1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 #ifdef DEBUG 261 static void ill_trace_cleanup(const ill_t *); 262 static void ipif_trace_cleanup(const ipif_t *); 263 #endif 264 265 /* 266 * if we go over the memory footprint limit more than once in this msec 267 * interval, we'll start pruning aggressively. 268 */ 269 int ip_min_frag_prune_time = 0; 270 271 /* 272 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 273 * and the IPsec DOI 274 */ 275 #define MAX_IPSEC_ALGS 256 276 277 #define BITSPERBYTE 8 278 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 279 280 #define IPSEC_ALG_ENABLE(algs, algid) \ 281 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 282 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 283 284 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 285 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 286 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 287 288 typedef uint8_t ipsec_capab_elem_t; 289 290 /* 291 * Per-algorithm parameters. Note that at present, only encryption 292 * algorithms have variable keysize (IKE does not provide a way to negotiate 293 * auth algorithm keysize). 294 * 295 * All sizes here are in bits. 296 */ 297 typedef struct 298 { 299 uint16_t minkeylen; 300 uint16_t maxkeylen; 301 } ipsec_capab_algparm_t; 302 303 /* 304 * Per-ill capabilities. 305 */ 306 struct ill_ipsec_capab_s { 307 ipsec_capab_elem_t *encr_hw_algs; 308 ipsec_capab_elem_t *auth_hw_algs; 309 uint32_t algs_size; /* size of _hw_algs in bytes */ 310 /* algorithm key lengths */ 311 ipsec_capab_algparm_t *encr_algparm; 312 uint32_t encr_algparm_size; 313 uint32_t encr_algparm_end; 314 }; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static sin6_t sin6_null; /* Zero address for quick clears */ 518 static sin_t sin_null; /* Zero address for quick clears */ 519 520 /* When set search for unused ipif_seqid */ 521 static ipif_t ipif_zero; 522 523 /* 524 * ppa arena is created after these many 525 * interfaces have been plumbed. 526 */ 527 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 528 529 /* 530 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 531 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 532 * set through platform specific code (Niagara/Ontario). 533 */ 534 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 535 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 536 537 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 538 539 static uint_t 540 ipif_rand(ip_stack_t *ipst) 541 { 542 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 543 12345; 544 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 545 } 546 547 /* 548 * Allocate per-interface mibs. 549 * Returns true if ok. False otherwise. 550 * ipsq may not yet be allocated (loopback case ). 551 */ 552 static boolean_t 553 ill_allocate_mibs(ill_t *ill) 554 { 555 /* Already allocated? */ 556 if (ill->ill_ip_mib != NULL) { 557 if (ill->ill_isv6) 558 ASSERT(ill->ill_icmp6_mib != NULL); 559 return (B_TRUE); 560 } 561 562 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 563 KM_NOSLEEP); 564 if (ill->ill_ip_mib == NULL) { 565 return (B_FALSE); 566 } 567 568 /* Setup static information */ 569 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 570 sizeof (mib2_ipIfStatsEntry_t)); 571 if (ill->ill_isv6) { 572 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 573 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 574 sizeof (mib2_ipv6AddrEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 576 sizeof (mib2_ipv6RouteEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 578 sizeof (mib2_ipv6NetToMediaEntry_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 580 sizeof (ipv6_member_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 582 sizeof (ipv6_grpsrc_t)); 583 } else { 584 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 585 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 586 sizeof (mib2_ipAddrEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 588 sizeof (mib2_ipRouteEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 590 sizeof (mib2_ipNetToMediaEntry_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 592 sizeof (ip_member_t)); 593 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 594 sizeof (ip_grpsrc_t)); 595 596 /* 597 * For a v4 ill, we are done at this point, because per ill 598 * icmp mibs are only used for v6. 599 */ 600 return (B_TRUE); 601 } 602 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 607 ill->ill_ip_mib = NULL; 608 return (B_FALSE); 609 } 610 /* static icmp info */ 611 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 612 sizeof (mib2_ipv6IfIcmpEntry_t); 613 /* 614 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 615 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 616 * -> ill_phyint_reinit 617 */ 618 return (B_TRUE); 619 } 620 621 /* 622 * Common code for preparation of ARP commands. Two points to remember: 623 * 1) The ill_name is tacked on at the end of the allocated space so 624 * the templates name_offset field must contain the total space 625 * to allocate less the name length. 626 * 627 * 2) The templates name_length field should contain the *template* 628 * length. We use it as a parameter to bcopy() and then write 629 * the real ill_name_length into the name_length field of the copy. 630 * (Always called as writer.) 631 */ 632 mblk_t * 633 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 634 { 635 arc_t *arc = (arc_t *)template; 636 char *cp; 637 int len; 638 mblk_t *mp; 639 uint_t name_length = ill->ill_name_length; 640 uint_t template_len = arc->arc_name_length; 641 642 len = arc->arc_name_offset + name_length; 643 mp = allocb(len, BPRI_HI); 644 if (mp == NULL) 645 return (NULL); 646 cp = (char *)mp->b_rptr; 647 mp->b_wptr = (uchar_t *)&cp[len]; 648 if (template_len) 649 bcopy(template, cp, template_len); 650 if (len > template_len) 651 bzero(&cp[template_len], len - template_len); 652 mp->b_datap->db_type = M_PROTO; 653 654 arc = (arc_t *)cp; 655 arc->arc_name_length = name_length; 656 cp = (char *)arc + arc->arc_name_offset; 657 bcopy(ill->ill_name, cp, name_length); 658 659 if (addr) { 660 area_t *area = (area_t *)mp->b_rptr; 661 662 cp = (char *)area + area->area_proto_addr_offset; 663 bcopy(addr, cp, area->area_proto_addr_length); 664 if (area->area_cmd == AR_ENTRY_ADD) { 665 cp = (char *)area; 666 len = area->area_proto_addr_length; 667 if (area->area_proto_mask_offset) 668 cp += area->area_proto_mask_offset; 669 else 670 cp += area->area_proto_addr_offset + len; 671 while (len-- > 0) 672 *cp++ = (char)~0; 673 } 674 } 675 return (mp); 676 } 677 678 mblk_t * 679 ipif_area_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ipif_ared_alloc(ipif_t *ipif) 687 { 688 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 689 (char *)&ipif->ipif_lcl_addr)); 690 } 691 692 mblk_t * 693 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 694 { 695 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 696 (char *)&addr)); 697 } 698 699 /* 700 * Completely vaporize a lower level tap and all associated interfaces. 701 * ill_delete is called only out of ip_close when the device control 702 * stream is being closed. 703 */ 704 void 705 ill_delete(ill_t *ill) 706 { 707 ipif_t *ipif; 708 ill_t *prev_ill; 709 ip_stack_t *ipst = ill->ill_ipst; 710 711 /* 712 * ill_delete may be forcibly entering the ipsq. The previous 713 * ioctl may not have completed and may need to be aborted. 714 * ipsq_flush takes care of it. If we don't need to enter the 715 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 716 * ill_delete_tail is sufficient. 717 */ 718 ipsq_flush(ill); 719 720 /* 721 * Nuke all interfaces. ipif_free will take down the interface, 722 * remove it from the list, and free the data structure. 723 * Walk down the ipif list and remove the logical interfaces 724 * first before removing the main ipif. We can't unplumb 725 * zeroth interface first in the case of IPv6 as reset_conn_ill 726 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 727 * POINTOPOINT. 728 * 729 * If ill_ipif was not properly initialized (i.e low on memory), 730 * then no interfaces to clean up. In this case just clean up the 731 * ill. 732 */ 733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 734 ipif_free(ipif); 735 736 /* 737 * Used only by ill_arp_on and ill_arp_off, which are writers. 738 * So nobody can be using this mp now. Free the mp allocated for 739 * honoring ILLF_NOARP 740 */ 741 freemsg(ill->ill_arp_on_mp); 742 ill->ill_arp_on_mp = NULL; 743 744 /* Clean up msgs on pending upcalls for mrouted */ 745 reset_mrt_ill(ill); 746 747 /* 748 * ipif_free -> reset_conn_ipif will remove all multicast 749 * references for IPv4. For IPv6, we need to do it here as 750 * it points only at ills. 751 */ 752 reset_conn_ill(ill); 753 754 /* 755 * ill_down will arrange to blow off any IRE's dependent on this 756 * ILL, and shut down fragmentation reassembly. 757 */ 758 ill_down(ill); 759 760 /* Let SCTP know, so that it can remove this from its list. */ 761 sctp_update_ill(ill, SCTP_ILL_REMOVE); 762 763 /* 764 * If an address on this ILL is being used as a source address then 765 * clear out the pointers in other ILLs that point to this ILL. 766 */ 767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 768 if (ill->ill_usesrc_grp_next != NULL) { 769 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 770 ill_disband_usesrc_group(ill); 771 } else { /* consumer of the usesrc ILL */ 772 prev_ill = ill_prev_usesrc(ill); 773 prev_ill->ill_usesrc_grp_next = 774 ill->ill_usesrc_grp_next; 775 } 776 } 777 rw_exit(&ipst->ips_ill_g_usesrc_lock); 778 } 779 780 static void 781 ipif_non_duplicate(ipif_t *ipif) 782 { 783 ill_t *ill = ipif->ipif_ill; 784 mutex_enter(&ill->ill_lock); 785 if (ipif->ipif_flags & IPIF_DUPLICATE) { 786 ipif->ipif_flags &= ~IPIF_DUPLICATE; 787 ASSERT(ill->ill_ipif_dup_count > 0); 788 ill->ill_ipif_dup_count--; 789 } 790 mutex_exit(&ill->ill_lock); 791 } 792 793 /* 794 * ill_delete_tail is called from ip_modclose after all references 795 * to the closing ill are gone. The wait is done in ip_modclose 796 */ 797 void 798 ill_delete_tail(ill_t *ill) 799 { 800 mblk_t **mpp; 801 ipif_t *ipif; 802 ip_stack_t *ipst = ill->ill_ipst; 803 804 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 805 ipif_non_duplicate(ipif); 806 ipif_down_tail(ipif); 807 } 808 809 ASSERT(ill->ill_ipif_dup_count == 0 && 810 ill->ill_arp_down_mp == NULL && 811 ill->ill_arp_del_mapping_mp == NULL); 812 813 /* 814 * If polling capability is enabled (which signifies direct 815 * upcall into IP and driver has ill saved as a handle), 816 * we need to make sure that unbind has completed before we 817 * let the ill disappear and driver no longer has any reference 818 * to this ill. 819 */ 820 mutex_enter(&ill->ill_lock); 821 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 822 cv_wait(&ill->ill_cv, &ill->ill_lock); 823 mutex_exit(&ill->ill_lock); 824 825 /* 826 * Clean up polling and soft ring capabilities 827 */ 828 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 829 ill_capability_dls_disable(ill); 830 831 if (ill->ill_net_type != IRE_LOOPBACK) 832 qprocsoff(ill->ill_rq); 833 834 /* 835 * We do an ipsq_flush once again now. New messages could have 836 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 837 * could also have landed up if an ioctl thread had looked up 838 * the ill before we set the ILL_CONDEMNED flag, but not yet 839 * enqueued the ioctl when we did the ipsq_flush last time. 840 */ 841 ipsq_flush(ill); 842 843 /* 844 * Free capabilities. 845 */ 846 if (ill->ill_ipsec_capab_ah != NULL) { 847 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 848 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 849 ill->ill_ipsec_capab_ah = NULL; 850 } 851 852 if (ill->ill_ipsec_capab_esp != NULL) { 853 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 854 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 855 ill->ill_ipsec_capab_esp = NULL; 856 } 857 858 if (ill->ill_mdt_capab != NULL) { 859 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 860 ill->ill_mdt_capab = NULL; 861 } 862 863 if (ill->ill_hcksum_capab != NULL) { 864 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 865 ill->ill_hcksum_capab = NULL; 866 } 867 868 if (ill->ill_zerocopy_capab != NULL) { 869 kmem_free(ill->ill_zerocopy_capab, 870 sizeof (ill_zerocopy_capab_t)); 871 ill->ill_zerocopy_capab = NULL; 872 } 873 874 if (ill->ill_lso_capab != NULL) { 875 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 876 ill->ill_lso_capab = NULL; 877 } 878 879 if (ill->ill_dls_capab != NULL) { 880 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 881 ill->ill_dls_capab->ill_unbind_conn = NULL; 882 kmem_free(ill->ill_dls_capab, 883 sizeof (ill_dls_capab_t) + 884 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 885 ill->ill_dls_capab = NULL; 886 } 887 888 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 889 890 while (ill->ill_ipif != NULL) 891 ipif_free_tail(ill->ill_ipif); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 948 #ifdef DEBUG 949 ill_trace_cleanup(ill); 950 #endif 951 952 /* Drop refcnt here */ 953 netstack_rele(ill->ill_ipst->ips_netstack); 954 ill->ill_ipst = NULL; 955 } 956 957 static void 958 ill_free_mib(ill_t *ill) 959 { 960 ip_stack_t *ipst = ill->ill_ipst; 961 962 /* 963 * MIB statistics must not be lost, so when an interface 964 * goes away the counter values will be added to the global 965 * MIBs. 966 */ 967 if (ill->ill_ip_mib != NULL) { 968 if (ill->ill_isv6) { 969 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 970 ill->ill_ip_mib); 971 } else { 972 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 973 ill->ill_ip_mib); 974 } 975 976 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 977 ill->ill_ip_mib = NULL; 978 } 979 if (ill->ill_icmp6_mib != NULL) { 980 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 981 ill->ill_icmp6_mib); 982 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 983 ill->ill_icmp6_mib = NULL; 984 } 985 } 986 987 /* 988 * Concatenate together a physical address and a sap. 989 * 990 * Sap_lengths are interpreted as follows: 991 * sap_length == 0 ==> no sap 992 * sap_length > 0 ==> sap is at the head of the dlpi address 993 * sap_length < 0 ==> sap is at the tail of the dlpi address 994 */ 995 static void 996 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 997 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 998 { 999 uint16_t sap_addr = (uint16_t)sap_src; 1000 1001 if (sap_length == 0) { 1002 if (phys_src == NULL) 1003 bzero(dst, phys_length); 1004 else 1005 bcopy(phys_src, dst, phys_length); 1006 } else if (sap_length < 0) { 1007 if (phys_src == NULL) 1008 bzero(dst, phys_length); 1009 else 1010 bcopy(phys_src, dst, phys_length); 1011 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1012 } else { 1013 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1014 if (phys_src == NULL) 1015 bzero((char *)dst + sap_length, phys_length); 1016 else 1017 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1018 } 1019 } 1020 1021 /* 1022 * Generate a dl_unitdata_req mblk for the device and address given. 1023 * addr_length is the length of the physical portion of the address. 1024 * If addr is NULL include an all zero address of the specified length. 1025 * TRUE? In any case, addr_length is taken to be the entire length of the 1026 * dlpi address, including the absolute value of sap_length. 1027 */ 1028 mblk_t * 1029 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1030 t_scalar_t sap_length) 1031 { 1032 dl_unitdata_req_t *dlur; 1033 mblk_t *mp; 1034 t_scalar_t abs_sap_length; /* absolute value */ 1035 1036 abs_sap_length = ABS(sap_length); 1037 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1038 DL_UNITDATA_REQ); 1039 if (mp == NULL) 1040 return (NULL); 1041 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1042 /* HACK: accomodate incompatible DLPI drivers */ 1043 if (addr_length == 8) 1044 addr_length = 6; 1045 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1046 dlur->dl_dest_addr_offset = sizeof (*dlur); 1047 dlur->dl_priority.dl_min = 0; 1048 dlur->dl_priority.dl_max = 0; 1049 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1050 (uchar_t *)&dlur[1]); 1051 return (mp); 1052 } 1053 1054 /* 1055 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1056 * Return an error if we already have 1 or more ioctls in progress. 1057 * This is used only for non-exclusive ioctls. Currently this is used 1058 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1059 * and thus need to use ipsq_pending_mp_add. 1060 */ 1061 boolean_t 1062 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1063 { 1064 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1065 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1066 /* 1067 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1068 */ 1069 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1070 (add_mp->b_datap->db_type == M_IOCTL)); 1071 1072 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1073 /* 1074 * Return error if the conn has started closing. The conn 1075 * could have finished cleaning up the pending mp list, 1076 * If so we should not add another mp to the list negating 1077 * the cleanup. 1078 */ 1079 if (connp->conn_state_flags & CONN_CLOSING) 1080 return (B_FALSE); 1081 /* 1082 * Add the pending mp to the head of the list, chained by b_next. 1083 * Note down the conn on which the ioctl request came, in b_prev. 1084 * This will be used to later get the conn, when we get a response 1085 * on the ill queue, from some other module (typically arp) 1086 */ 1087 add_mp->b_next = (void *)ill->ill_pending_mp; 1088 add_mp->b_queue = CONNP_TO_WQ(connp); 1089 ill->ill_pending_mp = add_mp; 1090 if (connp != NULL) 1091 connp->conn_oper_pending_ill = ill; 1092 return (B_TRUE); 1093 } 1094 1095 /* 1096 * Retrieve the ill_pending_mp and return it. We have to walk the list 1097 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1098 */ 1099 mblk_t * 1100 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1101 { 1102 mblk_t *prev = NULL; 1103 mblk_t *curr = NULL; 1104 uint_t id; 1105 conn_t *connp; 1106 1107 /* 1108 * When the conn closes, conn_ioctl_cleanup needs to clean 1109 * up the pending mp, but it does not know the ioc_id and 1110 * passes in a zero for it. 1111 */ 1112 mutex_enter(&ill->ill_lock); 1113 if (ioc_id != 0) 1114 *connpp = NULL; 1115 1116 /* Search the list for the appropriate ioctl based on ioc_id */ 1117 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1118 prev = curr, curr = curr->b_next) { 1119 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1120 connp = Q_TO_CONN(curr->b_queue); 1121 /* Match based on the ioc_id or based on the conn */ 1122 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1123 break; 1124 } 1125 1126 if (curr != NULL) { 1127 /* Unlink the mblk from the pending mp list */ 1128 if (prev != NULL) { 1129 prev->b_next = curr->b_next; 1130 } else { 1131 ASSERT(ill->ill_pending_mp == curr); 1132 ill->ill_pending_mp = curr->b_next; 1133 } 1134 1135 /* 1136 * conn refcnt must have been bumped up at the start of 1137 * the ioctl. So we can safely access the conn. 1138 */ 1139 ASSERT(CONN_Q(curr->b_queue)); 1140 *connpp = Q_TO_CONN(curr->b_queue); 1141 curr->b_next = NULL; 1142 curr->b_queue = NULL; 1143 } 1144 1145 mutex_exit(&ill->ill_lock); 1146 1147 return (curr); 1148 } 1149 1150 /* 1151 * Add the pending mp to the list. There can be only 1 pending mp 1152 * in the list. Any exclusive ioctl that needs to wait for a response 1153 * from another module or driver needs to use this function to set 1154 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1155 * the other module/driver. This is also used while waiting for the 1156 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1157 */ 1158 boolean_t 1159 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1160 int waitfor) 1161 { 1162 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1163 1164 ASSERT(IAM_WRITER_IPIF(ipif)); 1165 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1166 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1167 ASSERT(ipsq->ipsq_pending_mp == NULL); 1168 /* 1169 * The caller may be using a different ipif than the one passed into 1170 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1171 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1172 * that `ipsq_current_ipif == ipif'. 1173 */ 1174 ASSERT(ipsq->ipsq_current_ipif != NULL); 1175 1176 /* 1177 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1178 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1179 */ 1180 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1181 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1182 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1183 1184 if (connp != NULL) { 1185 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1186 /* 1187 * Return error if the conn has started closing. The conn 1188 * could have finished cleaning up the pending mp list, 1189 * If so we should not add another mp to the list negating 1190 * the cleanup. 1191 */ 1192 if (connp->conn_state_flags & CONN_CLOSING) 1193 return (B_FALSE); 1194 } 1195 mutex_enter(&ipsq->ipsq_lock); 1196 ipsq->ipsq_pending_ipif = ipif; 1197 /* 1198 * Note down the queue in b_queue. This will be returned by 1199 * ipsq_pending_mp_get. Caller will then use these values to restart 1200 * the processing 1201 */ 1202 add_mp->b_next = NULL; 1203 add_mp->b_queue = q; 1204 ipsq->ipsq_pending_mp = add_mp; 1205 ipsq->ipsq_waitfor = waitfor; 1206 1207 if (connp != NULL) 1208 connp->conn_oper_pending_ill = ipif->ipif_ill; 1209 mutex_exit(&ipsq->ipsq_lock); 1210 return (B_TRUE); 1211 } 1212 1213 /* 1214 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1215 * queued in the list. 1216 */ 1217 mblk_t * 1218 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1219 { 1220 mblk_t *curr = NULL; 1221 1222 mutex_enter(&ipsq->ipsq_lock); 1223 *connpp = NULL; 1224 if (ipsq->ipsq_pending_mp == NULL) { 1225 mutex_exit(&ipsq->ipsq_lock); 1226 return (NULL); 1227 } 1228 1229 /* There can be only 1 such excl message */ 1230 curr = ipsq->ipsq_pending_mp; 1231 ASSERT(curr != NULL && curr->b_next == NULL); 1232 ipsq->ipsq_pending_ipif = NULL; 1233 ipsq->ipsq_pending_mp = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 mutex_exit(&ipsq->ipsq_lock); 1236 1237 if (CONN_Q(curr->b_queue)) { 1238 /* 1239 * This mp did a refhold on the conn, at the start of the ioctl. 1240 * So we can safely return a pointer to the conn to the caller. 1241 */ 1242 *connpp = Q_TO_CONN(curr->b_queue); 1243 } else { 1244 *connpp = NULL; 1245 } 1246 curr->b_next = NULL; 1247 curr->b_prev = NULL; 1248 return (curr); 1249 } 1250 1251 /* 1252 * Cleanup the ioctl mp queued in ipsq_pending_mp 1253 * - Called in the ill_delete path 1254 * - Called in the M_ERROR or M_HANGUP path on the ill. 1255 * - Called in the conn close path. 1256 */ 1257 boolean_t 1258 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1259 { 1260 mblk_t *mp; 1261 ipsq_t *ipsq; 1262 queue_t *q; 1263 ipif_t *ipif; 1264 1265 ASSERT(IAM_WRITER_ILL(ill)); 1266 ipsq = ill->ill_phyint->phyint_ipsq; 1267 mutex_enter(&ipsq->ipsq_lock); 1268 /* 1269 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1270 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1271 * even if it is meant for another ill, since we have to enqueue 1272 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1273 * If connp is non-null we are called from the conn close path. 1274 */ 1275 mp = ipsq->ipsq_pending_mp; 1276 if (mp == NULL || (connp != NULL && 1277 mp->b_queue != CONNP_TO_WQ(connp))) { 1278 mutex_exit(&ipsq->ipsq_lock); 1279 return (B_FALSE); 1280 } 1281 /* Now remove from the ipsq_pending_mp */ 1282 ipsq->ipsq_pending_mp = NULL; 1283 q = mp->b_queue; 1284 mp->b_next = NULL; 1285 mp->b_prev = NULL; 1286 mp->b_queue = NULL; 1287 1288 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1289 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1290 if (ill->ill_move_in_progress) { 1291 ILL_CLEAR_MOVE(ill); 1292 } else if (ill->ill_up_ipifs) { 1293 ill_group_cleanup(ill); 1294 } 1295 1296 ipif = ipsq->ipsq_pending_ipif; 1297 ipsq->ipsq_pending_ipif = NULL; 1298 ipsq->ipsq_waitfor = 0; 1299 ipsq->ipsq_current_ipif = NULL; 1300 ipsq->ipsq_current_ioctl = 0; 1301 ipsq->ipsq_current_done = B_TRUE; 1302 mutex_exit(&ipsq->ipsq_lock); 1303 1304 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1305 if (connp == NULL) { 1306 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1307 } else { 1308 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1309 mutex_enter(&ipif->ipif_ill->ill_lock); 1310 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1311 mutex_exit(&ipif->ipif_ill->ill_lock); 1312 } 1313 } else { 1314 /* 1315 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1316 * be just inet_freemsg. we have to restart it 1317 * otherwise the thread will be stuck. 1318 */ 1319 inet_freemsg(mp); 1320 } 1321 return (B_TRUE); 1322 } 1323 1324 /* 1325 * The ill is closing. Cleanup all the pending mps. Called exclusively 1326 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1327 * knows this ill, and hence nobody can add an mp to this list 1328 */ 1329 static void 1330 ill_pending_mp_cleanup(ill_t *ill) 1331 { 1332 mblk_t *mp; 1333 queue_t *q; 1334 1335 ASSERT(IAM_WRITER_ILL(ill)); 1336 1337 mutex_enter(&ill->ill_lock); 1338 /* 1339 * Every mp on the pending mp list originating from an ioctl 1340 * added 1 to the conn refcnt, at the start of the ioctl. 1341 * So bump it down now. See comments in ip_wput_nondata() 1342 */ 1343 while (ill->ill_pending_mp != NULL) { 1344 mp = ill->ill_pending_mp; 1345 ill->ill_pending_mp = mp->b_next; 1346 mutex_exit(&ill->ill_lock); 1347 1348 q = mp->b_queue; 1349 ASSERT(CONN_Q(q)); 1350 mp->b_next = NULL; 1351 mp->b_prev = NULL; 1352 mp->b_queue = NULL; 1353 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1354 mutex_enter(&ill->ill_lock); 1355 } 1356 ill->ill_pending_ipif = NULL; 1357 1358 mutex_exit(&ill->ill_lock); 1359 } 1360 1361 /* 1362 * Called in the conn close path and ill delete path 1363 */ 1364 static void 1365 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1366 { 1367 ipsq_t *ipsq; 1368 mblk_t *prev; 1369 mblk_t *curr; 1370 mblk_t *next; 1371 queue_t *q; 1372 mblk_t *tmp_list = NULL; 1373 1374 ASSERT(IAM_WRITER_ILL(ill)); 1375 if (connp != NULL) 1376 q = CONNP_TO_WQ(connp); 1377 else 1378 q = ill->ill_wq; 1379 1380 ipsq = ill->ill_phyint->phyint_ipsq; 1381 /* 1382 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1383 * In the case of ioctl from a conn, there can be only 1 mp 1384 * queued on the ipsq. If an ill is being unplumbed, only messages 1385 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1386 * ioctls meant for this ill form conn's are not flushed. They will 1387 * be processed during ipsq_exit and will not find the ill and will 1388 * return error. 1389 */ 1390 mutex_enter(&ipsq->ipsq_lock); 1391 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1392 curr = next) { 1393 next = curr->b_next; 1394 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1395 /* Unlink the mblk from the pending mp list */ 1396 if (prev != NULL) { 1397 prev->b_next = curr->b_next; 1398 } else { 1399 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1400 ipsq->ipsq_xopq_mphead = curr->b_next; 1401 } 1402 if (ipsq->ipsq_xopq_mptail == curr) 1403 ipsq->ipsq_xopq_mptail = prev; 1404 /* 1405 * Create a temporary list and release the ipsq lock 1406 * New elements are added to the head of the tmp_list 1407 */ 1408 curr->b_next = tmp_list; 1409 tmp_list = curr; 1410 } else { 1411 prev = curr; 1412 } 1413 } 1414 mutex_exit(&ipsq->ipsq_lock); 1415 1416 while (tmp_list != NULL) { 1417 curr = tmp_list; 1418 tmp_list = curr->b_next; 1419 curr->b_next = NULL; 1420 curr->b_prev = NULL; 1421 curr->b_queue = NULL; 1422 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1423 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1424 CONN_CLOSE : NO_COPYOUT, NULL); 1425 } else { 1426 /* 1427 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1428 * this can't be just inet_freemsg. we have to 1429 * restart it otherwise the thread will be stuck. 1430 */ 1431 inet_freemsg(curr); 1432 } 1433 } 1434 } 1435 1436 /* 1437 * This conn has started closing. Cleanup any pending ioctl from this conn. 1438 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1439 */ 1440 void 1441 conn_ioctl_cleanup(conn_t *connp) 1442 { 1443 mblk_t *curr; 1444 ipsq_t *ipsq; 1445 ill_t *ill; 1446 boolean_t refheld; 1447 1448 /* 1449 * Is any exclusive ioctl pending ? If so clean it up. If the 1450 * ioctl has not yet started, the mp is pending in the list headed by 1451 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1452 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1453 * is currently executing now the mp is not queued anywhere but 1454 * conn_oper_pending_ill is null. The conn close will wait 1455 * till the conn_ref drops to zero. 1456 */ 1457 mutex_enter(&connp->conn_lock); 1458 ill = connp->conn_oper_pending_ill; 1459 if (ill == NULL) { 1460 mutex_exit(&connp->conn_lock); 1461 return; 1462 } 1463 1464 curr = ill_pending_mp_get(ill, &connp, 0); 1465 if (curr != NULL) { 1466 mutex_exit(&connp->conn_lock); 1467 CONN_DEC_REF(connp); 1468 inet_freemsg(curr); 1469 return; 1470 } 1471 /* 1472 * We may not be able to refhold the ill if the ill/ipif 1473 * is changing. But we need to make sure that the ill will 1474 * not vanish. So we just bump up the ill_waiter count. 1475 */ 1476 refheld = ill_waiter_inc(ill); 1477 mutex_exit(&connp->conn_lock); 1478 if (refheld) { 1479 if (ipsq_enter(ill, B_TRUE)) { 1480 ill_waiter_dcr(ill); 1481 /* 1482 * Check whether this ioctl has started and is 1483 * pending now in ipsq_pending_mp. If it is not 1484 * found there then check whether this ioctl has 1485 * not even started and is in the ipsq_xopq list. 1486 */ 1487 if (!ipsq_pending_mp_cleanup(ill, connp)) 1488 ipsq_xopq_mp_cleanup(ill, connp); 1489 ipsq = ill->ill_phyint->phyint_ipsq; 1490 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1491 return; 1492 } 1493 } 1494 1495 /* 1496 * The ill is also closing and we could not bump up the 1497 * ill_waiter_count or we could not enter the ipsq. Leave 1498 * the cleanup to ill_delete 1499 */ 1500 mutex_enter(&connp->conn_lock); 1501 while (connp->conn_oper_pending_ill != NULL) 1502 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1503 mutex_exit(&connp->conn_lock); 1504 if (refheld) 1505 ill_waiter_dcr(ill); 1506 } 1507 1508 /* 1509 * ipcl_walk function for cleaning up conn_*_ill fields. 1510 */ 1511 static void 1512 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1513 { 1514 ill_t *ill = (ill_t *)arg; 1515 ire_t *ire; 1516 1517 mutex_enter(&connp->conn_lock); 1518 if (connp->conn_multicast_ill == ill) { 1519 /* Revert to late binding */ 1520 connp->conn_multicast_ill = NULL; 1521 connp->conn_orig_multicast_ifindex = 0; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_outgoing_pill == ill) 1528 connp->conn_outgoing_pill = NULL; 1529 if (connp->conn_nofailover_ill == ill) 1530 connp->conn_nofailover_ill = NULL; 1531 if (connp->conn_dhcpinit_ill == ill) { 1532 connp->conn_dhcpinit_ill = NULL; 1533 ASSERT(ill->ill_dhcpinit != 0); 1534 atomic_dec_32(&ill->ill_dhcpinit); 1535 } 1536 if (connp->conn_ire_cache != NULL) { 1537 ire = connp->conn_ire_cache; 1538 /* 1539 * ip_newroute creates IRE_CACHE with ire_stq coming from 1540 * interface X and ipif coming from interface Y, if interface 1541 * X and Y are part of the same IPMPgroup. Thus whenever 1542 * interface X goes down, remove all references to it by 1543 * checking both on ire_ipif and ire_stq. 1544 */ 1545 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1546 (ire->ire_type == IRE_CACHE && 1547 ire->ire_stq == ill->ill_wq)) { 1548 connp->conn_ire_cache = NULL; 1549 mutex_exit(&connp->conn_lock); 1550 ire_refrele_notr(ire); 1551 return; 1552 } 1553 } 1554 mutex_exit(&connp->conn_lock); 1555 1556 } 1557 1558 /* ARGSUSED */ 1559 void 1560 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1561 { 1562 ill_t *ill = q->q_ptr; 1563 ipif_t *ipif; 1564 1565 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1566 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1567 ipif_non_duplicate(ipif); 1568 ipif_down_tail(ipif); 1569 } 1570 freemsg(mp); 1571 ipsq_current_finish(ipsq); 1572 } 1573 1574 /* 1575 * ill_down_start is called when we want to down this ill and bring it up again 1576 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1577 * all interfaces, but don't tear down any plumbing. 1578 */ 1579 boolean_t 1580 ill_down_start(queue_t *q, mblk_t *mp) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_ILL(ill)); 1586 1587 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1588 (void) ipif_down(ipif, NULL, NULL); 1589 1590 ill_down(ill); 1591 1592 (void) ipsq_pending_mp_cleanup(ill, NULL); 1593 1594 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1595 1596 /* 1597 * Atomically test and add the pending mp if references are active. 1598 */ 1599 mutex_enter(&ill->ill_lock); 1600 if (!ill_is_quiescent(ill)) { 1601 /* call cannot fail since `conn_t *' argument is NULL */ 1602 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1603 mp, ILL_DOWN); 1604 mutex_exit(&ill->ill_lock); 1605 return (B_FALSE); 1606 } 1607 mutex_exit(&ill->ill_lock); 1608 return (B_TRUE); 1609 } 1610 1611 static void 1612 ill_down(ill_t *ill) 1613 { 1614 ip_stack_t *ipst = ill->ill_ipst; 1615 1616 /* Blow off any IREs dependent on this ILL. */ 1617 ire_walk(ill_downi, (char *)ill, ipst); 1618 1619 /* Remove any conn_*_ill depending on this ill */ 1620 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1621 1622 if (ill->ill_group != NULL) { 1623 illgrp_delete(ill); 1624 } 1625 } 1626 1627 /* 1628 * ire_walk routine used to delete every IRE that depends on queues 1629 * associated with 'ill'. (Always called as writer.) 1630 */ 1631 static void 1632 ill_downi(ire_t *ire, char *ill_arg) 1633 { 1634 ill_t *ill = (ill_t *)ill_arg; 1635 1636 /* 1637 * ip_newroute creates IRE_CACHE with ire_stq coming from 1638 * interface X and ipif coming from interface Y, if interface 1639 * X and Y are part of the same IPMP group. Thus whenever interface 1640 * X goes down, remove all references to it by checking both 1641 * on ire_ipif and ire_stq. 1642 */ 1643 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1644 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1645 ire_delete(ire); 1646 } 1647 } 1648 1649 /* 1650 * Remove ire/nce from the fastpath list. 1651 */ 1652 void 1653 ill_fastpath_nack(ill_t *ill) 1654 { 1655 nce_fastpath_list_dispatch(ill, NULL, NULL); 1656 } 1657 1658 /* Consume an M_IOCACK of the fastpath probe. */ 1659 void 1660 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1661 { 1662 mblk_t *mp1 = mp; 1663 1664 /* 1665 * If this was the first attempt turn on the fastpath probing. 1666 */ 1667 mutex_enter(&ill->ill_lock); 1668 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1669 ill->ill_dlpi_fastpath_state = IDS_OK; 1670 mutex_exit(&ill->ill_lock); 1671 1672 /* Free the M_IOCACK mblk, hold on to the data */ 1673 mp = mp->b_cont; 1674 freeb(mp1); 1675 if (mp == NULL) 1676 return; 1677 if (mp->b_cont != NULL) { 1678 /* 1679 * Update all IRE's or NCE's that are waiting for 1680 * fastpath update. 1681 */ 1682 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1683 mp1 = mp->b_cont; 1684 freeb(mp); 1685 mp = mp1; 1686 } else { 1687 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1688 } 1689 1690 freeb(mp); 1691 } 1692 1693 /* 1694 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1695 * The data portion of the request is a dl_unitdata_req_t template for 1696 * what we would send downstream in the absence of a fastpath confirmation. 1697 */ 1698 int 1699 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1700 { 1701 struct iocblk *ioc; 1702 mblk_t *mp; 1703 1704 if (dlur_mp == NULL) 1705 return (EINVAL); 1706 1707 mutex_enter(&ill->ill_lock); 1708 switch (ill->ill_dlpi_fastpath_state) { 1709 case IDS_FAILED: 1710 /* 1711 * Driver NAKed the first fastpath ioctl - assume it doesn't 1712 * support it. 1713 */ 1714 mutex_exit(&ill->ill_lock); 1715 return (ENOTSUP); 1716 case IDS_UNKNOWN: 1717 /* This is the first probe */ 1718 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1719 break; 1720 default: 1721 break; 1722 } 1723 mutex_exit(&ill->ill_lock); 1724 1725 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1726 return (EAGAIN); 1727 1728 mp->b_cont = copyb(dlur_mp); 1729 if (mp->b_cont == NULL) { 1730 freeb(mp); 1731 return (EAGAIN); 1732 } 1733 1734 ioc = (struct iocblk *)mp->b_rptr; 1735 ioc->ioc_count = msgdsize(mp->b_cont); 1736 1737 putnext(ill->ill_wq, mp); 1738 return (0); 1739 } 1740 1741 void 1742 ill_capability_probe(ill_t *ill) 1743 { 1744 /* 1745 * Do so only if capabilities are still unknown. 1746 */ 1747 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1748 return; 1749 1750 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1751 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1752 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1753 } 1754 1755 void 1756 ill_capability_reset(ill_t *ill) 1757 { 1758 mblk_t *sc_mp = NULL; 1759 mblk_t *tmp; 1760 1761 /* 1762 * Note here that we reset the state to UNKNOWN, and later send 1763 * down the DL_CAPABILITY_REQ without first setting the state to 1764 * INPROGRESS. We do this in order to distinguish the 1765 * DL_CAPABILITY_ACK response which may come back in response to 1766 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1767 * also handle the case where the driver doesn't send us back 1768 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1769 * requires the state to be in UNKNOWN anyway. In any case, all 1770 * features are turned off until the state reaches IDS_OK. 1771 */ 1772 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1773 ill->ill_capab_reneg = B_FALSE; 1774 1775 /* 1776 * Disable sub-capabilities and request a list of sub-capability 1777 * messages which will be sent down to the driver. Each handler 1778 * allocates the corresponding dl_capability_sub_t inside an 1779 * mblk, and links it to the existing sc_mp mblk, or return it 1780 * as sc_mp if it's the first sub-capability (the passed in 1781 * sc_mp is NULL). Upon returning from all capability handlers, 1782 * sc_mp will be pulled-up, before passing it downstream. 1783 */ 1784 ill_capability_mdt_reset(ill, &sc_mp); 1785 ill_capability_hcksum_reset(ill, &sc_mp); 1786 ill_capability_zerocopy_reset(ill, &sc_mp); 1787 ill_capability_ipsec_reset(ill, &sc_mp); 1788 ill_capability_dls_reset(ill, &sc_mp); 1789 ill_capability_lso_reset(ill, &sc_mp); 1790 1791 /* Nothing to send down in order to disable the capabilities? */ 1792 if (sc_mp == NULL) 1793 return; 1794 1795 tmp = msgpullup(sc_mp, -1); 1796 freemsg(sc_mp); 1797 if ((sc_mp = tmp) == NULL) { 1798 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1799 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1800 return; 1801 } 1802 1803 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1804 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1805 } 1806 1807 /* 1808 * Request or set new-style hardware capabilities supported by DLS provider. 1809 */ 1810 static void 1811 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1812 { 1813 mblk_t *mp; 1814 dl_capability_req_t *capb; 1815 size_t size = 0; 1816 uint8_t *ptr; 1817 1818 if (reqp != NULL) 1819 size = MBLKL(reqp); 1820 1821 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1822 if (mp == NULL) { 1823 freemsg(reqp); 1824 return; 1825 } 1826 ptr = mp->b_rptr; 1827 1828 capb = (dl_capability_req_t *)ptr; 1829 ptr += sizeof (dl_capability_req_t); 1830 1831 if (reqp != NULL) { 1832 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1833 capb->dl_sub_length = size; 1834 bcopy(reqp->b_rptr, ptr, size); 1835 ptr += size; 1836 mp->b_cont = reqp->b_cont; 1837 freeb(reqp); 1838 } 1839 ASSERT(ptr == mp->b_wptr); 1840 1841 ill_dlpi_send(ill, mp); 1842 } 1843 1844 static void 1845 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1846 { 1847 dl_capab_id_t *id_ic; 1848 uint_t sub_dl_cap = outers->dl_cap; 1849 dl_capability_sub_t *inners; 1850 uint8_t *capend; 1851 1852 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1853 1854 /* 1855 * Note: range checks here are not absolutely sufficient to 1856 * make us robust against malformed messages sent by drivers; 1857 * this is in keeping with the rest of IP's dlpi handling. 1858 * (Remember, it's coming from something else in the kernel 1859 * address space) 1860 */ 1861 1862 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1863 if (capend > mp->b_wptr) { 1864 cmn_err(CE_WARN, "ill_capability_id_ack: " 1865 "malformed sub-capability too long for mblk"); 1866 return; 1867 } 1868 1869 id_ic = (dl_capab_id_t *)(outers + 1); 1870 1871 if (outers->dl_length < sizeof (*id_ic) || 1872 (inners = &id_ic->id_subcap, 1873 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1874 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1875 "encapsulated capab type %d too long for mblk", 1876 inners->dl_cap); 1877 return; 1878 } 1879 1880 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1881 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1882 "isn't as expected; pass-thru module(s) detected, " 1883 "discarding capability\n", inners->dl_cap)); 1884 return; 1885 } 1886 1887 /* Process the encapsulated sub-capability */ 1888 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1889 } 1890 1891 /* 1892 * Process Multidata Transmit capability negotiation ack received from a 1893 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1894 * DL_CAPABILITY_ACK message. 1895 */ 1896 static void 1897 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1898 { 1899 mblk_t *nmp = NULL; 1900 dl_capability_req_t *oc; 1901 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1902 ill_mdt_capab_t **ill_mdt_capab; 1903 uint_t sub_dl_cap = isub->dl_cap; 1904 uint8_t *capend; 1905 1906 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1907 1908 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1909 1910 /* 1911 * Note: range checks here are not absolutely sufficient to 1912 * make us robust against malformed messages sent by drivers; 1913 * this is in keeping with the rest of IP's dlpi handling. 1914 * (Remember, it's coming from something else in the kernel 1915 * address space) 1916 */ 1917 1918 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1919 if (capend > mp->b_wptr) { 1920 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1921 "malformed sub-capability too long for mblk"); 1922 return; 1923 } 1924 1925 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1926 1927 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1928 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1929 "unsupported MDT sub-capability (version %d, expected %d)", 1930 mdt_ic->mdt_version, MDT_VERSION_2); 1931 return; 1932 } 1933 1934 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1935 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1936 "capability isn't as expected; pass-thru module(s) " 1937 "detected, discarding capability\n")); 1938 return; 1939 } 1940 1941 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1942 1943 if (*ill_mdt_capab == NULL) { 1944 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1945 KM_NOSLEEP); 1946 1947 if (*ill_mdt_capab == NULL) { 1948 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1949 "could not enable MDT version %d " 1950 "for %s (ENOMEM)\n", MDT_VERSION_2, 1951 ill->ill_name); 1952 return; 1953 } 1954 } 1955 1956 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1957 "MDT version %d (%d bytes leading, %d bytes trailing " 1958 "header spaces, %d max pld bufs, %d span limit)\n", 1959 ill->ill_name, MDT_VERSION_2, 1960 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1961 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1962 1963 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1964 (*ill_mdt_capab)->ill_mdt_on = 1; 1965 /* 1966 * Round the following values to the nearest 32-bit; ULP 1967 * may further adjust them to accomodate for additional 1968 * protocol headers. We pass these values to ULP during 1969 * bind time. 1970 */ 1971 (*ill_mdt_capab)->ill_mdt_hdr_head = 1972 roundup(mdt_ic->mdt_hdr_head, 4); 1973 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1974 roundup(mdt_ic->mdt_hdr_tail, 4); 1975 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1976 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1977 1978 ill->ill_capabilities |= ILL_CAPAB_MDT; 1979 } else { 1980 uint_t size; 1981 uchar_t *rptr; 1982 1983 size = sizeof (dl_capability_req_t) + 1984 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1985 1986 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1987 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1988 "could not enable MDT for %s (ENOMEM)\n", 1989 ill->ill_name); 1990 return; 1991 } 1992 1993 rptr = nmp->b_rptr; 1994 /* initialize dl_capability_req_t */ 1995 oc = (dl_capability_req_t *)nmp->b_rptr; 1996 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1997 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1998 sizeof (dl_capab_mdt_t); 1999 nmp->b_rptr += sizeof (dl_capability_req_t); 2000 2001 /* initialize dl_capability_sub_t */ 2002 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2003 nmp->b_rptr += sizeof (*isub); 2004 2005 /* initialize dl_capab_mdt_t */ 2006 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2007 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2008 2009 nmp->b_rptr = rptr; 2010 2011 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2012 "to enable MDT version %d\n", ill->ill_name, 2013 MDT_VERSION_2)); 2014 2015 /* set ENABLE flag */ 2016 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2017 2018 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2019 ill_dlpi_send(ill, nmp); 2020 } 2021 } 2022 2023 static void 2024 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2025 { 2026 mblk_t *mp; 2027 dl_capab_mdt_t *mdt_subcap; 2028 dl_capability_sub_t *dl_subcap; 2029 int size; 2030 2031 if (!ILL_MDT_CAPABLE(ill)) 2032 return; 2033 2034 ASSERT(ill->ill_mdt_capab != NULL); 2035 /* 2036 * Clear the capability flag for MDT but retain the ill_mdt_capab 2037 * structure since it's possible that another thread is still 2038 * referring to it. The structure only gets deallocated when 2039 * we destroy the ill. 2040 */ 2041 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2042 2043 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2044 2045 mp = allocb(size, BPRI_HI); 2046 if (mp == NULL) { 2047 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2048 "request to disable MDT\n")); 2049 return; 2050 } 2051 2052 mp->b_wptr = mp->b_rptr + size; 2053 2054 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2055 dl_subcap->dl_cap = DL_CAPAB_MDT; 2056 dl_subcap->dl_length = sizeof (*mdt_subcap); 2057 2058 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2059 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2060 mdt_subcap->mdt_flags = 0; 2061 mdt_subcap->mdt_hdr_head = 0; 2062 mdt_subcap->mdt_hdr_tail = 0; 2063 2064 if (*sc_mp != NULL) 2065 linkb(*sc_mp, mp); 2066 else 2067 *sc_mp = mp; 2068 } 2069 2070 /* 2071 * Send a DL_NOTIFY_REQ to the specified ill to enable 2072 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2073 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2074 * acceleration. 2075 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2076 */ 2077 static boolean_t 2078 ill_enable_promisc_notify(ill_t *ill) 2079 { 2080 mblk_t *mp; 2081 dl_notify_req_t *req; 2082 2083 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2084 2085 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2086 if (mp == NULL) 2087 return (B_FALSE); 2088 2089 req = (dl_notify_req_t *)mp->b_rptr; 2090 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2091 DL_NOTE_PROMISC_OFF_PHYS; 2092 2093 ill_dlpi_send(ill, mp); 2094 2095 return (B_TRUE); 2096 } 2097 2098 2099 /* 2100 * Allocate an IPsec capability request which will be filled by our 2101 * caller to turn on support for one or more algorithms. 2102 */ 2103 static mblk_t * 2104 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2105 { 2106 mblk_t *nmp; 2107 dl_capability_req_t *ocap; 2108 dl_capab_ipsec_t *ocip; 2109 dl_capab_ipsec_t *icip; 2110 uint8_t *ptr; 2111 icip = (dl_capab_ipsec_t *)(isub + 1); 2112 2113 /* 2114 * The first time around, we send a DL_NOTIFY_REQ to enable 2115 * PROMISC_ON/OFF notification from the provider. We need to 2116 * do this before enabling the algorithms to avoid leakage of 2117 * cleartext packets. 2118 */ 2119 2120 if (!ill_enable_promisc_notify(ill)) 2121 return (NULL); 2122 2123 /* 2124 * Allocate new mblk which will contain a new capability 2125 * request to enable the capabilities. 2126 */ 2127 2128 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2129 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2130 if (nmp == NULL) 2131 return (NULL); 2132 2133 ptr = nmp->b_rptr; 2134 2135 /* initialize dl_capability_req_t */ 2136 ocap = (dl_capability_req_t *)ptr; 2137 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2138 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2139 ptr += sizeof (dl_capability_req_t); 2140 2141 /* initialize dl_capability_sub_t */ 2142 bcopy(isub, ptr, sizeof (*isub)); 2143 ptr += sizeof (*isub); 2144 2145 /* initialize dl_capab_ipsec_t */ 2146 ocip = (dl_capab_ipsec_t *)ptr; 2147 bcopy(icip, ocip, sizeof (*icip)); 2148 2149 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2150 return (nmp); 2151 } 2152 2153 /* 2154 * Process an IPsec capability negotiation ack received from a DLS Provider. 2155 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2156 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2157 */ 2158 static void 2159 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2160 { 2161 dl_capab_ipsec_t *icip; 2162 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2163 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2164 uint_t cipher, nciphers; 2165 mblk_t *nmp; 2166 uint_t alg_len; 2167 boolean_t need_sadb_dump; 2168 uint_t sub_dl_cap = isub->dl_cap; 2169 ill_ipsec_capab_t **ill_capab; 2170 uint64_t ill_capab_flag; 2171 uint8_t *capend, *ciphend; 2172 boolean_t sadb_resync; 2173 2174 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2175 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2176 2177 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2178 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2179 ill_capab_flag = ILL_CAPAB_AH; 2180 } else { 2181 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2182 ill_capab_flag = ILL_CAPAB_ESP; 2183 } 2184 2185 /* 2186 * If the ill capability structure exists, then this incoming 2187 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2188 * If this is so, then we'd need to resynchronize the SADB 2189 * after re-enabling the offloaded ciphers. 2190 */ 2191 sadb_resync = (*ill_capab != NULL); 2192 2193 /* 2194 * Note: range checks here are not absolutely sufficient to 2195 * make us robust against malformed messages sent by drivers; 2196 * this is in keeping with the rest of IP's dlpi handling. 2197 * (Remember, it's coming from something else in the kernel 2198 * address space) 2199 */ 2200 2201 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2202 if (capend > mp->b_wptr) { 2203 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2204 "malformed sub-capability too long for mblk"); 2205 return; 2206 } 2207 2208 /* 2209 * There are two types of acks we process here: 2210 * 1. acks in reply to a (first form) generic capability req 2211 * (no ENABLE flag set) 2212 * 2. acks in reply to a ENABLE capability req. 2213 * (ENABLE flag set) 2214 * 2215 * We process the subcapability passed as argument as follows: 2216 * 1 do initializations 2217 * 1.1 initialize nmp = NULL 2218 * 1.2 set need_sadb_dump to B_FALSE 2219 * 2 for each cipher in subcapability: 2220 * 2.1 if ENABLE flag is set: 2221 * 2.1.1 update per-ill ipsec capabilities info 2222 * 2.1.2 set need_sadb_dump to B_TRUE 2223 * 2.2 if ENABLE flag is not set: 2224 * 2.2.1 if nmp is NULL: 2225 * 2.2.1.1 allocate and initialize nmp 2226 * 2.2.1.2 init current pos in nmp 2227 * 2.2.2 copy current cipher to current pos in nmp 2228 * 2.2.3 set ENABLE flag in nmp 2229 * 2.2.4 update current pos 2230 * 3 if nmp is not equal to NULL, send enable request 2231 * 3.1 send capability request 2232 * 4 if need_sadb_dump is B_TRUE 2233 * 4.1 enable promiscuous on/off notifications 2234 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2235 * AH or ESP SA's to interface. 2236 */ 2237 2238 nmp = NULL; 2239 oalg = NULL; 2240 need_sadb_dump = B_FALSE; 2241 icip = (dl_capab_ipsec_t *)(isub + 1); 2242 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2243 2244 nciphers = icip->cip_nciphers; 2245 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2246 2247 if (ciphend > capend) { 2248 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2249 "too many ciphers for sub-capability len"); 2250 return; 2251 } 2252 2253 for (cipher = 0; cipher < nciphers; cipher++) { 2254 alg_len = sizeof (dl_capab_ipsec_alg_t); 2255 2256 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2257 /* 2258 * TBD: when we provide a way to disable capabilities 2259 * from above, need to manage the request-pending state 2260 * and fail if we were not expecting this ACK. 2261 */ 2262 IPSECHW_DEBUG(IPSECHW_CAPAB, 2263 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2264 2265 /* 2266 * Update IPsec capabilities for this ill 2267 */ 2268 2269 if (*ill_capab == NULL) { 2270 IPSECHW_DEBUG(IPSECHW_CAPAB, 2271 ("ill_capability_ipsec_ack: " 2272 "allocating ipsec_capab for ill\n")); 2273 *ill_capab = ill_ipsec_capab_alloc(); 2274 2275 if (*ill_capab == NULL) { 2276 cmn_err(CE_WARN, 2277 "ill_capability_ipsec_ack: " 2278 "could not enable IPsec Hardware " 2279 "acceleration for %s (ENOMEM)\n", 2280 ill->ill_name); 2281 return; 2282 } 2283 } 2284 2285 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2286 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2287 2288 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2289 cmn_err(CE_WARN, 2290 "ill_capability_ipsec_ack: " 2291 "malformed IPsec algorithm id %d", 2292 ialg->alg_prim); 2293 continue; 2294 } 2295 2296 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2297 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2298 ialg->alg_prim); 2299 } else { 2300 ipsec_capab_algparm_t *alp; 2301 2302 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2303 ialg->alg_prim); 2304 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2305 ialg->alg_prim)) { 2306 cmn_err(CE_WARN, 2307 "ill_capability_ipsec_ack: " 2308 "no space for IPsec alg id %d", 2309 ialg->alg_prim); 2310 continue; 2311 } 2312 alp = &((*ill_capab)->encr_algparm[ 2313 ialg->alg_prim]); 2314 alp->minkeylen = ialg->alg_minbits; 2315 alp->maxkeylen = ialg->alg_maxbits; 2316 } 2317 ill->ill_capabilities |= ill_capab_flag; 2318 /* 2319 * indicate that a capability was enabled, which 2320 * will be used below to kick off a SADB dump 2321 * to the ill. 2322 */ 2323 need_sadb_dump = B_TRUE; 2324 } else { 2325 IPSECHW_DEBUG(IPSECHW_CAPAB, 2326 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2327 ialg->alg_prim)); 2328 2329 if (nmp == NULL) { 2330 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2331 if (nmp == NULL) { 2332 /* 2333 * Sending the PROMISC_ON/OFF 2334 * notification request failed. 2335 * We cannot enable the algorithms 2336 * since the Provider will not 2337 * notify IP of promiscous mode 2338 * changes, which could lead 2339 * to leakage of packets. 2340 */ 2341 cmn_err(CE_WARN, 2342 "ill_capability_ipsec_ack: " 2343 "could not enable IPsec Hardware " 2344 "acceleration for %s (ENOMEM)\n", 2345 ill->ill_name); 2346 return; 2347 } 2348 /* ptr to current output alg specifier */ 2349 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2350 } 2351 2352 /* 2353 * Copy current alg specifier, set ENABLE 2354 * flag, and advance to next output alg. 2355 * For now we enable all IPsec capabilities. 2356 */ 2357 ASSERT(oalg != NULL); 2358 bcopy(ialg, oalg, alg_len); 2359 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2360 nmp->b_wptr += alg_len; 2361 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2362 } 2363 2364 /* move to next input algorithm specifier */ 2365 ialg = (dl_capab_ipsec_alg_t *) 2366 ((char *)ialg + alg_len); 2367 } 2368 2369 if (nmp != NULL) 2370 /* 2371 * nmp points to a DL_CAPABILITY_REQ message to enable 2372 * IPsec hardware acceleration. 2373 */ 2374 ill_dlpi_send(ill, nmp); 2375 2376 if (need_sadb_dump) 2377 /* 2378 * An acknowledgement corresponding to a request to 2379 * enable acceleration was received, notify SADB. 2380 */ 2381 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2382 } 2383 2384 /* 2385 * Given an mblk with enough space in it, create sub-capability entries for 2386 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2387 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2388 * in preparation for the reset the DL_CAPABILITY_REQ message. 2389 */ 2390 static void 2391 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2392 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2393 { 2394 dl_capab_ipsec_t *oipsec; 2395 dl_capab_ipsec_alg_t *oalg; 2396 dl_capability_sub_t *dl_subcap; 2397 int i, k; 2398 2399 ASSERT(nciphers > 0); 2400 ASSERT(ill_cap != NULL); 2401 ASSERT(mp != NULL); 2402 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2403 2404 /* dl_capability_sub_t for "stype" */ 2405 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2406 dl_subcap->dl_cap = stype; 2407 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2408 mp->b_wptr += sizeof (dl_capability_sub_t); 2409 2410 /* dl_capab_ipsec_t for "stype" */ 2411 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2412 oipsec->cip_version = 1; 2413 oipsec->cip_nciphers = nciphers; 2414 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2415 2416 /* create entries for "stype" AUTH ciphers */ 2417 for (i = 0; i < ill_cap->algs_size; i++) { 2418 for (k = 0; k < BITSPERBYTE; k++) { 2419 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2420 continue; 2421 2422 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2423 bzero((void *)oalg, sizeof (*oalg)); 2424 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2425 oalg->alg_prim = k + (BITSPERBYTE * i); 2426 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2427 } 2428 } 2429 /* create entries for "stype" ENCR ciphers */ 2430 for (i = 0; i < ill_cap->algs_size; i++) { 2431 for (k = 0; k < BITSPERBYTE; k++) { 2432 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2433 continue; 2434 2435 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2436 bzero((void *)oalg, sizeof (*oalg)); 2437 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2438 oalg->alg_prim = k + (BITSPERBYTE * i); 2439 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2440 } 2441 } 2442 } 2443 2444 /* 2445 * Macro to count number of 1s in a byte (8-bit word). The total count is 2446 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2447 * POPC instruction, but our macro is more flexible for an arbitrary length 2448 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2449 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2450 * stays that way, we can reduce the number of iterations required. 