1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Joyent, Inc. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 #include <sys/sunldi.h> 48 #include <sys/file.h> 49 #include <sys/bitmap.h> 50 #include <sys/cpuvar.h> 51 #include <sys/time.h> 52 #include <sys/ctype.h> 53 #include <sys/kmem.h> 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/socket.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <netinet/ip6.h> 66 #include <netinet/icmp6.h> 67 #include <netinet/igmp_var.h> 68 #include <sys/policy.h> 69 #include <sys/ethernet.h> 70 #include <sys/callb.h> 71 #include <sys/md5.h> 72 73 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 74 #include <inet/mi.h> 75 #include <inet/nd.h> 76 #include <inet/tunables.h> 77 #include <inet/arp.h> 78 #include <inet/ip_arp.h> 79 #include <inet/mib2.h> 80 #include <inet/ip.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_impl.h> 91 #include <inet/sctp_ip.h> 92 #include <inet/ip_netinfo.h> 93 #include <inet/ilb_ip.h> 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac_client.h> 99 #include <sys/dld.h> 100 #include <sys/mac_flow.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 109 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 110 111 /* The character which tells where the ill_name ends */ 112 #define IPIF_SEPARATOR_CHAR ':' 113 114 /* IP ioctl function table entry */ 115 typedef struct ipft_s { 116 int ipft_cmd; 117 pfi_t ipft_pfi; 118 int ipft_min_size; 119 int ipft_flags; 120 } ipft_t; 121 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 122 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ill_is_quiescent(ill_t *); 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 144 int ioccmd, struct linkblk *li); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize, boolean_t insert, int *errorp); 155 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 156 static void ipif_delete_bcast_ires(ipif_t *ipif); 157 static int ipif_add_ires_v4(ipif_t *, boolean_t); 158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 159 boolean_t isv6); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_set_default(ipif_t *ipif); 164 static int ipif_set_values(queue_t *q, mblk_t *mp, 165 char *interf_name, uint_t *ppa); 166 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 167 queue_t *q); 168 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 169 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 170 ip_stack_t *); 171 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 172 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 173 int *error, ip_stack_t *); 174 175 static int ill_alloc_ppa(ill_if_t *, ill_t *); 176 static void ill_delete_interface_type(ill_if_t *); 177 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 178 static void ill_dl_down(ill_t *ill); 179 static void ill_down(ill_t *ill); 180 static void ill_down_ipifs(ill_t *, boolean_t); 181 static void ill_free_mib(ill_t *ill); 182 static void ill_glist_delete(ill_t *); 183 static void ill_phyint_reinit(ill_t *ill); 184 static void ill_set_nce_router_flags(ill_t *, boolean_t); 185 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 186 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 192 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 194 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 195 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 196 static ip_v4mapinfo_func_t ip_mbcast_mapping; 197 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 198 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 199 static void phyint_free(phyint_t *); 200 201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 207 dl_capability_sub_t *); 208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 209 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_ack(ill_t *, mblk_t *, 211 dl_capability_sub_t *); 212 static void ill_capability_dld_enable(ill_t *); 213 static void ill_capability_ack_thr(void *); 214 static void ill_capability_lso_enable(ill_t *); 215 216 static ill_t *ill_prev_usesrc(ill_t *); 217 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 218 static void ill_disband_usesrc_group(ill_t *); 219 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 220 221 #ifdef DEBUG 222 static void ill_trace_cleanup(const ill_t *); 223 static void ipif_trace_cleanup(const ipif_t *); 224 #endif 225 226 static void ill_dlpi_clear_deferred(ill_t *ill); 227 228 static void phyint_flags_init(phyint_t *, t_uscalar_t); 229 230 /* 231 * if we go over the memory footprint limit more than once in this msec 232 * interval, we'll start pruning aggressively. 233 */ 234 int ip_min_frag_prune_time = 0; 235 236 static ipft_t ip_ioctl_ftbl[] = { 237 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 238 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 239 IPFT_F_NO_REPLY }, 240 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 241 { 0 } 242 }; 243 244 /* Simple ICMP IP Header Template */ 245 static ipha_t icmp_ipha = { 246 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 247 }; 248 249 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 250 251 static ip_m_t ip_m_tbl[] = { 252 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 266 ip_nodef_v6intfid }, 267 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 269 ip_nodef_v6intfid }, 270 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 272 ip_ipv4_v6destintfid }, 273 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 275 ip_ipv6_v6destintfid }, 276 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 277 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 278 ip_nodef_v6intfid }, 279 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 281 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 282 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 283 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 284 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 285 ip_nodef_v6intfid } 286 }; 287 288 char ipif_loopback_name[] = "lo0"; 289 290 /* These are used by all IP network modules. */ 291 sin6_t sin6_null; /* Zero address for quick clears */ 292 sin_t sin_null; /* Zero address for quick clears */ 293 294 /* When set search for unused ipif_seqid */ 295 static ipif_t ipif_zero; 296 297 /* 298 * ppa arena is created after these many 299 * interfaces have been plumbed. 300 */ 301 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 302 303 /* 304 * Allocate per-interface mibs. 305 * Returns true if ok. False otherwise. 306 * ipsq may not yet be allocated (loopback case ). 307 */ 308 static boolean_t 309 ill_allocate_mibs(ill_t *ill) 310 { 311 /* Already allocated? */ 312 if (ill->ill_ip_mib != NULL) { 313 if (ill->ill_isv6) 314 ASSERT(ill->ill_icmp6_mib != NULL); 315 return (B_TRUE); 316 } 317 318 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 319 KM_NOSLEEP); 320 if (ill->ill_ip_mib == NULL) { 321 return (B_FALSE); 322 } 323 324 /* Setup static information */ 325 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 326 sizeof (mib2_ipIfStatsEntry_t)); 327 if (ill->ill_isv6) { 328 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 329 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 330 sizeof (mib2_ipv6AddrEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 332 sizeof (mib2_ipv6RouteEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 334 sizeof (mib2_ipv6NetToMediaEntry_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 336 sizeof (ipv6_member_t)); 337 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 338 sizeof (ipv6_grpsrc_t)); 339 } else { 340 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 341 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 342 sizeof (mib2_ipAddrEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 344 sizeof (mib2_ipRouteEntry_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 346 sizeof (mib2_ipNetToMediaEntry_t)); 347 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 348 sizeof (ip_member_t)); 349 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 350 sizeof (ip_grpsrc_t)); 351 352 /* 353 * For a v4 ill, we are done at this point, because per ill 354 * icmp mibs are only used for v6. 355 */ 356 return (B_TRUE); 357 } 358 359 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 360 KM_NOSLEEP); 361 if (ill->ill_icmp6_mib == NULL) { 362 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 363 ill->ill_ip_mib = NULL; 364 return (B_FALSE); 365 } 366 /* static icmp info */ 367 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 368 sizeof (mib2_ipv6IfIcmpEntry_t); 369 /* 370 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 371 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 372 * -> ill_phyint_reinit 373 */ 374 return (B_TRUE); 375 } 376 377 /* 378 * Completely vaporize a lower level tap and all associated interfaces. 379 * ill_delete is called only out of ip_close when the device control 380 * stream is being closed. 381 */ 382 void 383 ill_delete(ill_t *ill) 384 { 385 ipif_t *ipif; 386 ill_t *prev_ill; 387 ip_stack_t *ipst = ill->ill_ipst; 388 389 /* 390 * ill_delete may be forcibly entering the ipsq. The previous 391 * ioctl may not have completed and may need to be aborted. 392 * ipsq_flush takes care of it. If we don't need to enter the 393 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 394 * ill_delete_tail is sufficient. 395 */ 396 ipsq_flush(ill); 397 398 /* 399 * Nuke all interfaces. ipif_free will take down the interface, 400 * remove it from the list, and free the data structure. 401 * Walk down the ipif list and remove the logical interfaces 402 * first before removing the main ipif. We can't unplumb 403 * zeroth interface first in the case of IPv6 as update_conn_ill 404 * -> ip_ll_multireq de-references ill_ipif for checking 405 * POINTOPOINT. 406 * 407 * If ill_ipif was not properly initialized (i.e low on memory), 408 * then no interfaces to clean up. In this case just clean up the 409 * ill. 410 */ 411 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 412 ipif_free(ipif); 413 414 /* 415 * clean out all the nce_t entries that depend on this 416 * ill for the ill_phys_addr. 417 */ 418 nce_flush(ill, B_TRUE); 419 420 /* Clean up msgs on pending upcalls for mrouted */ 421 reset_mrt_ill(ill); 422 423 update_conn_ill(ill, ipst); 424 425 /* 426 * Remove multicast references added as a result of calls to 427 * ip_join_allmulti(). 428 */ 429 ip_purge_allmulti(ill); 430 431 /* 432 * If the ill being deleted is under IPMP, boot it out of the illgrp. 433 */ 434 if (IS_UNDER_IPMP(ill)) 435 ipmp_ill_leave_illgrp(ill); 436 437 /* 438 * ill_down will arrange to blow off any IRE's dependent on this 439 * ILL, and shut down fragmentation reassembly. 440 */ 441 ill_down(ill); 442 443 /* Let SCTP know, so that it can remove this from its list. */ 444 sctp_update_ill(ill, SCTP_ILL_REMOVE); 445 446 /* 447 * Walk all CONNs that can have a reference on an ire or nce for this 448 * ill (we actually walk all that now have stale references). 449 */ 450 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 451 452 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 453 if (ill->ill_isv6) 454 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 455 456 /* 457 * If an address on this ILL is being used as a source address then 458 * clear out the pointers in other ILLs that point to this ILL. 459 */ 460 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 461 if (ill->ill_usesrc_grp_next != NULL) { 462 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 463 ill_disband_usesrc_group(ill); 464 } else { /* consumer of the usesrc ILL */ 465 prev_ill = ill_prev_usesrc(ill); 466 prev_ill->ill_usesrc_grp_next = 467 ill->ill_usesrc_grp_next; 468 } 469 } 470 rw_exit(&ipst->ips_ill_g_usesrc_lock); 471 } 472 473 static void 474 ipif_non_duplicate(ipif_t *ipif) 475 { 476 ill_t *ill = ipif->ipif_ill; 477 mutex_enter(&ill->ill_lock); 478 if (ipif->ipif_flags & IPIF_DUPLICATE) { 479 ipif->ipif_flags &= ~IPIF_DUPLICATE; 480 ASSERT(ill->ill_ipif_dup_count > 0); 481 ill->ill_ipif_dup_count--; 482 } 483 mutex_exit(&ill->ill_lock); 484 } 485 486 /* 487 * ill_delete_tail is called from ip_modclose after all references 488 * to the closing ill are gone. The wait is done in ip_modclose 489 */ 490 void 491 ill_delete_tail(ill_t *ill) 492 { 493 mblk_t **mpp; 494 ipif_t *ipif; 495 ip_stack_t *ipst = ill->ill_ipst; 496 497 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 498 ipif_non_duplicate(ipif); 499 (void) ipif_down_tail(ipif); 500 } 501 502 ASSERT(ill->ill_ipif_dup_count == 0); 503 504 /* 505 * If polling capability is enabled (which signifies direct 506 * upcall into IP and driver has ill saved as a handle), 507 * we need to make sure that unbind has completed before we 508 * let the ill disappear and driver no longer has any reference 509 * to this ill. 510 */ 511 mutex_enter(&ill->ill_lock); 512 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 513 cv_wait(&ill->ill_cv, &ill->ill_lock); 514 mutex_exit(&ill->ill_lock); 515 ASSERT(!(ill->ill_capabilities & 516 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 517 518 if (ill->ill_net_type != IRE_LOOPBACK) 519 qprocsoff(ill->ill_rq); 520 521 /* 522 * We do an ipsq_flush once again now. New messages could have 523 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 524 * could also have landed up if an ioctl thread had looked up 525 * the ill before we set the ILL_CONDEMNED flag, but not yet 526 * enqueued the ioctl when we did the ipsq_flush last time. 527 */ 528 ipsq_flush(ill); 529 530 /* 531 * Free capabilities. 532 */ 533 if (ill->ill_hcksum_capab != NULL) { 534 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 535 ill->ill_hcksum_capab = NULL; 536 } 537 538 if (ill->ill_zerocopy_capab != NULL) { 539 kmem_free(ill->ill_zerocopy_capab, 540 sizeof (ill_zerocopy_capab_t)); 541 ill->ill_zerocopy_capab = NULL; 542 } 543 544 if (ill->ill_lso_capab != NULL) { 545 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 546 ill->ill_lso_capab = NULL; 547 } 548 549 if (ill->ill_dld_capab != NULL) { 550 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 551 ill->ill_dld_capab = NULL; 552 } 553 554 /* Clean up ill_allowed_ips* related state */ 555 if (ill->ill_allowed_ips != NULL) { 556 ASSERT(ill->ill_allowed_ips_cnt > 0); 557 kmem_free(ill->ill_allowed_ips, 558 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 559 ill->ill_allowed_ips = NULL; 560 ill->ill_allowed_ips_cnt = 0; 561 } 562 563 while (ill->ill_ipif != NULL) 564 ipif_free_tail(ill->ill_ipif); 565 566 /* 567 * We have removed all references to ilm from conn and the ones joined 568 * within the kernel. 569 * 570 * We don't walk conns, mrts and ires because 571 * 572 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 573 * 2) ill_down ->ill_downi walks all the ires and cleans up 574 * ill references. 575 */ 576 577 /* 578 * If this ill is an IPMP meta-interface, blow away the illgrp. This 579 * is safe to do because the illgrp has already been unlinked from the 580 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 581 */ 582 if (IS_IPMP(ill)) { 583 ipmp_illgrp_destroy(ill->ill_grp); 584 ill->ill_grp = NULL; 585 } 586 587 if (ill->ill_mphysaddr_list != NULL) { 588 multiphysaddr_t *mpa, *tmpa; 589 590 mpa = ill->ill_mphysaddr_list; 591 ill->ill_mphysaddr_list = NULL; 592 while (mpa) { 593 tmpa = mpa->mpa_next; 594 kmem_free(mpa, sizeof (*mpa)); 595 mpa = tmpa; 596 } 597 } 598 /* 599 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 600 * could free the phyint. No more reference to the phyint after this 601 * point. 602 */ 603 (void) ill_glist_delete(ill); 604 605 if (ill->ill_frag_ptr != NULL) { 606 uint_t count; 607 608 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 609 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 610 } 611 mi_free(ill->ill_frag_ptr); 612 ill->ill_frag_ptr = NULL; 613 ill->ill_frag_hash_tbl = NULL; 614 } 615 616 freemsg(ill->ill_nd_lla_mp); 617 /* Free all retained control messages. */ 618 mpp = &ill->ill_first_mp_to_free; 619 do { 620 while (mpp[0]) { 621 mblk_t *mp; 622 mblk_t *mp1; 623 624 mp = mpp[0]; 625 mpp[0] = mp->b_next; 626 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 627 mp1->b_next = NULL; 628 mp1->b_prev = NULL; 629 } 630 freemsg(mp); 631 } 632 } while (mpp++ != &ill->ill_last_mp_to_free); 633 634 ill_free_mib(ill); 635 636 #ifdef DEBUG 637 ill_trace_cleanup(ill); 638 #endif 639 640 /* The default multicast interface might have changed */ 641 ire_increment_multicast_generation(ipst, ill->ill_isv6); 642 643 /* Drop refcnt here */ 644 netstack_rele(ill->ill_ipst->ips_netstack); 645 ill->ill_ipst = NULL; 646 } 647 648 static void 649 ill_free_mib(ill_t *ill) 650 { 651 ip_stack_t *ipst = ill->ill_ipst; 652 653 /* 654 * MIB statistics must not be lost, so when an interface 655 * goes away the counter values will be added to the global 656 * MIBs. 657 */ 658 if (ill->ill_ip_mib != NULL) { 659 if (ill->ill_isv6) { 660 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 661 ill->ill_ip_mib); 662 } else { 663 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 664 ill->ill_ip_mib); 665 } 666 667 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 668 ill->ill_ip_mib = NULL; 669 } 670 if (ill->ill_icmp6_mib != NULL) { 671 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 672 ill->ill_icmp6_mib); 673 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 674 ill->ill_icmp6_mib = NULL; 675 } 676 } 677 678 /* 679 * Concatenate together a physical address and a sap. 680 * 681 * Sap_lengths are interpreted as follows: 682 * sap_length == 0 ==> no sap 683 * sap_length > 0 ==> sap is at the head of the dlpi address 684 * sap_length < 0 ==> sap is at the tail of the dlpi address 685 */ 686 static void 687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 688 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 689 { 690 uint16_t sap_addr = (uint16_t)sap_src; 691 692 if (sap_length == 0) { 693 if (phys_src == NULL) 694 bzero(dst, phys_length); 695 else 696 bcopy(phys_src, dst, phys_length); 697 } else if (sap_length < 0) { 698 if (phys_src == NULL) 699 bzero(dst, phys_length); 700 else 701 bcopy(phys_src, dst, phys_length); 702 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 703 } else { 704 bcopy(&sap_addr, dst, sizeof (sap_addr)); 705 if (phys_src == NULL) 706 bzero((char *)dst + sap_length, phys_length); 707 else 708 bcopy(phys_src, (char *)dst + sap_length, phys_length); 709 } 710 } 711 712 /* 713 * Generate a dl_unitdata_req mblk for the device and address given. 714 * addr_length is the length of the physical portion of the address. 715 * If addr is NULL include an all zero address of the specified length. 716 * TRUE? In any case, addr_length is taken to be the entire length of the 717 * dlpi address, including the absolute value of sap_length. 718 */ 719 mblk_t * 720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 721 t_scalar_t sap_length) 722 { 723 dl_unitdata_req_t *dlur; 724 mblk_t *mp; 725 t_scalar_t abs_sap_length; /* absolute value */ 726 727 abs_sap_length = ABS(sap_length); 728 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 729 DL_UNITDATA_REQ); 730 if (mp == NULL) 731 return (NULL); 732 dlur = (dl_unitdata_req_t *)mp->b_rptr; 733 /* HACK: accomodate incompatible DLPI drivers */ 734 if (addr_length == 8) 735 addr_length = 6; 736 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 737 dlur->dl_dest_addr_offset = sizeof (*dlur); 738 dlur->dl_priority.dl_min = 0; 739 dlur->dl_priority.dl_max = 0; 740 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 741 (uchar_t *)&dlur[1]); 742 return (mp); 743 } 744 745 /* 746 * Add the pending mp to the list. There can be only 1 pending mp 747 * in the list. Any exclusive ioctl that needs to wait for a response 748 * from another module or driver needs to use this function to set 749 * the ipx_pending_mp to the ioctl mblk and wait for the response from 750 * the other module/driver. This is also used while waiting for the 751 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 752 */ 753 boolean_t 754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 755 int waitfor) 756 { 757 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 758 759 ASSERT(IAM_WRITER_IPIF(ipif)); 760 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 761 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 762 ASSERT(ipx->ipx_pending_mp == NULL); 763 /* 764 * The caller may be using a different ipif than the one passed into 765 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 766 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 767 * that `ipx_current_ipif == ipif'. 768 */ 769 ASSERT(ipx->ipx_current_ipif != NULL); 770 771 /* 772 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 773 * driver. 774 */ 775 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 776 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 777 (DB_TYPE(add_mp) == M_PCPROTO)); 778 779 if (connp != NULL) { 780 ASSERT(MUTEX_HELD(&connp->conn_lock)); 781 /* 782 * Return error if the conn has started closing. The conn 783 * could have finished cleaning up the pending mp list, 784 * If so we should not add another mp to the list negating 785 * the cleanup. 786 */ 787 if (connp->conn_state_flags & CONN_CLOSING) 788 return (B_FALSE); 789 } 790 mutex_enter(&ipx->ipx_lock); 791 ipx->ipx_pending_ipif = ipif; 792 /* 793 * Note down the queue in b_queue. This will be returned by 794 * ipsq_pending_mp_get. Caller will then use these values to restart 795 * the processing 796 */ 797 add_mp->b_next = NULL; 798 add_mp->b_queue = q; 799 ipx->ipx_pending_mp = add_mp; 800 ipx->ipx_waitfor = waitfor; 801 mutex_exit(&ipx->ipx_lock); 802 803 if (connp != NULL) 804 connp->conn_oper_pending_ill = ipif->ipif_ill; 805 806 return (B_TRUE); 807 } 808 809 /* 810 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 811 * queued in the list. 812 */ 813 mblk_t * 814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 815 { 816 mblk_t *curr = NULL; 817 ipxop_t *ipx = ipsq->ipsq_xop; 818 819 *connpp = NULL; 820 mutex_enter(&ipx->ipx_lock); 821 if (ipx->ipx_pending_mp == NULL) { 822 mutex_exit(&ipx->ipx_lock); 823 return (NULL); 824 } 825 826 /* There can be only 1 such excl message */ 827 curr = ipx->ipx_pending_mp; 828 ASSERT(curr->b_next == NULL); 829 ipx->ipx_pending_ipif = NULL; 830 ipx->ipx_pending_mp = NULL; 831 ipx->ipx_waitfor = 0; 832 mutex_exit(&ipx->ipx_lock); 833 834 if (CONN_Q(curr->b_queue)) { 835 /* 836 * This mp did a refhold on the conn, at the start of the ioctl. 837 * So we can safely return a pointer to the conn to the caller. 838 */ 839 *connpp = Q_TO_CONN(curr->b_queue); 840 } else { 841 *connpp = NULL; 842 } 843 curr->b_next = NULL; 844 curr->b_prev = NULL; 845 return (curr); 846 } 847 848 /* 849 * Cleanup the ioctl mp queued in ipx_pending_mp 850 * - Called in the ill_delete path 851 * - Called in the M_ERROR or M_HANGUP path on the ill. 852 * - Called in the conn close path. 853 * 854 * Returns success on finding the pending mblk associated with the ioctl or 855 * exclusive operation in progress, failure otherwise. 856 */ 857 boolean_t 858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 859 { 860 mblk_t *mp; 861 ipxop_t *ipx; 862 queue_t *q; 863 ipif_t *ipif; 864 int cmd; 865 866 ASSERT(IAM_WRITER_ILL(ill)); 867 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 868 869 mutex_enter(&ipx->ipx_lock); 870 mp = ipx->ipx_pending_mp; 871 if (connp != NULL) { 872 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 873 /* 874 * Nothing to clean since the conn that is closing 875 * does not have a matching pending mblk in 876 * ipx_pending_mp. 877 */ 878 mutex_exit(&ipx->ipx_lock); 879 return (B_FALSE); 880 } 881 } else { 882 /* 883 * A non-zero ill_error signifies we are called in the 884 * M_ERROR or M_HANGUP path and we need to unconditionally 885 * abort any current ioctl and do the corresponding cleanup. 886 * A zero ill_error means we are in the ill_delete path and 887 * we do the cleanup only if there is a pending mp. 888 */ 889 if (mp == NULL && ill->ill_error == 0) { 890 mutex_exit(&ipx->ipx_lock); 891 return (B_FALSE); 892 } 893 } 894 895 /* Now remove from the ipx_pending_mp */ 896 ipx->ipx_pending_mp = NULL; 897 ipif = ipx->ipx_pending_ipif; 898 ipx->ipx_pending_ipif = NULL; 899 ipx->ipx_waitfor = 0; 900 ipx->ipx_current_ipif = NULL; 901 cmd = ipx->ipx_current_ioctl; 902 ipx->ipx_current_ioctl = 0; 903 ipx->ipx_current_done = B_TRUE; 904 mutex_exit(&ipx->ipx_lock); 905 906 if (mp == NULL) 907 return (B_FALSE); 908 909 q = mp->b_queue; 910 mp->b_next = NULL; 911 mp->b_prev = NULL; 912 mp->b_queue = NULL; 913 914 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 915 DTRACE_PROBE4(ipif__ioctl, 916 char *, "ipsq_pending_mp_cleanup", 917 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 918 ipif_t *, ipif); 919 if (connp == NULL) { 920 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 921 } else { 922 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 923 mutex_enter(&ipif->ipif_ill->ill_lock); 924 ipif->ipif_state_flags &= ~IPIF_CHANGING; 925 mutex_exit(&ipif->ipif_ill->ill_lock); 926 } 927 } else { 928 inet_freemsg(mp); 929 } 930 return (B_TRUE); 931 } 932 933 /* 934 * Called in the conn close path and ill delete path 935 */ 936 static void 937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 938 { 939 ipsq_t *ipsq; 940 mblk_t *prev; 941 mblk_t *curr; 942 mblk_t *next; 943 queue_t *wq, *rq = NULL; 944 mblk_t *tmp_list = NULL; 945 946 ASSERT(IAM_WRITER_ILL(ill)); 947 if (connp != NULL) 948 wq = CONNP_TO_WQ(connp); 949 else 950 wq = ill->ill_wq; 951 952 /* 953 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 954 * against this here. 955 */ 956 if (wq != NULL) 957 rq = RD(wq); 958 959 ipsq = ill->ill_phyint->phyint_ipsq; 960 /* 961 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 962 * In the case of ioctl from a conn, there can be only 1 mp 963 * queued on the ipsq. If an ill is being unplumbed flush all 964 * the messages. 965 */ 966 mutex_enter(&ipsq->ipsq_lock); 967 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 968 curr = next) { 969 next = curr->b_next; 970 if (connp == NULL || 971 (curr->b_queue == wq || curr->b_queue == rq)) { 972 /* Unlink the mblk from the pending mp list */ 973 if (prev != NULL) { 974 prev->b_next = curr->b_next; 975 } else { 976 ASSERT(ipsq->ipsq_xopq_mphead == curr); 977 ipsq->ipsq_xopq_mphead = curr->b_next; 978 } 979 if (ipsq->ipsq_xopq_mptail == curr) 980 ipsq->ipsq_xopq_mptail = prev; 981 /* 982 * Create a temporary list and release the ipsq lock 983 * New elements are added to the head of the tmp_list 984 */ 985 curr->b_next = tmp_list; 986 tmp_list = curr; 987 } else { 988 prev = curr; 989 } 990 } 991 mutex_exit(&ipsq->ipsq_lock); 992 993 while (tmp_list != NULL) { 994 curr = tmp_list; 995 tmp_list = curr->b_next; 996 curr->b_next = NULL; 997 curr->b_prev = NULL; 998 wq = curr->b_queue; 999 curr->b_queue = NULL; 1000 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1001 DTRACE_PROBE4(ipif__ioctl, 1002 char *, "ipsq_xopq_mp_cleanup", 1003 int, 0, ill_t *, NULL, ipif_t *, NULL); 1004 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1005 CONN_CLOSE : NO_COPYOUT, NULL); 1006 } else { 1007 /* 1008 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1009 * this can't be just inet_freemsg. we have to 1010 * restart it otherwise the thread will be stuck. 1011 */ 1012 inet_freemsg(curr); 1013 } 1014 } 1015 } 1016 1017 /* 1018 * This conn has started closing. Cleanup any pending ioctl from this conn. 1019 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1020 */ 1021 void 1022 conn_ioctl_cleanup(conn_t *connp) 1023 { 1024 ipsq_t *ipsq; 1025 ill_t *ill; 1026 boolean_t refheld; 1027 1028 /* 1029 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1030 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1031 * started the mp could be present in ipx_pending_mp. Note that if 1032 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1033 * not yet queued anywhere. In this case, the conn close code will wait 1034 * until the conn_ref is dropped. If the stream was a tcp stream, then 1035 * tcp_close will wait first until all ioctls have completed for this 1036 * conn. 1037 */ 1038 mutex_enter(&connp->conn_lock); 1039 ill = connp->conn_oper_pending_ill; 1040 if (ill == NULL) { 1041 mutex_exit(&connp->conn_lock); 1042 return; 1043 } 1044 1045 /* 1046 * We may not be able to refhold the ill if the ill/ipif 1047 * is changing. But we need to make sure that the ill will 1048 * not vanish. So we just bump up the ill_waiter count. 1049 */ 1050 refheld = ill_waiter_inc(ill); 1051 mutex_exit(&connp->conn_lock); 1052 if (refheld) { 1053 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1054 ill_waiter_dcr(ill); 1055 /* 1056 * Check whether this ioctl has started and is 1057 * pending. If it is not found there then check 1058 * whether this ioctl has not even started and is in 1059 * the ipsq_xopq list. 1060 */ 1061 if (!ipsq_pending_mp_cleanup(ill, connp)) 1062 ipsq_xopq_mp_cleanup(ill, connp); 1063 ipsq = ill->ill_phyint->phyint_ipsq; 1064 ipsq_exit(ipsq); 1065 return; 1066 } 1067 } 1068 1069 /* 1070 * The ill is also closing and we could not bump up the 1071 * ill_waiter_count or we could not enter the ipsq. Leave 1072 * the cleanup to ill_delete 1073 */ 1074 mutex_enter(&connp->conn_lock); 1075 while (connp->conn_oper_pending_ill != NULL) 1076 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1077 mutex_exit(&connp->conn_lock); 1078 if (refheld) 1079 ill_waiter_dcr(ill); 1080 } 1081 1082 /* 1083 * ipcl_walk function for cleaning up conn_*_ill fields. 1084 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1085 * conn_bound_if in place. We prefer dropping 1086 * packets instead of sending them out the wrong interface, or accepting 1087 * packets from the wrong ifindex. 1088 */ 1089 static void 1090 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1091 { 1092 ill_t *ill = (ill_t *)arg; 1093 1094 mutex_enter(&connp->conn_lock); 1095 if (connp->conn_dhcpinit_ill == ill) { 1096 connp->conn_dhcpinit_ill = NULL; 1097 ASSERT(ill->ill_dhcpinit != 0); 1098 atomic_dec_32(&ill->ill_dhcpinit); 1099 ill_set_inputfn(ill); 1100 } 1101 mutex_exit(&connp->conn_lock); 1102 } 1103 1104 static int 1105 ill_down_ipifs_tail(ill_t *ill) 1106 { 1107 ipif_t *ipif; 1108 int err; 1109 1110 ASSERT(IAM_WRITER_ILL(ill)); 1111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1112 ipif_non_duplicate(ipif); 1113 /* 1114 * ipif_down_tail will call arp_ll_down on the last ipif 1115 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1116 */ 1117 if ((err = ipif_down_tail(ipif)) != 0) 1118 return (err); 1119 } 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 void 1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1126 { 1127 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1128 (void) ill_down_ipifs_tail(q->q_ptr); 1129 freemsg(mp); 1130 ipsq_current_finish(ipsq); 1131 } 1132 1133 /* 1134 * ill_down_start is called when we want to down this ill and bring it up again 1135 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1136 * all interfaces, but don't tear down any plumbing. 1137 */ 1138 boolean_t 1139 ill_down_start(queue_t *q, mblk_t *mp) 1140 { 1141 ill_t *ill = q->q_ptr; 1142 ipif_t *ipif; 1143 1144 ASSERT(IAM_WRITER_ILL(ill)); 1145 /* 1146 * It is possible that some ioctl is already in progress while we 1147 * received the M_ERROR / M_HANGUP in which case, we need to abort 1148 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1149 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1150 * the in progress ioctl from ever completing. 1151 * 1152 * The thread that started the ioctl (if any) must have returned, 1153 * since we are now executing as writer. After the 2 calls below, 1154 * the state of the ipsq and the ill would reflect no trace of any 1155 * pending operation. Subsequently if there is any response to the 1156 * original ioctl from the driver, it would be discarded as an 1157 * unsolicited message from the driver. 1158 */ 1159 (void) ipsq_pending_mp_cleanup(ill, NULL); 1160 ill_dlpi_clear_deferred(ill); 1161 1162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1163 (void) ipif_down(ipif, NULL, NULL); 1164 1165 ill_down(ill); 1166 1167 /* 1168 * Walk all CONNs that can have a reference on an ire or nce for this 1169 * ill (we actually walk all that now have stale references). 1170 */ 1171 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1172 1173 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1174 if (ill->ill_isv6) 1175 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1176 1177 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1178 1179 /* 1180 * Atomically test and add the pending mp if references are active. 1181 */ 1182 mutex_enter(&ill->ill_lock); 1183 if (!ill_is_quiescent(ill)) { 1184 /* call cannot fail since `conn_t *' argument is NULL */ 1185 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1186 mp, ILL_DOWN); 1187 mutex_exit(&ill->ill_lock); 1188 return (B_FALSE); 1189 } 1190 mutex_exit(&ill->ill_lock); 1191 return (B_TRUE); 1192 } 1193 1194 static void 1195 ill_down(ill_t *ill) 1196 { 1197 mblk_t *mp; 1198 ip_stack_t *ipst = ill->ill_ipst; 1199 1200 /* 1201 * Blow off any IREs dependent on this ILL. 1202 * The caller needs to handle conn_ixa_cleanup 1203 */ 1204 ill_delete_ires(ill); 1205 1206 ire_walk_ill(0, 0, ill_downi, ill, ill); 1207 1208 /* Remove any conn_*_ill depending on this ill */ 1209 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1210 1211 /* 1212 * Free state for additional IREs. 1213 */ 1214 mutex_enter(&ill->ill_saved_ire_lock); 1215 mp = ill->ill_saved_ire_mp; 1216 ill->ill_saved_ire_mp = NULL; 1217 ill->ill_saved_ire_cnt = 0; 1218 mutex_exit(&ill->ill_saved_ire_lock); 1219 freemsg(mp); 1220 } 1221 1222 /* 1223 * ire_walk routine used to delete every IRE that depends on 1224 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1225 * 1226 * Note: since the routes added by the kernel are deleted separately, 1227 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1228 * 1229 * We also remove references on ire_nce_cache entries that refer to the ill. 1230 */ 1231 void 1232 ill_downi(ire_t *ire, char *ill_arg) 1233 { 1234 ill_t *ill = (ill_t *)ill_arg; 1235 nce_t *nce; 1236 1237 mutex_enter(&ire->ire_lock); 1238 nce = ire->ire_nce_cache; 1239 if (nce != NULL && nce->nce_ill == ill) 1240 ire->ire_nce_cache = NULL; 1241 else 1242 nce = NULL; 1243 mutex_exit(&ire->ire_lock); 1244 if (nce != NULL) 1245 nce_refrele(nce); 1246 if (ire->ire_ill == ill) { 1247 /* 1248 * The existing interface binding for ire must be 1249 * deleted before trying to bind the route to another 1250 * interface. However, since we are using the contents of the 1251 * ire after ire_delete, the caller has to ensure that 1252 * CONDEMNED (deleted) ire's are not removed from the list 1253 * when ire_delete() returns. Currently ill_downi() is 1254 * only called as part of ire_walk*() routines, so that 1255 * the irb_refhold() done by ire_walk*() will ensure that 1256 * ire_delete() does not lead to ire_inactive(). 1257 */ 1258 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1259 ire_delete(ire); 1260 if (ire->ire_unbound) 1261 ire_rebind(ire); 1262 } 1263 } 1264 1265 /* Remove IRE_IF_CLONE on this ill */ 1266 void 1267 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1268 { 1269 ill_t *ill = (ill_t *)ill_arg; 1270 1271 ASSERT(ire->ire_type & IRE_IF_CLONE); 1272 if (ire->ire_ill == ill) 1273 ire_delete(ire); 1274 } 1275 1276 /* Consume an M_IOCACK of the fastpath probe. */ 1277 void 1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1279 { 1280 mblk_t *mp1 = mp; 1281 1282 /* 1283 * If this was the first attempt turn on the fastpath probing. 1284 */ 1285 mutex_enter(&ill->ill_lock); 1286 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1287 ill->ill_dlpi_fastpath_state = IDS_OK; 1288 mutex_exit(&ill->ill_lock); 1289 1290 /* Free the M_IOCACK mblk, hold on to the data */ 1291 mp = mp->b_cont; 1292 freeb(mp1); 1293 if (mp == NULL) 1294 return; 1295 if (mp->b_cont != NULL) 1296 nce_fastpath_update(ill, mp); 1297 else 1298 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1299 freemsg(mp); 1300 } 1301 1302 /* 1303 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1304 * The data portion of the request is a dl_unitdata_req_t template for 1305 * what we would send downstream in the absence of a fastpath confirmation. 1306 */ 1307 int 1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1309 { 1310 struct iocblk *ioc; 1311 mblk_t *mp; 1312 1313 if (dlur_mp == NULL) 1314 return (EINVAL); 1315 1316 mutex_enter(&ill->ill_lock); 1317 switch (ill->ill_dlpi_fastpath_state) { 1318 case IDS_FAILED: 1319 /* 1320 * Driver NAKed the first fastpath ioctl - assume it doesn't 1321 * support it. 1322 */ 1323 mutex_exit(&ill->ill_lock); 1324 return (ENOTSUP); 1325 case IDS_UNKNOWN: 1326 /* This is the first probe */ 1327 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1328 break; 1329 default: 1330 break; 1331 } 1332 mutex_exit(&ill->ill_lock); 1333 1334 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1335 return (EAGAIN); 1336 1337 mp->b_cont = copyb(dlur_mp); 1338 if (mp->b_cont == NULL) { 1339 freeb(mp); 1340 return (EAGAIN); 1341 } 1342 1343 ioc = (struct iocblk *)mp->b_rptr; 1344 ioc->ioc_count = msgdsize(mp->b_cont); 1345 1346 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1347 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1348 putnext(ill->ill_wq, mp); 1349 return (0); 1350 } 1351 1352 void 1353 ill_capability_probe(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 1357 ASSERT(IAM_WRITER_ILL(ill)); 1358 1359 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1360 ill->ill_dlpi_capab_state != IDCS_FAILED) 1361 return; 1362 1363 /* 1364 * We are starting a new cycle of capability negotiation. 1365 * Free up the capab reset messages of any previous incarnation. 1366 * We will do a fresh allocation when we get the response to our probe 1367 */ 1368 if (ill->ill_capab_reset_mp != NULL) { 1369 freemsg(ill->ill_capab_reset_mp); 1370 ill->ill_capab_reset_mp = NULL; 1371 } 1372 1373 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1374 1375 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1376 if (mp == NULL) 1377 return; 1378 1379 ill_capability_send(ill, mp); 1380 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1381 } 1382 1383 void 1384 ill_capability_reset(ill_t *ill, boolean_t reneg) 1385 { 1386 ASSERT(IAM_WRITER_ILL(ill)); 1387 1388 if (ill->ill_dlpi_capab_state != IDCS_OK) 1389 return; 1390 1391 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1392 1393 ill_capability_send(ill, ill->ill_capab_reset_mp); 1394 ill->ill_capab_reset_mp = NULL; 1395 /* 1396 * We turn off all capabilities except those pertaining to 1397 * direct function call capabilities viz. ILL_CAPAB_DLD* 1398 * which will be turned off by the corresponding reset functions. 1399 */ 1400 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1401 } 1402 1403 static void 1404 ill_capability_reset_alloc(ill_t *ill) 1405 { 1406 mblk_t *mp; 1407 size_t size = 0; 1408 int err; 1409 dl_capability_req_t *capb; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 ASSERT(ill->ill_capab_reset_mp == NULL); 1413 1414 if (ILL_HCKSUM_CAPABLE(ill)) { 1415 size += sizeof (dl_capability_sub_t) + 1416 sizeof (dl_capab_hcksum_t); 1417 } 1418 1419 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1420 size += sizeof (dl_capability_sub_t) + 1421 sizeof (dl_capab_zerocopy_t); 1422 } 1423 1424 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1425 size += sizeof (dl_capability_sub_t) + 1426 sizeof (dl_capab_dld_t); 1427 } 1428 1429 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1430 STR_NOSIG, &err); 1431 1432 mp->b_datap->db_type = M_PROTO; 1433 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1434 1435 capb = (dl_capability_req_t *)mp->b_rptr; 1436 capb->dl_primitive = DL_CAPABILITY_REQ; 1437 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1438 capb->dl_sub_length = size; 1439 1440 mp->b_wptr += sizeof (dl_capability_req_t); 1441 1442 /* 1443 * Each handler fills in the corresponding dl_capability_sub_t 1444 * inside the mblk, 1445 */ 1446 ill_capability_hcksum_reset_fill(ill, mp); 1447 ill_capability_zerocopy_reset_fill(ill, mp); 1448 ill_capability_dld_reset_fill(ill, mp); 1449 1450 ill->ill_capab_reset_mp = mp; 1451 } 1452 1453 static void 1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1455 { 1456 dl_capab_id_t *id_ic; 1457 uint_t sub_dl_cap = outers->dl_cap; 1458 dl_capability_sub_t *inners; 1459 uint8_t *capend; 1460 1461 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1462 1463 /* 1464 * Note: range checks here are not absolutely sufficient to 1465 * make us robust against malformed messages sent by drivers; 1466 * this is in keeping with the rest of IP's dlpi handling. 1467 * (Remember, it's coming from something else in the kernel 1468 * address space) 1469 */ 1470 1471 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1472 if (capend > mp->b_wptr) { 1473 cmn_err(CE_WARN, "ill_capability_id_ack: " 1474 "malformed sub-capability too long for mblk"); 1475 return; 1476 } 1477 1478 id_ic = (dl_capab_id_t *)(outers + 1); 1479 1480 if (outers->dl_length < sizeof (*id_ic) || 1481 (inners = &id_ic->id_subcap, 1482 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1483 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1484 "encapsulated capab type %d too long for mblk", 1485 inners->dl_cap); 1486 return; 1487 } 1488 1489 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1490 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1491 "isn't as expected; pass-thru module(s) detected, " 1492 "discarding capability\n", inners->dl_cap)); 1493 return; 1494 } 1495 1496 /* Process the encapsulated sub-capability */ 1497 ill_capability_dispatch(ill, mp, inners); 1498 } 1499 1500 static void 1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1502 { 1503 dl_capability_sub_t *dl_subcap; 1504 1505 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1506 return; 1507 1508 /* 1509 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1510 * initialized below since it is not used by DLD. 1511 */ 1512 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1513 dl_subcap->dl_cap = DL_CAPAB_DLD; 1514 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1515 1516 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1517 } 1518 1519 static void 1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1521 { 1522 /* 1523 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1524 * is only to get the VRRP capability. 1525 * 1526 * Note that we cannot check ill_ipif_up_count here since 1527 * ill_ipif_up_count is only incremented when the resolver is setup. 1528 * That is done asynchronously, and can race with this function. 1529 */ 1530 if (!ill->ill_dl_up) { 1531 if (subp->dl_cap == DL_CAPAB_VRRP) 1532 ill_capability_vrrp_ack(ill, mp, subp); 1533 return; 1534 } 1535 1536 switch (subp->dl_cap) { 1537 case DL_CAPAB_HCKSUM: 1538 ill_capability_hcksum_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_ZEROCOPY: 1541 ill_capability_zerocopy_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_DLD: 1544 ill_capability_dld_ack(ill, mp, subp); 1545 break; 1546 case DL_CAPAB_VRRP: 1547 break; 1548 default: 1549 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1550 subp->dl_cap)); 1551 } 1552 } 1553 1554 /* 1555 * Process the vrrp capability received from a DLS Provider. isub must point 1556 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1557 */ 1558 static void 1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1560 { 1561 dl_capab_vrrp_t *vrrp; 1562 uint_t sub_dl_cap = isub->dl_cap; 1563 uint8_t *capend; 1564 1565 ASSERT(IAM_WRITER_ILL(ill)); 1566 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1567 1568 /* 1569 * Note: range checks here are not absolutely sufficient to 1570 * make us robust against malformed messages sent by drivers; 1571 * this is in keeping with the rest of IP's dlpi handling. 1572 * (Remember, it's coming from something else in the kernel 1573 * address space) 1574 */ 1575 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1576 if (capend > mp->b_wptr) { 1577 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1578 "malformed sub-capability too long for mblk"); 1579 return; 1580 } 1581 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1582 1583 /* 1584 * Compare the IP address family and set ILLF_VRRP for the right ill. 1585 */ 1586 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1587 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1588 ill->ill_flags |= ILLF_VRRP; 1589 } 1590 } 1591 1592 /* 1593 * Process a hardware checksum offload capability negotiation ack received 1594 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1595 * of a DL_CAPABILITY_ACK message. 1596 */ 1597 static void 1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1599 { 1600 dl_capability_req_t *ocap; 1601 dl_capab_hcksum_t *ihck, *ohck; 1602 ill_hcksum_capab_t **ill_hcksum; 1603 mblk_t *nmp = NULL; 1604 uint_t sub_dl_cap = isub->dl_cap; 1605 uint8_t *capend; 1606 1607 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1608 1609 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1610 1611 /* 1612 * Note: range checks here are not absolutely sufficient to 1613 * make us robust against malformed messages sent by drivers; 1614 * this is in keeping with the rest of IP's dlpi handling. 1615 * (Remember, it's coming from something else in the kernel 1616 * address space) 1617 */ 1618 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1619 if (capend > mp->b_wptr) { 1620 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1621 "malformed sub-capability too long for mblk"); 1622 return; 1623 } 1624 1625 /* 1626 * There are two types of acks we process here: 1627 * 1. acks in reply to a (first form) generic capability req 1628 * (no ENABLE flag set) 1629 * 2. acks in reply to a ENABLE capability req. 1630 * (ENABLE flag set) 1631 */ 1632 ihck = (dl_capab_hcksum_t *)(isub + 1); 1633 1634 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1635 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1636 "unsupported hardware checksum " 1637 "sub-capability (version %d, expected %d)", 1638 ihck->hcksum_version, HCKSUM_VERSION_1); 1639 return; 1640 } 1641 1642 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1643 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1644 "checksum capability isn't as expected; pass-thru " 1645 "module(s) detected, discarding capability\n")); 1646 return; 1647 } 1648 1649 #define CURR_HCKSUM_CAPAB \ 1650 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1651 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1652 1653 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1654 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1655 /* do ENABLE processing */ 1656 if (*ill_hcksum == NULL) { 1657 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1658 KM_NOSLEEP); 1659 1660 if (*ill_hcksum == NULL) { 1661 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1662 "could not enable hcksum version %d " 1663 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1664 ill->ill_name); 1665 return; 1666 } 1667 } 1668 1669 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1670 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1671 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1672 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1673 "has enabled hardware checksumming\n ", 1674 ill->ill_name)); 1675 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1676 /* 1677 * Enabling hardware checksum offload 1678 * Currently IP supports {TCP,UDP}/IPv4 1679 * partial and full cksum offload and 1680 * IPv4 header checksum offload. 1681 * Allocate new mblk which will 1682 * contain a new capability request 1683 * to enable hardware checksum offload. 1684 */ 1685 uint_t size; 1686 uchar_t *rptr; 1687 1688 size = sizeof (dl_capability_req_t) + 1689 sizeof (dl_capability_sub_t) + isub->dl_length; 1690 1691 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1692 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1693 "could not enable hardware cksum for %s (ENOMEM)\n", 1694 ill->ill_name); 1695 return; 1696 } 1697 1698 rptr = nmp->b_rptr; 1699 /* initialize dl_capability_req_t */ 1700 ocap = (dl_capability_req_t *)nmp->b_rptr; 1701 ocap->dl_sub_offset = 1702 sizeof (dl_capability_req_t); 1703 ocap->dl_sub_length = 1704 sizeof (dl_capability_sub_t) + 1705 isub->dl_length; 1706 nmp->b_rptr += sizeof (dl_capability_req_t); 1707 1708 /* initialize dl_capability_sub_t */ 1709 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1710 nmp->b_rptr += sizeof (*isub); 1711 1712 /* initialize dl_capab_hcksum_t */ 1713 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1714 bcopy(ihck, ohck, sizeof (*ihck)); 1715 1716 nmp->b_rptr = rptr; 1717 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1718 1719 /* Set ENABLE flag */ 1720 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1721 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1722 1723 /* 1724 * nmp points to a DL_CAPABILITY_REQ message to enable 1725 * hardware checksum acceleration. 1726 */ 1727 ill_capability_send(ill, nmp); 1728 } else { 1729 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1730 "advertised %x hardware checksum capability flags\n", 1731 ill->ill_name, ihck->hcksum_txflags)); 1732 } 1733 } 1734 1735 static void 1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1737 { 1738 dl_capab_hcksum_t *hck_subcap; 1739 dl_capability_sub_t *dl_subcap; 1740 1741 if (!ILL_HCKSUM_CAPABLE(ill)) 1742 return; 1743 1744 ASSERT(ill->ill_hcksum_capab != NULL); 1745 1746 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1747 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1748 dl_subcap->dl_length = sizeof (*hck_subcap); 1749 1750 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1751 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1752 hck_subcap->hcksum_txflags = 0; 1753 1754 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1755 } 1756 1757 static void 1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1759 { 1760 mblk_t *nmp = NULL; 1761 dl_capability_req_t *oc; 1762 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1763 ill_zerocopy_capab_t **ill_zerocopy_capab; 1764 uint_t sub_dl_cap = isub->dl_cap; 1765 uint8_t *capend; 1766 1767 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1768 1769 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1770 1771 /* 1772 * Note: range checks here are not absolutely sufficient to 1773 * make us robust against malformed messages sent by drivers; 1774 * this is in keeping with the rest of IP's dlpi handling. 1775 * (Remember, it's coming from something else in the kernel 1776 * address space) 1777 */ 1778 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1779 if (capend > mp->b_wptr) { 1780 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1781 "malformed sub-capability too long for mblk"); 1782 return; 1783 } 1784 1785 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1786 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1787 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1788 "unsupported ZEROCOPY sub-capability (version %d, " 1789 "expected %d)", zc_ic->zerocopy_version, 1790 ZEROCOPY_VERSION_1); 1791 return; 1792 } 1793 1794 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1795 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1796 "capability isn't as expected; pass-thru module(s) " 1797 "detected, discarding capability\n")); 1798 return; 1799 } 1800 1801 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1802 if (*ill_zerocopy_capab == NULL) { 1803 *ill_zerocopy_capab = 1804 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1805 KM_NOSLEEP); 1806 1807 if (*ill_zerocopy_capab == NULL) { 1808 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1809 "could not enable Zero-copy version %d " 1810 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1811 ill->ill_name); 1812 return; 1813 } 1814 } 1815 1816 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1817 "supports Zero-copy version %d\n", ill->ill_name, 1818 ZEROCOPY_VERSION_1)); 1819 1820 (*ill_zerocopy_capab)->ill_zerocopy_version = 1821 zc_ic->zerocopy_version; 1822 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1823 zc_ic->zerocopy_flags; 1824 1825 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1826 } else { 1827 uint_t size; 1828 uchar_t *rptr; 1829 1830 size = sizeof (dl_capability_req_t) + 1831 sizeof (dl_capability_sub_t) + 1832 sizeof (dl_capab_zerocopy_t); 1833 1834 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1835 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1836 "could not enable zerocopy for %s (ENOMEM)\n", 1837 ill->ill_name); 1838 return; 1839 } 1840 1841 rptr = nmp->b_rptr; 1842 /* initialize dl_capability_req_t */ 1843 oc = (dl_capability_req_t *)rptr; 1844 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1845 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1846 sizeof (dl_capab_zerocopy_t); 1847 rptr += sizeof (dl_capability_req_t); 1848 1849 /* initialize dl_capability_sub_t */ 1850 bcopy(isub, rptr, sizeof (*isub)); 1851 rptr += sizeof (*isub); 1852 1853 /* initialize dl_capab_zerocopy_t */ 1854 zc_oc = (dl_capab_zerocopy_t *)rptr; 1855 *zc_oc = *zc_ic; 1856 1857 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1858 "to enable zero-copy version %d\n", ill->ill_name, 1859 ZEROCOPY_VERSION_1)); 1860 1861 /* set VMSAFE_MEM flag */ 1862 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1863 1864 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1865 ill_capability_send(ill, nmp); 1866 } 1867 } 1868 1869 static void 1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1871 { 1872 dl_capab_zerocopy_t *zerocopy_subcap; 1873 dl_capability_sub_t *dl_subcap; 1874 1875 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1876 return; 1877 1878 ASSERT(ill->ill_zerocopy_capab != NULL); 1879 1880 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1881 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1882 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1883 1884 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1885 zerocopy_subcap->zerocopy_version = 1886 ill->ill_zerocopy_capab->ill_zerocopy_version; 1887 zerocopy_subcap->zerocopy_flags = 0; 1888 1889 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1890 } 1891 1892 /* 1893 * DLD capability 1894 * Refer to dld.h for more information regarding the purpose and usage 1895 * of this capability. 1896 */ 1897 static void 1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1899 { 1900 dl_capab_dld_t *dld_ic, dld; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 ill_dld_capab_t *idc; 1904 1905 ASSERT(IAM_WRITER_ILL(ill)); 1906 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 dld_ic = (dl_capab_dld_t *)(isub + 1); 1922 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1923 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1924 "unsupported DLD sub-capability (version %d, " 1925 "expected %d)", dld_ic->dld_version, 1926 DLD_CURRENT_VERSION); 1927 return; 1928 } 1929 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 /* 1937 * Copy locally to ensure alignment. 1938 */ 1939 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1940 1941 if ((idc = ill->ill_dld_capab) == NULL) { 1942 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1943 if (idc == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1945 "could not enable DLD version %d " 1946 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1947 ill->ill_name); 1948 return; 1949 } 1950 ill->ill_dld_capab = idc; 1951 } 1952 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1953 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1954 ip1dbg(("ill_capability_dld_ack: interface %s " 1955 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1956 1957 ill_capability_dld_enable(ill); 1958 } 1959 1960 /* 1961 * Typically capability negotiation between IP and the driver happens via 1962 * DLPI message exchange. However GLD also offers a direct function call 1963 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1964 * But arbitrary function calls into IP or GLD are not permitted, since both 1965 * of them are protected by their own perimeter mechanism. The perimeter can 1966 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1967 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1968 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1969 * to enter the mac perimeter and then do the direct function calls into 1970 * GLD to enable squeue polling. The ring related callbacks from the mac into 1971 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1972 * protected by the mac perimeter. 1973 */ 1974 static void 1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 int err; 1979 1980 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1981 DLD_ENABLE); 1982 ASSERT(err == 0); 1983 } 1984 1985 static void 1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1987 { 1988 ill_dld_capab_t *idc = ill->ill_dld_capab; 1989 int err; 1990 1991 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1992 DLD_DISABLE); 1993 ASSERT(err == 0); 1994 } 1995 1996 boolean_t 1997 ill_mac_perim_held(ill_t *ill) 1998 { 1999 ill_dld_capab_t *idc = ill->ill_dld_capab; 2000 2001 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2002 DLD_QUERY)); 2003 } 2004 2005 static void 2006 ill_capability_direct_enable(ill_t *ill) 2007 { 2008 ill_dld_capab_t *idc = ill->ill_dld_capab; 2009 ill_dld_direct_t *idd = &idc->idc_direct; 2010 dld_capab_direct_t direct; 2011 int rc; 2012 2013 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2014 2015 bzero(&direct, sizeof (direct)); 2016 direct.di_rx_cf = (uintptr_t)ip_input; 2017 direct.di_rx_ch = ill; 2018 2019 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2020 DLD_ENABLE); 2021 if (rc == 0) { 2022 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2023 idd->idd_tx_dh = direct.di_tx_dh; 2024 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2025 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2026 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2027 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2028 ASSERT(idd->idd_tx_cb_df != NULL); 2029 ASSERT(idd->idd_tx_fctl_df != NULL); 2030 ASSERT(idd->idd_tx_df != NULL); 2031 /* 2032 * One time registration of flow enable callback function 2033 */ 2034 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2035 ill_flow_enable, ill); 2036 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2037 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2038 } else { 2039 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2040 "capability, rc = %d\n", rc); 2041 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2042 } 2043 } 2044 2045 static void 2046 ill_capability_poll_enable(ill_t *ill) 2047 { 2048 ill_dld_capab_t *idc = ill->ill_dld_capab; 2049 dld_capab_poll_t poll; 2050 int rc; 2051 2052 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2053 2054 bzero(&poll, sizeof (poll)); 2055 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2056 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2057 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2058 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2059 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2060 poll.poll_ring_ch = ill; 2061 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2062 DLD_ENABLE); 2063 if (rc == 0) { 2064 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2065 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2066 } else { 2067 ip1dbg(("warning: could not enable POLL " 2068 "capability, rc = %d\n", rc)); 2069 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2070 } 2071 } 2072 2073 /* 2074 * Enable the LSO capability. 2075 */ 2076 static void 2077 ill_capability_lso_enable(ill_t *ill) 2078 { 2079 ill_dld_capab_t *idc = ill->ill_dld_capab; 2080 dld_capab_lso_t lso; 2081 int rc; 2082 2083 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2084 2085 if (ill->ill_lso_capab == NULL) { 2086 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2087 KM_NOSLEEP); 2088 if (ill->ill_lso_capab == NULL) { 2089 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2090 "could not enable LSO for %s (ENOMEM)\n", 2091 ill->ill_name); 2092 return; 2093 } 2094 } 2095 2096 bzero(&lso, sizeof (lso)); 2097 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2098 DLD_ENABLE)) == 0) { 2099 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2100 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2101 ill->ill_capabilities |= ILL_CAPAB_LSO; 2102 ip1dbg(("ill_capability_lso_enable: interface %s " 2103 "has enabled LSO\n ", ill->ill_name)); 2104 } else { 2105 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2106 ill->ill_lso_capab = NULL; 2107 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2108 } 2109 } 2110 2111 static void 2112 ill_capability_dld_enable(ill_t *ill) 2113 { 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (ill->ill_isv6) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 if (!ill->ill_isv6) { 2123 ill_capability_direct_enable(ill); 2124 ill_capability_poll_enable(ill); 2125 ill_capability_lso_enable(ill); 2126 } 2127 ill->ill_capabilities |= ILL_CAPAB_DLD; 2128 ill_mac_perim_exit(ill, mph); 2129 } 2130 2131 static void 2132 ill_capability_dld_disable(ill_t *ill) 2133 { 2134 ill_dld_capab_t *idc; 2135 ill_dld_direct_t *idd; 2136 mac_perim_handle_t mph; 2137 2138 ASSERT(IAM_WRITER_ILL(ill)); 2139 2140 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2141 return; 2142 2143 ill_mac_perim_enter(ill, &mph); 2144 2145 idc = ill->ill_dld_capab; 2146 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2147 /* 2148 * For performance we avoid locks in the transmit data path 2149 * and don't maintain a count of the number of threads using 2150 * direct calls. Thus some threads could be using direct 2151 * transmit calls to GLD, even after the capability mechanism 2152 * turns it off. This is still safe since the handles used in 2153 * the direct calls continue to be valid until the unplumb is 2154 * completed. Remove the callback that was added (1-time) at 2155 * capab enable time. 2156 */ 2157 mutex_enter(&ill->ill_lock); 2158 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2159 mutex_exit(&ill->ill_lock); 2160 if (ill->ill_flownotify_mh != NULL) { 2161 idd = &idc->idc_direct; 2162 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2163 ill->ill_flownotify_mh); 2164 ill->ill_flownotify_mh = NULL; 2165 } 2166 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2167 NULL, DLD_DISABLE); 2168 } 2169 2170 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2172 ip_squeue_clean_all(ill); 2173 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2174 NULL, DLD_DISABLE); 2175 } 2176 2177 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2178 ASSERT(ill->ill_lso_capab != NULL); 2179 /* 2180 * Clear the capability flag for LSO but retain the 2181 * ill_lso_capab structure since it's possible that another 2182 * thread is still referring to it. The structure only gets 2183 * deallocated when we destroy the ill. 2184 */ 2185 2186 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2188 NULL, DLD_DISABLE); 2189 } 2190 2191 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2192 ill_mac_perim_exit(ill, mph); 2193 } 2194 2195 /* 2196 * Capability Negotiation protocol 2197 * 2198 * We don't wait for DLPI capability operations to finish during interface 2199 * bringup or teardown. Doing so would introduce more asynchrony and the 2200 * interface up/down operations will need multiple return and restarts. 2201 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2202 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2203 * exclusive operation won't start until the DLPI operations of the previous 2204 * exclusive operation complete. 2205 * 2206 * The capability state machine is shown below. 2207 * 2208 * state next state event, action 2209 * 2210 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2211 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2212 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2213 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2214 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2215 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2216 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2217 * ill_capability_probe. 2218 */ 2219 2220 /* 2221 * Dedicated thread started from ip_stack_init that handles capability 2222 * disable. This thread ensures the taskq dispatch does not fail by waiting 2223 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2224 * that direct calls to DLD are done in a cv_waitable context. 2225 */ 2226 void 2227 ill_taskq_dispatch(ip_stack_t *ipst) 2228 { 2229 callb_cpr_t cprinfo; 2230 char name[64]; 2231 mblk_t *mp; 2232 2233 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2234 ipst->ips_netstack->netstack_stackid); 2235 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2236 name); 2237 mutex_enter(&ipst->ips_capab_taskq_lock); 2238 2239 for (;;) { 2240 mp = ipst->ips_capab_taskq_head; 2241 while (mp != NULL) { 2242 ipst->ips_capab_taskq_head = mp->b_next; 2243 if (ipst->ips_capab_taskq_head == NULL) 2244 ipst->ips_capab_taskq_tail = NULL; 2245 mutex_exit(&ipst->ips_capab_taskq_lock); 2246 mp->b_next = NULL; 2247 2248 VERIFY(taskq_dispatch(system_taskq, 2249 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2250 mutex_enter(&ipst->ips_capab_taskq_lock); 2251 mp = ipst->ips_capab_taskq_head; 2252 } 2253 2254 if (ipst->ips_capab_taskq_quit) 2255 break; 2256 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2257 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2258 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2259 } 2260 VERIFY(ipst->ips_capab_taskq_head == NULL); 2261 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2262 CALLB_CPR_EXIT(&cprinfo); 2263 thread_exit(); 2264 } 2265 2266 /* 2267 * Consume a new-style hardware capabilities negotiation ack. 2268 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2269 */ 2270 static void 2271 ill_capability_ack_thr(void *arg) 2272 { 2273 mblk_t *mp = arg; 2274 dl_capability_ack_t *capp; 2275 dl_capability_sub_t *subp, *endp; 2276 ill_t *ill; 2277 boolean_t reneg; 2278 2279 ill = (ill_t *)mp->b_prev; 2280 mp->b_prev = NULL; 2281 2282 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2283 2284 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2285 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2286 /* 2287 * We have received the ack for our DL_CAPAB reset request. 2288 * There isnt' anything in the message that needs processing. 2289 * All message based capabilities have been disabled, now 2290 * do the function call based capability disable. 2291 */ 2292 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2293 ill_capability_dld_disable(ill); 2294 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2295 if (reneg) 2296 ill_capability_probe(ill); 2297 goto done; 2298 } 2299 2300 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2301 ill->ill_dlpi_capab_state = IDCS_OK; 2302 2303 capp = (dl_capability_ack_t *)mp->b_rptr; 2304 2305 if (capp->dl_sub_length == 0) { 2306 /* no new-style capabilities */ 2307 goto done; 2308 } 2309 2310 /* make sure the driver supplied correct dl_sub_length */ 2311 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2312 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2313 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2314 goto done; 2315 } 2316 2317 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2318 /* 2319 * There are sub-capabilities. Process the ones we know about. 2320 * Loop until we don't have room for another sub-cap header.. 2321 */ 2322 for (subp = SC(capp, capp->dl_sub_offset), 2323 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2324 subp <= endp; 2325 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2326 2327 switch (subp->dl_cap) { 2328 case DL_CAPAB_ID_WRAPPER: 2329 ill_capability_id_ack(ill, mp, subp); 2330 break; 2331 default: 2332 ill_capability_dispatch(ill, mp, subp); 2333 break; 2334 } 2335 } 2336 #undef SC 2337 done: 2338 inet_freemsg(mp); 2339 ill_capability_done(ill); 2340 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2341 } 2342 2343 /* 2344 * This needs to be started in a taskq thread to provide a cv_waitable 2345 * context. 2346 */ 2347 void 2348 ill_capability_ack(ill_t *ill, mblk_t *mp) 2349 { 2350 ip_stack_t *ipst = ill->ill_ipst; 2351 2352 mp->b_prev = (mblk_t *)ill; 2353 ASSERT(mp->b_next == NULL); 2354 2355 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2356 TQ_NOSLEEP) != 0) 2357 return; 2358 2359 /* 2360 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2361 * which will do the dispatch using TQ_SLEEP to guarantee success. 2362 */ 2363 mutex_enter(&ipst->ips_capab_taskq_lock); 2364 if (ipst->ips_capab_taskq_head == NULL) { 2365 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2366 ipst->ips_capab_taskq_head = mp; 2367 } else { 2368 ipst->ips_capab_taskq_tail->b_next = mp; 2369 } 2370 ipst->ips_capab_taskq_tail = mp; 2371 2372 cv_signal(&ipst->ips_capab_taskq_cv); 2373 mutex_exit(&ipst->ips_capab_taskq_lock); 2374 } 2375 2376 /* 2377 * This routine is called to scan the fragmentation reassembly table for 2378 * the specified ILL for any packets that are starting to smell. 2379 * dead_interval is the maximum time in seconds that will be tolerated. It 2380 * will either be the value specified in ip_g_frag_timeout, or zero if the 2381 * ILL is shutting down and it is time to blow everything off. 2382 * 2383 * It returns the number of seconds (as a time_t) that the next frag timer 2384 * should be scheduled for, 0 meaning that the timer doesn't need to be 2385 * re-started. Note that the method of calculating next_timeout isn't 2386 * entirely accurate since time will flow between the time we grab 2387 * current_time and the time we schedule the next timeout. This isn't a 2388 * big problem since this is the timer for sending an ICMP reassembly time 2389 * exceeded messages, and it doesn't have to be exactly accurate. 2390 * 2391 * This function is 2392 * sometimes called as writer, although this is not required. 2393 */ 2394 time_t 2395 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2396 { 2397 ipfb_t *ipfb; 2398 ipfb_t *endp; 2399 ipf_t *ipf; 2400 ipf_t *ipfnext; 2401 mblk_t *mp; 2402 time_t current_time = gethrestime_sec(); 2403 time_t next_timeout = 0; 2404 uint32_t hdr_length; 2405 mblk_t *send_icmp_head; 2406 mblk_t *send_icmp_head_v6; 2407 ip_stack_t *ipst = ill->ill_ipst; 2408 ip_recv_attr_t iras; 2409 2410 bzero(&iras, sizeof (iras)); 2411 iras.ira_flags = 0; 2412 iras.ira_ill = iras.ira_rill = ill; 2413 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2414 iras.ira_rifindex = iras.ira_ruifindex; 2415 2416 ipfb = ill->ill_frag_hash_tbl; 2417 if (ipfb == NULL) 2418 return (B_FALSE); 2419 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2420 /* Walk the frag hash table. */ 2421 for (; ipfb < endp; ipfb++) { 2422 send_icmp_head = NULL; 2423 send_icmp_head_v6 = NULL; 2424 mutex_enter(&ipfb->ipfb_lock); 2425 while ((ipf = ipfb->ipfb_ipf) != 0) { 2426 time_t frag_time = current_time - ipf->ipf_timestamp; 2427 time_t frag_timeout; 2428 2429 if (frag_time < dead_interval) { 2430 /* 2431 * There are some outstanding fragments 2432 * that will timeout later. Make note of 2433 * the time so that we can reschedule the 2434 * next timeout appropriately. 2435 */ 2436 frag_timeout = dead_interval - frag_time; 2437 if (next_timeout == 0 || 2438 frag_timeout < next_timeout) { 2439 next_timeout = frag_timeout; 2440 } 2441 break; 2442 } 2443 /* Time's up. Get it out of here. */ 2444 hdr_length = ipf->ipf_nf_hdr_len; 2445 ipfnext = ipf->ipf_hash_next; 2446 if (ipfnext) 2447 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2448 *ipf->ipf_ptphn = ipfnext; 2449 mp = ipf->ipf_mp->b_cont; 2450 for (; mp; mp = mp->b_cont) { 2451 /* Extra points for neatness. */ 2452 IP_REASS_SET_START(mp, 0); 2453 IP_REASS_SET_END(mp, 0); 2454 } 2455 mp = ipf->ipf_mp->b_cont; 2456 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2457 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2458 ipfb->ipfb_count -= ipf->ipf_count; 2459 ASSERT(ipfb->ipfb_frag_pkts > 0); 2460 ipfb->ipfb_frag_pkts--; 2461 /* 2462 * We do not send any icmp message from here because 2463 * we currently are holding the ipfb_lock for this 2464 * hash chain. If we try and send any icmp messages 2465 * from here we may end up via a put back into ip 2466 * trying to get the same lock, causing a recursive 2467 * mutex panic. Instead we build a list and send all 2468 * the icmp messages after we have dropped the lock. 2469 */ 2470 if (ill->ill_isv6) { 2471 if (hdr_length != 0) { 2472 mp->b_next = send_icmp_head_v6; 2473 send_icmp_head_v6 = mp; 2474 } else { 2475 freemsg(mp); 2476 } 2477 } else { 2478 if (hdr_length != 0) { 2479 mp->b_next = send_icmp_head; 2480 send_icmp_head = mp; 2481 } else { 2482 freemsg(mp); 2483 } 2484 } 2485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2486 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2487 freeb(ipf->ipf_mp); 2488 } 2489 mutex_exit(&ipfb->ipfb_lock); 2490 /* 2491 * Now need to send any icmp messages that we delayed from 2492 * above. 