1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strsubr.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 #include <sys/sunldi.h> 48 #include <sys/file.h> 49 #include <sys/bitmap.h> 50 #include <sys/cpuvar.h> 51 #include <sys/time.h> 52 #include <sys/ctype.h> 53 #include <sys/kmem.h> 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/socket.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <netinet/ip6.h> 66 #include <netinet/icmp6.h> 67 #include <netinet/igmp_var.h> 68 #include <sys/policy.h> 69 #include <sys/ethernet.h> 70 #include <sys/callb.h> 71 #include <sys/md5.h> 72 73 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 74 #include <inet/mi.h> 75 #include <inet/nd.h> 76 #include <inet/tunables.h> 77 #include <inet/arp.h> 78 #include <inet/ip_arp.h> 79 #include <inet/mib2.h> 80 #include <inet/ip.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_ftable.h> 87 #include <inet/ip_rts.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_impl.h> 91 #include <inet/sctp_ip.h> 92 #include <inet/ip_netinfo.h> 93 #include <inet/ilb_ip.h> 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac_client.h> 99 #include <sys/dld.h> 100 #include <sys/mac_flow.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 109 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 110 111 /* The character which tells where the ill_name ends */ 112 #define IPIF_SEPARATOR_CHAR ':' 113 114 /* IP ioctl function table entry */ 115 typedef struct ipft_s { 116 int ipft_cmd; 117 pfi_t ipft_pfi; 118 int ipft_min_size; 119 int ipft_flags; 120 } ipft_t; 121 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 122 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ill_is_quiescent(ill_t *); 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 144 int ioccmd, struct linkblk *li); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize, boolean_t insert, int *errorp); 155 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 156 static void ipif_delete_bcast_ires(ipif_t *ipif); 157 static int ipif_add_ires_v4(ipif_t *, boolean_t); 158 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 159 boolean_t isv6); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_set_default(ipif_t *ipif); 164 static int ipif_set_values(queue_t *q, mblk_t *mp, 165 char *interf_name, uint_t *ppa); 166 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 167 queue_t *q); 168 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 169 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 170 ip_stack_t *); 171 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 172 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 173 int *error, ip_stack_t *); 174 175 static int ill_alloc_ppa(ill_if_t *, ill_t *); 176 static void ill_delete_interface_type(ill_if_t *); 177 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 178 static void ill_dl_down(ill_t *ill); 179 static void ill_down(ill_t *ill); 180 static void ill_down_ipifs(ill_t *, boolean_t); 181 static void ill_free_mib(ill_t *ill); 182 static void ill_glist_delete(ill_t *); 183 static void ill_phyint_reinit(ill_t *ill); 184 static void ill_set_nce_router_flags(ill_t *, boolean_t); 185 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 186 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 187 188 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 189 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 190 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 191 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 192 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 193 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 194 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 195 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 196 static ip_v4mapinfo_func_t ip_mbcast_mapping; 197 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 198 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 199 static void phyint_free(phyint_t *); 200 201 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 205 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 207 dl_capability_sub_t *); 208 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 209 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 210 static void ill_capability_dld_ack(ill_t *, mblk_t *, 211 dl_capability_sub_t *); 212 static void ill_capability_dld_enable(ill_t *); 213 static void ill_capability_ack_thr(void *); 214 static void ill_capability_lso_enable(ill_t *); 215 216 static ill_t *ill_prev_usesrc(ill_t *); 217 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 218 static void ill_disband_usesrc_group(ill_t *); 219 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 220 221 #ifdef DEBUG 222 static void ill_trace_cleanup(const ill_t *); 223 static void ipif_trace_cleanup(const ipif_t *); 224 #endif 225 226 static void ill_dlpi_clear_deferred(ill_t *ill); 227 228 static void phyint_flags_init(phyint_t *, t_uscalar_t); 229 230 /* 231 * if we go over the memory footprint limit more than once in this msec 232 * interval, we'll start pruning aggressively. 233 */ 234 int ip_min_frag_prune_time = 0; 235 236 static ipft_t ip_ioctl_ftbl[] = { 237 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 238 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 239 IPFT_F_NO_REPLY }, 240 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 241 { 0 } 242 }; 243 244 /* Simple ICMP IP Header Template */ 245 static ipha_t icmp_ipha = { 246 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 247 }; 248 249 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 250 251 static ip_m_t ip_m_tbl[] = { 252 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 266 ip_nodef_v6intfid }, 267 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 269 ip_nodef_v6intfid }, 270 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 272 ip_ipv4_v6destintfid }, 273 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 275 ip_ipv6_v6destintfid }, 276 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 277 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 278 ip_nodef_v6intfid }, 279 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 280 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 281 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 282 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 283 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 284 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 285 ip_nodef_v6intfid } 286 }; 287 288 char ipif_loopback_name[] = "lo0"; 289 290 /* These are used by all IP network modules. */ 291 sin6_t sin6_null; /* Zero address for quick clears */ 292 sin_t sin_null; /* Zero address for quick clears */ 293 294 /* When set search for unused ipif_seqid */ 295 static ipif_t ipif_zero; 296 297 /* 298 * ppa arena is created after these many 299 * interfaces have been plumbed. 300 */ 301 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 302 303 /* 304 * Allocate per-interface mibs. 305 * Returns true if ok. False otherwise. 306 * ipsq may not yet be allocated (loopback case ). 307 */ 308 static boolean_t 309 ill_allocate_mibs(ill_t *ill) 310 { 311 /* Already allocated? */ 312 if (ill->ill_ip_mib != NULL) { 313 if (ill->ill_isv6) 314 ASSERT(ill->ill_icmp6_mib != NULL); 315 return (B_TRUE); 316 } 317 318 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 319 KM_NOSLEEP); 320 if (ill->ill_ip_mib == NULL) { 321 return (B_FALSE); 322 } 323 324 /* Setup static information */ 325 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 326 sizeof (mib2_ipIfStatsEntry_t)); 327 if (ill->ill_isv6) { 328 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 329 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 330 sizeof (mib2_ipv6AddrEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 332 sizeof (mib2_ipv6RouteEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 334 sizeof (mib2_ipv6NetToMediaEntry_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 336 sizeof (ipv6_member_t)); 337 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 338 sizeof (ipv6_grpsrc_t)); 339 } else { 340 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 341 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 342 sizeof (mib2_ipAddrEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 344 sizeof (mib2_ipRouteEntry_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 346 sizeof (mib2_ipNetToMediaEntry_t)); 347 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 348 sizeof (ip_member_t)); 349 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 350 sizeof (ip_grpsrc_t)); 351 352 /* 353 * For a v4 ill, we are done at this point, because per ill 354 * icmp mibs are only used for v6. 355 */ 356 return (B_TRUE); 357 } 358 359 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 360 KM_NOSLEEP); 361 if (ill->ill_icmp6_mib == NULL) { 362 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 363 ill->ill_ip_mib = NULL; 364 return (B_FALSE); 365 } 366 /* static icmp info */ 367 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 368 sizeof (mib2_ipv6IfIcmpEntry_t); 369 /* 370 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 371 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 372 * -> ill_phyint_reinit 373 */ 374 return (B_TRUE); 375 } 376 377 /* 378 * Completely vaporize a lower level tap and all associated interfaces. 379 * ill_delete is called only out of ip_close when the device control 380 * stream is being closed. 381 */ 382 void 383 ill_delete(ill_t *ill) 384 { 385 ipif_t *ipif; 386 ill_t *prev_ill; 387 ip_stack_t *ipst = ill->ill_ipst; 388 389 /* 390 * ill_delete may be forcibly entering the ipsq. The previous 391 * ioctl may not have completed and may need to be aborted. 392 * ipsq_flush takes care of it. If we don't need to enter the 393 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 394 * ill_delete_tail is sufficient. 395 */ 396 ipsq_flush(ill); 397 398 /* 399 * Nuke all interfaces. ipif_free will take down the interface, 400 * remove it from the list, and free the data structure. 401 * Walk down the ipif list and remove the logical interfaces 402 * first before removing the main ipif. We can't unplumb 403 * zeroth interface first in the case of IPv6 as update_conn_ill 404 * -> ip_ll_multireq de-references ill_ipif for checking 405 * POINTOPOINT. 406 * 407 * If ill_ipif was not properly initialized (i.e low on memory), 408 * then no interfaces to clean up. In this case just clean up the 409 * ill. 410 */ 411 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 412 ipif_free(ipif); 413 414 /* 415 * clean out all the nce_t entries that depend on this 416 * ill for the ill_phys_addr. 417 */ 418 nce_flush(ill, B_TRUE); 419 420 /* Clean up msgs on pending upcalls for mrouted */ 421 reset_mrt_ill(ill); 422 423 update_conn_ill(ill, ipst); 424 425 /* 426 * Remove multicast references added as a result of calls to 427 * ip_join_allmulti(). 428 */ 429 ip_purge_allmulti(ill); 430 431 /* 432 * If the ill being deleted is under IPMP, boot it out of the illgrp. 433 */ 434 if (IS_UNDER_IPMP(ill)) 435 ipmp_ill_leave_illgrp(ill); 436 437 /* 438 * ill_down will arrange to blow off any IRE's dependent on this 439 * ILL, and shut down fragmentation reassembly. 440 */ 441 ill_down(ill); 442 443 /* Let SCTP know, so that it can remove this from its list. */ 444 sctp_update_ill(ill, SCTP_ILL_REMOVE); 445 446 /* 447 * Walk all CONNs that can have a reference on an ire or nce for this 448 * ill (we actually walk all that now have stale references). 449 */ 450 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 451 452 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 453 if (ill->ill_isv6) 454 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 455 456 /* 457 * If an address on this ILL is being used as a source address then 458 * clear out the pointers in other ILLs that point to this ILL. 459 */ 460 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 461 if (ill->ill_usesrc_grp_next != NULL) { 462 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 463 ill_disband_usesrc_group(ill); 464 } else { /* consumer of the usesrc ILL */ 465 prev_ill = ill_prev_usesrc(ill); 466 prev_ill->ill_usesrc_grp_next = 467 ill->ill_usesrc_grp_next; 468 } 469 } 470 rw_exit(&ipst->ips_ill_g_usesrc_lock); 471 } 472 473 static void 474 ipif_non_duplicate(ipif_t *ipif) 475 { 476 ill_t *ill = ipif->ipif_ill; 477 mutex_enter(&ill->ill_lock); 478 if (ipif->ipif_flags & IPIF_DUPLICATE) { 479 ipif->ipif_flags &= ~IPIF_DUPLICATE; 480 ASSERT(ill->ill_ipif_dup_count > 0); 481 ill->ill_ipif_dup_count--; 482 } 483 mutex_exit(&ill->ill_lock); 484 } 485 486 /* 487 * ill_delete_tail is called from ip_modclose after all references 488 * to the closing ill are gone. The wait is done in ip_modclose 489 */ 490 void 491 ill_delete_tail(ill_t *ill) 492 { 493 mblk_t **mpp; 494 ipif_t *ipif; 495 ip_stack_t *ipst = ill->ill_ipst; 496 497 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 498 ipif_non_duplicate(ipif); 499 (void) ipif_down_tail(ipif); 500 } 501 502 ASSERT(ill->ill_ipif_dup_count == 0); 503 504 /* 505 * If polling capability is enabled (which signifies direct 506 * upcall into IP and driver has ill saved as a handle), 507 * we need to make sure that unbind has completed before we 508 * let the ill disappear and driver no longer has any reference 509 * to this ill. 510 */ 511 mutex_enter(&ill->ill_lock); 512 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 513 cv_wait(&ill->ill_cv, &ill->ill_lock); 514 mutex_exit(&ill->ill_lock); 515 ASSERT(!(ill->ill_capabilities & 516 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 517 518 if (ill->ill_net_type != IRE_LOOPBACK) 519 qprocsoff(ill->ill_rq); 520 521 /* 522 * We do an ipsq_flush once again now. New messages could have 523 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 524 * could also have landed up if an ioctl thread had looked up 525 * the ill before we set the ILL_CONDEMNED flag, but not yet 526 * enqueued the ioctl when we did the ipsq_flush last time. 527 */ 528 ipsq_flush(ill); 529 530 /* 531 * Free capabilities. 532 */ 533 if (ill->ill_hcksum_capab != NULL) { 534 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 535 ill->ill_hcksum_capab = NULL; 536 } 537 538 if (ill->ill_zerocopy_capab != NULL) { 539 kmem_free(ill->ill_zerocopy_capab, 540 sizeof (ill_zerocopy_capab_t)); 541 ill->ill_zerocopy_capab = NULL; 542 } 543 544 if (ill->ill_lso_capab != NULL) { 545 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 546 ill->ill_lso_capab = NULL; 547 } 548 549 if (ill->ill_dld_capab != NULL) { 550 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 551 ill->ill_dld_capab = NULL; 552 } 553 554 /* Clean up ill_allowed_ips* related state */ 555 if (ill->ill_allowed_ips != NULL) { 556 ASSERT(ill->ill_allowed_ips_cnt > 0); 557 kmem_free(ill->ill_allowed_ips, 558 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 559 ill->ill_allowed_ips = NULL; 560 ill->ill_allowed_ips_cnt = 0; 561 } 562 563 while (ill->ill_ipif != NULL) 564 ipif_free_tail(ill->ill_ipif); 565 566 /* 567 * We have removed all references to ilm from conn and the ones joined 568 * within the kernel. 569 * 570 * We don't walk conns, mrts and ires because 571 * 572 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 573 * 2) ill_down ->ill_downi walks all the ires and cleans up 574 * ill references. 575 */ 576 577 /* 578 * If this ill is an IPMP meta-interface, blow away the illgrp. This 579 * is safe to do because the illgrp has already been unlinked from the 580 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 581 */ 582 if (IS_IPMP(ill)) { 583 ipmp_illgrp_destroy(ill->ill_grp); 584 ill->ill_grp = NULL; 585 } 586 587 if (ill->ill_mphysaddr_list != NULL) { 588 multiphysaddr_t *mpa, *tmpa; 589 590 mpa = ill->ill_mphysaddr_list; 591 ill->ill_mphysaddr_list = NULL; 592 while (mpa) { 593 tmpa = mpa->mpa_next; 594 kmem_free(mpa, sizeof (*mpa)); 595 mpa = tmpa; 596 } 597 } 598 /* 599 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 600 * could free the phyint. No more reference to the phyint after this 601 * point. 602 */ 603 (void) ill_glist_delete(ill); 604 605 if (ill->ill_frag_ptr != NULL) { 606 uint_t count; 607 608 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 609 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 610 } 611 mi_free(ill->ill_frag_ptr); 612 ill->ill_frag_ptr = NULL; 613 ill->ill_frag_hash_tbl = NULL; 614 } 615 616 freemsg(ill->ill_nd_lla_mp); 617 /* Free all retained control messages. */ 618 mpp = &ill->ill_first_mp_to_free; 619 do { 620 while (mpp[0]) { 621 mblk_t *mp; 622 mblk_t *mp1; 623 624 mp = mpp[0]; 625 mpp[0] = mp->b_next; 626 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 627 mp1->b_next = NULL; 628 mp1->b_prev = NULL; 629 } 630 freemsg(mp); 631 } 632 } while (mpp++ != &ill->ill_last_mp_to_free); 633 634 ill_free_mib(ill); 635 636 #ifdef DEBUG 637 ill_trace_cleanup(ill); 638 #endif 639 640 /* The default multicast interface might have changed */ 641 ire_increment_multicast_generation(ipst, ill->ill_isv6); 642 643 /* Drop refcnt here */ 644 netstack_rele(ill->ill_ipst->ips_netstack); 645 ill->ill_ipst = NULL; 646 } 647 648 static void 649 ill_free_mib(ill_t *ill) 650 { 651 ip_stack_t *ipst = ill->ill_ipst; 652 653 /* 654 * MIB statistics must not be lost, so when an interface 655 * goes away the counter values will be added to the global 656 * MIBs. 657 */ 658 if (ill->ill_ip_mib != NULL) { 659 if (ill->ill_isv6) { 660 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 661 ill->ill_ip_mib); 662 } else { 663 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 664 ill->ill_ip_mib); 665 } 666 667 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 668 ill->ill_ip_mib = NULL; 669 } 670 if (ill->ill_icmp6_mib != NULL) { 671 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 672 ill->ill_icmp6_mib); 673 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 674 ill->ill_icmp6_mib = NULL; 675 } 676 } 677 678 /* 679 * Concatenate together a physical address and a sap. 680 * 681 * Sap_lengths are interpreted as follows: 682 * sap_length == 0 ==> no sap 683 * sap_length > 0 ==> sap is at the head of the dlpi address 684 * sap_length < 0 ==> sap is at the tail of the dlpi address 685 */ 686 static void 687 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 688 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 689 { 690 uint16_t sap_addr = (uint16_t)sap_src; 691 692 if (sap_length == 0) { 693 if (phys_src == NULL) 694 bzero(dst, phys_length); 695 else 696 bcopy(phys_src, dst, phys_length); 697 } else if (sap_length < 0) { 698 if (phys_src == NULL) 699 bzero(dst, phys_length); 700 else 701 bcopy(phys_src, dst, phys_length); 702 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 703 } else { 704 bcopy(&sap_addr, dst, sizeof (sap_addr)); 705 if (phys_src == NULL) 706 bzero((char *)dst + sap_length, phys_length); 707 else 708 bcopy(phys_src, (char *)dst + sap_length, phys_length); 709 } 710 } 711 712 /* 713 * Generate a dl_unitdata_req mblk for the device and address given. 714 * addr_length is the length of the physical portion of the address. 715 * If addr is NULL include an all zero address of the specified length. 716 * TRUE? In any case, addr_length is taken to be the entire length of the 717 * dlpi address, including the absolute value of sap_length. 718 */ 719 mblk_t * 720 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 721 t_scalar_t sap_length) 722 { 723 dl_unitdata_req_t *dlur; 724 mblk_t *mp; 725 t_scalar_t abs_sap_length; /* absolute value */ 726 727 abs_sap_length = ABS(sap_length); 728 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 729 DL_UNITDATA_REQ); 730 if (mp == NULL) 731 return (NULL); 732 dlur = (dl_unitdata_req_t *)mp->b_rptr; 733 /* HACK: accomodate incompatible DLPI drivers */ 734 if (addr_length == 8) 735 addr_length = 6; 736 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 737 dlur->dl_dest_addr_offset = sizeof (*dlur); 738 dlur->dl_priority.dl_min = 0; 739 dlur->dl_priority.dl_max = 0; 740 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 741 (uchar_t *)&dlur[1]); 742 return (mp); 743 } 744 745 /* 746 * Add the pending mp to the list. There can be only 1 pending mp 747 * in the list. Any exclusive ioctl that needs to wait for a response 748 * from another module or driver needs to use this function to set 749 * the ipx_pending_mp to the ioctl mblk and wait for the response from 750 * the other module/driver. This is also used while waiting for the 751 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 752 */ 753 boolean_t 754 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 755 int waitfor) 756 { 757 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 758 759 ASSERT(IAM_WRITER_IPIF(ipif)); 760 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 761 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 762 ASSERT(ipx->ipx_pending_mp == NULL); 763 /* 764 * The caller may be using a different ipif than the one passed into 765 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 766 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 767 * that `ipx_current_ipif == ipif'. 768 */ 769 ASSERT(ipx->ipx_current_ipif != NULL); 770 771 /* 772 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 773 * driver. 774 */ 775 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 776 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 777 (DB_TYPE(add_mp) == M_PCPROTO)); 778 779 if (connp != NULL) { 780 ASSERT(MUTEX_HELD(&connp->conn_lock)); 781 /* 782 * Return error if the conn has started closing. The conn 783 * could have finished cleaning up the pending mp list, 784 * If so we should not add another mp to the list negating 785 * the cleanup. 786 */ 787 if (connp->conn_state_flags & CONN_CLOSING) 788 return (B_FALSE); 789 } 790 mutex_enter(&ipx->ipx_lock); 791 ipx->ipx_pending_ipif = ipif; 792 /* 793 * Note down the queue in b_queue. This will be returned by 794 * ipsq_pending_mp_get. Caller will then use these values to restart 795 * the processing 796 */ 797 add_mp->b_next = NULL; 798 add_mp->b_queue = q; 799 ipx->ipx_pending_mp = add_mp; 800 ipx->ipx_waitfor = waitfor; 801 mutex_exit(&ipx->ipx_lock); 802 803 if (connp != NULL) 804 connp->conn_oper_pending_ill = ipif->ipif_ill; 805 806 return (B_TRUE); 807 } 808 809 /* 810 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 811 * queued in the list. 812 */ 813 mblk_t * 814 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 815 { 816 mblk_t *curr = NULL; 817 ipxop_t *ipx = ipsq->ipsq_xop; 818 819 *connpp = NULL; 820 mutex_enter(&ipx->ipx_lock); 821 if (ipx->ipx_pending_mp == NULL) { 822 mutex_exit(&ipx->ipx_lock); 823 return (NULL); 824 } 825 826 /* There can be only 1 such excl message */ 827 curr = ipx->ipx_pending_mp; 828 ASSERT(curr->b_next == NULL); 829 ipx->ipx_pending_ipif = NULL; 830 ipx->ipx_pending_mp = NULL; 831 ipx->ipx_waitfor = 0; 832 mutex_exit(&ipx->ipx_lock); 833 834 if (CONN_Q(curr->b_queue)) { 835 /* 836 * This mp did a refhold on the conn, at the start of the ioctl. 837 * So we can safely return a pointer to the conn to the caller. 838 */ 839 *connpp = Q_TO_CONN(curr->b_queue); 840 } else { 841 *connpp = NULL; 842 } 843 curr->b_next = NULL; 844 curr->b_prev = NULL; 845 return (curr); 846 } 847 848 /* 849 * Cleanup the ioctl mp queued in ipx_pending_mp 850 * - Called in the ill_delete path 851 * - Called in the M_ERROR or M_HANGUP path on the ill. 852 * - Called in the conn close path. 853 * 854 * Returns success on finding the pending mblk associated with the ioctl or 855 * exclusive operation in progress, failure otherwise. 856 */ 857 boolean_t 858 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 859 { 860 mblk_t *mp; 861 ipxop_t *ipx; 862 queue_t *q; 863 ipif_t *ipif; 864 int cmd; 865 866 ASSERT(IAM_WRITER_ILL(ill)); 867 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 868 869 mutex_enter(&ipx->ipx_lock); 870 mp = ipx->ipx_pending_mp; 871 if (connp != NULL) { 872 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 873 /* 874 * Nothing to clean since the conn that is closing 875 * does not have a matching pending mblk in 876 * ipx_pending_mp. 877 */ 878 mutex_exit(&ipx->ipx_lock); 879 return (B_FALSE); 880 } 881 } else { 882 /* 883 * A non-zero ill_error signifies we are called in the 884 * M_ERROR or M_HANGUP path and we need to unconditionally 885 * abort any current ioctl and do the corresponding cleanup. 886 * A zero ill_error means we are in the ill_delete path and 887 * we do the cleanup only if there is a pending mp. 888 */ 889 if (mp == NULL && ill->ill_error == 0) { 890 mutex_exit(&ipx->ipx_lock); 891 return (B_FALSE); 892 } 893 } 894 895 /* Now remove from the ipx_pending_mp */ 896 ipx->ipx_pending_mp = NULL; 897 ipif = ipx->ipx_pending_ipif; 898 ipx->ipx_pending_ipif = NULL; 899 ipx->ipx_waitfor = 0; 900 ipx->ipx_current_ipif = NULL; 901 cmd = ipx->ipx_current_ioctl; 902 ipx->ipx_current_ioctl = 0; 903 ipx->ipx_current_done = B_TRUE; 904 mutex_exit(&ipx->ipx_lock); 905 906 if (mp == NULL) 907 return (B_FALSE); 908 909 q = mp->b_queue; 910 mp->b_next = NULL; 911 mp->b_prev = NULL; 912 mp->b_queue = NULL; 913 914 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 915 DTRACE_PROBE4(ipif__ioctl, 916 char *, "ipsq_pending_mp_cleanup", 917 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 918 ipif_t *, ipif); 919 if (connp == NULL) { 920 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 921 } else { 922 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 923 mutex_enter(&ipif->ipif_ill->ill_lock); 924 ipif->ipif_state_flags &= ~IPIF_CHANGING; 925 mutex_exit(&ipif->ipif_ill->ill_lock); 926 } 927 } else { 928 inet_freemsg(mp); 929 } 930 return (B_TRUE); 931 } 932 933 /* 934 * Called in the conn close path and ill delete path 935 */ 936 static void 937 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 938 { 939 ipsq_t *ipsq; 940 mblk_t *prev; 941 mblk_t *curr; 942 mblk_t *next; 943 queue_t *wq, *rq = NULL; 944 mblk_t *tmp_list = NULL; 945 946 ASSERT(IAM_WRITER_ILL(ill)); 947 if (connp != NULL) 948 wq = CONNP_TO_WQ(connp); 949 else 950 wq = ill->ill_wq; 951 952 /* 953 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 954 * against this here. 955 */ 956 if (wq != NULL) 957 rq = RD(wq); 958 959 ipsq = ill->ill_phyint->phyint_ipsq; 960 /* 961 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 962 * In the case of ioctl from a conn, there can be only 1 mp 963 * queued on the ipsq. If an ill is being unplumbed flush all 964 * the messages. 965 */ 966 mutex_enter(&ipsq->ipsq_lock); 967 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 968 curr = next) { 969 next = curr->b_next; 970 if (connp == NULL || 971 (curr->b_queue == wq || curr->b_queue == rq)) { 972 /* Unlink the mblk from the pending mp list */ 973 if (prev != NULL) { 974 prev->b_next = curr->b_next; 975 } else { 976 ASSERT(ipsq->ipsq_xopq_mphead == curr); 977 ipsq->ipsq_xopq_mphead = curr->b_next; 978 } 979 if (ipsq->ipsq_xopq_mptail == curr) 980 ipsq->ipsq_xopq_mptail = prev; 981 /* 982 * Create a temporary list and release the ipsq lock 983 * New elements are added to the head of the tmp_list 984 */ 985 curr->b_next = tmp_list; 986 tmp_list = curr; 987 } else { 988 prev = curr; 989 } 990 } 991 mutex_exit(&ipsq->ipsq_lock); 992 993 while (tmp_list != NULL) { 994 curr = tmp_list; 995 tmp_list = curr->b_next; 996 curr->b_next = NULL; 997 curr->b_prev = NULL; 998 wq = curr->b_queue; 999 curr->b_queue = NULL; 1000 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1001 DTRACE_PROBE4(ipif__ioctl, 1002 char *, "ipsq_xopq_mp_cleanup", 1003 int, 0, ill_t *, NULL, ipif_t *, NULL); 1004 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1005 CONN_CLOSE : NO_COPYOUT, NULL); 1006 } else { 1007 /* 1008 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1009 * this can't be just inet_freemsg. we have to 1010 * restart it otherwise the thread will be stuck. 1011 */ 1012 inet_freemsg(curr); 1013 } 1014 } 1015 } 1016 1017 /* 1018 * This conn has started closing. Cleanup any pending ioctl from this conn. 1019 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1020 */ 1021 void 1022 conn_ioctl_cleanup(conn_t *connp) 1023 { 1024 ipsq_t *ipsq; 1025 ill_t *ill; 1026 boolean_t refheld; 1027 1028 /* 1029 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1030 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1031 * started the mp could be present in ipx_pending_mp. Note that if 1032 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1033 * not yet queued anywhere. In this case, the conn close code will wait 1034 * until the conn_ref is dropped. If the stream was a tcp stream, then 1035 * tcp_close will wait first until all ioctls have completed for this 1036 * conn. 1037 */ 1038 mutex_enter(&connp->conn_lock); 1039 ill = connp->conn_oper_pending_ill; 1040 if (ill == NULL) { 1041 mutex_exit(&connp->conn_lock); 1042 return; 1043 } 1044 1045 /* 1046 * We may not be able to refhold the ill if the ill/ipif 1047 * is changing. But we need to make sure that the ill will 1048 * not vanish. So we just bump up the ill_waiter count. 1049 */ 1050 refheld = ill_waiter_inc(ill); 1051 mutex_exit(&connp->conn_lock); 1052 if (refheld) { 1053 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1054 ill_waiter_dcr(ill); 1055 /* 1056 * Check whether this ioctl has started and is 1057 * pending. If it is not found there then check 1058 * whether this ioctl has not even started and is in 1059 * the ipsq_xopq list. 1060 */ 1061 if (!ipsq_pending_mp_cleanup(ill, connp)) 1062 ipsq_xopq_mp_cleanup(ill, connp); 1063 ipsq = ill->ill_phyint->phyint_ipsq; 1064 ipsq_exit(ipsq); 1065 return; 1066 } 1067 } 1068 1069 /* 1070 * The ill is also closing and we could not bump up the 1071 * ill_waiter_count or we could not enter the ipsq. Leave 1072 * the cleanup to ill_delete 1073 */ 1074 mutex_enter(&connp->conn_lock); 1075 while (connp->conn_oper_pending_ill != NULL) 1076 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1077 mutex_exit(&connp->conn_lock); 1078 if (refheld) 1079 ill_waiter_dcr(ill); 1080 } 1081 1082 /* 1083 * ipcl_walk function for cleaning up conn_*_ill fields. 1084 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1085 * conn_bound_if in place. We prefer dropping 1086 * packets instead of sending them out the wrong interface, or accepting 1087 * packets from the wrong ifindex. 1088 */ 1089 static void 1090 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1091 { 1092 ill_t *ill = (ill_t *)arg; 1093 1094 mutex_enter(&connp->conn_lock); 1095 if (connp->conn_dhcpinit_ill == ill) { 1096 connp->conn_dhcpinit_ill = NULL; 1097 ASSERT(ill->ill_dhcpinit != 0); 1098 atomic_dec_32(&ill->ill_dhcpinit); 1099 ill_set_inputfn(ill); 1100 } 1101 mutex_exit(&connp->conn_lock); 1102 } 1103 1104 static int 1105 ill_down_ipifs_tail(ill_t *ill) 1106 { 1107 ipif_t *ipif; 1108 int err; 1109 1110 ASSERT(IAM_WRITER_ILL(ill)); 1111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1112 ipif_non_duplicate(ipif); 1113 /* 1114 * ipif_down_tail will call arp_ll_down on the last ipif 1115 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1116 */ 1117 if ((err = ipif_down_tail(ipif)) != 0) 1118 return (err); 1119 } 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 void 1125 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1126 { 1127 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1128 (void) ill_down_ipifs_tail(q->q_ptr); 1129 freemsg(mp); 1130 ipsq_current_finish(ipsq); 1131 } 1132 1133 /* 1134 * ill_down_start is called when we want to down this ill and bring it up again 1135 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1136 * all interfaces, but don't tear down any plumbing. 1137 */ 1138 boolean_t 1139 ill_down_start(queue_t *q, mblk_t *mp) 1140 { 1141 ill_t *ill = q->q_ptr; 1142 ipif_t *ipif; 1143 1144 ASSERT(IAM_WRITER_ILL(ill)); 1145 /* 1146 * It is possible that some ioctl is already in progress while we 1147 * received the M_ERROR / M_HANGUP in which case, we need to abort 1148 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1149 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1150 * the in progress ioctl from ever completing. 1151 * 1152 * The thread that started the ioctl (if any) must have returned, 1153 * since we are now executing as writer. After the 2 calls below, 1154 * the state of the ipsq and the ill would reflect no trace of any 1155 * pending operation. Subsequently if there is any response to the 1156 * original ioctl from the driver, it would be discarded as an 1157 * unsolicited message from the driver. 1158 */ 1159 (void) ipsq_pending_mp_cleanup(ill, NULL); 1160 ill_dlpi_clear_deferred(ill); 1161 1162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1163 (void) ipif_down(ipif, NULL, NULL); 1164 1165 ill_down(ill); 1166 1167 /* 1168 * Walk all CONNs that can have a reference on an ire or nce for this 1169 * ill (we actually walk all that now have stale references). 1170 */ 1171 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1172 1173 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1174 if (ill->ill_isv6) 1175 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1176 1177 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1178 1179 /* 1180 * Atomically test and add the pending mp if references are active. 1181 */ 1182 mutex_enter(&ill->ill_lock); 1183 if (!ill_is_quiescent(ill)) { 1184 /* call cannot fail since `conn_t *' argument is NULL */ 1185 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1186 mp, ILL_DOWN); 1187 mutex_exit(&ill->ill_lock); 1188 return (B_FALSE); 1189 } 1190 mutex_exit(&ill->ill_lock); 1191 return (B_TRUE); 1192 } 1193 1194 static void 1195 ill_down(ill_t *ill) 1196 { 1197 mblk_t *mp; 1198 ip_stack_t *ipst = ill->ill_ipst; 1199 1200 /* 1201 * Blow off any IREs dependent on this ILL. 1202 * The caller needs to handle conn_ixa_cleanup 1203 */ 1204 ill_delete_ires(ill); 1205 1206 ire_walk_ill(0, 0, ill_downi, ill, ill); 1207 1208 /* Remove any conn_*_ill depending on this ill */ 1209 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1210 1211 /* 1212 * Free state for additional IREs. 1213 */ 1214 mutex_enter(&ill->ill_saved_ire_lock); 1215 mp = ill->ill_saved_ire_mp; 1216 ill->ill_saved_ire_mp = NULL; 1217 ill->ill_saved_ire_cnt = 0; 1218 mutex_exit(&ill->ill_saved_ire_lock); 1219 freemsg(mp); 1220 } 1221 1222 /* 1223 * ire_walk routine used to delete every IRE that depends on 1224 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1225 * 1226 * Note: since the routes added by the kernel are deleted separately, 1227 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1228 * 1229 * We also remove references on ire_nce_cache entries that refer to the ill. 1230 */ 1231 void 1232 ill_downi(ire_t *ire, char *ill_arg) 1233 { 1234 ill_t *ill = (ill_t *)ill_arg; 1235 nce_t *nce; 1236 1237 mutex_enter(&ire->ire_lock); 1238 nce = ire->ire_nce_cache; 1239 if (nce != NULL && nce->nce_ill == ill) 1240 ire->ire_nce_cache = NULL; 1241 else 1242 nce = NULL; 1243 mutex_exit(&ire->ire_lock); 1244 if (nce != NULL) 1245 nce_refrele(nce); 1246 if (ire->ire_ill == ill) { 1247 /* 1248 * The existing interface binding for ire must be 1249 * deleted before trying to bind the route to another 1250 * interface. However, since we are using the contents of the 1251 * ire after ire_delete, the caller has to ensure that 1252 * CONDEMNED (deleted) ire's are not removed from the list 1253 * when ire_delete() returns. Currently ill_downi() is 1254 * only called as part of ire_walk*() routines, so that 1255 * the irb_refhold() done by ire_walk*() will ensure that 1256 * ire_delete() does not lead to ire_inactive(). 1257 */ 1258 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1259 ire_delete(ire); 1260 if (ire->ire_unbound) 1261 ire_rebind(ire); 1262 } 1263 } 1264 1265 /* Remove IRE_IF_CLONE on this ill */ 1266 void 1267 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1268 { 1269 ill_t *ill = (ill_t *)ill_arg; 1270 1271 ASSERT(ire->ire_type & IRE_IF_CLONE); 1272 if (ire->ire_ill == ill) 1273 ire_delete(ire); 1274 } 1275 1276 /* Consume an M_IOCACK of the fastpath probe. */ 1277 void 1278 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1279 { 1280 mblk_t *mp1 = mp; 1281 1282 /* 1283 * If this was the first attempt turn on the fastpath probing. 1284 */ 1285 mutex_enter(&ill->ill_lock); 1286 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1287 ill->ill_dlpi_fastpath_state = IDS_OK; 1288 mutex_exit(&ill->ill_lock); 1289 1290 /* Free the M_IOCACK mblk, hold on to the data */ 1291 mp = mp->b_cont; 1292 freeb(mp1); 1293 if (mp == NULL) 1294 return; 1295 if (mp->b_cont != NULL) 1296 nce_fastpath_update(ill, mp); 1297 else 1298 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1299 freemsg(mp); 1300 } 1301 1302 /* 1303 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1304 * The data portion of the request is a dl_unitdata_req_t template for 1305 * what we would send downstream in the absence of a fastpath confirmation. 1306 */ 1307 int 1308 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1309 { 1310 struct iocblk *ioc; 1311 mblk_t *mp; 1312 1313 if (dlur_mp == NULL) 1314 return (EINVAL); 1315 1316 mutex_enter(&ill->ill_lock); 1317 switch (ill->ill_dlpi_fastpath_state) { 1318 case IDS_FAILED: 1319 /* 1320 * Driver NAKed the first fastpath ioctl - assume it doesn't 1321 * support it. 1322 */ 1323 mutex_exit(&ill->ill_lock); 1324 return (ENOTSUP); 1325 case IDS_UNKNOWN: 1326 /* This is the first probe */ 1327 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1328 break; 1329 default: 1330 break; 1331 } 1332 mutex_exit(&ill->ill_lock); 1333 1334 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1335 return (EAGAIN); 1336 1337 mp->b_cont = copyb(dlur_mp); 1338 if (mp->b_cont == NULL) { 1339 freeb(mp); 1340 return (EAGAIN); 1341 } 1342 1343 ioc = (struct iocblk *)mp->b_rptr; 1344 ioc->ioc_count = msgdsize(mp->b_cont); 1345 1346 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1347 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1348 putnext(ill->ill_wq, mp); 1349 return (0); 1350 } 1351 1352 void 1353 ill_capability_probe(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 1357 ASSERT(IAM_WRITER_ILL(ill)); 1358 1359 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1360 ill->ill_dlpi_capab_state != IDCS_FAILED) 1361 return; 1362 1363 /* 1364 * We are starting a new cycle of capability negotiation. 1365 * Free up the capab reset messages of any previous incarnation. 1366 * We will do a fresh allocation when we get the response to our probe 1367 */ 1368 if (ill->ill_capab_reset_mp != NULL) { 1369 freemsg(ill->ill_capab_reset_mp); 1370 ill->ill_capab_reset_mp = NULL; 1371 } 1372 1373 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1374 1375 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1376 if (mp == NULL) 1377 return; 1378 1379 ill_capability_send(ill, mp); 1380 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1381 } 1382 1383 void 1384 ill_capability_reset(ill_t *ill, boolean_t reneg) 1385 { 1386 ASSERT(IAM_WRITER_ILL(ill)); 1387 1388 if (ill->ill_dlpi_capab_state != IDCS_OK) 1389 return; 1390 1391 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1392 1393 ill_capability_send(ill, ill->ill_capab_reset_mp); 1394 ill->ill_capab_reset_mp = NULL; 1395 /* 1396 * We turn off all capabilities except those pertaining to 1397 * direct function call capabilities viz. ILL_CAPAB_DLD* 1398 * which will be turned off by the corresponding reset functions. 1399 */ 1400 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1401 } 1402 1403 static void 1404 ill_capability_reset_alloc(ill_t *ill) 1405 { 1406 mblk_t *mp; 1407 size_t size = 0; 1408 int err; 1409 dl_capability_req_t *capb; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 ASSERT(ill->ill_capab_reset_mp == NULL); 1413 1414 if (ILL_HCKSUM_CAPABLE(ill)) { 1415 size += sizeof (dl_capability_sub_t) + 1416 sizeof (dl_capab_hcksum_t); 1417 } 1418 1419 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1420 size += sizeof (dl_capability_sub_t) + 1421 sizeof (dl_capab_zerocopy_t); 1422 } 1423 1424 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1425 size += sizeof (dl_capability_sub_t) + 1426 sizeof (dl_capab_dld_t); 1427 } 1428 1429 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1430 STR_NOSIG, &err); 1431 1432 mp->b_datap->db_type = M_PROTO; 1433 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1434 1435 capb = (dl_capability_req_t *)mp->b_rptr; 1436 capb->dl_primitive = DL_CAPABILITY_REQ; 1437 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1438 capb->dl_sub_length = size; 1439 1440 mp->b_wptr += sizeof (dl_capability_req_t); 1441 1442 /* 1443 * Each handler fills in the corresponding dl_capability_sub_t 1444 * inside the mblk, 1445 */ 1446 ill_capability_hcksum_reset_fill(ill, mp); 1447 ill_capability_zerocopy_reset_fill(ill, mp); 1448 ill_capability_dld_reset_fill(ill, mp); 1449 1450 ill->ill_capab_reset_mp = mp; 1451 } 1452 1453 static void 1454 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1455 { 1456 dl_capab_id_t *id_ic; 1457 uint_t sub_dl_cap = outers->dl_cap; 1458 dl_capability_sub_t *inners; 1459 uint8_t *capend; 1460 1461 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1462 1463 /* 1464 * Note: range checks here are not absolutely sufficient to 1465 * make us robust against malformed messages sent by drivers; 1466 * this is in keeping with the rest of IP's dlpi handling. 1467 * (Remember, it's coming from something else in the kernel 1468 * address space) 1469 */ 1470 1471 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1472 if (capend > mp->b_wptr) { 1473 cmn_err(CE_WARN, "ill_capability_id_ack: " 1474 "malformed sub-capability too long for mblk"); 1475 return; 1476 } 1477 1478 id_ic = (dl_capab_id_t *)(outers + 1); 1479 1480 if (outers->dl_length < sizeof (*id_ic) || 1481 (inners = &id_ic->id_subcap, 1482 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1483 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1484 "encapsulated capab type %d too long for mblk", 1485 inners->dl_cap); 1486 return; 1487 } 1488 1489 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1490 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1491 "isn't as expected; pass-thru module(s) detected, " 1492 "discarding capability\n", inners->dl_cap)); 1493 return; 1494 } 1495 1496 /* Process the encapsulated sub-capability */ 1497 ill_capability_dispatch(ill, mp, inners); 1498 } 1499 1500 static void 1501 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1502 { 1503 dl_capability_sub_t *dl_subcap; 1504 1505 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1506 return; 1507 1508 /* 1509 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1510 * initialized below since it is not used by DLD. 1511 */ 1512 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1513 dl_subcap->dl_cap = DL_CAPAB_DLD; 1514 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1515 1516 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1517 } 1518 1519 static void 1520 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1521 { 1522 /* 1523 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1524 * is only to get the VRRP capability. 1525 * 1526 * Note that we cannot check ill_ipif_up_count here since 1527 * ill_ipif_up_count is only incremented when the resolver is setup. 1528 * That is done asynchronously, and can race with this function. 1529 */ 1530 if (!ill->ill_dl_up) { 1531 if (subp->dl_cap == DL_CAPAB_VRRP) 1532 ill_capability_vrrp_ack(ill, mp, subp); 1533 return; 1534 } 1535 1536 switch (subp->dl_cap) { 1537 case DL_CAPAB_HCKSUM: 1538 ill_capability_hcksum_ack(ill, mp, subp); 1539 break; 1540 case DL_CAPAB_ZEROCOPY: 1541 ill_capability_zerocopy_ack(ill, mp, subp); 1542 break; 1543 case DL_CAPAB_DLD: 1544 ill_capability_dld_ack(ill, mp, subp); 1545 break; 1546 case DL_CAPAB_VRRP: 1547 break; 1548 default: 1549 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1550 subp->dl_cap)); 1551 } 1552 } 1553 1554 /* 1555 * Process the vrrp capability received from a DLS Provider. isub must point 1556 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1557 */ 1558 static void 1559 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1560 { 1561 dl_capab_vrrp_t *vrrp; 1562 uint_t sub_dl_cap = isub->dl_cap; 1563 uint8_t *capend; 1564 1565 ASSERT(IAM_WRITER_ILL(ill)); 1566 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1567 1568 /* 1569 * Note: range checks here are not absolutely sufficient to 1570 * make us robust against malformed messages sent by drivers; 1571 * this is in keeping with the rest of IP's dlpi handling. 1572 * (Remember, it's coming from something else in the kernel 1573 * address space) 1574 */ 1575 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1576 if (capend > mp->b_wptr) { 1577 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1578 "malformed sub-capability too long for mblk"); 1579 return; 1580 } 1581 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1582 1583 /* 1584 * Compare the IP address family and set ILLF_VRRP for the right ill. 1585 */ 1586 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1587 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1588 ill->ill_flags |= ILLF_VRRP; 1589 } 1590 } 1591 1592 /* 1593 * Process a hardware checksum offload capability negotiation ack received 1594 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1595 * of a DL_CAPABILITY_ACK message. 1596 */ 1597 static void 1598 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1599 { 1600 dl_capability_req_t *ocap; 1601 dl_capab_hcksum_t *ihck, *ohck; 1602 ill_hcksum_capab_t **ill_hcksum; 1603 mblk_t *nmp = NULL; 1604 uint_t sub_dl_cap = isub->dl_cap; 1605 uint8_t *capend; 1606 1607 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1608 1609 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1610 1611 /* 1612 * Note: range checks here are not absolutely sufficient to 1613 * make us robust against malformed messages sent by drivers; 1614 * this is in keeping with the rest of IP's dlpi handling. 1615 * (Remember, it's coming from something else in the kernel 1616 * address space) 1617 */ 1618 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1619 if (capend > mp->b_wptr) { 1620 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1621 "malformed sub-capability too long for mblk"); 1622 return; 1623 } 1624 1625 /* 1626 * There are two types of acks we process here: 1627 * 1. acks in reply to a (first form) generic capability req 1628 * (no ENABLE flag set) 1629 * 2. acks in reply to a ENABLE capability req. 1630 * (ENABLE flag set) 1631 */ 1632 ihck = (dl_capab_hcksum_t *)(isub + 1); 1633 1634 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1635 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1636 "unsupported hardware checksum " 1637 "sub-capability (version %d, expected %d)", 1638 ihck->hcksum_version, HCKSUM_VERSION_1); 1639 return; 1640 } 1641 1642 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1643 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1644 "checksum capability isn't as expected; pass-thru " 1645 "module(s) detected, discarding capability\n")); 1646 return; 1647 } 1648 1649 #define CURR_HCKSUM_CAPAB \ 1650 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1651 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1652 1653 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1654 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1655 /* do ENABLE processing */ 1656 if (*ill_hcksum == NULL) { 1657 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1658 KM_NOSLEEP); 1659 1660 if (*ill_hcksum == NULL) { 1661 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1662 "could not enable hcksum version %d " 1663 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1664 ill->ill_name); 1665 return; 1666 } 1667 } 1668 1669 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1670 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1671 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1672 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1673 "has enabled hardware checksumming\n ", 1674 ill->ill_name)); 1675 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1676 /* 1677 * Enabling hardware checksum offload 1678 * Currently IP supports {TCP,UDP}/IPv4 1679 * partial and full cksum offload and 1680 * IPv4 header checksum offload. 1681 * Allocate new mblk which will 1682 * contain a new capability request 1683 * to enable hardware checksum offload. 1684 */ 1685 uint_t size; 1686 uchar_t *rptr; 1687 1688 size = sizeof (dl_capability_req_t) + 1689 sizeof (dl_capability_sub_t) + isub->dl_length; 1690 1691 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1692 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1693 "could not enable hardware cksum for %s (ENOMEM)\n", 1694 ill->ill_name); 1695 return; 1696 } 1697 1698 rptr = nmp->b_rptr; 1699 /* initialize dl_capability_req_t */ 1700 ocap = (dl_capability_req_t *)nmp->b_rptr; 1701 ocap->dl_sub_offset = 1702 sizeof (dl_capability_req_t); 1703 ocap->dl_sub_length = 1704 sizeof (dl_capability_sub_t) + 1705 isub->dl_length; 1706 nmp->b_rptr += sizeof (dl_capability_req_t); 1707 1708 /* initialize dl_capability_sub_t */ 1709 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1710 nmp->b_rptr += sizeof (*isub); 1711 1712 /* initialize dl_capab_hcksum_t */ 1713 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1714 bcopy(ihck, ohck, sizeof (*ihck)); 1715 1716 nmp->b_rptr = rptr; 1717 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1718 1719 /* Set ENABLE flag */ 1720 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1721 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1722 1723 /* 1724 * nmp points to a DL_CAPABILITY_REQ message to enable 1725 * hardware checksum acceleration. 1726 */ 1727 ill_capability_send(ill, nmp); 1728 } else { 1729 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1730 "advertised %x hardware checksum capability flags\n", 1731 ill->ill_name, ihck->hcksum_txflags)); 1732 } 1733 } 1734 1735 static void 1736 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1737 { 1738 dl_capab_hcksum_t *hck_subcap; 1739 dl_capability_sub_t *dl_subcap; 1740 1741 if (!ILL_HCKSUM_CAPABLE(ill)) 1742 return; 1743 1744 ASSERT(ill->ill_hcksum_capab != NULL); 1745 1746 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1747 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1748 dl_subcap->dl_length = sizeof (*hck_subcap); 1749 1750 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1751 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1752 hck_subcap->hcksum_txflags = 0; 1753 1754 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1755 } 1756 1757 static void 1758 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1759 { 1760 mblk_t *nmp = NULL; 1761 dl_capability_req_t *oc; 1762 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1763 ill_zerocopy_capab_t **ill_zerocopy_capab; 1764 uint_t sub_dl_cap = isub->dl_cap; 1765 uint8_t *capend; 1766 1767 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1768 1769 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1770 1771 /* 1772 * Note: range checks here are not absolutely sufficient to 1773 * make us robust against malformed messages sent by drivers; 1774 * this is in keeping with the rest of IP's dlpi handling. 1775 * (Remember, it's coming from something else in the kernel 1776 * address space) 1777 */ 1778 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1779 if (capend > mp->b_wptr) { 1780 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1781 "malformed sub-capability too long for mblk"); 1782 return; 1783 } 1784 1785 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1786 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1787 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1788 "unsupported ZEROCOPY sub-capability (version %d, " 1789 "expected %d)", zc_ic->zerocopy_version, 1790 ZEROCOPY_VERSION_1); 1791 return; 1792 } 1793 1794 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1795 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1796 "capability isn't as expected; pass-thru module(s) " 1797 "detected, discarding capability\n")); 1798 return; 1799 } 1800 1801 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1802 if (*ill_zerocopy_capab == NULL) { 1803 *ill_zerocopy_capab = 1804 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1805 KM_NOSLEEP); 1806 1807 if (*ill_zerocopy_capab == NULL) { 1808 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1809 "could not enable Zero-copy version %d " 1810 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1811 ill->ill_name); 1812 return; 1813 } 1814 } 1815 1816 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1817 "supports Zero-copy version %d\n", ill->ill_name, 1818 ZEROCOPY_VERSION_1)); 1819 1820 (*ill_zerocopy_capab)->ill_zerocopy_version = 1821 zc_ic->zerocopy_version; 1822 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1823 zc_ic->zerocopy_flags; 1824 1825 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1826 } else { 1827 uint_t size; 1828 uchar_t *rptr; 1829 1830 size = sizeof (dl_capability_req_t) + 1831 sizeof (dl_capability_sub_t) + 1832 sizeof (dl_capab_zerocopy_t); 1833 1834 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1835 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1836 "could not enable zerocopy for %s (ENOMEM)\n", 1837 ill->ill_name); 1838 return; 1839 } 1840 1841 rptr = nmp->b_rptr; 1842 /* initialize dl_capability_req_t */ 1843 oc = (dl_capability_req_t *)rptr; 1844 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1845 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1846 sizeof (dl_capab_zerocopy_t); 1847 rptr += sizeof (dl_capability_req_t); 1848 1849 /* initialize dl_capability_sub_t */ 1850 bcopy(isub, rptr, sizeof (*isub)); 1851 rptr += sizeof (*isub); 1852 1853 /* initialize dl_capab_zerocopy_t */ 1854 zc_oc = (dl_capab_zerocopy_t *)rptr; 1855 *zc_oc = *zc_ic; 1856 1857 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1858 "to enable zero-copy version %d\n", ill->ill_name, 1859 ZEROCOPY_VERSION_1)); 1860 1861 /* set VMSAFE_MEM flag */ 1862 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1863 1864 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1865 ill_capability_send(ill, nmp); 1866 } 1867 } 1868 1869 static void 1870 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1871 { 1872 dl_capab_zerocopy_t *zerocopy_subcap; 1873 dl_capability_sub_t *dl_subcap; 1874 1875 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1876 return; 1877 1878 ASSERT(ill->ill_zerocopy_capab != NULL); 1879 1880 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1881 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1882 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1883 1884 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1885 zerocopy_subcap->zerocopy_version = 1886 ill->ill_zerocopy_capab->ill_zerocopy_version; 1887 zerocopy_subcap->zerocopy_flags = 0; 1888 1889 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1890 } 1891 1892 /* 1893 * DLD capability 1894 * Refer to dld.h for more information regarding the purpose and usage 1895 * of this capability. 1896 */ 1897 static void 1898 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1899 { 1900 dl_capab_dld_t *dld_ic, dld; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 ill_dld_capab_t *idc; 1904 1905 ASSERT(IAM_WRITER_ILL(ill)); 1906 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 dld_ic = (dl_capab_dld_t *)(isub + 1); 1922 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1923 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1924 "unsupported DLD sub-capability (version %d, " 1925 "expected %d)", dld_ic->dld_version, 1926 DLD_CURRENT_VERSION); 1927 return; 1928 } 1929 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 /* 1937 * Copy locally to ensure alignment. 1938 */ 1939 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1940 1941 if ((idc = ill->ill_dld_capab) == NULL) { 1942 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1943 if (idc == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1945 "could not enable DLD version %d " 1946 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1947 ill->ill_name); 1948 return; 1949 } 1950 ill->ill_dld_capab = idc; 1951 } 1952 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1953 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1954 ip1dbg(("ill_capability_dld_ack: interface %s " 1955 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1956 1957 ill_capability_dld_enable(ill); 1958 } 1959 1960 /* 1961 * Typically capability negotiation between IP and the driver happens via 1962 * DLPI message exchange. However GLD also offers a direct function call 1963 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1964 * But arbitrary function calls into IP or GLD are not permitted, since both 1965 * of them are protected by their own perimeter mechanism. The perimeter can 1966 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1967 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1968 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1969 * to enter the mac perimeter and then do the direct function calls into 1970 * GLD to enable squeue polling. The ring related callbacks from the mac into 1971 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1972 * protected by the mac perimeter. 1973 */ 1974 static void 1975 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1976 { 1977 ill_dld_capab_t *idc = ill->ill_dld_capab; 1978 int err; 1979 1980 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1981 DLD_ENABLE); 1982 ASSERT(err == 0); 1983 } 1984 1985 static void 1986 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1987 { 1988 ill_dld_capab_t *idc = ill->ill_dld_capab; 1989 int err; 1990 1991 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1992 DLD_DISABLE); 1993 ASSERT(err == 0); 1994 } 1995 1996 boolean_t 1997 ill_mac_perim_held(ill_t *ill) 1998 { 1999 ill_dld_capab_t *idc = ill->ill_dld_capab; 2000 2001 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2002 DLD_QUERY)); 2003 } 2004 2005 static void 2006 ill_capability_direct_enable(ill_t *ill) 2007 { 2008 ill_dld_capab_t *idc = ill->ill_dld_capab; 2009 ill_dld_direct_t *idd = &idc->idc_direct; 2010 dld_capab_direct_t direct; 2011 int rc; 2012 2013 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2014 2015 bzero(&direct, sizeof (direct)); 2016 direct.di_rx_cf = (uintptr_t)ip_input; 2017 direct.di_rx_ch = ill; 2018 2019 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2020 DLD_ENABLE); 2021 if (rc == 0) { 2022 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2023 idd->idd_tx_dh = direct.di_tx_dh; 2024 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2025 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2026 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2027 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2028 ASSERT(idd->idd_tx_cb_df != NULL); 2029 ASSERT(idd->idd_tx_fctl_df != NULL); 2030 ASSERT(idd->idd_tx_df != NULL); 2031 /* 2032 * One time registration of flow enable callback function 2033 */ 2034 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2035 ill_flow_enable, ill); 2036 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2037 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2038 } else { 2039 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2040 "capability, rc = %d\n", rc); 2041 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2042 } 2043 } 2044 2045 static void 2046 ill_capability_poll_enable(ill_t *ill) 2047 { 2048 ill_dld_capab_t *idc = ill->ill_dld_capab; 2049 dld_capab_poll_t poll; 2050 int rc; 2051 2052 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2053 2054 bzero(&poll, sizeof (poll)); 2055 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2056 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2057 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2058 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2059 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2060 poll.poll_ring_ch = ill; 2061 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2062 DLD_ENABLE); 2063 if (rc == 0) { 2064 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2065 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2066 } else { 2067 ip1dbg(("warning: could not enable POLL " 2068 "capability, rc = %d\n", rc)); 2069 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2070 } 2071 } 2072 2073 /* 2074 * Enable the LSO capability. 2075 */ 2076 static void 2077 ill_capability_lso_enable(ill_t *ill) 2078 { 2079 ill_dld_capab_t *idc = ill->ill_dld_capab; 2080 dld_capab_lso_t lso; 2081 int rc; 2082 2083 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2084 2085 if (ill->ill_lso_capab == NULL) { 2086 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2087 KM_NOSLEEP); 2088 if (ill->ill_lso_capab == NULL) { 2089 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2090 "could not enable LSO for %s (ENOMEM)\n", 2091 ill->ill_name); 2092 return; 2093 } 2094 } 2095 2096 bzero(&lso, sizeof (lso)); 2097 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2098 DLD_ENABLE)) == 0) { 2099 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2100 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2101 ill->ill_capabilities |= ILL_CAPAB_LSO; 2102 ip1dbg(("ill_capability_lso_enable: interface %s " 2103 "has enabled LSO\n ", ill->ill_name)); 2104 } else { 2105 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2106 ill->ill_lso_capab = NULL; 2107 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2108 } 2109 } 2110 2111 static void 2112 ill_capability_dld_enable(ill_t *ill) 2113 { 2114 mac_perim_handle_t mph; 2115 2116 ASSERT(IAM_WRITER_ILL(ill)); 2117 2118 if (ill->ill_isv6) 2119 return; 2120 2121 ill_mac_perim_enter(ill, &mph); 2122 if (!ill->ill_isv6) { 2123 ill_capability_direct_enable(ill); 2124 ill_capability_poll_enable(ill); 2125 ill_capability_lso_enable(ill); 2126 } 2127 ill->ill_capabilities |= ILL_CAPAB_DLD; 2128 ill_mac_perim_exit(ill, mph); 2129 } 2130 2131 static void 2132 ill_capability_dld_disable(ill_t *ill) 2133 { 2134 ill_dld_capab_t *idc; 2135 ill_dld_direct_t *idd; 2136 mac_perim_handle_t mph; 2137 2138 ASSERT(IAM_WRITER_ILL(ill)); 2139 2140 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2141 return; 2142 2143 ill_mac_perim_enter(ill, &mph); 2144 2145 idc = ill->ill_dld_capab; 2146 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2147 /* 2148 * For performance we avoid locks in the transmit data path 2149 * and don't maintain a count of the number of threads using 2150 * direct calls. Thus some threads could be using direct 2151 * transmit calls to GLD, even after the capability mechanism 2152 * turns it off. This is still safe since the handles used in 2153 * the direct calls continue to be valid until the unplumb is 2154 * completed. Remove the callback that was added (1-time) at 2155 * capab enable time. 2156 */ 2157 mutex_enter(&ill->ill_lock); 2158 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2159 mutex_exit(&ill->ill_lock); 2160 if (ill->ill_flownotify_mh != NULL) { 2161 idd = &idc->idc_direct; 2162 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2163 ill->ill_flownotify_mh); 2164 ill->ill_flownotify_mh = NULL; 2165 } 2166 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2167 NULL, DLD_DISABLE); 2168 } 2169 2170 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2171 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2172 ip_squeue_clean_all(ill); 2173 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2174 NULL, DLD_DISABLE); 2175 } 2176 2177 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2178 ASSERT(ill->ill_lso_capab != NULL); 2179 /* 2180 * Clear the capability flag for LSO but retain the 2181 * ill_lso_capab structure since it's possible that another 2182 * thread is still referring to it. The structure only gets 2183 * deallocated when we destroy the ill. 2184 */ 2185 2186 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2188 NULL, DLD_DISABLE); 2189 } 2190 2191 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2192 ill_mac_perim_exit(ill, mph); 2193 } 2194 2195 /* 2196 * Capability Negotiation protocol 2197 * 2198 * We don't wait for DLPI capability operations to finish during interface 2199 * bringup or teardown. Doing so would introduce more asynchrony and the 2200 * interface up/down operations will need multiple return and restarts. 2201 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2202 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2203 * exclusive operation won't start until the DLPI operations of the previous 2204 * exclusive operation complete. 2205 * 2206 * The capability state machine is shown below. 2207 * 2208 * state next state event, action 2209 * 2210 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2211 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2212 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2213 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2214 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2215 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2216 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2217 * ill_capability_probe. 2218 */ 2219 2220 /* 2221 * Dedicated thread started from ip_stack_init that handles capability 2222 * disable. This thread ensures the taskq dispatch does not fail by waiting 2223 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2224 * that direct calls to DLD are done in a cv_waitable context. 2225 */ 2226 void 2227 ill_taskq_dispatch(ip_stack_t *ipst) 2228 { 2229 callb_cpr_t cprinfo; 2230 char name[64]; 2231 mblk_t *mp; 2232 2233 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2234 ipst->ips_netstack->netstack_stackid); 2235 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2236 name); 2237 mutex_enter(&ipst->ips_capab_taskq_lock); 2238 2239 for (;;) { 2240 mp = ipst->ips_capab_taskq_head; 2241 while (mp != NULL) { 2242 ipst->ips_capab_taskq_head = mp->b_next; 2243 if (ipst->ips_capab_taskq_head == NULL) 2244 ipst->ips_capab_taskq_tail = NULL; 2245 mutex_exit(&ipst->ips_capab_taskq_lock); 2246 mp->b_next = NULL; 2247 2248 VERIFY(taskq_dispatch(system_taskq, 2249 ill_capability_ack_thr, mp, TQ_SLEEP) != 2250 TASKQID_INVALID); 2251 mutex_enter(&ipst->ips_capab_taskq_lock); 2252 mp = ipst->ips_capab_taskq_head; 2253 } 2254 2255 if (ipst->ips_capab_taskq_quit) 2256 break; 2257 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2258 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2259 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2260 } 2261 VERIFY(ipst->ips_capab_taskq_head == NULL); 2262 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2263 CALLB_CPR_EXIT(&cprinfo); 2264 thread_exit(); 2265 } 2266 2267 /* 2268 * Consume a new-style hardware capabilities negotiation ack. 2269 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2270 */ 2271 static void 2272 ill_capability_ack_thr(void *arg) 2273 { 2274 mblk_t *mp = arg; 2275 dl_capability_ack_t *capp; 2276 dl_capability_sub_t *subp, *endp; 2277 ill_t *ill; 2278 boolean_t reneg; 2279 2280 ill = (ill_t *)mp->b_prev; 2281 mp->b_prev = NULL; 2282 2283 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2284 2285 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2286 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2287 /* 2288 * We have received the ack for our DL_CAPAB reset request. 2289 * There isnt' anything in the message that needs processing. 2290 * All message based capabilities have been disabled, now 2291 * do the function call based capability disable. 2292 */ 2293 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2294 ill_capability_dld_disable(ill); 2295 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2296 if (reneg) 2297 ill_capability_probe(ill); 2298 goto done; 2299 } 2300 2301 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2302 ill->ill_dlpi_capab_state = IDCS_OK; 2303 2304 capp = (dl_capability_ack_t *)mp->b_rptr; 2305 2306 if (capp->dl_sub_length == 0) { 2307 /* no new-style capabilities */ 2308 goto done; 2309 } 2310 2311 /* make sure the driver supplied correct dl_sub_length */ 2312 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2313 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2314 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2315 goto done; 2316 } 2317 2318 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2319 /* 2320 * There are sub-capabilities. Process the ones we know about. 2321 * Loop until we don't have room for another sub-cap header.. 2322 */ 2323 for (subp = SC(capp, capp->dl_sub_offset), 2324 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2325 subp <= endp; 2326 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2327 2328 switch (subp->dl_cap) { 2329 case DL_CAPAB_ID_WRAPPER: 2330 ill_capability_id_ack(ill, mp, subp); 2331 break; 2332 default: 2333 ill_capability_dispatch(ill, mp, subp); 2334 break; 2335 } 2336 } 2337 #undef SC 2338 done: 2339 inet_freemsg(mp); 2340 ill_capability_done(ill); 2341 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2342 } 2343 2344 /* 2345 * This needs to be started in a taskq thread to provide a cv_waitable 2346 * context. 2347 */ 2348 void 2349 ill_capability_ack(ill_t *ill, mblk_t *mp) 2350 { 2351 ip_stack_t *ipst = ill->ill_ipst; 2352 2353 mp->b_prev = (mblk_t *)ill; 2354 ASSERT(mp->b_next == NULL); 2355 2356 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2357 TQ_NOSLEEP) != TASKQID_INVALID) 2358 return; 2359 2360 /* 2361 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2362 * which will do the dispatch using TQ_SLEEP to guarantee success. 2363 */ 2364 mutex_enter(&ipst->ips_capab_taskq_lock); 2365 if (ipst->ips_capab_taskq_head == NULL) { 2366 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2367 ipst->ips_capab_taskq_head = mp; 2368 } else { 2369 ipst->ips_capab_taskq_tail->b_next = mp; 2370 } 2371 ipst->ips_capab_taskq_tail = mp; 2372 2373 cv_signal(&ipst->ips_capab_taskq_cv); 2374 mutex_exit(&ipst->ips_capab_taskq_lock); 2375 } 2376 2377 /* 2378 * This routine is called to scan the fragmentation reassembly table for 2379 * the specified ILL for any packets that are starting to smell. 2380 * dead_interval is the maximum time in seconds that will be tolerated. It 2381 * will either be the value specified in ip_g_frag_timeout, or zero if the 2382 * ILL is shutting down and it is time to blow everything off. 2383 * 2384 * It returns the number of seconds (as a time_t) that the next frag timer 2385 * should be scheduled for, 0 meaning that the timer doesn't need to be 2386 * re-started. Note that the method of calculating next_timeout isn't 2387 * entirely accurate since time will flow between the time we grab 2388 * current_time and the time we schedule the next timeout. This isn't a 2389 * big problem since this is the timer for sending an ICMP reassembly time 2390 * exceeded messages, and it doesn't have to be exactly accurate. 2391 * 2392 * This function is 2393 * sometimes called as writer, although this is not required. 2394 */ 2395 time_t 2396 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2397 { 2398 ipfb_t *ipfb; 2399 ipfb_t *endp; 2400 ipf_t *ipf; 2401 ipf_t *ipfnext; 2402 mblk_t *mp; 2403 time_t current_time = gethrestime_sec(); 2404 time_t next_timeout = 0; 2405 uint32_t hdr_length; 2406 mblk_t *send_icmp_head; 2407 mblk_t *send_icmp_head_v6; 2408 ip_stack_t *ipst = ill->ill_ipst; 2409 ip_recv_attr_t iras; 2410 2411 bzero(&iras, sizeof (iras)); 2412 iras.ira_flags = 0; 2413 iras.ira_ill = iras.ira_rill = ill; 2414 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2415 iras.ira_rifindex = iras.ira_ruifindex; 2416 2417 ipfb = ill->ill_frag_hash_tbl; 2418 if (ipfb == NULL) 2419 return (B_FALSE); 2420 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2421 /* Walk the frag hash table. */ 2422 for (; ipfb < endp; ipfb++) { 2423 send_icmp_head = NULL; 2424 send_icmp_head_v6 = NULL; 2425 mutex_enter(&ipfb->ipfb_lock); 2426 while ((ipf = ipfb->ipfb_ipf) != 0) { 2427 time_t frag_time = current_time - ipf->ipf_timestamp; 2428 time_t frag_timeout; 2429 2430 if (frag_time < dead_interval) { 2431 /* 2432 * There are some outstanding fragments 2433 * that will timeout later. Make note of 2434 * the time so that we can reschedule the 2435 * next timeout appropriately. 2436 */ 2437 frag_timeout = dead_interval - frag_time; 2438 if (next_timeout == 0 || 2439 frag_timeout < next_timeout) { 2440 next_timeout = frag_timeout; 2441 } 2442 break; 2443 } 2444 /* Time's up. Get it out of here. */ 2445 hdr_length = ipf->ipf_nf_hdr_len; 2446 ipfnext = ipf->ipf_hash_next; 2447 if (ipfnext) 2448 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2449 *ipf->ipf_ptphn = ipfnext; 2450 mp = ipf->ipf_mp->b_cont; 2451 for (; mp; mp = mp->b_cont) { 2452 /* Extra points for neatness. */ 2453 IP_REASS_SET_START(mp, 0); 2454 IP_REASS_SET_END(mp, 0); 2455 } 2456 mp = ipf->ipf_mp->b_cont; 2457 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2458 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2459 ipfb->ipfb_count -= ipf->ipf_count; 2460 ASSERT(ipfb->ipfb_frag_pkts > 0); 2461 ipfb->ipfb_frag_pkts--; 2462 /* 2463 * We do not send any icmp message from here because 2464 * we currently are holding the ipfb_lock for this 2465 * hash chain. If we try and send any icmp messages 2466 * from here we may end up via a put back into ip 2467 * trying to get the same lock, causing a recursive 2468 * mutex panic. Instead we build a list and send all 2469 * the icmp messages after we have dropped the lock. 2470 */ 2471 if (ill->ill_isv6) { 2472 if (hdr_length != 0) { 2473 mp->b_next = send_icmp_head_v6; 2474 send_icmp_head_v6 = mp; 2475 } else { 2476 freemsg(mp); 2477 } 2478 } else { 2479 if (hdr_length != 0) { 2480 mp->b_next = send_icmp_head; 2481 send_icmp_head = mp; 2482 } else { 2483 freemsg(mp); 2484 } 2485 } 2486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2487 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2488 freeb(ipf->ipf_mp); 2489 } 2490 mutex_exit(&ipfb->ipfb_lock); 2491 /* 2492 * Now need to send any icmp messages that we delayed from 2493 * above. 