2451 */ 2452 #define COUNT_1S(val, sum) { \ 2453 uint8_t x = val & 0xff; \ 2454 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2455 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2456 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2457 } 2458 2459 /* ARGSUSED */ 2460 static void 2461 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2462 { 2463 mblk_t *mp; 2464 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2465 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2466 uint64_t ill_capabilities = ill->ill_capabilities; 2467 int ah_cnt = 0, esp_cnt = 0; 2468 int ah_len = 0, esp_len = 0; 2469 int i, size = 0; 2470 2471 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2472 return; 2473 2474 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2475 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2476 2477 /* Find out the number of ciphers for AH */ 2478 if (cap_ah != NULL) { 2479 for (i = 0; i < cap_ah->algs_size; i++) { 2480 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2481 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2482 } 2483 if (ah_cnt > 0) { 2484 size += sizeof (dl_capability_sub_t) + 2485 sizeof (dl_capab_ipsec_t); 2486 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2487 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2488 size += ah_len; 2489 } 2490 } 2491 2492 /* Find out the number of ciphers for ESP */ 2493 if (cap_esp != NULL) { 2494 for (i = 0; i < cap_esp->algs_size; i++) { 2495 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2496 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2497 } 2498 if (esp_cnt > 0) { 2499 size += sizeof (dl_capability_sub_t) + 2500 sizeof (dl_capab_ipsec_t); 2501 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2502 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2503 size += esp_len; 2504 } 2505 } 2506 2507 if (size == 0) { 2508 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2509 "there's nothing to reset\n")); 2510 return; 2511 } 2512 2513 mp = allocb(size, BPRI_HI); 2514 if (mp == NULL) { 2515 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2516 "request to disable IPSEC Hardware Acceleration\n")); 2517 return; 2518 } 2519 2520 /* 2521 * Clear the capability flags for IPsec HA but retain the ill 2522 * capability structures since it's possible that another thread 2523 * is still referring to them. The structures only get deallocated 2524 * when we destroy the ill. 2525 * 2526 * Various places check the flags to see if the ill is capable of 2527 * hardware acceleration, and by clearing them we ensure that new 2528 * outbound IPsec packets are sent down encrypted. 2529 */ 2530 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2531 2532 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2533 if (ah_cnt > 0) { 2534 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2535 cap_ah, mp); 2536 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2537 } 2538 2539 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2540 if (esp_cnt > 0) { 2541 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2542 cap_esp, mp); 2543 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2544 } 2545 2546 /* 2547 * At this point we've composed a bunch of sub-capabilities to be 2548 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2549 * by the caller. Upon receiving this reset message, the driver 2550 * must stop inbound decryption (by destroying all inbound SAs) 2551 * and let the corresponding packets come in encrypted. 2552 */ 2553 2554 if (*sc_mp != NULL) 2555 linkb(*sc_mp, mp); 2556 else 2557 *sc_mp = mp; 2558 } 2559 2560 static void 2561 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2562 boolean_t encapsulated) 2563 { 2564 boolean_t legacy = B_FALSE; 2565 2566 /* 2567 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2568 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2569 * instructed the driver to disable its advertised capabilities, 2570 * so there's no point in accepting any response at this moment. 2571 */ 2572 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2573 return; 2574 2575 /* 2576 * Note that only the following two sub-capabilities may be 2577 * considered as "legacy", since their original definitions 2578 * do not incorporate the dl_mid_t module ID token, and hence 2579 * may require the use of the wrapper sub-capability. 2580 */ 2581 switch (subp->dl_cap) { 2582 case DL_CAPAB_IPSEC_AH: 2583 case DL_CAPAB_IPSEC_ESP: 2584 legacy = B_TRUE; 2585 break; 2586 } 2587 2588 /* 2589 * For legacy sub-capabilities which don't incorporate a queue_t 2590 * pointer in their structures, discard them if we detect that 2591 * there are intermediate modules in between IP and the driver. 2592 */ 2593 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2594 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2595 "%d discarded; %d module(s) present below IP\n", 2596 subp->dl_cap, ill->ill_lmod_cnt)); 2597 return; 2598 } 2599 2600 switch (subp->dl_cap) { 2601 case DL_CAPAB_IPSEC_AH: 2602 case DL_CAPAB_IPSEC_ESP: 2603 ill_capability_ipsec_ack(ill, mp, subp); 2604 break; 2605 case DL_CAPAB_MDT: 2606 ill_capability_mdt_ack(ill, mp, subp); 2607 break; 2608 case DL_CAPAB_HCKSUM: 2609 ill_capability_hcksum_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_ZEROCOPY: 2612 ill_capability_zerocopy_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_POLL: 2615 if (!SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_SOFT_RING: 2619 if (SOFT_RINGS_ENABLED()) 2620 ill_capability_dls_ack(ill, mp, subp); 2621 break; 2622 case DL_CAPAB_LSO: 2623 ill_capability_lso_ack(ill, mp, subp); 2624 break; 2625 default: 2626 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2627 subp->dl_cap)); 2628 } 2629 } 2630 2631 /* 2632 * As part of negotiating polling capability, the driver tells us 2633 * the default (or normal) blanking interval and packet threshold 2634 * (the receive timer fires if blanking interval is reached or 2635 * the packet threshold is reached). 2636 * 2637 * As part of manipulating the polling interval, we always use our 2638 * estimated interval (avg service time * number of packets queued 2639 * on the squeue) but we try to blank for a minimum of 2640 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2641 * packet threshold during this time. When we are not in polling mode 2642 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2643 * rr_min_blank_ratio but up the packet cnt by a ratio of 2644 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2645 * possible although for a shorter interval. 2646 */ 2647 #define RR_MAX_BLANK_RATIO 20 2648 #define RR_MIN_BLANK_RATIO 10 2649 #define RR_MAX_PKT_CNT_RATIO 3 2650 #define RR_MIN_PKT_CNT_RATIO 3 2651 2652 /* 2653 * These can be tuned via /etc/system. 2654 */ 2655 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2656 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2657 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2658 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2659 2660 static mac_resource_handle_t 2661 ill_ring_add(void *arg, mac_resource_t *mrp) 2662 { 2663 ill_t *ill = (ill_t *)arg; 2664 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2665 ill_rx_ring_t *rx_ring; 2666 int ip_rx_index; 2667 2668 ASSERT(mrp != NULL); 2669 if (mrp->mr_type != MAC_RX_FIFO) { 2670 return (NULL); 2671 } 2672 ASSERT(ill != NULL); 2673 ASSERT(ill->ill_dls_capab != NULL); 2674 2675 mutex_enter(&ill->ill_lock); 2676 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2677 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2678 ASSERT(rx_ring != NULL); 2679 2680 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2681 time_t normal_blank_time = 2682 mrfp->mrf_normal_blank_time; 2683 uint_t normal_pkt_cnt = 2684 mrfp->mrf_normal_pkt_count; 2685 2686 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2687 2688 rx_ring->rr_blank = mrfp->mrf_blank; 2689 rx_ring->rr_handle = mrfp->mrf_arg; 2690 rx_ring->rr_ill = ill; 2691 rx_ring->rr_normal_blank_time = normal_blank_time; 2692 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2693 2694 rx_ring->rr_max_blank_time = 2695 normal_blank_time * rr_max_blank_ratio; 2696 rx_ring->rr_min_blank_time = 2697 normal_blank_time * rr_min_blank_ratio; 2698 rx_ring->rr_max_pkt_cnt = 2699 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2700 rx_ring->rr_min_pkt_cnt = 2701 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2702 2703 rx_ring->rr_ring_state = ILL_RING_INUSE; 2704 mutex_exit(&ill->ill_lock); 2705 2706 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2707 (int), ip_rx_index); 2708 return ((mac_resource_handle_t)rx_ring); 2709 } 2710 } 2711 2712 /* 2713 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2714 * we have devices which can overwhelm this limit, ILL_MAX_RING 2715 * should be made configurable. Meanwhile it cause no panic because 2716 * driver will pass ip_input a NULL handle which will make 2717 * IP allocate the default squeue and Polling mode will not 2718 * be used for this ring. 2719 */ 2720 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2721 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2722 2723 mutex_exit(&ill->ill_lock); 2724 return (NULL); 2725 } 2726 2727 static boolean_t 2728 ill_capability_dls_init(ill_t *ill) 2729 { 2730 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2731 conn_t *connp; 2732 size_t sz; 2733 ip_stack_t *ipst = ill->ill_ipst; 2734 2735 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2736 if (ill_dls == NULL) { 2737 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2738 "soft_ring enabled for ill=%s (%p) but data " 2739 "structs uninitialized\n", ill->ill_name, 2740 (void *)ill); 2741 } 2742 return (B_TRUE); 2743 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2744 if (ill_dls == NULL) { 2745 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2746 "polling enabled for ill=%s (%p) but data " 2747 "structs uninitialized\n", ill->ill_name, 2748 (void *)ill); 2749 } 2750 return (B_TRUE); 2751 } 2752 2753 if (ill_dls != NULL) { 2754 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2755 /* Soft_Ring or polling is being re-enabled */ 2756 2757 connp = ill_dls->ill_unbind_conn; 2758 ASSERT(rx_ring != NULL); 2759 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2760 bzero((void *)rx_ring, 2761 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2762 ill_dls->ill_ring_tbl = rx_ring; 2763 ill_dls->ill_unbind_conn = connp; 2764 return (B_TRUE); 2765 } 2766 2767 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2768 ipst->ips_netstack)) == NULL) 2769 return (B_FALSE); 2770 2771 sz = sizeof (ill_dls_capab_t); 2772 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2773 2774 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2775 if (ill_dls == NULL) { 2776 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2777 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2778 (void *)ill); 2779 CONN_DEC_REF(connp); 2780 return (B_FALSE); 2781 } 2782 2783 /* Allocate space to hold ring table */ 2784 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2785 ill->ill_dls_capab = ill_dls; 2786 ill_dls->ill_unbind_conn = connp; 2787 return (B_TRUE); 2788 } 2789 2790 /* 2791 * ill_capability_dls_disable: disable soft_ring and/or polling 2792 * capability. Since any of the rings might already be in use, need 2793 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2794 * direct calls if necessary. 2795 */ 2796 static void 2797 ill_capability_dls_disable(ill_t *ill) 2798 { 2799 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2800 2801 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2802 ip_squeue_clean_all(ill); 2803 ill_dls->ill_tx = NULL; 2804 ill_dls->ill_tx_handle = NULL; 2805 ill_dls->ill_dls_change_status = NULL; 2806 ill_dls->ill_dls_bind = NULL; 2807 ill_dls->ill_dls_unbind = NULL; 2808 } 2809 2810 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2811 } 2812 2813 static void 2814 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2815 dl_capability_sub_t *isub) 2816 { 2817 uint_t size; 2818 uchar_t *rptr; 2819 dl_capab_dls_t dls, *odls; 2820 ill_dls_capab_t *ill_dls; 2821 mblk_t *nmp = NULL; 2822 dl_capability_req_t *ocap; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 2825 if (!ill_capability_dls_init(ill)) 2826 return; 2827 ill_dls = ill->ill_dls_capab; 2828 2829 /* Copy locally to get the members aligned */ 2830 bcopy((void *)idls, (void *)&dls, 2831 sizeof (dl_capab_dls_t)); 2832 2833 /* Get the tx function and handle from dld */ 2834 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2835 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2836 2837 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2838 ill_dls->ill_dls_change_status = 2839 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2840 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2841 ill_dls->ill_dls_unbind = 2842 (ip_dls_unbind_t)dls.dls_ring_unbind; 2843 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2844 } 2845 2846 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2847 isub->dl_length; 2848 2849 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2850 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2851 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2852 ill->ill_name, (void *)ill); 2853 return; 2854 } 2855 2856 /* initialize dl_capability_req_t */ 2857 rptr = nmp->b_rptr; 2858 ocap = (dl_capability_req_t *)rptr; 2859 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2860 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2861 rptr += sizeof (dl_capability_req_t); 2862 2863 /* initialize dl_capability_sub_t */ 2864 bcopy(isub, rptr, sizeof (*isub)); 2865 rptr += sizeof (*isub); 2866 2867 odls = (dl_capab_dls_t *)rptr; 2868 rptr += sizeof (dl_capab_dls_t); 2869 2870 /* initialize dl_capab_dls_t to be sent down */ 2871 dls.dls_rx_handle = (uintptr_t)ill; 2872 dls.dls_rx = (uintptr_t)ip_input; 2873 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2874 2875 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2876 dls.dls_ring_cnt = ip_soft_rings_cnt; 2877 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2878 dls.dls_flags = SOFT_RING_ENABLE; 2879 } else { 2880 dls.dls_flags = POLL_ENABLE; 2881 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2882 "to enable polling\n", ill->ill_name)); 2883 } 2884 bcopy((void *)&dls, (void *)odls, 2885 sizeof (dl_capab_dls_t)); 2886 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2887 /* 2888 * nmp points to a DL_CAPABILITY_REQ message to 2889 * enable either soft_ring or polling 2890 */ 2891 ill_dlpi_send(ill, nmp); 2892 } 2893 2894 static void 2895 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2896 { 2897 mblk_t *mp; 2898 dl_capab_dls_t *idls; 2899 dl_capability_sub_t *dl_subcap; 2900 int size; 2901 2902 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2903 return; 2904 2905 ASSERT(ill->ill_dls_capab != NULL); 2906 2907 size = sizeof (*dl_subcap) + sizeof (*idls); 2908 2909 mp = allocb(size, BPRI_HI); 2910 if (mp == NULL) { 2911 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2912 "request to disable soft_ring\n")); 2913 return; 2914 } 2915 2916 mp->b_wptr = mp->b_rptr + size; 2917 2918 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2919 dl_subcap->dl_length = sizeof (*idls); 2920 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2921 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2922 else 2923 dl_subcap->dl_cap = DL_CAPAB_POLL; 2924 2925 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2926 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2927 idls->dls_flags = SOFT_RING_DISABLE; 2928 else 2929 idls->dls_flags = POLL_DISABLE; 2930 2931 if (*sc_mp != NULL) 2932 linkb(*sc_mp, mp); 2933 else 2934 *sc_mp = mp; 2935 } 2936 2937 /* 2938 * Process a soft_ring/poll capability negotiation ack received 2939 * from a DLS Provider.isub must point to the sub-capability 2940 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2941 */ 2942 static void 2943 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2944 { 2945 dl_capab_dls_t *idls; 2946 uint_t sub_dl_cap = isub->dl_cap; 2947 uint8_t *capend; 2948 2949 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2950 sub_dl_cap == DL_CAPAB_POLL); 2951 2952 if (ill->ill_isv6) 2953 return; 2954 2955 /* 2956 * Note: range checks here are not absolutely sufficient to 2957 * make us robust against malformed messages sent by drivers; 2958 * this is in keeping with the rest of IP's dlpi handling. 2959 * (Remember, it's coming from something else in the kernel 2960 * address space) 2961 */ 2962 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2963 if (capend > mp->b_wptr) { 2964 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2965 "malformed sub-capability too long for mblk"); 2966 return; 2967 } 2968 2969 /* 2970 * There are two types of acks we process here: 2971 * 1. acks in reply to a (first form) generic capability req 2972 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2973 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2974 * capability req. 2975 */ 2976 idls = (dl_capab_dls_t *)(isub + 1); 2977 2978 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2979 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2980 "capability isn't as expected; pass-thru " 2981 "module(s) detected, discarding capability\n")); 2982 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2983 /* 2984 * This is a capability renegotitation case. 2985 * The interface better be unusable at this 2986 * point other wise bad things will happen 2987 * if we disable direct calls on a running 2988 * and up interface. 2989 */ 2990 ill_capability_dls_disable(ill); 2991 } 2992 return; 2993 } 2994 2995 switch (idls->dls_flags) { 2996 default: 2997 /* Disable if unknown flag */ 2998 case SOFT_RING_DISABLE: 2999 case POLL_DISABLE: 3000 ill_capability_dls_disable(ill); 3001 break; 3002 case SOFT_RING_CAPABLE: 3003 case POLL_CAPABLE: 3004 /* 3005 * If the capability was already enabled, its safe 3006 * to disable it first to get rid of stale information 3007 * and then start enabling it again. 3008 */ 3009 ill_capability_dls_disable(ill); 3010 ill_capability_dls_capable(ill, idls, isub); 3011 break; 3012 case SOFT_RING_ENABLE: 3013 case POLL_ENABLE: 3014 mutex_enter(&ill->ill_lock); 3015 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3016 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3017 ASSERT(ill->ill_dls_capab != NULL); 3018 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3019 } 3020 if (sub_dl_cap == DL_CAPAB_POLL && 3021 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3022 ASSERT(ill->ill_dls_capab != NULL); 3023 ill->ill_capabilities |= ILL_CAPAB_POLL; 3024 ip1dbg(("ill_capability_dls_ack: interface %s " 3025 "has enabled polling\n", ill->ill_name)); 3026 } 3027 mutex_exit(&ill->ill_lock); 3028 break; 3029 } 3030 } 3031 3032 /* 3033 * Process a hardware checksum offload capability negotiation ack received 3034 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3035 * of a DL_CAPABILITY_ACK message. 3036 */ 3037 static void 3038 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3039 { 3040 dl_capability_req_t *ocap; 3041 dl_capab_hcksum_t *ihck, *ohck; 3042 ill_hcksum_capab_t **ill_hcksum; 3043 mblk_t *nmp = NULL; 3044 uint_t sub_dl_cap = isub->dl_cap; 3045 uint8_t *capend; 3046 3047 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3048 3049 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3050 3051 /* 3052 * Note: range checks here are not absolutely sufficient to 3053 * make us robust against malformed messages sent by drivers; 3054 * this is in keeping with the rest of IP's dlpi handling. 3055 * (Remember, it's coming from something else in the kernel 3056 * address space) 3057 */ 3058 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3059 if (capend > mp->b_wptr) { 3060 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3061 "malformed sub-capability too long for mblk"); 3062 return; 3063 } 3064 3065 /* 3066 * There are two types of acks we process here: 3067 * 1. acks in reply to a (first form) generic capability req 3068 * (no ENABLE flag set) 3069 * 2. acks in reply to a ENABLE capability req. 3070 * (ENABLE flag set) 3071 */ 3072 ihck = (dl_capab_hcksum_t *)(isub + 1); 3073 3074 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3075 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3076 "unsupported hardware checksum " 3077 "sub-capability (version %d, expected %d)", 3078 ihck->hcksum_version, HCKSUM_VERSION_1); 3079 return; 3080 } 3081 3082 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3083 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3084 "checksum capability isn't as expected; pass-thru " 3085 "module(s) detected, discarding capability\n")); 3086 return; 3087 } 3088 3089 #define CURR_HCKSUM_CAPAB \ 3090 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3091 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3092 3093 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3094 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3095 /* do ENABLE processing */ 3096 if (*ill_hcksum == NULL) { 3097 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3098 KM_NOSLEEP); 3099 3100 if (*ill_hcksum == NULL) { 3101 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3102 "could not enable hcksum version %d " 3103 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3104 ill->ill_name); 3105 return; 3106 } 3107 } 3108 3109 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3110 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3111 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3112 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3113 "has enabled hardware checksumming\n ", 3114 ill->ill_name)); 3115 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3116 /* 3117 * Enabling hardware checksum offload 3118 * Currently IP supports {TCP,UDP}/IPv4 3119 * partial and full cksum offload and 3120 * IPv4 header checksum offload. 3121 * Allocate new mblk which will 3122 * contain a new capability request 3123 * to enable hardware checksum offload. 3124 */ 3125 uint_t size; 3126 uchar_t *rptr; 3127 3128 size = sizeof (dl_capability_req_t) + 3129 sizeof (dl_capability_sub_t) + isub->dl_length; 3130 3131 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3132 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3133 "could not enable hardware cksum for %s (ENOMEM)\n", 3134 ill->ill_name); 3135 return; 3136 } 3137 3138 rptr = nmp->b_rptr; 3139 /* initialize dl_capability_req_t */ 3140 ocap = (dl_capability_req_t *)nmp->b_rptr; 3141 ocap->dl_sub_offset = 3142 sizeof (dl_capability_req_t); 3143 ocap->dl_sub_length = 3144 sizeof (dl_capability_sub_t) + 3145 isub->dl_length; 3146 nmp->b_rptr += sizeof (dl_capability_req_t); 3147 3148 /* initialize dl_capability_sub_t */ 3149 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3150 nmp->b_rptr += sizeof (*isub); 3151 3152 /* initialize dl_capab_hcksum_t */ 3153 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3154 bcopy(ihck, ohck, sizeof (*ihck)); 3155 3156 nmp->b_rptr = rptr; 3157 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3158 3159 /* Set ENABLE flag */ 3160 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3161 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3162 3163 /* 3164 * nmp points to a DL_CAPABILITY_REQ message to enable 3165 * hardware checksum acceleration. 3166 */ 3167 ill_dlpi_send(ill, nmp); 3168 } else { 3169 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3170 "advertised %x hardware checksum capability flags\n", 3171 ill->ill_name, ihck->hcksum_txflags)); 3172 } 3173 } 3174 3175 static void 3176 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3177 { 3178 mblk_t *mp; 3179 dl_capab_hcksum_t *hck_subcap; 3180 dl_capability_sub_t *dl_subcap; 3181 int size; 3182 3183 if (!ILL_HCKSUM_CAPABLE(ill)) 3184 return; 3185 3186 ASSERT(ill->ill_hcksum_capab != NULL); 3187 /* 3188 * Clear the capability flag for hardware checksum offload but 3189 * retain the ill_hcksum_capab structure since it's possible that 3190 * another thread is still referring to it. The structure only 3191 * gets deallocated when we destroy the ill. 3192 */ 3193 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3194 3195 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3196 3197 mp = allocb(size, BPRI_HI); 3198 if (mp == NULL) { 3199 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3200 "request to disable hardware checksum offload\n")); 3201 return; 3202 } 3203 3204 mp->b_wptr = mp->b_rptr + size; 3205 3206 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3207 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3208 dl_subcap->dl_length = sizeof (*hck_subcap); 3209 3210 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3211 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3212 hck_subcap->hcksum_txflags = 0; 3213 3214 if (*sc_mp != NULL) 3215 linkb(*sc_mp, mp); 3216 else 3217 *sc_mp = mp; 3218 } 3219 3220 static void 3221 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3222 { 3223 mblk_t *nmp = NULL; 3224 dl_capability_req_t *oc; 3225 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3226 ill_zerocopy_capab_t **ill_zerocopy_capab; 3227 uint_t sub_dl_cap = isub->dl_cap; 3228 uint8_t *capend; 3229 3230 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3231 3232 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3233 3234 /* 3235 * Note: range checks here are not absolutely sufficient to 3236 * make us robust against malformed messages sent by drivers; 3237 * this is in keeping with the rest of IP's dlpi handling. 3238 * (Remember, it's coming from something else in the kernel 3239 * address space) 3240 */ 3241 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3242 if (capend > mp->b_wptr) { 3243 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3244 "malformed sub-capability too long for mblk"); 3245 return; 3246 } 3247 3248 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3249 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3250 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3251 "unsupported ZEROCOPY sub-capability (version %d, " 3252 "expected %d)", zc_ic->zerocopy_version, 3253 ZEROCOPY_VERSION_1); 3254 return; 3255 } 3256 3257 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3258 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3259 "capability isn't as expected; pass-thru module(s) " 3260 "detected, discarding capability\n")); 3261 return; 3262 } 3263 3264 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3265 if (*ill_zerocopy_capab == NULL) { 3266 *ill_zerocopy_capab = 3267 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3268 KM_NOSLEEP); 3269 3270 if (*ill_zerocopy_capab == NULL) { 3271 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3272 "could not enable Zero-copy version %d " 3273 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3274 ill->ill_name); 3275 return; 3276 } 3277 } 3278 3279 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3280 "supports Zero-copy version %d\n", ill->ill_name, 3281 ZEROCOPY_VERSION_1)); 3282 3283 (*ill_zerocopy_capab)->ill_zerocopy_version = 3284 zc_ic->zerocopy_version; 3285 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3286 zc_ic->zerocopy_flags; 3287 3288 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3289 } else { 3290 uint_t size; 3291 uchar_t *rptr; 3292 3293 size = sizeof (dl_capability_req_t) + 3294 sizeof (dl_capability_sub_t) + 3295 sizeof (dl_capab_zerocopy_t); 3296 3297 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3298 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3299 "could not enable zerocopy for %s (ENOMEM)\n", 3300 ill->ill_name); 3301 return; 3302 } 3303 3304 rptr = nmp->b_rptr; 3305 /* initialize dl_capability_req_t */ 3306 oc = (dl_capability_req_t *)rptr; 3307 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3308 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3309 sizeof (dl_capab_zerocopy_t); 3310 rptr += sizeof (dl_capability_req_t); 3311 3312 /* initialize dl_capability_sub_t */ 3313 bcopy(isub, rptr, sizeof (*isub)); 3314 rptr += sizeof (*isub); 3315 3316 /* initialize dl_capab_zerocopy_t */ 3317 zc_oc = (dl_capab_zerocopy_t *)rptr; 3318 *zc_oc = *zc_ic; 3319 3320 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3321 "to enable zero-copy version %d\n", ill->ill_name, 3322 ZEROCOPY_VERSION_1)); 3323 3324 /* set VMSAFE_MEM flag */ 3325 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3326 3327 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3328 ill_dlpi_send(ill, nmp); 3329 } 3330 } 3331 3332 static void 3333 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3334 { 3335 mblk_t *mp; 3336 dl_capab_zerocopy_t *zerocopy_subcap; 3337 dl_capability_sub_t *dl_subcap; 3338 int size; 3339 3340 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3341 return; 3342 3343 ASSERT(ill->ill_zerocopy_capab != NULL); 3344 /* 3345 * Clear the capability flag for Zero-copy but retain the 3346 * ill_zerocopy_capab structure since it's possible that another 3347 * thread is still referring to it. The structure only gets 3348 * deallocated when we destroy the ill. 3349 */ 3350 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3351 3352 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3353 3354 mp = allocb(size, BPRI_HI); 3355 if (mp == NULL) { 3356 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3357 "request to disable Zero-copy\n")); 3358 return; 3359 } 3360 3361 mp->b_wptr = mp->b_rptr + size; 3362 3363 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3364 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3365 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3366 3367 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3368 zerocopy_subcap->zerocopy_version = 3369 ill->ill_zerocopy_capab->ill_zerocopy_version; 3370 zerocopy_subcap->zerocopy_flags = 0; 3371 3372 if (*sc_mp != NULL) 3373 linkb(*sc_mp, mp); 3374 else 3375 *sc_mp = mp; 3376 } 3377 3378 /* 3379 * Process Large Segment Offload capability negotiation ack received from a 3380 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3381 * DL_CAPABILITY_ACK message. 3382 */ 3383 static void 3384 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3385 { 3386 mblk_t *nmp = NULL; 3387 dl_capability_req_t *oc; 3388 dl_capab_lso_t *lso_ic, *lso_oc; 3389 ill_lso_capab_t **ill_lso_capab; 3390 uint_t sub_dl_cap = isub->dl_cap; 3391 uint8_t *capend; 3392 3393 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3394 3395 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3396 3397 /* 3398 * Note: range checks here are not absolutely sufficient to 3399 * make us robust against malformed messages sent by drivers; 3400 * this is in keeping with the rest of IP's dlpi handling. 3401 * (Remember, it's coming from something else in the kernel 3402 * address space) 3403 */ 3404 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3405 if (capend > mp->b_wptr) { 3406 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3407 "malformed sub-capability too long for mblk"); 3408 return; 3409 } 3410 3411 lso_ic = (dl_capab_lso_t *)(isub + 1); 3412 3413 if (lso_ic->lso_version != LSO_VERSION_1) { 3414 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3415 "unsupported LSO sub-capability (version %d, expected %d)", 3416 lso_ic->lso_version, LSO_VERSION_1); 3417 return; 3418 } 3419 3420 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3421 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3422 "capability isn't as expected; pass-thru module(s) " 3423 "detected, discarding capability\n")); 3424 return; 3425 } 3426 3427 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3428 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3429 if (*ill_lso_capab == NULL) { 3430 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3431 KM_NOSLEEP); 3432 3433 if (*ill_lso_capab == NULL) { 3434 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3435 "could not enable LSO version %d " 3436 "for %s (ENOMEM)\n", LSO_VERSION_1, 3437 ill->ill_name); 3438 return; 3439 } 3440 } 3441 3442 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3443 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3444 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3445 ill->ill_capabilities |= ILL_CAPAB_LSO; 3446 3447 ip1dbg(("ill_capability_lso_ack: interface %s " 3448 "has enabled LSO\n ", ill->ill_name)); 3449 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3450 uint_t size; 3451 uchar_t *rptr; 3452 3453 size = sizeof (dl_capability_req_t) + 3454 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3455 3456 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3457 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3458 "could not enable LSO for %s (ENOMEM)\n", 3459 ill->ill_name); 3460 return; 3461 } 3462 3463 rptr = nmp->b_rptr; 3464 /* initialize dl_capability_req_t */ 3465 oc = (dl_capability_req_t *)nmp->b_rptr; 3466 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3467 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3468 sizeof (dl_capab_lso_t); 3469 nmp->b_rptr += sizeof (dl_capability_req_t); 3470 3471 /* initialize dl_capability_sub_t */ 3472 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3473 nmp->b_rptr += sizeof (*isub); 3474 3475 /* initialize dl_capab_lso_t */ 3476 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3477 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3478 3479 nmp->b_rptr = rptr; 3480 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3481 3482 /* set ENABLE flag */ 3483 lso_oc->lso_flags |= LSO_TX_ENABLE; 3484 3485 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3486 ill_dlpi_send(ill, nmp); 3487 } else { 3488 ip1dbg(("ill_capability_lso_ack: interface %s has " 3489 "advertised %x LSO capability flags\n", 3490 ill->ill_name, lso_ic->lso_flags)); 3491 } 3492 } 3493 3494 3495 static void 3496 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3497 { 3498 mblk_t *mp; 3499 dl_capab_lso_t *lso_subcap; 3500 dl_capability_sub_t *dl_subcap; 3501 int size; 3502 3503 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3504 return; 3505 3506 ASSERT(ill->ill_lso_capab != NULL); 3507 /* 3508 * Clear the capability flag for LSO but retain the 3509 * ill_lso_capab structure since it's possible that another 3510 * thread is still referring to it. The structure only gets 3511 * deallocated when we destroy the ill. 3512 */ 3513 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3514 3515 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3516 3517 mp = allocb(size, BPRI_HI); 3518 if (mp == NULL) { 3519 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3520 "request to disable LSO\n")); 3521 return; 3522 } 3523 3524 mp->b_wptr = mp->b_rptr + size; 3525 3526 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3527 dl_subcap->dl_cap = DL_CAPAB_LSO; 3528 dl_subcap->dl_length = sizeof (*lso_subcap); 3529 3530 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3531 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3532 lso_subcap->lso_flags = 0; 3533 3534 if (*sc_mp != NULL) 3535 linkb(*sc_mp, mp); 3536 else 3537 *sc_mp = mp; 3538 } 3539 3540 /* 3541 * Consume a new-style hardware capabilities negotiation ack. 3542 * Called from ip_rput_dlpi_writer(). 3543 */ 3544 void 3545 ill_capability_ack(ill_t *ill, mblk_t *mp) 3546 { 3547 dl_capability_ack_t *capp; 3548 dl_capability_sub_t *subp, *endp; 3549 3550 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3551 ill->ill_dlpi_capab_state = IDS_OK; 3552 3553 capp = (dl_capability_ack_t *)mp->b_rptr; 3554 3555 if (capp->dl_sub_length == 0) 3556 /* no new-style capabilities */ 3557 return; 3558 3559 /* make sure the driver supplied correct dl_sub_length */ 3560 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3561 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3562 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3563 return; 3564 } 3565 3566 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3567 /* 3568 * There are sub-capabilities. Process the ones we know about. 3569 * Loop until we don't have room for another sub-cap header.. 3570 */ 3571 for (subp = SC(capp, capp->dl_sub_offset), 3572 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3573 subp <= endp; 3574 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3575 3576 switch (subp->dl_cap) { 3577 case DL_CAPAB_ID_WRAPPER: 3578 ill_capability_id_ack(ill, mp, subp); 3579 break; 3580 default: 3581 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3582 break; 3583 } 3584 } 3585 #undef SC 3586 } 3587 3588 /* 3589 * This routine is called to scan the fragmentation reassembly table for 3590 * the specified ILL for any packets that are starting to smell. 3591 * dead_interval is the maximum time in seconds that will be tolerated. It 3592 * will either be the value specified in ip_g_frag_timeout, or zero if the 3593 * ILL is shutting down and it is time to blow everything off. 3594 * 3595 * It returns the number of seconds (as a time_t) that the next frag timer 3596 * should be scheduled for, 0 meaning that the timer doesn't need to be 3597 * re-started. Note that the method of calculating next_timeout isn't 3598 * entirely accurate since time will flow between the time we grab 3599 * current_time and the time we schedule the next timeout. This isn't a 3600 * big problem since this is the timer for sending an ICMP reassembly time 3601 * exceeded messages, and it doesn't have to be exactly accurate. 3602 * 3603 * This function is 3604 * sometimes called as writer, although this is not required. 3605 */ 3606 time_t 3607 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3608 { 3609 ipfb_t *ipfb; 3610 ipfb_t *endp; 3611 ipf_t *ipf; 3612 ipf_t *ipfnext; 3613 mblk_t *mp; 3614 time_t current_time = gethrestime_sec(); 3615 time_t next_timeout = 0; 3616 uint32_t hdr_length; 3617 mblk_t *send_icmp_head; 3618 mblk_t *send_icmp_head_v6; 3619 zoneid_t zoneid; 3620 ip_stack_t *ipst = ill->ill_ipst; 3621 3622 ipfb = ill->ill_frag_hash_tbl; 3623 if (ipfb == NULL) 3624 return (B_FALSE); 3625 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3626 /* Walk the frag hash table. */ 3627 for (; ipfb < endp; ipfb++) { 3628 send_icmp_head = NULL; 3629 send_icmp_head_v6 = NULL; 3630 mutex_enter(&ipfb->ipfb_lock); 3631 while ((ipf = ipfb->ipfb_ipf) != 0) { 3632 time_t frag_time = current_time - ipf->ipf_timestamp; 3633 time_t frag_timeout; 3634 3635 if (frag_time < dead_interval) { 3636 /* 3637 * There are some outstanding fragments 3638 * that will timeout later. Make note of 3639 * the time so that we can reschedule the 3640 * next timeout appropriately. 3641 */ 3642 frag_timeout = dead_interval - frag_time; 3643 if (next_timeout == 0 || 3644 frag_timeout < next_timeout) { 3645 next_timeout = frag_timeout; 3646 } 3647 break; 3648 } 3649 /* Time's up. Get it out of here. */ 3650 hdr_length = ipf->ipf_nf_hdr_len; 3651 ipfnext = ipf->ipf_hash_next; 3652 if (ipfnext) 3653 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3654 *ipf->ipf_ptphn = ipfnext; 3655 mp = ipf->ipf_mp->b_cont; 3656 for (; mp; mp = mp->b_cont) { 3657 /* Extra points for neatness. */ 3658 IP_REASS_SET_START(mp, 0); 3659 IP_REASS_SET_END(mp, 0); 3660 } 3661 mp = ipf->ipf_mp->b_cont; 3662 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3663 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3664 ipfb->ipfb_count -= ipf->ipf_count; 3665 ASSERT(ipfb->ipfb_frag_pkts > 0); 3666 ipfb->ipfb_frag_pkts--; 3667 /* 3668 * We do not send any icmp message from here because 3669 * we currently are holding the ipfb_lock for this 3670 * hash chain. If we try and send any icmp messages 3671 * from here we may end up via a put back into ip 3672 * trying to get the same lock, causing a recursive 3673 * mutex panic. Instead we build a list and send all 3674 * the icmp messages after we have dropped the lock. 3675 */ 3676 if (ill->ill_isv6) { 3677 if (hdr_length != 0) { 3678 mp->b_next = send_icmp_head_v6; 3679 send_icmp_head_v6 = mp; 3680 } else { 3681 freemsg(mp); 3682 } 3683 } else { 3684 if (hdr_length != 0) { 3685 mp->b_next = send_icmp_head; 3686 send_icmp_head = mp; 3687 } else { 3688 freemsg(mp); 3689 } 3690 } 3691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3692 freeb(ipf->ipf_mp); 3693 } 3694 mutex_exit(&ipfb->ipfb_lock); 3695 /* 3696 * Now need to send any icmp messages that we delayed from 3697 * above. 3698 */ 3699 while (send_icmp_head_v6 != NULL) { 3700 ip6_t *ip6h; 3701 3702 mp = send_icmp_head_v6; 3703 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3704 mp->b_next = NULL; 3705 if (mp->b_datap->db_type == M_CTL) 3706 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3707 else 3708 ip6h = (ip6_t *)mp->b_rptr; 3709 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3710 ill, ipst); 3711 if (zoneid == ALL_ZONES) { 3712 freemsg(mp); 3713 } else { 3714 icmp_time_exceeded_v6(ill->ill_wq, mp, 3715 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3716 B_FALSE, zoneid, ipst); 3717 } 3718 } 3719 while (send_icmp_head != NULL) { 3720 ipaddr_t dst; 3721 3722 mp = send_icmp_head; 3723 send_icmp_head = send_icmp_head->b_next; 3724 mp->b_next = NULL; 3725 3726 if (mp->b_datap->db_type == M_CTL) 3727 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3728 else 3729 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3730 3731 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3732 if (zoneid == ALL_ZONES) { 3733 freemsg(mp); 3734 } else { 3735 icmp_time_exceeded(ill->ill_wq, mp, 3736 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3737 ipst); 3738 } 3739 } 3740 } 3741 /* 3742 * A non-dying ILL will use the return value to decide whether to 3743 * restart the frag timer, and for how long. 3744 */ 3745 return (next_timeout); 3746 } 3747 3748 /* 3749 * This routine is called when the approximate count of mblk memory used 3750 * for the specified ILL has exceeded max_count. 3751 */ 3752 void 3753 ill_frag_prune(ill_t *ill, uint_t max_count) 3754 { 3755 ipfb_t *ipfb; 3756 ipf_t *ipf; 3757 size_t count; 3758 3759 /* 3760 * If we are here within ip_min_frag_prune_time msecs remove 3761 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3762 * ill_frag_free_num_pkts. 3763 */ 3764 mutex_enter(&ill->ill_lock); 3765 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3766 (ip_min_frag_prune_time != 0 ? 3767 ip_min_frag_prune_time : msec_per_tick)) { 3768 3769 ill->ill_frag_free_num_pkts++; 3770 3771 } else { 3772 ill->ill_frag_free_num_pkts = 0; 3773 } 3774 ill->ill_last_frag_clean_time = lbolt; 3775 mutex_exit(&ill->ill_lock); 3776 3777 /* 3778 * free ill_frag_free_num_pkts oldest packets from each bucket. 3779 */ 3780 if (ill->ill_frag_free_num_pkts != 0) { 3781 int ix; 3782 3783 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3784 ipfb = &ill->ill_frag_hash_tbl[ix]; 3785 mutex_enter(&ipfb->ipfb_lock); 3786 if (ipfb->ipfb_ipf != NULL) { 3787 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3788 ill->ill_frag_free_num_pkts); 3789 } 3790 mutex_exit(&ipfb->ipfb_lock); 3791 } 3792 } 3793 /* 3794 * While the reassembly list for this ILL is too big, prune a fragment 3795 * queue by age, oldest first. 3796 */ 3797 while (ill->ill_frag_count > max_count) { 3798 int ix; 3799 ipfb_t *oipfb = NULL; 3800 uint_t oldest = UINT_MAX; 3801 3802 count = 0; 3803 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3804 ipfb = &ill->ill_frag_hash_tbl[ix]; 3805 mutex_enter(&ipfb->ipfb_lock); 3806 ipf = ipfb->ipfb_ipf; 3807 if (ipf != NULL && ipf->ipf_gen < oldest) { 3808 oldest = ipf->ipf_gen; 3809 oipfb = ipfb; 3810 } 3811 count += ipfb->ipfb_count; 3812 mutex_exit(&ipfb->ipfb_lock); 3813 } 3814 if (oipfb == NULL) 3815 break; 3816 3817 if (count <= max_count) 3818 return; /* Somebody beat us to it, nothing to do */ 3819 mutex_enter(&oipfb->ipfb_lock); 3820 ipf = oipfb->ipfb_ipf; 3821 if (ipf != NULL) { 3822 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3823 } 3824 mutex_exit(&oipfb->ipfb_lock); 3825 } 3826 } 3827 3828 /* 3829 * free 'free_cnt' fragmented packets starting at ipf. 3830 */ 3831 void 3832 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3833 { 3834 size_t count; 3835 mblk_t *mp; 3836 mblk_t *tmp; 3837 ipf_t **ipfp = ipf->ipf_ptphn; 3838 3839 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3840 ASSERT(ipfp != NULL); 3841 ASSERT(ipf != NULL); 3842 3843 while (ipf != NULL && free_cnt-- > 0) { 3844 count = ipf->ipf_count; 3845 mp = ipf->ipf_mp; 3846 ipf = ipf->ipf_hash_next; 3847 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3848 IP_REASS_SET_START(tmp, 0); 3849 IP_REASS_SET_END(tmp, 0); 3850 } 3851 atomic_add_32(&ill->ill_frag_count, -count); 3852 ASSERT(ipfb->ipfb_count >= count); 3853 ipfb->ipfb_count -= count; 3854 ASSERT(ipfb->ipfb_frag_pkts > 0); 3855 ipfb->ipfb_frag_pkts--; 3856 freemsg(mp); 3857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3858 } 3859 3860 if (ipf) 3861 ipf->ipf_ptphn = ipfp; 3862 ipfp[0] = ipf; 3863 } 3864 3865 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3866 "obsolete and may be removed in a future release of Solaris. Use " \ 3867 "ifconfig(1M) to manipulate the forwarding status of an interface." 3868 3869 /* 3870 * For obsolete per-interface forwarding configuration; 3871 * called in response to ND_GET. 3872 */ 3873 /* ARGSUSED */ 3874 static int 3875 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3876 { 3877 ill_t *ill = (ill_t *)cp; 3878 3879 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3880 3881 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3882 return (0); 3883 } 3884 3885 /* 3886 * For obsolete per-interface forwarding configuration; 3887 * called in response to ND_SET. 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3892 cred_t *ioc_cr) 3893 { 3894 long value; 3895 int retval; 3896 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3897 3898 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3899 3900 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3901 value < 0 || value > 1) { 3902 return (EINVAL); 3903 } 3904 3905 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3906 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3907 rw_exit(&ipst->ips_ill_g_lock); 3908 return (retval); 3909 } 3910 3911 /* 3912 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3913 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3914 * up RTS_IFINFO routing socket messages for each interface whose flags we 3915 * change. 3916 */ 3917 int 3918 ill_forward_set(ill_t *ill, boolean_t enable) 3919 { 3920 ill_group_t *illgrp; 3921 ip_stack_t *ipst = ill->ill_ipst; 3922 3923 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3924 3925 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3926 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3927 return (0); 3928 3929 if (IS_LOOPBACK(ill)) 3930 return (EINVAL); 3931 3932 /* 3933 * If the ill is in an IPMP group, set the forwarding policy on all 3934 * members of the group to the same value. 3935 */ 3936 illgrp = ill->ill_group; 3937 if (illgrp != NULL) { 3938 ill_t *tmp_ill; 3939 3940 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3941 tmp_ill = tmp_ill->ill_group_next) { 3942 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3943 (enable ? "Enabling" : "Disabling"), 3944 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3945 tmp_ill->ill_name)); 3946 mutex_enter(&tmp_ill->ill_lock); 3947 if (enable) 3948 tmp_ill->ill_flags |= ILLF_ROUTER; 3949 else 3950 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3951 mutex_exit(&tmp_ill->ill_lock); 3952 if (tmp_ill->ill_isv6) 3953 ill_set_nce_router_flags(tmp_ill, enable); 3954 /* Notify routing socket listeners of this change. */ 3955 ip_rts_ifmsg(tmp_ill->ill_ipif); 3956 } 3957 } else { 3958 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3959 (enable ? "Enabling" : "Disabling"), 3960 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3961 mutex_enter(&ill->ill_lock); 3962 if (enable) 3963 ill->ill_flags |= ILLF_ROUTER; 3964 else 3965 ill->ill_flags &= ~ILLF_ROUTER; 3966 mutex_exit(&ill->ill_lock); 3967 if (ill->ill_isv6) 3968 ill_set_nce_router_flags(ill, enable); 3969 /* Notify routing socket listeners of this change. */ 3970 ip_rts_ifmsg(ill->ill_ipif); 3971 } 3972 3973 return (0); 3974 } 3975 3976 /* 3977 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3978 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3979 * set or clear. 3980 */ 3981 static void 3982 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3983 { 3984 ipif_t *ipif; 3985 nce_t *nce; 3986 3987 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3988 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3989 if (nce != NULL) { 3990 mutex_enter(&nce->nce_lock); 3991 if (enable) 3992 nce->nce_flags |= NCE_F_ISROUTER; 3993 else 3994 nce->nce_flags &= ~NCE_F_ISROUTER; 3995 mutex_exit(&nce->nce_lock); 3996 NCE_REFRELE(nce); 3997 } 3998 } 3999 } 4000 4001 /* 4002 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4003 * for this ill. Make sure the v6/v4 question has been answered about this 4004 * ill. The creation of this ndd variable is only for backwards compatibility. 4005 * The preferred way to control per-interface IP forwarding is through the 4006 * ILLF_ROUTER interface flag. 4007 */ 4008 static int 4009 ill_set_ndd_name(ill_t *ill) 4010 { 4011 char *suffix; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill)); 4015 4016 if (ill->ill_isv6) 4017 suffix = ipv6_forward_suffix; 4018 else 4019 suffix = ipv4_forward_suffix; 4020 4021 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4022 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4023 /* 4024 * Copies over the '\0'. 4025 * Note that strlen(suffix) is always bounded. 4026 */ 4027 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4028 strlen(suffix) + 1); 4029 4030 /* 4031 * Use of the nd table requires holding the reader lock. 4032 * Modifying the nd table thru nd_load/nd_unload requires 4033 * the writer lock. 4034 */ 4035 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4036 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4037 nd_ill_forward_set, (caddr_t)ill)) { 4038 /* 4039 * If the nd_load failed, it only meant that it could not 4040 * allocate a new bunch of room for further NDD expansion. 4041 * Because of that, the ill_ndd_name will be set to 0, and 4042 * this interface is at the mercy of the global ip_forwarding 4043 * variable. 4044 */ 4045 rw_exit(&ipst->ips_ip_g_nd_lock); 4046 ill->ill_ndd_name = NULL; 4047 return (ENOMEM); 4048 } 4049 rw_exit(&ipst->ips_ip_g_nd_lock); 4050 return (0); 4051 } 4052 4053 /* 4054 * Intializes the context structure and returns the first ill in the list 4055 * cuurently start_list and end_list can have values: 4056 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4057 * IP_V4_G_HEAD Traverse IPV4 list only. 4058 * IP_V6_G_HEAD Traverse IPV6 list only. 4059 */ 4060 4061 /* 4062 * We don't check for CONDEMNED ills here. Caller must do that if 4063 * necessary under the ill lock. 4064 */ 4065 ill_t * 4066 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4067 ip_stack_t *ipst) 4068 { 4069 ill_if_t *ifp; 4070 ill_t *ill; 4071 avl_tree_t *avl_tree; 4072 4073 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4074 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4075 4076 /* 4077 * setup the lists to search 4078 */ 4079 if (end_list != MAX_G_HEADS) { 4080 ctx->ctx_current_list = start_list; 4081 ctx->ctx_last_list = end_list; 4082 } else { 4083 ctx->ctx_last_list = MAX_G_HEADS - 1; 4084 ctx->ctx_current_list = 0; 4085 } 4086 4087 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4088 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4089 if (ifp != (ill_if_t *) 4090 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4091 avl_tree = &ifp->illif_avl_by_ppa; 4092 ill = avl_first(avl_tree); 4093 /* 4094 * ill is guaranteed to be non NULL or ifp should have 4095 * not existed. 4096 */ 4097 ASSERT(ill != NULL); 4098 return (ill); 4099 } 4100 ctx->ctx_current_list++; 4101 } 4102 4103 return (NULL); 4104 } 4105 4106 /* 4107 * returns the next ill in the list. ill_first() must have been called 4108 * before calling ill_next() or bad things will happen. 4109 */ 4110 4111 /* 4112 * We don't check for CONDEMNED ills here. Caller must do that if 4113 * necessary under the ill lock. 4114 */ 4115 ill_t * 4116 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4117 { 4118 ill_if_t *ifp; 4119 ill_t *ill; 4120 ip_stack_t *ipst = lastill->ill_ipst; 4121 4122 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4123 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4124 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4125 AVL_AFTER)) != NULL) { 4126 return (ill); 4127 } 4128 4129 /* goto next ill_ifp in the list. */ 4130 ifp = lastill->ill_ifptr->illif_next; 4131 4132 /* make sure not at end of circular list */ 4133 while (ifp == 4134 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4135 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4136 return (NULL); 4137 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4138 } 4139 4140 return (avl_first(&ifp->illif_avl_by_ppa)); 4141 } 4142 4143 /* 4144 * Check interface name for correct format which is name+ppa. 4145 * name can contain characters and digits, the right most digits 4146 * make up the ppa number. use of octal is not allowed, name must contain 4147 * a ppa, return pointer to the start of ppa. 4148 * In case of error return NULL. 4149 */ 4150 static char * 4151 ill_get_ppa_ptr(char *name) 4152 { 4153 int namelen = mi_strlen(name); 4154 4155 int len = namelen; 4156 4157 name += len; 4158 while (len > 0) { 4159 name--; 4160 if (*name < '0' || *name > '9') 4161 break; 4162 len--; 4163 } 4164 4165 /* empty string, all digits, or no trailing digits */ 4166 if (len == 0 || len == (int)namelen) 4167 return (NULL); 4168 4169 name++; 4170 /* check for attempted use of octal */ 4171 if (*name == '0' && len != (int)namelen - 1) 4172 return (NULL); 4173 return (name); 4174 } 4175 4176 /* 4177 * use avl tree to locate the ill. 4178 */ 4179 static ill_t * 4180 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4181 ipsq_func_t func, int *error, ip_stack_t *ipst) 4182 { 4183 char *ppa_ptr = NULL; 4184 int len; 4185 uint_t ppa; 4186 ill_t *ill = NULL; 4187 ill_if_t *ifp; 4188 int list; 4189 ipsq_t *ipsq; 4190 4191 if (error != NULL) 4192 *error = 0; 4193 4194 /* 4195 * get ppa ptr 4196 */ 4197 if (isv6) 4198 list = IP_V6_G_HEAD; 4199 else 4200 list = IP_V4_G_HEAD; 4201 4202 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4203 if (error != NULL) 4204 *error = ENXIO; 4205 return (NULL); 4206 } 4207 4208 len = ppa_ptr - name + 1; 4209 4210 ppa = stoi(&ppa_ptr); 4211 4212 ifp = IP_VX_ILL_G_LIST(list, ipst); 4213 4214 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4215 /* 4216 * match is done on len - 1 as the name is not null 4217 * terminated it contains ppa in addition to the interface 4218 * name. 4219 */ 4220 if ((ifp->illif_name_len == len) && 4221 bcmp(ifp->illif_name, name, len - 1) == 0) { 4222 break; 4223 } else { 4224 ifp = ifp->illif_next; 4225 } 4226 } 4227 4228 4229 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4230 /* 4231 * Even the interface type does not exist. 4232 */ 4233 if (error != NULL) 4234 *error = ENXIO; 4235 return (NULL); 4236 } 4237 4238 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4239 if (ill != NULL) { 4240 /* 4241 * The block comment at the start of ipif_down 4242 * explains the use of the macros used below 4243 */ 4244 GRAB_CONN_LOCK(q); 4245 mutex_enter(&ill->ill_lock); 4246 if (ILL_CAN_LOOKUP(ill)) { 4247 ill_refhold_locked(ill); 4248 mutex_exit(&ill->ill_lock); 4249 RELEASE_CONN_LOCK(q); 4250 return (ill); 4251 } else if (ILL_CAN_WAIT(ill, q)) { 4252 ipsq = ill->ill_phyint->phyint_ipsq; 4253 mutex_enter(&ipsq->ipsq_lock); 4254 mutex_exit(&ill->ill_lock); 4255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4256 mutex_exit(&ipsq->ipsq_lock); 4257 RELEASE_CONN_LOCK(q); 4258 if (error != NULL) 4259 *error = EINPROGRESS; 4260 return (NULL); 4261 } 4262 mutex_exit(&ill->ill_lock); 4263 RELEASE_CONN_LOCK(q); 4264 } 4265 if (error != NULL) 4266 *error = ENXIO; 4267 return (NULL); 4268 } 4269 4270 /* 4271 * comparison function for use with avl. 4272 */ 4273 static int 4274 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4275 { 4276 uint_t ppa; 4277 uint_t ill_ppa; 4278 4279 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4280 4281 ppa = *((uint_t *)ppa_ptr); 4282 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4283 /* 4284 * We want the ill with the lowest ppa to be on the 4285 * top. 4286 */ 4287 if (ill_ppa < ppa) 4288 return (1); 4289 if (ill_ppa > ppa) 4290 return (-1); 4291 return (0); 4292 } 4293 4294 /* 4295 * remove an interface type from the global list. 4296 */ 4297 static void 4298 ill_delete_interface_type(ill_if_t *interface) 4299 { 4300 ASSERT(interface != NULL); 4301 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4302 4303 avl_destroy(&interface->illif_avl_by_ppa); 4304 if (interface->illif_ppa_arena != NULL) 4305 vmem_destroy(interface->illif_ppa_arena); 4306 4307 remque(interface); 4308 4309 mi_free(interface); 4310 } 4311 4312 /* 4313 * remove ill from the global list. 4314 */ 4315 static void 4316 ill_glist_delete(ill_t *ill) 4317 { 4318 hook_nic_event_t *info; 4319 ip_stack_t *ipst; 4320 4321 if (ill == NULL) 4322 return; 4323 ipst = ill->ill_ipst; 4324 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4325 4326 /* 4327 * If the ill was never inserted into the AVL tree 4328 * we skip the if branch. 4329 */ 4330 if (ill->ill_ifptr != NULL) { 4331 /* 4332 * remove from AVL tree and free ppa number 4333 */ 4334 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4335 4336 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4337 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4338 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4339 } 4340 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4341 ill_delete_interface_type(ill->ill_ifptr); 4342 } 4343 4344 /* 4345 * Indicate ill is no longer in the list. 4346 */ 4347 ill->ill_ifptr = NULL; 4348 ill->ill_name_length = 0; 4349 ill->ill_name[0] = '\0'; 4350 ill->ill_ppa = UINT_MAX; 4351 } 4352 4353 /* 4354 * Run the unplumb hook after the NIC has disappeared from being 4355 * visible so that attempts to revalidate its existance will fail. 4356 * 4357 * This needs to be run inside the ill_g_lock perimeter to ensure 4358 * that the ordering of delivered events to listeners matches the 4359 * order of them in the kernel. 4360 */ 4361 info = ill->ill_nic_event_info; 4362 if (info != NULL && info->hne_event == NE_DOWN) { 4363 mutex_enter(&ill->ill_lock); 4364 ill_nic_info_dispatch(ill); 4365 mutex_exit(&ill->ill_lock); 4366 } 4367 4368 /* Generate NE_UNPLUMB event for ill_name. */ 4369 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4370 ill->ill_name_length); 4371 4372 ill_phyint_free(ill); 4373 rw_exit(&ipst->ips_ill_g_lock); 4374 } 4375 4376 /* 4377 * allocate a ppa, if the number of plumbed interfaces of this type are 4378 * less than ill_no_arena do a linear search to find a unused ppa. 4379 * When the number goes beyond ill_no_arena switch to using an arena. 4380 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4381 * is the return value for an error condition, so allocation starts at one 4382 * and is decremented by one. 4383 */ 4384 static int 4385 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4386 { 4387 ill_t *tmp_ill; 4388 uint_t start, end; 4389 int ppa; 4390 4391 if (ifp->illif_ppa_arena == NULL && 4392 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4393 /* 4394 * Create an arena. 