2493 */ 2494 while (send_icmp_head_v6 != NULL) { 2495 ip6_t *ip6h; 2496 2497 mp = send_icmp_head_v6; 2498 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2499 mp->b_next = NULL; 2500 ip6h = (ip6_t *)mp->b_rptr; 2501 iras.ira_flags = 0; 2502 /* 2503 * This will result in an incorrect ALL_ZONES zoneid 2504 * for multicast packets, but we 2505 * don't send ICMP errors for those in any case. 2506 */ 2507 iras.ira_zoneid = 2508 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2509 ill, ipst); 2510 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2511 icmp_time_exceeded_v6(mp, 2512 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2513 &iras); 2514 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2515 } 2516 while (send_icmp_head != NULL) { 2517 ipaddr_t dst; 2518 2519 mp = send_icmp_head; 2520 send_icmp_head = send_icmp_head->b_next; 2521 mp->b_next = NULL; 2522 2523 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2524 2525 iras.ira_flags = IRAF_IS_IPV4; 2526 /* 2527 * This will result in an incorrect ALL_ZONES zoneid 2528 * for broadcast and multicast packets, but we 2529 * don't send ICMP errors for those in any case. 2530 */ 2531 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2532 ill, ipst); 2533 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2534 icmp_time_exceeded(mp, 2535 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2536 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2537 } 2538 } 2539 /* 2540 * A non-dying ILL will use the return value to decide whether to 2541 * restart the frag timer, and for how long. 2542 */ 2543 return (next_timeout); 2544 } 2545 2546 /* 2547 * This routine is called when the approximate count of mblk memory used 2548 * for the specified ILL has exceeded max_count. 2549 */ 2550 void 2551 ill_frag_prune(ill_t *ill, uint_t max_count) 2552 { 2553 ipfb_t *ipfb; 2554 ipf_t *ipf; 2555 size_t count; 2556 clock_t now; 2557 2558 /* 2559 * If we are here within ip_min_frag_prune_time msecs remove 2560 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2561 * ill_frag_free_num_pkts. 2562 */ 2563 mutex_enter(&ill->ill_lock); 2564 now = ddi_get_lbolt(); 2565 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2566 (ip_min_frag_prune_time != 0 ? 2567 ip_min_frag_prune_time : msec_per_tick)) { 2568 2569 ill->ill_frag_free_num_pkts++; 2570 2571 } else { 2572 ill->ill_frag_free_num_pkts = 0; 2573 } 2574 ill->ill_last_frag_clean_time = now; 2575 mutex_exit(&ill->ill_lock); 2576 2577 /* 2578 * free ill_frag_free_num_pkts oldest packets from each bucket. 2579 */ 2580 if (ill->ill_frag_free_num_pkts != 0) { 2581 int ix; 2582 2583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2584 ipfb = &ill->ill_frag_hash_tbl[ix]; 2585 mutex_enter(&ipfb->ipfb_lock); 2586 if (ipfb->ipfb_ipf != NULL) { 2587 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2588 ill->ill_frag_free_num_pkts); 2589 } 2590 mutex_exit(&ipfb->ipfb_lock); 2591 } 2592 } 2593 /* 2594 * While the reassembly list for this ILL is too big, prune a fragment 2595 * queue by age, oldest first. 2596 */ 2597 while (ill->ill_frag_count > max_count) { 2598 int ix; 2599 ipfb_t *oipfb = NULL; 2600 uint_t oldest = UINT_MAX; 2601 2602 count = 0; 2603 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2604 ipfb = &ill->ill_frag_hash_tbl[ix]; 2605 mutex_enter(&ipfb->ipfb_lock); 2606 ipf = ipfb->ipfb_ipf; 2607 if (ipf != NULL && ipf->ipf_gen < oldest) { 2608 oldest = ipf->ipf_gen; 2609 oipfb = ipfb; 2610 } 2611 count += ipfb->ipfb_count; 2612 mutex_exit(&ipfb->ipfb_lock); 2613 } 2614 if (oipfb == NULL) 2615 break; 2616 2617 if (count <= max_count) 2618 return; /* Somebody beat us to it, nothing to do */ 2619 mutex_enter(&oipfb->ipfb_lock); 2620 ipf = oipfb->ipfb_ipf; 2621 if (ipf != NULL) { 2622 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2623 } 2624 mutex_exit(&oipfb->ipfb_lock); 2625 } 2626 } 2627 2628 /* 2629 * free 'free_cnt' fragmented packets starting at ipf. 2630 */ 2631 void 2632 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2633 { 2634 size_t count; 2635 mblk_t *mp; 2636 mblk_t *tmp; 2637 ipf_t **ipfp = ipf->ipf_ptphn; 2638 2639 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2640 ASSERT(ipfp != NULL); 2641 ASSERT(ipf != NULL); 2642 2643 while (ipf != NULL && free_cnt-- > 0) { 2644 count = ipf->ipf_count; 2645 mp = ipf->ipf_mp; 2646 ipf = ipf->ipf_hash_next; 2647 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2648 IP_REASS_SET_START(tmp, 0); 2649 IP_REASS_SET_END(tmp, 0); 2650 } 2651 atomic_add_32(&ill->ill_frag_count, -count); 2652 ASSERT(ipfb->ipfb_count >= count); 2653 ipfb->ipfb_count -= count; 2654 ASSERT(ipfb->ipfb_frag_pkts > 0); 2655 ipfb->ipfb_frag_pkts--; 2656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2657 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2658 freemsg(mp); 2659 } 2660 2661 if (ipf) 2662 ipf->ipf_ptphn = ipfp; 2663 ipfp[0] = ipf; 2664 } 2665 2666 /* 2667 * Helper function for ill_forward_set(). 2668 */ 2669 static void 2670 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2671 { 2672 ip_stack_t *ipst = ill->ill_ipst; 2673 2674 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2675 2676 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2677 (enable ? "Enabling" : "Disabling"), 2678 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2679 mutex_enter(&ill->ill_lock); 2680 if (enable) 2681 ill->ill_flags |= ILLF_ROUTER; 2682 else 2683 ill->ill_flags &= ~ILLF_ROUTER; 2684 mutex_exit(&ill->ill_lock); 2685 if (ill->ill_isv6) 2686 ill_set_nce_router_flags(ill, enable); 2687 /* Notify routing socket listeners of this change. */ 2688 if (ill->ill_ipif != NULL) 2689 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2690 } 2691 2692 /* 2693 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2694 * socket messages for each interface whose flags we change. 2695 */ 2696 int 2697 ill_forward_set(ill_t *ill, boolean_t enable) 2698 { 2699 ipmp_illgrp_t *illg; 2700 ip_stack_t *ipst = ill->ill_ipst; 2701 2702 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2703 2704 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2705 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2706 return (0); 2707 2708 if (IS_LOOPBACK(ill)) 2709 return (EINVAL); 2710 2711 if (enable && ill->ill_allowed_ips_cnt > 0) 2712 return (EPERM); 2713 2714 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2715 /* 2716 * Update all of the interfaces in the group. 2717 */ 2718 illg = ill->ill_grp; 2719 ill = list_head(&illg->ig_if); 2720 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2721 ill_forward_set_on_ill(ill, enable); 2722 2723 /* 2724 * Update the IPMP meta-interface. 2725 */ 2726 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2727 return (0); 2728 } 2729 2730 ill_forward_set_on_ill(ill, enable); 2731 return (0); 2732 } 2733 2734 /* 2735 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2736 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2737 * set or clear. 2738 */ 2739 static void 2740 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2741 { 2742 ipif_t *ipif; 2743 ncec_t *ncec; 2744 nce_t *nce; 2745 2746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2747 /* 2748 * NOTE: we match across the illgrp because nce's for 2749 * addresses on IPMP interfaces have an nce_ill that points to 2750 * the bound underlying ill. 2751 */ 2752 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2753 if (nce != NULL) { 2754 ncec = nce->nce_common; 2755 mutex_enter(&ncec->ncec_lock); 2756 if (enable) 2757 ncec->ncec_flags |= NCE_F_ISROUTER; 2758 else 2759 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2760 mutex_exit(&ncec->ncec_lock); 2761 nce_refrele(nce); 2762 } 2763 } 2764 } 2765 2766 /* 2767 * Intializes the context structure and returns the first ill in the list 2768 * cuurently start_list and end_list can have values: 2769 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2770 * IP_V4_G_HEAD Traverse IPV4 list only. 2771 * IP_V6_G_HEAD Traverse IPV6 list only. 2772 */ 2773 2774 /* 2775 * We don't check for CONDEMNED ills here. Caller must do that if 2776 * necessary under the ill lock. 2777 */ 2778 ill_t * 2779 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2780 ip_stack_t *ipst) 2781 { 2782 ill_if_t *ifp; 2783 ill_t *ill; 2784 avl_tree_t *avl_tree; 2785 2786 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2787 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2788 2789 /* 2790 * setup the lists to search 2791 */ 2792 if (end_list != MAX_G_HEADS) { 2793 ctx->ctx_current_list = start_list; 2794 ctx->ctx_last_list = end_list; 2795 } else { 2796 ctx->ctx_last_list = MAX_G_HEADS - 1; 2797 ctx->ctx_current_list = 0; 2798 } 2799 2800 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2801 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2802 if (ifp != (ill_if_t *) 2803 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2804 avl_tree = &ifp->illif_avl_by_ppa; 2805 ill = avl_first(avl_tree); 2806 /* 2807 * ill is guaranteed to be non NULL or ifp should have 2808 * not existed. 2809 */ 2810 ASSERT(ill != NULL); 2811 return (ill); 2812 } 2813 ctx->ctx_current_list++; 2814 } 2815 2816 return (NULL); 2817 } 2818 2819 /* 2820 * returns the next ill in the list. ill_first() must have been called 2821 * before calling ill_next() or bad things will happen. 2822 */ 2823 2824 /* 2825 * We don't check for CONDEMNED ills here. Caller must do that if 2826 * necessary under the ill lock. 2827 */ 2828 ill_t * 2829 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2830 { 2831 ill_if_t *ifp; 2832 ill_t *ill; 2833 ip_stack_t *ipst = lastill->ill_ipst; 2834 2835 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2836 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2837 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2838 AVL_AFTER)) != NULL) { 2839 return (ill); 2840 } 2841 2842 /* goto next ill_ifp in the list. */ 2843 ifp = lastill->ill_ifptr->illif_next; 2844 2845 /* make sure not at end of circular list */ 2846 while (ifp == 2847 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2848 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2849 return (NULL); 2850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2851 } 2852 2853 return (avl_first(&ifp->illif_avl_by_ppa)); 2854 } 2855 2856 /* 2857 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2858 * The final number (PPA) must not have any leading zeros. Upon success, a 2859 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2860 */ 2861 static char * 2862 ill_get_ppa_ptr(char *name) 2863 { 2864 int namelen = strlen(name); 2865 int end_ndx = namelen - 1; 2866 int ppa_ndx, i; 2867 2868 /* 2869 * Check that the first character is [a-zA-Z], and that the last 2870 * character is [0-9]. 2871 */ 2872 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2873 return (NULL); 2874 2875 /* 2876 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2877 */ 2878 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2879 if (!isdigit(name[ppa_ndx - 1])) 2880 break; 2881 2882 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2883 return (NULL); 2884 2885 /* 2886 * Check that the intermediate characters are [a-z0-9.] 2887 */ 2888 for (i = 1; i < ppa_ndx; i++) { 2889 if (!isalpha(name[i]) && !isdigit(name[i]) && 2890 name[i] != '.' && name[i] != '_') { 2891 return (NULL); 2892 } 2893 } 2894 2895 return (name + ppa_ndx); 2896 } 2897 2898 /* 2899 * use avl tree to locate the ill. 2900 */ 2901 static ill_t * 2902 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2903 { 2904 char *ppa_ptr = NULL; 2905 int len; 2906 uint_t ppa; 2907 ill_t *ill = NULL; 2908 ill_if_t *ifp; 2909 int list; 2910 2911 /* 2912 * get ppa ptr 2913 */ 2914 if (isv6) 2915 list = IP_V6_G_HEAD; 2916 else 2917 list = IP_V4_G_HEAD; 2918 2919 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2920 return (NULL); 2921 } 2922 2923 len = ppa_ptr - name + 1; 2924 2925 ppa = stoi(&ppa_ptr); 2926 2927 ifp = IP_VX_ILL_G_LIST(list, ipst); 2928 2929 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2930 /* 2931 * match is done on len - 1 as the name is not null 2932 * terminated it contains ppa in addition to the interface 2933 * name. 2934 */ 2935 if ((ifp->illif_name_len == len) && 2936 bcmp(ifp->illif_name, name, len - 1) == 0) { 2937 break; 2938 } else { 2939 ifp = ifp->illif_next; 2940 } 2941 } 2942 2943 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2944 /* 2945 * Even the interface type does not exist. 2946 */ 2947 return (NULL); 2948 } 2949 2950 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2951 if (ill != NULL) { 2952 mutex_enter(&ill->ill_lock); 2953 if (ILL_CAN_LOOKUP(ill)) { 2954 ill_refhold_locked(ill); 2955 mutex_exit(&ill->ill_lock); 2956 return (ill); 2957 } 2958 mutex_exit(&ill->ill_lock); 2959 } 2960 return (NULL); 2961 } 2962 2963 /* 2964 * comparison function for use with avl. 2965 */ 2966 static int 2967 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2968 { 2969 uint_t ppa; 2970 uint_t ill_ppa; 2971 2972 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2973 2974 ppa = *((uint_t *)ppa_ptr); 2975 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2976 /* 2977 * We want the ill with the lowest ppa to be on the 2978 * top. 2979 */ 2980 if (ill_ppa < ppa) 2981 return (1); 2982 if (ill_ppa > ppa) 2983 return (-1); 2984 return (0); 2985 } 2986 2987 /* 2988 * remove an interface type from the global list. 2989 */ 2990 static void 2991 ill_delete_interface_type(ill_if_t *interface) 2992 { 2993 ASSERT(interface != NULL); 2994 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2995 2996 avl_destroy(&interface->illif_avl_by_ppa); 2997 if (interface->illif_ppa_arena != NULL) 2998 vmem_destroy(interface->illif_ppa_arena); 2999 3000 remque(interface); 3001 3002 mi_free(interface); 3003 } 3004 3005 /* 3006 * remove ill from the global list. 3007 */ 3008 static void 3009 ill_glist_delete(ill_t *ill) 3010 { 3011 ip_stack_t *ipst; 3012 phyint_t *phyi; 3013 3014 if (ill == NULL) 3015 return; 3016 ipst = ill->ill_ipst; 3017 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3018 3019 /* 3020 * If the ill was never inserted into the AVL tree 3021 * we skip the if branch. 3022 */ 3023 if (ill->ill_ifptr != NULL) { 3024 /* 3025 * remove from AVL tree and free ppa number 3026 */ 3027 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3028 3029 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3030 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3031 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3032 } 3033 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3034 ill_delete_interface_type(ill->ill_ifptr); 3035 } 3036 3037 /* 3038 * Indicate ill is no longer in the list. 3039 */ 3040 ill->ill_ifptr = NULL; 3041 ill->ill_name_length = 0; 3042 ill->ill_name[0] = '\0'; 3043 ill->ill_ppa = UINT_MAX; 3044 } 3045 3046 /* Generate one last event for this ill. */ 3047 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3048 ill->ill_name_length); 3049 3050 ASSERT(ill->ill_phyint != NULL); 3051 phyi = ill->ill_phyint; 3052 ill->ill_phyint = NULL; 3053 3054 /* 3055 * ill_init allocates a phyint always to store the copy 3056 * of flags relevant to phyint. At that point in time, we could 3057 * not assign the name and hence phyint_illv4/v6 could not be 3058 * initialized. Later in ipif_set_values, we assign the name to 3059 * the ill, at which point in time we assign phyint_illv4/v6. 3060 * Thus we don't rely on phyint_illv6 to be initialized always. 3061 */ 3062 if (ill->ill_flags & ILLF_IPV6) 3063 phyi->phyint_illv6 = NULL; 3064 else 3065 phyi->phyint_illv4 = NULL; 3066 3067 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3068 rw_exit(&ipst->ips_ill_g_lock); 3069 return; 3070 } 3071 3072 /* 3073 * There are no ills left on this phyint; pull it out of the phyint 3074 * avl trees, and free it. 3075 */ 3076 if (phyi->phyint_ifindex > 0) { 3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3078 phyi); 3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3080 phyi); 3081 } 3082 rw_exit(&ipst->ips_ill_g_lock); 3083 3084 phyint_free(phyi); 3085 } 3086 3087 /* 3088 * allocate a ppa, if the number of plumbed interfaces of this type are 3089 * less than ill_no_arena do a linear search to find a unused ppa. 3090 * When the number goes beyond ill_no_arena switch to using an arena. 3091 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3092 * is the return value for an error condition, so allocation starts at one 3093 * and is decremented by one. 3094 */ 3095 static int 3096 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3097 { 3098 ill_t *tmp_ill; 3099 uint_t start, end; 3100 int ppa; 3101 3102 if (ifp->illif_ppa_arena == NULL && 3103 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3104 /* 3105 * Create an arena. 3106 */ 3107 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3108 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3109 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3110 /* allocate what has already been assigned */ 3111 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3112 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3113 tmp_ill, AVL_AFTER)) { 3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3115 1, /* size */ 3116 1, /* align/quantum */ 3117 0, /* phase */ 3118 0, /* nocross */ 3119 /* minaddr */ 3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3121 /* maxaddr */ 3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3123 VM_NOSLEEP|VM_FIRSTFIT); 3124 if (ppa == 0) { 3125 ip1dbg(("ill_alloc_ppa: ppa allocation" 3126 " failed while switching")); 3127 vmem_destroy(ifp->illif_ppa_arena); 3128 ifp->illif_ppa_arena = NULL; 3129 break; 3130 } 3131 } 3132 } 3133 3134 if (ifp->illif_ppa_arena != NULL) { 3135 if (ill->ill_ppa == UINT_MAX) { 3136 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3137 1, VM_NOSLEEP|VM_FIRSTFIT); 3138 if (ppa == 0) 3139 return (EAGAIN); 3140 ill->ill_ppa = --ppa; 3141 } else { 3142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3143 1, /* size */ 3144 1, /* align/quantum */ 3145 0, /* phase */ 3146 0, /* nocross */ 3147 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3148 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3149 VM_NOSLEEP|VM_FIRSTFIT); 3150 /* 3151 * Most likely the allocation failed because 3152 * the requested ppa was in use. 3153 */ 3154 if (ppa == 0) 3155 return (EEXIST); 3156 } 3157 return (0); 3158 } 3159 3160 /* 3161 * No arena is in use and not enough (>ill_no_arena) interfaces have 3162 * been plumbed to create one. Do a linear search to get a unused ppa. 3163 */ 3164 if (ill->ill_ppa == UINT_MAX) { 3165 end = UINT_MAX - 1; 3166 start = 0; 3167 } else { 3168 end = start = ill->ill_ppa; 3169 } 3170 3171 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3172 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3173 if (start++ >= end) { 3174 if (ill->ill_ppa == UINT_MAX) 3175 return (EAGAIN); 3176 else 3177 return (EEXIST); 3178 } 3179 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3180 } 3181 ill->ill_ppa = start; 3182 return (0); 3183 } 3184 3185 /* 3186 * Insert ill into the list of configured ill's. Once this function completes, 3187 * the ill is globally visible and is available through lookups. More precisely 3188 * this happens after the caller drops the ill_g_lock. 3189 */ 3190 static int 3191 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3192 { 3193 ill_if_t *ill_interface; 3194 avl_index_t where = 0; 3195 int error; 3196 int name_length; 3197 int index; 3198 boolean_t check_length = B_FALSE; 3199 ip_stack_t *ipst = ill->ill_ipst; 3200 3201 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3202 3203 name_length = mi_strlen(name) + 1; 3204 3205 if (isv6) 3206 index = IP_V6_G_HEAD; 3207 else 3208 index = IP_V4_G_HEAD; 3209 3210 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3211 /* 3212 * Search for interface type based on name 3213 */ 3214 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3215 if ((ill_interface->illif_name_len == name_length) && 3216 (strcmp(ill_interface->illif_name, name) == 0)) { 3217 break; 3218 } 3219 ill_interface = ill_interface->illif_next; 3220 } 3221 3222 /* 3223 * Interface type not found, create one. 3224 */ 3225 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3226 ill_g_head_t ghead; 3227 3228 /* 3229 * allocate ill_if_t structure 3230 */ 3231 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3232 if (ill_interface == NULL) { 3233 return (ENOMEM); 3234 } 3235 3236 (void) strcpy(ill_interface->illif_name, name); 3237 ill_interface->illif_name_len = name_length; 3238 3239 avl_create(&ill_interface->illif_avl_by_ppa, 3240 ill_compare_ppa, sizeof (ill_t), 3241 offsetof(struct ill_s, ill_avl_byppa)); 3242 3243 /* 3244 * link the structure in the back to maintain order 3245 * of configuration for ifconfig output. 3246 */ 3247 ghead = ipst->ips_ill_g_heads[index]; 3248 insque(ill_interface, ghead.ill_g_list_tail); 3249 } 3250 3251 if (ill->ill_ppa == UINT_MAX) 3252 check_length = B_TRUE; 3253 3254 error = ill_alloc_ppa(ill_interface, ill); 3255 if (error != 0) { 3256 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3257 ill_delete_interface_type(ill->ill_ifptr); 3258 return (error); 3259 } 3260 3261 /* 3262 * When the ppa is choosen by the system, check that there is 3263 * enough space to insert ppa. if a specific ppa was passed in this 3264 * check is not required as the interface name passed in will have 3265 * the right ppa in it. 3266 */ 3267 if (check_length) { 3268 /* 3269 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3270 */ 3271 char buf[sizeof (uint_t) * 3]; 3272 3273 /* 3274 * convert ppa to string to calculate the amount of space 3275 * required for it in the name. 3276 */ 3277 numtos(ill->ill_ppa, buf); 3278 3279 /* Do we have enough space to insert ppa ? */ 3280 3281 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3282 /* Free ppa and interface type struct */ 3283 if (ill_interface->illif_ppa_arena != NULL) { 3284 vmem_free(ill_interface->illif_ppa_arena, 3285 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3286 } 3287 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3288 ill_delete_interface_type(ill->ill_ifptr); 3289 3290 return (EINVAL); 3291 } 3292 } 3293 3294 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3295 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3296 3297 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3298 &where); 3299 ill->ill_ifptr = ill_interface; 3300 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3301 3302 ill_phyint_reinit(ill); 3303 return (0); 3304 } 3305 3306 /* Initialize the per phyint ipsq used for serialization */ 3307 static boolean_t 3308 ipsq_init(ill_t *ill, boolean_t enter) 3309 { 3310 ipsq_t *ipsq; 3311 ipxop_t *ipx; 3312 3313 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3314 return (B_FALSE); 3315 3316 ill->ill_phyint->phyint_ipsq = ipsq; 3317 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3318 ipx->ipx_ipsq = ipsq; 3319 ipsq->ipsq_next = ipsq; 3320 ipsq->ipsq_phyint = ill->ill_phyint; 3321 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3322 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3323 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3324 if (enter) { 3325 ipx->ipx_writer = curthread; 3326 ipx->ipx_forced = B_FALSE; 3327 ipx->ipx_reentry_cnt = 1; 3328 #ifdef DEBUG 3329 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3330 #endif 3331 } 3332 return (B_TRUE); 3333 } 3334 3335 /* 3336 * Here we perform initialisation of the ill_t common to both regular 3337 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3338 */ 3339 static int 3340 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3341 boolean_t ipsq_enter) 3342 { 3343 int count; 3344 uchar_t *frag_ptr; 3345 3346 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3347 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3348 ill->ill_saved_ire_cnt = 0; 3349 3350 if (is_loopback) { 3351 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus : 3352 ip_loopback_mtuplus; 3353 /* 3354 * No resolver here. 3355 */ 3356 ill->ill_net_type = IRE_LOOPBACK; 3357 } else { 3358 ill->ill_rq = q; 3359 ill->ill_wq = WR(q); 3360 ill->ill_ppa = UINT_MAX; 3361 } 3362 3363 ill->ill_isv6 = isv6; 3364 3365 /* 3366 * Allocate sufficient space to contain our fragment hash table and 3367 * the device name. 3368 */ 3369 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3370 if (frag_ptr == NULL) 3371 return (ENOMEM); 3372 ill->ill_frag_ptr = frag_ptr; 3373 ill->ill_frag_free_num_pkts = 0; 3374 ill->ill_last_frag_clean_time = 0; 3375 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3376 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3377 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3378 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3379 NULL, MUTEX_DEFAULT, NULL); 3380 } 3381 3382 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3383 if (ill->ill_phyint == NULL) { 3384 mi_free(frag_ptr); 3385 return (ENOMEM); 3386 } 3387 3388 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3389 if (isv6) { 3390 ill->ill_phyint->phyint_illv6 = ill; 3391 } else { 3392 ill->ill_phyint->phyint_illv4 = ill; 3393 } 3394 if (is_loopback) { 3395 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3396 } 3397 3398 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3399 3400 ill_set_inputfn(ill); 3401 3402 if (!ipsq_init(ill, ipsq_enter)) { 3403 mi_free(frag_ptr); 3404 mi_free(ill->ill_phyint); 3405 return (ENOMEM); 3406 } 3407 3408 /* Frag queue limit stuff */ 3409 ill->ill_frag_count = 0; 3410 ill->ill_ipf_gen = 0; 3411 3412 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3413 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3414 ill->ill_global_timer = INFINITY; 3415 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3416 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3417 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3418 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3419 3420 /* 3421 * Initialize IPv6 configuration variables. The IP module is always 3422 * opened as an IPv4 module. Instead tracking down the cases where 3423 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3424 * here for convenience, this has no effect until the ill is set to do 3425 * IPv6. 3426 */ 3427 ill->ill_reachable_time = ND_REACHABLE_TIME; 3428 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3429 ill->ill_max_buf = ND_MAX_Q; 3430 ill->ill_refcnt = 0; 3431 3432 return (0); 3433 } 3434 3435 /* 3436 * ill_init is called by ip_open when a device control stream is opened. 3437 * It does a few initializations, and shoots a DL_INFO_REQ message down 3438 * to the driver. The response is later picked up in ip_rput_dlpi and 3439 * used to set up default mechanisms for talking to the driver. (Always 3440 * called as writer.) 3441 * 3442 * If this function returns error, ip_open will call ip_close which in 3443 * turn will call ill_delete to clean up any memory allocated here that 3444 * is not yet freed. 3445 * 3446 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3447 */ 3448 int 3449 ill_init(queue_t *q, ill_t *ill) 3450 { 3451 int ret; 3452 dl_info_req_t *dlir; 3453 mblk_t *info_mp; 3454 3455 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3456 BPRI_HI); 3457 if (info_mp == NULL) 3458 return (ENOMEM); 3459 3460 /* 3461 * For now pretend this is a v4 ill. We need to set phyint_ill* 3462 * at this point because of the following reason. If we can't 3463 * enter the ipsq at some point and cv_wait, the writer that 3464 * wakes us up tries to locate us using the list of all phyints 3465 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3466 * If we don't set it now, we risk a missed wakeup. 3467 */ 3468 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3469 freemsg(info_mp); 3470 return (ret); 3471 } 3472 3473 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3474 3475 /* Send down the Info Request to the driver. */ 3476 info_mp->b_datap->db_type = M_PCPROTO; 3477 dlir = (dl_info_req_t *)info_mp->b_rptr; 3478 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3479 dlir->dl_primitive = DL_INFO_REQ; 3480 3481 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3482 3483 qprocson(q); 3484 ill_dlpi_send(ill, info_mp); 3485 3486 return (0); 3487 } 3488 3489 /* 3490 * ill_dls_info 3491 * creates datalink socket info from the device. 3492 */ 3493 int 3494 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3495 { 3496 size_t len; 3497 3498 sdl->sdl_family = AF_LINK; 3499 sdl->sdl_index = ill_get_upper_ifindex(ill); 3500 sdl->sdl_type = ill->ill_type; 3501 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3502 len = strlen(sdl->sdl_data); 3503 ASSERT(len < 256); 3504 sdl->sdl_nlen = (uchar_t)len; 3505 sdl->sdl_alen = ill->ill_phys_addr_length; 3506 sdl->sdl_slen = 0; 3507 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3508 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3509 3510 return (sizeof (struct sockaddr_dl)); 3511 } 3512 3513 /* 3514 * ill_xarp_info 3515 * creates xarp info from the device. 3516 */ 3517 static int 3518 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3519 { 3520 sdl->sdl_family = AF_LINK; 3521 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3522 sdl->sdl_type = ill->ill_type; 3523 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3524 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3525 sdl->sdl_alen = ill->ill_phys_addr_length; 3526 sdl->sdl_slen = 0; 3527 return (sdl->sdl_nlen); 3528 } 3529 3530 static int 3531 loopback_kstat_update(kstat_t *ksp, int rw) 3532 { 3533 kstat_named_t *kn; 3534 netstackid_t stackid; 3535 netstack_t *ns; 3536 ip_stack_t *ipst; 3537 3538 if (ksp == NULL || ksp->ks_data == NULL) 3539 return (EIO); 3540 3541 if (rw == KSTAT_WRITE) 3542 return (EACCES); 3543 3544 kn = KSTAT_NAMED_PTR(ksp); 3545 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3546 3547 ns = netstack_find_by_stackid(stackid); 3548 if (ns == NULL) 3549 return (-1); 3550 3551 ipst = ns->netstack_ip; 3552 if (ipst == NULL) { 3553 netstack_rele(ns); 3554 return (-1); 3555 } 3556 kn[0].value.ui32 = ipst->ips_loopback_packets; 3557 kn[1].value.ui32 = ipst->ips_loopback_packets; 3558 netstack_rele(ns); 3559 return (0); 3560 } 3561 3562 /* 3563 * Has ifindex been plumbed already? 3564 */ 3565 static boolean_t 3566 phyint_exists(uint_t index, ip_stack_t *ipst) 3567 { 3568 ASSERT(index != 0); 3569 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3570 3571 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3572 &index, NULL) != NULL); 3573 } 3574 3575 /* 3576 * Pick a unique ifindex. 3577 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3578 * flag is set so that next time time ip_assign_ifindex() is called, it 3579 * falls through and resets the index counter back to 1, the minimum value 3580 * for the interface index. The logic below assumes that ips_ill_index 3581 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3582 * (i.e. reset back to 0.) 3583 */ 3584 boolean_t 3585 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3586 { 3587 uint_t loops; 3588 3589 if (!ipst->ips_ill_index_wrap) { 3590 *indexp = ipst->ips_ill_index++; 3591 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3592 /* 3593 * Reached the maximum ifindex value, set the wrap 3594 * flag to indicate that it is no longer possible 3595 * to assume that a given index is unallocated. 3596 */ 3597 ipst->ips_ill_index_wrap = B_TRUE; 3598 } 3599 return (B_TRUE); 3600 } 3601 3602 if (ipst->ips_ill_index > IF_INDEX_MAX) 3603 ipst->ips_ill_index = 1; 3604 3605 /* 3606 * Start reusing unused indexes. Note that we hold the ill_g_lock 3607 * at this point and don't want to call any function that attempts 3608 * to get the lock again. 3609 */ 3610 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3611 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3612 /* found unused index - use it */ 3613 *indexp = ipst->ips_ill_index; 3614 return (B_TRUE); 3615 } 3616 3617 ipst->ips_ill_index++; 3618 if (ipst->ips_ill_index > IF_INDEX_MAX) 3619 ipst->ips_ill_index = 1; 3620 } 3621 3622 /* 3623 * all interface indicies are inuse. 3624 */ 3625 return (B_FALSE); 3626 } 3627 3628 /* 3629 * Assign a unique interface index for the phyint. 3630 */ 3631 static boolean_t 3632 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3633 { 3634 ASSERT(phyi->phyint_ifindex == 0); 3635 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3636 } 3637 3638 /* 3639 * Initialize the flags on `phyi' as per the provided mactype. 3640 */ 3641 static void 3642 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3643 { 3644 uint64_t flags = 0; 3645 3646 /* 3647 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3648 * we always presume the underlying hardware is working and set 3649 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3650 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3651 * there are no active interfaces in the group so we set PHYI_FAILED. 3652 */ 3653 if (mactype == SUNW_DL_IPMP) 3654 flags |= PHYI_FAILED; 3655 else 3656 flags |= PHYI_RUNNING; 3657 3658 switch (mactype) { 3659 case SUNW_DL_VNI: 3660 flags |= PHYI_VIRTUAL; 3661 break; 3662 case SUNW_DL_IPMP: 3663 flags |= PHYI_IPMP; 3664 break; 3665 case DL_LOOP: 3666 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3667 break; 3668 } 3669 3670 mutex_enter(&phyi->phyint_lock); 3671 phyi->phyint_flags |= flags; 3672 mutex_exit(&phyi->phyint_lock); 3673 } 3674 3675 /* 3676 * Return a pointer to the ill which matches the supplied name. Note that 3677 * the ill name length includes the null termination character. (May be 3678 * called as writer.) 3679 * If do_alloc and the interface is "lo0" it will be automatically created. 3680 * Cannot bump up reference on condemned ills. So dup detect can't be done 3681 * using this func. 3682 */ 3683 ill_t * 3684 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3685 boolean_t *did_alloc, ip_stack_t *ipst) 3686 { 3687 ill_t *ill; 3688 ipif_t *ipif; 3689 ipsq_t *ipsq; 3690 kstat_named_t *kn; 3691 boolean_t isloopback; 3692 in6_addr_t ov6addr; 3693 3694 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3695 3696 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3697 ill = ill_find_by_name(name, isv6, ipst); 3698 rw_exit(&ipst->ips_ill_g_lock); 3699 if (ill != NULL) 3700 return (ill); 3701 3702 /* 3703 * Couldn't find it. Does this happen to be a lookup for the 3704 * loopback device and are we allowed to allocate it? 3705 */ 3706 if (!isloopback || !do_alloc) 3707 return (NULL); 3708 3709 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3710 ill = ill_find_by_name(name, isv6, ipst); 3711 if (ill != NULL) { 3712 rw_exit(&ipst->ips_ill_g_lock); 3713 return (ill); 3714 } 3715 3716 /* Create the loopback device on demand */ 3717 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3718 sizeof (ipif_loopback_name), BPRI_MED)); 3719 if (ill == NULL) 3720 goto done; 3721 3722 bzero(ill, sizeof (*ill)); 3723 ill->ill_ipst = ipst; 3724 netstack_hold(ipst->ips_netstack); 3725 /* 3726 * For exclusive stacks we set the zoneid to zero 3727 * to make IP operate as if in the global zone. 3728 */ 3729 ill->ill_zoneid = GLOBAL_ZONEID; 3730 3731 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3732 goto done; 3733 3734 if (!ill_allocate_mibs(ill)) 3735 goto done; 3736 3737 ill->ill_current_frag = ill->ill_max_frag; 3738 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3739 ill->ill_mc_mtu = ill->ill_mtu; 3740 /* 3741 * ipif_loopback_name can't be pointed at directly because its used 3742 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3743 * from the glist, ill_glist_delete() sets the first character of 3744 * ill_name to '\0'. 3745 */ 3746 ill->ill_name = (char *)ill + sizeof (*ill); 3747 (void) strcpy(ill->ill_name, ipif_loopback_name); 3748 ill->ill_name_length = sizeof (ipif_loopback_name); 3749 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3750 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3751 3752 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3753 if (ipif == NULL) 3754 goto done; 3755 3756 ill->ill_flags = ILLF_MULTICAST; 3757 3758 ov6addr = ipif->ipif_v6lcl_addr; 3759 /* Set up default loopback address and mask. */ 3760 if (!isv6) { 3761 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3762 3763 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3764 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3765 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3766 ipif->ipif_v6subnet); 3767 ill->ill_flags |= ILLF_IPV4; 3768 } else { 3769 ipif->ipif_v6lcl_addr = ipv6_loopback; 3770 ipif->ipif_v6net_mask = ipv6_all_ones; 3771 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3772 ipif->ipif_v6subnet); 3773 ill->ill_flags |= ILLF_IPV6; 3774 } 3775 3776 /* 3777 * Chain us in at the end of the ill list. hold the ill 3778 * before we make it globally visible. 1 for the lookup. 3779 */ 3780 ill_refhold(ill); 3781 3782 ipsq = ill->ill_phyint->phyint_ipsq; 3783 3784 if (ill_glist_insert(ill, "lo", isv6) != 0) 3785 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3786 3787 /* Let SCTP know so that it can add this to its list */ 3788 sctp_update_ill(ill, SCTP_ILL_INSERT); 3789 3790 /* 3791 * We have already assigned ipif_v6lcl_addr above, but we need to 3792 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3793 * requires to be after ill_glist_insert() since we need the 3794 * ill_index set. Pass on ipv6_loopback as the old address. 3795 */ 3796 sctp_update_ipif_addr(ipif, ov6addr); 3797 3798 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3799 3800 /* 3801 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3802 * If so, free our original one. 3803 */ 3804 if (ipsq != ill->ill_phyint->phyint_ipsq) 3805 ipsq_delete(ipsq); 3806 3807 if (ipst->ips_loopback_ksp == NULL) { 3808 /* Export loopback interface statistics */ 3809 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3810 ipif_loopback_name, "net", 3811 KSTAT_TYPE_NAMED, 2, 0, 3812 ipst->ips_netstack->netstack_stackid); 3813 if (ipst->ips_loopback_ksp != NULL) { 3814 ipst->ips_loopback_ksp->ks_update = 3815 loopback_kstat_update; 3816 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3817 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3818 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3819 ipst->ips_loopback_ksp->ks_private = 3820 (void *)(uintptr_t)ipst->ips_netstack-> 3821 netstack_stackid; 3822 kstat_install(ipst->ips_loopback_ksp); 3823 } 3824 } 3825 3826 *did_alloc = B_TRUE; 3827 rw_exit(&ipst->ips_ill_g_lock); 3828 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3829 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3830 return (ill); 3831 done: 3832 if (ill != NULL) { 3833 if (ill->ill_phyint != NULL) { 3834 ipsq = ill->ill_phyint->phyint_ipsq; 3835 if (ipsq != NULL) { 3836 ipsq->ipsq_phyint = NULL; 3837 ipsq_delete(ipsq); 3838 } 3839 mi_free(ill->ill_phyint); 3840 } 3841 ill_free_mib(ill); 3842 if (ill->ill_ipst != NULL) 3843 netstack_rele(ill->ill_ipst->ips_netstack); 3844 mi_free(ill); 3845 } 3846 rw_exit(&ipst->ips_ill_g_lock); 3847 return (NULL); 3848 } 3849 3850 /* 3851 * For IPP calls - use the ip_stack_t for global stack. 3852 */ 3853 ill_t * 3854 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3855 { 3856 ip_stack_t *ipst; 3857 ill_t *ill; 3858 3859 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3860 if (ipst == NULL) { 3861 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3862 return (NULL); 3863 } 3864 3865 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3866 netstack_rele(ipst->ips_netstack); 3867 return (ill); 3868 } 3869 3870 /* 3871 * Return a pointer to the ill which matches the index and IP version type. 3872 */ 3873 ill_t * 3874 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3875 { 3876 ill_t *ill; 3877 phyint_t *phyi; 3878 3879 /* 3880 * Indexes are stored in the phyint - a common structure 3881 * to both IPv4 and IPv6. 3882 */ 3883 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3884 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3885 (void *) &index, NULL); 3886 if (phyi != NULL) { 3887 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3888 if (ill != NULL) { 3889 mutex_enter(&ill->ill_lock); 3890 if (!ILL_IS_CONDEMNED(ill)) { 3891 ill_refhold_locked(ill); 3892 mutex_exit(&ill->ill_lock); 3893 rw_exit(&ipst->ips_ill_g_lock); 3894 return (ill); 3895 } 3896 mutex_exit(&ill->ill_lock); 3897 } 3898 } 3899 rw_exit(&ipst->ips_ill_g_lock); 3900 return (NULL); 3901 } 3902 3903 /* 3904 * Verify whether or not an interface index is valid for the specified zoneid 3905 * to transmit packets. 3906 * It can be zero (meaning "reset") or an interface index assigned 3907 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3908 */ 3909 boolean_t 3910 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3911 ip_stack_t *ipst) 3912 { 3913 ill_t *ill; 3914 3915 if (ifindex == 0) 3916 return (B_TRUE); 3917 3918 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3919 if (ill == NULL) 3920 return (B_FALSE); 3921 if (IS_VNI(ill)) { 3922 ill_refrele(ill); 3923 return (B_FALSE); 3924 } 3925 ill_refrele(ill); 3926 return (B_TRUE); 3927 } 3928 3929 /* 3930 * Return the ifindex next in sequence after the passed in ifindex. 3931 * If there is no next ifindex for the given protocol, return 0. 3932 */ 3933 uint_t 3934 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3935 { 3936 phyint_t *phyi; 3937 phyint_t *phyi_initial; 3938 uint_t ifindex; 3939 3940 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3941 3942 if (index == 0) { 3943 phyi = avl_first( 3944 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3945 } else { 3946 phyi = phyi_initial = avl_find( 3947 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3948 (void *) &index, NULL); 3949 } 3950 3951 for (; phyi != NULL; 3952 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3953 phyi, AVL_AFTER)) { 3954 /* 3955 * If we're not returning the first interface in the tree 3956 * and we still haven't moved past the phyint_t that 3957 * corresponds to index, avl_walk needs to be called again 3958 */ 3959 if (!((index != 0) && (phyi == phyi_initial))) { 3960 if (isv6) { 3961 if ((phyi->phyint_illv6) && 3962 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3963 (phyi->phyint_illv6->ill_isv6 == 1)) 3964 break; 3965 } else { 3966 if ((phyi->phyint_illv4) && 3967 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3968 (phyi->phyint_illv4->ill_isv6 == 0)) 3969 break; 3970 } 3971 } 3972 } 3973 3974 rw_exit(&ipst->ips_ill_g_lock); 3975 3976 if (phyi != NULL) 3977 ifindex = phyi->phyint_ifindex; 3978 else 3979 ifindex = 0; 3980 3981 return (ifindex); 3982 } 3983 3984 /* 3985 * Return the ifindex for the named interface. 3986 * If there is no next ifindex for the interface, return 0. 3987 */ 3988 uint_t 3989 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3990 { 3991 phyint_t *phyi; 3992 avl_index_t where = 0; 3993 uint_t ifindex; 3994 3995 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3996 3997 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3998 name, &where)) == NULL) { 3999 rw_exit(&ipst->ips_ill_g_lock); 4000 return (0); 4001 } 4002 4003 ifindex = phyi->phyint_ifindex; 4004 4005 rw_exit(&ipst->ips_ill_g_lock); 4006 4007 return (ifindex); 4008 } 4009 4010 /* 4011 * Return the ifindex to be used by upper layer protocols for instance 4012 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4013 */ 4014 uint_t 4015 ill_get_upper_ifindex(const ill_t *ill) 4016 { 4017 if (IS_UNDER_IPMP(ill)) 4018 return (ipmp_ill_get_ipmp_ifindex(ill)); 4019 else 4020 return (ill->ill_phyint->phyint_ifindex); 4021 } 4022 4023 4024 /* 4025 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4026 * that gives a running thread a reference to the ill. This reference must be 4027 * released by the thread when it is done accessing the ill and related 4028 * objects. ill_refcnt can not be used to account for static references 4029 * such as other structures pointing to an ill. Callers must generally 4030 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4031 * or be sure that the ill is not being deleted or changing state before 4032 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4033 * ill won't change any of its critical state such as address, netmask etc. 4034 */ 4035 void 4036 ill_refhold(ill_t *ill) 4037 { 4038 mutex_enter(&ill->ill_lock); 4039 ill->ill_refcnt++; 4040 ILL_TRACE_REF(ill); 4041 mutex_exit(&ill->ill_lock); 4042 } 4043 4044 void 4045 ill_refhold_locked(ill_t *ill) 4046 { 4047 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4048 ill->ill_refcnt++; 4049 ILL_TRACE_REF(ill); 4050 } 4051 4052 /* Returns true if we managed to get a refhold */ 4053 boolean_t 4054 ill_check_and_refhold(ill_t *ill) 4055 { 4056 mutex_enter(&ill->ill_lock); 4057 if (!ILL_IS_CONDEMNED(ill)) { 4058 ill_refhold_locked(ill); 4059 mutex_exit(&ill->ill_lock); 4060 return (B_TRUE); 4061 } 4062 mutex_exit(&ill->ill_lock); 4063 return (B_FALSE); 4064 } 4065 4066 /* 4067 * Must not be called while holding any locks. Otherwise if this is 4068 * the last reference to be released, there is a chance of recursive mutex 4069 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4070 * to restart an ioctl. 4071 */ 4072 void 4073 ill_refrele(ill_t *ill) 4074 { 4075 mutex_enter(&ill->ill_lock); 4076 ASSERT(ill->ill_refcnt != 0); 4077 ill->ill_refcnt--; 4078 ILL_UNTRACE_REF(ill); 4079 if (ill->ill_refcnt != 0) { 4080 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4081 mutex_exit(&ill->ill_lock); 4082 return; 4083 } 4084 4085 /* Drops the ill_lock */ 4086 ipif_ill_refrele_tail(ill); 4087 } 4088 4089 /* 4090 * Obtain a weak reference count on the ill. This reference ensures the 4091 * ill won't be freed, but the ill may change any of its critical state 4092 * such as netmask, address etc. Returns an error if the ill has started 4093 * closing. 4094 */ 4095 boolean_t 4096 ill_waiter_inc(ill_t *ill) 4097 { 4098 mutex_enter(&ill->ill_lock); 4099 if (ill->ill_state_flags & ILL_CONDEMNED) { 4100 mutex_exit(&ill->ill_lock); 4101 return (B_FALSE); 4102 } 4103 ill->ill_waiters++; 4104 mutex_exit(&ill->ill_lock); 4105 return (B_TRUE); 4106 } 4107 4108 void 4109 ill_waiter_dcr(ill_t *ill) 4110 { 4111 mutex_enter(&ill->ill_lock); 4112 ill->ill_waiters--; 4113 if (ill->ill_waiters == 0) 4114 cv_broadcast(&ill->ill_cv); 4115 mutex_exit(&ill->ill_lock); 4116 } 4117 4118 /* 4119 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4120 * driver. We construct best guess defaults for lower level information that 4121 * we need. If an interface is brought up without injection of any overriding 4122 * information from outside, we have to be ready to go with these defaults. 4123 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4124 * we primarely want the dl_provider_style. 4125 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4126 * at which point we assume the other part of the information is valid. 4127 */ 4128 void 4129 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4130 { 4131 uchar_t *brdcst_addr; 4132 uint_t brdcst_addr_length, phys_addr_length; 4133 t_scalar_t sap_length; 4134 dl_info_ack_t *dlia; 4135 ip_m_t *ipm; 4136 dl_qos_cl_sel1_t *sel1; 4137 int min_mtu; 4138 4139 ASSERT(IAM_WRITER_ILL(ill)); 4140 4141 /* 4142 * Till the ill is fully up the ill is not globally visible. 4143 * So no need for a lock. 4144 */ 4145 dlia = (dl_info_ack_t *)mp->b_rptr; 4146 ill->ill_mactype = dlia->dl_mac_type; 4147 4148 ipm = ip_m_lookup(dlia->dl_mac_type); 4149 if (ipm == NULL) { 4150 ipm = ip_m_lookup(DL_OTHER); 4151 ASSERT(ipm != NULL); 4152 } 4153 ill->ill_media = ipm; 4154 4155 /* 4156 * When the new DLPI stuff is ready we'll pull lengths 4157 * from dlia. 4158 */ 4159 if (dlia->dl_version == DL_VERSION_2) { 4160 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4161 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4162 brdcst_addr_length); 4163 if (brdcst_addr == NULL) { 4164 brdcst_addr_length = 0; 4165 } 4166 sap_length = dlia->dl_sap_length; 4167 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4168 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4169 brdcst_addr_length, sap_length, phys_addr_length)); 4170 } else { 4171 brdcst_addr_length = 6; 4172 brdcst_addr = ip_six_byte_all_ones; 4173 sap_length = -2; 4174 phys_addr_length = brdcst_addr_length; 4175 } 4176 4177 ill->ill_bcast_addr_length = brdcst_addr_length; 4178 ill->ill_phys_addr_length = phys_addr_length; 4179 ill->ill_sap_length = sap_length; 4180 4181 /* 4182 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4183 * but we must ensure a minimum IP MTU is used since other bits of 4184 * IP will fly apart otherwise. 4185 */ 4186 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4187 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4188 ill->ill_current_frag = ill->ill_max_frag; 4189 ill->ill_mtu = ill->ill_max_frag; 4190 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4191 4192 ill->ill_type = ipm->ip_m_type; 4193 4194 if (!ill->ill_dlpi_style_set) { 4195 if (dlia->dl_provider_style == DL_STYLE2) 4196 ill->ill_needs_attach = 1; 4197 4198 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4199 4200 /* 4201 * Allocate the first ipif on this ill. We don't delay it 4202 * further as ioctl handling assumes at least one ipif exists. 4203 * 4204 * At this point we don't know whether the ill is v4 or v6. 4205 * We will know this whan the SIOCSLIFNAME happens and 4206 * the correct value for ill_isv6 will be assigned in 4207 * ipif_set_values(). We need to hold the ill lock and 4208 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4209 * the wakeup. 4210 */ 4211 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4212 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4213 mutex_enter(&ill->ill_lock); 4214 ASSERT(ill->ill_dlpi_style_set == 0); 4215 ill->ill_dlpi_style_set = 1; 4216 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4217 cv_broadcast(&ill->ill_cv); 4218 mutex_exit(&ill->ill_lock); 4219 freemsg(mp); 4220 return; 4221 } 4222 ASSERT(ill->ill_ipif != NULL); 4223 /* 4224 * We know whether it is IPv4 or IPv6 now, as this is the 4225 * second DL_INFO_ACK we are recieving in response to the 4226 * DL_INFO_REQ sent in ipif_set_values. 4227 */ 4228 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4229 /* 4230 * Clear all the flags that were set based on ill_bcast_addr_length 4231 * and ill_phys_addr_length (in ipif_set_values) as these could have 4232 * changed now and we need to re-evaluate. 4233 */ 4234 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4235 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4236 4237 /* 4238 * Free ill_bcast_mp as things could have changed now. 4239 * 4240 * NOTE: The IPMP meta-interface is special-cased because it starts 4241 * with no underlying interfaces (and thus an unknown broadcast 4242 * address length), but we enforce that an interface is broadcast- 4243 * capable as part of allowing it to join a group. 4244 */ 4245 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4246 if (ill->ill_bcast_mp != NULL) 4247 freemsg(ill->ill_bcast_mp); 4248 ill->ill_net_type = IRE_IF_NORESOLVER; 4249 4250 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4251 ill->ill_phys_addr_length, 4252 ill->ill_sap, 4253 ill->ill_sap_length); 4254 4255 if (ill->ill_isv6) 4256 /* 4257 * Note: xresolv interfaces will eventually need NOARP 4258 * set here as well, but that will require those 4259 * external resolvers to have some knowledge of 4260 * that flag and act appropriately. Not to be changed 4261 * at present. 4262 */ 4263 ill->ill_flags |= ILLF_NONUD; 4264 else 4265 ill->ill_flags |= ILLF_NOARP; 4266 4267 if (ill->ill_mactype == SUNW_DL_VNI) { 4268 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4269 } else if (ill->ill_phys_addr_length == 0 || 4270 ill->ill_mactype == DL_IPV4 || 4271 ill->ill_mactype == DL_IPV6) { 4272 /* 4273 * The underying link is point-to-point, so mark the 4274 * interface as such. We can do IP multicast over 4275 * such a link since it transmits all network-layer 4276 * packets to the remote side the same way. 4277 */ 4278 ill->ill_flags |= ILLF_MULTICAST; 4279 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4280 } 4281 } else { 4282 ill->ill_net_type = IRE_IF_RESOLVER; 4283 if (ill->ill_bcast_mp != NULL) 4284 freemsg(ill->ill_bcast_mp); 4285 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4286 ill->ill_bcast_addr_length, ill->ill_sap, 4287 ill->ill_sap_length); 4288 /* 4289 * Later detect lack of DLPI driver multicast 4290 * capability by catching DL_ENABMULTI errors in 4291 * ip_rput_dlpi. 4292 */ 4293 ill->ill_flags |= ILLF_MULTICAST; 4294 if (!ill->ill_isv6) 4295 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4296 } 4297 4298 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4299 if (ill->ill_mactype == SUNW_DL_IPMP) 4300 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4301 4302 /* By default an interface does not support any CoS marking */ 4303 ill->ill_flags &= ~ILLF_COS_ENABLED; 4304 4305 /* 4306 * If we get QoS information in DL_INFO_ACK, the device supports 4307 * some form of CoS marking, set ILLF_COS_ENABLED. 4308 */ 4309 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4310 dlia->dl_qos_length); 4311 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4312 ill->ill_flags |= ILLF_COS_ENABLED; 4313 } 4314 4315 /* Clear any previous error indication. */ 4316 ill->ill_error = 0; 4317 freemsg(mp); 4318 } 4319 4320 /* 4321 * Perform various checks to verify that an address would make sense as a 4322 * local, remote, or subnet interface address. 4323 */ 4324 static boolean_t 4325 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4326 { 4327 ipaddr_t net_mask; 4328 4329 /* 4330 * Don't allow all zeroes, or all ones, but allow 4331 * all ones netmask. 4332 */ 4333 if ((net_mask = ip_net_mask(addr)) == 0) 4334 return (B_FALSE); 4335 /* A given netmask overrides the "guess" netmask */ 4336 if (subnet_mask != 0) 4337 net_mask = subnet_mask; 4338 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4339 (addr == (addr | ~net_mask)))) { 4340 return (B_FALSE); 4341 } 4342 4343 /* 4344 * Even if the netmask is all ones, we do not allow address to be 4345 * 255.255.255.255 4346 */ 4347 if (addr == INADDR_BROADCAST) 4348 return (B_FALSE); 4349 4350 if (CLASSD(addr)) 4351 return (B_FALSE); 4352 4353 return (B_TRUE); 4354 } 4355 4356 #define V6_IPIF_LINKLOCAL(p) \ 4357 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4358 4359 /* 4360 * Compare two given ipifs and check if the second one is better than 4361 * the first one using the order of preference (not taking deprecated 4362 * into acount) specified in ipif_lookup_multicast(). 4363 */ 4364 static boolean_t 4365 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4366 { 4367 /* Check the least preferred first. */ 4368 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4369 /* If both ipifs are the same, use the first one. */ 4370 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4371 return (B_FALSE); 4372 else 4373 return (B_TRUE); 4374 } 4375 4376 /* For IPv6, check for link local address. */ 4377 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4378 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4379 V6_IPIF_LINKLOCAL(new_ipif)) { 4380 /* The second one is equal or less preferred. */ 4381 return (B_FALSE); 4382 } else { 4383 return (B_TRUE); 4384 } 4385 } 4386 4387 /* Then check for point to point interface. */ 4388 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4389 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4390 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4391 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4392 return (B_FALSE); 4393 } else { 4394 return (B_TRUE); 4395 } 4396 } 4397 4398 /* old_ipif is a normal interface, so no need to use the new one. */ 4399 return (B_FALSE); 4400 } 4401 4402 /* 4403 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4404 * The ipif must be up, and its ill must multicast-capable, not 4405 * condemned, not an underlying interface in an IPMP group, and 4406 * not a VNI interface. Order of preference: 4407 * 4408 * 1a. normal 4409 * 1b. normal, but deprecated 4410 * 2a. point to point 4411 * 2b. point to point, but deprecated 4412 * 3a. link local 4413 * 3b. link local, but deprecated 4414 * 4. loopback. 4415 */ 4416 static ipif_t * 4417 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4418 { 4419 ill_t *ill; 4420 ill_walk_context_t ctx; 4421 ipif_t *ipif; 4422 ipif_t *saved_ipif = NULL; 4423 ipif_t *dep_ipif = NULL; 4424 4425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4426 if (isv6) 4427 ill = ILL_START_WALK_V6(&ctx, ipst); 4428 else 4429 ill = ILL_START_WALK_V4(&ctx, ipst); 4430 4431 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4432 mutex_enter(&ill->ill_lock); 4433 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4434 ILL_IS_CONDEMNED(ill) || 4435 !(ill->ill_flags & ILLF_MULTICAST)) { 4436 mutex_exit(&ill->ill_lock); 4437 continue; 4438 } 4439 for (ipif = ill->ill_ipif; ipif != NULL; 4440 ipif = ipif->ipif_next) { 4441 if (zoneid != ipif->ipif_zoneid && 4442 zoneid != ALL_ZONES && 4443 ipif->ipif_zoneid != ALL_ZONES) { 4444 continue; 4445 } 4446 if (!(ipif->ipif_flags & IPIF_UP) || 4447 IPIF_IS_CONDEMNED(ipif)) { 4448 continue; 4449 } 4450 4451 /* 4452 * Found one candidate. If it is deprecated, 4453 * remember it in dep_ipif. If it is not deprecated, 4454 * remember it in saved_ipif. 4455 */ 4456 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4457 if (dep_ipif == NULL) { 4458 dep_ipif = ipif; 4459 } else if (ipif_comp_multi(dep_ipif, ipif, 4460 isv6)) { 4461 /* 4462 * If the previous dep_ipif does not 4463 * belong to the same ill, we've done 4464 * a ipif_refhold() on it. So we need 4465 * to release it. 4466 */ 4467 if (dep_ipif->ipif_ill != ill) 4468 ipif_refrele(dep_ipif); 4469 dep_ipif = ipif; 4470 } 4471 continue; 4472 } 4473 if (saved_ipif == NULL) { 4474 saved_ipif = ipif; 4475 } else { 4476 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4477 if (saved_ipif->ipif_ill != ill) 4478 ipif_refrele(saved_ipif); 4479 saved_ipif = ipif; 4480 } 4481 } 4482 } 4483 /* 4484 * Before going to the next ill, do a ipif_refhold() on the 4485 * saved ones. 4486 */ 4487 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4488 ipif_refhold_locked(saved_ipif); 4489 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4490 ipif_refhold_locked(dep_ipif); 4491 mutex_exit(&ill->ill_lock); 4492 } 4493 rw_exit(&ipst->ips_ill_g_lock); 4494 4495 /* 4496 * If we have only the saved_ipif, return it. But if we have both 4497 * saved_ipif and dep_ipif, check to see which one is better. 4498 */ 4499 if (saved_ipif != NULL) { 4500 if (dep_ipif != NULL) { 4501 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4502 ipif_refrele(saved_ipif); 4503 return (dep_ipif); 4504 } else { 4505 ipif_refrele(dep_ipif); 4506 return (saved_ipif); 4507 } 4508 } 4509 return (saved_ipif); 4510 } else { 4511 return (dep_ipif); 4512 } 4513 } 4514 4515 ill_t * 4516 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4517 { 4518 ipif_t *ipif; 4519 ill_t *ill; 4520 4521 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4522 if (ipif == NULL) 4523 return (NULL); 4524 4525 ill = ipif->ipif_ill; 4526 ill_refhold(ill); 4527 ipif_refrele(ipif); 4528 return (ill); 4529 } 4530 4531 /* 4532 * This function is called when an application does not specify an interface 4533 * to be used for multicast traffic (joining a group/sending data). It 4534 * calls ire_lookup_multi() to look for an interface route for the 4535 * specified multicast group. Doing this allows the administrator to add 4536 * prefix routes for multicast to indicate which interface to be used for 4537 * multicast traffic in the above scenario. The route could be for all 4538 * multicast (224.0/4), for a single multicast group (a /32 route) or 4539 * anything in between. If there is no such multicast route, we just find 4540 * any multicast capable interface and return it. The returned ipif 4541 * is refhold'ed. 4542 * 4543 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4544 * unicast table. This is used by CGTP. 4545 */ 4546 ill_t * 4547 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4548 boolean_t *multirtp, ipaddr_t *setsrcp) 4549 { 4550 ill_t *ill; 4551 4552 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4553 if (ill != NULL) 4554 return (ill); 4555 4556 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4557 } 4558 4559 /* 4560 * Look for an ipif with the specified interface address and destination. 4561 * The destination address is used only for matching point-to-point interfaces. 4562 */ 4563 ipif_t * 4564 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4565 { 4566 ipif_t *ipif; 4567 ill_t *ill; 4568 ill_walk_context_t ctx; 4569 4570 /* 4571 * First match all the point-to-point interfaces 4572 * before looking at non-point-to-point interfaces. 4573 * This is done to avoid returning non-point-to-point 4574 * ipif instead of unnumbered point-to-point ipif. 4575 */ 4576 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4577 ill = ILL_START_WALK_V4(&ctx, ipst); 4578 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4579 mutex_enter(&ill->ill_lock); 4580 for (ipif = ill->ill_ipif; ipif != NULL; 4581 ipif = ipif->ipif_next) { 4582 /* Allow the ipif to be down */ 4583 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4584 (ipif->ipif_lcl_addr == if_addr) && 4585 (ipif->ipif_pp_dst_addr == dst)) { 4586 if (!IPIF_IS_CONDEMNED(ipif)) { 4587 ipif_refhold_locked(ipif); 4588 mutex_exit(&ill->ill_lock); 4589 rw_exit(&ipst->ips_ill_g_lock); 4590 return (ipif); 4591 } 4592 } 4593 } 4594 mutex_exit(&ill->ill_lock); 4595 } 4596 rw_exit(&ipst->ips_ill_g_lock); 4597 4598 /* lookup the ipif based on interface address */ 4599 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4600 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4601 return (ipif); 4602 } 4603 4604 /* 4605 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4606 */ 4607 static ipif_t * 4608 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4609 zoneid_t zoneid, ip_stack_t *ipst) 4610 { 4611 ipif_t *ipif; 4612 ill_t *ill; 4613 boolean_t ptp = B_FALSE; 4614 ill_walk_context_t ctx; 4615 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4616 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4617 4618 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4619 /* 4620 * Repeat twice, first based on local addresses and 4621 * next time for pointopoint. 4622 */ 4623 repeat: 4624 ill = ILL_START_WALK_V4(&ctx, ipst); 4625 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4626 if (match_ill != NULL && ill != match_ill && 4627 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4628 continue; 4629 } 4630 mutex_enter(&ill->ill_lock); 4631 for (ipif = ill->ill_ipif; ipif != NULL; 4632 ipif = ipif->ipif_next) { 4633 if (zoneid != ALL_ZONES && 4634 zoneid != ipif->ipif_zoneid && 4635 ipif->ipif_zoneid != ALL_ZONES) 4636 continue; 4637 4638 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4639 continue; 4640 4641 /* Allow the ipif to be down */ 4642 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4643 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4644 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4645 (ipif->ipif_pp_dst_addr == addr))) { 4646 if (!IPIF_IS_CONDEMNED(ipif)) { 4647 ipif_refhold_locked(ipif); 4648 mutex_exit(&ill->ill_lock); 4649 rw_exit(&ipst->ips_ill_g_lock); 4650 return (ipif); 4651 } 4652 } 4653 } 4654 mutex_exit(&ill->ill_lock); 4655 } 4656 4657 /* If we already did the ptp case, then we are done */ 4658 if (ptp) { 4659 rw_exit(&ipst->ips_ill_g_lock); 4660 return (NULL); 4661 } 4662 ptp = B_TRUE; 4663 goto repeat; 4664 } 4665 4666 /* 4667 * Lookup an ipif with the specified address. For point-to-point links we 4668 * look for matches on either the destination address or the local address, 4669 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4670 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4671 * (or illgrp if `match_ill' is in an IPMP group). 4672 */ 4673 ipif_t * 4674 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4675 ip_stack_t *ipst) 4676 { 4677 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4678 zoneid, ipst)); 4679 } 4680 4681 /* 4682 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4683 * except that we will only return an address if it is not marked as 4684 * IPIF_DUPLICATE 4685 */ 4686 ipif_t * 4687 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4688 ip_stack_t *ipst) 4689 { 4690 return (ipif_lookup_addr_common(addr, match_ill, 4691 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4692 zoneid, ipst)); 4693 } 4694 4695 /* 4696 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4697 * `match_ill' across the IPMP group. This function is only needed in some 4698 * corner-cases; almost everything should use ipif_lookup_addr(). 4699 */ 4700 ipif_t * 4701 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4702 { 4703 ASSERT(match_ill != NULL); 4704 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4705 ipst)); 4706 } 4707 4708 /* 4709 * Look for an ipif with the specified address. For point-point links 4710 * we look for matches on either the destination address and the local 4711 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4712 * is set. 4713 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4714 * ill (or illgrp if `match_ill' is in an IPMP group). 4715 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4716 */ 4717 zoneid_t 4718 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4719 { 4720 zoneid_t zoneid; 4721 ipif_t *ipif; 4722 ill_t *ill; 4723 boolean_t ptp = B_FALSE; 4724 ill_walk_context_t ctx; 4725 4726 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4727 /* 4728 * Repeat twice, first based on local addresses and 4729 * next time for pointopoint. 4730 */ 4731 repeat: 4732 ill = ILL_START_WALK_V4(&ctx, ipst); 4733 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4734 if (match_ill != NULL && ill != match_ill && 4735 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4736 continue; 4737 } 4738 mutex_enter(&ill->ill_lock); 4739 for (ipif = ill->ill_ipif; ipif != NULL; 4740 ipif = ipif->ipif_next) { 4741 /* Allow the ipif to be down */ 4742 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4743 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4744 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4745 (ipif->ipif_pp_dst_addr == addr)) && 4746 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4747 zoneid = ipif->ipif_zoneid; 4748 mutex_exit(&ill->ill_lock); 4749 rw_exit(&ipst->ips_ill_g_lock); 4750 /* 4751 * If ipif_zoneid was ALL_ZONES then we have 4752 * a trusted extensions shared IP address. 4753 * In that case GLOBAL_ZONEID works to send. 4754 */ 4755 if (zoneid == ALL_ZONES) 4756 zoneid = GLOBAL_ZONEID; 4757 return (zoneid); 4758 } 4759 } 4760 mutex_exit(&ill->ill_lock); 4761 } 4762 4763 /* If we already did the ptp case, then we are done */ 4764 if (ptp) { 4765 rw_exit(&ipst->ips_ill_g_lock); 4766 return (ALL_ZONES); 4767 } 4768 ptp = B_TRUE; 4769 goto repeat; 4770 } 4771 4772 /* 4773 * Look for an ipif that matches the specified remote address i.e. the 4774 * ipif that would receive the specified packet. 4775 * First look for directly connected interfaces and then do a recursive 4776 * IRE lookup and pick the first ipif corresponding to the source address in the 4777 * ire. 4778 * Returns: held ipif 4779 * 4780 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4781 */ 4782 ipif_t * 4783 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4784 { 4785 ipif_t *ipif; 4786 4787 ASSERT(!ill->ill_isv6); 4788 4789 /* 4790 * Someone could be changing this ipif currently or change it 4791 * after we return this. Thus a few packets could use the old 4792 * old values. However structure updates/creates (ire, ilg, ilm etc) 4793 * will atomically be updated or cleaned up with the new value 4794 * Thus we don't need a lock to check the flags or other attrs below. 4795 */ 4796 mutex_enter(&ill->ill_lock); 4797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4798 if (IPIF_IS_CONDEMNED(ipif)) 4799 continue; 4800 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4801 ipif->ipif_zoneid != ALL_ZONES) 4802 continue; 4803 /* Allow the ipif to be down */ 4804 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4805 if ((ipif->ipif_pp_dst_addr == addr) || 4806 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4807 ipif->ipif_lcl_addr == addr)) { 4808 ipif_refhold_locked(ipif); 4809 mutex_exit(&ill->ill_lock); 4810 return (ipif); 4811 } 4812 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4813 ipif_refhold_locked(ipif); 4814 mutex_exit(&ill->ill_lock); 4815 return (ipif); 4816 } 4817 } 4818 mutex_exit(&ill->ill_lock); 4819 /* 4820 * For a remote destination it isn't possible to nail down a particular 4821 * ipif. 4822 */ 4823 4824 /* Pick the first interface */ 4825 ipif = ipif_get_next_ipif(NULL, ill); 4826 return (ipif); 4827 } 4828 4829 /* 4830 * This func does not prevent refcnt from increasing. But if 4831 * the caller has taken steps to that effect, then this func 4832 * can be used to determine whether the ill has become quiescent 4833 */ 4834 static boolean_t 4835 ill_is_quiescent(ill_t *ill) 4836 { 4837 ipif_t *ipif; 4838 4839 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4840 4841 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4842 if (ipif->ipif_refcnt != 0) 4843 return (B_FALSE); 4844 } 4845 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4846 return (B_FALSE); 4847 } 4848 return (B_TRUE); 4849 } 4850 4851 boolean_t 4852 ill_is_freeable(ill_t *ill) 4853 { 4854 ipif_t *ipif; 4855 4856 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4857 4858 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4859 if (ipif->ipif_refcnt != 0) { 4860 return (B_FALSE); 4861 } 4862 } 4863 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4864 return (B_FALSE); 4865 } 4866 return (B_TRUE); 4867 } 4868 4869 /* 4870 * This func does not prevent refcnt from increasing. But if 4871 * the caller has taken steps to that effect, then this func 4872 * can be used to determine whether the ipif has become quiescent 4873 */ 4874 static boolean_t 4875 ipif_is_quiescent(ipif_t *ipif) 4876 { 4877 ill_t *ill; 4878 4879 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4880 4881 if (ipif->ipif_refcnt != 0) 4882 return (B_FALSE); 4883 4884 ill = ipif->ipif_ill; 4885 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4886 ill->ill_logical_down) { 4887 return (B_TRUE); 4888 } 4889 4890 /* This is the last ipif going down or being deleted on this ill */ 4891 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4892 return (B_FALSE); 4893 } 4894 4895 return (B_TRUE); 4896 } 4897 4898 /* 4899 * return true if the ipif can be destroyed: the ipif has to be quiescent 4900 * with zero references from ire/ilm to it. 4901 */ 4902 static boolean_t 4903 ipif_is_freeable(ipif_t *ipif) 4904 { 4905 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4906 ASSERT(ipif->ipif_id != 0); 4907 return (ipif->ipif_refcnt == 0); 4908 } 4909 4910 /* 4911 * The ipif/ill/ire has been refreled. Do the tail processing. 4912 * Determine if the ipif or ill in question has become quiescent and if so 4913 * wakeup close and/or restart any queued pending ioctl that is waiting 4914 * for the ipif_down (or ill_down) 4915 */ 4916 void 4917 ipif_ill_refrele_tail(ill_t *ill) 4918 { 4919 mblk_t *mp; 4920 conn_t *connp; 4921 ipsq_t *ipsq; 4922 ipxop_t *ipx; 4923 ipif_t *ipif; 4924 dl_notify_ind_t *dlindp; 4925 4926 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4927 4928 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4929 /* ip_modclose() may be waiting */ 4930 cv_broadcast(&ill->ill_cv); 4931 } 4932 4933 ipsq = ill->ill_phyint->phyint_ipsq; 4934 mutex_enter(&ipsq->ipsq_lock); 4935 ipx = ipsq->ipsq_xop; 4936 mutex_enter(&ipx->ipx_lock); 4937 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4938 goto unlock; 4939 4940 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4941 4942 ipif = ipx->ipx_pending_ipif; 4943 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4944 goto unlock; 4945 4946 switch (ipx->ipx_waitfor) { 4947 case IPIF_DOWN: 4948 if (!ipif_is_quiescent(ipif)) 4949 goto unlock; 4950 break; 4951 case IPIF_FREE: 4952 if (!ipif_is_freeable(ipif)) 4953 goto unlock; 4954 break; 4955 case ILL_DOWN: 4956 if (!ill_is_quiescent(ill)) 4957 goto unlock; 4958 break; 4959 case ILL_FREE: 4960 /* 4961 * ILL_FREE is only for loopback; normal ill teardown waits 4962 * synchronously in ip_modclose() without using ipx_waitfor, 4963 * handled by the cv_broadcast() at the top of this function. 4964 */ 4965 if (!ill_is_freeable(ill)) 4966 goto unlock; 4967 break; 4968 default: 4969 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4970 (void *)ipsq, ipx->ipx_waitfor); 4971 } 4972 4973 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4974 mutex_exit(&ipx->ipx_lock); 4975 mp = ipsq_pending_mp_get(ipsq, &connp); 4976 mutex_exit(&ipsq->ipsq_lock); 4977 mutex_exit(&ill->ill_lock); 4978 4979 ASSERT(mp != NULL); 4980 /* 4981 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4982 * we can only get here when the current operation decides it 4983 * it needs to quiesce via ipsq_pending_mp_add(). 4984 */ 4985 switch (mp->b_datap->db_type) { 4986 case M_PCPROTO: 4987 case M_PROTO: 4988 /* 4989 * For now, only DL_NOTIFY_IND messages can use this facility. 