2494 */ 2495 while (send_icmp_head_v6 != NULL) { 2496 ip6_t *ip6h; 2497 2498 mp = send_icmp_head_v6; 2499 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2500 mp->b_next = NULL; 2501 ip6h = (ip6_t *)mp->b_rptr; 2502 iras.ira_flags = 0; 2503 /* 2504 * This will result in an incorrect ALL_ZONES zoneid 2505 * for multicast packets, but we 2506 * don't send ICMP errors for those in any case. 2507 */ 2508 iras.ira_zoneid = 2509 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2510 ill, ipst); 2511 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2512 icmp_time_exceeded_v6(mp, 2513 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2514 &iras); 2515 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2516 } 2517 while (send_icmp_head != NULL) { 2518 ipaddr_t dst; 2519 2520 mp = send_icmp_head; 2521 send_icmp_head = send_icmp_head->b_next; 2522 mp->b_next = NULL; 2523 2524 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2525 2526 iras.ira_flags = IRAF_IS_IPV4; 2527 /* 2528 * This will result in an incorrect ALL_ZONES zoneid 2529 * for broadcast and multicast packets, but we 2530 * don't send ICMP errors for those in any case. 2531 */ 2532 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2533 ill, ipst); 2534 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2535 icmp_time_exceeded(mp, 2536 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2537 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2538 } 2539 } 2540 /* 2541 * A non-dying ILL will use the return value to decide whether to 2542 * restart the frag timer, and for how long. 2543 */ 2544 return (next_timeout); 2545 } 2546 2547 /* 2548 * This routine is called when the approximate count of mblk memory used 2549 * for the specified ILL has exceeded max_count. 2550 */ 2551 void 2552 ill_frag_prune(ill_t *ill, uint_t max_count) 2553 { 2554 ipfb_t *ipfb; 2555 ipf_t *ipf; 2556 size_t count; 2557 clock_t now; 2558 2559 /* 2560 * If we are here within ip_min_frag_prune_time msecs remove 2561 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2562 * ill_frag_free_num_pkts. 2563 */ 2564 mutex_enter(&ill->ill_lock); 2565 now = ddi_get_lbolt(); 2566 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2567 (ip_min_frag_prune_time != 0 ? 2568 ip_min_frag_prune_time : msec_per_tick)) { 2569 2570 ill->ill_frag_free_num_pkts++; 2571 2572 } else { 2573 ill->ill_frag_free_num_pkts = 0; 2574 } 2575 ill->ill_last_frag_clean_time = now; 2576 mutex_exit(&ill->ill_lock); 2577 2578 /* 2579 * free ill_frag_free_num_pkts oldest packets from each bucket. 2580 */ 2581 if (ill->ill_frag_free_num_pkts != 0) { 2582 int ix; 2583 2584 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2585 ipfb = &ill->ill_frag_hash_tbl[ix]; 2586 mutex_enter(&ipfb->ipfb_lock); 2587 if (ipfb->ipfb_ipf != NULL) { 2588 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2589 ill->ill_frag_free_num_pkts); 2590 } 2591 mutex_exit(&ipfb->ipfb_lock); 2592 } 2593 } 2594 /* 2595 * While the reassembly list for this ILL is too big, prune a fragment 2596 * queue by age, oldest first. 2597 */ 2598 while (ill->ill_frag_count > max_count) { 2599 int ix; 2600 ipfb_t *oipfb = NULL; 2601 uint_t oldest = UINT_MAX; 2602 2603 count = 0; 2604 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2605 ipfb = &ill->ill_frag_hash_tbl[ix]; 2606 mutex_enter(&ipfb->ipfb_lock); 2607 ipf = ipfb->ipfb_ipf; 2608 if (ipf != NULL && ipf->ipf_gen < oldest) { 2609 oldest = ipf->ipf_gen; 2610 oipfb = ipfb; 2611 } 2612 count += ipfb->ipfb_count; 2613 mutex_exit(&ipfb->ipfb_lock); 2614 } 2615 if (oipfb == NULL) 2616 break; 2617 2618 if (count <= max_count) 2619 return; /* Somebody beat us to it, nothing to do */ 2620 mutex_enter(&oipfb->ipfb_lock); 2621 ipf = oipfb->ipfb_ipf; 2622 if (ipf != NULL) { 2623 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2624 } 2625 mutex_exit(&oipfb->ipfb_lock); 2626 } 2627 } 2628 2629 /* 2630 * free 'free_cnt' fragmented packets starting at ipf. 2631 */ 2632 void 2633 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2634 { 2635 size_t count; 2636 mblk_t *mp; 2637 mblk_t *tmp; 2638 ipf_t **ipfp = ipf->ipf_ptphn; 2639 2640 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2641 ASSERT(ipfp != NULL); 2642 ASSERT(ipf != NULL); 2643 2644 while (ipf != NULL && free_cnt-- > 0) { 2645 count = ipf->ipf_count; 2646 mp = ipf->ipf_mp; 2647 ipf = ipf->ipf_hash_next; 2648 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2649 IP_REASS_SET_START(tmp, 0); 2650 IP_REASS_SET_END(tmp, 0); 2651 } 2652 atomic_add_32(&ill->ill_frag_count, -count); 2653 ASSERT(ipfb->ipfb_count >= count); 2654 ipfb->ipfb_count -= count; 2655 ASSERT(ipfb->ipfb_frag_pkts > 0); 2656 ipfb->ipfb_frag_pkts--; 2657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2658 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2659 freemsg(mp); 2660 } 2661 2662 if (ipf) 2663 ipf->ipf_ptphn = ipfp; 2664 ipfp[0] = ipf; 2665 } 2666 2667 /* 2668 * Helper function for ill_forward_set(). 2669 */ 2670 static void 2671 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2672 { 2673 ip_stack_t *ipst = ill->ill_ipst; 2674 2675 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2676 2677 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2678 (enable ? "Enabling" : "Disabling"), 2679 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2680 mutex_enter(&ill->ill_lock); 2681 if (enable) 2682 ill->ill_flags |= ILLF_ROUTER; 2683 else 2684 ill->ill_flags &= ~ILLF_ROUTER; 2685 mutex_exit(&ill->ill_lock); 2686 if (ill->ill_isv6) 2687 ill_set_nce_router_flags(ill, enable); 2688 /* Notify routing socket listeners of this change. */ 2689 if (ill->ill_ipif != NULL) 2690 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2691 } 2692 2693 /* 2694 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2695 * socket messages for each interface whose flags we change. 2696 */ 2697 int 2698 ill_forward_set(ill_t *ill, boolean_t enable) 2699 { 2700 ipmp_illgrp_t *illg; 2701 ip_stack_t *ipst = ill->ill_ipst; 2702 2703 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2704 2705 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2706 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2707 return (0); 2708 2709 if (IS_LOOPBACK(ill)) 2710 return (EINVAL); 2711 2712 if (enable && ill->ill_allowed_ips_cnt > 0) 2713 return (EPERM); 2714 2715 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2716 /* 2717 * Update all of the interfaces in the group. 2718 */ 2719 illg = ill->ill_grp; 2720 ill = list_head(&illg->ig_if); 2721 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2722 ill_forward_set_on_ill(ill, enable); 2723 2724 /* 2725 * Update the IPMP meta-interface. 2726 */ 2727 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2728 return (0); 2729 } 2730 2731 ill_forward_set_on_ill(ill, enable); 2732 return (0); 2733 } 2734 2735 /* 2736 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2737 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2738 * set or clear. 2739 */ 2740 static void 2741 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2742 { 2743 ipif_t *ipif; 2744 ncec_t *ncec; 2745 nce_t *nce; 2746 2747 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2748 /* 2749 * NOTE: we match across the illgrp because nce's for 2750 * addresses on IPMP interfaces have an nce_ill that points to 2751 * the bound underlying ill. 2752 */ 2753 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2754 if (nce != NULL) { 2755 ncec = nce->nce_common; 2756 mutex_enter(&ncec->ncec_lock); 2757 if (enable) 2758 ncec->ncec_flags |= NCE_F_ISROUTER; 2759 else 2760 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2761 mutex_exit(&ncec->ncec_lock); 2762 nce_refrele(nce); 2763 } 2764 } 2765 } 2766 2767 /* 2768 * Intializes the context structure and returns the first ill in the list 2769 * cuurently start_list and end_list can have values: 2770 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2771 * IP_V4_G_HEAD Traverse IPV4 list only. 2772 * IP_V6_G_HEAD Traverse IPV6 list only. 2773 */ 2774 2775 /* 2776 * We don't check for CONDEMNED ills here. Caller must do that if 2777 * necessary under the ill lock. 2778 */ 2779 ill_t * 2780 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2781 ip_stack_t *ipst) 2782 { 2783 ill_if_t *ifp; 2784 ill_t *ill; 2785 avl_tree_t *avl_tree; 2786 2787 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2788 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2789 2790 /* 2791 * setup the lists to search 2792 */ 2793 if (end_list != MAX_G_HEADS) { 2794 ctx->ctx_current_list = start_list; 2795 ctx->ctx_last_list = end_list; 2796 } else { 2797 ctx->ctx_last_list = MAX_G_HEADS - 1; 2798 ctx->ctx_current_list = 0; 2799 } 2800 2801 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2802 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2803 if (ifp != (ill_if_t *) 2804 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2805 avl_tree = &ifp->illif_avl_by_ppa; 2806 ill = avl_first(avl_tree); 2807 /* 2808 * ill is guaranteed to be non NULL or ifp should have 2809 * not existed. 2810 */ 2811 ASSERT(ill != NULL); 2812 return (ill); 2813 } 2814 ctx->ctx_current_list++; 2815 } 2816 2817 return (NULL); 2818 } 2819 2820 /* 2821 * returns the next ill in the list. ill_first() must have been called 2822 * before calling ill_next() or bad things will happen. 2823 */ 2824 2825 /* 2826 * We don't check for CONDEMNED ills here. Caller must do that if 2827 * necessary under the ill lock. 2828 */ 2829 ill_t * 2830 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2831 { 2832 ill_if_t *ifp; 2833 ill_t *ill; 2834 ip_stack_t *ipst = lastill->ill_ipst; 2835 2836 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2837 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2838 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2839 AVL_AFTER)) != NULL) { 2840 return (ill); 2841 } 2842 2843 /* goto next ill_ifp in the list. */ 2844 ifp = lastill->ill_ifptr->illif_next; 2845 2846 /* make sure not at end of circular list */ 2847 while (ifp == 2848 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2849 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2850 return (NULL); 2851 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2852 } 2853 2854 return (avl_first(&ifp->illif_avl_by_ppa)); 2855 } 2856 2857 /* 2858 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2859 * The final number (PPA) must not have any leading zeros. Upon success, a 2860 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2861 */ 2862 static char * 2863 ill_get_ppa_ptr(char *name) 2864 { 2865 int namelen = strlen(name); 2866 int end_ndx = namelen - 1; 2867 int ppa_ndx, i; 2868 2869 /* 2870 * Check that the first character is [a-zA-Z], and that the last 2871 * character is [0-9]. 2872 */ 2873 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2874 return (NULL); 2875 2876 /* 2877 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2878 */ 2879 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2880 if (!isdigit(name[ppa_ndx - 1])) 2881 break; 2882 2883 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2884 return (NULL); 2885 2886 /* 2887 * Check that the intermediate characters are [a-z0-9.] 2888 */ 2889 for (i = 1; i < ppa_ndx; i++) { 2890 if (!isalpha(name[i]) && !isdigit(name[i]) && 2891 name[i] != '.' && name[i] != '_') { 2892 return (NULL); 2893 } 2894 } 2895 2896 return (name + ppa_ndx); 2897 } 2898 2899 /* 2900 * use avl tree to locate the ill. 2901 */ 2902 static ill_t * 2903 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2904 { 2905 char *ppa_ptr = NULL; 2906 int len; 2907 uint_t ppa; 2908 ill_t *ill = NULL; 2909 ill_if_t *ifp; 2910 int list; 2911 2912 /* 2913 * get ppa ptr 2914 */ 2915 if (isv6) 2916 list = IP_V6_G_HEAD; 2917 else 2918 list = IP_V4_G_HEAD; 2919 2920 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2921 return (NULL); 2922 } 2923 2924 len = ppa_ptr - name + 1; 2925 2926 ppa = stoi(&ppa_ptr); 2927 2928 ifp = IP_VX_ILL_G_LIST(list, ipst); 2929 2930 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2931 /* 2932 * match is done on len - 1 as the name is not null 2933 * terminated it contains ppa in addition to the interface 2934 * name. 2935 */ 2936 if ((ifp->illif_name_len == len) && 2937 bcmp(ifp->illif_name, name, len - 1) == 0) { 2938 break; 2939 } else { 2940 ifp = ifp->illif_next; 2941 } 2942 } 2943 2944 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2945 /* 2946 * Even the interface type does not exist. 2947 */ 2948 return (NULL); 2949 } 2950 2951 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2952 if (ill != NULL) { 2953 mutex_enter(&ill->ill_lock); 2954 if (ILL_CAN_LOOKUP(ill)) { 2955 ill_refhold_locked(ill); 2956 mutex_exit(&ill->ill_lock); 2957 return (ill); 2958 } 2959 mutex_exit(&ill->ill_lock); 2960 } 2961 return (NULL); 2962 } 2963 2964 /* 2965 * comparison function for use with avl. 2966 */ 2967 static int 2968 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2969 { 2970 uint_t ppa; 2971 uint_t ill_ppa; 2972 2973 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2974 2975 ppa = *((uint_t *)ppa_ptr); 2976 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2977 /* 2978 * We want the ill with the lowest ppa to be on the 2979 * top. 2980 */ 2981 if (ill_ppa < ppa) 2982 return (1); 2983 if (ill_ppa > ppa) 2984 return (-1); 2985 return (0); 2986 } 2987 2988 /* 2989 * remove an interface type from the global list. 2990 */ 2991 static void 2992 ill_delete_interface_type(ill_if_t *interface) 2993 { 2994 ASSERT(interface != NULL); 2995 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2996 2997 avl_destroy(&interface->illif_avl_by_ppa); 2998 if (interface->illif_ppa_arena != NULL) 2999 vmem_destroy(interface->illif_ppa_arena); 3000 3001 remque(interface); 3002 3003 mi_free(interface); 3004 } 3005 3006 /* 3007 * remove ill from the global list. 3008 */ 3009 static void 3010 ill_glist_delete(ill_t *ill) 3011 { 3012 ip_stack_t *ipst; 3013 phyint_t *phyi; 3014 3015 if (ill == NULL) 3016 return; 3017 ipst = ill->ill_ipst; 3018 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3019 3020 /* 3021 * If the ill was never inserted into the AVL tree 3022 * we skip the if branch. 3023 */ 3024 if (ill->ill_ifptr != NULL) { 3025 /* 3026 * remove from AVL tree and free ppa number 3027 */ 3028 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3029 3030 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3031 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3032 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3033 } 3034 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3035 ill_delete_interface_type(ill->ill_ifptr); 3036 } 3037 3038 /* 3039 * Indicate ill is no longer in the list. 3040 */ 3041 ill->ill_ifptr = NULL; 3042 ill->ill_name_length = 0; 3043 ill->ill_name[0] = '\0'; 3044 ill->ill_ppa = UINT_MAX; 3045 } 3046 3047 /* Generate one last event for this ill. */ 3048 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3049 ill->ill_name_length); 3050 3051 ASSERT(ill->ill_phyint != NULL); 3052 phyi = ill->ill_phyint; 3053 ill->ill_phyint = NULL; 3054 3055 /* 3056 * ill_init allocates a phyint always to store the copy 3057 * of flags relevant to phyint. At that point in time, we could 3058 * not assign the name and hence phyint_illv4/v6 could not be 3059 * initialized. Later in ipif_set_values, we assign the name to 3060 * the ill, at which point in time we assign phyint_illv4/v6. 3061 * Thus we don't rely on phyint_illv6 to be initialized always. 3062 */ 3063 if (ill->ill_flags & ILLF_IPV6) 3064 phyi->phyint_illv6 = NULL; 3065 else 3066 phyi->phyint_illv4 = NULL; 3067 3068 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3069 rw_exit(&ipst->ips_ill_g_lock); 3070 return; 3071 } 3072 3073 /* 3074 * There are no ills left on this phyint; pull it out of the phyint 3075 * avl trees, and free it. 3076 */ 3077 if (phyi->phyint_ifindex > 0) { 3078 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3079 phyi); 3080 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3081 phyi); 3082 } 3083 rw_exit(&ipst->ips_ill_g_lock); 3084 3085 phyint_free(phyi); 3086 } 3087 3088 /* 3089 * allocate a ppa, if the number of plumbed interfaces of this type are 3090 * less than ill_no_arena do a linear search to find a unused ppa. 3091 * When the number goes beyond ill_no_arena switch to using an arena. 3092 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3093 * is the return value for an error condition, so allocation starts at one 3094 * and is decremented by one. 3095 */ 3096 static int 3097 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3098 { 3099 ill_t *tmp_ill; 3100 uint_t start, end; 3101 int ppa; 3102 3103 if (ifp->illif_ppa_arena == NULL && 3104 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3105 /* 3106 * Create an arena. 3107 */ 3108 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3109 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3110 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3111 /* allocate what has already been assigned */ 3112 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3113 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3114 tmp_ill, AVL_AFTER)) { 3115 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3116 1, /* size */ 3117 1, /* align/quantum */ 3118 0, /* phase */ 3119 0, /* nocross */ 3120 /* minaddr */ 3121 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3122 /* maxaddr */ 3123 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3124 VM_NOSLEEP|VM_FIRSTFIT); 3125 if (ppa == 0) { 3126 ip1dbg(("ill_alloc_ppa: ppa allocation" 3127 " failed while switching")); 3128 vmem_destroy(ifp->illif_ppa_arena); 3129 ifp->illif_ppa_arena = NULL; 3130 break; 3131 } 3132 } 3133 } 3134 3135 if (ifp->illif_ppa_arena != NULL) { 3136 if (ill->ill_ppa == UINT_MAX) { 3137 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3138 1, VM_NOSLEEP|VM_FIRSTFIT); 3139 if (ppa == 0) 3140 return (EAGAIN); 3141 ill->ill_ppa = --ppa; 3142 } else { 3143 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3144 1, /* size */ 3145 1, /* align/quantum */ 3146 0, /* phase */ 3147 0, /* nocross */ 3148 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3149 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3150 VM_NOSLEEP|VM_FIRSTFIT); 3151 /* 3152 * Most likely the allocation failed because 3153 * the requested ppa was in use. 3154 */ 3155 if (ppa == 0) 3156 return (EEXIST); 3157 } 3158 return (0); 3159 } 3160 3161 /* 3162 * No arena is in use and not enough (>ill_no_arena) interfaces have 3163 * been plumbed to create one. Do a linear search to get a unused ppa. 3164 */ 3165 if (ill->ill_ppa == UINT_MAX) { 3166 end = UINT_MAX - 1; 3167 start = 0; 3168 } else { 3169 end = start = ill->ill_ppa; 3170 } 3171 3172 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3173 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3174 if (start++ >= end) { 3175 if (ill->ill_ppa == UINT_MAX) 3176 return (EAGAIN); 3177 else 3178 return (EEXIST); 3179 } 3180 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3181 } 3182 ill->ill_ppa = start; 3183 return (0); 3184 } 3185 3186 /* 3187 * Insert ill into the list of configured ill's. Once this function completes, 3188 * the ill is globally visible and is available through lookups. More precisely 3189 * this happens after the caller drops the ill_g_lock. 3190 */ 3191 static int 3192 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3193 { 3194 ill_if_t *ill_interface; 3195 avl_index_t where = 0; 3196 int error; 3197 int name_length; 3198 int index; 3199 boolean_t check_length = B_FALSE; 3200 ip_stack_t *ipst = ill->ill_ipst; 3201 3202 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3203 3204 name_length = mi_strlen(name) + 1; 3205 3206 if (isv6) 3207 index = IP_V6_G_HEAD; 3208 else 3209 index = IP_V4_G_HEAD; 3210 3211 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3212 /* 3213 * Search for interface type based on name 3214 */ 3215 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3216 if ((ill_interface->illif_name_len == name_length) && 3217 (strcmp(ill_interface->illif_name, name) == 0)) { 3218 break; 3219 } 3220 ill_interface = ill_interface->illif_next; 3221 } 3222 3223 /* 3224 * Interface type not found, create one. 3225 */ 3226 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3227 ill_g_head_t ghead; 3228 3229 /* 3230 * allocate ill_if_t structure 3231 */ 3232 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3233 if (ill_interface == NULL) { 3234 return (ENOMEM); 3235 } 3236 3237 (void) strcpy(ill_interface->illif_name, name); 3238 ill_interface->illif_name_len = name_length; 3239 3240 avl_create(&ill_interface->illif_avl_by_ppa, 3241 ill_compare_ppa, sizeof (ill_t), 3242 offsetof(struct ill_s, ill_avl_byppa)); 3243 3244 /* 3245 * link the structure in the back to maintain order 3246 * of configuration for ifconfig output. 3247 */ 3248 ghead = ipst->ips_ill_g_heads[index]; 3249 insque(ill_interface, ghead.ill_g_list_tail); 3250 } 3251 3252 if (ill->ill_ppa == UINT_MAX) 3253 check_length = B_TRUE; 3254 3255 error = ill_alloc_ppa(ill_interface, ill); 3256 if (error != 0) { 3257 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3258 ill_delete_interface_type(ill->ill_ifptr); 3259 return (error); 3260 } 3261 3262 /* 3263 * When the ppa is choosen by the system, check that there is 3264 * enough space to insert ppa. if a specific ppa was passed in this 3265 * check is not required as the interface name passed in will have 3266 * the right ppa in it. 3267 */ 3268 if (check_length) { 3269 /* 3270 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3271 */ 3272 char buf[sizeof (uint_t) * 3]; 3273 3274 /* 3275 * convert ppa to string to calculate the amount of space 3276 * required for it in the name. 3277 */ 3278 numtos(ill->ill_ppa, buf); 3279 3280 /* Do we have enough space to insert ppa ? */ 3281 3282 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3283 /* Free ppa and interface type struct */ 3284 if (ill_interface->illif_ppa_arena != NULL) { 3285 vmem_free(ill_interface->illif_ppa_arena, 3286 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3287 } 3288 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3289 ill_delete_interface_type(ill->ill_ifptr); 3290 3291 return (EINVAL); 3292 } 3293 } 3294 3295 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3296 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3297 3298 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3299 &where); 3300 ill->ill_ifptr = ill_interface; 3301 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3302 3303 ill_phyint_reinit(ill); 3304 return (0); 3305 } 3306 3307 /* Initialize the per phyint ipsq used for serialization */ 3308 static boolean_t 3309 ipsq_init(ill_t *ill, boolean_t enter) 3310 { 3311 ipsq_t *ipsq; 3312 ipxop_t *ipx; 3313 3314 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3315 return (B_FALSE); 3316 3317 ill->ill_phyint->phyint_ipsq = ipsq; 3318 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3319 ipx->ipx_ipsq = ipsq; 3320 ipsq->ipsq_next = ipsq; 3321 ipsq->ipsq_phyint = ill->ill_phyint; 3322 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3323 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3324 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3325 if (enter) { 3326 ipx->ipx_writer = curthread; 3327 ipx->ipx_forced = B_FALSE; 3328 ipx->ipx_reentry_cnt = 1; 3329 #ifdef DEBUG 3330 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3331 #endif 3332 } 3333 return (B_TRUE); 3334 } 3335 3336 /* 3337 * Here we perform initialisation of the ill_t common to both regular 3338 * interface ILLs and the special loopback ILL created by ill_lookup_on_name. 3339 */ 3340 static int 3341 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback, 3342 boolean_t ipsq_enter) 3343 { 3344 int count; 3345 uchar_t *frag_ptr; 3346 3347 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3348 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3349 ill->ill_saved_ire_cnt = 0; 3350 3351 if (is_loopback) { 3352 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus : 3353 ip_loopback_mtuplus; 3354 /* 3355 * No resolver here. 3356 */ 3357 ill->ill_net_type = IRE_LOOPBACK; 3358 } else { 3359 ill->ill_rq = q; 3360 ill->ill_wq = WR(q); 3361 ill->ill_ppa = UINT_MAX; 3362 } 3363 3364 ill->ill_isv6 = isv6; 3365 3366 /* 3367 * Allocate sufficient space to contain our fragment hash table and 3368 * the device name. 3369 */ 3370 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3371 if (frag_ptr == NULL) 3372 return (ENOMEM); 3373 ill->ill_frag_ptr = frag_ptr; 3374 ill->ill_frag_free_num_pkts = 0; 3375 ill->ill_last_frag_clean_time = 0; 3376 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3377 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3378 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3379 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3380 NULL, MUTEX_DEFAULT, NULL); 3381 } 3382 3383 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3384 if (ill->ill_phyint == NULL) { 3385 mi_free(frag_ptr); 3386 return (ENOMEM); 3387 } 3388 3389 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3390 if (isv6) { 3391 ill->ill_phyint->phyint_illv6 = ill; 3392 } else { 3393 ill->ill_phyint->phyint_illv4 = ill; 3394 } 3395 if (is_loopback) { 3396 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3397 } 3398 3399 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3400 3401 ill_set_inputfn(ill); 3402 3403 if (!ipsq_init(ill, ipsq_enter)) { 3404 mi_free(frag_ptr); 3405 mi_free(ill->ill_phyint); 3406 return (ENOMEM); 3407 } 3408 3409 /* Frag queue limit stuff */ 3410 ill->ill_frag_count = 0; 3411 ill->ill_ipf_gen = 0; 3412 3413 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3414 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3415 ill->ill_global_timer = INFINITY; 3416 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3417 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3418 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3419 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3420 3421 /* 3422 * Initialize IPv6 configuration variables. The IP module is always 3423 * opened as an IPv4 module. Instead tracking down the cases where 3424 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3425 * here for convenience, this has no effect until the ill is set to do 3426 * IPv6. 3427 */ 3428 ill->ill_reachable_time = ND_REACHABLE_TIME; 3429 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3430 ill->ill_max_buf = ND_MAX_Q; 3431 ill->ill_refcnt = 0; 3432 3433 return (0); 3434 } 3435 3436 /* 3437 * ill_init is called by ip_open when a device control stream is opened. 3438 * It does a few initializations, and shoots a DL_INFO_REQ message down 3439 * to the driver. The response is later picked up in ip_rput_dlpi and 3440 * used to set up default mechanisms for talking to the driver. (Always 3441 * called as writer.) 3442 * 3443 * If this function returns error, ip_open will call ip_close which in 3444 * turn will call ill_delete to clean up any memory allocated here that 3445 * is not yet freed. 3446 * 3447 * Note: ill_ipst and ill_zoneid must be set before calling ill_init. 3448 */ 3449 int 3450 ill_init(queue_t *q, ill_t *ill) 3451 { 3452 int ret; 3453 dl_info_req_t *dlir; 3454 mblk_t *info_mp; 3455 3456 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3457 BPRI_HI); 3458 if (info_mp == NULL) 3459 return (ENOMEM); 3460 3461 /* 3462 * For now pretend this is a v4 ill. We need to set phyint_ill* 3463 * at this point because of the following reason. If we can't 3464 * enter the ipsq at some point and cv_wait, the writer that 3465 * wakes us up tries to locate us using the list of all phyints 3466 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3467 * If we don't set it now, we risk a missed wakeup. 3468 */ 3469 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) { 3470 freemsg(info_mp); 3471 return (ret); 3472 } 3473 3474 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3475 3476 /* Send down the Info Request to the driver. */ 3477 info_mp->b_datap->db_type = M_PCPROTO; 3478 dlir = (dl_info_req_t *)info_mp->b_rptr; 3479 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3480 dlir->dl_primitive = DL_INFO_REQ; 3481 3482 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3483 3484 qprocson(q); 3485 ill_dlpi_send(ill, info_mp); 3486 3487 return (0); 3488 } 3489 3490 /* 3491 * ill_dls_info 3492 * creates datalink socket info from the device. 3493 */ 3494 int 3495 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3496 { 3497 size_t len; 3498 3499 sdl->sdl_family = AF_LINK; 3500 sdl->sdl_index = ill_get_upper_ifindex(ill); 3501 sdl->sdl_type = ill->ill_type; 3502 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3503 len = strlen(sdl->sdl_data); 3504 ASSERT(len < 256); 3505 sdl->sdl_nlen = (uchar_t)len; 3506 sdl->sdl_alen = ill->ill_phys_addr_length; 3507 sdl->sdl_slen = 0; 3508 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3509 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3510 3511 return (sizeof (struct sockaddr_dl)); 3512 } 3513 3514 /* 3515 * ill_xarp_info 3516 * creates xarp info from the device. 3517 */ 3518 static int 3519 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3520 { 3521 sdl->sdl_family = AF_LINK; 3522 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3523 sdl->sdl_type = ill->ill_type; 3524 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3525 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3526 sdl->sdl_alen = ill->ill_phys_addr_length; 3527 sdl->sdl_slen = 0; 3528 return (sdl->sdl_nlen); 3529 } 3530 3531 static int 3532 loopback_kstat_update(kstat_t *ksp, int rw) 3533 { 3534 kstat_named_t *kn; 3535 netstackid_t stackid; 3536 netstack_t *ns; 3537 ip_stack_t *ipst; 3538 3539 if (ksp == NULL || ksp->ks_data == NULL) 3540 return (EIO); 3541 3542 if (rw == KSTAT_WRITE) 3543 return (EACCES); 3544 3545 kn = KSTAT_NAMED_PTR(ksp); 3546 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3547 3548 ns = netstack_find_by_stackid(stackid); 3549 if (ns == NULL) 3550 return (-1); 3551 3552 ipst = ns->netstack_ip; 3553 if (ipst == NULL) { 3554 netstack_rele(ns); 3555 return (-1); 3556 } 3557 kn[0].value.ui32 = ipst->ips_loopback_packets; 3558 kn[1].value.ui32 = ipst->ips_loopback_packets; 3559 netstack_rele(ns); 3560 return (0); 3561 } 3562 3563 /* 3564 * Has ifindex been plumbed already? 3565 */ 3566 static boolean_t 3567 phyint_exists(uint_t index, ip_stack_t *ipst) 3568 { 3569 ASSERT(index != 0); 3570 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3571 3572 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3573 &index, NULL) != NULL); 3574 } 3575 3576 /* 3577 * Pick a unique ifindex. 3578 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3579 * flag is set so that next time time ip_assign_ifindex() is called, it 3580 * falls through and resets the index counter back to 1, the minimum value 3581 * for the interface index. The logic below assumes that ips_ill_index 3582 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3583 * (i.e. reset back to 0.) 3584 */ 3585 boolean_t 3586 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3587 { 3588 uint_t loops; 3589 3590 if (!ipst->ips_ill_index_wrap) { 3591 *indexp = ipst->ips_ill_index++; 3592 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3593 /* 3594 * Reached the maximum ifindex value, set the wrap 3595 * flag to indicate that it is no longer possible 3596 * to assume that a given index is unallocated. 3597 */ 3598 ipst->ips_ill_index_wrap = B_TRUE; 3599 } 3600 return (B_TRUE); 3601 } 3602 3603 if (ipst->ips_ill_index > IF_INDEX_MAX) 3604 ipst->ips_ill_index = 1; 3605 3606 /* 3607 * Start reusing unused indexes. Note that we hold the ill_g_lock 3608 * at this point and don't want to call any function that attempts 3609 * to get the lock again. 3610 */ 3611 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3612 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3613 /* found unused index - use it */ 3614 *indexp = ipst->ips_ill_index; 3615 return (B_TRUE); 3616 } 3617 3618 ipst->ips_ill_index++; 3619 if (ipst->ips_ill_index > IF_INDEX_MAX) 3620 ipst->ips_ill_index = 1; 3621 } 3622 3623 /* 3624 * all interface indicies are inuse. 3625 */ 3626 return (B_FALSE); 3627 } 3628 3629 /* 3630 * Assign a unique interface index for the phyint. 3631 */ 3632 static boolean_t 3633 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3634 { 3635 ASSERT(phyi->phyint_ifindex == 0); 3636 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3637 } 3638 3639 /* 3640 * Initialize the flags on `phyi' as per the provided mactype. 3641 */ 3642 static void 3643 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3644 { 3645 uint64_t flags = 0; 3646 3647 /* 3648 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3649 * we always presume the underlying hardware is working and set 3650 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3651 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3652 * there are no active interfaces in the group so we set PHYI_FAILED. 3653 */ 3654 if (mactype == SUNW_DL_IPMP) 3655 flags |= PHYI_FAILED; 3656 else 3657 flags |= PHYI_RUNNING; 3658 3659 switch (mactype) { 3660 case SUNW_DL_VNI: 3661 flags |= PHYI_VIRTUAL; 3662 break; 3663 case SUNW_DL_IPMP: 3664 flags |= PHYI_IPMP; 3665 break; 3666 case DL_LOOP: 3667 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3668 break; 3669 } 3670 3671 mutex_enter(&phyi->phyint_lock); 3672 phyi->phyint_flags |= flags; 3673 mutex_exit(&phyi->phyint_lock); 3674 } 3675 3676 /* 3677 * Return a pointer to the ill which matches the supplied name. Note that 3678 * the ill name length includes the null termination character. (May be 3679 * called as writer.) 3680 * If do_alloc and the interface is "lo0" it will be automatically created. 3681 * Cannot bump up reference on condemned ills. So dup detect can't be done 3682 * using this func. 3683 */ 3684 ill_t * 3685 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3686 boolean_t *did_alloc, ip_stack_t *ipst) 3687 { 3688 ill_t *ill; 3689 ipif_t *ipif; 3690 ipsq_t *ipsq; 3691 kstat_named_t *kn; 3692 boolean_t isloopback; 3693 in6_addr_t ov6addr; 3694 3695 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3696 3697 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3698 ill = ill_find_by_name(name, isv6, ipst); 3699 rw_exit(&ipst->ips_ill_g_lock); 3700 if (ill != NULL) 3701 return (ill); 3702 3703 /* 3704 * Couldn't find it. Does this happen to be a lookup for the 3705 * loopback device and are we allowed to allocate it? 3706 */ 3707 if (!isloopback || !do_alloc) 3708 return (NULL); 3709 3710 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3711 ill = ill_find_by_name(name, isv6, ipst); 3712 if (ill != NULL) { 3713 rw_exit(&ipst->ips_ill_g_lock); 3714 return (ill); 3715 } 3716 3717 /* Create the loopback device on demand */ 3718 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3719 sizeof (ipif_loopback_name), BPRI_MED)); 3720 if (ill == NULL) 3721 goto done; 3722 3723 bzero(ill, sizeof (*ill)); 3724 ill->ill_ipst = ipst; 3725 netstack_hold(ipst->ips_netstack); 3726 /* 3727 * For exclusive stacks we set the zoneid to zero 3728 * to make IP operate as if in the global zone. 3729 */ 3730 ill->ill_zoneid = GLOBAL_ZONEID; 3731 3732 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0) 3733 goto done; 3734 3735 if (!ill_allocate_mibs(ill)) 3736 goto done; 3737 3738 ill->ill_current_frag = ill->ill_max_frag; 3739 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3740 ill->ill_mc_mtu = ill->ill_mtu; 3741 /* 3742 * ipif_loopback_name can't be pointed at directly because its used 3743 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3744 * from the glist, ill_glist_delete() sets the first character of 3745 * ill_name to '\0'. 3746 */ 3747 ill->ill_name = (char *)ill + sizeof (*ill); 3748 (void) strcpy(ill->ill_name, ipif_loopback_name); 3749 ill->ill_name_length = sizeof (ipif_loopback_name); 3750 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3751 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3752 3753 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3754 if (ipif == NULL) 3755 goto done; 3756 3757 ill->ill_flags = ILLF_MULTICAST; 3758 3759 ov6addr = ipif->ipif_v6lcl_addr; 3760 /* Set up default loopback address and mask. */ 3761 if (!isv6) { 3762 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3763 3764 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3765 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3766 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3767 ipif->ipif_v6subnet); 3768 ill->ill_flags |= ILLF_IPV4; 3769 } else { 3770 ipif->ipif_v6lcl_addr = ipv6_loopback; 3771 ipif->ipif_v6net_mask = ipv6_all_ones; 3772 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3773 ipif->ipif_v6subnet); 3774 ill->ill_flags |= ILLF_IPV6; 3775 } 3776 3777 /* 3778 * Chain us in at the end of the ill list. hold the ill 3779 * before we make it globally visible. 1 for the lookup. 3780 */ 3781 ill_refhold(ill); 3782 3783 ipsq = ill->ill_phyint->phyint_ipsq; 3784 3785 if (ill_glist_insert(ill, "lo", isv6) != 0) 3786 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3787 3788 /* Let SCTP know so that it can add this to its list */ 3789 sctp_update_ill(ill, SCTP_ILL_INSERT); 3790 3791 /* 3792 * We have already assigned ipif_v6lcl_addr above, but we need to 3793 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3794 * requires to be after ill_glist_insert() since we need the 3795 * ill_index set. Pass on ipv6_loopback as the old address. 3796 */ 3797 sctp_update_ipif_addr(ipif, ov6addr); 3798 3799 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3800 3801 /* 3802 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3803 * If so, free our original one. 3804 */ 3805 if (ipsq != ill->ill_phyint->phyint_ipsq) 3806 ipsq_delete(ipsq); 3807 3808 if (ipst->ips_loopback_ksp == NULL) { 3809 /* Export loopback interface statistics */ 3810 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3811 ipif_loopback_name, "net", 3812 KSTAT_TYPE_NAMED, 2, 0, 3813 ipst->ips_netstack->netstack_stackid); 3814 if (ipst->ips_loopback_ksp != NULL) { 3815 ipst->ips_loopback_ksp->ks_update = 3816 loopback_kstat_update; 3817 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3818 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3819 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3820 ipst->ips_loopback_ksp->ks_private = 3821 (void *)(uintptr_t)ipst->ips_netstack-> 3822 netstack_stackid; 3823 kstat_install(ipst->ips_loopback_ksp); 3824 } 3825 } 3826 3827 *did_alloc = B_TRUE; 3828 rw_exit(&ipst->ips_ill_g_lock); 3829 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3830 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3831 return (ill); 3832 done: 3833 if (ill != NULL) { 3834 if (ill->ill_phyint != NULL) { 3835 ipsq = ill->ill_phyint->phyint_ipsq; 3836 if (ipsq != NULL) { 3837 ipsq->ipsq_phyint = NULL; 3838 ipsq_delete(ipsq); 3839 } 3840 mi_free(ill->ill_phyint); 3841 } 3842 ill_free_mib(ill); 3843 if (ill->ill_ipst != NULL) 3844 netstack_rele(ill->ill_ipst->ips_netstack); 3845 mi_free(ill); 3846 } 3847 rw_exit(&ipst->ips_ill_g_lock); 3848 return (NULL); 3849 } 3850 3851 /* 3852 * For IPP calls - use the ip_stack_t for global stack. 3853 */ 3854 ill_t * 3855 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3856 { 3857 ip_stack_t *ipst; 3858 ill_t *ill; 3859 netstack_t *ns; 3860 3861 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID); 3862 3863 if ((ipst = ns->netstack_ip) == NULL) { 3864 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3865 netstack_rele(ns); 3866 return (NULL); 3867 } 3868 3869 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3870 netstack_rele(ns); 3871 return (ill); 3872 } 3873 3874 /* 3875 * Return a pointer to the ill which matches the index and IP version type. 3876 */ 3877 ill_t * 3878 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3879 { 3880 ill_t *ill; 3881 phyint_t *phyi; 3882 3883 /* 3884 * Indexes are stored in the phyint - a common structure 3885 * to both IPv4 and IPv6. 3886 */ 3887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3888 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3889 (void *) &index, NULL); 3890 if (phyi != NULL) { 3891 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3892 if (ill != NULL) { 3893 mutex_enter(&ill->ill_lock); 3894 if (!ILL_IS_CONDEMNED(ill)) { 3895 ill_refhold_locked(ill); 3896 mutex_exit(&ill->ill_lock); 3897 rw_exit(&ipst->ips_ill_g_lock); 3898 return (ill); 3899 } 3900 mutex_exit(&ill->ill_lock); 3901 } 3902 } 3903 rw_exit(&ipst->ips_ill_g_lock); 3904 return (NULL); 3905 } 3906 3907 /* 3908 * Verify whether or not an interface index is valid for the specified zoneid 3909 * to transmit packets. 3910 * It can be zero (meaning "reset") or an interface index assigned 3911 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3912 */ 3913 boolean_t 3914 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3915 ip_stack_t *ipst) 3916 { 3917 ill_t *ill; 3918 3919 if (ifindex == 0) 3920 return (B_TRUE); 3921 3922 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3923 if (ill == NULL) 3924 return (B_FALSE); 3925 if (IS_VNI(ill)) { 3926 ill_refrele(ill); 3927 return (B_FALSE); 3928 } 3929 ill_refrele(ill); 3930 return (B_TRUE); 3931 } 3932 3933 /* 3934 * Return the ifindex next in sequence after the passed in ifindex. 3935 * If there is no next ifindex for the given protocol, return 0. 3936 */ 3937 uint_t 3938 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3939 { 3940 phyint_t *phyi; 3941 phyint_t *phyi_initial; 3942 uint_t ifindex; 3943 3944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3945 3946 if (index == 0) { 3947 phyi = avl_first( 3948 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3949 } else { 3950 phyi = phyi_initial = avl_find( 3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3952 (void *) &index, NULL); 3953 } 3954 3955 for (; phyi != NULL; 3956 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3957 phyi, AVL_AFTER)) { 3958 /* 3959 * If we're not returning the first interface in the tree 3960 * and we still haven't moved past the phyint_t that 3961 * corresponds to index, avl_walk needs to be called again 3962 */ 3963 if (!((index != 0) && (phyi == phyi_initial))) { 3964 if (isv6) { 3965 if ((phyi->phyint_illv6) && 3966 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3967 (phyi->phyint_illv6->ill_isv6 == 1)) 3968 break; 3969 } else { 3970 if ((phyi->phyint_illv4) && 3971 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3972 (phyi->phyint_illv4->ill_isv6 == 0)) 3973 break; 3974 } 3975 } 3976 } 3977 3978 rw_exit(&ipst->ips_ill_g_lock); 3979 3980 if (phyi != NULL) 3981 ifindex = phyi->phyint_ifindex; 3982 else 3983 ifindex = 0; 3984 3985 return (ifindex); 3986 } 3987 3988 /* 3989 * Return the ifindex for the named interface. 3990 * If there is no next ifindex for the interface, return 0. 3991 */ 3992 uint_t 3993 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3994 { 3995 phyint_t *phyi; 3996 avl_index_t where = 0; 3997 uint_t ifindex; 3998 3999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4000 4001 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4002 name, &where)) == NULL) { 4003 rw_exit(&ipst->ips_ill_g_lock); 4004 return (0); 4005 } 4006 4007 ifindex = phyi->phyint_ifindex; 4008 4009 rw_exit(&ipst->ips_ill_g_lock); 4010 4011 return (ifindex); 4012 } 4013 4014 /* 4015 * Return the ifindex to be used by upper layer protocols for instance 4016 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4017 */ 4018 uint_t 4019 ill_get_upper_ifindex(const ill_t *ill) 4020 { 4021 if (IS_UNDER_IPMP(ill)) 4022 return (ipmp_ill_get_ipmp_ifindex(ill)); 4023 else 4024 return (ill->ill_phyint->phyint_ifindex); 4025 } 4026 4027 4028 /* 4029 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4030 * that gives a running thread a reference to the ill. This reference must be 4031 * released by the thread when it is done accessing the ill and related 4032 * objects. ill_refcnt can not be used to account for static references 4033 * such as other structures pointing to an ill. Callers must generally 4034 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4035 * or be sure that the ill is not being deleted or changing state before 4036 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4037 * ill won't change any of its critical state such as address, netmask etc. 4038 */ 4039 void 4040 ill_refhold(ill_t *ill) 4041 { 4042 mutex_enter(&ill->ill_lock); 4043 ill->ill_refcnt++; 4044 ILL_TRACE_REF(ill); 4045 mutex_exit(&ill->ill_lock); 4046 } 4047 4048 void 4049 ill_refhold_locked(ill_t *ill) 4050 { 4051 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4052 ill->ill_refcnt++; 4053 ILL_TRACE_REF(ill); 4054 } 4055 4056 /* Returns true if we managed to get a refhold */ 4057 boolean_t 4058 ill_check_and_refhold(ill_t *ill) 4059 { 4060 mutex_enter(&ill->ill_lock); 4061 if (!ILL_IS_CONDEMNED(ill)) { 4062 ill_refhold_locked(ill); 4063 mutex_exit(&ill->ill_lock); 4064 return (B_TRUE); 4065 } 4066 mutex_exit(&ill->ill_lock); 4067 return (B_FALSE); 4068 } 4069 4070 /* 4071 * Must not be called while holding any locks. Otherwise if this is 4072 * the last reference to be released, there is a chance of recursive mutex 4073 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4074 * to restart an ioctl. 4075 */ 4076 void 4077 ill_refrele(ill_t *ill) 4078 { 4079 mutex_enter(&ill->ill_lock); 4080 ASSERT(ill->ill_refcnt != 0); 4081 ill->ill_refcnt--; 4082 ILL_UNTRACE_REF(ill); 4083 if (ill->ill_refcnt != 0) { 4084 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4085 mutex_exit(&ill->ill_lock); 4086 return; 4087 } 4088 4089 /* Drops the ill_lock */ 4090 ipif_ill_refrele_tail(ill); 4091 } 4092 4093 /* 4094 * Obtain a weak reference count on the ill. This reference ensures the 4095 * ill won't be freed, but the ill may change any of its critical state 4096 * such as netmask, address etc. Returns an error if the ill has started 4097 * closing. 4098 */ 4099 boolean_t 4100 ill_waiter_inc(ill_t *ill) 4101 { 4102 mutex_enter(&ill->ill_lock); 4103 if (ill->ill_state_flags & ILL_CONDEMNED) { 4104 mutex_exit(&ill->ill_lock); 4105 return (B_FALSE); 4106 } 4107 ill->ill_waiters++; 4108 mutex_exit(&ill->ill_lock); 4109 return (B_TRUE); 4110 } 4111 4112 void 4113 ill_waiter_dcr(ill_t *ill) 4114 { 4115 mutex_enter(&ill->ill_lock); 4116 ill->ill_waiters--; 4117 if (ill->ill_waiters == 0) 4118 cv_broadcast(&ill->ill_cv); 4119 mutex_exit(&ill->ill_lock); 4120 } 4121 4122 /* 4123 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4124 * driver. We construct best guess defaults for lower level information that 4125 * we need. If an interface is brought up without injection of any overriding 4126 * information from outside, we have to be ready to go with these defaults. 4127 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4128 * we primarely want the dl_provider_style. 4129 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4130 * at which point we assume the other part of the information is valid. 4131 */ 4132 void 4133 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4134 { 4135 uchar_t *brdcst_addr; 4136 uint_t brdcst_addr_length, phys_addr_length; 4137 t_scalar_t sap_length; 4138 dl_info_ack_t *dlia; 4139 ip_m_t *ipm; 4140 dl_qos_cl_sel1_t *sel1; 4141 int min_mtu; 4142 4143 ASSERT(IAM_WRITER_ILL(ill)); 4144 4145 /* 4146 * Till the ill is fully up the ill is not globally visible. 4147 * So no need for a lock. 4148 */ 4149 dlia = (dl_info_ack_t *)mp->b_rptr; 4150 ill->ill_mactype = dlia->dl_mac_type; 4151 4152 ipm = ip_m_lookup(dlia->dl_mac_type); 4153 if (ipm == NULL) { 4154 ipm = ip_m_lookup(DL_OTHER); 4155 ASSERT(ipm != NULL); 4156 } 4157 ill->ill_media = ipm; 4158 4159 /* 4160 * When the new DLPI stuff is ready we'll pull lengths 4161 * from dlia. 4162 */ 4163 if (dlia->dl_version == DL_VERSION_2) { 4164 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4165 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4166 brdcst_addr_length); 4167 if (brdcst_addr == NULL) { 4168 brdcst_addr_length = 0; 4169 } 4170 sap_length = dlia->dl_sap_length; 4171 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4172 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4173 brdcst_addr_length, sap_length, phys_addr_length)); 4174 } else { 4175 brdcst_addr_length = 6; 4176 brdcst_addr = ip_six_byte_all_ones; 4177 sap_length = -2; 4178 phys_addr_length = brdcst_addr_length; 4179 } 4180 4181 ill->ill_bcast_addr_length = brdcst_addr_length; 4182 ill->ill_phys_addr_length = phys_addr_length; 4183 ill->ill_sap_length = sap_length; 4184 4185 /* 4186 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4187 * but we must ensure a minimum IP MTU is used since other bits of 4188 * IP will fly apart otherwise. 4189 */ 4190 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4191 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4192 ill->ill_current_frag = ill->ill_max_frag; 4193 ill->ill_mtu = ill->ill_max_frag; 4194 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4195 4196 ill->ill_type = ipm->ip_m_type; 4197 4198 if (!ill->ill_dlpi_style_set) { 4199 if (dlia->dl_provider_style == DL_STYLE2) 4200 ill->ill_needs_attach = 1; 4201 4202 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4203 4204 /* 4205 * Allocate the first ipif on this ill. We don't delay it 4206 * further as ioctl handling assumes at least one ipif exists. 4207 * 4208 * At this point we don't know whether the ill is v4 or v6. 4209 * We will know this whan the SIOCSLIFNAME happens and 4210 * the correct value for ill_isv6 will be assigned in 4211 * ipif_set_values(). We need to hold the ill lock and 4212 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4213 * the wakeup. 4214 */ 4215 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4216 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4217 mutex_enter(&ill->ill_lock); 4218 ASSERT(ill->ill_dlpi_style_set == 0); 4219 ill->ill_dlpi_style_set = 1; 4220 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4221 cv_broadcast(&ill->ill_cv); 4222 mutex_exit(&ill->ill_lock); 4223 freemsg(mp); 4224 return; 4225 } 4226 ASSERT(ill->ill_ipif != NULL); 4227 /* 4228 * We know whether it is IPv4 or IPv6 now, as this is the 4229 * second DL_INFO_ACK we are recieving in response to the 4230 * DL_INFO_REQ sent in ipif_set_values. 4231 */ 4232 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4233 /* 4234 * Clear all the flags that were set based on ill_bcast_addr_length 4235 * and ill_phys_addr_length (in ipif_set_values) as these could have 4236 * changed now and we need to re-evaluate. 4237 */ 4238 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4239 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4240 4241 /* 4242 * Free ill_bcast_mp as things could have changed now. 4243 * 4244 * NOTE: The IPMP meta-interface is special-cased because it starts 4245 * with no underlying interfaces (and thus an unknown broadcast 4246 * address length), but we enforce that an interface is broadcast- 4247 * capable as part of allowing it to join a group. 4248 */ 4249 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4250 if (ill->ill_bcast_mp != NULL) 4251 freemsg(ill->ill_bcast_mp); 4252 ill->ill_net_type = IRE_IF_NORESOLVER; 4253 4254 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4255 ill->ill_phys_addr_length, 4256 ill->ill_sap, 4257 ill->ill_sap_length); 4258 4259 if (ill->ill_isv6) 4260 /* 4261 * Note: xresolv interfaces will eventually need NOARP 4262 * set here as well, but that will require those 4263 * external resolvers to have some knowledge of 4264 * that flag and act appropriately. Not to be changed 4265 * at present. 4266 */ 4267 ill->ill_flags |= ILLF_NONUD; 4268 else 4269 ill->ill_flags |= ILLF_NOARP; 4270 4271 if (ill->ill_mactype == SUNW_DL_VNI) { 4272 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4273 } else if (ill->ill_phys_addr_length == 0 || 4274 ill->ill_mactype == DL_IPV4 || 4275 ill->ill_mactype == DL_IPV6) { 4276 /* 4277 * The underying link is point-to-point, so mark the 4278 * interface as such. We can do IP multicast over 4279 * such a link since it transmits all network-layer 4280 * packets to the remote side the same way. 4281 */ 4282 ill->ill_flags |= ILLF_MULTICAST; 4283 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4284 } 4285 } else { 4286 ill->ill_net_type = IRE_IF_RESOLVER; 4287 if (ill->ill_bcast_mp != NULL) 4288 freemsg(ill->ill_bcast_mp); 4289 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4290 ill->ill_bcast_addr_length, ill->ill_sap, 4291 ill->ill_sap_length); 4292 /* 4293 * Later detect lack of DLPI driver multicast 4294 * capability by catching DL_ENABMULTI errors in 4295 * ip_rput_dlpi. 4296 */ 4297 ill->ill_flags |= ILLF_MULTICAST; 4298 if (!ill->ill_isv6) 4299 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4300 } 4301 4302 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4303 if (ill->ill_mactype == SUNW_DL_IPMP) 4304 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4305 4306 /* By default an interface does not support any CoS marking */ 4307 ill->ill_flags &= ~ILLF_COS_ENABLED; 4308 4309 /* 4310 * If we get QoS information in DL_INFO_ACK, the device supports 4311 * some form of CoS marking, set ILLF_COS_ENABLED. 4312 */ 4313 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4314 dlia->dl_qos_length); 4315 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4316 ill->ill_flags |= ILLF_COS_ENABLED; 4317 } 4318 4319 /* Clear any previous error indication. */ 4320 ill->ill_error = 0; 4321 freemsg(mp); 4322 } 4323 4324 /* 4325 * Perform various checks to verify that an address would make sense as a 4326 * local, remote, or subnet interface address. 4327 */ 4328 static boolean_t 4329 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4330 { 4331 ipaddr_t net_mask; 4332 4333 /* 4334 * Don't allow all zeroes, or all ones, but allow 4335 * all ones netmask. 4336 */ 4337 if ((net_mask = ip_net_mask(addr)) == 0) 4338 return (B_FALSE); 4339 /* A given netmask overrides the "guess" netmask */ 4340 if (subnet_mask != 0) 4341 net_mask = subnet_mask; 4342 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4343 (addr == (addr | ~net_mask)))) { 4344 return (B_FALSE); 4345 } 4346 4347 /* 4348 * Even if the netmask is all ones, we do not allow address to be 4349 * 255.255.255.255 4350 */ 4351 if (addr == INADDR_BROADCAST) 4352 return (B_FALSE); 4353 4354 if (CLASSD(addr)) 4355 return (B_FALSE); 4356 4357 return (B_TRUE); 4358 } 4359 4360 #define V6_IPIF_LINKLOCAL(p) \ 4361 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4362 4363 /* 4364 * Compare two given ipifs and check if the second one is better than 4365 * the first one using the order of preference (not taking deprecated 4366 * into acount) specified in ipif_lookup_multicast(). 4367 */ 4368 static boolean_t 4369 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4370 { 4371 /* Check the least preferred first. */ 4372 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4373 /* If both ipifs are the same, use the first one. */ 4374 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4375 return (B_FALSE); 4376 else 4377 return (B_TRUE); 4378 } 4379 4380 /* For IPv6, check for link local address. */ 4381 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4382 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4383 V6_IPIF_LINKLOCAL(new_ipif)) { 4384 /* The second one is equal or less preferred. */ 4385 return (B_FALSE); 4386 } else { 4387 return (B_TRUE); 4388 } 4389 } 4390 4391 /* Then check for point to point interface. */ 4392 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4393 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4394 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4395 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4396 return (B_FALSE); 4397 } else { 4398 return (B_TRUE); 4399 } 4400 } 4401 4402 /* old_ipif is a normal interface, so no need to use the new one. */ 4403 return (B_FALSE); 4404 } 4405 4406 /* 4407 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4408 * The ipif must be up, and its ill must multicast-capable, not 4409 * condemned, not an underlying interface in an IPMP group, and 4410 * not a VNI interface. Order of preference: 4411 * 4412 * 1a. normal 4413 * 1b. normal, but deprecated 4414 * 2a. point to point 4415 * 2b. point to point, but deprecated 4416 * 3a. link local 4417 * 3b. link local, but deprecated 4418 * 4. loopback. 4419 */ 4420 static ipif_t * 4421 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4422 { 4423 ill_t *ill; 4424 ill_walk_context_t ctx; 4425 ipif_t *ipif; 4426 ipif_t *saved_ipif = NULL; 4427 ipif_t *dep_ipif = NULL; 4428 4429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4430 if (isv6) 4431 ill = ILL_START_WALK_V6(&ctx, ipst); 4432 else 4433 ill = ILL_START_WALK_V4(&ctx, ipst); 4434 4435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4436 mutex_enter(&ill->ill_lock); 4437 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4438 ILL_IS_CONDEMNED(ill) || 4439 !(ill->ill_flags & ILLF_MULTICAST)) { 4440 mutex_exit(&ill->ill_lock); 4441 continue; 4442 } 4443 for (ipif = ill->ill_ipif; ipif != NULL; 4444 ipif = ipif->ipif_next) { 4445 if (zoneid != ipif->ipif_zoneid && 4446 zoneid != ALL_ZONES && 4447 ipif->ipif_zoneid != ALL_ZONES) { 4448 continue; 4449 } 4450 if (!(ipif->ipif_flags & IPIF_UP) || 4451 IPIF_IS_CONDEMNED(ipif)) { 4452 continue; 4453 } 4454 4455 /* 4456 * Found one candidate. If it is deprecated, 4457 * remember it in dep_ipif. If it is not deprecated, 4458 * remember it in saved_ipif. 4459 */ 4460 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4461 if (dep_ipif == NULL) { 4462 dep_ipif = ipif; 4463 } else if (ipif_comp_multi(dep_ipif, ipif, 4464 isv6)) { 4465 /* 4466 * If the previous dep_ipif does not 4467 * belong to the same ill, we've done 4468 * a ipif_refhold() on it. So we need 4469 * to release it. 4470 */ 4471 if (dep_ipif->ipif_ill != ill) 4472 ipif_refrele(dep_ipif); 4473 dep_ipif = ipif; 4474 } 4475 continue; 4476 } 4477 if (saved_ipif == NULL) { 4478 saved_ipif = ipif; 4479 } else { 4480 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4481 if (saved_ipif->ipif_ill != ill) 4482 ipif_refrele(saved_ipif); 4483 saved_ipif = ipif; 4484 } 4485 } 4486 } 4487 /* 4488 * Before going to the next ill, do a ipif_refhold() on the 4489 * saved ones. 4490 */ 4491 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4492 ipif_refhold_locked(saved_ipif); 4493 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(dep_ipif); 4495 mutex_exit(&ill->ill_lock); 4496 } 4497 rw_exit(&ipst->ips_ill_g_lock); 4498 4499 /* 4500 * If we have only the saved_ipif, return it. But if we have both 4501 * saved_ipif and dep_ipif, check to see which one is better. 4502 */ 4503 if (saved_ipif != NULL) { 4504 if (dep_ipif != NULL) { 4505 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4506 ipif_refrele(saved_ipif); 4507 return (dep_ipif); 4508 } else { 4509 ipif_refrele(dep_ipif); 4510 return (saved_ipif); 4511 } 4512 } 4513 return (saved_ipif); 4514 } else { 4515 return (dep_ipif); 4516 } 4517 } 4518 4519 ill_t * 4520 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4521 { 4522 ipif_t *ipif; 4523 ill_t *ill; 4524 4525 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4526 if (ipif == NULL) 4527 return (NULL); 4528 4529 ill = ipif->ipif_ill; 4530 ill_refhold(ill); 4531 ipif_refrele(ipif); 4532 return (ill); 4533 } 4534 4535 /* 4536 * This function is called when an application does not specify an interface 4537 * to be used for multicast traffic (joining a group/sending data). It 4538 * calls ire_lookup_multi() to look for an interface route for the 4539 * specified multicast group. Doing this allows the administrator to add 4540 * prefix routes for multicast to indicate which interface to be used for 4541 * multicast traffic in the above scenario. The route could be for all 4542 * multicast (224.0/4), for a single multicast group (a /32 route) or 4543 * anything in between. If there is no such multicast route, we just find 4544 * any multicast capable interface and return it. The returned ipif 4545 * is refhold'ed. 4546 * 4547 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4548 * unicast table. This is used by CGTP. 4549 */ 4550 ill_t * 4551 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4552 boolean_t *multirtp, ipaddr_t *setsrcp) 4553 { 4554 ill_t *ill; 4555 4556 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4557 if (ill != NULL) 4558 return (ill); 4559 4560 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4561 } 4562 4563 /* 4564 * Look for an ipif with the specified interface address and destination. 4565 * The destination address is used only for matching point-to-point interfaces. 4566 */ 4567 ipif_t * 4568 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4569 { 4570 ipif_t *ipif; 4571 ill_t *ill; 4572 ill_walk_context_t ctx; 4573 4574 /* 4575 * First match all the point-to-point interfaces 4576 * before looking at non-point-to-point interfaces. 4577 * This is done to avoid returning non-point-to-point 4578 * ipif instead of unnumbered point-to-point ipif. 4579 */ 4580 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4581 ill = ILL_START_WALK_V4(&ctx, ipst); 4582 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4583 mutex_enter(&ill->ill_lock); 4584 for (ipif = ill->ill_ipif; ipif != NULL; 4585 ipif = ipif->ipif_next) { 4586 /* Allow the ipif to be down */ 4587 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4588 (ipif->ipif_lcl_addr == if_addr) && 4589 (ipif->ipif_pp_dst_addr == dst)) { 4590 if (!IPIF_IS_CONDEMNED(ipif)) { 4591 ipif_refhold_locked(ipif); 4592 mutex_exit(&ill->ill_lock); 4593 rw_exit(&ipst->ips_ill_g_lock); 4594 return (ipif); 4595 } 4596 } 4597 } 4598 mutex_exit(&ill->ill_lock); 4599 } 4600 rw_exit(&ipst->ips_ill_g_lock); 4601 4602 /* lookup the ipif based on interface address */ 4603 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4604 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4605 return (ipif); 4606 } 4607 4608 /* 4609 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4610 */ 4611 static ipif_t * 4612 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4613 zoneid_t zoneid, ip_stack_t *ipst) 4614 { 4615 ipif_t *ipif; 4616 ill_t *ill; 4617 boolean_t ptp = B_FALSE; 4618 ill_walk_context_t ctx; 4619 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4620 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4621 4622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4623 /* 4624 * Repeat twice, first based on local addresses and 4625 * next time for pointopoint. 4626 */ 4627 repeat: 4628 ill = ILL_START_WALK_V4(&ctx, ipst); 4629 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4630 if (match_ill != NULL && ill != match_ill && 4631 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4632 continue; 4633 } 4634 mutex_enter(&ill->ill_lock); 4635 for (ipif = ill->ill_ipif; ipif != NULL; 4636 ipif = ipif->ipif_next) { 4637 if (zoneid != ALL_ZONES && 4638 zoneid != ipif->ipif_zoneid && 4639 ipif->ipif_zoneid != ALL_ZONES) 4640 continue; 4641 4642 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4643 continue; 4644 4645 /* Allow the ipif to be down */ 4646 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4647 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4648 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4649 (ipif->ipif_pp_dst_addr == addr))) { 4650 if (!IPIF_IS_CONDEMNED(ipif)) { 4651 ipif_refhold_locked(ipif); 4652 mutex_exit(&ill->ill_lock); 4653 rw_exit(&ipst->ips_ill_g_lock); 4654 return (ipif); 4655 } 4656 } 4657 } 4658 mutex_exit(&ill->ill_lock); 4659 } 4660 4661 /* If we already did the ptp case, then we are done */ 4662 if (ptp) { 4663 rw_exit(&ipst->ips_ill_g_lock); 4664 return (NULL); 4665 } 4666 ptp = B_TRUE; 4667 goto repeat; 4668 } 4669 4670 /* 4671 * Lookup an ipif with the specified address. For point-to-point links we 4672 * look for matches on either the destination address or the local address, 4673 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4674 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4675 * (or illgrp if `match_ill' is in an IPMP group). 4676 */ 4677 ipif_t * 4678 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4679 ip_stack_t *ipst) 4680 { 4681 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4682 zoneid, ipst)); 4683 } 4684 4685 /* 4686 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4687 * except that we will only return an address if it is not marked as 4688 * IPIF_DUPLICATE 4689 */ 4690 ipif_t * 4691 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4692 ip_stack_t *ipst) 4693 { 4694 return (ipif_lookup_addr_common(addr, match_ill, 4695 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4696 zoneid, ipst)); 4697 } 4698 4699 /* 4700 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4701 * `match_ill' across the IPMP group. This function is only needed in some 4702 * corner-cases; almost everything should use ipif_lookup_addr(). 4703 */ 4704 ipif_t * 4705 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4706 { 4707 ASSERT(match_ill != NULL); 4708 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4709 ipst)); 4710 } 4711 4712 /* 4713 * Look for an ipif with the specified address. For point-point links 4714 * we look for matches on either the destination address and the local 4715 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4716 * is set. 4717 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4718 * ill (or illgrp if `match_ill' is in an IPMP group). 4719 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4720 */ 4721 zoneid_t 4722 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4723 { 4724 zoneid_t zoneid; 4725 ipif_t *ipif; 4726 ill_t *ill; 4727 boolean_t ptp = B_FALSE; 4728 ill_walk_context_t ctx; 4729 4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4731 /* 4732 * Repeat twice, first based on local addresses and 4733 * next time for pointopoint. 4734 */ 4735 repeat: 4736 ill = ILL_START_WALK_V4(&ctx, ipst); 4737 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4738 if (match_ill != NULL && ill != match_ill && 4739 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4740 continue; 4741 } 4742 mutex_enter(&ill->ill_lock); 4743 for (ipif = ill->ill_ipif; ipif != NULL; 4744 ipif = ipif->ipif_next) { 4745 /* Allow the ipif to be down */ 4746 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4747 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4748 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4749 (ipif->ipif_pp_dst_addr == addr)) && 4750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4751 zoneid = ipif->ipif_zoneid; 4752 mutex_exit(&ill->ill_lock); 4753 rw_exit(&ipst->ips_ill_g_lock); 4754 /* 4755 * If ipif_zoneid was ALL_ZONES then we have 4756 * a trusted extensions shared IP address. 4757 * In that case GLOBAL_ZONEID works to send. 4758 */ 4759 if (zoneid == ALL_ZONES) 4760 zoneid = GLOBAL_ZONEID; 4761 return (zoneid); 4762 } 4763 } 4764 mutex_exit(&ill->ill_lock); 4765 } 4766 4767 /* If we already did the ptp case, then we are done */ 4768 if (ptp) { 4769 rw_exit(&ipst->ips_ill_g_lock); 4770 return (ALL_ZONES); 4771 } 4772 ptp = B_TRUE; 4773 goto repeat; 4774 } 4775 4776 /* 4777 * Look for an ipif that matches the specified remote address i.e. the 4778 * ipif that would receive the specified packet. 4779 * First look for directly connected interfaces and then do a recursive 4780 * IRE lookup and pick the first ipif corresponding to the source address in the 4781 * ire. 4782 * Returns: held ipif 4783 * 4784 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4785 */ 4786 ipif_t * 4787 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4788 { 4789 ipif_t *ipif; 4790 4791 ASSERT(!ill->ill_isv6); 4792 4793 /* 4794 * Someone could be changing this ipif currently or change it 4795 * after we return this. Thus a few packets could use the old 4796 * old values. However structure updates/creates (ire, ilg, ilm etc) 4797 * will atomically be updated or cleaned up with the new value 4798 * Thus we don't need a lock to check the flags or other attrs below. 4799 */ 4800 mutex_enter(&ill->ill_lock); 4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4802 if (IPIF_IS_CONDEMNED(ipif)) 4803 continue; 4804 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4805 ipif->ipif_zoneid != ALL_ZONES) 4806 continue; 4807 /* Allow the ipif to be down */ 4808 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4809 if ((ipif->ipif_pp_dst_addr == addr) || 4810 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4811 ipif->ipif_lcl_addr == addr)) { 4812 ipif_refhold_locked(ipif); 4813 mutex_exit(&ill->ill_lock); 4814 return (ipif); 4815 } 4816 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4817 ipif_refhold_locked(ipif); 4818 mutex_exit(&ill->ill_lock); 4819 return (ipif); 4820 } 4821 } 4822 mutex_exit(&ill->ill_lock); 4823 /* 4824 * For a remote destination it isn't possible to nail down a particular 4825 * ipif. 4826 */ 4827 4828 /* Pick the first interface */ 4829 ipif = ipif_get_next_ipif(NULL, ill); 4830 return (ipif); 4831 } 4832 4833 /* 4834 * This func does not prevent refcnt from increasing. But if 4835 * the caller has taken steps to that effect, then this func 4836 * can be used to determine whether the ill has become quiescent 4837 */ 4838 static boolean_t 4839 ill_is_quiescent(ill_t *ill) 4840 { 4841 ipif_t *ipif; 4842 4843 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4844 4845 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4846 if (ipif->ipif_refcnt != 0) 4847 return (B_FALSE); 4848 } 4849 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4850 return (B_FALSE); 4851 } 4852 return (B_TRUE); 4853 } 4854 4855 boolean_t 4856 ill_is_freeable(ill_t *ill) 4857 { 4858 ipif_t *ipif; 4859 4860 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4861 4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4863 if (ipif->ipif_refcnt != 0) { 4864 return (B_FALSE); 4865 } 4866 } 4867 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4868 return (B_FALSE); 4869 } 4870 return (B_TRUE); 4871 } 4872 4873 /* 4874 * This func does not prevent refcnt from increasing. But if 4875 * the caller has taken steps to that effect, then this func 4876 * can be used to determine whether the ipif has become quiescent 4877 */ 4878 static boolean_t 4879 ipif_is_quiescent(ipif_t *ipif) 4880 { 4881 ill_t *ill; 4882 4883 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4884 4885 if (ipif->ipif_refcnt != 0) 4886 return (B_FALSE); 4887 4888 ill = ipif->ipif_ill; 4889 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4890 ill->ill_logical_down) { 4891 return (B_TRUE); 4892 } 4893 4894 /* This is the last ipif going down or being deleted on this ill */ 4895 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4896 return (B_FALSE); 4897 } 4898 4899 return (B_TRUE); 4900 } 4901 4902 /* 4903 * return true if the ipif can be destroyed: the ipif has to be quiescent 4904 * with zero references from ire/ilm to it. 4905 */ 4906 static boolean_t 4907 ipif_is_freeable(ipif_t *ipif) 4908 { 4909 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4910 ASSERT(ipif->ipif_id != 0); 4911 return (ipif->ipif_refcnt == 0); 4912 } 4913 4914 /* 4915 * The ipif/ill/ire has been refreled. Do the tail processing. 4916 * Determine if the ipif or ill in question has become quiescent and if so 4917 * wakeup close and/or restart any queued pending ioctl that is waiting 4918 * for the ipif_down (or ill_down) 4919 */ 4920 void 4921 ipif_ill_refrele_tail(ill_t *ill) 4922 { 4923 mblk_t *mp; 4924 conn_t *connp; 4925 ipsq_t *ipsq; 4926 ipxop_t *ipx; 4927 ipif_t *ipif; 4928 dl_notify_ind_t *dlindp; 4929 4930 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4931 4932 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4933 /* ip_modclose() may be waiting */ 4934 cv_broadcast(&ill->ill_cv); 4935 } 4936 4937 ipsq = ill->ill_phyint->phyint_ipsq; 4938 mutex_enter(&ipsq->ipsq_lock); 4939 ipx = ipsq->ipsq_xop; 4940 mutex_enter(&ipx->ipx_lock); 4941 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4942 goto unlock; 4943 4944 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4945 4946 ipif = ipx->ipx_pending_ipif; 4947 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4948 goto unlock; 4949 4950 switch (ipx->ipx_waitfor) { 4951 case IPIF_DOWN: 4952 if (!ipif_is_quiescent(ipif)) 4953 goto unlock; 4954 break; 4955 case IPIF_FREE: 4956 if (!ipif_is_freeable(ipif)) 4957 goto unlock; 4958 break; 4959 case ILL_DOWN: 4960 if (!ill_is_quiescent(ill)) 4961 goto unlock; 4962 break; 4963 case ILL_FREE: 4964 /* 4965 * ILL_FREE is only for loopback; normal ill teardown waits 4966 * synchronously in ip_modclose() without using ipx_waitfor, 4967 * handled by the cv_broadcast() at the top of this function. 