4395 */ 4396 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4397 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4398 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4399 /* allocate what has already been assigned */ 4400 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4401 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4402 tmp_ill, AVL_AFTER)) { 4403 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4404 1, /* size */ 4405 1, /* align/quantum */ 4406 0, /* phase */ 4407 0, /* nocross */ 4408 /* minaddr */ 4409 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4410 /* maxaddr */ 4411 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4412 VM_NOSLEEP|VM_FIRSTFIT); 4413 if (ppa == 0) { 4414 ip1dbg(("ill_alloc_ppa: ppa allocation" 4415 " failed while switching")); 4416 vmem_destroy(ifp->illif_ppa_arena); 4417 ifp->illif_ppa_arena = NULL; 4418 break; 4419 } 4420 } 4421 } 4422 4423 if (ifp->illif_ppa_arena != NULL) { 4424 if (ill->ill_ppa == UINT_MAX) { 4425 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4426 1, VM_NOSLEEP|VM_FIRSTFIT); 4427 if (ppa == 0) 4428 return (EAGAIN); 4429 ill->ill_ppa = --ppa; 4430 } else { 4431 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4432 1, /* size */ 4433 1, /* align/quantum */ 4434 0, /* phase */ 4435 0, /* nocross */ 4436 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4437 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4438 VM_NOSLEEP|VM_FIRSTFIT); 4439 /* 4440 * Most likely the allocation failed because 4441 * the requested ppa was in use. 4442 */ 4443 if (ppa == 0) 4444 return (EEXIST); 4445 } 4446 return (0); 4447 } 4448 4449 /* 4450 * No arena is in use and not enough (>ill_no_arena) interfaces have 4451 * been plumbed to create one. Do a linear search to get a unused ppa. 4452 */ 4453 if (ill->ill_ppa == UINT_MAX) { 4454 end = UINT_MAX - 1; 4455 start = 0; 4456 } else { 4457 end = start = ill->ill_ppa; 4458 } 4459 4460 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4461 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4462 if (start++ >= end) { 4463 if (ill->ill_ppa == UINT_MAX) 4464 return (EAGAIN); 4465 else 4466 return (EEXIST); 4467 } 4468 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4469 } 4470 ill->ill_ppa = start; 4471 return (0); 4472 } 4473 4474 /* 4475 * Insert ill into the list of configured ill's. Once this function completes, 4476 * the ill is globally visible and is available through lookups. More precisely 4477 * this happens after the caller drops the ill_g_lock. 4478 */ 4479 static int 4480 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4481 { 4482 ill_if_t *ill_interface; 4483 avl_index_t where = 0; 4484 int error; 4485 int name_length; 4486 int index; 4487 boolean_t check_length = B_FALSE; 4488 ip_stack_t *ipst = ill->ill_ipst; 4489 4490 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4491 4492 name_length = mi_strlen(name) + 1; 4493 4494 if (isv6) 4495 index = IP_V6_G_HEAD; 4496 else 4497 index = IP_V4_G_HEAD; 4498 4499 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4500 /* 4501 * Search for interface type based on name 4502 */ 4503 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4504 if ((ill_interface->illif_name_len == name_length) && 4505 (strcmp(ill_interface->illif_name, name) == 0)) { 4506 break; 4507 } 4508 ill_interface = ill_interface->illif_next; 4509 } 4510 4511 /* 4512 * Interface type not found, create one. 4513 */ 4514 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4515 4516 ill_g_head_t ghead; 4517 4518 /* 4519 * allocate ill_if_t structure 4520 */ 4521 4522 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4523 if (ill_interface == NULL) { 4524 return (ENOMEM); 4525 } 4526 4527 4528 4529 (void) strcpy(ill_interface->illif_name, name); 4530 ill_interface->illif_name_len = name_length; 4531 4532 avl_create(&ill_interface->illif_avl_by_ppa, 4533 ill_compare_ppa, sizeof (ill_t), 4534 offsetof(struct ill_s, ill_avl_byppa)); 4535 4536 /* 4537 * link the structure in the back to maintain order 4538 * of configuration for ifconfig output. 4539 */ 4540 ghead = ipst->ips_ill_g_heads[index]; 4541 insque(ill_interface, ghead.ill_g_list_tail); 4542 4543 } 4544 4545 if (ill->ill_ppa == UINT_MAX) 4546 check_length = B_TRUE; 4547 4548 error = ill_alloc_ppa(ill_interface, ill); 4549 if (error != 0) { 4550 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4551 ill_delete_interface_type(ill->ill_ifptr); 4552 return (error); 4553 } 4554 4555 /* 4556 * When the ppa is choosen by the system, check that there is 4557 * enough space to insert ppa. if a specific ppa was passed in this 4558 * check is not required as the interface name passed in will have 4559 * the right ppa in it. 4560 */ 4561 if (check_length) { 4562 /* 4563 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4564 */ 4565 char buf[sizeof (uint_t) * 3]; 4566 4567 /* 4568 * convert ppa to string to calculate the amount of space 4569 * required for it in the name. 4570 */ 4571 numtos(ill->ill_ppa, buf); 4572 4573 /* Do we have enough space to insert ppa ? */ 4574 4575 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4576 /* Free ppa and interface type struct */ 4577 if (ill_interface->illif_ppa_arena != NULL) { 4578 vmem_free(ill_interface->illif_ppa_arena, 4579 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4580 } 4581 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4582 0) { 4583 ill_delete_interface_type(ill->ill_ifptr); 4584 } 4585 4586 return (EINVAL); 4587 } 4588 } 4589 4590 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4591 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4592 4593 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4594 &where); 4595 ill->ill_ifptr = ill_interface; 4596 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4597 4598 ill_phyint_reinit(ill); 4599 return (0); 4600 } 4601 4602 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4603 static boolean_t 4604 ipsq_init(ill_t *ill) 4605 { 4606 ipsq_t *ipsq; 4607 4608 /* Init the ipsq and impicitly enter as writer */ 4609 ill->ill_phyint->phyint_ipsq = 4610 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4611 if (ill->ill_phyint->phyint_ipsq == NULL) 4612 return (B_FALSE); 4613 ipsq = ill->ill_phyint->phyint_ipsq; 4614 ipsq->ipsq_phyint_list = ill->ill_phyint; 4615 ill->ill_phyint->phyint_ipsq_next = NULL; 4616 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4617 ipsq->ipsq_refs = 1; 4618 ipsq->ipsq_writer = curthread; 4619 ipsq->ipsq_reentry_cnt = 1; 4620 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4621 #ifdef DEBUG 4622 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4623 IPSQ_STACK_DEPTH); 4624 #endif 4625 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4626 return (B_TRUE); 4627 } 4628 4629 /* 4630 * ill_init is called by ip_open when a device control stream is opened. 4631 * It does a few initializations, and shoots a DL_INFO_REQ message down 4632 * to the driver. The response is later picked up in ip_rput_dlpi and 4633 * used to set up default mechanisms for talking to the driver. (Always 4634 * called as writer.) 4635 * 4636 * If this function returns error, ip_open will call ip_close which in 4637 * turn will call ill_delete to clean up any memory allocated here that 4638 * is not yet freed. 4639 */ 4640 int 4641 ill_init(queue_t *q, ill_t *ill) 4642 { 4643 int count; 4644 dl_info_req_t *dlir; 4645 mblk_t *info_mp; 4646 uchar_t *frag_ptr; 4647 4648 /* 4649 * The ill is initialized to zero by mi_alloc*(). In addition 4650 * some fields already contain valid values, initialized in 4651 * ip_open(), before we reach here. 4652 */ 4653 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4654 4655 ill->ill_rq = q; 4656 ill->ill_wq = WR(q); 4657 4658 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4659 BPRI_HI); 4660 if (info_mp == NULL) 4661 return (ENOMEM); 4662 4663 /* 4664 * Allocate sufficient space to contain our fragment hash table and 4665 * the device name. 4666 */ 4667 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4668 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4669 if (frag_ptr == NULL) { 4670 freemsg(info_mp); 4671 return (ENOMEM); 4672 } 4673 ill->ill_frag_ptr = frag_ptr; 4674 ill->ill_frag_free_num_pkts = 0; 4675 ill->ill_last_frag_clean_time = 0; 4676 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4677 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4678 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4679 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4680 NULL, MUTEX_DEFAULT, NULL); 4681 } 4682 4683 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4684 if (ill->ill_phyint == NULL) { 4685 freemsg(info_mp); 4686 mi_free(frag_ptr); 4687 return (ENOMEM); 4688 } 4689 4690 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4691 /* 4692 * For now pretend this is a v4 ill. We need to set phyint_ill* 4693 * at this point because of the following reason. If we can't 4694 * enter the ipsq at some point and cv_wait, the writer that 4695 * wakes us up tries to locate us using the list of all phyints 4696 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4697 * If we don't set it now, we risk a missed wakeup. 4698 */ 4699 ill->ill_phyint->phyint_illv4 = ill; 4700 ill->ill_ppa = UINT_MAX; 4701 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4702 4703 if (!ipsq_init(ill)) { 4704 freemsg(info_mp); 4705 mi_free(frag_ptr); 4706 mi_free(ill->ill_phyint); 4707 return (ENOMEM); 4708 } 4709 4710 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4711 4712 4713 /* Frag queue limit stuff */ 4714 ill->ill_frag_count = 0; 4715 ill->ill_ipf_gen = 0; 4716 4717 ill->ill_global_timer = INFINITY; 4718 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4719 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4720 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4721 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4722 4723 /* 4724 * Initialize IPv6 configuration variables. The IP module is always 4725 * opened as an IPv4 module. Instead tracking down the cases where 4726 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4727 * here for convenience, this has no effect until the ill is set to do 4728 * IPv6. 4729 */ 4730 ill->ill_reachable_time = ND_REACHABLE_TIME; 4731 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4732 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4733 ill->ill_max_buf = ND_MAX_Q; 4734 ill->ill_refcnt = 0; 4735 4736 /* Send down the Info Request to the driver. */ 4737 info_mp->b_datap->db_type = M_PCPROTO; 4738 dlir = (dl_info_req_t *)info_mp->b_rptr; 4739 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4740 dlir->dl_primitive = DL_INFO_REQ; 4741 4742 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4743 4744 qprocson(q); 4745 ill_dlpi_send(ill, info_mp); 4746 4747 return (0); 4748 } 4749 4750 /* 4751 * ill_dls_info 4752 * creates datalink socket info from the device. 4753 */ 4754 int 4755 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4756 { 4757 size_t len; 4758 ill_t *ill = ipif->ipif_ill; 4759 4760 sdl->sdl_family = AF_LINK; 4761 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4762 sdl->sdl_type = ill->ill_type; 4763 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4764 len = strlen(sdl->sdl_data); 4765 ASSERT(len < 256); 4766 sdl->sdl_nlen = (uchar_t)len; 4767 sdl->sdl_alen = ill->ill_phys_addr_length; 4768 sdl->sdl_slen = 0; 4769 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4770 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4771 4772 return (sizeof (struct sockaddr_dl)); 4773 } 4774 4775 /* 4776 * ill_xarp_info 4777 * creates xarp info from the device. 4778 */ 4779 static int 4780 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4781 { 4782 sdl->sdl_family = AF_LINK; 4783 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4784 sdl->sdl_type = ill->ill_type; 4785 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4786 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4787 sdl->sdl_alen = ill->ill_phys_addr_length; 4788 sdl->sdl_slen = 0; 4789 return (sdl->sdl_nlen); 4790 } 4791 4792 static int 4793 loopback_kstat_update(kstat_t *ksp, int rw) 4794 { 4795 kstat_named_t *kn; 4796 netstackid_t stackid; 4797 netstack_t *ns; 4798 ip_stack_t *ipst; 4799 4800 if (ksp == NULL || ksp->ks_data == NULL) 4801 return (EIO); 4802 4803 if (rw == KSTAT_WRITE) 4804 return (EACCES); 4805 4806 kn = KSTAT_NAMED_PTR(ksp); 4807 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4808 4809 ns = netstack_find_by_stackid(stackid); 4810 if (ns == NULL) 4811 return (-1); 4812 4813 ipst = ns->netstack_ip; 4814 if (ipst == NULL) { 4815 netstack_rele(ns); 4816 return (-1); 4817 } 4818 kn[0].value.ui32 = ipst->ips_loopback_packets; 4819 kn[1].value.ui32 = ipst->ips_loopback_packets; 4820 netstack_rele(ns); 4821 return (0); 4822 } 4823 4824 4825 /* 4826 * Has ifindex been plumbed already. 4827 * Compares both phyint_ifindex and phyint_group_ifindex. 4828 */ 4829 static boolean_t 4830 phyint_exists(uint_t index, ip_stack_t *ipst) 4831 { 4832 phyint_t *phyi; 4833 4834 ASSERT(index != 0); 4835 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4836 /* 4837 * Indexes are stored in the phyint - a common structure 4838 * to both IPv4 and IPv6. 4839 */ 4840 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4841 for (; phyi != NULL; 4842 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4843 phyi, AVL_AFTER)) { 4844 if (phyi->phyint_ifindex == index || 4845 phyi->phyint_group_ifindex == index) 4846 return (B_TRUE); 4847 } 4848 return (B_FALSE); 4849 } 4850 4851 /* Pick a unique ifindex */ 4852 boolean_t 4853 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4854 { 4855 uint_t starting_index; 4856 4857 if (!ipst->ips_ill_index_wrap) { 4858 *indexp = ipst->ips_ill_index++; 4859 if (ipst->ips_ill_index == 0) { 4860 /* Reached the uint_t limit Next time wrap */ 4861 ipst->ips_ill_index_wrap = B_TRUE; 4862 } 4863 return (B_TRUE); 4864 } 4865 4866 /* 4867 * Start reusing unused indexes. Note that we hold the ill_g_lock 4868 * at this point and don't want to call any function that attempts 4869 * to get the lock again. 4870 */ 4871 starting_index = ipst->ips_ill_index++; 4872 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4873 if (ipst->ips_ill_index != 0 && 4874 !phyint_exists(ipst->ips_ill_index, ipst)) { 4875 /* found unused index - use it */ 4876 *indexp = ipst->ips_ill_index; 4877 return (B_TRUE); 4878 } 4879 } 4880 4881 /* 4882 * all interface indicies are inuse. 4883 */ 4884 return (B_FALSE); 4885 } 4886 4887 /* 4888 * Assign a unique interface index for the phyint. 4889 */ 4890 static boolean_t 4891 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4892 { 4893 ASSERT(phyi->phyint_ifindex == 0); 4894 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4895 } 4896 4897 /* 4898 * Return a pointer to the ill which matches the supplied name. Note that 4899 * the ill name length includes the null termination character. (May be 4900 * called as writer.) 4901 * If do_alloc and the interface is "lo0" it will be automatically created. 4902 * Cannot bump up reference on condemned ills. So dup detect can't be done 4903 * using this func. 4904 */ 4905 ill_t * 4906 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4907 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4908 ip_stack_t *ipst) 4909 { 4910 ill_t *ill; 4911 ipif_t *ipif; 4912 kstat_named_t *kn; 4913 boolean_t isloopback; 4914 ipsq_t *old_ipsq; 4915 in6_addr_t ov6addr; 4916 4917 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4918 4919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4920 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4921 rw_exit(&ipst->ips_ill_g_lock); 4922 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4923 return (ill); 4924 4925 /* 4926 * Couldn't find it. Does this happen to be a lookup for the 4927 * loopback device and are we allowed to allocate it? 4928 */ 4929 if (!isloopback || !do_alloc) 4930 return (NULL); 4931 4932 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4933 4934 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4935 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4936 rw_exit(&ipst->ips_ill_g_lock); 4937 return (ill); 4938 } 4939 4940 /* Create the loopback device on demand */ 4941 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4942 sizeof (ipif_loopback_name), BPRI_MED)); 4943 if (ill == NULL) 4944 goto done; 4945 4946 *ill = ill_null; 4947 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4948 ill->ill_ipst = ipst; 4949 netstack_hold(ipst->ips_netstack); 4950 /* 4951 * For exclusive stacks we set the zoneid to zero 4952 * to make IP operate as if in the global zone. 4953 */ 4954 ill->ill_zoneid = GLOBAL_ZONEID; 4955 4956 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4957 if (ill->ill_phyint == NULL) 4958 goto done; 4959 4960 if (isv6) 4961 ill->ill_phyint->phyint_illv6 = ill; 4962 else 4963 ill->ill_phyint->phyint_illv4 = ill; 4964 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4965 ill->ill_max_frag = IP_LOOPBACK_MTU; 4966 /* Add room for tcp+ip headers */ 4967 if (isv6) { 4968 ill->ill_isv6 = B_TRUE; 4969 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4970 } else { 4971 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4972 } 4973 if (!ill_allocate_mibs(ill)) 4974 goto done; 4975 ill->ill_max_mtu = ill->ill_max_frag; 4976 /* 4977 * ipif_loopback_name can't be pointed at directly because its used 4978 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4979 * from the glist, ill_glist_delete() sets the first character of 4980 * ill_name to '\0'. 4981 */ 4982 ill->ill_name = (char *)ill + sizeof (*ill); 4983 (void) strcpy(ill->ill_name, ipif_loopback_name); 4984 ill->ill_name_length = sizeof (ipif_loopback_name); 4985 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4986 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4987 4988 ill->ill_global_timer = INFINITY; 4989 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4990 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4991 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4992 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4993 4994 /* No resolver here. */ 4995 ill->ill_net_type = IRE_LOOPBACK; 4996 4997 /* Initialize the ipsq */ 4998 if (!ipsq_init(ill)) 4999 goto done; 5000 5001 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5002 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5003 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5004 #ifdef DEBUG 5005 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5006 #endif 5007 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5008 if (ipif == NULL) 5009 goto done; 5010 5011 ill->ill_flags = ILLF_MULTICAST; 5012 5013 ov6addr = ipif->ipif_v6lcl_addr; 5014 /* Set up default loopback address and mask. */ 5015 if (!isv6) { 5016 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5017 5018 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5019 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5020 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5021 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5022 ipif->ipif_v6subnet); 5023 ill->ill_flags |= ILLF_IPV4; 5024 } else { 5025 ipif->ipif_v6lcl_addr = ipv6_loopback; 5026 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5027 ipif->ipif_v6net_mask = ipv6_all_ones; 5028 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5029 ipif->ipif_v6subnet); 5030 ill->ill_flags |= ILLF_IPV6; 5031 } 5032 5033 /* 5034 * Chain us in at the end of the ill list. hold the ill 5035 * before we make it globally visible. 1 for the lookup. 5036 */ 5037 ill->ill_refcnt = 0; 5038 ill_refhold(ill); 5039 5040 ill->ill_frag_count = 0; 5041 ill->ill_frag_free_num_pkts = 0; 5042 ill->ill_last_frag_clean_time = 0; 5043 5044 old_ipsq = ill->ill_phyint->phyint_ipsq; 5045 5046 if (ill_glist_insert(ill, "lo", isv6) != 0) 5047 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5048 5049 /* Let SCTP know so that it can add this to its list */ 5050 sctp_update_ill(ill, SCTP_ILL_INSERT); 5051 5052 /* 5053 * We have already assigned ipif_v6lcl_addr above, but we need to 5054 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5055 * requires to be after ill_glist_insert() since we need the 5056 * ill_index set. Pass on ipv6_loopback as the old address. 5057 */ 5058 sctp_update_ipif_addr(ipif, ov6addr); 5059 5060 /* 5061 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5062 */ 5063 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5064 /* Loopback ills aren't in any IPMP group */ 5065 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5066 ipsq_delete(old_ipsq); 5067 } 5068 5069 /* 5070 * Delay this till the ipif is allocated as ipif_allocate 5071 * de-references ill_phyint for getting the ifindex. We 5072 * can't do this before ipif_allocate because ill_phyint_reinit 5073 * -> phyint_assign_ifindex expects ipif to be present. 5074 */ 5075 mutex_enter(&ill->ill_phyint->phyint_lock); 5076 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5077 mutex_exit(&ill->ill_phyint->phyint_lock); 5078 5079 if (ipst->ips_loopback_ksp == NULL) { 5080 /* Export loopback interface statistics */ 5081 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5082 ipif_loopback_name, "net", 5083 KSTAT_TYPE_NAMED, 2, 0, 5084 ipst->ips_netstack->netstack_stackid); 5085 if (ipst->ips_loopback_ksp != NULL) { 5086 ipst->ips_loopback_ksp->ks_update = 5087 loopback_kstat_update; 5088 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5089 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5090 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5091 ipst->ips_loopback_ksp->ks_private = 5092 (void *)(uintptr_t)ipst->ips_netstack-> 5093 netstack_stackid; 5094 kstat_install(ipst->ips_loopback_ksp); 5095 } 5096 } 5097 5098 if (error != NULL) 5099 *error = 0; 5100 *did_alloc = B_TRUE; 5101 rw_exit(&ipst->ips_ill_g_lock); 5102 return (ill); 5103 done: 5104 if (ill != NULL) { 5105 if (ill->ill_phyint != NULL) { 5106 ipsq_t *ipsq; 5107 5108 ipsq = ill->ill_phyint->phyint_ipsq; 5109 if (ipsq != NULL) { 5110 ipsq->ipsq_ipst = NULL; 5111 kmem_free(ipsq, sizeof (ipsq_t)); 5112 } 5113 mi_free(ill->ill_phyint); 5114 } 5115 ill_free_mib(ill); 5116 if (ill->ill_ipst != NULL) 5117 netstack_rele(ill->ill_ipst->ips_netstack); 5118 mi_free(ill); 5119 } 5120 rw_exit(&ipst->ips_ill_g_lock); 5121 if (error != NULL) 5122 *error = ENOMEM; 5123 return (NULL); 5124 } 5125 5126 /* 5127 * For IPP calls - use the ip_stack_t for global stack. 5128 */ 5129 ill_t * 5130 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5131 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5132 { 5133 ip_stack_t *ipst; 5134 ill_t *ill; 5135 5136 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5137 if (ipst == NULL) { 5138 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5139 return (NULL); 5140 } 5141 5142 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5143 netstack_rele(ipst->ips_netstack); 5144 return (ill); 5145 } 5146 5147 /* 5148 * Return a pointer to the ill which matches the index and IP version type. 5149 */ 5150 ill_t * 5151 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5152 ipsq_func_t func, int *err, ip_stack_t *ipst) 5153 { 5154 ill_t *ill; 5155 ipsq_t *ipsq; 5156 phyint_t *phyi; 5157 5158 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5159 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5160 5161 if (err != NULL) 5162 *err = 0; 5163 5164 /* 5165 * Indexes are stored in the phyint - a common structure 5166 * to both IPv4 and IPv6. 5167 */ 5168 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5169 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5170 (void *) &index, NULL); 5171 if (phyi != NULL) { 5172 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5173 if (ill != NULL) { 5174 /* 5175 * The block comment at the start of ipif_down 5176 * explains the use of the macros used below 5177 */ 5178 GRAB_CONN_LOCK(q); 5179 mutex_enter(&ill->ill_lock); 5180 if (ILL_CAN_LOOKUP(ill)) { 5181 ill_refhold_locked(ill); 5182 mutex_exit(&ill->ill_lock); 5183 RELEASE_CONN_LOCK(q); 5184 rw_exit(&ipst->ips_ill_g_lock); 5185 return (ill); 5186 } else if (ILL_CAN_WAIT(ill, q)) { 5187 ipsq = ill->ill_phyint->phyint_ipsq; 5188 mutex_enter(&ipsq->ipsq_lock); 5189 rw_exit(&ipst->ips_ill_g_lock); 5190 mutex_exit(&ill->ill_lock); 5191 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5192 mutex_exit(&ipsq->ipsq_lock); 5193 RELEASE_CONN_LOCK(q); 5194 if (err != NULL) 5195 *err = EINPROGRESS; 5196 return (NULL); 5197 } 5198 RELEASE_CONN_LOCK(q); 5199 mutex_exit(&ill->ill_lock); 5200 } 5201 } 5202 rw_exit(&ipst->ips_ill_g_lock); 5203 if (err != NULL) 5204 *err = ENXIO; 5205 return (NULL); 5206 } 5207 5208 /* 5209 * Return the ifindex next in sequence after the passed in ifindex. 5210 * If there is no next ifindex for the given protocol, return 0. 5211 */ 5212 uint_t 5213 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5214 { 5215 phyint_t *phyi; 5216 phyint_t *phyi_initial; 5217 uint_t ifindex; 5218 5219 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5220 5221 if (index == 0) { 5222 phyi = avl_first( 5223 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5224 } else { 5225 phyi = phyi_initial = avl_find( 5226 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5227 (void *) &index, NULL); 5228 } 5229 5230 for (; phyi != NULL; 5231 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5232 phyi, AVL_AFTER)) { 5233 /* 5234 * If we're not returning the first interface in the tree 5235 * and we still haven't moved past the phyint_t that 5236 * corresponds to index, avl_walk needs to be called again 5237 */ 5238 if (!((index != 0) && (phyi == phyi_initial))) { 5239 if (isv6) { 5240 if ((phyi->phyint_illv6) && 5241 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5242 (phyi->phyint_illv6->ill_isv6 == 1)) 5243 break; 5244 } else { 5245 if ((phyi->phyint_illv4) && 5246 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5247 (phyi->phyint_illv4->ill_isv6 == 0)) 5248 break; 5249 } 5250 } 5251 } 5252 5253 rw_exit(&ipst->ips_ill_g_lock); 5254 5255 if (phyi != NULL) 5256 ifindex = phyi->phyint_ifindex; 5257 else 5258 ifindex = 0; 5259 5260 return (ifindex); 5261 } 5262 5263 5264 /* 5265 * Return the ifindex for the named interface. 5266 * If there is no next ifindex for the interface, return 0. 5267 */ 5268 uint_t 5269 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5270 { 5271 phyint_t *phyi; 5272 avl_index_t where = 0; 5273 uint_t ifindex; 5274 5275 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5276 5277 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5278 name, &where)) == NULL) { 5279 rw_exit(&ipst->ips_ill_g_lock); 5280 return (0); 5281 } 5282 5283 ifindex = phyi->phyint_ifindex; 5284 5285 rw_exit(&ipst->ips_ill_g_lock); 5286 5287 return (ifindex); 5288 } 5289 5290 5291 /* 5292 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5293 * that gives a running thread a reference to the ill. This reference must be 5294 * released by the thread when it is done accessing the ill and related 5295 * objects. ill_refcnt can not be used to account for static references 5296 * such as other structures pointing to an ill. Callers must generally 5297 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5298 * or be sure that the ill is not being deleted or changing state before 5299 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5300 * ill won't change any of its critical state such as address, netmask etc. 5301 */ 5302 void 5303 ill_refhold(ill_t *ill) 5304 { 5305 mutex_enter(&ill->ill_lock); 5306 ill->ill_refcnt++; 5307 ILL_TRACE_REF(ill); 5308 mutex_exit(&ill->ill_lock); 5309 } 5310 5311 void 5312 ill_refhold_locked(ill_t *ill) 5313 { 5314 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5315 ill->ill_refcnt++; 5316 ILL_TRACE_REF(ill); 5317 } 5318 5319 int 5320 ill_check_and_refhold(ill_t *ill) 5321 { 5322 mutex_enter(&ill->ill_lock); 5323 if (ILL_CAN_LOOKUP(ill)) { 5324 ill_refhold_locked(ill); 5325 mutex_exit(&ill->ill_lock); 5326 return (0); 5327 } 5328 mutex_exit(&ill->ill_lock); 5329 return (ILL_LOOKUP_FAILED); 5330 } 5331 5332 /* 5333 * Must not be called while holding any locks. Otherwise if this is 5334 * the last reference to be released, there is a chance of recursive mutex 5335 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5336 * to restart an ioctl. 5337 */ 5338 void 5339 ill_refrele(ill_t *ill) 5340 { 5341 mutex_enter(&ill->ill_lock); 5342 ASSERT(ill->ill_refcnt != 0); 5343 ill->ill_refcnt--; 5344 ILL_UNTRACE_REF(ill); 5345 if (ill->ill_refcnt != 0) { 5346 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5347 mutex_exit(&ill->ill_lock); 5348 return; 5349 } 5350 5351 /* Drops the ill_lock */ 5352 ipif_ill_refrele_tail(ill); 5353 } 5354 5355 /* 5356 * Obtain a weak reference count on the ill. This reference ensures the 5357 * ill won't be freed, but the ill may change any of its critical state 5358 * such as netmask, address etc. Returns an error if the ill has started 5359 * closing. 5360 */ 5361 boolean_t 5362 ill_waiter_inc(ill_t *ill) 5363 { 5364 mutex_enter(&ill->ill_lock); 5365 if (ill->ill_state_flags & ILL_CONDEMNED) { 5366 mutex_exit(&ill->ill_lock); 5367 return (B_FALSE); 5368 } 5369 ill->ill_waiters++; 5370 mutex_exit(&ill->ill_lock); 5371 return (B_TRUE); 5372 } 5373 5374 void 5375 ill_waiter_dcr(ill_t *ill) 5376 { 5377 mutex_enter(&ill->ill_lock); 5378 ill->ill_waiters--; 5379 if (ill->ill_waiters == 0) 5380 cv_broadcast(&ill->ill_cv); 5381 mutex_exit(&ill->ill_lock); 5382 } 5383 5384 /* 5385 * Named Dispatch routine to produce a formatted report on all ILLs. 5386 * This report is accessed by using the ndd utility to "get" ND variable 5387 * "ip_ill_status". 5388 */ 5389 /* ARGSUSED */ 5390 int 5391 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5392 { 5393 ill_t *ill; 5394 ill_walk_context_t ctx; 5395 ip_stack_t *ipst; 5396 5397 ipst = CONNQ_TO_IPST(q); 5398 5399 (void) mi_mpprintf(mp, 5400 "ILL " MI_COL_HDRPAD_STR 5401 /* 01234567[89ABCDEF] */ 5402 "rq " MI_COL_HDRPAD_STR 5403 /* 01234567[89ABCDEF] */ 5404 "wq " MI_COL_HDRPAD_STR 5405 /* 01234567[89ABCDEF] */ 5406 "upcnt mxfrg err name"); 5407 /* 12345 12345 123 xxxxxxxx */ 5408 5409 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5410 ill = ILL_START_WALK_ALL(&ctx, ipst); 5411 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5412 (void) mi_mpprintf(mp, 5413 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5414 "%05u %05u %03d %s", 5415 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5416 ill->ill_ipif_up_count, 5417 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5418 } 5419 rw_exit(&ipst->ips_ill_g_lock); 5420 5421 return (0); 5422 } 5423 5424 /* 5425 * Named Dispatch routine to produce a formatted report on all IPIFs. 5426 * This report is accessed by using the ndd utility to "get" ND variable 5427 * "ip_ipif_status". 5428 */ 5429 /* ARGSUSED */ 5430 int 5431 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5432 { 5433 char buf1[INET6_ADDRSTRLEN]; 5434 char buf2[INET6_ADDRSTRLEN]; 5435 char buf3[INET6_ADDRSTRLEN]; 5436 char buf4[INET6_ADDRSTRLEN]; 5437 char buf5[INET6_ADDRSTRLEN]; 5438 char buf6[INET6_ADDRSTRLEN]; 5439 char buf[LIFNAMSIZ]; 5440 ill_t *ill; 5441 ipif_t *ipif; 5442 nv_t *nvp; 5443 uint64_t flags; 5444 zoneid_t zoneid; 5445 ill_walk_context_t ctx; 5446 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5447 5448 (void) mi_mpprintf(mp, 5449 "IPIF metric mtu in/out/forward name zone flags...\n" 5450 "\tlocal address\n" 5451 "\tsrc address\n" 5452 "\tsubnet\n" 5453 "\tmask\n" 5454 "\tbroadcast\n" 5455 "\tp-p-dst"); 5456 5457 ASSERT(q->q_next == NULL); 5458 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5459 5460 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5461 ill = ILL_START_WALK_ALL(&ctx, ipst); 5462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5463 for (ipif = ill->ill_ipif; ipif != NULL; 5464 ipif = ipif->ipif_next) { 5465 if (zoneid != GLOBAL_ZONEID && 5466 zoneid != ipif->ipif_zoneid && 5467 ipif->ipif_zoneid != ALL_ZONES) 5468 continue; 5469 5470 ipif_get_name(ipif, buf, sizeof (buf)); 5471 (void) mi_mpprintf(mp, 5472 MI_COL_PTRFMT_STR 5473 "%04u %05u %u/%u/%u %s %d", 5474 (void *)ipif, 5475 ipif->ipif_metric, ipif->ipif_mtu, 5476 ipif->ipif_ib_pkt_count, 5477 ipif->ipif_ob_pkt_count, 5478 ipif->ipif_fo_pkt_count, 5479 buf, 5480 ipif->ipif_zoneid); 5481 5482 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5483 ipif->ipif_ill->ill_phyint->phyint_flags; 5484 5485 /* Tack on text strings for any flags. */ 5486 nvp = ipif_nv_tbl; 5487 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5488 if (nvp->nv_value & flags) 5489 (void) mi_mpprintf_nr(mp, " %s", 5490 nvp->nv_name); 5491 } 5492 (void) mi_mpprintf(mp, 5493 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5494 inet_ntop(AF_INET6, 5495 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5496 inet_ntop(AF_INET6, 5497 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5498 inet_ntop(AF_INET6, 5499 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5500 inet_ntop(AF_INET6, 5501 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5502 inet_ntop(AF_INET6, 5503 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5504 inet_ntop(AF_INET6, 5505 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5506 } 5507 } 5508 rw_exit(&ipst->ips_ill_g_lock); 5509 return (0); 5510 } 5511 5512 /* 5513 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5514 * driver. We construct best guess defaults for lower level information that 5515 * we need. If an interface is brought up without injection of any overriding 5516 * information from outside, we have to be ready to go with these defaults. 5517 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5518 * we primarely want the dl_provider_style. 5519 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5520 * at which point we assume the other part of the information is valid. 5521 */ 5522 void 5523 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5524 { 5525 uchar_t *brdcst_addr; 5526 uint_t brdcst_addr_length, phys_addr_length; 5527 t_scalar_t sap_length; 5528 dl_info_ack_t *dlia; 5529 ip_m_t *ipm; 5530 dl_qos_cl_sel1_t *sel1; 5531 5532 ASSERT(IAM_WRITER_ILL(ill)); 5533 5534 /* 5535 * Till the ill is fully up ILL_CHANGING will be set and 5536 * the ill is not globally visible. So no need for a lock. 5537 */ 5538 dlia = (dl_info_ack_t *)mp->b_rptr; 5539 ill->ill_mactype = dlia->dl_mac_type; 5540 5541 ipm = ip_m_lookup(dlia->dl_mac_type); 5542 if (ipm == NULL) { 5543 ipm = ip_m_lookup(DL_OTHER); 5544 ASSERT(ipm != NULL); 5545 } 5546 ill->ill_media = ipm; 5547 5548 /* 5549 * When the new DLPI stuff is ready we'll pull lengths 5550 * from dlia. 5551 */ 5552 if (dlia->dl_version == DL_VERSION_2) { 5553 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5554 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5555 brdcst_addr_length); 5556 if (brdcst_addr == NULL) { 5557 brdcst_addr_length = 0; 5558 } 5559 sap_length = dlia->dl_sap_length; 5560 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5561 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5562 brdcst_addr_length, sap_length, phys_addr_length)); 5563 } else { 5564 brdcst_addr_length = 6; 5565 brdcst_addr = ip_six_byte_all_ones; 5566 sap_length = -2; 5567 phys_addr_length = brdcst_addr_length; 5568 } 5569 5570 ill->ill_bcast_addr_length = brdcst_addr_length; 5571 ill->ill_phys_addr_length = phys_addr_length; 5572 ill->ill_sap_length = sap_length; 5573 ill->ill_max_frag = dlia->dl_max_sdu; 5574 ill->ill_max_mtu = ill->ill_max_frag; 5575 5576 ill->ill_type = ipm->ip_m_type; 5577 5578 if (!ill->ill_dlpi_style_set) { 5579 if (dlia->dl_provider_style == DL_STYLE2) 5580 ill->ill_needs_attach = 1; 5581 5582 /* 5583 * Allocate the first ipif on this ill. We don't delay it 5584 * further as ioctl handling assumes atleast one ipif to 5585 * be present. 5586 * 5587 * At this point we don't know whether the ill is v4 or v6. 5588 * We will know this whan the SIOCSLIFNAME happens and 5589 * the correct value for ill_isv6 will be assigned in 5590 * ipif_set_values(). We need to hold the ill lock and 5591 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5592 * the wakeup. 5593 */ 5594 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5595 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5596 mutex_enter(&ill->ill_lock); 5597 ASSERT(ill->ill_dlpi_style_set == 0); 5598 ill->ill_dlpi_style_set = 1; 5599 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5600 cv_broadcast(&ill->ill_cv); 5601 mutex_exit(&ill->ill_lock); 5602 freemsg(mp); 5603 return; 5604 } 5605 ASSERT(ill->ill_ipif != NULL); 5606 /* 5607 * We know whether it is IPv4 or IPv6 now, as this is the 5608 * second DL_INFO_ACK we are recieving in response to the 5609 * DL_INFO_REQ sent in ipif_set_values. 5610 */ 5611 if (ill->ill_isv6) 5612 ill->ill_sap = IP6_DL_SAP; 5613 else 5614 ill->ill_sap = IP_DL_SAP; 5615 /* 5616 * Set ipif_mtu which is used to set the IRE's 5617 * ire_max_frag value. The driver could have sent 5618 * a different mtu from what it sent last time. No 5619 * need to call ipif_mtu_change because IREs have 5620 * not yet been created. 5621 */ 5622 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5623 /* 5624 * Clear all the flags that were set based on ill_bcast_addr_length 5625 * and ill_phys_addr_length (in ipif_set_values) as these could have 5626 * changed now and we need to re-evaluate. 5627 */ 5628 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5629 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5630 5631 /* 5632 * Free ill_resolver_mp and ill_bcast_mp as things could have 5633 * changed now. 5634 */ 5635 if (ill->ill_bcast_addr_length == 0) { 5636 if (ill->ill_resolver_mp != NULL) 5637 freemsg(ill->ill_resolver_mp); 5638 if (ill->ill_bcast_mp != NULL) 5639 freemsg(ill->ill_bcast_mp); 5640 if (ill->ill_flags & ILLF_XRESOLV) 5641 ill->ill_net_type = IRE_IF_RESOLVER; 5642 else 5643 ill->ill_net_type = IRE_IF_NORESOLVER; 5644 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5645 ill->ill_phys_addr_length, 5646 ill->ill_sap, 5647 ill->ill_sap_length); 5648 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5649 5650 if (ill->ill_isv6) 5651 /* 5652 * Note: xresolv interfaces will eventually need NOARP 5653 * set here as well, but that will require those 5654 * external resolvers to have some knowledge of 5655 * that flag and act appropriately. Not to be changed 5656 * at present. 5657 */ 5658 ill->ill_flags |= ILLF_NONUD; 5659 else 5660 ill->ill_flags |= ILLF_NOARP; 5661 5662 if (ill->ill_phys_addr_length == 0) { 5663 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5664 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5665 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5666 } else { 5667 /* pt-pt supports multicast. */ 5668 ill->ill_flags |= ILLF_MULTICAST; 5669 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5670 } 5671 } 5672 } else { 5673 ill->ill_net_type = IRE_IF_RESOLVER; 5674 if (ill->ill_bcast_mp != NULL) 5675 freemsg(ill->ill_bcast_mp); 5676 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5677 ill->ill_bcast_addr_length, ill->ill_sap, 5678 ill->ill_sap_length); 5679 /* 5680 * Later detect lack of DLPI driver multicast 5681 * capability by catching DL_ENABMULTI errors in 5682 * ip_rput_dlpi. 5683 */ 5684 ill->ill_flags |= ILLF_MULTICAST; 5685 if (!ill->ill_isv6) 5686 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5687 } 5688 /* By default an interface does not support any CoS marking */ 5689 ill->ill_flags &= ~ILLF_COS_ENABLED; 5690 5691 /* 5692 * If we get QoS information in DL_INFO_ACK, the device supports 5693 * some form of CoS marking, set ILLF_COS_ENABLED. 5694 */ 5695 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5696 dlia->dl_qos_length); 5697 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5698 ill->ill_flags |= ILLF_COS_ENABLED; 5699 } 5700 5701 /* Clear any previous error indication. */ 5702 ill->ill_error = 0; 5703 freemsg(mp); 5704 } 5705 5706 /* 5707 * Perform various checks to verify that an address would make sense as a 5708 * local, remote, or subnet interface address. 5709 */ 5710 static boolean_t 5711 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5712 { 5713 ipaddr_t net_mask; 5714 5715 /* 5716 * Don't allow all zeroes, or all ones, but allow 5717 * all ones netmask. 5718 */ 5719 if ((net_mask = ip_net_mask(addr)) == 0) 5720 return (B_FALSE); 5721 /* A given netmask overrides the "guess" netmask */ 5722 if (subnet_mask != 0) 5723 net_mask = subnet_mask; 5724 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5725 (addr == (addr | ~net_mask)))) { 5726 return (B_FALSE); 5727 } 5728 5729 /* 5730 * Even if the netmask is all ones, we do not allow address to be 5731 * 255.255.255.255 5732 */ 5733 if (addr == INADDR_BROADCAST) 5734 return (B_FALSE); 5735 5736 if (CLASSD(addr)) 5737 return (B_FALSE); 5738 5739 return (B_TRUE); 5740 } 5741 5742 #define V6_IPIF_LINKLOCAL(p) \ 5743 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5744 5745 /* 5746 * Compare two given ipifs and check if the second one is better than 5747 * the first one using the order of preference (not taking deprecated 5748 * into acount) specified in ipif_lookup_multicast(). 5749 */ 5750 static boolean_t 5751 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5752 { 5753 /* Check the least preferred first. */ 5754 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5755 /* If both ipifs are the same, use the first one. */ 5756 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5757 return (B_FALSE); 5758 else 5759 return (B_TRUE); 5760 } 5761 5762 /* For IPv6, check for link local address. */ 5763 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5764 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5765 V6_IPIF_LINKLOCAL(new_ipif)) { 5766 /* The second one is equal or less preferred. */ 5767 return (B_FALSE); 5768 } else { 5769 return (B_TRUE); 5770 } 5771 } 5772 5773 /* Then check for point to point interface. */ 5774 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5775 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5776 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5777 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5778 return (B_FALSE); 5779 } else { 5780 return (B_TRUE); 5781 } 5782 } 5783 5784 /* old_ipif is a normal interface, so no need to use the new one. */ 5785 return (B_FALSE); 5786 } 5787 5788 /* 5789 * Find any non-virtual, not condemned, and up multicast capable interface 5790 * given an IP instance and zoneid. Order of preference is: 5791 * 5792 * 1. normal 5793 * 1.1 normal, but deprecated 5794 * 2. point to point 5795 * 2.1 point to point, but deprecated 5796 * 3. link local 5797 * 3.1 link local, but deprecated 5798 * 4. loopback. 5799 */ 5800 ipif_t * 5801 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5802 { 5803 ill_t *ill; 5804 ill_walk_context_t ctx; 5805 ipif_t *ipif; 5806 ipif_t *saved_ipif = NULL; 5807 ipif_t *dep_ipif = NULL; 5808 5809 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5810 if (isv6) 5811 ill = ILL_START_WALK_V6(&ctx, ipst); 5812 else 5813 ill = ILL_START_WALK_V4(&ctx, ipst); 5814 5815 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5816 mutex_enter(&ill->ill_lock); 5817 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5818 !(ill->ill_flags & ILLF_MULTICAST)) { 5819 mutex_exit(&ill->ill_lock); 5820 continue; 5821 } 5822 for (ipif = ill->ill_ipif; ipif != NULL; 5823 ipif = ipif->ipif_next) { 5824 if (zoneid != ipif->ipif_zoneid && 5825 zoneid != ALL_ZONES && 5826 ipif->ipif_zoneid != ALL_ZONES) { 5827 continue; 5828 } 5829 if (!(ipif->ipif_flags & IPIF_UP) || 5830 !IPIF_CAN_LOOKUP(ipif)) { 5831 continue; 5832 } 5833 5834 /* 5835 * Found one candidate. If it is deprecated, 5836 * remember it in dep_ipif. If it is not deprecated, 5837 * remember it in saved_ipif. 5838 */ 5839 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5840 if (dep_ipif == NULL) { 5841 dep_ipif = ipif; 5842 } else if (ipif_comp_multi(dep_ipif, ipif, 5843 isv6)) { 5844 /* 5845 * If the previous dep_ipif does not 5846 * belong to the same ill, we've done 5847 * a ipif_refhold() on it. So we need 5848 * to release it. 5849 */ 5850 if (dep_ipif->ipif_ill != ill) 5851 ipif_refrele(dep_ipif); 5852 dep_ipif = ipif; 5853 } 5854 continue; 5855 } 5856 if (saved_ipif == NULL) { 5857 saved_ipif = ipif; 5858 } else { 5859 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5860 if (saved_ipif->ipif_ill != ill) 5861 ipif_refrele(saved_ipif); 5862 saved_ipif = ipif; 5863 } 5864 } 5865 } 5866 /* 5867 * Before going to the next ill, do a ipif_refhold() on the 5868 * saved ones. 5869 */ 5870 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5871 ipif_refhold_locked(saved_ipif); 5872 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5873 ipif_refhold_locked(dep_ipif); 5874 mutex_exit(&ill->ill_lock); 5875 } 5876 rw_exit(&ipst->ips_ill_g_lock); 5877 5878 /* 5879 * If we have only the saved_ipif, return it. But if we have both 5880 * saved_ipif and dep_ipif, check to see which one is better. 5881 */ 5882 if (saved_ipif != NULL) { 5883 if (dep_ipif != NULL) { 5884 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5885 ipif_refrele(saved_ipif); 5886 return (dep_ipif); 5887 } else { 5888 ipif_refrele(dep_ipif); 5889 return (saved_ipif); 5890 } 5891 } 5892 return (saved_ipif); 5893 } else { 5894 return (dep_ipif); 5895 } 5896 } 5897 5898 /* 5899 * This function is called when an application does not specify an interface 5900 * to be used for multicast traffic (joining a group/sending data). It 5901 * calls ire_lookup_multi() to look for an interface route for the 5902 * specified multicast group. Doing this allows the administrator to add 5903 * prefix routes for multicast to indicate which interface to be used for 5904 * multicast traffic in the above scenario. The route could be for all 5905 * multicast (224.0/4), for a single multicast group (a /32 route) or 5906 * anything in between. If there is no such multicast route, we just find 5907 * any multicast capable interface and return it. The returned ipif 5908 * is refhold'ed. 5909 */ 5910 ipif_t * 5911 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5912 { 5913 ire_t *ire; 5914 ipif_t *ipif; 5915 5916 ire = ire_lookup_multi(group, zoneid, ipst); 5917 if (ire != NULL) { 5918 ipif = ire->ire_ipif; 5919 ipif_refhold(ipif); 5920 ire_refrele(ire); 5921 return (ipif); 5922 } 5923 5924 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5925 } 5926 5927 /* 5928 * Look for an ipif with the specified interface address and destination. 5929 * The destination address is used only for matching point-to-point interfaces. 5930 */ 5931 ipif_t * 5932 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5933 ipsq_func_t func, int *error, ip_stack_t *ipst) 5934 { 5935 ipif_t *ipif; 5936 ill_t *ill; 5937 ill_walk_context_t ctx; 5938 ipsq_t *ipsq; 5939 5940 if (error != NULL) 5941 *error = 0; 5942 5943 /* 5944 * First match all the point-to-point interfaces 5945 * before looking at non-point-to-point interfaces. 5946 * This is done to avoid returning non-point-to-point 5947 * ipif instead of unnumbered point-to-point ipif. 5948 */ 5949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5950 ill = ILL_START_WALK_V4(&ctx, ipst); 5951 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5952 GRAB_CONN_LOCK(q); 5953 mutex_enter(&ill->ill_lock); 5954 for (ipif = ill->ill_ipif; ipif != NULL; 5955 ipif = ipif->ipif_next) { 5956 /* Allow the ipif to be down */ 5957 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5958 (ipif->ipif_lcl_addr == if_addr) && 5959 (ipif->ipif_pp_dst_addr == dst)) { 5960 /* 5961 * The block comment at the start of ipif_down 5962 * explains the use of the macros used below 5963 */ 5964 if (IPIF_CAN_LOOKUP(ipif)) { 5965 ipif_refhold_locked(ipif); 5966 mutex_exit(&ill->ill_lock); 5967 RELEASE_CONN_LOCK(q); 5968 rw_exit(&ipst->ips_ill_g_lock); 5969 return (ipif); 5970 } else if (IPIF_CAN_WAIT(ipif, q)) { 5971 ipsq = ill->ill_phyint->phyint_ipsq; 5972 mutex_enter(&ipsq->ipsq_lock); 5973 mutex_exit(&ill->ill_lock); 5974 rw_exit(&ipst->ips_ill_g_lock); 5975 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5976 ill); 5977 mutex_exit(&ipsq->ipsq_lock); 5978 RELEASE_CONN_LOCK(q); 5979 if (error != NULL) 5980 *error = EINPROGRESS; 5981 return (NULL); 5982 } 5983 } 5984 } 5985 mutex_exit(&ill->ill_lock); 5986 RELEASE_CONN_LOCK(q); 5987 } 5988 rw_exit(&ipst->ips_ill_g_lock); 5989 5990 /* lookup the ipif based on interface address */ 5991 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5992 ipst); 5993 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5994 return (ipif); 5995 } 5996 5997 /* 5998 * Look for an ipif with the specified address. For point-point links 5999 * we look for matches on either the destination address and the local 6000 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6001 * is set. 6002 * Matches on a specific ill if match_ill is set. 6003 */ 6004 ipif_t * 6005 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6006 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6007 { 6008 ipif_t *ipif; 6009 ill_t *ill; 6010 boolean_t ptp = B_FALSE; 6011 ipsq_t *ipsq; 6012 ill_walk_context_t ctx; 6013 6014 if (error != NULL) 6015 *error = 0; 6016 6017 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6018 /* 6019 * Repeat twice, first based on local addresses and 6020 * next time for pointopoint. 6021 */ 6022 repeat: 6023 ill = ILL_START_WALK_V4(&ctx, ipst); 6024 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6025 if (match_ill != NULL && ill != match_ill) { 6026 continue; 6027 } 6028 GRAB_CONN_LOCK(q); 6029 mutex_enter(&ill->ill_lock); 6030 for (ipif = ill->ill_ipif; ipif != NULL; 6031 ipif = ipif->ipif_next) { 6032 if (zoneid != ALL_ZONES && 6033 zoneid != ipif->ipif_zoneid && 6034 ipif->ipif_zoneid != ALL_ZONES) 6035 continue; 6036 /* Allow the ipif to be down */ 6037 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6038 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6039 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6040 (ipif->ipif_pp_dst_addr == addr))) { 6041 /* 6042 * The block comment at the start of ipif_down 6043 * explains the use of the macros used below 6044 */ 6045 if (IPIF_CAN_LOOKUP(ipif)) { 6046 ipif_refhold_locked(ipif); 6047 mutex_exit(&ill->ill_lock); 6048 RELEASE_CONN_LOCK(q); 6049 rw_exit(&ipst->ips_ill_g_lock); 6050 return (ipif); 6051 } else if (IPIF_CAN_WAIT(ipif, q)) { 6052 ipsq = ill->ill_phyint->phyint_ipsq; 6053 mutex_enter(&ipsq->ipsq_lock); 6054 mutex_exit(&ill->ill_lock); 6055 rw_exit(&ipst->ips_ill_g_lock); 6056 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6057 ill); 6058 mutex_exit(&ipsq->ipsq_lock); 6059 RELEASE_CONN_LOCK(q); 6060 if (error != NULL) 6061 *error = EINPROGRESS; 6062 return (NULL); 6063 } 6064 } 6065 } 6066 mutex_exit(&ill->ill_lock); 6067 RELEASE_CONN_LOCK(q); 6068 } 6069 6070 /* If we already did the ptp case, then we are done */ 6071 if (ptp) { 6072 rw_exit(&ipst->ips_ill_g_lock); 6073 if (error != NULL) 6074 *error = ENXIO; 6075 return (NULL); 6076 } 6077 ptp = B_TRUE; 6078 goto repeat; 6079 } 6080 6081 /* 6082 * Look for an ipif with the specified address. For point-point links 6083 * we look for matches on either the destination address and the local 6084 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6085 * is set. 6086 * Matches on a specific ill if match_ill is set. 6087 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6088 */ 6089 zoneid_t 6090 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6091 { 6092 zoneid_t zoneid; 6093 ipif_t *ipif; 6094 ill_t *ill; 6095 boolean_t ptp = B_FALSE; 6096 ill_walk_context_t ctx; 6097 6098 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6099 /* 6100 * Repeat twice, first based on local addresses and 6101 * next time for pointopoint. 6102 */ 6103 repeat: 6104 ill = ILL_START_WALK_V4(&ctx, ipst); 6105 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6106 if (match_ill != NULL && ill != match_ill) { 6107 continue; 6108 } 6109 mutex_enter(&ill->ill_lock); 6110 for (ipif = ill->ill_ipif; ipif != NULL; 6111 ipif = ipif->ipif_next) { 6112 /* Allow the ipif to be down */ 6113 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6114 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6115 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6116 (ipif->ipif_pp_dst_addr == addr)) && 6117 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6118 zoneid = ipif->ipif_zoneid; 6119 mutex_exit(&ill->ill_lock); 6120 rw_exit(&ipst->ips_ill_g_lock); 6121 /* 6122 * If ipif_zoneid was ALL_ZONES then we have 6123 * a trusted extensions shared IP address. 6124 * In that case GLOBAL_ZONEID works to send. 6125 */ 6126 if (zoneid == ALL_ZONES) 6127 zoneid = GLOBAL_ZONEID; 6128 return (zoneid); 6129 } 6130 } 6131 mutex_exit(&ill->ill_lock); 6132 } 6133 6134 /* If we already did the ptp case, then we are done */ 6135 if (ptp) { 6136 rw_exit(&ipst->ips_ill_g_lock); 6137 return (ALL_ZONES); 6138 } 6139 ptp = B_TRUE; 6140 goto repeat; 6141 } 6142 6143 /* 6144 * Look for an ipif that matches the specified remote address i.e. the 6145 * ipif that would receive the specified packet. 6146 * First look for directly connected interfaces and then do a recursive 6147 * IRE lookup and pick the first ipif corresponding to the source address in the 6148 * ire. 6149 * Returns: held ipif 6150 */ 6151 ipif_t * 6152 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6153 { 6154 ipif_t *ipif; 6155 ire_t *ire; 6156 ip_stack_t *ipst = ill->ill_ipst; 6157 6158 ASSERT(!ill->ill_isv6); 6159 6160 /* 6161 * Someone could be changing this ipif currently or change it 6162 * after we return this. Thus a few packets could use the old 6163 * old values. However structure updates/creates (ire, ilg, ilm etc) 6164 * will atomically be updated or cleaned up with the new value 6165 * Thus we don't need a lock to check the flags or other attrs below. 6166 */ 6167 mutex_enter(&ill->ill_lock); 6168 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6169 if (!IPIF_CAN_LOOKUP(ipif)) 6170 continue; 6171 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6172 ipif->ipif_zoneid != ALL_ZONES) 6173 continue; 6174 /* Allow the ipif to be down */ 6175 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6176 if ((ipif->ipif_pp_dst_addr == addr) || 6177 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6178 ipif->ipif_lcl_addr == addr)) { 6179 ipif_refhold_locked(ipif); 6180 mutex_exit(&ill->ill_lock); 6181 return (ipif); 6182 } 6183 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6184 ipif_refhold_locked(ipif); 6185 mutex_exit(&ill->ill_lock); 6186 return (ipif); 6187 } 6188 } 6189 mutex_exit(&ill->ill_lock); 6190 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6191 NULL, MATCH_IRE_RECURSIVE, ipst); 6192 if (ire != NULL) { 6193 /* 6194 * The callers of this function wants to know the 6195 * interface on which they have to send the replies 6196 * back. For IRE_CACHES that have ire_stq and ire_ipif 6197 * derived from different ills, we really don't care 6198 * what we return here. 6199 */ 6200 ipif = ire->ire_ipif; 6201 if (ipif != NULL) { 6202 ipif_refhold(ipif); 6203 ire_refrele(ire); 6204 return (ipif); 6205 } 6206 ire_refrele(ire); 6207 } 6208 /* Pick the first interface */ 6209 ipif = ipif_get_next_ipif(NULL, ill); 6210 return (ipif); 6211 } 6212 6213 /* 6214 * This func does not prevent refcnt from increasing. But if 6215 * the caller has taken steps to that effect, then this func 6216 * can be used to determine whether the ill has become quiescent 6217 */ 6218 static boolean_t 6219 ill_is_quiescent(ill_t *ill) 6220 { 6221 ipif_t *ipif; 6222 6223 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6224 6225 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6226 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6227 return (B_FALSE); 6228 } 6229 } 6230 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6231 return (B_FALSE); 6232 } 6233 return (B_TRUE); 6234 } 6235 6236 boolean_t 6237 ill_is_freeable(ill_t *ill) 6238 { 6239 ipif_t *ipif; 6240 6241 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6242 6243 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6244 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6245 return (B_FALSE); 6246 } 6247 } 6248 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6249 return (B_FALSE); 6250 } 6251 return (B_TRUE); 6252 } 6253 6254 /* 6255 * This func does not prevent refcnt from increasing. But if 6256 * the caller has taken steps to that effect, then this func 6257 * can be used to determine whether the ipif has become quiescent 6258 */ 6259 static boolean_t 6260 ipif_is_quiescent(ipif_t *ipif) 6261 { 6262 ill_t *ill; 6263 6264 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6265 6266 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6267 return (B_FALSE); 6268 } 6269 6270 ill = ipif->ipif_ill; 6271 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6272 ill->ill_logical_down) { 6273 return (B_TRUE); 6274 } 6275 6276 /* This is the last ipif going down or being deleted on this ill */ 6277 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6278 return (B_FALSE); 6279 } 6280 6281 return (B_TRUE); 6282 } 6283 6284 /* 6285 * return true if the ipif can be destroyed: the ipif has to be quiescent 6286 * with zero references from ire/nce/ilm to it. 6287 */ 6288 static boolean_t 6289 ipif_is_freeable(ipif_t *ipif) 6290 { 6291 6292 ill_t *ill; 6293 6294 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6295 6296 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6297 return (B_FALSE); 6298 } 6299 6300 ill = ipif->ipif_ill; 6301 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6302 ill->ill_logical_down) { 6303 return (B_TRUE); 6304 } 6305 6306 /* This is the last ipif going down or being deleted on this ill */ 6307 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6308 return (B_FALSE); 6309 } 6310 6311 return (B_TRUE); 6312 } 6313 6314 /* 6315 * This func does not prevent refcnt from increasing. But if 6316 * the caller has taken steps to that effect, then this func 6317 * can be used to determine whether the ipifs marked with IPIF_MOVING 6318 * have become quiescent and can be moved in a failover/failback. 6319 */ 6320 static ipif_t * 6321 ill_quiescent_to_move(ill_t *ill) 6322 { 6323 ipif_t *ipif; 6324 6325 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6326 6327 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6328 if (ipif->ipif_state_flags & IPIF_MOVING) { 6329 if (ipif->ipif_refcnt != 0 || 6330 !IPIF_DOWN_OK(ipif)) { 6331 return (ipif); 6332 } 6333 } 6334 } 6335 return (NULL); 6336 } 6337 6338 /* 6339 * The ipif/ill/ire has been refreled. Do the tail processing. 6340 * Determine if the ipif or ill in question has become quiescent and if so 6341 * wakeup close and/or restart any queued pending ioctl that is waiting 6342 * for the ipif_down (or ill_down) 6343 */ 6344 void 6345 ipif_ill_refrele_tail(ill_t *ill) 6346 { 6347 mblk_t *mp; 6348 conn_t *connp; 6349 ipsq_t *ipsq; 6350 ipif_t *ipif; 6351 dl_notify_ind_t *dlindp; 6352 6353 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6354 6355 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6356 ill_is_freeable(ill)) { 6357 /* ill_close may be waiting */ 6358 cv_broadcast(&ill->ill_cv); 6359 } 6360 6361 /* ipsq can't change because ill_lock is held */ 6362 ipsq = ill->ill_phyint->phyint_ipsq; 6363 if (ipsq->ipsq_waitfor == 0) { 6364 /* Not waiting for anything, just return. */ 6365 mutex_exit(&ill->ill_lock); 6366 return; 6367 } 6368 ASSERT(ipsq->ipsq_pending_mp != NULL && 6369 ipsq->ipsq_pending_ipif != NULL); 6370 /* 6371 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6372 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6373 * be zero for restarting an ioctl that ends up downing the ill. 6374 */ 6375 ipif = ipsq->ipsq_pending_ipif; 6376 if (ipif->ipif_ill != ill) { 6377 /* The ioctl is pending on some other ill. */ 6378 mutex_exit(&ill->ill_lock); 6379 return; 6380 } 6381 6382 switch (ipsq->ipsq_waitfor) { 6383 case IPIF_DOWN: 6384 if (!ipif_is_quiescent(ipif)) { 6385 mutex_exit(&ill->ill_lock); 6386 return; 6387 } 6388 break; 6389 case IPIF_FREE: 6390 if (!ipif_is_freeable(ipif)) { 6391 mutex_exit(&ill->ill_lock); 6392 return; 6393 } 6394 break; 6395 6396 case ILL_DOWN: 6397 if (!ill_is_quiescent(ill)) { 6398 mutex_exit(&ill->ill_lock); 6399 return; 6400 } 6401 break; 6402 case ILL_FREE: 6403 /* 6404 * case ILL_FREE arises only for loopback. otherwise ill_delete 6405 * waits synchronously in ip_close, and no message is queued in 6406 * ipsq_pending_mp at all in this case 6407 */ 6408 if (!ill_is_freeable(ill)) { 6409 mutex_exit(&ill->ill_lock); 6410 return; 6411 } 6412 break; 6413 6414 case ILL_MOVE_OK: 6415 if (ill_quiescent_to_move(ill) != NULL) { 6416 mutex_exit(&ill->ill_lock); 6417 return; 6418 } 6419 break; 6420 default: 6421 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6422 (void *)ipsq, ipsq->ipsq_waitfor); 6423 } 6424 6425 /* 6426 * Incr refcnt for the qwriter_ip call below which 6427 * does a refrele 6428 */ 6429 ill_refhold_locked(ill); 6430 mp = ipsq_pending_mp_get(ipsq, &connp); 6431 mutex_exit(&ill->ill_lock); 6432 6433 ASSERT(mp != NULL); 6434 /* 6435 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6436 * we can only get here when the current operation decides it 6437 * it needs to quiesce via ipsq_pending_mp_add(). 