4990 */ 4991 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4992 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4993 4994 switch (dlindp->dl_notification) { 4995 case DL_NOTE_PHYS_ADDR: 4996 qwriter_ip(ill, ill->ill_rq, mp, 4997 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4998 return; 4999 case DL_NOTE_REPLUMB: 5000 qwriter_ip(ill, ill->ill_rq, mp, 5001 ill_replumb_tail, CUR_OP, B_TRUE); 5002 return; 5003 default: 5004 ASSERT(0); 5005 ill_refrele(ill); 5006 } 5007 break; 5008 5009 case M_ERROR: 5010 case M_HANGUP: 5011 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5012 B_TRUE); 5013 return; 5014 5015 case M_IOCTL: 5016 case M_IOCDATA: 5017 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5018 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5019 return; 5020 5021 default: 5022 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5023 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5024 } 5025 return; 5026 unlock: 5027 mutex_exit(&ipsq->ipsq_lock); 5028 mutex_exit(&ipx->ipx_lock); 5029 mutex_exit(&ill->ill_lock); 5030 } 5031 5032 #ifdef DEBUG 5033 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5034 static void 5035 th_trace_rrecord(th_trace_t *th_trace) 5036 { 5037 tr_buf_t *tr_buf; 5038 uint_t lastref; 5039 5040 lastref = th_trace->th_trace_lastref; 5041 lastref++; 5042 if (lastref == TR_BUF_MAX) 5043 lastref = 0; 5044 th_trace->th_trace_lastref = lastref; 5045 tr_buf = &th_trace->th_trbuf[lastref]; 5046 tr_buf->tr_time = ddi_get_lbolt(); 5047 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5048 } 5049 5050 static void 5051 th_trace_free(void *value) 5052 { 5053 th_trace_t *th_trace = value; 5054 5055 ASSERT(th_trace->th_refcnt == 0); 5056 kmem_free(th_trace, sizeof (*th_trace)); 5057 } 5058 5059 /* 5060 * Find or create the per-thread hash table used to track object references. 5061 * The ipst argument is NULL if we shouldn't allocate. 5062 * 5063 * Accesses per-thread data, so there's no need to lock here. 5064 */ 5065 static mod_hash_t * 5066 th_trace_gethash(ip_stack_t *ipst) 5067 { 5068 th_hash_t *thh; 5069 5070 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5071 mod_hash_t *mh; 5072 char name[256]; 5073 size_t objsize, rshift; 5074 int retv; 5075 5076 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5077 return (NULL); 5078 (void) snprintf(name, sizeof (name), "th_trace_%p", 5079 (void *)curthread); 5080 5081 /* 5082 * We use mod_hash_create_extended here rather than the more 5083 * obvious mod_hash_create_ptrhash because the latter has a 5084 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5085 * block. 5086 */ 5087 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5088 MAX(sizeof (ire_t), sizeof (ncec_t))); 5089 rshift = highbit(objsize); 5090 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5091 th_trace_free, mod_hash_byptr, (void *)rshift, 5092 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5093 if (mh == NULL) { 5094 kmem_free(thh, sizeof (*thh)); 5095 return (NULL); 5096 } 5097 thh->thh_hash = mh; 5098 thh->thh_ipst = ipst; 5099 /* 5100 * We trace ills, ipifs, ires, and nces. All of these are 5101 * per-IP-stack, so the lock on the thread list is as well. 5102 */ 5103 rw_enter(&ip_thread_rwlock, RW_WRITER); 5104 list_insert_tail(&ip_thread_list, thh); 5105 rw_exit(&ip_thread_rwlock); 5106 retv = tsd_set(ip_thread_data, thh); 5107 ASSERT(retv == 0); 5108 } 5109 return (thh != NULL ? thh->thh_hash : NULL); 5110 } 5111 5112 boolean_t 5113 th_trace_ref(const void *obj, ip_stack_t *ipst) 5114 { 5115 th_trace_t *th_trace; 5116 mod_hash_t *mh; 5117 mod_hash_val_t val; 5118 5119 if ((mh = th_trace_gethash(ipst)) == NULL) 5120 return (B_FALSE); 5121 5122 /* 5123 * Attempt to locate the trace buffer for this obj and thread. 5124 * If it does not exist, then allocate a new trace buffer and 5125 * insert into the hash. 5126 */ 5127 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5128 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5129 if (th_trace == NULL) 5130 return (B_FALSE); 5131 5132 th_trace->th_id = curthread; 5133 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5134 (mod_hash_val_t)th_trace) != 0) { 5135 kmem_free(th_trace, sizeof (th_trace_t)); 5136 return (B_FALSE); 5137 } 5138 } else { 5139 th_trace = (th_trace_t *)val; 5140 } 5141 5142 ASSERT(th_trace->th_refcnt >= 0 && 5143 th_trace->th_refcnt < TR_BUF_MAX - 1); 5144 5145 th_trace->th_refcnt++; 5146 th_trace_rrecord(th_trace); 5147 return (B_TRUE); 5148 } 5149 5150 /* 5151 * For the purpose of tracing a reference release, we assume that global 5152 * tracing is always on and that the same thread initiated the reference hold 5153 * is releasing. 5154 */ 5155 void 5156 th_trace_unref(const void *obj) 5157 { 5158 int retv; 5159 mod_hash_t *mh; 5160 th_trace_t *th_trace; 5161 mod_hash_val_t val; 5162 5163 mh = th_trace_gethash(NULL); 5164 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5165 ASSERT(retv == 0); 5166 th_trace = (th_trace_t *)val; 5167 5168 ASSERT(th_trace->th_refcnt > 0); 5169 th_trace->th_refcnt--; 5170 th_trace_rrecord(th_trace); 5171 } 5172 5173 /* 5174 * If tracing has been disabled, then we assume that the reference counts are 5175 * now useless, and we clear them out before destroying the entries. 5176 */ 5177 void 5178 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5179 { 5180 th_hash_t *thh; 5181 mod_hash_t *mh; 5182 mod_hash_val_t val; 5183 th_trace_t *th_trace; 5184 int retv; 5185 5186 rw_enter(&ip_thread_rwlock, RW_READER); 5187 for (thh = list_head(&ip_thread_list); thh != NULL; 5188 thh = list_next(&ip_thread_list, thh)) { 5189 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5190 &val) == 0) { 5191 th_trace = (th_trace_t *)val; 5192 if (trace_disable) 5193 th_trace->th_refcnt = 0; 5194 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5195 ASSERT(retv == 0); 5196 } 5197 } 5198 rw_exit(&ip_thread_rwlock); 5199 } 5200 5201 void 5202 ipif_trace_ref(ipif_t *ipif) 5203 { 5204 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5205 5206 if (ipif->ipif_trace_disable) 5207 return; 5208 5209 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5210 ipif->ipif_trace_disable = B_TRUE; 5211 ipif_trace_cleanup(ipif); 5212 } 5213 } 5214 5215 void 5216 ipif_untrace_ref(ipif_t *ipif) 5217 { 5218 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5219 5220 if (!ipif->ipif_trace_disable) 5221 th_trace_unref(ipif); 5222 } 5223 5224 void 5225 ill_trace_ref(ill_t *ill) 5226 { 5227 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5228 5229 if (ill->ill_trace_disable) 5230 return; 5231 5232 if (!th_trace_ref(ill, ill->ill_ipst)) { 5233 ill->ill_trace_disable = B_TRUE; 5234 ill_trace_cleanup(ill); 5235 } 5236 } 5237 5238 void 5239 ill_untrace_ref(ill_t *ill) 5240 { 5241 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5242 5243 if (!ill->ill_trace_disable) 5244 th_trace_unref(ill); 5245 } 5246 5247 /* 5248 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5249 * failure, ipif_trace_disable is set. 5250 */ 5251 static void 5252 ipif_trace_cleanup(const ipif_t *ipif) 5253 { 5254 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5255 } 5256 5257 /* 5258 * Called when ill is unplumbed or when memory alloc fails. Note that on 5259 * failure, ill_trace_disable is set. 5260 */ 5261 static void 5262 ill_trace_cleanup(const ill_t *ill) 5263 { 5264 th_trace_cleanup(ill, ill->ill_trace_disable); 5265 } 5266 #endif /* DEBUG */ 5267 5268 void 5269 ipif_refhold_locked(ipif_t *ipif) 5270 { 5271 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5272 ipif->ipif_refcnt++; 5273 IPIF_TRACE_REF(ipif); 5274 } 5275 5276 void 5277 ipif_refhold(ipif_t *ipif) 5278 { 5279 ill_t *ill; 5280 5281 ill = ipif->ipif_ill; 5282 mutex_enter(&ill->ill_lock); 5283 ipif->ipif_refcnt++; 5284 IPIF_TRACE_REF(ipif); 5285 mutex_exit(&ill->ill_lock); 5286 } 5287 5288 /* 5289 * Must not be called while holding any locks. Otherwise if this is 5290 * the last reference to be released there is a chance of recursive mutex 5291 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5292 * to restart an ioctl. 5293 */ 5294 void 5295 ipif_refrele(ipif_t *ipif) 5296 { 5297 ill_t *ill; 5298 5299 ill = ipif->ipif_ill; 5300 5301 mutex_enter(&ill->ill_lock); 5302 ASSERT(ipif->ipif_refcnt != 0); 5303 ipif->ipif_refcnt--; 5304 IPIF_UNTRACE_REF(ipif); 5305 if (ipif->ipif_refcnt != 0) { 5306 mutex_exit(&ill->ill_lock); 5307 return; 5308 } 5309 5310 /* Drops the ill_lock */ 5311 ipif_ill_refrele_tail(ill); 5312 } 5313 5314 ipif_t * 5315 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5316 { 5317 ipif_t *ipif; 5318 5319 mutex_enter(&ill->ill_lock); 5320 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5321 ipif != NULL; ipif = ipif->ipif_next) { 5322 if (IPIF_IS_CONDEMNED(ipif)) 5323 continue; 5324 ipif_refhold_locked(ipif); 5325 mutex_exit(&ill->ill_lock); 5326 return (ipif); 5327 } 5328 mutex_exit(&ill->ill_lock); 5329 return (NULL); 5330 } 5331 5332 /* 5333 * TODO: make this table extendible at run time 5334 * Return a pointer to the mac type info for 'mac_type' 5335 */ 5336 static ip_m_t * 5337 ip_m_lookup(t_uscalar_t mac_type) 5338 { 5339 ip_m_t *ipm; 5340 5341 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5342 if (ipm->ip_m_mac_type == mac_type) 5343 return (ipm); 5344 return (NULL); 5345 } 5346 5347 /* 5348 * Make a link layer address from the multicast IP address *addr. 5349 * To form the link layer address, invoke the ip_m_v*mapping function 5350 * associated with the link-layer type. 5351 */ 5352 void 5353 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5354 { 5355 ip_m_t *ipm; 5356 5357 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5358 return; 5359 5360 ASSERT(addr != NULL); 5361 5362 ipm = ip_m_lookup(ill->ill_mactype); 5363 if (ipm == NULL || 5364 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5365 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5366 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5367 ill->ill_name, ill->ill_mactype)); 5368 return; 5369 } 5370 if (ill->ill_isv6) 5371 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5372 else 5373 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5374 } 5375 5376 /* 5377 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5378 * Otherwise returns B_TRUE. 5379 * 5380 * The netmask can be verified to be contiguous with 32 shifts and or 5381 * operations. Take the contiguous mask (in host byte order) and compute 5382 * mask | mask << 1 | mask << 2 | ... | mask << 31 5383 * the result will be the same as the 'mask' for contiguous mask. 5384 */ 5385 static boolean_t 5386 ip_contiguous_mask(uint32_t mask) 5387 { 5388 uint32_t m = mask; 5389 int i; 5390 5391 for (i = 1; i < 32; i++) 5392 m |= (mask << i); 5393 5394 return (m == mask); 5395 } 5396 5397 /* 5398 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5399 * ill is passed in to associate it with the correct interface. 5400 * If ire_arg is set, then we return the held IRE in that location. 5401 */ 5402 int 5403 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5404 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5405 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5406 { 5407 ire_t *ire, *nire; 5408 ire_t *gw_ire = NULL; 5409 ipif_t *ipif = NULL; 5410 uint_t type; 5411 int match_flags = MATCH_IRE_TYPE; 5412 tsol_gc_t *gc = NULL; 5413 tsol_gcgrp_t *gcgrp = NULL; 5414 boolean_t gcgrp_xtraref = B_FALSE; 5415 boolean_t cgtp_broadcast; 5416 boolean_t unbound = B_FALSE; 5417 5418 ip1dbg(("ip_rt_add:")); 5419 5420 if (ire_arg != NULL) 5421 *ire_arg = NULL; 5422 5423 /* disallow non-contiguous netmasks */ 5424 if (!ip_contiguous_mask(ntohl(mask))) 5425 return (ENOTSUP); 5426 5427 /* 5428 * If this is the case of RTF_HOST being set, then we set the netmask 5429 * to all ones (regardless if one was supplied). 5430 */ 5431 if (flags & RTF_HOST) 5432 mask = IP_HOST_MASK; 5433 5434 /* 5435 * Prevent routes with a zero gateway from being created (since 5436 * interfaces can currently be plumbed and brought up no assigned 5437 * address). 5438 */ 5439 if (gw_addr == 0) 5440 return (ENETUNREACH); 5441 /* 5442 * Get the ipif, if any, corresponding to the gw_addr 5443 * If -ifp was specified we restrict ourselves to the ill, otherwise 5444 * we match on the gatway and destination to handle unnumbered pt-pt 5445 * interfaces. 5446 */ 5447 if (ill != NULL) 5448 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5449 else 5450 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5451 if (ipif != NULL) { 5452 if (IS_VNI(ipif->ipif_ill)) { 5453 ipif_refrele(ipif); 5454 return (EINVAL); 5455 } 5456 } 5457 5458 /* 5459 * GateD will attempt to create routes with a loopback interface 5460 * address as the gateway and with RTF_GATEWAY set. We allow 5461 * these routes to be added, but create them as interface routes 5462 * since the gateway is an interface address. 5463 */ 5464 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5465 flags &= ~RTF_GATEWAY; 5466 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5467 mask == IP_HOST_MASK) { 5468 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5469 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5470 NULL); 5471 if (ire != NULL) { 5472 ire_refrele(ire); 5473 ipif_refrele(ipif); 5474 return (EEXIST); 5475 } 5476 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5477 "for 0x%x\n", (void *)ipif, 5478 ipif->ipif_ire_type, 5479 ntohl(ipif->ipif_lcl_addr))); 5480 ire = ire_create( 5481 (uchar_t *)&dst_addr, /* dest address */ 5482 (uchar_t *)&mask, /* mask */ 5483 NULL, /* no gateway */ 5484 ipif->ipif_ire_type, /* LOOPBACK */ 5485 ipif->ipif_ill, 5486 zoneid, 5487 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5488 NULL, 5489 ipst); 5490 5491 if (ire == NULL) { 5492 ipif_refrele(ipif); 5493 return (ENOMEM); 5494 } 5495 /* src address assigned by the caller? */ 5496 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5497 ire->ire_setsrc_addr = src_addr; 5498 5499 nire = ire_add(ire); 5500 if (nire == NULL) { 5501 /* 5502 * In the result of failure, ire_add() will have 5503 * already deleted the ire in question, so there 5504 * is no need to do that here. 5505 */ 5506 ipif_refrele(ipif); 5507 return (ENOMEM); 5508 } 5509 /* 5510 * Check if it was a duplicate entry. This handles 5511 * the case of two racing route adds for the same route 5512 */ 5513 if (nire != ire) { 5514 ASSERT(nire->ire_identical_ref > 1); 5515 ire_delete(nire); 5516 ire_refrele(nire); 5517 ipif_refrele(ipif); 5518 return (EEXIST); 5519 } 5520 ire = nire; 5521 goto save_ire; 5522 } 5523 } 5524 5525 /* 5526 * The routes for multicast with CGTP are quite special in that 5527 * the gateway is the local interface address, yet RTF_GATEWAY 5528 * is set. We turn off RTF_GATEWAY to provide compatibility with 5529 * this undocumented and unusual use of multicast routes. 5530 */ 5531 if ((flags & RTF_MULTIRT) && ipif != NULL) 5532 flags &= ~RTF_GATEWAY; 5533 5534 /* 5535 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5536 * and the gateway address provided is one of the system's interface 5537 * addresses. By using the routing socket interface and supplying an 5538 * RTA_IFP sockaddr with an interface index, an alternate method of 5539 * specifying an interface route to be created is available which uses 5540 * the interface index that specifies the outgoing interface rather than 5541 * the address of an outgoing interface (which may not be able to 5542 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5543 * flag, routes can be specified which not only specify the next-hop to 5544 * be used when routing to a certain prefix, but also which outgoing 5545 * interface should be used. 5546 * 5547 * Previously, interfaces would have unique addresses assigned to them 5548 * and so the address assigned to a particular interface could be used 5549 * to identify a particular interface. One exception to this was the 5550 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5551 * 5552 * With the advent of IPv6 and its link-local addresses, this 5553 * restriction was relaxed and interfaces could share addresses between 5554 * themselves. In fact, typically all of the link-local interfaces on 5555 * an IPv6 node or router will have the same link-local address. In 5556 * order to differentiate between these interfaces, the use of an 5557 * interface index is necessary and this index can be carried inside a 5558 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5559 * of using the interface index, however, is that all of the ipif's that 5560 * are part of an ill have the same index and so the RTA_IFP sockaddr 5561 * cannot be used to differentiate between ipif's (or logical 5562 * interfaces) that belong to the same ill (physical interface). 5563 * 5564 * For example, in the following case involving IPv4 interfaces and 5565 * logical interfaces 5566 * 5567 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5568 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5569 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5570 * 5571 * the ipif's corresponding to each of these interface routes can be 5572 * uniquely identified by the "gateway" (actually interface address). 5573 * 5574 * In this case involving multiple IPv6 default routes to a particular 5575 * link-local gateway, the use of RTA_IFP is necessary to specify which 5576 * default route is of interest: 5577 * 5578 * default fe80::123:4567:89ab:cdef U if0 5579 * default fe80::123:4567:89ab:cdef U if1 5580 */ 5581 5582 /* RTF_GATEWAY not set */ 5583 if (!(flags & RTF_GATEWAY)) { 5584 if (sp != NULL) { 5585 ip2dbg(("ip_rt_add: gateway security attributes " 5586 "cannot be set with interface route\n")); 5587 if (ipif != NULL) 5588 ipif_refrele(ipif); 5589 return (EINVAL); 5590 } 5591 5592 /* 5593 * Whether or not ill (RTA_IFP) is set, we require that 5594 * the gateway is one of our local addresses. 5595 */ 5596 if (ipif == NULL) 5597 return (ENETUNREACH); 5598 5599 /* 5600 * We use MATCH_IRE_ILL here. If the caller specified an 5601 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5602 * we use the ill derived from the gateway address. 5603 * We can always match the gateway address since we record it 5604 * in ire_gateway_addr. 5605 * We don't allow RTA_IFP to specify a different ill than the 5606 * one matching the ipif to make sure we can delete the route. 5607 */ 5608 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5609 if (ill == NULL) { 5610 ill = ipif->ipif_ill; 5611 } else if (ill != ipif->ipif_ill) { 5612 ipif_refrele(ipif); 5613 return (EINVAL); 5614 } 5615 5616 /* 5617 * We check for an existing entry at this point. 5618 * 5619 * Since a netmask isn't passed in via the ioctl interface 5620 * (SIOCADDRT), we don't check for a matching netmask in that 5621 * case. 5622 */ 5623 if (!ioctl_msg) 5624 match_flags |= MATCH_IRE_MASK; 5625 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5626 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5627 NULL); 5628 if (ire != NULL) { 5629 ire_refrele(ire); 5630 ipif_refrele(ipif); 5631 return (EEXIST); 5632 } 5633 5634 /* 5635 * Some software (for example, GateD and Sun Cluster) attempts 5636 * to create (what amount to) IRE_PREFIX routes with the 5637 * loopback address as the gateway. This is primarily done to 5638 * set up prefixes with the RTF_REJECT flag set (for example, 5639 * when generating aggregate routes.) 5640 * 5641 * If the IRE type (as defined by ill->ill_net_type) would be 5642 * IRE_LOOPBACK, then we map the request into a 5643 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5644 * these interface routes, by definition, can only be that. 5645 * 5646 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5647 * routine, but rather using ire_create() directly. 5648 * 5649 */ 5650 type = ill->ill_net_type; 5651 if (type == IRE_LOOPBACK) { 5652 type = IRE_IF_NORESOLVER; 5653 flags |= RTF_BLACKHOLE; 5654 } 5655 5656 /* 5657 * Create a copy of the IRE_IF_NORESOLVER or 5658 * IRE_IF_RESOLVER with the modified address, netmask, and 5659 * gateway. 5660 */ 5661 ire = ire_create( 5662 (uchar_t *)&dst_addr, 5663 (uint8_t *)&mask, 5664 (uint8_t *)&gw_addr, 5665 type, 5666 ill, 5667 zoneid, 5668 flags, 5669 NULL, 5670 ipst); 5671 if (ire == NULL) { 5672 ipif_refrele(ipif); 5673 return (ENOMEM); 5674 } 5675 5676 /* src address assigned by the caller? */ 5677 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5678 ire->ire_setsrc_addr = src_addr; 5679 5680 nire = ire_add(ire); 5681 if (nire == NULL) { 5682 /* 5683 * In the result of failure, ire_add() will have 5684 * already deleted the ire in question, so there 5685 * is no need to do that here. 5686 */ 5687 ipif_refrele(ipif); 5688 return (ENOMEM); 5689 } 5690 /* 5691 * Check if it was a duplicate entry. This handles 5692 * the case of two racing route adds for the same route 5693 */ 5694 if (nire != ire) { 5695 ire_delete(nire); 5696 ire_refrele(nire); 5697 ipif_refrele(ipif); 5698 return (EEXIST); 5699 } 5700 ire = nire; 5701 goto save_ire; 5702 } 5703 5704 /* 5705 * Get an interface IRE for the specified gateway. 5706 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5707 * gateway, it is currently unreachable and we fail the request 5708 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5709 * is an IRE_LOCAL or IRE_LOOPBACK. 5710 * If RTA_IFP was specified we look on that particular ill. 5711 */ 5712 if (ill != NULL) 5713 match_flags |= MATCH_IRE_ILL; 5714 5715 /* Check whether the gateway is reachable. */ 5716 again: 5717 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5718 if (flags & RTF_INDIRECT) 5719 type |= IRE_OFFLINK; 5720 5721 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5722 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5723 if (gw_ire == NULL) { 5724 /* 5725 * With IPMP, we allow host routes to influence in.mpathd's 5726 * target selection. However, if the test addresses are on 5727 * their own network, the above lookup will fail since the 5728 * underlying IRE_INTERFACEs are marked hidden. So allow 5729 * hidden test IREs to be found and try again. 5730 */ 5731 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5732 match_flags |= MATCH_IRE_TESTHIDDEN; 5733 goto again; 5734 } 5735 if (ipif != NULL) 5736 ipif_refrele(ipif); 5737 return (ENETUNREACH); 5738 } 5739 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5740 ire_refrele(gw_ire); 5741 if (ipif != NULL) 5742 ipif_refrele(ipif); 5743 return (ENETUNREACH); 5744 } 5745 5746 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5747 unbound = B_TRUE; 5748 if (ipst->ips_ip_strict_src_multihoming > 0) 5749 ill = gw_ire->ire_ill; 5750 } 5751 5752 /* 5753 * We create one of three types of IREs as a result of this request 5754 * based on the netmask. A netmask of all ones (which is automatically 5755 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5756 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5757 * created. Otherwise, an IRE_PREFIX route is created for the 5758 * destination prefix. 5759 */ 5760 if (mask == IP_HOST_MASK) 5761 type = IRE_HOST; 5762 else if (mask == 0) 5763 type = IRE_DEFAULT; 5764 else 5765 type = IRE_PREFIX; 5766 5767 /* check for a duplicate entry */ 5768 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5769 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5770 0, ipst, NULL); 5771 if (ire != NULL) { 5772 if (ipif != NULL) 5773 ipif_refrele(ipif); 5774 ire_refrele(gw_ire); 5775 ire_refrele(ire); 5776 return (EEXIST); 5777 } 5778 5779 /* Security attribute exists */ 5780 if (sp != NULL) { 5781 tsol_gcgrp_addr_t ga; 5782 5783 /* find or create the gateway credentials group */ 5784 ga.ga_af = AF_INET; 5785 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5786 5787 /* we hold reference to it upon success */ 5788 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5789 if (gcgrp == NULL) { 5790 if (ipif != NULL) 5791 ipif_refrele(ipif); 5792 ire_refrele(gw_ire); 5793 return (ENOMEM); 5794 } 5795 5796 /* 5797 * Create and add the security attribute to the group; a 5798 * reference to the group is made upon allocating a new 5799 * entry successfully. If it finds an already-existing 5800 * entry for the security attribute in the group, it simply 5801 * returns it and no new reference is made to the group. 5802 */ 5803 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5804 if (gc == NULL) { 5805 if (ipif != NULL) 5806 ipif_refrele(ipif); 5807 /* release reference held by gcgrp_lookup */ 5808 GCGRP_REFRELE(gcgrp); 5809 ire_refrele(gw_ire); 5810 return (ENOMEM); 5811 } 5812 } 5813 5814 /* Create the IRE. */ 5815 ire = ire_create( 5816 (uchar_t *)&dst_addr, /* dest address */ 5817 (uchar_t *)&mask, /* mask */ 5818 (uchar_t *)&gw_addr, /* gateway address */ 5819 (ushort_t)type, /* IRE type */ 5820 ill, 5821 zoneid, 5822 flags, 5823 gc, /* security attribute */ 5824 ipst); 5825 5826 /* 5827 * The ire holds a reference to the 'gc' and the 'gc' holds a 5828 * reference to the 'gcgrp'. We can now release the extra reference 5829 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5830 */ 5831 if (gcgrp_xtraref) 5832 GCGRP_REFRELE(gcgrp); 5833 if (ire == NULL) { 5834 if (gc != NULL) 5835 GC_REFRELE(gc); 5836 if (ipif != NULL) 5837 ipif_refrele(ipif); 5838 ire_refrele(gw_ire); 5839 return (ENOMEM); 5840 } 5841 5842 /* Before we add, check if an extra CGTP broadcast is needed */ 5843 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5844 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5845 5846 /* src address assigned by the caller? */ 5847 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5848 ire->ire_setsrc_addr = src_addr; 5849 5850 ire->ire_unbound = unbound; 5851 5852 /* 5853 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5854 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5855 */ 5856 5857 /* Add the new IRE. */ 5858 nire = ire_add(ire); 5859 if (nire == NULL) { 5860 /* 5861 * In the result of failure, ire_add() will have 5862 * already deleted the ire in question, so there 5863 * is no need to do that here. 5864 */ 5865 if (ipif != NULL) 5866 ipif_refrele(ipif); 5867 ire_refrele(gw_ire); 5868 return (ENOMEM); 5869 } 5870 /* 5871 * Check if it was a duplicate entry. This handles 5872 * the case of two racing route adds for the same route 5873 */ 5874 if (nire != ire) { 5875 ire_delete(nire); 5876 ire_refrele(nire); 5877 if (ipif != NULL) 5878 ipif_refrele(ipif); 5879 ire_refrele(gw_ire); 5880 return (EEXIST); 5881 } 5882 ire = nire; 5883 5884 if (flags & RTF_MULTIRT) { 5885 /* 5886 * Invoke the CGTP (multirouting) filtering module 5887 * to add the dst address in the filtering database. 5888 * Replicated inbound packets coming from that address 5889 * will be filtered to discard the duplicates. 5890 * It is not necessary to call the CGTP filter hook 5891 * when the dst address is a broadcast or multicast, 5892 * because an IP source address cannot be a broadcast 5893 * or a multicast. 5894 */ 5895 if (cgtp_broadcast) { 5896 ip_cgtp_bcast_add(ire, ipst); 5897 goto save_ire; 5898 } 5899 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5900 !CLASSD(ire->ire_addr)) { 5901 int res; 5902 ipif_t *src_ipif; 5903 5904 /* Find the source address corresponding to gw_ire */ 5905 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5906 NULL, zoneid, ipst); 5907 if (src_ipif != NULL) { 5908 res = ipst->ips_ip_cgtp_filter_ops-> 5909 cfo_add_dest_v4( 5910 ipst->ips_netstack->netstack_stackid, 5911 ire->ire_addr, 5912 ire->ire_gateway_addr, 5913 ire->ire_setsrc_addr, 5914 src_ipif->ipif_lcl_addr); 5915 ipif_refrele(src_ipif); 5916 } else { 5917 res = EADDRNOTAVAIL; 5918 } 5919 if (res != 0) { 5920 if (ipif != NULL) 5921 ipif_refrele(ipif); 5922 ire_refrele(gw_ire); 5923 ire_delete(ire); 5924 ire_refrele(ire); /* Held in ire_add */ 5925 return (res); 5926 } 5927 } 5928 } 5929 5930 save_ire: 5931 if (gw_ire != NULL) { 5932 ire_refrele(gw_ire); 5933 gw_ire = NULL; 5934 } 5935 if (ill != NULL) { 5936 /* 5937 * Save enough information so that we can recreate the IRE if 5938 * the interface goes down and then up. The metrics associated 5939 * with the route will be saved as well when rts_setmetrics() is 5940 * called after the IRE has been created. In the case where 5941 * memory cannot be allocated, none of this information will be 5942 * saved. 5943 */ 5944 ill_save_ire(ill, ire); 5945 } 5946 if (ioctl_msg) 5947 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5948 if (ire_arg != NULL) { 5949 /* 5950 * Store the ire that was successfully added into where ire_arg 5951 * points to so that callers don't have to look it up 5952 * themselves (but they are responsible for ire_refrele()ing 5953 * the ire when they are finished with it). 5954 */ 5955 *ire_arg = ire; 5956 } else { 5957 ire_refrele(ire); /* Held in ire_add */ 5958 } 5959 if (ipif != NULL) 5960 ipif_refrele(ipif); 5961 return (0); 5962 } 5963 5964 /* 5965 * ip_rt_delete is called to delete an IPv4 route. 5966 * ill is passed in to associate it with the correct interface. 5967 */ 5968 /* ARGSUSED4 */ 5969 int 5970 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5971 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5972 ip_stack_t *ipst, zoneid_t zoneid) 5973 { 5974 ire_t *ire = NULL; 5975 ipif_t *ipif; 5976 uint_t type; 5977 uint_t match_flags = MATCH_IRE_TYPE; 5978 int err = 0; 5979 5980 ip1dbg(("ip_rt_delete:")); 5981 /* 5982 * If this is the case of RTF_HOST being set, then we set the netmask 5983 * to all ones. Otherwise, we use the netmask if one was supplied. 5984 */ 5985 if (flags & RTF_HOST) { 5986 mask = IP_HOST_MASK; 5987 match_flags |= MATCH_IRE_MASK; 5988 } else if (rtm_addrs & RTA_NETMASK) { 5989 match_flags |= MATCH_IRE_MASK; 5990 } 5991 5992 /* 5993 * Note that RTF_GATEWAY is never set on a delete, therefore 5994 * we check if the gateway address is one of our interfaces first, 5995 * and fall back on RTF_GATEWAY routes. 5996 * 5997 * This makes it possible to delete an original 5998 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5999 * However, we have RTF_KERNEL set on the ones created by ipif_up 6000 * and those can not be deleted here. 6001 * 6002 * We use MATCH_IRE_ILL if we know the interface. If the caller 6003 * specified an interface (from the RTA_IFP sockaddr) we use it, 6004 * otherwise we use the ill derived from the gateway address. 6005 * We can always match the gateway address since we record it 6006 * in ire_gateway_addr. 6007 * 6008 * For more detail on specifying routes by gateway address and by 6009 * interface index, see the comments in ip_rt_add(). 6010 */ 6011 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6012 if (ipif != NULL) { 6013 ill_t *ill_match; 6014 6015 if (ill != NULL) 6016 ill_match = ill; 6017 else 6018 ill_match = ipif->ipif_ill; 6019 6020 match_flags |= MATCH_IRE_ILL; 6021 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6022 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6023 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6024 match_flags, 0, ipst, NULL); 6025 } 6026 if (ire == NULL) { 6027 match_flags |= MATCH_IRE_GW; 6028 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6029 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6030 match_flags, 0, ipst, NULL); 6031 } 6032 /* Avoid deleting routes created by kernel from an ipif */ 6033 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6034 ire_refrele(ire); 6035 ire = NULL; 6036 } 6037 6038 /* Restore in case we didn't find a match */ 6039 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6040 } 6041 6042 if (ire == NULL) { 6043 /* 6044 * At this point, the gateway address is not one of our own 6045 * addresses or a matching interface route was not found. We 6046 * set the IRE type to lookup based on whether 6047 * this is a host route, a default route or just a prefix. 6048 * 6049 * If an ill was passed in, then the lookup is based on an 6050 * interface index so MATCH_IRE_ILL is added to match_flags. 6051 */ 6052 match_flags |= MATCH_IRE_GW; 6053 if (ill != NULL) 6054 match_flags |= MATCH_IRE_ILL; 6055 if (mask == IP_HOST_MASK) 6056 type = IRE_HOST; 6057 else if (mask == 0) 6058 type = IRE_DEFAULT; 6059 else 6060 type = IRE_PREFIX; 6061 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6062 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6063 } 6064 6065 if (ipif != NULL) { 6066 ipif_refrele(ipif); 6067 ipif = NULL; 6068 } 6069 6070 if (ire == NULL) 6071 return (ESRCH); 6072 6073 if (ire->ire_flags & RTF_MULTIRT) { 6074 /* 6075 * Invoke the CGTP (multirouting) filtering module 6076 * to remove the dst address from the filtering database. 6077 * Packets coming from that address will no longer be 6078 * filtered to remove duplicates. 6079 */ 6080 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6081 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6082 ipst->ips_netstack->netstack_stackid, 6083 ire->ire_addr, ire->ire_gateway_addr); 6084 } 6085 ip_cgtp_bcast_delete(ire, ipst); 6086 } 6087 6088 ill = ire->ire_ill; 6089 if (ill != NULL) 6090 ill_remove_saved_ire(ill, ire); 6091 if (ioctl_msg) 6092 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6093 ire_delete(ire); 6094 ire_refrele(ire); 6095 return (err); 6096 } 6097 6098 /* 6099 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6100 */ 6101 /* ARGSUSED */ 6102 int 6103 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6104 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6105 { 6106 ipaddr_t dst_addr; 6107 ipaddr_t gw_addr; 6108 ipaddr_t mask; 6109 int error = 0; 6110 mblk_t *mp1; 6111 struct rtentry *rt; 6112 ipif_t *ipif = NULL; 6113 ip_stack_t *ipst; 6114 6115 ASSERT(q->q_next == NULL); 6116 ipst = CONNQ_TO_IPST(q); 6117 6118 ip1dbg(("ip_siocaddrt:")); 6119 /* Existence of mp1 verified in ip_wput_nondata */ 6120 mp1 = mp->b_cont->b_cont; 6121 rt = (struct rtentry *)mp1->b_rptr; 6122 6123 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6124 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6125 6126 /* 6127 * If the RTF_HOST flag is on, this is a request to assign a gateway 6128 * to a particular host address. In this case, we set the netmask to 6129 * all ones for the particular destination address. Otherwise, 6130 * determine the netmask to be used based on dst_addr and the interfaces 6131 * in use. 6132 */ 6133 if (rt->rt_flags & RTF_HOST) { 6134 mask = IP_HOST_MASK; 6135 } else { 6136 /* 6137 * Note that ip_subnet_mask returns a zero mask in the case of 6138 * default (an all-zeroes address). 6139 */ 6140 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6141 } 6142 6143 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6144 B_TRUE, NULL, ipst, ALL_ZONES); 6145 if (ipif != NULL) 6146 ipif_refrele(ipif); 6147 return (error); 6148 } 6149 6150 /* 6151 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6152 */ 6153 /* ARGSUSED */ 6154 int 6155 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6156 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6157 { 6158 ipaddr_t dst_addr; 6159 ipaddr_t gw_addr; 6160 ipaddr_t mask; 6161 int error; 6162 mblk_t *mp1; 6163 struct rtentry *rt; 6164 ipif_t *ipif = NULL; 6165 ip_stack_t *ipst; 6166 6167 ASSERT(q->q_next == NULL); 6168 ipst = CONNQ_TO_IPST(q); 6169 6170 ip1dbg(("ip_siocdelrt:")); 6171 /* Existence of mp1 verified in ip_wput_nondata */ 6172 mp1 = mp->b_cont->b_cont; 6173 rt = (struct rtentry *)mp1->b_rptr; 6174 6175 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6176 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6177 6178 /* 6179 * If the RTF_HOST flag is on, this is a request to delete a gateway 6180 * to a particular host address. In this case, we set the netmask to 6181 * all ones for the particular destination address. Otherwise, 6182 * determine the netmask to be used based on dst_addr and the interfaces 6183 * in use. 6184 */ 6185 if (rt->rt_flags & RTF_HOST) { 6186 mask = IP_HOST_MASK; 6187 } else { 6188 /* 6189 * Note that ip_subnet_mask returns a zero mask in the case of 6190 * default (an all-zeroes address). 6191 */ 6192 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6193 } 6194 6195 error = ip_rt_delete(dst_addr, mask, gw_addr, 6196 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6197 ipst, ALL_ZONES); 6198 if (ipif != NULL) 6199 ipif_refrele(ipif); 6200 return (error); 6201 } 6202 6203 /* 6204 * Enqueue the mp onto the ipsq, chained by b_next. 6205 * b_prev stores the function to be executed later, and b_queue the queue 6206 * where this mp originated. 6207 */ 6208 void 6209 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6210 ill_t *pending_ill) 6211 { 6212 conn_t *connp; 6213 ipxop_t *ipx = ipsq->ipsq_xop; 6214 6215 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6216 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6217 ASSERT(func != NULL); 6218 6219 mp->b_queue = q; 6220 mp->b_prev = (void *)func; 6221 mp->b_next = NULL; 6222 6223 switch (type) { 6224 case CUR_OP: 6225 if (ipx->ipx_mptail != NULL) { 6226 ASSERT(ipx->ipx_mphead != NULL); 6227 ipx->ipx_mptail->b_next = mp; 6228 } else { 6229 ASSERT(ipx->ipx_mphead == NULL); 6230 ipx->ipx_mphead = mp; 6231 } 6232 ipx->ipx_mptail = mp; 6233 break; 6234 6235 case NEW_OP: 6236 if (ipsq->ipsq_xopq_mptail != NULL) { 6237 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6238 ipsq->ipsq_xopq_mptail->b_next = mp; 6239 } else { 6240 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6241 ipsq->ipsq_xopq_mphead = mp; 6242 } 6243 ipsq->ipsq_xopq_mptail = mp; 6244 ipx->ipx_ipsq_queued = B_TRUE; 6245 break; 6246 6247 case SWITCH_OP: 6248 ASSERT(ipsq->ipsq_swxop != NULL); 6249 /* only one switch operation is currently allowed */ 6250 ASSERT(ipsq->ipsq_switch_mp == NULL); 6251 ipsq->ipsq_switch_mp = mp; 6252 ipx->ipx_ipsq_queued = B_TRUE; 6253 break; 6254 default: 6255 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6256 } 6257 6258 if (CONN_Q(q) && pending_ill != NULL) { 6259 connp = Q_TO_CONN(q); 6260 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6261 connp->conn_oper_pending_ill = pending_ill; 6262 } 6263 } 6264 6265 /* 6266 * Dequeue the next message that requested exclusive access to this IPSQ's 6267 * xop. Specifically: 6268 * 6269 * 1. If we're still processing the current operation on `ipsq', then 6270 * dequeue the next message for the operation (from ipx_mphead), or 6271 * return NULL if there are no queued messages for the operation. 6272 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6273 * 6274 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6275 * not set) see if the ipsq has requested an xop switch. If so, switch 6276 * `ipsq' to a different xop. Xop switches only happen when joining or 6277 * leaving IPMP groups and require a careful dance -- see the comments 6278 * in-line below for details. If we're leaving a group xop or if we're 6279 * joining a group xop and become writer on it, then we proceed to (3). 6280 * Otherwise, we return NULL and exit the xop. 6281 * 6282 * 3. For each IPSQ in the xop, return any switch operation stored on 6283 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6284 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6285 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6286 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6287 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6288 * each phyint in the group, including the IPMP meta-interface phyint. 6289 */ 6290 static mblk_t * 6291 ipsq_dq(ipsq_t *ipsq) 6292 { 6293 ill_t *illv4, *illv6; 6294 mblk_t *mp; 6295 ipsq_t *xopipsq; 6296 ipsq_t *leftipsq = NULL; 6297 ipxop_t *ipx; 6298 phyint_t *phyi = ipsq->ipsq_phyint; 6299 ip_stack_t *ipst = ipsq->ipsq_ipst; 6300 boolean_t emptied = B_FALSE; 6301 6302 /* 6303 * Grab all the locks we need in the defined order (ill_g_lock -> 6304 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6305 */ 6306 rw_enter(&ipst->ips_ill_g_lock, 6307 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6308 mutex_enter(&ipsq->ipsq_lock); 6309 ipx = ipsq->ipsq_xop; 6310 mutex_enter(&ipx->ipx_lock); 6311 6312 /* 6313 * Dequeue the next message associated with the current exclusive 6314 * operation, if any. 6315 */ 6316 if ((mp = ipx->ipx_mphead) != NULL) { 6317 ipx->ipx_mphead = mp->b_next; 6318 if (ipx->ipx_mphead == NULL) 6319 ipx->ipx_mptail = NULL; 6320 mp->b_next = (void *)ipsq; 6321 goto out; 6322 } 6323 6324 if (ipx->ipx_current_ipif != NULL) 6325 goto empty; 6326 6327 if (ipsq->ipsq_swxop != NULL) { 6328 /* 6329 * The exclusive operation that is now being completed has 6330 * requested a switch to a different xop. This happens 6331 * when an interface joins or leaves an IPMP group. Joins 6332 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6333 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6334 * (phyint_free()), or interface plumb for an ill type 6335 * not in the IPMP group (ip_rput_dlpi_writer()). 6336 * 6337 * Xop switches are not allowed on the IPMP meta-interface. 6338 */ 6339 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6340 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6341 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6342 6343 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6344 /* 6345 * We're switching back to our own xop, so we have two 6346 * xop's to drain/exit: our own, and the group xop 6347 * that we are leaving. 6348 * 6349 * First, pull ourselves out of the group ipsq list. 6350 * This is safe since we're writer on ill_g_lock. 6351 */ 6352 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6353 6354 xopipsq = ipx->ipx_ipsq; 6355 while (xopipsq->ipsq_next != ipsq) 6356 xopipsq = xopipsq->ipsq_next; 6357 6358 xopipsq->ipsq_next = ipsq->ipsq_next; 6359 ipsq->ipsq_next = ipsq; 6360 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6361 ipsq->ipsq_swxop = NULL; 6362 6363 /* 6364 * Second, prepare to exit the group xop. The actual 6365 * ipsq_exit() is done at the end of this function 6366 * since we cannot hold any locks across ipsq_exit(). 6367 * Note that although we drop the group's ipx_lock, no 6368 * threads can proceed since we're still ipx_writer. 6369 */ 6370 leftipsq = xopipsq; 6371 mutex_exit(&ipx->ipx_lock); 6372 6373 /* 6374 * Third, set ipx to point to our own xop (which was 6375 * inactive and therefore can be entered). 6376 */ 6377 ipx = ipsq->ipsq_xop; 6378 mutex_enter(&ipx->ipx_lock); 6379 ASSERT(ipx->ipx_writer == NULL); 6380 ASSERT(ipx->ipx_current_ipif == NULL); 6381 } else { 6382 /* 6383 * We're switching from our own xop to a group xop. 6384 * The requestor of the switch must ensure that the 6385 * group xop cannot go away (e.g. by ensuring the 6386 * phyint associated with the xop cannot go away). 6387 * 6388 * If we can become writer on our new xop, then we'll 6389 * do the drain. Otherwise, the current writer of our 6390 * new xop will do the drain when it exits. 6391 * 6392 * First, splice ourselves into the group IPSQ list. 6393 * This is safe since we're writer on ill_g_lock. 6394 */ 6395 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6396 6397 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6398 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6399 xopipsq = xopipsq->ipsq_next; 6400 6401 xopipsq->ipsq_next = ipsq; 6402 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6403 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6404 ipsq->ipsq_swxop = NULL; 6405 6406 /* 6407 * Second, exit our own xop, since it's now unused. 6408 * This is safe since we've got the only reference. 6409 */ 6410 ASSERT(ipx->ipx_writer == curthread); 6411 ipx->ipx_writer = NULL; 6412 VERIFY(--ipx->ipx_reentry_cnt == 0); 6413 ipx->ipx_ipsq_queued = B_FALSE; 6414 mutex_exit(&ipx->ipx_lock); 6415 6416 /* 6417 * Third, set ipx to point to our new xop, and check 6418 * if we can become writer on it. If we cannot, then 6419 * the current writer will drain the IPSQ group when 6420 * it exits. Our ipsq_xop is guaranteed to be stable 6421 * because we're still holding ipsq_lock. 6422 */ 6423 ipx = ipsq->ipsq_xop; 6424 mutex_enter(&ipx->ipx_lock); 6425 if (ipx->ipx_writer != NULL || 6426 ipx->ipx_current_ipif != NULL) { 6427 goto out; 6428 } 6429 } 6430 6431 /* 6432 * Fourth, become writer on our new ipx before we continue 6433 * with the drain. Note that we never dropped ipsq_lock 6434 * above, so no other thread could've raced with us to 6435 * become writer first. Also, we're holding ipx_lock, so 6436 * no other thread can examine the ipx right now. 6437 */ 6438 ASSERT(ipx->ipx_current_ipif == NULL); 6439 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6440 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6441 ipx->ipx_writer = curthread; 6442 ipx->ipx_forced = B_FALSE; 6443 #ifdef DEBUG 6444 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6445 #endif 6446 } 6447 6448 xopipsq = ipsq; 6449 do { 6450 /* 6451 * So that other operations operate on a consistent and 6452 * complete phyint, a switch message on an IPSQ must be 6453 * handled prior to any other operations on that IPSQ. 6454 */ 6455 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6456 xopipsq->ipsq_switch_mp = NULL; 6457 ASSERT(mp->b_next == NULL); 6458 mp->b_next = (void *)xopipsq; 6459 goto out; 6460 } 6461 6462 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6463 xopipsq->ipsq_xopq_mphead = mp->b_next; 6464 if (xopipsq->ipsq_xopq_mphead == NULL) 6465 xopipsq->ipsq_xopq_mptail = NULL; 6466 mp->b_next = (void *)xopipsq; 6467 goto out; 6468 } 6469 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6470 empty: 6471 /* 6472 * There are no messages. Further, we are holding ipx_lock, hence no 6473 * new messages can end up on any IPSQ in the xop. 6474 */ 6475 ipx->ipx_writer = NULL; 6476 ipx->ipx_forced = B_FALSE; 6477 VERIFY(--ipx->ipx_reentry_cnt == 0); 6478 ipx->ipx_ipsq_queued = B_FALSE; 6479 emptied = B_TRUE; 6480 #ifdef DEBUG 6481 ipx->ipx_depth = 0; 6482 #endif 6483 out: 6484 mutex_exit(&ipx->ipx_lock); 6485 mutex_exit(&ipsq->ipsq_lock); 6486 6487 /* 6488 * If we completely emptied the xop, then wake up any threads waiting 6489 * to enter any of the IPSQ's associated with it. 6490 */ 6491 if (emptied) { 6492 xopipsq = ipsq; 6493 do { 6494 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6495 continue; 6496 6497 illv4 = phyi->phyint_illv4; 6498 illv6 = phyi->phyint_illv6; 6499 6500 GRAB_ILL_LOCKS(illv4, illv6); 6501 if (illv4 != NULL) 6502 cv_broadcast(&illv4->ill_cv); 6503 if (illv6 != NULL) 6504 cv_broadcast(&illv6->ill_cv); 6505 RELEASE_ILL_LOCKS(illv4, illv6); 6506 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6507 } 6508 rw_exit(&ipst->ips_ill_g_lock); 6509 6510 /* 6511 * Now that all locks are dropped, exit the IPSQ we left. 6512 */ 6513 if (leftipsq != NULL) 6514 ipsq_exit(leftipsq); 6515 6516 return (mp); 6517 } 6518 6519 /* 6520 * Return completion status of previously initiated DLPI operations on 6521 * ills in the purview of an ipsq. 6522 */ 6523 static boolean_t 6524 ipsq_dlpi_done(ipsq_t *ipsq) 6525 { 6526 ipsq_t *ipsq_start; 6527 phyint_t *phyi; 6528 ill_t *ill; 6529 6530 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6531 ipsq_start = ipsq; 6532 6533 do { 6534 /* 6535 * The only current users of this function are ipsq_try_enter 6536 * and ipsq_enter which have made sure that ipsq_writer is 6537 * NULL before we reach here. ill_dlpi_pending is modified 6538 * only by an ipsq writer 6539 */ 6540 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6541 phyi = ipsq->ipsq_phyint; 6542 /* 6543 * phyi could be NULL if a phyint that is part of an 6544 * IPMP group is being unplumbed. A more detailed 6545 * comment is in ipmp_grp_update_kstats() 6546 */ 6547 if (phyi != NULL) { 6548 ill = phyi->phyint_illv4; 6549 if (ill != NULL && 6550 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6551 ill->ill_arl_dlpi_pending)) 6552 return (B_FALSE); 6553 6554 ill = phyi->phyint_illv6; 6555 if (ill != NULL && 6556 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6557 return (B_FALSE); 6558 } 6559 6560 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6561 6562 return (B_TRUE); 6563 } 6564 6565 /* 6566 * Enter the ipsq corresponding to ill, by waiting synchronously till 6567 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6568 * will have to drain completely before ipsq_enter returns success. 6569 * ipx_current_ipif will be set if some exclusive op is in progress, 6570 * and the ipsq_exit logic will start the next enqueued op after 6571 * completion of the current op. If 'force' is used, we don't wait 6572 * for the enqueued ops. This is needed when a conn_close wants to 6573 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6574 * of an ill can also use this option. But we dont' use it currently. 6575 */ 6576 #define ENTER_SQ_WAIT_TICKS 100 6577 boolean_t 6578 ipsq_enter(ill_t *ill, boolean_t force, int type) 6579 { 6580 ipsq_t *ipsq; 6581 ipxop_t *ipx; 6582 boolean_t waited_enough = B_FALSE; 6583 ip_stack_t *ipst = ill->ill_ipst; 6584 6585 /* 6586 * Note that the relationship between ill and ipsq is fixed as long as 6587 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6588 * relationship between the IPSQ and xop cannot change. However, 6589 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6590 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6591 * waking up all ills in the xop when it becomes available. 6592 */ 6593 for (;;) { 6594 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6595 mutex_enter(&ill->ill_lock); 6596 if (ill->ill_state_flags & ILL_CONDEMNED) { 6597 mutex_exit(&ill->ill_lock); 6598 rw_exit(&ipst->ips_ill_g_lock); 6599 return (B_FALSE); 6600 } 6601 6602 ipsq = ill->ill_phyint->phyint_ipsq; 6603 mutex_enter(&ipsq->ipsq_lock); 6604 ipx = ipsq->ipsq_xop; 6605 mutex_enter(&ipx->ipx_lock); 6606 6607 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6608 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6609 waited_enough)) 6610 break; 6611 6612 rw_exit(&ipst->ips_ill_g_lock); 6613 6614 if (!force || ipx->ipx_writer != NULL) { 6615 mutex_exit(&ipx->ipx_lock); 6616 mutex_exit(&ipsq->ipsq_lock); 6617 cv_wait(&ill->ill_cv, &ill->ill_lock); 6618 } else { 6619 mutex_exit(&ipx->ipx_lock); 6620 mutex_exit(&ipsq->ipsq_lock); 6621 (void) cv_reltimedwait(&ill->ill_cv, 6622 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6623 waited_enough = B_TRUE; 6624 } 6625 mutex_exit(&ill->ill_lock); 6626 } 6627 6628 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6629 ASSERT(ipx->ipx_reentry_cnt == 0); 6630 ipx->ipx_writer = curthread; 6631 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6632 ipx->ipx_reentry_cnt++; 6633 #ifdef DEBUG 6634 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6635 #endif 6636 mutex_exit(&ipx->ipx_lock); 6637 mutex_exit(&ipsq->ipsq_lock); 6638 mutex_exit(&ill->ill_lock); 6639 rw_exit(&ipst->ips_ill_g_lock); 6640 6641 return (B_TRUE); 6642 } 6643 6644 /* 6645 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6646 * across the call to the core interface ipsq_try_enter() and hence calls this 6647 * function directly. This is explained more fully in ipif_set_values(). 6648 * In order to support the above constraint, ipsq_try_enter is implemented as 6649 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6650 */ 6651 static ipsq_t * 6652 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6653 int type, boolean_t reentry_ok) 6654 { 6655 ipsq_t *ipsq; 6656 ipxop_t *ipx; 6657 ip_stack_t *ipst = ill->ill_ipst; 6658 6659 /* 6660 * lock ordering: 6661 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6662 * 6663 * ipx of an ipsq can't change when ipsq_lock is held. 6664 */ 6665 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6666 GRAB_CONN_LOCK(q); 6667 mutex_enter(&ill->ill_lock); 6668 ipsq = ill->ill_phyint->phyint_ipsq; 6669 mutex_enter(&ipsq->ipsq_lock); 6670 ipx = ipsq->ipsq_xop; 6671 mutex_enter(&ipx->ipx_lock); 6672 6673 /* 6674 * 1. Enter the ipsq if we are already writer and reentry is ok. 6675 * (Note: If the caller does not specify reentry_ok then neither 6676 * 'func' nor any of its callees must ever attempt to enter the ipsq 6677 * again. Otherwise it can lead to an infinite loop 6678 * 2. Enter the ipsq if there is no current writer and this attempted 6679 * entry is part of the current operation 6680 * 3. Enter the ipsq if there is no current writer and this is a new 6681 * operation and the operation queue is empty and there is no 6682 * operation currently in progress and if all previously initiated 6683 * DLPI operations have completed. 6684 */ 6685 if ((ipx->ipx_writer == curthread && reentry_ok) || 6686 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6687 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6688 ipsq_dlpi_done(ipsq))))) { 6689 /* Success. */ 6690 ipx->ipx_reentry_cnt++; 6691 ipx->ipx_writer = curthread; 6692 ipx->ipx_forced = B_FALSE; 6693 mutex_exit(&ipx->ipx_lock); 6694 mutex_exit(&ipsq->ipsq_lock); 6695 mutex_exit(&ill->ill_lock); 6696 RELEASE_CONN_LOCK(q); 6697 #ifdef DEBUG 6698 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6699 #endif 6700 return (ipsq); 6701 } 6702 6703 if (func != NULL) 6704 ipsq_enq(ipsq, q, mp, func, type, ill); 6705 6706 mutex_exit(&ipx->ipx_lock); 6707 mutex_exit(&ipsq->ipsq_lock); 6708 mutex_exit(&ill->ill_lock); 6709 RELEASE_CONN_LOCK(q); 6710 return (NULL); 6711 } 6712 6713 /* 6714 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6715 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6716 * There is one ipsq per phyint. The ipsq 6717 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6718 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6719 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6720 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6721 * up the interface) and are enqueued in ipx_mphead. 6722 * 6723 * If a thread does not want to reenter the ipsq when it is already writer, 6724 * it must make sure that the specified reentry point to be called later 6725 * when the ipsq is empty, nor any code path starting from the specified reentry 6726 * point must never ever try to enter the ipsq again. Otherwise it can lead 6727 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6728 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6729 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6730 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6731 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6732 * ioctl if the current ioctl has completed. If the current ioctl is still 6733 * in progress it simply returns. The current ioctl could be waiting for 6734 * a response from another module (the driver or could be waiting for 6735 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6736 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6737 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6738 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6739 * all associated DLPI operations have completed. 6740 */ 6741 6742 /* 6743 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6744 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6745 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6746 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6747 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6748 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6749 */ 6750 ipsq_t * 6751 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6752 ipsq_func_t func, int type, boolean_t reentry_ok) 6753 { 6754 ip_stack_t *ipst; 6755 ipsq_t *ipsq; 6756 6757 /* Only 1 of ipif or ill can be specified */ 6758 ASSERT((ipif != NULL) ^ (ill != NULL)); 6759 6760 if (ipif != NULL) 6761 ill = ipif->ipif_ill; 6762 ipst = ill->ill_ipst; 6763 6764 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6765 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6766 rw_exit(&ipst->ips_ill_g_lock); 6767 6768 return (ipsq); 6769 } 6770 6771 /* 6772 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6773 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6774 * cannot be entered, the mp is queued for completion. 6775 */ 6776 void 6777 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6778 boolean_t reentry_ok) 6779 { 6780 ipsq_t *ipsq; 6781 6782 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6783 6784 /* 6785 * Drop the caller's refhold on the ill. This is safe since we either 6786 * entered the IPSQ (and thus are exclusive), or failed to enter the 6787 * IPSQ, in which case we return without accessing ill anymore. This 6788 * is needed because func needs to see the correct refcount. 6789 * e.g. removeif can work only then. 6790 */ 6791 ill_refrele(ill); 6792 if (ipsq != NULL) { 6793 (*func)(ipsq, q, mp, NULL); 6794 ipsq_exit(ipsq); 6795 } 6796 } 6797 6798 /* 6799 * Exit the specified IPSQ. If this is the final exit on it then drain it 6800 * prior to exiting. Caller must be writer on the specified IPSQ. 6801 */ 6802 void 6803 ipsq_exit(ipsq_t *ipsq) 6804 { 6805 mblk_t *mp; 6806 ipsq_t *mp_ipsq; 6807 queue_t *q; 6808 phyint_t *phyi; 6809 ipsq_func_t func; 6810 6811 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6812 6813 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6814 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6815 ipsq->ipsq_xop->ipx_reentry_cnt--; 6816 return; 6817 } 6818 6819 for (;;) { 6820 phyi = ipsq->ipsq_phyint; 6821 mp = ipsq_dq(ipsq); 6822 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6823 6824 /* 6825 * If we've changed to a new IPSQ, and the phyint associated 6826 * with the old one has gone away, free the old IPSQ. Note 6827 * that this cannot happen while the IPSQ is in a group. 6828 */ 6829 if (mp_ipsq != ipsq && phyi == NULL) { 6830 ASSERT(ipsq->ipsq_next == ipsq); 6831 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6832 ipsq_delete(ipsq); 6833 } 6834 6835 if (mp == NULL) 6836 break; 6837 6838 q = mp->b_queue; 6839 func = (ipsq_func_t)mp->b_prev; 6840 ipsq = mp_ipsq; 6841 mp->b_next = mp->b_prev = NULL; 6842 mp->b_queue = NULL; 6843 6844 /* 6845 * If 'q' is an conn queue, it is valid, since we did a 6846 * a refhold on the conn at the start of the ioctl. 6847 * If 'q' is an ill queue, it is valid, since close of an 6848 * ill will clean up its IPSQ. 6849 */ 6850 (*func)(ipsq, q, mp, NULL); 6851 } 6852 } 6853 6854 /* 6855 * Used to start any igmp or mld timers that could not be started 6856 * while holding ill_mcast_lock. The timers can't be started while holding 6857 * the lock, since mld/igmp_start_timers may need to call untimeout() 6858 * which can't be done while holding the lock which the timeout handler 6859 * acquires. Otherwise 6860 * there could be a deadlock since the timeout handlers 6861 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6862 * ill_mcast_lock. 6863 */ 6864 void 6865 ill_mcast_timer_start(ip_stack_t *ipst) 6866 { 6867 int next; 6868 6869 mutex_enter(&ipst->ips_igmp_timer_lock); 6870 next = ipst->ips_igmp_deferred_next; 6871 ipst->ips_igmp_deferred_next = INFINITY; 6872 mutex_exit(&ipst->ips_igmp_timer_lock); 6873 6874 if (next != INFINITY) 6875 igmp_start_timers(next, ipst); 6876 6877 mutex_enter(&ipst->ips_mld_timer_lock); 6878 next = ipst->ips_mld_deferred_next; 6879 ipst->ips_mld_deferred_next = INFINITY; 6880 mutex_exit(&ipst->ips_mld_timer_lock); 6881 6882 if (next != INFINITY) 6883 mld_start_timers(next, ipst); 6884 } 6885 6886 /* 6887 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6888 * and `ioccmd'. 6889 */ 6890 void 6891 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6892 { 6893 ill_t *ill = ipif->ipif_ill; 6894 ipxop_t *ipx = ipsq->ipsq_xop; 6895 6896 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6897 ASSERT(ipx->ipx_current_ipif == NULL); 6898 ASSERT(ipx->ipx_current_ioctl == 0); 6899 6900 ipx->ipx_current_done = B_FALSE; 6901 ipx->ipx_current_ioctl = ioccmd; 6902 mutex_enter(&ipx->ipx_lock); 6903 ipx->ipx_current_ipif = ipif; 6904 mutex_exit(&ipx->ipx_lock); 6905 6906 /* 6907 * Set IPIF_CHANGING on one or more ipifs associated with the 6908 * current exclusive operation. IPIF_CHANGING prevents any new 6909 * references to the ipif (so that the references will eventually 6910 * drop to zero) and also prevents any "get" operations (e.g., 6911 * SIOCGLIFFLAGS) from being able to access the ipif until the 6912 * operation has completed and the ipif is again in a stable state. 6913 * 6914 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6915 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6916 * on the ill are marked with IPIF_CHANGING since it's unclear which 6917 * ipifs will be affected. 6918 * 6919 * Note that SIOCLIFREMOVEIF is a special case as it sets 6920 * IPIF_CONDEMNED internally after identifying the right ipif to 6921 * operate on. 6922 */ 6923 switch (ioccmd) { 6924 case SIOCLIFREMOVEIF: 6925 break; 6926 case 0: 6927 mutex_enter(&ill->ill_lock); 6928 ipif = ipif->ipif_ill->ill_ipif; 6929 for (; ipif != NULL; ipif = ipif->ipif_next) 6930 ipif->ipif_state_flags |= IPIF_CHANGING; 6931 mutex_exit(&ill->ill_lock); 6932 break; 6933 default: 6934 mutex_enter(&ill->ill_lock); 6935 ipif->ipif_state_flags |= IPIF_CHANGING; 6936 mutex_exit(&ill->ill_lock); 6937 } 6938 } 6939 6940 /* 6941 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6942 * the next exclusive operation to begin once we ipsq_exit(). However, if 6943 * pending DLPI operations remain, then we will wait for the queue to drain 6944 * before allowing the next exclusive operation to begin. This ensures that 6945 * DLPI operations from one exclusive operation are never improperly processed 6946 * as part of a subsequent exclusive operation. 6947 */ 6948 void 6949 ipsq_current_finish(ipsq_t *ipsq) 6950 { 6951 ipxop_t *ipx = ipsq->ipsq_xop; 6952 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6953 ipif_t *ipif = ipx->ipx_current_ipif; 6954 6955 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6956 6957 /* 6958 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6959 * (but in that case, IPIF_CHANGING will already be clear and no 6960 * pending DLPI messages can remain). 6961 */ 6962 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6963 ill_t *ill = ipif->ipif_ill; 6964 6965 mutex_enter(&ill->ill_lock); 6966 dlpi_pending = ill->ill_dlpi_pending; 6967 if (ipx->ipx_current_ioctl == 0) { 6968 ipif = ill->ill_ipif; 6969 for (; ipif != NULL; ipif = ipif->ipif_next) 6970 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6971 } else { 6972 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6973 } 6974 mutex_exit(&ill->ill_lock); 6975 } 6976 6977 ASSERT(!ipx->ipx_current_done); 6978 ipx->ipx_current_done = B_TRUE; 6979 ipx->ipx_current_ioctl = 0; 6980 if (dlpi_pending == DL_PRIM_INVAL) { 6981 mutex_enter(&ipx->ipx_lock); 6982 ipx->ipx_current_ipif = NULL; 6983 mutex_exit(&ipx->ipx_lock); 6984 } 6985 } 6986 6987 /* 6988 * The ill is closing. Flush all messages on the ipsq that originated 6989 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6990 * for this ill since ipsq_enter could not have entered until then. 6991 * New messages can't be queued since the CONDEMNED flag is set. 6992 */ 6993 static void 6994 ipsq_flush(ill_t *ill) 6995 { 6996 queue_t *q; 6997 mblk_t *prev; 6998 mblk_t *mp; 6999 mblk_t *mp_next; 7000 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7001 7002 ASSERT(IAM_WRITER_ILL(ill)); 7003 7004 /* 7005 * Flush any messages sent up by the driver. 7006 */ 7007 mutex_enter(&ipx->ipx_lock); 7008 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7009 mp_next = mp->b_next; 7010 q = mp->b_queue; 7011 if (q == ill->ill_rq || q == ill->ill_wq) { 7012 /* dequeue mp */ 7013 if (prev == NULL) 7014 ipx->ipx_mphead = mp->b_next; 7015 else 7016 prev->b_next = mp->b_next; 7017 if (ipx->ipx_mptail == mp) { 7018 ASSERT(mp_next == NULL); 7019 ipx->ipx_mptail = prev; 7020 } 7021 inet_freemsg(mp); 7022 } else { 7023 prev = mp; 7024 } 7025 } 7026 mutex_exit(&ipx->ipx_lock); 7027 (void) ipsq_pending_mp_cleanup(ill, NULL); 7028 ipsq_xopq_mp_cleanup(ill, NULL); 7029 } 7030 7031 /* 7032 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7033 * and return the associated ipif. 7034 * Return value: 7035 * Non zero: An error has occurred. ci may not be filled out. 7036 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7037 * a held ipif in ci.ci_ipif. 7038 */ 7039 int 7040 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7041 cmd_info_t *ci) 7042 { 7043 char *name; 7044 struct ifreq *ifr; 7045 struct lifreq *lifr; 7046 ipif_t *ipif = NULL; 7047 ill_t *ill; 7048 conn_t *connp; 7049 boolean_t isv6; 7050 int err; 7051 mblk_t *mp1; 7052 zoneid_t zoneid; 7053 ip_stack_t *ipst; 7054 7055 if (q->q_next != NULL) { 7056 ill = (ill_t *)q->q_ptr; 7057 isv6 = ill->ill_isv6; 7058 connp = NULL; 7059 zoneid = ALL_ZONES; 7060 ipst = ill->ill_ipst; 7061 } else { 7062 ill = NULL; 7063 connp = Q_TO_CONN(q); 7064 isv6 = (connp->conn_family == AF_INET6); 7065 zoneid = connp->conn_zoneid; 7066 if (zoneid == GLOBAL_ZONEID) { 7067 /* global zone can access ipifs in all zones */ 7068 zoneid = ALL_ZONES; 7069 } 7070 ipst = connp->conn_netstack->netstack_ip; 7071 } 7072 7073 /* Has been checked in ip_wput_nondata */ 7074 mp1 = mp->b_cont->b_cont; 7075 7076 if (ipip->ipi_cmd_type == IF_CMD) { 7077 /* This a old style SIOC[GS]IF* command */ 7078 ifr = (struct ifreq *)mp1->b_rptr; 7079 /* 7080 * Null terminate the string to protect against buffer 7081 * overrun. String was generated by user code and may not 7082 * be trusted. 7083 */ 7084 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7085 name = ifr->ifr_name; 7086 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7087 ci->ci_sin6 = NULL; 7088 ci->ci_lifr = (struct lifreq *)ifr; 7089 } else { 7090 /* This a new style SIOC[GS]LIF* command */ 7091 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7092 lifr = (struct lifreq *)mp1->b_rptr; 7093 /* 7094 * Null terminate the string to protect against buffer 7095 * overrun. String was generated by user code and may not 7096 * be trusted. 7097 */ 7098 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7099 name = lifr->lifr_name; 7100 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7101 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7102 ci->ci_lifr = lifr; 7103 } 7104 7105 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7106 /* 7107 * The ioctl will be failed if the ioctl comes down 7108 * an conn stream 7109 */ 7110 if (ill == NULL) { 7111 /* 7112 * Not an ill queue, return EINVAL same as the 7113 * old error code. 7114 */ 7115 return (ENXIO); 7116 } 7117 ipif = ill->ill_ipif; 7118 ipif_refhold(ipif); 7119 } else { 7120 /* 7121 * Ensure that ioctls don't see any internal state changes 7122 * caused by set ioctls by deferring them if IPIF_CHANGING is 7123 * set. 7124 */ 7125 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7126 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7127 if (ipif == NULL) { 7128 if (err == EINPROGRESS) 7129 return (err); 7130 err = 0; /* Ensure we don't use it below */ 7131 } 7132 } 7133 7134 /* 7135 * Old style [GS]IFCMD does not admit IPv6 ipif 7136 */ 7137 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7138 ipif_refrele(ipif); 7139 return (ENXIO); 7140 } 7141 7142 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7143 name[0] == '\0') { 7144 /* 7145 * Handle a or a SIOC?IF* with a null name 7146 * during plumb (on the ill queue before the I_PLINK). 7147 */ 7148 ipif = ill->ill_ipif; 7149 ipif_refhold(ipif); 7150 } 7151 7152 if (ipif == NULL) 7153 return (ENXIO); 7154 7155 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7156 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7157 7158 ci->ci_ipif = ipif; 7159 return (0); 7160 } 7161 7162 /* 7163 * Return the total number of ipifs. 7164 */ 7165 static uint_t 7166 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7167 { 7168 uint_t numifs = 0; 7169 ill_t *ill; 7170 ill_walk_context_t ctx; 7171 ipif_t *ipif; 7172 7173 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7174 ill = ILL_START_WALK_V4(&ctx, ipst); 7175 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7176 if (IS_UNDER_IPMP(ill)) 7177 continue; 7178 for (ipif = ill->ill_ipif; ipif != NULL; 7179 ipif = ipif->ipif_next) { 7180 if (ipif->ipif_zoneid == zoneid || 7181 ipif->ipif_zoneid == ALL_ZONES) 7182 numifs++; 7183 } 7184 } 7185 rw_exit(&ipst->ips_ill_g_lock); 7186 return (numifs); 7187 } 7188 7189 /* 7190 * Return the total number of ipifs. 7191 */ 7192 static uint_t 7193 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7194 { 7195 uint_t numifs = 0; 7196 ill_t *ill; 7197 ipif_t *ipif; 7198 ill_walk_context_t ctx; 7199 7200 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7201 7202 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7203 if (family == AF_INET) 7204 ill = ILL_START_WALK_V4(&ctx, ipst); 7205 else if (family == AF_INET6) 7206 ill = ILL_START_WALK_V6(&ctx, ipst); 7207 else 7208 ill = ILL_START_WALK_ALL(&ctx, ipst); 7209 7210 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7211 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7212 continue; 7213 7214 for (ipif = ill->ill_ipif; ipif != NULL; 7215 ipif = ipif->ipif_next) { 7216 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7217 !(lifn_flags & LIFC_NOXMIT)) 7218 continue; 7219 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7220 !(lifn_flags & LIFC_TEMPORARY)) 7221 continue; 7222 if (((ipif->ipif_flags & 7223 (IPIF_NOXMIT|IPIF_NOLOCAL| 7224 IPIF_DEPRECATED)) || 7225 IS_LOOPBACK(ill) || 7226 !(ipif->ipif_flags & IPIF_UP)) && 7227 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7228 continue; 7229 7230 if (zoneid != ipif->ipif_zoneid && 7231 ipif->ipif_zoneid != ALL_ZONES && 7232 (zoneid != GLOBAL_ZONEID || 7233 !(lifn_flags & LIFC_ALLZONES))) 7234 continue; 7235 7236 numifs++; 7237 } 7238 } 7239 rw_exit(&ipst->ips_ill_g_lock); 7240 return (numifs); 7241 } 7242 7243 uint_t 7244 ip_get_lifsrcofnum(ill_t *ill) 7245 { 7246 uint_t numifs = 0; 7247 ill_t *ill_head = ill; 7248 ip_stack_t *ipst = ill->ill_ipst; 7249 7250 /* 7251 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7252 * other thread may be trying to relink the ILLs in this usesrc group 7253 * and adjusting the ill_usesrc_grp_next pointers 7254 */ 7255 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7256 if ((ill->ill_usesrc_ifindex == 0) && 7257 (ill->ill_usesrc_grp_next != NULL)) { 7258 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7259 ill = ill->ill_usesrc_grp_next) 7260 numifs++; 7261 } 7262 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7263 7264 return (numifs); 7265 } 7266 7267 /* Null values are passed in for ipif, sin, and ifreq */ 7268 /* ARGSUSED */ 7269 int 7270 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7271 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7272 { 7273 int *nump; 7274 conn_t *connp = Q_TO_CONN(q); 7275 7276 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7277 7278 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7279 nump = (int *)mp->b_cont->b_cont->b_rptr; 7280 7281 *nump = ip_get_numifs(connp->conn_zoneid, 7282 connp->conn_netstack->netstack_ip); 7283 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7284 return (0); 7285 } 7286 7287 /* Null values are passed in for ipif, sin, and ifreq */ 7288 /* ARGSUSED */ 7289 int 7290 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7291 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7292 { 7293 struct lifnum *lifn; 7294 mblk_t *mp1; 7295 conn_t *connp = Q_TO_CONN(q); 7296 7297 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7298 7299 /* Existence checked in ip_wput_nondata */ 7300 mp1 = mp->b_cont->b_cont; 7301 7302 lifn = (struct lifnum *)mp1->b_rptr; 7303 switch (lifn->lifn_family) { 7304 case AF_UNSPEC: 7305 case AF_INET: 7306 case AF_INET6: 7307 break; 7308 default: 7309 return (EAFNOSUPPORT); 7310 } 7311 7312 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7313 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7314 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7315 return (0); 7316 } 7317 7318 /* ARGSUSED */ 7319 int 7320 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7321 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7322 { 7323 STRUCT_HANDLE(ifconf, ifc); 7324 mblk_t *mp1; 7325 struct iocblk *iocp; 7326 struct ifreq *ifr; 7327 ill_walk_context_t ctx; 7328 ill_t *ill; 7329 ipif_t *ipif; 7330 struct sockaddr_in *sin; 7331 int32_t ifclen; 7332 zoneid_t zoneid; 7333 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7334 7335 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7336 7337 ip1dbg(("ip_sioctl_get_ifconf")); 7338 /* Existence verified in ip_wput_nondata */ 7339 mp1 = mp->b_cont->b_cont; 7340 iocp = (struct iocblk *)mp->b_rptr; 7341 zoneid = Q_TO_CONN(q)->conn_zoneid; 7342 7343 /* 7344 * The original SIOCGIFCONF passed in a struct ifconf which specified 7345 * the user buffer address and length into which the list of struct 7346 * ifreqs was to be copied. Since AT&T Streams does not seem to 7347 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7348 * the SIOCGIFCONF operation was redefined to simply provide 7349 * a large output buffer into which we are supposed to jam the ifreq 7350 * array. The same ioctl command code was used, despite the fact that 7351 * both the applications and the kernel code had to change, thus making 7352 * it impossible to support both interfaces. 7353 * 7354 * For reasons not good enough to try to explain, the following 7355 * algorithm is used for deciding what to do with one of these: 7356 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7357 * form with the output buffer coming down as the continuation message. 