4968 */ 4969 if (!ill_is_freeable(ill)) 4970 goto unlock; 4971 break; 4972 default: 4973 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4974 (void *)ipsq, ipx->ipx_waitfor); 4975 } 4976 4977 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4978 mutex_exit(&ipx->ipx_lock); 4979 mp = ipsq_pending_mp_get(ipsq, &connp); 4980 mutex_exit(&ipsq->ipsq_lock); 4981 mutex_exit(&ill->ill_lock); 4982 4983 ASSERT(mp != NULL); 4984 /* 4985 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4986 * we can only get here when the current operation decides it 4987 * it needs to quiesce via ipsq_pending_mp_add(). 4988 */ 4989 switch (mp->b_datap->db_type) { 4990 case M_PCPROTO: 4991 case M_PROTO: 4992 /* 4993 * For now, only DL_NOTIFY_IND messages can use this facility. 4994 */ 4995 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4996 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4997 4998 switch (dlindp->dl_notification) { 4999 case DL_NOTE_PHYS_ADDR: 5000 qwriter_ip(ill, ill->ill_rq, mp, 5001 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5002 return; 5003 case DL_NOTE_REPLUMB: 5004 qwriter_ip(ill, ill->ill_rq, mp, 5005 ill_replumb_tail, CUR_OP, B_TRUE); 5006 return; 5007 default: 5008 ASSERT(0); 5009 ill_refrele(ill); 5010 } 5011 break; 5012 5013 case M_ERROR: 5014 case M_HANGUP: 5015 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5016 B_TRUE); 5017 return; 5018 5019 case M_IOCTL: 5020 case M_IOCDATA: 5021 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5022 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5023 return; 5024 5025 default: 5026 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5027 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5028 } 5029 return; 5030 unlock: 5031 mutex_exit(&ipsq->ipsq_lock); 5032 mutex_exit(&ipx->ipx_lock); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 5036 #ifdef DEBUG 5037 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5038 static void 5039 th_trace_rrecord(th_trace_t *th_trace) 5040 { 5041 tr_buf_t *tr_buf; 5042 uint_t lastref; 5043 5044 lastref = th_trace->th_trace_lastref; 5045 lastref++; 5046 if (lastref == TR_BUF_MAX) 5047 lastref = 0; 5048 th_trace->th_trace_lastref = lastref; 5049 tr_buf = &th_trace->th_trbuf[lastref]; 5050 tr_buf->tr_time = ddi_get_lbolt(); 5051 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5052 } 5053 5054 static void 5055 th_trace_free(void *value) 5056 { 5057 th_trace_t *th_trace = value; 5058 5059 ASSERT(th_trace->th_refcnt == 0); 5060 kmem_free(th_trace, sizeof (*th_trace)); 5061 } 5062 5063 /* 5064 * Find or create the per-thread hash table used to track object references. 5065 * The ipst argument is NULL if we shouldn't allocate. 5066 * 5067 * Accesses per-thread data, so there's no need to lock here. 5068 */ 5069 static mod_hash_t * 5070 th_trace_gethash(ip_stack_t *ipst) 5071 { 5072 th_hash_t *thh; 5073 5074 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5075 mod_hash_t *mh; 5076 char name[256]; 5077 size_t objsize, rshift; 5078 int retv; 5079 5080 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5081 return (NULL); 5082 (void) snprintf(name, sizeof (name), "th_trace_%p", 5083 (void *)curthread); 5084 5085 /* 5086 * We use mod_hash_create_extended here rather than the more 5087 * obvious mod_hash_create_ptrhash because the latter has a 5088 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5089 * block. 5090 */ 5091 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5092 MAX(sizeof (ire_t), sizeof (ncec_t))); 5093 rshift = highbit(objsize); 5094 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5095 th_trace_free, mod_hash_byptr, (void *)rshift, 5096 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5097 if (mh == NULL) { 5098 kmem_free(thh, sizeof (*thh)); 5099 return (NULL); 5100 } 5101 thh->thh_hash = mh; 5102 thh->thh_ipst = ipst; 5103 /* 5104 * We trace ills, ipifs, ires, and nces. All of these are 5105 * per-IP-stack, so the lock on the thread list is as well. 5106 */ 5107 rw_enter(&ip_thread_rwlock, RW_WRITER); 5108 list_insert_tail(&ip_thread_list, thh); 5109 rw_exit(&ip_thread_rwlock); 5110 retv = tsd_set(ip_thread_data, thh); 5111 ASSERT(retv == 0); 5112 } 5113 return (thh != NULL ? thh->thh_hash : NULL); 5114 } 5115 5116 boolean_t 5117 th_trace_ref(const void *obj, ip_stack_t *ipst) 5118 { 5119 th_trace_t *th_trace; 5120 mod_hash_t *mh; 5121 mod_hash_val_t val; 5122 5123 if ((mh = th_trace_gethash(ipst)) == NULL) 5124 return (B_FALSE); 5125 5126 /* 5127 * Attempt to locate the trace buffer for this obj and thread. 5128 * If it does not exist, then allocate a new trace buffer and 5129 * insert into the hash. 5130 */ 5131 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5132 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5133 if (th_trace == NULL) 5134 return (B_FALSE); 5135 5136 th_trace->th_id = curthread; 5137 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5138 (mod_hash_val_t)th_trace) != 0) { 5139 kmem_free(th_trace, sizeof (th_trace_t)); 5140 return (B_FALSE); 5141 } 5142 } else { 5143 th_trace = (th_trace_t *)val; 5144 } 5145 5146 ASSERT(th_trace->th_refcnt >= 0 && 5147 th_trace->th_refcnt < TR_BUF_MAX - 1); 5148 5149 th_trace->th_refcnt++; 5150 th_trace_rrecord(th_trace); 5151 return (B_TRUE); 5152 } 5153 5154 /* 5155 * For the purpose of tracing a reference release, we assume that global 5156 * tracing is always on and that the same thread initiated the reference hold 5157 * is releasing. 5158 */ 5159 void 5160 th_trace_unref(const void *obj) 5161 { 5162 int retv; 5163 mod_hash_t *mh; 5164 th_trace_t *th_trace; 5165 mod_hash_val_t val; 5166 5167 mh = th_trace_gethash(NULL); 5168 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5169 ASSERT(retv == 0); 5170 th_trace = (th_trace_t *)val; 5171 5172 ASSERT(th_trace->th_refcnt > 0); 5173 th_trace->th_refcnt--; 5174 th_trace_rrecord(th_trace); 5175 } 5176 5177 /* 5178 * If tracing has been disabled, then we assume that the reference counts are 5179 * now useless, and we clear them out before destroying the entries. 5180 */ 5181 void 5182 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5183 { 5184 th_hash_t *thh; 5185 mod_hash_t *mh; 5186 mod_hash_val_t val; 5187 th_trace_t *th_trace; 5188 int retv; 5189 5190 rw_enter(&ip_thread_rwlock, RW_READER); 5191 for (thh = list_head(&ip_thread_list); thh != NULL; 5192 thh = list_next(&ip_thread_list, thh)) { 5193 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5194 &val) == 0) { 5195 th_trace = (th_trace_t *)val; 5196 if (trace_disable) 5197 th_trace->th_refcnt = 0; 5198 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5199 ASSERT(retv == 0); 5200 } 5201 } 5202 rw_exit(&ip_thread_rwlock); 5203 } 5204 5205 void 5206 ipif_trace_ref(ipif_t *ipif) 5207 { 5208 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5209 5210 if (ipif->ipif_trace_disable) 5211 return; 5212 5213 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5214 ipif->ipif_trace_disable = B_TRUE; 5215 ipif_trace_cleanup(ipif); 5216 } 5217 } 5218 5219 void 5220 ipif_untrace_ref(ipif_t *ipif) 5221 { 5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5223 5224 if (!ipif->ipif_trace_disable) 5225 th_trace_unref(ipif); 5226 } 5227 5228 void 5229 ill_trace_ref(ill_t *ill) 5230 { 5231 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5232 5233 if (ill->ill_trace_disable) 5234 return; 5235 5236 if (!th_trace_ref(ill, ill->ill_ipst)) { 5237 ill->ill_trace_disable = B_TRUE; 5238 ill_trace_cleanup(ill); 5239 } 5240 } 5241 5242 void 5243 ill_untrace_ref(ill_t *ill) 5244 { 5245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5246 5247 if (!ill->ill_trace_disable) 5248 th_trace_unref(ill); 5249 } 5250 5251 /* 5252 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5253 * failure, ipif_trace_disable is set. 5254 */ 5255 static void 5256 ipif_trace_cleanup(const ipif_t *ipif) 5257 { 5258 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5259 } 5260 5261 /* 5262 * Called when ill is unplumbed or when memory alloc fails. Note that on 5263 * failure, ill_trace_disable is set. 5264 */ 5265 static void 5266 ill_trace_cleanup(const ill_t *ill) 5267 { 5268 th_trace_cleanup(ill, ill->ill_trace_disable); 5269 } 5270 #endif /* DEBUG */ 5271 5272 void 5273 ipif_refhold_locked(ipif_t *ipif) 5274 { 5275 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5276 ipif->ipif_refcnt++; 5277 IPIF_TRACE_REF(ipif); 5278 } 5279 5280 void 5281 ipif_refhold(ipif_t *ipif) 5282 { 5283 ill_t *ill; 5284 5285 ill = ipif->ipif_ill; 5286 mutex_enter(&ill->ill_lock); 5287 ipif->ipif_refcnt++; 5288 IPIF_TRACE_REF(ipif); 5289 mutex_exit(&ill->ill_lock); 5290 } 5291 5292 /* 5293 * Must not be called while holding any locks. Otherwise if this is 5294 * the last reference to be released there is a chance of recursive mutex 5295 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5296 * to restart an ioctl. 5297 */ 5298 void 5299 ipif_refrele(ipif_t *ipif) 5300 { 5301 ill_t *ill; 5302 5303 ill = ipif->ipif_ill; 5304 5305 mutex_enter(&ill->ill_lock); 5306 ASSERT(ipif->ipif_refcnt != 0); 5307 ipif->ipif_refcnt--; 5308 IPIF_UNTRACE_REF(ipif); 5309 if (ipif->ipif_refcnt != 0) { 5310 mutex_exit(&ill->ill_lock); 5311 return; 5312 } 5313 5314 /* Drops the ill_lock */ 5315 ipif_ill_refrele_tail(ill); 5316 } 5317 5318 ipif_t * 5319 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5320 { 5321 ipif_t *ipif; 5322 5323 mutex_enter(&ill->ill_lock); 5324 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5325 ipif != NULL; ipif = ipif->ipif_next) { 5326 if (IPIF_IS_CONDEMNED(ipif)) 5327 continue; 5328 ipif_refhold_locked(ipif); 5329 mutex_exit(&ill->ill_lock); 5330 return (ipif); 5331 } 5332 mutex_exit(&ill->ill_lock); 5333 return (NULL); 5334 } 5335 5336 /* 5337 * TODO: make this table extendible at run time 5338 * Return a pointer to the mac type info for 'mac_type' 5339 */ 5340 static ip_m_t * 5341 ip_m_lookup(t_uscalar_t mac_type) 5342 { 5343 ip_m_t *ipm; 5344 5345 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5346 if (ipm->ip_m_mac_type == mac_type) 5347 return (ipm); 5348 return (NULL); 5349 } 5350 5351 /* 5352 * Make a link layer address from the multicast IP address *addr. 5353 * To form the link layer address, invoke the ip_m_v*mapping function 5354 * associated with the link-layer type. 5355 */ 5356 void 5357 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5358 { 5359 ip_m_t *ipm; 5360 5361 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5362 return; 5363 5364 ASSERT(addr != NULL); 5365 5366 ipm = ip_m_lookup(ill->ill_mactype); 5367 if (ipm == NULL || 5368 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5369 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5370 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5371 ill->ill_name, ill->ill_mactype)); 5372 return; 5373 } 5374 if (ill->ill_isv6) 5375 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5376 else 5377 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5378 } 5379 5380 /* 5381 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5382 * Otherwise returns B_TRUE. 5383 * 5384 * The netmask can be verified to be contiguous with 32 shifts and or 5385 * operations. Take the contiguous mask (in host byte order) and compute 5386 * mask | mask << 1 | mask << 2 | ... | mask << 31 5387 * the result will be the same as the 'mask' for contiguous mask. 5388 */ 5389 static boolean_t 5390 ip_contiguous_mask(uint32_t mask) 5391 { 5392 uint32_t m = mask; 5393 int i; 5394 5395 for (i = 1; i < 32; i++) 5396 m |= (mask << i); 5397 5398 return (m == mask); 5399 } 5400 5401 /* 5402 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5403 * ill is passed in to associate it with the correct interface. 5404 * If ire_arg is set, then we return the held IRE in that location. 5405 */ 5406 int 5407 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5408 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5409 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5410 { 5411 ire_t *ire, *nire; 5412 ire_t *gw_ire = NULL; 5413 ipif_t *ipif = NULL; 5414 uint_t type; 5415 int match_flags = MATCH_IRE_TYPE; 5416 tsol_gc_t *gc = NULL; 5417 tsol_gcgrp_t *gcgrp = NULL; 5418 boolean_t gcgrp_xtraref = B_FALSE; 5419 boolean_t cgtp_broadcast; 5420 boolean_t unbound = B_FALSE; 5421 5422 ip1dbg(("ip_rt_add:")); 5423 5424 if (ire_arg != NULL) 5425 *ire_arg = NULL; 5426 5427 /* disallow non-contiguous netmasks */ 5428 if (!ip_contiguous_mask(ntohl(mask))) 5429 return (ENOTSUP); 5430 5431 /* 5432 * If this is the case of RTF_HOST being set, then we set the netmask 5433 * to all ones (regardless if one was supplied). 5434 */ 5435 if (flags & RTF_HOST) 5436 mask = IP_HOST_MASK; 5437 5438 /* 5439 * Prevent routes with a zero gateway from being created (since 5440 * interfaces can currently be plumbed and brought up no assigned 5441 * address). 5442 */ 5443 if (gw_addr == 0) 5444 return (ENETUNREACH); 5445 /* 5446 * Get the ipif, if any, corresponding to the gw_addr 5447 * If -ifp was specified we restrict ourselves to the ill, otherwise 5448 * we match on the gatway and destination to handle unnumbered pt-pt 5449 * interfaces. 5450 */ 5451 if (ill != NULL) 5452 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5453 else 5454 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5455 if (ipif != NULL) { 5456 if (IS_VNI(ipif->ipif_ill)) { 5457 ipif_refrele(ipif); 5458 return (EINVAL); 5459 } 5460 } 5461 5462 /* 5463 * GateD will attempt to create routes with a loopback interface 5464 * address as the gateway and with RTF_GATEWAY set. We allow 5465 * these routes to be added, but create them as interface routes 5466 * since the gateway is an interface address. 5467 */ 5468 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5469 flags &= ~RTF_GATEWAY; 5470 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5471 mask == IP_HOST_MASK) { 5472 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5474 NULL); 5475 if (ire != NULL) { 5476 ire_refrele(ire); 5477 ipif_refrele(ipif); 5478 return (EEXIST); 5479 } 5480 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5481 "for 0x%x\n", (void *)ipif, 5482 ipif->ipif_ire_type, 5483 ntohl(ipif->ipif_lcl_addr))); 5484 ire = ire_create( 5485 (uchar_t *)&dst_addr, /* dest address */ 5486 (uchar_t *)&mask, /* mask */ 5487 NULL, /* no gateway */ 5488 ipif->ipif_ire_type, /* LOOPBACK */ 5489 ipif->ipif_ill, 5490 zoneid, 5491 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5492 NULL, 5493 ipst); 5494 5495 if (ire == NULL) { 5496 ipif_refrele(ipif); 5497 return (ENOMEM); 5498 } 5499 /* src address assigned by the caller? */ 5500 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5501 ire->ire_setsrc_addr = src_addr; 5502 5503 nire = ire_add(ire); 5504 if (nire == NULL) { 5505 /* 5506 * In the result of failure, ire_add() will have 5507 * already deleted the ire in question, so there 5508 * is no need to do that here. 5509 */ 5510 ipif_refrele(ipif); 5511 return (ENOMEM); 5512 } 5513 /* 5514 * Check if it was a duplicate entry. This handles 5515 * the case of two racing route adds for the same route 5516 */ 5517 if (nire != ire) { 5518 ASSERT(nire->ire_identical_ref > 1); 5519 ire_delete(nire); 5520 ire_refrele(nire); 5521 ipif_refrele(ipif); 5522 return (EEXIST); 5523 } 5524 ire = nire; 5525 goto save_ire; 5526 } 5527 } 5528 5529 /* 5530 * The routes for multicast with CGTP are quite special in that 5531 * the gateway is the local interface address, yet RTF_GATEWAY 5532 * is set. We turn off RTF_GATEWAY to provide compatibility with 5533 * this undocumented and unusual use of multicast routes. 5534 */ 5535 if ((flags & RTF_MULTIRT) && ipif != NULL) 5536 flags &= ~RTF_GATEWAY; 5537 5538 /* 5539 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5540 * and the gateway address provided is one of the system's interface 5541 * addresses. By using the routing socket interface and supplying an 5542 * RTA_IFP sockaddr with an interface index, an alternate method of 5543 * specifying an interface route to be created is available which uses 5544 * the interface index that specifies the outgoing interface rather than 5545 * the address of an outgoing interface (which may not be able to 5546 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5547 * flag, routes can be specified which not only specify the next-hop to 5548 * be used when routing to a certain prefix, but also which outgoing 5549 * interface should be used. 5550 * 5551 * Previously, interfaces would have unique addresses assigned to them 5552 * and so the address assigned to a particular interface could be used 5553 * to identify a particular interface. One exception to this was the 5554 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5555 * 5556 * With the advent of IPv6 and its link-local addresses, this 5557 * restriction was relaxed and interfaces could share addresses between 5558 * themselves. In fact, typically all of the link-local interfaces on 5559 * an IPv6 node or router will have the same link-local address. In 5560 * order to differentiate between these interfaces, the use of an 5561 * interface index is necessary and this index can be carried inside a 5562 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5563 * of using the interface index, however, is that all of the ipif's that 5564 * are part of an ill have the same index and so the RTA_IFP sockaddr 5565 * cannot be used to differentiate between ipif's (or logical 5566 * interfaces) that belong to the same ill (physical interface). 5567 * 5568 * For example, in the following case involving IPv4 interfaces and 5569 * logical interfaces 5570 * 5571 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5572 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5574 * 5575 * the ipif's corresponding to each of these interface routes can be 5576 * uniquely identified by the "gateway" (actually interface address). 5577 * 5578 * In this case involving multiple IPv6 default routes to a particular 5579 * link-local gateway, the use of RTA_IFP is necessary to specify which 5580 * default route is of interest: 5581 * 5582 * default fe80::123:4567:89ab:cdef U if0 5583 * default fe80::123:4567:89ab:cdef U if1 5584 */ 5585 5586 /* RTF_GATEWAY not set */ 5587 if (!(flags & RTF_GATEWAY)) { 5588 if (sp != NULL) { 5589 ip2dbg(("ip_rt_add: gateway security attributes " 5590 "cannot be set with interface route\n")); 5591 if (ipif != NULL) 5592 ipif_refrele(ipif); 5593 return (EINVAL); 5594 } 5595 5596 /* 5597 * Whether or not ill (RTA_IFP) is set, we require that 5598 * the gateway is one of our local addresses. 5599 */ 5600 if (ipif == NULL) 5601 return (ENETUNREACH); 5602 5603 /* 5604 * We use MATCH_IRE_ILL here. If the caller specified an 5605 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5606 * we use the ill derived from the gateway address. 5607 * We can always match the gateway address since we record it 5608 * in ire_gateway_addr. 5609 * We don't allow RTA_IFP to specify a different ill than the 5610 * one matching the ipif to make sure we can delete the route. 5611 */ 5612 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5613 if (ill == NULL) { 5614 ill = ipif->ipif_ill; 5615 } else if (ill != ipif->ipif_ill) { 5616 ipif_refrele(ipif); 5617 return (EINVAL); 5618 } 5619 5620 /* 5621 * We check for an existing entry at this point. 5622 * 5623 * Since a netmask isn't passed in via the ioctl interface 5624 * (SIOCADDRT), we don't check for a matching netmask in that 5625 * case. 5626 */ 5627 if (!ioctl_msg) 5628 match_flags |= MATCH_IRE_MASK; 5629 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5630 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5631 NULL); 5632 if (ire != NULL) { 5633 ire_refrele(ire); 5634 ipif_refrele(ipif); 5635 return (EEXIST); 5636 } 5637 5638 /* 5639 * Some software (for example, GateD and Sun Cluster) attempts 5640 * to create (what amount to) IRE_PREFIX routes with the 5641 * loopback address as the gateway. This is primarily done to 5642 * set up prefixes with the RTF_REJECT flag set (for example, 5643 * when generating aggregate routes.) 5644 * 5645 * If the IRE type (as defined by ill->ill_net_type) would be 5646 * IRE_LOOPBACK, then we map the request into a 5647 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5648 * these interface routes, by definition, can only be that. 5649 * 5650 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5651 * routine, but rather using ire_create() directly. 5652 * 5653 */ 5654 type = ill->ill_net_type; 5655 if (type == IRE_LOOPBACK) { 5656 type = IRE_IF_NORESOLVER; 5657 flags |= RTF_BLACKHOLE; 5658 } 5659 5660 /* 5661 * Create a copy of the IRE_IF_NORESOLVER or 5662 * IRE_IF_RESOLVER with the modified address, netmask, and 5663 * gateway. 5664 */ 5665 ire = ire_create( 5666 (uchar_t *)&dst_addr, 5667 (uint8_t *)&mask, 5668 (uint8_t *)&gw_addr, 5669 type, 5670 ill, 5671 zoneid, 5672 flags, 5673 NULL, 5674 ipst); 5675 if (ire == NULL) { 5676 ipif_refrele(ipif); 5677 return (ENOMEM); 5678 } 5679 5680 /* src address assigned by the caller? */ 5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5682 ire->ire_setsrc_addr = src_addr; 5683 5684 nire = ire_add(ire); 5685 if (nire == NULL) { 5686 /* 5687 * In the result of failure, ire_add() will have 5688 * already deleted the ire in question, so there 5689 * is no need to do that here. 5690 */ 5691 ipif_refrele(ipif); 5692 return (ENOMEM); 5693 } 5694 /* 5695 * Check if it was a duplicate entry. This handles 5696 * the case of two racing route adds for the same route 5697 */ 5698 if (nire != ire) { 5699 ire_delete(nire); 5700 ire_refrele(nire); 5701 ipif_refrele(ipif); 5702 return (EEXIST); 5703 } 5704 ire = nire; 5705 goto save_ire; 5706 } 5707 5708 /* 5709 * Get an interface IRE for the specified gateway. 5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5711 * gateway, it is currently unreachable and we fail the request 5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5713 * is an IRE_LOCAL or IRE_LOOPBACK. 5714 * If RTA_IFP was specified we look on that particular ill. 5715 */ 5716 if (ill != NULL) 5717 match_flags |= MATCH_IRE_ILL; 5718 5719 /* Check whether the gateway is reachable. */ 5720 again: 5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5722 if (flags & RTF_INDIRECT) 5723 type |= IRE_OFFLINK; 5724 5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5727 if (gw_ire == NULL) { 5728 /* 5729 * With IPMP, we allow host routes to influence in.mpathd's 5730 * target selection. However, if the test addresses are on 5731 * their own network, the above lookup will fail since the 5732 * underlying IRE_INTERFACEs are marked hidden. So allow 5733 * hidden test IREs to be found and try again. 5734 */ 5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5736 match_flags |= MATCH_IRE_TESTHIDDEN; 5737 goto again; 5738 } 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 return (ENETUNREACH); 5742 } 5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5744 ire_refrele(gw_ire); 5745 if (ipif != NULL) 5746 ipif_refrele(ipif); 5747 return (ENETUNREACH); 5748 } 5749 5750 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5751 unbound = B_TRUE; 5752 if (ipst->ips_ip_strict_src_multihoming > 0) 5753 ill = gw_ire->ire_ill; 5754 } 5755 5756 /* 5757 * We create one of three types of IREs as a result of this request 5758 * based on the netmask. A netmask of all ones (which is automatically 5759 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5760 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5761 * created. Otherwise, an IRE_PREFIX route is created for the 5762 * destination prefix. 5763 */ 5764 if (mask == IP_HOST_MASK) 5765 type = IRE_HOST; 5766 else if (mask == 0) 5767 type = IRE_DEFAULT; 5768 else 5769 type = IRE_PREFIX; 5770 5771 /* check for a duplicate entry */ 5772 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5773 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5774 0, ipst, NULL); 5775 if (ire != NULL) { 5776 if (ipif != NULL) 5777 ipif_refrele(ipif); 5778 ire_refrele(gw_ire); 5779 ire_refrele(ire); 5780 return (EEXIST); 5781 } 5782 5783 /* Security attribute exists */ 5784 if (sp != NULL) { 5785 tsol_gcgrp_addr_t ga; 5786 5787 /* find or create the gateway credentials group */ 5788 ga.ga_af = AF_INET; 5789 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5790 5791 /* we hold reference to it upon success */ 5792 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5793 if (gcgrp == NULL) { 5794 if (ipif != NULL) 5795 ipif_refrele(ipif); 5796 ire_refrele(gw_ire); 5797 return (ENOMEM); 5798 } 5799 5800 /* 5801 * Create and add the security attribute to the group; a 5802 * reference to the group is made upon allocating a new 5803 * entry successfully. If it finds an already-existing 5804 * entry for the security attribute in the group, it simply 5805 * returns it and no new reference is made to the group. 5806 */ 5807 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5808 if (gc == NULL) { 5809 if (ipif != NULL) 5810 ipif_refrele(ipif); 5811 /* release reference held by gcgrp_lookup */ 5812 GCGRP_REFRELE(gcgrp); 5813 ire_refrele(gw_ire); 5814 return (ENOMEM); 5815 } 5816 } 5817 5818 /* Create the IRE. */ 5819 ire = ire_create( 5820 (uchar_t *)&dst_addr, /* dest address */ 5821 (uchar_t *)&mask, /* mask */ 5822 (uchar_t *)&gw_addr, /* gateway address */ 5823 (ushort_t)type, /* IRE type */ 5824 ill, 5825 zoneid, 5826 flags, 5827 gc, /* security attribute */ 5828 ipst); 5829 5830 /* 5831 * The ire holds a reference to the 'gc' and the 'gc' holds a 5832 * reference to the 'gcgrp'. We can now release the extra reference 5833 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5834 */ 5835 if (gcgrp_xtraref) 5836 GCGRP_REFRELE(gcgrp); 5837 if (ire == NULL) { 5838 if (gc != NULL) 5839 GC_REFRELE(gc); 5840 if (ipif != NULL) 5841 ipif_refrele(ipif); 5842 ire_refrele(gw_ire); 5843 return (ENOMEM); 5844 } 5845 5846 /* Before we add, check if an extra CGTP broadcast is needed */ 5847 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5848 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5849 5850 /* src address assigned by the caller? */ 5851 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5852 ire->ire_setsrc_addr = src_addr; 5853 5854 ire->ire_unbound = unbound; 5855 5856 /* 5857 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5858 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5859 */ 5860 5861 /* Add the new IRE. */ 5862 nire = ire_add(ire); 5863 if (nire == NULL) { 5864 /* 5865 * In the result of failure, ire_add() will have 5866 * already deleted the ire in question, so there 5867 * is no need to do that here. 5868 */ 5869 if (ipif != NULL) 5870 ipif_refrele(ipif); 5871 ire_refrele(gw_ire); 5872 return (ENOMEM); 5873 } 5874 /* 5875 * Check if it was a duplicate entry. This handles 5876 * the case of two racing route adds for the same route 5877 */ 5878 if (nire != ire) { 5879 ire_delete(nire); 5880 ire_refrele(nire); 5881 if (ipif != NULL) 5882 ipif_refrele(ipif); 5883 ire_refrele(gw_ire); 5884 return (EEXIST); 5885 } 5886 ire = nire; 5887 5888 if (flags & RTF_MULTIRT) { 5889 /* 5890 * Invoke the CGTP (multirouting) filtering module 5891 * to add the dst address in the filtering database. 5892 * Replicated inbound packets coming from that address 5893 * will be filtered to discard the duplicates. 5894 * It is not necessary to call the CGTP filter hook 5895 * when the dst address is a broadcast or multicast, 5896 * because an IP source address cannot be a broadcast 5897 * or a multicast. 5898 */ 5899 if (cgtp_broadcast) { 5900 ip_cgtp_bcast_add(ire, ipst); 5901 goto save_ire; 5902 } 5903 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5904 !CLASSD(ire->ire_addr)) { 5905 int res; 5906 ipif_t *src_ipif; 5907 5908 /* Find the source address corresponding to gw_ire */ 5909 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5910 NULL, zoneid, ipst); 5911 if (src_ipif != NULL) { 5912 res = ipst->ips_ip_cgtp_filter_ops-> 5913 cfo_add_dest_v4( 5914 ipst->ips_netstack->netstack_stackid, 5915 ire->ire_addr, 5916 ire->ire_gateway_addr, 5917 ire->ire_setsrc_addr, 5918 src_ipif->ipif_lcl_addr); 5919 ipif_refrele(src_ipif); 5920 } else { 5921 res = EADDRNOTAVAIL; 5922 } 5923 if (res != 0) { 5924 if (ipif != NULL) 5925 ipif_refrele(ipif); 5926 ire_refrele(gw_ire); 5927 ire_delete(ire); 5928 ire_refrele(ire); /* Held in ire_add */ 5929 return (res); 5930 } 5931 } 5932 } 5933 5934 save_ire: 5935 if (gw_ire != NULL) { 5936 ire_refrele(gw_ire); 5937 gw_ire = NULL; 5938 } 5939 if (ill != NULL) { 5940 /* 5941 * Save enough information so that we can recreate the IRE if 5942 * the interface goes down and then up. The metrics associated 5943 * with the route will be saved as well when rts_setmetrics() is 5944 * called after the IRE has been created. In the case where 5945 * memory cannot be allocated, none of this information will be 5946 * saved. 5947 */ 5948 ill_save_ire(ill, ire); 5949 } 5950 if (ioctl_msg) 5951 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5952 if (ire_arg != NULL) { 5953 /* 5954 * Store the ire that was successfully added into where ire_arg 5955 * points to so that callers don't have to look it up 5956 * themselves (but they are responsible for ire_refrele()ing 5957 * the ire when they are finished with it). 5958 */ 5959 *ire_arg = ire; 5960 } else { 5961 ire_refrele(ire); /* Held in ire_add */ 5962 } 5963 if (ipif != NULL) 5964 ipif_refrele(ipif); 5965 return (0); 5966 } 5967 5968 /* 5969 * ip_rt_delete is called to delete an IPv4 route. 5970 * ill is passed in to associate it with the correct interface. 5971 */ 5972 /* ARGSUSED4 */ 5973 int 5974 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5975 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5976 ip_stack_t *ipst, zoneid_t zoneid) 5977 { 5978 ire_t *ire = NULL; 5979 ipif_t *ipif; 5980 uint_t type; 5981 uint_t match_flags = MATCH_IRE_TYPE; 5982 int err = 0; 5983 5984 ip1dbg(("ip_rt_delete:")); 5985 /* 5986 * If this is the case of RTF_HOST being set, then we set the netmask 5987 * to all ones. Otherwise, we use the netmask if one was supplied. 5988 */ 5989 if (flags & RTF_HOST) { 5990 mask = IP_HOST_MASK; 5991 match_flags |= MATCH_IRE_MASK; 5992 } else if (rtm_addrs & RTA_NETMASK) { 5993 match_flags |= MATCH_IRE_MASK; 5994 } 5995 5996 /* 5997 * Note that RTF_GATEWAY is never set on a delete, therefore 5998 * we check if the gateway address is one of our interfaces first, 5999 * and fall back on RTF_GATEWAY routes. 6000 * 6001 * This makes it possible to delete an original 6002 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6003 * However, we have RTF_KERNEL set on the ones created by ipif_up 6004 * and those can not be deleted here. 6005 * 6006 * We use MATCH_IRE_ILL if we know the interface. If the caller 6007 * specified an interface (from the RTA_IFP sockaddr) we use it, 6008 * otherwise we use the ill derived from the gateway address. 6009 * We can always match the gateway address since we record it 6010 * in ire_gateway_addr. 6011 * 6012 * For more detail on specifying routes by gateway address and by 6013 * interface index, see the comments in ip_rt_add(). 6014 */ 6015 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6016 if (ipif != NULL) { 6017 ill_t *ill_match; 6018 6019 if (ill != NULL) 6020 ill_match = ill; 6021 else 6022 ill_match = ipif->ipif_ill; 6023 6024 match_flags |= MATCH_IRE_ILL; 6025 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6026 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6027 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6028 match_flags, 0, ipst, NULL); 6029 } 6030 if (ire == NULL) { 6031 match_flags |= MATCH_IRE_GW; 6032 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6033 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6034 match_flags, 0, ipst, NULL); 6035 } 6036 /* Avoid deleting routes created by kernel from an ipif */ 6037 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6038 ire_refrele(ire); 6039 ire = NULL; 6040 } 6041 6042 /* Restore in case we didn't find a match */ 6043 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6044 } 6045 6046 if (ire == NULL) { 6047 /* 6048 * At this point, the gateway address is not one of our own 6049 * addresses or a matching interface route was not found. We 6050 * set the IRE type to lookup based on whether 6051 * this is a host route, a default route or just a prefix. 6052 * 6053 * If an ill was passed in, then the lookup is based on an 6054 * interface index so MATCH_IRE_ILL is added to match_flags. 6055 */ 6056 match_flags |= MATCH_IRE_GW; 6057 if (ill != NULL) 6058 match_flags |= MATCH_IRE_ILL; 6059 if (mask == IP_HOST_MASK) 6060 type = IRE_HOST; 6061 else if (mask == 0) 6062 type = IRE_DEFAULT; 6063 else 6064 type = IRE_PREFIX; 6065 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6066 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6067 } 6068 6069 if (ipif != NULL) { 6070 ipif_refrele(ipif); 6071 ipif = NULL; 6072 } 6073 6074 if (ire == NULL) 6075 return (ESRCH); 6076 6077 if (ire->ire_flags & RTF_MULTIRT) { 6078 /* 6079 * Invoke the CGTP (multirouting) filtering module 6080 * to remove the dst address from the filtering database. 6081 * Packets coming from that address will no longer be 6082 * filtered to remove duplicates. 6083 */ 6084 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6085 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6086 ipst->ips_netstack->netstack_stackid, 6087 ire->ire_addr, ire->ire_gateway_addr); 6088 } 6089 ip_cgtp_bcast_delete(ire, ipst); 6090 } 6091 6092 ill = ire->ire_ill; 6093 if (ill != NULL) 6094 ill_remove_saved_ire(ill, ire); 6095 if (ioctl_msg) 6096 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6097 ire_delete(ire); 6098 ire_refrele(ire); 6099 return (err); 6100 } 6101 6102 /* 6103 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6104 */ 6105 /* ARGSUSED */ 6106 int 6107 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6108 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6109 { 6110 ipaddr_t dst_addr; 6111 ipaddr_t gw_addr; 6112 ipaddr_t mask; 6113 int error = 0; 6114 mblk_t *mp1; 6115 struct rtentry *rt; 6116 ipif_t *ipif = NULL; 6117 ip_stack_t *ipst; 6118 6119 ASSERT(q->q_next == NULL); 6120 ipst = CONNQ_TO_IPST(q); 6121 6122 ip1dbg(("ip_siocaddrt:")); 6123 /* Existence of mp1 verified in ip_wput_nondata */ 6124 mp1 = mp->b_cont->b_cont; 6125 rt = (struct rtentry *)mp1->b_rptr; 6126 6127 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6128 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6129 6130 /* 6131 * If the RTF_HOST flag is on, this is a request to assign a gateway 6132 * to a particular host address. In this case, we set the netmask to 6133 * all ones for the particular destination address. Otherwise, 6134 * determine the netmask to be used based on dst_addr and the interfaces 6135 * in use. 6136 */ 6137 if (rt->rt_flags & RTF_HOST) { 6138 mask = IP_HOST_MASK; 6139 } else { 6140 /* 6141 * Note that ip_subnet_mask returns a zero mask in the case of 6142 * default (an all-zeroes address). 6143 */ 6144 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6145 } 6146 6147 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6148 B_TRUE, NULL, ipst, ALL_ZONES); 6149 if (ipif != NULL) 6150 ipif_refrele(ipif); 6151 return (error); 6152 } 6153 6154 /* 6155 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6156 */ 6157 /* ARGSUSED */ 6158 int 6159 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6160 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6161 { 6162 ipaddr_t dst_addr; 6163 ipaddr_t gw_addr; 6164 ipaddr_t mask; 6165 int error; 6166 mblk_t *mp1; 6167 struct rtentry *rt; 6168 ipif_t *ipif = NULL; 6169 ip_stack_t *ipst; 6170 6171 ASSERT(q->q_next == NULL); 6172 ipst = CONNQ_TO_IPST(q); 6173 6174 ip1dbg(("ip_siocdelrt:")); 6175 /* Existence of mp1 verified in ip_wput_nondata */ 6176 mp1 = mp->b_cont->b_cont; 6177 rt = (struct rtentry *)mp1->b_rptr; 6178 6179 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6180 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6181 6182 /* 6183 * If the RTF_HOST flag is on, this is a request to delete a gateway 6184 * to a particular host address. In this case, we set the netmask to 6185 * all ones for the particular destination address. Otherwise, 6186 * determine the netmask to be used based on dst_addr and the interfaces 6187 * in use. 6188 */ 6189 if (rt->rt_flags & RTF_HOST) { 6190 mask = IP_HOST_MASK; 6191 } else { 6192 /* 6193 * Note that ip_subnet_mask returns a zero mask in the case of 6194 * default (an all-zeroes address). 6195 */ 6196 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6197 } 6198 6199 error = ip_rt_delete(dst_addr, mask, gw_addr, 6200 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6201 ipst, ALL_ZONES); 6202 if (ipif != NULL) 6203 ipif_refrele(ipif); 6204 return (error); 6205 } 6206 6207 /* 6208 * Enqueue the mp onto the ipsq, chained by b_next. 6209 * b_prev stores the function to be executed later, and b_queue the queue 6210 * where this mp originated. 6211 */ 6212 void 6213 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6214 ill_t *pending_ill) 6215 { 6216 conn_t *connp; 6217 ipxop_t *ipx = ipsq->ipsq_xop; 6218 6219 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6220 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6221 ASSERT(func != NULL); 6222 6223 mp->b_queue = q; 6224 mp->b_prev = (void *)func; 6225 mp->b_next = NULL; 6226 6227 switch (type) { 6228 case CUR_OP: 6229 if (ipx->ipx_mptail != NULL) { 6230 ASSERT(ipx->ipx_mphead != NULL); 6231 ipx->ipx_mptail->b_next = mp; 6232 } else { 6233 ASSERT(ipx->ipx_mphead == NULL); 6234 ipx->ipx_mphead = mp; 6235 } 6236 ipx->ipx_mptail = mp; 6237 break; 6238 6239 case NEW_OP: 6240 if (ipsq->ipsq_xopq_mptail != NULL) { 6241 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6242 ipsq->ipsq_xopq_mptail->b_next = mp; 6243 } else { 6244 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6245 ipsq->ipsq_xopq_mphead = mp; 6246 } 6247 ipsq->ipsq_xopq_mptail = mp; 6248 ipx->ipx_ipsq_queued = B_TRUE; 6249 break; 6250 6251 case SWITCH_OP: 6252 ASSERT(ipsq->ipsq_swxop != NULL); 6253 /* only one switch operation is currently allowed */ 6254 ASSERT(ipsq->ipsq_switch_mp == NULL); 6255 ipsq->ipsq_switch_mp = mp; 6256 ipx->ipx_ipsq_queued = B_TRUE; 6257 break; 6258 default: 6259 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6260 } 6261 6262 if (CONN_Q(q) && pending_ill != NULL) { 6263 connp = Q_TO_CONN(q); 6264 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6265 connp->conn_oper_pending_ill = pending_ill; 6266 } 6267 } 6268 6269 /* 6270 * Dequeue the next message that requested exclusive access to this IPSQ's 6271 * xop. Specifically: 6272 * 6273 * 1. If we're still processing the current operation on `ipsq', then 6274 * dequeue the next message for the operation (from ipx_mphead), or 6275 * return NULL if there are no queued messages for the operation. 6276 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6277 * 6278 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6279 * not set) see if the ipsq has requested an xop switch. If so, switch 6280 * `ipsq' to a different xop. Xop switches only happen when joining or 6281 * leaving IPMP groups and require a careful dance -- see the comments 6282 * in-line below for details. If we're leaving a group xop or if we're 6283 * joining a group xop and become writer on it, then we proceed to (3). 6284 * Otherwise, we return NULL and exit the xop. 6285 * 6286 * 3. For each IPSQ in the xop, return any switch operation stored on 6287 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6288 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6289 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6290 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6291 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6292 * each phyint in the group, including the IPMP meta-interface phyint. 6293 */ 6294 static mblk_t * 6295 ipsq_dq(ipsq_t *ipsq) 6296 { 6297 ill_t *illv4, *illv6; 6298 mblk_t *mp; 6299 ipsq_t *xopipsq; 6300 ipsq_t *leftipsq = NULL; 6301 ipxop_t *ipx; 6302 phyint_t *phyi = ipsq->ipsq_phyint; 6303 ip_stack_t *ipst = ipsq->ipsq_ipst; 6304 boolean_t emptied = B_FALSE; 6305 6306 /* 6307 * Grab all the locks we need in the defined order (ill_g_lock -> 6308 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6309 */ 6310 rw_enter(&ipst->ips_ill_g_lock, 6311 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6312 mutex_enter(&ipsq->ipsq_lock); 6313 ipx = ipsq->ipsq_xop; 6314 mutex_enter(&ipx->ipx_lock); 6315 6316 /* 6317 * Dequeue the next message associated with the current exclusive 6318 * operation, if any. 6319 */ 6320 if ((mp = ipx->ipx_mphead) != NULL) { 6321 ipx->ipx_mphead = mp->b_next; 6322 if (ipx->ipx_mphead == NULL) 6323 ipx->ipx_mptail = NULL; 6324 mp->b_next = (void *)ipsq; 6325 goto out; 6326 } 6327 6328 if (ipx->ipx_current_ipif != NULL) 6329 goto empty; 6330 6331 if (ipsq->ipsq_swxop != NULL) { 6332 /* 6333 * The exclusive operation that is now being completed has 6334 * requested a switch to a different xop. This happens 6335 * when an interface joins or leaves an IPMP group. Joins 6336 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6337 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6338 * (phyint_free()), or interface plumb for an ill type 6339 * not in the IPMP group (ip_rput_dlpi_writer()). 6340 * 6341 * Xop switches are not allowed on the IPMP meta-interface. 6342 */ 6343 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6344 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6345 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6346 6347 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6348 /* 6349 * We're switching back to our own xop, so we have two 6350 * xop's to drain/exit: our own, and the group xop 6351 * that we are leaving. 6352 * 6353 * First, pull ourselves out of the group ipsq list. 6354 * This is safe since we're writer on ill_g_lock. 6355 */ 6356 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6357 6358 xopipsq = ipx->ipx_ipsq; 6359 while (xopipsq->ipsq_next != ipsq) 6360 xopipsq = xopipsq->ipsq_next; 6361 6362 xopipsq->ipsq_next = ipsq->ipsq_next; 6363 ipsq->ipsq_next = ipsq; 6364 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6365 ipsq->ipsq_swxop = NULL; 6366 6367 /* 6368 * Second, prepare to exit the group xop. The actual 6369 * ipsq_exit() is done at the end of this function 6370 * since we cannot hold any locks across ipsq_exit(). 6371 * Note that although we drop the group's ipx_lock, no 6372 * threads can proceed since we're still ipx_writer. 6373 */ 6374 leftipsq = xopipsq; 6375 mutex_exit(&ipx->ipx_lock); 6376 6377 /* 6378 * Third, set ipx to point to our own xop (which was 6379 * inactive and therefore can be entered). 6380 */ 6381 ipx = ipsq->ipsq_xop; 6382 mutex_enter(&ipx->ipx_lock); 6383 ASSERT(ipx->ipx_writer == NULL); 6384 ASSERT(ipx->ipx_current_ipif == NULL); 6385 } else { 6386 /* 6387 * We're switching from our own xop to a group xop. 6388 * The requestor of the switch must ensure that the 6389 * group xop cannot go away (e.g. by ensuring the 6390 * phyint associated with the xop cannot go away). 6391 * 6392 * If we can become writer on our new xop, then we'll 6393 * do the drain. Otherwise, the current writer of our 6394 * new xop will do the drain when it exits. 6395 * 6396 * First, splice ourselves into the group IPSQ list. 6397 * This is safe since we're writer on ill_g_lock. 6398 */ 6399 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6400 6401 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6402 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6403 xopipsq = xopipsq->ipsq_next; 6404 6405 xopipsq->ipsq_next = ipsq; 6406 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6407 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6408 ipsq->ipsq_swxop = NULL; 6409 6410 /* 6411 * Second, exit our own xop, since it's now unused. 6412 * This is safe since we've got the only reference. 6413 */ 6414 ASSERT(ipx->ipx_writer == curthread); 6415 ipx->ipx_writer = NULL; 6416 VERIFY(--ipx->ipx_reentry_cnt == 0); 6417 ipx->ipx_ipsq_queued = B_FALSE; 6418 mutex_exit(&ipx->ipx_lock); 6419 6420 /* 6421 * Third, set ipx to point to our new xop, and check 6422 * if we can become writer on it. If we cannot, then 6423 * the current writer will drain the IPSQ group when 6424 * it exits. Our ipsq_xop is guaranteed to be stable 6425 * because we're still holding ipsq_lock. 6426 */ 6427 ipx = ipsq->ipsq_xop; 6428 mutex_enter(&ipx->ipx_lock); 6429 if (ipx->ipx_writer != NULL || 6430 ipx->ipx_current_ipif != NULL) { 6431 goto out; 6432 } 6433 } 6434 6435 /* 6436 * Fourth, become writer on our new ipx before we continue 6437 * with the drain. Note that we never dropped ipsq_lock 6438 * above, so no other thread could've raced with us to 6439 * become writer first. Also, we're holding ipx_lock, so 6440 * no other thread can examine the ipx right now. 6441 */ 6442 ASSERT(ipx->ipx_current_ipif == NULL); 6443 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6444 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6445 ipx->ipx_writer = curthread; 6446 ipx->ipx_forced = B_FALSE; 6447 #ifdef DEBUG 6448 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6449 #endif 6450 } 6451 6452 xopipsq = ipsq; 6453 do { 6454 /* 6455 * So that other operations operate on a consistent and 6456 * complete phyint, a switch message on an IPSQ must be 6457 * handled prior to any other operations on that IPSQ. 6458 */ 6459 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6460 xopipsq->ipsq_switch_mp = NULL; 6461 ASSERT(mp->b_next == NULL); 6462 mp->b_next = (void *)xopipsq; 6463 goto out; 6464 } 6465 6466 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6467 xopipsq->ipsq_xopq_mphead = mp->b_next; 6468 if (xopipsq->ipsq_xopq_mphead == NULL) 6469 xopipsq->ipsq_xopq_mptail = NULL; 6470 mp->b_next = (void *)xopipsq; 6471 goto out; 6472 } 6473 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6474 empty: 6475 /* 6476 * There are no messages. Further, we are holding ipx_lock, hence no 6477 * new messages can end up on any IPSQ in the xop. 6478 */ 6479 ipx->ipx_writer = NULL; 6480 ipx->ipx_forced = B_FALSE; 6481 VERIFY(--ipx->ipx_reentry_cnt == 0); 6482 ipx->ipx_ipsq_queued = B_FALSE; 6483 emptied = B_TRUE; 6484 #ifdef DEBUG 6485 ipx->ipx_depth = 0; 6486 #endif 6487 out: 6488 mutex_exit(&ipx->ipx_lock); 6489 mutex_exit(&ipsq->ipsq_lock); 6490 6491 /* 6492 * If we completely emptied the xop, then wake up any threads waiting 6493 * to enter any of the IPSQ's associated with it. 6494 */ 6495 if (emptied) { 6496 xopipsq = ipsq; 6497 do { 6498 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6499 continue; 6500 6501 illv4 = phyi->phyint_illv4; 6502 illv6 = phyi->phyint_illv6; 6503 6504 GRAB_ILL_LOCKS(illv4, illv6); 6505 if (illv4 != NULL) 6506 cv_broadcast(&illv4->ill_cv); 6507 if (illv6 != NULL) 6508 cv_broadcast(&illv6->ill_cv); 6509 RELEASE_ILL_LOCKS(illv4, illv6); 6510 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6511 } 6512 rw_exit(&ipst->ips_ill_g_lock); 6513 6514 /* 6515 * Now that all locks are dropped, exit the IPSQ we left. 6516 */ 6517 if (leftipsq != NULL) 6518 ipsq_exit(leftipsq); 6519 6520 return (mp); 6521 } 6522 6523 /* 6524 * Return completion status of previously initiated DLPI operations on 6525 * ills in the purview of an ipsq. 6526 */ 6527 static boolean_t 6528 ipsq_dlpi_done(ipsq_t *ipsq) 6529 { 6530 ipsq_t *ipsq_start; 6531 phyint_t *phyi; 6532 ill_t *ill; 6533 6534 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6535 ipsq_start = ipsq; 6536 6537 do { 6538 /* 6539 * The only current users of this function are ipsq_try_enter 6540 * and ipsq_enter which have made sure that ipsq_writer is 6541 * NULL before we reach here. ill_dlpi_pending is modified 6542 * only by an ipsq writer 6543 */ 6544 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6545 phyi = ipsq->ipsq_phyint; 6546 /* 6547 * phyi could be NULL if a phyint that is part of an 6548 * IPMP group is being unplumbed. A more detailed 6549 * comment is in ipmp_grp_update_kstats() 6550 */ 6551 if (phyi != NULL) { 6552 ill = phyi->phyint_illv4; 6553 if (ill != NULL && 6554 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6555 ill->ill_arl_dlpi_pending)) 6556 return (B_FALSE); 6557 6558 ill = phyi->phyint_illv6; 6559 if (ill != NULL && 6560 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6561 return (B_FALSE); 6562 } 6563 6564 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6565 6566 return (B_TRUE); 6567 } 6568 6569 /* 6570 * Enter the ipsq corresponding to ill, by waiting synchronously till 6571 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6572 * will have to drain completely before ipsq_enter returns success. 6573 * ipx_current_ipif will be set if some exclusive op is in progress, 6574 * and the ipsq_exit logic will start the next enqueued op after 6575 * completion of the current op. If 'force' is used, we don't wait 6576 * for the enqueued ops. This is needed when a conn_close wants to 6577 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6578 * of an ill can also use this option. But we dont' use it currently. 6579 */ 6580 #define ENTER_SQ_WAIT_TICKS 100 6581 boolean_t 6582 ipsq_enter(ill_t *ill, boolean_t force, int type) 6583 { 6584 ipsq_t *ipsq; 6585 ipxop_t *ipx; 6586 boolean_t waited_enough = B_FALSE; 6587 ip_stack_t *ipst = ill->ill_ipst; 6588 6589 /* 6590 * Note that the relationship between ill and ipsq is fixed as long as 6591 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6592 * relationship between the IPSQ and xop cannot change. However, 6593 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6594 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6595 * waking up all ills in the xop when it becomes available. 6596 */ 6597 for (;;) { 6598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6599 mutex_enter(&ill->ill_lock); 6600 if (ill->ill_state_flags & ILL_CONDEMNED) { 6601 mutex_exit(&ill->ill_lock); 6602 rw_exit(&ipst->ips_ill_g_lock); 6603 return (B_FALSE); 6604 } 6605 6606 ipsq = ill->ill_phyint->phyint_ipsq; 6607 mutex_enter(&ipsq->ipsq_lock); 6608 ipx = ipsq->ipsq_xop; 6609 mutex_enter(&ipx->ipx_lock); 6610 6611 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6612 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6613 waited_enough)) 6614 break; 6615 6616 rw_exit(&ipst->ips_ill_g_lock); 6617 6618 if (!force || ipx->ipx_writer != NULL) { 6619 mutex_exit(&ipx->ipx_lock); 6620 mutex_exit(&ipsq->ipsq_lock); 6621 cv_wait(&ill->ill_cv, &ill->ill_lock); 6622 } else { 6623 mutex_exit(&ipx->ipx_lock); 6624 mutex_exit(&ipsq->ipsq_lock); 6625 (void) cv_reltimedwait(&ill->ill_cv, 6626 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6627 waited_enough = B_TRUE; 6628 } 6629 mutex_exit(&ill->ill_lock); 6630 } 6631 6632 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6633 ASSERT(ipx->ipx_reentry_cnt == 0); 6634 ipx->ipx_writer = curthread; 6635 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6636 ipx->ipx_reentry_cnt++; 6637 #ifdef DEBUG 6638 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6639 #endif 6640 mutex_exit(&ipx->ipx_lock); 6641 mutex_exit(&ipsq->ipsq_lock); 6642 mutex_exit(&ill->ill_lock); 6643 rw_exit(&ipst->ips_ill_g_lock); 6644 6645 return (B_TRUE); 6646 } 6647 6648 /* 6649 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6650 * across the call to the core interface ipsq_try_enter() and hence calls this 6651 * function directly. This is explained more fully in ipif_set_values(). 6652 * In order to support the above constraint, ipsq_try_enter is implemented as 6653 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6654 */ 6655 static ipsq_t * 6656 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6657 int type, boolean_t reentry_ok) 6658 { 6659 ipsq_t *ipsq; 6660 ipxop_t *ipx; 6661 ip_stack_t *ipst = ill->ill_ipst; 6662 6663 /* 6664 * lock ordering: 6665 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6666 * 6667 * ipx of an ipsq can't change when ipsq_lock is held. 6668 */ 6669 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6670 GRAB_CONN_LOCK(q); 6671 mutex_enter(&ill->ill_lock); 6672 ipsq = ill->ill_phyint->phyint_ipsq; 6673 mutex_enter(&ipsq->ipsq_lock); 6674 ipx = ipsq->ipsq_xop; 6675 mutex_enter(&ipx->ipx_lock); 6676 6677 /* 6678 * 1. Enter the ipsq if we are already writer and reentry is ok. 6679 * (Note: If the caller does not specify reentry_ok then neither 6680 * 'func' nor any of its callees must ever attempt to enter the ipsq 6681 * again. Otherwise it can lead to an infinite loop 6682 * 2. Enter the ipsq if there is no current writer and this attempted 6683 * entry is part of the current operation 6684 * 3. Enter the ipsq if there is no current writer and this is a new 6685 * operation and the operation queue is empty and there is no 6686 * operation currently in progress and if all previously initiated 6687 * DLPI operations have completed. 6688 */ 6689 if ((ipx->ipx_writer == curthread && reentry_ok) || 6690 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6691 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6692 ipsq_dlpi_done(ipsq))))) { 6693 /* Success. */ 6694 ipx->ipx_reentry_cnt++; 6695 ipx->ipx_writer = curthread; 6696 ipx->ipx_forced = B_FALSE; 6697 mutex_exit(&ipx->ipx_lock); 6698 mutex_exit(&ipsq->ipsq_lock); 6699 mutex_exit(&ill->ill_lock); 6700 RELEASE_CONN_LOCK(q); 6701 #ifdef DEBUG 6702 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6703 #endif 6704 return (ipsq); 6705 } 6706 6707 if (func != NULL) 6708 ipsq_enq(ipsq, q, mp, func, type, ill); 6709 6710 mutex_exit(&ipx->ipx_lock); 6711 mutex_exit(&ipsq->ipsq_lock); 6712 mutex_exit(&ill->ill_lock); 6713 RELEASE_CONN_LOCK(q); 6714 return (NULL); 6715 } 6716 6717 /* 6718 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6719 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6720 * There is one ipsq per phyint. The ipsq 6721 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6722 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6723 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6724 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6725 * up the interface) and are enqueued in ipx_mphead. 6726 * 6727 * If a thread does not want to reenter the ipsq when it is already writer, 6728 * it must make sure that the specified reentry point to be called later 6729 * when the ipsq is empty, nor any code path starting from the specified reentry 6730 * point must never ever try to enter the ipsq again. Otherwise it can lead 6731 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6732 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6733 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6734 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6735 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6736 * ioctl if the current ioctl has completed. If the current ioctl is still 6737 * in progress it simply returns. The current ioctl could be waiting for 6738 * a response from another module (the driver or could be waiting for 6739 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6740 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6741 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6742 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6743 * all associated DLPI operations have completed. 6744 */ 6745 6746 /* 6747 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6748 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6749 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6750 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6751 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6752 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6753 */ 6754 ipsq_t * 6755 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6756 ipsq_func_t func, int type, boolean_t reentry_ok) 6757 { 6758 ip_stack_t *ipst; 6759 ipsq_t *ipsq; 6760 6761 /* Only 1 of ipif or ill can be specified */ 6762 ASSERT((ipif != NULL) ^ (ill != NULL)); 6763 6764 if (ipif != NULL) 6765 ill = ipif->ipif_ill; 6766 ipst = ill->ill_ipst; 6767 6768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6769 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6770 rw_exit(&ipst->ips_ill_g_lock); 6771 6772 return (ipsq); 6773 } 6774 6775 /* 6776 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6777 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6778 * cannot be entered, the mp is queued for completion. 6779 */ 6780 void 6781 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6782 boolean_t reentry_ok) 6783 { 6784 ipsq_t *ipsq; 6785 6786 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6787 6788 /* 6789 * Drop the caller's refhold on the ill. This is safe since we either 6790 * entered the IPSQ (and thus are exclusive), or failed to enter the 6791 * IPSQ, in which case we return without accessing ill anymore. This 6792 * is needed because func needs to see the correct refcount. 6793 * e.g. removeif can work only then. 6794 */ 6795 ill_refrele(ill); 6796 if (ipsq != NULL) { 6797 (*func)(ipsq, q, mp, NULL); 6798 ipsq_exit(ipsq); 6799 } 6800 } 6801 6802 /* 6803 * Exit the specified IPSQ. If this is the final exit on it then drain it 6804 * prior to exiting. Caller must be writer on the specified IPSQ. 6805 */ 6806 void 6807 ipsq_exit(ipsq_t *ipsq) 6808 { 6809 mblk_t *mp; 6810 ipsq_t *mp_ipsq; 6811 queue_t *q; 6812 phyint_t *phyi; 6813 ipsq_func_t func; 6814 6815 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6816 6817 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6818 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6819 ipsq->ipsq_xop->ipx_reentry_cnt--; 6820 return; 6821 } 6822 6823 for (;;) { 6824 phyi = ipsq->ipsq_phyint; 6825 mp = ipsq_dq(ipsq); 6826 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6827 6828 /* 6829 * If we've changed to a new IPSQ, and the phyint associated 6830 * with the old one has gone away, free the old IPSQ. Note 6831 * that this cannot happen while the IPSQ is in a group. 6832 */ 6833 if (mp_ipsq != ipsq && phyi == NULL) { 6834 ASSERT(ipsq->ipsq_next == ipsq); 6835 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6836 ipsq_delete(ipsq); 6837 } 6838 6839 if (mp == NULL) 6840 break; 6841 6842 q = mp->b_queue; 6843 func = (ipsq_func_t)mp->b_prev; 6844 ipsq = mp_ipsq; 6845 mp->b_next = mp->b_prev = NULL; 6846 mp->b_queue = NULL; 6847 6848 /* 6849 * If 'q' is an conn queue, it is valid, since we did a 6850 * a refhold on the conn at the start of the ioctl. 6851 * If 'q' is an ill queue, it is valid, since close of an 6852 * ill will clean up its IPSQ. 6853 */ 6854 (*func)(ipsq, q, mp, NULL); 6855 } 6856 } 6857 6858 /* 6859 * Used to start any igmp or mld timers that could not be started 6860 * while holding ill_mcast_lock. The timers can't be started while holding 6861 * the lock, since mld/igmp_start_timers may need to call untimeout() 6862 * which can't be done while holding the lock which the timeout handler 6863 * acquires. Otherwise 6864 * there could be a deadlock since the timeout handlers 6865 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6866 * ill_mcast_lock. 6867 */ 6868 void 6869 ill_mcast_timer_start(ip_stack_t *ipst) 6870 { 6871 int next; 6872 6873 mutex_enter(&ipst->ips_igmp_timer_lock); 6874 next = ipst->ips_igmp_deferred_next; 6875 ipst->ips_igmp_deferred_next = INFINITY; 6876 mutex_exit(&ipst->ips_igmp_timer_lock); 6877 6878 if (next != INFINITY) 6879 igmp_start_timers(next, ipst); 6880 6881 mutex_enter(&ipst->ips_mld_timer_lock); 6882 next = ipst->ips_mld_deferred_next; 6883 ipst->ips_mld_deferred_next = INFINITY; 6884 mutex_exit(&ipst->ips_mld_timer_lock); 6885 6886 if (next != INFINITY) 6887 mld_start_timers(next, ipst); 6888 } 6889 6890 /* 6891 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6892 * and `ioccmd'. 6893 */ 6894 void 6895 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6896 { 6897 ill_t *ill = ipif->ipif_ill; 6898 ipxop_t *ipx = ipsq->ipsq_xop; 6899 6900 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6901 ASSERT(ipx->ipx_current_ipif == NULL); 6902 ASSERT(ipx->ipx_current_ioctl == 0); 6903 6904 ipx->ipx_current_done = B_FALSE; 6905 ipx->ipx_current_ioctl = ioccmd; 6906 mutex_enter(&ipx->ipx_lock); 6907 ipx->ipx_current_ipif = ipif; 6908 mutex_exit(&ipx->ipx_lock); 6909 6910 /* 6911 * Set IPIF_CHANGING on one or more ipifs associated with the 6912 * current exclusive operation. IPIF_CHANGING prevents any new 6913 * references to the ipif (so that the references will eventually 6914 * drop to zero) and also prevents any "get" operations (e.g., 6915 * SIOCGLIFFLAGS) from being able to access the ipif until the 6916 * operation has completed and the ipif is again in a stable state. 6917 * 6918 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6919 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6920 * on the ill are marked with IPIF_CHANGING since it's unclear which 6921 * ipifs will be affected. 6922 * 6923 * Note that SIOCLIFREMOVEIF is a special case as it sets 6924 * IPIF_CONDEMNED internally after identifying the right ipif to 6925 * operate on. 6926 */ 6927 switch (ioccmd) { 6928 case SIOCLIFREMOVEIF: 6929 break; 6930 case 0: 6931 mutex_enter(&ill->ill_lock); 6932 ipif = ipif->ipif_ill->ill_ipif; 6933 for (; ipif != NULL; ipif = ipif->ipif_next) 6934 ipif->ipif_state_flags |= IPIF_CHANGING; 6935 mutex_exit(&ill->ill_lock); 6936 break; 6937 default: 6938 mutex_enter(&ill->ill_lock); 6939 ipif->ipif_state_flags |= IPIF_CHANGING; 6940 mutex_exit(&ill->ill_lock); 6941 } 6942 } 6943 6944 /* 6945 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6946 * the next exclusive operation to begin once we ipsq_exit(). However, if 6947 * pending DLPI operations remain, then we will wait for the queue to drain 6948 * before allowing the next exclusive operation to begin. This ensures that 6949 * DLPI operations from one exclusive operation are never improperly processed 6950 * as part of a subsequent exclusive operation. 6951 */ 6952 void 6953 ipsq_current_finish(ipsq_t *ipsq) 6954 { 6955 ipxop_t *ipx = ipsq->ipsq_xop; 6956 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6957 ipif_t *ipif = ipx->ipx_current_ipif; 6958 6959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6960 6961 /* 6962 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6963 * (but in that case, IPIF_CHANGING will already be clear and no 6964 * pending DLPI messages can remain). 6965 */ 6966 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6967 ill_t *ill = ipif->ipif_ill; 6968 6969 mutex_enter(&ill->ill_lock); 6970 dlpi_pending = ill->ill_dlpi_pending; 6971 if (ipx->ipx_current_ioctl == 0) { 6972 ipif = ill->ill_ipif; 6973 for (; ipif != NULL; ipif = ipif->ipif_next) 6974 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6975 } else { 6976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6977 } 6978 mutex_exit(&ill->ill_lock); 6979 } 6980 6981 ASSERT(!ipx->ipx_current_done); 6982 ipx->ipx_current_done = B_TRUE; 6983 ipx->ipx_current_ioctl = 0; 6984 if (dlpi_pending == DL_PRIM_INVAL) { 6985 mutex_enter(&ipx->ipx_lock); 6986 ipx->ipx_current_ipif = NULL; 6987 mutex_exit(&ipx->ipx_lock); 6988 } 6989 } 6990 6991 /* 6992 * The ill is closing. Flush all messages on the ipsq that originated 6993 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6994 * for this ill since ipsq_enter could not have entered until then. 6995 * New messages can't be queued since the CONDEMNED flag is set. 6996 */ 6997 static void 6998 ipsq_flush(ill_t *ill) 6999 { 7000 queue_t *q; 7001 mblk_t *prev; 7002 mblk_t *mp; 7003 mblk_t *mp_next; 7004 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7005 7006 ASSERT(IAM_WRITER_ILL(ill)); 7007 7008 /* 7009 * Flush any messages sent up by the driver. 7010 */ 7011 mutex_enter(&ipx->ipx_lock); 7012 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7013 mp_next = mp->b_next; 7014 q = mp->b_queue; 7015 if (q == ill->ill_rq || q == ill->ill_wq) { 7016 /* dequeue mp */ 7017 if (prev == NULL) 7018 ipx->ipx_mphead = mp->b_next; 7019 else 7020 prev->b_next = mp->b_next; 7021 if (ipx->ipx_mptail == mp) { 7022 ASSERT(mp_next == NULL); 7023 ipx->ipx_mptail = prev; 7024 } 7025 inet_freemsg(mp); 7026 } else { 7027 prev = mp; 7028 } 7029 } 7030 mutex_exit(&ipx->ipx_lock); 7031 (void) ipsq_pending_mp_cleanup(ill, NULL); 7032 ipsq_xopq_mp_cleanup(ill, NULL); 7033 } 7034 7035 /* 7036 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7037 * and return the associated ipif. 7038 * Return value: 7039 * Non zero: An error has occurred. ci may not be filled out. 7040 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7041 * a held ipif in ci.ci_ipif. 7042 */ 7043 int 7044 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7045 cmd_info_t *ci) 7046 { 7047 char *name; 7048 struct ifreq *ifr; 7049 struct lifreq *lifr; 7050 ipif_t *ipif = NULL; 7051 ill_t *ill; 7052 conn_t *connp; 7053 boolean_t isv6; 7054 int err; 7055 mblk_t *mp1; 7056 zoneid_t zoneid; 7057 ip_stack_t *ipst; 7058 7059 if (q->q_next != NULL) { 7060 ill = (ill_t *)q->q_ptr; 7061 isv6 = ill->ill_isv6; 7062 connp = NULL; 7063 zoneid = ALL_ZONES; 7064 ipst = ill->ill_ipst; 7065 } else { 7066 ill = NULL; 7067 connp = Q_TO_CONN(q); 7068 isv6 = (connp->conn_family == AF_INET6); 7069 zoneid = connp->conn_zoneid; 7070 if (zoneid == GLOBAL_ZONEID) { 7071 /* global zone can access ipifs in all zones */ 7072 zoneid = ALL_ZONES; 7073 } 7074 ipst = connp->conn_netstack->netstack_ip; 7075 } 7076 7077 /* Has been checked in ip_wput_nondata */ 7078 mp1 = mp->b_cont->b_cont; 7079 7080 if (ipip->ipi_cmd_type == IF_CMD) { 7081 /* This a old style SIOC[GS]IF* command */ 7082 ifr = (struct ifreq *)mp1->b_rptr; 7083 /* 7084 * Null terminate the string to protect against buffer 7085 * overrun. String was generated by user code and may not 7086 * be trusted. 7087 */ 7088 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7089 name = ifr->ifr_name; 7090 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7091 ci->ci_sin6 = NULL; 7092 ci->ci_lifr = (struct lifreq *)ifr; 7093 } else { 7094 /* This a new style SIOC[GS]LIF* command */ 7095 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7096 lifr = (struct lifreq *)mp1->b_rptr; 7097 /* 7098 * Null terminate the string to protect against buffer 7099 * overrun. String was generated by user code and may not 7100 * be trusted. 7101 */ 7102 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7103 name = lifr->lifr_name; 7104 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7105 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7106 ci->ci_lifr = lifr; 7107 } 7108 7109 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7110 /* 7111 * The ioctl will be failed if the ioctl comes down 7112 * an conn stream 7113 */ 7114 if (ill == NULL) { 7115 /* 7116 * Not an ill queue, return EINVAL same as the 7117 * old error code. 7118 */ 7119 return (ENXIO); 7120 } 7121 ipif = ill->ill_ipif; 7122 ipif_refhold(ipif); 7123 } else { 7124 /* 7125 * Ensure that ioctls don't see any internal state changes 7126 * caused by set ioctls by deferring them if IPIF_CHANGING is 7127 * set. 7128 */ 7129 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7130 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7131 if (ipif == NULL) { 7132 if (err == EINPROGRESS) 7133 return (err); 7134 err = 0; /* Ensure we don't use it below */ 7135 } 7136 } 7137 7138 /* 7139 * Old style [GS]IFCMD does not admit IPv6 ipif 7140 */ 7141 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7142 ipif_refrele(ipif); 7143 return (ENXIO); 7144 } 7145 7146 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7147 name[0] == '\0') { 7148 /* 7149 * Handle a or a SIOC?IF* with a null name 7150 * during plumb (on the ill queue before the I_PLINK). 7151 */ 7152 ipif = ill->ill_ipif; 7153 ipif_refhold(ipif); 7154 } 7155 7156 if (ipif == NULL) 7157 return (ENXIO); 7158 7159 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7160 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7161 7162 ci->ci_ipif = ipif; 7163 return (0); 7164 } 7165 7166 /* 7167 * Return the total number of ipifs. 7168 */ 7169 static uint_t 7170 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7171 { 7172 uint_t numifs = 0; 7173 ill_t *ill; 7174 ill_walk_context_t ctx; 7175 ipif_t *ipif; 7176 7177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7178 ill = ILL_START_WALK_V4(&ctx, ipst); 7179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7180 if (IS_UNDER_IPMP(ill)) 7181 continue; 7182 for (ipif = ill->ill_ipif; ipif != NULL; 7183 ipif = ipif->ipif_next) { 7184 if (ipif->ipif_zoneid == zoneid || 7185 ipif->ipif_zoneid == ALL_ZONES) 7186 numifs++; 7187 } 7188 } 7189 rw_exit(&ipst->ips_ill_g_lock); 7190 return (numifs); 7191 } 7192 7193 /* 7194 * Return the total number of ipifs. 7195 */ 7196 static uint_t 7197 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7198 { 7199 uint_t numifs = 0; 7200 ill_t *ill; 7201 ipif_t *ipif; 7202 ill_walk_context_t ctx; 7203 7204 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7205 7206 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7207 if (family == AF_INET) 7208 ill = ILL_START_WALK_V4(&ctx, ipst); 7209 else if (family == AF_INET6) 7210 ill = ILL_START_WALK_V6(&ctx, ipst); 7211 else 7212 ill = ILL_START_WALK_ALL(&ctx, ipst); 7213 7214 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7215 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7216 continue; 7217 7218 for (ipif = ill->ill_ipif; ipif != NULL; 7219 ipif = ipif->ipif_next) { 7220 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7221 !(lifn_flags & LIFC_NOXMIT)) 7222 continue; 7223 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7224 !(lifn_flags & LIFC_TEMPORARY)) 7225 continue; 7226 if (((ipif->ipif_flags & 7227 (IPIF_NOXMIT|IPIF_NOLOCAL| 7228 IPIF_DEPRECATED)) || 7229 IS_LOOPBACK(ill) || 7230 !(ipif->ipif_flags & IPIF_UP)) && 7231 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7232 continue; 7233 7234 if (zoneid != ipif->ipif_zoneid && 7235 ipif->ipif_zoneid != ALL_ZONES && 7236 (zoneid != GLOBAL_ZONEID || 7237 !(lifn_flags & LIFC_ALLZONES))) 7238 continue; 7239 7240 numifs++; 7241 } 7242 } 7243 rw_exit(&ipst->ips_ill_g_lock); 7244 return (numifs); 7245 } 7246 7247 uint_t 7248 ip_get_lifsrcofnum(ill_t *ill) 7249 { 7250 uint_t numifs = 0; 7251 ill_t *ill_head = ill; 7252 ip_stack_t *ipst = ill->ill_ipst; 7253 7254 /* 7255 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7256 * other thread may be trying to relink the ILLs in this usesrc group 7257 * and adjusting the ill_usesrc_grp_next pointers 7258 */ 7259 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7260 if ((ill->ill_usesrc_ifindex == 0) && 7261 (ill->ill_usesrc_grp_next != NULL)) { 7262 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7263 ill = ill->ill_usesrc_grp_next) 7264 numifs++; 7265 } 7266 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7267 7268 return (numifs); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7275 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 int *nump; 7278 conn_t *connp = Q_TO_CONN(q); 7279 7280 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7281 7282 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7283 nump = (int *)mp->b_cont->b_cont->b_rptr; 7284 7285 *nump = ip_get_numifs(connp->conn_zoneid, 7286 connp->conn_netstack->netstack_ip); 7287 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7288 return (0); 7289 } 7290 7291 /* Null values are passed in for ipif, sin, and ifreq */ 7292 /* ARGSUSED */ 7293 int 7294 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7295 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7296 { 7297 struct lifnum *lifn; 7298 mblk_t *mp1; 7299 conn_t *connp = Q_TO_CONN(q); 7300 7301 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7302 7303 /* Existence checked in ip_wput_nondata */ 7304 mp1 = mp->b_cont->b_cont; 7305 7306 lifn = (struct lifnum *)mp1->b_rptr; 7307 switch (lifn->lifn_family) { 7308 case AF_UNSPEC: 7309 case AF_INET: 7310 case AF_INET6: 7311 break; 7312 default: 7313 return (EAFNOSUPPORT); 7314 } 7315 7316 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7317 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7318 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7319 return (0); 7320 } 7321 7322 /* ARGSUSED */ 7323 int 7324 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7325 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7326 { 7327 STRUCT_HANDLE(ifconf, ifc); 7328 mblk_t *mp1; 7329 struct iocblk *iocp; 7330 struct ifreq *ifr; 7331 ill_walk_context_t ctx; 7332 ill_t *ill; 7333 ipif_t *ipif; 7334 struct sockaddr_in *sin; 7335 int32_t ifclen; 7336 zoneid_t zoneid; 7337 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7338 7339 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7340 7341 ip1dbg(("ip_sioctl_get_ifconf")); 7342 /* Existence verified in ip_wput_nondata */ 7343 mp1 = mp->b_cont->b_cont; 7344 iocp = (struct iocblk *)mp->b_rptr; 7345 zoneid = Q_TO_CONN(q)->conn_zoneid; 7346 7347 /* 7348 * The original SIOCGIFCONF passed in a struct ifconf which specified 7349 * the user buffer address and length into which the list of struct 7350 * ifreqs was to be copied. Since AT&T Streams does not seem to 7351 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7352 * the SIOCGIFCONF operation was redefined to simply provide 7353 * a large output buffer into which we are supposed to jam the ifreq 7354 * array. The same ioctl command code was used, despite the fact that 7355 * both the applications and the kernel code had to change, thus making 7356 * it impossible to support both interfaces. 