6438 */ 6439 switch (mp->b_datap->db_type) { 6440 case M_PCPROTO: 6441 case M_PROTO: 6442 /* 6443 * For now, only DL_NOTIFY_IND messages can use this facility. 6444 */ 6445 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6446 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6447 6448 switch (dlindp->dl_notification) { 6449 case DL_NOTE_PHYS_ADDR: 6450 qwriter_ip(ill, ill->ill_rq, mp, 6451 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6452 return; 6453 default: 6454 ASSERT(0); 6455 } 6456 break; 6457 6458 case M_ERROR: 6459 case M_HANGUP: 6460 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6461 B_TRUE); 6462 return; 6463 6464 case M_IOCTL: 6465 case M_IOCDATA: 6466 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6467 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6468 return; 6469 6470 default: 6471 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6472 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6473 } 6474 } 6475 6476 #ifdef DEBUG 6477 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6478 static void 6479 th_trace_rrecord(th_trace_t *th_trace) 6480 { 6481 tr_buf_t *tr_buf; 6482 uint_t lastref; 6483 6484 lastref = th_trace->th_trace_lastref; 6485 lastref++; 6486 if (lastref == TR_BUF_MAX) 6487 lastref = 0; 6488 th_trace->th_trace_lastref = lastref; 6489 tr_buf = &th_trace->th_trbuf[lastref]; 6490 tr_buf->tr_time = lbolt; 6491 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6492 } 6493 6494 static void 6495 th_trace_free(void *value) 6496 { 6497 th_trace_t *th_trace = value; 6498 6499 ASSERT(th_trace->th_refcnt == 0); 6500 kmem_free(th_trace, sizeof (*th_trace)); 6501 } 6502 6503 /* 6504 * Find or create the per-thread hash table used to track object references. 6505 * The ipst argument is NULL if we shouldn't allocate. 6506 * 6507 * Accesses per-thread data, so there's no need to lock here. 6508 */ 6509 static mod_hash_t * 6510 th_trace_gethash(ip_stack_t *ipst) 6511 { 6512 th_hash_t *thh; 6513 6514 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6515 mod_hash_t *mh; 6516 char name[256]; 6517 size_t objsize, rshift; 6518 int retv; 6519 6520 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6521 return (NULL); 6522 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6523 6524 /* 6525 * We use mod_hash_create_extended here rather than the more 6526 * obvious mod_hash_create_ptrhash because the latter has a 6527 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6528 * block. 6529 */ 6530 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6531 MAX(sizeof (ire_t), sizeof (nce_t))); 6532 rshift = highbit(objsize); 6533 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6534 th_trace_free, mod_hash_byptr, (void *)rshift, 6535 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6536 if (mh == NULL) { 6537 kmem_free(thh, sizeof (*thh)); 6538 return (NULL); 6539 } 6540 thh->thh_hash = mh; 6541 thh->thh_ipst = ipst; 6542 /* 6543 * We trace ills, ipifs, ires, and nces. All of these are 6544 * per-IP-stack, so the lock on the thread list is as well. 6545 */ 6546 rw_enter(&ip_thread_rwlock, RW_WRITER); 6547 list_insert_tail(&ip_thread_list, thh); 6548 rw_exit(&ip_thread_rwlock); 6549 retv = tsd_set(ip_thread_data, thh); 6550 ASSERT(retv == 0); 6551 } 6552 return (thh != NULL ? thh->thh_hash : NULL); 6553 } 6554 6555 boolean_t 6556 th_trace_ref(const void *obj, ip_stack_t *ipst) 6557 { 6558 th_trace_t *th_trace; 6559 mod_hash_t *mh; 6560 mod_hash_val_t val; 6561 6562 if ((mh = th_trace_gethash(ipst)) == NULL) 6563 return (B_FALSE); 6564 6565 /* 6566 * Attempt to locate the trace buffer for this obj and thread. 6567 * If it does not exist, then allocate a new trace buffer and 6568 * insert into the hash. 6569 */ 6570 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6571 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6572 if (th_trace == NULL) 6573 return (B_FALSE); 6574 6575 th_trace->th_id = curthread; 6576 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6577 (mod_hash_val_t)th_trace) != 0) { 6578 kmem_free(th_trace, sizeof (th_trace_t)); 6579 return (B_FALSE); 6580 } 6581 } else { 6582 th_trace = (th_trace_t *)val; 6583 } 6584 6585 ASSERT(th_trace->th_refcnt >= 0 && 6586 th_trace->th_refcnt < TR_BUF_MAX - 1); 6587 6588 th_trace->th_refcnt++; 6589 th_trace_rrecord(th_trace); 6590 return (B_TRUE); 6591 } 6592 6593 /* 6594 * For the purpose of tracing a reference release, we assume that global 6595 * tracing is always on and that the same thread initiated the reference hold 6596 * is releasing. 6597 */ 6598 void 6599 th_trace_unref(const void *obj) 6600 { 6601 int retv; 6602 mod_hash_t *mh; 6603 th_trace_t *th_trace; 6604 mod_hash_val_t val; 6605 6606 mh = th_trace_gethash(NULL); 6607 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6608 ASSERT(retv == 0); 6609 th_trace = (th_trace_t *)val; 6610 6611 ASSERT(th_trace->th_refcnt > 0); 6612 th_trace->th_refcnt--; 6613 th_trace_rrecord(th_trace); 6614 } 6615 6616 /* 6617 * If tracing has been disabled, then we assume that the reference counts are 6618 * now useless, and we clear them out before destroying the entries. 6619 */ 6620 void 6621 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6622 { 6623 th_hash_t *thh; 6624 mod_hash_t *mh; 6625 mod_hash_val_t val; 6626 th_trace_t *th_trace; 6627 int retv; 6628 6629 rw_enter(&ip_thread_rwlock, RW_READER); 6630 for (thh = list_head(&ip_thread_list); thh != NULL; 6631 thh = list_next(&ip_thread_list, thh)) { 6632 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6633 &val) == 0) { 6634 th_trace = (th_trace_t *)val; 6635 if (trace_disable) 6636 th_trace->th_refcnt = 0; 6637 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6638 ASSERT(retv == 0); 6639 } 6640 } 6641 rw_exit(&ip_thread_rwlock); 6642 } 6643 6644 void 6645 ipif_trace_ref(ipif_t *ipif) 6646 { 6647 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6648 6649 if (ipif->ipif_trace_disable) 6650 return; 6651 6652 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6653 ipif->ipif_trace_disable = B_TRUE; 6654 ipif_trace_cleanup(ipif); 6655 } 6656 } 6657 6658 void 6659 ipif_untrace_ref(ipif_t *ipif) 6660 { 6661 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6662 6663 if (!ipif->ipif_trace_disable) 6664 th_trace_unref(ipif); 6665 } 6666 6667 void 6668 ill_trace_ref(ill_t *ill) 6669 { 6670 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6671 6672 if (ill->ill_trace_disable) 6673 return; 6674 6675 if (!th_trace_ref(ill, ill->ill_ipst)) { 6676 ill->ill_trace_disable = B_TRUE; 6677 ill_trace_cleanup(ill); 6678 } 6679 } 6680 6681 void 6682 ill_untrace_ref(ill_t *ill) 6683 { 6684 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6685 6686 if (!ill->ill_trace_disable) 6687 th_trace_unref(ill); 6688 } 6689 6690 /* 6691 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6692 * failure, ipif_trace_disable is set. 6693 */ 6694 static void 6695 ipif_trace_cleanup(const ipif_t *ipif) 6696 { 6697 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6698 } 6699 6700 /* 6701 * Called when ill is unplumbed or when memory alloc fails. Note that on 6702 * failure, ill_trace_disable is set. 6703 */ 6704 static void 6705 ill_trace_cleanup(const ill_t *ill) 6706 { 6707 th_trace_cleanup(ill, ill->ill_trace_disable); 6708 } 6709 #endif /* DEBUG */ 6710 6711 void 6712 ipif_refhold_locked(ipif_t *ipif) 6713 { 6714 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6715 ipif->ipif_refcnt++; 6716 IPIF_TRACE_REF(ipif); 6717 } 6718 6719 void 6720 ipif_refhold(ipif_t *ipif) 6721 { 6722 ill_t *ill; 6723 6724 ill = ipif->ipif_ill; 6725 mutex_enter(&ill->ill_lock); 6726 ipif->ipif_refcnt++; 6727 IPIF_TRACE_REF(ipif); 6728 mutex_exit(&ill->ill_lock); 6729 } 6730 6731 /* 6732 * Must not be called while holding any locks. Otherwise if this is 6733 * the last reference to be released there is a chance of recursive mutex 6734 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6735 * to restart an ioctl. 6736 */ 6737 void 6738 ipif_refrele(ipif_t *ipif) 6739 { 6740 ill_t *ill; 6741 6742 ill = ipif->ipif_ill; 6743 6744 mutex_enter(&ill->ill_lock); 6745 ASSERT(ipif->ipif_refcnt != 0); 6746 ipif->ipif_refcnt--; 6747 IPIF_UNTRACE_REF(ipif); 6748 if (ipif->ipif_refcnt != 0) { 6749 mutex_exit(&ill->ill_lock); 6750 return; 6751 } 6752 6753 /* Drops the ill_lock */ 6754 ipif_ill_refrele_tail(ill); 6755 } 6756 6757 ipif_t * 6758 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6759 { 6760 ipif_t *ipif; 6761 6762 mutex_enter(&ill->ill_lock); 6763 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6764 ipif != NULL; ipif = ipif->ipif_next) { 6765 if (!IPIF_CAN_LOOKUP(ipif)) 6766 continue; 6767 ipif_refhold_locked(ipif); 6768 mutex_exit(&ill->ill_lock); 6769 return (ipif); 6770 } 6771 mutex_exit(&ill->ill_lock); 6772 return (NULL); 6773 } 6774 6775 /* 6776 * TODO: make this table extendible at run time 6777 * Return a pointer to the mac type info for 'mac_type' 6778 */ 6779 static ip_m_t * 6780 ip_m_lookup(t_uscalar_t mac_type) 6781 { 6782 ip_m_t *ipm; 6783 6784 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6785 if (ipm->ip_m_mac_type == mac_type) 6786 return (ipm); 6787 return (NULL); 6788 } 6789 6790 /* 6791 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6792 * ipif_arg is passed in to associate it with the correct interface. 6793 * We may need to restart this operation if the ipif cannot be looked up 6794 * due to an exclusive operation that is currently in progress. The restart 6795 * entry point is specified by 'func' 6796 */ 6797 int 6798 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6799 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6800 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6801 struct rtsa_s *sp, ip_stack_t *ipst) 6802 { 6803 ire_t *ire; 6804 ire_t *gw_ire = NULL; 6805 ipif_t *ipif = NULL; 6806 boolean_t ipif_refheld = B_FALSE; 6807 uint_t type; 6808 int match_flags = MATCH_IRE_TYPE; 6809 int error; 6810 tsol_gc_t *gc = NULL; 6811 tsol_gcgrp_t *gcgrp = NULL; 6812 boolean_t gcgrp_xtraref = B_FALSE; 6813 6814 ip1dbg(("ip_rt_add:")); 6815 6816 if (ire_arg != NULL) 6817 *ire_arg = NULL; 6818 6819 /* 6820 * If this is the case of RTF_HOST being set, then we set the netmask 6821 * to all ones (regardless if one was supplied). 6822 */ 6823 if (flags & RTF_HOST) 6824 mask = IP_HOST_MASK; 6825 6826 /* 6827 * Prevent routes with a zero gateway from being created (since 6828 * interfaces can currently be plumbed and brought up no assigned 6829 * address). 6830 */ 6831 if (gw_addr == 0) 6832 return (ENETUNREACH); 6833 /* 6834 * Get the ipif, if any, corresponding to the gw_addr 6835 */ 6836 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6837 ipst); 6838 if (ipif != NULL) { 6839 if (IS_VNI(ipif->ipif_ill)) { 6840 ipif_refrele(ipif); 6841 return (EINVAL); 6842 } 6843 ipif_refheld = B_TRUE; 6844 } else if (error == EINPROGRESS) { 6845 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6846 return (EINPROGRESS); 6847 } else { 6848 error = 0; 6849 } 6850 6851 if (ipif != NULL) { 6852 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6853 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6854 } else { 6855 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6856 } 6857 6858 /* 6859 * GateD will attempt to create routes with a loopback interface 6860 * address as the gateway and with RTF_GATEWAY set. We allow 6861 * these routes to be added, but create them as interface routes 6862 * since the gateway is an interface address. 6863 */ 6864 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6865 flags &= ~RTF_GATEWAY; 6866 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6867 mask == IP_HOST_MASK) { 6868 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6869 ALL_ZONES, NULL, match_flags, ipst); 6870 if (ire != NULL) { 6871 ire_refrele(ire); 6872 if (ipif_refheld) 6873 ipif_refrele(ipif); 6874 return (EEXIST); 6875 } 6876 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6877 "for 0x%x\n", (void *)ipif, 6878 ipif->ipif_ire_type, 6879 ntohl(ipif->ipif_lcl_addr))); 6880 ire = ire_create( 6881 (uchar_t *)&dst_addr, /* dest address */ 6882 (uchar_t *)&mask, /* mask */ 6883 (uchar_t *)&ipif->ipif_src_addr, 6884 NULL, /* no gateway */ 6885 &ipif->ipif_mtu, 6886 NULL, 6887 ipif->ipif_rq, /* recv-from queue */ 6888 NULL, /* no send-to queue */ 6889 ipif->ipif_ire_type, /* LOOPBACK */ 6890 ipif, 6891 0, 6892 0, 6893 0, 6894 (ipif->ipif_flags & IPIF_PRIVATE) ? 6895 RTF_PRIVATE : 0, 6896 &ire_uinfo_null, 6897 NULL, 6898 NULL, 6899 ipst); 6900 6901 if (ire == NULL) { 6902 if (ipif_refheld) 6903 ipif_refrele(ipif); 6904 return (ENOMEM); 6905 } 6906 error = ire_add(&ire, q, mp, func, B_FALSE); 6907 if (error == 0) 6908 goto save_ire; 6909 if (ipif_refheld) 6910 ipif_refrele(ipif); 6911 return (error); 6912 6913 } 6914 } 6915 6916 /* 6917 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6918 * and the gateway address provided is one of the system's interface 6919 * addresses. By using the routing socket interface and supplying an 6920 * RTA_IFP sockaddr with an interface index, an alternate method of 6921 * specifying an interface route to be created is available which uses 6922 * the interface index that specifies the outgoing interface rather than 6923 * the address of an outgoing interface (which may not be able to 6924 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6925 * flag, routes can be specified which not only specify the next-hop to 6926 * be used when routing to a certain prefix, but also which outgoing 6927 * interface should be used. 6928 * 6929 * Previously, interfaces would have unique addresses assigned to them 6930 * and so the address assigned to a particular interface could be used 6931 * to identify a particular interface. One exception to this was the 6932 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6933 * 6934 * With the advent of IPv6 and its link-local addresses, this 6935 * restriction was relaxed and interfaces could share addresses between 6936 * themselves. In fact, typically all of the link-local interfaces on 6937 * an IPv6 node or router will have the same link-local address. In 6938 * order to differentiate between these interfaces, the use of an 6939 * interface index is necessary and this index can be carried inside a 6940 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6941 * of using the interface index, however, is that all of the ipif's that 6942 * are part of an ill have the same index and so the RTA_IFP sockaddr 6943 * cannot be used to differentiate between ipif's (or logical 6944 * interfaces) that belong to the same ill (physical interface). 6945 * 6946 * For example, in the following case involving IPv4 interfaces and 6947 * logical interfaces 6948 * 6949 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6950 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6951 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6952 * 6953 * the ipif's corresponding to each of these interface routes can be 6954 * uniquely identified by the "gateway" (actually interface address). 6955 * 6956 * In this case involving multiple IPv6 default routes to a particular 6957 * link-local gateway, the use of RTA_IFP is necessary to specify which 6958 * default route is of interest: 6959 * 6960 * default fe80::123:4567:89ab:cdef U if0 6961 * default fe80::123:4567:89ab:cdef U if1 6962 */ 6963 6964 /* RTF_GATEWAY not set */ 6965 if (!(flags & RTF_GATEWAY)) { 6966 queue_t *stq; 6967 6968 if (sp != NULL) { 6969 ip2dbg(("ip_rt_add: gateway security attributes " 6970 "cannot be set with interface route\n")); 6971 if (ipif_refheld) 6972 ipif_refrele(ipif); 6973 return (EINVAL); 6974 } 6975 6976 /* 6977 * As the interface index specified with the RTA_IFP sockaddr is 6978 * the same for all ipif's off of an ill, the matching logic 6979 * below uses MATCH_IRE_ILL if such an index was specified. 6980 * This means that routes sharing the same prefix when added 6981 * using a RTA_IFP sockaddr must have distinct interface 6982 * indices (namely, they must be on distinct ill's). 6983 * 6984 * On the other hand, since the gateway address will usually be 6985 * different for each ipif on the system, the matching logic 6986 * uses MATCH_IRE_IPIF in the case of a traditional interface 6987 * route. This means that interface routes for the same prefix 6988 * can be created if they belong to distinct ipif's and if a 6989 * RTA_IFP sockaddr is not present. 6990 */ 6991 if (ipif_arg != NULL) { 6992 if (ipif_refheld) { 6993 ipif_refrele(ipif); 6994 ipif_refheld = B_FALSE; 6995 } 6996 ipif = ipif_arg; 6997 match_flags |= MATCH_IRE_ILL; 6998 } else { 6999 /* 7000 * Check the ipif corresponding to the gw_addr 7001 */ 7002 if (ipif == NULL) 7003 return (ENETUNREACH); 7004 match_flags |= MATCH_IRE_IPIF; 7005 } 7006 ASSERT(ipif != NULL); 7007 7008 /* 7009 * We check for an existing entry at this point. 7010 * 7011 * Since a netmask isn't passed in via the ioctl interface 7012 * (SIOCADDRT), we don't check for a matching netmask in that 7013 * case. 7014 */ 7015 if (!ioctl_msg) 7016 match_flags |= MATCH_IRE_MASK; 7017 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7018 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7019 if (ire != NULL) { 7020 ire_refrele(ire); 7021 if (ipif_refheld) 7022 ipif_refrele(ipif); 7023 return (EEXIST); 7024 } 7025 7026 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7027 ? ipif->ipif_rq : ipif->ipif_wq; 7028 7029 /* 7030 * Create a copy of the IRE_LOOPBACK, 7031 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7032 * the modified address and netmask. 7033 */ 7034 ire = ire_create( 7035 (uchar_t *)&dst_addr, 7036 (uint8_t *)&mask, 7037 (uint8_t *)&ipif->ipif_src_addr, 7038 NULL, 7039 &ipif->ipif_mtu, 7040 NULL, 7041 NULL, 7042 stq, 7043 ipif->ipif_net_type, 7044 ipif, 7045 0, 7046 0, 7047 0, 7048 flags, 7049 &ire_uinfo_null, 7050 NULL, 7051 NULL, 7052 ipst); 7053 if (ire == NULL) { 7054 if (ipif_refheld) 7055 ipif_refrele(ipif); 7056 return (ENOMEM); 7057 } 7058 7059 /* 7060 * Some software (for example, GateD and Sun Cluster) attempts 7061 * to create (what amount to) IRE_PREFIX routes with the 7062 * loopback address as the gateway. This is primarily done to 7063 * set up prefixes with the RTF_REJECT flag set (for example, 7064 * when generating aggregate routes.) 7065 * 7066 * If the IRE type (as defined by ipif->ipif_net_type) is 7067 * IRE_LOOPBACK, then we map the request into a 7068 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7069 * these interface routes, by definition, can only be that. 7070 * 7071 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7072 * routine, but rather using ire_create() directly. 7073 * 7074 */ 7075 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7076 ire->ire_type = IRE_IF_NORESOLVER; 7077 ire->ire_flags |= RTF_BLACKHOLE; 7078 } 7079 7080 error = ire_add(&ire, q, mp, func, B_FALSE); 7081 if (error == 0) 7082 goto save_ire; 7083 7084 /* 7085 * In the result of failure, ire_add() will have already 7086 * deleted the ire in question, so there is no need to 7087 * do that here. 7088 */ 7089 if (ipif_refheld) 7090 ipif_refrele(ipif); 7091 return (error); 7092 } 7093 if (ipif_refheld) { 7094 ipif_refrele(ipif); 7095 ipif_refheld = B_FALSE; 7096 } 7097 7098 /* 7099 * Get an interface IRE for the specified gateway. 7100 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7101 * gateway, it is currently unreachable and we fail the request 7102 * accordingly. 7103 */ 7104 ipif = ipif_arg; 7105 if (ipif_arg != NULL) 7106 match_flags |= MATCH_IRE_ILL; 7107 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7108 ALL_ZONES, 0, NULL, match_flags, ipst); 7109 if (gw_ire == NULL) 7110 return (ENETUNREACH); 7111 7112 /* 7113 * We create one of three types of IREs as a result of this request 7114 * based on the netmask. A netmask of all ones (which is automatically 7115 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7116 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7117 * created. Otherwise, an IRE_PREFIX route is created for the 7118 * destination prefix. 7119 */ 7120 if (mask == IP_HOST_MASK) 7121 type = IRE_HOST; 7122 else if (mask == 0) 7123 type = IRE_DEFAULT; 7124 else 7125 type = IRE_PREFIX; 7126 7127 /* check for a duplicate entry */ 7128 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7129 NULL, ALL_ZONES, 0, NULL, 7130 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7131 if (ire != NULL) { 7132 ire_refrele(gw_ire); 7133 ire_refrele(ire); 7134 return (EEXIST); 7135 } 7136 7137 /* Security attribute exists */ 7138 if (sp != NULL) { 7139 tsol_gcgrp_addr_t ga; 7140 7141 /* find or create the gateway credentials group */ 7142 ga.ga_af = AF_INET; 7143 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7144 7145 /* we hold reference to it upon success */ 7146 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7147 if (gcgrp == NULL) { 7148 ire_refrele(gw_ire); 7149 return (ENOMEM); 7150 } 7151 7152 /* 7153 * Create and add the security attribute to the group; a 7154 * reference to the group is made upon allocating a new 7155 * entry successfully. If it finds an already-existing 7156 * entry for the security attribute in the group, it simply 7157 * returns it and no new reference is made to the group. 7158 */ 7159 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7160 if (gc == NULL) { 7161 /* release reference held by gcgrp_lookup */ 7162 GCGRP_REFRELE(gcgrp); 7163 ire_refrele(gw_ire); 7164 return (ENOMEM); 7165 } 7166 } 7167 7168 /* Create the IRE. */ 7169 ire = ire_create( 7170 (uchar_t *)&dst_addr, /* dest address */ 7171 (uchar_t *)&mask, /* mask */ 7172 /* src address assigned by the caller? */ 7173 (uchar_t *)(((src_addr != INADDR_ANY) && 7174 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7175 (uchar_t *)&gw_addr, /* gateway address */ 7176 &gw_ire->ire_max_frag, 7177 NULL, /* no src nce */ 7178 NULL, /* no recv-from queue */ 7179 NULL, /* no send-to queue */ 7180 (ushort_t)type, /* IRE type */ 7181 ipif_arg, 7182 0, 7183 0, 7184 0, 7185 flags, 7186 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7187 gc, /* security attribute */ 7188 NULL, 7189 ipst); 7190 7191 /* 7192 * The ire holds a reference to the 'gc' and the 'gc' holds a 7193 * reference to the 'gcgrp'. We can now release the extra reference 7194 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7195 */ 7196 if (gcgrp_xtraref) 7197 GCGRP_REFRELE(gcgrp); 7198 if (ire == NULL) { 7199 if (gc != NULL) 7200 GC_REFRELE(gc); 7201 ire_refrele(gw_ire); 7202 return (ENOMEM); 7203 } 7204 7205 /* 7206 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7207 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7208 */ 7209 7210 /* Add the new IRE. */ 7211 error = ire_add(&ire, q, mp, func, B_FALSE); 7212 if (error != 0) { 7213 /* 7214 * In the result of failure, ire_add() will have already 7215 * deleted the ire in question, so there is no need to 7216 * do that here. 7217 */ 7218 ire_refrele(gw_ire); 7219 return (error); 7220 } 7221 7222 if (flags & RTF_MULTIRT) { 7223 /* 7224 * Invoke the CGTP (multirouting) filtering module 7225 * to add the dst address in the filtering database. 7226 * Replicated inbound packets coming from that address 7227 * will be filtered to discard the duplicates. 7228 * It is not necessary to call the CGTP filter hook 7229 * when the dst address is a broadcast or multicast, 7230 * because an IP source address cannot be a broadcast 7231 * or a multicast. 7232 */ 7233 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7234 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7235 if (ire_dst != NULL) { 7236 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7237 ire_refrele(ire_dst); 7238 goto save_ire; 7239 } 7240 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7241 !CLASSD(ire->ire_addr)) { 7242 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7243 ipst->ips_netstack->netstack_stackid, 7244 ire->ire_addr, 7245 ire->ire_gateway_addr, 7246 ire->ire_src_addr, 7247 gw_ire->ire_src_addr); 7248 if (res != 0) { 7249 ire_refrele(gw_ire); 7250 ire_delete(ire); 7251 return (res); 7252 } 7253 } 7254 } 7255 7256 /* 7257 * Now that the prefix IRE entry has been created, delete any 7258 * existing gateway IRE cache entries as well as any IRE caches 7259 * using the gateway, and force them to be created through 7260 * ip_newroute. 7261 */ 7262 if (gc != NULL) { 7263 ASSERT(gcgrp != NULL); 7264 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7265 } 7266 7267 save_ire: 7268 if (gw_ire != NULL) { 7269 ire_refrele(gw_ire); 7270 } 7271 if (ipif != NULL) { 7272 /* 7273 * Save enough information so that we can recreate the IRE if 7274 * the interface goes down and then up. The metrics associated 7275 * with the route will be saved as well when rts_setmetrics() is 7276 * called after the IRE has been created. In the case where 7277 * memory cannot be allocated, none of this information will be 7278 * saved. 7279 */ 7280 ipif_save_ire(ipif, ire); 7281 } 7282 if (ioctl_msg) 7283 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7284 if (ire_arg != NULL) { 7285 /* 7286 * Store the ire that was successfully added into where ire_arg 7287 * points to so that callers don't have to look it up 7288 * themselves (but they are responsible for ire_refrele()ing 7289 * the ire when they are finished with it). 7290 */ 7291 *ire_arg = ire; 7292 } else { 7293 ire_refrele(ire); /* Held in ire_add */ 7294 } 7295 if (ipif_refheld) 7296 ipif_refrele(ipif); 7297 return (0); 7298 } 7299 7300 /* 7301 * ip_rt_delete is called to delete an IPv4 route. 7302 * ipif_arg is passed in to associate it with the correct interface. 7303 * We may need to restart this operation if the ipif cannot be looked up 7304 * due to an exclusive operation that is currently in progress. The restart 7305 * entry point is specified by 'func' 7306 */ 7307 /* ARGSUSED4 */ 7308 int 7309 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7310 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7311 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7312 { 7313 ire_t *ire = NULL; 7314 ipif_t *ipif; 7315 boolean_t ipif_refheld = B_FALSE; 7316 uint_t type; 7317 uint_t match_flags = MATCH_IRE_TYPE; 7318 int err = 0; 7319 7320 ip1dbg(("ip_rt_delete:")); 7321 /* 7322 * If this is the case of RTF_HOST being set, then we set the netmask 7323 * to all ones. Otherwise, we use the netmask if one was supplied. 7324 */ 7325 if (flags & RTF_HOST) { 7326 mask = IP_HOST_MASK; 7327 match_flags |= MATCH_IRE_MASK; 7328 } else if (rtm_addrs & RTA_NETMASK) { 7329 match_flags |= MATCH_IRE_MASK; 7330 } 7331 7332 /* 7333 * Note that RTF_GATEWAY is never set on a delete, therefore 7334 * we check if the gateway address is one of our interfaces first, 7335 * and fall back on RTF_GATEWAY routes. 7336 * 7337 * This makes it possible to delete an original 7338 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7339 * 7340 * As the interface index specified with the RTA_IFP sockaddr is the 7341 * same for all ipif's off of an ill, the matching logic below uses 7342 * MATCH_IRE_ILL if such an index was specified. This means a route 7343 * sharing the same prefix and interface index as the the route 7344 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7345 * is specified in the request. 7346 * 7347 * On the other hand, since the gateway address will usually be 7348 * different for each ipif on the system, the matching logic 7349 * uses MATCH_IRE_IPIF in the case of a traditional interface 7350 * route. This means that interface routes for the same prefix can be 7351 * uniquely identified if they belong to distinct ipif's and if a 7352 * RTA_IFP sockaddr is not present. 7353 * 7354 * For more detail on specifying routes by gateway address and by 7355 * interface index, see the comments in ip_rt_add(). 7356 */ 7357 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7358 ipst); 7359 if (ipif != NULL) 7360 ipif_refheld = B_TRUE; 7361 else if (err == EINPROGRESS) 7362 return (err); 7363 else 7364 err = 0; 7365 if (ipif != NULL) { 7366 if (ipif_arg != NULL) { 7367 if (ipif_refheld) { 7368 ipif_refrele(ipif); 7369 ipif_refheld = B_FALSE; 7370 } 7371 ipif = ipif_arg; 7372 match_flags |= MATCH_IRE_ILL; 7373 } else { 7374 match_flags |= MATCH_IRE_IPIF; 7375 } 7376 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7377 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7378 ALL_ZONES, NULL, match_flags, ipst); 7379 } 7380 if (ire == NULL) { 7381 ire = ire_ftable_lookup(dst_addr, mask, 0, 7382 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7383 match_flags, ipst); 7384 } 7385 } 7386 7387 if (ire == NULL) { 7388 /* 7389 * At this point, the gateway address is not one of our own 7390 * addresses or a matching interface route was not found. We 7391 * set the IRE type to lookup based on whether 7392 * this is a host route, a default route or just a prefix. 7393 * 7394 * If an ipif_arg was passed in, then the lookup is based on an 7395 * interface index so MATCH_IRE_ILL is added to match_flags. 7396 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7397 * set as the route being looked up is not a traditional 7398 * interface route. 7399 */ 7400 match_flags &= ~MATCH_IRE_IPIF; 7401 match_flags |= MATCH_IRE_GW; 7402 if (ipif_arg != NULL) 7403 match_flags |= MATCH_IRE_ILL; 7404 if (mask == IP_HOST_MASK) 7405 type = IRE_HOST; 7406 else if (mask == 0) 7407 type = IRE_DEFAULT; 7408 else 7409 type = IRE_PREFIX; 7410 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7411 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7412 } 7413 7414 if (ipif_refheld) 7415 ipif_refrele(ipif); 7416 7417 /* ipif is not refheld anymore */ 7418 if (ire == NULL) 7419 return (ESRCH); 7420 7421 if (ire->ire_flags & RTF_MULTIRT) { 7422 /* 7423 * Invoke the CGTP (multirouting) filtering module 7424 * to remove the dst address from the filtering database. 7425 * Packets coming from that address will no longer be 7426 * filtered to remove duplicates. 7427 */ 7428 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7429 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7430 ipst->ips_netstack->netstack_stackid, 7431 ire->ire_addr, ire->ire_gateway_addr); 7432 } 7433 ip_cgtp_bcast_delete(ire, ipst); 7434 } 7435 7436 ipif = ire->ire_ipif; 7437 if (ipif != NULL) 7438 ipif_remove_ire(ipif, ire); 7439 if (ioctl_msg) 7440 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7441 ire_delete(ire); 7442 ire_refrele(ire); 7443 return (err); 7444 } 7445 7446 /* 7447 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7448 */ 7449 /* ARGSUSED */ 7450 int 7451 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7452 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7453 { 7454 ipaddr_t dst_addr; 7455 ipaddr_t gw_addr; 7456 ipaddr_t mask; 7457 int error = 0; 7458 mblk_t *mp1; 7459 struct rtentry *rt; 7460 ipif_t *ipif = NULL; 7461 ip_stack_t *ipst; 7462 7463 ASSERT(q->q_next == NULL); 7464 ipst = CONNQ_TO_IPST(q); 7465 7466 ip1dbg(("ip_siocaddrt:")); 7467 /* Existence of mp1 verified in ip_wput_nondata */ 7468 mp1 = mp->b_cont->b_cont; 7469 rt = (struct rtentry *)mp1->b_rptr; 7470 7471 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7472 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7473 7474 /* 7475 * If the RTF_HOST flag is on, this is a request to assign a gateway 7476 * to a particular host address. In this case, we set the netmask to 7477 * all ones for the particular destination address. Otherwise, 7478 * determine the netmask to be used based on dst_addr and the interfaces 7479 * in use. 7480 */ 7481 if (rt->rt_flags & RTF_HOST) { 7482 mask = IP_HOST_MASK; 7483 } else { 7484 /* 7485 * Note that ip_subnet_mask returns a zero mask in the case of 7486 * default (an all-zeroes address). 7487 */ 7488 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7489 } 7490 7491 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7492 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7493 if (ipif != NULL) 7494 ipif_refrele(ipif); 7495 return (error); 7496 } 7497 7498 /* 7499 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7500 */ 7501 /* ARGSUSED */ 7502 int 7503 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7504 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7505 { 7506 ipaddr_t dst_addr; 7507 ipaddr_t gw_addr; 7508 ipaddr_t mask; 7509 int error; 7510 mblk_t *mp1; 7511 struct rtentry *rt; 7512 ipif_t *ipif = NULL; 7513 ip_stack_t *ipst; 7514 7515 ASSERT(q->q_next == NULL); 7516 ipst = CONNQ_TO_IPST(q); 7517 7518 ip1dbg(("ip_siocdelrt:")); 7519 /* Existence of mp1 verified in ip_wput_nondata */ 7520 mp1 = mp->b_cont->b_cont; 7521 rt = (struct rtentry *)mp1->b_rptr; 7522 7523 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7524 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7525 7526 /* 7527 * If the RTF_HOST flag is on, this is a request to delete a gateway 7528 * to a particular host address. In this case, we set the netmask to 7529 * all ones for the particular destination address. Otherwise, 7530 * determine the netmask to be used based on dst_addr and the interfaces 7531 * in use. 7532 */ 7533 if (rt->rt_flags & RTF_HOST) { 7534 mask = IP_HOST_MASK; 7535 } else { 7536 /* 7537 * Note that ip_subnet_mask returns a zero mask in the case of 7538 * default (an all-zeroes address). 7539 */ 7540 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7541 } 7542 7543 error = ip_rt_delete(dst_addr, mask, gw_addr, 7544 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7545 mp, ip_process_ioctl, ipst); 7546 if (ipif != NULL) 7547 ipif_refrele(ipif); 7548 return (error); 7549 } 7550 7551 /* 7552 * Enqueue the mp onto the ipsq, chained by b_next. 7553 * b_prev stores the function to be executed later, and b_queue the queue 7554 * where this mp originated. 7555 */ 7556 void 7557 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7558 ill_t *pending_ill) 7559 { 7560 conn_t *connp = NULL; 7561 7562 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7563 ASSERT(func != NULL); 7564 7565 mp->b_queue = q; 7566 mp->b_prev = (void *)func; 7567 mp->b_next = NULL; 7568 7569 switch (type) { 7570 case CUR_OP: 7571 if (ipsq->ipsq_mptail != NULL) { 7572 ASSERT(ipsq->ipsq_mphead != NULL); 7573 ipsq->ipsq_mptail->b_next = mp; 7574 } else { 7575 ASSERT(ipsq->ipsq_mphead == NULL); 7576 ipsq->ipsq_mphead = mp; 7577 } 7578 ipsq->ipsq_mptail = mp; 7579 break; 7580 7581 case NEW_OP: 7582 if (ipsq->ipsq_xopq_mptail != NULL) { 7583 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7584 ipsq->ipsq_xopq_mptail->b_next = mp; 7585 } else { 7586 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7587 ipsq->ipsq_xopq_mphead = mp; 7588 } 7589 ipsq->ipsq_xopq_mptail = mp; 7590 break; 7591 default: 7592 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7593 } 7594 7595 if (CONN_Q(q) && pending_ill != NULL) { 7596 connp = Q_TO_CONN(q); 7597 7598 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7599 connp->conn_oper_pending_ill = pending_ill; 7600 } 7601 } 7602 7603 /* 7604 * Return the mp at the head of the ipsq. After emptying the ipsq 7605 * look at the next ioctl, if this ioctl is complete. Otherwise 7606 * return, we will resume when we complete the current ioctl. 7607 * The current ioctl will wait till it gets a response from the 7608 * driver below. 7609 */ 7610 static mblk_t * 7611 ipsq_dq(ipsq_t *ipsq) 7612 { 7613 mblk_t *mp; 7614 7615 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7616 7617 mp = ipsq->ipsq_mphead; 7618 if (mp != NULL) { 7619 ipsq->ipsq_mphead = mp->b_next; 7620 if (ipsq->ipsq_mphead == NULL) 7621 ipsq->ipsq_mptail = NULL; 7622 mp->b_next = NULL; 7623 return (mp); 7624 } 7625 if (ipsq->ipsq_current_ipif != NULL) 7626 return (NULL); 7627 mp = ipsq->ipsq_xopq_mphead; 7628 if (mp != NULL) { 7629 ipsq->ipsq_xopq_mphead = mp->b_next; 7630 if (ipsq->ipsq_xopq_mphead == NULL) 7631 ipsq->ipsq_xopq_mptail = NULL; 7632 mp->b_next = NULL; 7633 return (mp); 7634 } 7635 return (NULL); 7636 } 7637 7638 /* 7639 * Enter the ipsq corresponding to ill, by waiting synchronously till 7640 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7641 * will have to drain completely before ipsq_enter returns success. 7642 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7643 * and the ipsq_exit logic will start the next enqueued ioctl after 7644 * completion of the current ioctl. If 'force' is used, we don't wait 7645 * for the enqueued ioctls. This is needed when a conn_close wants to 7646 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7647 * of an ill can also use this option. But we dont' use it currently. 7648 */ 7649 #define ENTER_SQ_WAIT_TICKS 100 7650 boolean_t 7651 ipsq_enter(ill_t *ill, boolean_t force) 7652 { 7653 ipsq_t *ipsq; 7654 boolean_t waited_enough = B_FALSE; 7655 7656 /* 7657 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7658 * Since the <ill-ipsq> assocs could change while we wait for the 7659 * writer, it is easier to wait on a fixed global rather than try to 7660 * cv_wait on a changing ipsq. 7661 */ 7662 mutex_enter(&ill->ill_lock); 7663 for (;;) { 7664 if (ill->ill_state_flags & ILL_CONDEMNED) { 7665 mutex_exit(&ill->ill_lock); 7666 return (B_FALSE); 7667 } 7668 7669 ipsq = ill->ill_phyint->phyint_ipsq; 7670 mutex_enter(&ipsq->ipsq_lock); 7671 if (ipsq->ipsq_writer == NULL && 7672 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7673 break; 7674 } else if (ipsq->ipsq_writer != NULL) { 7675 mutex_exit(&ipsq->ipsq_lock); 7676 cv_wait(&ill->ill_cv, &ill->ill_lock); 7677 } else { 7678 mutex_exit(&ipsq->ipsq_lock); 7679 if (force) { 7680 (void) cv_timedwait(&ill->ill_cv, 7681 &ill->ill_lock, 7682 lbolt + ENTER_SQ_WAIT_TICKS); 7683 waited_enough = B_TRUE; 7684 continue; 7685 } else { 7686 cv_wait(&ill->ill_cv, &ill->ill_lock); 7687 } 7688 } 7689 } 7690 7691 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7692 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7693 ipsq->ipsq_writer = curthread; 7694 ipsq->ipsq_reentry_cnt++; 7695 #ifdef DEBUG 7696 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7697 #endif 7698 mutex_exit(&ipsq->ipsq_lock); 7699 mutex_exit(&ill->ill_lock); 7700 return (B_TRUE); 7701 } 7702 7703 /* 7704 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7705 * certain critical operations like plumbing (i.e. most set ioctls), 7706 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7707 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7708 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7709 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7710 * threads executing in the ipsq. Responses from the driver pertain to the 7711 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7712 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7713 * 7714 * If a thread does not want to reenter the ipsq when it is already writer, 7715 * it must make sure that the specified reentry point to be called later 7716 * when the ipsq is empty, nor any code path starting from the specified reentry 7717 * point must never ever try to enter the ipsq again. Otherwise it can lead 7718 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7719 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7720 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7721 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7722 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7723 * ioctl if the current ioctl has completed. If the current ioctl is still 7724 * in progress it simply returns. The current ioctl could be waiting for 7725 * a response from another module (arp_ or the driver or could be waiting for 7726 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7727 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7728 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7729 * ipsq_current_ipif is clear which happens only on ioctl completion. 7730 */ 7731 7732 /* 7733 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7734 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7735 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7736 * completion. 7737 */ 7738 ipsq_t * 7739 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7740 ipsq_func_t func, int type, boolean_t reentry_ok) 7741 { 7742 ipsq_t *ipsq; 7743 7744 /* Only 1 of ipif or ill can be specified */ 7745 ASSERT((ipif != NULL) ^ (ill != NULL)); 7746 if (ipif != NULL) 7747 ill = ipif->ipif_ill; 7748 7749 /* 7750 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7751 * ipsq of an ill can't change when ill_lock is held. 7752 */ 7753 GRAB_CONN_LOCK(q); 7754 mutex_enter(&ill->ill_lock); 7755 ipsq = ill->ill_phyint->phyint_ipsq; 7756 mutex_enter(&ipsq->ipsq_lock); 7757 7758 /* 7759 * 1. Enter the ipsq if we are already writer and reentry is ok. 7760 * (Note: If the caller does not specify reentry_ok then neither 7761 * 'func' nor any of its callees must ever attempt to enter the ipsq 7762 * again. Otherwise it can lead to an infinite loop 7763 * 2. Enter the ipsq if there is no current writer and this attempted 7764 * entry is part of the current ioctl or operation 7765 * 3. Enter the ipsq if there is no current writer and this is a new 7766 * ioctl (or operation) and the ioctl (or operation) queue is 7767 * empty and there is no ioctl (or operation) currently in progress 7768 */ 7769 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7770 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7771 ipsq->ipsq_current_ipif == NULL))) || 7772 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7773 /* Success. */ 7774 ipsq->ipsq_reentry_cnt++; 7775 ipsq->ipsq_writer = curthread; 7776 mutex_exit(&ipsq->ipsq_lock); 7777 mutex_exit(&ill->ill_lock); 7778 RELEASE_CONN_LOCK(q); 7779 #ifdef DEBUG 7780 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7781 IPSQ_STACK_DEPTH); 7782 #endif 7783 return (ipsq); 7784 } 7785 7786 ipsq_enq(ipsq, q, mp, func, type, ill); 7787 7788 mutex_exit(&ipsq->ipsq_lock); 7789 mutex_exit(&ill->ill_lock); 7790 RELEASE_CONN_LOCK(q); 7791 return (NULL); 7792 } 7793 7794 /* 7795 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7796 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7797 * cannot be entered, the mp is queued for completion. 7798 */ 7799 void 7800 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7801 boolean_t reentry_ok) 7802 { 7803 ipsq_t *ipsq; 7804 7805 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7806 7807 /* 7808 * Drop the caller's refhold on the ill. This is safe since we either 7809 * entered the IPSQ (and thus are exclusive), or failed to enter the 7810 * IPSQ, in which case we return without accessing ill anymore. This 7811 * is needed because func needs to see the correct refcount. 7812 * e.g. removeif can work only then. 7813 */ 7814 ill_refrele(ill); 7815 if (ipsq != NULL) { 7816 (*func)(ipsq, q, mp, NULL); 7817 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7818 } 7819 } 7820 7821 /* 7822 * If there are more than ILL_GRP_CNT ills in a group, 7823 * we use kmem alloc'd buffers, else use the stack 7824 */ 7825 #define ILL_GRP_CNT 14 7826 /* 7827 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7828 * Called by a thread that is currently exclusive on this ipsq. 7829 */ 7830 void 7831 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7832 { 7833 queue_t *q; 7834 mblk_t *mp; 7835 ipsq_func_t func; 7836 int next; 7837 ill_t **ill_list = NULL; 7838 size_t ill_list_size = 0; 7839 int cnt = 0; 7840 boolean_t need_ipsq_free = B_FALSE; 7841 ip_stack_t *ipst = ipsq->ipsq_ipst; 7842 7843 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7844 mutex_enter(&ipsq->ipsq_lock); 7845 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7846 if (ipsq->ipsq_reentry_cnt != 1) { 7847 ipsq->ipsq_reentry_cnt--; 7848 mutex_exit(&ipsq->ipsq_lock); 7849 return; 7850 } 7851 7852 mp = ipsq_dq(ipsq); 7853 while (mp != NULL) { 7854 again: 7855 mutex_exit(&ipsq->ipsq_lock); 7856 func = (ipsq_func_t)mp->b_prev; 7857 q = (queue_t *)mp->b_queue; 7858 mp->b_prev = NULL; 7859 mp->b_queue = NULL; 7860 7861 /* 7862 * If 'q' is an conn queue, it is valid, since we did a 7863 * a refhold on the connp, at the start of the ioctl. 7864 * If 'q' is an ill queue, it is valid, since close of an 7865 * ill will clean up the 'ipsq'. 7866 */ 7867 (*func)(ipsq, q, mp, NULL); 7868 7869 mutex_enter(&ipsq->ipsq_lock); 7870 mp = ipsq_dq(ipsq); 7871 } 7872 7873 mutex_exit(&ipsq->ipsq_lock); 7874 7875 /* 7876 * Need to grab the locks in the right order. Need to 7877 * atomically check (under ipsq_lock) that there are no 7878 * messages before relinquishing the ipsq. Also need to 7879 * atomically wakeup waiters on ill_cv while holding ill_lock. 7880 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7881 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7882 * to grab ill_g_lock as writer. 7883 */ 7884 rw_enter(&ipst->ips_ill_g_lock, 7885 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7886 7887 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7888 if (ipsq->ipsq_refs != 0) { 7889 /* At most 2 ills v4/v6 per phyint */ 7890 cnt = ipsq->ipsq_refs << 1; 7891 ill_list_size = cnt * sizeof (ill_t *); 7892 /* 7893 * If memory allocation fails, we will do the split 7894 * the next time ipsq_exit is called for whatever reason. 7895 * As long as the ipsq_split flag is set the need to 7896 * split is remembered. 7897 */ 7898 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7899 if (ill_list != NULL) 7900 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7901 } 7902 mutex_enter(&ipsq->ipsq_lock); 7903 mp = ipsq_dq(ipsq); 7904 if (mp != NULL) { 7905 /* oops, some message has landed up, we can't get out */ 7906 if (ill_list != NULL) 7907 ill_unlock_ills(ill_list, cnt); 7908 rw_exit(&ipst->ips_ill_g_lock); 7909 if (ill_list != NULL) 7910 kmem_free(ill_list, ill_list_size); 7911 ill_list = NULL; 7912 ill_list_size = 0; 7913 cnt = 0; 7914 goto again; 7915 } 7916 7917 /* 7918 * Split only if no ioctl is pending and if memory alloc succeeded 7919 * above. 7920 */ 7921 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7922 ill_list != NULL) { 7923 /* 7924 * No new ill can join this ipsq since we are holding the 7925 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7926 * ipsq. ill_split_ipsq may fail due to memory shortage. 7927 * If so we will retry on the next ipsq_exit. 7928 */ 7929 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7930 } 7931 7932 /* 7933 * We are holding the ipsq lock, hence no new messages can 7934 * land up on the ipsq, and there are no messages currently. 7935 * Now safe to get out. Wake up waiters and relinquish ipsq 7936 * atomically while holding ill locks. 7937 */ 7938 ipsq->ipsq_writer = NULL; 7939 ipsq->ipsq_reentry_cnt--; 7940 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7941 #ifdef DEBUG 7942 ipsq->ipsq_depth = 0; 7943 #endif 7944 mutex_exit(&ipsq->ipsq_lock); 7945 /* 7946 * For IPMP this should wake up all ills in this ipsq. 7947 * We need to hold the ill_lock while waking up waiters to 7948 * avoid missed wakeups. But there is no need to acquire all 7949 * the ill locks and then wakeup. If we have not acquired all 7950 * the locks (due to memory failure above) ill_signal_ipsq_ills 7951 * wakes up ills one at a time after getting the right ill_lock 7952 */ 7953 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7954 if (ill_list != NULL) 7955 ill_unlock_ills(ill_list, cnt); 7956 if (ipsq->ipsq_refs == 0) 7957 need_ipsq_free = B_TRUE; 7958 rw_exit(&ipst->ips_ill_g_lock); 7959 if (ill_list != 0) 7960 kmem_free(ill_list, ill_list_size); 7961 7962 if (need_ipsq_free) { 7963 /* 7964 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7965 * looked up. ipsq can be looked up only thru ill or phyint 7966 * and there are no ills/phyint on this ipsq. 7967 */ 7968 ipsq_delete(ipsq); 7969 } 7970 /* 7971 * Now start any igmp or mld timers that could not be started 7972 * while inside the ipsq. The timers can't be started while inside 7973 * the ipsq, since igmp_start_timers may need to call untimeout() 7974 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7975 * there could be a deadlock since the timeout handlers 7976 * mld_timeout_handler / igmp_timeout_handler also synchronously 7977 * wait in ipsq_enter() trying to get the ipsq. 7978 * 7979 * However there is one exception to the above. If this thread is 7980 * itself the igmp/mld timeout handler thread, then we don't want 7981 * to start any new timer until the current handler is done. The 7982 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7983 * all others pass B_TRUE. 7984 */ 7985 if (start_igmp_timer) { 7986 mutex_enter(&ipst->ips_igmp_timer_lock); 7987 next = ipst->ips_igmp_deferred_next; 7988 ipst->ips_igmp_deferred_next = INFINITY; 7989 mutex_exit(&ipst->ips_igmp_timer_lock); 7990 7991 if (next != INFINITY) 7992 igmp_start_timers(next, ipst); 7993 } 7994 7995 if (start_mld_timer) { 7996 mutex_enter(&ipst->ips_mld_timer_lock); 7997 next = ipst->ips_mld_deferred_next; 7998 ipst->ips_mld_deferred_next = INFINITY; 7999 mutex_exit(&ipst->ips_mld_timer_lock); 8000 8001 if (next != INFINITY) 8002 mld_start_timers(next, ipst); 8003 } 8004 } 8005 8006 /* 8007 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8008 * and `ioccmd'. 8009 */ 8010 void 8011 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8012 { 8013 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8014 8015 mutex_enter(&ipsq->ipsq_lock); 8016 ASSERT(ipsq->ipsq_current_ipif == NULL); 8017 ASSERT(ipsq->ipsq_current_ioctl == 0); 8018 ipsq->ipsq_current_done = B_FALSE; 8019 ipsq->ipsq_current_ipif = ipif; 8020 ipsq->ipsq_current_ioctl = ioccmd; 8021 mutex_exit(&ipsq->ipsq_lock); 8022 } 8023 8024 /* 8025 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8026 * the next exclusive operation to begin once we ipsq_exit(). However, if 8027 * pending DLPI operations remain, then we will wait for the queue to drain 8028 * before allowing the next exclusive operation to begin. This ensures that 8029 * DLPI operations from one exclusive operation are never improperly processed 8030 * as part of a subsequent exclusive operation. 8031 */ 8032 void 8033 ipsq_current_finish(ipsq_t *ipsq) 8034 { 8035 ipif_t *ipif = ipsq->ipsq_current_ipif; 8036 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8037 8038 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8039 8040 /* 8041 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8042 * (but in that case, IPIF_CHANGING will already be clear and no 8043 * pending DLPI messages can remain). 8044 */ 8045 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8046 ill_t *ill = ipif->ipif_ill; 8047 8048 mutex_enter(&ill->ill_lock); 8049 dlpi_pending = ill->ill_dlpi_pending; 8050 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8051 /* Send any queued event */ 8052 ill_nic_info_dispatch(ill); 8053 mutex_exit(&ill->ill_lock); 8054 } 8055 8056 mutex_enter(&ipsq->ipsq_lock); 8057 ipsq->ipsq_current_ioctl = 0; 8058 ipsq->ipsq_current_done = B_TRUE; 8059 if (dlpi_pending == DL_PRIM_INVAL) 8060 ipsq->ipsq_current_ipif = NULL; 8061 mutex_exit(&ipsq->ipsq_lock); 8062 } 8063 8064 /* 8065 * The ill is closing. Flush all messages on the ipsq that originated 8066 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8067 * for this ill since ipsq_enter could not have entered until then. 8068 * New messages can't be queued since the CONDEMNED flag is set. 8069 */ 8070 static void 8071 ipsq_flush(ill_t *ill) 8072 { 8073 queue_t *q; 8074 mblk_t *prev; 8075 mblk_t *mp; 8076 mblk_t *mp_next; 8077 ipsq_t *ipsq; 8078 8079 ASSERT(IAM_WRITER_ILL(ill)); 8080 ipsq = ill->ill_phyint->phyint_ipsq; 8081 /* 8082 * Flush any messages sent up by the driver. 8083 */ 8084 mutex_enter(&ipsq->ipsq_lock); 8085 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8086 mp_next = mp->b_next; 8087 q = mp->b_queue; 8088 if (q == ill->ill_rq || q == ill->ill_wq) { 8089 /* Remove the mp from the ipsq */ 8090 if (prev == NULL) 8091 ipsq->ipsq_mphead = mp->b_next; 8092 else 8093 prev->b_next = mp->b_next; 8094 if (ipsq->ipsq_mptail == mp) { 8095 ASSERT(mp_next == NULL); 8096 ipsq->ipsq_mptail = prev; 8097 } 8098 inet_freemsg(mp); 8099 } else { 8100 prev = mp; 8101 } 8102 } 8103 mutex_exit(&ipsq->ipsq_lock); 8104 (void) ipsq_pending_mp_cleanup(ill, NULL); 8105 ipsq_xopq_mp_cleanup(ill, NULL); 8106 ill_pending_mp_cleanup(ill); 8107 } 8108 8109 /* ARGSUSED */ 8110 int 8111 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8112 ip_ioctl_cmd_t *ipip, void *ifreq) 8113 { 8114 ill_t *ill; 8115 struct lifreq *lifr = (struct lifreq *)ifreq; 8116 boolean_t isv6; 8117 conn_t *connp; 8118 ip_stack_t *ipst; 8119 8120 connp = Q_TO_CONN(q); 8121 ipst = connp->conn_netstack->netstack_ip; 8122 isv6 = connp->conn_af_isv6; 8123 /* 8124 * Set original index. 8125 * Failover and failback move logical interfaces 8126 * from one physical interface to another. The 8127 * original index indicates the parent of a logical 8128 * interface, in other words, the physical interface 8129 * the logical interface will be moved back to on 8130 * failback. 8131 */ 8132 8133 /* 8134 * Don't allow the original index to be changed 8135 * for non-failover addresses, autoconfigured 8136 * addresses, or IPv6 link local addresses. 8137 */ 8138 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8139 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8140 return (EINVAL); 8141 } 8142 /* 8143 * The new original index must be in use by some 8144 * physical interface. 8145 */ 8146 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8147 NULL, NULL, ipst); 8148 if (ill == NULL) 8149 return (ENXIO); 8150 ill_refrele(ill); 8151 8152 ipif->ipif_orig_ifindex = lifr->lifr_index; 8153 /* 8154 * When this ipif gets failed back, don't 8155 * preserve the original id, as it is no 8156 * longer applicable. 8157 */ 8158 ipif->ipif_orig_ipifid = 0; 8159 /* 8160 * For IPv4, change the original index of any 8161 * multicast addresses associated with the 8162 * ipif to the new value. 8163 */ 8164 if (!isv6) { 8165 ilm_t *ilm; 8166 8167 mutex_enter(&ipif->ipif_ill->ill_lock); 8168 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8169 ilm = ilm->ilm_next) { 8170 if (ilm->ilm_ipif == ipif) { 8171 ilm->ilm_orig_ifindex = lifr->lifr_index; 8172 } 8173 } 8174 mutex_exit(&ipif->ipif_ill->ill_lock); 8175 } 8176 return (0); 8177 } 8178 8179 /* ARGSUSED */ 8180 int 8181 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8182 ip_ioctl_cmd_t *ipip, void *ifreq) 8183 { 8184 struct lifreq *lifr = (struct lifreq *)ifreq; 8185 8186 /* 8187 * Get the original interface index i.e the one 8188 * before FAILOVER if it ever happened. 8189 */ 8190 lifr->lifr_index = ipif->ipif_orig_ifindex; 8191 return (0); 8192 } 8193 8194 /* 8195 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8196 * refhold and return the associated ipif 8197 */ 8198 /* ARGSUSED */ 8199 int 8200 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8201 cmd_info_t *ci, ipsq_func_t func) 8202 { 8203 boolean_t exists; 8204 struct iftun_req *ta; 8205 ipif_t *ipif; 8206 ill_t *ill; 8207 boolean_t isv6; 8208 mblk_t *mp1; 8209 int error; 8210 conn_t *connp; 8211 ip_stack_t *ipst; 8212 8213 /* Existence verified in ip_wput_nondata */ 8214 mp1 = mp->b_cont->b_cont; 8215 ta = (struct iftun_req *)mp1->b_rptr; 8216 /* 8217 * Null terminate the string to protect against buffer 8218 * overrun. String was generated by user code and may not 8219 * be trusted. 8220 */ 8221 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8222 8223 connp = Q_TO_CONN(q); 8224 isv6 = connp->conn_af_isv6; 8225 ipst = connp->conn_netstack->netstack_ip; 8226 8227 /* Disallows implicit create */ 8228 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8229 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8230 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8231 if (ipif == NULL) 8232 return (error); 8233 8234 if (ipif->ipif_id != 0) { 8235 /* 8236 * We really don't want to set/get tunnel parameters 8237 * on virtual tunnel interfaces. Only allow the 8238 * base tunnel to do these. 8239 */ 8240 ipif_refrele(ipif); 8241 return (EINVAL); 8242 } 8243 8244 /* 8245 * Send down to tunnel mod for ioctl processing. 8246 * Will finish ioctl in ip_rput_other(). 8247 */ 8248 ill = ipif->ipif_ill; 8249 if (ill->ill_net_type == IRE_LOOPBACK) { 8250 ipif_refrele(ipif); 8251 return (EOPNOTSUPP); 8252 } 8253 8254 if (ill->ill_wq == NULL) { 8255 ipif_refrele(ipif); 8256 return (ENXIO); 8257 } 8258 /* 8259 * Mark the ioctl as coming from an IPv6 interface for 8260 * tun's convenience. 8261 */ 8262 if (ill->ill_isv6) 8263 ta->ifta_flags |= 0x80000000; 8264 ci->ci_ipif = ipif; 8265 return (0); 8266 } 8267 8268 /* 8269 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8270 * and return the associated ipif. 8271 * Return value: 8272 * Non zero: An error has occurred. ci may not be filled out. 8273 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8274 * a held ipif in ci.ci_ipif. 8275 */ 8276 int 8277 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8278 cmd_info_t *ci, ipsq_func_t func) 8279 { 8280 sin_t *sin; 8281 sin6_t *sin6; 8282 char *name; 8283 struct ifreq *ifr; 8284 struct lifreq *lifr; 8285 ipif_t *ipif = NULL; 8286 ill_t *ill; 8287 conn_t *connp; 8288 boolean_t isv6; 8289 boolean_t exists; 8290 int err; 8291 mblk_t *mp1; 8292 zoneid_t zoneid; 8293 ip_stack_t *ipst; 8294 8295 if (q->q_next != NULL) { 8296 ill = (ill_t *)q->q_ptr; 8297 isv6 = ill->ill_isv6; 8298 connp = NULL; 8299 zoneid = ALL_ZONES; 8300 ipst = ill->ill_ipst; 8301 } else { 8302 ill = NULL; 8303 connp = Q_TO_CONN(q); 8304 isv6 = connp->conn_af_isv6; 8305 zoneid = connp->conn_zoneid; 8306 if (zoneid == GLOBAL_ZONEID) { 8307 /* global zone can access ipifs in all zones */ 8308 zoneid = ALL_ZONES; 8309 } 8310 ipst = connp->conn_netstack->netstack_ip; 8311 } 8312 8313 /* Has been checked in ip_wput_nondata */ 8314 mp1 = mp->b_cont->b_cont; 8315 8316 if (ipip->ipi_cmd_type == IF_CMD) { 8317 /* This a old style SIOC[GS]IF* command */ 8318 ifr = (struct ifreq *)mp1->b_rptr; 8319 /* 8320 * Null terminate the string to protect against buffer 8321 * overrun. String was generated by user code and may not 8322 * be trusted. 8323 */ 8324 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8325 sin = (sin_t *)&ifr->ifr_addr; 8326 name = ifr->ifr_name; 8327 ci->ci_sin = sin; 8328 ci->ci_sin6 = NULL; 8329 ci->ci_lifr = (struct lifreq *)ifr; 8330 } else { 8331 /* This a new style SIOC[GS]LIF* command */ 8332 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8333 lifr = (struct lifreq *)mp1->b_rptr; 8334 /* 8335 * Null terminate the string to protect against buffer 8336 * overrun. String was generated by user code and may not 8337 * be trusted. 