7358 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7359 * and we have to copy in the ifconf structure to find out how big the 7360 * output buffer is and where to copy out to. Sure no problem... 7361 * 7362 */ 7363 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7364 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7365 int numifs = 0; 7366 size_t ifc_bufsize; 7367 7368 /* 7369 * Must be (better be!) continuation of a TRANSPARENT 7370 * IOCTL. We just copied in the ifconf structure. 7371 */ 7372 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7373 (struct ifconf *)mp1->b_rptr); 7374 7375 /* 7376 * Allocate a buffer to hold requested information. 7377 * 7378 * If ifc_len is larger than what is needed, we only 7379 * allocate what we will use. 7380 * 7381 * If ifc_len is smaller than what is needed, return 7382 * EINVAL. 7383 * 7384 * XXX: the ill_t structure can hava 2 counters, for 7385 * v4 and v6 (not just ill_ipif_up_count) to store the 7386 * number of interfaces for a device, so we don't need 7387 * to count them here... 7388 */ 7389 numifs = ip_get_numifs(zoneid, ipst); 7390 7391 ifclen = STRUCT_FGET(ifc, ifc_len); 7392 ifc_bufsize = numifs * sizeof (struct ifreq); 7393 if (ifc_bufsize > ifclen) { 7394 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7395 /* old behaviour */ 7396 return (EINVAL); 7397 } else { 7398 ifc_bufsize = ifclen; 7399 } 7400 } 7401 7402 mp1 = mi_copyout_alloc(q, mp, 7403 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7404 if (mp1 == NULL) 7405 return (ENOMEM); 7406 7407 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7408 } 7409 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7410 /* 7411 * the SIOCGIFCONF ioctl only knows about 7412 * IPv4 addresses, so don't try to tell 7413 * it about interfaces with IPv6-only 7414 * addresses. (Last parm 'isv6' is B_FALSE) 7415 */ 7416 7417 ifr = (struct ifreq *)mp1->b_rptr; 7418 7419 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7420 ill = ILL_START_WALK_V4(&ctx, ipst); 7421 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7422 if (IS_UNDER_IPMP(ill)) 7423 continue; 7424 for (ipif = ill->ill_ipif; ipif != NULL; 7425 ipif = ipif->ipif_next) { 7426 if (zoneid != ipif->ipif_zoneid && 7427 ipif->ipif_zoneid != ALL_ZONES) 7428 continue; 7429 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7430 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7431 /* old behaviour */ 7432 rw_exit(&ipst->ips_ill_g_lock); 7433 return (EINVAL); 7434 } else { 7435 goto if_copydone; 7436 } 7437 } 7438 ipif_get_name(ipif, ifr->ifr_name, 7439 sizeof (ifr->ifr_name)); 7440 sin = (sin_t *)&ifr->ifr_addr; 7441 *sin = sin_null; 7442 sin->sin_family = AF_INET; 7443 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7444 ifr++; 7445 } 7446 } 7447 if_copydone: 7448 rw_exit(&ipst->ips_ill_g_lock); 7449 mp1->b_wptr = (uchar_t *)ifr; 7450 7451 if (STRUCT_BUF(ifc) != NULL) { 7452 STRUCT_FSET(ifc, ifc_len, 7453 (int)((uchar_t *)ifr - mp1->b_rptr)); 7454 } 7455 return (0); 7456 } 7457 7458 /* 7459 * Get the interfaces using the address hosted on the interface passed in, 7460 * as a source adddress 7461 */ 7462 /* ARGSUSED */ 7463 int 7464 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7465 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7466 { 7467 mblk_t *mp1; 7468 ill_t *ill, *ill_head; 7469 ipif_t *ipif, *orig_ipif; 7470 int numlifs = 0; 7471 size_t lifs_bufsize, lifsmaxlen; 7472 struct lifreq *lifr; 7473 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7474 uint_t ifindex; 7475 zoneid_t zoneid; 7476 boolean_t isv6 = B_FALSE; 7477 struct sockaddr_in *sin; 7478 struct sockaddr_in6 *sin6; 7479 STRUCT_HANDLE(lifsrcof, lifs); 7480 ip_stack_t *ipst; 7481 7482 ipst = CONNQ_TO_IPST(q); 7483 7484 ASSERT(q->q_next == NULL); 7485 7486 zoneid = Q_TO_CONN(q)->conn_zoneid; 7487 7488 /* Existence verified in ip_wput_nondata */ 7489 mp1 = mp->b_cont->b_cont; 7490 7491 /* 7492 * Must be (better be!) continuation of a TRANSPARENT 7493 * IOCTL. We just copied in the lifsrcof structure. 7494 */ 7495 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7496 (struct lifsrcof *)mp1->b_rptr); 7497 7498 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7499 return (EINVAL); 7500 7501 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7502 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7503 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7504 if (ipif == NULL) { 7505 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7506 ifindex)); 7507 return (ENXIO); 7508 } 7509 7510 /* Allocate a buffer to hold requested information */ 7511 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7512 lifs_bufsize = numlifs * sizeof (struct lifreq); 7513 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7514 /* The actual size needed is always returned in lifs_len */ 7515 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7516 7517 /* If the amount we need is more than what is passed in, abort */ 7518 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7519 ipif_refrele(ipif); 7520 return (0); 7521 } 7522 7523 mp1 = mi_copyout_alloc(q, mp, 7524 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7525 if (mp1 == NULL) { 7526 ipif_refrele(ipif); 7527 return (ENOMEM); 7528 } 7529 7530 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7531 bzero(mp1->b_rptr, lifs_bufsize); 7532 7533 lifr = (struct lifreq *)mp1->b_rptr; 7534 7535 ill = ill_head = ipif->ipif_ill; 7536 orig_ipif = ipif; 7537 7538 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7539 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7540 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7541 7542 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7543 for (; (ill != NULL) && (ill != ill_head); 7544 ill = ill->ill_usesrc_grp_next) { 7545 7546 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7547 break; 7548 7549 ipif = ill->ill_ipif; 7550 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7551 if (ipif->ipif_isv6) { 7552 sin6 = (sin6_t *)&lifr->lifr_addr; 7553 *sin6 = sin6_null; 7554 sin6->sin6_family = AF_INET6; 7555 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7556 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7557 &ipif->ipif_v6net_mask); 7558 } else { 7559 sin = (sin_t *)&lifr->lifr_addr; 7560 *sin = sin_null; 7561 sin->sin_family = AF_INET; 7562 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7563 lifr->lifr_addrlen = ip_mask_to_plen( 7564 ipif->ipif_net_mask); 7565 } 7566 lifr++; 7567 } 7568 rw_exit(&ipst->ips_ill_g_lock); 7569 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7570 ipif_refrele(orig_ipif); 7571 mp1->b_wptr = (uchar_t *)lifr; 7572 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7573 7574 return (0); 7575 } 7576 7577 /* ARGSUSED */ 7578 int 7579 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7580 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7581 { 7582 mblk_t *mp1; 7583 int list; 7584 ill_t *ill; 7585 ipif_t *ipif; 7586 int flags; 7587 int numlifs = 0; 7588 size_t lifc_bufsize; 7589 struct lifreq *lifr; 7590 sa_family_t family; 7591 struct sockaddr_in *sin; 7592 struct sockaddr_in6 *sin6; 7593 ill_walk_context_t ctx; 7594 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7595 int32_t lifclen; 7596 zoneid_t zoneid; 7597 STRUCT_HANDLE(lifconf, lifc); 7598 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7599 7600 ip1dbg(("ip_sioctl_get_lifconf")); 7601 7602 ASSERT(q->q_next == NULL); 7603 7604 zoneid = Q_TO_CONN(q)->conn_zoneid; 7605 7606 /* Existence verified in ip_wput_nondata */ 7607 mp1 = mp->b_cont->b_cont; 7608 7609 /* 7610 * An extended version of SIOCGIFCONF that takes an 7611 * additional address family and flags field. 7612 * AF_UNSPEC retrieve both IPv4 and IPv6. 7613 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7614 * interfaces are omitted. 7615 * Similarly, IPIF_TEMPORARY interfaces are omitted 7616 * unless LIFC_TEMPORARY is specified. 7617 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7618 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7619 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7620 * has priority over LIFC_NOXMIT. 7621 */ 7622 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7623 7624 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7625 return (EINVAL); 7626 7627 /* 7628 * Must be (better be!) continuation of a TRANSPARENT 7629 * IOCTL. We just copied in the lifconf structure. 7630 */ 7631 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7632 7633 family = STRUCT_FGET(lifc, lifc_family); 7634 flags = STRUCT_FGET(lifc, lifc_flags); 7635 7636 switch (family) { 7637 case AF_UNSPEC: 7638 /* 7639 * walk all ILL's. 7640 */ 7641 list = MAX_G_HEADS; 7642 break; 7643 case AF_INET: 7644 /* 7645 * walk only IPV4 ILL's. 7646 */ 7647 list = IP_V4_G_HEAD; 7648 break; 7649 case AF_INET6: 7650 /* 7651 * walk only IPV6 ILL's. 7652 */ 7653 list = IP_V6_G_HEAD; 7654 break; 7655 default: 7656 return (EAFNOSUPPORT); 7657 } 7658 7659 /* 7660 * Allocate a buffer to hold requested information. 7661 * 7662 * If lifc_len is larger than what is needed, we only 7663 * allocate what we will use. 7664 * 7665 * If lifc_len is smaller than what is needed, return 7666 * EINVAL. 7667 */ 7668 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7669 lifc_bufsize = numlifs * sizeof (struct lifreq); 7670 lifclen = STRUCT_FGET(lifc, lifc_len); 7671 if (lifc_bufsize > lifclen) { 7672 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7673 return (EINVAL); 7674 else 7675 lifc_bufsize = lifclen; 7676 } 7677 7678 mp1 = mi_copyout_alloc(q, mp, 7679 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7680 if (mp1 == NULL) 7681 return (ENOMEM); 7682 7683 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7684 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7685 7686 lifr = (struct lifreq *)mp1->b_rptr; 7687 7688 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7689 ill = ill_first(list, list, &ctx, ipst); 7690 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7691 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7692 continue; 7693 7694 for (ipif = ill->ill_ipif; ipif != NULL; 7695 ipif = ipif->ipif_next) { 7696 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7697 !(flags & LIFC_NOXMIT)) 7698 continue; 7699 7700 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7701 !(flags & LIFC_TEMPORARY)) 7702 continue; 7703 7704 if (((ipif->ipif_flags & 7705 (IPIF_NOXMIT|IPIF_NOLOCAL| 7706 IPIF_DEPRECATED)) || 7707 IS_LOOPBACK(ill) || 7708 !(ipif->ipif_flags & IPIF_UP)) && 7709 (flags & LIFC_EXTERNAL_SOURCE)) 7710 continue; 7711 7712 if (zoneid != ipif->ipif_zoneid && 7713 ipif->ipif_zoneid != ALL_ZONES && 7714 (zoneid != GLOBAL_ZONEID || 7715 !(flags & LIFC_ALLZONES))) 7716 continue; 7717 7718 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7719 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7720 rw_exit(&ipst->ips_ill_g_lock); 7721 return (EINVAL); 7722 } else { 7723 goto lif_copydone; 7724 } 7725 } 7726 7727 ipif_get_name(ipif, lifr->lifr_name, 7728 sizeof (lifr->lifr_name)); 7729 lifr->lifr_type = ill->ill_type; 7730 if (ipif->ipif_isv6) { 7731 sin6 = (sin6_t *)&lifr->lifr_addr; 7732 *sin6 = sin6_null; 7733 sin6->sin6_family = AF_INET6; 7734 sin6->sin6_addr = 7735 ipif->ipif_v6lcl_addr; 7736 lifr->lifr_addrlen = 7737 ip_mask_to_plen_v6( 7738 &ipif->ipif_v6net_mask); 7739 } else { 7740 sin = (sin_t *)&lifr->lifr_addr; 7741 *sin = sin_null; 7742 sin->sin_family = AF_INET; 7743 sin->sin_addr.s_addr = 7744 ipif->ipif_lcl_addr; 7745 lifr->lifr_addrlen = 7746 ip_mask_to_plen( 7747 ipif->ipif_net_mask); 7748 } 7749 lifr++; 7750 } 7751 } 7752 lif_copydone: 7753 rw_exit(&ipst->ips_ill_g_lock); 7754 7755 mp1->b_wptr = (uchar_t *)lifr; 7756 if (STRUCT_BUF(lifc) != NULL) { 7757 STRUCT_FSET(lifc, lifc_len, 7758 (int)((uchar_t *)lifr - mp1->b_rptr)); 7759 } 7760 return (0); 7761 } 7762 7763 static void 7764 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7765 { 7766 ip6_asp_t *table; 7767 size_t table_size; 7768 mblk_t *data_mp; 7769 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7770 ip_stack_t *ipst; 7771 7772 if (q->q_next == NULL) 7773 ipst = CONNQ_TO_IPST(q); 7774 else 7775 ipst = ILLQ_TO_IPST(q); 7776 7777 /* These two ioctls are I_STR only */ 7778 if (iocp->ioc_count == TRANSPARENT) { 7779 miocnak(q, mp, 0, EINVAL); 7780 return; 7781 } 7782 7783 data_mp = mp->b_cont; 7784 if (data_mp == NULL) { 7785 /* The user passed us a NULL argument */ 7786 table = NULL; 7787 table_size = iocp->ioc_count; 7788 } else { 7789 /* 7790 * The user provided a table. The stream head 7791 * may have copied in the user data in chunks, 7792 * so make sure everything is pulled up 7793 * properly. 7794 */ 7795 if (MBLKL(data_mp) < iocp->ioc_count) { 7796 mblk_t *new_data_mp; 7797 if ((new_data_mp = msgpullup(data_mp, -1)) == 7798 NULL) { 7799 miocnak(q, mp, 0, ENOMEM); 7800 return; 7801 } 7802 freemsg(data_mp); 7803 data_mp = new_data_mp; 7804 mp->b_cont = data_mp; 7805 } 7806 table = (ip6_asp_t *)data_mp->b_rptr; 7807 table_size = iocp->ioc_count; 7808 } 7809 7810 switch (iocp->ioc_cmd) { 7811 case SIOCGIP6ADDRPOLICY: 7812 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7813 if (iocp->ioc_rval == -1) 7814 iocp->ioc_error = EINVAL; 7815 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7816 else if (table != NULL && 7817 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7818 ip6_asp_t *src = table; 7819 ip6_asp32_t *dst = (void *)table; 7820 int count = table_size / sizeof (ip6_asp_t); 7821 int i; 7822 7823 /* 7824 * We need to do an in-place shrink of the array 7825 * to match the alignment attributes of the 7826 * 32-bit ABI looking at it. 7827 */ 7828 /* LINTED: logical expression always true: op "||" */ 7829 ASSERT(sizeof (*src) > sizeof (*dst)); 7830 for (i = 1; i < count; i++) 7831 bcopy(src + i, dst + i, sizeof (*dst)); 7832 } 7833 #endif 7834 break; 7835 7836 case SIOCSIP6ADDRPOLICY: 7837 ASSERT(mp->b_prev == NULL); 7838 mp->b_prev = (void *)q; 7839 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7840 /* 7841 * We pass in the datamodel here so that the ip6_asp_replace() 7842 * routine can handle converting from 32-bit to native formats 7843 * where necessary. 7844 * 7845 * A better way to handle this might be to convert the inbound 7846 * data structure here, and hang it off a new 'mp'; thus the 7847 * ip6_asp_replace() logic would always be dealing with native 7848 * format data structures.. 7849 * 7850 * (An even simpler way to handle these ioctls is to just 7851 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7852 * and just recompile everything that depends on it.) 7853 */ 7854 #endif 7855 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7856 iocp->ioc_flag & IOC_MODELS); 7857 return; 7858 } 7859 7860 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7861 qreply(q, mp); 7862 } 7863 7864 static void 7865 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7866 { 7867 mblk_t *data_mp; 7868 struct dstinforeq *dir; 7869 uint8_t *end, *cur; 7870 in6_addr_t *daddr, *saddr; 7871 ipaddr_t v4daddr; 7872 ire_t *ire; 7873 ipaddr_t v4setsrc; 7874 in6_addr_t v6setsrc; 7875 char *slabel, *dlabel; 7876 boolean_t isipv4; 7877 int match_ire; 7878 ill_t *dst_ill; 7879 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7880 conn_t *connp = Q_TO_CONN(q); 7881 zoneid_t zoneid = IPCL_ZONEID(connp); 7882 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7883 uint64_t ipif_flags; 7884 7885 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7886 7887 /* 7888 * This ioctl is I_STR only, and must have a 7889 * data mblk following the M_IOCTL mblk. 7890 */ 7891 data_mp = mp->b_cont; 7892 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7893 miocnak(q, mp, 0, EINVAL); 7894 return; 7895 } 7896 7897 if (MBLKL(data_mp) < iocp->ioc_count) { 7898 mblk_t *new_data_mp; 7899 7900 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7901 miocnak(q, mp, 0, ENOMEM); 7902 return; 7903 } 7904 freemsg(data_mp); 7905 data_mp = new_data_mp; 7906 mp->b_cont = data_mp; 7907 } 7908 match_ire = MATCH_IRE_DSTONLY; 7909 7910 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7911 end - cur >= sizeof (struct dstinforeq); 7912 cur += sizeof (struct dstinforeq)) { 7913 dir = (struct dstinforeq *)cur; 7914 daddr = &dir->dir_daddr; 7915 saddr = &dir->dir_saddr; 7916 7917 /* 7918 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7919 * v4 mapped addresses; ire_ftable_lookup_v6() 7920 * and ip_select_source_v6() do not. 7921 */ 7922 dir->dir_dscope = ip_addr_scope_v6(daddr); 7923 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7924 7925 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7926 if (isipv4) { 7927 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7928 v4setsrc = INADDR_ANY; 7929 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7930 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7931 NULL, NULL); 7932 } else { 7933 v6setsrc = ipv6_all_zeros; 7934 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7935 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7936 NULL, NULL); 7937 } 7938 ASSERT(ire != NULL); 7939 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7940 ire_refrele(ire); 7941 dir->dir_dreachable = 0; 7942 7943 /* move on to next dst addr */ 7944 continue; 7945 } 7946 dir->dir_dreachable = 1; 7947 7948 dst_ill = ire_nexthop_ill(ire); 7949 if (dst_ill == NULL) { 7950 ire_refrele(ire); 7951 continue; 7952 } 7953 7954 /* With ipmp we most likely look at the ipmp ill here */ 7955 dir->dir_dmactype = dst_ill->ill_mactype; 7956 7957 if (isipv4) { 7958 ipaddr_t v4saddr; 7959 7960 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7961 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7962 &v4saddr, NULL, &ipif_flags) != 0) { 7963 v4saddr = INADDR_ANY; 7964 ipif_flags = 0; 7965 } 7966 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7967 } else { 7968 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7969 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7970 saddr, NULL, &ipif_flags) != 0) { 7971 *saddr = ipv6_all_zeros; 7972 ipif_flags = 0; 7973 } 7974 } 7975 7976 dir->dir_sscope = ip_addr_scope_v6(saddr); 7977 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7978 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7979 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7980 ire_refrele(ire); 7981 ill_refrele(dst_ill); 7982 } 7983 miocack(q, mp, iocp->ioc_count, 0); 7984 } 7985 7986 /* 7987 * Check if this is an address assigned to this machine. 7988 * Skips interfaces that are down by using ire checks. 7989 * Translates mapped addresses to v4 addresses and then 7990 * treats them as such, returning true if the v4 address 7991 * associated with this mapped address is configured. 7992 * Note: Applications will have to be careful what they do 7993 * with the response; use of mapped addresses limits 7994 * what can be done with the socket, especially with 7995 * respect to socket options and ioctls - neither IPv4 7996 * options nor IPv6 sticky options/ancillary data options 7997 * may be used. 7998 */ 7999 /* ARGSUSED */ 8000 int 8001 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8002 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8003 { 8004 struct sioc_addrreq *sia; 8005 sin_t *sin; 8006 ire_t *ire; 8007 mblk_t *mp1; 8008 zoneid_t zoneid; 8009 ip_stack_t *ipst; 8010 8011 ip1dbg(("ip_sioctl_tmyaddr")); 8012 8013 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8014 zoneid = Q_TO_CONN(q)->conn_zoneid; 8015 ipst = CONNQ_TO_IPST(q); 8016 8017 /* Existence verified in ip_wput_nondata */ 8018 mp1 = mp->b_cont->b_cont; 8019 sia = (struct sioc_addrreq *)mp1->b_rptr; 8020 sin = (sin_t *)&sia->sa_addr; 8021 switch (sin->sin_family) { 8022 case AF_INET6: { 8023 sin6_t *sin6 = (sin6_t *)sin; 8024 8025 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8026 ipaddr_t v4_addr; 8027 8028 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8029 v4_addr); 8030 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8031 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8032 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8033 } else { 8034 in6_addr_t v6addr; 8035 8036 v6addr = sin6->sin6_addr; 8037 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8038 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8039 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8040 } 8041 break; 8042 } 8043 case AF_INET: { 8044 ipaddr_t v4addr; 8045 8046 v4addr = sin->sin_addr.s_addr; 8047 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8048 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8049 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8050 break; 8051 } 8052 default: 8053 return (EAFNOSUPPORT); 8054 } 8055 if (ire != NULL) { 8056 sia->sa_res = 1; 8057 ire_refrele(ire); 8058 } else { 8059 sia->sa_res = 0; 8060 } 8061 return (0); 8062 } 8063 8064 /* 8065 * Check if this is an address assigned on-link i.e. neighbor, 8066 * and makes sure it's reachable from the current zone. 8067 * Returns true for my addresses as well. 8068 * Translates mapped addresses to v4 addresses and then 8069 * treats them as such, returning true if the v4 address 8070 * associated with this mapped address is configured. 8071 * Note: Applications will have to be careful what they do 8072 * with the response; use of mapped addresses limits 8073 * what can be done with the socket, especially with 8074 * respect to socket options and ioctls - neither IPv4 8075 * options nor IPv6 sticky options/ancillary data options 8076 * may be used. 8077 */ 8078 /* ARGSUSED */ 8079 int 8080 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8081 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8082 { 8083 struct sioc_addrreq *sia; 8084 sin_t *sin; 8085 mblk_t *mp1; 8086 ire_t *ire = NULL; 8087 zoneid_t zoneid; 8088 ip_stack_t *ipst; 8089 8090 ip1dbg(("ip_sioctl_tonlink")); 8091 8092 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8093 zoneid = Q_TO_CONN(q)->conn_zoneid; 8094 ipst = CONNQ_TO_IPST(q); 8095 8096 /* Existence verified in ip_wput_nondata */ 8097 mp1 = mp->b_cont->b_cont; 8098 sia = (struct sioc_addrreq *)mp1->b_rptr; 8099 sin = (sin_t *)&sia->sa_addr; 8100 8101 /* 8102 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8103 * to make sure we only look at on-link unicast address. 8104 */ 8105 switch (sin->sin_family) { 8106 case AF_INET6: { 8107 sin6_t *sin6 = (sin6_t *)sin; 8108 8109 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8110 ipaddr_t v4_addr; 8111 8112 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8113 v4_addr); 8114 if (!CLASSD(v4_addr)) { 8115 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8116 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8117 0, ipst, NULL); 8118 } 8119 } else { 8120 in6_addr_t v6addr; 8121 8122 v6addr = sin6->sin6_addr; 8123 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8124 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8125 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8126 ipst, NULL); 8127 } 8128 } 8129 break; 8130 } 8131 case AF_INET: { 8132 ipaddr_t v4addr; 8133 8134 v4addr = sin->sin_addr.s_addr; 8135 if (!CLASSD(v4addr)) { 8136 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8137 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8138 } 8139 break; 8140 } 8141 default: 8142 return (EAFNOSUPPORT); 8143 } 8144 sia->sa_res = 0; 8145 if (ire != NULL) { 8146 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8147 8148 if ((ire->ire_type & IRE_ONLINK) && 8149 !(ire->ire_type & IRE_BROADCAST)) 8150 sia->sa_res = 1; 8151 ire_refrele(ire); 8152 } 8153 return (0); 8154 } 8155 8156 /* 8157 * TBD: implement when kernel maintaines a list of site prefixes. 8158 */ 8159 /* ARGSUSED */ 8160 int 8161 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8162 ip_ioctl_cmd_t *ipip, void *ifreq) 8163 { 8164 return (ENXIO); 8165 } 8166 8167 /* ARP IOCTLs. */ 8168 /* ARGSUSED */ 8169 int 8170 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8171 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8172 { 8173 int err; 8174 ipaddr_t ipaddr; 8175 struct iocblk *iocp; 8176 conn_t *connp; 8177 struct arpreq *ar; 8178 struct xarpreq *xar; 8179 int arp_flags, flags, alength; 8180 uchar_t *lladdr; 8181 ip_stack_t *ipst; 8182 ill_t *ill = ipif->ipif_ill; 8183 ill_t *proxy_ill = NULL; 8184 ipmp_arpent_t *entp = NULL; 8185 boolean_t proxyarp = B_FALSE; 8186 boolean_t if_arp_ioctl = B_FALSE; 8187 ncec_t *ncec = NULL; 8188 nce_t *nce; 8189 8190 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8191 connp = Q_TO_CONN(q); 8192 ipst = connp->conn_netstack->netstack_ip; 8193 iocp = (struct iocblk *)mp->b_rptr; 8194 8195 if (ipip->ipi_cmd_type == XARP_CMD) { 8196 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8197 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8198 ar = NULL; 8199 8200 arp_flags = xar->xarp_flags; 8201 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8202 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8203 /* 8204 * Validate against user's link layer address length 8205 * input and name and addr length limits. 8206 */ 8207 alength = ill->ill_phys_addr_length; 8208 if (ipip->ipi_cmd == SIOCSXARP) { 8209 if (alength != xar->xarp_ha.sdl_alen || 8210 (alength + xar->xarp_ha.sdl_nlen > 8211 sizeof (xar->xarp_ha.sdl_data))) 8212 return (EINVAL); 8213 } 8214 } else { 8215 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8216 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8217 xar = NULL; 8218 8219 arp_flags = ar->arp_flags; 8220 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8221 /* 8222 * Theoretically, the sa_family could tell us what link 8223 * layer type this operation is trying to deal with. By 8224 * common usage AF_UNSPEC means ethernet. We'll assume 8225 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8226 * for now. Our new SIOC*XARP ioctls can be used more 8227 * generally. 8228 * 8229 * If the underlying media happens to have a non 6 byte 8230 * address, arp module will fail set/get, but the del 8231 * operation will succeed. 8232 */ 8233 alength = 6; 8234 if ((ipip->ipi_cmd != SIOCDARP) && 8235 (alength != ill->ill_phys_addr_length)) { 8236 return (EINVAL); 8237 } 8238 } 8239 8240 /* Translate ATF* flags to NCE* flags */ 8241 flags = 0; 8242 if (arp_flags & ATF_AUTHORITY) 8243 flags |= NCE_F_AUTHORITY; 8244 if (arp_flags & ATF_PERM) 8245 flags |= NCE_F_NONUD; /* not subject to aging */ 8246 if (arp_flags & ATF_PUBL) 8247 flags |= NCE_F_PUBLISH; 8248 8249 /* 8250 * IPMP ARP special handling: 8251 * 8252 * 1. Since ARP mappings must appear consistent across the group, 8253 * prohibit changing ARP mappings on the underlying interfaces. 8254 * 8255 * 2. Since ARP mappings for IPMP data addresses are maintained by 8256 * IP itself, prohibit changing them. 8257 * 8258 * 3. For proxy ARP, use a functioning hardware address in the group, 8259 * provided one exists. If one doesn't, just add the entry as-is; 8260 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8261 */ 8262 if (IS_UNDER_IPMP(ill)) { 8263 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8264 return (EPERM); 8265 } 8266 if (IS_IPMP(ill)) { 8267 ipmp_illgrp_t *illg = ill->ill_grp; 8268 8269 switch (ipip->ipi_cmd) { 8270 case SIOCSARP: 8271 case SIOCSXARP: 8272 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8273 if (proxy_ill != NULL) { 8274 proxyarp = B_TRUE; 8275 if (!ipmp_ill_is_active(proxy_ill)) 8276 proxy_ill = ipmp_illgrp_next_ill(illg); 8277 if (proxy_ill != NULL) 8278 lladdr = proxy_ill->ill_phys_addr; 8279 } 8280 /* FALLTHRU */ 8281 } 8282 } 8283 8284 ipaddr = sin->sin_addr.s_addr; 8285 /* 8286 * don't match across illgrp per case (1) and (2). 8287 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8288 */ 8289 nce = nce_lookup_v4(ill, &ipaddr); 8290 if (nce != NULL) 8291 ncec = nce->nce_common; 8292 8293 switch (iocp->ioc_cmd) { 8294 case SIOCDARP: 8295 case SIOCDXARP: { 8296 /* 8297 * Delete the NCE if any. 8298 */ 8299 if (ncec == NULL) { 8300 iocp->ioc_error = ENXIO; 8301 break; 8302 } 8303 /* Don't allow changes to arp mappings of local addresses. */ 8304 if (NCE_MYADDR(ncec)) { 8305 nce_refrele(nce); 8306 return (ENOTSUP); 8307 } 8308 iocp->ioc_error = 0; 8309 8310 /* 8311 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8312 * This will delete all the nce entries on the under_ills. 8313 */ 8314 ncec_delete(ncec); 8315 /* 8316 * Once the NCE has been deleted, then the ire_dep* consistency 8317 * mechanism will find any IRE which depended on the now 8318 * condemned NCE (as part of sending packets). 8319 * That mechanism handles redirects by deleting redirects 8320 * that refer to UNREACHABLE nces. 8321 */ 8322 break; 8323 } 8324 case SIOCGARP: 8325 case SIOCGXARP: 8326 if (ncec != NULL) { 8327 lladdr = ncec->ncec_lladdr; 8328 flags = ncec->ncec_flags; 8329 iocp->ioc_error = 0; 8330 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8331 } else { 8332 iocp->ioc_error = ENXIO; 8333 } 8334 break; 8335 case SIOCSARP: 8336 case SIOCSXARP: 8337 /* Don't allow changes to arp mappings of local addresses. */ 8338 if (ncec != NULL && NCE_MYADDR(ncec)) { 8339 nce_refrele(nce); 8340 return (ENOTSUP); 8341 } 8342 8343 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8344 flags |= NCE_F_STATIC; 8345 if (!if_arp_ioctl) { 8346 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8347 lladdr, alength, flags); 8348 } else { 8349 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8350 if (ipif != NULL) { 8351 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8352 lladdr, alength, flags); 8353 ipif_refrele(ipif); 8354 } 8355 } 8356 if (nce != NULL) { 8357 nce_refrele(nce); 8358 nce = NULL; 8359 } 8360 /* 8361 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8362 * by nce_add_common() 8363 */ 8364 err = nce_lookup_then_add_v4(ill, lladdr, 8365 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8366 &nce); 8367 if (err == EEXIST) { 8368 ncec = nce->nce_common; 8369 mutex_enter(&ncec->ncec_lock); 8370 ncec->ncec_state = ND_REACHABLE; 8371 ncec->ncec_flags = flags; 8372 nce_update(ncec, ND_UNCHANGED, lladdr); 8373 mutex_exit(&ncec->ncec_lock); 8374 err = 0; 8375 } 8376 if (nce != NULL) { 8377 nce_refrele(nce); 8378 nce = NULL; 8379 } 8380 if (IS_IPMP(ill) && err == 0) { 8381 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8382 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8383 flags); 8384 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8385 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8386 break; 8387 } 8388 } 8389 iocp->ioc_error = err; 8390 } 8391 8392 if (nce != NULL) { 8393 nce_refrele(nce); 8394 } 8395 8396 /* 8397 * If we created an IPMP ARP entry, mark that we've notified ARP. 8398 */ 8399 if (entp != NULL) 8400 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8401 8402 return (iocp->ioc_error); 8403 } 8404 8405 /* 8406 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8407 * the associated sin and refhold and return the associated ipif via `ci'. 8408 */ 8409 int 8410 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8411 cmd_info_t *ci) 8412 { 8413 mblk_t *mp1; 8414 sin_t *sin; 8415 conn_t *connp; 8416 ipif_t *ipif; 8417 ire_t *ire = NULL; 8418 ill_t *ill = NULL; 8419 boolean_t exists; 8420 ip_stack_t *ipst; 8421 struct arpreq *ar; 8422 struct xarpreq *xar; 8423 struct sockaddr_dl *sdl; 8424 8425 /* ioctl comes down on a conn */ 8426 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8427 connp = Q_TO_CONN(q); 8428 if (connp->conn_family == AF_INET6) 8429 return (ENXIO); 8430 8431 ipst = connp->conn_netstack->netstack_ip; 8432 8433 /* Verified in ip_wput_nondata */ 8434 mp1 = mp->b_cont->b_cont; 8435 8436 if (ipip->ipi_cmd_type == XARP_CMD) { 8437 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8438 xar = (struct xarpreq *)mp1->b_rptr; 8439 sin = (sin_t *)&xar->xarp_pa; 8440 sdl = &xar->xarp_ha; 8441 8442 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8443 return (ENXIO); 8444 if (sdl->sdl_nlen >= LIFNAMSIZ) 8445 return (EINVAL); 8446 } else { 8447 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8448 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8449 ar = (struct arpreq *)mp1->b_rptr; 8450 sin = (sin_t *)&ar->arp_pa; 8451 } 8452 8453 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8454 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8455 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8456 if (ipif == NULL) 8457 return (ENXIO); 8458 if (ipif->ipif_id != 0) { 8459 ipif_refrele(ipif); 8460 return (ENXIO); 8461 } 8462 } else { 8463 /* 8464 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8465 * of 0: use the IP address to find the ipif. If the IP 8466 * address is an IPMP test address, ire_ftable_lookup() will 8467 * find the wrong ill, so we first do an ipif_lookup_addr(). 8468 */ 8469 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8470 ipst); 8471 if (ipif == NULL) { 8472 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8473 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8474 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8475 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8476 if (ire != NULL) 8477 ire_refrele(ire); 8478 return (ENXIO); 8479 } 8480 ASSERT(ire != NULL && ill != NULL); 8481 ipif = ill->ill_ipif; 8482 ipif_refhold(ipif); 8483 ire_refrele(ire); 8484 } 8485 } 8486 8487 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8488 ipif_refrele(ipif); 8489 return (ENXIO); 8490 } 8491 8492 ci->ci_sin = sin; 8493 ci->ci_ipif = ipif; 8494 return (0); 8495 } 8496 8497 /* 8498 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8499 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8500 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8501 * up and thus an ill can join that illgrp. 8502 * 8503 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8504 * open()/close() primarily because close() is not allowed to fail or block 8505 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8506 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8507 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8508 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8509 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8510 * state if I_UNLINK didn't occur. 8511 * 8512 * Note that for each plumb/unplumb operation, we may end up here more than 8513 * once because of the way ifconfig works. However, it's OK to link the same 8514 * illgrp more than once, or unlink an illgrp that's already unlinked. 8515 */ 8516 static int 8517 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8518 { 8519 int err; 8520 ip_stack_t *ipst = ill->ill_ipst; 8521 8522 ASSERT(IS_IPMP(ill)); 8523 ASSERT(IAM_WRITER_ILL(ill)); 8524 8525 switch (ioccmd) { 8526 case I_LINK: 8527 return (ENOTSUP); 8528 8529 case I_PLINK: 8530 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8531 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8532 rw_exit(&ipst->ips_ipmp_lock); 8533 break; 8534 8535 case I_PUNLINK: 8536 /* 8537 * Require all UP ipifs be brought down prior to unlinking the 8538 * illgrp so any associated IREs (and other state) is torched. 8539 */ 8540 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8541 return (EBUSY); 8542 8543 /* 8544 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8545 * with an SIOCSLIFGROUPNAME request from an ill trying to 8546 * join this group. Specifically: ills trying to join grab 8547 * ipmp_lock and bump a "pending join" counter checked by 8548 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8549 * joins can occur (since we have ipmp_lock). Once we drop 8550 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8551 * find the illgrp (since we unlinked it) and will return 8552 * EAFNOSUPPORT. This will then take them back through the 8553 * IPMP meta-interface plumbing logic in ifconfig, and thus 8554 * back through I_PLINK above. 8555 */ 8556 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8557 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8558 rw_exit(&ipst->ips_ipmp_lock); 8559 return (err); 8560 default: 8561 break; 8562 } 8563 return (0); 8564 } 8565 8566 /* 8567 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8568 * atomically set/clear the muxids. Also complete the ioctl by acking or 8569 * naking it. Note that the code is structured such that the link type, 8570 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8571 * its clones use the persistent link, while pppd(1M) and perhaps many 8572 * other daemons may use non-persistent link. When combined with some 8573 * ill_t states, linking and unlinking lower streams may be used as 8574 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8575 */ 8576 /* ARGSUSED */ 8577 void 8578 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8579 { 8580 mblk_t *mp1; 8581 struct linkblk *li; 8582 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8583 int err = 0; 8584 8585 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8586 ioccmd == I_LINK || ioccmd == I_UNLINK); 8587 8588 mp1 = mp->b_cont; /* This is the linkblk info */ 8589 li = (struct linkblk *)mp1->b_rptr; 8590 8591 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8592 if (err == EINPROGRESS) 8593 return; 8594 if (err == 0) 8595 miocack(q, mp, 0, 0); 8596 else 8597 miocnak(q, mp, 0, err); 8598 8599 /* Conn was refheld in ip_sioctl_copyin_setup */ 8600 if (CONN_Q(q)) { 8601 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8602 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8603 } 8604 } 8605 8606 /* 8607 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8608 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8609 * module stream). 8610 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8611 * an error code on failure. 8612 */ 8613 static int 8614 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8615 struct linkblk *li) 8616 { 8617 int err = 0; 8618 ill_t *ill; 8619 queue_t *ipwq, *dwq; 8620 const char *name; 8621 struct qinit *qinfo; 8622 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8623 boolean_t entered_ipsq = B_FALSE; 8624 boolean_t is_ip = B_FALSE; 8625 arl_t *arl; 8626 8627 /* 8628 * Walk the lower stream to verify it's the IP module stream. 8629 * The IP module is identified by its name, wput function, 8630 * and non-NULL q_next. STREAMS ensures that the lower stream 8631 * (li->l_qbot) will not vanish until this ioctl completes. 8632 */ 8633 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8634 qinfo = ipwq->q_qinfo; 8635 name = qinfo->qi_minfo->mi_idname; 8636 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8637 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8638 is_ip = B_TRUE; 8639 break; 8640 } 8641 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8642 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8643 break; 8644 } 8645 } 8646 8647 /* 8648 * If this isn't an IP module stream, bail. 8649 */ 8650 if (ipwq == NULL) 8651 return (0); 8652 8653 if (!is_ip) { 8654 arl = (arl_t *)ipwq->q_ptr; 8655 ill = arl_to_ill(arl); 8656 if (ill == NULL) 8657 return (0); 8658 } else { 8659 ill = ipwq->q_ptr; 8660 } 8661 ASSERT(ill != NULL); 8662 8663 if (ipsq == NULL) { 8664 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8665 NEW_OP, B_FALSE); 8666 if (ipsq == NULL) { 8667 if (!is_ip) 8668 ill_refrele(ill); 8669 return (EINPROGRESS); 8670 } 8671 entered_ipsq = B_TRUE; 8672 } 8673 ASSERT(IAM_WRITER_ILL(ill)); 8674 mutex_enter(&ill->ill_lock); 8675 if (!is_ip) { 8676 if (islink && ill->ill_muxid == 0) { 8677 /* 8678 * Plumbing has to be done with IP plumbed first, arp 8679 * second, but here we have arp being plumbed first. 8680 */ 8681 mutex_exit(&ill->ill_lock); 8682 if (entered_ipsq) 8683 ipsq_exit(ipsq); 8684 ill_refrele(ill); 8685 return (EINVAL); 8686 } 8687 } 8688 mutex_exit(&ill->ill_lock); 8689 if (!is_ip) { 8690 arl->arl_muxid = islink ? li->l_index : 0; 8691 ill_refrele(ill); 8692 goto done; 8693 } 8694 8695 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8696 goto done; 8697 8698 /* 8699 * As part of I_{P}LINKing, stash the number of downstream modules and 8700 * the read queue of the module immediately below IP in the ill. 8701 * These are used during the capability negotiation below. 8702 */ 8703 ill->ill_lmod_rq = NULL; 8704 ill->ill_lmod_cnt = 0; 8705 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8706 ill->ill_lmod_rq = RD(dwq); 8707 for (; dwq != NULL; dwq = dwq->q_next) 8708 ill->ill_lmod_cnt++; 8709 } 8710 8711 ill->ill_muxid = islink ? li->l_index : 0; 8712 8713 /* 8714 * Mark the ipsq busy until the capability operations initiated below 8715 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8716 * returns, but the capability operation may complete asynchronously 8717 * much later. 8718 */ 8719 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8720 /* 8721 * If there's at least one up ipif on this ill, then we're bound to 8722 * the underlying driver via DLPI. In that case, renegotiate 8723 * capabilities to account for any possible change in modules 8724 * interposed between IP and the driver. 8725 */ 8726 if (ill->ill_ipif_up_count > 0) { 8727 if (islink) 8728 ill_capability_probe(ill); 8729 else 8730 ill_capability_reset(ill, B_FALSE); 8731 } 8732 ipsq_current_finish(ipsq); 8733 done: 8734 if (entered_ipsq) 8735 ipsq_exit(ipsq); 8736 8737 return (err); 8738 } 8739 8740 /* 8741 * Search the ioctl command in the ioctl tables and return a pointer 8742 * to the ioctl command information. The ioctl command tables are 8743 * static and fully populated at compile time. 8744 */ 8745 ip_ioctl_cmd_t * 8746 ip_sioctl_lookup(int ioc_cmd) 8747 { 8748 int index; 8749 ip_ioctl_cmd_t *ipip; 8750 ip_ioctl_cmd_t *ipip_end; 8751 8752 if (ioc_cmd == IPI_DONTCARE) 8753 return (NULL); 8754 8755 /* 8756 * Do a 2 step search. First search the indexed table 8757 * based on the least significant byte of the ioctl cmd. 8758 * If we don't find a match, then search the misc table 8759 * serially. 8760 */ 8761 index = ioc_cmd & 0xFF; 8762 if (index < ip_ndx_ioctl_count) { 8763 ipip = &ip_ndx_ioctl_table[index]; 8764 if (ipip->ipi_cmd == ioc_cmd) { 8765 /* Found a match in the ndx table */ 8766 return (ipip); 8767 } 8768 } 8769 8770 /* Search the misc table */ 8771 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8772 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8773 if (ipip->ipi_cmd == ioc_cmd) 8774 /* Found a match in the misc table */ 8775 return (ipip); 8776 } 8777 8778 return (NULL); 8779 } 8780 8781 /* 8782 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8783 */ 8784 static boolean_t 8785 getset_ioctl_checks(mblk_t *mp) 8786 { 8787 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8788 mblk_t *mp1 = mp->b_cont; 8789 mod_ioc_prop_t *pioc; 8790 uint_t flags; 8791 uint_t pioc_size; 8792 8793 /* do sanity checks on various arguments */ 8794 if (mp1 == NULL || iocp->ioc_count == 0 || 8795 iocp->ioc_count == TRANSPARENT) { 8796 return (B_FALSE); 8797 } 8798 if (msgdsize(mp1) < iocp->ioc_count) { 8799 if (!pullupmsg(mp1, iocp->ioc_count)) 8800 return (B_FALSE); 8801 } 8802 8803 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8804 8805 /* sanity checks on mpr_valsize */ 8806 pioc_size = sizeof (mod_ioc_prop_t); 8807 if (pioc->mpr_valsize != 0) 8808 pioc_size += pioc->mpr_valsize - 1; 8809 8810 if (iocp->ioc_count != pioc_size) 8811 return (B_FALSE); 8812 8813 flags = pioc->mpr_flags; 8814 if (iocp->ioc_cmd == SIOCSETPROP) { 8815 /* 8816 * One can either reset the value to it's default value or 8817 * change the current value or append/remove the value from 8818 * a multi-valued properties. 8819 */ 8820 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8821 flags != MOD_PROP_ACTIVE && 8822 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8823 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8824 return (B_FALSE); 8825 } else { 8826 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8827 8828 /* 8829 * One can retrieve only one kind of property information 8830 * at a time. 8831 */ 8832 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8833 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8834 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8835 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8836 return (B_FALSE); 8837 } 8838 8839 return (B_TRUE); 8840 } 8841 8842 /* 8843 * process the SIOC{SET|GET}PROP ioctl's 8844 */ 8845 /* ARGSUSED */ 8846 static void 8847 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8848 { 8849 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8850 mblk_t *mp1 = mp->b_cont; 8851 mod_ioc_prop_t *pioc; 8852 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8853 ip_stack_t *ipst; 8854 netstack_t *stack; 8855 cred_t *cr; 8856 boolean_t set; 8857 int err; 8858 8859 ASSERT(q->q_next == NULL); 8860 ASSERT(CONN_Q(q)); 8861 8862 if (!getset_ioctl_checks(mp)) { 8863 miocnak(q, mp, 0, EINVAL); 8864 return; 8865 } 8866 ipst = CONNQ_TO_IPST(q); 8867 stack = ipst->ips_netstack; 8868 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8869 8870 switch (pioc->mpr_proto) { 8871 case MOD_PROTO_IP: 8872 case MOD_PROTO_IPV4: 8873 case MOD_PROTO_IPV6: 8874 ptbl = ipst->ips_propinfo_tbl; 8875 break; 8876 case MOD_PROTO_RAWIP: 8877 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8878 break; 8879 case MOD_PROTO_TCP: 8880 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8881 break; 8882 case MOD_PROTO_UDP: 8883 ptbl = stack->netstack_udp->us_propinfo_tbl; 8884 break; 8885 case MOD_PROTO_SCTP: 8886 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8887 break; 8888 default: 8889 miocnak(q, mp, 0, EINVAL); 8890 return; 8891 } 8892 8893 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8894 if (pinfo == NULL) { 8895 miocnak(q, mp, 0, ENOENT); 8896 return; 8897 } 8898 8899 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8900 if (set && pinfo->mpi_setf != NULL) { 8901 cr = msg_getcred(mp, NULL); 8902 if (cr == NULL) 8903 cr = iocp->ioc_cr; 8904 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8905 pioc->mpr_val, pioc->mpr_flags); 8906 } else if (!set && pinfo->mpi_getf != NULL) { 8907 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8908 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8909 } else { 8910 err = EPERM; 8911 } 8912 8913 if (err != 0) { 8914 miocnak(q, mp, 0, err); 8915 } else { 8916 if (set) 8917 miocack(q, mp, 0, 0); 8918 else /* For get, we need to return back the data */ 8919 miocack(q, mp, iocp->ioc_count, 0); 8920 } 8921 } 8922 8923 /* 8924 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8925 * as several routing daemons have unfortunately used this 'unpublished' 8926 * but well-known ioctls. 8927 */ 8928 /* ARGSUSED */ 8929 static void 8930 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8931 { 8932 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8933 mblk_t *mp1 = mp->b_cont; 8934 char *pname, *pval, *buf; 8935 uint_t bufsize, proto; 8936 mod_prop_info_t *pinfo = NULL; 8937 ip_stack_t *ipst; 8938 int err = 0; 8939 8940 ASSERT(CONN_Q(q)); 8941 ipst = CONNQ_TO_IPST(q); 8942 8943 if (iocp->ioc_count == 0 || mp1 == NULL) { 8944 miocnak(q, mp, 0, EINVAL); 8945 return; 8946 } 8947 8948 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8949 pval = buf = pname = (char *)mp1->b_rptr; 8950 bufsize = MBLKL(mp1); 8951 8952 if (strcmp(pname, "ip_forwarding") == 0) { 8953 pname = "forwarding"; 8954 proto = MOD_PROTO_IPV4; 8955 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8956 pname = "forwarding"; 8957 proto = MOD_PROTO_IPV6; 8958 } else { 8959 miocnak(q, mp, 0, EINVAL); 8960 return; 8961 } 8962 8963 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8964 8965 switch (iocp->ioc_cmd) { 8966 case ND_GET: 8967 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8968 bufsize, 0)) == 0) { 8969 miocack(q, mp, iocp->ioc_count, 0); 8970 return; 8971 } 8972 break; 8973 case ND_SET: 8974 /* 8975 * buffer will have property name and value in the following 8976 * format, 8977 * <property name>'\0'<property value>'\0', extract them; 8978 */ 8979 while (*pval++) 8980 noop; 8981 8982 if (!*pval || pval >= (char *)mp1->b_wptr) { 8983 err = EINVAL; 8984 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8985 pinfo, NULL, pval, 0)) == 0) { 8986 miocack(q, mp, 0, 0); 8987 return; 8988 } 8989 break; 8990 default: 8991 err = EINVAL; 8992 break; 8993 } 8994 miocnak(q, mp, 0, err); 8995 } 8996 8997 /* 8998 * Wrapper function for resuming deferred ioctl processing 8999 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9000 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9001 */ 9002 /* ARGSUSED */ 9003 void 9004 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9005 void *dummy_arg) 9006 { 9007 ip_sioctl_copyin_setup(q, mp); 9008 } 9009 9010 /* 9011 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9012 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9013 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9014 * We establish here the size of the block to be copied in. mi_copyin 9015 * arranges for this to happen, an processing continues in ip_wput_nondata with 9016 * an M_IOCDATA message. 9017 */ 9018 void 9019 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9020 { 9021 int copyin_size; 9022 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9023 ip_ioctl_cmd_t *ipip; 9024 cred_t *cr; 9025 ip_stack_t *ipst; 9026 9027 if (CONN_Q(q)) 9028 ipst = CONNQ_TO_IPST(q); 9029 else 9030 ipst = ILLQ_TO_IPST(q); 9031 9032 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9033 if (ipip == NULL) { 9034 /* 9035 * The ioctl is not one we understand or own. 9036 * Pass it along to be processed down stream, 9037 * if this is a module instance of IP, else nak 9038 * the ioctl. 9039 */ 9040 if (q->q_next == NULL) { 9041 goto nak; 9042 } else { 9043 putnext(q, mp); 9044 return; 9045 } 9046 } 9047 9048 /* 9049 * If this is deferred, then we will do all the checks when we 9050 * come back. 9051 */ 9052 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9053 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9054 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9055 return; 9056 } 9057 9058 /* 9059 * Only allow a very small subset of IP ioctls on this stream if 9060 * IP is a module and not a driver. Allowing ioctls to be processed 9061 * in this case may cause assert failures or data corruption. 9062 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9063 * ioctls allowed on an IP module stream, after which this stream 9064 * normally becomes a multiplexor (at which time the stream head 9065 * will fail all ioctls). 9066 */ 9067 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9068 goto nak; 9069 } 9070 9071 /* Make sure we have ioctl data to process. */ 9072 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9073 goto nak; 9074 9075 /* 9076 * Prefer dblk credential over ioctl credential; some synthesized 9077 * ioctls have kcred set because there's no way to crhold() 9078 * a credential in some contexts. (ioc_cr is not crfree() by 9079 * the framework; the caller of ioctl needs to hold the reference 9080 * for the duration of the call). 9081 */ 9082 cr = msg_getcred(mp, NULL); 9083 if (cr == NULL) 9084 cr = iocp->ioc_cr; 9085 9086 /* Make sure normal users don't send down privileged ioctls */ 9087 if ((ipip->ipi_flags & IPI_PRIV) && 9088 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9089 /* We checked the privilege earlier but log it here */ 9090 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9091 return; 9092 } 9093 9094 /* 9095 * The ioctl command tables can only encode fixed length 9096 * ioctl data. If the length is variable, the table will 9097 * encode the length as zero. Such special cases are handled 9098 * below in the switch. 9099 */ 9100 if (ipip->ipi_copyin_size != 0) { 9101 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9102 return; 9103 } 9104 9105 switch (iocp->ioc_cmd) { 9106 case O_SIOCGIFCONF: 9107 case SIOCGIFCONF: 9108 /* 9109 * This IOCTL is hilarious. See comments in 9110 * ip_sioctl_get_ifconf for the story. 9111 */ 9112 if (iocp->ioc_count == TRANSPARENT) 9113 copyin_size = SIZEOF_STRUCT(ifconf, 9114 iocp->ioc_flag); 9115 else 9116 copyin_size = iocp->ioc_count; 9117 mi_copyin(q, mp, NULL, copyin_size); 9118 return; 9119 9120 case O_SIOCGLIFCONF: 9121 case SIOCGLIFCONF: 9122 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9123 mi_copyin(q, mp, NULL, copyin_size); 9124 return; 9125 9126 case SIOCGLIFSRCOF: 9127 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9128 mi_copyin(q, mp, NULL, copyin_size); 9129 return; 9130 9131 case SIOCGIP6ADDRPOLICY: 9132 ip_sioctl_ip6addrpolicy(q, mp); 9133 ip6_asp_table_refrele(ipst); 9134 return; 9135 9136 case SIOCSIP6ADDRPOLICY: 9137 ip_sioctl_ip6addrpolicy(q, mp); 9138 return; 9139 9140 case SIOCGDSTINFO: 9141 ip_sioctl_dstinfo(q, mp); 9142 ip6_asp_table_refrele(ipst); 9143 return; 9144 9145 case ND_SET: 9146 case ND_GET: 9147 ip_process_legacy_nddprop(q, mp); 9148 return; 9149 9150 case SIOCSETPROP: 9151 case SIOCGETPROP: 9152 ip_sioctl_getsetprop(q, mp); 9153 return; 9154 9155 case I_PLINK: 9156 case I_PUNLINK: 9157 case I_LINK: 9158 case I_UNLINK: 9159 /* 9160 * We treat non-persistent link similarly as the persistent 9161 * link case, in terms of plumbing/unplumbing, as well as 9162 * dynamic re-plumbing events indicator. See comments 9163 * in ip_sioctl_plink() for more. 9164 * 9165 * Request can be enqueued in the 'ipsq' while waiting 9166 * to become exclusive. So bump up the conn ref. 9167 */ 9168 if (CONN_Q(q)) { 9169 CONN_INC_REF(Q_TO_CONN(q)); 9170 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9171 } 9172 ip_sioctl_plink(NULL, q, mp, NULL); 9173 return; 9174 9175 case IP_IOCTL: 9176 ip_wput_ioctl(q, mp); 9177 return; 9178 9179 case SIOCILB: 9180 /* The ioctl length varies depending on the ILB command. */ 9181 copyin_size = iocp->ioc_count; 9182 if (copyin_size < sizeof (ilb_cmd_t)) 9183 goto nak; 9184 mi_copyin(q, mp, NULL, copyin_size); 9185 return; 9186 9187 default: 9188 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9189 iocp->ioc_cmd, iocp->ioc_cmd); 9190 /* FALLTHRU */ 9191 } 9192 nak: 9193 if (mp->b_cont != NULL) { 9194 freemsg(mp->b_cont); 9195 mp->b_cont = NULL; 9196 } 9197 iocp->ioc_error = EINVAL; 9198 mp->b_datap->db_type = M_IOCNAK; 9199 iocp->ioc_count = 0; 9200 qreply(q, mp); 9201 } 9202 9203 static void 9204 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9205 { 9206 struct arpreq *ar; 9207 struct xarpreq *xar; 9208 mblk_t *tmp; 9209 struct iocblk *iocp; 9210 int x_arp_ioctl = B_FALSE; 9211 int *flagsp; 9212 char *storage = NULL; 9213 9214 ASSERT(ill != NULL); 9215 9216 iocp = (struct iocblk *)mp->b_rptr; 9217 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9218 9219 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9220 if ((iocp->ioc_cmd == SIOCGXARP) || 9221 (iocp->ioc_cmd == SIOCSXARP)) { 9222 x_arp_ioctl = B_TRUE; 9223 xar = (struct xarpreq *)tmp->b_rptr; 9224 flagsp = &xar->xarp_flags; 9225 storage = xar->xarp_ha.sdl_data; 9226 } else { 9227 ar = (struct arpreq *)tmp->b_rptr; 9228 flagsp = &ar->arp_flags; 9229 storage = ar->arp_ha.sa_data; 9230 } 9231 9232 /* 9233 * We're done if this is not an SIOCG{X}ARP 9234 */ 9235 if (x_arp_ioctl) { 9236 storage += ill_xarp_info(&xar->xarp_ha, ill); 9237 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9238 sizeof (xar->xarp_ha.sdl_data)) { 9239 iocp->ioc_error = EINVAL; 9240 return; 9241 } 9242 } 9243 *flagsp = ATF_INUSE; 9244 /* 9245 * If /sbin/arp told us we are the authority using the "permanent" 9246 * flag, or if this is one of my addresses print "permanent" 9247 * in the /sbin/arp output. 9248 */ 9249 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9250 *flagsp |= ATF_AUTHORITY; 9251 if (flags & NCE_F_NONUD) 9252 *flagsp |= ATF_PERM; /* not subject to aging */ 9253 if (flags & NCE_F_PUBLISH) 9254 *flagsp |= ATF_PUBL; 9255 if (hwaddr != NULL) { 9256 *flagsp |= ATF_COM; 9257 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9258 } 9259 } 9260 9261 /* 9262 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9263 * interface) create the next available logical interface for this 9264 * physical interface. 9265 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9266 * ipif with the specified name. 9267 * 9268 * If the address family is not AF_UNSPEC then set the address as well. 9269 * 9270 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9271 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9272 * 9273 * Executed as a writer on the ill. 9274 * So no lock is needed to traverse the ipif chain, or examine the 9275 * phyint flags. 9276 */ 9277 /* ARGSUSED */ 9278 int 9279 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9280 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9281 { 9282 mblk_t *mp1; 9283 struct lifreq *lifr; 9284 boolean_t isv6; 9285 boolean_t exists; 9286 char *name; 9287 char *endp; 9288 char *cp; 9289 int namelen; 9290 ipif_t *ipif; 9291 long id; 9292 ipsq_t *ipsq; 9293 ill_t *ill; 9294 sin_t *sin; 9295 int err = 0; 9296 boolean_t found_sep = B_FALSE; 9297 conn_t *connp; 9298 zoneid_t zoneid; 9299 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9300 9301 ASSERT(q->q_next == NULL); 9302 ip1dbg(("ip_sioctl_addif\n")); 9303 /* Existence of mp1 has been checked in ip_wput_nondata */ 9304 mp1 = mp->b_cont->b_cont; 9305 /* 9306 * Null terminate the string to protect against buffer 9307 * overrun. String was generated by user code and may not 9308 * be trusted. 9309 */ 9310 lifr = (struct lifreq *)mp1->b_rptr; 9311 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9312 name = lifr->lifr_name; 9313 ASSERT(CONN_Q(q)); 9314 connp = Q_TO_CONN(q); 9315 isv6 = (connp->conn_family == AF_INET6); 9316 zoneid = connp->conn_zoneid; 9317 namelen = mi_strlen(name); 9318 if (namelen == 0) 9319 return (EINVAL); 9320 9321 exists = B_FALSE; 9322 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9323 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9324 /* 9325 * Allow creating lo0 using SIOCLIFADDIF. 9326 * can't be any other writer thread. So can pass null below 9327 * for the last 4 args to ipif_lookup_name. 9328 */ 9329 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9330 &exists, isv6, zoneid, ipst); 9331 /* Prevent any further action */ 9332 if (ipif == NULL) { 9333 return (ENOBUFS); 9334 } else if (!exists) { 9335 /* We created the ipif now and as writer */ 9336 ipif_refrele(ipif); 9337 return (0); 9338 } else { 9339 ill = ipif->ipif_ill; 9340 ill_refhold(ill); 9341 ipif_refrele(ipif); 9342 } 9343 } else { 9344 /* Look for a colon in the name. */ 9345 endp = &name[namelen]; 9346 for (cp = endp; --cp > name; ) { 9347 if (*cp == IPIF_SEPARATOR_CHAR) { 9348 found_sep = B_TRUE; 9349 /* 9350 * Reject any non-decimal aliases for plumbing 9351 * of logical interfaces. Aliases with leading 9352 * zeroes are also rejected as they introduce 9353 * ambiguity in the naming of the interfaces. 9354 * Comparing with "0" takes care of all such 9355 * cases. 9356 */ 9357 if ((strncmp("0", cp+1, 1)) == 0) 9358 return (EINVAL); 9359 9360 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9361 id <= 0 || *endp != '\0') { 9362 return (EINVAL); 9363 } 9364 *cp = '\0'; 9365 break; 9366 } 9367 } 9368 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9369 if (found_sep) 9370 *cp = IPIF_SEPARATOR_CHAR; 9371 if (ill == NULL) 9372 return (ENXIO); 9373 } 9374 9375 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9376 B_TRUE); 9377 9378 /* 9379 * Release the refhold due to the lookup, now that we are excl 9380 * or we are just returning 9381 */ 9382 ill_refrele(ill); 9383 9384 if (ipsq == NULL) 9385 return (EINPROGRESS); 9386 9387 /* We are now exclusive on the IPSQ */ 9388 ASSERT(IAM_WRITER_ILL(ill)); 9389 9390 if (found_sep) { 9391 /* Now see if there is an IPIF with this unit number. */ 9392 for (ipif = ill->ill_ipif; ipif != NULL; 9393 ipif = ipif->ipif_next) { 9394 if (ipif->ipif_id == id) { 9395 err = EEXIST; 9396 goto done; 9397 } 9398 } 9399 } 9400 9401 /* 9402 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9403 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9404 * instead. 9405 */ 9406 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9407 B_TRUE, B_TRUE, &err)) == NULL) { 9408 goto done; 9409 } 9410 9411 /* Return created name with ioctl */ 9412 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9413 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9414 ip1dbg(("created %s\n", lifr->lifr_name)); 9415 9416 /* Set address */ 9417 sin = (sin_t *)&lifr->lifr_addr; 9418 if (sin->sin_family != AF_UNSPEC) { 9419 err = ip_sioctl_addr(ipif, sin, q, mp, 9420 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9421 } 9422 9423 done: 9424 ipsq_exit(ipsq); 9425 return (err); 9426 } 9427 9428 /* 9429 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9430 * interface) delete it based on the IP address (on this physical interface). 9431 * Otherwise delete it based on the ipif_id. 9432 * Also, special handling to allow a removeif of lo0. 9433 */ 9434 /* ARGSUSED */ 9435 int 9436 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9437 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9438 { 9439 conn_t *connp; 9440 ill_t *ill = ipif->ipif_ill; 9441 boolean_t success; 9442 ip_stack_t *ipst; 9443 9444 ipst = CONNQ_TO_IPST(q); 9445 9446 ASSERT(q->q_next == NULL); 9447 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9448 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9449 ASSERT(IAM_WRITER_IPIF(ipif)); 9450 9451 connp = Q_TO_CONN(q); 9452 /* 9453 * Special case for unplumbing lo0 (the loopback physical interface). 9454 * If unplumbing lo0, the incoming address structure has been 9455 * initialized to all zeros. When unplumbing lo0, all its logical 9456 * interfaces must be removed too. 9457 * 9458 * Note that this interface may be called to remove a specific 9459 * loopback logical interface (eg, lo0:1). But in that case 9460 * ipif->ipif_id != 0 so that the code path for that case is the 9461 * same as any other interface (meaning it skips the code directly 9462 * below). 9463 */ 9464 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9465 if (sin->sin_family == AF_UNSPEC && 9466 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9467 /* 9468 * Mark it condemned. No new ref. will be made to ill. 9469 */ 9470 mutex_enter(&ill->ill_lock); 9471 ill->ill_state_flags |= ILL_CONDEMNED; 9472 for (ipif = ill->ill_ipif; ipif != NULL; 9473 ipif = ipif->ipif_next) { 9474 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9475 } 9476 mutex_exit(&ill->ill_lock); 9477 9478 ipif = ill->ill_ipif; 9479 /* unplumb the loopback interface */ 9480 ill_delete(ill); 9481 mutex_enter(&connp->conn_lock); 9482 mutex_enter(&ill->ill_lock); 9483 9484 /* Are any references to this ill active */ 9485 if (ill_is_freeable(ill)) { 9486 mutex_exit(&ill->ill_lock); 9487 mutex_exit(&connp->conn_lock); 9488 ill_delete_tail(ill); 9489 mi_free(ill); 9490 return (0); 9491 } 9492 success = ipsq_pending_mp_add(connp, ipif, 9493 CONNP_TO_WQ(connp), mp, ILL_FREE); 9494 mutex_exit(&connp->conn_lock); 9495 mutex_exit(&ill->ill_lock); 9496 if (success) 9497 return (EINPROGRESS); 9498 else 9499 return (EINTR); 9500 } 9501 } 9502 9503 if (ipif->ipif_id == 0) { 9504 ipsq_t *ipsq; 9505 9506 /* Find based on address */ 9507 if (ipif->ipif_isv6) { 9508 sin6_t *sin6; 9509 9510 if (sin->sin_family != AF_INET6) 9511 return (EAFNOSUPPORT); 9512 9513 sin6 = (sin6_t *)sin; 9514 /* We are a writer, so we should be able to lookup */ 9515 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9516 ipst); 9517 } else { 9518 if (sin->sin_family != AF_INET) 9519 return (EAFNOSUPPORT); 9520 9521 /* We are a writer, so we should be able to lookup */ 9522 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9523 ipst); 9524 } 9525 if (ipif == NULL) { 9526 return (EADDRNOTAVAIL); 9527 } 9528 9529 /* 9530 * It is possible for a user to send an SIOCLIFREMOVEIF with 9531 * lifr_name of the physical interface but with an ip address 9532 * lifr_addr of a logical interface plumbed over it. 9533 * So update ipx_current_ipif now that ipif points to the 9534 * correct one. 9535 */ 9536 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9537 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9538 9539 /* This is a writer */ 9540 ipif_refrele(ipif); 9541 } 9542 9543 /* 9544 * Can not delete instance zero since it is tied to the ill. 9545 */ 9546 if (ipif->ipif_id == 0) 9547 return (EBUSY); 9548 9549 mutex_enter(&ill->ill_lock); 9550 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9551 mutex_exit(&ill->ill_lock); 9552 9553 ipif_free(ipif); 9554 9555 mutex_enter(&connp->conn_lock); 9556 mutex_enter(&ill->ill_lock); 9557 9558 /* Are any references to this ipif active */ 9559 if (ipif_is_freeable(ipif)) { 9560 mutex_exit(&ill->ill_lock); 9561 mutex_exit(&connp->conn_lock); 9562 ipif_non_duplicate(ipif); 9563 (void) ipif_down_tail(ipif); 9564 ipif_free_tail(ipif); /* frees ipif */ 9565 return (0); 9566 } 9567 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9568 IPIF_FREE); 9569 mutex_exit(&ill->ill_lock); 9570 mutex_exit(&connp->conn_lock); 9571 if (success) 9572 return (EINPROGRESS); 9573 else 9574 return (EINTR); 9575 } 9576 9577 /* 9578 * Restart the removeif ioctl. The refcnt has gone down to 0. 9579 * The ipif is already condemned. So can't find it thru lookups. 9580 */ 9581 /* ARGSUSED */ 9582 int 9583 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9585 { 9586 ill_t *ill = ipif->ipif_ill; 9587 9588 ASSERT(IAM_WRITER_IPIF(ipif)); 9589 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9590 9591 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9592 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9593 9594 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9595 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9596 ill_delete_tail(ill); 9597 mi_free(ill); 9598 return (0); 9599 } 9600 9601 ipif_non_duplicate(ipif); 9602 (void) ipif_down_tail(ipif); 9603 ipif_free_tail(ipif); 9604 9605 return (0); 9606 } 9607 9608 /* 9609 * Set the local interface address using the given prefix and ill_token. 9610 */ 9611 /* ARGSUSED */ 9612 int 9613 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9614 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9615 { 9616 int err; 9617 in6_addr_t v6addr; 9618 sin6_t *sin6; 9619 ill_t *ill; 9620 int i; 9621 9622 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9624 9625 ASSERT(IAM_WRITER_IPIF(ipif)); 9626 9627 if (!ipif->ipif_isv6) 9628 return (EINVAL); 9629 9630 if (sin->sin_family != AF_INET6) 9631 return (EAFNOSUPPORT); 9632 9633 sin6 = (sin6_t *)sin; 9634 v6addr = sin6->sin6_addr; 9635 ill = ipif->ipif_ill; 9636 9637 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9638 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9639 return (EADDRNOTAVAIL); 9640 9641 for (i = 0; i < 4; i++) 9642 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9643 9644 err = ip_sioctl_addr(ipif, sin, q, mp, 9645 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9646 return (err); 9647 } 9648 9649 /* 9650 * Restart entry point to restart the address set operation after the 9651 * refcounts have dropped to zero. 9652 */ 9653 /* ARGSUSED */ 9654 int 9655 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9656 ip_ioctl_cmd_t *ipip, void *ifreq) 9657 { 9658 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9659 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9660 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9661 } 9662 9663 /* 9664 * Set the local interface address. 9665 * Allow an address of all zero when the interface is down. 9666 */ 9667 /* ARGSUSED */ 9668 int 9669 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9670 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9671 { 9672 int err = 0; 9673 in6_addr_t v6addr; 9674 boolean_t need_up = B_FALSE; 9675 ill_t *ill; 9676 int i; 9677 9678 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9679 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9680 9681 ASSERT(IAM_WRITER_IPIF(ipif)); 9682 9683 ill = ipif->ipif_ill; 9684 if (ipif->ipif_isv6) { 9685 sin6_t *sin6; 9686 phyint_t *phyi; 9687 9688 if (sin->sin_family != AF_INET6) 9689 return (EAFNOSUPPORT); 9690 9691 sin6 = (sin6_t *)sin; 9692 v6addr = sin6->sin6_addr; 9693 phyi = ill->ill_phyint; 9694 9695 /* 9696 * Enforce that true multicast interfaces have a link-local 9697 * address for logical unit 0. 9698 * 9699 * However for those ipif's for which link-local address was 9700 * not created by default, also allow setting :: as the address. 9701 * This scenario would arise, when we delete an address on ipif 9702 * with logical unit 0, we would want to set :: as the address. 9703 */ 9704 if (ipif->ipif_id == 0 && 9705 (ill->ill_flags & ILLF_MULTICAST) && 9706 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9707 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9708 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9709 9710 /* 9711 * if default link-local was not created by kernel for 9712 * this ill, allow setting :: as the address on ipif:0. 9713 */ 9714 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9715 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9716 return (EADDRNOTAVAIL); 9717 } else { 9718 return (EADDRNOTAVAIL); 9719 } 9720 } 9721 9722 /* 9723 * up interfaces shouldn't have the unspecified address 9724 * unless they also have the IPIF_NOLOCAL flags set and 9725 * have a subnet assigned. 9726 */ 9727 if ((ipif->ipif_flags & IPIF_UP) && 9728 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9729 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9730 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9731 return (EADDRNOTAVAIL); 9732 } 9733 9734 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9735 return (EADDRNOTAVAIL); 9736 } else { 9737 ipaddr_t addr; 9738 9739 if (sin->sin_family != AF_INET) 9740 return (EAFNOSUPPORT); 9741 9742 addr = sin->sin_addr.s_addr; 9743 9744 /* Allow INADDR_ANY as the local address. */ 9745 if (addr != INADDR_ANY && 9746 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9747 return (EADDRNOTAVAIL); 9748 9749 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9750 } 9751 /* 9752 * verify that the address being configured is permitted by the 9753 * ill_allowed_ips[] for the interface. 9754 */ 9755 if (ill->ill_allowed_ips_cnt > 0) { 9756 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9757 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9758 &v6addr)) 9759 break; 9760 } 9761 if (i == ill->ill_allowed_ips_cnt) { 9762 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9763 return (EPERM); 9764 } 9765 } 9766 /* 9767 * Even if there is no change we redo things just to rerun 9768 * ipif_set_default. 9769 */ 9770 if (ipif->ipif_flags & IPIF_UP) { 9771 /* 9772 * Setting a new local address, make sure 9773 * we have net and subnet bcast ire's for 9774 * the old address if we need them. 9775 */ 9776 /* 9777 * If the interface is already marked up, 9778 * we call ipif_down which will take care 9779 * of ditching any IREs that have been set 9780 * up based on the old interface address. 9781 */ 9782 err = ipif_logical_down(ipif, q, mp); 9783 if (err == EINPROGRESS) 9784 return (err); 9785 (void) ipif_down_tail(ipif); 9786 need_up = 1; 9787 } 9788 9789 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9790 return (err); 9791 } 9792 9793 int 9794 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9795 boolean_t need_up) 9796 { 9797 in6_addr_t v6addr; 9798 in6_addr_t ov6addr; 9799 ipaddr_t addr; 9800 sin6_t *sin6; 9801 int sinlen; 9802 int err = 0; 9803 ill_t *ill = ipif->ipif_ill; 9804 boolean_t need_dl_down; 9805 boolean_t need_arp_down; 9806 struct iocblk *iocp; 9807 9808 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9809 9810 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9811 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9812 ASSERT(IAM_WRITER_IPIF(ipif)); 9813 9814 /* Must cancel any pending timer before taking the ill_lock */ 9815 if (ipif->ipif_recovery_id != 0) 9816 (void) untimeout(ipif->ipif_recovery_id); 9817 ipif->ipif_recovery_id = 0; 9818 9819 if (ipif->ipif_isv6) { 9820 sin6 = (sin6_t *)sin; 9821 v6addr = sin6->sin6_addr; 9822 sinlen = sizeof (struct sockaddr_in6); 9823 } else { 9824 addr = sin->sin_addr.s_addr; 9825 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9826 sinlen = sizeof (struct sockaddr_in); 9827 } 9828 mutex_enter(&ill->ill_lock); 9829 ov6addr = ipif->ipif_v6lcl_addr; 9830 ipif->ipif_v6lcl_addr = v6addr; 9831 sctp_update_ipif_addr(ipif, ov6addr); 9832 ipif->ipif_addr_ready = 0; 9833 9834 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9835 9836 /* 9837 * If the interface was previously marked as a duplicate, then since 9838 * we've now got a "new" address, it should no longer be considered a 9839 * duplicate -- even if the "new" address is the same as the old one. 9840 * Note that if all ipifs are down, we may have a pending ARP down 9841 * event to handle. This is because we want to recover from duplicates 9842 * and thus delay tearing down ARP until the duplicates have been 9843 * removed or disabled. 9844 */ 9845 need_dl_down = need_arp_down = B_FALSE; 9846 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9847 need_arp_down = !need_up; 9848 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9849 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9850 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9851 need_dl_down = B_TRUE; 9852 } 9853 } 9854 9855 ipif_set_default(ipif); 9856 9857 /* 9858 * If we've just manually set the IPv6 link-local address (0th ipif), 9859 * tag the ill so that future updates to the interface ID don't result 9860 * in this address getting automatically reconfigured from under the 9861 * administrator. 