ 17712 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17713 } 17714 17715 /* 17716 * Return a pointer to the ipif which matches the index, IP version type and 17717 * zoneid. 17718 */ 17719 ipif_t * 17720 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17721 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17722 { 17723 ill_t *ill; 17724 ipif_t *ipif = NULL; 17725 17726 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17727 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17728 17729 if (err != NULL) 17730 *err = 0; 17731 17732 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17733 if (ill != NULL) { 17734 mutex_enter(&ill->ill_lock); 17735 for (ipif = ill->ill_ipif; ipif != NULL; 17736 ipif = ipif->ipif_next) { 17737 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17738 zoneid == ipif->ipif_zoneid || 17739 ipif->ipif_zoneid == ALL_ZONES)) { 17740 ipif_refhold_locked(ipif); 17741 break; 17742 } 17743 } 17744 mutex_exit(&ill->ill_lock); 17745 ill_refrele(ill); 17746 if (ipif == NULL && err != NULL) 17747 *err = ENXIO; 17748 } 17749 return (ipif); 17750 } 17751 17752 /* 17753 * Change an existing physical interface's index. If the new index 17754 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17755 * Finally, we update other systems which may have a dependence on the 17756 * index value. 17757 */ 17758 /* ARGSUSED */ 17759 int 17760 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17761 ip_ioctl_cmd_t *ipip, void *ifreq) 17762 { 17763 ill_t *ill; 17764 phyint_t *phyi; 17765 struct ifreq *ifr = (struct ifreq *)ifreq; 17766 struct lifreq *lifr = (struct lifreq *)ifreq; 17767 uint_t old_index, index; 17768 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17769 avl_index_t where; 17770 17771 if (ipip->ipi_cmd_type == IF_CMD) 17772 index = ifr->ifr_index; 17773 else 17774 index = lifr->lifr_index; 17775 17776 /* 17777 * Only allow on physical interface. Also, index zero is illegal. 17778 */ 17779 ill = ipif->ipif_ill; 17780 phyi = ill->ill_phyint; 17781 if (ipif->ipif_id != 0 || index == 0) { 17782 return (EINVAL); 17783 } 17784 17785 /* If the index is not changing, no work to do */ 17786 if (phyi->phyint_ifindex == index) 17787 return (0); 17788 17789 /* 17790 * Use phyint_exists() to determine if the new interface index 17791 * is already in use. If the index is unused then we need to 17792 * change the phyint's position in the phyint_list_avl_by_index 17793 * tree. If we do not do this, subsequent lookups (using the new 17794 * index value) will not find the phyint. 17795 */ 17796 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17797 if (phyint_exists(index, ipst)) { 17798 rw_exit(&ipst->ips_ill_g_lock); 17799 return (EEXIST); 17800 } 17801 17802 /* The new index is unused. Set it in the phyint. */ 17803 old_index = phyi->phyint_ifindex; 17804 phyi->phyint_ifindex = index; 17805 17806 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17807 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17808 &index, &where); 17809 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17810 phyi, where); 17811 rw_exit(&ipst->ips_ill_g_lock); 17812 17813 /* Update SCTP's ILL list */ 17814 sctp_ill_reindex(ill, old_index); 17815 17816 /* Send the routing sockets message */ 17817 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17818 if (ILL_OTHER(ill)) 17819 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17820 17821 return (0); 17822 } 17823 17824 /* ARGSUSED */ 17825 int 17826 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17827 ip_ioctl_cmd_t *ipip, void *ifreq) 17828 { 17829 struct ifreq *ifr = (struct ifreq *)ifreq; 17830 struct lifreq *lifr = (struct lifreq *)ifreq; 17831 17832 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17834 /* Get the interface index */ 17835 if (ipip->ipi_cmd_type == IF_CMD) { 17836 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17837 } else { 17838 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17839 } 17840 return (0); 17841 } 17842 17843 /* ARGSUSED */ 17844 int 17845 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17846 ip_ioctl_cmd_t *ipip, void *ifreq) 17847 { 17848 struct lifreq *lifr = (struct lifreq *)ifreq; 17849 17850 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17851 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17852 /* Get the interface zone */ 17853 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17854 lifr->lifr_zoneid = ipif->ipif_zoneid; 17855 return (0); 17856 } 17857 17858 /* 17859 * Set the zoneid of an interface. 17860 */ 17861 /* ARGSUSED */ 17862 int 17863 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17864 ip_ioctl_cmd_t *ipip, void *ifreq) 17865 { 17866 struct lifreq *lifr = (struct lifreq *)ifreq; 17867 int err = 0; 17868 boolean_t need_up = B_FALSE; 17869 zone_t *zptr; 17870 zone_status_t status; 17871 zoneid_t zoneid; 17872 17873 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17874 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17875 if (!is_system_labeled()) 17876 return (ENOTSUP); 17877 zoneid = GLOBAL_ZONEID; 17878 } 17879 17880 /* cannot assign instance zero to a non-global zone */ 17881 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17882 return (ENOTSUP); 17883 17884 /* 17885 * Cannot assign to a zone that doesn't exist or is shutting down. In 17886 * the event of a race with the zone shutdown processing, since IP 17887 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17888 * interface will be cleaned up even if the zone is shut down 17889 * immediately after the status check. If the interface can't be brought 17890 * down right away, and the zone is shut down before the restart 17891 * function is called, we resolve the possible races by rechecking the 17892 * zone status in the restart function. 17893 */ 17894 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17895 return (EINVAL); 17896 status = zone_status_get(zptr); 17897 zone_rele(zptr); 17898 17899 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17900 return (EINVAL); 17901 17902 if (ipif->ipif_flags & IPIF_UP) { 17903 /* 17904 * If the interface is already marked up, 17905 * we call ipif_down which will take care 17906 * of ditching any IREs that have been set 17907 * up based on the old interface address. 17908 */ 17909 err = ipif_logical_down(ipif, q, mp); 17910 if (err == EINPROGRESS) 17911 return (err); 17912 ipif_down_tail(ipif); 17913 need_up = B_TRUE; 17914 } 17915 17916 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17917 return (err); 17918 } 17919 17920 static int 17921 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17922 queue_t *q, mblk_t *mp, boolean_t need_up) 17923 { 17924 int err = 0; 17925 ip_stack_t *ipst; 17926 17927 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17928 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17929 17930 if (CONN_Q(q)) 17931 ipst = CONNQ_TO_IPST(q); 17932 else 17933 ipst = ILLQ_TO_IPST(q); 17934 17935 /* 17936 * For exclusive stacks we don't allow a different zoneid than 17937 * global. 17938 */ 17939 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17940 zoneid != GLOBAL_ZONEID) 17941 return (EINVAL); 17942 17943 /* Set the new zone id. */ 17944 ipif->ipif_zoneid = zoneid; 17945 17946 /* Update sctp list */ 17947 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17948 17949 if (need_up) { 17950 /* 17951 * Now bring the interface back up. If this 17952 * is the only IPIF for the ILL, ipif_up 17953 * will have to re-bind to the device, so 17954 * we may get back EINPROGRESS, in which 17955 * case, this IOCTL will get completed in 17956 * ip_rput_dlpi when we see the DL_BIND_ACK. 17957 */ 17958 err = ipif_up(ipif, q, mp); 17959 } 17960 return (err); 17961 } 17962 17963 /* ARGSUSED */ 17964 int 17965 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17966 ip_ioctl_cmd_t *ipip, void *if_req) 17967 { 17968 struct lifreq *lifr = (struct lifreq *)if_req; 17969 zoneid_t zoneid; 17970 zone_t *zptr; 17971 zone_status_t status; 17972 17973 ASSERT(ipif->ipif_id != 0); 17974 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17975 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17976 zoneid = GLOBAL_ZONEID; 17977 17978 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17979 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17980 17981 /* 17982 * We recheck the zone status to resolve the following race condition: 17983 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17984 * 2) hme0:1 is up and can't be brought down right away; 17985 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17986 * 3) zone "myzone" is halted; the zone status switches to 17987 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17988 * the interfaces to remove - hme0:1 is not returned because it's not 17989 * yet in "myzone", so it won't be removed; 17990 * 4) the restart function for SIOCSLIFZONE is called; without the 17991 * status check here, we would have hme0:1 in "myzone" after it's been 17992 * destroyed. 17993 * Note that if the status check fails, we need to bring the interface 17994 * back to its state prior to ip_sioctl_slifzone(), hence the call to 17995 * ipif_up_done[_v6](). 17996 */ 17997 status = ZONE_IS_UNINITIALIZED; 17998 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 17999 status = zone_status_get(zptr); 18000 zone_rele(zptr); 18001 } 18002 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 18003 if (ipif->ipif_isv6) { 18004 (void) ipif_up_done_v6(ipif); 18005 } else { 18006 (void) ipif_up_done(ipif); 18007 } 18008 return (EINVAL); 18009 } 18010 18011 ipif_down_tail(ipif); 18012 18013 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 18014 B_TRUE)); 18015 } 18016 18017 /* 18018 * Return the number of addresses on `ill' with one or more of the values 18019 * in `set' set and all of the values in `clear' clear. 