8338 */ 8339 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8340 name = lifr->lifr_name; 8341 sin = (sin_t *)&lifr->lifr_addr; 8342 sin6 = (sin6_t *)&lifr->lifr_addr; 8343 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8344 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8345 LIFNAMSIZ); 8346 } 8347 ci->ci_sin = sin; 8348 ci->ci_sin6 = sin6; 8349 ci->ci_lifr = lifr; 8350 } 8351 8352 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8353 /* 8354 * The ioctl will be failed if the ioctl comes down 8355 * an conn stream 8356 */ 8357 if (ill == NULL) { 8358 /* 8359 * Not an ill queue, return EINVAL same as the 8360 * old error code. 8361 */ 8362 return (ENXIO); 8363 } 8364 ipif = ill->ill_ipif; 8365 ipif_refhold(ipif); 8366 } else { 8367 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8368 &exists, isv6, zoneid, 8369 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8370 ipst); 8371 if (ipif == NULL) { 8372 if (err == EINPROGRESS) 8373 return (err); 8374 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8375 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8376 /* 8377 * Need to try both v4 and v6 since this 8378 * ioctl can come down either v4 or v6 8379 * socket. The lifreq.lifr_family passed 8380 * down by this ioctl is AF_UNSPEC. 8381 */ 8382 ipif = ipif_lookup_on_name(name, 8383 mi_strlen(name), B_FALSE, &exists, !isv6, 8384 zoneid, (connp == NULL) ? q : 8385 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8386 if (err == EINPROGRESS) 8387 return (err); 8388 } 8389 err = 0; /* Ensure we don't use it below */ 8390 } 8391 } 8392 8393 /* 8394 * Old style [GS]IFCMD does not admit IPv6 ipif 8395 */ 8396 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8397 ipif_refrele(ipif); 8398 return (ENXIO); 8399 } 8400 8401 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8402 name[0] == '\0') { 8403 /* 8404 * Handle a or a SIOC?IF* with a null name 8405 * during plumb (on the ill queue before the I_PLINK). 8406 */ 8407 ipif = ill->ill_ipif; 8408 ipif_refhold(ipif); 8409 } 8410 8411 if (ipif == NULL) 8412 return (ENXIO); 8413 8414 /* 8415 * Allow only GET operations if this ipif has been created 8416 * temporarily due to a MOVE operation. 8417 */ 8418 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8419 ipif_refrele(ipif); 8420 return (EINVAL); 8421 } 8422 8423 ci->ci_ipif = ipif; 8424 return (0); 8425 } 8426 8427 /* 8428 * Return the total number of ipifs. 8429 */ 8430 static uint_t 8431 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8432 { 8433 uint_t numifs = 0; 8434 ill_t *ill; 8435 ill_walk_context_t ctx; 8436 ipif_t *ipif; 8437 8438 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8439 ill = ILL_START_WALK_V4(&ctx, ipst); 8440 8441 while (ill != NULL) { 8442 for (ipif = ill->ill_ipif; ipif != NULL; 8443 ipif = ipif->ipif_next) { 8444 if (ipif->ipif_zoneid == zoneid || 8445 ipif->ipif_zoneid == ALL_ZONES) 8446 numifs++; 8447 } 8448 ill = ill_next(&ctx, ill); 8449 } 8450 rw_exit(&ipst->ips_ill_g_lock); 8451 return (numifs); 8452 } 8453 8454 /* 8455 * Return the total number of ipifs. 8456 */ 8457 static uint_t 8458 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8459 { 8460 uint_t numifs = 0; 8461 ill_t *ill; 8462 ipif_t *ipif; 8463 ill_walk_context_t ctx; 8464 8465 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8466 8467 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8468 if (family == AF_INET) 8469 ill = ILL_START_WALK_V4(&ctx, ipst); 8470 else if (family == AF_INET6) 8471 ill = ILL_START_WALK_V6(&ctx, ipst); 8472 else 8473 ill = ILL_START_WALK_ALL(&ctx, ipst); 8474 8475 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8476 for (ipif = ill->ill_ipif; ipif != NULL; 8477 ipif = ipif->ipif_next) { 8478 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8479 !(lifn_flags & LIFC_NOXMIT)) 8480 continue; 8481 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8482 !(lifn_flags & LIFC_TEMPORARY)) 8483 continue; 8484 if (((ipif->ipif_flags & 8485 (IPIF_NOXMIT|IPIF_NOLOCAL| 8486 IPIF_DEPRECATED)) || 8487 IS_LOOPBACK(ill) || 8488 !(ipif->ipif_flags & IPIF_UP)) && 8489 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8490 continue; 8491 8492 if (zoneid != ipif->ipif_zoneid && 8493 ipif->ipif_zoneid != ALL_ZONES && 8494 (zoneid != GLOBAL_ZONEID || 8495 !(lifn_flags & LIFC_ALLZONES))) 8496 continue; 8497 8498 numifs++; 8499 } 8500 } 8501 rw_exit(&ipst->ips_ill_g_lock); 8502 return (numifs); 8503 } 8504 8505 uint_t 8506 ip_get_lifsrcofnum(ill_t *ill) 8507 { 8508 uint_t numifs = 0; 8509 ill_t *ill_head = ill; 8510 ip_stack_t *ipst = ill->ill_ipst; 8511 8512 /* 8513 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8514 * other thread may be trying to relink the ILLs in this usesrc group 8515 * and adjusting the ill_usesrc_grp_next pointers 8516 */ 8517 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8518 if ((ill->ill_usesrc_ifindex == 0) && 8519 (ill->ill_usesrc_grp_next != NULL)) { 8520 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8521 ill = ill->ill_usesrc_grp_next) 8522 numifs++; 8523 } 8524 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8525 8526 return (numifs); 8527 } 8528 8529 /* Null values are passed in for ipif, sin, and ifreq */ 8530 /* ARGSUSED */ 8531 int 8532 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8533 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8534 { 8535 int *nump; 8536 conn_t *connp = Q_TO_CONN(q); 8537 8538 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8539 8540 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8541 nump = (int *)mp->b_cont->b_cont->b_rptr; 8542 8543 *nump = ip_get_numifs(connp->conn_zoneid, 8544 connp->conn_netstack->netstack_ip); 8545 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8546 return (0); 8547 } 8548 8549 /* Null values are passed in for ipif, sin, and ifreq */ 8550 /* ARGSUSED */ 8551 int 8552 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8553 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8554 { 8555 struct lifnum *lifn; 8556 mblk_t *mp1; 8557 conn_t *connp = Q_TO_CONN(q); 8558 8559 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8560 8561 /* Existence checked in ip_wput_nondata */ 8562 mp1 = mp->b_cont->b_cont; 8563 8564 lifn = (struct lifnum *)mp1->b_rptr; 8565 switch (lifn->lifn_family) { 8566 case AF_UNSPEC: 8567 case AF_INET: 8568 case AF_INET6: 8569 break; 8570 default: 8571 return (EAFNOSUPPORT); 8572 } 8573 8574 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8575 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8576 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8577 return (0); 8578 } 8579 8580 /* ARGSUSED */ 8581 int 8582 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8583 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8584 { 8585 STRUCT_HANDLE(ifconf, ifc); 8586 mblk_t *mp1; 8587 struct iocblk *iocp; 8588 struct ifreq *ifr; 8589 ill_walk_context_t ctx; 8590 ill_t *ill; 8591 ipif_t *ipif; 8592 struct sockaddr_in *sin; 8593 int32_t ifclen; 8594 zoneid_t zoneid; 8595 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8596 8597 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8598 8599 ip1dbg(("ip_sioctl_get_ifconf")); 8600 /* Existence verified in ip_wput_nondata */ 8601 mp1 = mp->b_cont->b_cont; 8602 iocp = (struct iocblk *)mp->b_rptr; 8603 zoneid = Q_TO_CONN(q)->conn_zoneid; 8604 8605 /* 8606 * The original SIOCGIFCONF passed in a struct ifconf which specified 8607 * the user buffer address and length into which the list of struct 8608 * ifreqs was to be copied. Since AT&T Streams does not seem to 8609 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8610 * the SIOCGIFCONF operation was redefined to simply provide 8611 * a large output buffer into which we are supposed to jam the ifreq 8612 * array. The same ioctl command code was used, despite the fact that 8613 * both the applications and the kernel code had to change, thus making 8614 * it impossible to support both interfaces. 8615 * 8616 * For reasons not good enough to try to explain, the following 8617 * algorithm is used for deciding what to do with one of these: 8618 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8619 * form with the output buffer coming down as the continuation message. 8620 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8621 * and we have to copy in the ifconf structure to find out how big the 8622 * output buffer is and where to copy out to. Sure no problem... 8623 * 8624 */ 8625 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8626 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8627 int numifs = 0; 8628 size_t ifc_bufsize; 8629 8630 /* 8631 * Must be (better be!) continuation of a TRANSPARENT 8632 * IOCTL. We just copied in the ifconf structure. 8633 */ 8634 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8635 (struct ifconf *)mp1->b_rptr); 8636 8637 /* 8638 * Allocate a buffer to hold requested information. 8639 * 8640 * If ifc_len is larger than what is needed, we only 8641 * allocate what we will use. 8642 * 8643 * If ifc_len is smaller than what is needed, return 8644 * EINVAL. 8645 * 8646 * XXX: the ill_t structure can hava 2 counters, for 8647 * v4 and v6 (not just ill_ipif_up_count) to store the 8648 * number of interfaces for a device, so we don't need 8649 * to count them here... 8650 */ 8651 numifs = ip_get_numifs(zoneid, ipst); 8652 8653 ifclen = STRUCT_FGET(ifc, ifc_len); 8654 ifc_bufsize = numifs * sizeof (struct ifreq); 8655 if (ifc_bufsize > ifclen) { 8656 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8657 /* old behaviour */ 8658 return (EINVAL); 8659 } else { 8660 ifc_bufsize = ifclen; 8661 } 8662 } 8663 8664 mp1 = mi_copyout_alloc(q, mp, 8665 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8666 if (mp1 == NULL) 8667 return (ENOMEM); 8668 8669 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8670 } 8671 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8672 /* 8673 * the SIOCGIFCONF ioctl only knows about 8674 * IPv4 addresses, so don't try to tell 8675 * it about interfaces with IPv6-only 8676 * addresses. (Last parm 'isv6' is B_FALSE) 8677 */ 8678 8679 ifr = (struct ifreq *)mp1->b_rptr; 8680 8681 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8682 ill = ILL_START_WALK_V4(&ctx, ipst); 8683 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8684 for (ipif = ill->ill_ipif; ipif != NULL; 8685 ipif = ipif->ipif_next) { 8686 if (zoneid != ipif->ipif_zoneid && 8687 ipif->ipif_zoneid != ALL_ZONES) 8688 continue; 8689 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8690 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8691 /* old behaviour */ 8692 rw_exit(&ipst->ips_ill_g_lock); 8693 return (EINVAL); 8694 } else { 8695 goto if_copydone; 8696 } 8697 } 8698 ipif_get_name(ipif, ifr->ifr_name, 8699 sizeof (ifr->ifr_name)); 8700 sin = (sin_t *)&ifr->ifr_addr; 8701 *sin = sin_null; 8702 sin->sin_family = AF_INET; 8703 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8704 ifr++; 8705 } 8706 } 8707 if_copydone: 8708 rw_exit(&ipst->ips_ill_g_lock); 8709 mp1->b_wptr = (uchar_t *)ifr; 8710 8711 if (STRUCT_BUF(ifc) != NULL) { 8712 STRUCT_FSET(ifc, ifc_len, 8713 (int)((uchar_t *)ifr - mp1->b_rptr)); 8714 } 8715 return (0); 8716 } 8717 8718 /* 8719 * Get the interfaces using the address hosted on the interface passed in, 8720 * as a source adddress 8721 */ 8722 /* ARGSUSED */ 8723 int 8724 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8725 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8726 { 8727 mblk_t *mp1; 8728 ill_t *ill, *ill_head; 8729 ipif_t *ipif, *orig_ipif; 8730 int numlifs = 0; 8731 size_t lifs_bufsize, lifsmaxlen; 8732 struct lifreq *lifr; 8733 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8734 uint_t ifindex; 8735 zoneid_t zoneid; 8736 int err = 0; 8737 boolean_t isv6 = B_FALSE; 8738 struct sockaddr_in *sin; 8739 struct sockaddr_in6 *sin6; 8740 STRUCT_HANDLE(lifsrcof, lifs); 8741 ip_stack_t *ipst; 8742 8743 ipst = CONNQ_TO_IPST(q); 8744 8745 ASSERT(q->q_next == NULL); 8746 8747 zoneid = Q_TO_CONN(q)->conn_zoneid; 8748 8749 /* Existence verified in ip_wput_nondata */ 8750 mp1 = mp->b_cont->b_cont; 8751 8752 /* 8753 * Must be (better be!) continuation of a TRANSPARENT 8754 * IOCTL. We just copied in the lifsrcof structure. 8755 */ 8756 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8757 (struct lifsrcof *)mp1->b_rptr); 8758 8759 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8760 return (EINVAL); 8761 8762 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8763 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8764 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8765 ip_process_ioctl, &err, ipst); 8766 if (ipif == NULL) { 8767 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8768 ifindex)); 8769 return (err); 8770 } 8771 8772 8773 /* Allocate a buffer to hold requested information */ 8774 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8775 lifs_bufsize = numlifs * sizeof (struct lifreq); 8776 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8777 /* The actual size needed is always returned in lifs_len */ 8778 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8779 8780 /* If the amount we need is more than what is passed in, abort */ 8781 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8782 ipif_refrele(ipif); 8783 return (0); 8784 } 8785 8786 mp1 = mi_copyout_alloc(q, mp, 8787 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8788 if (mp1 == NULL) { 8789 ipif_refrele(ipif); 8790 return (ENOMEM); 8791 } 8792 8793 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8794 bzero(mp1->b_rptr, lifs_bufsize); 8795 8796 lifr = (struct lifreq *)mp1->b_rptr; 8797 8798 ill = ill_head = ipif->ipif_ill; 8799 orig_ipif = ipif; 8800 8801 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8802 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8803 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8804 8805 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8806 for (; (ill != NULL) && (ill != ill_head); 8807 ill = ill->ill_usesrc_grp_next) { 8808 8809 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8810 break; 8811 8812 ipif = ill->ill_ipif; 8813 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8814 if (ipif->ipif_isv6) { 8815 sin6 = (sin6_t *)&lifr->lifr_addr; 8816 *sin6 = sin6_null; 8817 sin6->sin6_family = AF_INET6; 8818 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8819 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8820 &ipif->ipif_v6net_mask); 8821 } else { 8822 sin = (sin_t *)&lifr->lifr_addr; 8823 *sin = sin_null; 8824 sin->sin_family = AF_INET; 8825 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8826 lifr->lifr_addrlen = ip_mask_to_plen( 8827 ipif->ipif_net_mask); 8828 } 8829 lifr++; 8830 } 8831 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8832 rw_exit(&ipst->ips_ill_g_lock); 8833 ipif_refrele(orig_ipif); 8834 mp1->b_wptr = (uchar_t *)lifr; 8835 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8836 8837 return (0); 8838 } 8839 8840 /* ARGSUSED */ 8841 int 8842 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8843 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8844 { 8845 mblk_t *mp1; 8846 int list; 8847 ill_t *ill; 8848 ipif_t *ipif; 8849 int flags; 8850 int numlifs = 0; 8851 size_t lifc_bufsize; 8852 struct lifreq *lifr; 8853 sa_family_t family; 8854 struct sockaddr_in *sin; 8855 struct sockaddr_in6 *sin6; 8856 ill_walk_context_t ctx; 8857 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8858 int32_t lifclen; 8859 zoneid_t zoneid; 8860 STRUCT_HANDLE(lifconf, lifc); 8861 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8862 8863 ip1dbg(("ip_sioctl_get_lifconf")); 8864 8865 ASSERT(q->q_next == NULL); 8866 8867 zoneid = Q_TO_CONN(q)->conn_zoneid; 8868 8869 /* Existence verified in ip_wput_nondata */ 8870 mp1 = mp->b_cont->b_cont; 8871 8872 /* 8873 * An extended version of SIOCGIFCONF that takes an 8874 * additional address family and flags field. 8875 * AF_UNSPEC retrieve both IPv4 and IPv6. 8876 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8877 * interfaces are omitted. 8878 * Similarly, IPIF_TEMPORARY interfaces are omitted 8879 * unless LIFC_TEMPORARY is specified. 8880 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8881 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8882 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8883 * has priority over LIFC_NOXMIT. 8884 */ 8885 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8886 8887 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8888 return (EINVAL); 8889 8890 /* 8891 * Must be (better be!) continuation of a TRANSPARENT 8892 * IOCTL. We just copied in the lifconf structure. 8893 */ 8894 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8895 8896 family = STRUCT_FGET(lifc, lifc_family); 8897 flags = STRUCT_FGET(lifc, lifc_flags); 8898 8899 switch (family) { 8900 case AF_UNSPEC: 8901 /* 8902 * walk all ILL's. 8903 */ 8904 list = MAX_G_HEADS; 8905 break; 8906 case AF_INET: 8907 /* 8908 * walk only IPV4 ILL's. 8909 */ 8910 list = IP_V4_G_HEAD; 8911 break; 8912 case AF_INET6: 8913 /* 8914 * walk only IPV6 ILL's. 8915 */ 8916 list = IP_V6_G_HEAD; 8917 break; 8918 default: 8919 return (EAFNOSUPPORT); 8920 } 8921 8922 /* 8923 * Allocate a buffer to hold requested information. 8924 * 8925 * If lifc_len is larger than what is needed, we only 8926 * allocate what we will use. 8927 * 8928 * If lifc_len is smaller than what is needed, return 8929 * EINVAL. 8930 */ 8931 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8932 lifc_bufsize = numlifs * sizeof (struct lifreq); 8933 lifclen = STRUCT_FGET(lifc, lifc_len); 8934 if (lifc_bufsize > lifclen) { 8935 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8936 return (EINVAL); 8937 else 8938 lifc_bufsize = lifclen; 8939 } 8940 8941 mp1 = mi_copyout_alloc(q, mp, 8942 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8943 if (mp1 == NULL) 8944 return (ENOMEM); 8945 8946 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8947 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8948 8949 lifr = (struct lifreq *)mp1->b_rptr; 8950 8951 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8952 ill = ill_first(list, list, &ctx, ipst); 8953 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8954 for (ipif = ill->ill_ipif; ipif != NULL; 8955 ipif = ipif->ipif_next) { 8956 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8957 !(flags & LIFC_NOXMIT)) 8958 continue; 8959 8960 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8961 !(flags & LIFC_TEMPORARY)) 8962 continue; 8963 8964 if (((ipif->ipif_flags & 8965 (IPIF_NOXMIT|IPIF_NOLOCAL| 8966 IPIF_DEPRECATED)) || 8967 IS_LOOPBACK(ill) || 8968 !(ipif->ipif_flags & IPIF_UP)) && 8969 (flags & LIFC_EXTERNAL_SOURCE)) 8970 continue; 8971 8972 if (zoneid != ipif->ipif_zoneid && 8973 ipif->ipif_zoneid != ALL_ZONES && 8974 (zoneid != GLOBAL_ZONEID || 8975 !(flags & LIFC_ALLZONES))) 8976 continue; 8977 8978 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8979 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8980 rw_exit(&ipst->ips_ill_g_lock); 8981 return (EINVAL); 8982 } else { 8983 goto lif_copydone; 8984 } 8985 } 8986 8987 ipif_get_name(ipif, lifr->lifr_name, 8988 sizeof (lifr->lifr_name)); 8989 if (ipif->ipif_isv6) { 8990 sin6 = (sin6_t *)&lifr->lifr_addr; 8991 *sin6 = sin6_null; 8992 sin6->sin6_family = AF_INET6; 8993 sin6->sin6_addr = 8994 ipif->ipif_v6lcl_addr; 8995 lifr->lifr_addrlen = 8996 ip_mask_to_plen_v6( 8997 &ipif->ipif_v6net_mask); 8998 } else { 8999 sin = (sin_t *)&lifr->lifr_addr; 9000 *sin = sin_null; 9001 sin->sin_family = AF_INET; 9002 sin->sin_addr.s_addr = 9003 ipif->ipif_lcl_addr; 9004 lifr->lifr_addrlen = 9005 ip_mask_to_plen( 9006 ipif->ipif_net_mask); 9007 } 9008 lifr++; 9009 } 9010 } 9011 lif_copydone: 9012 rw_exit(&ipst->ips_ill_g_lock); 9013 9014 mp1->b_wptr = (uchar_t *)lifr; 9015 if (STRUCT_BUF(lifc) != NULL) { 9016 STRUCT_FSET(lifc, lifc_len, 9017 (int)((uchar_t *)lifr - mp1->b_rptr)); 9018 } 9019 return (0); 9020 } 9021 9022 /* ARGSUSED */ 9023 int 9024 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9025 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9026 { 9027 ip_stack_t *ipst; 9028 9029 if (q->q_next == NULL) 9030 ipst = CONNQ_TO_IPST(q); 9031 else 9032 ipst = ILLQ_TO_IPST(q); 9033 9034 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9035 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9036 return (0); 9037 } 9038 9039 static void 9040 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9041 { 9042 ip6_asp_t *table; 9043 size_t table_size; 9044 mblk_t *data_mp; 9045 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9046 ip_stack_t *ipst; 9047 9048 if (q->q_next == NULL) 9049 ipst = CONNQ_TO_IPST(q); 9050 else 9051 ipst = ILLQ_TO_IPST(q); 9052 9053 /* These two ioctls are I_STR only */ 9054 if (iocp->ioc_count == TRANSPARENT) { 9055 miocnak(q, mp, 0, EINVAL); 9056 return; 9057 } 9058 9059 data_mp = mp->b_cont; 9060 if (data_mp == NULL) { 9061 /* The user passed us a NULL argument */ 9062 table = NULL; 9063 table_size = iocp->ioc_count; 9064 } else { 9065 /* 9066 * The user provided a table. The stream head 9067 * may have copied in the user data in chunks, 9068 * so make sure everything is pulled up 9069 * properly. 9070 */ 9071 if (MBLKL(data_mp) < iocp->ioc_count) { 9072 mblk_t *new_data_mp; 9073 if ((new_data_mp = msgpullup(data_mp, -1)) == 9074 NULL) { 9075 miocnak(q, mp, 0, ENOMEM); 9076 return; 9077 } 9078 freemsg(data_mp); 9079 data_mp = new_data_mp; 9080 mp->b_cont = data_mp; 9081 } 9082 table = (ip6_asp_t *)data_mp->b_rptr; 9083 table_size = iocp->ioc_count; 9084 } 9085 9086 switch (iocp->ioc_cmd) { 9087 case SIOCGIP6ADDRPOLICY: 9088 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9089 if (iocp->ioc_rval == -1) 9090 iocp->ioc_error = EINVAL; 9091 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9092 else if (table != NULL && 9093 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9094 ip6_asp_t *src = table; 9095 ip6_asp32_t *dst = (void *)table; 9096 int count = table_size / sizeof (ip6_asp_t); 9097 int i; 9098 9099 /* 9100 * We need to do an in-place shrink of the array 9101 * to match the alignment attributes of the 9102 * 32-bit ABI looking at it. 9103 */ 9104 /* LINTED: logical expression always true: op "||" */ 9105 ASSERT(sizeof (*src) > sizeof (*dst)); 9106 for (i = 1; i < count; i++) 9107 bcopy(src + i, dst + i, sizeof (*dst)); 9108 } 9109 #endif 9110 break; 9111 9112 case SIOCSIP6ADDRPOLICY: 9113 ASSERT(mp->b_prev == NULL); 9114 mp->b_prev = (void *)q; 9115 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9116 /* 9117 * We pass in the datamodel here so that the ip6_asp_replace() 9118 * routine can handle converting from 32-bit to native formats 9119 * where necessary. 9120 * 9121 * A better way to handle this might be to convert the inbound 9122 * data structure here, and hang it off a new 'mp'; thus the 9123 * ip6_asp_replace() logic would always be dealing with native 9124 * format data structures.. 9125 * 9126 * (An even simpler way to handle these ioctls is to just 9127 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9128 * and just recompile everything that depends on it.) 9129 */ 9130 #endif 9131 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9132 iocp->ioc_flag & IOC_MODELS); 9133 return; 9134 } 9135 9136 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9137 qreply(q, mp); 9138 } 9139 9140 static void 9141 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9142 { 9143 mblk_t *data_mp; 9144 struct dstinforeq *dir; 9145 uint8_t *end, *cur; 9146 in6_addr_t *daddr, *saddr; 9147 ipaddr_t v4daddr; 9148 ire_t *ire; 9149 char *slabel, *dlabel; 9150 boolean_t isipv4; 9151 int match_ire; 9152 ill_t *dst_ill; 9153 ipif_t *src_ipif, *ire_ipif; 9154 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9155 zoneid_t zoneid; 9156 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9157 9158 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9159 zoneid = Q_TO_CONN(q)->conn_zoneid; 9160 9161 /* 9162 * This ioctl is I_STR only, and must have a 9163 * data mblk following the M_IOCTL mblk. 9164 */ 9165 data_mp = mp->b_cont; 9166 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9167 miocnak(q, mp, 0, EINVAL); 9168 return; 9169 } 9170 9171 if (MBLKL(data_mp) < iocp->ioc_count) { 9172 mblk_t *new_data_mp; 9173 9174 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9175 miocnak(q, mp, 0, ENOMEM); 9176 return; 9177 } 9178 freemsg(data_mp); 9179 data_mp = new_data_mp; 9180 mp->b_cont = data_mp; 9181 } 9182 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9183 9184 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9185 end - cur >= sizeof (struct dstinforeq); 9186 cur += sizeof (struct dstinforeq)) { 9187 dir = (struct dstinforeq *)cur; 9188 daddr = &dir->dir_daddr; 9189 saddr = &dir->dir_saddr; 9190 9191 /* 9192 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9193 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9194 * and ipif_select_source[_v6]() do not. 9195 */ 9196 dir->dir_dscope = ip_addr_scope_v6(daddr); 9197 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9198 9199 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9200 if (isipv4) { 9201 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9202 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9203 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9204 } else { 9205 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9206 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9207 } 9208 if (ire == NULL) { 9209 dir->dir_dreachable = 0; 9210 9211 /* move on to next dst addr */ 9212 continue; 9213 } 9214 dir->dir_dreachable = 1; 9215 9216 ire_ipif = ire->ire_ipif; 9217 if (ire_ipif == NULL) 9218 goto next_dst; 9219 9220 /* 9221 * We expect to get back an interface ire or a 9222 * gateway ire cache entry. For both types, the 9223 * output interface is ire_ipif->ipif_ill. 9224 */ 9225 dst_ill = ire_ipif->ipif_ill; 9226 dir->dir_dmactype = dst_ill->ill_mactype; 9227 9228 if (isipv4) { 9229 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9230 } else { 9231 src_ipif = ipif_select_source_v6(dst_ill, 9232 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9233 zoneid); 9234 } 9235 if (src_ipif == NULL) 9236 goto next_dst; 9237 9238 *saddr = src_ipif->ipif_v6lcl_addr; 9239 dir->dir_sscope = ip_addr_scope_v6(saddr); 9240 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9241 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9242 dir->dir_sdeprecated = 9243 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9244 ipif_refrele(src_ipif); 9245 next_dst: 9246 ire_refrele(ire); 9247 } 9248 miocack(q, mp, iocp->ioc_count, 0); 9249 } 9250 9251 9252 /* 9253 * Check if this is an address assigned to this machine. 9254 * Skips interfaces that are down by using ire checks. 9255 * Translates mapped addresses to v4 addresses and then 9256 * treats them as such, returning true if the v4 address 9257 * associated with this mapped address is configured. 9258 * Note: Applications will have to be careful what they do 9259 * with the response; use of mapped addresses limits 9260 * what can be done with the socket, especially with 9261 * respect to socket options and ioctls - neither IPv4 9262 * options nor IPv6 sticky options/ancillary data options 9263 * may be used. 9264 */ 9265 /* ARGSUSED */ 9266 int 9267 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9268 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9269 { 9270 struct sioc_addrreq *sia; 9271 sin_t *sin; 9272 ire_t *ire; 9273 mblk_t *mp1; 9274 zoneid_t zoneid; 9275 ip_stack_t *ipst; 9276 9277 ip1dbg(("ip_sioctl_tmyaddr")); 9278 9279 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9280 zoneid = Q_TO_CONN(q)->conn_zoneid; 9281 ipst = CONNQ_TO_IPST(q); 9282 9283 /* Existence verified in ip_wput_nondata */ 9284 mp1 = mp->b_cont->b_cont; 9285 sia = (struct sioc_addrreq *)mp1->b_rptr; 9286 sin = (sin_t *)&sia->sa_addr; 9287 switch (sin->sin_family) { 9288 case AF_INET6: { 9289 sin6_t *sin6 = (sin6_t *)sin; 9290 9291 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9292 ipaddr_t v4_addr; 9293 9294 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9295 v4_addr); 9296 ire = ire_ctable_lookup(v4_addr, 0, 9297 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9298 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9299 } else { 9300 in6_addr_t v6addr; 9301 9302 v6addr = sin6->sin6_addr; 9303 ire = ire_ctable_lookup_v6(&v6addr, 0, 9304 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9305 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9306 } 9307 break; 9308 } 9309 case AF_INET: { 9310 ipaddr_t v4addr; 9311 9312 v4addr = sin->sin_addr.s_addr; 9313 ire = ire_ctable_lookup(v4addr, 0, 9314 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9315 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9316 break; 9317 } 9318 default: 9319 return (EAFNOSUPPORT); 9320 } 9321 if (ire != NULL) { 9322 sia->sa_res = 1; 9323 ire_refrele(ire); 9324 } else { 9325 sia->sa_res = 0; 9326 } 9327 return (0); 9328 } 9329 9330 /* 9331 * Check if this is an address assigned on-link i.e. neighbor, 9332 * and makes sure it's reachable from the current zone. 9333 * Returns true for my addresses as well. 9334 * Translates mapped addresses to v4 addresses and then 9335 * treats them as such, returning true if the v4 address 9336 * associated with this mapped address is configured. 9337 * Note: Applications will have to be careful what they do 9338 * with the response; use of mapped addresses limits 9339 * what can be done with the socket, especially with 9340 * respect to socket options and ioctls - neither IPv4 9341 * options nor IPv6 sticky options/ancillary data options 9342 * may be used. 9343 */ 9344 /* ARGSUSED */ 9345 int 9346 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9347 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9348 { 9349 struct sioc_addrreq *sia; 9350 sin_t *sin; 9351 mblk_t *mp1; 9352 ire_t *ire = NULL; 9353 zoneid_t zoneid; 9354 ip_stack_t *ipst; 9355 9356 ip1dbg(("ip_sioctl_tonlink")); 9357 9358 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9359 zoneid = Q_TO_CONN(q)->conn_zoneid; 9360 ipst = CONNQ_TO_IPST(q); 9361 9362 /* Existence verified in ip_wput_nondata */ 9363 mp1 = mp->b_cont->b_cont; 9364 sia = (struct sioc_addrreq *)mp1->b_rptr; 9365 sin = (sin_t *)&sia->sa_addr; 9366 9367 /* 9368 * Match addresses with a zero gateway field to avoid 9369 * routes going through a router. 9370 * Exclude broadcast and multicast addresses. 9371 */ 9372 switch (sin->sin_family) { 9373 case AF_INET6: { 9374 sin6_t *sin6 = (sin6_t *)sin; 9375 9376 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9377 ipaddr_t v4_addr; 9378 9379 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9380 v4_addr); 9381 if (!CLASSD(v4_addr)) { 9382 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9383 NULL, NULL, zoneid, NULL, 9384 MATCH_IRE_GW, ipst); 9385 } 9386 } else { 9387 in6_addr_t v6addr; 9388 in6_addr_t v6gw; 9389 9390 v6addr = sin6->sin6_addr; 9391 v6gw = ipv6_all_zeros; 9392 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9393 ire = ire_route_lookup_v6(&v6addr, 0, 9394 &v6gw, 0, NULL, NULL, zoneid, 9395 NULL, MATCH_IRE_GW, ipst); 9396 } 9397 } 9398 break; 9399 } 9400 case AF_INET: { 9401 ipaddr_t v4addr; 9402 9403 v4addr = sin->sin_addr.s_addr; 9404 if (!CLASSD(v4addr)) { 9405 ire = ire_route_lookup(v4addr, 0, 0, 0, 9406 NULL, NULL, zoneid, NULL, 9407 MATCH_IRE_GW, ipst); 9408 } 9409 break; 9410 } 9411 default: 9412 return (EAFNOSUPPORT); 9413 } 9414 sia->sa_res = 0; 9415 if (ire != NULL) { 9416 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9417 IRE_LOCAL|IRE_LOOPBACK)) { 9418 sia->sa_res = 1; 9419 } 9420 ire_refrele(ire); 9421 } 9422 return (0); 9423 } 9424 9425 /* 9426 * TBD: implement when kernel maintaines a list of site prefixes. 9427 */ 9428 /* ARGSUSED */ 9429 int 9430 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9431 ip_ioctl_cmd_t *ipip, void *ifreq) 9432 { 9433 return (ENXIO); 9434 } 9435 9436 /* ARGSUSED */ 9437 int 9438 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9439 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9440 { 9441 ill_t *ill; 9442 mblk_t *mp1; 9443 conn_t *connp; 9444 boolean_t success; 9445 9446 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9447 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9448 /* ioctl comes down on an conn */ 9449 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9450 connp = Q_TO_CONN(q); 9451 9452 mp->b_datap->db_type = M_IOCTL; 9453 9454 /* 9455 * Send down a copy. (copymsg does not copy b_next/b_prev). 9456 * The original mp contains contaminated b_next values due to 'mi', 9457 * which is needed to do the mi_copy_done. Unfortunately if we 9458 * send down the original mblk itself and if we are popped due to an 9459 * an unplumb before the response comes back from tunnel, 9460 * the streamhead (which does a freemsg) will see this contaminated 9461 * message and the assertion in freemsg about non-null b_next/b_prev 9462 * will panic a DEBUG kernel. 9463 */ 9464 mp1 = copymsg(mp); 9465 if (mp1 == NULL) 9466 return (ENOMEM); 9467 9468 ill = ipif->ipif_ill; 9469 mutex_enter(&connp->conn_lock); 9470 mutex_enter(&ill->ill_lock); 9471 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9472 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9473 mp, 0); 9474 } else { 9475 success = ill_pending_mp_add(ill, connp, mp); 9476 } 9477 mutex_exit(&ill->ill_lock); 9478 mutex_exit(&connp->conn_lock); 9479 9480 if (success) { 9481 ip1dbg(("sending down tunparam request ")); 9482 putnext(ill->ill_wq, mp1); 9483 return (EINPROGRESS); 9484 } else { 9485 /* The conn has started closing */ 9486 freemsg(mp1); 9487 return (EINTR); 9488 } 9489 } 9490 9491 /* 9492 * ARP IOCTLs. 9493 * How does IP get in the business of fronting ARP configuration/queries? 9494 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9495 * are by tradition passed in through a datagram socket. That lands in IP. 9496 * As it happens, this is just as well since the interface is quite crude in 9497 * that it passes in no information about protocol or hardware types, or 9498 * interface association. After making the protocol assumption, IP is in 9499 * the position to look up the name of the ILL, which ARP will need, and 9500 * format a request that can be handled by ARP. The request is passed up 9501 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9502 * back a response. ARP supports its own set of more general IOCTLs, in 9503 * case anyone is interested. 9504 */ 9505 /* ARGSUSED */ 9506 int 9507 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9508 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9509 { 9510 mblk_t *mp1; 9511 mblk_t *mp2; 9512 mblk_t *pending_mp; 9513 ipaddr_t ipaddr; 9514 area_t *area; 9515 struct iocblk *iocp; 9516 conn_t *connp; 9517 struct arpreq *ar; 9518 struct xarpreq *xar; 9519 int flags, alength; 9520 char *lladdr; 9521 ip_stack_t *ipst; 9522 ill_t *ill = ipif->ipif_ill; 9523 boolean_t if_arp_ioctl = B_FALSE; 9524 9525 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9526 connp = Q_TO_CONN(q); 9527 ipst = connp->conn_netstack->netstack_ip; 9528 9529 if (ipip->ipi_cmd_type == XARP_CMD) { 9530 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9531 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9532 ar = NULL; 9533 9534 flags = xar->xarp_flags; 9535 lladdr = LLADDR(&xar->xarp_ha); 9536 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9537 /* 9538 * Validate against user's link layer address length 9539 * input and name and addr length limits. 9540 */ 9541 alength = ill->ill_phys_addr_length; 9542 if (ipip->ipi_cmd == SIOCSXARP) { 9543 if (alength != xar->xarp_ha.sdl_alen || 9544 (alength + xar->xarp_ha.sdl_nlen > 9545 sizeof (xar->xarp_ha.sdl_data))) 9546 return (EINVAL); 9547 } 9548 } else { 9549 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9550 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9551 xar = NULL; 9552 9553 flags = ar->arp_flags; 9554 lladdr = ar->arp_ha.sa_data; 9555 /* 9556 * Theoretically, the sa_family could tell us what link 9557 * layer type this operation is trying to deal with. By 9558 * common usage AF_UNSPEC means ethernet. We'll assume 9559 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9560 * for now. Our new SIOC*XARP ioctls can be used more 9561 * generally. 9562 * 9563 * If the underlying media happens to have a non 6 byte 9564 * address, arp module will fail set/get, but the del 9565 * operation will succeed. 9566 */ 9567 alength = 6; 9568 if ((ipip->ipi_cmd != SIOCDARP) && 9569 (alength != ill->ill_phys_addr_length)) { 9570 return (EINVAL); 9571 } 9572 } 9573 9574 /* 9575 * We are going to pass up to ARP a packet chain that looks 9576 * like: 9577 * 9578 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9579 * 9580 * Get a copy of the original IOCTL mblk to head the chain, 9581 * to be sent up (in mp1). Also get another copy to store 9582 * in the ill_pending_mp list, for matching the response 9583 * when it comes back from ARP. 9584 */ 9585 mp1 = copyb(mp); 9586 pending_mp = copymsg(mp); 9587 if (mp1 == NULL || pending_mp == NULL) { 9588 if (mp1 != NULL) 9589 freeb(mp1); 9590 if (pending_mp != NULL) 9591 inet_freemsg(pending_mp); 9592 return (ENOMEM); 9593 } 9594 9595 ipaddr = sin->sin_addr.s_addr; 9596 9597 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9598 (caddr_t)&ipaddr); 9599 if (mp2 == NULL) { 9600 freeb(mp1); 9601 inet_freemsg(pending_mp); 9602 return (ENOMEM); 9603 } 9604 /* Put together the chain. */ 9605 mp1->b_cont = mp2; 9606 mp1->b_datap->db_type = M_IOCTL; 9607 mp2->b_cont = mp; 9608 mp2->b_datap->db_type = M_DATA; 9609 9610 iocp = (struct iocblk *)mp1->b_rptr; 9611 9612 /* 9613 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9614 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9615 * cp_private field (or cp_rval on 32-bit systems) in place of the 9616 * ioc_count field; set ioc_count to be correct. 9617 */ 9618 iocp->ioc_count = MBLKL(mp1->b_cont); 9619 9620 /* 9621 * Set the proper command in the ARP message. 9622 * Convert the SIOC{G|S|D}ARP calls into our 9623 * AR_ENTRY_xxx calls. 9624 */ 9625 area = (area_t *)mp2->b_rptr; 9626 switch (iocp->ioc_cmd) { 9627 case SIOCDARP: 9628 case SIOCDXARP: 9629 /* 9630 * We defer deleting the corresponding IRE until 9631 * we return from arp. 9632 */ 9633 area->area_cmd = AR_ENTRY_DELETE; 9634 area->area_proto_mask_offset = 0; 9635 break; 9636 case SIOCGARP: 9637 case SIOCGXARP: 9638 area->area_cmd = AR_ENTRY_SQUERY; 9639 area->area_proto_mask_offset = 0; 9640 break; 9641 case SIOCSARP: 9642 case SIOCSXARP: 9643 /* 9644 * Delete the corresponding ire to make sure IP will 9645 * pick up any change from arp. 9646 */ 9647 if (!if_arp_ioctl) { 9648 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9649 } else { 9650 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9651 if (ipif != NULL) { 9652 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9653 ipst); 9654 ipif_refrele(ipif); 9655 } 9656 } 9657 break; 9658 } 9659 iocp->ioc_cmd = area->area_cmd; 9660 9661 /* 9662 * Fill in the rest of the ARP operation fields. 9663 */ 9664 area->area_hw_addr_length = alength; 9665 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9666 9667 /* Translate the flags. */ 9668 if (flags & ATF_PERM) 9669 area->area_flags |= ACE_F_PERMANENT; 9670 if (flags & ATF_PUBL) 9671 area->area_flags |= ACE_F_PUBLISH; 9672 if (flags & ATF_AUTHORITY) 9673 area->area_flags |= ACE_F_AUTHORITY; 9674 9675 /* 9676 * Before sending 'mp' to ARP, we have to clear the b_next 9677 * and b_prev. Otherwise if STREAMS encounters such a message 9678 * in freemsg(), (because ARP can close any time) it can cause 9679 * a panic. But mi code needs the b_next and b_prev values of 9680 * mp->b_cont, to complete the ioctl. So we store it here 9681 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9682 * when the response comes down from ARP. 9683 */ 9684 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9685 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9686 mp->b_cont->b_next = NULL; 9687 mp->b_cont->b_prev = NULL; 9688 9689 mutex_enter(&connp->conn_lock); 9690 mutex_enter(&ill->ill_lock); 9691 /* conn has not yet started closing, hence this can't fail */ 9692 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9693 mutex_exit(&ill->ill_lock); 9694 mutex_exit(&connp->conn_lock); 9695 9696 /* 9697 * Up to ARP it goes. The response will come back in ip_wput() as an 9698 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9699 */ 9700 putnext(ill->ill_rq, mp1); 9701 return (EINPROGRESS); 9702 } 9703 9704 /* 9705 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9706 * the associated sin and refhold and return the associated ipif via `ci'. 9707 */ 9708 int 9709 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9710 cmd_info_t *ci, ipsq_func_t func) 9711 { 9712 mblk_t *mp1; 9713 int err; 9714 sin_t *sin; 9715 conn_t *connp; 9716 ipif_t *ipif; 9717 ire_t *ire = NULL; 9718 ill_t *ill = NULL; 9719 boolean_t exists; 9720 ip_stack_t *ipst; 9721 struct arpreq *ar; 9722 struct xarpreq *xar; 9723 struct sockaddr_dl *sdl; 9724 9725 /* ioctl comes down on a conn */ 9726 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9727 connp = Q_TO_CONN(q); 9728 if (connp->conn_af_isv6) 9729 return (ENXIO); 9730 9731 ipst = connp->conn_netstack->netstack_ip; 9732 9733 /* Verified in ip_wput_nondata */ 9734 mp1 = mp->b_cont->b_cont; 9735 9736 if (ipip->ipi_cmd_type == XARP_CMD) { 9737 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9738 xar = (struct xarpreq *)mp1->b_rptr; 9739 sin = (sin_t *)&xar->xarp_pa; 9740 sdl = &xar->xarp_ha; 9741 9742 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9743 return (ENXIO); 9744 if (sdl->sdl_nlen >= LIFNAMSIZ) 9745 return (EINVAL); 9746 } else { 9747 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9748 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9749 ar = (struct arpreq *)mp1->b_rptr; 9750 sin = (sin_t *)&ar->arp_pa; 9751 } 9752 9753 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9754 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9755 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9756 mp, func, &err, ipst); 9757 if (ipif == NULL) 9758 return (err); 9759 if (ipif->ipif_id != 0 || 9760 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9761 ipif_refrele(ipif); 9762 return (ENXIO); 9763 } 9764 } else { 9765 /* 9766 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9767 * 0: use the IP address to figure out the ill. In the IPMP 9768 * case, a simple forwarding table lookup will return the 9769 * IRE_IF_RESOLVER for the first interface in the group, which 9770 * might not be the interface on which the requested IP 9771 * address was resolved due to the ill selection algorithm 9772 * (see ip_newroute_get_dst_ill()). So we do a cache table 9773 * lookup first: if the IRE cache entry for the IP address is 9774 * still there, it will contain the ill pointer for the right 9775 * interface, so we use that. If the cache entry has been 9776 * flushed, we fall back to the forwarding table lookup. This 9777 * should be rare enough since IRE cache entries have a longer 9778 * life expectancy than ARP cache entries. 9779 */ 9780 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9781 ipst); 9782 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9783 ((ill = ire_to_ill(ire)) == NULL) || 9784 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9785 if (ire != NULL) 9786 ire_refrele(ire); 9787 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9788 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9789 NULL, MATCH_IRE_TYPE, ipst); 9790 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9791 9792 if (ire != NULL) 9793 ire_refrele(ire); 9794 return (ENXIO); 9795 } 9796 } 9797 ASSERT(ire != NULL && ill != NULL); 9798 ipif = ill->ill_ipif; 9799 ipif_refhold(ipif); 9800 ire_refrele(ire); 9801 } 9802 ci->ci_sin = sin; 9803 ci->ci_ipif = ipif; 9804 return (0); 9805 } 9806 9807 /* 9808 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9809 * atomically set/clear the muxids. Also complete the ioctl by acking or 9810 * naking it. Note that the code is structured such that the link type, 9811 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9812 * its clones use the persistent link, while pppd(1M) and perhaps many 9813 * other daemons may use non-persistent link. When combined with some 9814 * ill_t states, linking and unlinking lower streams may be used as 9815 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9816 */ 9817 /* ARGSUSED */ 9818 void 9819 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9820 { 9821 mblk_t *mp1, *mp2; 9822 struct linkblk *li; 9823 struct ipmx_s *ipmxp; 9824 ill_t *ill; 9825 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9826 int err = 0; 9827 boolean_t entered_ipsq = B_FALSE; 9828 boolean_t islink; 9829 ip_stack_t *ipst; 9830 9831 if (CONN_Q(q)) 9832 ipst = CONNQ_TO_IPST(q); 9833 else 9834 ipst = ILLQ_TO_IPST(q); 9835 9836 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9837 ioccmd == I_LINK || ioccmd == I_UNLINK); 9838 9839 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9840 9841 mp1 = mp->b_cont; /* This is the linkblk info */ 9842 li = (struct linkblk *)mp1->b_rptr; 9843 9844 /* 9845 * ARP has added this special mblk, and the utility is asking us 9846 * to perform consistency checks, and also atomically set the 9847 * muxid. Ifconfig is an example. It achieves this by using 9848 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9849 * to /dev/udp[6] stream for use as the mux when plinking the IP 9850 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9851 * and other comments in this routine for more details. 9852 */ 9853 mp2 = mp1->b_cont; /* This is added by ARP */ 9854 9855 /* 9856 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9857 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9858 * get the special mblk above. For backward compatibility, we 9859 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9860 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9861 * not atomic, and can leave the streams unplumbable if the utility 9862 * is interrupted before it does the SIOCSLIFMUXID. 9863 */ 9864 if (mp2 == NULL) { 9865 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9866 if (err == EINPROGRESS) 9867 return; 9868 goto done; 9869 } 9870 9871 /* 9872 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9873 * ARP has appended this last mblk to tell us whether the lower stream 9874 * is an arp-dev stream or an IP module stream. 9875 */ 9876 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9877 if (ipmxp->ipmx_arpdev_stream) { 9878 /* 9879 * The lower stream is the arp-dev stream. 9880 */ 9881 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9882 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9883 if (ill == NULL) { 9884 if (err == EINPROGRESS) 9885 return; 9886 err = EINVAL; 9887 goto done; 9888 } 9889 9890 if (ipsq == NULL) { 9891 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9892 NEW_OP, B_TRUE); 9893 if (ipsq == NULL) { 9894 ill_refrele(ill); 9895 return; 9896 } 9897 entered_ipsq = B_TRUE; 9898 } 9899 ASSERT(IAM_WRITER_ILL(ill)); 9900 ill_refrele(ill); 9901 9902 /* 9903 * To ensure consistency between IP and ARP, the following 9904 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9905 * This is because the muxid's are stored in the IP stream on 9906 * the ill. 9907 * 9908 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9909 * the ARP stream. On an arp-dev stream, IP checks that it is 9910 * not yet plinked, and it also checks that the corresponding 9911 * IP stream is already plinked. 9912 * 9913 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9914 * punlinking the IP stream. IP does not allow punlink of the 9915 * IP stream unless the arp stream has been punlinked. 9916 */ 9917 if ((islink && 9918 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9919 (!islink && ill->ill_arp_muxid != li->l_index)) { 9920 err = EINVAL; 9921 goto done; 9922 } 9923 ill->ill_arp_muxid = islink ? li->l_index : 0; 9924 } else { 9925 /* 9926 * The lower stream is probably an IP module stream. Do 9927 * consistency checking. 9928 */ 9929 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9930 if (err == EINPROGRESS) 9931 return; 9932 } 9933 done: 9934 if (err == 0) 9935 miocack(q, mp, 0, 0); 9936 else 9937 miocnak(q, mp, 0, err); 9938 9939 /* Conn was refheld in ip_sioctl_copyin_setup */ 9940 if (CONN_Q(q)) 9941 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9942 if (entered_ipsq) 9943 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9944 } 9945 9946 /* 9947 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9948 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9949 * module stream). If `doconsist' is set, then do the extended consistency 9950 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9951 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9952 * an error code on failure. 9953 */ 9954 static int 9955 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9956 struct linkblk *li, boolean_t doconsist) 9957 { 9958 ill_t *ill; 9959 queue_t *ipwq, *dwq; 9960 const char *name; 9961 struct qinit *qinfo; 9962 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9963 boolean_t entered_ipsq = B_FALSE; 9964 9965 /* 9966 * Walk the lower stream to verify it's the IP module stream. 9967 * The IP module is identified by its name, wput function, 9968 * and non-NULL q_next. STREAMS ensures that the lower stream 9969 * (li->l_qbot) will not vanish until this ioctl completes. 9970 */ 9971 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9972 qinfo = ipwq->q_qinfo; 9973 name = qinfo->qi_minfo->mi_idname; 9974 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9975 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9976 break; 9977 } 9978 } 9979 9980 /* 9981 * If this isn't an IP module stream, bail. 9982 */ 9983 if (ipwq == NULL) 9984 return (0); 9985 9986 ill = ipwq->q_ptr; 9987 ASSERT(ill != NULL); 9988 9989 if (ipsq == NULL) { 9990 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9991 NEW_OP, B_TRUE); 9992 if (ipsq == NULL) 9993 return (EINPROGRESS); 9994 entered_ipsq = B_TRUE; 9995 } 9996 ASSERT(IAM_WRITER_ILL(ill)); 9997 9998 if (doconsist) { 9999 /* 10000 * Consistency checking requires that I_{P}LINK occurs 10001 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10002 * occurs prior to clearing ill_arp_muxid. 10003 */ 10004 if ((islink && ill->ill_ip_muxid != 0) || 10005 (!islink && ill->ill_arp_muxid != 0)) { 10006 if (entered_ipsq) 10007 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10008 return (EINVAL); 10009 } 10010 } 10011 10012 /* 10013 * As part of I_{P}LINKing, stash the number of downstream modules and 10014 * the read queue of the module immediately below IP in the ill. 10015 * These are used during the capability negotiation below. 10016 */ 10017 ill->ill_lmod_rq = NULL; 10018 ill->ill_lmod_cnt = 0; 10019 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10020 ill->ill_lmod_rq = RD(dwq); 10021 for (; dwq != NULL; dwq = dwq->q_next) 10022 ill->ill_lmod_cnt++; 10023 } 10024 10025 if (doconsist) 10026 ill->ill_ip_muxid = islink ? li->l_index : 0; 10027 10028 /* 10029 * If there's at least one up ipif on this ill, then we're bound to 10030 * the underlying driver via DLPI. In that case, renegotiate 10031 * capabilities to account for any possible change in modules 10032 * interposed between IP and the driver. 10033 */ 10034 if (ill->ill_ipif_up_count > 0) { 10035 if (islink) 10036 ill_capability_probe(ill); 10037 else 10038 ill_capability_reset(ill); 10039 } 10040 10041 if (entered_ipsq) 10042 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10043 10044 return (0); 10045 } 10046 10047 /* 10048 * Search the ioctl command in the ioctl tables and return a pointer 10049 * to the ioctl command information. The ioctl command tables are 10050 * static and fully populated at compile time. 10051 */ 10052 ip_ioctl_cmd_t * 10053 ip_sioctl_lookup(int ioc_cmd) 10054 { 10055 int index; 10056 ip_ioctl_cmd_t *ipip; 10057 ip_ioctl_cmd_t *ipip_end; 10058 10059 if (ioc_cmd == IPI_DONTCARE) 10060 return (NULL); 10061 10062 /* 10063 * Do a 2 step search. First search the indexed table 10064 * based on the least significant byte of the ioctl cmd. 10065 * If we don't find a match, then search the misc table 10066 * serially. 10067 */ 10068 index = ioc_cmd & 0xFF; 10069 if (index < ip_ndx_ioctl_count) { 10070 ipip = &ip_ndx_ioctl_table[index]; 10071 if (ipip->ipi_cmd == ioc_cmd) { 10072 /* Found a match in the ndx table */ 10073 return (ipip); 10074 } 10075 } 10076 10077 /* Search the misc table */ 10078 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10079 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10080 if (ipip->ipi_cmd == ioc_cmd) 10081 /* Found a match in the misc table */ 10082 return (ipip); 10083 } 10084 10085 return (NULL); 10086 } 10087 10088 /* 10089 * Wrapper function for resuming deferred ioctl processing 10090 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10091 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10092 */ 10093 /* ARGSUSED */ 10094 void 10095 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10096 void *dummy_arg) 10097 { 10098 ip_sioctl_copyin_setup(q, mp); 10099 } 10100 10101 /* 10102 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10103 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10104 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10105 * We establish here the size of the block to be copied in. mi_copyin 10106 * arranges for this to happen, an processing continues in ip_wput with 10107 * an M_IOCDATA message. 10108 */ 10109 void 10110 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10111 { 10112 int copyin_size; 10113 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10114 ip_ioctl_cmd_t *ipip; 10115 cred_t *cr; 10116 ip_stack_t *ipst; 10117 10118 if (CONN_Q(q)) 10119 ipst = CONNQ_TO_IPST(q); 10120 else 10121 ipst = ILLQ_TO_IPST(q); 10122 10123 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10124 if (ipip == NULL) { 10125 /* 10126 * The ioctl is not one we understand or own. 10127 * Pass it along to be processed down stream, 10128 * if this is a module instance of IP, else nak 10129 * the ioctl. 10130 */ 10131 if (q->q_next == NULL) { 10132 goto nak; 10133 } else { 10134 putnext(q, mp); 10135 return; 10136 } 10137 } 10138 10139 /* 10140 * If this is deferred, then we will do all the checks when we 10141 * come back. 10142 */ 10143 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10144 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10145 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10146 return; 10147 } 10148 10149 /* 10150 * Only allow a very small subset of IP ioctls on this stream if 10151 * IP is a module and not a driver. Allowing ioctls to be processed 10152 * in this case may cause assert failures or data corruption. 10153 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10154 * ioctls allowed on an IP module stream, after which this stream 10155 * normally becomes a multiplexor (at which time the stream head 10156 * will fail all ioctls). 10157 */ 10158 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10159 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10160 /* 10161 * Pass common Streams ioctls which the IP 10162 * module does not own or consume along to 10163 * be processed down stream. 10164 */ 10165 putnext(q, mp); 10166 return; 10167 } else { 10168 goto nak; 10169 } 10170 } 10171 10172 /* Make sure we have ioctl data to process. */ 10173 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10174 goto nak; 10175 10176 /* 10177 * Prefer dblk credential over ioctl credential; some synthesized 10178 * ioctls have kcred set because there's no way to crhold() 10179 * a credential in some contexts. (ioc_cr is not crfree() by 10180 * the framework; the caller of ioctl needs to hold the reference 10181 * for the duration of the call). 10182 */ 10183 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10184 10185 /* Make sure normal users don't send down privileged ioctls */ 10186 if ((ipip->ipi_flags & IPI_PRIV) && 10187 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10188 /* We checked the privilege earlier but log it here */ 10189 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10190 return; 10191 } 10192 10193 /* 10194 * The ioctl command tables can only encode fixed length 10195 * ioctl data. If the length is variable, the table will 10196 * encode the length as zero. Such special cases are handled 10197 * below in the switch. 10198 */ 10199 if (ipip->ipi_copyin_size != 0) { 10200 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10201 return; 10202 } 10203 10204 switch (iocp->ioc_cmd) { 10205 case O_SIOCGIFCONF: 10206 case SIOCGIFCONF: 10207 /* 10208 * This IOCTL is hilarious. See comments in 10209 * ip_sioctl_get_ifconf for the story. 10210 */ 10211 if (iocp->ioc_count == TRANSPARENT) 10212 copyin_size = SIZEOF_STRUCT(ifconf, 10213 iocp->ioc_flag); 10214 else 10215 copyin_size = iocp->ioc_count; 10216 mi_copyin(q, mp, NULL, copyin_size); 10217 return; 10218 10219 case O_SIOCGLIFCONF: 10220 case SIOCGLIFCONF: 10221 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10222 mi_copyin(q, mp, NULL, copyin_size); 10223 return; 10224 10225 case SIOCGLIFSRCOF: 10226 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10227 mi_copyin(q, mp, NULL, copyin_size); 10228 return; 10229 case SIOCGIP6ADDRPOLICY: 10230 ip_sioctl_ip6addrpolicy(q, mp); 10231 ip6_asp_table_refrele(ipst); 10232 return; 10233 10234 case SIOCSIP6ADDRPOLICY: 10235 ip_sioctl_ip6addrpolicy(q, mp); 10236 return; 10237 10238 case SIOCGDSTINFO: 10239 ip_sioctl_dstinfo(q, mp); 10240 ip6_asp_table_refrele(ipst); 10241 return; 10242 10243 case I_PLINK: 10244 case I_PUNLINK: 10245 case I_LINK: 10246 case I_UNLINK: 10247 /* 10248 * We treat non-persistent link similarly as the persistent 10249 * link case, in terms of plumbing/unplumbing, as well as 10250 * dynamic re-plumbing events indicator. See comments 10251 * in ip_sioctl_plink() for more. 10252 * 10253 * Request can be enqueued in the 'ipsq' while waiting 10254 * to become exclusive. So bump up the conn ref. 10255 */ 10256 if (CONN_Q(q)) 10257 CONN_INC_REF(Q_TO_CONN(q)); 10258 ip_sioctl_plink(NULL, q, mp, NULL); 10259 return; 10260 10261 case ND_GET: 10262 case ND_SET: 10263 /* 10264 * Use of the nd table requires holding the reader lock. 10265 * Modifying the nd table thru nd_load/nd_unload requires 10266 * the writer lock. 10267 */ 10268 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10269 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10270 rw_exit(&ipst->ips_ip_g_nd_lock); 10271 10272 if (iocp->ioc_error) 10273 iocp->ioc_count = 0; 10274 mp->b_datap->db_type = M_IOCACK; 10275 qreply(q, mp); 10276 return; 10277 } 10278 rw_exit(&ipst->ips_ip_g_nd_lock); 10279 /* 10280 * We don't understand this subioctl of ND_GET / ND_SET. 10281 * Maybe intended for some driver / module below us 10282 */ 10283 if (q->q_next) { 10284 putnext(q, mp); 10285 } else { 10286 iocp->ioc_error = ENOENT; 10287 mp->b_datap->db_type = M_IOCNAK; 10288 iocp->ioc_count = 0; 10289 qreply(q, mp); 10290 } 10291 return; 10292 10293 case IP_IOCTL: 10294 ip_wput_ioctl(q, mp); 10295 return; 10296 default: 10297 cmn_err(CE_PANIC, "should not happen "); 10298 } 10299 nak: 10300 if (mp->b_cont != NULL) { 10301 freemsg(mp->b_cont); 10302 mp->b_cont = NULL; 10303 } 10304 iocp->ioc_error = EINVAL; 10305 mp->b_datap->db_type = M_IOCNAK; 10306 iocp->ioc_count = 0; 10307 qreply(q, mp); 10308 } 10309 10310 /* ip_wput hands off ARP IOCTL responses to us */ 10311 void 10312 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10313 { 10314 struct arpreq *ar; 10315 struct xarpreq *xar; 10316 area_t *area; 10317 mblk_t *area_mp; 10318 struct iocblk *iocp; 10319 mblk_t *orig_ioc_mp, *tmp; 10320 struct iocblk *orig_iocp; 10321 ill_t *ill; 10322 conn_t *connp = NULL; 10323 uint_t ioc_id; 10324 mblk_t *pending_mp; 10325 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10326 int *flagsp; 10327 char *storage = NULL; 10328 sin_t *sin; 10329 ipaddr_t addr; 10330 int err; 10331 ip_stack_t *ipst; 10332 10333 ill = q->q_ptr; 10334 ASSERT(ill != NULL); 10335 ipst = ill->ill_ipst; 10336 10337 /* 10338 * We should get back from ARP a packet chain that looks like: 10339 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10340 */ 10341 if (!