9862 */ 9863 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9864 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9865 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9866 ill->ill_manual_linklocal = 1; 9867 } 9868 9869 /* 9870 * When publishing an interface address change event, we only notify 9871 * the event listeners of the new address. It is assumed that if they 9872 * actively care about the addresses assigned that they will have 9873 * already discovered the previous address assigned (if there was one.) 9874 * 9875 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9876 */ 9877 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9878 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9879 NE_ADDRESS_CHANGE, sin, sinlen); 9880 } 9881 9882 mutex_exit(&ill->ill_lock); 9883 9884 if (need_up) { 9885 /* 9886 * Now bring the interface back up. If this 9887 * is the only IPIF for the ILL, ipif_up 9888 * will have to re-bind to the device, so 9889 * we may get back EINPROGRESS, in which 9890 * case, this IOCTL will get completed in 9891 * ip_rput_dlpi when we see the DL_BIND_ACK. 9892 */ 9893 err = ipif_up(ipif, q, mp); 9894 } else { 9895 /* Perhaps ilgs should use this ill */ 9896 update_conn_ill(NULL, ill->ill_ipst); 9897 } 9898 9899 if (need_dl_down) 9900 ill_dl_down(ill); 9901 9902 if (need_arp_down && !ill->ill_isv6) 9903 (void) ipif_arp_down(ipif); 9904 9905 /* 9906 * The default multicast interface might have changed (for 9907 * instance if the IPv6 scope of the address changed) 9908 */ 9909 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9910 9911 return (err); 9912 } 9913 9914 /* 9915 * Restart entry point to restart the address set operation after the 9916 * refcounts have dropped to zero. 9917 */ 9918 /* ARGSUSED */ 9919 int 9920 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9921 ip_ioctl_cmd_t *ipip, void *ifreq) 9922 { 9923 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9924 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9925 ASSERT(IAM_WRITER_IPIF(ipif)); 9926 (void) ipif_down_tail(ipif); 9927 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9928 } 9929 9930 /* ARGSUSED */ 9931 int 9932 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9933 ip_ioctl_cmd_t *ipip, void *if_req) 9934 { 9935 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9936 struct lifreq *lifr = (struct lifreq *)if_req; 9937 9938 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9939 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9940 /* 9941 * The net mask and address can't change since we have a 9942 * reference to the ipif. So no lock is necessary. 9943 */ 9944 if (ipif->ipif_isv6) { 9945 *sin6 = sin6_null; 9946 sin6->sin6_family = AF_INET6; 9947 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9948 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 9949 sin6->sin6_scope_id = 9950 ipif->ipif_ill->ill_phyint->phyint_ifindex; 9951 } 9952 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9953 lifr->lifr_addrlen = 9954 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9955 } else { 9956 *sin = sin_null; 9957 sin->sin_family = AF_INET; 9958 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9959 if (ipip->ipi_cmd_type == LIF_CMD) { 9960 lifr->lifr_addrlen = 9961 ip_mask_to_plen(ipif->ipif_net_mask); 9962 } 9963 } 9964 return (0); 9965 } 9966 9967 /* 9968 * Set the destination address for a pt-pt interface. 9969 */ 9970 /* ARGSUSED */ 9971 int 9972 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9973 ip_ioctl_cmd_t *ipip, void *if_req) 9974 { 9975 int err = 0; 9976 in6_addr_t v6addr; 9977 boolean_t need_up = B_FALSE; 9978 9979 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9980 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9981 ASSERT(IAM_WRITER_IPIF(ipif)); 9982 9983 if (ipif->ipif_isv6) { 9984 sin6_t *sin6; 9985 9986 if (sin->sin_family != AF_INET6) 9987 return (EAFNOSUPPORT); 9988 9989 sin6 = (sin6_t *)sin; 9990 v6addr = sin6->sin6_addr; 9991 9992 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9993 return (EADDRNOTAVAIL); 9994 } else { 9995 ipaddr_t addr; 9996 9997 if (sin->sin_family != AF_INET) 9998 return (EAFNOSUPPORT); 9999 10000 addr = sin->sin_addr.s_addr; 10001 if (addr != INADDR_ANY && 10002 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10003 return (EADDRNOTAVAIL); 10004 } 10005 10006 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10007 } 10008 10009 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10010 return (0); /* No change */ 10011 10012 if (ipif->ipif_flags & IPIF_UP) { 10013 /* 10014 * If the interface is already marked up, 10015 * we call ipif_down which will take care 10016 * of ditching any IREs that have been set 10017 * up based on the old pp dst address. 10018 */ 10019 err = ipif_logical_down(ipif, q, mp); 10020 if (err == EINPROGRESS) 10021 return (err); 10022 (void) ipif_down_tail(ipif); 10023 need_up = B_TRUE; 10024 } 10025 /* 10026 * could return EINPROGRESS. If so ioctl will complete in 10027 * ip_rput_dlpi_writer 10028 */ 10029 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10030 return (err); 10031 } 10032 10033 static int 10034 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10035 boolean_t need_up) 10036 { 10037 in6_addr_t v6addr; 10038 ill_t *ill = ipif->ipif_ill; 10039 int err = 0; 10040 boolean_t need_dl_down; 10041 boolean_t need_arp_down; 10042 10043 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10044 ipif->ipif_id, (void *)ipif)); 10045 10046 /* Must cancel any pending timer before taking the ill_lock */ 10047 if (ipif->ipif_recovery_id != 0) 10048 (void) untimeout(ipif->ipif_recovery_id); 10049 ipif->ipif_recovery_id = 0; 10050 10051 if (ipif->ipif_isv6) { 10052 sin6_t *sin6; 10053 10054 sin6 = (sin6_t *)sin; 10055 v6addr = sin6->sin6_addr; 10056 } else { 10057 ipaddr_t addr; 10058 10059 addr = sin->sin_addr.s_addr; 10060 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10061 } 10062 mutex_enter(&ill->ill_lock); 10063 /* Set point to point destination address. */ 10064 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10065 /* 10066 * Allow this as a means of creating logical 10067 * pt-pt interfaces on top of e.g. an Ethernet. 10068 * XXX Undocumented HACK for testing. 10069 * pt-pt interfaces are created with NUD disabled. 10070 */ 10071 ipif->ipif_flags |= IPIF_POINTOPOINT; 10072 ipif->ipif_flags &= ~IPIF_BROADCAST; 10073 if (ipif->ipif_isv6) 10074 ill->ill_flags |= ILLF_NONUD; 10075 } 10076 10077 /* 10078 * If the interface was previously marked as a duplicate, then since 10079 * we've now got a "new" address, it should no longer be considered a 10080 * duplicate -- even if the "new" address is the same as the old one. 10081 * Note that if all ipifs are down, we may have a pending ARP down 10082 * event to handle. 10083 */ 10084 need_dl_down = need_arp_down = B_FALSE; 10085 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10086 need_arp_down = !need_up; 10087 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10088 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10089 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10090 need_dl_down = B_TRUE; 10091 } 10092 } 10093 10094 /* 10095 * If we've just manually set the IPv6 destination link-local address 10096 * (0th ipif), tag the ill so that future updates to the destination 10097 * interface ID (as can happen with interfaces over IP tunnels) don't 10098 * result in this address getting automatically reconfigured from 10099 * under the administrator. 10100 */ 10101 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10102 ill->ill_manual_dst_linklocal = 1; 10103 10104 /* Set the new address. */ 10105 ipif->ipif_v6pp_dst_addr = v6addr; 10106 /* Make sure subnet tracks pp_dst */ 10107 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10108 mutex_exit(&ill->ill_lock); 10109 10110 if (need_up) { 10111 /* 10112 * Now bring the interface back up. If this 10113 * is the only IPIF for the ILL, ipif_up 10114 * will have to re-bind to the device, so 10115 * we may get back EINPROGRESS, in which 10116 * case, this IOCTL will get completed in 10117 * ip_rput_dlpi when we see the DL_BIND_ACK. 10118 */ 10119 err = ipif_up(ipif, q, mp); 10120 } 10121 10122 if (need_dl_down) 10123 ill_dl_down(ill); 10124 if (need_arp_down && !ipif->ipif_isv6) 10125 (void) ipif_arp_down(ipif); 10126 10127 return (err); 10128 } 10129 10130 /* 10131 * Restart entry point to restart the dstaddress set operation after the 10132 * refcounts have dropped to zero. 10133 */ 10134 /* ARGSUSED */ 10135 int 10136 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10137 ip_ioctl_cmd_t *ipip, void *ifreq) 10138 { 10139 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10141 (void) ipif_down_tail(ipif); 10142 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10143 } 10144 10145 /* ARGSUSED */ 10146 int 10147 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10148 ip_ioctl_cmd_t *ipip, void *if_req) 10149 { 10150 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10151 10152 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10153 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10154 /* 10155 * Get point to point destination address. The addresses can't 10156 * change since we hold a reference to the ipif. 10157 */ 10158 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10159 return (EADDRNOTAVAIL); 10160 10161 if (ipif->ipif_isv6) { 10162 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10163 *sin6 = sin6_null; 10164 sin6->sin6_family = AF_INET6; 10165 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10166 } else { 10167 *sin = sin_null; 10168 sin->sin_family = AF_INET; 10169 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10170 } 10171 return (0); 10172 } 10173 10174 /* 10175 * Check which flags will change by the given flags being set 10176 * silently ignore flags which userland is not allowed to control. 10177 * (Because these flags may change between SIOCGLIFFLAGS and 10178 * SIOCSLIFFLAGS, and that's outside of userland's control, 10179 * we need to silently ignore them rather than fail.) 10180 */ 10181 static void 10182 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10183 uint64_t *offp) 10184 { 10185 ill_t *ill = ipif->ipif_ill; 10186 phyint_t *phyi = ill->ill_phyint; 10187 uint64_t cantchange_flags, intf_flags; 10188 uint64_t turn_on, turn_off; 10189 10190 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10191 cantchange_flags = IFF_CANTCHANGE; 10192 if (IS_IPMP(ill)) 10193 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10194 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10195 turn_off = intf_flags & turn_on; 10196 turn_on ^= turn_off; 10197 *onp = turn_on; 10198 *offp = turn_off; 10199 } 10200 10201 /* 10202 * Set interface flags. Many flags require special handling (e.g., 10203 * bringing the interface down); see below for details. 10204 * 10205 * NOTE : We really don't enforce that ipif_id zero should be used 10206 * for setting any flags other than IFF_LOGINT_FLAGS. This 10207 * is because applications generally does SICGLIFFLAGS and 10208 * ORs in the new flags (that affects the logical) and does a 10209 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10210 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10211 * flags that will be turned on is correct with respect to 10212 * ipif_id 0. For backward compatibility reasons, it is not done. 10213 */ 10214 /* ARGSUSED */ 10215 int 10216 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10217 ip_ioctl_cmd_t *ipip, void *if_req) 10218 { 10219 uint64_t turn_on; 10220 uint64_t turn_off; 10221 int err = 0; 10222 phyint_t *phyi; 10223 ill_t *ill; 10224 conn_t *connp; 10225 uint64_t intf_flags; 10226 boolean_t phyint_flags_modified = B_FALSE; 10227 uint64_t flags; 10228 struct ifreq *ifr; 10229 struct lifreq *lifr; 10230 boolean_t set_linklocal = B_FALSE; 10231 10232 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10233 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10234 10235 ASSERT(IAM_WRITER_IPIF(ipif)); 10236 10237 ill = ipif->ipif_ill; 10238 phyi = ill->ill_phyint; 10239 10240 if (ipip->ipi_cmd_type == IF_CMD) { 10241 ifr = (struct ifreq *)if_req; 10242 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10243 } else { 10244 lifr = (struct lifreq *)if_req; 10245 flags = lifr->lifr_flags; 10246 } 10247 10248 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10249 10250 /* 10251 * Have the flags been set correctly until now? 10252 */ 10253 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10254 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10255 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10256 /* 10257 * Compare the new flags to the old, and partition 10258 * into those coming on and those going off. 10259 * For the 16 bit command keep the bits above bit 16 unchanged. 10260 */ 10261 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10262 flags |= intf_flags & ~0xFFFF; 10263 10264 /* 10265 * Explicitly fail attempts to change flags that are always invalid on 10266 * an IPMP meta-interface. 10267 */ 10268 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10269 return (EINVAL); 10270 10271 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10272 if ((turn_on|turn_off) == 0) 10273 return (0); /* No change */ 10274 10275 /* 10276 * All test addresses must be IFF_DEPRECATED (to ensure source address 10277 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10278 * allow it to be turned off. 10279 */ 10280 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10281 (turn_on|intf_flags) & IFF_NOFAILOVER) 10282 return (EINVAL); 10283 10284 if ((connp = Q_TO_CONN(q)) == NULL) 10285 return (EINVAL); 10286 10287 /* 10288 * Only vrrp control socket is allowed to change IFF_UP and 10289 * IFF_NOACCEPT flags when IFF_VRRP is set. 10290 */ 10291 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10292 if (!connp->conn_isvrrp) 10293 return (EINVAL); 10294 } 10295 10296 /* 10297 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10298 * VRRP control socket. 10299 */ 10300 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10301 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10302 return (EINVAL); 10303 } 10304 10305 if (turn_on & IFF_NOFAILOVER) { 10306 turn_on |= IFF_DEPRECATED; 10307 flags |= IFF_DEPRECATED; 10308 } 10309 10310 /* 10311 * On underlying interfaces, only allow applications to manage test 10312 * addresses -- otherwise, they may get confused when the address 10313 * moves as part of being brought up. Likewise, prevent an 10314 * application-managed test address from being converted to a data 10315 * address. To prevent migration of administratively up addresses in 10316 * the kernel, we don't allow them to be converted either. 10317 */ 10318 if (IS_UNDER_IPMP(ill)) { 10319 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10320 10321 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10322 return (EINVAL); 10323 10324 if ((turn_off & IFF_NOFAILOVER) && 10325 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10326 return (EINVAL); 10327 } 10328 10329 /* 10330 * Only allow IFF_TEMPORARY flag to be set on 10331 * IPv6 interfaces. 10332 */ 10333 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10334 return (EINVAL); 10335 10336 /* 10337 * cannot turn off IFF_NOXMIT on VNI interfaces. 10338 */ 10339 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10340 return (EINVAL); 10341 10342 /* 10343 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10344 * interfaces. It makes no sense in that context. 10345 */ 10346 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10347 return (EINVAL); 10348 10349 /* 10350 * For IPv6 ipif_id 0, don't allow the interface to be up without 10351 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10352 * If the link local address isn't set, and can be set, it will get 10353 * set later on in this function. 10354 */ 10355 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10356 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10357 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10358 if (ipif_cant_setlinklocal(ipif)) 10359 return (EINVAL); 10360 set_linklocal = B_TRUE; 10361 } 10362 10363 /* 10364 * If we modify physical interface flags, we'll potentially need to 10365 * send up two routing socket messages for the changes (one for the 10366 * IPv4 ill, and another for the IPv6 ill). Note that here. 10367 */ 10368 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10369 phyint_flags_modified = B_TRUE; 10370 10371 /* 10372 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10373 * (otherwise, we'd immediately use them, defeating standby). Also, 10374 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10375 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10376 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10377 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10378 * will not be honored. 10379 */ 10380 if (turn_on & PHYI_STANDBY) { 10381 /* 10382 * No need to grab ill_g_usesrc_lock here; see the 10383 * synchronization notes in ip.c. 10384 */ 10385 if (ill->ill_usesrc_grp_next != NULL || 10386 intf_flags & PHYI_INACTIVE) 10387 return (EINVAL); 10388 if (!(flags & PHYI_FAILED)) { 10389 flags |= PHYI_INACTIVE; 10390 turn_on |= PHYI_INACTIVE; 10391 } 10392 } 10393 10394 if (turn_off & PHYI_STANDBY) { 10395 flags &= ~PHYI_INACTIVE; 10396 turn_off |= PHYI_INACTIVE; 10397 } 10398 10399 /* 10400 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10401 * would end up on. 10402 */ 10403 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10404 (PHYI_FAILED | PHYI_INACTIVE)) 10405 return (EINVAL); 10406 10407 /* 10408 * If ILLF_ROUTER changes, we need to change the ip forwarding 10409 * status of the interface. 10410 */ 10411 if ((turn_on | turn_off) & ILLF_ROUTER) { 10412 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10413 if (err != 0) 10414 return (err); 10415 } 10416 10417 /* 10418 * If the interface is not UP and we are not going to 10419 * bring it UP, record the flags and return. When the 10420 * interface comes UP later, the right actions will be 10421 * taken. 10422 */ 10423 if (!(ipif->ipif_flags & IPIF_UP) && 10424 !(turn_on & IPIF_UP)) { 10425 /* Record new flags in their respective places. */ 10426 mutex_enter(&ill->ill_lock); 10427 mutex_enter(&ill->ill_phyint->phyint_lock); 10428 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10429 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10430 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10431 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10432 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10433 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10434 mutex_exit(&ill->ill_lock); 10435 mutex_exit(&ill->ill_phyint->phyint_lock); 10436 10437 /* 10438 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10439 * same to the kernel: if any of them has been set by 10440 * userland, the interface cannot be used for data traffic. 10441 */ 10442 if ((turn_on|turn_off) & 10443 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10444 ASSERT(!IS_IPMP(ill)); 10445 /* 10446 * It's possible the ill is part of an "anonymous" 10447 * IPMP group rather than a real group. In that case, 10448 * there are no other interfaces in the group and thus 10449 * no need to call ipmp_phyint_refresh_active(). 10450 */ 10451 if (IS_UNDER_IPMP(ill)) 10452 ipmp_phyint_refresh_active(phyi); 10453 } 10454 10455 if (phyint_flags_modified) { 10456 if (phyi->phyint_illv4 != NULL) { 10457 ip_rts_ifmsg(phyi->phyint_illv4-> 10458 ill_ipif, RTSQ_DEFAULT); 10459 } 10460 if (phyi->phyint_illv6 != NULL) { 10461 ip_rts_ifmsg(phyi->phyint_illv6-> 10462 ill_ipif, RTSQ_DEFAULT); 10463 } 10464 } 10465 /* The default multicast interface might have changed */ 10466 ire_increment_multicast_generation(ill->ill_ipst, 10467 ill->ill_isv6); 10468 10469 return (0); 10470 } else if (set_linklocal) { 10471 mutex_enter(&ill->ill_lock); 10472 if (set_linklocal) 10473 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10474 mutex_exit(&ill->ill_lock); 10475 } 10476 10477 /* 10478 * Disallow IPv6 interfaces coming up that have the unspecified address, 10479 * or point-to-point interfaces with an unspecified destination. We do 10480 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10481 * have a subnet assigned, which is how in.ndpd currently manages its 10482 * onlink prefix list when no addresses are configured with those 10483 * prefixes. 10484 */ 10485 if (ipif->ipif_isv6 && 10486 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10487 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10488 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10489 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10490 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10491 return (EINVAL); 10492 } 10493 10494 /* 10495 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10496 * from being brought up. 10497 */ 10498 if (!ipif->ipif_isv6 && 10499 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10500 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10501 return (EINVAL); 10502 } 10503 10504 /* 10505 * If we are going to change one or more of the flags that are 10506 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10507 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10508 * IPIF_NOFAILOVER, we will take special action. This is 10509 * done by bring the ipif down, changing the flags and bringing 10510 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10511 * back up will trigger the address to be moved. 10512 * 10513 * If we are going to change IFF_NOACCEPT, we need to bring 10514 * all the ipifs down then bring them up again. The act of 10515 * bringing all the ipifs back up will trigger the local 10516 * ires being recreated with "no_accept" set/cleared. 10517 * 10518 * Note that ILLF_NOACCEPT is always set separately from the 10519 * other flags. 10520 */ 10521 if ((turn_on|turn_off) & 10522 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10523 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10524 IPIF_NOFAILOVER)) { 10525 /* 10526 * ipif_down() will ire_delete bcast ire's for the subnet, 10527 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10528 * entries shared between multiple ipifs on the same subnet. 10529 */ 10530 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10531 !(turn_off & IPIF_UP)) { 10532 if (ipif->ipif_flags & IPIF_UP) 10533 ill->ill_logical_down = 1; 10534 turn_on &= ~IPIF_UP; 10535 } 10536 err = ipif_down(ipif, q, mp); 10537 ip1dbg(("ipif_down returns %d err ", err)); 10538 if (err == EINPROGRESS) 10539 return (err); 10540 (void) ipif_down_tail(ipif); 10541 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10542 /* 10543 * If we can quiesce the ill, then continue. If not, then 10544 * ip_sioctl_flags_tail() will be called from 10545 * ipif_ill_refrele_tail(). 10546 */ 10547 ill_down_ipifs(ill, B_TRUE); 10548 10549 mutex_enter(&connp->conn_lock); 10550 mutex_enter(&ill->ill_lock); 10551 if (!ill_is_quiescent(ill)) { 10552 boolean_t success; 10553 10554 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10555 q, mp, ILL_DOWN); 10556 mutex_exit(&ill->ill_lock); 10557 mutex_exit(&connp->conn_lock); 10558 return (success ? EINPROGRESS : EINTR); 10559 } 10560 mutex_exit(&ill->ill_lock); 10561 mutex_exit(&connp->conn_lock); 10562 } 10563 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10564 } 10565 10566 static int 10567 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10568 { 10569 ill_t *ill; 10570 phyint_t *phyi; 10571 uint64_t turn_on, turn_off; 10572 boolean_t phyint_flags_modified = B_FALSE; 10573 int err = 0; 10574 boolean_t set_linklocal = B_FALSE; 10575 10576 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10577 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10578 10579 ASSERT(IAM_WRITER_IPIF(ipif)); 10580 10581 ill = ipif->ipif_ill; 10582 phyi = ill->ill_phyint; 10583 10584 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10585 10586 /* 10587 * IFF_UP is handled separately. 10588 */ 10589 turn_on &= ~IFF_UP; 10590 turn_off &= ~IFF_UP; 10591 10592 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10593 phyint_flags_modified = B_TRUE; 10594 10595 /* 10596 * Now we change the flags. Track current value of 10597 * other flags in their respective places. 10598 */ 10599 mutex_enter(&ill->ill_lock); 10600 mutex_enter(&phyi->phyint_lock); 10601 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10602 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10603 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10604 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10605 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10606 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10607 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10608 set_linklocal = B_TRUE; 10609 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10610 } 10611 10612 mutex_exit(&ill->ill_lock); 10613 mutex_exit(&phyi->phyint_lock); 10614 10615 if (set_linklocal) 10616 (void) ipif_setlinklocal(ipif); 10617 10618 /* 10619 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10620 * the kernel: if any of them has been set by userland, the interface 10621 * cannot be used for data traffic. 10622 */ 10623 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10624 ASSERT(!IS_IPMP(ill)); 10625 /* 10626 * It's possible the ill is part of an "anonymous" IPMP group 10627 * rather than a real group. In that case, there are no other 10628 * interfaces in the group and thus no need for us to call 10629 * ipmp_phyint_refresh_active(). 10630 */ 10631 if (IS_UNDER_IPMP(ill)) 10632 ipmp_phyint_refresh_active(phyi); 10633 } 10634 10635 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10636 /* 10637 * If the ILLF_NOACCEPT flag is changed, bring up all the 10638 * ipifs that were brought down. 10639 * 10640 * The routing sockets messages are sent as the result 10641 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10642 * as well. 10643 */ 10644 err = ill_up_ipifs(ill, q, mp); 10645 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10646 /* 10647 * XXX ipif_up really does not know whether a phyint flags 10648 * was modified or not. So, it sends up information on 10649 * only one routing sockets message. As we don't bring up 10650 * the interface and also set PHYI_ flags simultaneously 10651 * it should be okay. 10652 */ 10653 err = ipif_up(ipif, q, mp); 10654 } else { 10655 /* 10656 * Make sure routing socket sees all changes to the flags. 10657 * ipif_up_done* handles this when we use ipif_up. 10658 */ 10659 if (phyint_flags_modified) { 10660 if (phyi->phyint_illv4 != NULL) { 10661 ip_rts_ifmsg(phyi->phyint_illv4-> 10662 ill_ipif, RTSQ_DEFAULT); 10663 } 10664 if (phyi->phyint_illv6 != NULL) { 10665 ip_rts_ifmsg(phyi->phyint_illv6-> 10666 ill_ipif, RTSQ_DEFAULT); 10667 } 10668 } else { 10669 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10670 } 10671 /* 10672 * Update the flags in SCTP's IPIF list, ipif_up() will do 10673 * this in need_up case. 10674 */ 10675 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10676 } 10677 10678 /* The default multicast interface might have changed */ 10679 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10680 return (err); 10681 } 10682 10683 /* 10684 * Restart the flags operation now that the refcounts have dropped to zero. 10685 */ 10686 /* ARGSUSED */ 10687 int 10688 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10689 ip_ioctl_cmd_t *ipip, void *if_req) 10690 { 10691 uint64_t flags; 10692 struct ifreq *ifr = if_req; 10693 struct lifreq *lifr = if_req; 10694 uint64_t turn_on, turn_off; 10695 10696 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10697 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10698 10699 if (ipip->ipi_cmd_type == IF_CMD) { 10700 /* cast to uint16_t prevents unwanted sign extension */ 10701 flags = (uint16_t)ifr->ifr_flags; 10702 } else { 10703 flags = lifr->lifr_flags; 10704 } 10705 10706 /* 10707 * If this function call is a result of the ILLF_NOACCEPT flag 10708 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10709 */ 10710 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10711 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10712 (void) ipif_down_tail(ipif); 10713 10714 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10715 } 10716 10717 /* 10718 * Can operate on either a module or a driver queue. 10719 */ 10720 /* ARGSUSED */ 10721 int 10722 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10723 ip_ioctl_cmd_t *ipip, void *if_req) 10724 { 10725 /* 10726 * Has the flags been set correctly till now ? 10727 */ 10728 ill_t *ill = ipif->ipif_ill; 10729 phyint_t *phyi = ill->ill_phyint; 10730 10731 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10732 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10733 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10734 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10735 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10736 10737 /* 10738 * Need a lock since some flags can be set even when there are 10739 * references to the ipif. 10740 */ 10741 mutex_enter(&ill->ill_lock); 10742 if (ipip->ipi_cmd_type == IF_CMD) { 10743 struct ifreq *ifr = (struct ifreq *)if_req; 10744 10745 /* Get interface flags (low 16 only). */ 10746 ifr->ifr_flags = ((ipif->ipif_flags | 10747 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10748 } else { 10749 struct lifreq *lifr = (struct lifreq *)if_req; 10750 10751 /* Get interface flags. */ 10752 lifr->lifr_flags = ipif->ipif_flags | 10753 ill->ill_flags | phyi->phyint_flags; 10754 } 10755 mutex_exit(&ill->ill_lock); 10756 return (0); 10757 } 10758 10759 /* 10760 * We allow the MTU to be set on an ILL, but not have it be different 10761 * for different IPIFs since we don't actually send packets on IPIFs. 10762 */ 10763 /* ARGSUSED */ 10764 int 10765 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10766 ip_ioctl_cmd_t *ipip, void *if_req) 10767 { 10768 int mtu; 10769 int ip_min_mtu; 10770 struct ifreq *ifr; 10771 struct lifreq *lifr; 10772 ill_t *ill; 10773 10774 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10775 ipif->ipif_id, (void *)ipif)); 10776 if (ipip->ipi_cmd_type == IF_CMD) { 10777 ifr = (struct ifreq *)if_req; 10778 mtu = ifr->ifr_metric; 10779 } else { 10780 lifr = (struct lifreq *)if_req; 10781 mtu = lifr->lifr_mtu; 10782 } 10783 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10784 if (ipif->ipif_id != 0) 10785 return (EINVAL); 10786 10787 ill = ipif->ipif_ill; 10788 if (ipif->ipif_isv6) 10789 ip_min_mtu = IPV6_MIN_MTU; 10790 else 10791 ip_min_mtu = IP_MIN_MTU; 10792 10793 mutex_enter(&ill->ill_lock); 10794 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10795 mutex_exit(&ill->ill_lock); 10796 return (EINVAL); 10797 } 10798 /* Avoid increasing ill_mc_mtu */ 10799 if (ill->ill_mc_mtu > mtu) 10800 ill->ill_mc_mtu = mtu; 10801 10802 /* 10803 * The dce and fragmentation code can handle changes to ill_mtu 10804 * concurrent with sending/fragmenting packets. 10805 */ 10806 ill->ill_mtu = mtu; 10807 ill->ill_flags |= ILLF_FIXEDMTU; 10808 mutex_exit(&ill->ill_lock); 10809 10810 /* 10811 * Make sure all dce_generation checks find out 10812 * that ill_mtu/ill_mc_mtu has changed. 10813 */ 10814 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10815 10816 /* 10817 * Refresh IPMP meta-interface MTU if necessary. 10818 */ 10819 if (IS_UNDER_IPMP(ill)) 10820 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10821 10822 /* Update the MTU in SCTP's list */ 10823 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10824 return (0); 10825 } 10826 10827 /* Get interface MTU. */ 10828 /* ARGSUSED */ 10829 int 10830 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10831 ip_ioctl_cmd_t *ipip, void *if_req) 10832 { 10833 struct ifreq *ifr; 10834 struct lifreq *lifr; 10835 10836 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10837 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10838 10839 /* 10840 * We allow a get on any logical interface even though the set 10841 * can only be done on logical unit 0. 10842 */ 10843 if (ipip->ipi_cmd_type == IF_CMD) { 10844 ifr = (struct ifreq *)if_req; 10845 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10846 } else { 10847 lifr = (struct lifreq *)if_req; 10848 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10849 } 10850 return (0); 10851 } 10852 10853 /* Set interface broadcast address. */ 10854 /* ARGSUSED2 */ 10855 int 10856 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10857 ip_ioctl_cmd_t *ipip, void *if_req) 10858 { 10859 ipaddr_t addr; 10860 ire_t *ire; 10861 ill_t *ill = ipif->ipif_ill; 10862 ip_stack_t *ipst = ill->ill_ipst; 10863 10864 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10865 ipif->ipif_id)); 10866 10867 ASSERT(IAM_WRITER_IPIF(ipif)); 10868 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10869 return (EADDRNOTAVAIL); 10870 10871 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10872 10873 if (sin->sin_family != AF_INET) 10874 return (EAFNOSUPPORT); 10875 10876 addr = sin->sin_addr.s_addr; 10877 10878 if (ipif->ipif_flags & IPIF_UP) { 10879 /* 10880 * If we are already up, make sure the new 10881 * broadcast address makes sense. If it does, 10882 * there should be an IRE for it already. 10883 */ 10884 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10885 ill, ipif->ipif_zoneid, NULL, 10886 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10887 if (ire == NULL) { 10888 return (EINVAL); 10889 } else { 10890 ire_refrele(ire); 10891 } 10892 } 10893 /* 10894 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10895 * needs to already exist we never need to change the set of 10896 * IRE_BROADCASTs when we are UP. 10897 */ 10898 if (addr != ipif->ipif_brd_addr) 10899 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10900 10901 return (0); 10902 } 10903 10904 /* Get interface broadcast address. */ 10905 /* ARGSUSED */ 10906 int 10907 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10908 ip_ioctl_cmd_t *ipip, void *if_req) 10909 { 10910 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10912 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10913 return (EADDRNOTAVAIL); 10914 10915 /* IPIF_BROADCAST not possible with IPv6 */ 10916 ASSERT(!ipif->ipif_isv6); 10917 *sin = sin_null; 10918 sin->sin_family = AF_INET; 10919 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10920 return (0); 10921 } 10922 10923 /* 10924 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10925 */ 10926 /* ARGSUSED */ 10927 int 10928 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10929 ip_ioctl_cmd_t *ipip, void *if_req) 10930 { 10931 int err = 0; 10932 in6_addr_t v6mask; 10933 10934 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10935 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10936 10937 ASSERT(IAM_WRITER_IPIF(ipif)); 10938 10939 if (ipif->ipif_isv6) { 10940 sin6_t *sin6; 10941 10942 if (sin->sin_family != AF_INET6) 10943 return (EAFNOSUPPORT); 10944 10945 sin6 = (sin6_t *)sin; 10946 v6mask = sin6->sin6_addr; 10947 } else { 10948 ipaddr_t mask; 10949 10950 if (sin->sin_family != AF_INET) 10951 return (EAFNOSUPPORT); 10952 10953 mask = sin->sin_addr.s_addr; 10954 if (!ip_contiguous_mask(ntohl(mask))) 10955 return (ENOTSUP); 10956 V4MASK_TO_V6(mask, v6mask); 10957 } 10958 10959 /* 10960 * No big deal if the interface isn't already up, or the mask 10961 * isn't really changing, or this is pt-pt. 10962 */ 10963 if (!(ipif->ipif_flags & IPIF_UP) || 10964 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10965 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10966 ipif->ipif_v6net_mask = v6mask; 10967 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10968 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10969 ipif->ipif_v6net_mask, 10970 ipif->ipif_v6subnet); 10971 } 10972 return (0); 10973 } 10974 /* 10975 * Make sure we have valid net and subnet broadcast ire's 10976 * for the old netmask, if needed by other logical interfaces. 10977 */ 10978 err = ipif_logical_down(ipif, q, mp); 10979 if (err == EINPROGRESS) 10980 return (err); 10981 (void) ipif_down_tail(ipif); 10982 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10983 return (err); 10984 } 10985 10986 static int 10987 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10988 { 10989 in6_addr_t v6mask; 10990 int err = 0; 10991 10992 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10993 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10994 10995 if (ipif->ipif_isv6) { 10996 sin6_t *sin6; 10997 10998 sin6 = (sin6_t *)sin; 10999 v6mask = sin6->sin6_addr; 11000 } else { 11001 ipaddr_t mask; 11002 11003 mask = sin->sin_addr.s_addr; 11004 V4MASK_TO_V6(mask, v6mask); 11005 } 11006 11007 ipif->ipif_v6net_mask = v6mask; 11008 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11009 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11010 ipif->ipif_v6subnet); 11011 } 11012 err = ipif_up(ipif, q, mp); 11013 11014 if (err == 0 || err == EINPROGRESS) { 11015 /* 11016 * The interface must be DL_BOUND if this packet has to 11017 * go out on the wire. Since we only go through a logical 11018 * down and are bound with the driver during an internal 11019 * down/up that is satisfied. 11020 */ 11021 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11022 /* Potentially broadcast an address mask reply. */ 11023 ipif_mask_reply(ipif); 11024 } 11025 } 11026 return (err); 11027 } 11028 11029 /* ARGSUSED */ 11030 int 11031 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11032 ip_ioctl_cmd_t *ipip, void *if_req) 11033 { 11034 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11035 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11036 (void) ipif_down_tail(ipif); 11037 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11038 } 11039 11040 /* Get interface net mask. */ 11041 /* ARGSUSED */ 11042 int 11043 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11044 ip_ioctl_cmd_t *ipip, void *if_req) 11045 { 11046 struct lifreq *lifr = (struct lifreq *)if_req; 11047 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11048 11049 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11050 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11051 11052 /* 11053 * net mask can't change since we have a reference to the ipif. 11054 */ 11055 if (ipif->ipif_isv6) { 11056 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11057 *sin6 = sin6_null; 11058 sin6->sin6_family = AF_INET6; 11059 sin6->sin6_addr = ipif->ipif_v6net_mask; 11060 lifr->lifr_addrlen = 11061 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11062 } else { 11063 *sin = sin_null; 11064 sin->sin_family = AF_INET; 11065 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11066 if (ipip->ipi_cmd_type == LIF_CMD) { 11067 lifr->lifr_addrlen = 11068 ip_mask_to_plen(ipif->ipif_net_mask); 11069 } 11070 } 11071 return (0); 11072 } 11073 11074 /* ARGSUSED */ 11075 int 11076 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11077 ip_ioctl_cmd_t *ipip, void *if_req) 11078 { 11079 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11080 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11081 11082 /* 11083 * Since no applications should ever be setting metrics on underlying 11084 * interfaces, we explicitly fail to smoke 'em out. 11085 */ 11086 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11087 return (EINVAL); 11088 11089 /* 11090 * Set interface metric. We don't use this for 11091 * anything but we keep track of it in case it is 11092 * important to routing applications or such. 11093 */ 11094 if (ipip->ipi_cmd_type == IF_CMD) { 11095 struct ifreq *ifr; 11096 11097 ifr = (struct ifreq *)if_req; 11098 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11099 } else { 11100 struct lifreq *lifr; 11101 11102 lifr = (struct lifreq *)if_req; 11103 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11104 } 11105 return (0); 11106 } 11107 11108 /* ARGSUSED */ 11109 int 11110 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11111 ip_ioctl_cmd_t *ipip, void *if_req) 11112 { 11113 /* Get interface metric. */ 11114 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11116 11117 if (ipip->ipi_cmd_type == IF_CMD) { 11118 struct ifreq *ifr; 11119 11120 ifr = (struct ifreq *)if_req; 11121 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11122 } else { 11123 struct lifreq *lifr; 11124 11125 lifr = (struct lifreq *)if_req; 11126 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11127 } 11128 11129 return (0); 11130 } 11131 11132 /* ARGSUSED */ 11133 int 11134 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11135 ip_ioctl_cmd_t *ipip, void *if_req) 11136 { 11137 int arp_muxid; 11138 11139 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11141 /* 11142 * Set the muxid returned from I_PLINK. 11143 */ 11144 if (ipip->ipi_cmd_type == IF_CMD) { 11145 struct ifreq *ifr = (struct ifreq *)if_req; 11146 11147 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11148 arp_muxid = ifr->ifr_arp_muxid; 11149 } else { 11150 struct lifreq *lifr = (struct lifreq *)if_req; 11151 11152 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11153 arp_muxid = lifr->lifr_arp_muxid; 11154 } 11155 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11156 return (0); 11157 } 11158 11159 /* ARGSUSED */ 11160 int 11161 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11162 ip_ioctl_cmd_t *ipip, void *if_req) 11163 { 11164 int arp_muxid = 0; 11165 11166 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11167 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11168 /* 11169 * Get the muxid saved in ill for I_PUNLINK. 11170 */ 11171 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11172 if (ipip->ipi_cmd_type == IF_CMD) { 11173 struct ifreq *ifr = (struct ifreq *)if_req; 11174 11175 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11176 ifr->ifr_arp_muxid = arp_muxid; 11177 } else { 11178 struct lifreq *lifr = (struct lifreq *)if_req; 11179 11180 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11181 lifr->lifr_arp_muxid = arp_muxid; 11182 } 11183 return (0); 11184 } 11185 11186 /* 11187 * Set the subnet prefix. Does not modify the broadcast address. 11188 */ 11189 /* ARGSUSED */ 11190 int 11191 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11192 ip_ioctl_cmd_t *ipip, void *if_req) 11193 { 11194 int err = 0; 11195 in6_addr_t v6addr; 11196 in6_addr_t v6mask; 11197 boolean_t need_up = B_FALSE; 11198 int addrlen; 11199 11200 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11201 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11202 11203 ASSERT(IAM_WRITER_IPIF(ipif)); 11204 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11205 11206 if (ipif->ipif_isv6) { 11207 sin6_t *sin6; 11208 11209 if (sin->sin_family != AF_INET6) 11210 return (EAFNOSUPPORT); 11211 11212 sin6 = (sin6_t *)sin; 11213 v6addr = sin6->sin6_addr; 11214 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11215 return (EADDRNOTAVAIL); 11216 } else { 11217 ipaddr_t addr; 11218 11219 if (sin->sin_family != AF_INET) 11220 return (EAFNOSUPPORT); 11221 11222 addr = sin->sin_addr.s_addr; 11223 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11224 return (EADDRNOTAVAIL); 11225 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11226 /* Add 96 bits */ 11227 addrlen += IPV6_ABITS - IP_ABITS; 11228 } 11229 11230 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11231 return (EINVAL); 11232 11233 /* Check if bits in the address is set past the mask */ 11234 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11235 return (EINVAL); 11236 11237 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11238 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11239 return (0); /* No change */ 11240 11241 if (ipif->ipif_flags & IPIF_UP) { 11242 /* 11243 * If the interface is already marked up, 11244 * we call ipif_down which will take care 11245 * of ditching any IREs that have been set 11246 * up based on the old interface address. 11247 */ 11248 err = ipif_logical_down(ipif, q, mp); 11249 if (err == EINPROGRESS) 11250 return (err); 11251 (void) ipif_down_tail(ipif); 11252 need_up = B_TRUE; 11253 } 11254 11255 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11256 return (err); 11257 } 11258 11259 static int 11260 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11261 queue_t *q, mblk_t *mp, boolean_t need_up) 11262 { 11263 ill_t *ill = ipif->ipif_ill; 11264 int err = 0; 11265 11266 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11267 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11268 11269 /* Set the new address. */ 11270 mutex_enter(&ill->ill_lock); 11271 ipif->ipif_v6net_mask = v6mask; 11272 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11273 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11274 ipif->ipif_v6subnet); 11275 } 11276 mutex_exit(&ill->ill_lock); 11277 11278 if (need_up) { 11279 /* 11280 * Now bring the interface back up. If this 11281 * is the only IPIF for the ILL, ipif_up 11282 * will have to re-bind to the device, so 11283 * we may get back EINPROGRESS, in which 11284 * case, this IOCTL will get completed in 11285 * ip_rput_dlpi when we see the DL_BIND_ACK. 11286 */ 11287 err = ipif_up(ipif, q, mp); 11288 if (err == EINPROGRESS) 11289 return (err); 11290 } 11291 return (err); 11292 } 11293 11294 /* ARGSUSED */ 11295 int 11296 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11297 ip_ioctl_cmd_t *ipip, void *if_req) 11298 { 11299 int addrlen; 11300 in6_addr_t v6addr; 11301 in6_addr_t v6mask; 11302 struct lifreq *lifr = (struct lifreq *)if_req; 11303 11304 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11305 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11306 (void) ipif_down_tail(ipif); 11307 11308 addrlen = lifr->lifr_addrlen; 11309 if (ipif->ipif_isv6) { 11310 sin6_t *sin6; 11311 11312 sin6 = (sin6_t *)sin; 11313 v6addr = sin6->sin6_addr; 11314 } else { 11315 ipaddr_t addr; 11316 11317 addr = sin->sin_addr.s_addr; 11318 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11319 addrlen += IPV6_ABITS - IP_ABITS; 11320 } 11321 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11322 11323 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11324 } 11325 11326 /* ARGSUSED */ 11327 int 11328 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11329 ip_ioctl_cmd_t *ipip, void *if_req) 11330 { 11331 struct lifreq *lifr = (struct lifreq *)if_req; 11332 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11333 11334 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11335 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11336 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11337 11338 if (ipif->ipif_isv6) { 11339 *sin6 = sin6_null; 11340 sin6->sin6_family = AF_INET6; 11341 sin6->sin6_addr = ipif->ipif_v6subnet; 11342 lifr->lifr_addrlen = 11343 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11344 } else { 11345 *sin = sin_null; 11346 sin->sin_family = AF_INET; 11347 sin->sin_addr.s_addr = ipif->ipif_subnet; 11348 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11349 } 11350 return (0); 11351 } 11352 11353 /* 11354 * Set the IPv6 address token. 11355 */ 11356 /* ARGSUSED */ 11357 int 11358 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11359 ip_ioctl_cmd_t *ipi, void *if_req) 11360 { 11361 ill_t *ill = ipif->ipif_ill; 11362 int err; 11363 in6_addr_t v6addr; 11364 in6_addr_t v6mask; 11365 boolean_t need_up = B_FALSE; 11366 int i; 11367 sin6_t *sin6 = (sin6_t *)sin; 11368 struct lifreq *lifr = (struct lifreq *)if_req; 11369 int addrlen; 11370 11371 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11372 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11373 ASSERT(IAM_WRITER_IPIF(ipif)); 11374 11375 addrlen = lifr->lifr_addrlen; 11376 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11377 if (ipif->ipif_id != 0) 11378 return (EINVAL); 11379 11380 if (!ipif->ipif_isv6) 11381 return (EINVAL); 11382 11383 if (addrlen > IPV6_ABITS) 11384 return (EINVAL); 11385 11386 v6addr = sin6->sin6_addr; 11387 11388 /* 11389 * The length of the token is the length from the end. To get 11390 * the proper mask for this, compute the mask of the bits not 11391 * in the token; ie. the prefix, and then xor to get the mask. 11392 */ 11393 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11394 return (EINVAL); 11395 for (i = 0; i < 4; i++) { 11396 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11397 } 11398 11399 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11400 ill->ill_token_length == addrlen) 11401 return (0); /* No change */ 11402 11403 if (ipif->ipif_flags & IPIF_UP) { 11404 err = ipif_logical_down(ipif, q, mp); 11405 if (err == EINPROGRESS) 11406 return (err); 11407 (void) ipif_down_tail(ipif); 11408 need_up = B_TRUE; 11409 } 11410 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11411 return (err); 11412 } 11413 11414 static int 11415 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11416 mblk_t *mp, boolean_t need_up) 11417 { 11418 in6_addr_t v6addr; 11419 in6_addr_t v6mask; 11420 ill_t *ill = ipif->ipif_ill; 11421 int i; 11422 int err = 0; 11423 11424 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11425 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11426 v6addr = sin6->sin6_addr; 11427 /* 11428 * The length of the token is the length from the end. To get 11429 * the proper mask for this, compute the mask of the bits not 11430 * in the token; ie. the prefix, and then xor to get the mask. 11431 */ 11432 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11433 for (i = 0; i < 4; i++) 11434 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11435 11436 mutex_enter(&ill->ill_lock); 11437 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11438 ill->ill_token_length = addrlen; 11439 ill->ill_manual_token = 1; 11440 11441 /* Reconfigure the link-local address based on this new token */ 11442 ipif_setlinklocal(ill->ill_ipif); 11443 11444 mutex_exit(&ill->ill_lock); 11445 11446 if (need_up) { 11447 /* 11448 * Now bring the interface back up. If this 11449 * is the only IPIF for the ILL, ipif_up 11450 * will have to re-bind to the device, so 11451 * we may get back EINPROGRESS, in which 11452 * case, this IOCTL will get completed in 11453 * ip_rput_dlpi when we see the DL_BIND_ACK. 11454 */ 11455 err = ipif_up(ipif, q, mp); 11456 if (err == EINPROGRESS) 11457 return (err); 11458 } 11459 return (err); 11460 } 11461 11462 /* ARGSUSED */ 11463 int 11464 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11465 ip_ioctl_cmd_t *ipi, void *if_req) 11466 { 11467 ill_t *ill; 11468 sin6_t *sin6 = (sin6_t *)sin; 11469 struct lifreq *lifr = (struct lifreq *)if_req; 11470 11471 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11472 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11473 if (ipif->ipif_id != 0) 11474 return (EINVAL); 11475 11476 ill = ipif->ipif_ill; 11477 if (!ill->ill_isv6) 11478 return (ENXIO); 11479 11480 *sin6 = sin6_null; 11481 sin6->sin6_family = AF_INET6; 11482 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11483 sin6->sin6_addr = ill->ill_token; 11484 lifr->lifr_addrlen = ill->ill_token_length; 11485 return (0); 11486 } 11487 11488 /* 11489 * Set (hardware) link specific information that might override 11490 * what was acquired through the DL_INFO_ACK. 11491 */ 11492 /* ARGSUSED */ 11493 int 11494 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11495 ip_ioctl_cmd_t *ipi, void *if_req) 11496 { 11497 ill_t *ill = ipif->ipif_ill; 11498 int ip_min_mtu; 11499 struct lifreq *lifr = (struct lifreq *)if_req; 11500 lif_ifinfo_req_t *lir; 11501 11502 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11503 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11504 lir = &lifr->lifr_ifinfo; 11505 ASSERT(IAM_WRITER_IPIF(ipif)); 11506 11507 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11508 if (ipif->ipif_id != 0) 11509 return (EINVAL); 11510 11511 /* Set interface MTU. */ 11512 if (ipif->ipif_isv6) 11513 ip_min_mtu = IPV6_MIN_MTU; 11514 else 11515 ip_min_mtu = IP_MIN_MTU; 11516 11517 /* 11518 * Verify values before we set anything. Allow zero to 11519 * mean unspecified. 11520 * 11521 * XXX We should be able to set the user-defined lir_mtu to some value 11522 * that is greater than ill_current_frag but less than ill_max_frag- the 11523 * ill_max_frag value tells us the max MTU that can be handled by the 11524 * datalink, whereas the ill_current_frag is dynamically computed for 11525 * some link-types like tunnels, based on the tunnel PMTU. However, 11526 * since there is currently no way of distinguishing between 11527 * administratively fixed link mtu values (e.g., those set via 11528 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11529 * for tunnels) we conservatively choose the ill_current_frag as the 11530 * upper-bound. 11531 */ 11532 if (lir->lir_maxmtu != 0 && 11533 (lir->lir_maxmtu > ill->ill_current_frag || 11534 lir->lir_maxmtu < ip_min_mtu)) 11535 return (EINVAL); 11536 if (lir->lir_reachtime != 0 && 11537 lir->lir_reachtime > ND_MAX_REACHTIME) 11538 return (EINVAL); 11539 if (lir->lir_reachretrans != 0 && 11540 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11541 return (EINVAL); 11542 11543 mutex_enter(&ill->ill_lock); 11544 /* 11545 * The dce and fragmentation code can handle changes to ill_mtu 11546 * concurrent with sending/fragmenting packets. 11547 */ 11548 if (lir->lir_maxmtu != 0) 11549 ill->ill_user_mtu = lir->lir_maxmtu; 11550 11551 if (lir->lir_reachtime != 0) 11552 ill->ill_reachable_time = lir->lir_reachtime; 11553 11554 if (lir->lir_reachretrans != 0) 11555 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11556 11557 ill->ill_max_hops = lir->lir_maxhops; 11558 ill->ill_max_buf = ND_MAX_Q; 11559 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11560 /* 11561 * ill_mtu is the actual interface MTU, obtained as the min 11562 * of user-configured mtu and the value announced by the 11563 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11564 * we have already made the choice of requiring 11565 * ill_user_mtu < ill_current_frag by the time we get here, 11566 * the ill_mtu effectively gets assigned to the ill_user_mtu 11567 * here. 11568 */ 11569 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11570 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11571 } 11572 mutex_exit(&ill->ill_lock); 11573 11574 /* 11575 * Make sure all dce_generation checks find out 11576 * that ill_mtu/ill_mc_mtu has changed. 11577 */ 11578 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11579 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11580 11581 /* 11582 * Refresh IPMP meta-interface MTU if necessary. 11583 */ 11584 if (IS_UNDER_IPMP(ill)) 11585 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11586 11587 return (0); 11588 } 11589 11590 /* ARGSUSED */ 11591 int 11592 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11593 ip_ioctl_cmd_t *ipi, void *if_req) 11594 { 11595 struct lif_ifinfo_req *lir; 11596 ill_t *ill = ipif->ipif_ill; 11597 11598 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11599 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11600 if (ipif->ipif_id != 0) 11601 return (EINVAL); 11602 11603 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11604 lir->lir_maxhops = ill->ill_max_hops; 11605 lir->lir_reachtime = ill->ill_reachable_time; 11606 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11607 lir->lir_maxmtu = ill->ill_mtu; 11608 11609 return (0); 11610 } 11611 11612 /* 11613 * Return best guess as to the subnet mask for the specified address. 11614 * Based on the subnet masks for all the configured interfaces. 11615 * 11616 * We end up returning a zero mask in the case of default, multicast or 11617 * experimental. 11618 */ 11619 static ipaddr_t 11620 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11621 { 11622 ipaddr_t net_mask; 11623 ill_t *ill; 11624 ipif_t *ipif; 11625 ill_walk_context_t ctx; 11626 ipif_t *fallback_ipif = NULL; 11627 11628 net_mask = ip_net_mask(addr); 11629 if (net_mask == 0) { 11630 *ipifp = NULL; 11631 return (0); 11632 } 11633 11634 /* Let's check to see if this is maybe a local subnet route. */ 11635 /* this function only applies to IPv4 interfaces */ 11636 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11637 ill = ILL_START_WALK_V4(&ctx, ipst); 11638 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11639 mutex_enter(&ill->ill_lock); 11640 for (ipif = ill->ill_ipif; ipif != NULL; 11641 ipif = ipif->ipif_next) { 11642 if (IPIF_IS_CONDEMNED(ipif)) 11643 continue; 11644 if (!(ipif->ipif_flags & IPIF_UP)) 11645 continue; 11646 if ((ipif->ipif_subnet & net_mask) == 11647 (addr & net_mask)) { 11648 /* 11649 * Don't trust pt-pt interfaces if there are 11650 * other interfaces. 11651 */ 11652 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11653 if (fallback_ipif == NULL) { 11654 ipif_refhold_locked(ipif); 11655 fallback_ipif = ipif; 11656 } 11657 continue; 11658 } 11659 11660 /* 11661 * Fine. Just assume the same net mask as the 11662 * directly attached subnet interface is using. 11663 */ 11664 ipif_refhold_locked(ipif); 11665 mutex_exit(&ill->ill_lock); 11666 rw_exit(&ipst->ips_ill_g_lock); 11667 if (fallback_ipif != NULL) 11668 ipif_refrele(fallback_ipif); 11669 *ipifp = ipif; 11670 return (ipif->ipif_net_mask); 11671 } 11672 } 11673 mutex_exit(&ill->ill_lock); 11674 } 11675 rw_exit(&ipst->ips_ill_g_lock); 11676 11677 *ipifp = fallback_ipif; 11678 return ((fallback_ipif != NULL) ? 11679 fallback_ipif->ipif_net_mask : net_mask); 11680 } 11681 11682 /* 11683 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11684 */ 11685 static void 11686 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11687 { 11688 IOCP iocp; 11689 ipft_t *ipft; 11690 ipllc_t *ipllc; 11691 mblk_t *mp1; 11692 cred_t *cr; 11693 int error = 0; 11694 conn_t *connp; 11695 11696 ip1dbg(("ip_wput_ioctl")); 11697 iocp = (IOCP)mp->b_rptr; 11698 mp1 = mp->b_cont; 11699 if (mp1 == NULL) { 11700 iocp->ioc_error = EINVAL; 11701 mp->b_datap->db_type = M_IOCNAK; 11702 iocp->ioc_count = 0; 11703 qreply(q, mp); 11704 return; 11705 } 11706 11707 /* 11708 * These IOCTLs provide various control capabilities to 11709 * upstream agents such as ULPs and processes. There 11710 * are currently two such IOCTLs implemented. They 11711 * are used by TCP to provide update information for 11712 * existing IREs and to forcibly delete an IRE for a 11713 * host that is not responding, thereby forcing an 11714 * attempt at a new route. 11715 */ 11716 iocp->ioc_error = EINVAL; 11717 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11718 goto done; 11719 11720 ipllc = (ipllc_t *)mp1->b_rptr; 11721 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11722 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11723 break; 11724 } 11725 /* 11726 * prefer credential from mblk over ioctl; 11727 * see ip_sioctl_copyin_setup 11728 */ 11729 cr = msg_getcred(mp, NULL); 11730 if (cr == NULL) 11731 cr = iocp->ioc_cr; 11732 11733 /* 11734 * Refhold the conn in case the request gets queued up in some lookup 11735 */ 11736 ASSERT(CONN_Q(q)); 11737 connp = Q_TO_CONN(q); 11738 CONN_INC_REF(connp); 11739 CONN_INC_IOCTLREF(connp); 11740 if (ipft->ipft_pfi && 11741 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11742 pullupmsg(mp1, ipft->ipft_min_size))) { 11743 error = (*ipft->ipft_pfi)(q, 11744 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11745 } 11746 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11747 /* 11748 * CONN_OPER_PENDING_DONE happens in the function called 11749 * through ipft_pfi above. 11750 */ 11751 return; 11752 } 11753 11754 CONN_DEC_IOCTLREF(connp); 11755 CONN_OPER_PENDING_DONE(connp); 11756 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11757 freemsg(mp); 11758 return; 11759 } 11760 iocp->ioc_error = error; 11761 11762 done: 11763 mp->b_datap->db_type = M_IOCACK; 11764 if (iocp->ioc_error) 11765 iocp->ioc_count = 0; 11766 qreply(q, mp); 11767 } 11768 11769 /* 11770 * Assign a unique id for the ipif. This is used by sctp_addr.c 11771 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11772 */ 11773 static void 11774 ipif_assign_seqid(ipif_t *ipif) 11775 { 11776 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11777 11778 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid); 11779 } 11780 11781 /* 11782 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11783 * administratively down (i.e., no DAD), of the same type, and locked. Note 11784 * that the clone is complete -- including the seqid -- and the expectation is 11785 * that the caller will either free or overwrite `sipif' before it's unlocked. 11786 */ 11787 static void 11788 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11789 { 11790 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11791 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11792 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11793 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11794 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11795 11796 dipif->ipif_flags = sipif->ipif_flags; 11797 dipif->ipif_zoneid = sipif->ipif_zoneid; 11798 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11799 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11800 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11801 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11802 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11803 11804 /* 11805 * As per the comment atop the function, we assume that these sipif 11806 * fields will be changed before sipif is unlocked. 11807 */ 11808 dipif->ipif_seqid = sipif->ipif_seqid; 11809 dipif->ipif_state_flags = sipif->ipif_state_flags; 11810 } 11811 11812 /* 11813 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11814 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11815 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11816 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11817 * down (i.e., no DAD), of the same type, and unlocked. 11818 */ 11819 static void 11820 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11821 { 11822 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11823 ipxop_t *ipx = ipsq->ipsq_xop; 11824 11825 ASSERT(sipif != dipif); 11826 ASSERT(sipif != virgipif); 11827 11828 /* 11829 * Grab all of the locks that protect the ipif in a defined order. 11830 */ 11831 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11832 11833 ipif_clone(sipif, dipif); 11834 if (virgipif != NULL) { 11835 ipif_clone(virgipif, sipif); 11836 mi_free(virgipif); 11837 } 11838 11839 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11840 11841 /* 11842 * Transfer ownership of the current xop, if necessary. 11843 */ 11844 if (ipx->ipx_current_ipif == sipif) { 11845 ASSERT(ipx->ipx_pending_ipif == NULL); 11846 mutex_enter(&ipx->ipx_lock); 11847 ipx->ipx_current_ipif = dipif; 11848 mutex_exit(&ipx->ipx_lock); 11849 } 11850 11851 if (virgipif == NULL) 11852 mi_free(sipif); 11853 } 11854 11855 /* 11856 * checks if: 11857 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11858 * - logical interface is within the allowed range 11859 */ 11860 static int 11861 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11862 { 11863 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11864 return (ENAMETOOLONG); 11865 11866 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11867 return (ERANGE); 11868 return (0); 11869 } 11870 11871 /* 11872 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11873 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11874 * be inserted into the first space available in the list. The value of 11875 * ipif_id will then be set to the appropriate value for its position. 11876 */ 11877 static int 11878 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11879 { 11880 ill_t *ill; 11881 ipif_t *tipif; 11882 ipif_t **tipifp; 11883 int id, err; 11884 ip_stack_t *ipst; 11885 11886 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11887 IAM_WRITER_IPIF(ipif)); 11888 11889 ill = ipif->ipif_ill; 11890 ASSERT(ill != NULL); 11891 ipst = ill->ill_ipst; 11892 11893 /* 11894 * In the case of lo0:0 we already hold the ill_g_lock. 11895 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11896 * ipif_insert. 11897 */ 11898 if (acquire_g_lock) 11899 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11900 mutex_enter(&ill->ill_lock); 11901 id = ipif->ipif_id; 11902 tipifp = &(ill->ill_ipif); 11903 if (id == -1) { /* need to find a real id */ 11904 id = 0; 11905 while ((tipif = *tipifp) != NULL) { 11906 ASSERT(tipif->ipif_id >= id); 11907 if (tipif->ipif_id != id) 11908 break; /* non-consecutive id */ 11909 id++; 11910 tipifp = &(tipif->ipif_next); 11911 } 11912 if ((err = is_lifname_valid(ill, id)) != 0) { 11913 mutex_exit(&ill->ill_lock); 11914 if (acquire_g_lock) 11915 rw_exit(&ipst->ips_ill_g_lock); 11916 return (err); 11917 } 11918 ipif->ipif_id = id; /* assign new id */ 11919 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11920 /* we have a real id; insert ipif in the right place */ 11921 while ((tipif = *tipifp) != NULL) { 11922 ASSERT(tipif->ipif_id != id); 11923 if (tipif->ipif_id > id) 11924 break; /* found correct location */ 11925 tipifp = &(tipif->ipif_next); 11926 } 11927 } else { 11928 mutex_exit(&ill->ill_lock); 11929 if (acquire_g_lock) 11930 rw_exit(&ipst->ips_ill_g_lock); 11931 return (err); 11932 } 11933 11934 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11935 11936 ipif->ipif_next = tipif; 11937 *tipifp = ipif; 11938 mutex_exit(&ill->ill_lock); 11939 if (acquire_g_lock) 11940 rw_exit(&ipst->ips_ill_g_lock); 11941 11942 return (0); 11943 } 11944 11945 static void 11946 ipif_remove(ipif_t *ipif) 11947 { 11948 ipif_t **ipifp; 11949 ill_t *ill = ipif->ipif_ill; 11950 11951 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11952 11953 mutex_enter(&ill->ill_lock); 11954 ipifp = &ill->ill_ipif; 11955 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11956 if (*ipifp == ipif) { 11957 *ipifp = ipif->ipif_next; 11958 break; 11959 } 11960 } 11961 mutex_exit(&ill->ill_lock); 11962 } 11963 11964 /* 11965 * Allocate and initialize a new interface control structure. (Always 11966 * called as writer.) 11967 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11968 * is not part of the global linked list of ills. ipif_seqid is unique 11969 * in the system and to preserve the uniqueness, it is assigned only 11970 * when ill becomes part of the global list. At that point ill will 11971 * have a name. If it doesn't get assigned here, it will get assigned 11972 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11973 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11974 * the interface flags or any other information from the DL_INFO_ACK for 11975 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11976 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11977 * second DL_INFO_ACK comes in from the driver. 11978 */ 11979 static ipif_t * 11980 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11981 boolean_t insert, int *errorp) 11982 { 11983 int err; 11984 ipif_t *ipif; 11985 ip_stack_t *ipst = ill->ill_ipst; 11986 11987 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11988 ill->ill_name, id, (void *)ill)); 11989 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11990 11991 if (errorp != NULL) 11992 *errorp = 0; 11993 11994 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11995 if (errorp != NULL) 11996 *errorp = ENOMEM; 11997 return (NULL); 11998 } 11999 *ipif = ipif_zero; /* start clean */ 12000 12001 ipif->ipif_ill = ill; 12002 ipif->ipif_id = id; /* could be -1 */ 12003 /* 12004 * Inherit the zoneid from the ill; for the shared stack instance 12005 * this is always the global zone 12006 */ 12007 ipif->ipif_zoneid = ill->ill_zoneid; 12008 12009 ipif->ipif_refcnt = 0; 12010 12011 if (insert) { 12012 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12013 mi_free(ipif); 12014 if (errorp != NULL) 12015 *errorp = err; 12016 return (NULL); 12017 } 12018 /* -1 id should have been replaced by real id */ 12019 id = ipif->ipif_id; 12020 ASSERT(id >= 0); 12021 } 12022 12023 if (ill->ill_name[0] != '\0') 12024 ipif_assign_seqid(ipif); 12025 12026 /* 12027 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12028 * (which must not exist yet because the zeroth ipif is created once 12029 * per ill). However, do not not link it to the ipmp_grp_t until 12030 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12031 */ 12032 if (id == 0 && IS_IPMP(ill)) { 12033 if (ipmp_illgrp_create(ill) == NULL) { 12034 if (insert) { 12035 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12036 ipif_remove(ipif); 12037 rw_exit(&ipst->ips_ill_g_lock); 12038 } 12039 mi_free(ipif); 12040 if (errorp != NULL) 12041 *errorp = ENOMEM; 12042 return (NULL); 12043 } 12044 } 12045 12046 /* 12047 * We grab ill_lock to protect the flag changes. The ipif is still 12048 * not up and can't be looked up until the ioctl completes and the 12049 * IPIF_CHANGING flag is cleared. 12050 */ 12051 mutex_enter(&ill->ill_lock); 12052 12053 ipif->ipif_ire_type = ire_type; 12054 12055 if (ipif->ipif_isv6) { 12056 ill->ill_flags |= ILLF_IPV6; 12057 } else { 12058 ipaddr_t inaddr_any = INADDR_ANY; 12059 12060 ill->ill_flags |= ILLF_IPV4; 12061 12062 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12063 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12064 &ipif->ipif_v6lcl_addr); 12065 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12066 &ipif->ipif_v6subnet); 12067 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12068 &ipif->ipif_v6net_mask); 12069 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12070 &ipif->ipif_v6brd_addr); 12071 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12072 &ipif->ipif_v6pp_dst_addr); 12073 } 12074 12075 /* 12076 * Don't set the interface flags etc. now, will do it in 12077 * ip_ll_subnet_defaults. 12078 */ 12079 if (!initialize) 12080 goto out; 12081 12082 /* 12083 * NOTE: The IPMP meta-interface is special-cased because it starts 12084 * with no underlying interfaces (and thus an unknown broadcast 12085 * address length), but all interfaces that can be placed into an IPMP 12086 * group are required to be broadcast-capable. 12087 */ 12088 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12089 /* 12090 * Later detect lack of DLPI driver multicast capability by 12091 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12092 */ 12093 ill->ill_flags |= ILLF_MULTICAST; 12094 if (!ipif->ipif_isv6) 12095 ipif->ipif_flags |= IPIF_BROADCAST; 12096 } else { 12097 if (ill->ill_net_type != IRE_LOOPBACK) { 12098 if (ipif->ipif_isv6) 12099 /* 12100 * Note: xresolv interfaces will eventually need 12101 * NOARP set here as well, but that will require 12102 * those external resolvers to have some 12103 * knowledge of that flag and act appropriately. 12104 * Not to be changed at present. 12105 */ 12106 ill->ill_flags |= ILLF_NONUD; 12107 else 12108 ill->ill_flags |= ILLF_NOARP; 12109 } 12110 if (ill->ill_phys_addr_length == 0) { 12111 if (IS_VNI(ill)) { 12112 ipif->ipif_flags |= IPIF_NOXMIT; 12113 } else { 12114 /* pt-pt supports multicast. */ 12115 ill->ill_flags |= ILLF_MULTICAST; 12116 if (ill->ill_net_type != IRE_LOOPBACK) 12117 ipif->ipif_flags |= IPIF_POINTOPOINT; 12118 } 12119 } 12120 } 12121 out: 12122 mutex_exit(&ill->ill_lock); 12123 return (ipif); 12124 } 12125 12126 /* 12127 * Remove the neighbor cache entries associated with this logical 12128 * interface. 12129 */ 12130 int 12131 ipif_arp_down(ipif_t *ipif) 12132 { 12133 ill_t *ill = ipif->ipif_ill; 12134 int err = 0; 12135 12136 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12137 ASSERT(IAM_WRITER_IPIF(ipif)); 12138 12139 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12140 ill_t *, ill, ipif_t *, ipif); 12141 ipif_nce_down(ipif); 12142 12143 /* 12144 * If this is the last ipif that is going down and there are no 12145 * duplicate addresses we may yet attempt to re-probe, then we need to 12146 * clean up ARP completely. 12147 */ 12148 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12149 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12150 /* 12151 * If this was the last ipif on an IPMP interface, purge any 12152 * static ARP entries associated with it. 12153 */ 12154 if (IS_IPMP(ill)) 12155 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12156 12157 /* UNBIND, DETACH */ 12158 err = arp_ll_down(ill); 12159 } 12160 12161 return (err); 12162 } 12163 12164 /* 12165 * Get the resolver set up for a new IP address. (Always called as writer.) 12166 * Called both for IPv4 and IPv6 interfaces, though it only does some 12167 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12168 * 12169 * The enumerated value res_act tunes the behavior: 12170 * * Res_act_initial: set up all the resolver structures for a new 12171 * IP address. 12172 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12173 * ARP message in defense of the address. 12174 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12175 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12176 * 12177 * Returns zero on success, or an errno upon failure. 