18020 */ 18021 static uint_t 18022 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 18023 { 18024 ipif_t *ipif; 18025 uint_t cnt = 0; 18026 18027 ASSERT(IAM_WRITER_ILL(ill)); 18028 18029 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 18030 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 18031 cnt++; 18032 18033 return (cnt); 18034 } 18035 18036 /* 18037 * Return the number of migratable addresses on `ill' that are under 18038 * application control. 18039 */ 18040 uint_t 18041 ill_appaddr_cnt(const ill_t *ill) 18042 { 18043 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 18044 IPIF_NOFAILOVER)); 18045 } 18046 18047 /* 18048 * Return the number of point-to-point addresses on `ill'. 18049 */ 18050 uint_t 18051 ill_ptpaddr_cnt(const ill_t *ill) 18052 { 18053 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 18054 } 18055 18056 /* ARGSUSED */ 18057 int 18058 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18059 ip_ioctl_cmd_t *ipip, void *ifreq) 18060 { 18061 struct lifreq *lifr = ifreq; 18062 18063 ASSERT(q->q_next == NULL); 18064 ASSERT(CONN_Q(q)); 18065 18066 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 18067 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18068 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 18069 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 18070 18071 return (0); 18072 } 18073 18074 /* Find the previous ILL in this usesrc group */ 18075 static ill_t * 18076 ill_prev_usesrc(ill_t *uill) 18077 { 18078 ill_t *ill; 18079 18080 for (ill = uill->ill_usesrc_grp_next; 18081 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 18082 ill = ill->ill_usesrc_grp_next) 18083 /* do nothing */; 18084 return (ill); 18085 } 18086 18087 /* 18088 * Release all members of the usesrc group. This routine is called 18089 * from ill_delete when the interface being unplumbed is the 18090 * group head. 18091 */ 18092 static void 18093 ill_disband_usesrc_group(ill_t *uill) 18094 { 18095 ill_t *next_ill, *tmp_ill; 18096 ip_stack_t *ipst = uill->ill_ipst; 18097 18098 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18099 next_ill = uill->ill_usesrc_grp_next; 18100 18101 do { 18102 ASSERT(next_ill != NULL); 18103 tmp_ill = next_ill->ill_usesrc_grp_next; 18104 ASSERT(tmp_ill != NULL); 18105 next_ill->ill_usesrc_grp_next = NULL; 18106 next_ill->ill_usesrc_ifindex = 0; 18107 next_ill = tmp_ill; 18108 } while (next_ill->ill_usesrc_ifindex != 0); 18109 uill->ill_usesrc_grp_next = NULL; 18110 } 18111 18112 /* 18113 * Remove the client usesrc ILL from the list and relink to a new list 18114 */ 18115 int 18116 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18117 { 18118 ill_t *ill, *tmp_ill; 18119 ip_stack_t *ipst = ucill->ill_ipst; 18120 18121 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18122 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18123 18124 /* 18125 * Check if the usesrc client ILL passed in is not already 18126 * in use as a usesrc ILL i.e one whose source address is 18127 * in use OR a usesrc ILL is not already in use as a usesrc 18128 * client ILL 18129 */ 18130 if ((ucill->ill_usesrc_ifindex == 0) || 18131 (uill->ill_usesrc_ifindex != 0)) { 18132 return (-1); 18133 } 18134 18135 ill = ill_prev_usesrc(ucill); 18136 ASSERT(ill->ill_usesrc_grp_next != NULL); 18137 18138 /* Remove from the current list */ 18139 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18140 /* Only two elements in the list */ 18141 ASSERT(ill->ill_usesrc_ifindex == 0); 18142 ill->ill_usesrc_grp_next = NULL; 18143 } else { 18144 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18145 } 18146 18147 if (ifindex == 0) { 18148 ucill->ill_usesrc_ifindex = 0; 18149 ucill->ill_usesrc_grp_next = NULL; 18150 return (0); 18151 } 18152 18153 ucill->ill_usesrc_ifindex = ifindex; 18154 tmp_ill = uill->ill_usesrc_grp_next; 18155 uill->ill_usesrc_grp_next = ucill; 18156 ucill->ill_usesrc_grp_next = 18157 (tmp_ill != NULL) ? tmp_ill : uill; 18158 return (0); 18159 } 18160 18161 /* 18162 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18163 * ip.c for locking details. 18164 */ 18165 /* ARGSUSED */ 18166 int 18167 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18168 ip_ioctl_cmd_t *ipip, void *ifreq) 18169 { 18170 struct lifreq *lifr = (struct lifreq *)ifreq; 18171 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18172 ill_flag_changed = B_FALSE; 18173 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18174 int err = 0, ret; 18175 uint_t ifindex; 18176 ipsq_t *ipsq = NULL; 18177 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18178 18179 ASSERT(IAM_WRITER_IPIF(ipif)); 18180 ASSERT(q->q_next == NULL); 18181 ASSERT(CONN_Q(q)); 18182 18183 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18184 18185 ifindex = lifr->lifr_index; 18186 if (ifindex == 0) { 18187 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18188 /* non usesrc group interface, nothing to reset */ 18189 return (0); 18190 } 18191 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18192 /* valid reset request */ 18193 reset_flg = B_TRUE; 18194 } 18195 18196 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18197 ip_process_ioctl, &err, ipst); 18198 if (usesrc_ill == NULL) { 18199 return (err); 18200 } 18201 18202 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18203 NEW_OP, B_TRUE); 18204 if (ipsq == NULL) { 18205 err = EINPROGRESS; 18206 /* Operation enqueued on the ipsq of the usesrc ILL */ 18207 goto done; 18208 } 18209 18210 /* USESRC isn't currently supported with IPMP */ 18211 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18212 err = ENOTSUP; 18213 goto done; 18214 } 18215 18216 /* 18217 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18218 * used by IPMP underlying interfaces, but someone might think it's 18219 * more general and try to use it independently with VNI.) 18220 */ 18221 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18222 err = ENOTSUP; 18223 goto done; 18224 } 18225 18226 /* 18227 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18228 * already a client then return EINVAL 18229 */ 18230 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18231 err = EINVAL; 18232 goto done; 18233 } 18234 18235 /* 18236 * If the ill_usesrc_ifindex field is already set to what it needs to 18237 * be then this is a duplicate operation. 18238 */ 18239 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18240 err = 0; 18241 goto done; 18242 } 18243 18244 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18245 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18246 usesrc_ill->ill_isv6)); 18247 18248 /* 18249 * The next step ensures that no new ires will be created referencing 18250 * the client ill, until the ILL_CHANGING flag is cleared. Then 18251 * we go through an ire walk deleting all ire caches that reference 18252 * the client ill. New ires referencing the client ill that are added 18253 * to the ire table before the ILL_CHANGING flag is set, will be 18254 * cleaned up by the ire walk below. Attempt to add new ires referencing 18255 * the client ill while the ILL_CHANGING flag is set will be failed 18256 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18257 * checks (under the ill_g_usesrc_lock) that the ire being added 18258 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18259 * belong to the same usesrc group. 18260 */ 18261 mutex_enter(&usesrc_cli_ill->ill_lock); 18262 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18263 mutex_exit(&usesrc_cli_ill->ill_lock); 18264 ill_flag_changed = B_TRUE; 18265 18266 if (ipif->ipif_isv6) 18267 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18268 ALL_ZONES, ipst); 18269 else 18270 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18271 ALL_ZONES, ipst); 18272 18273 /* 18274 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18275 * and the ill_usesrc_ifindex fields 18276 */ 18277 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18278 18279 if (reset_flg) { 18280 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18281 if (ret != 0) { 18282 err = EINVAL; 18283 } 18284 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18285 goto done; 18286 } 18287 18288 /* 18289 * Four possibilities to consider: 18290 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18291 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18292 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18293 * 4. Both are part of their respective usesrc groups 18294 */ 18295 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18296 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18297 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18298 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18299 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18300 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18301 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18302 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18303 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18304 /* Insert at head of list */ 18305 usesrc_cli_ill->ill_usesrc_grp_next = 18306 usesrc_ill->ill_usesrc_grp_next; 18307 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18308 } else { 18309 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18310 ifindex); 18311 if (ret != 0) 18312 err = EINVAL; 18313 } 18314 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18315 18316 done: 18317 if (ill_flag_changed) { 18318 mutex_enter(&usesrc_cli_ill->ill_lock); 18319 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18320 mutex_exit(&usesrc_cli_ill->ill_lock); 18321 } 18322 if (ipsq != NULL) 18323 ipsq_exit(ipsq); 18324 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18325 ill_refrele(usesrc_ill); 18326 return (err); 18327 } 18328 18329 /* 18330 * comparison function used by avl. 18331 */ 18332 static int 18333 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18334 { 18335 18336 uint_t index; 18337 18338 ASSERT(phyip != NULL && index_ptr != NULL); 18339 18340 index = *((uint_t *)index_ptr); 18341 /* 18342 * let the phyint with the lowest index be on top. 18343 */ 18344 if (((phyint_t *)phyip)->phyint_ifindex < index) 18345 return (1); 18346 if (((phyint_t *)phyip)->phyint_ifindex > index) 18347 return (-1); 18348 return (0); 18349 } 18350 18351 /* 18352 * comparison function used by avl. 18353 */ 18354 static int 18355 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18356 { 18357 ill_t *ill; 18358 int res = 0; 18359 18360 ASSERT(phyip != NULL && name_ptr != NULL); 18361 18362 if (((phyint_t *)phyip)->phyint_illv4) 18363 ill = ((phyint_t *)phyip)->phyint_illv4; 18364 else 18365 ill = ((phyint_t *)phyip)->phyint_illv6; 18366 ASSERT(ill != NULL); 18367 18368 res = strcmp(ill->ill_name, (char *)name_ptr); 18369 if (res > 0) 18370 return (1); 18371 else if (res < 0) 18372 return (-1); 18373 return (0); 18374 } 18375 18376 /* 18377 * This function is called on the unplumb path via ill_glist_delete() when 18378 * there are no ills left on the phyint and thus the phyint can be freed. 