(area_mp = mp->b_cont) || 10342 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10343 !(orig_ioc_mp = area_mp->b_cont) || 10344 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10345 freemsg(mp); 10346 return; 10347 } 10348 10349 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10350 10351 tmp = (orig_ioc_mp->b_cont)->b_cont; 10352 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10353 (orig_iocp->ioc_cmd == SIOCSXARP) || 10354 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10355 x_arp_ioctl = B_TRUE; 10356 xar = (struct xarpreq *)tmp->b_rptr; 10357 sin = (sin_t *)&xar->xarp_pa; 10358 flagsp = &xar->xarp_flags; 10359 storage = xar->xarp_ha.sdl_data; 10360 if (xar->xarp_ha.sdl_nlen != 0) 10361 ifx_arp_ioctl = B_TRUE; 10362 } else { 10363 ar = (struct arpreq *)tmp->b_rptr; 10364 sin = (sin_t *)&ar->arp_pa; 10365 flagsp = &ar->arp_flags; 10366 storage = ar->arp_ha.sa_data; 10367 } 10368 10369 iocp = (struct iocblk *)mp->b_rptr; 10370 10371 /* 10372 * Pick out the originating queue based on the ioc_id. 10373 */ 10374 ioc_id = iocp->ioc_id; 10375 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10376 if (pending_mp == NULL) { 10377 ASSERT(connp == NULL); 10378 inet_freemsg(mp); 10379 return; 10380 } 10381 ASSERT(connp != NULL); 10382 q = CONNP_TO_WQ(connp); 10383 10384 /* Uncouple the internally generated IOCTL from the original one */ 10385 area = (area_t *)area_mp->b_rptr; 10386 area_mp->b_cont = NULL; 10387 10388 /* 10389 * Restore the b_next and b_prev used by mi code. This is needed 10390 * to complete the ioctl using mi* functions. We stored them in 10391 * the pending mp prior to sending the request to ARP. 10392 */ 10393 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10394 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10395 inet_freemsg(pending_mp); 10396 10397 /* 10398 * We're done if there was an error or if this is not an SIOCG{X}ARP 10399 * Catch the case where there is an IRE_CACHE by no entry in the 10400 * arp table. 10401 */ 10402 addr = sin->sin_addr.s_addr; 10403 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10404 ire_t *ire; 10405 dl_unitdata_req_t *dlup; 10406 mblk_t *llmp; 10407 int addr_len; 10408 ill_t *ipsqill = NULL; 10409 10410 if (ifx_arp_ioctl) { 10411 /* 10412 * There's no need to lookup the ill, since 10413 * we've already done that when we started 10414 * processing the ioctl and sent the message 10415 * to ARP on that ill. So use the ill that 10416 * is stored in q->q_ptr. 10417 */ 10418 ipsqill = ill; 10419 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10420 ipsqill->ill_ipif, ALL_ZONES, 10421 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10422 } else { 10423 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10424 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10425 if (ire != NULL) 10426 ipsqill = ire_to_ill(ire); 10427 } 10428 10429 if ((x_arp_ioctl) && (ipsqill != NULL)) 10430 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10431 10432 if (ire != NULL) { 10433 /* 10434 * Since the ire obtained from cachetable is used for 10435 * mac addr copying below, treat an incomplete ire as if 10436 * as if we never found it. 10437 */ 10438 if (ire->ire_nce != NULL && 10439 ire->ire_nce->nce_state != ND_REACHABLE) { 10440 ire_refrele(ire); 10441 ire = NULL; 10442 ipsqill = NULL; 10443 goto errack; 10444 } 10445 *flagsp = ATF_INUSE; 10446 llmp = (ire->ire_nce != NULL ? 10447 ire->ire_nce->nce_res_mp : NULL); 10448 if (llmp != NULL && ipsqill != NULL) { 10449 uchar_t *macaddr; 10450 10451 addr_len = ipsqill->ill_phys_addr_length; 10452 if (x_arp_ioctl && ((addr_len + 10453 ipsqill->ill_name_length) > 10454 sizeof (xar->xarp_ha.sdl_data))) { 10455 ire_refrele(ire); 10456 freemsg(mp); 10457 ip_ioctl_finish(q, orig_ioc_mp, 10458 EINVAL, NO_COPYOUT, NULL); 10459 return; 10460 } 10461 *flagsp |= ATF_COM; 10462 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10463 if (ipsqill->ill_sap_length < 0) 10464 macaddr = llmp->b_rptr + 10465 dlup->dl_dest_addr_offset; 10466 else 10467 macaddr = llmp->b_rptr + 10468 dlup->dl_dest_addr_offset + 10469 ipsqill->ill_sap_length; 10470 /* 10471 * For SIOCGARP, MAC address length 10472 * validation has already been done 10473 * before the ioctl was issued to ARP to 10474 * allow it to progress only on 6 byte 10475 * addressable (ethernet like) media. Thus 10476 * the mac address copying can not overwrite 10477 * the sa_data area below. 10478 */ 10479 bcopy(macaddr, storage, addr_len); 10480 } 10481 /* Ditch the internal IOCTL. */ 10482 freemsg(mp); 10483 ire_refrele(ire); 10484 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10485 return; 10486 } 10487 } 10488 10489 /* 10490 * Delete the coresponding IRE_CACHE if any. 10491 * Reset the error if there was one (in case there was no entry 10492 * in arp.) 10493 */ 10494 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10495 ipif_t *ipintf = NULL; 10496 10497 if (ifx_arp_ioctl) { 10498 /* 10499 * There's no need to lookup the ill, since 10500 * we've already done that when we started 10501 * processing the ioctl and sent the message 10502 * to ARP on that ill. So use the ill that 10503 * is stored in q->q_ptr. 10504 */ 10505 ipintf = ill->ill_ipif; 10506 } 10507 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10508 /* 10509 * The address in "addr" may be an entry for a 10510 * router. If that's true, then any off-net 10511 * IRE_CACHE entries that go through the router 10512 * with address "addr" must be clobbered. Use 10513 * ire_walk to achieve this goal. 10514 */ 10515 if (ifx_arp_ioctl) 10516 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10517 ire_delete_cache_gw, (char *)&addr, ill); 10518 else 10519 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10520 ALL_ZONES, ipst); 10521 iocp->ioc_error = 0; 10522 } 10523 } 10524 errack: 10525 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10526 err = iocp->ioc_error; 10527 freemsg(mp); 10528 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10529 return; 10530 } 10531 10532 /* 10533 * Completion of an SIOCG{X}ARP. Translate the information from 10534 * the area_t into the struct {x}arpreq. 10535 */ 10536 if (x_arp_ioctl) { 10537 storage += ill_xarp_info(&xar->xarp_ha, ill); 10538 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10539 sizeof (xar->xarp_ha.sdl_data)) { 10540 freemsg(mp); 10541 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10542 NULL); 10543 return; 10544 } 10545 } 10546 *flagsp = ATF_INUSE; 10547 if (area->area_flags & ACE_F_PERMANENT) 10548 *flagsp |= ATF_PERM; 10549 if (area->area_flags & ACE_F_PUBLISH) 10550 *flagsp |= ATF_PUBL; 10551 if (area->area_flags & ACE_F_AUTHORITY) 10552 *flagsp |= ATF_AUTHORITY; 10553 if (area->area_hw_addr_length != 0) { 10554 *flagsp |= ATF_COM; 10555 /* 10556 * For SIOCGARP, MAC address length validation has 10557 * already been done before the ioctl was issued to ARP 10558 * to allow it to progress only on 6 byte addressable 10559 * (ethernet like) media. Thus the mac address copying 10560 * can not overwrite the sa_data area below. 10561 */ 10562 bcopy((char *)area + area->area_hw_addr_offset, 10563 storage, area->area_hw_addr_length); 10564 } 10565 10566 /* Ditch the internal IOCTL. */ 10567 freemsg(mp); 10568 /* Complete the original. */ 10569 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10570 } 10571 10572 /* 10573 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10574 * interface) create the next available logical interface for this 10575 * physical interface. 10576 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10577 * ipif with the specified name. 10578 * 10579 * If the address family is not AF_UNSPEC then set the address as well. 10580 * 10581 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10582 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10583 * 10584 * Executed as a writer on the ill or ill group. 10585 * So no lock is needed to traverse the ipif chain, or examine the 10586 * phyint flags. 10587 */ 10588 /* ARGSUSED */ 10589 int 10590 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10591 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10592 { 10593 mblk_t *mp1; 10594 struct lifreq *lifr; 10595 boolean_t isv6; 10596 boolean_t exists; 10597 char *name; 10598 char *endp; 10599 char *cp; 10600 int namelen; 10601 ipif_t *ipif; 10602 long id; 10603 ipsq_t *ipsq; 10604 ill_t *ill; 10605 sin_t *sin; 10606 int err = 0; 10607 boolean_t found_sep = B_FALSE; 10608 conn_t *connp; 10609 zoneid_t zoneid; 10610 int orig_ifindex = 0; 10611 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10612 10613 ASSERT(q->q_next == NULL); 10614 ip1dbg(("ip_sioctl_addif\n")); 10615 /* Existence of mp1 has been checked in ip_wput_nondata */ 10616 mp1 = mp->b_cont->b_cont; 10617 /* 10618 * Null terminate the string to protect against buffer 10619 * overrun. String was generated by user code and may not 10620 * be trusted. 10621 */ 10622 lifr = (struct lifreq *)mp1->b_rptr; 10623 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10624 name = lifr->lifr_name; 10625 ASSERT(CONN_Q(q)); 10626 connp = Q_TO_CONN(q); 10627 isv6 = connp->conn_af_isv6; 10628 zoneid = connp->conn_zoneid; 10629 namelen = mi_strlen(name); 10630 if (namelen == 0) 10631 return (EINVAL); 10632 10633 exists = B_FALSE; 10634 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10635 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10636 /* 10637 * Allow creating lo0 using SIOCLIFADDIF. 10638 * can't be any other writer thread. So can pass null below 10639 * for the last 4 args to ipif_lookup_name. 10640 */ 10641 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10642 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10643 /* Prevent any further action */ 10644 if (ipif == NULL) { 10645 return (ENOBUFS); 10646 } else if (!exists) { 10647 /* We created the ipif now and as writer */ 10648 ipif_refrele(ipif); 10649 return (0); 10650 } else { 10651 ill = ipif->ipif_ill; 10652 ill_refhold(ill); 10653 ipif_refrele(ipif); 10654 } 10655 } else { 10656 /* Look for a colon in the name. */ 10657 endp = &name[namelen]; 10658 for (cp = endp; --cp > name; ) { 10659 if (*cp == IPIF_SEPARATOR_CHAR) { 10660 found_sep = B_TRUE; 10661 /* 10662 * Reject any non-decimal aliases for plumbing 10663 * of logical interfaces. Aliases with leading 10664 * zeroes are also rejected as they introduce 10665 * ambiguity in the naming of the interfaces. 10666 * Comparing with "0" takes care of all such 10667 * cases. 10668 */ 10669 if ((strncmp("0", cp+1, 1)) == 0) 10670 return (EINVAL); 10671 10672 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10673 id <= 0 || *endp != '\0') { 10674 return (EINVAL); 10675 } 10676 *cp = '\0'; 10677 break; 10678 } 10679 } 10680 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10681 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10682 if (found_sep) 10683 *cp = IPIF_SEPARATOR_CHAR; 10684 if (ill == NULL) 10685 return (err); 10686 } 10687 10688 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10689 B_TRUE); 10690 10691 /* 10692 * Release the refhold due to the lookup, now that we are excl 10693 * or we are just returning 10694 */ 10695 ill_refrele(ill); 10696 10697 if (ipsq == NULL) 10698 return (EINPROGRESS); 10699 10700 /* 10701 * If the interface is failed, inactive or offlined, look for a working 10702 * interface in the ill group and create the ipif there. If we can't 10703 * find a good interface, create the ipif anyway so that in.mpathd can 10704 * move it to the first repaired interface. 10705 */ 10706 if ((ill->ill_phyint->phyint_flags & 10707 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10708 ill->ill_phyint->phyint_groupname_len != 0) { 10709 phyint_t *phyi; 10710 char *groupname = ill->ill_phyint->phyint_groupname; 10711 10712 /* 10713 * We're looking for a working interface, but it doesn't matter 10714 * if it's up or down; so instead of following the group lists, 10715 * we look at each physical interface and compare the groupname. 10716 * We're only interested in interfaces with IPv4 (resp. IPv6) 10717 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10718 * Otherwise we create the ipif on the failed interface. 10719 */ 10720 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10721 phyi = avl_first(&ipst->ips_phyint_g_list-> 10722 phyint_list_avl_by_index); 10723 for (; phyi != NULL; 10724 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10725 phyint_list_avl_by_index, 10726 phyi, AVL_AFTER)) { 10727 if (phyi->phyint_groupname_len == 0) 10728 continue; 10729 ASSERT(phyi->phyint_groupname != NULL); 10730 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10731 !(phyi->phyint_flags & 10732 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10733 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10734 (phyi->phyint_illv4 != NULL))) { 10735 break; 10736 } 10737 } 10738 rw_exit(&ipst->ips_ill_g_lock); 10739 10740 if (phyi != NULL) { 10741 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10742 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10743 phyi->phyint_illv4); 10744 } 10745 } 10746 10747 /* 10748 * We are now exclusive on the ipsq, so an ill move will be serialized 10749 * before or after us. 10750 */ 10751 ASSERT(IAM_WRITER_ILL(ill)); 10752 ASSERT(ill->ill_move_in_progress == B_FALSE); 10753 10754 if (found_sep && orig_ifindex == 0) { 10755 /* Now see if there is an IPIF with this unit number. */ 10756 for (ipif = ill->ill_ipif; ipif != NULL; 10757 ipif = ipif->ipif_next) { 10758 if (ipif->ipif_id == id) { 10759 err = EEXIST; 10760 goto done; 10761 } 10762 } 10763 } 10764 10765 /* 10766 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10767 * of lo0. We never come here when we plumb lo0:0. It 10768 * happens in ipif_lookup_on_name. 10769 * The specified unit number is ignored when we create the ipif on a 10770 * different interface. However, we save it in ipif_orig_ipifid below so 10771 * that the ipif fails back to the right position. 10772 */ 10773 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10774 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10775 err = ENOBUFS; 10776 goto done; 10777 } 10778 10779 /* Return created name with ioctl */ 10780 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10781 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10782 ip1dbg(("created %s\n", lifr->lifr_name)); 10783 10784 /* Set address */ 10785 sin = (sin_t *)&lifr->lifr_addr; 10786 if (sin->sin_family != AF_UNSPEC) { 10787 err = ip_sioctl_addr(ipif, sin, q, mp, 10788 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10789 } 10790 10791 /* Set ifindex and unit number for failback */ 10792 if (err == 0 && orig_ifindex != 0) { 10793 ipif->ipif_orig_ifindex = orig_ifindex; 10794 if (found_sep) { 10795 ipif->ipif_orig_ipifid = id; 10796 } 10797 } 10798 10799 done: 10800 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10801 return (err); 10802 } 10803 10804 /* 10805 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10806 * interface) delete it based on the IP address (on this physical interface). 10807 * Otherwise delete it based on the ipif_id. 10808 * Also, special handling to allow a removeif of lo0. 10809 */ 10810 /* ARGSUSED */ 10811 int 10812 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10813 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10814 { 10815 conn_t *connp; 10816 ill_t *ill = ipif->ipif_ill; 10817 boolean_t success; 10818 ip_stack_t *ipst; 10819 10820 ipst = CONNQ_TO_IPST(q); 10821 10822 ASSERT(q->q_next == NULL); 10823 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10824 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10825 ASSERT(IAM_WRITER_IPIF(ipif)); 10826 10827 connp = Q_TO_CONN(q); 10828 /* 10829 * Special case for unplumbing lo0 (the loopback physical interface). 10830 * If unplumbing lo0, the incoming address structure has been 10831 * initialized to all zeros. When unplumbing lo0, all its logical 10832 * interfaces must be removed too. 10833 * 10834 * Note that this interface may be called to remove a specific 10835 * loopback logical interface (eg, lo0:1). But in that case 10836 * ipif->ipif_id != 0 so that the code path for that case is the 10837 * same as any other interface (meaning it skips the code directly 10838 * below). 10839 */ 10840 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10841 if (sin->sin_family == AF_UNSPEC && 10842 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10843 /* 10844 * Mark it condemned. No new ref. will be made to ill. 10845 */ 10846 mutex_enter(&ill->ill_lock); 10847 ill->ill_state_flags |= ILL_CONDEMNED; 10848 for (ipif = ill->ill_ipif; ipif != NULL; 10849 ipif = ipif->ipif_next) { 10850 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10851 } 10852 mutex_exit(&ill->ill_lock); 10853 10854 ipif = ill->ill_ipif; 10855 /* unplumb the loopback interface */ 10856 ill_delete(ill); 10857 mutex_enter(&connp->conn_lock); 10858 mutex_enter(&ill->ill_lock); 10859 ASSERT(ill->ill_group == NULL); 10860 10861 /* Are any references to this ill active */ 10862 if (ill_is_freeable(ill)) { 10863 mutex_exit(&ill->ill_lock); 10864 mutex_exit(&connp->conn_lock); 10865 ill_delete_tail(ill); 10866 mutex_enter(&ill->ill_lock); 10867 ill_nic_info_dispatch(ill); 10868 mutex_exit(&ill->ill_lock); 10869 mi_free(ill); 10870 return (0); 10871 } 10872 success = ipsq_pending_mp_add(connp, ipif, 10873 CONNP_TO_WQ(connp), mp, ILL_FREE); 10874 mutex_exit(&connp->conn_lock); 10875 mutex_exit(&ill->ill_lock); 10876 if (success) 10877 return (EINPROGRESS); 10878 else 10879 return (EINTR); 10880 } 10881 } 10882 10883 /* 10884 * We are exclusive on the ipsq, so an ill move will be serialized 10885 * before or after us. 10886 */ 10887 ASSERT(ill->ill_move_in_progress == B_FALSE); 10888 10889 if (ipif->ipif_id == 0) { 10890 10891 ipsq_t *ipsq; 10892 10893 /* Find based on address */ 10894 if (ipif->ipif_isv6) { 10895 sin6_t *sin6; 10896 10897 if (sin->sin_family != AF_INET6) 10898 return (EAFNOSUPPORT); 10899 10900 sin6 = (sin6_t *)sin; 10901 /* We are a writer, so we should be able to lookup */ 10902 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10903 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10904 if (ipif == NULL) { 10905 /* 10906 * Maybe the address in on another interface in 10907 * the same IPMP group? We check this below. 10908 */ 10909 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10910 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10911 ipst); 10912 } 10913 } else { 10914 ipaddr_t addr; 10915 10916 if (sin->sin_family != AF_INET) 10917 return (EAFNOSUPPORT); 10918 10919 addr = sin->sin_addr.s_addr; 10920 /* We are a writer, so we should be able to lookup */ 10921 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10922 NULL, NULL, NULL, ipst); 10923 if (ipif == NULL) { 10924 /* 10925 * Maybe the address in on another interface in 10926 * the same IPMP group? We check this below. 10927 */ 10928 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10929 NULL, NULL, NULL, NULL, ipst); 10930 } 10931 } 10932 if (ipif == NULL) { 10933 return (EADDRNOTAVAIL); 10934 } 10935 10936 /* 10937 * It is possible for a user to send an SIOCLIFREMOVEIF with 10938 * lifr_name of the physical interface but with an ip address 10939 * lifr_addr of a logical interface plumbed over it. 10940 * So update ipsq_current_ipif once ipif points to the 10941 * correct interface after doing ipif_lookup_addr(). 10942 */ 10943 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10944 ASSERT(ipsq != NULL); 10945 10946 mutex_enter(&ipsq->ipsq_lock); 10947 ipsq->ipsq_current_ipif = ipif; 10948 mutex_exit(&ipsq->ipsq_lock); 10949 10950 /* 10951 * When the address to be removed is hosted on a different 10952 * interface, we check if the interface is in the same IPMP 10953 * group as the specified one; if so we proceed with the 10954 * removal. 10955 * ill->ill_group is NULL when the ill is down, so we have to 10956 * compare the group names instead. 10957 */ 10958 if (ipif->ipif_ill != ill && 10959 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10960 ill->ill_phyint->phyint_groupname_len == 0 || 10961 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10962 ill->ill_phyint->phyint_groupname) != 0)) { 10963 ipif_refrele(ipif); 10964 return (EADDRNOTAVAIL); 10965 } 10966 10967 /* This is a writer */ 10968 ipif_refrele(ipif); 10969 } 10970 10971 /* 10972 * Can not delete instance zero since it is tied to the ill. 10973 */ 10974 if (ipif->ipif_id == 0) 10975 return (EBUSY); 10976 10977 mutex_enter(&ill->ill_lock); 10978 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10979 mutex_exit(&ill->ill_lock); 10980 10981 ipif_free(ipif); 10982 10983 mutex_enter(&connp->conn_lock); 10984 mutex_enter(&ill->ill_lock); 10985 10986 10987 /* Are any references to this ipif active */ 10988 if (ipif_is_freeable(ipif)) { 10989 mutex_exit(&ill->ill_lock); 10990 mutex_exit(&connp->conn_lock); 10991 ipif_non_duplicate(ipif); 10992 ipif_down_tail(ipif); 10993 ipif_free_tail(ipif); /* frees ipif */ 10994 return (0); 10995 } 10996 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10997 IPIF_FREE); 10998 mutex_exit(&ill->ill_lock); 10999 mutex_exit(&connp->conn_lock); 11000 if (success) 11001 return (EINPROGRESS); 11002 else 11003 return (EINTR); 11004 } 11005 11006 /* 11007 * Restart the removeif ioctl. The refcnt has gone down to 0. 11008 * The ipif is already condemned. So can't find it thru lookups. 11009 */ 11010 /* ARGSUSED */ 11011 int 11012 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11013 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11014 { 11015 ill_t *ill = ipif->ipif_ill; 11016 11017 ASSERT(IAM_WRITER_IPIF(ipif)); 11018 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11019 11020 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11021 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11022 11023 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11024 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11025 ill_delete_tail(ill); 11026 mutex_enter(&ill->ill_lock); 11027 ill_nic_info_dispatch(ill); 11028 mutex_exit(&ill->ill_lock); 11029 mi_free(ill); 11030 return (0); 11031 } 11032 11033 ipif_non_duplicate(ipif); 11034 ipif_down_tail(ipif); 11035 ipif_free_tail(ipif); 11036 11037 ILL_UNMARK_CHANGING(ill); 11038 return (0); 11039 } 11040 11041 /* 11042 * Set the local interface address. 11043 * Allow an address of all zero when the interface is down. 11044 */ 11045 /* ARGSUSED */ 11046 int 11047 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11048 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11049 { 11050 int err = 0; 11051 in6_addr_t v6addr; 11052 boolean_t need_up = B_FALSE; 11053 11054 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11055 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11056 11057 ASSERT(IAM_WRITER_IPIF(ipif)); 11058 11059 if (ipif->ipif_isv6) { 11060 sin6_t *sin6; 11061 ill_t *ill; 11062 phyint_t *phyi; 11063 11064 if (sin->sin_family != AF_INET6) 11065 return (EAFNOSUPPORT); 11066 11067 sin6 = (sin6_t *)sin; 11068 v6addr = sin6->sin6_addr; 11069 ill = ipif->ipif_ill; 11070 phyi = ill->ill_phyint; 11071 11072 /* 11073 * Enforce that true multicast interfaces have a link-local 11074 * address for logical unit 0. 11075 */ 11076 if (ipif->ipif_id == 0 && 11077 (ill->ill_flags & ILLF_MULTICAST) && 11078 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11079 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11080 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11081 return (EADDRNOTAVAIL); 11082 } 11083 11084 /* 11085 * up interfaces shouldn't have the unspecified address 11086 * unless they also have the IPIF_NOLOCAL flags set and 11087 * have a subnet assigned. 11088 */ 11089 if ((ipif->ipif_flags & IPIF_UP) && 11090 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11091 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11092 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11093 return (EADDRNOTAVAIL); 11094 } 11095 11096 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11097 return (EADDRNOTAVAIL); 11098 } else { 11099 ipaddr_t addr; 11100 11101 if (sin->sin_family != AF_INET) 11102 return (EAFNOSUPPORT); 11103 11104 addr = sin->sin_addr.s_addr; 11105 11106 /* Allow 0 as the local address. */ 11107 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11108 return (EADDRNOTAVAIL); 11109 11110 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11111 } 11112 11113 11114 /* 11115 * Even if there is no change we redo things just to rerun 11116 * ipif_set_default. 11117 */ 11118 if (ipif->ipif_flags & IPIF_UP) { 11119 /* 11120 * Setting a new local address, make sure 11121 * we have net and subnet bcast ire's for 11122 * the old address if we need them. 11123 */ 11124 if (!ipif->ipif_isv6) 11125 ipif_check_bcast_ires(ipif); 11126 /* 11127 * If the interface is already marked up, 11128 * we call ipif_down which will take care 11129 * of ditching any IREs that have been set 11130 * up based on the old interface address. 11131 */ 11132 err = ipif_logical_down(ipif, q, mp); 11133 if (err == EINPROGRESS) 11134 return (err); 11135 ipif_down_tail(ipif); 11136 need_up = 1; 11137 } 11138 11139 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11140 return (err); 11141 } 11142 11143 int 11144 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11145 boolean_t need_up) 11146 { 11147 in6_addr_t v6addr; 11148 in6_addr_t ov6addr; 11149 ipaddr_t addr; 11150 sin6_t *sin6; 11151 int sinlen; 11152 int err = 0; 11153 ill_t *ill = ipif->ipif_ill; 11154 boolean_t need_dl_down; 11155 boolean_t need_arp_down; 11156 struct iocblk *iocp; 11157 11158 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11159 11160 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11161 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11162 ASSERT(IAM_WRITER_IPIF(ipif)); 11163 11164 /* Must cancel any pending timer before taking the ill_lock */ 11165 if (ipif->ipif_recovery_id != 0) 11166 (void) untimeout(ipif->ipif_recovery_id); 11167 ipif->ipif_recovery_id = 0; 11168 11169 if (ipif->ipif_isv6) { 11170 sin6 = (sin6_t *)sin; 11171 v6addr = sin6->sin6_addr; 11172 sinlen = sizeof (struct sockaddr_in6); 11173 } else { 11174 addr = sin->sin_addr.s_addr; 11175 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11176 sinlen = sizeof (struct sockaddr_in); 11177 } 11178 mutex_enter(&ill->ill_lock); 11179 ov6addr = ipif->ipif_v6lcl_addr; 11180 ipif->ipif_v6lcl_addr = v6addr; 11181 sctp_update_ipif_addr(ipif, ov6addr); 11182 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11183 ipif->ipif_v6src_addr = ipv6_all_zeros; 11184 } else { 11185 ipif->ipif_v6src_addr = v6addr; 11186 } 11187 ipif->ipif_addr_ready = 0; 11188 11189 /* 11190 * If the interface was previously marked as a duplicate, then since 11191 * we've now got a "new" address, it should no longer be considered a 11192 * duplicate -- even if the "new" address is the same as the old one. 11193 * Note that if all ipifs are down, we may have a pending ARP down 11194 * event to handle. This is because we want to recover from duplicates 11195 * and thus delay tearing down ARP until the duplicates have been 11196 * removed or disabled. 11197 */ 11198 need_dl_down = need_arp_down = B_FALSE; 11199 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11200 need_arp_down = !need_up; 11201 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11202 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11203 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11204 need_dl_down = B_TRUE; 11205 } 11206 } 11207 11208 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11209 !ill->ill_is_6to4tun) { 11210 queue_t *wqp = ill->ill_wq; 11211 11212 /* 11213 * The local address of this interface is a 6to4 address, 11214 * check if this interface is in fact a 6to4 tunnel or just 11215 * an interface configured with a 6to4 address. We are only 11216 * interested in the former. 11217 */ 11218 if (wqp != NULL) { 11219 while ((wqp->q_next != NULL) && 11220 (wqp->q_next->q_qinfo != NULL) && 11221 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11222 11223 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11224 == TUN6TO4_MODID) { 11225 /* set for use in IP */ 11226 ill->ill_is_6to4tun = 1; 11227 break; 11228 } 11229 wqp = wqp->q_next; 11230 } 11231 } 11232 } 11233 11234 ipif_set_default(ipif); 11235 11236 /* 11237 * When publishing an interface address change event, we only notify 11238 * the event listeners of the new address. It is assumed that if they 11239 * actively care about the addresses assigned that they will have 11240 * already discovered the previous address assigned (if there was one.) 11241 * 11242 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11243 */ 11244 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11245 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11246 NE_ADDRESS_CHANGE, sin, sinlen); 11247 } 11248 11249 mutex_exit(&ill->ill_lock); 11250 11251 if (need_up) { 11252 /* 11253 * Now bring the interface back up. If this 11254 * is the only IPIF for the ILL, ipif_up 11255 * will have to re-bind to the device, so 11256 * we may get back EINPROGRESS, in which 11257 * case, this IOCTL will get completed in 11258 * ip_rput_dlpi when we see the DL_BIND_ACK. 11259 */ 11260 err = ipif_up(ipif, q, mp); 11261 } 11262 11263 if (need_dl_down) 11264 ill_dl_down(ill); 11265 if (need_arp_down) 11266 ipif_arp_down(ipif); 11267 11268 return (err); 11269 } 11270 11271 11272 /* 11273 * Restart entry point to restart the address set operation after the 11274 * refcounts have dropped to zero. 11275 */ 11276 /* ARGSUSED */ 11277 int 11278 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11279 ip_ioctl_cmd_t *ipip, void *ifreq) 11280 { 11281 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11282 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11283 ASSERT(IAM_WRITER_IPIF(ipif)); 11284 ipif_down_tail(ipif); 11285 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11286 } 11287 11288 /* ARGSUSED */ 11289 int 11290 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11291 ip_ioctl_cmd_t *ipip, void *if_req) 11292 { 11293 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11294 struct lifreq *lifr = (struct lifreq *)if_req; 11295 11296 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11297 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11298 /* 11299 * The net mask and address can't change since we have a 11300 * reference to the ipif. So no lock is necessary. 11301 */ 11302 if (ipif->ipif_isv6) { 11303 *sin6 = sin6_null; 11304 sin6->sin6_family = AF_INET6; 11305 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11306 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11307 lifr->lifr_addrlen = 11308 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11309 } else { 11310 *sin = sin_null; 11311 sin->sin_family = AF_INET; 11312 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11313 if (ipip->ipi_cmd_type == LIF_CMD) { 11314 lifr->lifr_addrlen = 11315 ip_mask_to_plen(ipif->ipif_net_mask); 11316 } 11317 } 11318 return (0); 11319 } 11320 11321 /* 11322 * Set the destination address for a pt-pt interface. 11323 */ 11324 /* ARGSUSED */ 11325 int 11326 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11327 ip_ioctl_cmd_t *ipip, void *if_req) 11328 { 11329 int err = 0; 11330 in6_addr_t v6addr; 11331 boolean_t need_up = B_FALSE; 11332 11333 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11334 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11335 ASSERT(IAM_WRITER_IPIF(ipif)); 11336 11337 if (ipif->ipif_isv6) { 11338 sin6_t *sin6; 11339 11340 if (sin->sin_family != AF_INET6) 11341 return (EAFNOSUPPORT); 11342 11343 sin6 = (sin6_t *)sin; 11344 v6addr = sin6->sin6_addr; 11345 11346 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11347 return (EADDRNOTAVAIL); 11348 } else { 11349 ipaddr_t addr; 11350 11351 if (sin->sin_family != AF_INET) 11352 return (EAFNOSUPPORT); 11353 11354 addr = sin->sin_addr.s_addr; 11355 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11356 return (EADDRNOTAVAIL); 11357 11358 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11359 } 11360 11361 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11362 return (0); /* No change */ 11363 11364 if (ipif->ipif_flags & IPIF_UP) { 11365 /* 11366 * If the interface is already marked up, 11367 * we call ipif_down which will take care 11368 * of ditching any IREs that have been set 11369 * up based on the old pp dst address. 11370 */ 11371 err = ipif_logical_down(ipif, q, mp); 11372 if (err == EINPROGRESS) 11373 return (err); 11374 ipif_down_tail(ipif); 11375 need_up = B_TRUE; 11376 } 11377 /* 11378 * could return EINPROGRESS. If so ioctl will complete in 11379 * ip_rput_dlpi_writer 11380 */ 11381 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11382 return (err); 11383 } 11384 11385 static int 11386 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11387 boolean_t need_up) 11388 { 11389 in6_addr_t v6addr; 11390 ill_t *ill = ipif->ipif_ill; 11391 int err = 0; 11392 boolean_t need_dl_down; 11393 boolean_t need_arp_down; 11394 11395 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11396 ipif->ipif_id, (void *)ipif)); 11397 11398 /* Must cancel any pending timer before taking the ill_lock */ 11399 if (ipif->ipif_recovery_id != 0) 11400 (void) untimeout(ipif->ipif_recovery_id); 11401 ipif->ipif_recovery_id = 0; 11402 11403 if (ipif->ipif_isv6) { 11404 sin6_t *sin6; 11405 11406 sin6 = (sin6_t *)sin; 11407 v6addr = sin6->sin6_addr; 11408 } else { 11409 ipaddr_t addr; 11410 11411 addr = sin->sin_addr.s_addr; 11412 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11413 } 11414 mutex_enter(&ill->ill_lock); 11415 /* Set point to point destination address. */ 11416 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11417 /* 11418 * Allow this as a means of creating logical 11419 * pt-pt interfaces on top of e.g. an Ethernet. 11420 * XXX Undocumented HACK for testing. 11421 * pt-pt interfaces are created with NUD disabled. 11422 */ 11423 ipif->ipif_flags |= IPIF_POINTOPOINT; 11424 ipif->ipif_flags &= ~IPIF_BROADCAST; 11425 if (ipif->ipif_isv6) 11426 ill->ill_flags |= ILLF_NONUD; 11427 } 11428 11429 /* 11430 * If the interface was previously marked as a duplicate, then since 11431 * we've now got a "new" address, it should no longer be considered a 11432 * duplicate -- even if the "new" address is the same as the old one. 11433 * Note that if all ipifs are down, we may have a pending ARP down 11434 * event to handle. 11435 */ 11436 need_dl_down = need_arp_down = B_FALSE; 11437 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11438 need_arp_down = !need_up; 11439 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11440 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11441 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11442 need_dl_down = B_TRUE; 11443 } 11444 } 11445 11446 /* Set the new address. */ 11447 ipif->ipif_v6pp_dst_addr = v6addr; 11448 /* Make sure subnet tracks pp_dst */ 11449 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11450 mutex_exit(&ill->ill_lock); 11451 11452 if (need_up) { 11453 /* 11454 * Now bring the interface back up. If this 11455 * is the only IPIF for the ILL, ipif_up 11456 * will have to re-bind to the device, so 11457 * we may get back EINPROGRESS, in which 11458 * case, this IOCTL will get completed in 11459 * ip_rput_dlpi when we see the DL_BIND_ACK. 11460 */ 11461 err = ipif_up(ipif, q, mp); 11462 } 11463 11464 if (need_dl_down) 11465 ill_dl_down(ill); 11466 11467 if (need_arp_down) 11468 ipif_arp_down(ipif); 11469 return (err); 11470 } 11471 11472 /* 11473 * Restart entry point to restart the dstaddress set operation after the 11474 * refcounts have dropped to zero. 11475 */ 11476 /* ARGSUSED */ 11477 int 11478 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11479 ip_ioctl_cmd_t *ipip, void *ifreq) 11480 { 11481 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11483 ipif_down_tail(ipif); 11484 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11485 } 11486 11487 /* ARGSUSED */ 11488 int 11489 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11490 ip_ioctl_cmd_t *ipip, void *if_req) 11491 { 11492 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11493 11494 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11495 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11496 /* 11497 * Get point to point destination address. The addresses can't 11498 * change since we hold a reference to the ipif. 11499 */ 11500 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11501 return (EADDRNOTAVAIL); 11502 11503 if (ipif->ipif_isv6) { 11504 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11505 *sin6 = sin6_null; 11506 sin6->sin6_family = AF_INET6; 11507 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11508 } else { 11509 *sin = sin_null; 11510 sin->sin_family = AF_INET; 11511 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11512 } 11513 return (0); 11514 } 11515 11516 /* 11517 * part of ipmp, make this func return the active/inactive state and 11518 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11519 */ 11520 /* 11521 * This function either sets or clears the IFF_INACTIVE flag. 11522 * 11523 * As long as there are some addresses or multicast memberships on the 11524 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11525 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11526 * will be used for outbound packets. 11527 * 11528 * Caller needs to verify the validity of setting IFF_INACTIVE. 11529 */ 11530 static void 11531 phyint_inactive(phyint_t *phyi) 11532 { 11533 ill_t *ill_v4; 11534 ill_t *ill_v6; 11535 ipif_t *ipif; 11536 ilm_t *ilm; 11537 11538 ill_v4 = phyi->phyint_illv4; 11539 ill_v6 = phyi->phyint_illv6; 11540 11541 /* 11542 * No need for a lock while traversing the list since iam 11543 * a writer 11544 */ 11545 if (ill_v4 != NULL) { 11546 ASSERT(IAM_WRITER_ILL(ill_v4)); 11547 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11548 ipif = ipif->ipif_next) { 11549 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11550 mutex_enter(&phyi->phyint_lock); 11551 phyi->phyint_flags &= ~PHYI_INACTIVE; 11552 mutex_exit(&phyi->phyint_lock); 11553 return; 11554 } 11555 } 11556 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11557 ilm = ilm->ilm_next) { 11558 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11559 mutex_enter(&phyi->phyint_lock); 11560 phyi->phyint_flags &= ~PHYI_INACTIVE; 11561 mutex_exit(&phyi->phyint_lock); 11562 return; 11563 } 11564 } 11565 } 11566 if (ill_v6 != NULL) { 11567 ill_v6 = phyi->phyint_illv6; 11568 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11569 ipif = ipif->ipif_next) { 11570 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11571 mutex_enter(&phyi->phyint_lock); 11572 phyi->phyint_flags &= ~PHYI_INACTIVE; 11573 mutex_exit(&phyi->phyint_lock); 11574 return; 11575 } 11576 } 11577 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11578 ilm = ilm->ilm_next) { 11579 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11580 mutex_enter(&phyi->phyint_lock); 11581 phyi->phyint_flags &= ~PHYI_INACTIVE; 11582 mutex_exit(&phyi->phyint_lock); 11583 return; 11584 } 11585 } 11586 } 11587 mutex_enter(&phyi->phyint_lock); 11588 phyi->phyint_flags |= PHYI_INACTIVE; 11589 mutex_exit(&phyi->phyint_lock); 11590 } 11591 11592 /* 11593 * This function is called only when the phyint flags change. Currently 11594 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11595 * that we can select a good ill. 11596 */ 11597 static void 11598 ip_redo_nomination(phyint_t *phyi) 11599 { 11600 ill_t *ill_v4; 11601 11602 ill_v4 = phyi->phyint_illv4; 11603 11604 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11605 ASSERT(IAM_WRITER_ILL(ill_v4)); 11606 if (ill_v4->ill_group->illgrp_ill_count > 1) 11607 ill_nominate_bcast_rcv(ill_v4->ill_group); 11608 } 11609 } 11610 11611 /* 11612 * Heuristic to check if ill is INACTIVE. 11613 * Checks if ill has an ipif with an usable ip address. 11614 * 11615 * Return values: 11616 * B_TRUE - ill is INACTIVE; has no usable ipif 11617 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11618 */ 11619 static boolean_t 11620 ill_is_inactive(ill_t *ill) 11621 { 11622 ipif_t *ipif; 11623 11624 /* Check whether it is in an IPMP group */ 11625 if (ill->ill_phyint->phyint_groupname == NULL) 11626 return (B_FALSE); 11627 11628 if (ill->ill_ipif_up_count == 0) 11629 return (B_TRUE); 11630 11631 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11632 uint64_t flags = ipif->ipif_flags; 11633 11634 /* 11635 * This ipif is usable if it is IPIF_UP and not a 11636 * dedicated test address. A dedicated test address 11637 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11638 * (note in particular that V6 test addresses are 11639 * link-local data addresses and thus are marked 11640 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11641 */ 11642 if ((flags & IPIF_UP) && 11643 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11644 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11645 return (B_FALSE); 11646 } 11647 return (B_TRUE); 11648 } 11649 11650 /* 11651 * Set interface flags. 11652 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11653 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11654 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11655 * 11656 * NOTE : We really don't enforce that ipif_id zero should be used 11657 * for setting any flags other than IFF_LOGINT_FLAGS. This 11658 * is because applications generally does SICGLIFFLAGS and 11659 * ORs in the new flags (that affects the logical) and does a 11660 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11661 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11662 * flags that will be turned on is correct with respect to 11663 * ipif_id 0. For backward compatibility reasons, it is not done. 11664 */ 11665 /* ARGSUSED */ 11666 int 11667 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11668 ip_ioctl_cmd_t *ipip, void *if_req) 11669 { 11670 uint64_t turn_on; 11671 uint64_t turn_off; 11672 int err; 11673 boolean_t need_up = B_FALSE; 11674 phyint_t *phyi; 11675 ill_t *ill; 11676 uint64_t intf_flags; 11677 boolean_t phyint_flags_modified = B_FALSE; 11678 uint64_t flags; 11679 struct ifreq *ifr; 11680 struct lifreq *lifr; 11681 boolean_t set_linklocal = B_FALSE; 11682 boolean_t zero_source = B_FALSE; 11683 ip_stack_t *ipst; 11684 11685 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11686 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11687 11688 ASSERT(IAM_WRITER_IPIF(ipif)); 11689 11690 ill = ipif->ipif_ill; 11691 phyi = ill->ill_phyint; 11692 ipst = ill->ill_ipst; 11693 11694 if (ipip->ipi_cmd_type == IF_CMD) { 11695 ifr = (struct ifreq *)if_req; 11696 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11697 } else { 11698 lifr = (struct lifreq *)if_req; 11699 flags = lifr->lifr_flags; 11700 } 11701 11702 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11703 11704 /* 11705 * Has the flags been set correctly till now ? 11706 */ 11707 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11708 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11709 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11710 /* 11711 * Compare the new flags to the old, and partition 11712 * into those coming on and those going off. 11713 * For the 16 bit command keep the bits above bit 16 unchanged. 11714 */ 11715 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11716 flags |= intf_flags & ~0xFFFF; 11717 11718 /* 11719 * First check which bits will change and then which will 11720 * go on and off 11721 */ 11722 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11723 if (!turn_on) 11724 return (0); /* No change */ 11725 11726 turn_off = intf_flags & turn_on; 11727 turn_on ^= turn_off; 11728 err = 0; 11729 11730 /* 11731 * Don't allow any bits belonging to the logical interface 11732 * to be set or cleared on the replacement ipif that was 11733 * created temporarily during a MOVE. 11734 */ 11735 if (ipif->ipif_replace_zero && 11736 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11737 return (EINVAL); 11738 } 11739 11740 /* 11741 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11742 * IPv6 interfaces. 11743 */ 11744 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11745 return (EINVAL); 11746 11747 /* 11748 * cannot turn off IFF_NOXMIT on VNI interfaces. 11749 */ 11750 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11751 return (EINVAL); 11752 11753 /* 11754 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11755 * interfaces. It makes no sense in that context. 11756 */ 11757 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11758 return (EINVAL); 11759 11760 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11761 zero_source = B_TRUE; 11762 11763 /* 11764 * For IPv6 ipif_id 0, don't allow the interface to be up without 11765 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11766 * If the link local address isn't set, and can be set, it will get 11767 * set later on in this function. 11768 */ 11769 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11770 (flags & IFF_UP) && !zero_source && 11771 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11772 if (ipif_cant_setlinklocal(ipif)) 11773 return (EINVAL); 11774 set_linklocal = B_TRUE; 11775 } 11776 11777 /* 11778 * ILL cannot be part of a usesrc group and and IPMP group at the 11779 * same time. No need to grab ill_g_usesrc_lock here, see 11780 * synchronization notes in ip.c 11781 */ 11782 if (turn_on & PHYI_STANDBY && 11783 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11784 return (EINVAL); 11785 } 11786 11787 /* 11788 * If we modify physical interface flags, we'll potentially need to 11789 * send up two routing socket messages for the changes (one for the 11790 * IPv4 ill, and another for the IPv6 ill). Note that here. 11791 */ 11792 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11793 phyint_flags_modified = B_TRUE; 11794 11795 /* 11796 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11797 * we need to flush the IRE_CACHES belonging to this ill. 11798 * We handle this case here without doing the DOWN/UP dance 11799 * like it is done for other flags. If some other flags are 11800 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11801 * below will handle it by bringing it down and then 11802 * bringing it UP. 11803 */ 11804 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11805 ill_t *ill_v4, *ill_v6; 11806 11807 ill_v4 = phyi->phyint_illv4; 11808 ill_v6 = phyi->phyint_illv6; 11809 11810 /* 11811 * First set the INACTIVE flag if needed. Then delete the ires. 11812 * ire_add will atomically prevent creating new IRE_CACHEs 11813 * unless hidden flag is set. 11814 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11815 */ 11816 if ((turn_on & PHYI_FAILED) && 11817 ((intf_flags & PHYI_STANDBY) || 11818 !ipst->ips_ipmp_enable_failback)) { 11819 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11820 phyi->phyint_flags &= ~PHYI_INACTIVE; 11821 } 11822 if ((turn_off & PHYI_FAILED) && 11823 ((intf_flags & PHYI_STANDBY) || 11824 (!ipst->ips_ipmp_enable_failback && 11825 ill_is_inactive(ill)))) { 11826 phyint_inactive(phyi); 11827 } 11828 11829 if (turn_on & PHYI_STANDBY) { 11830 /* 11831 * We implicitly set INACTIVE only when STANDBY is set. 11832 * INACTIVE is also set on non-STANDBY phyint when user 11833 * disables FAILBACK using configuration file. 11834 * Do not allow STANDBY to be set on such INACTIVE 11835 * phyint 11836 */ 11837 if (phyi->phyint_flags & PHYI_INACTIVE) 11838 return (EINVAL); 11839 if (!(phyi->phyint_flags & PHYI_FAILED)) 11840 phyint_inactive(phyi); 11841 } 11842 if (turn_off & PHYI_STANDBY) { 11843 if (ipst->ips_ipmp_enable_failback) { 11844 /* 11845 * Reset PHYI_INACTIVE. 11846 */ 11847 phyi->phyint_flags &= ~PHYI_INACTIVE; 11848 } else if (ill_is_inactive(ill) && 11849 !(phyi->phyint_flags & PHYI_FAILED)) { 11850 /* 11851 * Need to set INACTIVE, when user sets 11852 * STANDBY on a non-STANDBY phyint and 11853 * later resets STANDBY 11854 */ 11855 phyint_inactive(phyi); 11856 } 11857 } 11858 /* 11859 * We should always send up a message so that the 11860 * daemons come to know of it. Note that the zeroth 11861 * interface can be down and the check below for IPIF_UP 11862 * will not make sense as we are actually setting 11863 * a phyint flag here. We assume that the ipif used 11864 * is always the zeroth ipif. (ip_rts_ifmsg does not 11865 * send up any message for non-zero ipifs). 11866 */ 11867 phyint_flags_modified = B_TRUE; 11868 11869 if (ill_v4 != NULL) { 11870 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11871 IRE_CACHE, ill_stq_cache_delete, 11872 (char *)ill_v4, ill_v4); 11873 illgrp_reset_schednext(ill_v4); 11874 } 11875 if (ill_v6 != NULL) { 11876 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11877 IRE_CACHE, ill_stq_cache_delete, 11878 (char *)ill_v6, ill_v6); 11879 illgrp_reset_schednext(ill_v6); 11880 } 11881 } 11882 11883 /* 11884 * If ILLF_ROUTER changes, we need to change the ip forwarding 11885 * status of the interface and, if the interface is part of an IPMP 11886 * group, all other interfaces that are part of the same IPMP 11887 * group. 11888 */ 11889 if ((turn_on | turn_off) & ILLF_ROUTER) 11890 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11891 11892 /* 11893 * If the interface is not UP and we are not going to 11894 * bring it UP, record the flags and return. When the 11895 * interface comes UP later, the right actions will be 11896 * taken. 11897 */ 11898 if (!(ipif->ipif_flags & IPIF_UP) && 11899 !(turn_on & IPIF_UP)) { 11900 /* Record new flags in their respective places. */ 11901 mutex_enter(&ill->ill_lock); 11902 mutex_enter(&ill->ill_phyint->phyint_lock); 11903 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11904 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11905 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11906 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11907 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11908 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11909 mutex_exit(&ill->ill_lock); 11910 mutex_exit(&ill->ill_phyint->phyint_lock); 11911 11912 /* 11913 * We do the broadcast and nomination here rather 11914 * than waiting for a FAILOVER/FAILBACK to happen. In 11915 * the case of FAILBACK from INACTIVE standby to the 11916 * interface that has been repaired, PHYI_FAILED has not 11917 * been cleared yet. If there are only two interfaces in 11918 * that group, all we have is a FAILED and INACTIVE 11919 * interface. If we do the nomination soon after a failback, 11920 * the broadcast nomination code would select the 11921 * INACTIVE interface for receiving broadcasts as FAILED is 11922 * not yet cleared. As we don't want STANDBY/INACTIVE to 11923 * receive broadcast packets, we need to redo nomination 11924 * when the FAILED is cleared here. Thus, in general we 11925 * always do the nomination here for FAILED, STANDBY 11926 * and OFFLINE. 11927 */ 11928 if (((turn_on | turn_off) & 11929 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11930 ip_redo_nomination(phyi); 11931 } 11932 if (phyint_flags_modified) { 11933 if (phyi->phyint_illv4 != NULL) { 11934 ip_rts_ifmsg(phyi->phyint_illv4-> 11935 ill_ipif); 11936 } 11937 if (phyi->phyint_illv6 != NULL) { 11938 ip_rts_ifmsg(phyi->phyint_illv6-> 11939 ill_ipif); 11940 } 11941 } 11942 return (0); 11943 } else if (set_linklocal || zero_source) { 11944 mutex_enter(&ill->ill_lock); 11945 if (set_linklocal) 11946 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11947 if (zero_source) 11948 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11949 mutex_exit(&ill->ill_lock); 11950 } 11951 11952 /* 11953 * Disallow IPv6 interfaces coming up that have the unspecified address, 11954 * or point-to-point interfaces with an unspecified destination. We do 11955 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11956 * have a subnet assigned, which is how in.ndpd currently manages its 11957 * onlink prefix list when no addresses are configured with those 11958 * prefixes. 11959 */ 11960 if (ipif->ipif_isv6 && 11961 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11962 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11963 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11964 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11965 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11966 return (EINVAL); 11967 } 11968 11969 /* 11970 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11971 * from being brought up. 11972 */ 11973 if (!ipif->ipif_isv6 && 11974 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11975 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11976 return (EINVAL); 11977 } 11978 11979 /* 11980 * The only flag changes that we currently take specific action on 11981 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11982 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11983 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11984 * the flags and bringing it back up again. 11985 */ 11986 if ((turn_on|turn_off) & 11987 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11988 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11989 /* 11990 * Taking this ipif down, make sure we have 11991 * valid net and subnet bcast ire's for other 11992 * logical interfaces, if we need them. 11993 */ 11994 if (!ipif->ipif_isv6) 11995 ipif_check_bcast_ires(ipif); 11996 11997 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11998 !(turn_off & IPIF_UP)) { 11999 need_up = B_TRUE; 12000 if (ipif->ipif_flags & IPIF_UP) 12001 ill->ill_logical_down = 1; 12002 turn_on &= ~IPIF_UP; 12003 } 12004 err = ipif_down(ipif, q, mp); 12005 ip1dbg(("ipif_down returns %d err ", err)); 12006 if (err == EINPROGRESS) 12007 return (err); 12008 ipif_down_tail(ipif); 12009 } 12010 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12011 } 12012 12013 static int 12014 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12015 boolean_t need_up) 12016 { 12017 ill_t *ill; 12018 phyint_t *phyi; 12019 uint64_t turn_on; 12020 uint64_t turn_off; 12021 uint64_t intf_flags; 12022 boolean_t phyint_flags_modified = B_FALSE; 12023 int err = 0; 12024 boolean_t set_linklocal = B_FALSE; 12025 boolean_t zero_source = B_FALSE; 12026 12027 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12028 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12029 12030 ASSERT(IAM_WRITER_IPIF(ipif)); 12031 12032 ill = ipif->ipif_ill; 12033 phyi = ill->ill_phyint; 12034 12035 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12036 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12037 12038 turn_off = intf_flags & turn_on; 12039 turn_on ^= turn_off; 12040 12041 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12042 phyint_flags_modified = B_TRUE; 12043 12044 /* 12045 * Now we change the flags. Track current value of 12046 * other flags in their respective places. 12047 */ 12048 mutex_enter(&ill->ill_lock); 12049 mutex_enter(&phyi->phyint_lock); 12050 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12051 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12052 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12053 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12054 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12055 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12056 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12057 set_linklocal = B_TRUE; 12058 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12059 } 12060 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12061 zero_source = B_TRUE; 12062 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12063 } 12064 mutex_exit(&ill->ill_lock); 12065 mutex_exit(&phyi->phyint_lock); 12066 12067 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12068 ip_redo_nomination(phyi); 12069 12070 if (set_linklocal) 12071 (void) ipif_setlinklocal(ipif); 12072 12073 if (zero_source) 12074 ipif->ipif_v6src_addr = ipv6_all_zeros; 12075 else 12076 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12077 12078 if (need_up) { 12079 /* 12080 * XXX ipif_up really does not know whether a phyint flags 12081 * was modified or not. So, it sends up information on 12082 * only one routing sockets message. As we don't bring up 12083 * the interface and also set STANDBY/FAILED simultaneously 12084 * it should be okay. 12085 */ 12086 err = ipif_up(ipif, q, mp); 12087 } else { 12088 /* 12089 * Make sure routing socket sees all changes to the flags. 12090 * ipif_up_done* handles this when we use ipif_up. 12091 */ 12092 if (phyint_flags_modified) { 12093 if (phyi->phyint_illv4 != NULL) { 12094 ip_rts_ifmsg(phyi->phyint_illv4-> 12095 ill_ipif); 12096 } 12097 if (phyi->phyint_illv6 != NULL) { 12098 ip_rts_ifmsg(phyi->phyint_illv6-> 12099 ill_ipif); 12100 } 12101 } else { 12102 ip_rts_ifmsg(ipif); 12103 } 12104 /* 12105 * Update the flags in SCTP's IPIF list, ipif_up() will do 12106 * this in need_up case. 12107 */ 12108 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12109 } 12110 return (err); 12111 } 12112 12113 /* 12114 * Restart entry point to restart the flags restart operation after the 12115 * refcounts have dropped to zero. 12116 */ 12117 /* ARGSUSED */ 12118 int 12119 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12120 ip_ioctl_cmd_t *ipip, void *if_req) 12121 { 12122 int err; 12123 struct ifreq *ifr = (struct ifreq *)if_req; 12124 struct lifreq *lifr = (struct lifreq *)if_req; 12125 12126 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12128 12129 ipif_down_tail(ipif); 12130 if (ipip->ipi_cmd_type == IF_CMD) { 12131 /* 12132 * Since ip_sioctl_flags expects an int and ifr_flags 12133 * is a short we need to cast ifr_flags into an int 12134 * to avoid having sign extension cause bits to get 12135 * set that should not be. 12136 */ 12137 err = ip_sioctl_flags_tail(ipif, 12138 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12139 q, mp, B_TRUE); 12140 } else { 12141 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12142 q, mp, B_TRUE); 12143 } 12144 return (err); 12145 } 12146 12147 /* 12148 * Can operate on either a module or a driver queue. 12149 */ 12150 /* ARGSUSED */ 12151 int 12152 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12153 ip_ioctl_cmd_t *ipip, void *if_req) 12154 { 12155 /* 12156 * Has the flags been set correctly till now ? 12157 */ 12158 ill_t *ill = ipif->ipif_ill; 12159 phyint_t *phyi = ill->ill_phyint; 12160 12161 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12162 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12163 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12164 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12165 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12166 12167 /* 12168 * Need a lock since some flags can be set even when there are 12169 * references to the ipif. 12170 */ 12171 mutex_enter(&ill->ill_lock); 12172 if (ipip->ipi_cmd_type == IF_CMD) { 12173 struct ifreq *ifr = (struct ifreq *)if_req; 12174 12175 /* Get interface flags (low 16 only). */ 12176 ifr->ifr_flags = ((ipif->ipif_flags | 12177 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12178 } else { 12179 struct lifreq *lifr = (struct lifreq *)if_req; 12180 12181 /* Get interface flags. */ 12182 lifr->lifr_flags = ipif->ipif_flags | 12183 ill->ill_flags | phyi->phyint_flags; 12184 } 12185 mutex_exit(&ill->ill_lock); 12186 return (0); 12187 } 12188 12189 /* ARGSUSED */ 12190 int 12191 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12192 ip_ioctl_cmd_t *ipip, void *if_req) 12193 { 12194 int mtu; 12195 int ip_min_mtu; 12196 struct ifreq *ifr; 12197 struct lifreq *lifr; 12198 ire_t *ire; 12199 ip_stack_t *ipst; 12200 12201 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12202 ipif->ipif_id, (void *)ipif)); 12203 if (ipip->ipi_cmd_type == IF_CMD) { 12204 ifr = (struct ifreq *)if_req; 12205 mtu = ifr->ifr_metric; 12206 } else { 12207 lifr = (struct lifreq *)if_req; 12208 mtu = lifr->lifr_mtu; 12209 } 12210 12211 if (ipif->ipif_isv6) 12212 ip_min_mtu = IPV6_MIN_MTU; 12213 else 12214 ip_min_mtu = IP_MIN_MTU; 12215 12216 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12217 return (EINVAL); 12218 12219 /* 12220 * Change the MTU size in all relevant ire's. 12221 * Mtu change Vs. new ire creation - protocol below. 