12178 */ 12179 int 12180 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12181 { 12182 ill_t *ill = ipif->ipif_ill; 12183 int err; 12184 boolean_t was_dup; 12185 12186 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12187 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12188 ASSERT(IAM_WRITER_IPIF(ipif)); 12189 12190 was_dup = B_FALSE; 12191 if (res_act == Res_act_initial) { 12192 ipif->ipif_addr_ready = 0; 12193 /* 12194 * We're bringing an interface up here. There's no way that we 12195 * should need to shut down ARP now. 12196 */ 12197 mutex_enter(&ill->ill_lock); 12198 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12199 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12200 ill->ill_ipif_dup_count--; 12201 was_dup = B_TRUE; 12202 } 12203 mutex_exit(&ill->ill_lock); 12204 } 12205 if (ipif->ipif_recovery_id != 0) 12206 (void) untimeout(ipif->ipif_recovery_id); 12207 ipif->ipif_recovery_id = 0; 12208 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12209 ipif->ipif_addr_ready = 1; 12210 return (0); 12211 } 12212 /* NDP will set the ipif_addr_ready flag when it's ready */ 12213 if (ill->ill_isv6) 12214 return (0); 12215 12216 err = ipif_arp_up(ipif, res_act, was_dup); 12217 return (err); 12218 } 12219 12220 /* 12221 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12222 * when a link has just gone back up. 12223 */ 12224 static void 12225 ipif_nce_start_dad(ipif_t *ipif) 12226 { 12227 ncec_t *ncec; 12228 ill_t *ill = ipif->ipif_ill; 12229 boolean_t isv6 = ill->ill_isv6; 12230 12231 if (isv6) { 12232 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12233 &ipif->ipif_v6lcl_addr); 12234 } else { 12235 ipaddr_t v4addr; 12236 12237 if (ill->ill_net_type != IRE_IF_RESOLVER || 12238 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12239 ipif->ipif_lcl_addr == INADDR_ANY) { 12240 /* 12241 * If we can't contact ARP for some reason, 12242 * that's not really a problem. Just send 12243 * out the routing socket notification that 12244 * DAD completion would have done, and continue. 12245 */ 12246 ipif_mask_reply(ipif); 12247 ipif_up_notify(ipif); 12248 ipif->ipif_addr_ready = 1; 12249 return; 12250 } 12251 12252 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12253 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12254 } 12255 12256 if (ncec == NULL) { 12257 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12258 (void *)ipif)); 12259 return; 12260 } 12261 if (!nce_restart_dad(ncec)) { 12262 /* 12263 * If we can't restart DAD for some reason, that's not really a 12264 * problem. Just send out the routing socket notification that 12265 * DAD completion would have done, and continue. 12266 */ 12267 ipif_up_notify(ipif); 12268 ipif->ipif_addr_ready = 1; 12269 } 12270 ncec_refrele(ncec); 12271 } 12272 12273 /* 12274 * Restart duplicate address detection on all interfaces on the given ill. 12275 * 12276 * This is called when an interface transitions from down to up 12277 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12278 * 12279 * Note that since the underlying physical link has transitioned, we must cause 12280 * at least one routing socket message to be sent here, either via DAD 12281 * completion or just by default on the first ipif. (If we don't do this, then 12282 * in.mpathd will see long delays when doing link-based failure recovery.) 12283 */ 12284 void 12285 ill_restart_dad(ill_t *ill, boolean_t went_up) 12286 { 12287 ipif_t *ipif; 12288 12289 if (ill == NULL) 12290 return; 12291 12292 /* 12293 * If layer two doesn't support duplicate address detection, then just 12294 * send the routing socket message now and be done with it. 12295 */ 12296 if (!ill->ill_isv6 && arp_no_defense) { 12297 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12298 return; 12299 } 12300 12301 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12302 if (went_up) { 12303 12304 if (ipif->ipif_flags & IPIF_UP) { 12305 ipif_nce_start_dad(ipif); 12306 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12307 /* 12308 * kick off the bring-up process now. 12309 */ 12310 ipif_do_recovery(ipif); 12311 } else { 12312 /* 12313 * Unfortunately, the first ipif is "special" 12314 * and represents the underlying ill in the 12315 * routing socket messages. Thus, when this 12316 * one ipif is down, we must still notify so 12317 * that the user knows the IFF_RUNNING status 12318 * change. (If the first ipif is up, then 12319 * we'll handle eventual routing socket 12320 * notification via DAD completion.) 12321 */ 12322 if (ipif == ill->ill_ipif) { 12323 ip_rts_ifmsg(ill->ill_ipif, 12324 RTSQ_DEFAULT); 12325 } 12326 } 12327 } else { 12328 /* 12329 * After link down, we'll need to send a new routing 12330 * message when the link comes back, so clear 12331 * ipif_addr_ready. 12332 */ 12333 ipif->ipif_addr_ready = 0; 12334 } 12335 } 12336 12337 /* 12338 * If we've torn down links, then notify the user right away. 12339 */ 12340 if (!went_up) 12341 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12342 } 12343 12344 static void 12345 ipsq_delete(ipsq_t *ipsq) 12346 { 12347 ipxop_t *ipx = ipsq->ipsq_xop; 12348 12349 ipsq->ipsq_ipst = NULL; 12350 ASSERT(ipsq->ipsq_phyint == NULL); 12351 ASSERT(ipsq->ipsq_xop != NULL); 12352 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12353 ASSERT(ipx->ipx_pending_mp == NULL); 12354 kmem_free(ipsq, sizeof (ipsq_t)); 12355 } 12356 12357 static int 12358 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12359 { 12360 int err = 0; 12361 ipif_t *ipif; 12362 12363 if (ill == NULL) 12364 return (0); 12365 12366 ASSERT(IAM_WRITER_ILL(ill)); 12367 ill->ill_up_ipifs = B_TRUE; 12368 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12369 if (ipif->ipif_was_up) { 12370 if (!(ipif->ipif_flags & IPIF_UP)) 12371 err = ipif_up(ipif, q, mp); 12372 ipif->ipif_was_up = B_FALSE; 12373 if (err != 0) { 12374 ASSERT(err == EINPROGRESS); 12375 return (err); 12376 } 12377 } 12378 } 12379 ill->ill_up_ipifs = B_FALSE; 12380 return (0); 12381 } 12382 12383 /* 12384 * This function is called to bring up all the ipifs that were up before 12385 * bringing the ill down via ill_down_ipifs(). 12386 */ 12387 int 12388 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12389 { 12390 int err; 12391 12392 ASSERT(IAM_WRITER_ILL(ill)); 12393 12394 if (ill->ill_replumbing) { 12395 ill->ill_replumbing = 0; 12396 /* 12397 * Send down REPLUMB_DONE notification followed by the 12398 * BIND_REQ on the arp stream. 12399 */ 12400 if (!ill->ill_isv6) 12401 arp_send_replumb_conf(ill); 12402 } 12403 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12404 if (err != 0) 12405 return (err); 12406 12407 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12408 } 12409 12410 /* 12411 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12412 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12413 */ 12414 static void 12415 ill_down_ipifs(ill_t *ill, boolean_t logical) 12416 { 12417 ipif_t *ipif; 12418 12419 ASSERT(IAM_WRITER_ILL(ill)); 12420 12421 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12422 /* 12423 * We go through the ipif_down logic even if the ipif 12424 * is already down, since routes can be added based 12425 * on down ipifs. Going through ipif_down once again 12426 * will delete any IREs created based on these routes. 12427 */ 12428 if (ipif->ipif_flags & IPIF_UP) 12429 ipif->ipif_was_up = B_TRUE; 12430 12431 if (logical) { 12432 (void) ipif_logical_down(ipif, NULL, NULL); 12433 ipif_non_duplicate(ipif); 12434 (void) ipif_down_tail(ipif); 12435 } else { 12436 (void) ipif_down(ipif, NULL, NULL); 12437 } 12438 } 12439 } 12440 12441 /* 12442 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12443 * a look again at valid source addresses. 12444 * This should be called each time after the set of source addresses has been 12445 * changed. 12446 */ 12447 void 12448 ip_update_source_selection(ip_stack_t *ipst) 12449 { 12450 /* We skip past SRC_GENERATION_VERIFY */ 12451 if (atomic_inc_32_nv(&ipst->ips_src_generation) == 12452 SRC_GENERATION_VERIFY) 12453 atomic_inc_32(&ipst->ips_src_generation); 12454 } 12455 12456 /* 12457 * Finish the group join started in ip_sioctl_groupname(). 12458 */ 12459 /* ARGSUSED */ 12460 static void 12461 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12462 { 12463 ill_t *ill = q->q_ptr; 12464 phyint_t *phyi = ill->ill_phyint; 12465 ipmp_grp_t *grp = phyi->phyint_grp; 12466 ip_stack_t *ipst = ill->ill_ipst; 12467 12468 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12469 ASSERT(!IS_IPMP(ill) && grp != NULL); 12470 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12471 12472 if (phyi->phyint_illv4 != NULL) { 12473 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12474 VERIFY(grp->gr_pendv4-- > 0); 12475 rw_exit(&ipst->ips_ipmp_lock); 12476 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12477 } 12478 if (phyi->phyint_illv6 != NULL) { 12479 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12480 VERIFY(grp->gr_pendv6-- > 0); 12481 rw_exit(&ipst->ips_ipmp_lock); 12482 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12483 } 12484 freemsg(mp); 12485 } 12486 12487 /* 12488 * Process an SIOCSLIFGROUPNAME request. 12489 */ 12490 /* ARGSUSED */ 12491 int 12492 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12493 ip_ioctl_cmd_t *ipip, void *ifreq) 12494 { 12495 struct lifreq *lifr = ifreq; 12496 ill_t *ill = ipif->ipif_ill; 12497 ip_stack_t *ipst = ill->ill_ipst; 12498 phyint_t *phyi = ill->ill_phyint; 12499 ipmp_grp_t *grp = phyi->phyint_grp; 12500 mblk_t *ipsq_mp; 12501 int err = 0; 12502 12503 /* 12504 * Note that phyint_grp can only change here, where we're exclusive. 12505 */ 12506 ASSERT(IAM_WRITER_ILL(ill)); 12507 12508 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12509 (phyi->phyint_flags & PHYI_VIRTUAL)) 12510 return (EINVAL); 12511 12512 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12513 12514 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12515 12516 /* 12517 * If the name hasn't changed, there's nothing to do. 12518 */ 12519 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12520 goto unlock; 12521 12522 /* 12523 * Handle requests to rename an IPMP meta-interface. 12524 * 12525 * Note that creation of the IPMP meta-interface is handled in 12526 * userland through the standard plumbing sequence. As part of the 12527 * plumbing the IPMP meta-interface, its initial groupname is set to 12528 * the name of the interface (see ipif_set_values_tail()). 12529 */ 12530 if (IS_IPMP(ill)) { 12531 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12532 goto unlock; 12533 } 12534 12535 /* 12536 * Handle requests to add or remove an IP interface from a group. 12537 */ 12538 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12539 /* 12540 * Moves are handled by first removing the interface from 12541 * its existing group, and then adding it to another group. 12542 * So, fail if it's already in a group. 12543 */ 12544 if (IS_UNDER_IPMP(ill)) { 12545 err = EALREADY; 12546 goto unlock; 12547 } 12548 12549 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12550 if (grp == NULL) { 12551 err = ENOENT; 12552 goto unlock; 12553 } 12554 12555 /* 12556 * Check if the phyint and its ills are suitable for 12557 * inclusion into the group. 12558 */ 12559 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12560 goto unlock; 12561 12562 /* 12563 * Checks pass; join the group, and enqueue the remaining 12564 * illgrp joins for when we've become part of the group xop 12565 * and are exclusive across its IPSQs. Since qwriter_ip() 12566 * requires an mblk_t to scribble on, and since `mp' will be 12567 * freed as part of completing the ioctl, allocate another. 12568 */ 12569 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12570 err = ENOMEM; 12571 goto unlock; 12572 } 12573 12574 /* 12575 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12576 * IPMP meta-interface ills needed by `phyi' cannot go away 12577 * before ip_join_illgrps() is called back. See the comments 12578 * in ip_sioctl_plink_ipmp() for more. 12579 */ 12580 if (phyi->phyint_illv4 != NULL) 12581 grp->gr_pendv4++; 12582 if (phyi->phyint_illv6 != NULL) 12583 grp->gr_pendv6++; 12584 12585 rw_exit(&ipst->ips_ipmp_lock); 12586 12587 ipmp_phyint_join_grp(phyi, grp); 12588 ill_refhold(ill); 12589 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12590 SWITCH_OP, B_FALSE); 12591 return (0); 12592 } else { 12593 /* 12594 * Request to remove the interface from a group. If the 12595 * interface is not in a group, this trivially succeeds. 12596 */ 12597 rw_exit(&ipst->ips_ipmp_lock); 12598 if (IS_UNDER_IPMP(ill)) 12599 ipmp_phyint_leave_grp(phyi); 12600 return (0); 12601 } 12602 unlock: 12603 rw_exit(&ipst->ips_ipmp_lock); 12604 return (err); 12605 } 12606 12607 /* 12608 * Process an SIOCGLIFBINDING request. 12609 */ 12610 /* ARGSUSED */ 12611 int 12612 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12613 ip_ioctl_cmd_t *ipip, void *ifreq) 12614 { 12615 ill_t *ill; 12616 struct lifreq *lifr = ifreq; 12617 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12618 12619 if (!IS_IPMP(ipif->ipif_ill)) 12620 return (EINVAL); 12621 12622 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12623 if ((ill = ipif->ipif_bound_ill) == NULL) 12624 lifr->lifr_binding[0] = '\0'; 12625 else 12626 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12627 rw_exit(&ipst->ips_ipmp_lock); 12628 return (0); 12629 } 12630 12631 /* 12632 * Process an SIOCGLIFGROUPNAME request. 12633 */ 12634 /* ARGSUSED */ 12635 int 12636 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12637 ip_ioctl_cmd_t *ipip, void *ifreq) 12638 { 12639 ipmp_grp_t *grp; 12640 struct lifreq *lifr = ifreq; 12641 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12642 12643 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12644 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12645 lifr->lifr_groupname[0] = '\0'; 12646 else 12647 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12648 rw_exit(&ipst->ips_ipmp_lock); 12649 return (0); 12650 } 12651 12652 /* 12653 * Process an SIOCGLIFGROUPINFO request. 12654 */ 12655 /* ARGSUSED */ 12656 int 12657 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12658 ip_ioctl_cmd_t *ipip, void *dummy) 12659 { 12660 ipmp_grp_t *grp; 12661 lifgroupinfo_t *lifgr; 12662 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12663 12664 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12665 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12666 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12667 12668 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12669 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12670 rw_exit(&ipst->ips_ipmp_lock); 12671 return (ENOENT); 12672 } 12673 ipmp_grp_info(grp, lifgr); 12674 rw_exit(&ipst->ips_ipmp_lock); 12675 return (0); 12676 } 12677 12678 static void 12679 ill_dl_down(ill_t *ill) 12680 { 12681 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12682 12683 /* 12684 * The ill is down; unbind but stay attached since we're still 12685 * associated with a PPA. If we have negotiated DLPI capabilites 12686 * with the data link service provider (IDS_OK) then reset them. 12687 * The interval between unbinding and rebinding is potentially 12688 * unbounded hence we cannot assume things will be the same. 12689 * The DLPI capabilities will be probed again when the data link 12690 * is brought up. 12691 */ 12692 mblk_t *mp = ill->ill_unbind_mp; 12693 12694 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12695 12696 if (!ill->ill_replumbing) { 12697 /* Free all ilms for this ill */ 12698 update_conn_ill(ill, ill->ill_ipst); 12699 } else { 12700 ill_leave_multicast(ill); 12701 } 12702 12703 ill->ill_unbind_mp = NULL; 12704 if (mp != NULL) { 12705 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12706 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12707 ill->ill_name)); 12708 mutex_enter(&ill->ill_lock); 12709 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12710 mutex_exit(&ill->ill_lock); 12711 /* 12712 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12713 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12714 * ill_capability_dld_disable disable rightaway. If this is not 12715 * an unplumb operation then the disable happens on receipt of 12716 * the capab ack via ip_rput_dlpi_writer -> 12717 * ill_capability_ack_thr. In both cases the order of 12718 * the operations seen by DLD is capability disable followed 12719 * by DL_UNBIND. Also the DLD capability disable needs a 12720 * cv_wait'able context. 12721 */ 12722 if (ill->ill_state_flags & ILL_CONDEMNED) 12723 ill_capability_dld_disable(ill); 12724 ill_capability_reset(ill, B_FALSE); 12725 ill_dlpi_send(ill, mp); 12726 } 12727 mutex_enter(&ill->ill_lock); 12728 ill->ill_dl_up = 0; 12729 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12730 mutex_exit(&ill->ill_lock); 12731 } 12732 12733 void 12734 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12735 { 12736 union DL_primitives *dlp; 12737 t_uscalar_t prim; 12738 boolean_t waitack = B_FALSE; 12739 12740 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12741 12742 dlp = (union DL_primitives *)mp->b_rptr; 12743 prim = dlp->dl_primitive; 12744 12745 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12746 dl_primstr(prim), prim, ill->ill_name)); 12747 12748 switch (prim) { 12749 case DL_PHYS_ADDR_REQ: 12750 { 12751 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12752 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12753 break; 12754 } 12755 case DL_BIND_REQ: 12756 mutex_enter(&ill->ill_lock); 12757 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12758 mutex_exit(&ill->ill_lock); 12759 break; 12760 } 12761 12762 /* 12763 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12764 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12765 * we only wait for the ACK of the DL_UNBIND_REQ. 12766 */ 12767 mutex_enter(&ill->ill_lock); 12768 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12769 (prim == DL_UNBIND_REQ)) { 12770 ill->ill_dlpi_pending = prim; 12771 waitack = B_TRUE; 12772 } 12773 12774 mutex_exit(&ill->ill_lock); 12775 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12776 char *, dl_primstr(prim), ill_t *, ill); 12777 putnext(ill->ill_wq, mp); 12778 12779 /* 12780 * There is no ack for DL_NOTIFY_CONF messages 12781 */ 12782 if (waitack && prim == DL_NOTIFY_CONF) 12783 ill_dlpi_done(ill, prim); 12784 } 12785 12786 /* 12787 * Helper function for ill_dlpi_send(). 12788 */ 12789 /* ARGSUSED */ 12790 static void 12791 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12792 { 12793 ill_dlpi_send(q->q_ptr, mp); 12794 } 12795 12796 /* 12797 * Send a DLPI control message to the driver but make sure there 12798 * is only one outstanding message. Uses ill_dlpi_pending to tell 12799 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12800 * when an ACK or a NAK is received to process the next queued message. 12801 */ 12802 void 12803 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12804 { 12805 mblk_t **mpp; 12806 12807 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12808 12809 /* 12810 * To ensure that any DLPI requests for current exclusive operation 12811 * are always completely sent before any DLPI messages for other 12812 * operations, require writer access before enqueuing. 12813 */ 12814 if (!IAM_WRITER_ILL(ill)) { 12815 ill_refhold(ill); 12816 /* qwriter_ip() does the ill_refrele() */ 12817 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12818 NEW_OP, B_TRUE); 12819 return; 12820 } 12821 12822 mutex_enter(&ill->ill_lock); 12823 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12824 /* Must queue message. Tail insertion */ 12825 mpp = &ill->ill_dlpi_deferred; 12826 while (*mpp != NULL) 12827 mpp = &((*mpp)->b_next); 12828 12829 ip1dbg(("ill_dlpi_send: deferring request for %s " 12830 "while %s pending\n", ill->ill_name, 12831 dl_primstr(ill->ill_dlpi_pending))); 12832 12833 *mpp = mp; 12834 mutex_exit(&ill->ill_lock); 12835 return; 12836 } 12837 mutex_exit(&ill->ill_lock); 12838 ill_dlpi_dispatch(ill, mp); 12839 } 12840 12841 void 12842 ill_capability_send(ill_t *ill, mblk_t *mp) 12843 { 12844 ill->ill_capab_pending_cnt++; 12845 ill_dlpi_send(ill, mp); 12846 } 12847 12848 void 12849 ill_capability_done(ill_t *ill) 12850 { 12851 ASSERT(ill->ill_capab_pending_cnt != 0); 12852 12853 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12854 12855 ill->ill_capab_pending_cnt--; 12856 if (ill->ill_capab_pending_cnt == 0 && 12857 ill->ill_dlpi_capab_state == IDCS_OK) 12858 ill_capability_reset_alloc(ill); 12859 } 12860 12861 /* 12862 * Send all deferred DLPI messages without waiting for their ACKs. 12863 */ 12864 void 12865 ill_dlpi_send_deferred(ill_t *ill) 12866 { 12867 mblk_t *mp, *nextmp; 12868 12869 /* 12870 * Clear ill_dlpi_pending so that the message is not queued in 12871 * ill_dlpi_send(). 12872 */ 12873 mutex_enter(&ill->ill_lock); 12874 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12875 mp = ill->ill_dlpi_deferred; 12876 ill->ill_dlpi_deferred = NULL; 12877 mutex_exit(&ill->ill_lock); 12878 12879 for (; mp != NULL; mp = nextmp) { 12880 nextmp = mp->b_next; 12881 mp->b_next = NULL; 12882 ill_dlpi_send(ill, mp); 12883 } 12884 } 12885 12886 /* 12887 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12888 * or M_HANGUP 12889 */ 12890 static void 12891 ill_dlpi_clear_deferred(ill_t *ill) 12892 { 12893 mblk_t *mp, *nextmp; 12894 12895 mutex_enter(&ill->ill_lock); 12896 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12897 mp = ill->ill_dlpi_deferred; 12898 ill->ill_dlpi_deferred = NULL; 12899 mutex_exit(&ill->ill_lock); 12900 12901 for (; mp != NULL; mp = nextmp) { 12902 nextmp = mp->b_next; 12903 inet_freemsg(mp); 12904 } 12905 } 12906 12907 /* 12908 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12909 */ 12910 boolean_t 12911 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12912 { 12913 t_uscalar_t pending; 12914 12915 mutex_enter(&ill->ill_lock); 12916 if (ill->ill_dlpi_pending == prim) { 12917 mutex_exit(&ill->ill_lock); 12918 return (B_TRUE); 12919 } 12920 12921 /* 12922 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12923 * without waiting, so don't print any warnings in that case. 12924 */ 12925 if (ill->ill_state_flags & ILL_CONDEMNED) { 12926 mutex_exit(&ill->ill_lock); 12927 return (B_FALSE); 12928 } 12929 pending = ill->ill_dlpi_pending; 12930 mutex_exit(&ill->ill_lock); 12931 12932 if (pending == DL_PRIM_INVAL) { 12933 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12934 "received unsolicited ack for %s on %s\n", 12935 dl_primstr(prim), ill->ill_name); 12936 } else { 12937 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12938 "received unexpected ack for %s on %s (expecting %s)\n", 12939 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12940 } 12941 return (B_FALSE); 12942 } 12943 12944 /* 12945 * Complete the current DLPI operation associated with `prim' on `ill' and 12946 * start the next queued DLPI operation (if any). If there are no queued DLPI 12947 * operations and the ill's current exclusive IPSQ operation has finished 12948 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12949 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12950 * the comments above ipsq_current_finish() for details. 12951 */ 12952 void 12953 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12954 { 12955 mblk_t *mp; 12956 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12957 ipxop_t *ipx = ipsq->ipsq_xop; 12958 12959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12960 mutex_enter(&ill->ill_lock); 12961 12962 ASSERT(prim != DL_PRIM_INVAL); 12963 ASSERT(ill->ill_dlpi_pending == prim); 12964 12965 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12966 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12967 12968 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12969 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12970 if (ipx->ipx_current_done) { 12971 mutex_enter(&ipx->ipx_lock); 12972 ipx->ipx_current_ipif = NULL; 12973 mutex_exit(&ipx->ipx_lock); 12974 } 12975 cv_signal(&ill->ill_cv); 12976 mutex_exit(&ill->ill_lock); 12977 return; 12978 } 12979 12980 ill->ill_dlpi_deferred = mp->b_next; 12981 mp->b_next = NULL; 12982 mutex_exit(&ill->ill_lock); 12983 12984 ill_dlpi_dispatch(ill, mp); 12985 } 12986 12987 /* 12988 * Queue a (multicast) DLPI control message to be sent to the driver by 12989 * later calling ill_dlpi_send_queued. 12990 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12991 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12992 * for the same group to race. 12993 * We send DLPI control messages in order using ill_lock. 12994 * For IPMP we should be called on the cast_ill. 12995 */ 12996 void 12997 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12998 { 12999 mblk_t **mpp; 13000 13001 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13002 13003 mutex_enter(&ill->ill_lock); 13004 /* Must queue message. Tail insertion */ 13005 mpp = &ill->ill_dlpi_deferred; 13006 while (*mpp != NULL) 13007 mpp = &((*mpp)->b_next); 13008 13009 *mpp = mp; 13010 mutex_exit(&ill->ill_lock); 13011 } 13012 13013 /* 13014 * Send the messages that were queued. Make sure there is only 13015 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13016 * when an ACK or a NAK is received to process the next queued message. 13017 * For IPMP we are called on the upper ill, but when send what is queued 13018 * on the cast_ill. 13019 */ 13020 void 13021 ill_dlpi_send_queued(ill_t *ill) 13022 { 13023 mblk_t *mp; 13024 union DL_primitives *dlp; 13025 t_uscalar_t prim; 13026 ill_t *release_ill = NULL; 13027 13028 if (IS_IPMP(ill)) { 13029 /* On the upper IPMP ill. */ 13030 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13031 if (release_ill == NULL) { 13032 /* Avoid ever sending anything down to the ipmpstub */ 13033 return; 13034 } 13035 ill = release_ill; 13036 } 13037 mutex_enter(&ill->ill_lock); 13038 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13039 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13040 /* Can't send. Somebody else will send it */ 13041 mutex_exit(&ill->ill_lock); 13042 goto done; 13043 } 13044 ill->ill_dlpi_deferred = mp->b_next; 13045 mp->b_next = NULL; 13046 if (!ill->ill_dl_up) { 13047 /* 13048 * Nobody there. All multicast addresses will be 13049 * re-joined when we get the DL_BIND_ACK bringing the 13050 * interface up. 13051 */ 13052 freemsg(mp); 13053 continue; 13054 } 13055 dlp = (union DL_primitives *)mp->b_rptr; 13056 prim = dlp->dl_primitive; 13057 13058 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13059 (prim == DL_UNBIND_REQ)) { 13060 ill->ill_dlpi_pending = prim; 13061 } 13062 mutex_exit(&ill->ill_lock); 13063 13064 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13065 char *, dl_primstr(prim), ill_t *, ill); 13066 putnext(ill->ill_wq, mp); 13067 mutex_enter(&ill->ill_lock); 13068 } 13069 mutex_exit(&ill->ill_lock); 13070 done: 13071 if (release_ill != NULL) 13072 ill_refrele(release_ill); 13073 } 13074 13075 /* 13076 * Queue an IP (IGMP/MLD) message to be sent by IP from 13077 * ill_mcast_send_queued 13078 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13079 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13080 * group to race. 13081 * We send them in order using ill_lock. 13082 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13083 */ 13084 void 13085 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13086 { 13087 mblk_t **mpp; 13088 ill_t *release_ill = NULL; 13089 13090 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13091 13092 if (IS_IPMP(ill)) { 13093 /* On the upper IPMP ill. */ 13094 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13095 if (release_ill == NULL) { 13096 /* Discard instead of queuing for the ipmp interface */ 13097 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13098 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13099 mp, ill); 13100 freemsg(mp); 13101 return; 13102 } 13103 ill = release_ill; 13104 } 13105 13106 mutex_enter(&ill->ill_lock); 13107 /* Must queue message. Tail insertion */ 13108 mpp = &ill->ill_mcast_deferred; 13109 while (*mpp != NULL) 13110 mpp = &((*mpp)->b_next); 13111 13112 *mpp = mp; 13113 mutex_exit(&ill->ill_lock); 13114 if (release_ill != NULL) 13115 ill_refrele(release_ill); 13116 } 13117 13118 /* 13119 * Send the IP packets that were queued by ill_mcast_queue. 13120 * These are IGMP/MLD packets. 13121 * 13122 * For IPMP we are called on the upper ill, but when send what is queued 13123 * on the cast_ill. 13124 * 13125 * Request loopback of the report if we are acting as a multicast 13126 * router, so that the process-level routing demon can hear it. 13127 * This will run multiple times for the same group if there are members 13128 * on the same group for multiple ipif's on the same ill. The 13129 * igmp_input/mld_input code will suppress this due to the loopback thus we 13130 * always loopback membership report. 13131 * 13132 * We also need to make sure that this does not get load balanced 13133 * by IPMP. We do this by passing an ill to ip_output_simple. 13134 */ 13135 void 13136 ill_mcast_send_queued(ill_t *ill) 13137 { 13138 mblk_t *mp; 13139 ip_xmit_attr_t ixas; 13140 ill_t *release_ill = NULL; 13141 13142 if (IS_IPMP(ill)) { 13143 /* On the upper IPMP ill. */ 13144 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13145 if (release_ill == NULL) { 13146 /* 13147 * We should have no messages on the ipmp interface 13148 * but no point in trying to send them. 13149 */ 13150 return; 13151 } 13152 ill = release_ill; 13153 } 13154 bzero(&ixas, sizeof (ixas)); 13155 ixas.ixa_zoneid = ALL_ZONES; 13156 ixas.ixa_cred = kcred; 13157 ixas.ixa_cpid = NOPID; 13158 ixas.ixa_tsl = NULL; 13159 /* 13160 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13161 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13162 * That is necessary to handle IGMP/MLD snooping switches. 13163 */ 13164 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13165 ixas.ixa_ipst = ill->ill_ipst; 13166 13167 mutex_enter(&ill->ill_lock); 13168 while ((mp = ill->ill_mcast_deferred) != NULL) { 13169 ill->ill_mcast_deferred = mp->b_next; 13170 mp->b_next = NULL; 13171 if (!ill->ill_dl_up) { 13172 /* 13173 * Nobody there. Just drop the ip packets. 13174 * IGMP/MLD will resend later, if this is a replumb. 13175 */ 13176 freemsg(mp); 13177 continue; 13178 } 13179 mutex_enter(&ill->ill_phyint->phyint_lock); 13180 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13181 /* 13182 * When the ill is getting deactivated, we only want to 13183 * send the DLPI messages, so drop IGMP/MLD packets. 13184 * DLPI messages are handled by ill_dlpi_send_queued() 13185 */ 13186 mutex_exit(&ill->ill_phyint->phyint_lock); 13187 freemsg(mp); 13188 continue; 13189 } 13190 mutex_exit(&ill->ill_phyint->phyint_lock); 13191 mutex_exit(&ill->ill_lock); 13192 13193 /* Check whether we are sending IPv4 or IPv6. */ 13194 if (ill->ill_isv6) { 13195 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13196 13197 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13198 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13199 } else { 13200 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13201 13202 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13203 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13204 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13205 } 13206 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13207 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13208 (void) ip_output_simple(mp, &ixas); 13209 ixa_cleanup(&ixas); 13210 13211 mutex_enter(&ill->ill_lock); 13212 } 13213 mutex_exit(&ill->ill_lock); 13214 13215 done: 13216 if (release_ill != NULL) 13217 ill_refrele(release_ill); 13218 } 13219 13220 /* 13221 * Take down a specific interface, but don't lose any information about it. 13222 * (Always called as writer.) 13223 * This function goes through the down sequence even if the interface is 13224 * already down. There are 2 reasons. 13225 * a. Currently we permit interface routes that depend on down interfaces 13226 * to be added. This behaviour itself is questionable. However it appears 13227 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13228 * time. We go thru the cleanup in order to remove these routes. 13229 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13230 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13231 * down, but we need to cleanup i.e. do ill_dl_down and 13232 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13233 * 13234 * IP-MT notes: 13235 * 13236 * Model of reference to interfaces. 13237 * 13238 * The following members in ipif_t track references to the ipif. 13239 * int ipif_refcnt; Active reference count 13240 * 13241 * The following members in ill_t track references to the ill. 13242 * int ill_refcnt; active refcnt 13243 * uint_t ill_ire_cnt; Number of ires referencing ill 13244 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13245 * uint_t ill_nce_cnt; Number of nces referencing ill 13246 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13247 * 13248 * Reference to an ipif or ill can be obtained in any of the following ways. 13249 * 13250 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13251 * Pointers to ipif / ill from other data structures viz ire and conn. 13252 * Implicit reference to the ipif / ill by holding a reference to the ire. 13253 * 13254 * The ipif/ill lookup functions return a reference held ipif / ill. 13255 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13256 * This is a purely dynamic reference count associated with threads holding 13257 * references to the ipif / ill. Pointers from other structures do not 13258 * count towards this reference count. 13259 * 13260 * ill_ire_cnt is the number of ire's associated with the 13261 * ill. This is incremented whenever a new ire is created referencing the 13262 * ill. This is done atomically inside ire_add_v[46] where the ire is 13263 * actually added to the ire hash table. The count is decremented in 13264 * ire_inactive where the ire is destroyed. 13265 * 13266 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13267 * This is incremented atomically in 13268 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13269 * table. Similarly it is decremented in ncec_inactive() where the ncec 13270 * is destroyed. 13271 * 13272 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13273 * incremented atomically in nce_add() where the nce is actually added to the 13274 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13275 * is destroyed. 13276 * 13277 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13278 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13279 * 13280 * Flow of ioctls involving interface down/up 13281 * 13282 * The following is the sequence of an attempt to set some critical flags on an 13283 * up interface. 13284 * ip_sioctl_flags 13285 * ipif_down 13286 * wait for ipif to be quiescent 13287 * ipif_down_tail 13288 * ip_sioctl_flags_tail 13289 * 13290 * All set ioctls that involve down/up sequence would have a skeleton similar 13291 * to the above. All the *tail functions are called after the refcounts have 13292 * dropped to the appropriate values. 13293 * 13294 * SIOC ioctls during the IPIF_CHANGING interval. 13295 * 13296 * Threads handling SIOC set ioctls serialize on the squeue, but this 13297 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13298 * steps of internal changes to the state, some of which are visible in 13299 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13300 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13301 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13302 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13303 * the current exclusive operation completes. The IPIF_CHANGING check 13304 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13305 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13306 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13307 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13308 * until we release the ipsq_lock, even though the ill/ipif state flags 13309 * can change after we drop the ill_lock. 13310 */ 13311 int 13312 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13313 { 13314 ill_t *ill = ipif->ipif_ill; 13315 conn_t *connp; 13316 boolean_t success; 13317 boolean_t ipif_was_up = B_FALSE; 13318 ip_stack_t *ipst = ill->ill_ipst; 13319 13320 ASSERT(IAM_WRITER_IPIF(ipif)); 13321 13322 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13323 13324 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13325 ill_t *, ill, ipif_t *, ipif); 13326 13327 if (ipif->ipif_flags & IPIF_UP) { 13328 mutex_enter(&ill->ill_lock); 13329 ipif->ipif_flags &= ~IPIF_UP; 13330 ASSERT(ill->ill_ipif_up_count > 0); 13331 --ill->ill_ipif_up_count; 13332 mutex_exit(&ill->ill_lock); 13333 ipif_was_up = B_TRUE; 13334 /* Update status in SCTP's list */ 13335 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13336 ill_nic_event_dispatch(ipif->ipif_ill, 13337 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13338 } 13339 13340 /* 13341 * Removal of the last ipif from an ill may result in a DL_UNBIND 13342 * being sent to the driver, and we must not send any data packets to 13343 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13344 * ire and nce entries used in the data path will be cleaned 13345 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13346 * sure on new entries will be added until the ill is bound 13347 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13348 * receipt of a DL_BIND_ACK. 13349 */ 13350 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13351 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13352 ill->ill_dl_up) { 13353 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13354 } 13355 13356 /* 13357 * Blow away memberships we established in ipif_multicast_up(). 13358 */ 13359 ipif_multicast_down(ipif); 13360 13361 /* 13362 * Remove from the mapping for __sin6_src_id. We insert only 13363 * when the address is not INADDR_ANY. As IPv4 addresses are 13364 * stored as mapped addresses, we need to check for mapped 13365 * INADDR_ANY also. 13366 */ 13367 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13368 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13369 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13370 int err; 13371 13372 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13373 ipif->ipif_zoneid, ipst); 13374 if (err != 0) { 13375 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13376 } 13377 } 13378 13379 if (ipif_was_up) { 13380 /* only delete if we'd added ire's before */ 13381 if (ipif->ipif_isv6) 13382 ipif_delete_ires_v6(ipif); 13383 else 13384 ipif_delete_ires_v4(ipif); 13385 } 13386 13387 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13388 /* 13389 * Since the interface is now down, it may have just become 13390 * inactive. Note that this needs to be done even for a 13391 * lll_logical_down(), or ARP entries will not get correctly 13392 * restored when the interface comes back up. 13393 */ 13394 if (IS_UNDER_IPMP(ill)) 13395 ipmp_ill_refresh_active(ill); 13396 } 13397 13398 /* 13399 * neighbor-discovery or arp entries for this interface. The ipif 13400 * has to be quiesced, so we walk all the nce's and delete those 13401 * that point at the ipif->ipif_ill. At the same time, we also 13402 * update IPMP so that ipifs for data addresses are unbound. We dont 13403 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13404 * that for ipif_down_tail() 13405 */ 13406 ipif_nce_down(ipif); 13407 13408 /* 13409 * If this is the last ipif on the ill, we also need to remove 13410 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13411 * never succeed. 13412 */ 13413 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13414 ire_walk_ill(0, 0, ill_downi, ill, ill); 13415 13416 /* 13417 * Walk all CONNs that can have a reference on an ire for this 13418 * ipif (we actually walk all that now have stale references). 13419 */ 13420 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13421 13422 /* 13423 * If mp is NULL the caller will wait for the appropriate refcnt. 13424 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13425 * and ill_delete -> ipif_free -> ipif_down 13426 */ 13427 if (mp == NULL) { 13428 ASSERT(q == NULL); 13429 return (0); 13430 } 13431 13432 if (CONN_Q(q)) { 13433 connp = Q_TO_CONN(q); 13434 mutex_enter(&connp->conn_lock); 13435 } else { 13436 connp = NULL; 13437 } 13438 mutex_enter(&ill->ill_lock); 13439 /* 13440 * Are there any ire's pointing to this ipif that are still active ? 13441 * If this is the last ipif going down, are there any ire's pointing 13442 * to this ill that are still active ? 13443 */ 13444 if (ipif_is_quiescent(ipif)) { 13445 mutex_exit(&ill->ill_lock); 13446 if (connp != NULL) 13447 mutex_exit(&connp->conn_lock); 13448 return (0); 13449 } 13450 13451 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13452 ill->ill_name, (void *)ill)); 13453 /* 13454 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13455 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13456 * which in turn is called by the last refrele on the ipif/ill/ire. 13457 */ 13458 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13459 if (!success) { 13460 /* The conn is closing. So just return */ 13461 ASSERT(connp != NULL); 13462 mutex_exit(&ill->ill_lock); 13463 mutex_exit(&connp->conn_lock); 13464 return (EINTR); 13465 } 13466 13467 mutex_exit(&ill->ill_lock); 13468 if (connp != NULL) 13469 mutex_exit(&connp->conn_lock); 13470 return (EINPROGRESS); 13471 } 13472 13473 int 13474 ipif_down_tail(ipif_t *ipif) 13475 { 13476 ill_t *ill = ipif->ipif_ill; 13477 int err = 0; 13478 13479 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13480 ill_t *, ill, ipif_t *, ipif); 13481 13482 /* 13483 * Skip any loopback interface (null wq). 13484 * If this is the last logical interface on the ill 13485 * have ill_dl_down tell the driver we are gone (unbind) 13486 * Note that lun 0 can ipif_down even though 13487 * there are other logical units that are up. 13488 * This occurs e.g. when we change a "significant" IFF_ flag. 13489 */ 13490 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13491 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13492 ill->ill_dl_up) { 13493 ill_dl_down(ill); 13494 } 13495 if (!ipif->ipif_isv6) 13496 err = ipif_arp_down(ipif); 13497 13498 ill->ill_logical_down = 0; 13499 13500 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13501 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13502 return (err); 13503 } 13504 13505 /* 13506 * Bring interface logically down without bringing the physical interface 13507 * down e.g. when the netmask is changed. This avoids long lasting link 13508 * negotiations between an ethernet interface and a certain switches. 13509 */ 13510 static int 13511 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13512 { 13513 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13514 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13515 13516 /* 13517 * The ill_logical_down flag is a transient flag. It is set here 13518 * and is cleared once the down has completed in ipif_down_tail. 13519 * This flag does not indicate whether the ill stream is in the 13520 * DL_BOUND state with the driver. Instead this flag is used by 13521 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13522 * the driver. The state of the ill stream i.e. whether it is 13523 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13524 */ 13525 ipif->ipif_ill->ill_logical_down = 1; 13526 return (ipif_down(ipif, q, mp)); 13527 } 13528 13529 /* 13530 * Initiate deallocate of an IPIF. Always called as writer. Called by 13531 * ill_delete or ip_sioctl_removeif. 13532 */ 13533 static void 13534 ipif_free(ipif_t *ipif) 13535 { 13536 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13537 13538 ASSERT(IAM_WRITER_IPIF(ipif)); 13539 13540 if (ipif->ipif_recovery_id != 0) 13541 (void) untimeout(ipif->ipif_recovery_id); 13542 ipif->ipif_recovery_id = 0; 13543 13544 /* 13545 * Take down the interface. We can be called either from ill_delete 13546 * or from ip_sioctl_removeif. 13547 */ 13548 (void) ipif_down(ipif, NULL, NULL); 13549 13550 /* 13551 * Now that the interface is down, there's no chance it can still 13552 * become a duplicate. Cancel any timer that may have been set while 13553 * tearing down. 13554 */ 13555 if (ipif->ipif_recovery_id != 0) 13556 (void) untimeout(ipif->ipif_recovery_id); 13557 ipif->ipif_recovery_id = 0; 13558 13559 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13560 /* Remove pointers to this ill in the multicast routing tables */ 13561 reset_mrt_vif_ipif(ipif); 13562 /* If necessary, clear the cached source ipif rotor. */ 13563 if (ipif->ipif_ill->ill_src_ipif == ipif) 13564 ipif->ipif_ill->ill_src_ipif = NULL; 13565 rw_exit(&ipst->ips_ill_g_lock); 13566 } 13567 13568 static void 13569 ipif_free_tail(ipif_t *ipif) 13570 { 13571 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13572 13573 /* 13574 * Need to hold both ill_g_lock and ill_lock while 13575 * inserting or removing an ipif from the linked list 13576 * of ipifs hanging off the ill. 13577 */ 13578 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13579 13580 #ifdef DEBUG 13581 ipif_trace_cleanup(ipif); 13582 #endif 13583 13584 /* Ask SCTP to take it out of it list */ 13585 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13586 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13587 13588 /* Get it out of the ILL interface list. */ 13589 ipif_remove(ipif); 13590 rw_exit(&ipst->ips_ill_g_lock); 13591 13592 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13593 ASSERT(ipif->ipif_recovery_id == 0); 13594 ASSERT(ipif->ipif_ire_local == NULL); 13595 ASSERT(ipif->ipif_ire_if == NULL); 13596 13597 /* Free the memory. */ 13598 mi_free(ipif); 13599 } 13600 13601 /* 13602 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13603 * is zero. 13604 */ 13605 void 13606 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13607 { 13608 char lbuf[LIFNAMSIZ]; 13609 char *name; 13610 size_t name_len; 13611 13612 buf[0] = '\0'; 13613 name = ipif->ipif_ill->ill_name; 13614 name_len = ipif->ipif_ill->ill_name_length; 13615 if (ipif->ipif_id != 0) { 13616 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13617 ipif->ipif_id); 13618 name = lbuf; 13619 name_len = mi_strlen(name) + 1; 13620 } 13621 len -= 1; 13622 buf[len] = '\0'; 13623 len = MIN(len, name_len); 13624 bcopy(name, buf, len); 13625 } 13626 13627 /* 13628 * Sets `buf' to an ill name. 13629 */ 13630 void 13631 ill_get_name(const ill_t *ill, char *buf, int len) 13632 { 13633 char *name; 13634 size_t name_len; 13635 13636 name = ill->ill_name; 13637 name_len = ill->ill_name_length; 13638 len -= 1; 13639 buf[len] = '\0'; 13640 len = MIN(len, name_len); 13641 bcopy(name, buf, len); 13642 } 13643 13644 /* 13645 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13646 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13647 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13648 * (May be called as writer.) 13649 */ 13650 static ipif_t * 13651 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13652 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13653 { 13654 char *cp; 13655 char *endp; 13656 long id; 13657 ill_t *ill; 13658 ipif_t *ipif; 13659 uint_t ire_type; 13660 boolean_t did_alloc = B_FALSE; 13661 char last; 13662 13663 /* 13664 * If the caller wants to us to create the ipif, make sure we have a 13665 * valid zoneid 13666 */ 13667 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13668 13669 if (namelen == 0) { 13670 return (NULL); 13671 } 13672 13673 *exists = B_FALSE; 13674 /* Look for a colon in the name. */ 13675 endp = &name[namelen]; 13676 for (cp = endp; --cp > name; ) { 13677 if (*cp == IPIF_SEPARATOR_CHAR) 13678 break; 13679 } 13680 13681 if (*cp == IPIF_SEPARATOR_CHAR) { 13682 /* 13683 * Reject any non-decimal aliases for logical 13684 * interfaces. Aliases with leading zeroes 13685 * are also rejected as they introduce ambiguity 13686 * in the naming of the interfaces. 13687 * In order to confirm with existing semantics, 13688 * and to not break any programs/script relying 13689 * on that behaviour, if<0>:0 is considered to be 13690 * a valid interface. 13691 * 13692 * If alias has two or more digits and the first 13693 * is zero, fail. 13694 */ 13695 if (&cp[2] < endp && cp[1] == '0') { 13696 return (NULL); 13697 } 13698 } 13699 13700 if (cp <= name) { 13701 cp = endp; 13702 } 13703 last = *cp; 13704 *cp = '\0'; 13705 13706 /* 13707 * Look up the ILL, based on the portion of the name 13708 * before the slash. ill_lookup_on_name returns a held ill. 13709 * Temporary to check whether ill exists already. If so 13710 * ill_lookup_on_name will clear it. 13711 */ 13712 ill = ill_lookup_on_name(name, do_alloc, isv6, 13713 &did_alloc, ipst); 13714 *cp = last; 13715 if (ill == NULL) 13716 return (NULL); 13717 13718 /* Establish the unit number in the name. */ 13719 id = 0; 13720 if (cp < endp && *endp == '\0') { 13721 /* If there was a colon, the unit number follows. */ 13722 cp++; 13723 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13724 ill_refrele(ill); 13725 return (NULL); 13726 } 13727 } 13728 13729 mutex_enter(&ill->ill_lock); 13730 /* Now see if there is an IPIF with this unit number. */ 13731 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13732 if (ipif->ipif_id == id) { 13733 if (zoneid != ALL_ZONES && 13734 zoneid != ipif->ipif_zoneid && 13735 ipif->ipif_zoneid != ALL_ZONES) { 13736 mutex_exit(&ill->ill_lock); 13737 ill_refrele(ill); 13738 return (NULL); 13739 } 13740 if (IPIF_CAN_LOOKUP(ipif)) { 13741 ipif_refhold_locked(ipif); 13742 mutex_exit(&ill->ill_lock); 13743 if (!did_alloc) 13744 *exists = B_TRUE; 13745 /* 13746 * Drop locks before calling ill_refrele 13747 * since it can potentially call into 13748 * ipif_ill_refrele_tail which can end up 13749 * in trying to acquire any lock. 13750 */ 13751 ill_refrele(ill); 13752 return (ipif); 13753 } 13754 } 13755 } 13756 13757 if (!do_alloc) { 13758 mutex_exit(&ill->ill_lock); 13759 ill_refrele(ill); 13760 return (NULL); 13761 } 13762 13763 /* 13764 * If none found, atomically allocate and return a new one. 13765 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13766 * to support "receive only" use of lo0:1 etc. as is still done 13767 * below as an initial guess. 13768 * However, this is now likely to be overriden later in ipif_up_done() 13769 * when we know for sure what address has been configured on the 13770 * interface, since we might have more than one loopback interface 13771 * with a loopback address, e.g. in the case of zones, and all the 13772 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13773 */ 13774 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13775 ire_type = IRE_LOOPBACK; 13776 else 13777 ire_type = IRE_LOCAL; 13778 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13779 if (ipif != NULL) 13780 ipif_refhold_locked(ipif); 13781 mutex_exit(&ill->ill_lock); 13782 ill_refrele(ill); 13783 return (ipif); 13784 } 13785 13786 /* 13787 * Variant of the above that queues the request on the ipsq when 13788 * IPIF_CHANGING is set. 13789 */ 13790 static ipif_t * 13791 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13792 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13793 ip_stack_t *ipst) 13794 { 13795 char *cp; 13796 char *endp; 13797 long id; 13798 ill_t *ill; 13799 ipif_t *ipif; 13800 boolean_t did_alloc = B_FALSE; 13801 ipsq_t *ipsq; 13802 13803 if (error != NULL) 13804 *error = 0; 13805 13806 if (namelen == 0) { 13807 if (error != NULL) 13808 *error = ENXIO; 13809 return (NULL); 13810 } 13811 13812 /* Look for a colon in the name. */ 13813 endp = &name[namelen]; 13814 for (cp = endp; --cp > name; ) { 13815 if (*cp == IPIF_SEPARATOR_CHAR) 13816 break; 13817 } 13818 13819 if (*cp == IPIF_SEPARATOR_CHAR) { 13820 /* 13821 * Reject any non-decimal aliases for logical 13822 * interfaces. Aliases with leading zeroes 13823 * are also rejected as they introduce ambiguity 13824 * in the naming of the interfaces. 13825 * In order to confirm with existing semantics, 13826 * and to not break any programs/script relying 13827 * on that behaviour, if<0>:0 is considered to be 13828 * a valid interface. 13829 * 13830 * If alias has two or more digits and the first 13831 * is zero, fail. 13832 */ 13833 if (&cp[2] < endp && cp[1] == '0') { 13834 if (error != NULL) 13835 *error = EINVAL; 13836 return (NULL); 13837 } 13838 } 13839 13840 if (cp <= name) { 13841 cp = endp; 13842 } else { 13843 *cp = '\0'; 13844 } 13845 13846 /* 13847 * Look up the ILL, based on the portion of the name 13848 * before the slash. ill_lookup_on_name returns a held ill. 13849 * Temporary to check whether ill exists already. If so 13850 * ill_lookup_on_name will clear it. 13851 */ 13852 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13853 if (cp != endp) 13854 *cp = IPIF_SEPARATOR_CHAR; 13855 if (ill == NULL) 13856 return (NULL); 13857 13858 /* Establish the unit number in the name. */ 13859 id = 0; 13860 if (cp < endp && *endp == '\0') { 13861 /* If there was a colon, the unit number follows. */ 13862 cp++; 13863 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13864 ill_refrele(ill); 13865 if (error != NULL) 13866 *error = ENXIO; 13867 return (NULL); 13868 } 13869 } 13870 13871 GRAB_CONN_LOCK(q); 13872 mutex_enter(&ill->ill_lock); 13873 /* Now see if there is an IPIF with this unit number. */ 13874 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13875 if (ipif->ipif_id == id) { 13876 if (zoneid != ALL_ZONES && 13877 zoneid != ipif->ipif_zoneid && 13878 ipif->ipif_zoneid != ALL_ZONES) { 13879 mutex_exit(&ill->ill_lock); 13880 RELEASE_CONN_LOCK(q); 13881 ill_refrele(ill); 13882 if (error != NULL) 13883 *error = ENXIO; 13884 return (NULL); 13885 } 13886 13887 if (!(IPIF_IS_CHANGING(ipif) || 13888 IPIF_IS_CONDEMNED(ipif)) || 13889 IAM_WRITER_IPIF(ipif)) { 13890 ipif_refhold_locked(ipif); 13891 mutex_exit(&ill->ill_lock); 13892 /* 13893 * Drop locks before calling ill_refrele 13894 * since it can potentially call into 13895 * ipif_ill_refrele_tail which can end up 13896 * in trying to acquire any lock. 13897 */ 13898 RELEASE_CONN_LOCK(q); 13899 ill_refrele(ill); 13900 return (ipif); 13901 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13902 ipsq = ill->ill_phyint->phyint_ipsq; 13903 mutex_enter(&ipsq->ipsq_lock); 13904 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13905 mutex_exit(&ill->ill_lock); 13906 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13907 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13908 mutex_exit(&ipsq->ipsq_lock); 13909 RELEASE_CONN_LOCK(q); 13910 ill_refrele(ill); 13911 if (error != NULL) 13912 *error = EINPROGRESS; 13913 return (NULL); 13914 } 13915 } 13916 } 13917 RELEASE_CONN_LOCK(q); 13918 mutex_exit(&ill->ill_lock); 13919 ill_refrele(ill); 13920 if (error != NULL) 13921 *error = ENXIO; 13922 return (NULL); 13923 } 13924 13925 /* 13926 * This routine is called whenever a new address comes up on an ipif. If 13927 * we are configured to respond to address mask requests, then we are supposed 13928 * to broadcast an address mask reply at this time. This routine is also 13929 * called if we are already up, but a netmask change is made. This is legal 13930 * but might not make the system manager very popular. (May be called 13931 * as writer.) 13932 */ 13933 void 13934 ipif_mask_reply(ipif_t *ipif) 13935 { 13936 icmph_t *icmph; 13937 ipha_t *ipha; 13938 mblk_t *mp; 13939 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13940 ip_xmit_attr_t ixas; 13941 13942 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13943 13944 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13945 return; 13946 13947 /* ICMP mask reply is IPv4 only */ 13948 ASSERT(!ipif->ipif_isv6); 13949 /* ICMP mask reply is not for a loopback interface */ 13950 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13951 13952 if (ipif->ipif_lcl_addr == INADDR_ANY) 13953 return; 13954 13955 mp = allocb(REPLY_LEN, BPRI_HI); 13956 if (mp == NULL) 13957 return; 13958 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13959 13960 ipha = (ipha_t *)mp->b_rptr; 13961 bzero(ipha, REPLY_LEN); 13962 *ipha = icmp_ipha; 13963 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13964 ipha->ipha_src = ipif->ipif_lcl_addr; 13965 ipha->ipha_dst = ipif->ipif_brd_addr; 13966 ipha->ipha_length = htons(REPLY_LEN); 13967 ipha->ipha_ident = 0; 13968 13969 icmph = (icmph_t *)&ipha[1]; 13970 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13971 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13972 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13973 13974 bzero(&ixas, sizeof (ixas)); 13975 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13976 ixas.ixa_zoneid = ALL_ZONES; 13977 ixas.ixa_ifindex = 0; 13978 ixas.ixa_ipst = ipst; 13979 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13980 (void) ip_output_simple(mp, &ixas); 13981 ixa_cleanup(&ixas); 13982 #undef REPLY_LEN 13983 } 13984 13985 /* 13986 * Join the ipif specific multicast groups. 13987 * Must be called after a mapping has been set up in the resolver. (Always 13988 * called as writer.) 13989 */ 13990 void 13991 ipif_multicast_up(ipif_t *ipif) 13992 { 13993 int err; 13994 ill_t *ill; 13995 ilm_t *ilm; 13996 13997 ASSERT(IAM_WRITER_IPIF(ipif)); 13998 13999 ill = ipif->ipif_ill; 14000 14001 ip1dbg(("ipif_multicast_up\n")); 14002 if (!(ill->ill_flags & ILLF_MULTICAST) || 14003 ipif->ipif_allhosts_ilm != NULL) 14004 return; 14005 14006 if (ipif->ipif_isv6) { 14007 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14008 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14009 14010 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14011 14012 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14013 return; 14014 14015 ip1dbg(("ipif_multicast_up - addmulti\n")); 14016 14017 /* 14018 * Join the all hosts multicast address. We skip this for 14019 * underlying IPMP interfaces since they should be invisible. 14020 */ 14021 if (!IS_UNDER_IPMP(ill)) { 14022 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14023 &err); 14024 if (ilm == NULL) { 14025 ASSERT(err != 0); 14026 ip0dbg(("ipif_multicast_up: " 14027 "all_hosts_mcast failed %d\n", err)); 14028 return; 14029 } 14030 ipif->ipif_allhosts_ilm = ilm; 14031 } 14032 14033 /* 14034 * Enable multicast for the solicited node multicast address. 14035 * If IPMP we need to put the membership on the upper ill. 14036 */ 14037 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14038 ill_t *mcast_ill = NULL; 14039 boolean_t need_refrele; 14040 14041 if (IS_UNDER_IPMP(ill) && 14042 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14043 need_refrele = B_TRUE; 14044 } else { 14045 mcast_ill = ill; 14046 need_refrele = B_FALSE; 14047 } 14048 14049 ilm = ip_addmulti(&v6solmc, mcast_ill, 14050 ipif->ipif_zoneid, &err); 14051 if (need_refrele) 14052 ill_refrele(mcast_ill); 14053 14054 if (ilm == NULL) { 14055 ASSERT(err != 0); 14056 ip0dbg(("ipif_multicast_up: solicited MC" 14057 " failed %d\n", err)); 14058 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14059 ipif->ipif_allhosts_ilm = NULL; 14060 (void) ip_delmulti(ilm); 14061 } 14062 return; 14063 } 14064 ipif->ipif_solmulti_ilm = ilm; 14065 } 14066 } else { 14067 in6_addr_t v6group; 14068 14069 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14070 return; 14071 14072 /* Join the all hosts multicast address */ 14073 ip1dbg(("ipif_multicast_up - addmulti\n")); 14074 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14075 14076 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14077 if (ilm == NULL) { 14078 ASSERT(err != 0); 14079 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14080 return; 14081 } 14082 ipif->ipif_allhosts_ilm = ilm; 14083 } 14084 } 14085 14086 /* 14087 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14088 * (ilms from explicit memberships are handled in conn_update_ill.) 14089 */ 14090 void 14091 ipif_multicast_down(ipif_t *ipif) 14092 { 14093 ASSERT(IAM_WRITER_IPIF(ipif)); 14094 14095 ip1dbg(("ipif_multicast_down\n")); 14096 14097 if (ipif->ipif_allhosts_ilm != NULL) { 14098 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14099 ipif->ipif_allhosts_ilm = NULL; 14100 } 14101 if (ipif->ipif_solmulti_ilm != NULL) { 14102 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14103 ipif->ipif_solmulti_ilm = NULL; 14104 } 14105 } 14106 14107 /* 14108 * Used when an interface comes up to recreate any extra routes on this 14109 * interface. 14110 */ 14111 int 14112 ill_recover_saved_ire(ill_t *ill) 14113 { 14114 mblk_t *mp; 14115 ip_stack_t *ipst = ill->ill_ipst; 14116 14117 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14118 14119 mutex_enter(&ill->ill_saved_ire_lock); 14120 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14121 ire_t *ire, *nire; 14122 ifrt_t *ifrt; 14123 14124 ifrt = (ifrt_t *)mp->b_rptr; 14125 /* 14126 * Create a copy of the IRE with the saved address and netmask. 14127 */ 14128 if (ill->ill_isv6) { 14129 ire = ire_create_v6( 14130 &ifrt->ifrt_v6addr, 14131 &ifrt->ifrt_v6mask, 14132 &ifrt->ifrt_v6gateway_addr, 14133 ifrt->ifrt_type, 14134 ill, 14135 ifrt->ifrt_zoneid, 14136 ifrt->ifrt_flags, 14137 NULL, 14138 ipst); 14139 } else { 14140 ire = ire_create( 14141 (uint8_t *)&ifrt->ifrt_addr, 14142 (uint8_t *)&ifrt->ifrt_mask, 14143 (uint8_t *)&ifrt->ifrt_gateway_addr, 14144 ifrt->ifrt_type, 14145 ill, 14146 ifrt->ifrt_zoneid, 14147 ifrt->ifrt_flags, 14148 NULL, 14149 ipst); 14150 } 14151 if (ire == NULL) { 14152 mutex_exit(&ill->ill_saved_ire_lock); 14153 return (ENOMEM); 14154 } 14155 14156 if (ifrt->ifrt_flags & RTF_SETSRC) { 14157 if (ill->ill_isv6) { 14158 ire->ire_setsrc_addr_v6 = 14159 ifrt->ifrt_v6setsrc_addr; 14160 } else { 14161 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14162 } 14163 } 14164 14165 /* 14166 * Some software (for example, GateD and Sun Cluster) attempts 14167 * to create (what amount to) IRE_PREFIX routes with the 14168 * loopback address as the gateway. This is primarily done to 14169 * set up prefixes with the RTF_REJECT flag set (for example, 14170 * when generating aggregate routes.) 14171 * 14172 * If the IRE type (as defined by ill->ill_net_type) is 14173 * IRE_LOOPBACK, then we map the request into a 14174 * IRE_IF_NORESOLVER. 14175 */ 14176 if (ill->ill_net_type == IRE_LOOPBACK) 14177 ire->ire_type = IRE_IF_NORESOLVER; 14178 14179 /* 14180 * ire held by ire_add, will be refreled' towards the 14181 * the end of ipif_up_done 14182 */ 14183 nire = ire_add(ire); 14184 /* 14185 * Check if it was a duplicate entry. This handles 14186 * the case of two racing route adds for the same route 14187 */ 14188 if (nire == NULL) { 14189 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14190 } else if (nire != ire) { 14191 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14192 (void *)nire)); 14193 ire_delete(nire); 14194 } else { 14195 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14196 (void *)nire)); 14197 } 14198 if (nire != NULL) 14199 ire_refrele(nire); 14200 } 14201 mutex_exit(&ill->ill_saved_ire_lock); 14202 return (0); 14203 } 14204 14205 /* 14206 * Used to set the netmask and broadcast address to default values when the 14207 * interface is brought up. (Always called as writer.) 14208 */ 14209 static void 14210 ipif_set_default(ipif_t *ipif) 14211 { 14212 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14213 14214 if (!ipif->ipif_isv6) { 14215 /* 14216 * Interface holds an IPv4 address. Default 14217 * mask is the natural netmask. 14218 */ 14219 if (!ipif->ipif_net_mask) { 14220 ipaddr_t v4mask; 14221 14222 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14223 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14224 } 14225 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14226 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14227 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14228 } else { 14229 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14230 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14231 } 14232 /* 14233 * NOTE: SunOS 4.X does this even if the broadcast address 14234 * has been already set thus we do the same here. 14235 */ 14236 if (ipif->ipif_flags & IPIF_BROADCAST) { 14237 ipaddr_t v4addr; 14238 14239 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14240 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14241 } 14242 } else { 14243 /* 14244 * Interface holds an IPv6-only address. Default 14245 * mask is all-ones. 14246 */ 14247 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14248 ipif->ipif_v6net_mask = ipv6_all_ones; 14249 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14250 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14251 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14252 } else { 14253 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14254 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14255 } 14256 } 14257 } 14258 14259 /* 14260 * Return 0 if this address can be used as local address without causing 14261 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14262 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14263 * Note that the same IPv6 link-local address is allowed as long as the ills 14264 * are not on the same link. 14265 */ 14266 int 14267 ip_addr_availability_check(ipif_t *new_ipif) 14268 { 14269 in6_addr_t our_v6addr; 14270 ill_t *ill; 14271 ipif_t *ipif; 14272 ill_walk_context_t ctx; 14273 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14274 14275 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14276 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14277 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14278 14279 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14280 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14281 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14282 return (0); 14283 14284 our_v6addr = new_ipif->ipif_v6lcl_addr; 14285 14286 if (new_ipif->ipif_isv6) 14287 ill = ILL_START_WALK_V6(&ctx, ipst); 14288 else 14289 ill = ILL_START_WALK_V4(&ctx, ipst); 14290 14291 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14292 for (ipif = ill->ill_ipif; ipif != NULL; 14293 ipif = ipif->ipif_next) { 14294 if ((ipif == new_ipif) || 14295 !(ipif->ipif_flags & IPIF_UP) || 14296 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14297 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14298 &our_v6addr)) 14299 continue; 14300 14301 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14302 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14303 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14304 ipif->ipif_flags |= IPIF_UNNUMBERED; 14305 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14306 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14307 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14308 continue; 14309 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14310 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14311 continue; 14312 else if (new_ipif->ipif_ill == ill) 14313 return (EADDRINUSE); 14314 else 14315 return (EADDRNOTAVAIL); 14316 } 14317 } 14318 14319 return (0); 14320 } 14321 14322 /* 14323 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14324 * IREs for the ipif. 14325 * When the routine returns EINPROGRESS then mp has been consumed and 14326 * the ioctl will be acked from ip_rput_dlpi. 14327 */ 14328 int 14329 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14330 { 14331 ill_t *ill = ipif->ipif_ill; 14332 boolean_t isv6 = ipif->ipif_isv6; 14333 int err = 0; 14334 boolean_t success; 14335 uint_t ipif_orig_id; 14336 ip_stack_t *ipst = ill->ill_ipst; 14337 14338 ASSERT(IAM_WRITER_IPIF(ipif)); 14339 14340 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14341 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14342 ill_t *, ill, ipif_t *, ipif); 14343 14344 /* Shouldn't get here if it is already up. */ 14345 if (ipif->ipif_flags & IPIF_UP) 14346 return (EALREADY); 14347 14348 /* 14349 * If this is a request to bring up a data address on an interface 14350 * under IPMP, then move the address to its IPMP meta-interface and 14351 * try to bring it up. One complication is that the zeroth ipif for 14352 * an ill is special, in that every ill always has one, and that code 14353 * throughout IP deferences ill->ill_ipif without holding any locks. 14354 */ 14355 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14356 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14357 ipif_t *stubipif = NULL, *moveipif = NULL; 14358 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14359 14360 /* 14361 * The ipif being brought up should be quiesced. If it's not, 14362 * something has gone amiss and we need to bail out. (If it's 14363 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14364 */ 14365 mutex_enter(&ill->ill_lock); 14366 if (!ipif_is_quiescent(ipif)) { 14367 mutex_exit(&ill->ill_lock); 14368 return (EINVAL); 14369 } 14370 mutex_exit(&ill->ill_lock); 14371 14372 /* 14373 * If we're going to need to allocate ipifs, do it prior 14374 * to starting the move (and grabbing locks). 14375 */ 14376 if (ipif->ipif_id == 0) { 14377 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14378 B_FALSE, &err)) == NULL) { 14379 return (err); 14380 } 14381 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14382 B_FALSE, &err)) == NULL) { 14383 mi_free(moveipif); 14384 return (err); 14385 } 14386 } 14387 14388 /* 14389 * Grab or transfer the ipif to move. During the move, keep 14390 * ill_g_lock held to prevent any ill walker threads from 14391 * seeing things in an inconsistent state. 14392 */ 14393 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14394 if (ipif->ipif_id != 0) { 14395 ipif_remove(ipif); 14396 } else { 14397 ipif_transfer(ipif, moveipif, stubipif); 14398 ipif = moveipif; 14399 } 14400 14401 /* 14402 * Place the ipif on the IPMP ill. If the zeroth ipif on 14403 * the IPMP ill is a stub (0.0.0.0 down address) then we 14404 * replace that one. Otherwise, pick the next available slot. 14405 */ 14406 ipif->ipif_ill = ipmp_ill; 14407 ipif_orig_id = ipif->ipif_id; 14408 14409 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14410 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14411 ipif = ipmp_ill->ill_ipif; 14412 } else { 14413 ipif->ipif_id = -1; 14414 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14415 /* 14416 * No more available ipif_id's -- put it back 14417 * on the original ill and fail the operation. 14418 * Since we're writer on the ill, we can be 14419 * sure our old slot is still available. 14420 */ 14421 ipif->ipif_id = ipif_orig_id; 14422 ipif->ipif_ill = ill; 14423 if (ipif_orig_id == 0) { 14424 ipif_transfer(ipif, ill->ill_ipif, 14425 NULL); 14426 } else { 14427 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14428 } 14429 rw_exit(&ipst->ips_ill_g_lock); 14430 return (err); 14431 } 14432 } 14433 rw_exit(&ipst->ips_ill_g_lock); 14434 14435 /* 14436 * Tell SCTP that the ipif has moved. Note that even if we 14437 * had to allocate a new ipif, the original sequence id was 14438 * preserved and therefore SCTP won't know. 14439 */ 14440 sctp_move_ipif(ipif, ill, ipmp_ill); 14441 14442 /* 14443 * If the ipif being brought up was on slot zero, then we 14444 * first need to bring up the placeholder we stuck there. In 14445 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14446 * call to ipif_up() itself, if we successfully bring up the 14447 * placeholder, we'll check ill_move_ipif and bring it up too. 14448 */ 14449 if (ipif_orig_id == 0) { 14450 ASSERT(ill->ill_move_ipif == NULL); 14451 ill->ill_move_ipif = ipif; 14452 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14453 ASSERT(ill->ill_move_ipif == NULL); 14454 if (err != EINPROGRESS) 14455 ill->ill_move_ipif = NULL; 14456 return (err); 14457 } 14458 14459 /* 14460 * Bring it up on the IPMP ill. 14461 */ 14462 return (ipif_up(ipif, q, mp)); 14463 } 14464 14465 /* Skip arp/ndp for any loopback interface. */ 14466 if (ill->ill_wq != NULL) { 14467 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14468 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14469 14470 if (!ill->ill_dl_up) { 14471 /* 14472 * ill_dl_up is not yet set. i.e. we are yet to 14473 * DL_BIND with the driver and this is the first 14474 * logical interface on the ill to become "up". 14475 * Tell the driver to get going (via DL_BIND_REQ). 14476 * Note that changing "significant" IFF_ flags 14477 * address/netmask etc cause a down/up dance, but 14478 * does not cause an unbind (DL_UNBIND) with the driver 14479 */ 14480 return (ill_dl_up(ill, ipif, mp, q)); 14481 } 14482 14483 /* 14484 * ipif_resolver_up may end up needeing to bind/attach 14485 * the ARP stream, which in turn necessitates a 14486 * DLPI message exchange with the driver. ioctls are 14487 * serialized and so we cannot send more than one 14488 * interface up message at a time. If ipif_resolver_up 14489 * does need to wait for the DLPI handshake for the ARP stream, 14490 * we get EINPROGRESS and we will complete in arp_bringup_done. 14491 */ 14492 14493 ASSERT(connp != NULL || !CONN_Q(q)); 14494 if (connp != NULL) 14495 mutex_enter(&connp->conn_lock); 14496 mutex_enter(&ill->ill_lock); 14497 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14498 mutex_exit(&ill->ill_lock); 14499 if (connp != NULL) 14500 mutex_exit(&connp->conn_lock); 14501 if (!success) 14502 return (EINTR); 14503 14504 /* 14505 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14506 * complete when ipif_ndp_up returns. 