18379 */ 18380 static void 18381 phyint_free(phyint_t *phyi) 18382 { 18383 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18384 18385 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18386 18387 /* 18388 * If this phyint was an IPMP meta-interface, blow away the group. 18389 * This is safe to do because all of the illgrps have already been 18390 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18391 * If we're cleaning up as a result of failed initialization, 18392 * phyint_grp may be NULL. 18393 */ 18394 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18395 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18396 ipmp_grp_destroy(phyi->phyint_grp); 18397 phyi->phyint_grp = NULL; 18398 rw_exit(&ipst->ips_ipmp_lock); 18399 } 18400 18401 /* 18402 * If this interface was under IPMP, take it out of the group. 18403 */ 18404 if (phyi->phyint_grp != NULL) 18405 ipmp_phyint_leave_grp(phyi); 18406 18407 /* 18408 * Delete the phyint and disassociate its ipsq. The ipsq itself 18409 * will be freed in ipsq_exit(). 18410 */ 18411 phyi->phyint_ipsq->ipsq_phyint = NULL; 18412 phyi->phyint_name[0] = '\0'; 18413 18414 mi_free(phyi); 18415 } 18416 18417 /* 18418 * Attach the ill to the phyint structure which can be shared by both 18419 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18420 * function is called from ipif_set_values and ill_lookup_on_name (for 18421 * loopback) where we know the name of the ill. We lookup the ill and if 18422 * there is one present already with the name use that phyint. Otherwise 18423 * reuse the one allocated by ill_init. 18424 */ 18425 static void 18426 ill_phyint_reinit(ill_t *ill) 18427 { 18428 boolean_t isv6 = ill->ill_isv6; 18429 phyint_t *phyi_old; 18430 phyint_t *phyi; 18431 avl_index_t where = 0; 18432 ill_t *ill_other = NULL; 18433 ip_stack_t *ipst = ill->ill_ipst; 18434 18435 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18436 18437 phyi_old = ill->ill_phyint; 18438 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18439 phyi_old->phyint_illv6 == NULL)); 18440 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18441 phyi_old->phyint_illv4 == NULL)); 18442 ASSERT(phyi_old->phyint_ifindex == 0); 18443 18444 /* 18445 * Now that our ill has a name, set it in the phyint. 18446 */ 18447 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18448 18449 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18450 ill->ill_name, &where); 18451 18452 /* 18453 * 1. We grabbed the ill_g_lock before inserting this ill into 18454 * the global list of ills. So no other thread could have located 18455 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18456 * 2. Now locate the other protocol instance of this ill. 18457 * 3. Now grab both ill locks in the right order, and the phyint lock of 18458 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18459 * of neither ill can change. 18460 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18461 * other ill. 18462 * 5. Release all locks. 18463 */ 18464 18465 /* 18466 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18467 * we are initializing IPv4. 18468 */ 18469 if (phyi != NULL) { 18470 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18471 ASSERT(ill_other->ill_phyint != NULL); 18472 ASSERT((isv6 && !ill_other->ill_isv6) || 18473 (!isv6 && ill_other->ill_isv6)); 18474 GRAB_ILL_LOCKS(ill, ill_other); 18475 /* 18476 * We are potentially throwing away phyint_flags which 18477 * could be different from the one that we obtain from 18478 * ill_other->ill_phyint. But it is okay as we are assuming 18479 * that the state maintained within IP is correct. 18480 */ 18481 mutex_enter(&phyi->phyint_lock); 18482 if (isv6) { 18483 ASSERT(phyi->phyint_illv6 == NULL); 18484 phyi->phyint_illv6 = ill; 18485 } else { 18486 ASSERT(phyi->phyint_illv4 == NULL); 18487 phyi->phyint_illv4 = ill; 18488 } 18489 18490 /* 18491 * Delete the old phyint and make its ipsq eligible 18492 * to be freed in ipsq_exit(). 18493 */ 18494 phyi_old->phyint_illv4 = NULL; 18495 phyi_old->phyint_illv6 = NULL; 18496 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18497 phyi_old->phyint_name[0] = '\0'; 18498 mi_free(phyi_old); 18499 } else { 18500 mutex_enter(&ill->ill_lock); 18501 /* 18502 * We don't need to acquire any lock, since 18503 * the ill is not yet visible globally and we 18504 * have not yet released the ill_g_lock. 18505 */ 18506 phyi = phyi_old; 18507 mutex_enter(&phyi->phyint_lock); 18508 /* XXX We need a recovery strategy here. */ 18509 if (!phyint_assign_ifindex(phyi, ipst)) 18510 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18511 18512 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18513 (void *)phyi, where); 18514 18515 (void) avl_find(&ipst->ips_phyint_g_list-> 18516 phyint_list_avl_by_index, 18517 &phyi->phyint_ifindex, &where); 18518 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18519 (void *)phyi, where); 18520 } 18521 18522 /* 18523 * Reassigning ill_phyint automatically reassigns the ipsq also. 18524 * pending mp is not affected because that is per ill basis. 18525 */ 18526 ill->ill_phyint = phyi; 18527 18528 /* 18529 * Now that the phyint's ifindex has been assigned, complete the 18530 * remaining 18531 */ 18532 18533 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18534 if (ill->ill_isv6) { 18535 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18536 ill->ill_phyint->phyint_ifindex; 18537 ill->ill_mcast_type = ipst->ips_mld_max_version; 18538 } else { 18539 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18540 } 18541 18542 /* 18543 * Generate an event within the hooks framework to indicate that 18544 * a new interface has just been added to IP. For this event to 18545 * be generated, the network interface must, at least, have an 18546 * ifindex assigned to it. 18547 * 18548 * This needs to be run inside the ill_g_lock perimeter to ensure 18549 * that the ordering of delivered events to listeners matches the 18550 * order of them in the kernel. 18551 * 18552 * This function could be called from ill_lookup_on_name. In that case 18553 * the interface is loopback "lo", which will not generate a NIC event. 18554 */ 18555 if (ill->ill_name_length <= 2 || 18556 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 18557 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18558 ill->ill_name_length); 18559 } 18560 RELEASE_ILL_LOCKS(ill, ill_other); 18561 mutex_exit(&phyi->phyint_lock); 18562 } 18563 18564 /* 18565 * Notify any downstream modules of the name of this interface. 18566 * An M_IOCTL is used even though we don't expect a successful reply. 18567 * Any reply message from the driver (presumably an M_IOCNAK) will 18568 * eventually get discarded somewhere upstream. The message format is 18569 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18570 * to IP. 18571 */ 18572 static void 18573 ip_ifname_notify(ill_t *ill, queue_t *q) 18574 { 18575 mblk_t *mp1, *mp2; 18576 struct iocblk *iocp; 18577 struct lifreq *lifr; 18578 18579 mp1 = mkiocb(SIOCSLIFNAME); 18580 if (mp1 == NULL) 18581 return; 18582 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18583 if (mp2 == NULL) { 18584 freeb(mp1); 18585 return; 18586 } 18587 18588 mp1->b_cont = mp2; 18589 iocp = (struct iocblk *)mp1->b_rptr; 18590 iocp->ioc_count = sizeof (struct lifreq); 18591 18592 lifr = (struct lifreq *)mp2->b_rptr; 18593 mp2->b_wptr += sizeof (struct lifreq); 18594 bzero(lifr, sizeof (struct lifreq)); 18595 18596 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18597 lifr->lifr_ppa = ill->ill_ppa; 18598 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18599 18600 putnext(q, mp1); 18601 } 18602 18603 static int 18604 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18605 { 18606 int err; 18607 ip_stack_t *ipst = ill->ill_ipst; 18608 phyint_t *phyi = ill->ill_phyint; 18609 18610 /* Set the obsolete NDD per-interface forwarding name. */ 18611 err = ill_set_ndd_name(ill); 18612 if (err != 0) { 18613 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18614 err); 18615 } 18616 18617 /* 18618 * Now that ill_name is set, the configuration for the IPMP 18619 * meta-interface can be performed. 18620 */ 18621 if (IS_IPMP(ill)) { 18622 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18623 /* 18624 * If phyi->phyint_grp is NULL, then this is the first IPMP 18625 * meta-interface and we need to create the IPMP group. 18626 */ 18627 if (phyi->phyint_grp == NULL) { 18628 /* 18629 * If someone has renamed another IPMP group to have 18630 * the same name as our interface, bail. 18631 */ 18632 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18633 rw_exit(&ipst->ips_ipmp_lock); 18634 return (EEXIST); 18635 } 18636 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18637 if (phyi->phyint_grp == NULL) { 18638 rw_exit(&ipst->ips_ipmp_lock); 18639 return (ENOMEM); 18640 } 18641 } 18642 rw_exit(&ipst->ips_ipmp_lock); 18643 } 18644 18645 /* Tell downstream modules where they are. */ 18646 ip_ifname_notify(ill, q); 18647 18648 /* 18649 * ill_dl_phys returns EINPROGRESS in the usual case. 18650 * Error cases are ENOMEM ... 