12222 * First change ipif_mtu and the ire_max_frag of the 12223 * interface ire. Then do an ire walk and change the 12224 * ire_max_frag of all affected ires. During ire_add 12225 * under the bucket lock, set the ire_max_frag of the 12226 * new ire being created from the ipif/ire from which 12227 * it is being derived. If an mtu change happens after 12228 * the ire is added, the new ire will be cleaned up. 12229 * Conversely if the mtu change happens before the ire 12230 * is added, ire_add will see the new value of the mtu. 12231 */ 12232 ipif->ipif_mtu = mtu; 12233 ipif->ipif_flags |= IPIF_FIXEDMTU; 12234 12235 if (ipif->ipif_isv6) 12236 ire = ipif_to_ire_v6(ipif); 12237 else 12238 ire = ipif_to_ire(ipif); 12239 if (ire != NULL) { 12240 ire->ire_max_frag = ipif->ipif_mtu; 12241 ire_refrele(ire); 12242 } 12243 ipst = ipif->ipif_ill->ill_ipst; 12244 if (ipif->ipif_flags & IPIF_UP) { 12245 if (ipif->ipif_isv6) 12246 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12247 ipst); 12248 else 12249 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12250 ipst); 12251 } 12252 /* Update the MTU in SCTP's list */ 12253 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12254 return (0); 12255 } 12256 12257 /* Get interface MTU. */ 12258 /* ARGSUSED */ 12259 int 12260 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12261 ip_ioctl_cmd_t *ipip, void *if_req) 12262 { 12263 struct ifreq *ifr; 12264 struct lifreq *lifr; 12265 12266 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12267 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12268 if (ipip->ipi_cmd_type == IF_CMD) { 12269 ifr = (struct ifreq *)if_req; 12270 ifr->ifr_metric = ipif->ipif_mtu; 12271 } else { 12272 lifr = (struct lifreq *)if_req; 12273 lifr->lifr_mtu = ipif->ipif_mtu; 12274 } 12275 return (0); 12276 } 12277 12278 /* Set interface broadcast address. */ 12279 /* ARGSUSED2 */ 12280 int 12281 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12282 ip_ioctl_cmd_t *ipip, void *if_req) 12283 { 12284 ipaddr_t addr; 12285 ire_t *ire; 12286 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12287 12288 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12289 ipif->ipif_id)); 12290 12291 ASSERT(IAM_WRITER_IPIF(ipif)); 12292 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12293 return (EADDRNOTAVAIL); 12294 12295 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12296 12297 if (sin->sin_family != AF_INET) 12298 return (EAFNOSUPPORT); 12299 12300 addr = sin->sin_addr.s_addr; 12301 if (ipif->ipif_flags & IPIF_UP) { 12302 /* 12303 * If we are already up, make sure the new 12304 * broadcast address makes sense. If it does, 12305 * there should be an IRE for it already. 12306 * Don't match on ipif, only on the ill 12307 * since we are sharing these now. Don't use 12308 * MATCH_IRE_ILL_GROUP as we are looking for 12309 * the broadcast ire on this ill and each ill 12310 * in the group has its own broadcast ire. 12311 */ 12312 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12313 ipif, ALL_ZONES, NULL, 12314 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12315 if (ire == NULL) { 12316 return (EINVAL); 12317 } else { 12318 ire_refrele(ire); 12319 } 12320 } 12321 /* 12322 * Changing the broadcast addr for this ipif. 12323 * Make sure we have valid net and subnet bcast 12324 * ire's for other logical interfaces, if needed. 12325 */ 12326 if (addr != ipif->ipif_brd_addr) 12327 ipif_check_bcast_ires(ipif); 12328 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12329 return (0); 12330 } 12331 12332 /* Get interface broadcast address. */ 12333 /* ARGSUSED */ 12334 int 12335 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12336 ip_ioctl_cmd_t *ipip, void *if_req) 12337 { 12338 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12339 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12340 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12341 return (EADDRNOTAVAIL); 12342 12343 /* IPIF_BROADCAST not possible with IPv6 */ 12344 ASSERT(!ipif->ipif_isv6); 12345 *sin = sin_null; 12346 sin->sin_family = AF_INET; 12347 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12348 return (0); 12349 } 12350 12351 /* 12352 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12353 */ 12354 /* ARGSUSED */ 12355 int 12356 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12357 ip_ioctl_cmd_t *ipip, void *if_req) 12358 { 12359 int err = 0; 12360 in6_addr_t v6mask; 12361 12362 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12363 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12364 12365 ASSERT(IAM_WRITER_IPIF(ipif)); 12366 12367 if (ipif->ipif_isv6) { 12368 sin6_t *sin6; 12369 12370 if (sin->sin_family != AF_INET6) 12371 return (EAFNOSUPPORT); 12372 12373 sin6 = (sin6_t *)sin; 12374 v6mask = sin6->sin6_addr; 12375 } else { 12376 ipaddr_t mask; 12377 12378 if (sin->sin_family != AF_INET) 12379 return (EAFNOSUPPORT); 12380 12381 mask = sin->sin_addr.s_addr; 12382 V4MASK_TO_V6(mask, v6mask); 12383 } 12384 12385 /* 12386 * No big deal if the interface isn't already up, or the mask 12387 * isn't really changing, or this is pt-pt. 12388 */ 12389 if (!(ipif->ipif_flags & IPIF_UP) || 12390 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12391 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12392 ipif->ipif_v6net_mask = v6mask; 12393 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12394 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12395 ipif->ipif_v6net_mask, 12396 ipif->ipif_v6subnet); 12397 } 12398 return (0); 12399 } 12400 /* 12401 * Make sure we have valid net and subnet broadcast ire's 12402 * for the old netmask, if needed by other logical interfaces. 12403 */ 12404 if (!ipif->ipif_isv6) 12405 ipif_check_bcast_ires(ipif); 12406 12407 err = ipif_logical_down(ipif, q, mp); 12408 if (err == EINPROGRESS) 12409 return (err); 12410 ipif_down_tail(ipif); 12411 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12412 return (err); 12413 } 12414 12415 static int 12416 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12417 { 12418 in6_addr_t v6mask; 12419 int err = 0; 12420 12421 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12422 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12423 12424 if (ipif->ipif_isv6) { 12425 sin6_t *sin6; 12426 12427 sin6 = (sin6_t *)sin; 12428 v6mask = sin6->sin6_addr; 12429 } else { 12430 ipaddr_t mask; 12431 12432 mask = sin->sin_addr.s_addr; 12433 V4MASK_TO_V6(mask, v6mask); 12434 } 12435 12436 ipif->ipif_v6net_mask = v6mask; 12437 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12438 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12439 ipif->ipif_v6subnet); 12440 } 12441 err = ipif_up(ipif, q, mp); 12442 12443 if (err == 0 || err == EINPROGRESS) { 12444 /* 12445 * The interface must be DL_BOUND if this packet has to 12446 * go out on the wire. Since we only go through a logical 12447 * down and are bound with the driver during an internal 12448 * down/up that is satisfied. 12449 */ 12450 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12451 /* Potentially broadcast an address mask reply. */ 12452 ipif_mask_reply(ipif); 12453 } 12454 } 12455 return (err); 12456 } 12457 12458 /* ARGSUSED */ 12459 int 12460 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12461 ip_ioctl_cmd_t *ipip, void *if_req) 12462 { 12463 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12464 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12465 ipif_down_tail(ipif); 12466 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12467 } 12468 12469 /* Get interface net mask. */ 12470 /* ARGSUSED */ 12471 int 12472 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12473 ip_ioctl_cmd_t *ipip, void *if_req) 12474 { 12475 struct lifreq *lifr = (struct lifreq *)if_req; 12476 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12477 12478 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12479 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12480 12481 /* 12482 * net mask can't change since we have a reference to the ipif. 12483 */ 12484 if (ipif->ipif_isv6) { 12485 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12486 *sin6 = sin6_null; 12487 sin6->sin6_family = AF_INET6; 12488 sin6->sin6_addr = ipif->ipif_v6net_mask; 12489 lifr->lifr_addrlen = 12490 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12491 } else { 12492 *sin = sin_null; 12493 sin->sin_family = AF_INET; 12494 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12495 if (ipip->ipi_cmd_type == LIF_CMD) { 12496 lifr->lifr_addrlen = 12497 ip_mask_to_plen(ipif->ipif_net_mask); 12498 } 12499 } 12500 return (0); 12501 } 12502 12503 /* ARGSUSED */ 12504 int 12505 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12506 ip_ioctl_cmd_t *ipip, void *if_req) 12507 { 12508 12509 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12510 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12511 /* 12512 * Set interface metric. We don't use this for 12513 * anything but we keep track of it in case it is 12514 * important to routing applications or such. 12515 */ 12516 if (ipip->ipi_cmd_type == IF_CMD) { 12517 struct ifreq *ifr; 12518 12519 ifr = (struct ifreq *)if_req; 12520 ipif->ipif_metric = ifr->ifr_metric; 12521 } else { 12522 struct lifreq *lifr; 12523 12524 lifr = (struct lifreq *)if_req; 12525 ipif->ipif_metric = lifr->lifr_metric; 12526 } 12527 return (0); 12528 } 12529 12530 12531 /* ARGSUSED */ 12532 int 12533 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12534 ip_ioctl_cmd_t *ipip, void *if_req) 12535 { 12536 12537 /* Get interface metric. */ 12538 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12539 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12540 if (ipip->ipi_cmd_type == IF_CMD) { 12541 struct ifreq *ifr; 12542 12543 ifr = (struct ifreq *)if_req; 12544 ifr->ifr_metric = ipif->ipif_metric; 12545 } else { 12546 struct lifreq *lifr; 12547 12548 lifr = (struct lifreq *)if_req; 12549 lifr->lifr_metric = ipif->ipif_metric; 12550 } 12551 12552 return (0); 12553 } 12554 12555 /* ARGSUSED */ 12556 int 12557 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12558 ip_ioctl_cmd_t *ipip, void *if_req) 12559 { 12560 12561 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12562 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12563 /* 12564 * Set the muxid returned from I_PLINK. 12565 */ 12566 if (ipip->ipi_cmd_type == IF_CMD) { 12567 struct ifreq *ifr = (struct ifreq *)if_req; 12568 12569 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12570 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12571 } else { 12572 struct lifreq *lifr = (struct lifreq *)if_req; 12573 12574 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12575 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12576 } 12577 return (0); 12578 } 12579 12580 /* ARGSUSED */ 12581 int 12582 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12583 ip_ioctl_cmd_t *ipip, void *if_req) 12584 { 12585 12586 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12587 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12588 /* 12589 * Get the muxid saved in ill for I_PUNLINK. 12590 */ 12591 if (ipip->ipi_cmd_type == IF_CMD) { 12592 struct ifreq *ifr = (struct ifreq *)if_req; 12593 12594 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12595 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12596 } else { 12597 struct lifreq *lifr = (struct lifreq *)if_req; 12598 12599 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12600 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12601 } 12602 return (0); 12603 } 12604 12605 /* 12606 * Set the subnet prefix. Does not modify the broadcast address. 12607 */ 12608 /* ARGSUSED */ 12609 int 12610 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12611 ip_ioctl_cmd_t *ipip, void *if_req) 12612 { 12613 int err = 0; 12614 in6_addr_t v6addr; 12615 in6_addr_t v6mask; 12616 boolean_t need_up = B_FALSE; 12617 int addrlen; 12618 12619 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12620 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12621 12622 ASSERT(IAM_WRITER_IPIF(ipif)); 12623 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12624 12625 if (ipif->ipif_isv6) { 12626 sin6_t *sin6; 12627 12628 if (sin->sin_family != AF_INET6) 12629 return (EAFNOSUPPORT); 12630 12631 sin6 = (sin6_t *)sin; 12632 v6addr = sin6->sin6_addr; 12633 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12634 return (EADDRNOTAVAIL); 12635 } else { 12636 ipaddr_t addr; 12637 12638 if (sin->sin_family != AF_INET) 12639 return (EAFNOSUPPORT); 12640 12641 addr = sin->sin_addr.s_addr; 12642 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12643 return (EADDRNOTAVAIL); 12644 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12645 /* Add 96 bits */ 12646 addrlen += IPV6_ABITS - IP_ABITS; 12647 } 12648 12649 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12650 return (EINVAL); 12651 12652 /* Check if bits in the address is set past the mask */ 12653 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12654 return (EINVAL); 12655 12656 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12657 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12658 return (0); /* No change */ 12659 12660 if (ipif->ipif_flags & IPIF_UP) { 12661 /* 12662 * If the interface is already marked up, 12663 * we call ipif_down which will take care 12664 * of ditching any IREs that have been set 12665 * up based on the old interface address. 12666 */ 12667 err = ipif_logical_down(ipif, q, mp); 12668 if (err == EINPROGRESS) 12669 return (err); 12670 ipif_down_tail(ipif); 12671 need_up = B_TRUE; 12672 } 12673 12674 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12675 return (err); 12676 } 12677 12678 static int 12679 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12680 queue_t *q, mblk_t *mp, boolean_t need_up) 12681 { 12682 ill_t *ill = ipif->ipif_ill; 12683 int err = 0; 12684 12685 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12686 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12687 12688 /* Set the new address. */ 12689 mutex_enter(&ill->ill_lock); 12690 ipif->ipif_v6net_mask = v6mask; 12691 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12692 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12693 ipif->ipif_v6subnet); 12694 } 12695 mutex_exit(&ill->ill_lock); 12696 12697 if (need_up) { 12698 /* 12699 * Now bring the interface back up. If this 12700 * is the only IPIF for the ILL, ipif_up 12701 * will have to re-bind to the device, so 12702 * we may get back EINPROGRESS, in which 12703 * case, this IOCTL will get completed in 12704 * ip_rput_dlpi when we see the DL_BIND_ACK. 12705 */ 12706 err = ipif_up(ipif, q, mp); 12707 if (err == EINPROGRESS) 12708 return (err); 12709 } 12710 return (err); 12711 } 12712 12713 /* ARGSUSED */ 12714 int 12715 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12716 ip_ioctl_cmd_t *ipip, void *if_req) 12717 { 12718 int addrlen; 12719 in6_addr_t v6addr; 12720 in6_addr_t v6mask; 12721 struct lifreq *lifr = (struct lifreq *)if_req; 12722 12723 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12724 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12725 ipif_down_tail(ipif); 12726 12727 addrlen = lifr->lifr_addrlen; 12728 if (ipif->ipif_isv6) { 12729 sin6_t *sin6; 12730 12731 sin6 = (sin6_t *)sin; 12732 v6addr = sin6->sin6_addr; 12733 } else { 12734 ipaddr_t addr; 12735 12736 addr = sin->sin_addr.s_addr; 12737 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12738 addrlen += IPV6_ABITS - IP_ABITS; 12739 } 12740 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12741 12742 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12743 } 12744 12745 /* ARGSUSED */ 12746 int 12747 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12748 ip_ioctl_cmd_t *ipip, void *if_req) 12749 { 12750 struct lifreq *lifr = (struct lifreq *)if_req; 12751 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12752 12753 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12754 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12755 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12756 12757 if (ipif->ipif_isv6) { 12758 *sin6 = sin6_null; 12759 sin6->sin6_family = AF_INET6; 12760 sin6->sin6_addr = ipif->ipif_v6subnet; 12761 lifr->lifr_addrlen = 12762 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12763 } else { 12764 *sin = sin_null; 12765 sin->sin_family = AF_INET; 12766 sin->sin_addr.s_addr = ipif->ipif_subnet; 12767 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12768 } 12769 return (0); 12770 } 12771 12772 /* 12773 * Set the IPv6 address token. 12774 */ 12775 /* ARGSUSED */ 12776 int 12777 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12778 ip_ioctl_cmd_t *ipi, void *if_req) 12779 { 12780 ill_t *ill = ipif->ipif_ill; 12781 int err; 12782 in6_addr_t v6addr; 12783 in6_addr_t v6mask; 12784 boolean_t need_up = B_FALSE; 12785 int i; 12786 sin6_t *sin6 = (sin6_t *)sin; 12787 struct lifreq *lifr = (struct lifreq *)if_req; 12788 int addrlen; 12789 12790 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12791 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12792 ASSERT(IAM_WRITER_IPIF(ipif)); 12793 12794 addrlen = lifr->lifr_addrlen; 12795 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12796 if (ipif->ipif_id != 0) 12797 return (EINVAL); 12798 12799 if (!ipif->ipif_isv6) 12800 return (EINVAL); 12801 12802 if (addrlen > IPV6_ABITS) 12803 return (EINVAL); 12804 12805 v6addr = sin6->sin6_addr; 12806 12807 /* 12808 * The length of the token is the length from the end. To get 12809 * the proper mask for this, compute the mask of the bits not 12810 * in the token; ie. the prefix, and then xor to get the mask. 12811 */ 12812 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12813 return (EINVAL); 12814 for (i = 0; i < 4; i++) { 12815 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12816 } 12817 12818 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12819 ill->ill_token_length == addrlen) 12820 return (0); /* No change */ 12821 12822 if (ipif->ipif_flags & IPIF_UP) { 12823 err = ipif_logical_down(ipif, q, mp); 12824 if (err == EINPROGRESS) 12825 return (err); 12826 ipif_down_tail(ipif); 12827 need_up = B_TRUE; 12828 } 12829 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12830 return (err); 12831 } 12832 12833 static int 12834 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12835 mblk_t *mp, boolean_t need_up) 12836 { 12837 in6_addr_t v6addr; 12838 in6_addr_t v6mask; 12839 ill_t *ill = ipif->ipif_ill; 12840 int i; 12841 int err = 0; 12842 12843 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12844 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12845 v6addr = sin6->sin6_addr; 12846 /* 12847 * The length of the token is the length from the end. To get 12848 * the proper mask for this, compute the mask of the bits not 12849 * in the token; ie. the prefix, and then xor to get the mask. 12850 */ 12851 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12852 for (i = 0; i < 4; i++) 12853 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12854 12855 mutex_enter(&ill->ill_lock); 12856 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12857 ill->ill_token_length = addrlen; 12858 mutex_exit(&ill->ill_lock); 12859 12860 if (need_up) { 12861 /* 12862 * Now bring the interface back up. If this 12863 * is the only IPIF for the ILL, ipif_up 12864 * will have to re-bind to the device, so 12865 * we may get back EINPROGRESS, in which 12866 * case, this IOCTL will get completed in 12867 * ip_rput_dlpi when we see the DL_BIND_ACK. 12868 */ 12869 err = ipif_up(ipif, q, mp); 12870 if (err == EINPROGRESS) 12871 return (err); 12872 } 12873 return (err); 12874 } 12875 12876 /* ARGSUSED */ 12877 int 12878 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12879 ip_ioctl_cmd_t *ipi, void *if_req) 12880 { 12881 ill_t *ill; 12882 sin6_t *sin6 = (sin6_t *)sin; 12883 struct lifreq *lifr = (struct lifreq *)if_req; 12884 12885 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12886 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12887 if (ipif->ipif_id != 0) 12888 return (EINVAL); 12889 12890 ill = ipif->ipif_ill; 12891 if (!ill->ill_isv6) 12892 return (ENXIO); 12893 12894 *sin6 = sin6_null; 12895 sin6->sin6_family = AF_INET6; 12896 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12897 sin6->sin6_addr = ill->ill_token; 12898 lifr->lifr_addrlen = ill->ill_token_length; 12899 return (0); 12900 } 12901 12902 /* 12903 * Set (hardware) link specific information that might override 12904 * what was acquired through the DL_INFO_ACK. 12905 * The logic is as follows. 12906 * 12907 * become exclusive 12908 * set CHANGING flag 12909 * change mtu on affected IREs 12910 * clear CHANGING flag 12911 * 12912 * An ire add that occurs before the CHANGING flag is set will have its mtu 12913 * changed by the ip_sioctl_lnkinfo. 12914 * 12915 * During the time the CHANGING flag is set, no new ires will be added to the 12916 * bucket, and ire add will fail (due the CHANGING flag). 12917 * 12918 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12919 * before it is added to the bucket. 12920 * 12921 * Obviously only 1 thread can set the CHANGING flag and we need to become 12922 * exclusive to set the flag. 12923 */ 12924 /* ARGSUSED */ 12925 int 12926 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12927 ip_ioctl_cmd_t *ipi, void *if_req) 12928 { 12929 ill_t *ill = ipif->ipif_ill; 12930 ipif_t *nipif; 12931 int ip_min_mtu; 12932 boolean_t mtu_walk = B_FALSE; 12933 struct lifreq *lifr = (struct lifreq *)if_req; 12934 lif_ifinfo_req_t *lir; 12935 ire_t *ire; 12936 12937 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12938 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12939 lir = &lifr->lifr_ifinfo; 12940 ASSERT(IAM_WRITER_IPIF(ipif)); 12941 12942 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12943 if (ipif->ipif_id != 0) 12944 return (EINVAL); 12945 12946 /* Set interface MTU. */ 12947 if (ipif->ipif_isv6) 12948 ip_min_mtu = IPV6_MIN_MTU; 12949 else 12950 ip_min_mtu = IP_MIN_MTU; 12951 12952 /* 12953 * Verify values before we set anything. Allow zero to 12954 * mean unspecified. 12955 */ 12956 if (lir->lir_maxmtu != 0 && 12957 (lir->lir_maxmtu > ill->ill_max_frag || 12958 lir->lir_maxmtu < ip_min_mtu)) 12959 return (EINVAL); 12960 if (lir->lir_reachtime != 0 && 12961 lir->lir_reachtime > ND_MAX_REACHTIME) 12962 return (EINVAL); 12963 if (lir->lir_reachretrans != 0 && 12964 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12965 return (EINVAL); 12966 12967 mutex_enter(&ill->ill_lock); 12968 ill->ill_state_flags |= ILL_CHANGING; 12969 for (nipif = ill->ill_ipif; nipif != NULL; 12970 nipif = nipif->ipif_next) { 12971 nipif->ipif_state_flags |= IPIF_CHANGING; 12972 } 12973 12974 mutex_exit(&ill->ill_lock); 12975 12976 if (lir->lir_maxmtu != 0) { 12977 ill->ill_max_mtu = lir->lir_maxmtu; 12978 ill->ill_mtu_userspecified = 1; 12979 mtu_walk = B_TRUE; 12980 } 12981 12982 if (lir->lir_reachtime != 0) 12983 ill->ill_reachable_time = lir->lir_reachtime; 12984 12985 if (lir->lir_reachretrans != 0) 12986 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12987 12988 ill->ill_max_hops = lir->lir_maxhops; 12989 12990 ill->ill_max_buf = ND_MAX_Q; 12991 12992 if (mtu_walk) { 12993 /* 12994 * Set the MTU on all ipifs associated with this ill except 12995 * for those whose MTU was fixed via SIOCSLIFMTU. 12996 */ 12997 for (nipif = ill->ill_ipif; nipif != NULL; 12998 nipif = nipif->ipif_next) { 12999 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13000 continue; 13001 13002 nipif->ipif_mtu = ill->ill_max_mtu; 13003 13004 if (!(nipif->ipif_flags & IPIF_UP)) 13005 continue; 13006 13007 if (nipif->ipif_isv6) 13008 ire = ipif_to_ire_v6(nipif); 13009 else 13010 ire = ipif_to_ire(nipif); 13011 if (ire != NULL) { 13012 ire->ire_max_frag = ipif->ipif_mtu; 13013 ire_refrele(ire); 13014 } 13015 if (ill->ill_isv6) { 13016 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13017 ipif_mtu_change, (char *)nipif, 13018 ill); 13019 } else { 13020 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13021 ipif_mtu_change, (char *)nipif, 13022 ill); 13023 } 13024 } 13025 } 13026 13027 mutex_enter(&ill->ill_lock); 13028 for (nipif = ill->ill_ipif; nipif != NULL; 13029 nipif = nipif->ipif_next) { 13030 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13031 } 13032 ILL_UNMARK_CHANGING(ill); 13033 mutex_exit(&ill->ill_lock); 13034 13035 return (0); 13036 } 13037 13038 /* ARGSUSED */ 13039 int 13040 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13041 ip_ioctl_cmd_t *ipi, void *if_req) 13042 { 13043 struct lif_ifinfo_req *lir; 13044 ill_t *ill = ipif->ipif_ill; 13045 13046 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13047 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13048 if (ipif->ipif_id != 0) 13049 return (EINVAL); 13050 13051 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13052 lir->lir_maxhops = ill->ill_max_hops; 13053 lir->lir_reachtime = ill->ill_reachable_time; 13054 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13055 lir->lir_maxmtu = ill->ill_max_mtu; 13056 13057 return (0); 13058 } 13059 13060 /* 13061 * Return best guess as to the subnet mask for the specified address. 13062 * Based on the subnet masks for all the configured interfaces. 13063 * 13064 * We end up returning a zero mask in the case of default, multicast or 13065 * experimental. 13066 */ 13067 static ipaddr_t 13068 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13069 { 13070 ipaddr_t net_mask; 13071 ill_t *ill; 13072 ipif_t *ipif; 13073 ill_walk_context_t ctx; 13074 ipif_t *fallback_ipif = NULL; 13075 13076 net_mask = ip_net_mask(addr); 13077 if (net_mask == 0) { 13078 *ipifp = NULL; 13079 return (0); 13080 } 13081 13082 /* Let's check to see if this is maybe a local subnet route. */ 13083 /* this function only applies to IPv4 interfaces */ 13084 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13085 ill = ILL_START_WALK_V4(&ctx, ipst); 13086 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13087 mutex_enter(&ill->ill_lock); 13088 for (ipif = ill->ill_ipif; ipif != NULL; 13089 ipif = ipif->ipif_next) { 13090 if (!IPIF_CAN_LOOKUP(ipif)) 13091 continue; 13092 if (!(ipif->ipif_flags & IPIF_UP)) 13093 continue; 13094 if ((ipif->ipif_subnet & net_mask) == 13095 (addr & net_mask)) { 13096 /* 13097 * Don't trust pt-pt interfaces if there are 13098 * other interfaces. 13099 */ 13100 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13101 if (fallback_ipif == NULL) { 13102 ipif_refhold_locked(ipif); 13103 fallback_ipif = ipif; 13104 } 13105 continue; 13106 } 13107 13108 /* 13109 * Fine. Just assume the same net mask as the 13110 * directly attached subnet interface is using. 13111 */ 13112 ipif_refhold_locked(ipif); 13113 mutex_exit(&ill->ill_lock); 13114 rw_exit(&ipst->ips_ill_g_lock); 13115 if (fallback_ipif != NULL) 13116 ipif_refrele(fallback_ipif); 13117 *ipifp = ipif; 13118 return (ipif->ipif_net_mask); 13119 } 13120 } 13121 mutex_exit(&ill->ill_lock); 13122 } 13123 rw_exit(&ipst->ips_ill_g_lock); 13124 13125 *ipifp = fallback_ipif; 13126 return ((fallback_ipif != NULL) ? 13127 fallback_ipif->ipif_net_mask : net_mask); 13128 } 13129 13130 /* 13131 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13132 */ 13133 static void 13134 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13135 { 13136 IOCP iocp; 13137 ipft_t *ipft; 13138 ipllc_t *ipllc; 13139 mblk_t *mp1; 13140 cred_t *cr; 13141 int error = 0; 13142 conn_t *connp; 13143 13144 ip1dbg(("ip_wput_ioctl")); 13145 iocp = (IOCP)mp->b_rptr; 13146 mp1 = mp->b_cont; 13147 if (mp1 == NULL) { 13148 iocp->ioc_error = EINVAL; 13149 mp->b_datap->db_type = M_IOCNAK; 13150 iocp->ioc_count = 0; 13151 qreply(q, mp); 13152 return; 13153 } 13154 13155 /* 13156 * These IOCTLs provide various control capabilities to 13157 * upstream agents such as ULPs and processes. There 13158 * are currently two such IOCTLs implemented. They 13159 * are used by TCP to provide update information for 13160 * existing IREs and to forcibly delete an IRE for a 13161 * host that is not responding, thereby forcing an 13162 * attempt at a new route. 13163 */ 13164 iocp->ioc_error = EINVAL; 13165 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13166 goto done; 13167 13168 ipllc = (ipllc_t *)mp1->b_rptr; 13169 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13170 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13171 break; 13172 } 13173 /* 13174 * prefer credential from mblk over ioctl; 13175 * see ip_sioctl_copyin_setup 13176 */ 13177 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13178 13179 /* 13180 * Refhold the conn in case the request gets queued up in some lookup 13181 */ 13182 ASSERT(CONN_Q(q)); 13183 connp = Q_TO_CONN(q); 13184 CONN_INC_REF(connp); 13185 if (ipft->ipft_pfi && 13186 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13187 pullupmsg(mp1, ipft->ipft_min_size))) { 13188 error = (*ipft->ipft_pfi)(q, 13189 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13190 } 13191 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13192 /* 13193 * CONN_OPER_PENDING_DONE happens in the function called 13194 * through ipft_pfi above. 13195 */ 13196 return; 13197 } 13198 13199 CONN_OPER_PENDING_DONE(connp); 13200 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13201 freemsg(mp); 13202 return; 13203 } 13204 iocp->ioc_error = error; 13205 13206 done: 13207 mp->b_datap->db_type = M_IOCACK; 13208 if (iocp->ioc_error) 13209 iocp->ioc_count = 0; 13210 qreply(q, mp); 13211 } 13212 13213 /* 13214 * Lookup an ipif using the sequence id (ipif_seqid) 13215 */ 13216 ipif_t * 13217 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13218 { 13219 ipif_t *ipif; 13220 13221 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13222 13223 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13224 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13225 return (ipif); 13226 } 13227 return (NULL); 13228 } 13229 13230 /* 13231 * Assign a unique id for the ipif. This is used later when we send 13232 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13233 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13234 * IRE is added, we verify that ipif has not disappeared. 13235 */ 13236 13237 static void 13238 ipif_assign_seqid(ipif_t *ipif) 13239 { 13240 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13241 13242 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13243 } 13244 13245 /* 13246 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13247 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13248 * be inserted into the first space available in the list. The value of 13249 * ipif_id will then be set to the appropriate value for its position. 13250 */ 13251 static int 13252 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13253 { 13254 ill_t *ill; 13255 ipif_t *tipif; 13256 ipif_t **tipifp; 13257 int id; 13258 ip_stack_t *ipst; 13259 13260 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13261 IAM_WRITER_IPIF(ipif)); 13262 13263 ill = ipif->ipif_ill; 13264 ASSERT(ill != NULL); 13265 ipst = ill->ill_ipst; 13266 13267 /* 13268 * In the case of lo0:0 we already hold the ill_g_lock. 13269 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13270 * ipif_insert. Another such caller is ipif_move. 13271 */ 13272 if (acquire_g_lock) 13273 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13274 if (acquire_ill_lock) 13275 mutex_enter(&ill->ill_lock); 13276 id = ipif->ipif_id; 13277 tipifp = &(ill->ill_ipif); 13278 if (id == -1) { /* need to find a real id */ 13279 id = 0; 13280 while ((tipif = *tipifp) != NULL) { 13281 ASSERT(tipif->ipif_id >= id); 13282 if (tipif->ipif_id != id) 13283 break; /* non-consecutive id */ 13284 id++; 13285 tipifp = &(tipif->ipif_next); 13286 } 13287 /* limit number of logical interfaces */ 13288 if (id >= ipst->ips_ip_addrs_per_if) { 13289 if (acquire_ill_lock) 13290 mutex_exit(&ill->ill_lock); 13291 if (acquire_g_lock) 13292 rw_exit(&ipst->ips_ill_g_lock); 13293 return (-1); 13294 } 13295 ipif->ipif_id = id; /* assign new id */ 13296 } else if (id < ipst->ips_ip_addrs_per_if) { 13297 /* we have a real id; insert ipif in the right place */ 13298 while ((tipif = *tipifp) != NULL) { 13299 ASSERT(tipif->ipif_id != id); 13300 if (tipif->ipif_id > id) 13301 break; /* found correct location */ 13302 tipifp = &(tipif->ipif_next); 13303 } 13304 } else { 13305 if (acquire_ill_lock) 13306 mutex_exit(&ill->ill_lock); 13307 if (acquire_g_lock) 13308 rw_exit(&ipst->ips_ill_g_lock); 13309 return (-1); 13310 } 13311 13312 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13313 13314 ipif->ipif_next = tipif; 13315 *tipifp = ipif; 13316 if (acquire_ill_lock) 13317 mutex_exit(&ill->ill_lock); 13318 if (acquire_g_lock) 13319 rw_exit(&ipst->ips_ill_g_lock); 13320 return (0); 13321 } 13322 13323 static void 13324 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13325 { 13326 ipif_t **ipifp; 13327 ill_t *ill = ipif->ipif_ill; 13328 13329 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13330 if (acquire_ill_lock) 13331 mutex_enter(&ill->ill_lock); 13332 else 13333 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13334 13335 ipifp = &ill->ill_ipif; 13336 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13337 if (*ipifp == ipif) { 13338 *ipifp = ipif->ipif_next; 13339 break; 13340 } 13341 } 13342 13343 if (acquire_ill_lock) 13344 mutex_exit(&ill->ill_lock); 13345 } 13346 13347 /* 13348 * Allocate and initialize a new interface control structure. (Always 13349 * called as writer.) 13350 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13351 * is not part of the global linked list of ills. ipif_seqid is unique 13352 * in the system and to preserve the uniqueness, it is assigned only 13353 * when ill becomes part of the global list. At that point ill will 13354 * have a name. If it doesn't get assigned here, it will get assigned 13355 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13356 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13357 * the interface flags or any other information from the DL_INFO_ACK for 13358 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13359 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13360 * second DL_INFO_ACK comes in from the driver. 13361 */ 13362 static ipif_t * 13363 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13364 { 13365 ipif_t *ipif; 13366 phyint_t *phyi; 13367 13368 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13369 ill->ill_name, id, (void *)ill)); 13370 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13371 13372 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13373 return (NULL); 13374 *ipif = ipif_zero; /* start clean */ 13375 13376 ipif->ipif_ill = ill; 13377 ipif->ipif_id = id; /* could be -1 */ 13378 /* 13379 * Inherit the zoneid from the ill; for the shared stack instance 13380 * this is always the global zone 13381 */ 13382 ipif->ipif_zoneid = ill->ill_zoneid; 13383 13384 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13385 13386 ipif->ipif_refcnt = 0; 13387 ipif->ipif_saved_ire_cnt = 0; 13388 13389 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13390 mi_free(ipif); 13391 return (NULL); 13392 } 13393 /* -1 id should have been replaced by real id */ 13394 id = ipif->ipif_id; 13395 ASSERT(id >= 0); 13396 13397 if (ill->ill_name[0] != '\0') 13398 ipif_assign_seqid(ipif); 13399 13400 /* 13401 * Keep a copy of original id in ipif_orig_ipifid. Failback 13402 * will attempt to restore the original id. The SIOCSLIFOINDEX 13403 * ioctl sets ipif_orig_ipifid to zero. 13404 */ 13405 ipif->ipif_orig_ipifid = id; 13406 13407 /* 13408 * We grab the ill_lock and phyint_lock to protect the flag changes. 13409 * The ipif is still not up and can't be looked up until the 13410 * ioctl completes and the IPIF_CHANGING flag is cleared. 13411 */ 13412 mutex_enter(&ill->ill_lock); 13413 mutex_enter(&ill->ill_phyint->phyint_lock); 13414 /* 13415 * Set the running flag when logical interface zero is created. 13416 * For subsequent logical interfaces, a DLPI link down 13417 * notification message may have cleared the running flag to 13418 * indicate the link is down, so we shouldn't just blindly set it. 13419 */ 13420 if (id == 0) 13421 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13422 ipif->ipif_ire_type = ire_type; 13423 phyi = ill->ill_phyint; 13424 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13425 13426 if (ipif->ipif_isv6) { 13427 ill->ill_flags |= ILLF_IPV6; 13428 } else { 13429 ipaddr_t inaddr_any = INADDR_ANY; 13430 13431 ill->ill_flags |= ILLF_IPV4; 13432 13433 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13434 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13435 &ipif->ipif_v6lcl_addr); 13436 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13437 &ipif->ipif_v6src_addr); 13438 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13439 &ipif->ipif_v6subnet); 13440 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13441 &ipif->ipif_v6net_mask); 13442 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13443 &ipif->ipif_v6brd_addr); 13444 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13445 &ipif->ipif_v6pp_dst_addr); 13446 } 13447 13448 /* 13449 * Don't set the interface flags etc. now, will do it in 13450 * ip_ll_subnet_defaults. 13451 */ 13452 if (!initialize) { 13453 mutex_exit(&ill->ill_lock); 13454 mutex_exit(&ill->ill_phyint->phyint_lock); 13455 return (ipif); 13456 } 13457 ipif->ipif_mtu = ill->ill_max_mtu; 13458 13459 if (ill->ill_bcast_addr_length != 0) { 13460 /* 13461 * Later detect lack of DLPI driver multicast 13462 * capability by catching DL_ENABMULTI errors in 13463 * ip_rput_dlpi. 13464 */ 13465 ill->ill_flags |= ILLF_MULTICAST; 13466 if (!ipif->ipif_isv6) 13467 ipif->ipif_flags |= IPIF_BROADCAST; 13468 } else { 13469 if (ill->ill_net_type != IRE_LOOPBACK) { 13470 if (ipif->ipif_isv6) 13471 /* 13472 * Note: xresolv interfaces will eventually need 13473 * NOARP set here as well, but that will require 13474 * those external resolvers to have some 13475 * knowledge of that flag and act appropriately. 13476 * Not to be changed at present. 13477 */ 13478 ill->ill_flags |= ILLF_NONUD; 13479 else 13480 ill->ill_flags |= ILLF_NOARP; 13481 } 13482 if (ill->ill_phys_addr_length == 0) { 13483 if (ill->ill_media && 13484 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13485 ipif->ipif_flags |= IPIF_NOXMIT; 13486 phyi->phyint_flags |= PHYI_VIRTUAL; 13487 } else { 13488 /* pt-pt supports multicast. */ 13489 ill->ill_flags |= ILLF_MULTICAST; 13490 if (ill->ill_net_type == IRE_LOOPBACK) { 13491 phyi->phyint_flags |= 13492 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13493 } else { 13494 ipif->ipif_flags |= IPIF_POINTOPOINT; 13495 } 13496 } 13497 } 13498 } 13499 mutex_exit(&ill->ill_lock); 13500 mutex_exit(&ill->ill_phyint->phyint_lock); 13501 return (ipif); 13502 } 13503 13504 /* 13505 * If appropriate, send a message up to the resolver delete the entry 13506 * for the address of this interface which is going out of business. 13507 * (Always called as writer). 13508 * 13509 * NOTE : We need to check for NULL mps as some of the fields are 13510 * initialized only for some interface types. See ipif_resolver_up() 13511 * for details. 13512 */ 13513 void 13514 ipif_arp_down(ipif_t *ipif) 13515 { 13516 mblk_t *mp; 13517 ill_t *ill = ipif->ipif_ill; 13518 13519 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13520 ASSERT(IAM_WRITER_IPIF(ipif)); 13521 13522 /* Delete the mapping for the local address */ 13523 mp = ipif->ipif_arp_del_mp; 13524 if (mp != NULL) { 13525 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13526 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13527 putnext(ill->ill_rq, mp); 13528 ipif->ipif_arp_del_mp = NULL; 13529 } 13530 13531 /* 13532 * If this is the last ipif that is going down and there are no 13533 * duplicate addresses we may yet attempt to re-probe, then we need to 13534 * clean up ARP completely. 13535 */ 13536 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13537 13538 /* Send up AR_INTERFACE_DOWN message */ 13539 mp = ill->ill_arp_down_mp; 13540 if (mp != NULL) { 13541 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13542 *(unsigned *)mp->b_rptr, ill->ill_name, 13543 ipif->ipif_id)); 13544 putnext(ill->ill_rq, mp); 13545 ill->ill_arp_down_mp = NULL; 13546 } 13547 13548 /* Tell ARP to delete the multicast mappings */ 13549 mp = ill->ill_arp_del_mapping_mp; 13550 if (mp != NULL) { 13551 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13552 *(unsigned *)mp->b_rptr, ill->ill_name, 13553 ipif->ipif_id)); 13554 putnext(ill->ill_rq, mp); 13555 ill->ill_arp_del_mapping_mp = NULL; 13556 } 13557 } 13558 } 13559 13560 /* 13561 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13562 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13563 * that it wants the add_mp allocated in this function to be returned 13564 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13565 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13566 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13567 * as it does a ipif_arp_down after calling this function - which will 13568 * remove what we add here. 13569 * 13570 * Returns -1 on failures and 0 on success. 13571 */ 13572 int 13573 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13574 { 13575 mblk_t *del_mp = NULL; 13576 mblk_t *add_mp = NULL; 13577 mblk_t *mp; 13578 ill_t *ill = ipif->ipif_ill; 13579 phyint_t *phyi = ill->ill_phyint; 13580 ipaddr_t addr, mask, extract_mask = 0; 13581 arma_t *arma; 13582 uint8_t *maddr, *bphys_addr; 13583 uint32_t hw_start; 13584 dl_unitdata_req_t *dlur; 13585 13586 ASSERT(IAM_WRITER_IPIF(ipif)); 13587 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13588 return (0); 13589 13590 /* 13591 * Delete the existing mapping from ARP. Normally ipif_down 13592 * -> ipif_arp_down should send this up to ARP. The only 13593 * reason we would find this when we are switching from 13594 * Multicast to Broadcast where we did not do a down. 13595 */ 13596 mp = ill->ill_arp_del_mapping_mp; 13597 if (mp != NULL) { 13598 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13599 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13600 putnext(ill->ill_rq, mp); 13601 ill->ill_arp_del_mapping_mp = NULL; 13602 } 13603 13604 if (arp_add_mapping_mp != NULL) 13605 *arp_add_mapping_mp = NULL; 13606 13607 /* 13608 * Check that the address is not to long for the constant 13609 * length reserved in the template arma_t. 13610 */ 13611 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13612 return (-1); 13613 13614 /* Add mapping mblk */ 13615 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13616 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13617 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13618 (caddr_t)&addr); 13619 if (add_mp == NULL) 13620 return (-1); 13621 arma = (arma_t *)add_mp->b_rptr; 13622 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13623 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13624 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13625 13626 /* 13627 * Determine the broadcast address. 13628 */ 13629 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13630 if (ill->ill_sap_length < 0) 13631 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13632 else 13633 bphys_addr = (uchar_t *)dlur + 13634 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13635 /* 13636 * Check PHYI_MULTI_BCAST and length of physical 13637 * address to determine if we use the mapping or the 13638 * broadcast address. 13639 */ 13640 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13641 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13642 bphys_addr, maddr, &hw_start, &extract_mask)) 13643 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13644 13645 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13646 (ill->ill_flags & ILLF_MULTICAST)) { 13647 /* Make sure this will not match the "exact" entry. */ 13648 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13649 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13650 (caddr_t)&addr); 13651 if (del_mp == NULL) { 13652 freemsg(add_mp); 13653 return (-1); 13654 } 13655 bcopy(&extract_mask, (char *)arma + 13656 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13657 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13658 /* Use link-layer broadcast address for MULTI_BCAST */ 13659 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13660 ip2dbg(("ipif_arp_setup_multicast: adding" 13661 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13662 } else { 13663 arma->arma_hw_mapping_start = hw_start; 13664 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13665 " ARP setup for %s\n", ill->ill_name)); 13666 } 13667 } else { 13668 freemsg(add_mp); 13669 ASSERT(del_mp == NULL); 13670 /* It is neither MULTICAST nor MULTI_BCAST */ 13671 return (0); 13672 } 13673 ASSERT(add_mp != NULL && del_mp != NULL); 13674 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13675 ill->ill_arp_del_mapping_mp = del_mp; 13676 if (arp_add_mapping_mp != NULL) { 13677 /* The caller just wants the mblks allocated */ 13678 *arp_add_mapping_mp = add_mp; 13679 } else { 13680 /* The caller wants us to send it to arp */ 13681 putnext(ill->ill_rq, add_mp); 13682 } 13683 return (0); 13684 } 13685 13686 /* 13687 * Get the resolver set up for a new interface address. 13688 * (Always called as writer.) 13689 * Called both for IPv4 and IPv6 interfaces, 13690 * though it only sets up the resolver for v6 13691 * if it's an xresolv interface (one using an external resolver). 13692 * Honors ILLF_NOARP. 13693 * The enumerated value res_act is used to tune the behavior. 13694 * If set to Res_act_initial, then we set up all the resolver 13695 * structures for a new interface. If set to Res_act_move, then 13696 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13697 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13698 * asynchronous hardware address change notification. If set to 13699 * Res_act_defend, then we tell ARP that it needs to send a single 13700 * gratuitous message in defense of the address. 13701 * Returns error on failure. 13702 */ 13703 int 13704 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13705 { 13706 caddr_t addr; 13707 mblk_t *arp_up_mp = NULL; 13708 mblk_t *arp_down_mp = NULL; 13709 mblk_t *arp_add_mp = NULL; 13710 mblk_t *arp_del_mp = NULL; 13711 mblk_t *arp_add_mapping_mp = NULL; 13712 mblk_t *arp_del_mapping_mp = NULL; 13713 ill_t *ill = ipif->ipif_ill; 13714 uchar_t *area_p = NULL; 13715 uchar_t *ared_p = NULL; 13716 int err = ENOMEM; 13717 boolean_t was_dup; 13718 13719 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13720 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13721 ASSERT(IAM_WRITER_IPIF(ipif)); 13722 13723 was_dup = B_FALSE; 13724 if (res_act == Res_act_initial) { 13725 ipif->ipif_addr_ready = 0; 13726 /* 13727 * We're bringing an interface up here. There's no way that we 13728 * should need to shut down ARP now. 13729 */ 13730 mutex_enter(&ill->ill_lock); 13731 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13732 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13733 ill->ill_ipif_dup_count--; 13734 was_dup = B_TRUE; 13735 } 13736 mutex_exit(&ill->ill_lock); 13737 } 13738 if (ipif->ipif_recovery_id != 0) 13739 (void) untimeout(ipif->ipif_recovery_id); 13740 ipif->ipif_recovery_id = 0; 13741 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13742 ipif->ipif_addr_ready = 1; 13743 return (0); 13744 } 13745 /* NDP will set the ipif_addr_ready flag when it's ready */ 13746 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13747 return (0); 13748 13749 if (ill->ill_isv6) { 13750 /* 13751 * External resolver for IPv6 13752 */ 13753 ASSERT(res_act == Res_act_initial); 13754 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13755 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13756 area_p = (uchar_t *)&ip6_area_template; 13757 ared_p = (uchar_t *)&ip6_ared_template; 13758 } 13759 } else { 13760 /* 13761 * IPv4 arp case. If the ARP stream has already started 13762 * closing, fail this request for ARP bringup. Else 13763 * record the fact that an ARP bringup is pending. 13764 */ 13765 mutex_enter(&ill->ill_lock); 13766 if (ill->ill_arp_closing) { 13767 mutex_exit(&ill->ill_lock); 13768 err = EINVAL; 13769 goto failed; 13770 } else { 13771 if (ill->ill_ipif_up_count == 0 && 13772 ill->ill_ipif_dup_count == 0 && !was_dup) 13773 ill->ill_arp_bringup_pending = 1; 13774 mutex_exit(&ill->ill_lock); 13775 } 13776 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13777 addr = (caddr_t)&ipif->ipif_lcl_addr; 13778 area_p = (uchar_t *)&ip_area_template; 13779 ared_p = (uchar_t *)&ip_ared_template; 13780 } 13781 } 13782 13783 /* 13784 * Add an entry for the local address in ARP only if it 13785 * is not UNNUMBERED and the address is not INADDR_ANY. 13786 */ 13787 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13788 area_t *area; 13789 13790 /* Now ask ARP to publish our address. */ 13791 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13792 if (arp_add_mp == NULL) 13793 goto failed; 13794 area = (area_t *)arp_add_mp->b_rptr; 13795 if (res_act != Res_act_initial) { 13796 /* 13797 * Copy the new hardware address and length into 13798 * arp_add_mp to be sent to ARP. 13799 */ 13800 area->area_hw_addr_length = ill->ill_phys_addr_length; 13801 bcopy(ill->ill_phys_addr, 13802 ((char *)area + area->area_hw_addr_offset), 13803 area->area_hw_addr_length); 13804 } 13805 13806 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13807 ACE_F_MYADDR; 13808 13809 if (res_act == Res_act_defend) { 13810 area->area_flags |= ACE_F_DEFEND; 13811 /* 13812 * If we're just defending our address now, then 13813 * there's no need to set up ARP multicast mappings. 13814 * The publish command is enough. 13815 */ 13816 goto done; 13817 } 13818 13819 if (res_act != Res_act_initial) 13820 goto arp_setup_multicast; 13821 13822 /* 13823 * Allocate an ARP deletion message so we know we can tell ARP 13824 * when the interface goes down. 13825 */ 13826 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13827 if (arp_del_mp == NULL) 13828 goto failed; 13829 13830 } else { 13831 if (res_act != Res_act_initial) 13832 goto done; 13833 } 13834 /* 13835 * Need to bring up ARP or setup multicast mapping only 13836 * when the first interface is coming UP. 13837 */ 13838 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13839 was_dup) { 13840 goto done; 13841 } 13842 13843 /* 13844 * Allocate an ARP down message (to be saved) and an ARP up 13845 * message. 13846 */ 13847 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13848 if (arp_down_mp == NULL) 13849 goto failed; 13850 13851 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13852 if (arp_up_mp == NULL) 13853 goto failed; 13854 13855 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13856 goto done; 13857 13858 arp_setup_multicast: 13859 /* 13860 * Setup the multicast mappings. This function initializes 13861 * ill_arp_del_mapping_mp also. This does not need to be done for 13862 * IPv6. 13863 */ 13864 if (!ill->ill_isv6) { 13865 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13866 if (err != 0) 13867 goto failed; 13868 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13869 ASSERT(arp_add_mapping_mp != NULL); 13870 } 13871 13872 done: 13873 if (arp_del_mp != NULL) { 13874 ASSERT(ipif->ipif_arp_del_mp == NULL); 13875 ipif->ipif_arp_del_mp = arp_del_mp; 13876 } 13877 if (arp_down_mp != NULL) { 13878 ASSERT(ill->ill_arp_down_mp == NULL); 13879 ill->ill_arp_down_mp = arp_down_mp; 13880 } 13881 if (arp_del_mapping_mp != NULL) { 13882 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13883 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13884 } 13885 if (arp_up_mp != NULL) { 13886 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13887 ill->ill_name, ipif->ipif_id)); 13888 putnext(ill->ill_rq, arp_up_mp); 13889 } 13890 if (arp_add_mp != NULL) { 13891 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13892 ill->ill_name, ipif->ipif_id)); 13893 /* 13894 * If it's an extended ARP implementation, then we'll wait to 13895 * hear that DAD has finished before using the interface. 13896 */ 13897 if (!ill->ill_arp_extend) 13898 ipif->ipif_addr_ready = 1; 13899 putnext(ill->ill_rq, arp_add_mp); 13900 } else { 13901 ipif->ipif_addr_ready = 1; 13902 } 13903 if (arp_add_mapping_mp != NULL) { 13904 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13905 ill->ill_name, ipif->ipif_id)); 13906 putnext(ill->ill_rq, arp_add_mapping_mp); 13907 } 13908 if (res_act != Res_act_initial) 13909 return (0); 13910 13911 if (ill->ill_flags & ILLF_NOARP) 13912 err = ill_arp_off(ill); 13913 else 13914 err = ill_arp_on(ill); 13915 if (err != 0) { 13916 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13917 freemsg(ipif->ipif_arp_del_mp); 13918 freemsg(ill->ill_arp_down_mp); 13919 freemsg(ill->ill_arp_del_mapping_mp); 13920 ipif->ipif_arp_del_mp = NULL; 13921 ill->ill_arp_down_mp = NULL; 13922 ill->ill_arp_del_mapping_mp = NULL; 13923 return (err); 13924 } 13925 return ((ill->ill_ipif_up_count != 0 || was_dup || 13926 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13927 13928 failed: 13929 ip1dbg(("ipif_resolver_up: FAILED\n")); 13930 freemsg(arp_add_mp); 13931 freemsg(arp_del_mp); 13932 freemsg(arp_add_mapping_mp); 13933 freemsg(arp_up_mp); 13934 freemsg(arp_down_mp); 13935 ill->ill_arp_bringup_pending = 0; 13936 return (err); 13937 } 13938 13939 /* 13940 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13941 * just gone back up. 13942 */ 13943 static void 13944 ipif_arp_start_dad(ipif_t *ipif) 13945 { 13946 ill_t *ill = ipif->ipif_ill; 13947 mblk_t *arp_add_mp; 13948 area_t *area; 13949 13950 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13951 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13952 ipif->ipif_lcl_addr == INADDR_ANY || 13953 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13954 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13955 /* 13956 * If we can't contact ARP for some reason, that's not really a 13957 * problem. Just send out the routing socket notification that 13958 * DAD completion would have done, and continue. 13959 */ 13960 ipif_mask_reply(ipif); 13961 ip_rts_ifmsg(ipif); 13962 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13963 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13964 ipif->ipif_addr_ready = 1; 13965 return; 13966 } 13967 13968 /* Setting the 'unverified' flag restarts DAD */ 13969 area = (area_t *)arp_add_mp->b_rptr; 13970 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13971 ACE_F_UNVERIFIED; 13972 putnext(ill->ill_rq, arp_add_mp); 13973 } 13974 13975 static void 13976 ipif_ndp_start_dad(ipif_t *ipif) 13977 { 13978 nce_t *nce; 13979 13980 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13981 if (nce == NULL) 13982 return; 13983 13984 if (!ndp_restart_dad(nce)) { 13985 /* 13986 * If we can't restart DAD for some reason, that's not really a 13987 * problem. Just send out the routing socket notification that 13988 * DAD completion would have done, and continue. 13989 */ 13990 ip_rts_ifmsg(ipif); 13991 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13992 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13993 ipif->ipif_addr_ready = 1; 13994 } 13995 NCE_REFRELE(nce); 13996 } 13997 13998 /* 13999 * Restart duplicate address detection on all interfaces on the given ill. 14000 * 14001 * This is called when an interface transitions from down to up 14002 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14003 * 14004 * Note that since the underlying physical link has transitioned, we must cause 14005 * at least one routing socket message to be sent here, either via DAD 14006 * completion or just by default on the first ipif. (If we don't do this, then 14007 * in.mpathd will see long delays when doing link-based failure recovery.) 14008 */ 14009 void 14010 ill_restart_dad(ill_t *ill, boolean_t went_up) 14011 { 14012 ipif_t *ipif; 14013 14014 if (ill == NULL) 14015 return; 14016 14017 /* 14018 * If layer two doesn't support duplicate address detection, then just 14019 * send the routing socket message now and be done with it. 14020 */ 14021 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14022 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14023 ip_rts_ifmsg(ill->ill_ipif); 14024 return; 14025 } 14026 14027 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14028 if (went_up) { 14029 if (ipif->ipif_flags & IPIF_UP) { 14030 if (ill->ill_isv6) 14031 ipif_ndp_start_dad(ipif); 14032 else 14033 ipif_arp_start_dad(ipif); 14034 } else if (ill->ill_isv6 && 14035 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14036 /* 14037 * For IPv4, the ARP module itself will 14038 * automatically start the DAD process when it 14039 * sees DL_NOTE_LINK_UP. We respond to the 14040 * AR_CN_READY at the completion of that task. 14041 * For IPv6, we must kick off the bring-up 14042 * process now. 14043 */ 14044 ndp_do_recovery(ipif); 14045 } else { 14046 /* 14047 * Unfortunately, the first ipif is "special" 14048 * and represents the underlying ill in the 14049 * routing socket messages. Thus, when this 14050 * one ipif is down, we must still notify so 14051 * that the user knows the IFF_RUNNING status 14052 * change. (If the first ipif is up, then 14053 * we'll handle eventual routing socket 14054 * notification via DAD completion.) 14055 */ 14056 if (ipif == ill->ill_ipif) 14057 ip_rts_ifmsg(ill->ill_ipif); 14058 } 14059 } else { 14060 /* 14061 * After link down, we'll need to send a new routing 14062 * message when the link comes back, so clear 14063 * ipif_addr_ready. 14064 */ 14065 ipif->ipif_addr_ready = 0; 14066 } 14067 } 14068 14069 /* 14070 * If we've torn down links, then notify the user right away. 14071 */ 14072 if (!went_up) 14073 ip_rts_ifmsg(ill->ill_ipif); 14074 } 14075 14076 /* 14077 * Wakeup all threads waiting to enter the ipsq, and sleeping 14078 * on any of the ills in this ipsq. The ill_lock of the ill 14079 * must be held so that waiters don't miss wakeups 14080 */ 14081 static void 14082 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14083 { 14084 phyint_t *phyint; 14085 14086 phyint = ipsq->ipsq_phyint_list; 14087 while (phyint != NULL) { 14088 if (phyint->phyint_illv4) { 14089 if (!caller_holds_lock) 14090 mutex_enter(&phyint->phyint_illv4->ill_lock); 14091 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14092 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14093 if (!caller_holds_lock) 14094 mutex_exit(&phyint->phyint_illv4->ill_lock); 14095 } 14096 if (phyint->phyint_illv6) { 14097 if (!caller_holds_lock) 14098 mutex_enter(&phyint->phyint_illv6->ill_lock); 14099 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14100 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14101 if (!caller_holds_lock) 14102 mutex_exit(&phyint->phyint_illv6->ill_lock); 14103 } 14104 phyint = phyint->phyint_ipsq_next; 14105 } 14106 } 14107 14108 static ipsq_t * 14109 ipsq_create(char *groupname, ip_stack_t *ipst) 14110 { 14111 ipsq_t *ipsq; 14112 14113 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14114 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14115 if (ipsq == NULL) { 14116 return (NULL); 14117 } 14118 14119 if (groupname != NULL) 14120 (void) strcpy(ipsq->ipsq_name, groupname); 14121 else 14122 ipsq->ipsq_name[0] = '\0'; 14123 14124 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14125 ipsq->ipsq_flags |= IPSQ_GROUP; 14126 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14127 ipst->ips_ipsq_g_head = ipsq; 14128 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14129 return (ipsq); 14130 } 14131 14132 /* 14133 * Return an ipsq correspoding to the groupname. If 'create' is true 14134 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14135 * uniquely with an IPMP group. However during IPMP groupname operations, 14136 * multiple IPMP groups may be associated with a single ipsq. But no 14137 * IPMP group can be associated with more than 1 ipsq at any time. 14138 * For example 14139 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14140 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14141 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14142 * 14143 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14144 * status shown below during the execution of the above command. 