14507 */ 14508 err = ipif_resolver_up(ipif, Res_act_initial); 14509 if (err == EINPROGRESS) { 14510 /* We will complete it in arp_bringup_done() */ 14511 return (err); 14512 } 14513 14514 if (isv6 && err == 0) 14515 err = ipif_ndp_up(ipif, B_TRUE); 14516 14517 ASSERT(err != EINPROGRESS); 14518 mp = ipsq_pending_mp_get(ipsq, &connp); 14519 ASSERT(mp != NULL); 14520 if (err != 0) 14521 return (err); 14522 } else { 14523 /* 14524 * Interfaces without underlying hardware don't do duplicate 14525 * address detection. 14526 */ 14527 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14528 ipif->ipif_addr_ready = 1; 14529 err = ill_add_ires(ill); 14530 /* allocation failure? */ 14531 if (err != 0) 14532 return (err); 14533 } 14534 14535 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14536 if (err == 0 && ill->ill_move_ipif != NULL) { 14537 ipif = ill->ill_move_ipif; 14538 ill->ill_move_ipif = NULL; 14539 return (ipif_up(ipif, q, mp)); 14540 } 14541 return (err); 14542 } 14543 14544 /* 14545 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14546 * The identical set of IREs need to be removed in ill_delete_ires(). 14547 */ 14548 int 14549 ill_add_ires(ill_t *ill) 14550 { 14551 ire_t *ire; 14552 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14553 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14554 14555 if (ill->ill_ire_multicast != NULL) 14556 return (0); 14557 14558 /* 14559 * provide some dummy ire_addr for creating the ire. 14560 */ 14561 if (ill->ill_isv6) { 14562 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14563 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14564 } else { 14565 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14566 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14567 } 14568 if (ire == NULL) 14569 return (ENOMEM); 14570 14571 ill->ill_ire_multicast = ire; 14572 return (0); 14573 } 14574 14575 void 14576 ill_delete_ires(ill_t *ill) 14577 { 14578 if (ill->ill_ire_multicast != NULL) { 14579 /* 14580 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14581 * which was taken without any th_tracing enabled. 14582 * We also mark it as condemned (note that it was never added) 14583 * so that caching conn's can move off of it. 14584 */ 14585 ire_make_condemned(ill->ill_ire_multicast); 14586 ire_refrele_notr(ill->ill_ire_multicast); 14587 ill->ill_ire_multicast = NULL; 14588 } 14589 } 14590 14591 /* 14592 * Perform a bind for the physical device. 14593 * When the routine returns EINPROGRESS then mp has been consumed and 14594 * the ioctl will be acked from ip_rput_dlpi. 14595 * Allocate an unbind message and save it until ipif_down. 14596 */ 14597 static int 14598 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14599 { 14600 mblk_t *bind_mp = NULL; 14601 mblk_t *unbind_mp = NULL; 14602 conn_t *connp; 14603 boolean_t success; 14604 int err; 14605 14606 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14607 14608 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14609 ASSERT(IAM_WRITER_ILL(ill)); 14610 ASSERT(mp != NULL); 14611 14612 /* 14613 * Make sure we have an IRE_MULTICAST in case we immediately 14614 * start receiving packets. 14615 */ 14616 err = ill_add_ires(ill); 14617 if (err != 0) 14618 goto bad; 14619 14620 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14621 DL_BIND_REQ); 14622 if (bind_mp == NULL) 14623 goto bad; 14624 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14625 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14626 14627 /* 14628 * ill_unbind_mp would be non-null if the following sequence had 14629 * happened: 14630 * - send DL_BIND_REQ to driver, wait for response 14631 * - multiple ioctls that need to bring the ipif up are encountered, 14632 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14633 * These ioctls will then be enqueued on the ipsq 14634 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14635 * At this point, the pending ioctls in the ipsq will be drained, and 14636 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14637 * a non-null ill->ill_unbind_mp 14638 */ 14639 if (ill->ill_unbind_mp == NULL) { 14640 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14641 DL_UNBIND_REQ); 14642 if (unbind_mp == NULL) 14643 goto bad; 14644 } 14645 /* 14646 * Record state needed to complete this operation when the 14647 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14648 */ 14649 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14650 ASSERT(connp != NULL || !CONN_Q(q)); 14651 GRAB_CONN_LOCK(q); 14652 mutex_enter(&ipif->ipif_ill->ill_lock); 14653 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14654 mutex_exit(&ipif->ipif_ill->ill_lock); 14655 RELEASE_CONN_LOCK(q); 14656 if (!success) 14657 goto bad; 14658 14659 /* 14660 * Save the unbind message for ill_dl_down(); it will be consumed when 14661 * the interface goes down. 14662 */ 14663 if (ill->ill_unbind_mp == NULL) 14664 ill->ill_unbind_mp = unbind_mp; 14665 14666 ill_dlpi_send(ill, bind_mp); 14667 /* Send down link-layer capabilities probe if not already done. */ 14668 ill_capability_probe(ill); 14669 14670 /* 14671 * Sysid used to rely on the fact that netboots set domainname 14672 * and the like. Now that miniroot boots aren't strictly netboots 14673 * and miniroot network configuration is driven from userland 14674 * these things still need to be set. This situation can be detected 14675 * by comparing the interface being configured here to the one 14676 * dhcifname was set to reference by the boot loader. Once sysid is 14677 * converted to use dhcp_ipc_getinfo() this call can go away. 14678 */ 14679 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14680 (strcmp(ill->ill_name, dhcifname) == 0) && 14681 (strlen(srpc_domain) == 0)) { 14682 if (dhcpinit() != 0) 14683 cmn_err(CE_WARN, "no cached dhcp response"); 14684 } 14685 14686 /* 14687 * This operation will complete in ip_rput_dlpi with either 14688 * a DL_BIND_ACK or DL_ERROR_ACK. 14689 */ 14690 return (EINPROGRESS); 14691 bad: 14692 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14693 14694 freemsg(bind_mp); 14695 freemsg(unbind_mp); 14696 return (ENOMEM); 14697 } 14698 14699 /* Add room for tcp+ip headers */ 14700 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14701 14702 /* 14703 * DLPI and ARP is up. 14704 * Create all the IREs associated with an interface. Bring up multicast. 14705 * Set the interface flag and finish other initialization 14706 * that potentially had to be deferred to after DL_BIND_ACK. 14707 */ 14708 int 14709 ipif_up_done(ipif_t *ipif) 14710 { 14711 ill_t *ill = ipif->ipif_ill; 14712 int err = 0; 14713 boolean_t loopback = B_FALSE; 14714 boolean_t update_src_selection = B_TRUE; 14715 ipif_t *tmp_ipif; 14716 14717 ip1dbg(("ipif_up_done(%s:%u)\n", 14718 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14719 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14720 ill_t *, ill, ipif_t *, ipif); 14721 14722 /* Check if this is a loopback interface */ 14723 if (ipif->ipif_ill->ill_wq == NULL) 14724 loopback = B_TRUE; 14725 14726 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14727 14728 /* 14729 * If all other interfaces for this ill are down or DEPRECATED, 14730 * or otherwise unsuitable for source address selection, 14731 * reset the src generation numbers to make sure source 14732 * address selection gets to take this new ipif into account. 14733 * No need to hold ill_lock while traversing the ipif list since 14734 * we are writer 14735 */ 14736 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14737 tmp_ipif = tmp_ipif->ipif_next) { 14738 if (((tmp_ipif->ipif_flags & 14739 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14740 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14741 (tmp_ipif == ipif)) 14742 continue; 14743 /* first useable pre-existing interface */ 14744 update_src_selection = B_FALSE; 14745 break; 14746 } 14747 if (update_src_selection) 14748 ip_update_source_selection(ill->ill_ipst); 14749 14750 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14751 nce_t *loop_nce = NULL; 14752 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14753 14754 /* 14755 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14756 * ipif_lookup_on_name(), but in the case of zones we can have 14757 * several loopback addresses on lo0. So all the interfaces with 14758 * loopback addresses need to be marked IRE_LOOPBACK. 14759 */ 14760 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14761 htonl(INADDR_LOOPBACK)) 14762 ipif->ipif_ire_type = IRE_LOOPBACK; 14763 else 14764 ipif->ipif_ire_type = IRE_LOCAL; 14765 if (ill->ill_net_type != IRE_LOOPBACK) 14766 flags |= NCE_F_PUBLISH; 14767 14768 /* add unicast nce for the local addr */ 14769 err = nce_lookup_then_add_v4(ill, NULL, 14770 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14771 ND_REACHABLE, &loop_nce); 14772 /* A shared-IP zone sees EEXIST for lo0:N */ 14773 if (err == 0 || err == EEXIST) { 14774 ipif->ipif_added_nce = 1; 14775 loop_nce->nce_ipif_cnt++; 14776 nce_refrele(loop_nce); 14777 err = 0; 14778 } else { 14779 ASSERT(loop_nce == NULL); 14780 return (err); 14781 } 14782 } 14783 14784 /* Create all the IREs associated with this interface */ 14785 err = ipif_add_ires_v4(ipif, loopback); 14786 if (err != 0) { 14787 /* 14788 * see comments about return value from 14789 * ip_addr_availability_check() in ipif_add_ires_v4(). 14790 */ 14791 if (err != EADDRINUSE) { 14792 (void) ipif_arp_down(ipif); 14793 } else { 14794 /* 14795 * Make IPMP aware of the deleted ipif so that 14796 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14797 * can be completed. Note that we do not want to 14798 * destroy the nce that was created on the ipmp_ill 14799 * for the active copy of the duplicate address in 14800 * use. 14801 */ 14802 if (IS_IPMP(ill)) 14803 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14804 err = EADDRNOTAVAIL; 14805 } 14806 return (err); 14807 } 14808 14809 if (ill->ill_ipif_up_count == 1 && !loopback) { 14810 /* Recover any additional IREs entries for this ill */ 14811 (void) ill_recover_saved_ire(ill); 14812 } 14813 14814 if (ill->ill_need_recover_multicast) { 14815 /* 14816 * Need to recover all multicast memberships in the driver. 14817 * This had to be deferred until we had attached. The same 14818 * code exists in ipif_up_done_v6() to recover IPv6 14819 * memberships. 14820 * 14821 * Note that it would be preferable to unconditionally do the 14822 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14823 * that since ill_join_allmulti() depends on ill_dl_up being 14824 * set, and it is not set until we receive a DL_BIND_ACK after 14825 * having called ill_dl_up(). 14826 */ 14827 ill_recover_multicast(ill); 14828 } 14829 14830 if (ill->ill_ipif_up_count == 1) { 14831 /* 14832 * Since the interface is now up, it may now be active. 14833 */ 14834 if (IS_UNDER_IPMP(ill)) 14835 ipmp_ill_refresh_active(ill); 14836 14837 /* 14838 * If this is an IPMP interface, we may now be able to 14839 * establish ARP entries. 14840 */ 14841 if (IS_IPMP(ill)) 14842 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14843 } 14844 14845 /* Join the allhosts multicast address */ 14846 ipif_multicast_up(ipif); 14847 14848 if (!loopback && !update_src_selection && 14849 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14850 ip_update_source_selection(ill->ill_ipst); 14851 14852 if (!loopback && ipif->ipif_addr_ready) { 14853 /* Broadcast an address mask reply. */ 14854 ipif_mask_reply(ipif); 14855 } 14856 /* Perhaps ilgs should use this ill */ 14857 update_conn_ill(NULL, ill->ill_ipst); 14858 14859 /* 14860 * This had to be deferred until we had bound. Tell routing sockets and 14861 * others that this interface is up if it looks like the address has 14862 * been validated. Otherwise, if it isn't ready yet, wait for 14863 * duplicate address detection to do its thing. 14864 */ 14865 if (ipif->ipif_addr_ready) 14866 ipif_up_notify(ipif); 14867 return (0); 14868 } 14869 14870 /* 14871 * Add the IREs associated with the ipif. 14872 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14873 */ 14874 static int 14875 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14876 { 14877 ill_t *ill = ipif->ipif_ill; 14878 ip_stack_t *ipst = ill->ill_ipst; 14879 ire_t *ire_array[20]; 14880 ire_t **irep = ire_array; 14881 ire_t **irep1; 14882 ipaddr_t net_mask = 0; 14883 ipaddr_t subnet_mask, route_mask; 14884 int err; 14885 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14886 ire_t *ire_if = NULL; 14887 uchar_t *gw; 14888 14889 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14890 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14891 /* 14892 * If we're on a labeled system then make sure that zone- 14893 * private addresses have proper remote host database entries. 14894 */ 14895 if (is_system_labeled() && 14896 ipif->ipif_ire_type != IRE_LOOPBACK && 14897 !tsol_check_interface_address(ipif)) 14898 return (EINVAL); 14899 14900 /* Register the source address for __sin6_src_id */ 14901 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14902 ipif->ipif_zoneid, ipst); 14903 if (err != 0) { 14904 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14905 return (err); 14906 } 14907 14908 if (loopback) 14909 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14910 else 14911 gw = NULL; 14912 14913 /* If the interface address is set, create the local IRE. */ 14914 ire_local = ire_create( 14915 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14916 (uchar_t *)&ip_g_all_ones, /* mask */ 14917 gw, /* gateway */ 14918 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14919 ipif->ipif_ill, 14920 ipif->ipif_zoneid, 14921 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14922 RTF_PRIVATE : 0) | RTF_KERNEL, 14923 NULL, 14924 ipst); 14925 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14926 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14927 ipif->ipif_ire_type, 14928 ntohl(ipif->ipif_lcl_addr))); 14929 if (ire_local == NULL) { 14930 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14931 err = ENOMEM; 14932 goto bad; 14933 } 14934 } else { 14935 ip1dbg(( 14936 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14937 ipif->ipif_ire_type, 14938 ntohl(ipif->ipif_lcl_addr), 14939 (uint_t)ipif->ipif_flags)); 14940 } 14941 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14942 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14943 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14944 } else { 14945 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14946 } 14947 14948 subnet_mask = ipif->ipif_net_mask; 14949 14950 /* 14951 * If mask was not specified, use natural netmask of 14952 * interface address. Also, store this mask back into the 14953 * ipif struct. 14954 */ 14955 if (subnet_mask == 0) { 14956 subnet_mask = net_mask; 14957 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14958 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14959 ipif->ipif_v6subnet); 14960 } 14961 14962 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14963 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14964 ipif->ipif_subnet != INADDR_ANY) { 14965 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14966 14967 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14968 route_mask = IP_HOST_MASK; 14969 } else { 14970 route_mask = subnet_mask; 14971 } 14972 14973 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14974 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14975 (void *)ipif, (void *)ill, ill->ill_net_type, 14976 ntohl(ipif->ipif_subnet))); 14977 ire_if = ire_create( 14978 (uchar_t *)&ipif->ipif_subnet, 14979 (uchar_t *)&route_mask, 14980 (uchar_t *)&ipif->ipif_lcl_addr, 14981 ill->ill_net_type, 14982 ill, 14983 ipif->ipif_zoneid, 14984 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14985 RTF_PRIVATE: 0) | RTF_KERNEL, 14986 NULL, 14987 ipst); 14988 if (ire_if == NULL) { 14989 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14990 err = ENOMEM; 14991 goto bad; 14992 } 14993 } 14994 14995 /* 14996 * Create any necessary broadcast IREs. 14997 */ 14998 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14999 !(ipif->ipif_flags & IPIF_NOXMIT)) 15000 irep = ipif_create_bcast_ires(ipif, irep); 15001 15002 /* If an earlier ire_create failed, get out now */ 15003 for (irep1 = irep; irep1 > ire_array; ) { 15004 irep1--; 15005 if (*irep1 == NULL) { 15006 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15007 err = ENOMEM; 15008 goto bad; 15009 } 15010 } 15011 15012 /* 15013 * Need to atomically check for IP address availability under 15014 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15015 * ills or new ipifs can be added while we are checking availability. 15016 */ 15017 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15018 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15019 /* Mark it up, and increment counters. */ 15020 ipif->ipif_flags |= IPIF_UP; 15021 ill->ill_ipif_up_count++; 15022 err = ip_addr_availability_check(ipif); 15023 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15024 rw_exit(&ipst->ips_ill_g_lock); 15025 15026 if (err != 0) { 15027 /* 15028 * Our address may already be up on the same ill. In this case, 15029 * the ARP entry for our ipif replaced the one for the other 15030 * ipif. So we don't want to delete it (otherwise the other ipif 15031 * would be unable to send packets). 15032 * ip_addr_availability_check() identifies this case for us and 15033 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15034 * which is the expected error code. 15035 */ 15036 ill->ill_ipif_up_count--; 15037 ipif->ipif_flags &= ~IPIF_UP; 15038 goto bad; 15039 } 15040 15041 /* 15042 * Add in all newly created IREs. ire_create_bcast() has 15043 * already checked for duplicates of the IRE_BROADCAST type. 15044 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15045 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15046 * a /32 route. 15047 */ 15048 if (ire_if != NULL) { 15049 ire_if = ire_add(ire_if); 15050 if (ire_if == NULL) { 15051 err = ENOMEM; 15052 goto bad2; 15053 } 15054 #ifdef DEBUG 15055 ire_refhold_notr(ire_if); 15056 ire_refrele(ire_if); 15057 #endif 15058 } 15059 if (ire_local != NULL) { 15060 ire_local = ire_add(ire_local); 15061 if (ire_local == NULL) { 15062 err = ENOMEM; 15063 goto bad2; 15064 } 15065 #ifdef DEBUG 15066 ire_refhold_notr(ire_local); 15067 ire_refrele(ire_local); 15068 #endif 15069 } 15070 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15071 if (ire_local != NULL) 15072 ipif->ipif_ire_local = ire_local; 15073 if (ire_if != NULL) 15074 ipif->ipif_ire_if = ire_if; 15075 rw_exit(&ipst->ips_ill_g_lock); 15076 ire_local = NULL; 15077 ire_if = NULL; 15078 15079 /* 15080 * We first add all of them, and if that succeeds we refrele the 15081 * bunch. That enables us to delete all of them should any of the 15082 * ire_adds fail. 15083 */ 15084 for (irep1 = irep; irep1 > ire_array; ) { 15085 irep1--; 15086 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15087 *irep1 = ire_add(*irep1); 15088 if (*irep1 == NULL) { 15089 err = ENOMEM; 15090 goto bad2; 15091 } 15092 } 15093 15094 for (irep1 = irep; irep1 > ire_array; ) { 15095 irep1--; 15096 /* refheld by ire_add. */ 15097 if (*irep1 != NULL) { 15098 ire_refrele(*irep1); 15099 *irep1 = NULL; 15100 } 15101 } 15102 15103 if (!loopback) { 15104 /* 15105 * If the broadcast address has been set, make sure it makes 15106 * sense based on the interface address. 15107 * Only match on ill since we are sharing broadcast addresses. 15108 */ 15109 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15110 (ipif->ipif_flags & IPIF_BROADCAST)) { 15111 ire_t *ire; 15112 15113 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15114 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15115 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15116 15117 if (ire == NULL) { 15118 /* 15119 * If there isn't a matching broadcast IRE, 15120 * revert to the default for this netmask. 15121 */ 15122 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15123 mutex_enter(&ipif->ipif_ill->ill_lock); 15124 ipif_set_default(ipif); 15125 mutex_exit(&ipif->ipif_ill->ill_lock); 15126 } else { 15127 ire_refrele(ire); 15128 } 15129 } 15130 15131 } 15132 return (0); 15133 15134 bad2: 15135 ill->ill_ipif_up_count--; 15136 ipif->ipif_flags &= ~IPIF_UP; 15137 15138 bad: 15139 ip1dbg(("ipif_add_ires: FAILED \n")); 15140 if (ire_local != NULL) 15141 ire_delete(ire_local); 15142 if (ire_if != NULL) 15143 ire_delete(ire_if); 15144 15145 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15146 ire_local = ipif->ipif_ire_local; 15147 ipif->ipif_ire_local = NULL; 15148 ire_if = ipif->ipif_ire_if; 15149 ipif->ipif_ire_if = NULL; 15150 rw_exit(&ipst->ips_ill_g_lock); 15151 if (ire_local != NULL) { 15152 ire_delete(ire_local); 15153 ire_refrele_notr(ire_local); 15154 } 15155 if (ire_if != NULL) { 15156 ire_delete(ire_if); 15157 ire_refrele_notr(ire_if); 15158 } 15159 15160 while (irep > ire_array) { 15161 irep--; 15162 if (*irep != NULL) { 15163 ire_delete(*irep); 15164 } 15165 } 15166 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15167 15168 return (err); 15169 } 15170 15171 /* Remove all the IREs created by ipif_add_ires_v4 */ 15172 void 15173 ipif_delete_ires_v4(ipif_t *ipif) 15174 { 15175 ill_t *ill = ipif->ipif_ill; 15176 ip_stack_t *ipst = ill->ill_ipst; 15177 ire_t *ire; 15178 15179 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15180 ire = ipif->ipif_ire_local; 15181 ipif->ipif_ire_local = NULL; 15182 rw_exit(&ipst->ips_ill_g_lock); 15183 if (ire != NULL) { 15184 /* 15185 * Move count to ipif so we don't loose the count due to 15186 * a down/up dance. 15187 */ 15188 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15189 15190 ire_delete(ire); 15191 ire_refrele_notr(ire); 15192 } 15193 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15194 ire = ipif->ipif_ire_if; 15195 ipif->ipif_ire_if = NULL; 15196 rw_exit(&ipst->ips_ill_g_lock); 15197 if (ire != NULL) { 15198 ire_delete(ire); 15199 ire_refrele_notr(ire); 15200 } 15201 15202 /* 15203 * Delete the broadcast IREs. 15204 */ 15205 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15206 !(ipif->ipif_flags & IPIF_NOXMIT)) 15207 ipif_delete_bcast_ires(ipif); 15208 } 15209 15210 /* 15211 * Checks for availbility of a usable source address (if there is one) when the 15212 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15213 * this selection is done regardless of the destination. 15214 */ 15215 boolean_t 15216 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15217 ip_stack_t *ipst) 15218 { 15219 ipif_t *ipif = NULL; 15220 ill_t *uill; 15221 15222 ASSERT(ifindex != 0); 15223 15224 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15225 if (uill == NULL) 15226 return (B_FALSE); 15227 15228 mutex_enter(&uill->ill_lock); 15229 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15230 if (IPIF_IS_CONDEMNED(ipif)) 15231 continue; 15232 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15233 continue; 15234 if (!(ipif->ipif_flags & IPIF_UP)) 15235 continue; 15236 if (ipif->ipif_zoneid != zoneid) 15237 continue; 15238 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15239 ipif->ipif_lcl_addr == INADDR_ANY) 15240 continue; 15241 mutex_exit(&uill->ill_lock); 15242 ill_refrele(uill); 15243 return (B_TRUE); 15244 } 15245 mutex_exit(&uill->ill_lock); 15246 ill_refrele(uill); 15247 return (B_FALSE); 15248 } 15249 15250 /* 15251 * Find an ipif with a good local address on the ill+zoneid. 15252 */ 15253 ipif_t * 15254 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15255 { 15256 ipif_t *ipif; 15257 15258 mutex_enter(&ill->ill_lock); 15259 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15260 if (IPIF_IS_CONDEMNED(ipif)) 15261 continue; 15262 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15263 continue; 15264 if (!(ipif->ipif_flags & IPIF_UP)) 15265 continue; 15266 if (ipif->ipif_zoneid != zoneid && 15267 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15268 continue; 15269 if (ill->ill_isv6 ? 15270 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15271 ipif->ipif_lcl_addr == INADDR_ANY) 15272 continue; 15273 ipif_refhold_locked(ipif); 15274 mutex_exit(&ill->ill_lock); 15275 return (ipif); 15276 } 15277 mutex_exit(&ill->ill_lock); 15278 return (NULL); 15279 } 15280 15281 /* 15282 * IP source address type, sorted from worst to best. For a given type, 15283 * always prefer IP addresses on the same subnet. All-zones addresses are 15284 * suboptimal because they pose problems with unlabeled destinations. 15285 */ 15286 typedef enum { 15287 IPIF_NONE, 15288 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15289 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15290 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15291 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15292 IPIF_DIFFNET, /* normal and different subnet */ 15293 IPIF_SAMENET, /* normal and same subnet */ 15294 IPIF_LOCALADDR /* local loopback */ 15295 } ipif_type_t; 15296 15297 /* 15298 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15299 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15300 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15301 * the first one, unless IPMP is used in which case we round-robin among them; 15302 * see below for more. 15303 * 15304 * Returns NULL if there is no suitable source address for the ill. 15305 * This only occurs when there is no valid source address for the ill. 15306 */ 15307 ipif_t * 15308 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15309 boolean_t allow_usesrc, boolean_t *notreadyp) 15310 { 15311 ill_t *usill = NULL; 15312 ill_t *ipmp_ill = NULL; 15313 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15314 ipif_type_t type, best_type; 15315 tsol_tpc_t *src_rhtp, *dst_rhtp; 15316 ip_stack_t *ipst = ill->ill_ipst; 15317 boolean_t samenet; 15318 15319 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15320 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15321 B_FALSE, ipst); 15322 if (usill != NULL) 15323 ill = usill; /* Select source from usesrc ILL */ 15324 else 15325 return (NULL); 15326 } 15327 15328 /* 15329 * Test addresses should never be used for source address selection, 15330 * so if we were passed one, switch to the IPMP meta-interface. 15331 */ 15332 if (IS_UNDER_IPMP(ill)) { 15333 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15334 ill = ipmp_ill; /* Select source from IPMP ill */ 15335 else 15336 return (NULL); 15337 } 15338 15339 /* 15340 * If we're dealing with an unlabeled destination on a labeled system, 15341 * make sure that we ignore source addresses that are incompatible with 15342 * the destination's default label. That destination's default label 15343 * must dominate the minimum label on the source address. 15344 */ 15345 dst_rhtp = NULL; 15346 if (is_system_labeled()) { 15347 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15348 if (dst_rhtp == NULL) 15349 return (NULL); 15350 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15351 TPC_RELE(dst_rhtp); 15352 dst_rhtp = NULL; 15353 } 15354 } 15355 15356 /* 15357 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15358 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15359 * After selecting the right ipif, under ill_lock make sure ipif is 15360 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15361 * we retry. Inside the loop we still need to check for CONDEMNED, 15362 * but not under a lock. 15363 */ 15364 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15365 retry: 15366 /* 15367 * For source address selection, we treat the ipif list as circular 15368 * and continue until we get back to where we started. This allows 15369 * IPMP to vary source address selection (which improves inbound load 15370 * spreading) by caching its last ending point and starting from 15371 * there. NOTE: we don't have to worry about ill_src_ipif changing 15372 * ills since that can't happen on the IPMP ill. 15373 */ 15374 start_ipif = ill->ill_ipif; 15375 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15376 start_ipif = ill->ill_src_ipif; 15377 15378 ipif = start_ipif; 15379 best_ipif = NULL; 15380 best_type = IPIF_NONE; 15381 do { 15382 if ((next_ipif = ipif->ipif_next) == NULL) 15383 next_ipif = ill->ill_ipif; 15384 15385 if (IPIF_IS_CONDEMNED(ipif)) 15386 continue; 15387 /* Always skip NOLOCAL and ANYCAST interfaces */ 15388 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15389 continue; 15390 /* Always skip NOACCEPT interfaces */ 15391 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15392 continue; 15393 if (!(ipif->ipif_flags & IPIF_UP)) 15394 continue; 15395 15396 if (!ipif->ipif_addr_ready) { 15397 if (notreadyp != NULL) 15398 *notreadyp = B_TRUE; 15399 continue; 15400 } 15401 15402 if (zoneid != ALL_ZONES && 15403 ipif->ipif_zoneid != zoneid && 15404 ipif->ipif_zoneid != ALL_ZONES) 15405 continue; 15406 15407 /* 15408 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15409 * are not valid as source addresses. 15410 */ 15411 if (ipif->ipif_lcl_addr == INADDR_ANY) 15412 continue; 15413 15414 /* 15415 * Check compatibility of local address for destination's 15416 * default label if we're on a labeled system. Incompatible 15417 * addresses can't be used at all. 15418 */ 15419 if (dst_rhtp != NULL) { 15420 boolean_t incompat; 15421 15422 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15423 IPV4_VERSION, B_FALSE); 15424 if (src_rhtp == NULL) 15425 continue; 15426 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15427 src_rhtp->tpc_tp.tp_doi != 15428 dst_rhtp->tpc_tp.tp_doi || 15429 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15430 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15431 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15432 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15433 TPC_RELE(src_rhtp); 15434 if (incompat) 15435 continue; 15436 } 15437 15438 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15439 15440 if (ipif->ipif_lcl_addr == dst) { 15441 type = IPIF_LOCALADDR; 15442 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15443 type = samenet ? IPIF_SAMENET_DEPRECATED : 15444 IPIF_DIFFNET_DEPRECATED; 15445 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15446 type = samenet ? IPIF_SAMENET_ALLZONES : 15447 IPIF_DIFFNET_ALLZONES; 15448 } else { 15449 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15450 } 15451 15452 if (type > best_type) { 15453 best_type = type; 15454 best_ipif = ipif; 15455 if (best_type == IPIF_LOCALADDR) 15456 break; /* can't get better */ 15457 } 15458 } while ((ipif = next_ipif) != start_ipif); 15459 15460 if ((ipif = best_ipif) != NULL) { 15461 mutex_enter(&ipif->ipif_ill->ill_lock); 15462 if (IPIF_IS_CONDEMNED(ipif)) { 15463 mutex_exit(&ipif->ipif_ill->ill_lock); 15464 goto retry; 15465 } 15466 ipif_refhold_locked(ipif); 15467 15468 /* 15469 * For IPMP, update the source ipif rotor to the next ipif, 15470 * provided we can look it up. (We must not use it if it's 15471 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15472 * ipif_free() checked ill_src_ipif.) 15473 */ 15474 if (IS_IPMP(ill) && ipif != NULL) { 15475 next_ipif = ipif->ipif_next; 15476 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15477 ill->ill_src_ipif = next_ipif; 15478 else 15479 ill->ill_src_ipif = NULL; 15480 } 15481 mutex_exit(&ipif->ipif_ill->ill_lock); 15482 } 15483 15484 rw_exit(&ipst->ips_ill_g_lock); 15485 if (usill != NULL) 15486 ill_refrele(usill); 15487 if (ipmp_ill != NULL) 15488 ill_refrele(ipmp_ill); 15489 if (dst_rhtp != NULL) 15490 TPC_RELE(dst_rhtp); 15491 15492 #ifdef DEBUG 15493 if (ipif == NULL) { 15494 char buf1[INET6_ADDRSTRLEN]; 15495 15496 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15497 ill->ill_name, 15498 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15499 } else { 15500 char buf1[INET6_ADDRSTRLEN]; 15501 char buf2[INET6_ADDRSTRLEN]; 15502 15503 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15504 ipif->ipif_ill->ill_name, 15505 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15506 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15507 buf2, sizeof (buf2)))); 15508 } 15509 #endif /* DEBUG */ 15510 return (ipif); 15511 } 15512 15513 /* 15514 * Pick a source address based on the destination ill and an optional setsrc 15515 * address. 15516 * The result is stored in srcp. If generation is set, then put the source 15517 * generation number there before we look for the source address (to avoid 15518 * missing changes in the set of source addresses. 15519 * If flagsp is set, then us it to pass back ipif_flags. 15520 * 15521 * If the caller wants to cache the returned source address and detect when 15522 * that might be stale, the caller should pass in a generation argument, 15523 * which the caller can later compare against ips_src_generation 15524 * 15525 * The precedence order for selecting an IPv4 source address is: 15526 * - RTF_SETSRC on the offlink ire always wins. 15527 * - If usrsrc is set, swap the ill to be the usesrc one. 15528 * - If IPMP is used on the ill, select a random address from the most 15529 * preferred ones below: 15530 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15531 * 2. Not deprecated, not ALL_ZONES 15532 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15533 * 4. Not deprecated, ALL_ZONES 15534 * 5. If onlink destination, same subnet and deprecated 15535 * 6. Deprecated. 15536 * 15537 * We have lower preference for ALL_ZONES IP addresses, 15538 * as they pose problems with unlabeled destinations. 15539 * 15540 * Note that when multiple IP addresses match e.g., #1 we pick 15541 * the first one if IPMP is not in use. With IPMP we randomize. 15542 */ 15543 int 15544 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15545 ipaddr_t multicast_ifaddr, 15546 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15547 uint32_t *generation, uint64_t *flagsp) 15548 { 15549 ipif_t *ipif; 15550 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15551 15552 if (flagsp != NULL) 15553 *flagsp = 0; 15554 15555 /* 15556 * Need to grab the generation number before we check to 15557 * avoid a race with a change to the set of local addresses. 15558 * No lock needed since the thread which updates the set of local 15559 * addresses use ipif/ill locks and exit those (hence a store memory 15560 * barrier) before doing the atomic increase of ips_src_generation. 15561 */ 15562 if (generation != NULL) { 15563 *generation = ipst->ips_src_generation; 15564 } 15565 15566 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15567 *srcp = multicast_ifaddr; 15568 return (0); 15569 } 15570 15571 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15572 if (setsrc != INADDR_ANY) { 15573 *srcp = setsrc; 15574 return (0); 15575 } 15576 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15577 if (ipif == NULL) { 15578 if (notready) 15579 return (ENETDOWN); 15580 else 15581 return (EADDRNOTAVAIL); 15582 } 15583 *srcp = ipif->ipif_lcl_addr; 15584 if (flagsp != NULL) 15585 *flagsp = ipif->ipif_flags; 15586 ipif_refrele(ipif); 15587 return (0); 15588 } 15589 15590 /* ARGSUSED */ 15591 int 15592 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15593 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15594 { 15595 /* 15596 * ill_phyint_reinit merged the v4 and v6 into a single 15597 * ipsq. We might not have been able to complete the 15598 * operation in ipif_set_values, if we could not become 15599 * exclusive. If so restart it here. 15600 */ 15601 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15602 } 15603 15604 /* 15605 * Can operate on either a module or a driver queue. 15606 * Returns an error if not a module queue. 15607 */ 15608 /* ARGSUSED */ 15609 int 15610 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15611 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15612 { 15613 queue_t *q1 = q; 15614 char *cp; 15615 char interf_name[LIFNAMSIZ]; 15616 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15617 15618 if (q->q_next == NULL) { 15619 ip1dbg(( 15620 "if_unitsel: IF_UNITSEL: no q_next\n")); 15621 return (EINVAL); 15622 } 15623 15624 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15625 return (EALREADY); 15626 15627 do { 15628 q1 = q1->q_next; 15629 } while (q1->q_next); 15630 cp = q1->q_qinfo->qi_minfo->mi_idname; 15631 (void) sprintf(interf_name, "%s%d", cp, ppa); 15632 15633 /* 15634 * Here we are not going to delay the ioack until after 15635 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15636 * original ioctl message before sending the requests. 15637 */ 15638 return (ipif_set_values(q, mp, interf_name, &ppa)); 15639 } 15640 15641 /* ARGSUSED */ 15642 int 15643 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15644 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15645 { 15646 return (ENXIO); 15647 } 15648 15649 /* 15650 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15651 * `irep'. Returns a pointer to the next free `irep' entry 15652 * A mirror exists in ipif_delete_bcast_ires(). 15653 * 15654 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15655 * done in ire_add. 15656 */ 15657 static ire_t ** 15658 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15659 { 15660 ipaddr_t addr; 15661 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15662 ipaddr_t subnetmask = ipif->ipif_net_mask; 15663 ill_t *ill = ipif->ipif_ill; 15664 zoneid_t zoneid = ipif->ipif_zoneid; 15665 15666 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15667 15668 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15669 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15670 15671 if (ipif->ipif_lcl_addr == INADDR_ANY || 15672 (ipif->ipif_flags & IPIF_NOLOCAL)) 15673 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15674 15675 irep = ire_create_bcast(ill, 0, zoneid, irep); 15676 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15677 15678 /* 15679 * For backward compatibility, we create net broadcast IREs based on 15680 * the old "IP address class system", since some old machines only 15681 * respond to these class derived net broadcast. However, we must not 15682 * create these net broadcast IREs if the subnetmask is shorter than 15683 * the IP address class based derived netmask. Otherwise, we may 15684 * create a net broadcast address which is the same as an IP address 15685 * on the subnet -- and then TCP will refuse to talk to that address. 15686 */ 15687 if (netmask < subnetmask) { 15688 addr = netmask & ipif->ipif_subnet; 15689 irep = ire_create_bcast(ill, addr, zoneid, irep); 15690 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15691 } 15692 15693 /* 15694 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15695 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15696 * created. Creating these broadcast IREs will only create confusion 15697 * as `addr' will be the same as the IP address. 15698 */ 15699 if (subnetmask != 0xFFFFFFFF) { 15700 addr = ipif->ipif_subnet; 15701 irep = ire_create_bcast(ill, addr, zoneid, irep); 15702 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15703 } 15704 15705 return (irep); 15706 } 15707 15708 /* 15709 * Mirror of ipif_create_bcast_ires() 15710 */ 15711 static void 15712 ipif_delete_bcast_ires(ipif_t *ipif) 15713 { 15714 ipaddr_t addr; 15715 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15716 ipaddr_t subnetmask = ipif->ipif_net_mask; 15717 ill_t *ill = ipif->ipif_ill; 15718 zoneid_t zoneid = ipif->ipif_zoneid; 15719 ire_t *ire; 15720 15721 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15722 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15723 15724 if (ipif->ipif_lcl_addr == INADDR_ANY || 15725 (ipif->ipif_flags & IPIF_NOLOCAL)) 15726 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15727 15728 ire = ire_lookup_bcast(ill, 0, zoneid); 15729 ASSERT(ire != NULL); 15730 ire_delete(ire); ire_refrele(ire); 15731 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15732 ASSERT(ire != NULL); 15733 ire_delete(ire); ire_refrele(ire); 15734 15735 /* 15736 * For backward compatibility, we create net broadcast IREs based on 15737 * the old "IP address class system", since some old machines only 15738 * respond to these class derived net broadcast. However, we must not 15739 * create these net broadcast IREs if the subnetmask is shorter than 15740 * the IP address class based derived netmask. Otherwise, we may 15741 * create a net broadcast address which is the same as an IP address 15742 * on the subnet -- and then TCP will refuse to talk to that address. 15743 */ 15744 if (netmask < subnetmask) { 15745 addr = netmask & ipif->ipif_subnet; 15746 ire = ire_lookup_bcast(ill, addr, zoneid); 15747 ASSERT(ire != NULL); 15748 ire_delete(ire); ire_refrele(ire); 15749 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15750 ASSERT(ire != NULL); 15751 ire_delete(ire); ire_refrele(ire); 15752 } 15753 15754 /* 15755 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15756 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15757 * created. Creating these broadcast IREs will only create confusion 15758 * as `addr' will be the same as the IP address. 15759 */ 15760 if (subnetmask != 0xFFFFFFFF) { 15761 addr = ipif->ipif_subnet; 15762 ire = ire_lookup_bcast(ill, addr, zoneid); 15763 ASSERT(ire != NULL); 15764 ire_delete(ire); ire_refrele(ire); 15765 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15766 ASSERT(ire != NULL); 15767 ire_delete(ire); ire_refrele(ire); 15768 } 15769 } 15770 15771 /* 15772 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15773 * from lifr_flags and the name from lifr_name. 15774 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15775 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15776 * Returns EINPROGRESS when mp has been consumed by queueing it on 15777 * ipx_pending_mp and the ioctl will complete in ip_rput. 15778 * 15779 * Can operate on either a module or a driver queue. 15780 * Returns an error if not a module queue. 15781 */ 15782 /* ARGSUSED */ 15783 int 15784 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15785 ip_ioctl_cmd_t *ipip, void *if_req) 15786 { 15787 ill_t *ill = q->q_ptr; 15788 phyint_t *phyi; 15789 ip_stack_t *ipst; 15790 struct lifreq *lifr = if_req; 15791 uint64_t new_flags; 15792 15793 ASSERT(ipif != NULL); 15794 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15795 15796 if (q->q_next == NULL) { 15797 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15798 return (EINVAL); 15799 } 15800 15801 /* 15802 * If we are not writer on 'q' then this interface exists already 15803 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15804 * so return EALREADY. 15805 */ 15806 if (ill != ipif->ipif_ill) 15807 return (EALREADY); 15808 15809 if (ill->ill_name[0] != '\0') 15810 return (EALREADY); 15811 15812 /* 15813 * If there's another ill already with the requested name, ensure 15814 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15815 * fuse together two unrelated ills, which will cause chaos. 15816 */ 15817 ipst = ill->ill_ipst; 15818 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15819 lifr->lifr_name, NULL); 15820 if (phyi != NULL) { 15821 ill_t *ill_mate = phyi->phyint_illv4; 15822 15823 if (ill_mate == NULL) 15824 ill_mate = phyi->phyint_illv6; 15825 ASSERT(ill_mate != NULL); 15826 15827 if (ill_mate->ill_media->ip_m_mac_type != 15828 ill->ill_media->ip_m_mac_type) { 15829 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15830 "use the same ill name on differing media\n")); 15831 return (EINVAL); 15832 } 15833 } 15834 15835 /* 15836 * We start off as IFF_IPV4 in ipif_allocate and become 15837 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15838 * The only flags that we read from user space are IFF_IPV4, 15839 * IFF_IPV6, and IFF_BROADCAST. 15840 * 15841 * This ill has not been inserted into the global list. 15842 * So we are still single threaded and don't need any lock 15843 * 15844 * Saniy check the flags. 15845 */ 15846 15847 if ((lifr->lifr_flags & IFF_BROADCAST) && 15848 ((lifr->lifr_flags & IFF_IPV6) || 15849 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15850 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15851 "or IPv6 i.e., no broadcast \n")); 15852 return (EINVAL); 15853 } 15854 15855 new_flags = 15856 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15857 15858 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15859 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15860 "IFF_IPV4 or IFF_IPV6\n")); 15861 return (EINVAL); 15862 } 15863 15864 /* 15865 * We always start off as IPv4, so only need to check for IPv6. 15866 */ 15867 if ((new_flags & IFF_IPV6) != 0) { 15868 ill->ill_flags |= ILLF_IPV6; 15869 ill->ill_flags &= ~ILLF_IPV4; 15870 15871 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15872 ill->ill_flags |= ILLF_NOLINKLOCAL; 15873 } 15874 15875 if ((new_flags & IFF_BROADCAST) != 0) 15876 ipif->ipif_flags |= IPIF_BROADCAST; 15877 else 15878 ipif->ipif_flags &= ~IPIF_BROADCAST; 15879 15880 /* We started off as V4. */ 15881 if (ill->ill_flags & ILLF_IPV6) { 15882 ill->ill_phyint->phyint_illv6 = ill; 15883 ill->ill_phyint->phyint_illv4 = NULL; 15884 } 15885 15886 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15887 } 15888 15889 /* ARGSUSED */ 15890 int 15891 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15892 ip_ioctl_cmd_t *ipip, void *if_req) 15893 { 15894 /* 15895 * ill_phyint_reinit merged the v4 and v6 into a single 15896 * ipsq. We might not have been able to complete the 15897 * slifname in ipif_set_values, if we could not become 15898 * exclusive. If so restart it here 15899 */ 15900 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15901 } 15902 15903 /* 15904 * Return a pointer to the ipif which matches the index, IP version type and 15905 * zoneid. 15906 */ 15907 ipif_t * 15908 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15909 ip_stack_t *ipst) 15910 { 15911 ill_t *ill; 15912 ipif_t *ipif = NULL; 15913 15914 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15915 if (ill != NULL) { 15916 mutex_enter(&ill->ill_lock); 15917 for (ipif = ill->ill_ipif; ipif != NULL; 15918 ipif = ipif->ipif_next) { 15919 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15920 zoneid == ipif->ipif_zoneid || 15921 ipif->ipif_zoneid == ALL_ZONES)) { 15922 ipif_refhold_locked(ipif); 15923 break; 15924 } 15925 } 15926 mutex_exit(&ill->ill_lock); 15927 ill_refrele(ill); 15928 } 15929 return (ipif); 15930 } 15931 15932 /* 15933 * Change an existing physical interface's index. If the new index 15934 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15935 * Finally, we update other systems which may have a dependence on the 15936 * index value. 15937 */ 15938 /* ARGSUSED */ 15939 int 15940 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15941 ip_ioctl_cmd_t *ipip, void *ifreq) 15942 { 15943 ill_t *ill; 15944 phyint_t *phyi; 15945 struct ifreq *ifr = (struct ifreq *)ifreq; 15946 struct lifreq *lifr = (struct lifreq *)ifreq; 15947 uint_t old_index, index; 15948 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15949 avl_index_t where; 15950 15951 if (ipip->ipi_cmd_type == IF_CMD) 15952 index = ifr->ifr_index; 15953 else 15954 index = lifr->lifr_index; 15955 15956 /* 15957 * Only allow on physical interface. Also, index zero is illegal. 15958 */ 15959 ill = ipif->ipif_ill; 15960 phyi = ill->ill_phyint; 15961 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15962 return (EINVAL); 15963 } 15964 15965 /* If the index is not changing, no work to do */ 15966 if (phyi->phyint_ifindex == index) 15967 return (0); 15968 15969 /* 15970 * Use phyint_exists() to determine if the new interface index 15971 * is already in use. If the index is unused then we need to 15972 * change the phyint's position in the phyint_list_avl_by_index 15973 * tree. If we do not do this, subsequent lookups (using the new 15974 * index value) will not find the phyint. 15975 */ 15976 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15977 if (phyint_exists(index, ipst)) { 15978 rw_exit(&ipst->ips_ill_g_lock); 15979 return (EEXIST); 15980 } 15981 15982 /* 15983 * The new index is unused. Set it in the phyint. However we must not 15984 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15985 * changes. The event must be bound to old ifindex value. 15986 */ 15987 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15988 &index, sizeof (index)); 15989 15990 old_index = phyi->phyint_ifindex; 15991 phyi->phyint_ifindex = index; 15992 15993 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15994 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15995 &index, &where); 15996 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15997 phyi, where); 15998 rw_exit(&ipst->ips_ill_g_lock); 15999 16000 /* Update SCTP's ILL list */ 16001 sctp_ill_reindex(ill, old_index); 16002 16003 /* Send the routing sockets message */ 16004 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16005 if (ILL_OTHER(ill)) 16006 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16007 16008 /* Perhaps ilgs should use this ill */ 16009 update_conn_ill(NULL, ill->ill_ipst); 16010 return (0); 16011 } 16012 16013 /* ARGSUSED */ 16014 int 16015 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16016 ip_ioctl_cmd_t *ipip, void *ifreq) 16017 { 16018 struct ifreq *ifr = (struct ifreq *)ifreq; 16019 struct lifreq *lifr = (struct lifreq *)ifreq; 16020 16021 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16022 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16023 /* Get the interface index */ 16024 if (ipip->ipi_cmd_type == IF_CMD) { 16025 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16026 } else { 16027 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16028 } 16029 return (0); 16030 } 16031 16032 /* ARGSUSED */ 16033 int 16034 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16035 ip_ioctl_cmd_t *ipip, void *ifreq) 16036 { 16037 struct lifreq *lifr = (struct lifreq *)ifreq; 16038 16039 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16041 /* Get the interface zone */ 16042 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16043 lifr->lifr_zoneid = ipif->ipif_zoneid; 16044 return (0); 16045 } 16046 16047 /* 16048 * Set the zoneid of an interface. 16049 */ 16050 /* ARGSUSED */ 16051 int 16052 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16053 ip_ioctl_cmd_t *ipip, void *ifreq) 16054 { 16055 struct lifreq *lifr = (struct lifreq *)ifreq; 16056 int err = 0; 16057 boolean_t need_up = B_FALSE; 16058 zone_t *zptr; 16059 zone_status_t status; 16060 zoneid_t zoneid; 16061 16062 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16063 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16064 if (!is_system_labeled()) 16065 return (ENOTSUP); 16066 zoneid = GLOBAL_ZONEID; 16067 } 16068 16069 /* cannot assign instance zero to a non-global zone */ 16070 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16071 return (ENOTSUP); 16072 16073 /* 16074 * Cannot assign to a zone that doesn't exist or is shutting down. In 16075 * the event of a race with the zone shutdown processing, since IP 16076 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16077 * interface will be cleaned up even if the zone is shut down 16078 * immediately after the status check. If the interface can't be brought 16079 * down right away, and the zone is shut down before the restart 16080 * function is called, we resolve the possible races by rechecking the 16081 * zone status in the restart function. 16082 */ 16083 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16084 return (EINVAL); 16085 status = zone_status_get(zptr); 16086 zone_rele(zptr); 16087 16088 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16089 return (EINVAL); 16090 16091 if (ipif->ipif_flags & IPIF_UP) { 16092 /* 16093 * If the interface is already marked up, 16094 * we call ipif_down which will take care 16095 * of ditching any IREs that have been set 16096 * up based on the old interface address. 16097 */ 16098 err = ipif_logical_down(ipif, q, mp); 16099 if (err == EINPROGRESS) 16100 return (err); 16101 (void) ipif_down_tail(ipif); 16102 need_up = B_TRUE; 16103 } 16104 16105 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16106 return (err); 16107 } 16108 16109 static int 16110 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16111 queue_t *q, mblk_t *mp, boolean_t need_up) 16112 { 16113 int err = 0; 16114 ip_stack_t *ipst; 16115 16116 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16117 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16118 16119 if (CONN_Q(q)) 16120 ipst = CONNQ_TO_IPST(q); 16121 else 16122 ipst = ILLQ_TO_IPST(q); 16123 16124 /* 16125 * For exclusive stacks we don't allow a different zoneid than 16126 * global. 16127 */ 16128 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16129 zoneid != GLOBAL_ZONEID) 16130 return (EINVAL); 16131 16132 /* Set the new zone id. */ 16133 ipif->ipif_zoneid = zoneid; 16134 16135 /* Update sctp list */ 16136 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16137 16138 /* The default multicast interface might have changed */ 16139 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16140 16141 if (need_up) { 16142 /* 16143 * Now bring the interface back up. If this 16144 * is the only IPIF for the ILL, ipif_up 16145 * will have to re-bind to the device, so 16146 * we may get back EINPROGRESS, in which 16147 * case, this IOCTL will get completed in 16148 * ip_rput_dlpi when we see the DL_BIND_ACK. 16149 */ 16150 err = ipif_up(ipif, q, mp); 16151 } 16152 return (err); 16153 } 16154 16155 /* ARGSUSED */ 16156 int 16157 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16158 ip_ioctl_cmd_t *ipip, void *if_req) 16159 { 16160 struct lifreq *lifr = (struct lifreq *)if_req; 16161 zoneid_t zoneid; 16162 zone_t *zptr; 16163 zone_status_t status; 16164 16165 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16166 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16167 zoneid = GLOBAL_ZONEID; 16168 16169 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16170 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16171 16172 /* 16173 * We recheck the zone status to resolve the following race condition: 16174 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16175 * 2) hme0:1 is up and can't be brought down right away; 16176 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16177 * 3) zone "myzone" is halted; the zone status switches to 16178 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16179 * the interfaces to remove - hme0:1 is not returned because it's not 16180 * yet in "myzone", so it won't be removed; 16181 * 4) the restart function for SIOCSLIFZONE is called; without the 16182 * status check here, we would have hme0:1 in "myzone" after it's been 16183 * destroyed. 16184 * Note that if the status check fails, we need to bring the interface 16185 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16186 * ipif_up_done[_v6](). 16187 */ 16188 status = ZONE_IS_UNINITIALIZED; 16189 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16190 status = zone_status_get(zptr); 16191 zone_rele(zptr); 16192 } 16193 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16194 if (ipif->ipif_isv6) { 16195 (void) ipif_up_done_v6(ipif); 16196 } else { 16197 (void) ipif_up_done(ipif); 16198 } 16199 return (EINVAL); 16200 } 16201 16202 (void) ipif_down_tail(ipif); 16203 16204 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16205 B_TRUE)); 16206 } 16207 16208 /* 16209 * Return the number of addresses on `ill' with one or more of the values 16210 * in `set' set and all of the values in `clear' clear. 16211 */ 16212 static uint_t 16213 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16214 { 16215 ipif_t *ipif; 16216 uint_t cnt = 0; 16217 16218 ASSERT(IAM_WRITER_ILL(ill)); 16219 16220 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16221 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16222 cnt++; 16223 16224 return (cnt); 16225 } 16226 16227 /* 16228 * Return the number of migratable addresses on `ill' that are under 16229 * application control. 16230 */ 16231 uint_t 16232 ill_appaddr_cnt(const ill_t *ill) 16233 { 16234 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16235 IPIF_NOFAILOVER)); 16236 } 16237 16238 /* 16239 * Return the number of point-to-point addresses on `ill'. 16240 */ 16241 uint_t 16242 ill_ptpaddr_cnt(const ill_t *ill) 16243 { 16244 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16245 } 16246 16247 /* ARGSUSED */ 16248 int 16249 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16250 ip_ioctl_cmd_t *ipip, void *ifreq) 16251 { 16252 struct lifreq *lifr = ifreq; 16253 16254 ASSERT(q->q_next == NULL); 16255 ASSERT(CONN_Q(q)); 16256 16257 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16258 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16259 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16260 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16261 16262 return (0); 16263 } 16264 16265 /* Find the previous ILL in this usesrc group */ 16266 static ill_t * 16267 ill_prev_usesrc(ill_t *uill) 16268 { 16269 ill_t *ill; 16270 16271 for (ill = uill->ill_usesrc_grp_next; 16272 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16273 ill = ill->ill_usesrc_grp_next) 16274 /* do nothing */; 16275 return (ill); 16276 } 16277 16278 /* 16279 * Release all members of the usesrc group. This routine is called 16280 * from ill_delete when the interface being unplumbed is the 16281 * group head. 16282 * 16283 * This silently clears the usesrc that ifconfig setup. 16284 * An alternative would be to keep that ifindex, and drop packets on the floor 16285 * since no source address can be selected. 16286 * Even if we keep the current semantics, don't need a lock and a linked list. 16287 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16288 * the one that is being removed. Issue is how we return the usesrc users 16289 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16290 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16291 * ill walk, but the walker would need to insert in the ioctl response. 16292 */ 16293 static void 16294 ill_disband_usesrc_group(ill_t *uill) 16295 { 16296 ill_t *next_ill, *tmp_ill; 16297 ip_stack_t *ipst = uill->ill_ipst; 16298 16299 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16300 next_ill = uill->ill_usesrc_grp_next; 16301 16302 do { 16303 ASSERT(next_ill != NULL); 16304 tmp_ill = next_ill->ill_usesrc_grp_next; 16305 ASSERT(tmp_ill != NULL); 16306 next_ill->ill_usesrc_grp_next = NULL; 16307 next_ill->ill_usesrc_ifindex = 0; 16308 next_ill = tmp_ill; 16309 } while (next_ill->ill_usesrc_ifindex != 0); 16310 uill->ill_usesrc_grp_next = NULL; 16311 } 16312 16313 /* 16314 * Remove the client usesrc ILL from the list and relink to a new list 16315 */ 16316 int 16317 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16318 { 16319 ill_t *ill, *tmp_ill; 16320 ip_stack_t *ipst = ucill->ill_ipst; 16321 16322 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16323 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16324 16325 /* 16326 * Check if the usesrc client ILL passed in is not already 16327 * in use as a usesrc ILL i.e one whose source address is 16328 * in use OR a usesrc ILL is not already in use as a usesrc 16329 * client ILL 16330 */ 16331 if ((ucill->ill_usesrc_ifindex == 0) || 16332 (uill->ill_usesrc_ifindex != 0)) { 16333 return (-1); 16334 } 16335 16336 ill = ill_prev_usesrc(ucill); 16337 ASSERT(ill->ill_usesrc_grp_next != NULL); 16338 16339 /* Remove from the current list */ 16340 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16341 /* Only two elements in the list */ 16342 ASSERT(ill->ill_usesrc_ifindex == 0); 16343 ill->ill_usesrc_grp_next = NULL; 16344 } else { 16345 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16346 } 16347 16348 if (ifindex == 0) { 16349 ucill->ill_usesrc_ifindex = 0; 16350 ucill->ill_usesrc_grp_next = NULL; 16351 return (0); 16352 } 16353 16354 ucill->ill_usesrc_ifindex = ifindex; 16355 tmp_ill = uill->ill_usesrc_grp_next; 16356 uill->ill_usesrc_grp_next = ucill; 16357 ucill->ill_usesrc_grp_next = 16358 (tmp_ill != NULL) ? tmp_ill : uill; 16359 return (0); 16360 } 16361 16362 /* 16363 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16364 * ip.c for locking details. 16365 */ 16366 /* ARGSUSED */ 16367 int 16368 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16369 ip_ioctl_cmd_t *ipip, void *ifreq) 16370 { 16371 struct lifreq *lifr = (struct lifreq *)ifreq; 16372 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16373 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16374 int err = 0, ret; 16375 uint_t ifindex; 16376 ipsq_t *ipsq = NULL; 16377 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16378 16379 ASSERT(IAM_WRITER_IPIF(ipif)); 16380 ASSERT(q->q_next == NULL); 16381 ASSERT(CONN_Q(q)); 16382 16383 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16384 16385 ifindex = lifr->lifr_index; 16386 if (ifindex == 0) { 16387 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16388 /* non usesrc group interface, nothing to reset */ 16389 return (0); 16390 } 16391 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16392 /* valid reset request */ 16393 reset_flg = B_TRUE; 16394 } 16395 16396 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16397 if (usesrc_ill == NULL) 16398 return (ENXIO); 16399 if (usesrc_ill == ipif->ipif_ill) { 16400 ill_refrele(usesrc_ill); 16401 return (EINVAL); 16402 } 16403 16404 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16405 NEW_OP, B_TRUE); 16406 if (ipsq == NULL) { 16407 err = EINPROGRESS; 16408 /* Operation enqueued on the ipsq of the usesrc ILL */ 16409 goto done; 16410 } 16411 16412 /* USESRC isn't currently supported with IPMP */ 16413 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16414 err = ENOTSUP; 16415 goto done; 16416 } 16417 16418 /* 16419 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16420 * used by IPMP underlying interfaces, but someone might think it's 16421 * more general and try to use it independently with VNI.) 16422 */ 16423 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16424 err = ENOTSUP; 16425 goto done; 16426 } 16427 16428 /* 16429 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16430 * already a client then return EINVAL 16431 */ 16432 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16433 err = EINVAL; 16434 goto done; 16435 } 16436 16437 /* 16438 * If the ill_usesrc_ifindex field is already set to what it needs to 16439 * be then this is a duplicate operation. 16440 */ 16441 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16442 err = 0; 16443 goto done; 16444 } 16445 16446 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16447 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16448 usesrc_ill->ill_isv6)); 16449 16450 /* 16451 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16452 * and the ill_usesrc_ifindex fields 16453 */ 16454 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16455 16456 if (reset_flg) { 16457 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16458 if (ret != 0) { 16459 err = EINVAL; 16460 } 16461 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16462 goto done; 16463 } 16464 16465 /* 16466 * Four possibilities to consider: 16467 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16468 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16469 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16470 * 4. Both are part of their respective usesrc groups 16471 */ 16472 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16473 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16474 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16475 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16476 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16477 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16478 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16479 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16480 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16481 /* Insert at head of list */ 16482 usesrc_cli_ill->ill_usesrc_grp_next = 16483 usesrc_ill->ill_usesrc_grp_next; 16484 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16485 } else { 16486 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16487 ifindex); 16488 if (ret != 0) 16489 err = EINVAL; 16490 } 16491 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16492 16493 done: 16494 if (ipsq != NULL) 16495 ipsq_exit(ipsq); 16496 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16497 ill_refrele(usesrc_ill); 16498 16499 /* Let conn_ixa caching know that source address selection changed */ 16500 ip_update_source_selection(ipst); 16501 16502 return (err); 16503 } 16504 16505 /* ARGSUSED */ 16506 int 16507 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16508 ip_ioctl_cmd_t *ipip, void *if_req) 16509 { 16510 struct lifreq *lifr = (struct lifreq *)if_req; 16511 ill_t *ill = ipif->ipif_ill; 16512 16513 /* 16514 * Need a lock since IFF_UP can be set even when there are 16515 * references to the ipif. 16516 */ 16517 mutex_enter(&ill->ill_lock); 16518 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16519 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16520 else 16521 lifr->lifr_dadstate = DAD_DONE; 16522 mutex_exit(&ill->ill_lock); 16523 return (0); 16524 } 16525 16526 /* 16527 * comparison function used by avl. 16528 */ 16529 static int 16530 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16531 { 16532 16533 uint_t index; 16534 16535 ASSERT(phyip != NULL && index_ptr != NULL); 16536 16537 index = *((uint_t *)index_ptr); 16538 /* 16539 * let the phyint with the lowest index be on top. 16540 */ 16541 if (((phyint_t *)phyip)->phyint_ifindex < index) 16542 return (1); 16543 if (((phyint_t *)phyip)->phyint_ifindex > index) 16544 return (-1); 16545 return (0); 16546 } 16547 16548 /* 16549 * comparison function used by avl. 16550 */ 16551 static int 16552 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16553 { 16554 ill_t *ill; 16555 int res = 0; 16556 16557 ASSERT(phyip != NULL && name_ptr != NULL); 16558 16559 if (((phyint_t *)phyip)->phyint_illv4) 16560 ill = ((phyint_t *)phyip)->phyint_illv4; 16561 else 16562 ill = ((phyint_t *)phyip)->phyint_illv6; 16563 ASSERT(ill != NULL); 16564 16565 res = strcmp(ill->ill_name, (char *)name_ptr); 16566 if (res > 0) 16567 return (1); 16568 else if (res < 0) 16569 return (-1); 16570 return (0); 16571 } 16572 16573 /* 16574 * This function is called on the unplumb path via ill_glist_delete() when 16575 * there are no ills left on the phyint and thus the phyint can be freed. 16576 */ 16577 static void 16578 phyint_free(phyint_t *phyi) 16579 { 16580 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16581 16582 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16583 16584 /* 16585 * If this phyint was an IPMP meta-interface, blow away the group. 16586 * This is safe to do because all of the illgrps have already been 16587 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16588 * If we're cleaning up as a result of failed initialization, 16589 * phyint_grp may be NULL. 16590 */ 16591 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16592 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16593 ipmp_grp_destroy(phyi->phyint_grp); 16594 phyi->phyint_grp = NULL; 16595 rw_exit(&ipst->ips_ipmp_lock); 16596 } 16597 16598 /* 16599 * If this interface was under IPMP, take it out of the group. 16600 */ 16601 if (phyi->phyint_grp != NULL) 16602 ipmp_phyint_leave_grp(phyi); 16603 16604 /* 16605 * Delete the phyint and disassociate its ipsq. The ipsq itself 16606 * will be freed in ipsq_exit(). 16607 */ 16608 phyi->phyint_ipsq->ipsq_phyint = NULL; 16609 phyi->phyint_name[0] = '\0'; 16610 16611 mi_free(phyi); 16612 } 16613 16614 /* 16615 * Attach the ill to the phyint structure which can be shared by both 16616 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16617 * function is called from ipif_set_values and ill_lookup_on_name (for 16618 * loopback) where we know the name of the ill. We lookup the ill and if 16619 * there is one present already with the name use that phyint. Otherwise 16620 * reuse the one allocated by ill_init. 16621 */ 16622 static void 16623 ill_phyint_reinit(ill_t *ill) 16624 { 16625 boolean_t isv6 = ill->ill_isv6; 16626 phyint_t *phyi_old; 16627 phyint_t *phyi; 16628 avl_index_t where = 0; 16629 ill_t *ill_other = NULL; 16630 ip_stack_t *ipst = ill->ill_ipst; 16631 16632 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16633 16634 phyi_old = ill->ill_phyint; 16635 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16636 phyi_old->phyint_illv6 == NULL)); 16637 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16638 phyi_old->phyint_illv4 == NULL)); 16639 ASSERT(phyi_old->phyint_ifindex == 0); 16640 16641 /* 16642 * Now that our ill has a name, set it in the phyint. 16643 */ 16644 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16645 16646 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16647 ill->ill_name, &where); 16648 16649 /* 16650 * 1. We grabbed the ill_g_lock before inserting this ill into 16651 * the global list of ills. So no other thread could have located 16652 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16653 * 2. Now locate the other protocol instance of this ill. 16654 * 3. Now grab both ill locks in the right order, and the phyint lock of 16655 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16656 * of neither ill can change. 16657 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16658 * other ill. 16659 * 5. Release all locks. 16660 */ 16661 16662 /* 16663 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16664 * we are initializing IPv4. 16665 */ 16666 if (phyi != NULL) { 16667 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16668 ASSERT(ill_other->ill_phyint != NULL); 16669 ASSERT((isv6 && !ill_other->ill_isv6) || 16670 (!isv6 && ill_other->ill_isv6)); 16671 GRAB_ILL_LOCKS(ill, ill_other); 16672 /* 16673 * We are potentially throwing away phyint_flags which 16674 * could be different from the one that we obtain from 16675 * ill_other->ill_phyint. But it is okay as we are assuming 16676 * that the state maintained within IP is correct. 16677 */ 16678 mutex_enter(&phyi->phyint_lock); 16679 if (isv6) { 16680 ASSERT(phyi->phyint_illv6 == NULL); 16681 phyi->phyint_illv6 = ill; 16682 } else { 16683 ASSERT(phyi->phyint_illv4 == NULL); 16684 phyi->phyint_illv4 = ill; 16685 } 16686 16687 /* 16688 * Delete the old phyint and make its ipsq eligible 16689 * to be freed in ipsq_exit(). 16690 */ 16691 phyi_old->phyint_illv4 = NULL; 16692 phyi_old->phyint_illv6 = NULL; 16693 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16694 phyi_old->phyint_name[0] = '\0'; 16695 mi_free(phyi_old); 16696 } else { 16697 mutex_enter(&ill->ill_lock); 16698 /* 16699 * We don't need to acquire any lock, since 16700 * the ill is not yet visible globally and we 16701 * have not yet released the ill_g_lock. 16702 */ 16703 phyi = phyi_old; 16704 mutex_enter(&phyi->phyint_lock); 16705 /* XXX We need a recovery strategy here. */ 16706 if (!phyint_assign_ifindex(phyi, ipst)) 16707 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16708 16709 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16710 (void *)phyi, where); 16711 16712 (void) avl_find(&ipst->ips_phyint_g_list-> 16713 phyint_list_avl_by_index, 16714 &phyi->phyint_ifindex, &where); 16715 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16716 (void *)phyi, where); 16717 } 16718 16719 /* 16720 * Reassigning ill_phyint automatically reassigns the ipsq also. 16721 * pending mp is not affected because that is per ill basis. 16722 */ 16723 ill->ill_phyint = phyi; 16724 16725 /* 16726 * Now that the phyint's ifindex has been assigned, complete the 16727 * remaining 16728 */ 16729 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16730 if (ill->ill_isv6) { 16731 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16732 ill->ill_phyint->phyint_ifindex; 16733 ill->ill_mcast_type = ipst->ips_mld_max_version; 16734 } else { 16735 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16736 } 16737 16738 /* 16739 * Generate an event within the hooks framework to indicate that 16740 * a new interface has just been added to IP. For this event to 16741 * be generated, the network interface must, at least, have an 16742 * ifindex assigned to it. (We don't generate the event for 16743 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16744 * 16745 * This needs to be run inside the ill_g_lock perimeter to ensure 16746 * that the ordering of delivered events to listeners matches the 16747 * order of them in the kernel. 16748 */ 16749 if (!IS_LOOPBACK(ill)) { 16750 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16751 ill->ill_name_length); 16752 } 16753 RELEASE_ILL_LOCKS(ill, ill_other); 16754 mutex_exit(&phyi->phyint_lock); 16755 } 16756 16757 /* 16758 * Notify any downstream modules of the name of this interface. 16759 * An M_IOCTL is used even though we don't expect a successful reply. 