18651 */ 18652 err = ill_dl_phys(ill, ipif, mp, q); 18653 18654 /* 18655 * If there is no IRE expiration timer running, get one started. 18656 * igmp and mld timers will be triggered by the first multicast 18657 */ 18658 if (ipst->ips_ip_ire_expire_id == 0) { 18659 /* 18660 * acquire the lock and check again. 18661 */ 18662 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18663 if (ipst->ips_ip_ire_expire_id == 0) { 18664 ipst->ips_ip_ire_expire_id = timeout( 18665 ip_trash_timer_expire, ipst, 18666 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18667 } 18668 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18669 } 18670 18671 if (ill->ill_isv6) { 18672 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18673 if (ipst->ips_mld_slowtimeout_id == 0) { 18674 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18675 (void *)ipst, 18676 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18677 } 18678 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18679 } else { 18680 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18681 if (ipst->ips_igmp_slowtimeout_id == 0) { 18682 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18683 (void *)ipst, 18684 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18685 } 18686 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18687 } 18688 18689 return (err); 18690 } 18691 18692 /* 18693 * Common routine for ppa and ifname setting. Should be called exclusive. 18694 * 18695 * Returns EINPROGRESS when mp has been consumed by queueing it on 18696 * ill_pending_mp and the ioctl will complete in ip_rput. 18697 * 18698 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18699 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18700 * For SLIFNAME, we pass these values back to the userland. 18701 */ 18702 static int 18703 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18704 { 18705 ill_t *ill; 18706 ipif_t *ipif; 18707 ipsq_t *ipsq; 18708 char *ppa_ptr; 18709 char *old_ptr; 18710 char old_char; 18711 int error; 18712 ip_stack_t *ipst; 18713 18714 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18715 ASSERT(q->q_next != NULL); 18716 ASSERT(interf_name != NULL); 18717 18718 ill = (ill_t *)q->q_ptr; 18719 ipst = ill->ill_ipst; 18720 18721 ASSERT(ill->ill_ipst != NULL); 18722 ASSERT(ill->ill_name[0] == '\0'); 18723 ASSERT(IAM_WRITER_ILL(ill)); 18724 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18725 ASSERT(ill->ill_ppa == UINT_MAX); 18726 18727 /* The ppa is sent down by ifconfig or is chosen */ 18728 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18729 return (EINVAL); 18730 } 18731 18732 /* 18733 * make sure ppa passed in is same as ppa in the name. 18734 * This check is not made when ppa == UINT_MAX in that case ppa 18735 * in the name could be anything. System will choose a ppa and 18736 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18737 */ 18738 if (*new_ppa_ptr != UINT_MAX) { 18739 /* stoi changes the pointer */ 18740 old_ptr = ppa_ptr; 18741 /* 18742 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18743 * (they don't have an externally visible ppa). We assign one 18744 * here so that we can manage the interface. Note that in 18745 * the past this value was always 0 for DLPI 1 drivers. 18746 */ 18747 if (*new_ppa_ptr == 0) 18748 *new_ppa_ptr = stoi(&old_ptr); 18749 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18750 return (EINVAL); 18751 } 18752 /* 18753 * terminate string before ppa 18754 * save char at that location. 18755 */ 18756 old_char = ppa_ptr[0]; 18757 ppa_ptr[0] = '\0'; 18758 18759 ill->ill_ppa = *new_ppa_ptr; 18760 /* 18761 * Finish as much work now as possible before calling ill_glist_insert 18762 * which makes the ill globally visible and also merges it with the 18763 * other protocol instance of this phyint. The remaining work is 18764 * done after entering the ipsq which may happen sometime later. 18765 * ill_set_ndd_name occurs after the ill has been made globally visible. 18766 */ 18767 ipif = ill->ill_ipif; 18768 18769 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18770 ipif_assign_seqid(ipif); 18771 18772 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18773 ill->ill_flags |= ILLF_IPV4; 18774 18775 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18776 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18777 18778 if (ill->ill_flags & ILLF_IPV6) { 18779 18780 ill->ill_isv6 = B_TRUE; 18781 if (ill->ill_rq != NULL) { 18782 ill->ill_rq->q_qinfo = &iprinitv6; 18783 ill->ill_wq->q_qinfo = &ipwinitv6; 18784 } 18785 18786 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18787 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18788 ipif->ipif_v6src_addr = ipv6_all_zeros; 18789 ipif->ipif_v6subnet = ipv6_all_zeros; 18790 ipif->ipif_v6net_mask = ipv6_all_zeros; 18791 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18792 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18793 /* 18794 * point-to-point or Non-mulicast capable 18795 * interfaces won't do NUD unless explicitly 18796 * configured to do so. 18797 */ 18798 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18799 !(ill->ill_flags & ILLF_MULTICAST)) { 18800 ill->ill_flags |= ILLF_NONUD; 18801 } 18802 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18803 if (ill->ill_flags & ILLF_NOARP) { 18804 /* 18805 * Note: xresolv interfaces will eventually need 18806 * NOARP set here as well, but that will require 18807 * those external resolvers to have some 18808 * knowledge of that flag and act appropriately. 18809 * Not to be changed at present. 18810 */ 18811 ill->ill_flags &= ~ILLF_NOARP; 18812 } 18813 /* 18814 * Set the ILLF_ROUTER flag according to the global 18815 * IPv6 forwarding policy. 18816 */ 18817 if (ipst->ips_ipv6_forward != 0) 18818 ill->ill_flags |= ILLF_ROUTER; 18819 } else if (ill->ill_flags & ILLF_IPV4) { 18820 ill->ill_isv6 = B_FALSE; 18821 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18822 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18823 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18824 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18825 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18826 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18827 /* 18828 * Set the ILLF_ROUTER flag according to the global 18829 * IPv4 forwarding policy. 18830 */ 18831 if (ipst->ips_ip_g_forward != 0) 18832 ill->ill_flags |= ILLF_ROUTER; 18833 } 18834 18835 ASSERT(ill->ill_phyint != NULL); 18836 18837 /* 18838 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18839 * be completed in ill_glist_insert -> ill_phyint_reinit 18840 */ 18841 if (!ill_allocate_mibs(ill)) 18842 return (ENOMEM); 18843 18844 /* 18845 * Pick a default sap until we get the DL_INFO_ACK back from 18846 * the driver. 18847 */ 18848 if (ill->ill_sap == 0) { 18849 if (ill->ill_isv6) 18850 ill->ill_sap = IP6_DL_SAP; 18851 else 18852 ill->ill_sap = IP_DL_SAP; 18853 } 18854 18855 ill->ill_ifname_pending = 1; 18856 ill->ill_ifname_pending_err = 0; 18857 18858 /* 18859 * When the first ipif comes up in ipif_up_done(), multicast groups 18860 * that were joined while this ill was not bound to the DLPI link need 18861 * to be recovered by ill_recover_multicast(). 18862 */ 18863 ill->ill_need_recover_multicast = 1; 18864 18865 ill_refhold(ill); 18866 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18867 if ((error = ill_glist_insert(ill, interf_name, 18868 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18869 ill->ill_ppa = UINT_MAX; 18870 ill->ill_name[0] = '\0'; 18871 /* 18872 * undo null termination done above. 18873 */ 18874 ppa_ptr[0] = old_char; 18875 rw_exit(&ipst->ips_ill_g_lock); 18876 ill_refrele(ill); 18877 return (error); 18878 } 18879 18880 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18881 18882 /* 18883 * When we return the buffer pointed to by interf_name should contain 18884 * the same name as in ill_name. 18885 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18886 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18887 * so copy full name and update the ppa ptr. 18888 * When ppa passed in != UINT_MAX all values are correct just undo 18889 * null termination, this saves a bcopy. 18890 */ 18891 if (*new_ppa_ptr == UINT_MAX) { 18892 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18893 *new_ppa_ptr = ill->ill_ppa; 18894 } else { 18895 /* 18896 * undo null termination done above. 18897 */ 18898 ppa_ptr[0] = old_char; 18899 } 18900 18901 /* Let SCTP know about this ILL */ 18902 sctp_update_ill(ill, SCTP_ILL_INSERT); 18903 18904 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18905 B_TRUE); 18906 18907 rw_exit(&ipst->ips_ill_g_lock); 18908 ill_refrele(ill); 18909 if (ipsq == NULL) 18910 return (EINPROGRESS); 18911 18912 /* 18913 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18914 */ 18915 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18916 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18917 else 18918 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18919 18920 error = ipif_set_values_tail(ill, ipif, mp, q); 18921 ipsq_exit(ipsq); 18922 if (error != 0 && error != EINPROGRESS) { 18923 /* 18924 * restore previous values 18925 */ 18926 ill->ill_isv6 = B_FALSE; 18927 } 18928 return (error); 18929 } 18930 18931 void 18932 ipif_init(ip_stack_t *ipst) 18933 { 18934 int i; 18935 18936 for (i = 0; i < MAX_G_HEADS; i++) { 18937 ipst->ips_ill_g_heads[i].ill_g_list_head = 18938 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18939 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18940 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18941 } 18942 18943 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18944 ill_phyint_compare_index, 18945 sizeof (phyint_t), 18946 offsetof(struct phyint, phyint_avl_by_index)); 18947 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18948 ill_phyint_compare_name, 18949 sizeof (phyint_t), 18950 offsetof(struct phyint, phyint_avl_by_name)); 18951 } 18952 18953 /* 18954 * Lookup the ipif corresponding to the onlink destination address. For 18955 * point-to-point interfaces, it matches with remote endpoint destination 18956 * address. For point-to-multipoint interfaces it only tries to match the 18957 * destination with the interface's subnet address. The longest, most specific 18958 * match is found to take care of such rare network configurations like - 18959 * le0: 129.146.1.1/16 18960 * le1: 129.146.2.2/24 18961 * 18962 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18963 * supported on underlying interfaces in an IPMP group, underlying interfaces 18964 * are ignored when looking up a match. (If we didn't ignore them, we'd 18965 * risk using a test address as a source for outgoing traffic.) 