7357 * 7358 * For reasons not good enough to try to explain, the following 7359 * algorithm is used for deciding what to do with one of these: 7360 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7361 * form with the output buffer coming down as the continuation message. 7362 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7363 * and we have to copy in the ifconf structure to find out how big the 7364 * output buffer is and where to copy out to. Sure no problem... 7365 * 7366 */ 7367 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7368 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7369 int numifs = 0; 7370 size_t ifc_bufsize; 7371 7372 /* 7373 * Must be (better be!) continuation of a TRANSPARENT 7374 * IOCTL. We just copied in the ifconf structure. 7375 */ 7376 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7377 (struct ifconf *)mp1->b_rptr); 7378 7379 /* 7380 * Allocate a buffer to hold requested information. 7381 * 7382 * If ifc_len is larger than what is needed, we only 7383 * allocate what we will use. 7384 * 7385 * If ifc_len is smaller than what is needed, return 7386 * EINVAL. 7387 * 7388 * XXX: the ill_t structure can hava 2 counters, for 7389 * v4 and v6 (not just ill_ipif_up_count) to store the 7390 * number of interfaces for a device, so we don't need 7391 * to count them here... 7392 */ 7393 numifs = ip_get_numifs(zoneid, ipst); 7394 7395 ifclen = STRUCT_FGET(ifc, ifc_len); 7396 ifc_bufsize = numifs * sizeof (struct ifreq); 7397 if (ifc_bufsize > ifclen) { 7398 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7399 /* old behaviour */ 7400 return (EINVAL); 7401 } else { 7402 ifc_bufsize = ifclen; 7403 } 7404 } 7405 7406 mp1 = mi_copyout_alloc(q, mp, 7407 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7408 if (mp1 == NULL) 7409 return (ENOMEM); 7410 7411 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7412 } 7413 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7414 /* 7415 * the SIOCGIFCONF ioctl only knows about 7416 * IPv4 addresses, so don't try to tell 7417 * it about interfaces with IPv6-only 7418 * addresses. (Last parm 'isv6' is B_FALSE) 7419 */ 7420 7421 ifr = (struct ifreq *)mp1->b_rptr; 7422 7423 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7424 ill = ILL_START_WALK_V4(&ctx, ipst); 7425 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7426 if (IS_UNDER_IPMP(ill)) 7427 continue; 7428 for (ipif = ill->ill_ipif; ipif != NULL; 7429 ipif = ipif->ipif_next) { 7430 if (zoneid != ipif->ipif_zoneid && 7431 ipif->ipif_zoneid != ALL_ZONES) 7432 continue; 7433 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7434 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7435 /* old behaviour */ 7436 rw_exit(&ipst->ips_ill_g_lock); 7437 return (EINVAL); 7438 } else { 7439 goto if_copydone; 7440 } 7441 } 7442 ipif_get_name(ipif, ifr->ifr_name, 7443 sizeof (ifr->ifr_name)); 7444 sin = (sin_t *)&ifr->ifr_addr; 7445 *sin = sin_null; 7446 sin->sin_family = AF_INET; 7447 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7448 ifr++; 7449 } 7450 } 7451 if_copydone: 7452 rw_exit(&ipst->ips_ill_g_lock); 7453 mp1->b_wptr = (uchar_t *)ifr; 7454 7455 if (STRUCT_BUF(ifc) != NULL) { 7456 STRUCT_FSET(ifc, ifc_len, 7457 (int)((uchar_t *)ifr - mp1->b_rptr)); 7458 } 7459 return (0); 7460 } 7461 7462 /* 7463 * Get the interfaces using the address hosted on the interface passed in, 7464 * as a source adddress 7465 */ 7466 /* ARGSUSED */ 7467 int 7468 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7470 { 7471 mblk_t *mp1; 7472 ill_t *ill, *ill_head; 7473 ipif_t *ipif, *orig_ipif; 7474 int numlifs = 0; 7475 size_t lifs_bufsize, lifsmaxlen; 7476 struct lifreq *lifr; 7477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7478 uint_t ifindex; 7479 zoneid_t zoneid; 7480 boolean_t isv6 = B_FALSE; 7481 struct sockaddr_in *sin; 7482 struct sockaddr_in6 *sin6; 7483 STRUCT_HANDLE(lifsrcof, lifs); 7484 ip_stack_t *ipst; 7485 7486 ipst = CONNQ_TO_IPST(q); 7487 7488 ASSERT(q->q_next == NULL); 7489 7490 zoneid = Q_TO_CONN(q)->conn_zoneid; 7491 7492 /* Existence verified in ip_wput_nondata */ 7493 mp1 = mp->b_cont->b_cont; 7494 7495 /* 7496 * Must be (better be!) continuation of a TRANSPARENT 7497 * IOCTL. We just copied in the lifsrcof structure. 7498 */ 7499 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7500 (struct lifsrcof *)mp1->b_rptr); 7501 7502 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7503 return (EINVAL); 7504 7505 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7506 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7507 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7508 if (ipif == NULL) { 7509 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7510 ifindex)); 7511 return (ENXIO); 7512 } 7513 7514 /* Allocate a buffer to hold requested information */ 7515 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7516 lifs_bufsize = numlifs * sizeof (struct lifreq); 7517 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7518 /* The actual size needed is always returned in lifs_len */ 7519 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7520 7521 /* If the amount we need is more than what is passed in, abort */ 7522 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7523 ipif_refrele(ipif); 7524 return (0); 7525 } 7526 7527 mp1 = mi_copyout_alloc(q, mp, 7528 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7529 if (mp1 == NULL) { 7530 ipif_refrele(ipif); 7531 return (ENOMEM); 7532 } 7533 7534 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7535 bzero(mp1->b_rptr, lifs_bufsize); 7536 7537 lifr = (struct lifreq *)mp1->b_rptr; 7538 7539 ill = ill_head = ipif->ipif_ill; 7540 orig_ipif = ipif; 7541 7542 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7543 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7544 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7545 7546 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7547 for (; (ill != NULL) && (ill != ill_head); 7548 ill = ill->ill_usesrc_grp_next) { 7549 7550 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7551 break; 7552 7553 ipif = ill->ill_ipif; 7554 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7555 if (ipif->ipif_isv6) { 7556 sin6 = (sin6_t *)&lifr->lifr_addr; 7557 *sin6 = sin6_null; 7558 sin6->sin6_family = AF_INET6; 7559 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7560 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7561 &ipif->ipif_v6net_mask); 7562 } else { 7563 sin = (sin_t *)&lifr->lifr_addr; 7564 *sin = sin_null; 7565 sin->sin_family = AF_INET; 7566 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7567 lifr->lifr_addrlen = ip_mask_to_plen( 7568 ipif->ipif_net_mask); 7569 } 7570 lifr++; 7571 } 7572 rw_exit(&ipst->ips_ill_g_lock); 7573 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7574 ipif_refrele(orig_ipif); 7575 mp1->b_wptr = (uchar_t *)lifr; 7576 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7577 7578 return (0); 7579 } 7580 7581 /* ARGSUSED */ 7582 int 7583 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7584 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7585 { 7586 mblk_t *mp1; 7587 int list; 7588 ill_t *ill; 7589 ipif_t *ipif; 7590 int flags; 7591 int numlifs = 0; 7592 size_t lifc_bufsize; 7593 struct lifreq *lifr; 7594 sa_family_t family; 7595 struct sockaddr_in *sin; 7596 struct sockaddr_in6 *sin6; 7597 ill_walk_context_t ctx; 7598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7599 int32_t lifclen; 7600 zoneid_t zoneid; 7601 STRUCT_HANDLE(lifconf, lifc); 7602 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7603 7604 ip1dbg(("ip_sioctl_get_lifconf")); 7605 7606 ASSERT(q->q_next == NULL); 7607 7608 zoneid = Q_TO_CONN(q)->conn_zoneid; 7609 7610 /* Existence verified in ip_wput_nondata */ 7611 mp1 = mp->b_cont->b_cont; 7612 7613 /* 7614 * An extended version of SIOCGIFCONF that takes an 7615 * additional address family and flags field. 7616 * AF_UNSPEC retrieve both IPv4 and IPv6. 7617 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7618 * interfaces are omitted. 7619 * Similarly, IPIF_TEMPORARY interfaces are omitted 7620 * unless LIFC_TEMPORARY is specified. 7621 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7622 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7623 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7624 * has priority over LIFC_NOXMIT. 7625 */ 7626 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7627 7628 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7629 return (EINVAL); 7630 7631 /* 7632 * Must be (better be!) continuation of a TRANSPARENT 7633 * IOCTL. We just copied in the lifconf structure. 7634 */ 7635 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7636 7637 family = STRUCT_FGET(lifc, lifc_family); 7638 flags = STRUCT_FGET(lifc, lifc_flags); 7639 7640 switch (family) { 7641 case AF_UNSPEC: 7642 /* 7643 * walk all ILL's. 7644 */ 7645 list = MAX_G_HEADS; 7646 break; 7647 case AF_INET: 7648 /* 7649 * walk only IPV4 ILL's. 7650 */ 7651 list = IP_V4_G_HEAD; 7652 break; 7653 case AF_INET6: 7654 /* 7655 * walk only IPV6 ILL's. 7656 */ 7657 list = IP_V6_G_HEAD; 7658 break; 7659 default: 7660 return (EAFNOSUPPORT); 7661 } 7662 7663 /* 7664 * Allocate a buffer to hold requested information. 7665 * 7666 * If lifc_len is larger than what is needed, we only 7667 * allocate what we will use. 7668 * 7669 * If lifc_len is smaller than what is needed, return 7670 * EINVAL. 7671 */ 7672 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7673 lifc_bufsize = numlifs * sizeof (struct lifreq); 7674 lifclen = STRUCT_FGET(lifc, lifc_len); 7675 if (lifc_bufsize > lifclen) { 7676 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7677 return (EINVAL); 7678 else 7679 lifc_bufsize = lifclen; 7680 } 7681 7682 mp1 = mi_copyout_alloc(q, mp, 7683 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7684 if (mp1 == NULL) 7685 return (ENOMEM); 7686 7687 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7688 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7689 7690 lifr = (struct lifreq *)mp1->b_rptr; 7691 7692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7693 ill = ill_first(list, list, &ctx, ipst); 7694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7695 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7696 continue; 7697 7698 for (ipif = ill->ill_ipif; ipif != NULL; 7699 ipif = ipif->ipif_next) { 7700 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7701 !(flags & LIFC_NOXMIT)) 7702 continue; 7703 7704 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7705 !(flags & LIFC_TEMPORARY)) 7706 continue; 7707 7708 if (((ipif->ipif_flags & 7709 (IPIF_NOXMIT|IPIF_NOLOCAL| 7710 IPIF_DEPRECATED)) || 7711 IS_LOOPBACK(ill) || 7712 !(ipif->ipif_flags & IPIF_UP)) && 7713 (flags & LIFC_EXTERNAL_SOURCE)) 7714 continue; 7715 7716 if (zoneid != ipif->ipif_zoneid && 7717 ipif->ipif_zoneid != ALL_ZONES && 7718 (zoneid != GLOBAL_ZONEID || 7719 !(flags & LIFC_ALLZONES))) 7720 continue; 7721 7722 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7723 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7724 rw_exit(&ipst->ips_ill_g_lock); 7725 return (EINVAL); 7726 } else { 7727 goto lif_copydone; 7728 } 7729 } 7730 7731 ipif_get_name(ipif, lifr->lifr_name, 7732 sizeof (lifr->lifr_name)); 7733 lifr->lifr_type = ill->ill_type; 7734 if (ipif->ipif_isv6) { 7735 sin6 = (sin6_t *)&lifr->lifr_addr; 7736 *sin6 = sin6_null; 7737 sin6->sin6_family = AF_INET6; 7738 sin6->sin6_addr = 7739 ipif->ipif_v6lcl_addr; 7740 lifr->lifr_addrlen = 7741 ip_mask_to_plen_v6( 7742 &ipif->ipif_v6net_mask); 7743 } else { 7744 sin = (sin_t *)&lifr->lifr_addr; 7745 *sin = sin_null; 7746 sin->sin_family = AF_INET; 7747 sin->sin_addr.s_addr = 7748 ipif->ipif_lcl_addr; 7749 lifr->lifr_addrlen = 7750 ip_mask_to_plen( 7751 ipif->ipif_net_mask); 7752 } 7753 lifr++; 7754 } 7755 } 7756 lif_copydone: 7757 rw_exit(&ipst->ips_ill_g_lock); 7758 7759 mp1->b_wptr = (uchar_t *)lifr; 7760 if (STRUCT_BUF(lifc) != NULL) { 7761 STRUCT_FSET(lifc, lifc_len, 7762 (int)((uchar_t *)lifr - mp1->b_rptr)); 7763 } 7764 return (0); 7765 } 7766 7767 static void 7768 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7769 { 7770 ip6_asp_t *table; 7771 size_t table_size; 7772 mblk_t *data_mp; 7773 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7774 ip_stack_t *ipst; 7775 7776 if (q->q_next == NULL) 7777 ipst = CONNQ_TO_IPST(q); 7778 else 7779 ipst = ILLQ_TO_IPST(q); 7780 7781 /* These two ioctls are I_STR only */ 7782 if (iocp->ioc_count == TRANSPARENT) { 7783 miocnak(q, mp, 0, EINVAL); 7784 return; 7785 } 7786 7787 data_mp = mp->b_cont; 7788 if (data_mp == NULL) { 7789 /* The user passed us a NULL argument */ 7790 table = NULL; 7791 table_size = iocp->ioc_count; 7792 } else { 7793 /* 7794 * The user provided a table. The stream head 7795 * may have copied in the user data in chunks, 7796 * so make sure everything is pulled up 7797 * properly. 7798 */ 7799 if (MBLKL(data_mp) < iocp->ioc_count) { 7800 mblk_t *new_data_mp; 7801 if ((new_data_mp = msgpullup(data_mp, -1)) == 7802 NULL) { 7803 miocnak(q, mp, 0, ENOMEM); 7804 return; 7805 } 7806 freemsg(data_mp); 7807 data_mp = new_data_mp; 7808 mp->b_cont = data_mp; 7809 } 7810 table = (ip6_asp_t *)data_mp->b_rptr; 7811 table_size = iocp->ioc_count; 7812 } 7813 7814 switch (iocp->ioc_cmd) { 7815 case SIOCGIP6ADDRPOLICY: 7816 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7817 if (iocp->ioc_rval == -1) 7818 iocp->ioc_error = EINVAL; 7819 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7820 else if (table != NULL && 7821 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7822 ip6_asp_t *src = table; 7823 ip6_asp32_t *dst = (void *)table; 7824 int count = table_size / sizeof (ip6_asp_t); 7825 int i; 7826 7827 /* 7828 * We need to do an in-place shrink of the array 7829 * to match the alignment attributes of the 7830 * 32-bit ABI looking at it. 7831 */ 7832 /* LINTED: logical expression always true: op "||" */ 7833 ASSERT(sizeof (*src) > sizeof (*dst)); 7834 for (i = 1; i < count; i++) 7835 bcopy(src + i, dst + i, sizeof (*dst)); 7836 } 7837 #endif 7838 break; 7839 7840 case SIOCSIP6ADDRPOLICY: 7841 ASSERT(mp->b_prev == NULL); 7842 mp->b_prev = (void *)q; 7843 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7844 /* 7845 * We pass in the datamodel here so that the ip6_asp_replace() 7846 * routine can handle converting from 32-bit to native formats 7847 * where necessary. 7848 * 7849 * A better way to handle this might be to convert the inbound 7850 * data structure here, and hang it off a new 'mp'; thus the 7851 * ip6_asp_replace() logic would always be dealing with native 7852 * format data structures.. 7853 * 7854 * (An even simpler way to handle these ioctls is to just 7855 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7856 * and just recompile everything that depends on it.) 7857 */ 7858 #endif 7859 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7860 iocp->ioc_flag & IOC_MODELS); 7861 return; 7862 } 7863 7864 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7865 qreply(q, mp); 7866 } 7867 7868 static void 7869 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7870 { 7871 mblk_t *data_mp; 7872 struct dstinforeq *dir; 7873 uint8_t *end, *cur; 7874 in6_addr_t *daddr, *saddr; 7875 ipaddr_t v4daddr; 7876 ire_t *ire; 7877 ipaddr_t v4setsrc; 7878 in6_addr_t v6setsrc; 7879 char *slabel, *dlabel; 7880 boolean_t isipv4; 7881 int match_ire; 7882 ill_t *dst_ill; 7883 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7884 conn_t *connp = Q_TO_CONN(q); 7885 zoneid_t zoneid = IPCL_ZONEID(connp); 7886 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7887 uint64_t ipif_flags; 7888 7889 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7890 7891 /* 7892 * This ioctl is I_STR only, and must have a 7893 * data mblk following the M_IOCTL mblk. 7894 */ 7895 data_mp = mp->b_cont; 7896 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7897 miocnak(q, mp, 0, EINVAL); 7898 return; 7899 } 7900 7901 if (MBLKL(data_mp) < iocp->ioc_count) { 7902 mblk_t *new_data_mp; 7903 7904 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7905 miocnak(q, mp, 0, ENOMEM); 7906 return; 7907 } 7908 freemsg(data_mp); 7909 data_mp = new_data_mp; 7910 mp->b_cont = data_mp; 7911 } 7912 match_ire = MATCH_IRE_DSTONLY; 7913 7914 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7915 end - cur >= sizeof (struct dstinforeq); 7916 cur += sizeof (struct dstinforeq)) { 7917 dir = (struct dstinforeq *)cur; 7918 daddr = &dir->dir_daddr; 7919 saddr = &dir->dir_saddr; 7920 7921 /* 7922 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7923 * v4 mapped addresses; ire_ftable_lookup_v6() 7924 * and ip_select_source_v6() do not. 7925 */ 7926 dir->dir_dscope = ip_addr_scope_v6(daddr); 7927 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7928 7929 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7930 if (isipv4) { 7931 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7932 v4setsrc = INADDR_ANY; 7933 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7934 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7935 NULL, NULL); 7936 } else { 7937 v6setsrc = ipv6_all_zeros; 7938 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7939 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7940 NULL, NULL); 7941 } 7942 ASSERT(ire != NULL); 7943 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7944 ire_refrele(ire); 7945 dir->dir_dreachable = 0; 7946 7947 /* move on to next dst addr */ 7948 continue; 7949 } 7950 dir->dir_dreachable = 1; 7951 7952 dst_ill = ire_nexthop_ill(ire); 7953 if (dst_ill == NULL) { 7954 ire_refrele(ire); 7955 continue; 7956 } 7957 7958 /* With ipmp we most likely look at the ipmp ill here */ 7959 dir->dir_dmactype = dst_ill->ill_mactype; 7960 7961 if (isipv4) { 7962 ipaddr_t v4saddr; 7963 7964 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7965 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7966 &v4saddr, NULL, &ipif_flags) != 0) { 7967 v4saddr = INADDR_ANY; 7968 ipif_flags = 0; 7969 } 7970 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7971 } else { 7972 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7973 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7974 saddr, NULL, &ipif_flags) != 0) { 7975 *saddr = ipv6_all_zeros; 7976 ipif_flags = 0; 7977 } 7978 } 7979 7980 dir->dir_sscope = ip_addr_scope_v6(saddr); 7981 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7982 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7983 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7984 ire_refrele(ire); 7985 ill_refrele(dst_ill); 7986 } 7987 miocack(q, mp, iocp->ioc_count, 0); 7988 } 7989 7990 /* 7991 * Check if this is an address assigned to this machine. 7992 * Skips interfaces that are down by using ire checks. 7993 * Translates mapped addresses to v4 addresses and then 7994 * treats them as such, returning true if the v4 address 7995 * associated with this mapped address is configured. 7996 * Note: Applications will have to be careful what they do 7997 * with the response; use of mapped addresses limits 7998 * what can be done with the socket, especially with 7999 * respect to socket options and ioctls - neither IPv4 8000 * options nor IPv6 sticky options/ancillary data options 8001 * may be used. 8002 */ 8003 /* ARGSUSED */ 8004 int 8005 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8006 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8007 { 8008 struct sioc_addrreq *sia; 8009 sin_t *sin; 8010 ire_t *ire; 8011 mblk_t *mp1; 8012 zoneid_t zoneid; 8013 ip_stack_t *ipst; 8014 8015 ip1dbg(("ip_sioctl_tmyaddr")); 8016 8017 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8018 zoneid = Q_TO_CONN(q)->conn_zoneid; 8019 ipst = CONNQ_TO_IPST(q); 8020 8021 /* Existence verified in ip_wput_nondata */ 8022 mp1 = mp->b_cont->b_cont; 8023 sia = (struct sioc_addrreq *)mp1->b_rptr; 8024 sin = (sin_t *)&sia->sa_addr; 8025 switch (sin->sin_family) { 8026 case AF_INET6: { 8027 sin6_t *sin6 = (sin6_t *)sin; 8028 8029 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8030 ipaddr_t v4_addr; 8031 8032 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8033 v4_addr); 8034 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8035 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8036 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8037 } else { 8038 in6_addr_t v6addr; 8039 8040 v6addr = sin6->sin6_addr; 8041 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8042 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8043 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8044 } 8045 break; 8046 } 8047 case AF_INET: { 8048 ipaddr_t v4addr; 8049 8050 v4addr = sin->sin_addr.s_addr; 8051 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8052 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8053 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8054 break; 8055 } 8056 default: 8057 return (EAFNOSUPPORT); 8058 } 8059 if (ire != NULL) { 8060 sia->sa_res = 1; 8061 ire_refrele(ire); 8062 } else { 8063 sia->sa_res = 0; 8064 } 8065 return (0); 8066 } 8067 8068 /* 8069 * Check if this is an address assigned on-link i.e. neighbor, 8070 * and makes sure it's reachable from the current zone. 8071 * Returns true for my addresses as well. 8072 * Translates mapped addresses to v4 addresses and then 8073 * treats them as such, returning true if the v4 address 8074 * associated with this mapped address is configured. 8075 * Note: Applications will have to be careful what they do 8076 * with the response; use of mapped addresses limits 8077 * what can be done with the socket, especially with 8078 * respect to socket options and ioctls - neither IPv4 8079 * options nor IPv6 sticky options/ancillary data options 8080 * may be used. 8081 */ 8082 /* ARGSUSED */ 8083 int 8084 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8085 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8086 { 8087 struct sioc_addrreq *sia; 8088 sin_t *sin; 8089 mblk_t *mp1; 8090 ire_t *ire = NULL; 8091 zoneid_t zoneid; 8092 ip_stack_t *ipst; 8093 8094 ip1dbg(("ip_sioctl_tonlink")); 8095 8096 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8097 zoneid = Q_TO_CONN(q)->conn_zoneid; 8098 ipst = CONNQ_TO_IPST(q); 8099 8100 /* Existence verified in ip_wput_nondata */ 8101 mp1 = mp->b_cont->b_cont; 8102 sia = (struct sioc_addrreq *)mp1->b_rptr; 8103 sin = (sin_t *)&sia->sa_addr; 8104 8105 /* 8106 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8107 * to make sure we only look at on-link unicast address. 8108 */ 8109 switch (sin->sin_family) { 8110 case AF_INET6: { 8111 sin6_t *sin6 = (sin6_t *)sin; 8112 8113 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8114 ipaddr_t v4_addr; 8115 8116 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8117 v4_addr); 8118 if (!CLASSD(v4_addr)) { 8119 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8120 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8121 0, ipst, NULL); 8122 } 8123 } else { 8124 in6_addr_t v6addr; 8125 8126 v6addr = sin6->sin6_addr; 8127 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8128 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8129 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8130 ipst, NULL); 8131 } 8132 } 8133 break; 8134 } 8135 case AF_INET: { 8136 ipaddr_t v4addr; 8137 8138 v4addr = sin->sin_addr.s_addr; 8139 if (!CLASSD(v4addr)) { 8140 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8141 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8142 } 8143 break; 8144 } 8145 default: 8146 return (EAFNOSUPPORT); 8147 } 8148 sia->sa_res = 0; 8149 if (ire != NULL) { 8150 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8151 8152 if ((ire->ire_type & IRE_ONLINK) && 8153 !(ire->ire_type & IRE_BROADCAST)) 8154 sia->sa_res = 1; 8155 ire_refrele(ire); 8156 } 8157 return (0); 8158 } 8159 8160 /* 8161 * TBD: implement when kernel maintaines a list of site prefixes. 8162 */ 8163 /* ARGSUSED */ 8164 int 8165 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8166 ip_ioctl_cmd_t *ipip, void *ifreq) 8167 { 8168 return (ENXIO); 8169 } 8170 8171 /* ARP IOCTLs. */ 8172 /* ARGSUSED */ 8173 int 8174 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8175 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8176 { 8177 int err; 8178 ipaddr_t ipaddr; 8179 struct iocblk *iocp; 8180 conn_t *connp; 8181 struct arpreq *ar; 8182 struct xarpreq *xar; 8183 int arp_flags, flags, alength; 8184 uchar_t *lladdr; 8185 ip_stack_t *ipst; 8186 ill_t *ill = ipif->ipif_ill; 8187 ill_t *proxy_ill = NULL; 8188 ipmp_arpent_t *entp = NULL; 8189 boolean_t proxyarp = B_FALSE; 8190 boolean_t if_arp_ioctl = B_FALSE; 8191 ncec_t *ncec = NULL; 8192 nce_t *nce; 8193 8194 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8195 connp = Q_TO_CONN(q); 8196 ipst = connp->conn_netstack->netstack_ip; 8197 iocp = (struct iocblk *)mp->b_rptr; 8198 8199 if (ipip->ipi_cmd_type == XARP_CMD) { 8200 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8201 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8202 ar = NULL; 8203 8204 arp_flags = xar->xarp_flags; 8205 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8206 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8207 /* 8208 * Validate against user's link layer address length 8209 * input and name and addr length limits. 8210 */ 8211 alength = ill->ill_phys_addr_length; 8212 if (ipip->ipi_cmd == SIOCSXARP) { 8213 if (alength != xar->xarp_ha.sdl_alen || 8214 (alength + xar->xarp_ha.sdl_nlen > 8215 sizeof (xar->xarp_ha.sdl_data))) 8216 return (EINVAL); 8217 } 8218 } else { 8219 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8220 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8221 xar = NULL; 8222 8223 arp_flags = ar->arp_flags; 8224 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8225 /* 8226 * Theoretically, the sa_family could tell us what link 8227 * layer type this operation is trying to deal with. By 8228 * common usage AF_UNSPEC means ethernet. We'll assume 8229 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8230 * for now. Our new SIOC*XARP ioctls can be used more 8231 * generally. 8232 * 8233 * If the underlying media happens to have a non 6 byte 8234 * address, arp module will fail set/get, but the del 8235 * operation will succeed. 8236 */ 8237 alength = 6; 8238 if ((ipip->ipi_cmd != SIOCDARP) && 8239 (alength != ill->ill_phys_addr_length)) { 8240 return (EINVAL); 8241 } 8242 } 8243 8244 /* Translate ATF* flags to NCE* flags */ 8245 flags = 0; 8246 if (arp_flags & ATF_AUTHORITY) 8247 flags |= NCE_F_AUTHORITY; 8248 if (arp_flags & ATF_PERM) 8249 flags |= NCE_F_NONUD; /* not subject to aging */ 8250 if (arp_flags & ATF_PUBL) 8251 flags |= NCE_F_PUBLISH; 8252 8253 /* 8254 * IPMP ARP special handling: 8255 * 8256 * 1. Since ARP mappings must appear consistent across the group, 8257 * prohibit changing ARP mappings on the underlying interfaces. 8258 * 8259 * 2. Since ARP mappings for IPMP data addresses are maintained by 8260 * IP itself, prohibit changing them. 8261 * 8262 * 3. For proxy ARP, use a functioning hardware address in the group, 8263 * provided one exists. If one doesn't, just add the entry as-is; 8264 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8265 */ 8266 if (IS_UNDER_IPMP(ill)) { 8267 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8268 return (EPERM); 8269 } 8270 if (IS_IPMP(ill)) { 8271 ipmp_illgrp_t *illg = ill->ill_grp; 8272 8273 switch (ipip->ipi_cmd) { 8274 case SIOCSARP: 8275 case SIOCSXARP: 8276 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8277 if (proxy_ill != NULL) { 8278 proxyarp = B_TRUE; 8279 if (!ipmp_ill_is_active(proxy_ill)) 8280 proxy_ill = ipmp_illgrp_next_ill(illg); 8281 if (proxy_ill != NULL) 8282 lladdr = proxy_ill->ill_phys_addr; 8283 } 8284 /* FALLTHRU */ 8285 } 8286 } 8287 8288 ipaddr = sin->sin_addr.s_addr; 8289 /* 8290 * don't match across illgrp per case (1) and (2). 8291 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8292 */ 8293 nce = nce_lookup_v4(ill, &ipaddr); 8294 if (nce != NULL) 8295 ncec = nce->nce_common; 8296 8297 switch (iocp->ioc_cmd) { 8298 case SIOCDARP: 8299 case SIOCDXARP: { 8300 /* 8301 * Delete the NCE if any. 8302 */ 8303 if (ncec == NULL) { 8304 iocp->ioc_error = ENXIO; 8305 break; 8306 } 8307 /* Don't allow changes to arp mappings of local addresses. */ 8308 if (NCE_MYADDR(ncec)) { 8309 nce_refrele(nce); 8310 return (ENOTSUP); 8311 } 8312 iocp->ioc_error = 0; 8313 8314 /* 8315 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8316 * This will delete all the nce entries on the under_ills. 8317 */ 8318 ncec_delete(ncec); 8319 /* 8320 * Once the NCE has been deleted, then the ire_dep* consistency 8321 * mechanism will find any IRE which depended on the now 8322 * condemned NCE (as part of sending packets). 8323 * That mechanism handles redirects by deleting redirects 8324 * that refer to UNREACHABLE nces. 8325 */ 8326 break; 8327 } 8328 case SIOCGARP: 8329 case SIOCGXARP: 8330 if (ncec != NULL) { 8331 lladdr = ncec->ncec_lladdr; 8332 flags = ncec->ncec_flags; 8333 iocp->ioc_error = 0; 8334 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8335 } else { 8336 iocp->ioc_error = ENXIO; 8337 } 8338 break; 8339 case SIOCSARP: 8340 case SIOCSXARP: 8341 /* Don't allow changes to arp mappings of local addresses. */ 8342 if (ncec != NULL && NCE_MYADDR(ncec)) { 8343 nce_refrele(nce); 8344 return (ENOTSUP); 8345 } 8346 8347 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8348 flags |= NCE_F_STATIC; 8349 if (!if_arp_ioctl) { 8350 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8351 lladdr, alength, flags); 8352 } else { 8353 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8354 if (ipif != NULL) { 8355 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8356 lladdr, alength, flags); 8357 ipif_refrele(ipif); 8358 } 8359 } 8360 if (nce != NULL) { 8361 nce_refrele(nce); 8362 nce = NULL; 8363 } 8364 /* 8365 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8366 * by nce_add_common() 8367 */ 8368 err = nce_lookup_then_add_v4(ill, lladdr, 8369 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8370 &nce); 8371 if (err == EEXIST) { 8372 ncec = nce->nce_common; 8373 mutex_enter(&ncec->ncec_lock); 8374 ncec->ncec_state = ND_REACHABLE; 8375 ncec->ncec_flags = flags; 8376 nce_update(ncec, ND_UNCHANGED, lladdr); 8377 mutex_exit(&ncec->ncec_lock); 8378 err = 0; 8379 } 8380 if (nce != NULL) { 8381 nce_refrele(nce); 8382 nce = NULL; 8383 } 8384 if (IS_IPMP(ill) && err == 0) { 8385 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8386 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8387 flags); 8388 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8389 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8390 break; 8391 } 8392 } 8393 iocp->ioc_error = err; 8394 } 8395 8396 if (nce != NULL) { 8397 nce_refrele(nce); 8398 } 8399 8400 /* 8401 * If we created an IPMP ARP entry, mark that we've notified ARP. 8402 */ 8403 if (entp != NULL) 8404 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8405 8406 return (iocp->ioc_error); 8407 } 8408 8409 /* 8410 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8411 * the associated sin and refhold and return the associated ipif via `ci'. 8412 */ 8413 int 8414 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8415 cmd_info_t *ci) 8416 { 8417 mblk_t *mp1; 8418 sin_t *sin; 8419 conn_t *connp; 8420 ipif_t *ipif; 8421 ire_t *ire = NULL; 8422 ill_t *ill = NULL; 8423 boolean_t exists; 8424 ip_stack_t *ipst; 8425 struct arpreq *ar; 8426 struct xarpreq *xar; 8427 struct sockaddr_dl *sdl; 8428 8429 /* ioctl comes down on a conn */ 8430 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8431 connp = Q_TO_CONN(q); 8432 if (connp->conn_family == AF_INET6) 8433 return (ENXIO); 8434 8435 ipst = connp->conn_netstack->netstack_ip; 8436 8437 /* Verified in ip_wput_nondata */ 8438 mp1 = mp->b_cont->b_cont; 8439 8440 if (ipip->ipi_cmd_type == XARP_CMD) { 8441 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8442 xar = (struct xarpreq *)mp1->b_rptr; 8443 sin = (sin_t *)&xar->xarp_pa; 8444 sdl = &xar->xarp_ha; 8445 8446 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8447 return (ENXIO); 8448 if (sdl->sdl_nlen >= LIFNAMSIZ) 8449 return (EINVAL); 8450 } else { 8451 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8452 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8453 ar = (struct arpreq *)mp1->b_rptr; 8454 sin = (sin_t *)&ar->arp_pa; 8455 } 8456 8457 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8458 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8459 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8460 if (ipif == NULL) 8461 return (ENXIO); 8462 if (ipif->ipif_id != 0) { 8463 ipif_refrele(ipif); 8464 return (ENXIO); 8465 } 8466 } else { 8467 /* 8468 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8469 * of 0: use the IP address to find the ipif. If the IP 8470 * address is an IPMP test address, ire_ftable_lookup() will 8471 * find the wrong ill, so we first do an ipif_lookup_addr(). 8472 */ 8473 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8474 ipst); 8475 if (ipif == NULL) { 8476 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8477 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8478 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8479 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8480 if (ire != NULL) 8481 ire_refrele(ire); 8482 return (ENXIO); 8483 } 8484 ASSERT(ire != NULL && ill != NULL); 8485 ipif = ill->ill_ipif; 8486 ipif_refhold(ipif); 8487 ire_refrele(ire); 8488 } 8489 } 8490 8491 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8492 ipif_refrele(ipif); 8493 return (ENXIO); 8494 } 8495 8496 ci->ci_sin = sin; 8497 ci->ci_ipif = ipif; 8498 return (0); 8499 } 8500 8501 /* 8502 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8503 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8504 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8505 * up and thus an ill can join that illgrp. 8506 * 8507 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8508 * open()/close() primarily because close() is not allowed to fail or block 8509 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8510 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8511 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8512 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8513 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8514 * state if I_UNLINK didn't occur. 8515 * 8516 * Note that for each plumb/unplumb operation, we may end up here more than 8517 * once because of the way ifconfig works. However, it's OK to link the same 8518 * illgrp more than once, or unlink an illgrp that's already unlinked. 8519 */ 8520 static int 8521 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8522 { 8523 int err; 8524 ip_stack_t *ipst = ill->ill_ipst; 8525 8526 ASSERT(IS_IPMP(ill)); 8527 ASSERT(IAM_WRITER_ILL(ill)); 8528 8529 switch (ioccmd) { 8530 case I_LINK: 8531 return (ENOTSUP); 8532 8533 case I_PLINK: 8534 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8535 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8536 rw_exit(&ipst->ips_ipmp_lock); 8537 break; 8538 8539 case I_PUNLINK: 8540 /* 8541 * Require all UP ipifs be brought down prior to unlinking the 8542 * illgrp so any associated IREs (and other state) is torched. 8543 */ 8544 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8545 return (EBUSY); 8546 8547 /* 8548 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8549 * with an SIOCSLIFGROUPNAME request from an ill trying to 8550 * join this group. Specifically: ills trying to join grab 8551 * ipmp_lock and bump a "pending join" counter checked by 8552 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8553 * joins can occur (since we have ipmp_lock). Once we drop 8554 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8555 * find the illgrp (since we unlinked it) and will return 8556 * EAFNOSUPPORT. This will then take them back through the 8557 * IPMP meta-interface plumbing logic in ifconfig, and thus 8558 * back through I_PLINK above. 8559 */ 8560 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8561 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8562 rw_exit(&ipst->ips_ipmp_lock); 8563 return (err); 8564 default: 8565 break; 8566 } 8567 return (0); 8568 } 8569 8570 /* 8571 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8572 * atomically set/clear the muxids. Also complete the ioctl by acking or 8573 * naking it. Note that the code is structured such that the link type, 8574 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8575 * its clones use the persistent link, while pppd(1M) and perhaps many 8576 * other daemons may use non-persistent link. When combined with some 8577 * ill_t states, linking and unlinking lower streams may be used as 8578 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8579 */ 8580 /* ARGSUSED */ 8581 void 8582 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8583 { 8584 mblk_t *mp1; 8585 struct linkblk *li; 8586 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8587 int err = 0; 8588 8589 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8590 ioccmd == I_LINK || ioccmd == I_UNLINK); 8591 8592 mp1 = mp->b_cont; /* This is the linkblk info */ 8593 li = (struct linkblk *)mp1->b_rptr; 8594 8595 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8596 if (err == EINPROGRESS) 8597 return; 8598 if (err == 0) 8599 miocack(q, mp, 0, 0); 8600 else 8601 miocnak(q, mp, 0, err); 8602 8603 /* Conn was refheld in ip_sioctl_copyin_setup */ 8604 if (CONN_Q(q)) { 8605 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8606 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8607 } 8608 } 8609 8610 /* 8611 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8612 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8613 * module stream). 8614 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8615 * an error code on failure. 8616 */ 8617 static int 8618 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8619 struct linkblk *li) 8620 { 8621 int err = 0; 8622 ill_t *ill; 8623 queue_t *ipwq, *dwq; 8624 const char *name; 8625 struct qinit *qinfo; 8626 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8627 boolean_t entered_ipsq = B_FALSE; 8628 boolean_t is_ip = B_FALSE; 8629 arl_t *arl; 8630 8631 /* 8632 * Walk the lower stream to verify it's the IP module stream. 8633 * The IP module is identified by its name, wput function, 8634 * and non-NULL q_next. STREAMS ensures that the lower stream 8635 * (li->l_qbot) will not vanish until this ioctl completes. 8636 */ 8637 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8638 qinfo = ipwq->q_qinfo; 8639 name = qinfo->qi_minfo->mi_idname; 8640 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8641 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8642 is_ip = B_TRUE; 8643 break; 8644 } 8645 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8646 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) { 8647 break; 8648 } 8649 } 8650 8651 /* 8652 * If this isn't an IP module stream, bail. 8653 */ 8654 if (ipwq == NULL) 8655 return (0); 8656 8657 if (!is_ip) { 8658 arl = (arl_t *)ipwq->q_ptr; 8659 ill = arl_to_ill(arl); 8660 if (ill == NULL) 8661 return (0); 8662 } else { 8663 ill = ipwq->q_ptr; 8664 } 8665 ASSERT(ill != NULL); 8666 8667 if (ipsq == NULL) { 8668 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8669 NEW_OP, B_FALSE); 8670 if (ipsq == NULL) { 8671 if (!is_ip) 8672 ill_refrele(ill); 8673 return (EINPROGRESS); 8674 } 8675 entered_ipsq = B_TRUE; 8676 } 8677 ASSERT(IAM_WRITER_ILL(ill)); 8678 mutex_enter(&ill->ill_lock); 8679 if (!is_ip) { 8680 if (islink && ill->ill_muxid == 0) { 8681 /* 8682 * Plumbing has to be done with IP plumbed first, arp 8683 * second, but here we have arp being plumbed first. 8684 */ 8685 mutex_exit(&ill->ill_lock); 8686 if (entered_ipsq) 8687 ipsq_exit(ipsq); 8688 ill_refrele(ill); 8689 return (EINVAL); 8690 } 8691 } 8692 mutex_exit(&ill->ill_lock); 8693 if (!is_ip) { 8694 arl->arl_muxid = islink ? li->l_index : 0; 8695 ill_refrele(ill); 8696 goto done; 8697 } 8698 8699 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8700 goto done; 8701 8702 /* 8703 * As part of I_{P}LINKing, stash the number of downstream modules and 8704 * the read queue of the module immediately below IP in the ill. 8705 * These are used during the capability negotiation below. 8706 */ 8707 ill->ill_lmod_rq = NULL; 8708 ill->ill_lmod_cnt = 0; 8709 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8710 ill->ill_lmod_rq = RD(dwq); 8711 for (; dwq != NULL; dwq = dwq->q_next) 8712 ill->ill_lmod_cnt++; 8713 } 8714 8715 ill->ill_muxid = islink ? li->l_index : 0; 8716 8717 /* 8718 * Mark the ipsq busy until the capability operations initiated below 8719 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8720 * returns, but the capability operation may complete asynchronously 8721 * much later. 8722 */ 8723 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8724 /* 8725 * If there's at least one up ipif on this ill, then we're bound to 8726 * the underlying driver via DLPI. In that case, renegotiate 8727 * capabilities to account for any possible change in modules 8728 * interposed between IP and the driver. 8729 */ 8730 if (ill->ill_ipif_up_count > 0) { 8731 if (islink) 8732 ill_capability_probe(ill); 8733 else 8734 ill_capability_reset(ill, B_FALSE); 8735 } 8736 ipsq_current_finish(ipsq); 8737 done: 8738 if (entered_ipsq) 8739 ipsq_exit(ipsq); 8740 8741 return (err); 8742 } 8743 8744 /* 8745 * Search the ioctl command in the ioctl tables and return a pointer 8746 * to the ioctl command information. The ioctl command tables are 8747 * static and fully populated at compile time. 8748 */ 8749 ip_ioctl_cmd_t * 8750 ip_sioctl_lookup(int ioc_cmd) 8751 { 8752 int index; 8753 ip_ioctl_cmd_t *ipip; 8754 ip_ioctl_cmd_t *ipip_end; 8755 8756 if (ioc_cmd == IPI_DONTCARE) 8757 return (NULL); 8758 8759 /* 8760 * Do a 2 step search. First search the indexed table 8761 * based on the least significant byte of the ioctl cmd. 8762 * If we don't find a match, then search the misc table 8763 * serially. 8764 */ 8765 index = ioc_cmd & 0xFF; 8766 if (index < ip_ndx_ioctl_count) { 8767 ipip = &ip_ndx_ioctl_table[index]; 8768 if (ipip->ipi_cmd == ioc_cmd) { 8769 /* Found a match in the ndx table */ 8770 return (ipip); 8771 } 8772 } 8773 8774 /* Search the misc table */ 8775 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8776 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8777 if (ipip->ipi_cmd == ioc_cmd) 8778 /* Found a match in the misc table */ 8779 return (ipip); 8780 } 8781 8782 return (NULL); 8783 } 8784 8785 /* 8786 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8787 */ 8788 static boolean_t 8789 getset_ioctl_checks(mblk_t *mp) 8790 { 8791 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8792 mblk_t *mp1 = mp->b_cont; 8793 mod_ioc_prop_t *pioc; 8794 uint_t flags; 8795 uint_t pioc_size; 8796 8797 /* do sanity checks on various arguments */ 8798 if (mp1 == NULL || iocp->ioc_count == 0 || 8799 iocp->ioc_count == TRANSPARENT) { 8800 return (B_FALSE); 8801 } 8802 if (msgdsize(mp1) < iocp->ioc_count) { 8803 if (!pullupmsg(mp1, iocp->ioc_count)) 8804 return (B_FALSE); 8805 } 8806 8807 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8808 8809 /* sanity checks on mpr_valsize */ 8810 pioc_size = sizeof (mod_ioc_prop_t); 8811 if (pioc->mpr_valsize != 0) 8812 pioc_size += pioc->mpr_valsize - 1; 8813 8814 if (iocp->ioc_count != pioc_size) 8815 return (B_FALSE); 8816 8817 flags = pioc->mpr_flags; 8818 if (iocp->ioc_cmd == SIOCSETPROP) { 8819 /* 8820 * One can either reset the value to it's default value or 8821 * change the current value or append/remove the value from 8822 * a multi-valued properties. 8823 */ 8824 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8825 flags != MOD_PROP_ACTIVE && 8826 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8828 return (B_FALSE); 8829 } else { 8830 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8831 8832 /* 8833 * One can retrieve only one kind of property information 8834 * at a time. 8835 */ 8836 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8837 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8838 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8839 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8840 return (B_FALSE); 8841 } 8842 8843 return (B_TRUE); 8844 } 8845 8846 /* 8847 * process the SIOC{SET|GET}PROP ioctl's 8848 */ 8849 /* ARGSUSED */ 8850 static void 8851 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8852 { 8853 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8854 mblk_t *mp1 = mp->b_cont; 8855 mod_ioc_prop_t *pioc; 8856 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8857 ip_stack_t *ipst; 8858 netstack_t *stack; 8859 cred_t *cr; 8860 boolean_t set; 8861 int err; 8862 8863 ASSERT(q->q_next == NULL); 8864 ASSERT(CONN_Q(q)); 8865 8866 if (!getset_ioctl_checks(mp)) { 8867 miocnak(q, mp, 0, EINVAL); 8868 return; 8869 } 8870 ipst = CONNQ_TO_IPST(q); 8871 stack = ipst->ips_netstack; 8872 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8873 8874 switch (pioc->mpr_proto) { 8875 case MOD_PROTO_IP: 8876 case MOD_PROTO_IPV4: 8877 case MOD_PROTO_IPV6: 8878 ptbl = ipst->ips_propinfo_tbl; 8879 break; 8880 case MOD_PROTO_RAWIP: 8881 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8882 break; 8883 case MOD_PROTO_TCP: 8884 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8885 break; 8886 case MOD_PROTO_UDP: 8887 ptbl = stack->netstack_udp->us_propinfo_tbl; 8888 break; 8889 case MOD_PROTO_SCTP: 8890 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8891 break; 8892 default: 8893 miocnak(q, mp, 0, EINVAL); 8894 return; 8895 } 8896 8897 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8898 if (pinfo == NULL) { 8899 miocnak(q, mp, 0, ENOENT); 8900 return; 8901 } 8902 8903 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8904 if (set && pinfo->mpi_setf != NULL) { 8905 cr = msg_getcred(mp, NULL); 8906 if (cr == NULL) 8907 cr = iocp->ioc_cr; 8908 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8909 pioc->mpr_val, pioc->mpr_flags); 8910 } else if (!set && pinfo->mpi_getf != NULL) { 8911 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8912 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8913 } else { 8914 err = EPERM; 8915 } 8916 8917 if (err != 0) { 8918 miocnak(q, mp, 0, err); 8919 } else { 8920 if (set) 8921 miocack(q, mp, 0, 0); 8922 else /* For get, we need to return back the data */ 8923 miocack(q, mp, iocp->ioc_count, 0); 8924 } 8925 } 8926 8927 /* 8928 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8929 * as several routing daemons have unfortunately used this 'unpublished' 8930 * but well-known ioctls. 8931 */ 8932 /* ARGSUSED */ 8933 static void 8934 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8935 { 8936 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8937 mblk_t *mp1 = mp->b_cont; 8938 char *pname, *pval, *buf; 8939 uint_t bufsize, proto; 8940 mod_prop_info_t *pinfo = NULL; 8941 ip_stack_t *ipst; 8942 int err = 0; 8943 8944 ASSERT(CONN_Q(q)); 8945 ipst = CONNQ_TO_IPST(q); 8946 8947 if (iocp->ioc_count == 0 || mp1 == NULL) { 8948 miocnak(q, mp, 0, EINVAL); 8949 return; 8950 } 8951 8952 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8953 pval = buf = pname = (char *)mp1->b_rptr; 8954 bufsize = MBLKL(mp1); 8955 8956 if (strcmp(pname, "ip_forwarding") == 0) { 8957 pname = "forwarding"; 8958 proto = MOD_PROTO_IPV4; 8959 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8960 pname = "forwarding"; 8961 proto = MOD_PROTO_IPV6; 8962 } else { 8963 miocnak(q, mp, 0, EINVAL); 8964 return; 8965 } 8966 8967 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8968 8969 switch (iocp->ioc_cmd) { 8970 case ND_GET: 8971 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8972 bufsize, 0)) == 0) { 8973 miocack(q, mp, iocp->ioc_count, 0); 8974 return; 8975 } 8976 break; 8977 case ND_SET: 8978 /* 8979 * buffer will have property name and value in the following 8980 * format, 8981 * <property name>'\0'<property value>'\0', extract them; 8982 */ 8983 while (*pval++) 8984 noop; 8985 8986 if (!*pval || pval >= (char *)mp1->b_wptr) { 8987 err = EINVAL; 8988 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8989 pinfo, NULL, pval, 0)) == 0) { 8990 miocack(q, mp, 0, 0); 8991 return; 8992 } 8993 break; 8994 default: 8995 err = EINVAL; 8996 break; 8997 } 8998 miocnak(q, mp, 0, err); 8999 } 9000 9001 /* 9002 * Wrapper function for resuming deferred ioctl processing 9003 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9004 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9005 */ 9006 /* ARGSUSED */ 9007 void 9008 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9009 void *dummy_arg) 9010 { 9011 ip_sioctl_copyin_setup(q, mp); 9012 } 9013 9014 /* 9015 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9016 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9017 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9018 * We establish here the size of the block to be copied in. mi_copyin 9019 * arranges for this to happen, an processing continues in ip_wput_nondata with 9020 * an M_IOCDATA message. 9021 */ 9022 void 9023 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9024 { 9025 int copyin_size; 9026 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9027 ip_ioctl_cmd_t *ipip; 9028 cred_t *cr; 9029 ip_stack_t *ipst; 9030 9031 if (CONN_Q(q)) 9032 ipst = CONNQ_TO_IPST(q); 9033 else 9034 ipst = ILLQ_TO_IPST(q); 9035 9036 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9037 if (ipip == NULL) { 9038 /* 9039 * The ioctl is not one we understand or own. 9040 * Pass it along to be processed down stream, 9041 * if this is a module instance of IP, else nak 9042 * the ioctl. 9043 */ 9044 if (q->q_next == NULL) { 9045 goto nak; 9046 } else { 9047 putnext(q, mp); 9048 return; 9049 } 9050 } 9051 9052 /* 9053 * If this is deferred, then we will do all the checks when we 9054 * come back. 9055 */ 9056 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9057 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9058 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9059 return; 9060 } 9061 9062 /* 9063 * Only allow a very small subset of IP ioctls on this stream if 9064 * IP is a module and not a driver. Allowing ioctls to be processed 9065 * in this case may cause assert failures or data corruption. 9066 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9067 * ioctls allowed on an IP module stream, after which this stream 9068 * normally becomes a multiplexor (at which time the stream head 9069 * will fail all ioctls). 9070 */ 9071 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9072 goto nak; 9073 } 9074 9075 /* Make sure we have ioctl data to process. */ 9076 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9077 goto nak; 9078 9079 /* 9080 * Prefer dblk credential over ioctl credential; some synthesized 9081 * ioctls have kcred set because there's no way to crhold() 9082 * a credential in some contexts. (ioc_cr is not crfree() by 9083 * the framework; the caller of ioctl needs to hold the reference 9084 * for the duration of the call). 9085 */ 9086 cr = msg_getcred(mp, NULL); 9087 if (cr == NULL) 9088 cr = iocp->ioc_cr; 9089 9090 /* Make sure normal users don't send down privileged ioctls */ 9091 if ((ipip->ipi_flags & IPI_PRIV) && 9092 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9093 /* We checked the privilege earlier but log it here */ 9094 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9095 return; 9096 } 9097 9098 /* 9099 * The ioctl command tables can only encode fixed length 9100 * ioctl data. If the length is variable, the table will 9101 * encode the length as zero. Such special cases are handled 9102 * below in the switch. 9103 */ 9104 if (ipip->ipi_copyin_size != 0) { 9105 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9106 return; 9107 } 9108 9109 switch (iocp->ioc_cmd) { 9110 case O_SIOCGIFCONF: 9111 case SIOCGIFCONF: 9112 /* 9113 * This IOCTL is hilarious. See comments in 9114 * ip_sioctl_get_ifconf for the story. 9115 */ 9116 if (iocp->ioc_count == TRANSPARENT) 9117 copyin_size = SIZEOF_STRUCT(ifconf, 9118 iocp->ioc_flag); 9119 else 9120 copyin_size = iocp->ioc_count; 9121 mi_copyin(q, mp, NULL, copyin_size); 9122 return; 9123 9124 case O_SIOCGLIFCONF: 9125 case SIOCGLIFCONF: 9126 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9127 mi_copyin(q, mp, NULL, copyin_size); 9128 return; 9129 9130 case SIOCGLIFSRCOF: 9131 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9132 mi_copyin(q, mp, NULL, copyin_size); 9133 return; 9134 9135 case SIOCGIP6ADDRPOLICY: 9136 ip_sioctl_ip6addrpolicy(q, mp); 9137 ip6_asp_table_refrele(ipst); 9138 return; 9139 9140 case SIOCSIP6ADDRPOLICY: 9141 ip_sioctl_ip6addrpolicy(q, mp); 9142 return; 9143 9144 case SIOCGDSTINFO: 9145 ip_sioctl_dstinfo(q, mp); 9146 ip6_asp_table_refrele(ipst); 9147 return; 9148 9149 case ND_SET: 9150 case ND_GET: 9151 ip_process_legacy_nddprop(q, mp); 9152 return; 9153 9154 case SIOCSETPROP: 9155 case SIOCGETPROP: 9156 ip_sioctl_getsetprop(q, mp); 9157 return; 9158 9159 case I_PLINK: 9160 case I_PUNLINK: 9161 case I_LINK: 9162 case I_UNLINK: 9163 /* 9164 * We treat non-persistent link similarly as the persistent 9165 * link case, in terms of plumbing/unplumbing, as well as 9166 * dynamic re-plumbing events indicator. See comments 9167 * in ip_sioctl_plink() for more. 9168 * 9169 * Request can be enqueued in the 'ipsq' while waiting 9170 * to become exclusive. So bump up the conn ref. 9171 */ 9172 if (CONN_Q(q)) { 9173 CONN_INC_REF(Q_TO_CONN(q)); 9174 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9175 } 9176 ip_sioctl_plink(NULL, q, mp, NULL); 9177 return; 9178 9179 case IP_IOCTL: 9180 ip_wput_ioctl(q, mp); 9181 return; 9182 9183 case SIOCILB: 9184 /* The ioctl length varies depending on the ILB command. */ 9185 copyin_size = iocp->ioc_count; 9186 if (copyin_size < sizeof (ilb_cmd_t)) 9187 goto nak; 9188 mi_copyin(q, mp, NULL, copyin_size); 9189 return; 9190 9191 default: 9192 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9193 iocp->ioc_cmd, iocp->ioc_cmd); 9194 /* FALLTHRU */ 9195 } 9196 nak: 9197 if (mp->b_cont != NULL) { 9198 freemsg(mp->b_cont); 9199 mp->b_cont = NULL; 9200 } 9201 iocp->ioc_error = EINVAL; 9202 mp->b_datap->db_type = M_IOCNAK; 9203 iocp->ioc_count = 0; 9204 qreply(q, mp); 9205 } 9206 9207 static void 9208 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9209 { 9210 struct arpreq *ar; 9211 struct xarpreq *xar; 9212 mblk_t *tmp; 9213 struct iocblk *iocp; 9214 int x_arp_ioctl = B_FALSE; 9215 int *flagsp; 9216 char *storage = NULL; 9217 9218 ASSERT(ill != NULL); 9219 9220 iocp = (struct iocblk *)mp->b_rptr; 9221 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9222 9223 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9224 if ((iocp->ioc_cmd == SIOCGXARP) || 9225 (iocp->ioc_cmd == SIOCSXARP)) { 9226 x_arp_ioctl = B_TRUE; 9227 xar = (struct xarpreq *)tmp->b_rptr; 9228 flagsp = &xar->xarp_flags; 9229 storage = xar->xarp_ha.sdl_data; 9230 } else { 9231 ar = (struct arpreq *)tmp->b_rptr; 9232 flagsp = &ar->arp_flags; 9233 storage = ar->arp_ha.sa_data; 9234 } 9235 9236 /* 9237 * We're done if this is not an SIOCG{X}ARP 9238 */ 9239 if (x_arp_ioctl) { 9240 storage += ill_xarp_info(&xar->xarp_ha, ill); 9241 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9242 sizeof (xar->xarp_ha.sdl_data)) { 9243 iocp->ioc_error = EINVAL; 9244 return; 9245 } 9246 } 9247 *flagsp = ATF_INUSE; 9248 /* 9249 * If /sbin/arp told us we are the authority using the "permanent" 9250 * flag, or if this is one of my addresses print "permanent" 9251 * in the /sbin/arp output. 9252 */ 9253 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9254 *flagsp |= ATF_AUTHORITY; 9255 if (flags & NCE_F_NONUD) 9256 *flagsp |= ATF_PERM; /* not subject to aging */ 9257 if (flags & NCE_F_PUBLISH) 9258 *flagsp |= ATF_PUBL; 9259 if (hwaddr != NULL) { 9260 *flagsp |= ATF_COM; 9261 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9262 } 9263 } 9264 9265 /* 9266 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9267 * interface) create the next available logical interface for this 9268 * physical interface. 9269 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9270 * ipif with the specified name. 9271 * 9272 * If the address family is not AF_UNSPEC then set the address as well. 9273 * 9274 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9275 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9276 * 9277 * Executed as a writer on the ill. 9278 * So no lock is needed to traverse the ipif chain, or examine the 9279 * phyint flags. 9280 */ 9281 /* ARGSUSED */ 9282 int 9283 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9284 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9285 { 9286 mblk_t *mp1; 9287 struct lifreq *lifr; 9288 boolean_t isv6; 9289 boolean_t exists; 9290 char *name; 9291 char *endp; 9292 char *cp; 9293 int namelen; 9294 ipif_t *ipif; 9295 long id; 9296 ipsq_t *ipsq; 9297 ill_t *ill; 9298 sin_t *sin; 9299 int err = 0; 9300 boolean_t found_sep = B_FALSE; 9301 conn_t *connp; 9302 zoneid_t zoneid; 9303 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9304 9305 ASSERT(q->q_next == NULL); 9306 ip1dbg(("ip_sioctl_addif\n")); 9307 /* Existence of mp1 has been checked in ip_wput_nondata */ 9308 mp1 = mp->b_cont->b_cont; 9309 /* 9310 * Null terminate the string to protect against buffer 9311 * overrun. String was generated by user code and may not 9312 * be trusted. 9313 */ 9314 lifr = (struct lifreq *)mp1->b_rptr; 9315 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9316 name = lifr->lifr_name; 9317 ASSERT(CONN_Q(q)); 9318 connp = Q_TO_CONN(q); 9319 isv6 = (connp->conn_family == AF_INET6); 9320 zoneid = connp->conn_zoneid; 9321 namelen = mi_strlen(name); 9322 if (namelen == 0) 9323 return (EINVAL); 9324 9325 exists = B_FALSE; 9326 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9327 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9328 /* 9329 * Allow creating lo0 using SIOCLIFADDIF. 9330 * can't be any other writer thread. So can pass null below 9331 * for the last 4 args to ipif_lookup_name. 9332 */ 9333 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9334 &exists, isv6, zoneid, ipst); 9335 /* Prevent any further action */ 9336 if (ipif == NULL) { 9337 return (ENOBUFS); 9338 } else if (!exists) { 9339 /* We created the ipif now and as writer */ 9340 ipif_refrele(ipif); 9341 return (0); 9342 } else { 9343 ill = ipif->ipif_ill; 9344 ill_refhold(ill); 9345 ipif_refrele(ipif); 9346 } 9347 } else { 9348 /* Look for a colon in the name. */ 9349 endp = &name[namelen]; 9350 for (cp = endp; --cp > name; ) { 9351 if (*cp == IPIF_SEPARATOR_CHAR) { 9352 found_sep = B_TRUE; 9353 /* 9354 * Reject any non-decimal aliases for plumbing 9355 * of logical interfaces. Aliases with leading 9356 * zeroes are also rejected as they introduce 9357 * ambiguity in the naming of the interfaces. 9358 * Comparing with "0" takes care of all such 9359 * cases. 9360 */ 9361 if ((strncmp("0", cp+1, 1)) == 0) 9362 return (EINVAL); 9363 9364 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9365 id <= 0 || *endp != '\0') { 9366 return (EINVAL); 9367 } 9368 *cp = '\0'; 9369 break; 9370 } 9371 } 9372 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9373 if (found_sep) 9374 *cp = IPIF_SEPARATOR_CHAR; 9375 if (ill == NULL) 9376 return (ENXIO); 9377 } 9378 9379 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9380 B_TRUE); 9381 9382 /* 9383 * Release the refhold due to the lookup, now that we are excl 9384 * or we are just returning 9385 */ 9386 ill_refrele(ill); 9387 9388 if (ipsq == NULL) 9389 return (EINPROGRESS); 9390 9391 /* We are now exclusive on the IPSQ */ 9392 ASSERT(IAM_WRITER_ILL(ill)); 9393 9394 if (found_sep) { 9395 /* Now see if there is an IPIF with this unit number. */ 9396 for (ipif = ill->ill_ipif; ipif != NULL; 9397 ipif = ipif->ipif_next) { 9398 if (ipif->ipif_id == id) { 9399 err = EEXIST; 9400 goto done; 9401 } 9402 } 9403 } 9404 9405 /* 9406 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9407 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9408 * instead. 9409 */ 9410 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9411 B_TRUE, B_TRUE, &err)) == NULL) { 9412 goto done; 9413 } 9414 9415 /* Return created name with ioctl */ 9416 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9417 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9418 ip1dbg(("created %s\n", lifr->lifr_name)); 9419 9420 /* Set address */ 9421 sin = (sin_t *)&lifr->lifr_addr; 9422 if (sin->sin_family != AF_UNSPEC) { 9423 err = ip_sioctl_addr(ipif, sin, q, mp, 9424 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9425 } 9426 9427 done: 9428 ipsq_exit(ipsq); 9429 return (err); 9430 } 9431 9432 /* 9433 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9434 * interface) delete it based on the IP address (on this physical interface). 9435 * Otherwise delete it based on the ipif_id. 9436 * Also, special handling to allow a removeif of lo0. 9437 */ 9438 /* ARGSUSED */ 9439 int 9440 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9441 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9442 { 9443 conn_t *connp; 9444 ill_t *ill = ipif->ipif_ill; 9445 boolean_t success; 9446 ip_stack_t *ipst; 9447 9448 ipst = CONNQ_TO_IPST(q); 9449 9450 ASSERT(q->q_next == NULL); 9451 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9452 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9453 ASSERT(IAM_WRITER_IPIF(ipif)); 9454 9455 connp = Q_TO_CONN(q); 9456 /* 9457 * Special case for unplumbing lo0 (the loopback physical interface). 9458 * If unplumbing lo0, the incoming address structure has been 9459 * initialized to all zeros. When unplumbing lo0, all its logical 9460 * interfaces must be removed too. 9461 * 9462 * Note that this interface may be called to remove a specific 9463 * loopback logical interface (eg, lo0:1). But in that case 9464 * ipif->ipif_id != 0 so that the code path for that case is the 9465 * same as any other interface (meaning it skips the code directly 9466 * below). 9467 */ 9468 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9469 if (sin->sin_family == AF_UNSPEC && 9470 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9471 /* 9472 * Mark it condemned. No new ref. will be made to ill. 9473 */ 9474 mutex_enter(&ill->ill_lock); 9475 ill->ill_state_flags |= ILL_CONDEMNED; 9476 for (ipif = ill->ill_ipif; ipif != NULL; 9477 ipif = ipif->ipif_next) { 9478 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9479 } 9480 mutex_exit(&ill->ill_lock); 9481 9482 ipif = ill->ill_ipif; 9483 /* unplumb the loopback interface */ 9484 ill_delete(ill); 9485 mutex_enter(&connp->conn_lock); 9486 mutex_enter(&ill->ill_lock); 9487 9488 /* Are any references to this ill active */ 9489 if (ill_is_freeable(ill)) { 9490 mutex_exit(&ill->ill_lock); 9491 mutex_exit(&connp->conn_lock); 9492 ill_delete_tail(ill); 9493 mi_free(ill); 9494 return (0); 9495 } 9496 success = ipsq_pending_mp_add(connp, ipif, 9497 CONNP_TO_WQ(connp), mp, ILL_FREE); 9498 mutex_exit(&connp->conn_lock); 9499 mutex_exit(&ill->ill_lock); 9500 if (success) 9501 return (EINPROGRESS); 9502 else 9503 return (EINTR); 9504 } 9505 } 9506 9507 if (ipif->ipif_id == 0) { 9508 ipsq_t *ipsq; 9509 9510 /* Find based on address */ 9511 if (ipif->ipif_isv6) { 9512 sin6_t *sin6; 9513 9514 if (sin->sin_family != AF_INET6) 9515 return (EAFNOSUPPORT); 9516 9517 sin6 = (sin6_t *)sin; 9518 /* We are a writer, so we should be able to lookup */ 9519 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9520 ipst); 9521 } else { 9522 if (sin->sin_family != AF_INET) 9523 return (EAFNOSUPPORT); 9524 9525 /* We are a writer, so we should be able to lookup */ 9526 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9527 ipst); 9528 } 9529 if (ipif == NULL) { 9530 return (EADDRNOTAVAIL); 9531 } 9532 9533 /* 9534 * It is possible for a user to send an SIOCLIFREMOVEIF with 9535 * lifr_name of the physical interface but with an ip address 9536 * lifr_addr of a logical interface plumbed over it. 9537 * So update ipx_current_ipif now that ipif points to the 9538 * correct one. 9539 */ 9540 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9541 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9542 9543 /* This is a writer */ 9544 ipif_refrele(ipif); 9545 } 9546 9547 /* 9548 * Can not delete instance zero since it is tied to the ill. 9549 */ 9550 if (ipif->ipif_id == 0) 9551 return (EBUSY); 9552 9553 mutex_enter(&ill->ill_lock); 9554 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9555 mutex_exit(&ill->ill_lock); 9556 9557 ipif_free(ipif); 9558 9559 mutex_enter(&connp->conn_lock); 9560 mutex_enter(&ill->ill_lock); 9561 9562 /* Are any references to this ipif active */ 9563 if (ipif_is_freeable(ipif)) { 9564 mutex_exit(&ill->ill_lock); 9565 mutex_exit(&connp->conn_lock); 9566 ipif_non_duplicate(ipif); 9567 (void) ipif_down_tail(ipif); 9568 ipif_free_tail(ipif); /* frees ipif */ 9569 return (0); 9570 } 9571 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9572 IPIF_FREE); 9573 mutex_exit(&ill->ill_lock); 9574 mutex_exit(&connp->conn_lock); 9575 if (success) 9576 return (EINPROGRESS); 9577 else 9578 return (EINTR); 9579 } 9580 9581 /* 9582 * Restart the removeif ioctl. The refcnt has gone down to 0. 9583 * The ipif is already condemned. So can't find it thru lookups. 9584 */ 9585 /* ARGSUSED */ 9586 int 9587 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9588 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9589 { 9590 ill_t *ill = ipif->ipif_ill; 9591 9592 ASSERT(IAM_WRITER_IPIF(ipif)); 9593 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9594 9595 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9596 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9597 9598 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9599 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9600 ill_delete_tail(ill); 9601 mi_free(ill); 9602 return (0); 9603 } 9604 9605 ipif_non_duplicate(ipif); 9606 (void) ipif_down_tail(ipif); 9607 ipif_free_tail(ipif); 9608 9609 return (0); 9610 } 9611 9612 /* 9613 * Set the local interface address using the given prefix and ill_token. 9614 */ 9615 /* ARGSUSED */ 9616 int 9617 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9618 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9619 { 9620 int err; 9621 in6_addr_t v6addr; 9622 sin6_t *sin6; 9623 ill_t *ill; 9624 int i; 9625 9626 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9627 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9628 9629 ASSERT(IAM_WRITER_IPIF(ipif)); 9630 9631 if (!ipif->ipif_isv6) 9632 return (EINVAL); 9633 9634 if (sin->sin_family != AF_INET6) 9635 return (EAFNOSUPPORT); 9636 9637 sin6 = (sin6_t *)sin; 9638 v6addr = sin6->sin6_addr; 9639 ill = ipif->ipif_ill; 9640 9641 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9642 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9643 return (EADDRNOTAVAIL); 9644 9645 for (i = 0; i < 4; i++) 9646 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9647 9648 err = ip_sioctl_addr(ipif, sin, q, mp, 9649 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9650 return (err); 9651 } 9652 9653 /* 9654 * Restart entry point to restart the address set operation after the 9655 * refcounts have dropped to zero. 9656 */ 9657 /* ARGSUSED */ 9658 int 9659 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9660 ip_ioctl_cmd_t *ipip, void *ifreq) 9661 { 9662 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9663 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9664 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9665 } 9666 9667 /* 9668 * Set the local interface address. 9669 * Allow an address of all zero when the interface is down. 9670 */ 9671 /* ARGSUSED */ 9672 int 9673 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9674 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9675 { 9676 int err = 0; 9677 in6_addr_t v6addr; 9678 boolean_t need_up = B_FALSE; 9679 ill_t *ill; 9680 int i; 9681 9682 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9683 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9684 9685 ASSERT(IAM_WRITER_IPIF(ipif)); 9686 9687 ill = ipif->ipif_ill; 9688 if (ipif->ipif_isv6) { 9689 sin6_t *sin6; 9690 phyint_t *phyi; 9691 9692 if (sin->sin_family != AF_INET6) 9693 return (EAFNOSUPPORT); 9694 9695 sin6 = (sin6_t *)sin; 9696 v6addr = sin6->sin6_addr; 9697 phyi = ill->ill_phyint; 9698 9699 /* 9700 * Enforce that true multicast interfaces have a link-local 9701 * address for logical unit 0. 9702 * 9703 * However for those ipif's for which link-local address was 9704 * not created by default, also allow setting :: as the address. 9705 * This scenario would arise, when we delete an address on ipif 9706 * with logical unit 0, we would want to set :: as the address. 9707 */ 9708 if (ipif->ipif_id == 0 && 9709 (ill->ill_flags & ILLF_MULTICAST) && 9710 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9711 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9712 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9713 9714 /* 9715 * if default link-local was not created by kernel for 9716 * this ill, allow setting :: as the address on ipif:0. 9717 */ 9718 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9719 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9720 return (EADDRNOTAVAIL); 9721 } else { 9722 return (EADDRNOTAVAIL); 9723 } 9724 } 9725 9726 /* 9727 * up interfaces shouldn't have the unspecified address 9728 * unless they also have the IPIF_NOLOCAL flags set and 9729 * have a subnet assigned. 9730 */ 9731 if ((ipif->ipif_flags & IPIF_UP) && 9732 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9733 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9734 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9735 return (EADDRNOTAVAIL); 9736 } 9737 9738 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9739 return (EADDRNOTAVAIL); 9740 } else { 9741 ipaddr_t addr; 9742 9743 if (sin->sin_family != AF_INET) 9744 return (EAFNOSUPPORT); 9745 9746 addr = sin->sin_addr.s_addr; 9747 9748 /* Allow INADDR_ANY as the local address. */ 9749 if (addr != INADDR_ANY && 9750 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9751 return (EADDRNOTAVAIL); 9752 9753 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9754 } 9755 /* 9756 * verify that the address being configured is permitted by the 9757 * ill_allowed_ips[] for the interface. 9758 */ 9759 if (ill->ill_allowed_ips_cnt > 0) { 9760 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9761 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9762 &v6addr)) 9763 break; 9764 } 9765 if (i == ill->ill_allowed_ips_cnt) { 9766 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9767 return (EPERM); 9768 } 9769 } 9770 /* 9771 * Even if there is no change we redo things just to rerun 9772 * ipif_set_default. 9773 */ 9774 if (ipif->ipif_flags & IPIF_UP) { 9775 /* 9776 * Setting a new local address, make sure 9777 * we have net and subnet bcast ire's for 9778 * the old address if we need them. 9779 */ 9780 /* 9781 * If the interface is already marked up, 9782 * we call ipif_down which will take care 9783 * of ditching any IREs that have been set 9784 * up based on the old interface address. 9785 */ 9786 err = ipif_logical_down(ipif, q, mp); 9787 if (err == EINPROGRESS) 9788 return (err); 9789 (void) ipif_down_tail(ipif); 9790 need_up = 1; 9791 } 9792 9793 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9794 return (err); 9795 } 9796 9797 int 9798 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9799 boolean_t need_up) 9800 { 9801 in6_addr_t v6addr; 9802 in6_addr_t ov6addr; 9803 ipaddr_t addr; 9804 sin6_t *sin6; 9805 int sinlen; 9806 int err = 0; 9807 ill_t *ill = ipif->ipif_ill; 9808 boolean_t need_dl_down; 9809 boolean_t need_arp_down; 9810 struct iocblk *iocp; 9811 9812 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9813 9814 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9815 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9816 ASSERT(IAM_WRITER_IPIF(ipif)); 9817 9818 /* Must cancel any pending timer before taking the ill_lock */ 9819 if (ipif->ipif_recovery_id != 0) 9820 (void) untimeout(ipif->ipif_recovery_id); 9821 ipif->ipif_recovery_id = 0; 9822 9823 if (ipif->ipif_isv6) { 9824 sin6 = (sin6_t *)sin; 9825 v6addr = sin6->sin6_addr; 9826 sinlen = sizeof (struct sockaddr_in6); 9827 } else { 9828 addr = sin->sin_addr.s_addr; 9829 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9830 sinlen = sizeof (struct sockaddr_in); 9831 } 9832 mutex_enter(&ill->ill_lock); 9833 ov6addr = ipif->ipif_v6lcl_addr; 9834 ipif->ipif_v6lcl_addr = v6addr; 9835 sctp_update_ipif_addr(ipif, ov6addr); 9836 ipif->ipif_addr_ready = 0; 9837 9838 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9839 9840 /* 9841 * If the interface was previously marked as a duplicate, then since 9842 * we've now got a "new" address, it should no longer be considered a 9843 * duplicate -- even if the "new" address is the same as the old one. 9844 * Note that if all ipifs are down, we may have a pending ARP down 9845 * event to handle. This is because we want to recover from duplicates 9846 * and thus delay tearing down ARP until the duplicates have been 9847 * removed or disabled. 