16760 * Any reply message from the driver (presumably an M_IOCNAK) will 16761 * eventually get discarded somewhere upstream. The message format is 16762 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16763 * to IP. 16764 */ 16765 static void 16766 ip_ifname_notify(ill_t *ill, queue_t *q) 16767 { 16768 mblk_t *mp1, *mp2; 16769 struct iocblk *iocp; 16770 struct lifreq *lifr; 16771 16772 mp1 = mkiocb(SIOCSLIFNAME); 16773 if (mp1 == NULL) 16774 return; 16775 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16776 if (mp2 == NULL) { 16777 freeb(mp1); 16778 return; 16779 } 16780 16781 mp1->b_cont = mp2; 16782 iocp = (struct iocblk *)mp1->b_rptr; 16783 iocp->ioc_count = sizeof (struct lifreq); 16784 16785 lifr = (struct lifreq *)mp2->b_rptr; 16786 mp2->b_wptr += sizeof (struct lifreq); 16787 bzero(lifr, sizeof (struct lifreq)); 16788 16789 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16790 lifr->lifr_ppa = ill->ill_ppa; 16791 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16792 16793 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16794 char *, "SIOCSLIFNAME", ill_t *, ill); 16795 putnext(q, mp1); 16796 } 16797 16798 static int 16799 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16800 { 16801 int err; 16802 ip_stack_t *ipst = ill->ill_ipst; 16803 phyint_t *phyi = ill->ill_phyint; 16804 16805 /* 16806 * Now that ill_name is set, the configuration for the IPMP 16807 * meta-interface can be performed. 16808 */ 16809 if (IS_IPMP(ill)) { 16810 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16811 /* 16812 * If phyi->phyint_grp is NULL, then this is the first IPMP 16813 * meta-interface and we need to create the IPMP group. 16814 */ 16815 if (phyi->phyint_grp == NULL) { 16816 /* 16817 * If someone has renamed another IPMP group to have 16818 * the same name as our interface, bail. 16819 */ 16820 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16821 rw_exit(&ipst->ips_ipmp_lock); 16822 return (EEXIST); 16823 } 16824 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16825 if (phyi->phyint_grp == NULL) { 16826 rw_exit(&ipst->ips_ipmp_lock); 16827 return (ENOMEM); 16828 } 16829 } 16830 rw_exit(&ipst->ips_ipmp_lock); 16831 } 16832 16833 /* Tell downstream modules where they are. */ 16834 ip_ifname_notify(ill, q); 16835 16836 /* 16837 * ill_dl_phys returns EINPROGRESS in the usual case. 16838 * Error cases are ENOMEM ... 16839 */ 16840 err = ill_dl_phys(ill, ipif, mp, q); 16841 16842 if (ill->ill_isv6) { 16843 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16844 if (ipst->ips_mld_slowtimeout_id == 0) { 16845 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16846 (void *)ipst, 16847 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16848 } 16849 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16850 } else { 16851 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16852 if (ipst->ips_igmp_slowtimeout_id == 0) { 16853 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16854 (void *)ipst, 16855 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16856 } 16857 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16858 } 16859 16860 return (err); 16861 } 16862 16863 /* 16864 * Common routine for ppa and ifname setting. Should be called exclusive. 16865 * 16866 * Returns EINPROGRESS when mp has been consumed by queueing it on 16867 * ipx_pending_mp and the ioctl will complete in ip_rput. 16868 * 16869 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16870 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16871 * For SLIFNAME, we pass these values back to the userland. 16872 */ 16873 static int 16874 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16875 { 16876 ill_t *ill; 16877 ipif_t *ipif; 16878 ipsq_t *ipsq; 16879 char *ppa_ptr; 16880 char *old_ptr; 16881 char old_char; 16882 int error; 16883 ip_stack_t *ipst; 16884 16885 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16886 ASSERT(q->q_next != NULL); 16887 ASSERT(interf_name != NULL); 16888 16889 ill = (ill_t *)q->q_ptr; 16890 ipst = ill->ill_ipst; 16891 16892 ASSERT(ill->ill_ipst != NULL); 16893 ASSERT(ill->ill_name[0] == '\0'); 16894 ASSERT(IAM_WRITER_ILL(ill)); 16895 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16896 ASSERT(ill->ill_ppa == UINT_MAX); 16897 16898 ill->ill_defend_start = ill->ill_defend_count = 0; 16899 /* The ppa is sent down by ifconfig or is chosen */ 16900 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16901 return (EINVAL); 16902 } 16903 16904 /* 16905 * make sure ppa passed in is same as ppa in the name. 16906 * This check is not made when ppa == UINT_MAX in that case ppa 16907 * in the name could be anything. System will choose a ppa and 16908 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16909 */ 16910 if (*new_ppa_ptr != UINT_MAX) { 16911 /* stoi changes the pointer */ 16912 old_ptr = ppa_ptr; 16913 /* 16914 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16915 * (they don't have an externally visible ppa). We assign one 16916 * here so that we can manage the interface. Note that in 16917 * the past this value was always 0 for DLPI 1 drivers. 16918 */ 16919 if (*new_ppa_ptr == 0) 16920 *new_ppa_ptr = stoi(&old_ptr); 16921 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16922 return (EINVAL); 16923 } 16924 /* 16925 * terminate string before ppa 16926 * save char at that location. 16927 */ 16928 old_char = ppa_ptr[0]; 16929 ppa_ptr[0] = '\0'; 16930 16931 ill->ill_ppa = *new_ppa_ptr; 16932 /* 16933 * Finish as much work now as possible before calling ill_glist_insert 16934 * which makes the ill globally visible and also merges it with the 16935 * other protocol instance of this phyint. The remaining work is 16936 * done after entering the ipsq which may happen sometime later. 16937 */ 16938 ipif = ill->ill_ipif; 16939 16940 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16941 ipif_assign_seqid(ipif); 16942 16943 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16944 ill->ill_flags |= ILLF_IPV4; 16945 16946 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16947 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16948 16949 if (ill->ill_flags & ILLF_IPV6) { 16950 16951 ill->ill_isv6 = B_TRUE; 16952 ill_set_inputfn(ill); 16953 if (ill->ill_rq != NULL) { 16954 ill->ill_rq->q_qinfo = &iprinitv6; 16955 } 16956 16957 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16958 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16959 ipif->ipif_v6subnet = ipv6_all_zeros; 16960 ipif->ipif_v6net_mask = ipv6_all_zeros; 16961 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16962 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16963 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16964 /* 16965 * point-to-point or Non-mulicast capable 16966 * interfaces won't do NUD unless explicitly 16967 * configured to do so. 16968 */ 16969 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16970 !(ill->ill_flags & ILLF_MULTICAST)) { 16971 ill->ill_flags |= ILLF_NONUD; 16972 } 16973 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16974 if (ill->ill_flags & ILLF_NOARP) { 16975 /* 16976 * Note: xresolv interfaces will eventually need 16977 * NOARP set here as well, but that will require 16978 * those external resolvers to have some 16979 * knowledge of that flag and act appropriately. 16980 * Not to be changed at present. 16981 */ 16982 ill->ill_flags &= ~ILLF_NOARP; 16983 } 16984 /* 16985 * Set the ILLF_ROUTER flag according to the global 16986 * IPv6 forwarding policy. 16987 */ 16988 if (ipst->ips_ipv6_forwarding != 0) 16989 ill->ill_flags |= ILLF_ROUTER; 16990 } else if (ill->ill_flags & ILLF_IPV4) { 16991 ill->ill_isv6 = B_FALSE; 16992 ill_set_inputfn(ill); 16993 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16994 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16995 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16996 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16997 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16998 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16999 /* 17000 * Set the ILLF_ROUTER flag according to the global 17001 * IPv4 forwarding policy. 17002 */ 17003 if (ipst->ips_ip_forwarding != 0) 17004 ill->ill_flags |= ILLF_ROUTER; 17005 } 17006 17007 ASSERT(ill->ill_phyint != NULL); 17008 17009 /* 17010 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17011 * be completed in ill_glist_insert -> ill_phyint_reinit 17012 */ 17013 if (!ill_allocate_mibs(ill)) 17014 return (ENOMEM); 17015 17016 /* 17017 * Pick a default sap until we get the DL_INFO_ACK back from 17018 * the driver. 17019 */ 17020 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17021 ill->ill_media->ip_m_ipv4sap; 17022 17023 ill->ill_ifname_pending = 1; 17024 ill->ill_ifname_pending_err = 0; 17025 17026 /* 17027 * When the first ipif comes up in ipif_up_done(), multicast groups 17028 * that were joined while this ill was not bound to the DLPI link need 17029 * to be recovered by ill_recover_multicast(). 17030 */ 17031 ill->ill_need_recover_multicast = 1; 17032 17033 ill_refhold(ill); 17034 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17035 if ((error = ill_glist_insert(ill, interf_name, 17036 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17037 ill->ill_ppa = UINT_MAX; 17038 ill->ill_name[0] = '\0'; 17039 /* 17040 * undo null termination done above. 17041 */ 17042 ppa_ptr[0] = old_char; 17043 rw_exit(&ipst->ips_ill_g_lock); 17044 ill_refrele(ill); 17045 return (error); 17046 } 17047 17048 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17049 17050 /* 17051 * When we return the buffer pointed to by interf_name should contain 17052 * the same name as in ill_name. 17053 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17054 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17055 * so copy full name and update the ppa ptr. 17056 * When ppa passed in != UINT_MAX all values are correct just undo 17057 * null termination, this saves a bcopy. 17058 */ 17059 if (*new_ppa_ptr == UINT_MAX) { 17060 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17061 *new_ppa_ptr = ill->ill_ppa; 17062 } else { 17063 /* 17064 * undo null termination done above. 17065 */ 17066 ppa_ptr[0] = old_char; 17067 } 17068 17069 /* Let SCTP know about this ILL */ 17070 sctp_update_ill(ill, SCTP_ILL_INSERT); 17071 17072 /* 17073 * ill_glist_insert has made the ill visible globally, and 17074 * ill_phyint_reinit could have changed the ipsq. At this point, 17075 * we need to hold the ips_ill_g_lock across the call to enter the 17076 * ipsq to enforce atomicity and prevent reordering. In the event 17077 * the ipsq has changed, and if the new ipsq is currently busy, 17078 * we need to make sure that this half-completed ioctl is ahead of 17079 * any subsequent ioctl. We achieve this by not dropping the 17080 * ips_ill_g_lock which prevents any ill lookup itself thereby 17081 * ensuring that new ioctls can't start. 17082 */ 17083 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17084 B_TRUE); 17085 17086 rw_exit(&ipst->ips_ill_g_lock); 17087 ill_refrele(ill); 17088 if (ipsq == NULL) 17089 return (EINPROGRESS); 17090 17091 /* 17092 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17093 */ 17094 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17095 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17096 else 17097 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17098 17099 error = ipif_set_values_tail(ill, ipif, mp, q); 17100 ipsq_exit(ipsq); 17101 if (error != 0 && error != EINPROGRESS) { 17102 /* 17103 * restore previous values 17104 */ 17105 ill->ill_isv6 = B_FALSE; 17106 ill_set_inputfn(ill); 17107 } 17108 return (error); 17109 } 17110 17111 void 17112 ipif_init(ip_stack_t *ipst) 17113 { 17114 int i; 17115 17116 for (i = 0; i < MAX_G_HEADS; i++) { 17117 ipst->ips_ill_g_heads[i].ill_g_list_head = 17118 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17119 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17120 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17121 } 17122 17123 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17124 ill_phyint_compare_index, 17125 sizeof (phyint_t), 17126 offsetof(struct phyint, phyint_avl_by_index)); 17127 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17128 ill_phyint_compare_name, 17129 sizeof (phyint_t), 17130 offsetof(struct phyint, phyint_avl_by_name)); 17131 } 17132 17133 /* 17134 * Save enough information so that we can recreate the IRE if 17135 * the interface goes down and then up. 17136 */ 17137 void 17138 ill_save_ire(ill_t *ill, ire_t *ire) 17139 { 17140 mblk_t *save_mp; 17141 17142 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17143 if (save_mp != NULL) { 17144 ifrt_t *ifrt; 17145 17146 save_mp->b_wptr += sizeof (ifrt_t); 17147 ifrt = (ifrt_t *)save_mp->b_rptr; 17148 bzero(ifrt, sizeof (ifrt_t)); 17149 ifrt->ifrt_type = ire->ire_type; 17150 if (ire->ire_ipversion == IPV4_VERSION) { 17151 ASSERT(!ill->ill_isv6); 17152 ifrt->ifrt_addr = ire->ire_addr; 17153 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17154 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17155 ifrt->ifrt_mask = ire->ire_mask; 17156 } else { 17157 ASSERT(ill->ill_isv6); 17158 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17159 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17160 mutex_enter(&ire->ire_lock); 17161 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17162 mutex_exit(&ire->ire_lock); 17163 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17164 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17165 } 17166 ifrt->ifrt_flags = ire->ire_flags; 17167 ifrt->ifrt_zoneid = ire->ire_zoneid; 17168 mutex_enter(&ill->ill_saved_ire_lock); 17169 save_mp->b_cont = ill->ill_saved_ire_mp; 17170 ill->ill_saved_ire_mp = save_mp; 17171 ill->ill_saved_ire_cnt++; 17172 mutex_exit(&ill->ill_saved_ire_lock); 17173 } 17174 } 17175 17176 /* 17177 * Remove one entry from ill_saved_ire_mp. 17178 */ 17179 void 17180 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17181 { 17182 mblk_t **mpp; 17183 mblk_t *mp; 17184 ifrt_t *ifrt; 17185 17186 /* Remove from ill_saved_ire_mp list if it is there */ 17187 mutex_enter(&ill->ill_saved_ire_lock); 17188 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17189 mpp = &(*mpp)->b_cont) { 17190 in6_addr_t gw_addr_v6; 17191 17192 /* 17193 * On a given ill, the tuple of address, gateway, mask, 17194 * ire_type, and zoneid is unique for each saved IRE. 17195 */ 17196 mp = *mpp; 17197 ifrt = (ifrt_t *)mp->b_rptr; 17198 /* ire_gateway_addr_v6 can change - need lock */ 17199 mutex_enter(&ire->ire_lock); 17200 gw_addr_v6 = ire->ire_gateway_addr_v6; 17201 mutex_exit(&ire->ire_lock); 17202 17203 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17204 ifrt->ifrt_type != ire->ire_type) 17205 continue; 17206 17207 if (ill->ill_isv6 ? 17208 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17209 &ire->ire_addr_v6) && 17210 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17211 &gw_addr_v6) && 17212 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17213 &ire->ire_mask_v6)) : 17214 (ifrt->ifrt_addr == ire->ire_addr && 17215 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17216 ifrt->ifrt_mask == ire->ire_mask)) { 17217 *mpp = mp->b_cont; 17218 ill->ill_saved_ire_cnt--; 17219 freeb(mp); 17220 break; 17221 } 17222 } 17223 mutex_exit(&ill->ill_saved_ire_lock); 17224 } 17225 17226 /* 17227 * IP multirouting broadcast routes handling 17228 * Append CGTP broadcast IREs to regular ones created 17229 * at ifconfig time. 17230 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17231 * the destination and the gateway are broadcast addresses. 17232 * The caller has verified that the destination is an IRE_BROADCAST and that 17233 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17234 * we create a MULTIRT IRE_BROADCAST. 17235 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17236 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17237 */ 17238 static void 17239 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17240 { 17241 ire_t *ire_prim; 17242 17243 ASSERT(ire != NULL); 17244 17245 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17246 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17247 NULL); 17248 if (ire_prim != NULL) { 17249 /* 17250 * We are in the special case of broadcasts for 17251 * CGTP. We add an IRE_BROADCAST that holds 17252 * the RTF_MULTIRT flag, the destination 17253 * address and the low level 17254 * info of ire_prim. In other words, CGTP 17255 * broadcast is added to the redundant ipif. 17256 */ 17257 ill_t *ill_prim; 17258 ire_t *bcast_ire; 17259 17260 ill_prim = ire_prim->ire_ill; 17261 17262 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17263 (void *)ire_prim, (void *)ill_prim)); 17264 17265 bcast_ire = ire_create( 17266 (uchar_t *)&ire->ire_addr, 17267 (uchar_t *)&ip_g_all_ones, 17268 (uchar_t *)&ire->ire_gateway_addr, 17269 IRE_BROADCAST, 17270 ill_prim, 17271 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17272 ire->ire_flags | RTF_KERNEL, 17273 NULL, 17274 ipst); 17275 17276 /* 17277 * Here we assume that ire_add does head insertion so that 17278 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17279 */ 17280 if (bcast_ire != NULL) { 17281 if (ire->ire_flags & RTF_SETSRC) { 17282 bcast_ire->ire_setsrc_addr = 17283 ire->ire_setsrc_addr; 17284 } 17285 bcast_ire = ire_add(bcast_ire); 17286 if (bcast_ire != NULL) { 17287 ip2dbg(("ip_cgtp_filter_bcast_add: " 17288 "added bcast_ire %p\n", 17289 (void *)bcast_ire)); 17290 17291 ill_save_ire(ill_prim, bcast_ire); 17292 ire_refrele(bcast_ire); 17293 } 17294 } 17295 ire_refrele(ire_prim); 17296 } 17297 } 17298 17299 /* 17300 * IP multirouting broadcast routes handling 17301 * Remove the broadcast ire. 17302 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17303 * the destination and the gateway are broadcast addresses. 17304 * The caller has only verified that RTF_MULTIRT was set. We check 17305 * that the destination is broadcast and that the gateway is a broadcast 17306 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17307 */ 17308 static void 17309 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17310 { 17311 ASSERT(ire != NULL); 17312 17313 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17314 ire_t *ire_prim; 17315 17316 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17317 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17318 ipst, NULL); 17319 if (ire_prim != NULL) { 17320 ill_t *ill_prim; 17321 ire_t *bcast_ire; 17322 17323 ill_prim = ire_prim->ire_ill; 17324 17325 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17326 "ire_prim %p, ill_prim %p\n", 17327 (void *)ire_prim, (void *)ill_prim)); 17328 17329 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17330 ire->ire_gateway_addr, IRE_BROADCAST, 17331 ill_prim, ALL_ZONES, NULL, 17332 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17333 MATCH_IRE_MASK, 0, ipst, NULL); 17334 17335 if (bcast_ire != NULL) { 17336 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17337 "looked up bcast_ire %p\n", 17338 (void *)bcast_ire)); 17339 ill_remove_saved_ire(bcast_ire->ire_ill, 17340 bcast_ire); 17341 ire_delete(bcast_ire); 17342 ire_refrele(bcast_ire); 17343 } 17344 ire_refrele(ire_prim); 17345 } 17346 } 17347 } 17348 17349 /* 17350 * Derive an interface id from the link layer address. 17351 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17352 */ 17353 static void 17354 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17355 { 17356 char *addr; 17357 17358 /* 17359 * Note that some IPv6 interfaces get plumbed over links that claim to 17360 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17361 * PPP links). The ETHERADDRL check here ensures that we only set the 17362 * interface ID on IPv6 interfaces above links that actually have real 17363 * Ethernet addresses. 17364 */ 17365 if (ill->ill_phys_addr_length == ETHERADDRL) { 17366 /* Form EUI-64 like address */ 17367 addr = (char *)&v6addr->s6_addr32[2]; 17368 bcopy(ill->ill_phys_addr, addr, 3); 17369 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17370 addr[3] = (char)0xff; 17371 addr[4] = (char)0xfe; 17372 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17373 } 17374 } 17375 17376 /* ARGSUSED */ 17377 static void 17378 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17379 { 17380 } 17381 17382 typedef struct ipmp_ifcookie { 17383 uint32_t ic_hostid; 17384 char ic_ifname[LIFNAMSIZ]; 17385 char ic_zonename[ZONENAME_MAX]; 17386 } ipmp_ifcookie_t; 17387 17388 /* 17389 * Construct a pseudo-random interface ID for the IPMP interface that's both 17390 * predictable and (almost) guaranteed to be unique. 17391 */ 17392 static void 17393 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17394 { 17395 zone_t *zp; 17396 uint8_t *addr; 17397 uchar_t hash[16]; 17398 ulong_t hostid; 17399 MD5_CTX ctx; 17400 ipmp_ifcookie_t ic = { 0 }; 17401 17402 ASSERT(IS_IPMP(ill)); 17403 17404 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17405 ic.ic_hostid = htonl((uint32_t)hostid); 17406 17407 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17408 17409 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17410 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17411 zone_rele(zp); 17412 } 17413 17414 MD5Init(&ctx); 17415 MD5Update(&ctx, &ic, sizeof (ic)); 17416 MD5Final(hash, &ctx); 17417 17418 /* 17419 * Map the hash to an interface ID per the basic approach in RFC3041. 17420 */ 17421 addr = &v6addr->s6_addr8[8]; 17422 bcopy(hash + 8, addr, sizeof (uint64_t)); 17423 addr[0] &= ~0x2; /* set local bit */ 17424 } 17425 17426 /* 17427 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17428 */ 17429 static void 17430 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17431 { 17432 phyint_t *phyi = ill->ill_phyint; 17433 17434 /* 17435 * Check PHYI_MULTI_BCAST and length of physical 17436 * address to determine if we use the mapping or the 17437 * broadcast address. 17438 */ 17439 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17440 ill->ill_phys_addr_length != ETHERADDRL) { 17441 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17442 return; 17443 } 17444 m_physaddr[0] = 0x33; 17445 m_physaddr[1] = 0x33; 17446 m_physaddr[2] = m_ip6addr[12]; 17447 m_physaddr[3] = m_ip6addr[13]; 17448 m_physaddr[4] = m_ip6addr[14]; 17449 m_physaddr[5] = m_ip6addr[15]; 17450 } 17451 17452 /* 17453 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17454 */ 17455 static void 17456 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17457 { 17458 phyint_t *phyi = ill->ill_phyint; 17459 17460 /* 17461 * Check PHYI_MULTI_BCAST and length of physical 17462 * address to determine if we use the mapping or the 17463 * broadcast address. 17464 */ 17465 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17466 ill->ill_phys_addr_length != ETHERADDRL) { 17467 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17468 return; 17469 } 17470 m_physaddr[0] = 0x01; 17471 m_physaddr[1] = 0x00; 17472 m_physaddr[2] = 0x5e; 17473 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17474 m_physaddr[4] = m_ipaddr[2]; 17475 m_physaddr[5] = m_ipaddr[3]; 17476 } 17477 17478 /* ARGSUSED */ 17479 static void 17480 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17481 { 17482 /* 17483 * for the MULTI_BCAST case and other cases when we want to 17484 * use the link-layer broadcast address for multicast. 17485 */ 17486 uint8_t *bphys_addr; 17487 dl_unitdata_req_t *dlur; 17488 17489 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17490 if (ill->ill_sap_length < 0) { 17491 bphys_addr = (uchar_t *)dlur + 17492 dlur->dl_dest_addr_offset; 17493 } else { 17494 bphys_addr = (uchar_t *)dlur + 17495 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17496 } 17497 17498 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17499 } 17500 17501 /* 17502 * Derive IPoIB interface id from the link layer address. 17503 */ 17504 static void 17505 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17506 { 17507 char *addr; 17508 17509 ASSERT(ill->ill_phys_addr_length == 20); 17510 addr = (char *)&v6addr->s6_addr32[2]; 17511 bcopy(ill->ill_phys_addr + 12, addr, 8); 17512 /* 17513 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17514 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17515 * rules. In these cases, the IBA considers these GUIDs to be in 17516 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17517 * required; vendors are required not to assign global EUI-64's 17518 * that differ only in u/l bit values, thus guaranteeing uniqueness 17519 * of the interface identifier. Whether the GUID is in modified 17520 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17521 * bit set to 1. 17522 */ 17523 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17524 } 17525 17526 /* 17527 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17528 * Note on mapping from multicast IP addresses to IPoIB multicast link 17529 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17530 * The format of an IPoIB multicast address is: 17531 * 17532 * 4 byte QPN Scope Sign. Pkey 17533 * +--------------------------------------------+ 17534 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17535 * +--------------------------------------------+ 17536 * 17537 * The Scope and Pkey components are properties of the IBA port and 17538 * network interface. They can be ascertained from the broadcast address. 17539 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17540 */ 17541 static void 17542 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17543 { 17544 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17545 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17546 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17547 uint8_t *bphys_addr; 17548 dl_unitdata_req_t *dlur; 17549 17550 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17551 17552 /* 17553 * RFC 4391: IPv4 MGID is 28-bit long. 17554 */ 17555 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17556 m_physaddr[17] = m_ipaddr[1]; 17557 m_physaddr[18] = m_ipaddr[2]; 17558 m_physaddr[19] = m_ipaddr[3]; 17559 17560 17561 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17562 if (ill->ill_sap_length < 0) { 17563 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17564 } else { 17565 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17566 ill->ill_sap_length; 17567 } 17568 /* 17569 * Now fill in the IBA scope/Pkey values from the broadcast address. 17570 */ 17571 m_physaddr[5] = bphys_addr[5]; 17572 m_physaddr[8] = bphys_addr[8]; 17573 m_physaddr[9] = bphys_addr[9]; 17574 } 17575 17576 static void 17577 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17578 { 17579 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17580 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17581 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17582 uint8_t *bphys_addr; 17583 dl_unitdata_req_t *dlur; 17584 17585 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17586 17587 /* 17588 * RFC 4391: IPv4 MGID is 80-bit long. 17589 */ 17590 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17591 17592 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17593 if (ill->ill_sap_length < 0) { 17594 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17595 } else { 17596 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17597 ill->ill_sap_length; 17598 } 17599 /* 17600 * Now fill in the IBA scope/Pkey values from the broadcast address. 17601 */ 17602 m_physaddr[5] = bphys_addr[5]; 17603 m_physaddr[8] = bphys_addr[8]; 17604 m_physaddr[9] = bphys_addr[9]; 17605 } 17606 17607 /* 17608 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17609 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17610 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17611 * of RFC4213. 17612 */ 17613 static void 17614 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17615 { 17616 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17617 v6addr->s6_addr32[2] = 0; 17618 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17619 } 17620 17621 /* 17622 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17623 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17624 * id. 17625 */ 17626 static void 17627 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17628 { 17629 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17630 17631 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17632 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17633 } 17634 17635 static void 17636 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17637 { 17638 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17639 } 17640 17641 static void 17642 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17643 { 17644 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17645 } 17646 17647 static void 17648 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17649 { 17650 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17651 } 17652 17653 static void 17654 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17655 { 17656 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17657 } 17658 17659 /* 17660 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17661 * Returns an held ill, or NULL. 17662 */ 17663 ill_t * 17664 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17665 ip_stack_t *ipst) 17666 { 17667 ill_t *ill; 17668 ipif_t *ipif; 17669 17670 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17671 if (ill == NULL) 17672 return (NULL); 17673 17674 mutex_enter(&ill->ill_lock); 17675 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17676 if (IPIF_IS_CONDEMNED(ipif)) 17677 continue; 17678 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17679 ipif->ipif_zoneid != ALL_ZONES) 17680 continue; 17681 17682 mutex_exit(&ill->ill_lock); 17683 return (ill); 17684 } 17685 mutex_exit(&ill->ill_lock); 17686 ill_refrele(ill); 17687 return (NULL); 17688 } 17689 17690 /* 17691 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17692 * If a pointer to an ipif_t is returned then the caller will need to do 17693 * an ill_refrele(). 17694 */ 17695 ipif_t * 17696 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17697 ip_stack_t *ipst) 17698 { 17699 ipif_t *ipif; 17700 ill_t *ill; 17701 17702 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17703 if (ill == NULL) 17704 return (NULL); 17705 17706 mutex_enter(&ill->ill_lock); 17707 if (ill->ill_state_flags & ILL_CONDEMNED) { 17708 mutex_exit(&ill->ill_lock); 17709 ill_refrele(ill); 17710 return (NULL); 17711 } 17712 17713 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17714 if (!IPIF_CAN_LOOKUP(ipif)) 17715 continue; 17716 if (lifidx == ipif->ipif_id) { 17717 ipif_refhold_locked(ipif); 17718 break; 17719 } 17720 } 17721 17722 mutex_exit(&ill->ill_lock); 17723 ill_refrele(ill); 17724 return (ipif); 17725 } 17726 17727 /* 17728 * Set ill_inputfn based on the current know state. 17729 * This needs to be called when any of the factors taken into 17730 * account changes. 17731 */ 17732 void 17733 ill_set_inputfn(ill_t *ill) 17734 { 17735 ip_stack_t *ipst = ill->ill_ipst; 17736 17737 if (ill->ill_isv6) { 17738 if (is_system_labeled()) 17739 ill->ill_inputfn = ill_input_full_v6; 17740 else 17741 ill->ill_inputfn = ill_input_short_v6; 17742 } else { 17743 if (is_system_labeled()) 17744 ill->ill_inputfn = ill_input_full_v4; 17745 else if (ill->ill_dhcpinit != 0) 17746 ill->ill_inputfn = ill_input_full_v4; 17747 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17748 != NULL) 17749 ill->ill_inputfn = ill_input_full_v4; 17750 else if (ipst->ips_ip_cgtp_filter && 17751 ipst->ips_ip_cgtp_filter_ops != NULL) 17752 ill->ill_inputfn = ill_input_full_v4; 17753 else 17754 ill->ill_inputfn = ill_input_short_v4; 17755 } 17756 } 17757 17758 /* 17759 * Re-evaluate ill_inputfn for all the IPv4 ills. 17760 * Used when RSVP and CGTP comes and goes. 17761 */ 17762 void 17763 ill_set_inputfn_all(ip_stack_t *ipst) 17764 { 17765 ill_walk_context_t ctx; 17766 ill_t *ill; 17767 17768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17769 ill = ILL_START_WALK_V4(&ctx, ipst); 17770 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17771 ill_set_inputfn(ill); 17772 17773 rw_exit(&ipst->ips_ill_g_lock); 17774 } 17775 17776 /* 17777 * Set the physical address information for `ill' to the contents of the 17778 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17779 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17780 * EINPROGRESS will be returned. 17781 */ 17782 int 17783 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17784 { 17785 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17786 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17787 17788 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17789 17790 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17791 dlindp->dl_data != DL_CURR_DEST_ADDR && 17792 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17793 /* Changing DL_IPV6_TOKEN is not yet supported */ 17794 return (0); 17795 } 17796 17797 /* 17798 * We need to store up to two copies of `mp' in `ill'. Due to the 17799 * design of ipsq_pending_mp_add(), we can't pass them as separate 17800 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17801 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17802 */ 17803 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17804 freemsg(mp); 17805 return (ENOMEM); 17806 } 17807 17808 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17809 17810 /* 17811 * Since we'll only do a logical down, we can't rely on ipif_down 17812 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17813 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17814 * case, to quiesce ire's and nce's for ill_is_quiescent. 17815 */ 17816 mutex_enter(&ill->ill_lock); 17817 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17818 /* no more ire/nce addition allowed */ 17819 mutex_exit(&ill->ill_lock); 17820 17821 /* 17822 * If we can quiesce the ill, then set the address. If not, then 17823 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17824 */ 17825 ill_down_ipifs(ill, B_TRUE); 17826 mutex_enter(&ill->ill_lock); 17827 if (!ill_is_quiescent(ill)) { 17828 /* call cannot fail since `conn_t *' argument is NULL */ 17829 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17830 mp, ILL_DOWN); 17831 mutex_exit(&ill->ill_lock); 17832 return (EINPROGRESS); 17833 } 17834 mutex_exit(&ill->ill_lock); 17835 17836 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17837 return (0); 17838 } 17839 17840 /* 17841 * When the allowed-ips link property is set on the datalink, IP receives a 17842 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17843 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17844 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17845 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17846 * array. 17847 */ 17848 void 17849 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17850 { 17851 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17852 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17853 mac_protect_t *mrp; 17854 int i; 17855 17856 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17857 mrp = (mac_protect_t *)&dlip[1]; 17858 17859 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17860 kmem_free(ill->ill_allowed_ips, 17861 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17862 ill->ill_allowed_ips_cnt = 0; 17863 ill->ill_allowed_ips = NULL; 17864 mutex_enter(&ill->ill_phyint->phyint_lock); 17865 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17866 mutex_exit(&ill->ill_phyint->phyint_lock); 17867 return; 17868 } 17869 17870 if (ill->ill_allowed_ips != NULL) { 17871 kmem_free(ill->ill_allowed_ips, 17872 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17873 } 17874 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17875 ill->ill_allowed_ips = kmem_alloc( 17876 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17877 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17878 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17879 17880 mutex_enter(&ill->ill_phyint->phyint_lock); 17881 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17882 mutex_exit(&ill->ill_phyint->phyint_lock); 17883 } 17884 17885 /* 17886 * Once the ill associated with `q' has quiesced, set its physical address 17887 * information to the values in `addrmp'. Note that two copies of `addrmp' 17888 * are passed (linked by b_cont), since we sometimes need to save two distinct 17889 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17890 * failure (we'll free the other copy if it's not needed). Since the ill_t 17891 * is quiesced, we know any stale nce's with the old address information have 17892 * already been removed, so we don't need to call nce_flush(). 17893 */ 17894 /* ARGSUSED */ 17895 static void 17896 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17897 { 17898 ill_t *ill = q->q_ptr; 17899 mblk_t *addrmp2 = unlinkb(addrmp); 17900 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17901 uint_t addrlen, addroff; 17902 int status; 17903 17904 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17905 17906 addroff = dlindp->dl_addr_offset; 17907 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17908 17909 switch (dlindp->dl_data) { 17910 case DL_IPV6_LINK_LAYER_ADDR: 17911 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17912 freemsg(addrmp2); 17913 break; 17914 17915 case DL_CURR_DEST_ADDR: 17916 freemsg(ill->ill_dest_addr_mp); 17917 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17918 ill->ill_dest_addr_mp = addrmp; 17919 if (ill->ill_isv6) { 17920 ill_setdesttoken(ill); 17921 ipif_setdestlinklocal(ill->ill_ipif); 17922 } 17923 freemsg(addrmp2); 17924 break; 17925 17926 case DL_CURR_PHYS_ADDR: 17927 freemsg(ill->ill_phys_addr_mp); 17928 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17929 ill->ill_phys_addr_mp = addrmp; 17930 ill->ill_phys_addr_length = addrlen; 17931 if (ill->ill_isv6) 17932 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17933 else 17934 freemsg(addrmp2); 17935 if (ill->ill_isv6) { 17936 ill_setdefaulttoken(ill); 17937 ipif_setlinklocal(ill->ill_ipif); 17938 } 17939 break; 17940 default: 17941 ASSERT(0); 17942 } 17943 17944 /* 17945 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17946 * as we bring the ipifs up again. 17947 */ 17948 mutex_enter(&ill->ill_lock); 17949 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17950 mutex_exit(&ill->ill_lock); 17951 /* 17952 * If there are ipifs to bring up, ill_up_ipifs() will return 17953 * EINPROGRESS, and ipsq_current_finish() will be called by 17954 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17955 * brought up. 17956 */ 17957 status = ill_up_ipifs(ill, q, addrmp); 17958 if (status != EINPROGRESS) 17959 ipsq_current_finish(ipsq); 17960 } 17961 17962 /* 17963 * Helper routine for setting the ill_nd_lla fields. 17964 */ 17965 void 17966 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17967 { 17968 freemsg(ill->ill_nd_lla_mp); 17969 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17970 ill->ill_nd_lla_mp = ndmp; 17971 ill->ill_nd_lla_len = addrlen; 17972 } 17973 17974 /* 17975 * Replumb the ill. 17976 */ 17977 int 17978 ill_replumb(ill_t *ill, mblk_t *mp) 17979 { 17980 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17981 17982 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17983 17984 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17985 17986 /* 17987 * If we can quiesce the ill, then continue. If not, then 17988 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17989 */ 17990 ill_down_ipifs(ill, B_FALSE); 17991 17992 mutex_enter(&ill->ill_lock); 17993 if (!ill_is_quiescent(ill)) { 17994 /* call cannot fail since `conn_t *' argument is NULL */ 17995 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17996 mp, ILL_DOWN); 17997 mutex_exit(&ill->ill_lock); 17998 return (EINPROGRESS); 17999 } 18000 mutex_exit(&ill->ill_lock); 18001 18002 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18003 return (0); 18004 } 18005 18006 /* ARGSUSED */ 18007 static void 18008 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18009 { 18010 ill_t *ill = q->q_ptr; 18011 int err; 18012 conn_t *connp = NULL; 18013 18014 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18015 freemsg(ill->ill_replumb_mp); 18016 ill->ill_replumb_mp = copyb(mp); 18017 18018 if (ill->ill_replumb_mp == NULL) { 18019 /* out of memory */ 18020 ipsq_current_finish(ipsq); 18021 return; 18022 } 18023 18024 mutex_enter(&ill->ill_lock); 18025 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18026 ill->ill_rq, ill->ill_replumb_mp, 0); 18027 mutex_exit(&ill->ill_lock); 18028 18029 if (!ill->ill_up_ipifs) { 18030 /* already closing */ 18031 ipsq_current_finish(ipsq); 18032 return; 18033 } 18034 ill->ill_replumbing = 1; 18035 err = ill_down_ipifs_tail(ill); 18036 18037 /* 18038 * Successfully quiesced and brought down the interface, now we send 18039 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18040 * DL_NOTE_REPLUMB message. 18041 */ 18042 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18043 DL_NOTIFY_CONF); 18044 ASSERT(mp != NULL); 18045 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18046 DL_NOTE_REPLUMB_DONE; 18047 ill_dlpi_send(ill, mp); 18048 18049 /* 18050 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18051 * streams have to be unbound. When all the DLPI exchanges are done, 18052 * ipsq_current_finish() will be called by arp_bringup_done(). The 18053 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18054 * arp_bringup_done(). 18055 */ 18056 ASSERT(ill->ill_replumb_mp != NULL); 18057 if (err == EINPROGRESS) 18058 return; 18059 else 18060 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18061 ASSERT(connp == NULL); 18062 if (err == 0 && ill->ill_replumb_mp != NULL && 18063 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18064 return; 18065 } 18066 ipsq_current_finish(ipsq); 18067 } 18068 18069 /* 18070 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18071 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18072 * as per the ioctl. On failure, an errno is returned. 18073 */ 18074 static int 18075 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18076 { 18077 int rval; 18078 struct strioctl iocb; 18079 18080 iocb.ic_cmd = cmd; 18081 iocb.ic_timout = 15; 18082 iocb.ic_len = bufsize; 18083 iocb.ic_dp = buf; 18084 18085 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18086 } 18087 18088 /* 18089 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18090 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18091 */ 18092 static int 18093 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18094 uint_t *bufsizep, cred_t *cr) 18095 { 18096 int err; 18097 struct lifnum lifn; 18098 18099 bzero(&lifn, sizeof (lifn)); 18100 lifn.lifn_family = af; 18101 lifn.lifn_flags = LIFC_UNDER_IPMP; 18102 18103 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18104 return (err); 18105 18106 /* 18107 * Pad the interface count to account for additional interfaces that 18108 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18109 */ 18110 lifn.lifn_count += 4; 18111 bzero(lifcp, sizeof (*lifcp)); 18112 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18113 lifcp->lifc_family = af; 18114 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18115 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18116 18117 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18118 if (err != 0) { 18119 kmem_free(lifcp->lifc_buf, *bufsizep); 18120 return (err); 18121 } 18122 18123 return (0); 18124 } 18125 18126 /* 18127 * Helper for ip_interface_cleanup() that removes the loopback interface. 18128 */ 18129 static void 18130 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18131 { 18132 int err; 18133 struct lifreq lifr; 18134 18135 bzero(&lifr, sizeof (lifr)); 18136 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18137 18138 /* 18139 * Attempt to remove the interface. It may legitimately not exist 18140 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18141 */ 18142 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18143 if (err != 0 && err != ENXIO) { 18144 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18145 "error %d\n", isv6 ? "v6" : "v4", err)); 18146 } 18147 } 18148 18149 /* 18150 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18151 * groups and that IPMP data addresses are down. These conditions must be met 18152 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18153 */ 18154 static void 18155 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18156 { 18157 int af = isv6 ? AF_INET6 : AF_INET; 18158 int i, nifs; 18159 int err; 18160 uint_t bufsize; 18161 uint_t lifrsize = sizeof (struct lifreq); 18162 struct lifconf lifc; 18163 struct lifreq *lifrp; 18164 18165 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18166 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18167 "(error %d); any IPMP interfaces cannot be shutdown", err); 18168 return; 18169 } 18170 18171 nifs = lifc.lifc_len / lifrsize; 18172 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18173 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18174 if (err != 0) { 18175 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18176 "flags: error %d", lifrp->lifr_name, err); 18177 continue; 18178 } 18179 18180 if (lifrp->lifr_flags & IFF_IPMP) { 18181 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18182 continue; 18183 18184 lifrp->lifr_flags &= ~IFF_UP; 18185 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18186 if (err != 0) { 18187 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18188 "bring down (error %d); IPMP interface may " 18189 "not be shutdown", lifrp->lifr_name, err); 18190 } 18191 18192 /* 18193 * Check if IFF_DUPLICATE is still set -- and if so, 18194 * reset the address to clear it. 18195 */ 18196 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18197 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18198 continue; 18199 18200 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18201 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18202 lifrp, lifrsize, cr)) != 0) { 18203 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18204 "reset DAD (error %d); IPMP interface may " 18205 "not be shutdown", lifrp->lifr_name, err); 18206 } 18207 continue; 18208 } 18209 18210 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18211 lifrp->lifr_groupname[0] = '\0'; 18212 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18213 lifrsize, cr)) != 0) { 18214 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18215 "leave IPMP group (error %d); associated " 18216 "IPMP interface may not be shutdown", 18217 lifrp->lifr_name, err); 18218 continue; 18219 } 18220 } 18221 } 18222 18223 kmem_free(lifc.lifc_buf, bufsize); 18224 } 18225 18226 #define UDPDEV "/devices/pseudo/udp@0:udp" 18227 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18228 18229 /* 18230 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18231 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18232 * when the user-level processes in the zone are killed and the latter are 18233 * cleaned up by str_stack_shutdown(). 18234 */ 18235 void 18236 ip_interface_cleanup(ip_stack_t *ipst) 18237 { 18238 ldi_handle_t lh; 18239 ldi_ident_t li; 18240 cred_t *cr; 18241 int err; 18242 int i; 18243 char *devs[] = { UDP6DEV, UDPDEV }; 18244 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18245 18246 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18247 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18248 " error %d", err); 18249 return; 18250 } 18251 18252 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18253 ASSERT(cr != NULL); 18254 18255 /* 18256 * NOTE: loop executes exactly twice and is hardcoded to know that the 18257 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18258 * the loop.) 18259 */ 18260 for (i = 0; i < 2; i++) { 18261 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18262 if (err != 0) { 18263 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18264 " error %d", devs[i], err); 18265 continue; 18266 } 18267 18268 ip_loopback_removeif(lh, i == 0, cr); 18269 ip_ipmp_cleanup(lh, i == 0, cr); 18270 18271 (void) ldi_close(lh, FREAD|FWRITE, cr); 18272 } 18273 18274 ldi_ident_release(li); 18275 crfree(cr); 18276 } 18277 18278 /* 18279 * This needs to be in-sync with nic_event_t definition 18280 */ 18281 static const char * 18282 ill_hook_event2str(nic_event_t event) 18283 { 18284 switch (event) { 18285 case NE_PLUMB: 18286 return ("PLUMB"); 18287 case NE_UNPLUMB: 18288 return ("UNPLUMB"); 18289 case NE_UP: 18290 return ("UP"); 18291 case NE_DOWN: 18292 return ("DOWN"); 18293 case NE_ADDRESS_CHANGE: 18294 return ("ADDRESS_CHANGE"); 18295 case NE_LIF_UP: 18296 return ("LIF_UP"); 18297 case NE_LIF_DOWN: 18298 return ("LIF_DOWN"); 18299 case NE_IFINDEX_CHANGE: 18300 return ("IFINDEX_CHANGE"); 18301 default: 18302 return ("UNKNOWN"); 18303 } 18304 } 18305 18306 void 18307 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18308 nic_event_data_t data, size_t datalen) 18309 { 18310 ip_stack_t *ipst = ill->ill_ipst; 18311 hook_nic_event_int_t *info; 18312 const char *str = NULL; 18313 18314 /* create a new nic event info */ 18315 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18316 goto fail; 18317 18318 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18319 info->hnei_event.hne_lif = lif; 18320 info->hnei_event.hne_event = event; 18321 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18322 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18323 info->hnei_event.hne_data = NULL; 18324 info->hnei_event.hne_datalen = 0; 18325 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18326 18327 if (data != NULL && datalen != 0) { 18328 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18329 if (info->hnei_event.hne_data == NULL) 18330 goto fail; 18331 bcopy(data, info->hnei_event.hne_data, datalen); 18332 info->hnei_event.hne_datalen = datalen; 18333 } 18334 18335 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18336 DDI_NOSLEEP) == DDI_SUCCESS) 18337 return; 18338 18339 fail: 18340 if (info != NULL) { 18341 if (info->hnei_event.hne_data != NULL) { 18342 kmem_free(info->hnei_event.hne_data, 18343 info->hnei_event.hne_datalen); 18344 } 18345 kmem_free(info, sizeof (hook_nic_event_t)); 18346 } 18347 str = ill_hook_event2str(event); 18348 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18349 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18350 } 18351 18352 static int 18353 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18354 { 18355 int err = 0; 18356 const in_addr_t *addr = NULL; 18357 nce_t *nce = NULL; 18358 ill_t *ill = ipif->ipif_ill; 18359 ill_t *bound_ill; 18360 boolean_t added_ipif = B_FALSE; 18361 uint16_t state; 18362 uint16_t flags; 18363 18364 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18365 ill_t *, ill, ipif_t *, ipif); 18366 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18367 addr = &ipif->ipif_lcl_addr; 18368 } 18369 18370 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18371 if (res_act != Res_act_initial) 18372 return (EINVAL); 18373 } 18374 18375 if (addr != NULL) { 18376 ipmp_illgrp_t *illg = ill->ill_grp; 18377 18378 /* add unicast nce for the local addr */ 18379 18380 if (IS_IPMP(ill)) { 18381 /* 18382 * If we're here via ipif_up(), then the ipif 18383 * won't be bound yet -- add it to the group, 18384 * which will bind it if possible. (We would 18385 * add it in ipif_up(), but deleting on failure 18386 * there is gruesome.) If we're here via 18387 * ipmp_ill_bind_ipif(), then the ipif has 18388 * already been added to the group and we 18389 * just need to use the binding. 18390 */ 18391 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18392 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18393 if (bound_ill == NULL) { 18394 /* 18395 * We couldn't bind the ipif to an ill 18396 * yet, so we have nothing to publish. 18397 * Mark the address as ready and return. 18398 */ 18399 ipif->ipif_addr_ready = 1; 18400 return (0); 18401 } 18402 added_ipif = B_TRUE; 18403 } 18404 } else { 18405 bound_ill = ill; 18406 } 18407 18408 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18409 NCE_F_NONUD); 18410 /* 18411 * If this is an initial bring-up (or the ipif was never 18412 * completely brought up), do DAD. Otherwise, we're here 18413 * because IPMP has rebound an address to this ill: send 18414 * unsolicited advertisements (ARP announcements) to 18415 * inform others. 18416 */ 18417 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18418 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18419 } else { 18420 state = ND_REACHABLE; 18421 flags |= NCE_F_UNSOL_ADV; 18422 } 18423 18424 retry: 18425 err = nce_lookup_then_add_v4(ill, 18426 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18427 addr, flags, state, &nce); 18428 18429 /* 18430 * note that we may encounter EEXIST if we are moving 18431 * the nce as a result of a rebind operation. 18432 */ 18433 switch (err) { 18434 case 0: 18435 ipif->ipif_added_nce = 1; 18436 nce->nce_ipif_cnt++; 18437 break; 18438 case EEXIST: 18439 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18440 ill->ill_name)); 18441 if (!NCE_MYADDR(nce->nce_common)) { 18442 /* 18443 * A leftover nce from before this address 18444 * existed 18445 */ 18446 ncec_delete(nce->nce_common); 18447 nce_refrele(nce); 18448 nce = NULL; 18449 goto retry; 18450 } 18451 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18452 nce_refrele(nce); 18453 nce = NULL; 18454 ip1dbg(("ipif_arp_up: NCE already exists " 18455 "for %s:%u\n", ill->ill_name, 18456 ipif->ipif_id)); 18457 goto arp_up_done; 18458 } 18459 /* 18460 * Duplicate local addresses are permissible for 18461 * IPIF_POINTOPOINT interfaces which will get marked 18462 * IPIF_UNNUMBERED later in 18463 * ip_addr_availability_check(). 18464 * 18465 * The nce_ipif_cnt field tracks the number of 18466 * ipifs that have nce_addr as their local address. 18467 */ 18468 ipif->ipif_addr_ready = 1; 18469 ipif->ipif_added_nce = 1; 18470 nce->nce_ipif_cnt++; 18471 err = 0; 18472 break; 18473 default: 18474 ASSERT(nce == NULL); 18475 goto arp_up_done; 18476 } 18477 if (arp_no_defense) { 18478 if ((ipif->ipif_flags & IPIF_UP) && 18479 !ipif->ipif_addr_ready) 18480 ipif_up_notify(ipif); 18481 ipif->ipif_addr_ready = 1; 18482 } 18483 } else { 18484 /* zero address. nothing to publish */ 18485 ipif->ipif_addr_ready = 1; 18486 } 18487 if (nce != NULL) 18488 nce_refrele(nce); 18489 arp_up_done: 18490 if (added_ipif && err != 0) 18491 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18492 return (err); 18493 } 18494 18495 int 18496 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18497 { 18498 int err = 0; 18499 ill_t *ill = ipif->ipif_ill; 18500 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18501 18502 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18503 ill_t *, ill, ipif_t *, ipif); 18504 18505 /* 18506 * need to bring up ARP or setup mcast mapping only 18507 * when the first interface is coming UP. 18508 */ 18509 first_interface = (ill->ill_ipif_up_count == 0 && 18510 ill->ill_ipif_dup_count == 0 && !was_dup); 18511 18512 if (res_act == Res_act_initial && first_interface) { 18513 /* 18514 * Send ATTACH + BIND 18515 */ 18516 err = arp_ll_up(ill); 18517 if (err != EINPROGRESS && err != 0) 18518 return (err); 18519 18520 /* 18521 * Add NCE for local address. Start DAD. 18522 * we'll wait to hear that DAD has finished 18523 * before using the interface. 18524 */ 18525 if (err == EINPROGRESS) 18526 wait_for_dlpi = B_TRUE; 18527 } 18528 18529 if (!wait_for_dlpi) 18530 (void) ipif_arp_up_done_tail(ipif, res_act); 18531 18532 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18533 } 18534 18535 /* 18536 * Finish processing of "arp_up" after all the DLPI message 18537 * exchanges have completed between arp and the driver. 18538 */ 18539 void 18540 arp_bringup_done(ill_t *ill, int err) 18541 { 18542 mblk_t *mp1; 18543 ipif_t *ipif; 18544 conn_t *connp = NULL; 18545 ipsq_t *ipsq; 18546 queue_t *q; 18547 18548 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18549 18550 ASSERT(IAM_WRITER_ILL(ill)); 18551 18552 ipsq = ill->ill_phyint->phyint_ipsq; 18553 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18554 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18555 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18556 if (mp1 == NULL) /* bringup was aborted by the user */ 18557 return; 18558 18559 /* 18560 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18561 * must have an associated conn_t. Otherwise, we're bringing this 18562 * interface back up as part of handling an asynchronous event (e.g., 18563 * physical address change). 18564 */ 18565 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18566 ASSERT(connp != NULL); 18567 q = CONNP_TO_WQ(connp); 18568 } else { 18569 ASSERT(connp == NULL); 18570 q = ill->ill_rq; 18571 } 18572 if (err == 0) { 18573 if (ipif->ipif_isv6) { 18574 if ((err = ipif_up_done_v6(ipif)) != 0) 18575 ip0dbg(("arp_bringup_done: init failed\n")); 18576 } else { 18577 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18578 if (err != 0 || 18579 (err = ipif_up_done(ipif)) != 0) { 18580 ip0dbg(("arp_bringup_done: " 18581 "init failed err %x\n", err)); 18582 (void) ipif_arp_down(ipif); 18583 } 18584 18585 } 18586 } else { 18587 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18588 } 18589 18590 if ((err == 0) && (ill->ill_up_ipifs)) { 18591 err = ill_up_ipifs(ill, q, mp1); 18592 if (err == EINPROGRESS) 18593 return; 18594 } 18595 18596 /* 18597 * If we have a moved ipif to bring up, and everything has succeeded 18598 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18599 * down -- the admin can try to bring it up by hand if need be. 18600 */ 18601 if (ill->ill_move_ipif != NULL) { 18602 ipif = ill->ill_move_ipif; 18603 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18604 ipif->ipif_ill->ill_name)); 18605 ill->ill_move_ipif = NULL; 18606 if (err == 0) { 18607 err = ipif_up(ipif, q, mp1); 18608 if (err == EINPROGRESS) 18609 return; 18610 } 18611 } 18612 18613 /* 18614 * The operation must complete without EINPROGRESS since 18615 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18616 * Otherwise, the operation will be stuck forever in the ipsq. 18617 */ 18618 ASSERT(err != EINPROGRESS); 18619 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18620 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18621 int, ipsq->ipsq_xop->ipx_current_ioctl, 18622 ill_t *, ill, ipif_t *, ipif); 18623 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18624 } else { 18625 ipsq_current_finish(ipsq); 18626 } 18627 } 18628 18629 /* 18630 * Finish processing of arp replumb after all the DLPI message 18631 * exchanges have completed between arp and the driver. 18632 */ 18633 void 18634 arp_replumb_done(ill_t *ill, int err) 18635 { 18636 mblk_t *mp1; 18637 ipif_t *ipif; 18638 conn_t *connp = NULL; 18639 ipsq_t *ipsq; 18640 queue_t *q; 18641 18642 ASSERT(IAM_WRITER_ILL(ill)); 18643 18644 ipsq = ill->ill_phyint->phyint_ipsq; 18645 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18646 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18647 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18648 if (mp1 == NULL) { 18649 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18650 ipsq->ipsq_xop->ipx_current_ioctl)); 18651 /* bringup was aborted by the user */ 18652 return; 18653 } 18654 /* 18655 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18656 * must have an associated conn_t. Otherwise, we're bringing this 18657 * interface back up as part of handling an asynchronous event (e.g., 18658 * physical address change). 18659 */ 18660 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18661 ASSERT(connp != NULL); 18662 q = CONNP_TO_WQ(connp); 18663 } else { 18664 ASSERT(connp == NULL); 18665 q = ill->ill_rq; 18666 } 18667 if ((err == 0) && (ill->ill_up_ipifs)) { 18668 err = ill_up_ipifs(ill, q, mp1); 18669 if (err == EINPROGRESS) 18670 return; 18671 } 18672 /* 18673 * The operation must complete without EINPROGRESS since 18674 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18675 * Otherwise, the operation will be stuck forever in the ipsq. 18676 */ 18677 ASSERT(err != EINPROGRESS); 18678 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18679 DTRACE_PROBE4(ipif__ioctl, char *, 18680 "arp_replumb_done finish", 18681 int, ipsq->ipsq_xop->ipx_current_ioctl, 18682 ill_t *, ill, ipif_t *, ipif); 18683 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18684 } else { 18685 ipsq_current_finish(ipsq); 18686 } 18687 } 18688 18689 void 18690 ipif_up_notify(ipif_t *ipif) 18691 { 18692 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18693 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18694 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18695 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18696 NE_LIF_UP, NULL, 0); 18697 } 18698 18699 /* 18700 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18701 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18702 * TPI end points with STREAMS modules pushed above. This is assured by not 18703 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18704 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18705 * while unwinding from the ispq and that could be a thread from the bottom. 18706 */ 18707 /* ARGSUSED */ 18708 int 18709 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18710 ip_ioctl_cmd_t *ipip, void *arg) 18711 { 18712 mblk_t *cmd_mp = mp->b_cont->b_cont; 18713 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18714 int ret = 0; 18715 int i; 18716 size_t size; 18717 ip_stack_t *ipst; 18718 zoneid_t zoneid; 18719 ilb_stack_t *ilbs; 18720 18721 ipst = CONNQ_TO_IPST(q); 18722 ilbs = ipst->ips_netstack->netstack_ilb; 18723 zoneid = Q_TO_CONN(q)->conn_zoneid; 18724 18725 switch (command) { 18726 case ILB_CREATE_RULE: { 18727 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18728 18729 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18730 ret = EINVAL; 18731 break; 18732 } 18733 18734 ret = ilb_rule_add(ilbs, zoneid, cmd); 18735 break; 18736 } 18737 case ILB_DESTROY_RULE: 18738 case ILB_ENABLE_RULE: 18739 case ILB_DISABLE_RULE: { 18740 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18741 18742 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18743 ret = EINVAL; 18744 break; 18745 } 18746 18747 if (cmd->flags & ILB_RULE_ALLRULES) { 18748 if (command == ILB_DESTROY_RULE) { 18749 ilb_rule_del_all(ilbs, zoneid); 18750 break; 18751 } else if (command == ILB_ENABLE_RULE) { 18752 ilb_rule_enable_all(ilbs, zoneid); 18753 break; 18754 } else if (command == ILB_DISABLE_RULE) { 18755 ilb_rule_disable_all(ilbs, zoneid); 18756 break; 18757 } 18758 } else { 18759 if (command == ILB_DESTROY_RULE) { 18760 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18761 } else if (command == ILB_ENABLE_RULE) { 18762 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18763 NULL); 18764 } else if (command == ILB_DISABLE_RULE) { 18765 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18766 NULL); 18767 } 18768 } 18769 break; 18770 } 18771 case ILB_NUM_RULES: { 18772 ilb_num_rules_cmd_t *cmd; 18773 18774 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18775 ret = EINVAL; 18776 break; 18777 } 18778 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18779 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18780 break; 18781 } 18782 case ILB_RULE_NAMES: { 18783 ilb_rule_names_cmd_t *cmd; 18784 18785 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18786 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18787 cmd->num_names == 0) { 18788 ret = EINVAL; 18789 break; 18790 } 18791 size = cmd->num_names * ILB_RULE_NAMESZ; 18792 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18793 size != cmd_mp->b_wptr) { 18794 ret = EINVAL; 18795 break; 18796 } 18797 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18798 break; 18799 } 18800 case ILB_NUM_SERVERS: { 18801 ilb_num_servers_cmd_t *cmd; 18802 18803 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18804 ret = EINVAL; 18805 break; 18806 } 18807 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18808 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18809 &(cmd->num)); 18810 break; 18811 } 18812 case ILB_LIST_RULE: { 18813 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18814 18815 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18816 ret = EINVAL; 18817 break; 18818 } 18819 ret = ilb_rule_list(ilbs, zoneid, cmd); 18820 break; 18821 } 18822 case ILB_LIST_SERVERS: { 18823 ilb_servers_info_cmd_t *cmd; 18824 18825 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18826 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18827 cmd->num_servers == 0) { 18828 ret = EINVAL; 18829 break; 18830 } 18831 size = cmd->num_servers * sizeof (ilb_server_info_t); 18832 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18833 size != cmd_mp->b_wptr) { 18834 ret = EINVAL; 18835 break; 18836 } 18837 18838 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18839 &cmd->num_servers); 18840 break; 18841 } 18842 case ILB_ADD_SERVERS: { 18843 ilb_servers_info_cmd_t *cmd; 18844 ilb_rule_t *rule; 18845 18846 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18847 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18848 ret = EINVAL; 18849 break; 18850 } 18851 size = cmd->num_servers * sizeof (ilb_server_info_t); 18852 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18853 size != cmd_mp->b_wptr) { 18854 ret = EINVAL; 18855 break; 18856 } 18857 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18858 if (rule == NULL) { 18859 ASSERT(ret != 0); 18860 break; 18861 } 18862 for (i = 0; i < cmd->num_servers; i++) { 18863 ilb_server_info_t *s; 18864 18865 s = &cmd->servers[i]; 18866 s->err = ilb_server_add(ilbs, rule, s); 18867 } 18868 ILB_RULE_REFRELE(rule); 18869 break; 18870 } 18871 case ILB_DEL_SERVERS: 18872 case ILB_ENABLE_SERVERS: 18873 case ILB_DISABLE_SERVERS: { 18874 ilb_servers_cmd_t *cmd; 18875 ilb_rule_t *rule; 18876 int (*f)(); 18877 18878 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18879 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18880 ret = EINVAL; 18881 break; 18882 } 18883 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18884 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18885 size != cmd_mp->b_wptr) { 18886 ret = EINVAL; 18887 break; 18888 } 18889 18890 if (command == ILB_DEL_SERVERS) 18891 f = ilb_server_del; 18892 else if (command == ILB_ENABLE_SERVERS) 18893 f = ilb_server_enable; 18894 else if (command == ILB_DISABLE_SERVERS) 18895 f = ilb_server_disable; 18896 18897 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18898 if (rule == NULL) { 18899 ASSERT(ret != 0); 18900 break; 18901 } 18902 18903 for (i = 0; i < cmd->num_servers; i++) { 18904 ilb_server_arg_t *s; 18905 18906 s = &cmd->servers[i]; 18907 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18908 } 18909 ILB_RULE_REFRELE(rule); 18910 break; 18911 } 18912 case ILB_LIST_NAT_TABLE: { 18913 ilb_list_nat_cmd_t *cmd; 18914 18915 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18916 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18917 ret = EINVAL; 18918 break; 18919 } 18920 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18921 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18922 size != cmd_mp->b_wptr) { 18923 ret = EINVAL; 18924 break; 18925 } 18926 18927 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18928 &cmd->flags); 18929 break; 18930 } 18931 case ILB_LIST_STICKY_TABLE: { 18932 ilb_list_sticky_cmd_t *cmd; 18933 18934 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18935 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18936 ret = EINVAL; 18937 break; 18938 } 18939 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18940 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18941 size != cmd_mp->b_wptr) { 18942 ret = EINVAL; 18943 break; 18944 } 18945 18946 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18947 &cmd->num_sticky, &cmd->flags); 18948 break; 18949 } 18950 default: 18951 ret = EINVAL; 18952 break; 18953 } 18954 done: 18955 return (ret); 18956 } 18957 18958 /* Remove all cache entries for this logical interface */ 18959 void 18960 ipif_nce_down(ipif_t *ipif) 18961 { 18962 ill_t *ill = ipif->ipif_ill; 18963 nce_t *nce; 18964 18965 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18966 ill_t *, ill, ipif_t *, ipif); 18967 if (ipif->ipif_added_nce) { 18968 if (ipif->ipif_isv6) 18969 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18970 else 18971 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18972 if (nce != NULL) { 18973 if (--nce->nce_ipif_cnt == 0) 18974 ncec_delete(nce->nce_common); 18975 ipif->ipif_added_nce = 0; 18976 nce_refrele(nce); 18977 } else { 18978 /* 18979 * nce may already be NULL because it was already 18980 * flushed, e.g., due to a call to nce_flush 18981 */ 18982 ipif->ipif_added_nce = 0; 18983 } 18984 } 18985 /* 18986 * Make IPMP aware of the deleted data address. 18987 */ 18988 if (IS_IPMP(ill)) 18989 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18990 18991 /* 18992 * Remove all other nces dependent on this ill when the last ipif 18993 * is going away. 18994 */ 18995 if (ill->ill_ipif_up_count == 0) { 18996 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18997 (uchar_t *)ill, ill->ill_ipst); 18998 if (IS_UNDER_IPMP(ill)) 18999 nce_flush(ill, B_TRUE); 19000 } 19001 } 19002 19003 /* 19004 * find the first interface that uses usill for its source address. 19005 */ 19006 ill_t * 19007 ill_lookup_usesrc(ill_t *usill) 19008 { 19009 ip_stack_t *ipst = usill->ill_ipst; 19010 ill_t *ill; 19011 19012 ASSERT(usill != NULL); 19013 19014 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19015 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19016 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19017 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19018 ill = ill->ill_usesrc_grp_next) { 19019 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19020 !ILL_IS_CONDEMNED(ill)) { 19021 ill_refhold(ill); 19022 break; 19023 } 19024 } 19025 rw_exit(&ipst->ips_ill_g_lock); 19026 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19027 return (ill); 19028 } 19029 19030 /* 19031 * This comment applies to both ip_sioctl_get_ifhwaddr and 19032 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19033 * is the same. 19034 * 19035 * The goal here is to find an IP interface that corresponds to the name 19036 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19037 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19038 * mac address. 19039 * 19040 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19041 * of different reasons: 19042 * ENXIO - the device name is not known to IP. 19043 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19044 * by ill_phys_addr not pointing to an actual address. 19045 * EPFNOSUPPORT - this will indicate that a request is being made for a 19046 * mac address that will not fit in the data structure supplier (struct 19047 * sockaddr). 19048 * 19049 */ 19050 /* ARGSUSED */ 19051 int 19052 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19053 ip_ioctl_cmd_t *ipip, void *if_req) 19054 { 19055 struct sockaddr *sock; 19056 struct ifreq *ifr; 19057 mblk_t *mp1; 19058 ill_t *ill; 19059 19060 ASSERT(ipif != NULL); 19061 ill = ipif->ipif_ill; 19062 19063 if (ill->ill_phys_addr == NULL) { 19064 return (EADDRNOTAVAIL); 19065 } 19066 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19067 return (EPFNOSUPPORT); 19068 } 19069 19070 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19071 19072 /* Existence of mp1 has been checked in ip_wput_nondata */ 19073 mp1 = mp->b_cont->b_cont; 19074 ifr = (struct ifreq *)mp1->b_rptr; 19075 19076 sock = &ifr->ifr_addr; 19077 /* 19078 * The "family" field in the returned structure is set to a value 19079 * that represents the type of device to which the address belongs. 19080 * The value returned may differ to that on Linux but it will still 19081 * represent the correct symbol on Solaris. 19082 */ 19083 sock->sa_family = arp_hw_type(ill->ill_mactype); 19084 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19085 19086 return (0); 19087 } 19088 19089 /* 19090 * The expection of applications using SIOCGIFHWADDR is that data will 19091 * be returned in the sa_data field of the sockaddr structure. With 19092 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19093 * equivalent. In light of this, struct sockaddr_dl is used as it 19094 * offers more space for address storage in sll_data. 19095 */ 19096 /* ARGSUSED */ 19097 int 19098 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19099 ip_ioctl_cmd_t *ipip, void *if_req) 19100 { 19101 struct sockaddr_dl *sock; 19102 struct lifreq *lifr; 19103 mblk_t *mp1; 19104 ill_t *ill; 19105 19106 ASSERT(ipif != NULL); 19107 ill = ipif->ipif_ill; 19108 19109 if (ill->ill_phys_addr == NULL) { 19110 return (EADDRNOTAVAIL); 19111 } 19112 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19113 return (EPFNOSUPPORT); 19114 } 19115 19116 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19117 19118 /* Existence of mp1 has been checked in ip_wput_nondata */ 19119 mp1 = mp->b_cont->b_cont; 19120 lifr = (struct lifreq *)mp1->b_rptr; 19121 19122 /* 19123 * sockaddr_ll is used here because it is also the structure used in 19124 * responding to the same ioctl in sockpfp. The only other choice is 19125 * sockaddr_dl which contains fields that are not required here 19126 * because its purpose is different. 19127 */ 19128 lifr->lifr_type = ill->ill_type; 19129 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19130 sock->sdl_family = AF_LINK; 19131 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19132 sock->sdl_type = ill->ill_mactype; 19133 sock->sdl_nlen = 0; 19134 sock->sdl_slen = 0; 19135 sock->sdl_alen = ill->ill_phys_addr_length; 19136 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19137 19138 return (0); 19139 } 19140