18966 */ 18967 ipif_t * 18968 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18969 { 18970 ipif_t *ipif, *best_ipif; 18971 ill_t *ill; 18972 ill_walk_context_t ctx; 18973 18974 ASSERT(zoneid != ALL_ZONES); 18975 best_ipif = NULL; 18976 18977 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18978 ill = ILL_START_WALK_V4(&ctx, ipst); 18979 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18980 if (IS_UNDER_IPMP(ill)) 18981 continue; 18982 mutex_enter(&ill->ill_lock); 18983 for (ipif = ill->ill_ipif; ipif != NULL; 18984 ipif = ipif->ipif_next) { 18985 if (!IPIF_CAN_LOOKUP(ipif)) 18986 continue; 18987 if (ipif->ipif_zoneid != zoneid && 18988 ipif->ipif_zoneid != ALL_ZONES) 18989 continue; 18990 /* 18991 * Point-to-point case. Look for exact match with 18992 * destination address. 18993 */ 18994 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18995 if (ipif->ipif_pp_dst_addr == addr) { 18996 ipif_refhold_locked(ipif); 18997 mutex_exit(&ill->ill_lock); 18998 rw_exit(&ipst->ips_ill_g_lock); 18999 if (best_ipif != NULL) 19000 ipif_refrele(best_ipif); 19001 return (ipif); 19002 } 19003 } else if (ipif->ipif_subnet == (addr & 19004 ipif->ipif_net_mask)) { 19005 /* 19006 * Point-to-multipoint case. Looping through to 19007 * find the most specific match. If there are 19008 * multiple best match ipif's then prefer ipif's 19009 * that are UP. If there is only one best match 19010 * ipif and it is DOWN we must still return it. 19011 */ 19012 if ((best_ipif == NULL) || 19013 (ipif->ipif_net_mask > 19014 best_ipif->ipif_net_mask) || 19015 ((ipif->ipif_net_mask == 19016 best_ipif->ipif_net_mask) && 19017 ((ipif->ipif_flags & IPIF_UP) && 19018 (!(best_ipif->ipif_flags & IPIF_UP))))) { 19019 ipif_refhold_locked(ipif); 19020 mutex_exit(&ill->ill_lock); 19021 rw_exit(&ipst->ips_ill_g_lock); 19022 if (best_ipif != NULL) 19023 ipif_refrele(best_ipif); 19024 best_ipif = ipif; 19025 rw_enter(&ipst->ips_ill_g_lock, 19026 RW_READER); 19027 mutex_enter(&ill->ill_lock); 19028 } 19029 } 19030 } 19031 mutex_exit(&ill->ill_lock); 19032 } 19033 rw_exit(&ipst->ips_ill_g_lock); 19034 return (best_ipif); 19035 } 19036 19037 /* 19038 * Save enough information so that we can recreate the IRE if 19039 * the interface goes down and then up. 19040 */ 19041 static void 19042 ipif_save_ire(ipif_t *ipif, ire_t *ire) 19043 { 19044 mblk_t *save_mp; 19045 19046 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 19047 if (save_mp != NULL) { 19048 ifrt_t *ifrt; 19049 19050 save_mp->b_wptr += sizeof (ifrt_t); 19051 ifrt = (ifrt_t *)save_mp->b_rptr; 19052 bzero(ifrt, sizeof (ifrt_t)); 19053 ifrt->ifrt_type = ire->ire_type; 19054 ifrt->ifrt_addr = ire->ire_addr; 19055 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 19056 ifrt->ifrt_src_addr = ire->ire_src_addr; 19057 ifrt->ifrt_mask = ire->ire_mask; 19058 ifrt->ifrt_flags = ire->ire_flags; 19059 ifrt->ifrt_max_frag = ire->ire_max_frag; 19060 mutex_enter(&ipif->ipif_saved_ire_lock); 19061 save_mp->b_cont = ipif->ipif_saved_ire_mp; 19062 ipif->ipif_saved_ire_mp = save_mp; 19063 ipif->ipif_saved_ire_cnt++; 19064 mutex_exit(&ipif->ipif_saved_ire_lock); 19065 } 19066 } 19067 19068 static void 19069 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 19070 { 19071 mblk_t **mpp; 19072 mblk_t *mp; 19073 ifrt_t *ifrt; 19074 19075 /* Remove from ipif_saved_ire_mp list if it is there */ 19076 mutex_enter(&ipif->ipif_saved_ire_lock); 19077 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 19078 mpp = &(*mpp)->b_cont) { 19079 /* 19080 * On a given ipif, the triple of address, gateway and 19081 * mask is unique for each saved IRE (in the case of 19082 * ordinary interface routes, the gateway address is 19083 * all-zeroes). 19084 */ 19085 mp = *mpp; 19086 ifrt = (ifrt_t *)mp->b_rptr; 19087 if (ifrt->ifrt_addr == ire->ire_addr && 19088 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 19089 ifrt->ifrt_mask == ire->ire_mask) { 19090 *mpp = mp->b_cont; 19091 ipif->ipif_saved_ire_cnt--; 19092 freeb(mp); 19093 break; 19094 } 19095 } 19096 mutex_exit(&ipif->ipif_saved_ire_lock); 19097 } 19098 19099 /* 19100 * IP multirouting broadcast routes handling 19101 * Append CGTP broadcast IREs to regular ones created 19102 * at ifconfig time. 19103 */ 19104 static void 19105 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 19106 { 19107 ire_t *ire_prim; 19108 19109 ASSERT(ire != NULL); 19110 ASSERT(ire_dst != NULL); 19111 19112 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19113 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19114 if (ire_prim != NULL) { 19115 /* 19116 * We are in the special case of broadcasts for 19117 * CGTP. We add an IRE_BROADCAST that holds 19118 * the RTF_MULTIRT flag, the destination 19119 * address of ire_dst and the low level 19120 * info of ire_prim. In other words, CGTP 19121 * broadcast is added to the redundant ipif. 19122 */ 19123 ipif_t *ipif_prim; 19124 ire_t *bcast_ire; 19125 19126 ipif_prim = ire_prim->ire_ipif; 19127 19128 ip2dbg(("ip_cgtp_filter_bcast_add: " 19129 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19130 (void *)ire_dst, (void *)ire_prim, 19131 (void *)ipif_prim)); 19132 19133 bcast_ire = ire_create( 19134 (uchar_t *)&ire->ire_addr, 19135 (uchar_t *)&ip_g_all_ones, 19136 (uchar_t *)&ire_dst->ire_src_addr, 19137 (uchar_t *)&ire->ire_gateway_addr, 19138 &ipif_prim->ipif_mtu, 19139 NULL, 19140 ipif_prim->ipif_rq, 19141 ipif_prim->ipif_wq, 19142 IRE_BROADCAST, 19143 ipif_prim, 19144 0, 19145 0, 19146 0, 19147 ire->ire_flags, 19148 &ire_uinfo_null, 19149 NULL, 19150 NULL, 19151 ipst); 19152 19153 if (bcast_ire != NULL) { 19154 19155 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19156 B_FALSE) == 0) { 19157 ip2dbg(("ip_cgtp_filter_bcast_add: " 19158 "added bcast_ire %p\n", 19159 (void *)bcast_ire)); 19160 19161 ipif_save_ire(bcast_ire->ire_ipif, 19162 bcast_ire); 19163 ire_refrele(bcast_ire); 19164 } 19165 } 19166 ire_refrele(ire_prim); 19167 } 19168 } 19169 19170 /* 19171 * IP multirouting broadcast routes handling 19172 * Remove the broadcast ire 19173 */ 19174 static void 19175 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19176 { 19177 ire_t *ire_dst; 19178 19179 ASSERT(ire != NULL); 19180 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19181 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19182 if (ire_dst != NULL) { 19183 ire_t *ire_prim; 19184 19185 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19186 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19187 if (ire_prim != NULL) { 19188 ipif_t *ipif_prim; 19189 ire_t *bcast_ire; 19190 19191 ipif_prim = ire_prim->ire_ipif; 19192 19193 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19194 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19195 (void *)ire_dst, (void *)ire_prim, 19196 (void *)ipif_prim)); 19197 19198 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19199 ire->ire_gateway_addr, 19200 IRE_BROADCAST, 19201 ipif_prim, ALL_ZONES, 19202 NULL, 19203 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19204 MATCH_IRE_MASK, ipst); 19205 19206 if (bcast_ire != NULL) { 19207 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19208 "looked up bcast_ire %p\n", 19209 (void *)bcast_ire)); 19210 ipif_remove_ire(bcast_ire->ire_ipif, 19211 bcast_ire); 19212 ire_delete(bcast_ire); 19213 ire_refrele(bcast_ire); 19214 } 19215 ire_refrele(ire_prim); 19216 } 19217 ire_refrele(ire_dst); 19218 } 19219 } 19220 19221 /* 19222 * IPsec hardware acceleration capabilities related functions. 19223 */ 19224 19225 /* 19226 * Free a per-ill IPsec capabilities structure. 19227 */ 19228 static void 19229 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19230 { 19231 if (capab->auth_hw_algs != NULL) 19232 kmem_free(capab->auth_hw_algs, capab->algs_size); 19233 if (capab->encr_hw_algs != NULL) 19234 kmem_free(capab->encr_hw_algs, capab->algs_size); 19235 if (capab->encr_algparm != NULL) 19236 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19237 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19238 } 19239 19240 /* 19241 * Allocate a new per-ill IPsec capabilities structure. This structure 19242 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19243 * an array which specifies, for each algorithm, whether this algorithm 19244 * is supported by the ill or not. 19245 */ 19246 static ill_ipsec_capab_t * 19247 ill_ipsec_capab_alloc(void) 19248 { 19249 ill_ipsec_capab_t *capab; 19250 uint_t nelems; 19251 19252 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19253 if (capab == NULL) 19254 return (NULL); 19255 19256 /* we need one bit per algorithm */ 19257 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19258 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19259 19260 /* allocate memory to store algorithm flags */ 19261 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19262 if (capab->encr_hw_algs == NULL) 19263 goto nomem; 19264 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19265 if (capab->auth_hw_algs == NULL) 19266 goto nomem; 19267 /* 19268 * Leave encr_algparm NULL for now since we won't need it half 19269 * the time 19270 */ 19271 return (capab); 19272 19273 nomem: 19274 ill_ipsec_capab_free(capab); 19275 return (NULL); 19276 } 19277 19278 /* 19279 * Resize capability array. Since we're exclusive, this is OK. 19280 */ 19281 static boolean_t 19282 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19283 { 19284 ipsec_capab_algparm_t *nalp, *oalp; 19285 uint32_t olen, nlen; 19286 19287 oalp = capab->encr_algparm; 19288 olen = capab->encr_algparm_size; 19289 19290 if (oalp != NULL) { 19291 if (algid < capab->encr_algparm_end) 19292 return (B_TRUE); 19293 } 19294 19295 nlen = (algid + 1) * sizeof (*nalp); 19296 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19297 if (nalp == NULL) 19298 return (B_FALSE); 19299 19300 if (oalp != NULL) { 19301 bcopy(oalp, nalp, olen); 19302 kmem_free(oalp, olen); 19303 } 19304 capab->encr_algparm = nalp; 19305 capab->encr_algparm_size = nlen; 19306 capab->encr_algparm_end = algid + 1; 19307 19308 return (B_TRUE); 19309 } 19310 19311 /* 19312 * Compare the capabilities of the specified ill with the protocol 19313 * and algorithms specified by the SA passed as argument. 