9848 */ 9849 need_dl_down = need_arp_down = B_FALSE; 9850 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9851 need_arp_down = !need_up; 9852 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9853 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9854 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9855 need_dl_down = B_TRUE; 9856 } 9857 } 9858 9859 ipif_set_default(ipif); 9860 9861 /* 9862 * If we've just manually set the IPv6 link-local address (0th ipif), 9863 * tag the ill so that future updates to the interface ID don't result 9864 * in this address getting automatically reconfigured from under the 9865 * administrator. 9866 */ 9867 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9868 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9869 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9870 ill->ill_manual_linklocal = 1; 9871 } 9872 9873 /* 9874 * When publishing an interface address change event, we only notify 9875 * the event listeners of the new address. It is assumed that if they 9876 * actively care about the addresses assigned that they will have 9877 * already discovered the previous address assigned (if there was one.) 9878 * 9879 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9880 */ 9881 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9882 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9883 NE_ADDRESS_CHANGE, sin, sinlen); 9884 } 9885 9886 mutex_exit(&ill->ill_lock); 9887 9888 if (need_up) { 9889 /* 9890 * Now bring the interface back up. If this 9891 * is the only IPIF for the ILL, ipif_up 9892 * will have to re-bind to the device, so 9893 * we may get back EINPROGRESS, in which 9894 * case, this IOCTL will get completed in 9895 * ip_rput_dlpi when we see the DL_BIND_ACK. 9896 */ 9897 err = ipif_up(ipif, q, mp); 9898 } else { 9899 /* Perhaps ilgs should use this ill */ 9900 update_conn_ill(NULL, ill->ill_ipst); 9901 } 9902 9903 if (need_dl_down) 9904 ill_dl_down(ill); 9905 9906 if (need_arp_down && !ill->ill_isv6) 9907 (void) ipif_arp_down(ipif); 9908 9909 /* 9910 * The default multicast interface might have changed (for 9911 * instance if the IPv6 scope of the address changed) 9912 */ 9913 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9914 9915 return (err); 9916 } 9917 9918 /* 9919 * Restart entry point to restart the address set operation after the 9920 * refcounts have dropped to zero. 9921 */ 9922 /* ARGSUSED */ 9923 int 9924 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9925 ip_ioctl_cmd_t *ipip, void *ifreq) 9926 { 9927 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9928 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9929 ASSERT(IAM_WRITER_IPIF(ipif)); 9930 (void) ipif_down_tail(ipif); 9931 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9932 } 9933 9934 /* ARGSUSED */ 9935 int 9936 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9937 ip_ioctl_cmd_t *ipip, void *if_req) 9938 { 9939 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9940 struct lifreq *lifr = (struct lifreq *)if_req; 9941 9942 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9944 /* 9945 * The net mask and address can't change since we have a 9946 * reference to the ipif. So no lock is necessary. 9947 */ 9948 if (ipif->ipif_isv6) { 9949 *sin6 = sin6_null; 9950 sin6->sin6_family = AF_INET6; 9951 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9952 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 9953 sin6->sin6_scope_id = 9954 ipif->ipif_ill->ill_phyint->phyint_ifindex; 9955 } 9956 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9957 lifr->lifr_addrlen = 9958 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9959 } else { 9960 *sin = sin_null; 9961 sin->sin_family = AF_INET; 9962 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9963 if (ipip->ipi_cmd_type == LIF_CMD) { 9964 lifr->lifr_addrlen = 9965 ip_mask_to_plen(ipif->ipif_net_mask); 9966 } 9967 } 9968 return (0); 9969 } 9970 9971 /* 9972 * Set the destination address for a pt-pt interface. 9973 */ 9974 /* ARGSUSED */ 9975 int 9976 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9977 ip_ioctl_cmd_t *ipip, void *if_req) 9978 { 9979 int err = 0; 9980 in6_addr_t v6addr; 9981 boolean_t need_up = B_FALSE; 9982 9983 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9984 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9985 ASSERT(IAM_WRITER_IPIF(ipif)); 9986 9987 if (ipif->ipif_isv6) { 9988 sin6_t *sin6; 9989 9990 if (sin->sin_family != AF_INET6) 9991 return (EAFNOSUPPORT); 9992 9993 sin6 = (sin6_t *)sin; 9994 v6addr = sin6->sin6_addr; 9995 9996 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9997 return (EADDRNOTAVAIL); 9998 } else { 9999 ipaddr_t addr; 10000 10001 if (sin->sin_family != AF_INET) 10002 return (EAFNOSUPPORT); 10003 10004 addr = sin->sin_addr.s_addr; 10005 if (addr != INADDR_ANY && 10006 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10007 return (EADDRNOTAVAIL); 10008 } 10009 10010 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10011 } 10012 10013 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10014 return (0); /* No change */ 10015 10016 if (ipif->ipif_flags & IPIF_UP) { 10017 /* 10018 * If the interface is already marked up, 10019 * we call ipif_down which will take care 10020 * of ditching any IREs that have been set 10021 * up based on the old pp dst address. 10022 */ 10023 err = ipif_logical_down(ipif, q, mp); 10024 if (err == EINPROGRESS) 10025 return (err); 10026 (void) ipif_down_tail(ipif); 10027 need_up = B_TRUE; 10028 } 10029 /* 10030 * could return EINPROGRESS. If so ioctl will complete in 10031 * ip_rput_dlpi_writer 10032 */ 10033 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10034 return (err); 10035 } 10036 10037 static int 10038 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10039 boolean_t need_up) 10040 { 10041 in6_addr_t v6addr; 10042 ill_t *ill = ipif->ipif_ill; 10043 int err = 0; 10044 boolean_t need_dl_down; 10045 boolean_t need_arp_down; 10046 10047 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10048 ipif->ipif_id, (void *)ipif)); 10049 10050 /* Must cancel any pending timer before taking the ill_lock */ 10051 if (ipif->ipif_recovery_id != 0) 10052 (void) untimeout(ipif->ipif_recovery_id); 10053 ipif->ipif_recovery_id = 0; 10054 10055 if (ipif->ipif_isv6) { 10056 sin6_t *sin6; 10057 10058 sin6 = (sin6_t *)sin; 10059 v6addr = sin6->sin6_addr; 10060 } else { 10061 ipaddr_t addr; 10062 10063 addr = sin->sin_addr.s_addr; 10064 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10065 } 10066 mutex_enter(&ill->ill_lock); 10067 /* Set point to point destination address. */ 10068 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10069 /* 10070 * Allow this as a means of creating logical 10071 * pt-pt interfaces on top of e.g. an Ethernet. 10072 * XXX Undocumented HACK for testing. 10073 * pt-pt interfaces are created with NUD disabled. 10074 */ 10075 ipif->ipif_flags |= IPIF_POINTOPOINT; 10076 ipif->ipif_flags &= ~IPIF_BROADCAST; 10077 if (ipif->ipif_isv6) 10078 ill->ill_flags |= ILLF_NONUD; 10079 } 10080 10081 /* 10082 * If the interface was previously marked as a duplicate, then since 10083 * we've now got a "new" address, it should no longer be considered a 10084 * duplicate -- even if the "new" address is the same as the old one. 10085 * Note that if all ipifs are down, we may have a pending ARP down 10086 * event to handle. 10087 */ 10088 need_dl_down = need_arp_down = B_FALSE; 10089 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10090 need_arp_down = !need_up; 10091 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10092 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10093 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10094 need_dl_down = B_TRUE; 10095 } 10096 } 10097 10098 /* 10099 * If we've just manually set the IPv6 destination link-local address 10100 * (0th ipif), tag the ill so that future updates to the destination 10101 * interface ID (as can happen with interfaces over IP tunnels) don't 10102 * result in this address getting automatically reconfigured from 10103 * under the administrator. 10104 */ 10105 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10106 ill->ill_manual_dst_linklocal = 1; 10107 10108 /* Set the new address. */ 10109 ipif->ipif_v6pp_dst_addr = v6addr; 10110 /* Make sure subnet tracks pp_dst */ 10111 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10112 mutex_exit(&ill->ill_lock); 10113 10114 if (need_up) { 10115 /* 10116 * Now bring the interface back up. If this 10117 * is the only IPIF for the ILL, ipif_up 10118 * will have to re-bind to the device, so 10119 * we may get back EINPROGRESS, in which 10120 * case, this IOCTL will get completed in 10121 * ip_rput_dlpi when we see the DL_BIND_ACK. 10122 */ 10123 err = ipif_up(ipif, q, mp); 10124 } 10125 10126 if (need_dl_down) 10127 ill_dl_down(ill); 10128 if (need_arp_down && !ipif->ipif_isv6) 10129 (void) ipif_arp_down(ipif); 10130 10131 return (err); 10132 } 10133 10134 /* 10135 * Restart entry point to restart the dstaddress set operation after the 10136 * refcounts have dropped to zero. 10137 */ 10138 /* ARGSUSED */ 10139 int 10140 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10141 ip_ioctl_cmd_t *ipip, void *ifreq) 10142 { 10143 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10144 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10145 (void) ipif_down_tail(ipif); 10146 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10147 } 10148 10149 /* ARGSUSED */ 10150 int 10151 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10152 ip_ioctl_cmd_t *ipip, void *if_req) 10153 { 10154 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10155 10156 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10157 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10158 /* 10159 * Get point to point destination address. The addresses can't 10160 * change since we hold a reference to the ipif. 10161 */ 10162 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10163 return (EADDRNOTAVAIL); 10164 10165 if (ipif->ipif_isv6) { 10166 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10167 *sin6 = sin6_null; 10168 sin6->sin6_family = AF_INET6; 10169 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10170 } else { 10171 *sin = sin_null; 10172 sin->sin_family = AF_INET; 10173 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10174 } 10175 return (0); 10176 } 10177 10178 /* 10179 * Check which flags will change by the given flags being set 10180 * silently ignore flags which userland is not allowed to control. 10181 * (Because these flags may change between SIOCGLIFFLAGS and 10182 * SIOCSLIFFLAGS, and that's outside of userland's control, 10183 * we need to silently ignore them rather than fail.) 10184 */ 10185 static void 10186 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10187 uint64_t *offp) 10188 { 10189 ill_t *ill = ipif->ipif_ill; 10190 phyint_t *phyi = ill->ill_phyint; 10191 uint64_t cantchange_flags, intf_flags; 10192 uint64_t turn_on, turn_off; 10193 10194 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10195 cantchange_flags = IFF_CANTCHANGE; 10196 if (IS_IPMP(ill)) 10197 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10198 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10199 turn_off = intf_flags & turn_on; 10200 turn_on ^= turn_off; 10201 *onp = turn_on; 10202 *offp = turn_off; 10203 } 10204 10205 /* 10206 * Set interface flags. Many flags require special handling (e.g., 10207 * bringing the interface down); see below for details. 10208 * 10209 * NOTE : We really don't enforce that ipif_id zero should be used 10210 * for setting any flags other than IFF_LOGINT_FLAGS. This 10211 * is because applications generally does SICGLIFFLAGS and 10212 * ORs in the new flags (that affects the logical) and does a 10213 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10214 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10215 * flags that will be turned on is correct with respect to 10216 * ipif_id 0. For backward compatibility reasons, it is not done. 10217 */ 10218 /* ARGSUSED */ 10219 int 10220 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10221 ip_ioctl_cmd_t *ipip, void *if_req) 10222 { 10223 uint64_t turn_on; 10224 uint64_t turn_off; 10225 int err = 0; 10226 phyint_t *phyi; 10227 ill_t *ill; 10228 conn_t *connp; 10229 uint64_t intf_flags; 10230 boolean_t phyint_flags_modified = B_FALSE; 10231 uint64_t flags; 10232 struct ifreq *ifr; 10233 struct lifreq *lifr; 10234 boolean_t set_linklocal = B_FALSE; 10235 10236 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10237 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10238 10239 ASSERT(IAM_WRITER_IPIF(ipif)); 10240 10241 ill = ipif->ipif_ill; 10242 phyi = ill->ill_phyint; 10243 10244 if (ipip->ipi_cmd_type == IF_CMD) { 10245 ifr = (struct ifreq *)if_req; 10246 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10247 } else { 10248 lifr = (struct lifreq *)if_req; 10249 flags = lifr->lifr_flags; 10250 } 10251 10252 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10253 10254 /* 10255 * Have the flags been set correctly until now? 10256 */ 10257 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10258 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10259 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10260 /* 10261 * Compare the new flags to the old, and partition 10262 * into those coming on and those going off. 10263 * For the 16 bit command keep the bits above bit 16 unchanged. 10264 */ 10265 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10266 flags |= intf_flags & ~0xFFFF; 10267 10268 /* 10269 * Explicitly fail attempts to change flags that are always invalid on 10270 * an IPMP meta-interface. 10271 */ 10272 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10273 return (EINVAL); 10274 10275 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10276 if ((turn_on|turn_off) == 0) 10277 return (0); /* No change */ 10278 10279 /* 10280 * All test addresses must be IFF_DEPRECATED (to ensure source address 10281 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10282 * allow it to be turned off. 10283 */ 10284 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10285 (turn_on|intf_flags) & IFF_NOFAILOVER) 10286 return (EINVAL); 10287 10288 if ((connp = Q_TO_CONN(q)) == NULL) 10289 return (EINVAL); 10290 10291 /* 10292 * Only vrrp control socket is allowed to change IFF_UP and 10293 * IFF_NOACCEPT flags when IFF_VRRP is set. 10294 */ 10295 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10296 if (!connp->conn_isvrrp) 10297 return (EINVAL); 10298 } 10299 10300 /* 10301 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10302 * VRRP control socket. 10303 */ 10304 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10305 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10306 return (EINVAL); 10307 } 10308 10309 if (turn_on & IFF_NOFAILOVER) { 10310 turn_on |= IFF_DEPRECATED; 10311 flags |= IFF_DEPRECATED; 10312 } 10313 10314 /* 10315 * On underlying interfaces, only allow applications to manage test 10316 * addresses -- otherwise, they may get confused when the address 10317 * moves as part of being brought up. Likewise, prevent an 10318 * application-managed test address from being converted to a data 10319 * address. To prevent migration of administratively up addresses in 10320 * the kernel, we don't allow them to be converted either. 10321 */ 10322 if (IS_UNDER_IPMP(ill)) { 10323 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10324 10325 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10326 return (EINVAL); 10327 10328 if ((turn_off & IFF_NOFAILOVER) && 10329 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10330 return (EINVAL); 10331 } 10332 10333 /* 10334 * Only allow IFF_TEMPORARY flag to be set on 10335 * IPv6 interfaces. 10336 */ 10337 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10338 return (EINVAL); 10339 10340 /* 10341 * cannot turn off IFF_NOXMIT on VNI interfaces. 10342 */ 10343 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10344 return (EINVAL); 10345 10346 /* 10347 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10348 * interfaces. It makes no sense in that context. 10349 */ 10350 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10351 return (EINVAL); 10352 10353 /* 10354 * For IPv6 ipif_id 0, don't allow the interface to be up without 10355 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10356 * If the link local address isn't set, and can be set, it will get 10357 * set later on in this function. 10358 */ 10359 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10360 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10361 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10362 if (ipif_cant_setlinklocal(ipif)) 10363 return (EINVAL); 10364 set_linklocal = B_TRUE; 10365 } 10366 10367 /* 10368 * If we modify physical interface flags, we'll potentially need to 10369 * send up two routing socket messages for the changes (one for the 10370 * IPv4 ill, and another for the IPv6 ill). Note that here. 10371 */ 10372 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10373 phyint_flags_modified = B_TRUE; 10374 10375 /* 10376 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10377 * (otherwise, we'd immediately use them, defeating standby). Also, 10378 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10379 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10380 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10381 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10382 * will not be honored. 10383 */ 10384 if (turn_on & PHYI_STANDBY) { 10385 /* 10386 * No need to grab ill_g_usesrc_lock here; see the 10387 * synchronization notes in ip.c. 10388 */ 10389 if (ill->ill_usesrc_grp_next != NULL || 10390 intf_flags & PHYI_INACTIVE) 10391 return (EINVAL); 10392 if (!(flags & PHYI_FAILED)) { 10393 flags |= PHYI_INACTIVE; 10394 turn_on |= PHYI_INACTIVE; 10395 } 10396 } 10397 10398 if (turn_off & PHYI_STANDBY) { 10399 flags &= ~PHYI_INACTIVE; 10400 turn_off |= PHYI_INACTIVE; 10401 } 10402 10403 /* 10404 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10405 * would end up on. 10406 */ 10407 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10408 (PHYI_FAILED | PHYI_INACTIVE)) 10409 return (EINVAL); 10410 10411 /* 10412 * If ILLF_ROUTER changes, we need to change the ip forwarding 10413 * status of the interface. 10414 */ 10415 if ((turn_on | turn_off) & ILLF_ROUTER) { 10416 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10417 if (err != 0) 10418 return (err); 10419 } 10420 10421 /* 10422 * If the interface is not UP and we are not going to 10423 * bring it UP, record the flags and return. When the 10424 * interface comes UP later, the right actions will be 10425 * taken. 10426 */ 10427 if (!(ipif->ipif_flags & IPIF_UP) && 10428 !(turn_on & IPIF_UP)) { 10429 /* Record new flags in their respective places. */ 10430 mutex_enter(&ill->ill_lock); 10431 mutex_enter(&ill->ill_phyint->phyint_lock); 10432 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10433 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10434 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10435 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10436 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10437 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10438 mutex_exit(&ill->ill_lock); 10439 mutex_exit(&ill->ill_phyint->phyint_lock); 10440 10441 /* 10442 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10443 * same to the kernel: if any of them has been set by 10444 * userland, the interface cannot be used for data traffic. 10445 */ 10446 if ((turn_on|turn_off) & 10447 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10448 ASSERT(!IS_IPMP(ill)); 10449 /* 10450 * It's possible the ill is part of an "anonymous" 10451 * IPMP group rather than a real group. In that case, 10452 * there are no other interfaces in the group and thus 10453 * no need to call ipmp_phyint_refresh_active(). 10454 */ 10455 if (IS_UNDER_IPMP(ill)) 10456 ipmp_phyint_refresh_active(phyi); 10457 } 10458 10459 if (phyint_flags_modified) { 10460 if (phyi->phyint_illv4 != NULL) { 10461 ip_rts_ifmsg(phyi->phyint_illv4-> 10462 ill_ipif, RTSQ_DEFAULT); 10463 } 10464 if (phyi->phyint_illv6 != NULL) { 10465 ip_rts_ifmsg(phyi->phyint_illv6-> 10466 ill_ipif, RTSQ_DEFAULT); 10467 } 10468 } 10469 /* The default multicast interface might have changed */ 10470 ire_increment_multicast_generation(ill->ill_ipst, 10471 ill->ill_isv6); 10472 10473 return (0); 10474 } else if (set_linklocal) { 10475 mutex_enter(&ill->ill_lock); 10476 if (set_linklocal) 10477 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10478 mutex_exit(&ill->ill_lock); 10479 } 10480 10481 /* 10482 * Disallow IPv6 interfaces coming up that have the unspecified address, 10483 * or point-to-point interfaces with an unspecified destination. We do 10484 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10485 * have a subnet assigned, which is how in.ndpd currently manages its 10486 * onlink prefix list when no addresses are configured with those 10487 * prefixes. 10488 */ 10489 if (ipif->ipif_isv6 && 10490 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10491 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10492 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10493 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10494 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10495 return (EINVAL); 10496 } 10497 10498 /* 10499 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10500 * from being brought up. 10501 */ 10502 if (!ipif->ipif_isv6 && 10503 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10504 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10505 return (EINVAL); 10506 } 10507 10508 /* 10509 * If we are going to change one or more of the flags that are 10510 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10511 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10512 * IPIF_NOFAILOVER, we will take special action. This is 10513 * done by bring the ipif down, changing the flags and bringing 10514 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10515 * back up will trigger the address to be moved. 10516 * 10517 * If we are going to change IFF_NOACCEPT, we need to bring 10518 * all the ipifs down then bring them up again. The act of 10519 * bringing all the ipifs back up will trigger the local 10520 * ires being recreated with "no_accept" set/cleared. 10521 * 10522 * Note that ILLF_NOACCEPT is always set separately from the 10523 * other flags. 10524 */ 10525 if ((turn_on|turn_off) & 10526 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10527 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10528 IPIF_NOFAILOVER)) { 10529 /* 10530 * ipif_down() will ire_delete bcast ire's for the subnet, 10531 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10532 * entries shared between multiple ipifs on the same subnet. 10533 */ 10534 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10535 !(turn_off & IPIF_UP)) { 10536 if (ipif->ipif_flags & IPIF_UP) 10537 ill->ill_logical_down = 1; 10538 turn_on &= ~IPIF_UP; 10539 } 10540 err = ipif_down(ipif, q, mp); 10541 ip1dbg(("ipif_down returns %d err ", err)); 10542 if (err == EINPROGRESS) 10543 return (err); 10544 (void) ipif_down_tail(ipif); 10545 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10546 /* 10547 * If we can quiesce the ill, then continue. If not, then 10548 * ip_sioctl_flags_tail() will be called from 10549 * ipif_ill_refrele_tail(). 10550 */ 10551 ill_down_ipifs(ill, B_TRUE); 10552 10553 mutex_enter(&connp->conn_lock); 10554 mutex_enter(&ill->ill_lock); 10555 if (!ill_is_quiescent(ill)) { 10556 boolean_t success; 10557 10558 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10559 q, mp, ILL_DOWN); 10560 mutex_exit(&ill->ill_lock); 10561 mutex_exit(&connp->conn_lock); 10562 return (success ? EINPROGRESS : EINTR); 10563 } 10564 mutex_exit(&ill->ill_lock); 10565 mutex_exit(&connp->conn_lock); 10566 } 10567 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10568 } 10569 10570 static int 10571 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10572 { 10573 ill_t *ill; 10574 phyint_t *phyi; 10575 uint64_t turn_on, turn_off; 10576 boolean_t phyint_flags_modified = B_FALSE; 10577 int err = 0; 10578 boolean_t set_linklocal = B_FALSE; 10579 10580 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10581 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10582 10583 ASSERT(IAM_WRITER_IPIF(ipif)); 10584 10585 ill = ipif->ipif_ill; 10586 phyi = ill->ill_phyint; 10587 10588 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10589 10590 /* 10591 * IFF_UP is handled separately. 10592 */ 10593 turn_on &= ~IFF_UP; 10594 turn_off &= ~IFF_UP; 10595 10596 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10597 phyint_flags_modified = B_TRUE; 10598 10599 /* 10600 * Now we change the flags. Track current value of 10601 * other flags in their respective places. 10602 */ 10603 mutex_enter(&ill->ill_lock); 10604 mutex_enter(&phyi->phyint_lock); 10605 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10606 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10607 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10608 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10609 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10610 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10611 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10612 set_linklocal = B_TRUE; 10613 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10614 } 10615 10616 mutex_exit(&ill->ill_lock); 10617 mutex_exit(&phyi->phyint_lock); 10618 10619 if (set_linklocal) 10620 (void) ipif_setlinklocal(ipif); 10621 10622 /* 10623 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10624 * the kernel: if any of them has been set by userland, the interface 10625 * cannot be used for data traffic. 10626 */ 10627 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10628 ASSERT(!IS_IPMP(ill)); 10629 /* 10630 * It's possible the ill is part of an "anonymous" IPMP group 10631 * rather than a real group. In that case, there are no other 10632 * interfaces in the group and thus no need for us to call 10633 * ipmp_phyint_refresh_active(). 10634 */ 10635 if (IS_UNDER_IPMP(ill)) 10636 ipmp_phyint_refresh_active(phyi); 10637 } 10638 10639 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10640 /* 10641 * If the ILLF_NOACCEPT flag is changed, bring up all the 10642 * ipifs that were brought down. 10643 * 10644 * The routing sockets messages are sent as the result 10645 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10646 * as well. 10647 */ 10648 err = ill_up_ipifs(ill, q, mp); 10649 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10650 /* 10651 * XXX ipif_up really does not know whether a phyint flags 10652 * was modified or not. So, it sends up information on 10653 * only one routing sockets message. As we don't bring up 10654 * the interface and also set PHYI_ flags simultaneously 10655 * it should be okay. 10656 */ 10657 err = ipif_up(ipif, q, mp); 10658 } else { 10659 /* 10660 * Make sure routing socket sees all changes to the flags. 10661 * ipif_up_done* handles this when we use ipif_up. 10662 */ 10663 if (phyint_flags_modified) { 10664 if (phyi->phyint_illv4 != NULL) { 10665 ip_rts_ifmsg(phyi->phyint_illv4-> 10666 ill_ipif, RTSQ_DEFAULT); 10667 } 10668 if (phyi->phyint_illv6 != NULL) { 10669 ip_rts_ifmsg(phyi->phyint_illv6-> 10670 ill_ipif, RTSQ_DEFAULT); 10671 } 10672 } else { 10673 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10674 } 10675 /* 10676 * Update the flags in SCTP's IPIF list, ipif_up() will do 10677 * this in need_up case. 10678 */ 10679 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10680 } 10681 10682 /* The default multicast interface might have changed */ 10683 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10684 return (err); 10685 } 10686 10687 /* 10688 * Restart the flags operation now that the refcounts have dropped to zero. 10689 */ 10690 /* ARGSUSED */ 10691 int 10692 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10693 ip_ioctl_cmd_t *ipip, void *if_req) 10694 { 10695 uint64_t flags; 10696 struct ifreq *ifr = if_req; 10697 struct lifreq *lifr = if_req; 10698 uint64_t turn_on, turn_off; 10699 10700 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10701 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10702 10703 if (ipip->ipi_cmd_type == IF_CMD) { 10704 /* cast to uint16_t prevents unwanted sign extension */ 10705 flags = (uint16_t)ifr->ifr_flags; 10706 } else { 10707 flags = lifr->lifr_flags; 10708 } 10709 10710 /* 10711 * If this function call is a result of the ILLF_NOACCEPT flag 10712 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10713 */ 10714 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10715 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10716 (void) ipif_down_tail(ipif); 10717 10718 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10719 } 10720 10721 /* 10722 * Can operate on either a module or a driver queue. 10723 */ 10724 /* ARGSUSED */ 10725 int 10726 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10727 ip_ioctl_cmd_t *ipip, void *if_req) 10728 { 10729 /* 10730 * Has the flags been set correctly till now ? 10731 */ 10732 ill_t *ill = ipif->ipif_ill; 10733 phyint_t *phyi = ill->ill_phyint; 10734 10735 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10736 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10737 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10738 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10739 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10740 10741 /* 10742 * Need a lock since some flags can be set even when there are 10743 * references to the ipif. 10744 */ 10745 mutex_enter(&ill->ill_lock); 10746 if (ipip->ipi_cmd_type == IF_CMD) { 10747 struct ifreq *ifr = (struct ifreq *)if_req; 10748 10749 /* Get interface flags (low 16 only). */ 10750 ifr->ifr_flags = ((ipif->ipif_flags | 10751 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10752 } else { 10753 struct lifreq *lifr = (struct lifreq *)if_req; 10754 10755 /* Get interface flags. */ 10756 lifr->lifr_flags = ipif->ipif_flags | 10757 ill->ill_flags | phyi->phyint_flags; 10758 } 10759 mutex_exit(&ill->ill_lock); 10760 return (0); 10761 } 10762 10763 /* 10764 * We allow the MTU to be set on an ILL, but not have it be different 10765 * for different IPIFs since we don't actually send packets on IPIFs. 10766 */ 10767 /* ARGSUSED */ 10768 int 10769 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10770 ip_ioctl_cmd_t *ipip, void *if_req) 10771 { 10772 int mtu; 10773 int ip_min_mtu; 10774 struct ifreq *ifr; 10775 struct lifreq *lifr; 10776 ill_t *ill; 10777 10778 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10779 ipif->ipif_id, (void *)ipif)); 10780 if (ipip->ipi_cmd_type == IF_CMD) { 10781 ifr = (struct ifreq *)if_req; 10782 mtu = ifr->ifr_metric; 10783 } else { 10784 lifr = (struct lifreq *)if_req; 10785 mtu = lifr->lifr_mtu; 10786 } 10787 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10788 if (ipif->ipif_id != 0) 10789 return (EINVAL); 10790 10791 ill = ipif->ipif_ill; 10792 if (ipif->ipif_isv6) 10793 ip_min_mtu = IPV6_MIN_MTU; 10794 else 10795 ip_min_mtu = IP_MIN_MTU; 10796 10797 mutex_enter(&ill->ill_lock); 10798 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10799 mutex_exit(&ill->ill_lock); 10800 return (EINVAL); 10801 } 10802 /* Avoid increasing ill_mc_mtu */ 10803 if (ill->ill_mc_mtu > mtu) 10804 ill->ill_mc_mtu = mtu; 10805 10806 /* 10807 * The dce and fragmentation code can handle changes to ill_mtu 10808 * concurrent with sending/fragmenting packets. 10809 */ 10810 ill->ill_mtu = mtu; 10811 ill->ill_flags |= ILLF_FIXEDMTU; 10812 mutex_exit(&ill->ill_lock); 10813 10814 /* 10815 * Make sure all dce_generation checks find out 10816 * that ill_mtu/ill_mc_mtu has changed. 10817 */ 10818 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10819 10820 /* 10821 * Refresh IPMP meta-interface MTU if necessary. 10822 */ 10823 if (IS_UNDER_IPMP(ill)) 10824 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10825 10826 /* Update the MTU in SCTP's list */ 10827 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10828 return (0); 10829 } 10830 10831 /* Get interface MTU. */ 10832 /* ARGSUSED */ 10833 int 10834 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10835 ip_ioctl_cmd_t *ipip, void *if_req) 10836 { 10837 struct ifreq *ifr; 10838 struct lifreq *lifr; 10839 10840 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10841 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10842 10843 /* 10844 * We allow a get on any logical interface even though the set 10845 * can only be done on logical unit 0. 10846 */ 10847 if (ipip->ipi_cmd_type == IF_CMD) { 10848 ifr = (struct ifreq *)if_req; 10849 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10850 } else { 10851 lifr = (struct lifreq *)if_req; 10852 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10853 } 10854 return (0); 10855 } 10856 10857 /* Set interface broadcast address. */ 10858 /* ARGSUSED2 */ 10859 int 10860 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10861 ip_ioctl_cmd_t *ipip, void *if_req) 10862 { 10863 ipaddr_t addr; 10864 ire_t *ire; 10865 ill_t *ill = ipif->ipif_ill; 10866 ip_stack_t *ipst = ill->ill_ipst; 10867 10868 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10869 ipif->ipif_id)); 10870 10871 ASSERT(IAM_WRITER_IPIF(ipif)); 10872 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10873 return (EADDRNOTAVAIL); 10874 10875 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10876 10877 if (sin->sin_family != AF_INET) 10878 return (EAFNOSUPPORT); 10879 10880 addr = sin->sin_addr.s_addr; 10881 10882 if (ipif->ipif_flags & IPIF_UP) { 10883 /* 10884 * If we are already up, make sure the new 10885 * broadcast address makes sense. If it does, 10886 * there should be an IRE for it already. 10887 */ 10888 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10889 ill, ipif->ipif_zoneid, NULL, 10890 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10891 if (ire == NULL) { 10892 return (EINVAL); 10893 } else { 10894 ire_refrele(ire); 10895 } 10896 } 10897 /* 10898 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10899 * needs to already exist we never need to change the set of 10900 * IRE_BROADCASTs when we are UP. 10901 */ 10902 if (addr != ipif->ipif_brd_addr) 10903 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10904 10905 return (0); 10906 } 10907 10908 /* Get interface broadcast address. */ 10909 /* ARGSUSED */ 10910 int 10911 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10912 ip_ioctl_cmd_t *ipip, void *if_req) 10913 { 10914 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10915 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10916 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10917 return (EADDRNOTAVAIL); 10918 10919 /* IPIF_BROADCAST not possible with IPv6 */ 10920 ASSERT(!ipif->ipif_isv6); 10921 *sin = sin_null; 10922 sin->sin_family = AF_INET; 10923 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10924 return (0); 10925 } 10926 10927 /* 10928 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10929 */ 10930 /* ARGSUSED */ 10931 int 10932 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10933 ip_ioctl_cmd_t *ipip, void *if_req) 10934 { 10935 int err = 0; 10936 in6_addr_t v6mask; 10937 10938 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10939 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10940 10941 ASSERT(IAM_WRITER_IPIF(ipif)); 10942 10943 if (ipif->ipif_isv6) { 10944 sin6_t *sin6; 10945 10946 if (sin->sin_family != AF_INET6) 10947 return (EAFNOSUPPORT); 10948 10949 sin6 = (sin6_t *)sin; 10950 v6mask = sin6->sin6_addr; 10951 } else { 10952 ipaddr_t mask; 10953 10954 if (sin->sin_family != AF_INET) 10955 return (EAFNOSUPPORT); 10956 10957 mask = sin->sin_addr.s_addr; 10958 if (!ip_contiguous_mask(ntohl(mask))) 10959 return (ENOTSUP); 10960 V4MASK_TO_V6(mask, v6mask); 10961 } 10962 10963 /* 10964 * No big deal if the interface isn't already up, or the mask 10965 * isn't really changing, or this is pt-pt. 10966 */ 10967 if (!(ipif->ipif_flags & IPIF_UP) || 10968 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10969 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10970 ipif->ipif_v6net_mask = v6mask; 10971 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10972 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10973 ipif->ipif_v6net_mask, 10974 ipif->ipif_v6subnet); 10975 } 10976 return (0); 10977 } 10978 /* 10979 * Make sure we have valid net and subnet broadcast ire's 10980 * for the old netmask, if needed by other logical interfaces. 10981 */ 10982 err = ipif_logical_down(ipif, q, mp); 10983 if (err == EINPROGRESS) 10984 return (err); 10985 (void) ipif_down_tail(ipif); 10986 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10987 return (err); 10988 } 10989 10990 static int 10991 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10992 { 10993 in6_addr_t v6mask; 10994 int err = 0; 10995 10996 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10997 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10998 10999 if (ipif->ipif_isv6) { 11000 sin6_t *sin6; 11001 11002 sin6 = (sin6_t *)sin; 11003 v6mask = sin6->sin6_addr; 11004 } else { 11005 ipaddr_t mask; 11006 11007 mask = sin->sin_addr.s_addr; 11008 V4MASK_TO_V6(mask, v6mask); 11009 } 11010 11011 ipif->ipif_v6net_mask = v6mask; 11012 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11013 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11014 ipif->ipif_v6subnet); 11015 } 11016 err = ipif_up(ipif, q, mp); 11017 11018 if (err == 0 || err == EINPROGRESS) { 11019 /* 11020 * The interface must be DL_BOUND if this packet has to 11021 * go out on the wire. Since we only go through a logical 11022 * down and are bound with the driver during an internal 11023 * down/up that is satisfied. 11024 */ 11025 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11026 /* Potentially broadcast an address mask reply. */ 11027 ipif_mask_reply(ipif); 11028 } 11029 } 11030 return (err); 11031 } 11032 11033 /* ARGSUSED */ 11034 int 11035 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11036 ip_ioctl_cmd_t *ipip, void *if_req) 11037 { 11038 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11040 (void) ipif_down_tail(ipif); 11041 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11042 } 11043 11044 /* Get interface net mask. */ 11045 /* ARGSUSED */ 11046 int 11047 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11048 ip_ioctl_cmd_t *ipip, void *if_req) 11049 { 11050 struct lifreq *lifr = (struct lifreq *)if_req; 11051 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11052 11053 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11055 11056 /* 11057 * net mask can't change since we have a reference to the ipif. 11058 */ 11059 if (ipif->ipif_isv6) { 11060 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11061 *sin6 = sin6_null; 11062 sin6->sin6_family = AF_INET6; 11063 sin6->sin6_addr = ipif->ipif_v6net_mask; 11064 lifr->lifr_addrlen = 11065 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11066 } else { 11067 *sin = sin_null; 11068 sin->sin_family = AF_INET; 11069 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11070 if (ipip->ipi_cmd_type == LIF_CMD) { 11071 lifr->lifr_addrlen = 11072 ip_mask_to_plen(ipif->ipif_net_mask); 11073 } 11074 } 11075 return (0); 11076 } 11077 11078 /* ARGSUSED */ 11079 int 11080 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11081 ip_ioctl_cmd_t *ipip, void *if_req) 11082 { 11083 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11084 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11085 11086 /* 11087 * Since no applications should ever be setting metrics on underlying 11088 * interfaces, we explicitly fail to smoke 'em out. 11089 */ 11090 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11091 return (EINVAL); 11092 11093 /* 11094 * Set interface metric. We don't use this for 11095 * anything but we keep track of it in case it is 11096 * important to routing applications or such. 11097 */ 11098 if (ipip->ipi_cmd_type == IF_CMD) { 11099 struct ifreq *ifr; 11100 11101 ifr = (struct ifreq *)if_req; 11102 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11103 } else { 11104 struct lifreq *lifr; 11105 11106 lifr = (struct lifreq *)if_req; 11107 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11108 } 11109 return (0); 11110 } 11111 11112 /* ARGSUSED */ 11113 int 11114 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11115 ip_ioctl_cmd_t *ipip, void *if_req) 11116 { 11117 /* Get interface metric. */ 11118 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11119 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11120 11121 if (ipip->ipi_cmd_type == IF_CMD) { 11122 struct ifreq *ifr; 11123 11124 ifr = (struct ifreq *)if_req; 11125 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11126 } else { 11127 struct lifreq *lifr; 11128 11129 lifr = (struct lifreq *)if_req; 11130 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11131 } 11132 11133 return (0); 11134 } 11135 11136 /* ARGSUSED */ 11137 int 11138 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11139 ip_ioctl_cmd_t *ipip, void *if_req) 11140 { 11141 int arp_muxid; 11142 11143 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11144 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11145 /* 11146 * Set the muxid returned from I_PLINK. 11147 */ 11148 if (ipip->ipi_cmd_type == IF_CMD) { 11149 struct ifreq *ifr = (struct ifreq *)if_req; 11150 11151 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11152 arp_muxid = ifr->ifr_arp_muxid; 11153 } else { 11154 struct lifreq *lifr = (struct lifreq *)if_req; 11155 11156 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11157 arp_muxid = lifr->lifr_arp_muxid; 11158 } 11159 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11160 return (0); 11161 } 11162 11163 /* ARGSUSED */ 11164 int 11165 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11166 ip_ioctl_cmd_t *ipip, void *if_req) 11167 { 11168 int arp_muxid = 0; 11169 11170 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11171 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11172 /* 11173 * Get the muxid saved in ill for I_PUNLINK. 11174 */ 11175 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11176 if (ipip->ipi_cmd_type == IF_CMD) { 11177 struct ifreq *ifr = (struct ifreq *)if_req; 11178 11179 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11180 ifr->ifr_arp_muxid = arp_muxid; 11181 } else { 11182 struct lifreq *lifr = (struct lifreq *)if_req; 11183 11184 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11185 lifr->lifr_arp_muxid = arp_muxid; 11186 } 11187 return (0); 11188 } 11189 11190 /* 11191 * Set the subnet prefix. Does not modify the broadcast address. 11192 */ 11193 /* ARGSUSED */ 11194 int 11195 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11196 ip_ioctl_cmd_t *ipip, void *if_req) 11197 { 11198 int err = 0; 11199 in6_addr_t v6addr; 11200 in6_addr_t v6mask; 11201 boolean_t need_up = B_FALSE; 11202 int addrlen; 11203 11204 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11205 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11206 11207 ASSERT(IAM_WRITER_IPIF(ipif)); 11208 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11209 11210 if (ipif->ipif_isv6) { 11211 sin6_t *sin6; 11212 11213 if (sin->sin_family != AF_INET6) 11214 return (EAFNOSUPPORT); 11215 11216 sin6 = (sin6_t *)sin; 11217 v6addr = sin6->sin6_addr; 11218 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11219 return (EADDRNOTAVAIL); 11220 } else { 11221 ipaddr_t addr; 11222 11223 if (sin->sin_family != AF_INET) 11224 return (EAFNOSUPPORT); 11225 11226 addr = sin->sin_addr.s_addr; 11227 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11228 return (EADDRNOTAVAIL); 11229 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11230 /* Add 96 bits */ 11231 addrlen += IPV6_ABITS - IP_ABITS; 11232 } 11233 11234 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11235 return (EINVAL); 11236 11237 /* Check if bits in the address is set past the mask */ 11238 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11239 return (EINVAL); 11240 11241 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11242 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11243 return (0); /* No change */ 11244 11245 if (ipif->ipif_flags & IPIF_UP) { 11246 /* 11247 * If the interface is already marked up, 11248 * we call ipif_down which will take care 11249 * of ditching any IREs that have been set 11250 * up based on the old interface address. 11251 */ 11252 err = ipif_logical_down(ipif, q, mp); 11253 if (err == EINPROGRESS) 11254 return (err); 11255 (void) ipif_down_tail(ipif); 11256 need_up = B_TRUE; 11257 } 11258 11259 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11260 return (err); 11261 } 11262 11263 static int 11264 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11265 queue_t *q, mblk_t *mp, boolean_t need_up) 11266 { 11267 ill_t *ill = ipif->ipif_ill; 11268 int err = 0; 11269 11270 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11271 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11272 11273 /* Set the new address. */ 11274 mutex_enter(&ill->ill_lock); 11275 ipif->ipif_v6net_mask = v6mask; 11276 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11277 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11278 ipif->ipif_v6subnet); 11279 } 11280 mutex_exit(&ill->ill_lock); 11281 11282 if (need_up) { 11283 /* 11284 * Now bring the interface back up. If this 11285 * is the only IPIF for the ILL, ipif_up 11286 * will have to re-bind to the device, so 11287 * we may get back EINPROGRESS, in which 11288 * case, this IOCTL will get completed in 11289 * ip_rput_dlpi when we see the DL_BIND_ACK. 11290 */ 11291 err = ipif_up(ipif, q, mp); 11292 if (err == EINPROGRESS) 11293 return (err); 11294 } 11295 return (err); 11296 } 11297 11298 /* ARGSUSED */ 11299 int 11300 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11301 ip_ioctl_cmd_t *ipip, void *if_req) 11302 { 11303 int addrlen; 11304 in6_addr_t v6addr; 11305 in6_addr_t v6mask; 11306 struct lifreq *lifr = (struct lifreq *)if_req; 11307 11308 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11309 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11310 (void) ipif_down_tail(ipif); 11311 11312 addrlen = lifr->lifr_addrlen; 11313 if (ipif->ipif_isv6) { 11314 sin6_t *sin6; 11315 11316 sin6 = (sin6_t *)sin; 11317 v6addr = sin6->sin6_addr; 11318 } else { 11319 ipaddr_t addr; 11320 11321 addr = sin->sin_addr.s_addr; 11322 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11323 addrlen += IPV6_ABITS - IP_ABITS; 11324 } 11325 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11326 11327 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11328 } 11329 11330 /* ARGSUSED */ 11331 int 11332 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11333 ip_ioctl_cmd_t *ipip, void *if_req) 11334 { 11335 struct lifreq *lifr = (struct lifreq *)if_req; 11336 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11337 11338 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11339 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11340 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11341 11342 if (ipif->ipif_isv6) { 11343 *sin6 = sin6_null; 11344 sin6->sin6_family = AF_INET6; 11345 sin6->sin6_addr = ipif->ipif_v6subnet; 11346 lifr->lifr_addrlen = 11347 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11348 } else { 11349 *sin = sin_null; 11350 sin->sin_family = AF_INET; 11351 sin->sin_addr.s_addr = ipif->ipif_subnet; 11352 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11353 } 11354 return (0); 11355 } 11356 11357 /* 11358 * Set the IPv6 address token. 11359 */ 11360 /* ARGSUSED */ 11361 int 11362 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11363 ip_ioctl_cmd_t *ipi, void *if_req) 11364 { 11365 ill_t *ill = ipif->ipif_ill; 11366 int err; 11367 in6_addr_t v6addr; 11368 in6_addr_t v6mask; 11369 boolean_t need_up = B_FALSE; 11370 int i; 11371 sin6_t *sin6 = (sin6_t *)sin; 11372 struct lifreq *lifr = (struct lifreq *)if_req; 11373 int addrlen; 11374 11375 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11376 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11377 ASSERT(IAM_WRITER_IPIF(ipif)); 11378 11379 addrlen = lifr->lifr_addrlen; 11380 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11381 if (ipif->ipif_id != 0) 11382 return (EINVAL); 11383 11384 if (!ipif->ipif_isv6) 11385 return (EINVAL); 11386 11387 if (addrlen > IPV6_ABITS) 11388 return (EINVAL); 11389 11390 v6addr = sin6->sin6_addr; 11391 11392 /* 11393 * The length of the token is the length from the end. To get 11394 * the proper mask for this, compute the mask of the bits not 11395 * in the token; ie. the prefix, and then xor to get the mask. 11396 */ 11397 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11398 return (EINVAL); 11399 for (i = 0; i < 4; i++) { 11400 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11401 } 11402 11403 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11404 ill->ill_token_length == addrlen) 11405 return (0); /* No change */ 11406 11407 if (ipif->ipif_flags & IPIF_UP) { 11408 err = ipif_logical_down(ipif, q, mp); 11409 if (err == EINPROGRESS) 11410 return (err); 11411 (void) ipif_down_tail(ipif); 11412 need_up = B_TRUE; 11413 } 11414 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11415 return (err); 11416 } 11417 11418 static int 11419 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11420 mblk_t *mp, boolean_t need_up) 11421 { 11422 in6_addr_t v6addr; 11423 in6_addr_t v6mask; 11424 ill_t *ill = ipif->ipif_ill; 11425 int i; 11426 int err = 0; 11427 11428 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11429 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11430 v6addr = sin6->sin6_addr; 11431 /* 11432 * The length of the token is the length from the end. To get 11433 * the proper mask for this, compute the mask of the bits not 11434 * in the token; ie. the prefix, and then xor to get the mask. 11435 */ 11436 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11437 for (i = 0; i < 4; i++) 11438 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11439 11440 mutex_enter(&ill->ill_lock); 11441 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11442 ill->ill_token_length = addrlen; 11443 ill->ill_manual_token = 1; 11444 11445 /* Reconfigure the link-local address based on this new token */ 11446 ipif_setlinklocal(ill->ill_ipif); 11447 11448 mutex_exit(&ill->ill_lock); 11449 11450 if (need_up) { 11451 /* 11452 * Now bring the interface back up. If this 11453 * is the only IPIF for the ILL, ipif_up 11454 * will have to re-bind to the device, so 11455 * we may get back EINPROGRESS, in which 11456 * case, this IOCTL will get completed in 11457 * ip_rput_dlpi when we see the DL_BIND_ACK. 11458 */ 11459 err = ipif_up(ipif, q, mp); 11460 if (err == EINPROGRESS) 11461 return (err); 11462 } 11463 return (err); 11464 } 11465 11466 /* ARGSUSED */ 11467 int 11468 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11469 ip_ioctl_cmd_t *ipi, void *if_req) 11470 { 11471 ill_t *ill; 11472 sin6_t *sin6 = (sin6_t *)sin; 11473 struct lifreq *lifr = (struct lifreq *)if_req; 11474 11475 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11476 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11477 if (ipif->ipif_id != 0) 11478 return (EINVAL); 11479 11480 ill = ipif->ipif_ill; 11481 if (!ill->ill_isv6) 11482 return (ENXIO); 11483 11484 *sin6 = sin6_null; 11485 sin6->sin6_family = AF_INET6; 11486 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11487 sin6->sin6_addr = ill->ill_token; 11488 lifr->lifr_addrlen = ill->ill_token_length; 11489 return (0); 11490 } 11491 11492 /* 11493 * Set (hardware) link specific information that might override 11494 * what was acquired through the DL_INFO_ACK. 11495 */ 11496 /* ARGSUSED */ 11497 int 11498 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11499 ip_ioctl_cmd_t *ipi, void *if_req) 11500 { 11501 ill_t *ill = ipif->ipif_ill; 11502 int ip_min_mtu; 11503 struct lifreq *lifr = (struct lifreq *)if_req; 11504 lif_ifinfo_req_t *lir; 11505 11506 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11507 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11508 lir = &lifr->lifr_ifinfo; 11509 ASSERT(IAM_WRITER_IPIF(ipif)); 11510 11511 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11512 if (ipif->ipif_id != 0) 11513 return (EINVAL); 11514 11515 /* Set interface MTU. */ 11516 if (ipif->ipif_isv6) 11517 ip_min_mtu = IPV6_MIN_MTU; 11518 else 11519 ip_min_mtu = IP_MIN_MTU; 11520 11521 /* 11522 * Verify values before we set anything. Allow zero to 11523 * mean unspecified. 11524 * 11525 * XXX We should be able to set the user-defined lir_mtu to some value 11526 * that is greater than ill_current_frag but less than ill_max_frag- the 11527 * ill_max_frag value tells us the max MTU that can be handled by the 11528 * datalink, whereas the ill_current_frag is dynamically computed for 11529 * some link-types like tunnels, based on the tunnel PMTU. However, 11530 * since there is currently no way of distinguishing between 11531 * administratively fixed link mtu values (e.g., those set via 11532 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11533 * for tunnels) we conservatively choose the ill_current_frag as the 11534 * upper-bound. 11535 */ 11536 if (lir->lir_maxmtu != 0 && 11537 (lir->lir_maxmtu > ill->ill_current_frag || 11538 lir->lir_maxmtu < ip_min_mtu)) 11539 return (EINVAL); 11540 if (lir->lir_reachtime != 0 && 11541 lir->lir_reachtime > ND_MAX_REACHTIME) 11542 return (EINVAL); 11543 if (lir->lir_reachretrans != 0 && 11544 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11545 return (EINVAL); 11546 11547 mutex_enter(&ill->ill_lock); 11548 /* 11549 * The dce and fragmentation code can handle changes to ill_mtu 11550 * concurrent with sending/fragmenting packets. 11551 */ 11552 if (lir->lir_maxmtu != 0) 11553 ill->ill_user_mtu = lir->lir_maxmtu; 11554 11555 if (lir->lir_reachtime != 0) 11556 ill->ill_reachable_time = lir->lir_reachtime; 11557 11558 if (lir->lir_reachretrans != 0) 11559 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11560 11561 ill->ill_max_hops = lir->lir_maxhops; 11562 ill->ill_max_buf = ND_MAX_Q; 11563 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11564 /* 11565 * ill_mtu is the actual interface MTU, obtained as the min 11566 * of user-configured mtu and the value announced by the 11567 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11568 * we have already made the choice of requiring 11569 * ill_user_mtu < ill_current_frag by the time we get here, 11570 * the ill_mtu effectively gets assigned to the ill_user_mtu 11571 * here. 11572 */ 11573 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11574 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11575 } 11576 mutex_exit(&ill->ill_lock); 11577 11578 /* 11579 * Make sure all dce_generation checks find out 11580 * that ill_mtu/ill_mc_mtu has changed. 11581 */ 11582 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11583 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11584 11585 /* 11586 * Refresh IPMP meta-interface MTU if necessary. 11587 */ 11588 if (IS_UNDER_IPMP(ill)) 11589 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11590 11591 return (0); 11592 } 11593 11594 /* ARGSUSED */ 11595 int 11596 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11597 ip_ioctl_cmd_t *ipi, void *if_req) 11598 { 11599 struct lif_ifinfo_req *lir; 11600 ill_t *ill = ipif->ipif_ill; 11601 11602 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11603 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11604 if (ipif->ipif_id != 0) 11605 return (EINVAL); 11606 11607 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11608 lir->lir_maxhops = ill->ill_max_hops; 11609 lir->lir_reachtime = ill->ill_reachable_time; 11610 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11611 lir->lir_maxmtu = ill->ill_mtu; 11612 11613 return (0); 11614 } 11615 11616 /* 11617 * Return best guess as to the subnet mask for the specified address. 11618 * Based on the subnet masks for all the configured interfaces. 11619 * 11620 * We end up returning a zero mask in the case of default, multicast or 11621 * experimental. 11622 */ 11623 static ipaddr_t 11624 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11625 { 11626 ipaddr_t net_mask; 11627 ill_t *ill; 11628 ipif_t *ipif; 11629 ill_walk_context_t ctx; 11630 ipif_t *fallback_ipif = NULL; 11631 11632 net_mask = ip_net_mask(addr); 11633 if (net_mask == 0) { 11634 *ipifp = NULL; 11635 return (0); 11636 } 11637 11638 /* Let's check to see if this is maybe a local subnet route. */ 11639 /* this function only applies to IPv4 interfaces */ 11640 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11641 ill = ILL_START_WALK_V4(&ctx, ipst); 11642 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11643 mutex_enter(&ill->ill_lock); 11644 for (ipif = ill->ill_ipif; ipif != NULL; 11645 ipif = ipif->ipif_next) { 11646 if (IPIF_IS_CONDEMNED(ipif)) 11647 continue; 11648 if (!(ipif->ipif_flags & IPIF_UP)) 11649 continue; 11650 if ((ipif->ipif_subnet & net_mask) == 11651 (addr & net_mask)) { 11652 /* 11653 * Don't trust pt-pt interfaces if there are 11654 * other interfaces. 11655 */ 11656 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11657 if (fallback_ipif == NULL) { 11658 ipif_refhold_locked(ipif); 11659 fallback_ipif = ipif; 11660 } 11661 continue; 11662 } 11663 11664 /* 11665 * Fine. Just assume the same net mask as the 11666 * directly attached subnet interface is using. 11667 */ 11668 ipif_refhold_locked(ipif); 11669 mutex_exit(&ill->ill_lock); 11670 rw_exit(&ipst->ips_ill_g_lock); 11671 if (fallback_ipif != NULL) 11672 ipif_refrele(fallback_ipif); 11673 *ipifp = ipif; 11674 return (ipif->ipif_net_mask); 11675 } 11676 } 11677 mutex_exit(&ill->ill_lock); 11678 } 11679 rw_exit(&ipst->ips_ill_g_lock); 11680 11681 *ipifp = fallback_ipif; 11682 return ((fallback_ipif != NULL) ? 11683 fallback_ipif->ipif_net_mask : net_mask); 11684 } 11685 11686 /* 11687 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11688 */ 11689 static void 11690 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11691 { 11692 IOCP iocp; 11693 ipft_t *ipft; 11694 ipllc_t *ipllc; 11695 mblk_t *mp1; 11696 cred_t *cr; 11697 int error = 0; 11698 conn_t *connp; 11699 11700 ip1dbg(("ip_wput_ioctl")); 11701 iocp = (IOCP)mp->b_rptr; 11702 mp1 = mp->b_cont; 11703 if (mp1 == NULL) { 11704 iocp->ioc_error = EINVAL; 11705 mp->b_datap->db_type = M_IOCNAK; 11706 iocp->ioc_count = 0; 11707 qreply(q, mp); 11708 return; 11709 } 11710 11711 /* 11712 * These IOCTLs provide various control capabilities to 11713 * upstream agents such as ULPs and processes. There 11714 * are currently two such IOCTLs implemented. They 11715 * are used by TCP to provide update information for 11716 * existing IREs and to forcibly delete an IRE for a 11717 * host that is not responding, thereby forcing an 11718 * attempt at a new route. 11719 */ 11720 iocp->ioc_error = EINVAL; 11721 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11722 goto done; 11723 11724 ipllc = (ipllc_t *)mp1->b_rptr; 11725 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11726 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11727 break; 11728 } 11729 /* 11730 * prefer credential from mblk over ioctl; 11731 * see ip_sioctl_copyin_setup 11732 */ 11733 cr = msg_getcred(mp, NULL); 11734 if (cr == NULL) 11735 cr = iocp->ioc_cr; 11736 11737 /* 11738 * Refhold the conn in case the request gets queued up in some lookup 11739 */ 11740 ASSERT(CONN_Q(q)); 11741 connp = Q_TO_CONN(q); 11742 CONN_INC_REF(connp); 11743 CONN_INC_IOCTLREF(connp); 11744 if (ipft->ipft_pfi && 11745 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11746 pullupmsg(mp1, ipft->ipft_min_size))) { 11747 error = (*ipft->ipft_pfi)(q, 11748 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11749 } 11750 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11751 /* 11752 * CONN_OPER_PENDING_DONE happens in the function called 11753 * through ipft_pfi above. 11754 */ 11755 return; 11756 } 11757 11758 CONN_DEC_IOCTLREF(connp); 11759 CONN_OPER_PENDING_DONE(connp); 11760 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11761 freemsg(mp); 11762 return; 11763 } 11764 iocp->ioc_error = error; 11765 11766 done: 11767 mp->b_datap->db_type = M_IOCACK; 11768 if (iocp->ioc_error) 11769 iocp->ioc_count = 0; 11770 qreply(q, mp); 11771 } 11772 11773 /* 11774 * Assign a unique id for the ipif. This is used by sctp_addr.c 11775 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11776 */ 11777 static void 11778 ipif_assign_seqid(ipif_t *ipif) 11779 { 11780 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11781 11782 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid); 11783 } 11784 11785 /* 11786 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11787 * administratively down (i.e., no DAD), of the same type, and locked. Note 11788 * that the clone is complete -- including the seqid -- and the expectation is 11789 * that the caller will either free or overwrite `sipif' before it's unlocked. 11790 */ 11791 static void 11792 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11793 { 11794 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11795 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11796 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11797 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11798 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11799 11800 dipif->ipif_flags = sipif->ipif_flags; 11801 dipif->ipif_zoneid = sipif->ipif_zoneid; 11802 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11803 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11804 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11805 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11806 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11807 11808 /* 11809 * As per the comment atop the function, we assume that these sipif 11810 * fields will be changed before sipif is unlocked. 11811 */ 11812 dipif->ipif_seqid = sipif->ipif_seqid; 11813 dipif->ipif_state_flags = sipif->ipif_state_flags; 11814 } 11815 11816 /* 11817 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11818 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11819 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11820 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11821 * down (i.e., no DAD), of the same type, and unlocked. 11822 */ 11823 static void 11824 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11825 { 11826 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11827 ipxop_t *ipx = ipsq->ipsq_xop; 11828 11829 ASSERT(sipif != dipif); 11830 ASSERT(sipif != virgipif); 11831 11832 /* 11833 * Grab all of the locks that protect the ipif in a defined order. 11834 */ 11835 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11836 11837 ipif_clone(sipif, dipif); 11838 if (virgipif != NULL) { 11839 ipif_clone(virgipif, sipif); 11840 mi_free(virgipif); 11841 } 11842 11843 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11844 11845 /* 11846 * Transfer ownership of the current xop, if necessary. 11847 */ 11848 if (ipx->ipx_current_ipif == sipif) { 11849 ASSERT(ipx->ipx_pending_ipif == NULL); 11850 mutex_enter(&ipx->ipx_lock); 11851 ipx->ipx_current_ipif = dipif; 11852 mutex_exit(&ipx->ipx_lock); 11853 } 11854 11855 if (virgipif == NULL) 11856 mi_free(sipif); 11857 } 11858 11859 /* 11860 * checks if: 11861 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11862 * - logical interface is within the allowed range 11863 */ 11864 static int 11865 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11866 { 11867 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11868 return (ENAMETOOLONG); 11869 11870 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11871 return (ERANGE); 11872 return (0); 11873 } 11874 11875 /* 11876 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11877 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11878 * be inserted into the first space available in the list. The value of 11879 * ipif_id will then be set to the appropriate value for its position. 11880 */ 11881 static int 11882 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11883 { 11884 ill_t *ill; 11885 ipif_t *tipif; 11886 ipif_t **tipifp; 11887 int id, err; 11888 ip_stack_t *ipst; 11889 11890 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11891 IAM_WRITER_IPIF(ipif)); 11892 11893 ill = ipif->ipif_ill; 11894 ASSERT(ill != NULL); 11895 ipst = ill->ill_ipst; 11896 11897 /* 11898 * In the case of lo0:0 we already hold the ill_g_lock. 11899 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11900 * ipif_insert. 11901 */ 11902 if (acquire_g_lock) 11903 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11904 mutex_enter(&ill->ill_lock); 11905 id = ipif->ipif_id; 11906 tipifp = &(ill->ill_ipif); 11907 if (id == -1) { /* need to find a real id */ 11908 id = 0; 11909 while ((tipif = *tipifp) != NULL) { 11910 ASSERT(tipif->ipif_id >= id); 11911 if (tipif->ipif_id != id) 11912 break; /* non-consecutive id */ 11913 id++; 11914 tipifp = &(tipif->ipif_next); 11915 } 11916 if ((err = is_lifname_valid(ill, id)) != 0) { 11917 mutex_exit(&ill->ill_lock); 11918 if (acquire_g_lock) 11919 rw_exit(&ipst->ips_ill_g_lock); 11920 return (err); 11921 } 11922 ipif->ipif_id = id; /* assign new id */ 11923 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11924 /* we have a real id; insert ipif in the right place */ 11925 while ((tipif = *tipifp) != NULL) { 11926 ASSERT(tipif->ipif_id != id); 11927 if (tipif->ipif_id > id) 11928 break; /* found correct location */ 11929 tipifp = &(tipif->ipif_next); 11930 } 11931 } else { 11932 mutex_exit(&ill->ill_lock); 11933 if (acquire_g_lock) 11934 rw_exit(&ipst->ips_ill_g_lock); 11935 return (err); 11936 } 11937 11938 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11939 11940 ipif->ipif_next = tipif; 11941 *tipifp = ipif; 11942 mutex_exit(&ill->ill_lock); 11943 if (acquire_g_lock) 11944 rw_exit(&ipst->ips_ill_g_lock); 11945 11946 return (0); 11947 } 11948 11949 static void 11950 ipif_remove(ipif_t *ipif) 11951 { 11952 ipif_t **ipifp; 11953 ill_t *ill = ipif->ipif_ill; 11954 11955 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11956 11957 mutex_enter(&ill->ill_lock); 11958 ipifp = &ill->ill_ipif; 11959 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11960 if (*ipifp == ipif) { 11961 *ipifp = ipif->ipif_next; 11962 break; 11963 } 11964 } 11965 mutex_exit(&ill->ill_lock); 11966 } 11967 11968 /* 11969 * Allocate and initialize a new interface control structure. (Always 11970 * called as writer.) 11971 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11972 * is not part of the global linked list of ills. ipif_seqid is unique 11973 * in the system and to preserve the uniqueness, it is assigned only 11974 * when ill becomes part of the global list. At that point ill will 11975 * have a name. If it doesn't get assigned here, it will get assigned 11976 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11977 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11978 * the interface flags or any other information from the DL_INFO_ACK for 11979 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11980 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11981 * second DL_INFO_ACK comes in from the driver. 11982 */ 11983 static ipif_t * 11984 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11985 boolean_t insert, int *errorp) 11986 { 11987 int err; 11988 ipif_t *ipif; 11989 ip_stack_t *ipst = ill->ill_ipst; 11990 11991 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11992 ill->ill_name, id, (void *)ill)); 11993 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11994 11995 if (errorp != NULL) 11996 *errorp = 0; 11997 11998 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11999 if (errorp != NULL) 12000 *errorp = ENOMEM; 12001 return (NULL); 12002 } 12003 *ipif = ipif_zero; /* start clean */ 12004 12005 ipif->ipif_ill = ill; 12006 ipif->ipif_id = id; /* could be -1 */ 12007 /* 12008 * Inherit the zoneid from the ill; for the shared stack instance 12009 * this is always the global zone 12010 */ 12011 ipif->ipif_zoneid = ill->ill_zoneid; 12012 12013 ipif->ipif_refcnt = 0; 12014 12015 if (insert) { 12016 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12017 mi_free(ipif); 12018 if (errorp != NULL) 12019 *errorp = err; 12020 return (NULL); 12021 } 12022 /* -1 id should have been replaced by real id */ 12023 id = ipif->ipif_id; 12024 ASSERT(id >= 0); 12025 } 12026 12027 if (ill->ill_name[0] != '\0') 12028 ipif_assign_seqid(ipif); 12029 12030 /* 12031 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12032 * (which must not exist yet because the zeroth ipif is created once 12033 * per ill). However, do not not link it to the ipmp_grp_t until 12034 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12035 */ 12036 if (id == 0 && IS_IPMP(ill)) { 12037 if (ipmp_illgrp_create(ill) == NULL) { 12038 if (insert) { 12039 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12040 ipif_remove(ipif); 12041 rw_exit(&ipst->ips_ill_g_lock); 12042 } 12043 mi_free(ipif); 12044 if (errorp != NULL) 12045 *errorp = ENOMEM; 12046 return (NULL); 12047 } 12048 } 12049 12050 /* 12051 * We grab ill_lock to protect the flag changes. The ipif is still 12052 * not up and can't be looked up until the ioctl completes and the 12053 * IPIF_CHANGING flag is cleared. 12054 */ 12055 mutex_enter(&ill->ill_lock); 12056 12057 ipif->ipif_ire_type = ire_type; 12058 12059 if (ipif->ipif_isv6) { 12060 ill->ill_flags |= ILLF_IPV6; 12061 } else { 12062 ipaddr_t inaddr_any = INADDR_ANY; 12063 12064 ill->ill_flags |= ILLF_IPV4; 12065 12066 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12067 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12068 &ipif->ipif_v6lcl_addr); 12069 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12070 &ipif->ipif_v6subnet); 12071 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12072 &ipif->ipif_v6net_mask); 12073 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12074 &ipif->ipif_v6brd_addr); 12075 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12076 &ipif->ipif_v6pp_dst_addr); 12077 } 12078 12079 /* 12080 * Don't set the interface flags etc. now, will do it in 12081 * ip_ll_subnet_defaults. 12082 */ 12083 if (!initialize) 12084 goto out; 12085 12086 /* 12087 * NOTE: The IPMP meta-interface is special-cased because it starts 12088 * with no underlying interfaces (and thus an unknown broadcast 12089 * address length), but all interfaces that can be placed into an IPMP 12090 * group are required to be broadcast-capable. 12091 */ 12092 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12093 /* 12094 * Later detect lack of DLPI driver multicast capability by 12095 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12096 */ 12097 ill->ill_flags |= ILLF_MULTICAST; 12098 if (!ipif->ipif_isv6) 12099 ipif->ipif_flags |= IPIF_BROADCAST; 12100 } else { 12101 if (ill->ill_net_type != IRE_LOOPBACK) { 12102 if (ipif->ipif_isv6) 12103 /* 12104 * Note: xresolv interfaces will eventually need 12105 * NOARP set here as well, but that will require 12106 * those external resolvers to have some 12107 * knowledge of that flag and act appropriately. 12108 * Not to be changed at present. 12109 */ 12110 ill->ill_flags |= ILLF_NONUD; 12111 else 12112 ill->ill_flags |= ILLF_NOARP; 12113 } 12114 if (ill->ill_phys_addr_length == 0) { 12115 if (IS_VNI(ill)) { 12116 ipif->ipif_flags |= IPIF_NOXMIT; 12117 } else { 12118 /* pt-pt supports multicast. */ 12119 ill->ill_flags |= ILLF_MULTICAST; 12120 if (ill->ill_net_type != IRE_LOOPBACK) 12121 ipif->ipif_flags |= IPIF_POINTOPOINT; 12122 } 12123 } 12124 } 12125 out: 12126 mutex_exit(&ill->ill_lock); 12127 return (ipif); 12128 } 12129 12130 /* 12131 * Remove the neighbor cache entries associated with this logical 12132 * interface. 12133 */ 12134 int 12135 ipif_arp_down(ipif_t *ipif) 12136 { 12137 ill_t *ill = ipif->ipif_ill; 12138 int err = 0; 12139 12140 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12141 ASSERT(IAM_WRITER_IPIF(ipif)); 12142 12143 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12144 ill_t *, ill, ipif_t *, ipif); 12145 ipif_nce_down(ipif); 12146 12147 /* 12148 * If this is the last ipif that is going down and there are no 12149 * duplicate addresses we may yet attempt to re-probe, then we need to 12150 * clean up ARP completely. 12151 */ 12152 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12153 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12154 /* 12155 * If this was the last ipif on an IPMP interface, purge any 12156 * static ARP entries associated with it. 12157 */ 12158 if (IS_IPMP(ill)) 12159 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12160 12161 /* UNBIND, DETACH */ 12162 err = arp_ll_down(ill); 12163 } 12164 12165 return (err); 12166 } 12167 12168 /* 12169 * Get the resolver set up for a new IP address. (Always called as writer.) 12170 * Called both for IPv4 and IPv6 interfaces, though it only does some 12171 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12172 * 12173 * The enumerated value res_act tunes the behavior: 12174 * * Res_act_initial: set up all the resolver structures for a new 12175 * IP address. 12176 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12177 * ARP message in defense of the address. 