19314 * If they match, returns B_TRUE, B_FALSE if they do not match. 19315 * 19316 * The ill can be passed as a pointer to it, or by specifying its index 19317 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19318 * 19319 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19320 * packet is eligible for hardware acceleration, and by 19321 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19322 * to a particular ill. 19323 */ 19324 boolean_t 19325 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19326 ipsa_t *sa, netstack_t *ns) 19327 { 19328 boolean_t sa_isv6; 19329 uint_t algid; 19330 struct ill_ipsec_capab_s *cpp; 19331 boolean_t need_refrele = B_FALSE; 19332 ip_stack_t *ipst = ns->netstack_ip; 19333 19334 if (ill == NULL) { 19335 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19336 NULL, NULL, NULL, ipst); 19337 if (ill == NULL) { 19338 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19339 return (B_FALSE); 19340 } 19341 need_refrele = B_TRUE; 19342 } 19343 19344 /* 19345 * Use the address length specified by the SA to determine 19346 * if it corresponds to a IPv6 address, and fail the matching 19347 * if the isv6 flag passed as argument does not match. 19348 * Note: this check is used for SADB capability checking before 19349 * sending SA information to an ill. 19350 */ 19351 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19352 if (sa_isv6 != ill_isv6) 19353 /* protocol mismatch */ 19354 goto done; 19355 19356 /* 19357 * Check if the ill supports the protocol, algorithm(s) and 19358 * key size(s) specified by the SA, and get the pointers to 19359 * the algorithms supported by the ill. 19360 */ 19361 switch (sa->ipsa_type) { 19362 19363 case SADB_SATYPE_ESP: 19364 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19365 /* ill does not support ESP acceleration */ 19366 goto done; 19367 cpp = ill->ill_ipsec_capab_esp; 19368 algid = sa->ipsa_auth_alg; 19369 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19370 goto done; 19371 algid = sa->ipsa_encr_alg; 19372 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19373 goto done; 19374 if (algid < cpp->encr_algparm_end) { 19375 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19376 if (sa->ipsa_encrkeybits < alp->minkeylen) 19377 goto done; 19378 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19379 goto done; 19380 } 19381 break; 19382 19383 case SADB_SATYPE_AH: 19384 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19385 /* ill does not support AH acceleration */ 19386 goto done; 19387 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19388 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19389 goto done; 19390 break; 19391 } 19392 19393 if (need_refrele) 19394 ill_refrele(ill); 19395 return (B_TRUE); 19396 done: 19397 if (need_refrele) 19398 ill_refrele(ill); 19399 return (B_FALSE); 19400 } 19401 19402 /* 19403 * Add a new ill to the list of IPsec capable ills. 19404 * Called from ill_capability_ipsec_ack() when an ACK was received 19405 * indicating that IPsec hardware processing was enabled for an ill. 19406 * 19407 * ill must point to the ill for which acceleration was enabled. 19408 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19409 */ 19410 static void 19411 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19412 { 19413 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19414 uint_t sa_type; 19415 uint_t ipproto; 19416 ip_stack_t *ipst = ill->ill_ipst; 19417 19418 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19419 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19420 19421 switch (dl_cap) { 19422 case DL_CAPAB_IPSEC_AH: 19423 sa_type = SADB_SATYPE_AH; 19424 ills = &ipst->ips_ipsec_capab_ills_ah; 19425 ipproto = IPPROTO_AH; 19426 break; 19427 case DL_CAPAB_IPSEC_ESP: 19428 sa_type = SADB_SATYPE_ESP; 19429 ills = &ipst->ips_ipsec_capab_ills_esp; 19430 ipproto = IPPROTO_ESP; 19431 break; 19432 } 19433 19434 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19435 19436 /* 19437 * Add ill index to list of hardware accelerators. If 19438 * already in list, do nothing. 19439 */ 19440 for (cur_ill = *ills; cur_ill != NULL && 19441 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19442 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19443 ; 19444 19445 if (cur_ill == NULL) { 19446 /* if this is a new entry for this ill */ 19447 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19448 if (new_ill == NULL) { 19449 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19450 return; 19451 } 19452 19453 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19454 new_ill->ill_isv6 = ill->ill_isv6; 19455 new_ill->next = *ills; 19456 *ills = new_ill; 19457 } else if (!sadb_resync) { 19458 /* not resync'ing SADB and an entry exists for this ill */ 19459 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19460 return; 19461 } 19462 19463 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19464 19465 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19466 /* 19467 * IPsec module for protocol loaded, initiate dump 19468 * of the SADB to this ill. 19469 */ 19470 sadb_ill_download(ill, sa_type); 19471 } 19472 19473 /* 19474 * Remove an ill from the list of IPsec capable ills. 19475 */ 19476 static void 19477 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19478 { 19479 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19480 ip_stack_t *ipst = ill->ill_ipst; 19481 19482 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19483 dl_cap == DL_CAPAB_IPSEC_ESP); 19484 19485 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19486 &ipst->ips_ipsec_capab_ills_esp; 19487 19488 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19489 19490 prev_ill = NULL; 19491 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19492 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19493 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19494 ; 19495 if (cur_ill == NULL) { 19496 /* entry not found */ 19497 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19498 return; 19499 } 19500 if (prev_ill == NULL) { 19501 /* entry at front of list */ 19502 *ills = NULL; 19503 } else { 19504 prev_ill->next = cur_ill->next; 19505 } 19506 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19507 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19508 } 19509 19510 /* 19511 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19512 * supporting the specified IPsec protocol acceleration. 19513 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19514 * We free the mblk and, if sa is non-null, release the held referece. 19515 */ 19516 void 19517 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19518 netstack_t *ns) 19519 { 19520 ipsec_capab_ill_t *ici, *cur_ici; 19521 ill_t *ill; 19522 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19523 ip_stack_t *ipst = ns->netstack_ip; 19524 19525 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19526 ipst->ips_ipsec_capab_ills_esp; 19527 19528 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19529 19530 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19531 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19532 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19533 19534 /* 19535 * Handle the case where the ill goes away while the SADB is 19536 * attempting to send messages. If it's going away, it's 19537 * nuking its shadow SADB, so we don't care.. 19538 */ 19539 19540 if (ill == NULL) 19541 continue; 19542 19543 if (sa != NULL) { 19544 /* 19545 * Make sure capabilities match before 19546 * sending SA to ill. 19547 */ 19548 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19549 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19550 ill_refrele(ill); 19551 continue; 19552 } 19553 19554 mutex_enter(&sa->ipsa_lock); 19555 sa->ipsa_flags |= IPSA_F_HW; 19556 mutex_exit(&sa->ipsa_lock); 19557 } 19558 19559 /* 19560 * Copy template message, and add it to the front 19561 * of the mblk ship list. We want to avoid holding 19562 * the ipsec_capab_ills_lock while sending the 19563 * message to the ills. 19564 * 19565 * The b_next and b_prev are temporarily used 19566 * to build a list of mblks to be sent down, and to 19567 * save the ill to which they must be sent. 19568 */ 19569 nmp = copymsg(mp); 19570 if (nmp == NULL) { 19571 ill_refrele(ill); 19572 continue; 19573 } 19574 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19575 nmp->b_next = mp_ship_list; 19576 mp_ship_list = nmp; 19577 nmp->b_prev = (mblk_t *)ill; 19578 } 19579 19580 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19581 19582 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19583 /* restore the mblk to a sane state */ 19584 next_mp = nmp->b_next; 19585 nmp->b_next = NULL; 19586 ill = (ill_t *)nmp->b_prev; 19587 nmp->b_prev = NULL; 19588 19589 ill_dlpi_send(ill, nmp); 19590 ill_refrele(ill); 19591 } 19592 19593 if (sa != NULL) 19594 IPSA_REFRELE(sa); 19595 freemsg(mp); 19596 } 19597 19598 /* 19599 * Derive an interface id from the link layer address. 19600 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19601 */ 19602 static boolean_t 19603 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19604 { 19605 char *addr; 19606 19607 if (ill->ill_phys_addr_length != ETHERADDRL) 19608 return (B_FALSE); 19609 19610 /* Form EUI-64 like address */ 19611 addr = (char *)&v6addr->s6_addr32[2]; 19612 bcopy(ill->ill_phys_addr, addr, 3); 19613 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19614 addr[3] = (char)0xff; 19615 addr[4] = (char)0xfe; 19616 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19617 return (B_TRUE); 19618 } 19619 19620 /* ARGSUSED */ 19621 static boolean_t 19622 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19623 { 19624 return (B_FALSE); 19625 } 19626 19627 typedef struct ipmp_ifcookie { 19628 uint32_t ic_hostid; 19629 char ic_ifname[LIFNAMSIZ]; 19630 char ic_zonename[ZONENAME_MAX]; 19631 } ipmp_ifcookie_t; 19632 19633 /* 19634 * Construct a pseudo-random interface ID for the IPMP interface that's both 19635 * predictable and (almost) guaranteed to be unique. 19636 */ 19637 static boolean_t 19638 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19639 { 19640 zone_t *zp; 19641 uint8_t *addr; 19642 uchar_t hash[16]; 19643 ulong_t hostid; 19644 MD5_CTX ctx; 19645 ipmp_ifcookie_t ic = { 0 }; 19646 19647 ASSERT(IS_IPMP(ill)); 19648 19649 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19650 ic.ic_hostid = htonl((uint32_t)hostid); 19651 19652 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19653 19654 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19655 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19656 zone_rele(zp); 19657 } 19658 19659 MD5Init(&ctx); 19660 MD5Update(&ctx, &ic, sizeof (ic)); 19661 MD5Final(hash, &ctx); 19662 19663 /* 19664 * Map the hash to an interface ID per the basic approach in RFC3041. 19665 */ 19666 addr = &v6addr->s6_addr8[8]; 19667 bcopy(hash + 8, addr, sizeof (uint64_t)); 19668 addr[0] &= ~0x2; /* set local bit */ 19669 19670 return (B_TRUE); 19671 } 19672 19673 /* ARGSUSED */ 19674 static boolean_t 19675 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19676 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19677 { 19678 /* 19679 * Multicast address mappings used over Ethernet/802.X. 19680 * This address is used as a base for mappings. 19681 */ 19682 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19683 0x00, 0x00, 0x00}; 19684 19685 /* 19686 * Extract low order 32 bits from IPv6 multicast address. 19687 * Or that into the link layer address, starting from the 19688 * second byte. 19689 */ 19690 *hw_start = 2; 19691 v6_extract_mask->s6_addr32[0] = 0; 19692 v6_extract_mask->s6_addr32[1] = 0; 19693 v6_extract_mask->s6_addr32[2] = 0; 19694 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19695 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19696 return (B_TRUE); 19697 } 19698 19699 /* 19700 * Indicate by return value whether multicast is supported. If not, 19701 * this code should not touch/change any parameters. 19702 */ 19703 /* ARGSUSED */ 19704 static boolean_t 19705 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19706 uint32_t *hw_start, ipaddr_t *extract_mask) 19707 { 19708 /* 19709 * Multicast address mappings used over Ethernet/802.X. 19710 * This address is used as a base for mappings. 19711 */ 19712 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19713 0x00, 0x00, 0x00 }; 19714 19715 if (phys_length != ETHERADDRL) 19716 return (B_FALSE); 19717 19718 *extract_mask = htonl(0x007fffff); 19719 *hw_start = 2; 19720 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19721 return (B_TRUE); 19722 } 19723 19724 /* 19725 * Derive IPoIB interface id from the link layer address. 19726 */ 19727 static boolean_t 19728 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19729 { 19730 char *addr; 19731 19732 if (ill->ill_phys_addr_length != 20) 19733 return (B_FALSE); 19734 addr = (char *)&v6addr->s6_addr32[2]; 19735 bcopy(ill->ill_phys_addr + 12, addr, 8); 19736 /* 19737 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19738 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19739 * rules. In these cases, the IBA considers these GUIDs to be in 19740 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19741 * required; vendors are required not to assign global EUI-64's 19742 * that differ only in u/l bit values, thus guaranteeing uniqueness 19743 * of the interface identifier. Whether the GUID is in modified 19744 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19745 * bit set to 1. 19746 */ 19747 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19748 return (B_TRUE); 19749 } 19750 19751 /* 19752 * Note on mapping from multicast IP addresses to IPoIB multicast link 19753 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19754 * The format of an IPoIB multicast address is: 19755 * 19756 * 4 byte QPN Scope Sign. Pkey 19757 * +--------------------------------------------+ 19758 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19759 * +--------------------------------------------+ 19760 * 19761 * The Scope and Pkey components are properties of the IBA port and 19762 * network interface. They can be ascertained from the broadcast address. 19763 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19764 */ 19765 19766 static boolean_t 19767 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19768 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19769 { 19770 /* 19771 * Base IPoIB IPv6 multicast address used for mappings. 19772 * Does not contain the IBA scope/Pkey values. 19773 */ 19774 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19775 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19776 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19777 19778 /* 19779 * Extract low order 80 bits from IPv6 multicast address. 19780 * Or that into the link layer address, starting from the 19781 * sixth byte. 19782 */ 19783 *hw_start = 6; 19784 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19785 19786 /* 19787 * Now fill in the IBA scope/Pkey values from the broadcast address. 19788 */ 19789 *(maddr + 5) = *(bphys_addr + 5); 19790 *(maddr + 8) = *(bphys_addr + 8); 19791 *(maddr + 9) = *(bphys_addr + 9); 19792 19793 v6_extract_mask->s6_addr32[0] = 0; 19794 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19795 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19796 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19797 return (B_TRUE); 19798 } 19799 19800 static boolean_t 19801 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19802 uint32_t *hw_start, ipaddr_t *extract_mask) 19803 { 19804 /* 19805 * Base IPoIB IPv4 multicast address used for mappings. 19806 * Does not contain the IBA scope/Pkey values. 19807 */ 19808 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19809 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19810 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19811 19812 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19813 return (B_FALSE); 19814 19815 /* 19816 * Extract low order 28 bits from IPv4 multicast address. 19817 * Or that into the link layer address, starting from the 19818 * sixteenth byte. 19819 */ 19820 *extract_mask = htonl(0x0fffffff); 19821 *hw_start = 16; 19822 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19823 19824 /* 19825 * Now fill in the IBA scope/Pkey values from the broadcast address. 19826 */ 19827 *(maddr + 5) = *(bphys_addr + 5); 19828 *(maddr + 8) = *(bphys_addr + 8); 19829 *(maddr + 9) = *(bphys_addr + 9); 19830 return (B_TRUE); 19831 } 19832 19833 /* 19834 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19835 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19836 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19837 * the link-local address is preferred. 19838 */ 19839 boolean_t 19840 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19841 { 19842 ipif_t *ipif; 19843 ipif_t *maybe_ipif = NULL; 19844 19845 mutex_enter(&ill->ill_lock); 19846 if (ill->ill_state_flags & ILL_CONDEMNED) { 19847 mutex_exit(&ill->ill_lock); 19848 if (ipifp != NULL) 19849 *ipifp = NULL; 19850 return (B_FALSE); 19851 } 19852 19853 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19854 if (!IPIF_CAN_LOOKUP(ipif)) 19855 continue; 19856 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19857 ipif->ipif_zoneid != ALL_ZONES) 19858 continue; 19859 if ((ipif->ipif_flags & flags) != flags) 19860 continue; 19861 19862 if (ipifp == NULL) { 19863 mutex_exit(&ill->ill_lock); 19864 ASSERT(maybe_ipif == NULL); 19865 return (B_TRUE); 19866 } 19867 if (!ill->ill_isv6 || 19868 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19869 ipif_refhold_locked(ipif); 19870 mutex_exit(&ill->ill_lock); 19871 *ipifp = ipif; 19872 return (B_TRUE); 19873 } 19874 if (maybe_ipif == NULL) 19875 maybe_ipif = ipif; 19876 } 19877 if (ipifp != NULL) { 19878 if (maybe_ipif != NULL) 19879 ipif_refhold_locked(maybe_ipif); 19880 *ipifp = maybe_ipif; 19881 } 19882 mutex_exit(&ill->ill_lock); 19883 return (maybe_ipif != NULL); 19884 } 19885 19886 /* 19887 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19888 * If a pointer to an ipif_t is returned then the caller will need to do 19889 * an ill_refrele(). 19890 */ 19891 ipif_t * 19892 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19893 ip_stack_t *ipst) 19894 { 19895 ipif_t *ipif; 19896 ill_t *ill; 19897 19898 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19899 ipst); 19900 if (ill == NULL) 19901 return (NULL); 19902 19903 mutex_enter(&ill->ill_lock); 19904 if (ill->ill_state_flags & ILL_CONDEMNED) { 19905 mutex_exit(&ill->ill_lock); 19906 ill_refrele(ill); 19907 return (NULL); 19908 } 19909 19910 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19911 if (!IPIF_CAN_LOOKUP(ipif)) 19912 continue; 19913 if (lifidx == ipif->ipif_id) { 19914 ipif_refhold_locked(ipif); 19915 break; 19916 } 19917 } 19918 19919 mutex_exit(&ill->ill_lock); 19920 ill_refrele(ill); 19921 return (ipif); 19922 } 19923 19924 /* 19925 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19926 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19927 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19928 * for details. 