12178 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12179 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12180 * 12181 * Returns zero on success, or an errno upon failure. 12182 */ 12183 int 12184 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12185 { 12186 ill_t *ill = ipif->ipif_ill; 12187 int err; 12188 boolean_t was_dup; 12189 12190 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12191 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12192 ASSERT(IAM_WRITER_IPIF(ipif)); 12193 12194 was_dup = B_FALSE; 12195 if (res_act == Res_act_initial) { 12196 ipif->ipif_addr_ready = 0; 12197 /* 12198 * We're bringing an interface up here. There's no way that we 12199 * should need to shut down ARP now. 12200 */ 12201 mutex_enter(&ill->ill_lock); 12202 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12203 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12204 ill->ill_ipif_dup_count--; 12205 was_dup = B_TRUE; 12206 } 12207 mutex_exit(&ill->ill_lock); 12208 } 12209 if (ipif->ipif_recovery_id != 0) 12210 (void) untimeout(ipif->ipif_recovery_id); 12211 ipif->ipif_recovery_id = 0; 12212 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12213 ipif->ipif_addr_ready = 1; 12214 return (0); 12215 } 12216 /* NDP will set the ipif_addr_ready flag when it's ready */ 12217 if (ill->ill_isv6) 12218 return (0); 12219 12220 err = ipif_arp_up(ipif, res_act, was_dup); 12221 return (err); 12222 } 12223 12224 /* 12225 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12226 * when a link has just gone back up. 12227 */ 12228 static void 12229 ipif_nce_start_dad(ipif_t *ipif) 12230 { 12231 ncec_t *ncec; 12232 ill_t *ill = ipif->ipif_ill; 12233 boolean_t isv6 = ill->ill_isv6; 12234 12235 if (isv6) { 12236 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12237 &ipif->ipif_v6lcl_addr); 12238 } else { 12239 ipaddr_t v4addr; 12240 12241 if (ill->ill_net_type != IRE_IF_RESOLVER || 12242 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12243 ipif->ipif_lcl_addr == INADDR_ANY) { 12244 /* 12245 * If we can't contact ARP for some reason, 12246 * that's not really a problem. Just send 12247 * out the routing socket notification that 12248 * DAD completion would have done, and continue. 12249 */ 12250 ipif_mask_reply(ipif); 12251 ipif_up_notify(ipif); 12252 ipif->ipif_addr_ready = 1; 12253 return; 12254 } 12255 12256 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12257 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12258 } 12259 12260 if (ncec == NULL) { 12261 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12262 (void *)ipif)); 12263 return; 12264 } 12265 if (!nce_restart_dad(ncec)) { 12266 /* 12267 * If we can't restart DAD for some reason, that's not really a 12268 * problem. Just send out the routing socket notification that 12269 * DAD completion would have done, and continue. 12270 */ 12271 ipif_up_notify(ipif); 12272 ipif->ipif_addr_ready = 1; 12273 } 12274 ncec_refrele(ncec); 12275 } 12276 12277 /* 12278 * Restart duplicate address detection on all interfaces on the given ill. 12279 * 12280 * This is called when an interface transitions from down to up 12281 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12282 * 12283 * Note that since the underlying physical link has transitioned, we must cause 12284 * at least one routing socket message to be sent here, either via DAD 12285 * completion or just by default on the first ipif. (If we don't do this, then 12286 * in.mpathd will see long delays when doing link-based failure recovery.) 12287 */ 12288 void 12289 ill_restart_dad(ill_t *ill, boolean_t went_up) 12290 { 12291 ipif_t *ipif; 12292 12293 if (ill == NULL) 12294 return; 12295 12296 /* 12297 * If layer two doesn't support duplicate address detection, then just 12298 * send the routing socket message now and be done with it. 12299 */ 12300 if (!ill->ill_isv6 && arp_no_defense) { 12301 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12302 return; 12303 } 12304 12305 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12306 if (went_up) { 12307 12308 if (ipif->ipif_flags & IPIF_UP) { 12309 ipif_nce_start_dad(ipif); 12310 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12311 /* 12312 * kick off the bring-up process now. 12313 */ 12314 ipif_do_recovery(ipif); 12315 } else { 12316 /* 12317 * Unfortunately, the first ipif is "special" 12318 * and represents the underlying ill in the 12319 * routing socket messages. Thus, when this 12320 * one ipif is down, we must still notify so 12321 * that the user knows the IFF_RUNNING status 12322 * change. (If the first ipif is up, then 12323 * we'll handle eventual routing socket 12324 * notification via DAD completion.) 12325 */ 12326 if (ipif == ill->ill_ipif) { 12327 ip_rts_ifmsg(ill->ill_ipif, 12328 RTSQ_DEFAULT); 12329 } 12330 } 12331 } else { 12332 /* 12333 * After link down, we'll need to send a new routing 12334 * message when the link comes back, so clear 12335 * ipif_addr_ready. 12336 */ 12337 ipif->ipif_addr_ready = 0; 12338 } 12339 } 12340 12341 /* 12342 * If we've torn down links, then notify the user right away. 12343 */ 12344 if (!went_up) 12345 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12346 } 12347 12348 static void 12349 ipsq_delete(ipsq_t *ipsq) 12350 { 12351 ipxop_t *ipx = ipsq->ipsq_xop; 12352 12353 ipsq->ipsq_ipst = NULL; 12354 ASSERT(ipsq->ipsq_phyint == NULL); 12355 ASSERT(ipsq->ipsq_xop != NULL); 12356 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12357 ASSERT(ipx->ipx_pending_mp == NULL); 12358 kmem_free(ipsq, sizeof (ipsq_t)); 12359 } 12360 12361 static int 12362 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12363 { 12364 int err = 0; 12365 ipif_t *ipif; 12366 12367 if (ill == NULL) 12368 return (0); 12369 12370 ASSERT(IAM_WRITER_ILL(ill)); 12371 ill->ill_up_ipifs = B_TRUE; 12372 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12373 if (ipif->ipif_was_up) { 12374 if (!(ipif->ipif_flags & IPIF_UP)) 12375 err = ipif_up(ipif, q, mp); 12376 ipif->ipif_was_up = B_FALSE; 12377 if (err != 0) { 12378 ASSERT(err == EINPROGRESS); 12379 return (err); 12380 } 12381 } 12382 } 12383 ill->ill_up_ipifs = B_FALSE; 12384 return (0); 12385 } 12386 12387 /* 12388 * This function is called to bring up all the ipifs that were up before 12389 * bringing the ill down via ill_down_ipifs(). 12390 */ 12391 int 12392 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12393 { 12394 int err; 12395 12396 ASSERT(IAM_WRITER_ILL(ill)); 12397 12398 if (ill->ill_replumbing) { 12399 ill->ill_replumbing = 0; 12400 /* 12401 * Send down REPLUMB_DONE notification followed by the 12402 * BIND_REQ on the arp stream. 12403 */ 12404 if (!ill->ill_isv6) 12405 arp_send_replumb_conf(ill); 12406 } 12407 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12408 if (err != 0) 12409 return (err); 12410 12411 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12412 } 12413 12414 /* 12415 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12416 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12417 */ 12418 static void 12419 ill_down_ipifs(ill_t *ill, boolean_t logical) 12420 { 12421 ipif_t *ipif; 12422 12423 ASSERT(IAM_WRITER_ILL(ill)); 12424 12425 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12426 /* 12427 * We go through the ipif_down logic even if the ipif 12428 * is already down, since routes can be added based 12429 * on down ipifs. Going through ipif_down once again 12430 * will delete any IREs created based on these routes. 12431 */ 12432 if (ipif->ipif_flags & IPIF_UP) 12433 ipif->ipif_was_up = B_TRUE; 12434 12435 if (logical) { 12436 (void) ipif_logical_down(ipif, NULL, NULL); 12437 ipif_non_duplicate(ipif); 12438 (void) ipif_down_tail(ipif); 12439 } else { 12440 (void) ipif_down(ipif, NULL, NULL); 12441 } 12442 } 12443 } 12444 12445 /* 12446 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12447 * a look again at valid source addresses. 12448 * This should be called each time after the set of source addresses has been 12449 * changed. 12450 */ 12451 void 12452 ip_update_source_selection(ip_stack_t *ipst) 12453 { 12454 /* We skip past SRC_GENERATION_VERIFY */ 12455 if (atomic_inc_32_nv(&ipst->ips_src_generation) == 12456 SRC_GENERATION_VERIFY) 12457 atomic_inc_32(&ipst->ips_src_generation); 12458 } 12459 12460 /* 12461 * Finish the group join started in ip_sioctl_groupname(). 12462 */ 12463 /* ARGSUSED */ 12464 static void 12465 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12466 { 12467 ill_t *ill = q->q_ptr; 12468 phyint_t *phyi = ill->ill_phyint; 12469 ipmp_grp_t *grp = phyi->phyint_grp; 12470 ip_stack_t *ipst = ill->ill_ipst; 12471 12472 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12473 ASSERT(!IS_IPMP(ill) && grp != NULL); 12474 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12475 12476 if (phyi->phyint_illv4 != NULL) { 12477 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12478 VERIFY(grp->gr_pendv4-- > 0); 12479 rw_exit(&ipst->ips_ipmp_lock); 12480 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12481 } 12482 if (phyi->phyint_illv6 != NULL) { 12483 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12484 VERIFY(grp->gr_pendv6-- > 0); 12485 rw_exit(&ipst->ips_ipmp_lock); 12486 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12487 } 12488 freemsg(mp); 12489 } 12490 12491 /* 12492 * Process an SIOCSLIFGROUPNAME request. 12493 */ 12494 /* ARGSUSED */ 12495 int 12496 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12497 ip_ioctl_cmd_t *ipip, void *ifreq) 12498 { 12499 struct lifreq *lifr = ifreq; 12500 ill_t *ill = ipif->ipif_ill; 12501 ip_stack_t *ipst = ill->ill_ipst; 12502 phyint_t *phyi = ill->ill_phyint; 12503 ipmp_grp_t *grp = phyi->phyint_grp; 12504 mblk_t *ipsq_mp; 12505 int err = 0; 12506 12507 /* 12508 * Note that phyint_grp can only change here, where we're exclusive. 12509 */ 12510 ASSERT(IAM_WRITER_ILL(ill)); 12511 12512 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12513 (phyi->phyint_flags & PHYI_VIRTUAL)) 12514 return (EINVAL); 12515 12516 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12517 12518 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12519 12520 /* 12521 * If the name hasn't changed, there's nothing to do. 12522 */ 12523 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12524 goto unlock; 12525 12526 /* 12527 * Handle requests to rename an IPMP meta-interface. 12528 * 12529 * Note that creation of the IPMP meta-interface is handled in 12530 * userland through the standard plumbing sequence. As part of the 12531 * plumbing the IPMP meta-interface, its initial groupname is set to 12532 * the name of the interface (see ipif_set_values_tail()). 12533 */ 12534 if (IS_IPMP(ill)) { 12535 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12536 goto unlock; 12537 } 12538 12539 /* 12540 * Handle requests to add or remove an IP interface from a group. 12541 */ 12542 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12543 /* 12544 * Moves are handled by first removing the interface from 12545 * its existing group, and then adding it to another group. 12546 * So, fail if it's already in a group. 12547 */ 12548 if (IS_UNDER_IPMP(ill)) { 12549 err = EALREADY; 12550 goto unlock; 12551 } 12552 12553 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12554 if (grp == NULL) { 12555 err = ENOENT; 12556 goto unlock; 12557 } 12558 12559 /* 12560 * Check if the phyint and its ills are suitable for 12561 * inclusion into the group. 12562 */ 12563 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12564 goto unlock; 12565 12566 /* 12567 * Checks pass; join the group, and enqueue the remaining 12568 * illgrp joins for when we've become part of the group xop 12569 * and are exclusive across its IPSQs. Since qwriter_ip() 12570 * requires an mblk_t to scribble on, and since `mp' will be 12571 * freed as part of completing the ioctl, allocate another. 12572 */ 12573 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12574 err = ENOMEM; 12575 goto unlock; 12576 } 12577 12578 /* 12579 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12580 * IPMP meta-interface ills needed by `phyi' cannot go away 12581 * before ip_join_illgrps() is called back. See the comments 12582 * in ip_sioctl_plink_ipmp() for more. 12583 */ 12584 if (phyi->phyint_illv4 != NULL) 12585 grp->gr_pendv4++; 12586 if (phyi->phyint_illv6 != NULL) 12587 grp->gr_pendv6++; 12588 12589 rw_exit(&ipst->ips_ipmp_lock); 12590 12591 ipmp_phyint_join_grp(phyi, grp); 12592 ill_refhold(ill); 12593 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12594 SWITCH_OP, B_FALSE); 12595 return (0); 12596 } else { 12597 /* 12598 * Request to remove the interface from a group. If the 12599 * interface is not in a group, this trivially succeeds. 12600 */ 12601 rw_exit(&ipst->ips_ipmp_lock); 12602 if (IS_UNDER_IPMP(ill)) 12603 ipmp_phyint_leave_grp(phyi); 12604 return (0); 12605 } 12606 unlock: 12607 rw_exit(&ipst->ips_ipmp_lock); 12608 return (err); 12609 } 12610 12611 /* 12612 * Process an SIOCGLIFBINDING request. 12613 */ 12614 /* ARGSUSED */ 12615 int 12616 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12617 ip_ioctl_cmd_t *ipip, void *ifreq) 12618 { 12619 ill_t *ill; 12620 struct lifreq *lifr = ifreq; 12621 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12622 12623 if (!IS_IPMP(ipif->ipif_ill)) 12624 return (EINVAL); 12625 12626 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12627 if ((ill = ipif->ipif_bound_ill) == NULL) 12628 lifr->lifr_binding[0] = '\0'; 12629 else 12630 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12631 rw_exit(&ipst->ips_ipmp_lock); 12632 return (0); 12633 } 12634 12635 /* 12636 * Process an SIOCGLIFGROUPNAME request. 12637 */ 12638 /* ARGSUSED */ 12639 int 12640 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12641 ip_ioctl_cmd_t *ipip, void *ifreq) 12642 { 12643 ipmp_grp_t *grp; 12644 struct lifreq *lifr = ifreq; 12645 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12646 12647 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12648 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12649 lifr->lifr_groupname[0] = '\0'; 12650 else 12651 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12652 rw_exit(&ipst->ips_ipmp_lock); 12653 return (0); 12654 } 12655 12656 /* 12657 * Process an SIOCGLIFGROUPINFO request. 12658 */ 12659 /* ARGSUSED */ 12660 int 12661 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12662 ip_ioctl_cmd_t *ipip, void *dummy) 12663 { 12664 ipmp_grp_t *grp; 12665 lifgroupinfo_t *lifgr; 12666 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12667 12668 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12669 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12670 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12671 12672 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12673 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12674 rw_exit(&ipst->ips_ipmp_lock); 12675 return (ENOENT); 12676 } 12677 ipmp_grp_info(grp, lifgr); 12678 rw_exit(&ipst->ips_ipmp_lock); 12679 return (0); 12680 } 12681 12682 static void 12683 ill_dl_down(ill_t *ill) 12684 { 12685 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12686 12687 /* 12688 * The ill is down; unbind but stay attached since we're still 12689 * associated with a PPA. If we have negotiated DLPI capabilites 12690 * with the data link service provider (IDS_OK) then reset them. 12691 * The interval between unbinding and rebinding is potentially 12692 * unbounded hence we cannot assume things will be the same. 12693 * The DLPI capabilities will be probed again when the data link 12694 * is brought up. 12695 */ 12696 mblk_t *mp = ill->ill_unbind_mp; 12697 12698 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12699 12700 if (!ill->ill_replumbing) { 12701 /* Free all ilms for this ill */ 12702 update_conn_ill(ill, ill->ill_ipst); 12703 } else { 12704 ill_leave_multicast(ill); 12705 } 12706 12707 ill->ill_unbind_mp = NULL; 12708 if (mp != NULL) { 12709 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12710 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12711 ill->ill_name)); 12712 mutex_enter(&ill->ill_lock); 12713 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12714 mutex_exit(&ill->ill_lock); 12715 /* 12716 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12717 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12718 * ill_capability_dld_disable disable rightaway. If this is not 12719 * an unplumb operation then the disable happens on receipt of 12720 * the capab ack via ip_rput_dlpi_writer -> 12721 * ill_capability_ack_thr. In both cases the order of 12722 * the operations seen by DLD is capability disable followed 12723 * by DL_UNBIND. Also the DLD capability disable needs a 12724 * cv_wait'able context. 12725 */ 12726 if (ill->ill_state_flags & ILL_CONDEMNED) 12727 ill_capability_dld_disable(ill); 12728 ill_capability_reset(ill, B_FALSE); 12729 ill_dlpi_send(ill, mp); 12730 } 12731 mutex_enter(&ill->ill_lock); 12732 ill->ill_dl_up = 0; 12733 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12734 mutex_exit(&ill->ill_lock); 12735 } 12736 12737 void 12738 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12739 { 12740 union DL_primitives *dlp; 12741 t_uscalar_t prim; 12742 boolean_t waitack = B_FALSE; 12743 12744 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12745 12746 dlp = (union DL_primitives *)mp->b_rptr; 12747 prim = dlp->dl_primitive; 12748 12749 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12750 dl_primstr(prim), prim, ill->ill_name)); 12751 12752 switch (prim) { 12753 case DL_PHYS_ADDR_REQ: 12754 { 12755 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12756 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12757 break; 12758 } 12759 case DL_BIND_REQ: 12760 mutex_enter(&ill->ill_lock); 12761 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12762 mutex_exit(&ill->ill_lock); 12763 break; 12764 } 12765 12766 /* 12767 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12768 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12769 * we only wait for the ACK of the DL_UNBIND_REQ. 12770 */ 12771 mutex_enter(&ill->ill_lock); 12772 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12773 (prim == DL_UNBIND_REQ)) { 12774 ill->ill_dlpi_pending = prim; 12775 waitack = B_TRUE; 12776 } 12777 12778 mutex_exit(&ill->ill_lock); 12779 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12780 char *, dl_primstr(prim), ill_t *, ill); 12781 putnext(ill->ill_wq, mp); 12782 12783 /* 12784 * There is no ack for DL_NOTIFY_CONF messages 12785 */ 12786 if (waitack && prim == DL_NOTIFY_CONF) 12787 ill_dlpi_done(ill, prim); 12788 } 12789 12790 /* 12791 * Helper function for ill_dlpi_send(). 12792 */ 12793 /* ARGSUSED */ 12794 static void 12795 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12796 { 12797 ill_dlpi_send(q->q_ptr, mp); 12798 } 12799 12800 /* 12801 * Send a DLPI control message to the driver but make sure there 12802 * is only one outstanding message. Uses ill_dlpi_pending to tell 12803 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12804 * when an ACK or a NAK is received to process the next queued message. 12805 */ 12806 void 12807 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12808 { 12809 mblk_t **mpp; 12810 12811 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12812 12813 /* 12814 * To ensure that any DLPI requests for current exclusive operation 12815 * are always completely sent before any DLPI messages for other 12816 * operations, require writer access before enqueuing. 12817 */ 12818 if (!IAM_WRITER_ILL(ill)) { 12819 ill_refhold(ill); 12820 /* qwriter_ip() does the ill_refrele() */ 12821 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12822 NEW_OP, B_TRUE); 12823 return; 12824 } 12825 12826 mutex_enter(&ill->ill_lock); 12827 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12828 /* Must queue message. Tail insertion */ 12829 mpp = &ill->ill_dlpi_deferred; 12830 while (*mpp != NULL) 12831 mpp = &((*mpp)->b_next); 12832 12833 ip1dbg(("ill_dlpi_send: deferring request for %s " 12834 "while %s pending\n", ill->ill_name, 12835 dl_primstr(ill->ill_dlpi_pending))); 12836 12837 *mpp = mp; 12838 mutex_exit(&ill->ill_lock); 12839 return; 12840 } 12841 mutex_exit(&ill->ill_lock); 12842 ill_dlpi_dispatch(ill, mp); 12843 } 12844 12845 void 12846 ill_capability_send(ill_t *ill, mblk_t *mp) 12847 { 12848 ill->ill_capab_pending_cnt++; 12849 ill_dlpi_send(ill, mp); 12850 } 12851 12852 void 12853 ill_capability_done(ill_t *ill) 12854 { 12855 ASSERT(ill->ill_capab_pending_cnt != 0); 12856 12857 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12858 12859 ill->ill_capab_pending_cnt--; 12860 if (ill->ill_capab_pending_cnt == 0 && 12861 ill->ill_dlpi_capab_state == IDCS_OK) 12862 ill_capability_reset_alloc(ill); 12863 } 12864 12865 /* 12866 * Send all deferred DLPI messages without waiting for their ACKs. 12867 */ 12868 void 12869 ill_dlpi_send_deferred(ill_t *ill) 12870 { 12871 mblk_t *mp, *nextmp; 12872 12873 /* 12874 * Clear ill_dlpi_pending so that the message is not queued in 12875 * ill_dlpi_send(). 12876 */ 12877 mutex_enter(&ill->ill_lock); 12878 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12879 mp = ill->ill_dlpi_deferred; 12880 ill->ill_dlpi_deferred = NULL; 12881 mutex_exit(&ill->ill_lock); 12882 12883 for (; mp != NULL; mp = nextmp) { 12884 nextmp = mp->b_next; 12885 mp->b_next = NULL; 12886 ill_dlpi_send(ill, mp); 12887 } 12888 } 12889 12890 /* 12891 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12892 * or M_HANGUP 12893 */ 12894 static void 12895 ill_dlpi_clear_deferred(ill_t *ill) 12896 { 12897 mblk_t *mp, *nextmp; 12898 12899 mutex_enter(&ill->ill_lock); 12900 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12901 mp = ill->ill_dlpi_deferred; 12902 ill->ill_dlpi_deferred = NULL; 12903 mutex_exit(&ill->ill_lock); 12904 12905 for (; mp != NULL; mp = nextmp) { 12906 nextmp = mp->b_next; 12907 inet_freemsg(mp); 12908 } 12909 } 12910 12911 /* 12912 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12913 */ 12914 boolean_t 12915 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12916 { 12917 t_uscalar_t pending; 12918 12919 mutex_enter(&ill->ill_lock); 12920 if (ill->ill_dlpi_pending == prim) { 12921 mutex_exit(&ill->ill_lock); 12922 return (B_TRUE); 12923 } 12924 12925 /* 12926 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12927 * without waiting, so don't print any warnings in that case. 12928 */ 12929 if (ill->ill_state_flags & ILL_CONDEMNED) { 12930 mutex_exit(&ill->ill_lock); 12931 return (B_FALSE); 12932 } 12933 pending = ill->ill_dlpi_pending; 12934 mutex_exit(&ill->ill_lock); 12935 12936 if (pending == DL_PRIM_INVAL) { 12937 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12938 "received unsolicited ack for %s on %s\n", 12939 dl_primstr(prim), ill->ill_name); 12940 } else { 12941 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12942 "received unexpected ack for %s on %s (expecting %s)\n", 12943 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12944 } 12945 return (B_FALSE); 12946 } 12947 12948 /* 12949 * Complete the current DLPI operation associated with `prim' on `ill' and 12950 * start the next queued DLPI operation (if any). If there are no queued DLPI 12951 * operations and the ill's current exclusive IPSQ operation has finished 12952 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12953 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12954 * the comments above ipsq_current_finish() for details. 12955 */ 12956 void 12957 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12958 { 12959 mblk_t *mp; 12960 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12961 ipxop_t *ipx = ipsq->ipsq_xop; 12962 12963 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12964 mutex_enter(&ill->ill_lock); 12965 12966 ASSERT(prim != DL_PRIM_INVAL); 12967 ASSERT(ill->ill_dlpi_pending == prim); 12968 12969 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12970 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12971 12972 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12973 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12974 if (ipx->ipx_current_done) { 12975 mutex_enter(&ipx->ipx_lock); 12976 ipx->ipx_current_ipif = NULL; 12977 mutex_exit(&ipx->ipx_lock); 12978 } 12979 cv_signal(&ill->ill_cv); 12980 mutex_exit(&ill->ill_lock); 12981 return; 12982 } 12983 12984 ill->ill_dlpi_deferred = mp->b_next; 12985 mp->b_next = NULL; 12986 mutex_exit(&ill->ill_lock); 12987 12988 ill_dlpi_dispatch(ill, mp); 12989 } 12990 12991 /* 12992 * Queue a (multicast) DLPI control message to be sent to the driver by 12993 * later calling ill_dlpi_send_queued. 12994 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12995 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12996 * for the same group to race. 12997 * We send DLPI control messages in order using ill_lock. 12998 * For IPMP we should be called on the cast_ill. 12999 */ 13000 void 13001 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13002 { 13003 mblk_t **mpp; 13004 13005 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13006 13007 mutex_enter(&ill->ill_lock); 13008 /* Must queue message. Tail insertion */ 13009 mpp = &ill->ill_dlpi_deferred; 13010 while (*mpp != NULL) 13011 mpp = &((*mpp)->b_next); 13012 13013 *mpp = mp; 13014 mutex_exit(&ill->ill_lock); 13015 } 13016 13017 /* 13018 * Send the messages that were queued. Make sure there is only 13019 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13020 * when an ACK or a NAK is received to process the next queued message. 13021 * For IPMP we are called on the upper ill, but when send what is queued 13022 * on the cast_ill. 13023 */ 13024 void 13025 ill_dlpi_send_queued(ill_t *ill) 13026 { 13027 mblk_t *mp; 13028 union DL_primitives *dlp; 13029 t_uscalar_t prim; 13030 ill_t *release_ill = NULL; 13031 13032 if (IS_IPMP(ill)) { 13033 /* On the upper IPMP ill. */ 13034 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13035 if (release_ill == NULL) { 13036 /* Avoid ever sending anything down to the ipmpstub */ 13037 return; 13038 } 13039 ill = release_ill; 13040 } 13041 mutex_enter(&ill->ill_lock); 13042 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13043 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13044 /* Can't send. Somebody else will send it */ 13045 mutex_exit(&ill->ill_lock); 13046 goto done; 13047 } 13048 ill->ill_dlpi_deferred = mp->b_next; 13049 mp->b_next = NULL; 13050 if (!ill->ill_dl_up) { 13051 /* 13052 * Nobody there. All multicast addresses will be 13053 * re-joined when we get the DL_BIND_ACK bringing the 13054 * interface up. 13055 */ 13056 freemsg(mp); 13057 continue; 13058 } 13059 dlp = (union DL_primitives *)mp->b_rptr; 13060 prim = dlp->dl_primitive; 13061 13062 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13063 (prim == DL_UNBIND_REQ)) { 13064 ill->ill_dlpi_pending = prim; 13065 } 13066 mutex_exit(&ill->ill_lock); 13067 13068 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13069 char *, dl_primstr(prim), ill_t *, ill); 13070 putnext(ill->ill_wq, mp); 13071 mutex_enter(&ill->ill_lock); 13072 } 13073 mutex_exit(&ill->ill_lock); 13074 done: 13075 if (release_ill != NULL) 13076 ill_refrele(release_ill); 13077 } 13078 13079 /* 13080 * Queue an IP (IGMP/MLD) message to be sent by IP from 13081 * ill_mcast_send_queued 13082 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13083 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13084 * group to race. 13085 * We send them in order using ill_lock. 13086 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13087 */ 13088 void 13089 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13090 { 13091 mblk_t **mpp; 13092 ill_t *release_ill = NULL; 13093 13094 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13095 13096 if (IS_IPMP(ill)) { 13097 /* On the upper IPMP ill. */ 13098 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13099 if (release_ill == NULL) { 13100 /* Discard instead of queuing for the ipmp interface */ 13101 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13102 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13103 mp, ill); 13104 freemsg(mp); 13105 return; 13106 } 13107 ill = release_ill; 13108 } 13109 13110 mutex_enter(&ill->ill_lock); 13111 /* Must queue message. Tail insertion */ 13112 mpp = &ill->ill_mcast_deferred; 13113 while (*mpp != NULL) 13114 mpp = &((*mpp)->b_next); 13115 13116 *mpp = mp; 13117 mutex_exit(&ill->ill_lock); 13118 if (release_ill != NULL) 13119 ill_refrele(release_ill); 13120 } 13121 13122 /* 13123 * Send the IP packets that were queued by ill_mcast_queue. 13124 * These are IGMP/MLD packets. 13125 * 13126 * For IPMP we are called on the upper ill, but when send what is queued 13127 * on the cast_ill. 13128 * 13129 * Request loopback of the report if we are acting as a multicast 13130 * router, so that the process-level routing demon can hear it. 13131 * This will run multiple times for the same group if there are members 13132 * on the same group for multiple ipif's on the same ill. The 13133 * igmp_input/mld_input code will suppress this due to the loopback thus we 13134 * always loopback membership report. 13135 * 13136 * We also need to make sure that this does not get load balanced 13137 * by IPMP. We do this by passing an ill to ip_output_simple. 13138 */ 13139 void 13140 ill_mcast_send_queued(ill_t *ill) 13141 { 13142 mblk_t *mp; 13143 ip_xmit_attr_t ixas; 13144 ill_t *release_ill = NULL; 13145 13146 if (IS_IPMP(ill)) { 13147 /* On the upper IPMP ill. */ 13148 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13149 if (release_ill == NULL) { 13150 /* 13151 * We should have no messages on the ipmp interface 13152 * but no point in trying to send them. 13153 */ 13154 return; 13155 } 13156 ill = release_ill; 13157 } 13158 bzero(&ixas, sizeof (ixas)); 13159 ixas.ixa_zoneid = ALL_ZONES; 13160 ixas.ixa_cred = kcred; 13161 ixas.ixa_cpid = NOPID; 13162 ixas.ixa_tsl = NULL; 13163 /* 13164 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13165 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13166 * That is necessary to handle IGMP/MLD snooping switches. 13167 */ 13168 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13169 ixas.ixa_ipst = ill->ill_ipst; 13170 13171 mutex_enter(&ill->ill_lock); 13172 while ((mp = ill->ill_mcast_deferred) != NULL) { 13173 ill->ill_mcast_deferred = mp->b_next; 13174 mp->b_next = NULL; 13175 if (!ill->ill_dl_up) { 13176 /* 13177 * Nobody there. Just drop the ip packets. 13178 * IGMP/MLD will resend later, if this is a replumb. 13179 */ 13180 freemsg(mp); 13181 continue; 13182 } 13183 mutex_enter(&ill->ill_phyint->phyint_lock); 13184 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13185 /* 13186 * When the ill is getting deactivated, we only want to 13187 * send the DLPI messages, so drop IGMP/MLD packets. 13188 * DLPI messages are handled by ill_dlpi_send_queued() 13189 */ 13190 mutex_exit(&ill->ill_phyint->phyint_lock); 13191 freemsg(mp); 13192 continue; 13193 } 13194 mutex_exit(&ill->ill_phyint->phyint_lock); 13195 mutex_exit(&ill->ill_lock); 13196 13197 /* Check whether we are sending IPv4 or IPv6. */ 13198 if (ill->ill_isv6) { 13199 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13200 13201 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13202 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13203 } else { 13204 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13205 13206 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13207 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13208 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13209 } 13210 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13211 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13212 (void) ip_output_simple(mp, &ixas); 13213 ixa_cleanup(&ixas); 13214 13215 mutex_enter(&ill->ill_lock); 13216 } 13217 mutex_exit(&ill->ill_lock); 13218 13219 done: 13220 if (release_ill != NULL) 13221 ill_refrele(release_ill); 13222 } 13223 13224 /* 13225 * Take down a specific interface, but don't lose any information about it. 13226 * (Always called as writer.) 13227 * This function goes through the down sequence even if the interface is 13228 * already down. There are 2 reasons. 13229 * a. Currently we permit interface routes that depend on down interfaces 13230 * to be added. This behaviour itself is questionable. However it appears 13231 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13232 * time. We go thru the cleanup in order to remove these routes. 13233 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13234 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13235 * down, but we need to cleanup i.e. do ill_dl_down and 13236 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13237 * 13238 * IP-MT notes: 13239 * 13240 * Model of reference to interfaces. 13241 * 13242 * The following members in ipif_t track references to the ipif. 13243 * int ipif_refcnt; Active reference count 13244 * 13245 * The following members in ill_t track references to the ill. 13246 * int ill_refcnt; active refcnt 13247 * uint_t ill_ire_cnt; Number of ires referencing ill 13248 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13249 * uint_t ill_nce_cnt; Number of nces referencing ill 13250 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13251 * 13252 * Reference to an ipif or ill can be obtained in any of the following ways. 13253 * 13254 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13255 * Pointers to ipif / ill from other data structures viz ire and conn. 13256 * Implicit reference to the ipif / ill by holding a reference to the ire. 13257 * 13258 * The ipif/ill lookup functions return a reference held ipif / ill. 13259 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13260 * This is a purely dynamic reference count associated with threads holding 13261 * references to the ipif / ill. Pointers from other structures do not 13262 * count towards this reference count. 13263 * 13264 * ill_ire_cnt is the number of ire's associated with the 13265 * ill. This is incremented whenever a new ire is created referencing the 13266 * ill. This is done atomically inside ire_add_v[46] where the ire is 13267 * actually added to the ire hash table. The count is decremented in 13268 * ire_inactive where the ire is destroyed. 13269 * 13270 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13271 * This is incremented atomically in 13272 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13273 * table. Similarly it is decremented in ncec_inactive() where the ncec 13274 * is destroyed. 13275 * 13276 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13277 * incremented atomically in nce_add() where the nce is actually added to the 13278 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13279 * is destroyed. 13280 * 13281 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13282 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13283 * 13284 * Flow of ioctls involving interface down/up 13285 * 13286 * The following is the sequence of an attempt to set some critical flags on an 13287 * up interface. 13288 * ip_sioctl_flags 13289 * ipif_down 13290 * wait for ipif to be quiescent 13291 * ipif_down_tail 13292 * ip_sioctl_flags_tail 13293 * 13294 * All set ioctls that involve down/up sequence would have a skeleton similar 13295 * to the above. All the *tail functions are called after the refcounts have 13296 * dropped to the appropriate values. 13297 * 13298 * SIOC ioctls during the IPIF_CHANGING interval. 13299 * 13300 * Threads handling SIOC set ioctls serialize on the squeue, but this 13301 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13302 * steps of internal changes to the state, some of which are visible in 13303 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13304 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13305 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13306 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13307 * the current exclusive operation completes. The IPIF_CHANGING check 13308 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13309 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13310 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13311 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13312 * until we release the ipsq_lock, even though the ill/ipif state flags 13313 * can change after we drop the ill_lock. 13314 */ 13315 int 13316 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13317 { 13318 ill_t *ill = ipif->ipif_ill; 13319 conn_t *connp; 13320 boolean_t success; 13321 boolean_t ipif_was_up = B_FALSE; 13322 ip_stack_t *ipst = ill->ill_ipst; 13323 13324 ASSERT(IAM_WRITER_IPIF(ipif)); 13325 13326 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13327 13328 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13329 ill_t *, ill, ipif_t *, ipif); 13330 13331 if (ipif->ipif_flags & IPIF_UP) { 13332 mutex_enter(&ill->ill_lock); 13333 ipif->ipif_flags &= ~IPIF_UP; 13334 ASSERT(ill->ill_ipif_up_count > 0); 13335 --ill->ill_ipif_up_count; 13336 mutex_exit(&ill->ill_lock); 13337 ipif_was_up = B_TRUE; 13338 /* Update status in SCTP's list */ 13339 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13340 ill_nic_event_dispatch(ipif->ipif_ill, 13341 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13342 } 13343 13344 /* 13345 * Removal of the last ipif from an ill may result in a DL_UNBIND 13346 * being sent to the driver, and we must not send any data packets to 13347 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13348 * ire and nce entries used in the data path will be cleaned 13349 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13350 * sure on new entries will be added until the ill is bound 13351 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13352 * receipt of a DL_BIND_ACK. 13353 */ 13354 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13355 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13356 ill->ill_dl_up) { 13357 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13358 } 13359 13360 /* 13361 * Blow away memberships we established in ipif_multicast_up(). 13362 */ 13363 ipif_multicast_down(ipif); 13364 13365 /* 13366 * Remove from the mapping for __sin6_src_id. We insert only 13367 * when the address is not INADDR_ANY. As IPv4 addresses are 13368 * stored as mapped addresses, we need to check for mapped 13369 * INADDR_ANY also. 13370 */ 13371 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13372 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13373 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13374 int err; 13375 13376 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13377 ipif->ipif_zoneid, ipst); 13378 if (err != 0) { 13379 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13380 } 13381 } 13382 13383 if (ipif_was_up) { 13384 /* only delete if we'd added ire's before */ 13385 if (ipif->ipif_isv6) 13386 ipif_delete_ires_v6(ipif); 13387 else 13388 ipif_delete_ires_v4(ipif); 13389 } 13390 13391 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13392 /* 13393 * Since the interface is now down, it may have just become 13394 * inactive. Note that this needs to be done even for a 13395 * lll_logical_down(), or ARP entries will not get correctly 13396 * restored when the interface comes back up. 13397 */ 13398 if (IS_UNDER_IPMP(ill)) 13399 ipmp_ill_refresh_active(ill); 13400 } 13401 13402 /* 13403 * neighbor-discovery or arp entries for this interface. The ipif 13404 * has to be quiesced, so we walk all the nce's and delete those 13405 * that point at the ipif->ipif_ill. At the same time, we also 13406 * update IPMP so that ipifs for data addresses are unbound. We dont 13407 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13408 * that for ipif_down_tail() 13409 */ 13410 ipif_nce_down(ipif); 13411 13412 /* 13413 * If this is the last ipif on the ill, we also need to remove 13414 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13415 * never succeed. 13416 */ 13417 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13418 ire_walk_ill(0, 0, ill_downi, ill, ill); 13419 13420 /* 13421 * Walk all CONNs that can have a reference on an ire for this 13422 * ipif (we actually walk all that now have stale references). 13423 */ 13424 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13425 13426 /* 13427 * If mp is NULL the caller will wait for the appropriate refcnt. 13428 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13429 * and ill_delete -> ipif_free -> ipif_down 13430 */ 13431 if (mp == NULL) { 13432 ASSERT(q == NULL); 13433 return (0); 13434 } 13435 13436 if (CONN_Q(q)) { 13437 connp = Q_TO_CONN(q); 13438 mutex_enter(&connp->conn_lock); 13439 } else { 13440 connp = NULL; 13441 } 13442 mutex_enter(&ill->ill_lock); 13443 /* 13444 * Are there any ire's pointing to this ipif that are still active ? 13445 * If this is the last ipif going down, are there any ire's pointing 13446 * to this ill that are still active ? 13447 */ 13448 if (ipif_is_quiescent(ipif)) { 13449 mutex_exit(&ill->ill_lock); 13450 if (connp != NULL) 13451 mutex_exit(&connp->conn_lock); 13452 return (0); 13453 } 13454 13455 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13456 ill->ill_name, (void *)ill)); 13457 /* 13458 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13459 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13460 * which in turn is called by the last refrele on the ipif/ill/ire. 13461 */ 13462 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13463 if (!success) { 13464 /* The conn is closing. So just return */ 13465 ASSERT(connp != NULL); 13466 mutex_exit(&ill->ill_lock); 13467 mutex_exit(&connp->conn_lock); 13468 return (EINTR); 13469 } 13470 13471 mutex_exit(&ill->ill_lock); 13472 if (connp != NULL) 13473 mutex_exit(&connp->conn_lock); 13474 return (EINPROGRESS); 13475 } 13476 13477 int 13478 ipif_down_tail(ipif_t *ipif) 13479 { 13480 ill_t *ill = ipif->ipif_ill; 13481 int err = 0; 13482 13483 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13484 ill_t *, ill, ipif_t *, ipif); 13485 13486 /* 13487 * Skip any loopback interface (null wq). 13488 * If this is the last logical interface on the ill 13489 * have ill_dl_down tell the driver we are gone (unbind) 13490 * Note that lun 0 can ipif_down even though 13491 * there are other logical units that are up. 13492 * This occurs e.g. when we change a "significant" IFF_ flag. 13493 */ 13494 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13495 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13496 ill->ill_dl_up) { 13497 ill_dl_down(ill); 13498 } 13499 if (!ipif->ipif_isv6) 13500 err = ipif_arp_down(ipif); 13501 13502 ill->ill_logical_down = 0; 13503 13504 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13505 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13506 return (err); 13507 } 13508 13509 /* 13510 * Bring interface logically down without bringing the physical interface 13511 * down e.g. when the netmask is changed. This avoids long lasting link 13512 * negotiations between an ethernet interface and a certain switches. 13513 */ 13514 static int 13515 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13516 { 13517 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13518 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13519 13520 /* 13521 * The ill_logical_down flag is a transient flag. It is set here 13522 * and is cleared once the down has completed in ipif_down_tail. 13523 * This flag does not indicate whether the ill stream is in the 13524 * DL_BOUND state with the driver. Instead this flag is used by 13525 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13526 * the driver. The state of the ill stream i.e. whether it is 13527 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13528 */ 13529 ipif->ipif_ill->ill_logical_down = 1; 13530 return (ipif_down(ipif, q, mp)); 13531 } 13532 13533 /* 13534 * Initiate deallocate of an IPIF. Always called as writer. Called by 13535 * ill_delete or ip_sioctl_removeif. 13536 */ 13537 static void 13538 ipif_free(ipif_t *ipif) 13539 { 13540 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13541 13542 ASSERT(IAM_WRITER_IPIF(ipif)); 13543 13544 if (ipif->ipif_recovery_id != 0) 13545 (void) untimeout(ipif->ipif_recovery_id); 13546 ipif->ipif_recovery_id = 0; 13547 13548 /* 13549 * Take down the interface. We can be called either from ill_delete 13550 * or from ip_sioctl_removeif. 13551 */ 13552 (void) ipif_down(ipif, NULL, NULL); 13553 13554 /* 13555 * Now that the interface is down, there's no chance it can still 13556 * become a duplicate. Cancel any timer that may have been set while 13557 * tearing down. 13558 */ 13559 if (ipif->ipif_recovery_id != 0) 13560 (void) untimeout(ipif->ipif_recovery_id); 13561 ipif->ipif_recovery_id = 0; 13562 13563 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13564 /* Remove pointers to this ill in the multicast routing tables */ 13565 reset_mrt_vif_ipif(ipif); 13566 /* If necessary, clear the cached source ipif rotor. */ 13567 if (ipif->ipif_ill->ill_src_ipif == ipif) 13568 ipif->ipif_ill->ill_src_ipif = NULL; 13569 rw_exit(&ipst->ips_ill_g_lock); 13570 } 13571 13572 static void 13573 ipif_free_tail(ipif_t *ipif) 13574 { 13575 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13576 13577 /* 13578 * Need to hold both ill_g_lock and ill_lock while 13579 * inserting or removing an ipif from the linked list 13580 * of ipifs hanging off the ill. 13581 */ 13582 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13583 13584 #ifdef DEBUG 13585 ipif_trace_cleanup(ipif); 13586 #endif 13587 13588 /* Ask SCTP to take it out of it list */ 13589 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13590 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13591 13592 /* Get it out of the ILL interface list. */ 13593 ipif_remove(ipif); 13594 rw_exit(&ipst->ips_ill_g_lock); 13595 13596 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13597 ASSERT(ipif->ipif_recovery_id == 0); 13598 ASSERT(ipif->ipif_ire_local == NULL); 13599 ASSERT(ipif->ipif_ire_if == NULL); 13600 13601 /* Free the memory. */ 13602 mi_free(ipif); 13603 } 13604 13605 /* 13606 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13607 * is zero. 13608 */ 13609 void 13610 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13611 { 13612 char lbuf[LIFNAMSIZ]; 13613 char *name; 13614 size_t name_len; 13615 13616 buf[0] = '\0'; 13617 name = ipif->ipif_ill->ill_name; 13618 name_len = ipif->ipif_ill->ill_name_length; 13619 if (ipif->ipif_id != 0) { 13620 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13621 ipif->ipif_id); 13622 name = lbuf; 13623 name_len = mi_strlen(name) + 1; 13624 } 13625 len -= 1; 13626 buf[len] = '\0'; 13627 len = MIN(len, name_len); 13628 bcopy(name, buf, len); 13629 } 13630 13631 /* 13632 * Sets `buf' to an ill name. 13633 */ 13634 void 13635 ill_get_name(const ill_t *ill, char *buf, int len) 13636 { 13637 char *name; 13638 size_t name_len; 13639 13640 name = ill->ill_name; 13641 name_len = ill->ill_name_length; 13642 len -= 1; 13643 buf[len] = '\0'; 13644 len = MIN(len, name_len); 13645 bcopy(name, buf, len); 13646 } 13647 13648 /* 13649 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13650 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13651 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13652 * (May be called as writer.) 13653 */ 13654 static ipif_t * 13655 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13656 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13657 { 13658 char *cp; 13659 char *endp; 13660 long id; 13661 ill_t *ill; 13662 ipif_t *ipif; 13663 uint_t ire_type; 13664 boolean_t did_alloc = B_FALSE; 13665 char last; 13666 13667 /* 13668 * If the caller wants to us to create the ipif, make sure we have a 13669 * valid zoneid 13670 */ 13671 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13672 13673 if (namelen == 0) { 13674 return (NULL); 13675 } 13676 13677 *exists = B_FALSE; 13678 /* Look for a colon in the name. */ 13679 endp = &name[namelen]; 13680 for (cp = endp; --cp > name; ) { 13681 if (*cp == IPIF_SEPARATOR_CHAR) 13682 break; 13683 } 13684 13685 if (*cp == IPIF_SEPARATOR_CHAR) { 13686 /* 13687 * Reject any non-decimal aliases for logical 13688 * interfaces. Aliases with leading zeroes 13689 * are also rejected as they introduce ambiguity 13690 * in the naming of the interfaces. 13691 * In order to confirm with existing semantics, 13692 * and to not break any programs/script relying 13693 * on that behaviour, if<0>:0 is considered to be 13694 * a valid interface. 13695 * 13696 * If alias has two or more digits and the first 13697 * is zero, fail. 13698 */ 13699 if (&cp[2] < endp && cp[1] == '0') { 13700 return (NULL); 13701 } 13702 } 13703 13704 if (cp <= name) { 13705 cp = endp; 13706 } 13707 last = *cp; 13708 *cp = '\0'; 13709 13710 /* 13711 * Look up the ILL, based on the portion of the name 13712 * before the slash. ill_lookup_on_name returns a held ill. 13713 * Temporary to check whether ill exists already. If so 13714 * ill_lookup_on_name will clear it. 13715 */ 13716 ill = ill_lookup_on_name(name, do_alloc, isv6, 13717 &did_alloc, ipst); 13718 *cp = last; 13719 if (ill == NULL) 13720 return (NULL); 13721 13722 /* Establish the unit number in the name. */ 13723 id = 0; 13724 if (cp < endp && *endp == '\0') { 13725 /* If there was a colon, the unit number follows. */ 13726 cp++; 13727 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13728 ill_refrele(ill); 13729 return (NULL); 13730 } 13731 } 13732 13733 mutex_enter(&ill->ill_lock); 13734 /* Now see if there is an IPIF with this unit number. */ 13735 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13736 if (ipif->ipif_id == id) { 13737 if (zoneid != ALL_ZONES && 13738 zoneid != ipif->ipif_zoneid && 13739 ipif->ipif_zoneid != ALL_ZONES) { 13740 mutex_exit(&ill->ill_lock); 13741 ill_refrele(ill); 13742 return (NULL); 13743 } 13744 if (IPIF_CAN_LOOKUP(ipif)) { 13745 ipif_refhold_locked(ipif); 13746 mutex_exit(&ill->ill_lock); 13747 if (!did_alloc) 13748 *exists = B_TRUE; 13749 /* 13750 * Drop locks before calling ill_refrele 13751 * since it can potentially call into 13752 * ipif_ill_refrele_tail which can end up 13753 * in trying to acquire any lock. 13754 */ 13755 ill_refrele(ill); 13756 return (ipif); 13757 } 13758 } 13759 } 13760 13761 if (!do_alloc) { 13762 mutex_exit(&ill->ill_lock); 13763 ill_refrele(ill); 13764 return (NULL); 13765 } 13766 13767 /* 13768 * If none found, atomically allocate and return a new one. 13769 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13770 * to support "receive only" use of lo0:1 etc. as is still done 13771 * below as an initial guess. 13772 * However, this is now likely to be overriden later in ipif_up_done() 13773 * when we know for sure what address has been configured on the 13774 * interface, since we might have more than one loopback interface 13775 * with a loopback address, e.g. in the case of zones, and all the 13776 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13777 */ 13778 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13779 ire_type = IRE_LOOPBACK; 13780 else 13781 ire_type = IRE_LOCAL; 13782 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13783 if (ipif != NULL) 13784 ipif_refhold_locked(ipif); 13785 mutex_exit(&ill->ill_lock); 13786 ill_refrele(ill); 13787 return (ipif); 13788 } 13789 13790 /* 13791 * Variant of the above that queues the request on the ipsq when 13792 * IPIF_CHANGING is set. 13793 */ 13794 static ipif_t * 13795 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13796 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13797 ip_stack_t *ipst) 13798 { 13799 char *cp; 13800 char *endp; 13801 long id; 13802 ill_t *ill; 13803 ipif_t *ipif; 13804 boolean_t did_alloc = B_FALSE; 13805 ipsq_t *ipsq; 13806 13807 if (error != NULL) 13808 *error = 0; 13809 13810 if (namelen == 0) { 13811 if (error != NULL) 13812 *error = ENXIO; 13813 return (NULL); 13814 } 13815 13816 /* Look for a colon in the name. */ 13817 endp = &name[namelen]; 13818 for (cp = endp; --cp > name; ) { 13819 if (*cp == IPIF_SEPARATOR_CHAR) 13820 break; 13821 } 13822 13823 if (*cp == IPIF_SEPARATOR_CHAR) { 13824 /* 13825 * Reject any non-decimal aliases for logical 13826 * interfaces. Aliases with leading zeroes 13827 * are also rejected as they introduce ambiguity 13828 * in the naming of the interfaces. 13829 * In order to confirm with existing semantics, 13830 * and to not break any programs/script relying 13831 * on that behaviour, if<0>:0 is considered to be 13832 * a valid interface. 13833 * 13834 * If alias has two or more digits and the first 13835 * is zero, fail. 13836 */ 13837 if (&cp[2] < endp && cp[1] == '0') { 13838 if (error != NULL) 13839 *error = EINVAL; 13840 return (NULL); 13841 } 13842 } 13843 13844 if (cp <= name) { 13845 cp = endp; 13846 } else { 13847 *cp = '\0'; 13848 } 13849 13850 /* 13851 * Look up the ILL, based on the portion of the name 13852 * before the slash. ill_lookup_on_name returns a held ill. 13853 * Temporary to check whether ill exists already. If so 13854 * ill_lookup_on_name will clear it. 13855 */ 13856 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13857 if (cp != endp) 13858 *cp = IPIF_SEPARATOR_CHAR; 13859 if (ill == NULL) 13860 return (NULL); 13861 13862 /* Establish the unit number in the name. */ 13863 id = 0; 13864 if (cp < endp && *endp == '\0') { 13865 /* If there was a colon, the unit number follows. */ 13866 cp++; 13867 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13868 ill_refrele(ill); 13869 if (error != NULL) 13870 *error = ENXIO; 13871 return (NULL); 13872 } 13873 } 13874 13875 GRAB_CONN_LOCK(q); 13876 mutex_enter(&ill->ill_lock); 13877 /* Now see if there is an IPIF with this unit number. */ 13878 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13879 if (ipif->ipif_id == id) { 13880 if (zoneid != ALL_ZONES && 13881 zoneid != ipif->ipif_zoneid && 13882 ipif->ipif_zoneid != ALL_ZONES) { 13883 mutex_exit(&ill->ill_lock); 13884 RELEASE_CONN_LOCK(q); 13885 ill_refrele(ill); 13886 if (error != NULL) 13887 *error = ENXIO; 13888 return (NULL); 13889 } 13890 13891 if (!(IPIF_IS_CHANGING(ipif) || 13892 IPIF_IS_CONDEMNED(ipif)) || 13893 IAM_WRITER_IPIF(ipif)) { 13894 ipif_refhold_locked(ipif); 13895 mutex_exit(&ill->ill_lock); 13896 /* 13897 * Drop locks before calling ill_refrele 13898 * since it can potentially call into 13899 * ipif_ill_refrele_tail which can end up 13900 * in trying to acquire any lock. 13901 */ 13902 RELEASE_CONN_LOCK(q); 13903 ill_refrele(ill); 13904 return (ipif); 13905 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13906 ipsq = ill->ill_phyint->phyint_ipsq; 13907 mutex_enter(&ipsq->ipsq_lock); 13908 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13909 mutex_exit(&ill->ill_lock); 13910 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13911 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13912 mutex_exit(&ipsq->ipsq_lock); 13913 RELEASE_CONN_LOCK(q); 13914 ill_refrele(ill); 13915 if (error != NULL) 13916 *error = EINPROGRESS; 13917 return (NULL); 13918 } 13919 } 13920 } 13921 RELEASE_CONN_LOCK(q); 13922 mutex_exit(&ill->ill_lock); 13923 ill_refrele(ill); 13924 if (error != NULL) 13925 *error = ENXIO; 13926 return (NULL); 13927 } 13928 13929 /* 13930 * This routine is called whenever a new address comes up on an ipif. If 13931 * we are configured to respond to address mask requests, then we are supposed 13932 * to broadcast an address mask reply at this time. This routine is also 13933 * called if we are already up, but a netmask change is made. This is legal 13934 * but might not make the system manager very popular. (May be called 13935 * as writer.) 13936 */ 13937 void 13938 ipif_mask_reply(ipif_t *ipif) 13939 { 13940 icmph_t *icmph; 13941 ipha_t *ipha; 13942 mblk_t *mp; 13943 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13944 ip_xmit_attr_t ixas; 13945 13946 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13947 13948 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13949 return; 13950 13951 /* ICMP mask reply is IPv4 only */ 13952 ASSERT(!ipif->ipif_isv6); 13953 /* ICMP mask reply is not for a loopback interface */ 13954 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13955 13956 if (ipif->ipif_lcl_addr == INADDR_ANY) 13957 return; 13958 13959 mp = allocb(REPLY_LEN, BPRI_HI); 13960 if (mp == NULL) 13961 return; 13962 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13963 13964 ipha = (ipha_t *)mp->b_rptr; 13965 bzero(ipha, REPLY_LEN); 13966 *ipha = icmp_ipha; 13967 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13968 ipha->ipha_src = ipif->ipif_lcl_addr; 13969 ipha->ipha_dst = ipif->ipif_brd_addr; 13970 ipha->ipha_length = htons(REPLY_LEN); 13971 ipha->ipha_ident = 0; 13972 13973 icmph = (icmph_t *)&ipha[1]; 13974 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13975 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13976 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13977 13978 bzero(&ixas, sizeof (ixas)); 13979 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13980 ixas.ixa_zoneid = ALL_ZONES; 13981 ixas.ixa_ifindex = 0; 13982 ixas.ixa_ipst = ipst; 13983 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13984 (void) ip_output_simple(mp, &ixas); 13985 ixa_cleanup(&ixas); 13986 #undef REPLY_LEN 13987 } 13988 13989 /* 13990 * Join the ipif specific multicast groups. 13991 * Must be called after a mapping has been set up in the resolver. (Always 13992 * called as writer.) 13993 */ 13994 void 13995 ipif_multicast_up(ipif_t *ipif) 13996 { 13997 int err; 13998 ill_t *ill; 13999 ilm_t *ilm; 14000 14001 ASSERT(IAM_WRITER_IPIF(ipif)); 14002 14003 ill = ipif->ipif_ill; 14004 14005 ip1dbg(("ipif_multicast_up\n")); 14006 if (!(ill->ill_flags & ILLF_MULTICAST) || 14007 ipif->ipif_allhosts_ilm != NULL) 14008 return; 14009 14010 if (ipif->ipif_isv6) { 14011 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14012 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14013 14014 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14015 14016 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14017 return; 14018 14019 ip1dbg(("ipif_multicast_up - addmulti\n")); 14020 14021 /* 14022 * Join the all hosts multicast address. We skip this for 14023 * underlying IPMP interfaces since they should be invisible. 14024 */ 14025 if (!IS_UNDER_IPMP(ill)) { 14026 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14027 &err); 14028 if (ilm == NULL) { 14029 ASSERT(err != 0); 14030 ip0dbg(("ipif_multicast_up: " 14031 "all_hosts_mcast failed %d\n", err)); 14032 return; 14033 } 14034 ipif->ipif_allhosts_ilm = ilm; 14035 } 14036 14037 /* 14038 * Enable multicast for the solicited node multicast address. 14039 * If IPMP we need to put the membership on the upper ill. 14040 */ 14041 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14042 ill_t *mcast_ill = NULL; 14043 boolean_t need_refrele; 14044 14045 if (IS_UNDER_IPMP(ill) && 14046 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14047 need_refrele = B_TRUE; 14048 } else { 14049 mcast_ill = ill; 14050 need_refrele = B_FALSE; 14051 } 14052 14053 ilm = ip_addmulti(&v6solmc, mcast_ill, 14054 ipif->ipif_zoneid, &err); 14055 if (need_refrele) 14056 ill_refrele(mcast_ill); 14057 14058 if (ilm == NULL) { 14059 ASSERT(err != 0); 14060 ip0dbg(("ipif_multicast_up: solicited MC" 14061 " failed %d\n", err)); 14062 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14063 ipif->ipif_allhosts_ilm = NULL; 14064 (void) ip_delmulti(ilm); 14065 } 14066 return; 14067 } 14068 ipif->ipif_solmulti_ilm = ilm; 14069 } 14070 } else { 14071 in6_addr_t v6group; 14072 14073 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14074 return; 14075 14076 /* Join the all hosts multicast address */ 14077 ip1dbg(("ipif_multicast_up - addmulti\n")); 14078 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14079 14080 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14081 if (ilm == NULL) { 14082 ASSERT(err != 0); 14083 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14084 return; 14085 } 14086 ipif->ipif_allhosts_ilm = ilm; 14087 } 14088 } 14089 14090 /* 14091 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14092 * (ilms from explicit memberships are handled in conn_update_ill.) 14093 */ 14094 void 14095 ipif_multicast_down(ipif_t *ipif) 14096 { 14097 ASSERT(IAM_WRITER_IPIF(ipif)); 14098 14099 ip1dbg(("ipif_multicast_down\n")); 14100 14101 if (ipif->ipif_allhosts_ilm != NULL) { 14102 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14103 ipif->ipif_allhosts_ilm = NULL; 14104 } 14105 if (ipif->ipif_solmulti_ilm != NULL) { 14106 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14107 ipif->ipif_solmulti_ilm = NULL; 14108 } 14109 } 14110 14111 /* 14112 * Used when an interface comes up to recreate any extra routes on this 14113 * interface. 14114 */ 14115 int 14116 ill_recover_saved_ire(ill_t *ill) 14117 { 14118 mblk_t *mp; 14119 ip_stack_t *ipst = ill->ill_ipst; 14120 14121 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14122 14123 mutex_enter(&ill->ill_saved_ire_lock); 14124 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14125 ire_t *ire, *nire; 14126 ifrt_t *ifrt; 14127 14128 ifrt = (ifrt_t *)mp->b_rptr; 14129 /* 14130 * Create a copy of the IRE with the saved address and netmask. 14131 */ 14132 if (ill->ill_isv6) { 14133 ire = ire_create_v6( 14134 &ifrt->ifrt_v6addr, 14135 &ifrt->ifrt_v6mask, 14136 &ifrt->ifrt_v6gateway_addr, 14137 ifrt->ifrt_type, 14138 ill, 14139 ifrt->ifrt_zoneid, 14140 ifrt->ifrt_flags, 14141 NULL, 14142 ipst); 14143 } else { 14144 ire = ire_create( 14145 (uint8_t *)&ifrt->ifrt_addr, 14146 (uint8_t *)&ifrt->ifrt_mask, 14147 (uint8_t *)&ifrt->ifrt_gateway_addr, 14148 ifrt->ifrt_type, 14149 ill, 14150 ifrt->ifrt_zoneid, 14151 ifrt->ifrt_flags, 14152 NULL, 14153 ipst); 14154 } 14155 if (ire == NULL) { 14156 mutex_exit(&ill->ill_saved_ire_lock); 14157 return (ENOMEM); 14158 } 14159 14160 if (ifrt->ifrt_flags & RTF_SETSRC) { 14161 if (ill->ill_isv6) { 14162 ire->ire_setsrc_addr_v6 = 14163 ifrt->ifrt_v6setsrc_addr; 14164 } else { 14165 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14166 } 14167 } 14168 14169 /* 14170 * Some software (for example, GateD and Sun Cluster) attempts 14171 * to create (what amount to) IRE_PREFIX routes with the 14172 * loopback address as the gateway. This is primarily done to 14173 * set up prefixes with the RTF_REJECT flag set (for example, 14174 * when generating aggregate routes.) 14175 * 14176 * If the IRE type (as defined by ill->ill_net_type) is 14177 * IRE_LOOPBACK, then we map the request into a 14178 * IRE_IF_NORESOLVER. 14179 */ 14180 if (ill->ill_net_type == IRE_LOOPBACK) 14181 ire->ire_type = IRE_IF_NORESOLVER; 14182 14183 /* 14184 * ire held by ire_add, will be refreled' towards the 14185 * the end of ipif_up_done 14186 */ 14187 nire = ire_add(ire); 14188 /* 14189 * Check if it was a duplicate entry. This handles 14190 * the case of two racing route adds for the same route 14191 */ 14192 if (nire == NULL) { 14193 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14194 } else if (nire != ire) { 14195 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14196 (void *)nire)); 14197 ire_delete(nire); 14198 } else { 14199 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14200 (void *)nire)); 14201 } 14202 if (nire != NULL) 14203 ire_refrele(nire); 14204 } 14205 mutex_exit(&ill->ill_saved_ire_lock); 14206 return (0); 14207 } 14208 14209 /* 14210 * Used to set the netmask and broadcast address to default values when the 14211 * interface is brought up. (Always called as writer.) 14212 */ 14213 static void 14214 ipif_set_default(ipif_t *ipif) 14215 { 14216 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14217 14218 if (!ipif->ipif_isv6) { 14219 /* 14220 * Interface holds an IPv4 address. Default 14221 * mask is the natural netmask. 14222 */ 14223 if (!ipif->ipif_net_mask) { 14224 ipaddr_t v4mask; 14225 14226 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14227 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14228 } 14229 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14230 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14231 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14232 } else { 14233 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14234 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14235 } 14236 /* 14237 * NOTE: SunOS 4.X does this even if the broadcast address 14238 * has been already set thus we do the same here. 14239 */ 14240 if (ipif->ipif_flags & IPIF_BROADCAST) { 14241 ipaddr_t v4addr; 14242 14243 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14244 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14245 } 14246 } else { 14247 /* 14248 * Interface holds an IPv6-only address. Default 14249 * mask is all-ones. 14250 */ 14251 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14252 ipif->ipif_v6net_mask = ipv6_all_ones; 14253 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14254 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14255 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14256 } else { 14257 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14258 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14259 } 14260 } 14261 } 14262 14263 /* 14264 * Return 0 if this address can be used as local address without causing 14265 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14266 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14267 * Note that the same IPv6 link-local address is allowed as long as the ills 14268 * are not on the same link. 14269 */ 14270 int 14271 ip_addr_availability_check(ipif_t *new_ipif) 14272 { 14273 in6_addr_t our_v6addr; 14274 ill_t *ill; 14275 ipif_t *ipif; 14276 ill_walk_context_t ctx; 14277 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14278 14279 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14280 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14281 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14282 14283 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14284 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14285 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14286 return (0); 14287 14288 our_v6addr = new_ipif->ipif_v6lcl_addr; 14289 14290 if (new_ipif->ipif_isv6) 14291 ill = ILL_START_WALK_V6(&ctx, ipst); 14292 else 14293 ill = ILL_START_WALK_V4(&ctx, ipst); 14294 14295 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14296 for (ipif = ill->ill_ipif; ipif != NULL; 14297 ipif = ipif->ipif_next) { 14298 if ((ipif == new_ipif) || 14299 !(ipif->ipif_flags & IPIF_UP) || 14300 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14301 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14302 &our_v6addr)) 14303 continue; 14304 14305 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14306 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14307 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14308 ipif->ipif_flags |= IPIF_UNNUMBERED; 14309 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14310 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14311 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14312 continue; 14313 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14314 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14315 continue; 14316 else if (new_ipif->ipif_ill == ill) 14317 return (EADDRINUSE); 14318 else 14319 return (EADDRNOTAVAIL); 14320 } 14321 } 14322 14323 return (0); 14324 } 14325 14326 /* 14327 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14328 * IREs for the ipif. 14329 * When the routine returns EINPROGRESS then mp has been consumed and 14330 * the ioctl will be acked from ip_rput_dlpi. 14331 */ 14332 int 14333 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14334 { 14335 ill_t *ill = ipif->ipif_ill; 14336 boolean_t isv6 = ipif->ipif_isv6; 14337 int err = 0; 14338 boolean_t success; 14339 uint_t ipif_orig_id; 14340 ip_stack_t *ipst = ill->ill_ipst; 14341 14342 ASSERT(IAM_WRITER_IPIF(ipif)); 14343 14344 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14345 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14346 ill_t *, ill, ipif_t *, ipif); 14347 14348 /* Shouldn't get here if it is already up. */ 14349 if (ipif->ipif_flags & IPIF_UP) 14350 return (EALREADY); 14351 14352 /* 14353 * If this is a request to bring up a data address on an interface 14354 * under IPMP, then move the address to its IPMP meta-interface and 14355 * try to bring it up. One complication is that the zeroth ipif for 14356 * an ill is special, in that every ill always has one, and that code 14357 * throughout IP deferences ill->ill_ipif without holding any locks. 14358 */ 14359 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14360 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14361 ipif_t *stubipif = NULL, *moveipif = NULL; 14362 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14363 14364 /* 14365 * The ipif being brought up should be quiesced. If it's not, 14366 * something has gone amiss and we need to bail out. (If it's 14367 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14368 */ 14369 mutex_enter(&ill->ill_lock); 14370 if (!ipif_is_quiescent(ipif)) { 14371 mutex_exit(&ill->ill_lock); 14372 return (EINVAL); 14373 } 14374 mutex_exit(&ill->ill_lock); 14375 14376 /* 14377 * If we're going to need to allocate ipifs, do it prior 14378 * to starting the move (and grabbing locks). 14379 */ 14380 if (ipif->ipif_id == 0) { 14381 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14382 B_FALSE, &err)) == NULL) { 14383 return (err); 14384 } 14385 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14386 B_FALSE, &err)) == NULL) { 14387 mi_free(moveipif); 14388 return (err); 14389 } 14390 } 14391 14392 /* 14393 * Grab or transfer the ipif to move. During the move, keep 14394 * ill_g_lock held to prevent any ill walker threads from 14395 * seeing things in an inconsistent state. 14396 */ 14397 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14398 if (ipif->ipif_id != 0) { 14399 ipif_remove(ipif); 14400 } else { 14401 ipif_transfer(ipif, moveipif, stubipif); 14402 ipif = moveipif; 14403 } 14404 14405 /* 14406 * Place the ipif on the IPMP ill. If the zeroth ipif on 14407 * the IPMP ill is a stub (0.0.0.0 down address) then we 14408 * replace that one. Otherwise, pick the next available slot. 14409 */ 14410 ipif->ipif_ill = ipmp_ill; 14411 ipif_orig_id = ipif->ipif_id; 14412 14413 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14414 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14415 ipif = ipmp_ill->ill_ipif; 14416 } else { 14417 ipif->ipif_id = -1; 14418 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14419 /* 14420 * No more available ipif_id's -- put it back 14421 * on the original ill and fail the operation. 14422 * Since we're writer on the ill, we can be 14423 * sure our old slot is still available. 14424 */ 14425 ipif->ipif_id = ipif_orig_id; 14426 ipif->ipif_ill = ill; 14427 if (ipif_orig_id == 0) { 14428 ipif_transfer(ipif, ill->ill_ipif, 14429 NULL); 14430 } else { 14431 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14432 } 14433 rw_exit(&ipst->ips_ill_g_lock); 14434 return (err); 14435 } 14436 } 14437 rw_exit(&ipst->ips_ill_g_lock); 14438 14439 /* 14440 * Tell SCTP that the ipif has moved. Note that even if we 14441 * had to allocate a new ipif, the original sequence id was 14442 * preserved and therefore SCTP won't know. 14443 */ 14444 sctp_move_ipif(ipif, ill, ipmp_ill); 14445 14446 /* 14447 * If the ipif being brought up was on slot zero, then we 14448 * first need to bring up the placeholder we stuck there. In 14449 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14450 * call to ipif_up() itself, if we successfully bring up the 14451 * placeholder, we'll check ill_move_ipif and bring it up too. 14452 */ 14453 if (ipif_orig_id == 0) { 14454 ASSERT(ill->ill_move_ipif == NULL); 14455 ill->ill_move_ipif = ipif; 14456 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14457 ASSERT(ill->ill_move_ipif == NULL); 14458 if (err != EINPROGRESS) 14459 ill->ill_move_ipif = NULL; 14460 return (err); 14461 } 14462 14463 /* 14464 * Bring it up on the IPMP ill. 14465 */ 14466 return (ipif_up(ipif, q, mp)); 14467 } 14468 14469 /* Skip arp/ndp for any loopback interface. */ 14470 if (ill->ill_wq != NULL) { 14471 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14472 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14473 14474 if (!ill->ill_dl_up) { 14475 /* 14476 * ill_dl_up is not yet set. i.e. we are yet to 14477 * DL_BIND with the driver and this is the first 14478 * logical interface on the ill to become "up". 14479 * Tell the driver to get going (via DL_BIND_REQ). 14480 * Note that changing "significant" IFF_ flags 14481 * address/netmask etc cause a down/up dance, but 14482 * does not cause an unbind (DL_UNBIND) with the driver 14483 */ 14484 return (ill_dl_up(ill, ipif, mp, q)); 14485 } 14486 14487 /* 14488 * ipif_resolver_up may end up needeing to bind/attach 14489 * the ARP stream, which in turn necessitates a 14490 * DLPI message exchange with the driver. ioctls are 14491 * serialized and so we cannot send more than one 14492 * interface up message at a time. If ipif_resolver_up 14493 * does need to wait for the DLPI handshake for the ARP stream, 14494 * we get EINPROGRESS and we will complete in arp_bringup_done. 14495 */ 14496 14497 ASSERT(connp != NULL || !CONN_Q(q)); 14498 if (connp != NULL) 14499 mutex_enter(&connp->conn_lock); 14500 mutex_enter(&ill->ill_lock); 14501 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14502 mutex_exit(&ill->ill_lock); 14503 if (connp != NULL) 14504 mutex_exit(&connp->conn_lock); 14505 if (!success) 14506 return (EINTR); 14507 14508 /* 14509 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14510 * complete when ipif_ndp_up returns. 14511 */ 14512 err = ipif_resolver_up(ipif, Res_act_initial); 14513 if (err == EINPROGRESS) { 14514 /* We will complete it in arp_bringup_done() */ 14515 return (err); 14516 } 14517 14518 if (isv6 && err == 0) 14519 err = ipif_ndp_up(ipif, B_TRUE); 14520 14521 ASSERT(err != EINPROGRESS); 14522 mp = ipsq_pending_mp_get(ipsq, &connp); 14523 ASSERT(mp != NULL); 14524 if (err != 0) 14525 return (err); 14526 } else { 14527 /* 14528 * Interfaces without underlying hardware don't do duplicate 14529 * address detection. 14530 */ 14531 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14532 ipif->ipif_addr_ready = 1; 14533 err = ill_add_ires(ill); 14534 /* allocation failure? */ 14535 if (err != 0) 14536 return (err); 14537 } 14538 14539 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14540 if (err == 0 && ill->ill_move_ipif != NULL) { 14541 ipif = ill->ill_move_ipif; 14542 ill->ill_move_ipif = NULL; 14543 return (ipif_up(ipif, q, mp)); 14544 } 14545 return (err); 14546 } 14547 14548 /* 14549 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14550 * The identical set of IREs need to be removed in ill_delete_ires(). 14551 */ 14552 int 14553 ill_add_ires(ill_t *ill) 14554 { 14555 ire_t *ire; 14556 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14557 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14558 14559 if (ill->ill_ire_multicast != NULL) 14560 return (0); 14561 14562 /* 14563 * provide some dummy ire_addr for creating the ire. 14564 */ 14565 if (ill->ill_isv6) { 14566 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14567 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14568 } else { 14569 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14570 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14571 } 14572 if (ire == NULL) 14573 return (ENOMEM); 14574 14575 ill->ill_ire_multicast = ire; 14576 return (0); 14577 } 14578 14579 void 14580 ill_delete_ires(ill_t *ill) 14581 { 14582 if (ill->ill_ire_multicast != NULL) { 14583 /* 14584 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14585 * which was taken without any th_tracing enabled. 14586 * We also mark it as condemned (note that it was never added) 14587 * so that caching conn's can move off of it. 14588 */ 14589 ire_make_condemned(ill->ill_ire_multicast); 14590 ire_refrele_notr(ill->ill_ire_multicast); 14591 ill->ill_ire_multicast = NULL; 14592 } 14593 } 14594 14595 /* 14596 * Perform a bind for the physical device. 14597 * When the routine returns EINPROGRESS then mp has been consumed and 14598 * the ioctl will be acked from ip_rput_dlpi. 14599 * Allocate an unbind message and save it until ipif_down. 14600 */ 14601 static int 14602 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14603 { 14604 mblk_t *bind_mp = NULL; 14605 mblk_t *unbind_mp = NULL; 14606 conn_t *connp; 14607 boolean_t success; 14608 int err; 14609 14610 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14611 14612 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14613 ASSERT(IAM_WRITER_ILL(ill)); 14614 ASSERT(mp != NULL); 14615 14616 /* 14617 * Make sure we have an IRE_MULTICAST in case we immediately 14618 * start receiving packets. 14619 */ 14620 err = ill_add_ires(ill); 14621 if (err != 0) 14622 goto bad; 14623 14624 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14625 DL_BIND_REQ); 14626 if (bind_mp == NULL) 14627 goto bad; 14628 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14629 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14630 14631 /* 14632 * ill_unbind_mp would be non-null if the following sequence had 14633 * happened: 14634 * - send DL_BIND_REQ to driver, wait for response 14635 * - multiple ioctls that need to bring the ipif up are encountered, 14636 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14637 * These ioctls will then be enqueued on the ipsq 14638 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14639 * At this point, the pending ioctls in the ipsq will be drained, and 14640 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14641 * a non-null ill->ill_unbind_mp 14642 */ 14643 if (ill->ill_unbind_mp == NULL) { 14644 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14645 DL_UNBIND_REQ); 14646 if (unbind_mp == NULL) 14647 goto bad; 14648 } 14649 /* 14650 * Record state needed to complete this operation when the 14651 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14652 */ 14653 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14654 ASSERT(connp != NULL || !CONN_Q(q)); 14655 GRAB_CONN_LOCK(q); 14656 mutex_enter(&ipif->ipif_ill->ill_lock); 14657 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14658 mutex_exit(&ipif->ipif_ill->ill_lock); 14659 RELEASE_CONN_LOCK(q); 14660 if (!success) 14661 goto bad; 14662 14663 /* 14664 * Save the unbind message for ill_dl_down(); it will be consumed when 14665 * the interface goes down. 14666 */ 14667 if (ill->ill_unbind_mp == NULL) 14668 ill->ill_unbind_mp = unbind_mp; 14669 14670 ill_dlpi_send(ill, bind_mp); 14671 /* Send down link-layer capabilities probe if not already done. */ 14672 ill_capability_probe(ill); 14673 14674 /* 14675 * Sysid used to rely on the fact that netboots set domainname 14676 * and the like. Now that miniroot boots aren't strictly netboots 14677 * and miniroot network configuration is driven from userland 14678 * these things still need to be set. This situation can be detected 14679 * by comparing the interface being configured here to the one 14680 * dhcifname was set to reference by the boot loader. Once sysid is 14681 * converted to use dhcp_ipc_getinfo() this call can go away. 14682 */ 14683 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14684 (strcmp(ill->ill_name, dhcifname) == 0) && 14685 (strlen(srpc_domain) == 0)) { 14686 if (dhcpinit() != 0) 14687 cmn_err(CE_WARN, "no cached dhcp response"); 14688 } 14689 14690 /* 14691 * This operation will complete in ip_rput_dlpi with either 14692 * a DL_BIND_ACK or DL_ERROR_ACK. 14693 */ 14694 return (EINPROGRESS); 14695 bad: 14696 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14697 14698 freemsg(bind_mp); 14699 freemsg(unbind_mp); 14700 return (ENOMEM); 14701 } 14702 14703 /* Add room for tcp+ip headers */ 14704 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14705 14706 /* 14707 * DLPI and ARP is up. 14708 * Create all the IREs associated with an interface. Bring up multicast. 14709 * Set the interface flag and finish other initialization 14710 * that potentially had to be deferred to after DL_BIND_ACK. 14711 */ 14712 int 14713 ipif_up_done(ipif_t *ipif) 14714 { 14715 ill_t *ill = ipif->ipif_ill; 14716 int err = 0; 14717 boolean_t loopback = B_FALSE; 14718 boolean_t update_src_selection = B_TRUE; 14719 ipif_t *tmp_ipif; 14720 14721 ip1dbg(("ipif_up_done(%s:%u)\n", 14722 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14723 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14724 ill_t *, ill, ipif_t *, ipif); 14725 14726 /* Check if this is a loopback interface */ 14727 if (ipif->ipif_ill->ill_wq == NULL) 14728 loopback = B_TRUE; 14729 14730 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14731 14732 /* 14733 * If all other interfaces for this ill are down or DEPRECATED, 14734 * or otherwise unsuitable for source address selection, 14735 * reset the src generation numbers to make sure source 14736 * address selection gets to take this new ipif into account. 14737 * No need to hold ill_lock while traversing the ipif list since 14738 * we are writer 14739 */ 14740 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14741 tmp_ipif = tmp_ipif->ipif_next) { 14742 if (((tmp_ipif->ipif_flags & 14743 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14744 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14745 (tmp_ipif == ipif)) 14746 continue; 14747 /* first useable pre-existing interface */ 14748 update_src_selection = B_FALSE; 14749 break; 14750 } 14751 if (update_src_selection) 14752 ip_update_source_selection(ill->ill_ipst); 14753 14754 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14755 nce_t *loop_nce = NULL; 14756 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14757 14758 /* 14759 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14760 * ipif_lookup_on_name(), but in the case of zones we can have 14761 * several loopback addresses on lo0. So all the interfaces with 14762 * loopback addresses need to be marked IRE_LOOPBACK. 14763 */ 14764 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14765 htonl(INADDR_LOOPBACK)) 14766 ipif->ipif_ire_type = IRE_LOOPBACK; 14767 else 14768 ipif->ipif_ire_type = IRE_LOCAL; 14769 if (ill->ill_net_type != IRE_LOOPBACK) 14770 flags |= NCE_F_PUBLISH; 14771 14772 /* add unicast nce for the local addr */ 14773 err = nce_lookup_then_add_v4(ill, NULL, 14774 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14775 ND_REACHABLE, &loop_nce); 14776 /* A shared-IP zone sees EEXIST for lo0:N */ 14777 if (err == 0 || err == EEXIST) { 14778 ipif->ipif_added_nce = 1; 14779 loop_nce->nce_ipif_cnt++; 14780 nce_refrele(loop_nce); 14781 err = 0; 14782 } else { 14783 ASSERT(loop_nce == NULL); 14784 return (err); 14785 } 14786 } 14787 14788 /* Create all the IREs associated with this interface */ 14789 err = ipif_add_ires_v4(ipif, loopback); 14790 if (err != 0) { 14791 /* 14792 * see comments about return value from 14793 * ip_addr_availability_check() in ipif_add_ires_v4(). 14794 */ 14795 if (err != EADDRINUSE) { 14796 (void) ipif_arp_down(ipif); 14797 } else { 14798 /* 14799 * Make IPMP aware of the deleted ipif so that 14800 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14801 * can be completed. Note that we do not want to 14802 * destroy the nce that was created on the ipmp_ill 14803 * for the active copy of the duplicate address in 14804 * use. 14805 */ 14806 if (IS_IPMP(ill)) 14807 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14808 err = EADDRNOTAVAIL; 14809 } 14810 return (err); 14811 } 14812 14813 if (ill->ill_ipif_up_count == 1 && !loopback) { 14814 /* Recover any additional IREs entries for this ill */ 14815 (void) ill_recover_saved_ire(ill); 14816 } 14817 14818 if (ill->ill_need_recover_multicast) { 14819 /* 14820 * Need to recover all multicast memberships in the driver. 14821 * This had to be deferred until we had attached. The same 14822 * code exists in ipif_up_done_v6() to recover IPv6 14823 * memberships. 14824 * 14825 * Note that it would be preferable to unconditionally do the 14826 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14827 * that since ill_join_allmulti() depends on ill_dl_up being 14828 * set, and it is not set until we receive a DL_BIND_ACK after 14829 * having called ill_dl_up(). 14830 */ 14831 ill_recover_multicast(ill); 14832 } 14833 14834 if (ill->ill_ipif_up_count == 1) { 14835 /* 14836 * Since the interface is now up, it may now be active. 14837 */ 14838 if (IS_UNDER_IPMP(ill)) 14839 ipmp_ill_refresh_active(ill); 14840 14841 /* 14842 * If this is an IPMP interface, we may now be able to 14843 * establish ARP entries. 14844 */ 14845 if (IS_IPMP(ill)) 14846 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14847 } 14848 14849 /* Join the allhosts multicast address */ 14850 ipif_multicast_up(ipif); 14851 14852 if (!loopback && !update_src_selection && 14853 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14854 ip_update_source_selection(ill->ill_ipst); 14855 14856 if (!loopback && ipif->ipif_addr_ready) { 14857 /* Broadcast an address mask reply. */ 14858 ipif_mask_reply(ipif); 14859 } 14860 /* Perhaps ilgs should use this ill */ 14861 update_conn_ill(NULL, ill->ill_ipst); 14862 14863 /* 14864 * This had to be deferred until we had bound. Tell routing sockets and 14865 * others that this interface is up if it looks like the address has 14866 * been validated. Otherwise, if it isn't ready yet, wait for 14867 * duplicate address detection to do its thing. 14868 */ 14869 if (ipif->ipif_addr_ready) 14870 ipif_up_notify(ipif); 14871 return (0); 14872 } 14873 14874 /* 14875 * Add the IREs associated with the ipif. 14876 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14877 */ 14878 static int 14879 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14880 { 14881 ill_t *ill = ipif->ipif_ill; 14882 ip_stack_t *ipst = ill->ill_ipst; 14883 ire_t *ire_array[20]; 14884 ire_t **irep = ire_array; 14885 ire_t **irep1; 14886 ipaddr_t net_mask = 0; 14887 ipaddr_t subnet_mask, route_mask; 14888 int err; 14889 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14890 ire_t *ire_if = NULL; 14891 uchar_t *gw; 14892 14893 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14894 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14895 /* 14896 * If we're on a labeled system then make sure that zone- 14897 * private addresses have proper remote host database entries. 14898 */ 14899 if (is_system_labeled() && 14900 ipif->ipif_ire_type != IRE_LOOPBACK && 14901 !tsol_check_interface_address(ipif)) 14902 return (EINVAL); 14903 14904 /* Register the source address for __sin6_src_id */ 14905 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14906 ipif->ipif_zoneid, ipst); 14907 if (err != 0) { 14908 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14909 return (err); 14910 } 14911 14912 if (loopback) 14913 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14914 else 14915 gw = NULL; 14916 14917 /* If the interface address is set, create the local IRE. */ 14918 ire_local = ire_create( 14919 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14920 (uchar_t *)&ip_g_all_ones, /* mask */ 14921 gw, /* gateway */ 14922 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14923 ipif->ipif_ill, 14924 ipif->ipif_zoneid, 14925 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14926 RTF_PRIVATE : 0) | RTF_KERNEL, 14927 NULL, 14928 ipst); 14929 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14930 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14931 ipif->ipif_ire_type, 14932 ntohl(ipif->ipif_lcl_addr))); 14933 if (ire_local == NULL) { 14934 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14935 err = ENOMEM; 14936 goto bad; 14937 } 14938 } else { 14939 ip1dbg(( 14940 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14941 ipif->ipif_ire_type, 14942 ntohl(ipif->ipif_lcl_addr), 14943 (uint_t)ipif->ipif_flags)); 14944 } 14945 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14946 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14947 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14948 } else { 14949 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14950 } 14951 14952 subnet_mask = ipif->ipif_net_mask; 14953 14954 /* 14955 * If mask was not specified, use natural netmask of 14956 * interface address. Also, store this mask back into the 14957 * ipif struct. 14958 */ 14959 if (subnet_mask == 0) { 14960 subnet_mask = net_mask; 14961 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14962 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14963 ipif->ipif_v6subnet); 14964 } 14965 14966 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14967 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14968 ipif->ipif_subnet != INADDR_ANY) { 14969 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14970 14971 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14972 route_mask = IP_HOST_MASK; 14973 } else { 14974 route_mask = subnet_mask; 14975 } 14976 14977 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14978 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14979 (void *)ipif, (void *)ill, ill->ill_net_type, 14980 ntohl(ipif->ipif_subnet))); 14981 ire_if = ire_create( 14982 (uchar_t *)&ipif->ipif_subnet, 14983 (uchar_t *)&route_mask, 14984 (uchar_t *)&ipif->ipif_lcl_addr, 14985 ill->ill_net_type, 14986 ill, 14987 ipif->ipif_zoneid, 14988 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14989 RTF_PRIVATE: 0) | RTF_KERNEL, 14990 NULL, 14991 ipst); 14992 if (ire_if == NULL) { 14993 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14994 err = ENOMEM; 14995 goto bad; 14996 } 14997 } 14998 14999 /* 15000 * Create any necessary broadcast IREs. 15001 */ 15002 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15003 !(ipif->ipif_flags & IPIF_NOXMIT)) 15004 irep = ipif_create_bcast_ires(ipif, irep); 15005 15006 /* If an earlier ire_create failed, get out now */ 15007 for (irep1 = irep; irep1 > ire_array; ) { 15008 irep1--; 15009 if (*irep1 == NULL) { 15010 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15011 err = ENOMEM; 15012 goto bad; 15013 } 15014 } 15015 15016 /* 15017 * Need to atomically check for IP address availability under 15018 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15019 * ills or new ipifs can be added while we are checking availability. 15020 */ 15021 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15022 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15023 /* Mark it up, and increment counters. */ 15024 ipif->ipif_flags |= IPIF_UP; 15025 ill->ill_ipif_up_count++; 15026 err = ip_addr_availability_check(ipif); 15027 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15028 rw_exit(&ipst->ips_ill_g_lock); 15029 15030 if (err != 0) { 15031 /* 15032 * Our address may already be up on the same ill. In this case, 15033 * the ARP entry for our ipif replaced the one for the other 15034 * ipif. So we don't want to delete it (otherwise the other ipif 15035 * would be unable to send packets). 15036 * ip_addr_availability_check() identifies this case for us and 15037 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15038 * which is the expected error code. 15039 */ 15040 ill->ill_ipif_up_count--; 15041 ipif->ipif_flags &= ~IPIF_UP; 15042 goto bad; 15043 } 15044 15045 /* 15046 * Add in all newly created IREs. ire_create_bcast() has 15047 * already checked for duplicates of the IRE_BROADCAST type. 15048 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15049 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15050 * a /32 route. 15051 */ 15052 if (ire_if != NULL) { 15053 ire_if = ire_add(ire_if); 15054 if (ire_if == NULL) { 15055 err = ENOMEM; 15056 goto bad2; 15057 } 15058 #ifdef DEBUG 15059 ire_refhold_notr(ire_if); 15060 ire_refrele(ire_if); 15061 #endif 15062 } 15063 if (ire_local != NULL) { 15064 ire_local = ire_add(ire_local); 15065 if (ire_local == NULL) { 15066 err = ENOMEM; 15067 goto bad2; 15068 } 15069 #ifdef DEBUG 15070 ire_refhold_notr(ire_local); 15071 ire_refrele(ire_local); 15072 #endif 15073 } 15074 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15075 if (ire_local != NULL) 15076 ipif->ipif_ire_local = ire_local; 15077 if (ire_if != NULL) 15078 ipif->ipif_ire_if = ire_if; 15079 rw_exit(&ipst->ips_ill_g_lock); 15080 ire_local = NULL; 15081 ire_if = NULL; 15082 15083 /* 15084 * We first add all of them, and if that succeeds we refrele the 15085 * bunch. That enables us to delete all of them should any of the 15086 * ire_adds fail. 15087 */ 15088 for (irep1 = irep; irep1 > ire_array; ) { 15089 irep1--; 15090 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15091 *irep1 = ire_add(*irep1); 15092 if (*irep1 == NULL) { 15093 err = ENOMEM; 15094 goto bad2; 15095 } 15096 } 15097 15098 for (irep1 = irep; irep1 > ire_array; ) { 15099 irep1--; 15100 /* refheld by ire_add. */ 15101 if (*irep1 != NULL) { 15102 ire_refrele(*irep1); 15103 *irep1 = NULL; 15104 } 15105 } 15106 15107 if (!loopback) { 15108 /* 15109 * If the broadcast address has been set, make sure it makes 15110 * sense based on the interface address. 15111 * Only match on ill since we are sharing broadcast addresses. 15112 */ 15113 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15114 (ipif->ipif_flags & IPIF_BROADCAST)) { 15115 ire_t *ire; 15116 15117 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15118 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15119 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15120 15121 if (ire == NULL) { 15122 /* 15123 * If there isn't a matching broadcast IRE, 15124 * revert to the default for this netmask. 15125 */ 15126 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15127 mutex_enter(&ipif->ipif_ill->ill_lock); 15128 ipif_set_default(ipif); 15129 mutex_exit(&ipif->ipif_ill->ill_lock); 15130 } else { 15131 ire_refrele(ire); 15132 } 15133 } 15134 15135 } 15136 return (0); 15137 15138 bad2: 15139 ill->ill_ipif_up_count--; 15140 ipif->ipif_flags &= ~IPIF_UP; 15141 15142 bad: 15143 ip1dbg(("ipif_add_ires: FAILED \n")); 15144 if (ire_local != NULL) 15145 ire_delete(ire_local); 15146 if (ire_if != NULL) 15147 ire_delete(ire_if); 15148 15149 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15150 ire_local = ipif->ipif_ire_local; 15151 ipif->ipif_ire_local = NULL; 15152 ire_if = ipif->ipif_ire_if; 15153 ipif->ipif_ire_if = NULL; 15154 rw_exit(&ipst->ips_ill_g_lock); 15155 if (ire_local != NULL) { 15156 ire_delete(ire_local); 15157 ire_refrele_notr(ire_local); 15158 } 15159 if (ire_if != NULL) { 15160 ire_delete(ire_if); 15161 ire_refrele_notr(ire_if); 15162 } 15163 15164 while (irep > ire_array) { 15165 irep--; 15166 if (*irep != NULL) { 15167 ire_delete(*irep); 15168 } 15169 } 15170 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15171 15172 return (err); 15173 } 15174 15175 /* Remove all the IREs created by ipif_add_ires_v4 */ 15176 void 15177 ipif_delete_ires_v4(ipif_t *ipif) 15178 { 15179 ill_t *ill = ipif->ipif_ill; 15180 ip_stack_t *ipst = ill->ill_ipst; 15181 ire_t *ire; 15182 15183 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15184 ire = ipif->ipif_ire_local; 15185 ipif->ipif_ire_local = NULL; 15186 rw_exit(&ipst->ips_ill_g_lock); 15187 if (ire != NULL) { 15188 /* 15189 * Move count to ipif so we don't loose the count due to 15190 * a down/up dance. 15191 */ 15192 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15193 15194 ire_delete(ire); 15195 ire_refrele_notr(ire); 15196 } 15197 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15198 ire = ipif->ipif_ire_if; 15199 ipif->ipif_ire_if = NULL; 15200 rw_exit(&ipst->ips_ill_g_lock); 15201 if (ire != NULL) { 15202 ire_delete(ire); 15203 ire_refrele_notr(ire); 15204 } 15205 15206 /* 15207 * Delete the broadcast IREs. 15208 */ 15209 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15210 !(ipif->ipif_flags & IPIF_NOXMIT)) 15211 ipif_delete_bcast_ires(ipif); 15212 } 15213 15214 /* 15215 * Checks for availbility of a usable source address (if there is one) when the 15216 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15217 * this selection is done regardless of the destination. 15218 */ 15219 boolean_t 15220 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15221 ip_stack_t *ipst) 15222 { 15223 ipif_t *ipif = NULL; 15224 ill_t *uill; 15225 15226 ASSERT(ifindex != 0); 15227 15228 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15229 if (uill == NULL) 15230 return (B_FALSE); 15231 15232 mutex_enter(&uill->ill_lock); 15233 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15234 if (IPIF_IS_CONDEMNED(ipif)) 15235 continue; 15236 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15237 continue; 15238 if (!(ipif->ipif_flags & IPIF_UP)) 15239 continue; 15240 if (ipif->ipif_zoneid != zoneid) 15241 continue; 15242 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15243 ipif->ipif_lcl_addr == INADDR_ANY) 15244 continue; 15245 mutex_exit(&uill->ill_lock); 15246 ill_refrele(uill); 15247 return (B_TRUE); 15248 } 15249 mutex_exit(&uill->ill_lock); 15250 ill_refrele(uill); 15251 return (B_FALSE); 15252 } 15253 15254 /* 15255 * Find an ipif with a good local address on the ill+zoneid. 15256 */ 15257 ipif_t * 15258 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15259 { 15260 ipif_t *ipif; 15261 15262 mutex_enter(&ill->ill_lock); 15263 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15264 if (IPIF_IS_CONDEMNED(ipif)) 15265 continue; 15266 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15267 continue; 15268 if (!(ipif->ipif_flags & IPIF_UP)) 15269 continue; 15270 if (ipif->ipif_zoneid != zoneid && 15271 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15272 continue; 15273 if (ill->ill_isv6 ? 15274 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15275 ipif->ipif_lcl_addr == INADDR_ANY) 15276 continue; 15277 ipif_refhold_locked(ipif); 15278 mutex_exit(&ill->ill_lock); 15279 return (ipif); 15280 } 15281 mutex_exit(&ill->ill_lock); 15282 return (NULL); 15283 } 15284 15285 /* 15286 * IP source address type, sorted from worst to best. For a given type, 15287 * always prefer IP addresses on the same subnet. All-zones addresses are 15288 * suboptimal because they pose problems with unlabeled destinations. 15289 */ 15290 typedef enum { 15291 IPIF_NONE, 15292 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15293 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15294 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15295 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15296 IPIF_DIFFNET, /* normal and different subnet */ 15297 IPIF_SAMENET, /* normal and same subnet */ 15298 IPIF_LOCALADDR /* local loopback */ 15299 } ipif_type_t; 15300 15301 /* 15302 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15303 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15304 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15305 * the first one, unless IPMP is used in which case we round-robin among them; 15306 * see below for more. 15307 * 15308 * Returns NULL if there is no suitable source address for the ill. 15309 * This only occurs when there is no valid source address for the ill. 15310 */ 15311 ipif_t * 15312 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15313 boolean_t allow_usesrc, boolean_t *notreadyp) 15314 { 15315 ill_t *usill = NULL; 15316 ill_t *ipmp_ill = NULL; 15317 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15318 ipif_type_t type, best_type; 15319 tsol_tpc_t *src_rhtp, *dst_rhtp; 15320 ip_stack_t *ipst = ill->ill_ipst; 15321 boolean_t samenet; 15322 15323 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15324 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15325 B_FALSE, ipst); 15326 if (usill != NULL) 15327 ill = usill; /* Select source from usesrc ILL */ 15328 else 15329 return (NULL); 15330 } 15331 15332 /* 15333 * Test addresses should never be used for source address selection, 15334 * so if we were passed one, switch to the IPMP meta-interface. 15335 */ 15336 if (IS_UNDER_IPMP(ill)) { 15337 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15338 ill = ipmp_ill; /* Select source from IPMP ill */ 15339 else 15340 return (NULL); 15341 } 15342 15343 /* 15344 * If we're dealing with an unlabeled destination on a labeled system, 15345 * make sure that we ignore source addresses that are incompatible with 15346 * the destination's default label. That destination's default label 15347 * must dominate the minimum label on the source address. 15348 */ 15349 dst_rhtp = NULL; 15350 if (is_system_labeled()) { 15351 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15352 if (dst_rhtp == NULL) 15353 return (NULL); 15354 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15355 TPC_RELE(dst_rhtp); 15356 dst_rhtp = NULL; 15357 } 15358 } 15359 15360 /* 15361 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15362 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15363 * After selecting the right ipif, under ill_lock make sure ipif is 15364 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15365 * we retry. Inside the loop we still need to check for CONDEMNED, 15366 * but not under a lock. 15367 */ 15368 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15369 retry: 15370 /* 15371 * For source address selection, we treat the ipif list as circular 15372 * and continue until we get back to where we started. This allows 15373 * IPMP to vary source address selection (which improves inbound load 15374 * spreading) by caching its last ending point and starting from 15375 * there. NOTE: we don't have to worry about ill_src_ipif changing 15376 * ills since that can't happen on the IPMP ill. 15377 */ 15378 start_ipif = ill->ill_ipif; 15379 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15380 start_ipif = ill->ill_src_ipif; 15381 15382 ipif = start_ipif; 15383 best_ipif = NULL; 15384 best_type = IPIF_NONE; 15385 do { 15386 if ((next_ipif = ipif->ipif_next) == NULL) 15387 next_ipif = ill->ill_ipif; 15388 15389 if (IPIF_IS_CONDEMNED(ipif)) 15390 continue; 15391 /* Always skip NOLOCAL and ANYCAST interfaces */ 15392 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15393 continue; 15394 /* Always skip NOACCEPT interfaces */ 15395 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15396 continue; 15397 if (!(ipif->ipif_flags & IPIF_UP)) 15398 continue; 15399 15400 if (!ipif->ipif_addr_ready) { 15401 if (notreadyp != NULL) 15402 *notreadyp = B_TRUE; 15403 continue; 15404 } 15405 15406 if (zoneid != ALL_ZONES && 15407 ipif->ipif_zoneid != zoneid && 15408 ipif->ipif_zoneid != ALL_ZONES) 15409 continue; 15410 15411 /* 15412 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15413 * are not valid as source addresses. 15414 */ 15415 if (ipif->ipif_lcl_addr == INADDR_ANY) 15416 continue; 15417 15418 /* 15419 * Check compatibility of local address for destination's 15420 * default label if we're on a labeled system. Incompatible 15421 * addresses can't be used at all. 15422 */ 15423 if (dst_rhtp != NULL) { 15424 boolean_t incompat; 15425 15426 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15427 IPV4_VERSION, B_FALSE); 15428 if (src_rhtp == NULL) 15429 continue; 15430 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15431 src_rhtp->tpc_tp.tp_doi != 15432 dst_rhtp->tpc_tp.tp_doi || 15433 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15434 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15435 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15436 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15437 TPC_RELE(src_rhtp); 15438 if (incompat) 15439 continue; 15440 } 15441 15442 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15443 15444 if (ipif->ipif_lcl_addr == dst) { 15445 type = IPIF_LOCALADDR; 15446 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15447 type = samenet ? IPIF_SAMENET_DEPRECATED : 15448 IPIF_DIFFNET_DEPRECATED; 15449 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15450 type = samenet ? IPIF_SAMENET_ALLZONES : 15451 IPIF_DIFFNET_ALLZONES; 15452 } else { 15453 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15454 } 15455 15456 if (type > best_type) { 15457 best_type = type; 15458 best_ipif = ipif; 15459 if (best_type == IPIF_LOCALADDR) 15460 break; /* can't get better */ 15461 } 15462 } while ((ipif = next_ipif) != start_ipif); 15463 15464 if ((ipif = best_ipif) != NULL) { 15465 mutex_enter(&ipif->ipif_ill->ill_lock); 15466 if (IPIF_IS_CONDEMNED(ipif)) { 15467 mutex_exit(&ipif->ipif_ill->ill_lock); 15468 goto retry; 15469 } 15470 ipif_refhold_locked(ipif); 15471 15472 /* 15473 * For IPMP, update the source ipif rotor to the next ipif, 15474 * provided we can look it up. (We must not use it if it's 15475 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15476 * ipif_free() checked ill_src_ipif.) 15477 */ 15478 if (IS_IPMP(ill) && ipif != NULL) { 15479 next_ipif = ipif->ipif_next; 15480 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15481 ill->ill_src_ipif = next_ipif; 15482 else 15483 ill->ill_src_ipif = NULL; 15484 } 15485 mutex_exit(&ipif->ipif_ill->ill_lock); 15486 } 15487 15488 rw_exit(&ipst->ips_ill_g_lock); 15489 if (usill != NULL) 15490 ill_refrele(usill); 15491 if (ipmp_ill != NULL) 15492 ill_refrele(ipmp_ill); 15493 if (dst_rhtp != NULL) 15494 TPC_RELE(dst_rhtp); 15495 15496 #ifdef DEBUG 15497 if (ipif == NULL) { 15498 char buf1[INET6_ADDRSTRLEN]; 15499 15500 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15501 ill->ill_name, 15502 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15503 } else { 15504 char buf1[INET6_ADDRSTRLEN]; 15505 char buf2[INET6_ADDRSTRLEN]; 15506 15507 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15508 ipif->ipif_ill->ill_name, 15509 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15510 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15511 buf2, sizeof (buf2)))); 15512 } 15513 #endif /* DEBUG */ 15514 return (ipif); 15515 } 15516 15517 /* 15518 * Pick a source address based on the destination ill and an optional setsrc 15519 * address. 15520 * The result is stored in srcp. If generation is set, then put the source 15521 * generation number there before we look for the source address (to avoid 15522 * missing changes in the set of source addresses. 15523 * If flagsp is set, then us it to pass back ipif_flags. 15524 * 15525 * If the caller wants to cache the returned source address and detect when 15526 * that might be stale, the caller should pass in a generation argument, 15527 * which the caller can later compare against ips_src_generation 15528 * 15529 * The precedence order for selecting an IPv4 source address is: 15530 * - RTF_SETSRC on the offlink ire always wins. 15531 * - If usrsrc is set, swap the ill to be the usesrc one. 15532 * - If IPMP is used on the ill, select a random address from the most 15533 * preferred ones below: 15534 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15535 * 2. Not deprecated, not ALL_ZONES 15536 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15537 * 4. Not deprecated, ALL_ZONES 15538 * 5. If onlink destination, same subnet and deprecated 15539 * 6. Deprecated. 15540 * 15541 * We have lower preference for ALL_ZONES IP addresses, 15542 * as they pose problems with unlabeled destinations. 15543 * 15544 * Note that when multiple IP addresses match e.g., #1 we pick 15545 * the first one if IPMP is not in use. With IPMP we randomize. 15546 */ 15547 int 15548 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15549 ipaddr_t multicast_ifaddr, 15550 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15551 uint32_t *generation, uint64_t *flagsp) 15552 { 15553 ipif_t *ipif; 15554 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15555 15556 if (flagsp != NULL) 15557 *flagsp = 0; 15558 15559 /* 15560 * Need to grab the generation number before we check to 15561 * avoid a race with a change to the set of local addresses. 15562 * No lock needed since the thread which updates the set of local 15563 * addresses use ipif/ill locks and exit those (hence a store memory 15564 * barrier) before doing the atomic increase of ips_src_generation. 15565 */ 15566 if (generation != NULL) { 15567 *generation = ipst->ips_src_generation; 15568 } 15569 15570 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15571 *srcp = multicast_ifaddr; 15572 return (0); 15573 } 15574 15575 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15576 if (setsrc != INADDR_ANY) { 15577 *srcp = setsrc; 15578 return (0); 15579 } 15580 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15581 if (ipif == NULL) { 15582 if (notready) 15583 return (ENETDOWN); 15584 else 15585 return (EADDRNOTAVAIL); 15586 } 15587 *srcp = ipif->ipif_lcl_addr; 15588 if (flagsp != NULL) 15589 *flagsp = ipif->ipif_flags; 15590 ipif_refrele(ipif); 15591 return (0); 15592 } 15593 15594 /* ARGSUSED */ 15595 int 15596 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15597 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15598 { 15599 /* 15600 * ill_phyint_reinit merged the v4 and v6 into a single 15601 * ipsq. We might not have been able to complete the 15602 * operation in ipif_set_values, if we could not become 15603 * exclusive. If so restart it here. 15604 */ 15605 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15606 } 15607 15608 /* 15609 * Can operate on either a module or a driver queue. 15610 * Returns an error if not a module queue. 15611 */ 15612 /* ARGSUSED */ 15613 int 15614 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15615 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15616 { 15617 queue_t *q1 = q; 15618 char *cp; 15619 char interf_name[LIFNAMSIZ]; 15620 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15621 15622 if (q->q_next == NULL) { 15623 ip1dbg(( 15624 "if_unitsel: IF_UNITSEL: no q_next\n")); 15625 return (EINVAL); 15626 } 15627 15628 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15629 return (EALREADY); 15630 15631 do { 15632 q1 = q1->q_next; 15633 } while (q1->q_next); 15634 cp = q1->q_qinfo->qi_minfo->mi_idname; 15635 (void) sprintf(interf_name, "%s%d", cp, ppa); 15636 15637 /* 15638 * Here we are not going to delay the ioack until after 15639 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15640 * original ioctl message before sending the requests. 15641 */ 15642 return (ipif_set_values(q, mp, interf_name, &ppa)); 15643 } 15644 15645 /* ARGSUSED */ 15646 int 15647 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15648 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15649 { 15650 return (ENXIO); 15651 } 15652 15653 /* 15654 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15655 * `irep'. Returns a pointer to the next free `irep' entry 15656 * A mirror exists in ipif_delete_bcast_ires(). 15657 * 15658 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15659 * done in ire_add. 15660 */ 15661 static ire_t ** 15662 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15663 { 15664 ipaddr_t addr; 15665 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15666 ipaddr_t subnetmask = ipif->ipif_net_mask; 15667 ill_t *ill = ipif->ipif_ill; 15668 zoneid_t zoneid = ipif->ipif_zoneid; 15669 15670 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15671 15672 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15673 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15674 15675 if (ipif->ipif_lcl_addr == INADDR_ANY || 15676 (ipif->ipif_flags & IPIF_NOLOCAL)) 15677 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15678 15679 irep = ire_create_bcast(ill, 0, zoneid, irep); 15680 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15681 15682 /* 15683 * For backward compatibility, we create net broadcast IREs based on 15684 * the old "IP address class system", since some old machines only 15685 * respond to these class derived net broadcast. However, we must not 15686 * create these net broadcast IREs if the subnetmask is shorter than 15687 * the IP address class based derived netmask. Otherwise, we may 15688 * create a net broadcast address which is the same as an IP address 15689 * on the subnet -- and then TCP will refuse to talk to that address. 15690 */ 15691 if (netmask < subnetmask) { 15692 addr = netmask & ipif->ipif_subnet; 15693 irep = ire_create_bcast(ill, addr, zoneid, irep); 15694 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15695 } 15696 15697 /* 15698 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15699 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15700 * created. Creating these broadcast IREs will only create confusion 15701 * as `addr' will be the same as the IP address. 15702 */ 15703 if (subnetmask != 0xFFFFFFFF) { 15704 addr = ipif->ipif_subnet; 15705 irep = ire_create_bcast(ill, addr, zoneid, irep); 15706 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15707 } 15708 15709 return (irep); 15710 } 15711 15712 /* 15713 * Mirror of ipif_create_bcast_ires() 15714 */ 15715 static void 15716 ipif_delete_bcast_ires(ipif_t *ipif) 15717 { 15718 ipaddr_t addr; 15719 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15720 ipaddr_t subnetmask = ipif->ipif_net_mask; 15721 ill_t *ill = ipif->ipif_ill; 15722 zoneid_t zoneid = ipif->ipif_zoneid; 15723 ire_t *ire; 15724 15725 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15726 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15727 15728 if (ipif->ipif_lcl_addr == INADDR_ANY || 15729 (ipif->ipif_flags & IPIF_NOLOCAL)) 15730 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15731 15732 ire = ire_lookup_bcast(ill, 0, zoneid); 15733 ASSERT(ire != NULL); 15734 ire_delete(ire); ire_refrele(ire); 15735 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15736 ASSERT(ire != NULL); 15737 ire_delete(ire); ire_refrele(ire); 15738 15739 /* 15740 * For backward compatibility, we create net broadcast IREs based on 15741 * the old "IP address class system", since some old machines only 15742 * respond to these class derived net broadcast. However, we must not 15743 * create these net broadcast IREs if the subnetmask is shorter than 15744 * the IP address class based derived netmask. Otherwise, we may 15745 * create a net broadcast address which is the same as an IP address 15746 * on the subnet -- and then TCP will refuse to talk to that address. 15747 */ 15748 if (netmask < subnetmask) { 15749 addr = netmask & ipif->ipif_subnet; 15750 ire = ire_lookup_bcast(ill, addr, zoneid); 15751 ASSERT(ire != NULL); 15752 ire_delete(ire); ire_refrele(ire); 15753 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15754 ASSERT(ire != NULL); 15755 ire_delete(ire); ire_refrele(ire); 15756 } 15757 15758 /* 15759 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15760 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15761 * created. Creating these broadcast IREs will only create confusion 15762 * as `addr' will be the same as the IP address. 15763 */ 15764 if (subnetmask != 0xFFFFFFFF) { 15765 addr = ipif->ipif_subnet; 15766 ire = ire_lookup_bcast(ill, addr, zoneid); 15767 ASSERT(ire != NULL); 15768 ire_delete(ire); ire_refrele(ire); 15769 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15770 ASSERT(ire != NULL); 15771 ire_delete(ire); ire_refrele(ire); 15772 } 15773 } 15774 15775 /* 15776 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15777 * from lifr_flags and the name from lifr_name. 15778 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15779 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15780 * Returns EINPROGRESS when mp has been consumed by queueing it on 15781 * ipx_pending_mp and the ioctl will complete in ip_rput. 15782 * 15783 * Can operate on either a module or a driver queue. 15784 * Returns an error if not a module queue. 15785 */ 15786 /* ARGSUSED */ 15787 int 15788 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15789 ip_ioctl_cmd_t *ipip, void *if_req) 15790 { 15791 ill_t *ill = q->q_ptr; 15792 phyint_t *phyi; 15793 ip_stack_t *ipst; 15794 struct lifreq *lifr = if_req; 15795 uint64_t new_flags; 15796 15797 ASSERT(ipif != NULL); 15798 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15799 15800 if (q->q_next == NULL) { 15801 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15802 return (EINVAL); 15803 } 15804 15805 /* 15806 * If we are not writer on 'q' then this interface exists already 15807 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15808 * so return EALREADY. 15809 */ 15810 if (ill != ipif->ipif_ill) 15811 return (EALREADY); 15812 15813 if (ill->ill_name[0] != '\0') 15814 return (EALREADY); 15815 15816 /* 15817 * If there's another ill already with the requested name, ensure 15818 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15819 * fuse together two unrelated ills, which will cause chaos. 15820 */ 15821 ipst = ill->ill_ipst; 15822 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15823 lifr->lifr_name, NULL); 15824 if (phyi != NULL) { 15825 ill_t *ill_mate = phyi->phyint_illv4; 15826 15827 if (ill_mate == NULL) 15828 ill_mate = phyi->phyint_illv6; 15829 ASSERT(ill_mate != NULL); 15830 15831 if (ill_mate->ill_media->ip_m_mac_type != 15832 ill->ill_media->ip_m_mac_type) { 15833 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15834 "use the same ill name on differing media\n")); 15835 return (EINVAL); 15836 } 15837 } 15838 15839 /* 15840 * We start off as IFF_IPV4 in ipif_allocate and become 15841 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15842 * The only flags that we read from user space are IFF_IPV4, 15843 * IFF_IPV6, and IFF_BROADCAST. 15844 * 15845 * This ill has not been inserted into the global list. 15846 * So we are still single threaded and don't need any lock 15847 * 15848 * Saniy check the flags. 15849 */ 15850 15851 if ((lifr->lifr_flags & IFF_BROADCAST) && 15852 ((lifr->lifr_flags & IFF_IPV6) || 15853 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15854 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15855 "or IPv6 i.e., no broadcast \n")); 15856 return (EINVAL); 15857 } 15858 15859 new_flags = 15860 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15861 15862 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15863 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15864 "IFF_IPV4 or IFF_IPV6\n")); 15865 return (EINVAL); 15866 } 15867 15868 /* 15869 * We always start off as IPv4, so only need to check for IPv6. 15870 */ 15871 if ((new_flags & IFF_IPV6) != 0) { 15872 ill->ill_flags |= ILLF_IPV6; 15873 ill->ill_flags &= ~ILLF_IPV4; 15874 15875 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15876 ill->ill_flags |= ILLF_NOLINKLOCAL; 15877 } 15878 15879 if ((new_flags & IFF_BROADCAST) != 0) 15880 ipif->ipif_flags |= IPIF_BROADCAST; 15881 else 15882 ipif->ipif_flags &= ~IPIF_BROADCAST; 15883 15884 /* We started off as V4. */ 15885 if (ill->ill_flags & ILLF_IPV6) { 15886 ill->ill_phyint->phyint_illv6 = ill; 15887 ill->ill_phyint->phyint_illv4 = NULL; 15888 } 15889 15890 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15891 } 15892 15893 /* ARGSUSED */ 15894 int 15895 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15896 ip_ioctl_cmd_t *ipip, void *if_req) 15897 { 15898 /* 15899 * ill_phyint_reinit merged the v4 and v6 into a single 15900 * ipsq. We might not have been able to complete the 15901 * slifname in ipif_set_values, if we could not become 15902 * exclusive. If so restart it here 15903 */ 15904 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15905 } 15906 15907 /* 15908 * Return a pointer to the ipif which matches the index, IP version type and 15909 * zoneid. 15910 */ 15911 ipif_t * 15912 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15913 ip_stack_t *ipst) 15914 { 15915 ill_t *ill; 15916 ipif_t *ipif = NULL; 15917 15918 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15919 if (ill != NULL) { 15920 mutex_enter(&ill->ill_lock); 15921 for (ipif = ill->ill_ipif; ipif != NULL; 15922 ipif = ipif->ipif_next) { 15923 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15924 zoneid == ipif->ipif_zoneid || 15925 ipif->ipif_zoneid == ALL_ZONES)) { 15926 ipif_refhold_locked(ipif); 15927 break; 15928 } 15929 } 15930 mutex_exit(&ill->ill_lock); 15931 ill_refrele(ill); 15932 } 15933 return (ipif); 15934 } 15935 15936 /* 15937 * Change an existing physical interface's index. If the new index 15938 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15939 * Finally, we update other systems which may have a dependence on the 15940 * index value. 15941 */ 15942 /* ARGSUSED */ 15943 int 15944 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15945 ip_ioctl_cmd_t *ipip, void *ifreq) 15946 { 15947 ill_t *ill; 15948 phyint_t *phyi; 15949 struct ifreq *ifr = (struct ifreq *)ifreq; 15950 struct lifreq *lifr = (struct lifreq *)ifreq; 15951 uint_t old_index, index; 15952 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15953 avl_index_t where; 15954 15955 if (ipip->ipi_cmd_type == IF_CMD) 15956 index = ifr->ifr_index; 15957 else 15958 index = lifr->lifr_index; 15959 15960 /* 15961 * Only allow on physical interface. Also, index zero is illegal. 15962 */ 15963 ill = ipif->ipif_ill; 15964 phyi = ill->ill_phyint; 15965 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15966 return (EINVAL); 15967 } 15968 15969 /* If the index is not changing, no work to do */ 15970 if (phyi->phyint_ifindex == index) 15971 return (0); 15972 15973 /* 15974 * Use phyint_exists() to determine if the new interface index 15975 * is already in use. If the index is unused then we need to 15976 * change the phyint's position in the phyint_list_avl_by_index 15977 * tree. If we do not do this, subsequent lookups (using the new 15978 * index value) will not find the phyint. 15979 */ 15980 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15981 if (phyint_exists(index, ipst)) { 15982 rw_exit(&ipst->ips_ill_g_lock); 15983 return (EEXIST); 15984 } 15985 15986 /* 15987 * The new index is unused. Set it in the phyint. However we must not 15988 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15989 * changes. The event must be bound to old ifindex value. 15990 */ 15991 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15992 &index, sizeof (index)); 15993 15994 old_index = phyi->phyint_ifindex; 15995 phyi->phyint_ifindex = index; 15996 15997 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15998 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15999 &index, &where); 16000 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16001 phyi, where); 16002 rw_exit(&ipst->ips_ill_g_lock); 16003 16004 /* Update SCTP's ILL list */ 16005 sctp_ill_reindex(ill, old_index); 16006 16007 /* Send the routing sockets message */ 16008 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16009 if (ILL_OTHER(ill)) 16010 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16011 16012 /* Perhaps ilgs should use this ill */ 16013 update_conn_ill(NULL, ill->ill_ipst); 16014 return (0); 16015 } 16016 16017 /* ARGSUSED */ 16018 int 16019 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16020 ip_ioctl_cmd_t *ipip, void *ifreq) 16021 { 16022 struct ifreq *ifr = (struct ifreq *)ifreq; 16023 struct lifreq *lifr = (struct lifreq *)ifreq; 16024 16025 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16026 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16027 /* Get the interface index */ 16028 if (ipip->ipi_cmd_type == IF_CMD) { 16029 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16030 } else { 16031 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16032 } 16033 return (0); 16034 } 16035 16036 /* ARGSUSED */ 16037 int 16038 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16039 ip_ioctl_cmd_t *ipip, void *ifreq) 16040 { 16041 struct lifreq *lifr = (struct lifreq *)ifreq; 16042 16043 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16044 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16045 /* Get the interface zone */ 16046 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16047 lifr->lifr_zoneid = ipif->ipif_zoneid; 16048 return (0); 16049 } 16050 16051 /* 16052 * Set the zoneid of an interface. 16053 */ 16054 /* ARGSUSED */ 16055 int 16056 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16057 ip_ioctl_cmd_t *ipip, void *ifreq) 16058 { 16059 struct lifreq *lifr = (struct lifreq *)ifreq; 16060 int err = 0; 16061 boolean_t need_up = B_FALSE; 16062 zone_t *zptr; 16063 zone_status_t status; 16064 zoneid_t zoneid; 16065 16066 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16067 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16068 if (!is_system_labeled()) 16069 return (ENOTSUP); 16070 zoneid = GLOBAL_ZONEID; 16071 } 16072 16073 /* cannot assign instance zero to a non-global zone */ 16074 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16075 return (ENOTSUP); 16076 16077 /* 16078 * Cannot assign to a zone that doesn't exist or is shutting down. In 16079 * the event of a race with the zone shutdown processing, since IP 16080 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16081 * interface will be cleaned up even if the zone is shut down 16082 * immediately after the status check. If the interface can't be brought 16083 * down right away, and the zone is shut down before the restart 16084 * function is called, we resolve the possible races by rechecking the 16085 * zone status in the restart function. 16086 */ 16087 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16088 return (EINVAL); 16089 status = zone_status_get(zptr); 16090 zone_rele(zptr); 16091 16092 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16093 return (EINVAL); 16094 16095 if (ipif->ipif_flags & IPIF_UP) { 16096 /* 16097 * If the interface is already marked up, 16098 * we call ipif_down which will take care 16099 * of ditching any IREs that have been set 16100 * up based on the old interface address. 16101 */ 16102 err = ipif_logical_down(ipif, q, mp); 16103 if (err == EINPROGRESS) 16104 return (err); 16105 (void) ipif_down_tail(ipif); 16106 need_up = B_TRUE; 16107 } 16108 16109 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16110 return (err); 16111 } 16112 16113 static int 16114 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16115 queue_t *q, mblk_t *mp, boolean_t need_up) 16116 { 16117 int err = 0; 16118 ip_stack_t *ipst; 16119 16120 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16121 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16122 16123 if (CONN_Q(q)) 16124 ipst = CONNQ_TO_IPST(q); 16125 else 16126 ipst = ILLQ_TO_IPST(q); 16127 16128 /* 16129 * For exclusive stacks we don't allow a different zoneid than 16130 * global. 16131 */ 16132 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16133 zoneid != GLOBAL_ZONEID) 16134 return (EINVAL); 16135 16136 /* Set the new zone id. */ 16137 ipif->ipif_zoneid = zoneid; 16138 16139 /* Update sctp list */ 16140 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16141 16142 /* The default multicast interface might have changed */ 16143 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16144 16145 if (need_up) { 16146 /* 16147 * Now bring the interface back up. If this 16148 * is the only IPIF for the ILL, ipif_up 16149 * will have to re-bind to the device, so 16150 * we may get back EINPROGRESS, in which 16151 * case, this IOCTL will get completed in 16152 * ip_rput_dlpi when we see the DL_BIND_ACK. 16153 */ 16154 err = ipif_up(ipif, q, mp); 16155 } 16156 return (err); 16157 } 16158 16159 /* ARGSUSED */ 16160 int 16161 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16162 ip_ioctl_cmd_t *ipip, void *if_req) 16163 { 16164 struct lifreq *lifr = (struct lifreq *)if_req; 16165 zoneid_t zoneid; 16166 zone_t *zptr; 16167 zone_status_t status; 16168 16169 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16170 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16171 zoneid = GLOBAL_ZONEID; 16172 16173 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16174 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16175 16176 /* 16177 * We recheck the zone status to resolve the following race condition: 16178 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16179 * 2) hme0:1 is up and can't be brought down right away; 16180 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16181 * 3) zone "myzone" is halted; the zone status switches to 16182 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16183 * the interfaces to remove - hme0:1 is not returned because it's not 16184 * yet in "myzone", so it won't be removed; 16185 * 4) the restart function for SIOCSLIFZONE is called; without the 16186 * status check here, we would have hme0:1 in "myzone" after it's been 16187 * destroyed. 16188 * Note that if the status check fails, we need to bring the interface 16189 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16190 * ipif_up_done[_v6](). 16191 */ 16192 status = ZONE_IS_UNINITIALIZED; 16193 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16194 status = zone_status_get(zptr); 16195 zone_rele(zptr); 16196 } 16197 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16198 if (ipif->ipif_isv6) { 16199 (void) ipif_up_done_v6(ipif); 16200 } else { 16201 (void) ipif_up_done(ipif); 16202 } 16203 return (EINVAL); 16204 } 16205 16206 (void) ipif_down_tail(ipif); 16207 16208 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16209 B_TRUE)); 16210 } 16211 16212 /* 16213 * Return the number of addresses on `ill' with one or more of the values 16214 * in `set' set and all of the values in `clear' clear. 16215 */ 16216 static uint_t 16217 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16218 { 16219 ipif_t *ipif; 16220 uint_t cnt = 0; 16221 16222 ASSERT(IAM_WRITER_ILL(ill)); 16223 16224 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16225 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16226 cnt++; 16227 16228 return (cnt); 16229 } 16230 16231 /* 16232 * Return the number of migratable addresses on `ill' that are under 16233 * application control. 16234 */ 16235 uint_t 16236 ill_appaddr_cnt(const ill_t *ill) 16237 { 16238 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16239 IPIF_NOFAILOVER)); 16240 } 16241 16242 /* 16243 * Return the number of point-to-point addresses on `ill'. 16244 */ 16245 uint_t 16246 ill_ptpaddr_cnt(const ill_t *ill) 16247 { 16248 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16249 } 16250 16251 /* ARGSUSED */ 16252 int 16253 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16254 ip_ioctl_cmd_t *ipip, void *ifreq) 16255 { 16256 struct lifreq *lifr = ifreq; 16257 16258 ASSERT(q->q_next == NULL); 16259 ASSERT(CONN_Q(q)); 16260 16261 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16262 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16263 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16264 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16265 16266 return (0); 16267 } 16268 16269 /* Find the previous ILL in this usesrc group */ 16270 static ill_t * 16271 ill_prev_usesrc(ill_t *uill) 16272 { 16273 ill_t *ill; 16274 16275 for (ill = uill->ill_usesrc_grp_next; 16276 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16277 ill = ill->ill_usesrc_grp_next) 16278 /* do nothing */; 16279 return (ill); 16280 } 16281 16282 /* 16283 * Release all members of the usesrc group. This routine is called 16284 * from ill_delete when the interface being unplumbed is the 16285 * group head. 16286 * 16287 * This silently clears the usesrc that ifconfig setup. 16288 * An alternative would be to keep that ifindex, and drop packets on the floor 16289 * since no source address can be selected. 16290 * Even if we keep the current semantics, don't need a lock and a linked list. 16291 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16292 * the one that is being removed. Issue is how we return the usesrc users 16293 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16294 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16295 * ill walk, but the walker would need to insert in the ioctl response. 16296 */ 16297 static void 16298 ill_disband_usesrc_group(ill_t *uill) 16299 { 16300 ill_t *next_ill, *tmp_ill; 16301 ip_stack_t *ipst = uill->ill_ipst; 16302 16303 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16304 next_ill = uill->ill_usesrc_grp_next; 16305 16306 do { 16307 ASSERT(next_ill != NULL); 16308 tmp_ill = next_ill->ill_usesrc_grp_next; 16309 ASSERT(tmp_ill != NULL); 16310 next_ill->ill_usesrc_grp_next = NULL; 16311 next_ill->ill_usesrc_ifindex = 0; 16312 next_ill = tmp_ill; 16313 } while (next_ill->ill_usesrc_ifindex != 0); 16314 uill->ill_usesrc_grp_next = NULL; 16315 } 16316 16317 /* 16318 * Remove the client usesrc ILL from the list and relink to a new list 16319 */ 16320 int 16321 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16322 { 16323 ill_t *ill, *tmp_ill; 16324 ip_stack_t *ipst = ucill->ill_ipst; 16325 16326 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16327 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16328 16329 /* 16330 * Check if the usesrc client ILL passed in is not already 16331 * in use as a usesrc ILL i.e one whose source address is 16332 * in use OR a usesrc ILL is not already in use as a usesrc 16333 * client ILL 16334 */ 16335 if ((ucill->ill_usesrc_ifindex == 0) || 16336 (uill->ill_usesrc_ifindex != 0)) { 16337 return (-1); 16338 } 16339 16340 ill = ill_prev_usesrc(ucill); 16341 ASSERT(ill->ill_usesrc_grp_next != NULL); 16342 16343 /* Remove from the current list */ 16344 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16345 /* Only two elements in the list */ 16346 ASSERT(ill->ill_usesrc_ifindex == 0); 16347 ill->ill_usesrc_grp_next = NULL; 16348 } else { 16349 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16350 } 16351 16352 if (ifindex == 0) { 16353 ucill->ill_usesrc_ifindex = 0; 16354 ucill->ill_usesrc_grp_next = NULL; 16355 return (0); 16356 } 16357 16358 ucill->ill_usesrc_ifindex = ifindex; 16359 tmp_ill = uill->ill_usesrc_grp_next; 16360 uill->ill_usesrc_grp_next = ucill; 16361 ucill->ill_usesrc_grp_next = 16362 (tmp_ill != NULL) ? tmp_ill : uill; 16363 return (0); 16364 } 16365 16366 /* 16367 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16368 * ip.c for locking details. 16369 */ 16370 /* ARGSUSED */ 16371 int 16372 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16373 ip_ioctl_cmd_t *ipip, void *ifreq) 16374 { 16375 struct lifreq *lifr = (struct lifreq *)ifreq; 16376 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16377 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16378 int err = 0, ret; 16379 uint_t ifindex; 16380 ipsq_t *ipsq = NULL; 16381 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16382 16383 ASSERT(IAM_WRITER_IPIF(ipif)); 16384 ASSERT(q->q_next == NULL); 16385 ASSERT(CONN_Q(q)); 16386 16387 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16388 16389 ifindex = lifr->lifr_index; 16390 if (ifindex == 0) { 16391 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16392 /* non usesrc group interface, nothing to reset */ 16393 return (0); 16394 } 16395 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16396 /* valid reset request */ 16397 reset_flg = B_TRUE; 16398 } 16399 16400 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16401 if (usesrc_ill == NULL) 16402 return (ENXIO); 16403 if (usesrc_ill == ipif->ipif_ill) { 16404 ill_refrele(usesrc_ill); 16405 return (EINVAL); 16406 } 16407 16408 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16409 NEW_OP, B_TRUE); 16410 if (ipsq == NULL) { 16411 err = EINPROGRESS; 16412 /* Operation enqueued on the ipsq of the usesrc ILL */ 16413 goto done; 16414 } 16415 16416 /* USESRC isn't currently supported with IPMP */ 16417 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16418 err = ENOTSUP; 16419 goto done; 16420 } 16421 16422 /* 16423 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16424 * used by IPMP underlying interfaces, but someone might think it's 16425 * more general and try to use it independently with VNI.) 16426 */ 16427 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16428 err = ENOTSUP; 16429 goto done; 16430 } 16431 16432 /* 16433 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16434 * already a client then return EINVAL 16435 */ 16436 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16437 err = EINVAL; 16438 goto done; 16439 } 16440 16441 /* 16442 * If the ill_usesrc_ifindex field is already set to what it needs to 16443 * be then this is a duplicate operation. 16444 */ 16445 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16446 err = 0; 16447 goto done; 16448 } 16449 16450 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16451 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16452 usesrc_ill->ill_isv6)); 16453 16454 /* 16455 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16456 * and the ill_usesrc_ifindex fields 16457 */ 16458 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16459 16460 if (reset_flg) { 16461 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16462 if (ret != 0) { 16463 err = EINVAL; 16464 } 16465 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16466 goto done; 16467 } 16468 16469 /* 16470 * Four possibilities to consider: 16471 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16472 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16473 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16474 * 4. Both are part of their respective usesrc groups 16475 */ 16476 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16477 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16478 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16479 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16480 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16481 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16482 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16483 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16484 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16485 /* Insert at head of list */ 16486 usesrc_cli_ill->ill_usesrc_grp_next = 16487 usesrc_ill->ill_usesrc_grp_next; 16488 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16489 } else { 16490 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16491 ifindex); 16492 if (ret != 0) 16493 err = EINVAL; 16494 } 16495 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16496 16497 done: 16498 if (ipsq != NULL) 16499 ipsq_exit(ipsq); 16500 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16501 ill_refrele(usesrc_ill); 16502 16503 /* Let conn_ixa caching know that source address selection changed */ 16504 ip_update_source_selection(ipst); 16505 16506 return (err); 16507 } 16508 16509 /* ARGSUSED */ 16510 int 16511 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16512 ip_ioctl_cmd_t *ipip, void *if_req) 16513 { 16514 struct lifreq *lifr = (struct lifreq *)if_req; 16515 ill_t *ill = ipif->ipif_ill; 16516 16517 /* 16518 * Need a lock since IFF_UP can be set even when there are 16519 * references to the ipif. 16520 */ 16521 mutex_enter(&ill->ill_lock); 16522 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16523 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16524 else 16525 lifr->lifr_dadstate = DAD_DONE; 16526 mutex_exit(&ill->ill_lock); 16527 return (0); 16528 } 16529 16530 /* 16531 * comparison function used by avl. 16532 */ 16533 static int 16534 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16535 { 16536 16537 uint_t index; 16538 16539 ASSERT(phyip != NULL && index_ptr != NULL); 16540 16541 index = *((uint_t *)index_ptr); 16542 /* 16543 * let the phyint with the lowest index be on top. 16544 */ 16545 if (((phyint_t *)phyip)->phyint_ifindex < index) 16546 return (1); 16547 if (((phyint_t *)phyip)->phyint_ifindex > index) 16548 return (-1); 16549 return (0); 16550 } 16551 16552 /* 16553 * comparison function used by avl. 16554 */ 16555 static int 16556 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16557 { 16558 ill_t *ill; 16559 int res = 0; 16560 16561 ASSERT(phyip != NULL && name_ptr != NULL); 16562 16563 if (((phyint_t *)phyip)->phyint_illv4) 16564 ill = ((phyint_t *)phyip)->phyint_illv4; 16565 else 16566 ill = ((phyint_t *)phyip)->phyint_illv6; 16567 ASSERT(ill != NULL); 16568 16569 res = strcmp(ill->ill_name, (char *)name_ptr); 16570 if (res > 0) 16571 return (1); 16572 else if (res < 0) 16573 return (-1); 16574 return (0); 16575 } 16576 16577 /* 16578 * This function is called on the unplumb path via ill_glist_delete() when 16579 * there are no ills left on the phyint and thus the phyint can be freed. 16580 */ 16581 static void 16582 phyint_free(phyint_t *phyi) 16583 { 16584 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16585 16586 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16587 16588 /* 16589 * If this phyint was an IPMP meta-interface, blow away the group. 16590 * This is safe to do because all of the illgrps have already been 16591 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16592 * If we're cleaning up as a result of failed initialization, 16593 * phyint_grp may be NULL. 16594 */ 16595 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16596 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16597 ipmp_grp_destroy(phyi->phyint_grp); 16598 phyi->phyint_grp = NULL; 16599 rw_exit(&ipst->ips_ipmp_lock); 16600 } 16601 16602 /* 16603 * If this interface was under IPMP, take it out of the group. 16604 */ 16605 if (phyi->phyint_grp != NULL) 16606 ipmp_phyint_leave_grp(phyi); 16607 16608 /* 16609 * Delete the phyint and disassociate its ipsq. The ipsq itself 16610 * will be freed in ipsq_exit(). 16611 */ 16612 phyi->phyint_ipsq->ipsq_phyint = NULL; 16613 phyi->phyint_name[0] = '\0'; 16614 16615 mi_free(phyi); 16616 } 16617 16618 /* 16619 * Attach the ill to the phyint structure which can be shared by both 16620 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16621 * function is called from ipif_set_values and ill_lookup_on_name (for 16622 * loopback) where we know the name of the ill. We lookup the ill and if 16623 * there is one present already with the name use that phyint. Otherwise 16624 * reuse the one allocated by ill_init. 16625 */ 16626 static void 16627 ill_phyint_reinit(ill_t *ill) 16628 { 16629 boolean_t isv6 = ill->ill_isv6; 16630 phyint_t *phyi_old; 16631 phyint_t *phyi; 16632 avl_index_t where = 0; 16633 ill_t *ill_other = NULL; 16634 ip_stack_t *ipst = ill->ill_ipst; 16635 16636 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16637 16638 phyi_old = ill->ill_phyint; 16639 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16640 phyi_old->phyint_illv6 == NULL)); 16641 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16642 phyi_old->phyint_illv4 == NULL)); 16643 ASSERT(phyi_old->phyint_ifindex == 0); 16644 16645 /* 16646 * Now that our ill has a name, set it in the phyint. 16647 */ 16648 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16649 16650 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16651 ill->ill_name, &where); 16652 16653 /* 16654 * 1. We grabbed the ill_g_lock before inserting this ill into 16655 * the global list of ills. So no other thread could have located 16656 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16657 * 2. Now locate the other protocol instance of this ill. 16658 * 3. Now grab both ill locks in the right order, and the phyint lock of 16659 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16660 * of neither ill can change. 16661 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16662 * other ill. 16663 * 5. Release all locks. 16664 */ 16665 16666 /* 16667 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16668 * we are initializing IPv4. 16669 */ 16670 if (phyi != NULL) { 16671 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16672 ASSERT(ill_other->ill_phyint != NULL); 16673 ASSERT((isv6 && !ill_other->ill_isv6) || 16674 (!isv6 && ill_other->ill_isv6)); 16675 GRAB_ILL_LOCKS(ill, ill_other); 16676 /* 16677 * We are potentially throwing away phyint_flags which 16678 * could be different from the one that we obtain from 16679 * ill_other->ill_phyint. But it is okay as we are assuming 16680 * that the state maintained within IP is correct. 16681 */ 16682 mutex_enter(&phyi->phyint_lock); 16683 if (isv6) { 16684 ASSERT(phyi->phyint_illv6 == NULL); 16685 phyi->phyint_illv6 = ill; 16686 } else { 16687 ASSERT(phyi->phyint_illv4 == NULL); 16688 phyi->phyint_illv4 = ill; 16689 } 16690 16691 /* 16692 * Delete the old phyint and make its ipsq eligible 16693 * to be freed in ipsq_exit(). 16694 */ 16695 phyi_old->phyint_illv4 = NULL; 16696 phyi_old->phyint_illv6 = NULL; 16697 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16698 phyi_old->phyint_name[0] = '\0'; 16699 mi_free(phyi_old); 16700 } else { 16701 mutex_enter(&ill->ill_lock); 16702 /* 16703 * We don't need to acquire any lock, since 16704 * the ill is not yet visible globally and we 16705 * have not yet released the ill_g_lock. 16706 */ 16707 phyi = phyi_old; 16708 mutex_enter(&phyi->phyint_lock); 16709 /* XXX We need a recovery strategy here. */ 16710 if (!phyint_assign_ifindex(phyi, ipst)) 16711 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16712 16713 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16714 (void *)phyi, where); 16715 16716 (void) avl_find(&ipst->ips_phyint_g_list-> 16717 phyint_list_avl_by_index, 16718 &phyi->phyint_ifindex, &where); 16719 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16720 (void *)phyi, where); 16721 } 16722 16723 /* 16724 * Reassigning ill_phyint automatically reassigns the ipsq also. 16725 * pending mp is not affected because that is per ill basis. 16726 */ 16727 ill->ill_phyint = phyi; 16728 16729 /* 16730 * Now that the phyint's ifindex has been assigned, complete the 16731 * remaining 16732 */ 16733 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16734 if (ill->ill_isv6) { 16735 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16736 ill->ill_phyint->phyint_ifindex; 16737 ill->ill_mcast_type = ipst->ips_mld_max_version; 16738 } else { 16739 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16740 } 16741 16742 /* 16743 * Generate an event within the hooks framework to indicate that 16744 * a new interface has just been added to IP. For this event to 16745 * be generated, the network interface must, at least, have an 16746 * ifindex assigned to it. (We don't generate the event for 16747 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16748 * 16749 * This needs to be run inside the ill_g_lock perimeter to ensure 16750 * that the ordering of delivered events to listeners matches the 16751 * order of them in the kernel. 16752 */ 16753 if (!IS_LOOPBACK(ill)) { 16754 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16755 ill->ill_name_length); 16756 } 16757 RELEASE_ILL_LOCKS(ill, ill_other); 16758 mutex_exit(&phyi->phyint_lock); 16759 } 16760 16761 /* 16762 * Notify any downstream modules of the name of this interface. 16763 * An M_IOCTL is used even though we don't expect a successful reply. 