19929 */ 19930 void 19931 ill_fastpath_flush(ill_t *ill) 19932 { 19933 ip_stack_t *ipst = ill->ill_ipst; 19934 19935 nce_fastpath_list_dispatch(ill, NULL, NULL); 19936 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19937 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19938 } 19939 19940 /* 19941 * Set the physical address information for `ill' to the contents of the 19942 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19943 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19944 * EINPROGRESS will be returned. 19945 */ 19946 int 19947 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19948 { 19949 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19950 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19951 19952 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19953 19954 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19955 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19956 /* Changing DL_IPV6_TOKEN is not yet supported */ 19957 return (0); 19958 } 19959 19960 /* 19961 * We need to store up to two copies of `mp' in `ill'. Due to the 19962 * design of ipsq_pending_mp_add(), we can't pass them as separate 19963 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19964 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19965 */ 19966 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19967 freemsg(mp); 19968 return (ENOMEM); 19969 } 19970 19971 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19972 19973 /* 19974 * If we can quiesce the ill, then set the address. If not, then 19975 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19976 */ 19977 ill_down_ipifs(ill); 19978 mutex_enter(&ill->ill_lock); 19979 if (!ill_is_quiescent(ill)) { 19980 /* call cannot fail since `conn_t *' argument is NULL */ 19981 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19982 mp, ILL_DOWN); 19983 mutex_exit(&ill->ill_lock); 19984 return (EINPROGRESS); 19985 } 19986 mutex_exit(&ill->ill_lock); 19987 19988 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19989 return (0); 19990 } 19991 19992 /* 19993 * Once the ill associated with `q' has quiesced, set its physical address 19994 * information to the values in `addrmp'. Note that two copies of `addrmp' 19995 * are passed (linked by b_cont), since we sometimes need to save two distinct 19996 * copies in the ill_t, and our context doesn't permit sleeping or allocation 19997 * failure (we'll free the other copy if it's not needed). Since the ill_t 19998 * is quiesced, we know any stale IREs with the old address information have 19999 * already been removed, so we don't need to call ill_fastpath_flush(). 20000 */ 20001 /* ARGSUSED */ 20002 static void 20003 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 20004 { 20005 ill_t *ill = q->q_ptr; 20006 mblk_t *addrmp2 = unlinkb(addrmp); 20007 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 20008 uint_t addrlen, addroff; 20009 20010 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20011 20012 addroff = dlindp->dl_addr_offset; 20013 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 20014 20015 switch (dlindp->dl_data) { 20016 case DL_IPV6_LINK_LAYER_ADDR: 20017 ill_set_ndmp(ill, addrmp, addroff, addrlen); 20018 freemsg(addrmp2); 20019 break; 20020 20021 case DL_CURR_PHYS_ADDR: 20022 freemsg(ill->ill_phys_addr_mp); 20023 ill->ill_phys_addr = addrmp->b_rptr + addroff; 20024 ill->ill_phys_addr_mp = addrmp; 20025 ill->ill_phys_addr_length = addrlen; 20026 20027 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 20028 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 20029 else 20030 freemsg(addrmp2); 20031 break; 20032 default: 20033 ASSERT(0); 20034 } 20035 20036 /* 20037 * If there are ipifs to bring up, ill_up_ipifs() will return 20038 * EINPROGRESS, and ipsq_current_finish() will be called by 20039 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20040 * brought up. 20041 */ 20042 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 20043 ipsq_current_finish(ipsq); 20044 } 20045 20046 /* 20047 * Helper routine for setting the ill_nd_lla fields. 20048 */ 20049 void 20050 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 20051 { 20052 freemsg(ill->ill_nd_lla_mp); 20053 ill->ill_nd_lla = ndmp->b_rptr + addroff; 20054 ill->ill_nd_lla_mp = ndmp; 20055 ill->ill_nd_lla_len = addrlen; 20056 } 20057 20058 major_t IP_MAJ; 20059 #define IP "ip" 20060 20061 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20062 #define UDPDEV "/devices/pseudo/udp@0:udp" 20063 20064 /* 20065 * Issue REMOVEIF ioctls to have the loopback interfaces 20066 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20067 * the former going away when the user-level processes in the zone 20068 * are killed * and the latter are cleaned up by the stream head 20069 * str_stack_shutdown callback that undoes all I_PLINKs. 20070 */ 20071 void 20072 ip_loopback_cleanup(ip_stack_t *ipst) 20073 { 20074 int error; 20075 ldi_handle_t lh = NULL; 20076 ldi_ident_t li = NULL; 20077 int rval; 20078 cred_t *cr; 20079 struct strioctl iocb; 20080 struct lifreq lifreq; 20081 20082 IP_MAJ = ddi_name_to_major(IP); 20083 20084 #ifdef NS_DEBUG 20085 (void) printf("ip_loopback_cleanup() stackid %d\n", 20086 ipst->ips_netstack->netstack_stackid); 20087 #endif 20088 20089 bzero(&lifreq, sizeof (lifreq)); 20090 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20091 20092 error = ldi_ident_from_major(IP_MAJ, &li); 20093 if (error) { 20094 #ifdef DEBUG 20095 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20096 error); 20097 #endif 20098 return; 20099 } 20100 20101 cr = zone_get_kcred(netstackid_to_zoneid( 20102 ipst->ips_netstack->netstack_stackid)); 20103 ASSERT(cr != NULL); 20104 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20105 if (error) { 20106 #ifdef DEBUG 20107 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20108 error); 20109 #endif 20110 goto out; 20111 } 20112 iocb.ic_cmd = SIOCLIFREMOVEIF; 20113 iocb.ic_timout = 15; 20114 iocb.ic_len = sizeof (lifreq); 20115 iocb.ic_dp = (char *)&lifreq; 20116 20117 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20118 /* LINTED - statement has no consequent */ 20119 if (error) { 20120 #ifdef NS_DEBUG 20121 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20122 "UDP6 error %d\n", error); 20123 #endif 20124 } 20125 (void) ldi_close(lh, FREAD|FWRITE, cr); 20126 lh = NULL; 20127 20128 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20129 if (error) { 20130 #ifdef NS_DEBUG 20131 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20132 error); 20133 #endif 20134 goto out; 20135 } 20136 20137 iocb.ic_cmd = SIOCLIFREMOVEIF; 20138 iocb.ic_timout = 15; 20139 iocb.ic_len = sizeof (lifreq); 20140 iocb.ic_dp = (char *)&lifreq; 20141 20142 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20143 /* LINTED - statement has no consequent */ 20144 if (error) { 20145 #ifdef NS_DEBUG 20146 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20147 "UDP error %d\n", error); 20148 #endif 20149 } 20150 (void) ldi_close(lh, FREAD|FWRITE, cr); 20151 lh = NULL; 20152 20153 out: 20154 /* Close layered handles */ 20155 if (lh) 20156 (void) ldi_close(lh, FREAD|FWRITE, cr); 20157 if (li) 20158 ldi_ident_release(li); 20159 20160 crfree(cr); 20161 } 20162 20163 /* 20164 * This needs to be in-sync with nic_event_t definition 20165 */ 20166 static const char * 20167 ill_hook_event2str(nic_event_t event) 20168 { 20169 switch (event) { 20170 case NE_PLUMB: 20171 return ("PLUMB"); 20172 case NE_UNPLUMB: 20173 return ("UNPLUMB"); 20174 case NE_UP: 20175 return ("UP"); 20176 case NE_DOWN: 20177 return ("DOWN"); 20178 case NE_ADDRESS_CHANGE: 20179 return ("ADDRESS_CHANGE"); 20180 case NE_LIF_UP: 20181 return ("LIF_UP"); 20182 case NE_LIF_DOWN: 20183 return ("LIF_DOWN"); 20184 default: 20185 return ("UNKNOWN"); 20186 } 20187 } 20188 20189 void 20190 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20191 nic_event_data_t data, size_t datalen) 20192 { 20193 ip_stack_t *ipst = ill->ill_ipst; 20194 hook_nic_event_int_t *info; 20195 const char *str = NULL; 20196 20197 /* create a new nic event info */ 20198 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20199 goto fail; 20200 20201 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20202 info->hnei_event.hne_lif = lif; 20203 info->hnei_event.hne_event = event; 20204 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20205 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20206 info->hnei_event.hne_data = NULL; 20207 info->hnei_event.hne_datalen = 0; 20208 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20209 20210 if (data != NULL && datalen != 0) { 20211 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20212 if (info->hnei_event.hne_data == NULL) 20213 goto fail; 20214 bcopy(data, info->hnei_event.hne_data, datalen); 20215 info->hnei_event.hne_datalen = datalen; 20216 } 20217 20218 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20219 DDI_NOSLEEP) == DDI_SUCCESS) 20220 return; 20221 20222 fail: 20223 if (info != NULL) { 20224 if (info->hnei_event.hne_data != NULL) { 20225 kmem_free(info->hnei_event.hne_data, 20226 info->hnei_event.hne_datalen); 20227 } 20228 kmem_free(info, sizeof (hook_nic_event_t)); 20229 } 20230 str = ill_hook_event2str(event); 20231 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20232 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20233 } 20234 20235 void 20236 ipif_up_notify(ipif_t *ipif) 20237 { 20238 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20239 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20240 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20241 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20242 NE_LIF_UP, NULL, 0); 20243 } 20244