16764 * Any reply message from the driver (presumably an M_IOCNAK) will 16765 * eventually get discarded somewhere upstream. The message format is 16766 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16767 * to IP. 16768 */ 16769 static void 16770 ip_ifname_notify(ill_t *ill, queue_t *q) 16771 { 16772 mblk_t *mp1, *mp2; 16773 struct iocblk *iocp; 16774 struct lifreq *lifr; 16775 16776 mp1 = mkiocb(SIOCSLIFNAME); 16777 if (mp1 == NULL) 16778 return; 16779 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16780 if (mp2 == NULL) { 16781 freeb(mp1); 16782 return; 16783 } 16784 16785 mp1->b_cont = mp2; 16786 iocp = (struct iocblk *)mp1->b_rptr; 16787 iocp->ioc_count = sizeof (struct lifreq); 16788 16789 lifr = (struct lifreq *)mp2->b_rptr; 16790 mp2->b_wptr += sizeof (struct lifreq); 16791 bzero(lifr, sizeof (struct lifreq)); 16792 16793 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16794 lifr->lifr_ppa = ill->ill_ppa; 16795 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16796 16797 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16798 char *, "SIOCSLIFNAME", ill_t *, ill); 16799 putnext(q, mp1); 16800 } 16801 16802 static int 16803 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16804 { 16805 int err; 16806 ip_stack_t *ipst = ill->ill_ipst; 16807 phyint_t *phyi = ill->ill_phyint; 16808 16809 /* 16810 * Now that ill_name is set, the configuration for the IPMP 16811 * meta-interface can be performed. 16812 */ 16813 if (IS_IPMP(ill)) { 16814 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16815 /* 16816 * If phyi->phyint_grp is NULL, then this is the first IPMP 16817 * meta-interface and we need to create the IPMP group. 16818 */ 16819 if (phyi->phyint_grp == NULL) { 16820 /* 16821 * If someone has renamed another IPMP group to have 16822 * the same name as our interface, bail. 16823 */ 16824 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16825 rw_exit(&ipst->ips_ipmp_lock); 16826 return (EEXIST); 16827 } 16828 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16829 if (phyi->phyint_grp == NULL) { 16830 rw_exit(&ipst->ips_ipmp_lock); 16831 return (ENOMEM); 16832 } 16833 } 16834 rw_exit(&ipst->ips_ipmp_lock); 16835 } 16836 16837 /* Tell downstream modules where they are. */ 16838 ip_ifname_notify(ill, q); 16839 16840 /* 16841 * ill_dl_phys returns EINPROGRESS in the usual case. 16842 * Error cases are ENOMEM ... 16843 */ 16844 err = ill_dl_phys(ill, ipif, mp, q); 16845 16846 if (ill->ill_isv6) { 16847 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16848 if (ipst->ips_mld_slowtimeout_id == 0) { 16849 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16850 (void *)ipst, 16851 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16852 } 16853 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16854 } else { 16855 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16856 if (ipst->ips_igmp_slowtimeout_id == 0) { 16857 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16858 (void *)ipst, 16859 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16860 } 16861 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16862 } 16863 16864 return (err); 16865 } 16866 16867 /* 16868 * Common routine for ppa and ifname setting. Should be called exclusive. 16869 * 16870 * Returns EINPROGRESS when mp has been consumed by queueing it on 16871 * ipx_pending_mp and the ioctl will complete in ip_rput. 16872 * 16873 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16874 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16875 * For SLIFNAME, we pass these values back to the userland. 16876 */ 16877 static int 16878 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16879 { 16880 ill_t *ill; 16881 ipif_t *ipif; 16882 ipsq_t *ipsq; 16883 char *ppa_ptr; 16884 char *old_ptr; 16885 char old_char; 16886 int error; 16887 ip_stack_t *ipst; 16888 16889 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16890 ASSERT(q->q_next != NULL); 16891 ASSERT(interf_name != NULL); 16892 16893 ill = (ill_t *)q->q_ptr; 16894 ipst = ill->ill_ipst; 16895 16896 ASSERT(ill->ill_ipst != NULL); 16897 ASSERT(ill->ill_name[0] == '\0'); 16898 ASSERT(IAM_WRITER_ILL(ill)); 16899 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16900 ASSERT(ill->ill_ppa == UINT_MAX); 16901 16902 ill->ill_defend_start = ill->ill_defend_count = 0; 16903 /* The ppa is sent down by ifconfig or is chosen */ 16904 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16905 return (EINVAL); 16906 } 16907 16908 /* 16909 * make sure ppa passed in is same as ppa in the name. 16910 * This check is not made when ppa == UINT_MAX in that case ppa 16911 * in the name could be anything. System will choose a ppa and 16912 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16913 */ 16914 if (*new_ppa_ptr != UINT_MAX) { 16915 /* stoi changes the pointer */ 16916 old_ptr = ppa_ptr; 16917 /* 16918 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16919 * (they don't have an externally visible ppa). We assign one 16920 * here so that we can manage the interface. Note that in 16921 * the past this value was always 0 for DLPI 1 drivers. 16922 */ 16923 if (*new_ppa_ptr == 0) 16924 *new_ppa_ptr = stoi(&old_ptr); 16925 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16926 return (EINVAL); 16927 } 16928 /* 16929 * terminate string before ppa 16930 * save char at that location. 16931 */ 16932 old_char = ppa_ptr[0]; 16933 ppa_ptr[0] = '\0'; 16934 16935 ill->ill_ppa = *new_ppa_ptr; 16936 /* 16937 * Finish as much work now as possible before calling ill_glist_insert 16938 * which makes the ill globally visible and also merges it with the 16939 * other protocol instance of this phyint. The remaining work is 16940 * done after entering the ipsq which may happen sometime later. 16941 */ 16942 ipif = ill->ill_ipif; 16943 16944 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16945 ipif_assign_seqid(ipif); 16946 16947 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16948 ill->ill_flags |= ILLF_IPV4; 16949 16950 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16951 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16952 16953 if (ill->ill_flags & ILLF_IPV6) { 16954 16955 ill->ill_isv6 = B_TRUE; 16956 ill_set_inputfn(ill); 16957 if (ill->ill_rq != NULL) { 16958 ill->ill_rq->q_qinfo = &iprinitv6; 16959 } 16960 16961 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16962 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16963 ipif->ipif_v6subnet = ipv6_all_zeros; 16964 ipif->ipif_v6net_mask = ipv6_all_zeros; 16965 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16966 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16967 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16968 /* 16969 * point-to-point or Non-mulicast capable 16970 * interfaces won't do NUD unless explicitly 16971 * configured to do so. 16972 */ 16973 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16974 !(ill->ill_flags & ILLF_MULTICAST)) { 16975 ill->ill_flags |= ILLF_NONUD; 16976 } 16977 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16978 if (ill->ill_flags & ILLF_NOARP) { 16979 /* 16980 * Note: xresolv interfaces will eventually need 16981 * NOARP set here as well, but that will require 16982 * those external resolvers to have some 16983 * knowledge of that flag and act appropriately. 16984 * Not to be changed at present. 16985 */ 16986 ill->ill_flags &= ~ILLF_NOARP; 16987 } 16988 /* 16989 * Set the ILLF_ROUTER flag according to the global 16990 * IPv6 forwarding policy. 16991 */ 16992 if (ipst->ips_ipv6_forwarding != 0) 16993 ill->ill_flags |= ILLF_ROUTER; 16994 } else if (ill->ill_flags & ILLF_IPV4) { 16995 ill->ill_isv6 = B_FALSE; 16996 ill_set_inputfn(ill); 16997 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16998 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17000 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17001 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17003 /* 17004 * Set the ILLF_ROUTER flag according to the global 17005 * IPv4 forwarding policy. 17006 */ 17007 if (ipst->ips_ip_forwarding != 0) 17008 ill->ill_flags |= ILLF_ROUTER; 17009 } 17010 17011 ASSERT(ill->ill_phyint != NULL); 17012 17013 /* 17014 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17015 * be completed in ill_glist_insert -> ill_phyint_reinit 17016 */ 17017 if (!ill_allocate_mibs(ill)) 17018 return (ENOMEM); 17019 17020 /* 17021 * Pick a default sap until we get the DL_INFO_ACK back from 17022 * the driver. 17023 */ 17024 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17025 ill->ill_media->ip_m_ipv4sap; 17026 17027 ill->ill_ifname_pending = 1; 17028 ill->ill_ifname_pending_err = 0; 17029 17030 /* 17031 * When the first ipif comes up in ipif_up_done(), multicast groups 17032 * that were joined while this ill was not bound to the DLPI link need 17033 * to be recovered by ill_recover_multicast(). 17034 */ 17035 ill->ill_need_recover_multicast = 1; 17036 17037 ill_refhold(ill); 17038 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17039 if ((error = ill_glist_insert(ill, interf_name, 17040 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17041 ill->ill_ppa = UINT_MAX; 17042 ill->ill_name[0] = '\0'; 17043 /* 17044 * undo null termination done above. 17045 */ 17046 ppa_ptr[0] = old_char; 17047 rw_exit(&ipst->ips_ill_g_lock); 17048 ill_refrele(ill); 17049 return (error); 17050 } 17051 17052 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17053 17054 /* 17055 * When we return the buffer pointed to by interf_name should contain 17056 * the same name as in ill_name. 17057 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17058 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17059 * so copy full name and update the ppa ptr. 17060 * When ppa passed in != UINT_MAX all values are correct just undo 17061 * null termination, this saves a bcopy. 17062 */ 17063 if (*new_ppa_ptr == UINT_MAX) { 17064 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17065 *new_ppa_ptr = ill->ill_ppa; 17066 } else { 17067 /* 17068 * undo null termination done above. 17069 */ 17070 ppa_ptr[0] = old_char; 17071 } 17072 17073 /* Let SCTP know about this ILL */ 17074 sctp_update_ill(ill, SCTP_ILL_INSERT); 17075 17076 /* 17077 * ill_glist_insert has made the ill visible globally, and 17078 * ill_phyint_reinit could have changed the ipsq. At this point, 17079 * we need to hold the ips_ill_g_lock across the call to enter the 17080 * ipsq to enforce atomicity and prevent reordering. In the event 17081 * the ipsq has changed, and if the new ipsq is currently busy, 17082 * we need to make sure that this half-completed ioctl is ahead of 17083 * any subsequent ioctl. We achieve this by not dropping the 17084 * ips_ill_g_lock which prevents any ill lookup itself thereby 17085 * ensuring that new ioctls can't start. 17086 */ 17087 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17088 B_TRUE); 17089 17090 rw_exit(&ipst->ips_ill_g_lock); 17091 ill_refrele(ill); 17092 if (ipsq == NULL) 17093 return (EINPROGRESS); 17094 17095 /* 17096 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17097 */ 17098 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17099 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17100 else 17101 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17102 17103 error = ipif_set_values_tail(ill, ipif, mp, q); 17104 ipsq_exit(ipsq); 17105 if (error != 0 && error != EINPROGRESS) { 17106 /* 17107 * restore previous values 17108 */ 17109 ill->ill_isv6 = B_FALSE; 17110 ill_set_inputfn(ill); 17111 } 17112 return (error); 17113 } 17114 17115 void 17116 ipif_init(ip_stack_t *ipst) 17117 { 17118 int i; 17119 17120 for (i = 0; i < MAX_G_HEADS; i++) { 17121 ipst->ips_ill_g_heads[i].ill_g_list_head = 17122 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17123 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17124 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17125 } 17126 17127 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17128 ill_phyint_compare_index, 17129 sizeof (phyint_t), 17130 offsetof(struct phyint, phyint_avl_by_index)); 17131 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17132 ill_phyint_compare_name, 17133 sizeof (phyint_t), 17134 offsetof(struct phyint, phyint_avl_by_name)); 17135 } 17136 17137 /* 17138 * Save enough information so that we can recreate the IRE if 17139 * the interface goes down and then up. 17140 */ 17141 void 17142 ill_save_ire(ill_t *ill, ire_t *ire) 17143 { 17144 mblk_t *save_mp; 17145 17146 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17147 if (save_mp != NULL) { 17148 ifrt_t *ifrt; 17149 17150 save_mp->b_wptr += sizeof (ifrt_t); 17151 ifrt = (ifrt_t *)save_mp->b_rptr; 17152 bzero(ifrt, sizeof (ifrt_t)); 17153 ifrt->ifrt_type = ire->ire_type; 17154 if (ire->ire_ipversion == IPV4_VERSION) { 17155 ASSERT(!ill->ill_isv6); 17156 ifrt->ifrt_addr = ire->ire_addr; 17157 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17158 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17159 ifrt->ifrt_mask = ire->ire_mask; 17160 } else { 17161 ASSERT(ill->ill_isv6); 17162 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17163 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17164 mutex_enter(&ire->ire_lock); 17165 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17166 mutex_exit(&ire->ire_lock); 17167 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17168 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17169 } 17170 ifrt->ifrt_flags = ire->ire_flags; 17171 ifrt->ifrt_zoneid = ire->ire_zoneid; 17172 mutex_enter(&ill->ill_saved_ire_lock); 17173 save_mp->b_cont = ill->ill_saved_ire_mp; 17174 ill->ill_saved_ire_mp = save_mp; 17175 ill->ill_saved_ire_cnt++; 17176 mutex_exit(&ill->ill_saved_ire_lock); 17177 } 17178 } 17179 17180 /* 17181 * Remove one entry from ill_saved_ire_mp. 17182 */ 17183 void 17184 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17185 { 17186 mblk_t **mpp; 17187 mblk_t *mp; 17188 ifrt_t *ifrt; 17189 17190 /* Remove from ill_saved_ire_mp list if it is there */ 17191 mutex_enter(&ill->ill_saved_ire_lock); 17192 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17193 mpp = &(*mpp)->b_cont) { 17194 in6_addr_t gw_addr_v6; 17195 17196 /* 17197 * On a given ill, the tuple of address, gateway, mask, 17198 * ire_type, and zoneid is unique for each saved IRE. 17199 */ 17200 mp = *mpp; 17201 ifrt = (ifrt_t *)mp->b_rptr; 17202 /* ire_gateway_addr_v6 can change - need lock */ 17203 mutex_enter(&ire->ire_lock); 17204 gw_addr_v6 = ire->ire_gateway_addr_v6; 17205 mutex_exit(&ire->ire_lock); 17206 17207 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17208 ifrt->ifrt_type != ire->ire_type) 17209 continue; 17210 17211 if (ill->ill_isv6 ? 17212 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17213 &ire->ire_addr_v6) && 17214 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17215 &gw_addr_v6) && 17216 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17217 &ire->ire_mask_v6)) : 17218 (ifrt->ifrt_addr == ire->ire_addr && 17219 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17220 ifrt->ifrt_mask == ire->ire_mask)) { 17221 *mpp = mp->b_cont; 17222 ill->ill_saved_ire_cnt--; 17223 freeb(mp); 17224 break; 17225 } 17226 } 17227 mutex_exit(&ill->ill_saved_ire_lock); 17228 } 17229 17230 /* 17231 * IP multirouting broadcast routes handling 17232 * Append CGTP broadcast IREs to regular ones created 17233 * at ifconfig time. 17234 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17235 * the destination and the gateway are broadcast addresses. 17236 * The caller has verified that the destination is an IRE_BROADCAST and that 17237 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17238 * we create a MULTIRT IRE_BROADCAST. 17239 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17240 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17241 */ 17242 static void 17243 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17244 { 17245 ire_t *ire_prim; 17246 17247 ASSERT(ire != NULL); 17248 17249 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17250 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17251 NULL); 17252 if (ire_prim != NULL) { 17253 /* 17254 * We are in the special case of broadcasts for 17255 * CGTP. We add an IRE_BROADCAST that holds 17256 * the RTF_MULTIRT flag, the destination 17257 * address and the low level 17258 * info of ire_prim. In other words, CGTP 17259 * broadcast is added to the redundant ipif. 17260 */ 17261 ill_t *ill_prim; 17262 ire_t *bcast_ire; 17263 17264 ill_prim = ire_prim->ire_ill; 17265 17266 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17267 (void *)ire_prim, (void *)ill_prim)); 17268 17269 bcast_ire = ire_create( 17270 (uchar_t *)&ire->ire_addr, 17271 (uchar_t *)&ip_g_all_ones, 17272 (uchar_t *)&ire->ire_gateway_addr, 17273 IRE_BROADCAST, 17274 ill_prim, 17275 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17276 ire->ire_flags | RTF_KERNEL, 17277 NULL, 17278 ipst); 17279 17280 /* 17281 * Here we assume that ire_add does head insertion so that 17282 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17283 */ 17284 if (bcast_ire != NULL) { 17285 if (ire->ire_flags & RTF_SETSRC) { 17286 bcast_ire->ire_setsrc_addr = 17287 ire->ire_setsrc_addr; 17288 } 17289 bcast_ire = ire_add(bcast_ire); 17290 if (bcast_ire != NULL) { 17291 ip2dbg(("ip_cgtp_filter_bcast_add: " 17292 "added bcast_ire %p\n", 17293 (void *)bcast_ire)); 17294 17295 ill_save_ire(ill_prim, bcast_ire); 17296 ire_refrele(bcast_ire); 17297 } 17298 } 17299 ire_refrele(ire_prim); 17300 } 17301 } 17302 17303 /* 17304 * IP multirouting broadcast routes handling 17305 * Remove the broadcast ire. 17306 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17307 * the destination and the gateway are broadcast addresses. 17308 * The caller has only verified that RTF_MULTIRT was set. We check 17309 * that the destination is broadcast and that the gateway is a broadcast 17310 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17311 */ 17312 static void 17313 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17314 { 17315 ASSERT(ire != NULL); 17316 17317 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17318 ire_t *ire_prim; 17319 17320 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17321 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17322 ipst, NULL); 17323 if (ire_prim != NULL) { 17324 ill_t *ill_prim; 17325 ire_t *bcast_ire; 17326 17327 ill_prim = ire_prim->ire_ill; 17328 17329 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17330 "ire_prim %p, ill_prim %p\n", 17331 (void *)ire_prim, (void *)ill_prim)); 17332 17333 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17334 ire->ire_gateway_addr, IRE_BROADCAST, 17335 ill_prim, ALL_ZONES, NULL, 17336 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17337 MATCH_IRE_MASK, 0, ipst, NULL); 17338 17339 if (bcast_ire != NULL) { 17340 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17341 "looked up bcast_ire %p\n", 17342 (void *)bcast_ire)); 17343 ill_remove_saved_ire(bcast_ire->ire_ill, 17344 bcast_ire); 17345 ire_delete(bcast_ire); 17346 ire_refrele(bcast_ire); 17347 } 17348 ire_refrele(ire_prim); 17349 } 17350 } 17351 } 17352 17353 /* 17354 * Derive an interface id from the link layer address. 17355 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17356 */ 17357 static void 17358 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17359 { 17360 char *addr; 17361 17362 /* 17363 * Note that some IPv6 interfaces get plumbed over links that claim to 17364 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17365 * PPP links). The ETHERADDRL check here ensures that we only set the 17366 * interface ID on IPv6 interfaces above links that actually have real 17367 * Ethernet addresses. 17368 */ 17369 if (ill->ill_phys_addr_length == ETHERADDRL) { 17370 /* Form EUI-64 like address */ 17371 addr = (char *)&v6addr->s6_addr32[2]; 17372 bcopy(ill->ill_phys_addr, addr, 3); 17373 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17374 addr[3] = (char)0xff; 17375 addr[4] = (char)0xfe; 17376 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17377 } 17378 } 17379 17380 /* ARGSUSED */ 17381 static void 17382 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17383 { 17384 } 17385 17386 typedef struct ipmp_ifcookie { 17387 uint32_t ic_hostid; 17388 char ic_ifname[LIFNAMSIZ]; 17389 char ic_zonename[ZONENAME_MAX]; 17390 } ipmp_ifcookie_t; 17391 17392 /* 17393 * Construct a pseudo-random interface ID for the IPMP interface that's both 17394 * predictable and (almost) guaranteed to be unique. 17395 */ 17396 static void 17397 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17398 { 17399 zone_t *zp; 17400 uint8_t *addr; 17401 uchar_t hash[16]; 17402 ulong_t hostid; 17403 MD5_CTX ctx; 17404 ipmp_ifcookie_t ic = { 0 }; 17405 17406 ASSERT(IS_IPMP(ill)); 17407 17408 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17409 ic.ic_hostid = htonl((uint32_t)hostid); 17410 17411 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17412 17413 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17414 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17415 zone_rele(zp); 17416 } 17417 17418 MD5Init(&ctx); 17419 MD5Update(&ctx, &ic, sizeof (ic)); 17420 MD5Final(hash, &ctx); 17421 17422 /* 17423 * Map the hash to an interface ID per the basic approach in RFC3041. 17424 */ 17425 addr = &v6addr->s6_addr8[8]; 17426 bcopy(hash + 8, addr, sizeof (uint64_t)); 17427 addr[0] &= ~0x2; /* set local bit */ 17428 } 17429 17430 /* 17431 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17432 */ 17433 static void 17434 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17435 { 17436 phyint_t *phyi = ill->ill_phyint; 17437 17438 /* 17439 * Check PHYI_MULTI_BCAST and length of physical 17440 * address to determine if we use the mapping or the 17441 * broadcast address. 17442 */ 17443 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17444 ill->ill_phys_addr_length != ETHERADDRL) { 17445 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17446 return; 17447 } 17448 m_physaddr[0] = 0x33; 17449 m_physaddr[1] = 0x33; 17450 m_physaddr[2] = m_ip6addr[12]; 17451 m_physaddr[3] = m_ip6addr[13]; 17452 m_physaddr[4] = m_ip6addr[14]; 17453 m_physaddr[5] = m_ip6addr[15]; 17454 } 17455 17456 /* 17457 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17458 */ 17459 static void 17460 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17461 { 17462 phyint_t *phyi = ill->ill_phyint; 17463 17464 /* 17465 * Check PHYI_MULTI_BCAST and length of physical 17466 * address to determine if we use the mapping or the 17467 * broadcast address. 17468 */ 17469 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17470 ill->ill_phys_addr_length != ETHERADDRL) { 17471 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17472 return; 17473 } 17474 m_physaddr[0] = 0x01; 17475 m_physaddr[1] = 0x00; 17476 m_physaddr[2] = 0x5e; 17477 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17478 m_physaddr[4] = m_ipaddr[2]; 17479 m_physaddr[5] = m_ipaddr[3]; 17480 } 17481 17482 /* ARGSUSED */ 17483 static void 17484 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17485 { 17486 /* 17487 * for the MULTI_BCAST case and other cases when we want to 17488 * use the link-layer broadcast address for multicast. 17489 */ 17490 uint8_t *bphys_addr; 17491 dl_unitdata_req_t *dlur; 17492 17493 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17494 if (ill->ill_sap_length < 0) { 17495 bphys_addr = (uchar_t *)dlur + 17496 dlur->dl_dest_addr_offset; 17497 } else { 17498 bphys_addr = (uchar_t *)dlur + 17499 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17500 } 17501 17502 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17503 } 17504 17505 /* 17506 * Derive IPoIB interface id from the link layer address. 17507 */ 17508 static void 17509 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17510 { 17511 char *addr; 17512 17513 ASSERT(ill->ill_phys_addr_length == 20); 17514 addr = (char *)&v6addr->s6_addr32[2]; 17515 bcopy(ill->ill_phys_addr + 12, addr, 8); 17516 /* 17517 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17518 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17519 * rules. In these cases, the IBA considers these GUIDs to be in 17520 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17521 * required; vendors are required not to assign global EUI-64's 17522 * that differ only in u/l bit values, thus guaranteeing uniqueness 17523 * of the interface identifier. Whether the GUID is in modified 17524 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17525 * bit set to 1. 17526 */ 17527 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17528 } 17529 17530 /* 17531 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17532 * Note on mapping from multicast IP addresses to IPoIB multicast link 17533 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17534 * The format of an IPoIB multicast address is: 17535 * 17536 * 4 byte QPN Scope Sign. Pkey 17537 * +--------------------------------------------+ 17538 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17539 * +--------------------------------------------+ 17540 * 17541 * The Scope and Pkey components are properties of the IBA port and 17542 * network interface. They can be ascertained from the broadcast address. 17543 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17544 */ 17545 static void 17546 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17547 { 17548 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17549 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17550 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17551 uint8_t *bphys_addr; 17552 dl_unitdata_req_t *dlur; 17553 17554 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17555 17556 /* 17557 * RFC 4391: IPv4 MGID is 28-bit long. 17558 */ 17559 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17560 m_physaddr[17] = m_ipaddr[1]; 17561 m_physaddr[18] = m_ipaddr[2]; 17562 m_physaddr[19] = m_ipaddr[3]; 17563 17564 17565 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17566 if (ill->ill_sap_length < 0) { 17567 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17568 } else { 17569 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17570 ill->ill_sap_length; 17571 } 17572 /* 17573 * Now fill in the IBA scope/Pkey values from the broadcast address. 17574 */ 17575 m_physaddr[5] = bphys_addr[5]; 17576 m_physaddr[8] = bphys_addr[8]; 17577 m_physaddr[9] = bphys_addr[9]; 17578 } 17579 17580 static void 17581 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17582 { 17583 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17584 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17585 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17586 uint8_t *bphys_addr; 17587 dl_unitdata_req_t *dlur; 17588 17589 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17590 17591 /* 17592 * RFC 4391: IPv4 MGID is 80-bit long. 17593 */ 17594 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17595 17596 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17597 if (ill->ill_sap_length < 0) { 17598 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17599 } else { 17600 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17601 ill->ill_sap_length; 17602 } 17603 /* 17604 * Now fill in the IBA scope/Pkey values from the broadcast address. 17605 */ 17606 m_physaddr[5] = bphys_addr[5]; 17607 m_physaddr[8] = bphys_addr[8]; 17608 m_physaddr[9] = bphys_addr[9]; 17609 } 17610 17611 /* 17612 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17613 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17614 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17615 * of RFC4213. 17616 */ 17617 static void 17618 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17619 { 17620 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17621 v6addr->s6_addr32[2] = 0; 17622 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17623 } 17624 17625 /* 17626 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17627 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17628 * id. 17629 */ 17630 static void 17631 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17632 { 17633 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17634 17635 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17636 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17637 } 17638 17639 static void 17640 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17641 { 17642 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17643 } 17644 17645 static void 17646 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17647 { 17648 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17649 } 17650 17651 static void 17652 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17653 { 17654 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17655 } 17656 17657 static void 17658 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17659 { 17660 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17661 } 17662 17663 /* 17664 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17665 * Returns an held ill, or NULL. 17666 */ 17667 ill_t * 17668 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17669 ip_stack_t *ipst) 17670 { 17671 ill_t *ill; 17672 ipif_t *ipif; 17673 17674 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17675 if (ill == NULL) 17676 return (NULL); 17677 17678 mutex_enter(&ill->ill_lock); 17679 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17680 if (IPIF_IS_CONDEMNED(ipif)) 17681 continue; 17682 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17683 ipif->ipif_zoneid != ALL_ZONES) 17684 continue; 17685 17686 mutex_exit(&ill->ill_lock); 17687 return (ill); 17688 } 17689 mutex_exit(&ill->ill_lock); 17690 ill_refrele(ill); 17691 return (NULL); 17692 } 17693 17694 /* 17695 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17696 * If a pointer to an ipif_t is returned then the caller will need to do 17697 * an ill_refrele(). 17698 */ 17699 ipif_t * 17700 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17701 ip_stack_t *ipst) 17702 { 17703 ipif_t *ipif; 17704 ill_t *ill; 17705 17706 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17707 if (ill == NULL) 17708 return (NULL); 17709 17710 mutex_enter(&ill->ill_lock); 17711 if (ill->ill_state_flags & ILL_CONDEMNED) { 17712 mutex_exit(&ill->ill_lock); 17713 ill_refrele(ill); 17714 return (NULL); 17715 } 17716 17717 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17718 if (!IPIF_CAN_LOOKUP(ipif)) 17719 continue; 17720 if (lifidx == ipif->ipif_id) { 17721 ipif_refhold_locked(ipif); 17722 break; 17723 } 17724 } 17725 17726 mutex_exit(&ill->ill_lock); 17727 ill_refrele(ill); 17728 return (ipif); 17729 } 17730 17731 /* 17732 * Set ill_inputfn based on the current know state. 17733 * This needs to be called when any of the factors taken into 17734 * account changes. 17735 */ 17736 void 17737 ill_set_inputfn(ill_t *ill) 17738 { 17739 ip_stack_t *ipst = ill->ill_ipst; 17740 17741 if (ill->ill_isv6) { 17742 if (is_system_labeled()) 17743 ill->ill_inputfn = ill_input_full_v6; 17744 else 17745 ill->ill_inputfn = ill_input_short_v6; 17746 } else { 17747 if (is_system_labeled()) 17748 ill->ill_inputfn = ill_input_full_v4; 17749 else if (ill->ill_dhcpinit != 0) 17750 ill->ill_inputfn = ill_input_full_v4; 17751 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17752 != NULL) 17753 ill->ill_inputfn = ill_input_full_v4; 17754 else if (ipst->ips_ip_cgtp_filter && 17755 ipst->ips_ip_cgtp_filter_ops != NULL) 17756 ill->ill_inputfn = ill_input_full_v4; 17757 else 17758 ill->ill_inputfn = ill_input_short_v4; 17759 } 17760 } 17761 17762 /* 17763 * Re-evaluate ill_inputfn for all the IPv4 ills. 17764 * Used when RSVP and CGTP comes and goes. 17765 */ 17766 void 17767 ill_set_inputfn_all(ip_stack_t *ipst) 17768 { 17769 ill_walk_context_t ctx; 17770 ill_t *ill; 17771 17772 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17773 ill = ILL_START_WALK_V4(&ctx, ipst); 17774 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17775 ill_set_inputfn(ill); 17776 17777 rw_exit(&ipst->ips_ill_g_lock); 17778 } 17779 17780 /* 17781 * Set the physical address information for `ill' to the contents of the 17782 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17783 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17784 * EINPROGRESS will be returned. 17785 */ 17786 int 17787 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17788 { 17789 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17790 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17791 17792 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17793 17794 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17795 dlindp->dl_data != DL_CURR_DEST_ADDR && 17796 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17797 /* Changing DL_IPV6_TOKEN is not yet supported */ 17798 return (0); 17799 } 17800 17801 /* 17802 * We need to store up to two copies of `mp' in `ill'. Due to the 17803 * design of ipsq_pending_mp_add(), we can't pass them as separate 17804 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17805 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17806 */ 17807 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17808 freemsg(mp); 17809 return (ENOMEM); 17810 } 17811 17812 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17813 17814 /* 17815 * Since we'll only do a logical down, we can't rely on ipif_down 17816 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17817 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17818 * case, to quiesce ire's and nce's for ill_is_quiescent. 17819 */ 17820 mutex_enter(&ill->ill_lock); 17821 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17822 /* no more ire/nce addition allowed */ 17823 mutex_exit(&ill->ill_lock); 17824 17825 /* 17826 * If we can quiesce the ill, then set the address. If not, then 17827 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17828 */ 17829 ill_down_ipifs(ill, B_TRUE); 17830 mutex_enter(&ill->ill_lock); 17831 if (!ill_is_quiescent(ill)) { 17832 /* call cannot fail since `conn_t *' argument is NULL */ 17833 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17834 mp, ILL_DOWN); 17835 mutex_exit(&ill->ill_lock); 17836 return (EINPROGRESS); 17837 } 17838 mutex_exit(&ill->ill_lock); 17839 17840 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17841 return (0); 17842 } 17843 17844 /* 17845 * When the allowed-ips link property is set on the datalink, IP receives a 17846 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17847 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17848 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17849 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17850 * array. 17851 */ 17852 void 17853 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17854 { 17855 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17856 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17857 mac_protect_t *mrp; 17858 int i; 17859 17860 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17861 mrp = (mac_protect_t *)&dlip[1]; 17862 17863 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17864 kmem_free(ill->ill_allowed_ips, 17865 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17866 ill->ill_allowed_ips_cnt = 0; 17867 ill->ill_allowed_ips = NULL; 17868 mutex_enter(&ill->ill_phyint->phyint_lock); 17869 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17870 mutex_exit(&ill->ill_phyint->phyint_lock); 17871 return; 17872 } 17873 17874 if (ill->ill_allowed_ips != NULL) { 17875 kmem_free(ill->ill_allowed_ips, 17876 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17877 } 17878 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17879 ill->ill_allowed_ips = kmem_alloc( 17880 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17881 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17882 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17883 17884 mutex_enter(&ill->ill_phyint->phyint_lock); 17885 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17886 mutex_exit(&ill->ill_phyint->phyint_lock); 17887 } 17888 17889 /* 17890 * Once the ill associated with `q' has quiesced, set its physical address 17891 * information to the values in `addrmp'. Note that two copies of `addrmp' 17892 * are passed (linked by b_cont), since we sometimes need to save two distinct 17893 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17894 * failure (we'll free the other copy if it's not needed). Since the ill_t 17895 * is quiesced, we know any stale nce's with the old address information have 17896 * already been removed, so we don't need to call nce_flush(). 17897 */ 17898 /* ARGSUSED */ 17899 static void 17900 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17901 { 17902 ill_t *ill = q->q_ptr; 17903 mblk_t *addrmp2 = unlinkb(addrmp); 17904 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17905 uint_t addrlen, addroff; 17906 int status; 17907 17908 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17909 17910 addroff = dlindp->dl_addr_offset; 17911 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17912 17913 switch (dlindp->dl_data) { 17914 case DL_IPV6_LINK_LAYER_ADDR: 17915 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17916 freemsg(addrmp2); 17917 break; 17918 17919 case DL_CURR_DEST_ADDR: 17920 freemsg(ill->ill_dest_addr_mp); 17921 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17922 ill->ill_dest_addr_mp = addrmp; 17923 if (ill->ill_isv6) { 17924 ill_setdesttoken(ill); 17925 ipif_setdestlinklocal(ill->ill_ipif); 17926 } 17927 freemsg(addrmp2); 17928 break; 17929 17930 case DL_CURR_PHYS_ADDR: 17931 freemsg(ill->ill_phys_addr_mp); 17932 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17933 ill->ill_phys_addr_mp = addrmp; 17934 ill->ill_phys_addr_length = addrlen; 17935 if (ill->ill_isv6) 17936 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17937 else 17938 freemsg(addrmp2); 17939 if (ill->ill_isv6) { 17940 ill_setdefaulttoken(ill); 17941 ipif_setlinklocal(ill->ill_ipif); 17942 } 17943 break; 17944 default: 17945 ASSERT(0); 17946 } 17947 17948 /* 17949 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17950 * as we bring the ipifs up again. 17951 */ 17952 mutex_enter(&ill->ill_lock); 17953 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17954 mutex_exit(&ill->ill_lock); 17955 /* 17956 * If there are ipifs to bring up, ill_up_ipifs() will return 17957 * EINPROGRESS, and ipsq_current_finish() will be called by 17958 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17959 * brought up. 17960 */ 17961 status = ill_up_ipifs(ill, q, addrmp); 17962 if (status != EINPROGRESS) 17963 ipsq_current_finish(ipsq); 17964 } 17965 17966 /* 17967 * Helper routine for setting the ill_nd_lla fields. 17968 */ 17969 void 17970 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17971 { 17972 freemsg(ill->ill_nd_lla_mp); 17973 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17974 ill->ill_nd_lla_mp = ndmp; 17975 ill->ill_nd_lla_len = addrlen; 17976 } 17977 17978 /* 17979 * Replumb the ill. 17980 */ 17981 int 17982 ill_replumb(ill_t *ill, mblk_t *mp) 17983 { 17984 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17985 17986 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17987 17988 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17989 17990 /* 17991 * If we can quiesce the ill, then continue. If not, then 17992 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17993 */ 17994 ill_down_ipifs(ill, B_FALSE); 17995 17996 mutex_enter(&ill->ill_lock); 17997 if (!ill_is_quiescent(ill)) { 17998 /* call cannot fail since `conn_t *' argument is NULL */ 17999 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18000 mp, ILL_DOWN); 18001 mutex_exit(&ill->ill_lock); 18002 return (EINPROGRESS); 18003 } 18004 mutex_exit(&ill->ill_lock); 18005 18006 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18007 return (0); 18008 } 18009 18010 /* ARGSUSED */ 18011 static void 18012 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18013 { 18014 ill_t *ill = q->q_ptr; 18015 int err; 18016 conn_t *connp = NULL; 18017 18018 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18019 freemsg(ill->ill_replumb_mp); 18020 ill->ill_replumb_mp = copyb(mp); 18021 18022 if (ill->ill_replumb_mp == NULL) { 18023 /* out of memory */ 18024 ipsq_current_finish(ipsq); 18025 return; 18026 } 18027 18028 mutex_enter(&ill->ill_lock); 18029 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18030 ill->ill_rq, ill->ill_replumb_mp, 0); 18031 mutex_exit(&ill->ill_lock); 18032 18033 if (!ill->ill_up_ipifs) { 18034 /* already closing */ 18035 ipsq_current_finish(ipsq); 18036 return; 18037 } 18038 ill->ill_replumbing = 1; 18039 err = ill_down_ipifs_tail(ill); 18040 18041 /* 18042 * Successfully quiesced and brought down the interface, now we send 18043 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18044 * DL_NOTE_REPLUMB message. 18045 */ 18046 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18047 DL_NOTIFY_CONF); 18048 ASSERT(mp != NULL); 18049 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18050 DL_NOTE_REPLUMB_DONE; 18051 ill_dlpi_send(ill, mp); 18052 18053 /* 18054 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18055 * streams have to be unbound. When all the DLPI exchanges are done, 18056 * ipsq_current_finish() will be called by arp_bringup_done(). The 18057 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18058 * arp_bringup_done(). 18059 */ 18060 ASSERT(ill->ill_replumb_mp != NULL); 18061 if (err == EINPROGRESS) 18062 return; 18063 else 18064 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18065 ASSERT(connp == NULL); 18066 if (err == 0 && ill->ill_replumb_mp != NULL && 18067 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18068 return; 18069 } 18070 ipsq_current_finish(ipsq); 18071 } 18072 18073 /* 18074 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18075 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18076 * as per the ioctl. On failure, an errno is returned. 18077 */ 18078 static int 18079 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18080 { 18081 int rval; 18082 struct strioctl iocb; 18083 18084 iocb.ic_cmd = cmd; 18085 iocb.ic_timout = 15; 18086 iocb.ic_len = bufsize; 18087 iocb.ic_dp = buf; 18088 18089 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18090 } 18091 18092 /* 18093 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18094 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18095 */ 18096 static int 18097 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18098 uint_t *bufsizep, cred_t *cr) 18099 { 18100 int err; 18101 struct lifnum lifn; 18102 18103 bzero(&lifn, sizeof (lifn)); 18104 lifn.lifn_family = af; 18105 lifn.lifn_flags = LIFC_UNDER_IPMP; 18106 18107 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18108 return (err); 18109 18110 /* 18111 * Pad the interface count to account for additional interfaces that 18112 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18113 */ 18114 lifn.lifn_count += 4; 18115 bzero(lifcp, sizeof (*lifcp)); 18116 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18117 lifcp->lifc_family = af; 18118 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18119 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18120 18121 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18122 if (err != 0) { 18123 kmem_free(lifcp->lifc_buf, *bufsizep); 18124 return (err); 18125 } 18126 18127 return (0); 18128 } 18129 18130 /* 18131 * Helper for ip_interface_cleanup() that removes the loopback interface. 18132 */ 18133 static void 18134 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18135 { 18136 int err; 18137 struct lifreq lifr; 18138 18139 bzero(&lifr, sizeof (lifr)); 18140 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18141 18142 /* 18143 * Attempt to remove the interface. It may legitimately not exist 18144 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18145 */ 18146 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18147 if (err != 0 && err != ENXIO) { 18148 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18149 "error %d\n", isv6 ? "v6" : "v4", err)); 18150 } 18151 } 18152 18153 /* 18154 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18155 * groups and that IPMP data addresses are down. These conditions must be met 18156 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18157 */ 18158 static void 18159 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18160 { 18161 int af = isv6 ? AF_INET6 : AF_INET; 18162 int i, nifs; 18163 int err; 18164 uint_t bufsize; 18165 uint_t lifrsize = sizeof (struct lifreq); 18166 struct lifconf lifc; 18167 struct lifreq *lifrp; 18168 18169 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18170 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18171 "(error %d); any IPMP interfaces cannot be shutdown", err); 18172 return; 18173 } 18174 18175 nifs = lifc.lifc_len / lifrsize; 18176 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18177 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18178 if (err != 0) { 18179 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18180 "flags: error %d", lifrp->lifr_name, err); 18181 continue; 18182 } 18183 18184 if (lifrp->lifr_flags & IFF_IPMP) { 18185 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18186 continue; 18187 18188 lifrp->lifr_flags &= ~IFF_UP; 18189 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18190 if (err != 0) { 18191 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18192 "bring down (error %d); IPMP interface may " 18193 "not be shutdown", lifrp->lifr_name, err); 18194 } 18195 18196 /* 18197 * Check if IFF_DUPLICATE is still set -- and if so, 18198 * reset the address to clear it. 18199 */ 18200 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18201 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18202 continue; 18203 18204 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18205 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18206 lifrp, lifrsize, cr)) != 0) { 18207 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18208 "reset DAD (error %d); IPMP interface may " 18209 "not be shutdown", lifrp->lifr_name, err); 18210 } 18211 continue; 18212 } 18213 18214 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18215 lifrp->lifr_groupname[0] = '\0'; 18216 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18217 lifrsize, cr)) != 0) { 18218 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18219 "leave IPMP group (error %d); associated " 18220 "IPMP interface may not be shutdown", 18221 lifrp->lifr_name, err); 18222 continue; 18223 } 18224 } 18225 } 18226 18227 kmem_free(lifc.lifc_buf, bufsize); 18228 } 18229 18230 #define UDPDEV "/devices/pseudo/udp@0:udp" 18231 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18232 18233 /* 18234 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18235 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18236 * when the user-level processes in the zone are killed and the latter are 18237 * cleaned up by str_stack_shutdown(). 18238 */ 18239 void 18240 ip_interface_cleanup(ip_stack_t *ipst) 18241 { 18242 ldi_handle_t lh; 18243 ldi_ident_t li; 18244 cred_t *cr; 18245 int err; 18246 int i; 18247 char *devs[] = { UDP6DEV, UDPDEV }; 18248 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18249 18250 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18251 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18252 " error %d", err); 18253 return; 18254 } 18255 18256 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18257 ASSERT(cr != NULL); 18258 18259 /* 18260 * NOTE: loop executes exactly twice and is hardcoded to know that the 18261 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18262 * the loop.) 18263 */ 18264 for (i = 0; i < 2; i++) { 18265 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18266 if (err != 0) { 18267 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18268 " error %d", devs[i], err); 18269 continue; 18270 } 18271 18272 ip_loopback_removeif(lh, i == 0, cr); 18273 ip_ipmp_cleanup(lh, i == 0, cr); 18274 18275 (void) ldi_close(lh, FREAD|FWRITE, cr); 18276 } 18277 18278 ldi_ident_release(li); 18279 crfree(cr); 18280 } 18281 18282 /* 18283 * This needs to be in-sync with nic_event_t definition 18284 */ 18285 static const char * 18286 ill_hook_event2str(nic_event_t event) 18287 { 18288 switch (event) { 18289 case NE_PLUMB: 18290 return ("PLUMB"); 18291 case NE_UNPLUMB: 18292 return ("UNPLUMB"); 18293 case NE_UP: 18294 return ("UP"); 18295 case NE_DOWN: 18296 return ("DOWN"); 18297 case NE_ADDRESS_CHANGE: 18298 return ("ADDRESS_CHANGE"); 18299 case NE_LIF_UP: 18300 return ("LIF_UP"); 18301 case NE_LIF_DOWN: 18302 return ("LIF_DOWN"); 18303 case NE_IFINDEX_CHANGE: 18304 return ("IFINDEX_CHANGE"); 18305 default: 18306 return ("UNKNOWN"); 18307 } 18308 } 18309 18310 void 18311 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18312 nic_event_data_t data, size_t datalen) 18313 { 18314 ip_stack_t *ipst = ill->ill_ipst; 18315 hook_nic_event_int_t *info; 18316 const char *str = NULL; 18317 18318 /* create a new nic event info */ 18319 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18320 goto fail; 18321 18322 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18323 info->hnei_event.hne_lif = lif; 18324 info->hnei_event.hne_event = event; 18325 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18326 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18327 info->hnei_event.hne_data = NULL; 18328 info->hnei_event.hne_datalen = 0; 18329 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18330 18331 if (data != NULL && datalen != 0) { 18332 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18333 if (info->hnei_event.hne_data == NULL) 18334 goto fail; 18335 bcopy(data, info->hnei_event.hne_data, datalen); 18336 info->hnei_event.hne_datalen = datalen; 18337 } 18338 18339 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18340 DDI_NOSLEEP) == DDI_SUCCESS) 18341 return; 18342 18343 fail: 18344 if (info != NULL) { 18345 if (info->hnei_event.hne_data != NULL) { 18346 kmem_free(info->hnei_event.hne_data, 18347 info->hnei_event.hne_datalen); 18348 } 18349 kmem_free(info, sizeof (hook_nic_event_t)); 18350 } 18351 str = ill_hook_event2str(event); 18352 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18353 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18354 } 18355 18356 static int 18357 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18358 { 18359 int err = 0; 18360 const in_addr_t *addr = NULL; 18361 nce_t *nce = NULL; 18362 ill_t *ill = ipif->ipif_ill; 18363 ill_t *bound_ill; 18364 boolean_t added_ipif = B_FALSE; 18365 uint16_t state; 18366 uint16_t flags; 18367 18368 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18369 ill_t *, ill, ipif_t *, ipif); 18370 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18371 addr = &ipif->ipif_lcl_addr; 18372 } 18373 18374 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18375 if (res_act != Res_act_initial) 18376 return (EINVAL); 18377 } 18378 18379 if (addr != NULL) { 18380 ipmp_illgrp_t *illg = ill->ill_grp; 18381 18382 /* add unicast nce for the local addr */ 18383 18384 if (IS_IPMP(ill)) { 18385 /* 18386 * If we're here via ipif_up(), then the ipif 18387 * won't be bound yet -- add it to the group, 18388 * which will bind it if possible. (We would 18389 * add it in ipif_up(), but deleting on failure 18390 * there is gruesome.) If we're here via 18391 * ipmp_ill_bind_ipif(), then the ipif has 18392 * already been added to the group and we 18393 * just need to use the binding. 18394 */ 18395 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18396 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18397 if (bound_ill == NULL) { 18398 /* 18399 * We couldn't bind the ipif to an ill 18400 * yet, so we have nothing to publish. 18401 * Mark the address as ready and return. 18402 */ 18403 ipif->ipif_addr_ready = 1; 18404 return (0); 18405 } 18406 added_ipif = B_TRUE; 18407 } 18408 } else { 18409 bound_ill = ill; 18410 } 18411 18412 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18413 NCE_F_NONUD); 18414 /* 18415 * If this is an initial bring-up (or the ipif was never 18416 * completely brought up), do DAD. Otherwise, we're here 18417 * because IPMP has rebound an address to this ill: send 18418 * unsolicited advertisements (ARP announcements) to 18419 * inform others. 18420 */ 18421 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18422 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18423 } else { 18424 state = ND_REACHABLE; 18425 flags |= NCE_F_UNSOL_ADV; 18426 } 18427 18428 retry: 18429 err = nce_lookup_then_add_v4(ill, 18430 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18431 addr, flags, state, &nce); 18432 18433 /* 18434 * note that we may encounter EEXIST if we are moving 18435 * the nce as a result of a rebind operation. 18436 */ 18437 switch (err) { 18438 case 0: 18439 ipif->ipif_added_nce = 1; 18440 nce->nce_ipif_cnt++; 18441 break; 18442 case EEXIST: 18443 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18444 ill->ill_name)); 18445 if (!NCE_MYADDR(nce->nce_common)) { 18446 /* 18447 * A leftover nce from before this address 18448 * existed 18449 */ 18450 ncec_delete(nce->nce_common); 18451 nce_refrele(nce); 18452 nce = NULL; 18453 goto retry; 18454 } 18455 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18456 nce_refrele(nce); 18457 nce = NULL; 18458 ip1dbg(("ipif_arp_up: NCE already exists " 18459 "for %s:%u\n", ill->ill_name, 18460 ipif->ipif_id)); 18461 goto arp_up_done; 18462 } 18463 /* 18464 * Duplicate local addresses are permissible for 18465 * IPIF_POINTOPOINT interfaces which will get marked 18466 * IPIF_UNNUMBERED later in 18467 * ip_addr_availability_check(). 18468 * 18469 * The nce_ipif_cnt field tracks the number of 18470 * ipifs that have nce_addr as their local address. 18471 */ 18472 ipif->ipif_addr_ready = 1; 18473 ipif->ipif_added_nce = 1; 18474 nce->nce_ipif_cnt++; 18475 err = 0; 18476 break; 18477 default: 18478 ASSERT(nce == NULL); 18479 goto arp_up_done; 18480 } 18481 if (arp_no_defense) { 18482 if ((ipif->ipif_flags & IPIF_UP) && 18483 !ipif->ipif_addr_ready) 18484 ipif_up_notify(ipif); 18485 ipif->ipif_addr_ready = 1; 18486 } 18487 } else { 18488 /* zero address. nothing to publish */ 18489 ipif->ipif_addr_ready = 1; 18490 } 18491 if (nce != NULL) 18492 nce_refrele(nce); 18493 arp_up_done: 18494 if (added_ipif && err != 0) 18495 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18496 return (err); 18497 } 18498 18499 int 18500 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18501 { 18502 int err = 0; 18503 ill_t *ill = ipif->ipif_ill; 18504 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18505 18506 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18507 ill_t *, ill, ipif_t *, ipif); 18508 18509 /* 18510 * need to bring up ARP or setup mcast mapping only 18511 * when the first interface is coming UP. 18512 */ 18513 first_interface = (ill->ill_ipif_up_count == 0 && 18514 ill->ill_ipif_dup_count == 0 && !was_dup); 18515 18516 if (res_act == Res_act_initial && first_interface) { 18517 /* 18518 * Send ATTACH + BIND 18519 */ 18520 err = arp_ll_up(ill); 18521 if (err != EINPROGRESS && err != 0) 18522 return (err); 18523 18524 /* 18525 * Add NCE for local address. Start DAD. 18526 * we'll wait to hear that DAD has finished 18527 * before using the interface. 18528 */ 18529 if (err == EINPROGRESS) 18530 wait_for_dlpi = B_TRUE; 18531 } 18532 18533 if (!wait_for_dlpi) 18534 (void) ipif_arp_up_done_tail(ipif, res_act); 18535 18536 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18537 } 18538 18539 /* 18540 * Finish processing of "arp_up" after all the DLPI message 18541 * exchanges have completed between arp and the driver. 18542 */ 18543 void 18544 arp_bringup_done(ill_t *ill, int err) 18545 { 18546 mblk_t *mp1; 18547 ipif_t *ipif; 18548 conn_t *connp = NULL; 18549 ipsq_t *ipsq; 18550 queue_t *q; 18551 18552 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18553 18554 ASSERT(IAM_WRITER_ILL(ill)); 18555 18556 ipsq = ill->ill_phyint->phyint_ipsq; 18557 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18558 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18559 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18560 if (mp1 == NULL) /* bringup was aborted by the user */ 18561 return; 18562 18563 /* 18564 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18565 * must have an associated conn_t. Otherwise, we're bringing this 18566 * interface back up as part of handling an asynchronous event (e.g., 18567 * physical address change). 18568 */ 18569 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18570 ASSERT(connp != NULL); 18571 q = CONNP_TO_WQ(connp); 18572 } else { 18573 ASSERT(connp == NULL); 18574 q = ill->ill_rq; 18575 } 18576 if (err == 0) { 18577 if (ipif->ipif_isv6) { 18578 if ((err = ipif_up_done_v6(ipif)) != 0) 18579 ip0dbg(("arp_bringup_done: init failed\n")); 18580 } else { 18581 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18582 if (err != 0 || 18583 (err = ipif_up_done(ipif)) != 0) { 18584 ip0dbg(("arp_bringup_done: " 18585 "init failed err %x\n", err)); 18586 (void) ipif_arp_down(ipif); 18587 } 18588 18589 } 18590 } else { 18591 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18592 } 18593 18594 if ((err == 0) && (ill->ill_up_ipifs)) { 18595 err = ill_up_ipifs(ill, q, mp1); 18596 if (err == EINPROGRESS) 18597 return; 18598 } 18599 18600 /* 18601 * If we have a moved ipif to bring up, and everything has succeeded 18602 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18603 * down -- the admin can try to bring it up by hand if need be. 18604 */ 18605 if (ill->ill_move_ipif != NULL) { 18606 ipif = ill->ill_move_ipif; 18607 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18608 ipif->ipif_ill->ill_name)); 18609 ill->ill_move_ipif = NULL; 18610 if (err == 0) { 18611 err = ipif_up(ipif, q, mp1); 18612 if (err == EINPROGRESS) 18613 return; 18614 } 18615 } 18616 18617 /* 18618 * The operation must complete without EINPROGRESS since 18619 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18620 * Otherwise, the operation will be stuck forever in the ipsq. 18621 */ 18622 ASSERT(err != EINPROGRESS); 18623 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18624 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18625 int, ipsq->ipsq_xop->ipx_current_ioctl, 18626 ill_t *, ill, ipif_t *, ipif); 18627 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18628 } else { 18629 ipsq_current_finish(ipsq); 18630 } 18631 } 18632 18633 /* 18634 * Finish processing of arp replumb after all the DLPI message 18635 * exchanges have completed between arp and the driver. 18636 */ 18637 void 18638 arp_replumb_done(ill_t *ill, int err) 18639 { 18640 mblk_t *mp1; 18641 ipif_t *ipif; 18642 conn_t *connp = NULL; 18643 ipsq_t *ipsq; 18644 queue_t *q; 18645 18646 ASSERT(IAM_WRITER_ILL(ill)); 18647 18648 ipsq = ill->ill_phyint->phyint_ipsq; 18649 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18650 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18651 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18652 if (mp1 == NULL) { 18653 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18654 ipsq->ipsq_xop->ipx_current_ioctl)); 18655 /* bringup was aborted by the user */ 18656 return; 18657 } 18658 /* 18659 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18660 * must have an associated conn_t. Otherwise, we're bringing this 18661 * interface back up as part of handling an asynchronous event (e.g., 18662 * physical address change). 18663 */ 18664 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18665 ASSERT(connp != NULL); 18666 q = CONNP_TO_WQ(connp); 18667 } else { 18668 ASSERT(connp == NULL); 18669 q = ill->ill_rq; 18670 } 18671 if ((err == 0) && (ill->ill_up_ipifs)) { 18672 err = ill_up_ipifs(ill, q, mp1); 18673 if (err == EINPROGRESS) 18674 return; 18675 } 18676 /* 18677 * The operation must complete without EINPROGRESS since 18678 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18679 * Otherwise, the operation will be stuck forever in the ipsq. 18680 */ 18681 ASSERT(err != EINPROGRESS); 18682 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18683 DTRACE_PROBE4(ipif__ioctl, char *, 18684 "arp_replumb_done finish", 18685 int, ipsq->ipsq_xop->ipx_current_ioctl, 18686 ill_t *, ill, ipif_t *, ipif); 18687 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18688 } else { 18689 ipsq_current_finish(ipsq); 18690 } 18691 } 18692 18693 void 18694 ipif_up_notify(ipif_t *ipif) 18695 { 18696 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18697 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18698 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18699 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18700 NE_LIF_UP, NULL, 0); 18701 } 18702 18703 /* 18704 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18705 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18706 * TPI end points with STREAMS modules pushed above. This is assured by not 18707 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18708 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18709 * while unwinding from the ispq and that could be a thread from the bottom. 18710 */ 18711 /* ARGSUSED */ 18712 int 18713 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18714 ip_ioctl_cmd_t *ipip, void *arg) 18715 { 18716 mblk_t *cmd_mp = mp->b_cont->b_cont; 18717 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18718 int ret = 0; 18719 int i; 18720 size_t size; 18721 ip_stack_t *ipst; 18722 zoneid_t zoneid; 18723 ilb_stack_t *ilbs; 18724 18725 ipst = CONNQ_TO_IPST(q); 18726 ilbs = ipst->ips_netstack->netstack_ilb; 18727 zoneid = Q_TO_CONN(q)->conn_zoneid; 18728 18729 switch (command) { 18730 case ILB_CREATE_RULE: { 18731 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18732 18733 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18734 ret = EINVAL; 18735 break; 18736 } 18737 18738 ret = ilb_rule_add(ilbs, zoneid, cmd); 18739 break; 18740 } 18741 case ILB_DESTROY_RULE: 18742 case ILB_ENABLE_RULE: 18743 case ILB_DISABLE_RULE: { 18744 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18745 18746 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18747 ret = EINVAL; 18748 break; 18749 } 18750 18751 if (cmd->flags & ILB_RULE_ALLRULES) { 18752 if (command == ILB_DESTROY_RULE) { 18753 ilb_rule_del_all(ilbs, zoneid); 18754 break; 18755 } else if (command == ILB_ENABLE_RULE) { 18756 ilb_rule_enable_all(ilbs, zoneid); 18757 break; 18758 } else if (command == ILB_DISABLE_RULE) { 18759 ilb_rule_disable_all(ilbs, zoneid); 18760 break; 18761 } 18762 } else { 18763 if (command == ILB_DESTROY_RULE) { 18764 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18765 } else if (command == ILB_ENABLE_RULE) { 18766 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18767 NULL); 18768 } else if (command == ILB_DISABLE_RULE) { 18769 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18770 NULL); 18771 } 18772 } 18773 break; 18774 } 18775 case ILB_NUM_RULES: { 18776 ilb_num_rules_cmd_t *cmd; 18777 18778 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18779 ret = EINVAL; 18780 break; 18781 } 18782 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18783 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18784 break; 18785 } 18786 case ILB_RULE_NAMES: { 18787 ilb_rule_names_cmd_t *cmd; 18788 18789 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18790 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18791 cmd->num_names == 0) { 18792 ret = EINVAL; 18793 break; 18794 } 18795 size = cmd->num_names * ILB_RULE_NAMESZ; 18796 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18797 size != cmd_mp->b_wptr) { 18798 ret = EINVAL; 18799 break; 18800 } 18801 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18802 break; 18803 } 18804 case ILB_NUM_SERVERS: { 18805 ilb_num_servers_cmd_t *cmd; 18806 18807 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18808 ret = EINVAL; 18809 break; 18810 } 18811 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18812 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18813 &(cmd->num)); 18814 break; 18815 } 18816 case ILB_LIST_RULE: { 18817 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18818 18819 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18820 ret = EINVAL; 18821 break; 18822 } 18823 ret = ilb_rule_list(ilbs, zoneid, cmd); 18824 break; 18825 } 18826 case ILB_LIST_SERVERS: { 18827 ilb_servers_info_cmd_t *cmd; 18828 18829 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18830 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18831 cmd->num_servers == 0) { 18832 ret = EINVAL; 18833 break; 18834 } 18835 size = cmd->num_servers * sizeof (ilb_server_info_t); 18836 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18837 size != cmd_mp->b_wptr) { 18838 ret = EINVAL; 18839 break; 18840 } 18841 18842 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18843 &cmd->num_servers); 18844 break; 18845 } 18846 case ILB_ADD_SERVERS: { 18847 ilb_servers_info_cmd_t *cmd; 18848 ilb_rule_t *rule; 18849 18850 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18851 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18852 ret = EINVAL; 18853 break; 18854 } 18855 size = cmd->num_servers * sizeof (ilb_server_info_t); 18856 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18857 size != cmd_mp->b_wptr) { 18858 ret = EINVAL; 18859 break; 18860 } 18861 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18862 if (rule == NULL) { 18863 ASSERT(ret != 0); 18864 break; 18865 } 18866 for (i = 0; i < cmd->num_servers; i++) { 18867 ilb_server_info_t *s; 18868 18869 s = &cmd->servers[i]; 18870 s->err = ilb_server_add(ilbs, rule, s); 18871 } 18872 ILB_RULE_REFRELE(rule); 18873 break; 18874 } 18875 case ILB_DEL_SERVERS: 18876 case ILB_ENABLE_SERVERS: 18877 case ILB_DISABLE_SERVERS: { 18878 ilb_servers_cmd_t *cmd; 18879 ilb_rule_t *rule; 18880 int (*f)(); 18881 18882 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18883 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18884 ret = EINVAL; 18885 break; 18886 } 18887 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18888 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18889 size != cmd_mp->b_wptr) { 18890 ret = EINVAL; 18891 break; 18892 } 18893 18894 if (command == ILB_DEL_SERVERS) 18895 f = ilb_server_del; 18896 else if (command == ILB_ENABLE_SERVERS) 18897 f = ilb_server_enable; 18898 else if (command == ILB_DISABLE_SERVERS) 18899 f = ilb_server_disable; 18900 18901 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18902 if (rule == NULL) { 18903 ASSERT(ret != 0); 18904 break; 18905 } 18906 18907 for (i = 0; i < cmd->num_servers; i++) { 18908 ilb_server_arg_t *s; 18909 18910 s = &cmd->servers[i]; 18911 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18912 } 18913 ILB_RULE_REFRELE(rule); 18914 break; 18915 } 18916 case ILB_LIST_NAT_TABLE: { 18917 ilb_list_nat_cmd_t *cmd; 18918 18919 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18920 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18921 ret = EINVAL; 18922 break; 18923 } 18924 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18925 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18926 size != cmd_mp->b_wptr) { 18927 ret = EINVAL; 18928 break; 18929 } 18930 18931 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18932 &cmd->flags); 18933 break; 18934 } 18935 case ILB_LIST_STICKY_TABLE: { 18936 ilb_list_sticky_cmd_t *cmd; 18937 18938 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18939 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18940 ret = EINVAL; 18941 break; 18942 } 18943 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18944 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18945 size != cmd_mp->b_wptr) { 18946 ret = EINVAL; 18947 break; 18948 } 18949 18950 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18951 &cmd->num_sticky, &cmd->flags); 18952 break; 18953 } 18954 default: 18955 ret = EINVAL; 18956 break; 18957 } 18958 done: 18959 return (ret); 18960 } 18961 18962 /* Remove all cache entries for this logical interface */ 18963 void 18964 ipif_nce_down(ipif_t *ipif) 18965 { 18966 ill_t *ill = ipif->ipif_ill; 18967 nce_t *nce; 18968 18969 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18970 ill_t *, ill, ipif_t *, ipif); 18971 if (ipif->ipif_added_nce) { 18972 if (ipif->ipif_isv6) 18973 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18974 else 18975 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18976 if (nce != NULL) { 18977 if (--nce->nce_ipif_cnt == 0) 18978 ncec_delete(nce->nce_common); 18979 ipif->ipif_added_nce = 0; 18980 nce_refrele(nce); 18981 } else { 18982 /* 18983 * nce may already be NULL because it was already 18984 * flushed, e.g., due to a call to nce_flush 18985 */ 18986 ipif->ipif_added_nce = 0; 18987 } 18988 } 18989 /* 18990 * Make IPMP aware of the deleted data address. 18991 */ 18992 if (IS_IPMP(ill)) 18993 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18994 18995 /* 18996 * Remove all other nces dependent on this ill when the last ipif 18997 * is going away. 18998 */ 18999 if (ill->ill_ipif_up_count == 0) { 19000 ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst); 19001 if (IS_UNDER_IPMP(ill)) 19002 nce_flush(ill, B_TRUE); 19003 } 19004 } 19005 19006 /* 19007 * find the first interface that uses usill for its source address. 19008 */ 19009 ill_t * 19010 ill_lookup_usesrc(ill_t *usill) 19011 { 19012 ip_stack_t *ipst = usill->ill_ipst; 19013 ill_t *ill; 19014 19015 ASSERT(usill != NULL); 19016 19017 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19018 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19019 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19020 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19021 ill = ill->ill_usesrc_grp_next) { 19022 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19023 !ILL_IS_CONDEMNED(ill)) { 19024 ill_refhold(ill); 19025 break; 19026 } 19027 } 19028 rw_exit(&ipst->ips_ill_g_lock); 19029 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19030 return (ill); 19031 } 19032 19033 /* 19034 * This comment applies to both ip_sioctl_get_ifhwaddr and 19035 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19036 * is the same. 19037 * 19038 * The goal here is to find an IP interface that corresponds to the name 19039 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19040 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19041 * mac address. 19042 * 19043 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19044 * of different reasons: 19045 * ENXIO - the device name is not known to IP. 19046 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19047 * by ill_phys_addr not pointing to an actual address. 19048 * EPFNOSUPPORT - this will indicate that a request is being made for a 19049 * mac address that will not fit in the data structure supplier (struct 19050 * sockaddr). 19051 * 19052 */ 19053 /* ARGSUSED */ 19054 int 19055 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19056 ip_ioctl_cmd_t *ipip, void *if_req) 19057 { 19058 struct sockaddr *sock; 19059 struct ifreq *ifr; 19060 mblk_t *mp1; 19061 ill_t *ill; 19062 19063 ASSERT(ipif != NULL); 19064 ill = ipif->ipif_ill; 19065 19066 if (ill->ill_phys_addr == NULL) { 19067 return (EADDRNOTAVAIL); 19068 } 19069 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19070 return (EPFNOSUPPORT); 19071 } 19072 19073 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19074 19075 /* Existence of mp1 has been checked in ip_wput_nondata */ 19076 mp1 = mp->b_cont->b_cont; 19077 ifr = (struct ifreq *)mp1->b_rptr; 19078 19079 sock = &ifr->ifr_addr; 19080 /* 19081 * The "family" field in the returned structure is set to a value 19082 * that represents the type of device to which the address belongs. 19083 * The value returned may differ to that on Linux but it will still 19084 * represent the correct symbol on Solaris. 19085 */ 19086 sock->sa_family = arp_hw_type(ill->ill_mactype); 19087 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19088 19089 return (0); 19090 } 19091 19092 /* 19093 * The expection of applications using SIOCGIFHWADDR is that data will 19094 * be returned in the sa_data field of the sockaddr structure. With 19095 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19096 * equivalent. In light of this, struct sockaddr_dl is used as it 19097 * offers more space for address storage in sll_data. 19098 */ 19099 /* ARGSUSED */ 19100 int 19101 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19102 ip_ioctl_cmd_t *ipip, void *if_req) 19103 { 19104 struct sockaddr_dl *sock; 19105 struct lifreq *lifr; 19106 mblk_t *mp1; 19107 ill_t *ill; 19108 19109 ASSERT(ipif != NULL); 19110 ill = ipif->ipif_ill; 19111 19112 if (ill->ill_phys_addr == NULL) { 19113 return (EADDRNOTAVAIL); 19114 } 19115 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19116 return (EPFNOSUPPORT); 19117 } 19118 19119 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19120 19121 /* Existence of mp1 has been checked in ip_wput_nondata */ 19122 mp1 = mp->b_cont->b_cont; 19123 lifr = (struct lifreq *)mp1->b_rptr; 19124 19125 /* 19126 * sockaddr_ll is used here because it is also the structure used in 19127 * responding to the same ioctl in sockpfp. The only other choice is 19128 * sockaddr_dl which contains fields that are not required here 19129 * because its purpose is different. 19130 */ 19131 lifr->lifr_type = ill->ill_type; 19132 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19133 sock->sdl_family = AF_LINK; 19134 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19135 sock->sdl_type = ill->ill_mactype; 19136 sock->sdl_nlen = 0; 19137 sock->sdl_slen = 0; 19138 sock->sdl_alen = ill->ill_phys_addr_length; 19139 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19140 19141 return (0); 19142 } 19143