14145 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14146 * 14147 * After the completion of the above groupname command we return to the stable 14148 * state shown below. 14149 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14150 * hme4 mpk17-85 ipsq2 mpk17-85 1 14151 * 14152 * Because of the above, we don't search based on the ipsq_name since that 14153 * would miss the correct ipsq during certain windows as shown above. 14154 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14155 * natural state. 14156 */ 14157 static ipsq_t * 14158 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14159 ip_stack_t *ipst) 14160 { 14161 ipsq_t *ipsq; 14162 int group_len; 14163 phyint_t *phyint; 14164 14165 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14166 14167 group_len = strlen(groupname); 14168 ASSERT(group_len != 0); 14169 group_len++; 14170 14171 for (ipsq = ipst->ips_ipsq_g_head; 14172 ipsq != NULL; 14173 ipsq = ipsq->ipsq_next) { 14174 /* 14175 * When an ipsq is being split, and ill_split_ipsq 14176 * calls this function, we exclude it from being considered. 14177 */ 14178 if (ipsq == exclude_ipsq) 14179 continue; 14180 14181 /* 14182 * Compare against the ipsq_name. The groupname change happens 14183 * in 2 phases. The 1st phase merges the from group into 14184 * the to group's ipsq, by calling ill_merge_groups and restarts 14185 * the ioctl. The 2nd phase then locates the ipsq again thru 14186 * ipsq_name. At this point the phyint_groupname has not been 14187 * updated. 14188 */ 14189 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14190 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14191 /* 14192 * Verify that an ipmp groupname is exactly 14193 * part of 1 ipsq and is not found in any other 14194 * ipsq. 14195 */ 14196 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14197 NULL); 14198 return (ipsq); 14199 } 14200 14201 /* 14202 * Comparison against ipsq_name alone is not sufficient. 14203 * In the case when groups are currently being 14204 * merged, the ipsq could hold other IPMP groups temporarily. 14205 * so we walk the phyint list and compare against the 14206 * phyint_groupname as well. 14207 */ 14208 phyint = ipsq->ipsq_phyint_list; 14209 while (phyint != NULL) { 14210 if ((group_len == phyint->phyint_groupname_len) && 14211 (bcmp(phyint->phyint_groupname, groupname, 14212 group_len) == 0)) { 14213 /* 14214 * Verify that an ipmp groupname is exactly 14215 * part of 1 ipsq and is not found in any other 14216 * ipsq. 14217 */ 14218 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14219 ipst) == NULL); 14220 return (ipsq); 14221 } 14222 phyint = phyint->phyint_ipsq_next; 14223 } 14224 } 14225 if (create) 14226 ipsq = ipsq_create(groupname, ipst); 14227 return (ipsq); 14228 } 14229 14230 static void 14231 ipsq_delete(ipsq_t *ipsq) 14232 { 14233 ipsq_t *nipsq; 14234 ipsq_t *pipsq = NULL; 14235 ip_stack_t *ipst = ipsq->ipsq_ipst; 14236 14237 /* 14238 * We don't hold the ipsq lock, but we are sure no new 14239 * messages can land up, since the ipsq_refs is zero. 14240 * i.e. this ipsq is unnamed and no phyint or phyint group 14241 * is associated with this ipsq. (Lookups are based on ill_name 14242 * or phyint_groupname) 14243 */ 14244 ASSERT(ipsq->ipsq_refs == 0); 14245 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14246 ASSERT(ipsq->ipsq_pending_mp == NULL); 14247 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14248 /* 14249 * This is not the ipsq of an IPMP group. 14250 */ 14251 ipsq->ipsq_ipst = NULL; 14252 kmem_free(ipsq, sizeof (ipsq_t)); 14253 return; 14254 } 14255 14256 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14257 14258 /* 14259 * Locate the ipsq before we can remove it from 14260 * the singly linked list of ipsq's. 14261 */ 14262 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14263 nipsq = nipsq->ipsq_next) { 14264 if (nipsq == ipsq) { 14265 break; 14266 } 14267 pipsq = nipsq; 14268 } 14269 14270 ASSERT(nipsq == ipsq); 14271 14272 /* unlink ipsq from the list */ 14273 if (pipsq != NULL) 14274 pipsq->ipsq_next = ipsq->ipsq_next; 14275 else 14276 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14277 ipsq->ipsq_ipst = NULL; 14278 kmem_free(ipsq, sizeof (ipsq_t)); 14279 rw_exit(&ipst->ips_ill_g_lock); 14280 } 14281 14282 static void 14283 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14284 queue_t *q) 14285 { 14286 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14287 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14288 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14289 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14290 ASSERT(current_mp != NULL); 14291 14292 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14293 NEW_OP, NULL); 14294 14295 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14296 new_ipsq->ipsq_xopq_mphead != NULL); 14297 14298 /* 14299 * move from old ipsq to the new ipsq. 14300 */ 14301 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14302 if (old_ipsq->ipsq_xopq_mphead != NULL) 14303 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14304 14305 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14306 } 14307 14308 void 14309 ill_group_cleanup(ill_t *ill) 14310 { 14311 ill_t *ill_v4; 14312 ill_t *ill_v6; 14313 ipif_t *ipif; 14314 14315 ill_v4 = ill->ill_phyint->phyint_illv4; 14316 ill_v6 = ill->ill_phyint->phyint_illv6; 14317 14318 if (ill_v4 != NULL) { 14319 mutex_enter(&ill_v4->ill_lock); 14320 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14321 ipif = ipif->ipif_next) { 14322 IPIF_UNMARK_MOVING(ipif); 14323 } 14324 ill_v4->ill_up_ipifs = B_FALSE; 14325 mutex_exit(&ill_v4->ill_lock); 14326 } 14327 14328 if (ill_v6 != NULL) { 14329 mutex_enter(&ill_v6->ill_lock); 14330 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14331 ipif = ipif->ipif_next) { 14332 IPIF_UNMARK_MOVING(ipif); 14333 } 14334 ill_v6->ill_up_ipifs = B_FALSE; 14335 mutex_exit(&ill_v6->ill_lock); 14336 } 14337 } 14338 /* 14339 * This function is called when an ill has had a change in its group status 14340 * to bring up all the ipifs that were up before the change. 14341 */ 14342 int 14343 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14344 { 14345 ipif_t *ipif; 14346 ill_t *ill_v4; 14347 ill_t *ill_v6; 14348 ill_t *from_ill; 14349 int err = 0; 14350 14351 14352 ASSERT(IAM_WRITER_ILL(ill)); 14353 14354 /* 14355 * Except for ipif_state_flags and ill_state_flags the other 14356 * fields of the ipif/ill that are modified below are protected 14357 * implicitly since we are a writer. We would have tried to down 14358 * even an ipif that was already down, in ill_down_ipifs. So we 14359 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14360 */ 14361 ill_v4 = ill->ill_phyint->phyint_illv4; 14362 ill_v6 = ill->ill_phyint->phyint_illv6; 14363 if (ill_v4 != NULL) { 14364 ill_v4->ill_up_ipifs = B_TRUE; 14365 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14366 ipif = ipif->ipif_next) { 14367 mutex_enter(&ill_v4->ill_lock); 14368 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14369 IPIF_UNMARK_MOVING(ipif); 14370 mutex_exit(&ill_v4->ill_lock); 14371 if (ipif->ipif_was_up) { 14372 if (!(ipif->ipif_flags & IPIF_UP)) 14373 err = ipif_up(ipif, q, mp); 14374 ipif->ipif_was_up = B_FALSE; 14375 if (err != 0) { 14376 /* 14377 * Can there be any other error ? 14378 */ 14379 ASSERT(err == EINPROGRESS); 14380 return (err); 14381 } 14382 } 14383 } 14384 mutex_enter(&ill_v4->ill_lock); 14385 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14386 mutex_exit(&ill_v4->ill_lock); 14387 ill_v4->ill_up_ipifs = B_FALSE; 14388 if (ill_v4->ill_move_in_progress) { 14389 ASSERT(ill_v4->ill_move_peer != NULL); 14390 ill_v4->ill_move_in_progress = B_FALSE; 14391 from_ill = ill_v4->ill_move_peer; 14392 from_ill->ill_move_in_progress = B_FALSE; 14393 from_ill->ill_move_peer = NULL; 14394 mutex_enter(&from_ill->ill_lock); 14395 from_ill->ill_state_flags &= ~ILL_CHANGING; 14396 mutex_exit(&from_ill->ill_lock); 14397 if (ill_v6 == NULL) { 14398 if (from_ill->ill_phyint->phyint_flags & 14399 PHYI_STANDBY) { 14400 phyint_inactive(from_ill->ill_phyint); 14401 } 14402 if (ill_v4->ill_phyint->phyint_flags & 14403 PHYI_STANDBY) { 14404 phyint_inactive(ill_v4->ill_phyint); 14405 } 14406 } 14407 ill_v4->ill_move_peer = NULL; 14408 } 14409 } 14410 14411 if (ill_v6 != NULL) { 14412 ill_v6->ill_up_ipifs = B_TRUE; 14413 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14414 ipif = ipif->ipif_next) { 14415 mutex_enter(&ill_v6->ill_lock); 14416 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14417 IPIF_UNMARK_MOVING(ipif); 14418 mutex_exit(&ill_v6->ill_lock); 14419 if (ipif->ipif_was_up) { 14420 if (!(ipif->ipif_flags & IPIF_UP)) 14421 err = ipif_up(ipif, q, mp); 14422 ipif->ipif_was_up = B_FALSE; 14423 if (err != 0) { 14424 /* 14425 * Can there be any other error ? 14426 */ 14427 ASSERT(err == EINPROGRESS); 14428 return (err); 14429 } 14430 } 14431 } 14432 mutex_enter(&ill_v6->ill_lock); 14433 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14434 mutex_exit(&ill_v6->ill_lock); 14435 ill_v6->ill_up_ipifs = B_FALSE; 14436 if (ill_v6->ill_move_in_progress) { 14437 ASSERT(ill_v6->ill_move_peer != NULL); 14438 ill_v6->ill_move_in_progress = B_FALSE; 14439 from_ill = ill_v6->ill_move_peer; 14440 from_ill->ill_move_in_progress = B_FALSE; 14441 from_ill->ill_move_peer = NULL; 14442 mutex_enter(&from_ill->ill_lock); 14443 from_ill->ill_state_flags &= ~ILL_CHANGING; 14444 mutex_exit(&from_ill->ill_lock); 14445 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14446 phyint_inactive(from_ill->ill_phyint); 14447 } 14448 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14449 phyint_inactive(ill_v6->ill_phyint); 14450 } 14451 ill_v6->ill_move_peer = NULL; 14452 } 14453 } 14454 return (0); 14455 } 14456 14457 /* 14458 * bring down all the approriate ipifs. 14459 */ 14460 /* ARGSUSED */ 14461 static void 14462 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14463 { 14464 ipif_t *ipif; 14465 14466 ASSERT(IAM_WRITER_ILL(ill)); 14467 14468 /* 14469 * Except for ipif_state_flags the other fields of the ipif/ill that 14470 * are modified below are protected implicitly since we are a writer 14471 */ 14472 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14473 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14474 continue; 14475 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14476 /* 14477 * We go through the ipif_down logic even if the ipif 14478 * is already down, since routes can be added based 14479 * on down ipifs. Going through ipif_down once again 14480 * will delete any IREs created based on these routes. 14481 */ 14482 if (ipif->ipif_flags & IPIF_UP) 14483 ipif->ipif_was_up = B_TRUE; 14484 /* 14485 * If called with chk_nofailover true ipif is moving. 14486 */ 14487 mutex_enter(&ill->ill_lock); 14488 if (chk_nofailover) { 14489 ipif->ipif_state_flags |= 14490 IPIF_MOVING | IPIF_CHANGING; 14491 } else { 14492 ipif->ipif_state_flags |= IPIF_CHANGING; 14493 } 14494 mutex_exit(&ill->ill_lock); 14495 /* 14496 * Need to re-create net/subnet bcast ires if 14497 * they are dependent on ipif. 14498 */ 14499 if (!ipif->ipif_isv6) 14500 ipif_check_bcast_ires(ipif); 14501 (void) ipif_logical_down(ipif, NULL, NULL); 14502 ipif_non_duplicate(ipif); 14503 ipif_down_tail(ipif); 14504 } 14505 } 14506 } 14507 14508 #define IPSQ_INC_REF(ipsq, ipst) { \ 14509 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14510 (ipsq)->ipsq_refs++; \ 14511 } 14512 14513 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14514 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14515 (ipsq)->ipsq_refs--; \ 14516 if ((ipsq)->ipsq_refs == 0) \ 14517 (ipsq)->ipsq_name[0] = '\0'; \ 14518 } 14519 14520 /* 14521 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14522 * new_ipsq. 14523 */ 14524 static void 14525 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14526 { 14527 phyint_t *phyint; 14528 phyint_t *next_phyint; 14529 14530 /* 14531 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14532 * writer and the ill_lock of the ill in question. Also the dest 14533 * ipsq can't vanish while we hold the ill_g_lock as writer. 14534 */ 14535 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14536 14537 phyint = cur_ipsq->ipsq_phyint_list; 14538 cur_ipsq->ipsq_phyint_list = NULL; 14539 while (phyint != NULL) { 14540 next_phyint = phyint->phyint_ipsq_next; 14541 IPSQ_DEC_REF(cur_ipsq, ipst); 14542 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14543 new_ipsq->ipsq_phyint_list = phyint; 14544 IPSQ_INC_REF(new_ipsq, ipst); 14545 phyint->phyint_ipsq = new_ipsq; 14546 phyint = next_phyint; 14547 } 14548 } 14549 14550 #define SPLIT_SUCCESS 0 14551 #define SPLIT_NOT_NEEDED 1 14552 #define SPLIT_FAILED 2 14553 14554 int 14555 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14556 ip_stack_t *ipst) 14557 { 14558 ipsq_t *newipsq = NULL; 14559 14560 /* 14561 * Assertions denote pre-requisites for changing the ipsq of 14562 * a phyint 14563 */ 14564 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14565 /* 14566 * <ill-phyint> assocs can't change while ill_g_lock 14567 * is held as writer. See ill_phyint_reinit() 14568 */ 14569 ASSERT(phyint->phyint_illv4 == NULL || 14570 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14571 ASSERT(phyint->phyint_illv6 == NULL || 14572 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14573 14574 if ((phyint->phyint_groupname_len != 14575 (strlen(cur_ipsq->ipsq_name) + 1) || 14576 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14577 phyint->phyint_groupname_len) != 0)) { 14578 /* 14579 * Once we fail in creating a new ipsq due to memory shortage, 14580 * don't attempt to create new ipsq again, based on another 14581 * phyint, since we want all phyints belonging to an IPMP group 14582 * to be in the same ipsq even in the event of mem alloc fails. 14583 */ 14584 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14585 cur_ipsq, ipst); 14586 if (newipsq == NULL) { 14587 /* Memory allocation failure */ 14588 return (SPLIT_FAILED); 14589 } else { 14590 /* ipsq_refs protected by ill_g_lock (writer) */ 14591 IPSQ_DEC_REF(cur_ipsq, ipst); 14592 phyint->phyint_ipsq = newipsq; 14593 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14594 newipsq->ipsq_phyint_list = phyint; 14595 IPSQ_INC_REF(newipsq, ipst); 14596 return (SPLIT_SUCCESS); 14597 } 14598 } 14599 return (SPLIT_NOT_NEEDED); 14600 } 14601 14602 /* 14603 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14604 * to do this split 14605 */ 14606 static int 14607 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14608 { 14609 ipsq_t *newipsq; 14610 14611 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14612 /* 14613 * <ill-phyint> assocs can't change while ill_g_lock 14614 * is held as writer. See ill_phyint_reinit() 14615 */ 14616 14617 ASSERT(phyint->phyint_illv4 == NULL || 14618 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14619 ASSERT(phyint->phyint_illv6 == NULL || 14620 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14621 14622 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14623 phyint->phyint_illv4: phyint->phyint_illv6)) { 14624 /* 14625 * ipsq_init failed due to no memory 14626 * caller will use the same ipsq 14627 */ 14628 return (SPLIT_FAILED); 14629 } 14630 14631 /* ipsq_ref is protected by ill_g_lock (writer) */ 14632 IPSQ_DEC_REF(cur_ipsq, ipst); 14633 14634 /* 14635 * This is a new ipsq that is unknown to the world. 14636 * So we don't need to hold ipsq_lock, 14637 */ 14638 newipsq = phyint->phyint_ipsq; 14639 newipsq->ipsq_writer = NULL; 14640 newipsq->ipsq_reentry_cnt--; 14641 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14642 #ifdef DEBUG 14643 newipsq->ipsq_depth = 0; 14644 #endif 14645 14646 return (SPLIT_SUCCESS); 14647 } 14648 14649 /* 14650 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14651 * ipsq's representing their individual groups or themselves. Return 14652 * whether split needs to be retried again later. 14653 */ 14654 static boolean_t 14655 ill_split_ipsq(ipsq_t *cur_ipsq) 14656 { 14657 phyint_t *phyint; 14658 phyint_t *next_phyint; 14659 int error; 14660 boolean_t need_retry = B_FALSE; 14661 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14662 14663 phyint = cur_ipsq->ipsq_phyint_list; 14664 cur_ipsq->ipsq_phyint_list = NULL; 14665 while (phyint != NULL) { 14666 next_phyint = phyint->phyint_ipsq_next; 14667 /* 14668 * 'created' will tell us whether the callee actually 14669 * created an ipsq. Lack of memory may force the callee 14670 * to return without creating an ipsq. 14671 */ 14672 if (phyint->phyint_groupname == NULL) { 14673 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14674 } else { 14675 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14676 need_retry, ipst); 14677 } 14678 14679 switch (error) { 14680 case SPLIT_FAILED: 14681 need_retry = B_TRUE; 14682 /* FALLTHRU */ 14683 case SPLIT_NOT_NEEDED: 14684 /* 14685 * Keep it on the list. 14686 */ 14687 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14688 cur_ipsq->ipsq_phyint_list = phyint; 14689 break; 14690 case SPLIT_SUCCESS: 14691 break; 14692 default: 14693 ASSERT(0); 14694 } 14695 14696 phyint = next_phyint; 14697 } 14698 return (need_retry); 14699 } 14700 14701 /* 14702 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14703 * and return the ills in the list. This list will be 14704 * needed to unlock all the ills later on by the caller. 14705 * The <ill-ipsq> associations could change between the 14706 * lock and unlock. Hence the unlock can't traverse the 14707 * ipsq to get the list of ills. 14708 */ 14709 static int 14710 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14711 { 14712 int cnt = 0; 14713 phyint_t *phyint; 14714 ip_stack_t *ipst = ipsq->ipsq_ipst; 14715 14716 /* 14717 * The caller holds ill_g_lock to ensure that the ill memberships 14718 * of the ipsq don't change 14719 */ 14720 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14721 14722 phyint = ipsq->ipsq_phyint_list; 14723 while (phyint != NULL) { 14724 if (phyint->phyint_illv4 != NULL) { 14725 ASSERT(cnt < list_max); 14726 list[cnt++] = phyint->phyint_illv4; 14727 } 14728 if (phyint->phyint_illv6 != NULL) { 14729 ASSERT(cnt < list_max); 14730 list[cnt++] = phyint->phyint_illv6; 14731 } 14732 phyint = phyint->phyint_ipsq_next; 14733 } 14734 ill_lock_ills(list, cnt); 14735 return (cnt); 14736 } 14737 14738 void 14739 ill_lock_ills(ill_t **list, int cnt) 14740 { 14741 int i; 14742 14743 if (cnt > 1) { 14744 boolean_t try_again; 14745 do { 14746 try_again = B_FALSE; 14747 for (i = 0; i < cnt - 1; i++) { 14748 if (list[i] < list[i + 1]) { 14749 ill_t *tmp; 14750 14751 /* swap the elements */ 14752 tmp = list[i]; 14753 list[i] = list[i + 1]; 14754 list[i + 1] = tmp; 14755 try_again = B_TRUE; 14756 } 14757 } 14758 } while (try_again); 14759 } 14760 14761 for (i = 0; i < cnt; i++) { 14762 if (i == 0) { 14763 if (list[i] != NULL) 14764 mutex_enter(&list[i]->ill_lock); 14765 else 14766 return; 14767 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14768 mutex_enter(&list[i]->ill_lock); 14769 } 14770 } 14771 } 14772 14773 void 14774 ill_unlock_ills(ill_t **list, int cnt) 14775 { 14776 int i; 14777 14778 for (i = 0; i < cnt; i++) { 14779 if ((i == 0) && (list[i] != NULL)) { 14780 mutex_exit(&list[i]->ill_lock); 14781 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14782 mutex_exit(&list[i]->ill_lock); 14783 } 14784 } 14785 } 14786 14787 /* 14788 * Merge all the ills from 1 ipsq group into another ipsq group. 14789 * The source ipsq group is specified by the ipsq associated with 14790 * 'from_ill'. The destination ipsq group is specified by the ipsq 14791 * associated with 'to_ill' or 'groupname' respectively. 14792 * Note that ipsq itself does not have a reference count mechanism 14793 * and functions don't look up an ipsq and pass it around. Instead 14794 * functions pass around an ill or groupname, and the ipsq is looked 14795 * up from the ill or groupname and the required operation performed 14796 * atomically with the lookup on the ipsq. 14797 */ 14798 static int 14799 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14800 queue_t *q) 14801 { 14802 ipsq_t *old_ipsq; 14803 ipsq_t *new_ipsq; 14804 ill_t **ill_list; 14805 int cnt; 14806 size_t ill_list_size; 14807 boolean_t became_writer_on_new_sq = B_FALSE; 14808 ip_stack_t *ipst = from_ill->ill_ipst; 14809 14810 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14811 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14812 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14813 14814 /* 14815 * Need to hold ill_g_lock as writer and also the ill_lock to 14816 * change the <ill-ipsq> assoc of an ill. Need to hold the 14817 * ipsq_lock to prevent new messages from landing on an ipsq. 14818 */ 14819 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14820 14821 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14822 if (groupname != NULL) 14823 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14824 else { 14825 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14826 } 14827 14828 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14829 14830 /* 14831 * both groups are on the same ipsq. 14832 */ 14833 if (old_ipsq == new_ipsq) { 14834 rw_exit(&ipst->ips_ill_g_lock); 14835 return (0); 14836 } 14837 14838 cnt = old_ipsq->ipsq_refs << 1; 14839 ill_list_size = cnt * sizeof (ill_t *); 14840 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14841 if (ill_list == NULL) { 14842 rw_exit(&ipst->ips_ill_g_lock); 14843 return (ENOMEM); 14844 } 14845 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14846 14847 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14848 mutex_enter(&new_ipsq->ipsq_lock); 14849 if ((new_ipsq->ipsq_writer == NULL && 14850 new_ipsq->ipsq_current_ipif == NULL) || 14851 (new_ipsq->ipsq_writer == curthread)) { 14852 new_ipsq->ipsq_writer = curthread; 14853 new_ipsq->ipsq_reentry_cnt++; 14854 became_writer_on_new_sq = B_TRUE; 14855 } 14856 14857 /* 14858 * We are holding ill_g_lock as writer and all the ill locks of 14859 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14860 * message can land up on the old ipsq even though we don't hold the 14861 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14862 */ 14863 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14864 14865 /* 14866 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14867 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14868 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14869 */ 14870 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14871 14872 /* 14873 * Mark the new ipsq as needing a split since it is currently 14874 * being shared by more than 1 IPMP group. The split will 14875 * occur at the end of ipsq_exit 14876 */ 14877 new_ipsq->ipsq_split = B_TRUE; 14878 14879 /* Now release all the locks */ 14880 mutex_exit(&new_ipsq->ipsq_lock); 14881 ill_unlock_ills(ill_list, cnt); 14882 rw_exit(&ipst->ips_ill_g_lock); 14883 14884 kmem_free(ill_list, ill_list_size); 14885 14886 /* 14887 * If we succeeded in becoming writer on the new ipsq, then 14888 * drain the new ipsq and start processing all enqueued messages 14889 * including the current ioctl we are processing which is either 14890 * a set groupname or failover/failback. 14891 */ 14892 if (became_writer_on_new_sq) 14893 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14894 14895 /* 14896 * syncq has been changed and all the messages have been moved. 14897 */ 14898 mutex_enter(&old_ipsq->ipsq_lock); 14899 old_ipsq->ipsq_current_ipif = NULL; 14900 old_ipsq->ipsq_current_ioctl = 0; 14901 old_ipsq->ipsq_current_done = B_TRUE; 14902 mutex_exit(&old_ipsq->ipsq_lock); 14903 return (EINPROGRESS); 14904 } 14905 14906 /* 14907 * Delete and add the loopback copy and non-loopback copy of 14908 * the BROADCAST ire corresponding to ill and addr. Used to 14909 * group broadcast ires together when ill becomes part of 14910 * a group. 14911 * 14912 * This function is also called when ill is leaving the group 14913 * so that the ires belonging to the group gets re-grouped. 14914 */ 14915 static void 14916 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14917 { 14918 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14919 ire_t **ire_ptpn = &ire_head; 14920 ip_stack_t *ipst = ill->ill_ipst; 14921 14922 /* 14923 * The loopback and non-loopback IREs are inserted in the order in which 14924 * they're found, on the basis that they are correctly ordered (loopback 14925 * first). 14926 */ 14927 for (;;) { 14928 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14929 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14930 if (ire == NULL) 14931 break; 14932 14933 /* 14934 * we are passing in KM_SLEEP because it is not easy to 14935 * go back to a sane state in case of memory failure. 14936 */ 14937 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14938 ASSERT(nire != NULL); 14939 bzero(nire, sizeof (ire_t)); 14940 /* 14941 * Don't use ire_max_frag directly since we don't 14942 * hold on to 'ire' until we add the new ire 'nire' and 14943 * we don't want the new ire to have a dangling reference 14944 * to 'ire'. The ire_max_frag of a broadcast ire must 14945 * be in sync with the ipif_mtu of the associate ipif. 14946 * For eg. this happens as a result of SIOCSLIFNAME, 14947 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14948 * the driver. A change in ire_max_frag triggered as 14949 * as a result of path mtu discovery, or due to an 14950 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14951 * route change -mtu command does not apply to broadcast ires. 14952 * 14953 * XXX We need a recovery strategy here if ire_init fails 14954 */ 14955 if (ire_init(nire, 14956 (uchar_t *)&ire->ire_addr, 14957 (uchar_t *)&ire->ire_mask, 14958 (uchar_t *)&ire->ire_src_addr, 14959 (uchar_t *)&ire->ire_gateway_addr, 14960 ire->ire_stq == NULL ? &ip_loopback_mtu : 14961 &ire->ire_ipif->ipif_mtu, 14962 ire->ire_nce, 14963 ire->ire_rfq, 14964 ire->ire_stq, 14965 ire->ire_type, 14966 ire->ire_ipif, 14967 ire->ire_cmask, 14968 ire->ire_phandle, 14969 ire->ire_ihandle, 14970 ire->ire_flags, 14971 &ire->ire_uinfo, 14972 NULL, 14973 NULL, 14974 ipst) == NULL) { 14975 cmn_err(CE_PANIC, "ire_init() failed"); 14976 } 14977 ire_delete(ire); 14978 ire_refrele(ire); 14979 14980 /* 14981 * The newly created IREs are inserted at the tail of the list 14982 * starting with ire_head. As we've just allocated them no one 14983 * knows about them so it's safe. 14984 */ 14985 *ire_ptpn = nire; 14986 ire_ptpn = &nire->ire_next; 14987 } 14988 14989 for (nire = ire_head; nire != NULL; nire = nire_next) { 14990 int error; 14991 ire_t *oire; 14992 /* unlink the IRE from our list before calling ire_add() */ 14993 nire_next = nire->ire_next; 14994 nire->ire_next = NULL; 14995 14996 /* ire_add adds the ire at the right place in the list */ 14997 oire = nire; 14998 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14999 ASSERT(error == 0); 15000 ASSERT(oire == nire); 15001 ire_refrele(nire); /* Held in ire_add */ 15002 } 15003 } 15004 15005 /* 15006 * This function is usually called when an ill is inserted in 15007 * a group and all the ipifs are already UP. As all the ipifs 15008 * are already UP, the broadcast ires have already been created 15009 * and been inserted. But, ire_add_v4 would not have grouped properly. 15010 * We need to re-group for the benefit of ip_wput_ire which 15011 * expects BROADCAST ires to be grouped properly to avoid sending 15012 * more than one copy of the broadcast packet per group. 15013 * 15014 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15015 * because when ipif_up_done ends up calling this, ires have 15016 * already been added before illgrp_insert i.e before ill_group 15017 * has been initialized. 15018 */ 15019 static void 15020 ill_group_bcast_for_xmit(ill_t *ill) 15021 { 15022 ill_group_t *illgrp; 15023 ipif_t *ipif; 15024 ipaddr_t addr; 15025 ipaddr_t net_mask; 15026 ipaddr_t subnet_netmask; 15027 15028 illgrp = ill->ill_group; 15029 15030 /* 15031 * This function is called even when an ill is deleted from 15032 * the group. Hence, illgrp could be null. 15033 */ 15034 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15035 return; 15036 15037 /* 15038 * Delete all the BROADCAST ires matching this ill and add 15039 * them back. This time, ire_add_v4 should take care of 15040 * grouping them with others because ill is part of the 15041 * group. 15042 */ 15043 ill_bcast_delete_and_add(ill, 0); 15044 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15045 15046 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15047 15048 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15049 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15050 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15051 } else { 15052 net_mask = htonl(IN_CLASSA_NET); 15053 } 15054 addr = net_mask & ipif->ipif_subnet; 15055 ill_bcast_delete_and_add(ill, addr); 15056 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15057 15058 subnet_netmask = ipif->ipif_net_mask; 15059 addr = ipif->ipif_subnet; 15060 ill_bcast_delete_and_add(ill, addr); 15061 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15062 } 15063 } 15064 15065 /* 15066 * This function is called from illgrp_delete when ill is being deleted 15067 * from the group. 15068 * 15069 * As ill is not there in the group anymore, any address belonging 15070 * to this ill should be cleared of IRE_MARK_NORECV. 15071 */ 15072 static void 15073 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15074 { 15075 ire_t *ire; 15076 irb_t *irb; 15077 ip_stack_t *ipst = ill->ill_ipst; 15078 15079 ASSERT(ill->ill_group == NULL); 15080 15081 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15082 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15083 15084 if (ire != NULL) { 15085 /* 15086 * IPMP and plumbing operations are serialized on the ipsq, so 15087 * no one will insert or delete a broadcast ire under our feet. 15088 */ 15089 irb = ire->ire_bucket; 15090 rw_enter(&irb->irb_lock, RW_READER); 15091 ire_refrele(ire); 15092 15093 for (; ire != NULL; ire = ire->ire_next) { 15094 if (ire->ire_addr != addr) 15095 break; 15096 if (ire_to_ill(ire) != ill) 15097 continue; 15098 15099 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15100 ire->ire_marks &= ~IRE_MARK_NORECV; 15101 } 15102 rw_exit(&irb->irb_lock); 15103 } 15104 } 15105 15106 /* 15107 * This function must be called only after the broadcast ires 15108 * have been grouped together. For a given address addr, nominate 15109 * only one of the ires whose interface is not FAILED or OFFLINE. 15110 * 15111 * This is also called when an ipif goes down, so that we can nominate 15112 * a different ire with the same address for receiving. 15113 */ 15114 static void 15115 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15116 { 15117 irb_t *irb; 15118 ire_t *ire; 15119 ire_t *ire1; 15120 ire_t *save_ire; 15121 ire_t **irep = NULL; 15122 boolean_t first = B_TRUE; 15123 ire_t *clear_ire = NULL; 15124 ire_t *start_ire = NULL; 15125 ire_t *new_lb_ire; 15126 ire_t *new_nlb_ire; 15127 boolean_t new_lb_ire_used = B_FALSE; 15128 boolean_t new_nlb_ire_used = B_FALSE; 15129 uint64_t match_flags; 15130 uint64_t phyi_flags; 15131 boolean_t fallback = B_FALSE; 15132 uint_t max_frag; 15133 15134 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15135 NULL, MATCH_IRE_TYPE, ipst); 15136 /* 15137 * We may not be able to find some ires if a previous 15138 * ire_create failed. This happens when an ipif goes 15139 * down and we are unable to create BROADCAST ires due 15140 * to memory failure. Thus, we have to check for NULL 15141 * below. This should handle the case for LOOPBACK, 15142 * POINTOPOINT and interfaces with some POINTOPOINT 15143 * logicals for which there are no BROADCAST ires. 15144 */ 15145 if (ire == NULL) 15146 return; 15147 /* 15148 * Currently IRE_BROADCASTS are deleted when an ipif 15149 * goes down which runs exclusively. Thus, setting 15150 * IRE_MARK_RCVD should not race with ire_delete marking 15151 * IRE_MARK_CONDEMNED. We grab the lock below just to 15152 * be consistent with other parts of the code that walks 15153 * a given bucket. 15154 */ 15155 save_ire = ire; 15156 irb = ire->ire_bucket; 15157 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15158 if (new_lb_ire == NULL) { 15159 ire_refrele(ire); 15160 return; 15161 } 15162 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15163 if (new_nlb_ire == NULL) { 15164 ire_refrele(ire); 15165 kmem_cache_free(ire_cache, new_lb_ire); 15166 return; 15167 } 15168 IRB_REFHOLD(irb); 15169 rw_enter(&irb->irb_lock, RW_WRITER); 15170 /* 15171 * Get to the first ire matching the address and the 15172 * group. If the address does not match we are done 15173 * as we could not find the IRE. If the address matches 15174 * we should get to the first one matching the group. 15175 */ 15176 while (ire != NULL) { 15177 if (ire->ire_addr != addr || 15178 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15179 break; 15180 } 15181 ire = ire->ire_next; 15182 } 15183 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15184 start_ire = ire; 15185 redo: 15186 while (ire != NULL && ire->ire_addr == addr && 15187 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15188 /* 15189 * The first ire for any address within a group 15190 * should always be the one with IRE_MARK_NORECV cleared 15191 * so that ip_wput_ire can avoid searching for one. 15192 * Note down the insertion point which will be used 15193 * later. 15194 */ 15195 if (first && (irep == NULL)) 15196 irep = ire->ire_ptpn; 15197 /* 15198 * PHYI_FAILED is set when the interface fails. 15199 * This interface might have become good, but the 15200 * daemon has not yet detected. We should still 15201 * not receive on this. PHYI_OFFLINE should never 15202 * be picked as this has been offlined and soon 15203 * be removed. 15204 */ 15205 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15206 if (phyi_flags & PHYI_OFFLINE) { 15207 ire->ire_marks |= IRE_MARK_NORECV; 15208 ire = ire->ire_next; 15209 continue; 15210 } 15211 if (phyi_flags & match_flags) { 15212 ire->ire_marks |= IRE_MARK_NORECV; 15213 ire = ire->ire_next; 15214 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15215 PHYI_INACTIVE) { 15216 fallback = B_TRUE; 15217 } 15218 continue; 15219 } 15220 if (first) { 15221 /* 15222 * We will move this to the front of the list later 15223 * on. 15224 */ 15225 clear_ire = ire; 15226 ire->ire_marks &= ~IRE_MARK_NORECV; 15227 } else { 15228 ire->ire_marks |= IRE_MARK_NORECV; 15229 } 15230 first = B_FALSE; 15231 ire = ire->ire_next; 15232 } 15233 /* 15234 * If we never nominated anybody, try nominating at least 15235 * an INACTIVE, if we found one. Do it only once though. 15236 */ 15237 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15238 fallback) { 15239 match_flags = PHYI_FAILED; 15240 ire = start_ire; 15241 irep = NULL; 15242 goto redo; 15243 } 15244 ire_refrele(save_ire); 15245 15246 /* 15247 * irep non-NULL indicates that we entered the while loop 15248 * above. If clear_ire is at the insertion point, we don't 15249 * have to do anything. clear_ire will be NULL if all the 15250 * interfaces are failed. 15251 * 15252 * We cannot unlink and reinsert the ire at the right place 15253 * in the list since there can be other walkers of this bucket. 15254 * Instead we delete and recreate the ire 15255 */ 15256 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15257 ire_t *clear_ire_stq = NULL; 15258 15259 bzero(new_lb_ire, sizeof (ire_t)); 15260 /* XXX We need a recovery strategy here. */ 15261 if (ire_init(new_lb_ire, 15262 (uchar_t *)&clear_ire->ire_addr, 15263 (uchar_t *)&clear_ire->ire_mask, 15264 (uchar_t *)&clear_ire->ire_src_addr, 15265 (uchar_t *)&clear_ire->ire_gateway_addr, 15266 &clear_ire->ire_max_frag, 15267 NULL, /* let ire_nce_init derive the resolver info */ 15268 clear_ire->ire_rfq, 15269 clear_ire->ire_stq, 15270 clear_ire->ire_type, 15271 clear_ire->ire_ipif, 15272 clear_ire->ire_cmask, 15273 clear_ire->ire_phandle, 15274 clear_ire->ire_ihandle, 15275 clear_ire->ire_flags, 15276 &clear_ire->ire_uinfo, 15277 NULL, 15278 NULL, 15279 ipst) == NULL) 15280 cmn_err(CE_PANIC, "ire_init() failed"); 15281 if (clear_ire->ire_stq == NULL) { 15282 ire_t *ire_next = clear_ire->ire_next; 15283 if (ire_next != NULL && 15284 ire_next->ire_stq != NULL && 15285 ire_next->ire_addr == clear_ire->ire_addr && 15286 ire_next->ire_ipif->ipif_ill == 15287 clear_ire->ire_ipif->ipif_ill) { 15288 clear_ire_stq = ire_next; 15289 15290 bzero(new_nlb_ire, sizeof (ire_t)); 15291 /* XXX We need a recovery strategy here. */ 15292 if (ire_init(new_nlb_ire, 15293 (uchar_t *)&clear_ire_stq->ire_addr, 15294 (uchar_t *)&clear_ire_stq->ire_mask, 15295 (uchar_t *)&clear_ire_stq->ire_src_addr, 15296 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15297 &clear_ire_stq->ire_max_frag, 15298 NULL, 15299 clear_ire_stq->ire_rfq, 15300 clear_ire_stq->ire_stq, 15301 clear_ire_stq->ire_type, 15302 clear_ire_stq->ire_ipif, 15303 clear_ire_stq->ire_cmask, 15304 clear_ire_stq->ire_phandle, 15305 clear_ire_stq->ire_ihandle, 15306 clear_ire_stq->ire_flags, 15307 &clear_ire_stq->ire_uinfo, 15308 NULL, 15309 NULL, 15310 ipst) == NULL) 15311 cmn_err(CE_PANIC, "ire_init() failed"); 15312 } 15313 } 15314 15315 /* 15316 * Delete the ire. We can't call ire_delete() since 15317 * we are holding the bucket lock. We can't release the 15318 * bucket lock since we can't allow irep to change. So just 15319 * mark it CONDEMNED. The IRB_REFRELE will delete the 15320 * ire from the list and do the refrele. 15321 */ 15322 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15323 irb->irb_marks |= IRB_MARK_CONDEMNED; 15324 15325 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15326 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15327 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15328 } 15329 15330 /* 15331 * Also take care of otherfields like ib/ob pkt count 15332 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15333 */ 15334 15335 /* Set the max_frag before adding the ire */ 15336 max_frag = *new_lb_ire->ire_max_fragp; 15337 new_lb_ire->ire_max_fragp = NULL; 15338 new_lb_ire->ire_max_frag = max_frag; 15339 15340 /* Add the new ire's. Insert at *irep */ 15341 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15342 ire1 = *irep; 15343 if (ire1 != NULL) 15344 ire1->ire_ptpn = &new_lb_ire->ire_next; 15345 new_lb_ire->ire_next = ire1; 15346 /* Link the new one in. */ 15347 new_lb_ire->ire_ptpn = irep; 15348 membar_producer(); 15349 *irep = new_lb_ire; 15350 new_lb_ire_used = B_TRUE; 15351 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15352 new_lb_ire->ire_bucket->irb_ire_cnt++; 15353 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15354 (char *), "ire", (void *), new_lb_ire); 15355 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15356 15357 if (clear_ire_stq != NULL) { 15358 /* Set the max_frag before adding the ire */ 15359 max_frag = *new_nlb_ire->ire_max_fragp; 15360 new_nlb_ire->ire_max_fragp = NULL; 15361 new_nlb_ire->ire_max_frag = max_frag; 15362 15363 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15364 irep = &new_lb_ire->ire_next; 15365 /* Add the new ire. Insert at *irep */ 15366 ire1 = *irep; 15367 if (ire1 != NULL) 15368 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15369 new_nlb_ire->ire_next = ire1; 15370 /* Link the new one in. */ 15371 new_nlb_ire->ire_ptpn = irep; 15372 membar_producer(); 15373 *irep = new_nlb_ire; 15374 new_nlb_ire_used = B_TRUE; 15375 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15376 ire_stats_inserted); 15377 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15378 DTRACE_PROBE3(ipif__incr__cnt, 15379 (ipif_t *), new_nlb_ire->ire_ipif, 15380 (char *), "ire", (void *), new_nlb_ire); 15381 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15382 DTRACE_PROBE3(ill__incr__cnt, 15383 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15384 (char *), "ire", (void *), new_nlb_ire); 15385 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15386 } 15387 } 15388 rw_exit(&irb->irb_lock); 15389 if (!new_lb_ire_used) 15390 kmem_cache_free(ire_cache, new_lb_ire); 15391 if (!new_nlb_ire_used) 15392 kmem_cache_free(ire_cache, new_nlb_ire); 15393 IRB_REFRELE(irb); 15394 } 15395 15396 /* 15397 * Whenever an ipif goes down we have to renominate a different 15398 * broadcast ire to receive. Whenever an ipif comes up, we need 15399 * to make sure that we have only one nominated to receive. 15400 */ 15401 static void 15402 ipif_renominate_bcast(ipif_t *ipif) 15403 { 15404 ill_t *ill = ipif->ipif_ill; 15405 ipaddr_t subnet_addr; 15406 ipaddr_t net_addr; 15407 ipaddr_t net_mask = 0; 15408 ipaddr_t subnet_netmask; 15409 ipaddr_t addr; 15410 ill_group_t *illgrp; 15411 ip_stack_t *ipst = ill->ill_ipst; 15412 15413 illgrp = ill->ill_group; 15414 /* 15415 * If this is the last ipif going down, it might take 15416 * the ill out of the group. In that case ipif_down -> 15417 * illgrp_delete takes care of doing the nomination. 15418 * ipif_down does not call for this case. 15419 */ 15420 ASSERT(illgrp != NULL); 15421 15422 /* There could not have been any ires associated with this */ 15423 if (ipif->ipif_subnet == 0) 15424 return; 15425 15426 ill_mark_bcast(illgrp, 0, ipst); 15427 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15428 15429 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15430 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15431 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15432 } else { 15433 net_mask = htonl(IN_CLASSA_NET); 15434 } 15435 addr = net_mask & ipif->ipif_subnet; 15436 ill_mark_bcast(illgrp, addr, ipst); 15437 15438 net_addr = ~net_mask | addr; 15439 ill_mark_bcast(illgrp, net_addr, ipst); 15440 15441 subnet_netmask = ipif->ipif_net_mask; 15442 addr = ipif->ipif_subnet; 15443 ill_mark_bcast(illgrp, addr, ipst); 15444 15445 subnet_addr = ~subnet_netmask | addr; 15446 ill_mark_bcast(illgrp, subnet_addr, ipst); 15447 } 15448 15449 /* 15450 * Whenever we form or delete ill groups, we need to nominate one set of 15451 * BROADCAST ires for receiving in the group. 15452 * 15453 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15454 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15455 * for ill_ipif_up_count to be non-zero. This is the only case where 15456 * ill_ipif_up_count is zero and we would still find the ires. 15457 * 15458 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15459 * ipif is UP and we just have to do the nomination. 15460 * 15461 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15462 * from the group. So, we have to do the nomination. 15463 * 15464 * Because of (3), there could be just one ill in the group. But we have 15465 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15466 * Thus, this function does not optimize when there is only one ill as 15467 * it is not correct for (3). 15468 */ 15469 static void 15470 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15471 { 15472 ill_t *ill; 15473 ipif_t *ipif; 15474 ipaddr_t subnet_addr; 15475 ipaddr_t prev_subnet_addr = 0; 15476 ipaddr_t net_addr; 15477 ipaddr_t prev_net_addr = 0; 15478 ipaddr_t net_mask = 0; 15479 ipaddr_t subnet_netmask; 15480 ipaddr_t addr; 15481 ip_stack_t *ipst; 15482 15483 /* 15484 * When the last memeber is leaving, there is nothing to 15485 * nominate. 15486 */ 15487 if (illgrp->illgrp_ill_count == 0) { 15488 ASSERT(illgrp->illgrp_ill == NULL); 15489 return; 15490 } 15491 15492 ill = illgrp->illgrp_ill; 15493 ASSERT(!ill->ill_isv6); 15494 ipst = ill->ill_ipst; 15495 /* 15496 * We assume that ires with same address and belonging to the 15497 * same group, has been grouped together. Nominating a *single* 15498 * ill in the group for sending and receiving broadcast is done 15499 * by making sure that the first BROADCAST ire (which will be 15500 * the one returned by ire_ctable_lookup for ip_rput and the 15501 * one that will be used in ip_wput_ire) will be the one that 15502 * will not have IRE_MARK_NORECV set. 15503 * 15504 * 1) ip_rput checks and discards packets received on ires marked 15505 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15506 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15507 * first ire in the group for every broadcast address in the group. 15508 * ip_rput will accept packets only on the first ire i.e only 15509 * one copy of the ill. 15510 * 15511 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15512 * packet for the whole group. It needs to send out on the ill 15513 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15514 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15515 * the copy echoed back on other port where the ire is not marked 15516 * with IRE_MARK_NORECV. 15517 * 15518 * Note that we just need to have the first IRE either loopback or 15519 * non-loopback (either of them may not exist if ire_create failed 15520 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15521 * always hit the first one and hence will always accept one copy. 15522 * 15523 * We have a broadcast ire per ill for all the unique prefixes 15524 * hosted on that ill. As we don't have a way of knowing the 15525 * unique prefixes on a given ill and hence in the whole group, 15526 * we just call ill_mark_bcast on all the prefixes that exist 15527 * in the group. For the common case of one prefix, the code 15528 * below optimizes by remebering the last address used for 15529 * markng. In the case of multiple prefixes, this will still 15530 * optimize depending the order of prefixes. 15531 * 15532 * The only unique address across the whole group is 0.0.0.0 and 15533 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15534 * the first ire in the bucket for receiving and disables the 15535 * others. 15536 */ 15537 ill_mark_bcast(illgrp, 0, ipst); 15538 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15539 for (; ill != NULL; ill = ill->ill_group_next) { 15540 15541 for (ipif = ill->ill_ipif; ipif != NULL; 15542 ipif = ipif->ipif_next) { 15543 15544 if (!(ipif->ipif_flags & IPIF_UP) || 15545 ipif->ipif_subnet == 0) { 15546 continue; 15547 } 15548 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15549 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15550 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15551 } else { 15552 net_mask = htonl(IN_CLASSA_NET); 15553 } 15554 addr = net_mask & ipif->ipif_subnet; 15555 if (prev_net_addr == 0 || prev_net_addr != addr) { 15556 ill_mark_bcast(illgrp, addr, ipst); 15557 net_addr = ~net_mask | addr; 15558 ill_mark_bcast(illgrp, net_addr, ipst); 15559 } 15560 prev_net_addr = addr; 15561 15562 subnet_netmask = ipif->ipif_net_mask; 15563 addr = ipif->ipif_subnet; 15564 if (prev_subnet_addr == 0 || 15565 prev_subnet_addr != addr) { 15566 ill_mark_bcast(illgrp, addr, ipst); 15567 subnet_addr = ~subnet_netmask | addr; 15568 ill_mark_bcast(illgrp, subnet_addr, ipst); 15569 } 15570 prev_subnet_addr = addr; 15571 } 15572 } 15573 } 15574 15575 /* 15576 * This function is called while forming ill groups. 15577 * 15578 * Currently, we handle only allmulti groups. We want to join 15579 * allmulti on only one of the ills in the groups. In future, 15580 * when we have link aggregation, we may have to join normal 15581 * multicast groups on multiple ills as switch does inbound load 15582 * balancing. Following are the functions that calls this 15583 * function : 15584 * 15585 * 1) ill_recover_multicast : Interface is coming back UP. 15586 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15587 * will call ill_recover_multicast to recover all the multicast 15588 * groups. We need to make sure that only one member is joined 15589 * in the ill group. 15590 * 15591 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15592 * Somebody is joining allmulti. We need to make sure that only one 15593 * member is joined in the group. 15594 * 15595 * 3) illgrp_insert : If allmulti has already joined, we need to make 15596 * sure that only one member is joined in the group. 15597 * 15598 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15599 * allmulti who we have nominated. We need to pick someother ill. 15600 * 15601 * 5) illgrp_delete : The ill we nominated is leaving the group, 15602 * we need to pick a new ill to join the group. 15603 * 15604 * For (1), (2), (5) - we just have to check whether there is 15605 * a good ill joined in the group. If we could not find any ills 15606 * joined the group, we should join. 15607 * 15608 * For (4), the one that was nominated to receive, left the group. 15609 * There could be nobody joined in the group when this function is 15610 * called. 15611 * 15612 * For (3) - we need to explicitly check whether there are multiple 15613 * ills joined in the group. 15614 * 15615 * For simplicity, we don't differentiate any of the above cases. We 15616 * just leave the group if it is joined on any of them and join on 15617 * the first good ill. 15618 */ 15619 int 15620 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15621 { 15622 ilm_t *ilm; 15623 ill_t *ill; 15624 ill_t *fallback_inactive_ill = NULL; 15625 ill_t *fallback_failed_ill = NULL; 15626 int ret = 0; 15627 15628 /* 15629 * Leave the allmulti on all the ills and start fresh. 15630 */ 15631 for (ill = illgrp->illgrp_ill; ill != NULL; 15632 ill = ill->ill_group_next) { 15633 if (ill->ill_join_allmulti) 15634 (void) ip_leave_allmulti(ill->ill_ipif); 15635 } 15636 15637 /* 15638 * Choose a good ill. Fallback to inactive or failed if 15639 * none available. We need to fallback to FAILED in the 15640 * case where we have 2 interfaces in a group - where 15641 * one of them is failed and another is a good one and 15642 * the good one (not marked inactive) is leaving the group. 15643 */ 15644 ret = 0; 15645 for (ill = illgrp->illgrp_ill; ill != NULL; 15646 ill = ill->ill_group_next) { 15647 /* Never pick an offline interface */ 15648 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15649 continue; 15650 15651 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15652 fallback_failed_ill = ill; 15653 continue; 15654 } 15655 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15656 fallback_inactive_ill = ill; 15657 continue; 15658 } 15659 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15660 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15661 ret = ip_join_allmulti(ill->ill_ipif); 15662 /* 15663 * ip_join_allmulti can fail because of memory 15664 * failures. So, make sure we join at least 15665 * on one ill. 15666 */ 15667 if (ill->ill_join_allmulti) 15668 return (0); 15669 } 15670 } 15671 } 15672 if (ret != 0) { 15673 /* 15674 * If we tried nominating above and failed to do so, 15675 * return error. We might have tried multiple times. 15676 * But, return the latest error. 15677 */ 15678 return (ret); 15679 } 15680 if ((ill = fallback_inactive_ill) != NULL) { 15681 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15682 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15683 ret = ip_join_allmulti(ill->ill_ipif); 15684 return (ret); 15685 } 15686 } 15687 } else if ((ill = fallback_failed_ill) != NULL) { 15688 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15689 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15690 ret = ip_join_allmulti(ill->ill_ipif); 15691 return (ret); 15692 } 15693 } 15694 } 15695 return (0); 15696 } 15697 15698 /* 15699 * This function is called from illgrp_delete after it is 15700 * deleted from the group to reschedule responsibilities 15701 * to a different ill. 15702 */ 15703 static void 15704 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15705 { 15706 ilm_t *ilm; 15707 ipif_t *ipif; 15708 ipaddr_t subnet_addr; 15709 ipaddr_t net_addr; 15710 ipaddr_t net_mask = 0; 15711 ipaddr_t subnet_netmask; 15712 ipaddr_t addr; 15713 ip_stack_t *ipst = ill->ill_ipst; 15714 15715 ASSERT(ill->ill_group == NULL); 15716 /* 15717 * Broadcast Responsibility: 15718 * 15719 * 1. If this ill has been nominated for receiving broadcast 15720 * packets, we need to find a new one. Before we find a new 15721 * one, we need to re-group the ires that are part of this new 15722 * group (assumed by ill_nominate_bcast_rcv). We do this by 15723 * calling ill_group_bcast_for_xmit(ill) which will do the right 15724 * thing for us. 15725 * 15726 * 2. If this ill was not nominated for receiving broadcast 15727 * packets, we need to clear the IRE_MARK_NORECV flag 15728 * so that we continue to send up broadcast packets. 15729 */ 15730 if (!ill->ill_isv6) { 15731 /* 15732 * Case 1 above : No optimization here. Just redo the 15733 * nomination. 15734 */ 15735 ill_group_bcast_for_xmit(ill); 15736 ill_nominate_bcast_rcv(illgrp); 15737 15738 /* 15739 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15740 */ 15741 ill_clear_bcast_mark(ill, 0); 15742 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15743 15744 for (ipif = ill->ill_ipif; ipif != NULL; 15745 ipif = ipif->ipif_next) { 15746 15747 if (!(ipif->ipif_flags & IPIF_UP) || 15748 ipif->ipif_subnet == 0) { 15749 continue; 15750 } 15751 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15752 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15753 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15754 } else { 15755 net_mask = htonl(IN_CLASSA_NET); 15756 } 15757 addr = net_mask & ipif->ipif_subnet; 15758 ill_clear_bcast_mark(ill, addr); 15759 15760 net_addr = ~net_mask | addr; 15761 ill_clear_bcast_mark(ill, net_addr); 15762 15763 subnet_netmask = ipif->ipif_net_mask; 15764 addr = ipif->ipif_subnet; 15765 ill_clear_bcast_mark(ill, addr); 15766 15767 subnet_addr = ~subnet_netmask | addr; 15768 ill_clear_bcast_mark(ill, subnet_addr); 15769 } 15770 } 15771 15772 /* 15773 * Multicast Responsibility. 15774 * 15775 * If we have joined allmulti on this one, find a new member 15776 * in the group to join allmulti. As this ill is already part 15777 * of allmulti, we don't have to join on this one. 15778 * 15779 * If we have not joined allmulti on this one, there is no 15780 * responsibility to handoff. But we need to take new 15781 * responsibility i.e, join allmulti on this one if we need 15782 * to. 15783 */ 15784 if (ill->ill_join_allmulti) { 15785 (void) ill_nominate_mcast_rcv(illgrp); 15786 } else { 15787 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15788 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15789 (void) ip_join_allmulti(ill->ill_ipif); 15790 break; 15791 } 15792 } 15793 } 15794 15795 /* 15796 * We intentionally do the flushing of IRE_CACHES only matching 15797 * on the ill and not on groups. Note that we are already deleted 15798 * from the group. 15799 * 15800 * This will make sure that all IRE_CACHES whose stq is pointing 15801 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15802 * deleted and IRE_CACHES that are not pointing at this ill will 15803 * be left alone. 15804 */ 15805 if (ill->ill_isv6) { 15806 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15807 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15808 } else { 15809 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15810 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15811 } 15812 15813 /* 15814 * Some conn may have cached one of the IREs deleted above. By removing 15815 * the ire reference, we clean up the extra reference to the ill held in 15816 * ire->ire_stq. 15817 */ 15818 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15819 15820 /* 15821 * Re-do source address selection for all the members in the 15822 * group, if they borrowed source address from one of the ipifs 15823 * in this ill. 15824 */ 15825 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15826 if (ill->ill_isv6) { 15827 ipif_update_other_ipifs_v6(ipif, illgrp); 15828 } else { 15829 ipif_update_other_ipifs(ipif, illgrp); 15830 } 15831 } 15832 } 15833 15834 /* 15835 * Delete the ill from the group. The caller makes sure that it is 15836 * in a group and it okay to delete from the group. So, we always 15837 * delete here. 15838 */ 15839 static void 15840 illgrp_delete(ill_t *ill) 15841 { 15842 ill_group_t *illgrp; 15843 ill_group_t *tmpg; 15844 ill_t *tmp_ill; 15845 ip_stack_t *ipst = ill->ill_ipst; 15846 15847 /* 15848 * Reset illgrp_ill_schednext if it was pointing at us. 15849 * We need to do this before we set ill_group to NULL. 15850 */ 15851 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15852 mutex_enter(&ill->ill_lock); 15853 15854 illgrp_reset_schednext(ill); 15855 15856 illgrp = ill->ill_group; 15857 15858 /* Delete the ill from illgrp. */ 15859 if (illgrp->illgrp_ill == ill) { 15860 illgrp->illgrp_ill = ill->ill_group_next; 15861 } else { 15862 tmp_ill = illgrp->illgrp_ill; 15863 while (tmp_ill->ill_group_next != ill) { 15864 tmp_ill = tmp_ill->ill_group_next; 15865 ASSERT(tmp_ill != NULL); 15866 } 15867 tmp_ill->ill_group_next = ill->ill_group_next; 15868 } 15869 ill->ill_group = NULL; 15870 ill->ill_group_next = NULL; 15871 15872 illgrp->illgrp_ill_count--; 15873 mutex_exit(&ill->ill_lock); 15874 rw_exit(&ipst->ips_ill_g_lock); 15875 15876 /* 15877 * As this ill is leaving the group, we need to hand off 15878 * the responsibilities to the other ills in the group, if 15879 * this ill had some responsibilities. 15880 */ 15881 15882 ill_handoff_responsibility(ill, illgrp); 15883 15884 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15885 15886 if (illgrp->illgrp_ill_count == 0) { 15887 15888 ASSERT(illgrp->illgrp_ill == NULL); 15889 if (ill->ill_isv6) { 15890 if (illgrp == ipst->ips_illgrp_head_v6) { 15891 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15892 } else { 15893 tmpg = ipst->ips_illgrp_head_v6; 15894 while (tmpg->illgrp_next != illgrp) { 15895 tmpg = tmpg->illgrp_next; 15896 ASSERT(tmpg != NULL); 15897 } 15898 tmpg->illgrp_next = illgrp->illgrp_next; 15899 } 15900 } else { 15901 if (illgrp == ipst->ips_illgrp_head_v4) { 15902 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15903 } else { 15904 tmpg = ipst->ips_illgrp_head_v4; 15905 while (tmpg->illgrp_next != illgrp) { 15906 tmpg = tmpg->illgrp_next; 15907 ASSERT(tmpg != NULL); 15908 } 15909 tmpg->illgrp_next = illgrp->illgrp_next; 15910 } 15911 } 15912 mutex_destroy(&illgrp->illgrp_lock); 15913 mi_free(illgrp); 15914 } 15915 rw_exit(&ipst->ips_ill_g_lock); 15916 15917 /* 15918 * Even though the ill is out of the group its not necessary 15919 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15920 * We will split the ipsq when phyint_groupname is set to NULL. 15921 */ 15922 15923 /* 15924 * Send a routing sockets message if we are deleting from 15925 * groups with names. 15926 */ 15927 if (ill->ill_phyint->phyint_groupname_len != 0) 15928 ip_rts_ifmsg(ill->ill_ipif); 15929 } 15930 15931 /* 15932 * Re-do source address selection. This is normally called when 15933 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15934 * ipif comes up. 15935 */ 15936 void 15937 ill_update_source_selection(ill_t *ill) 15938 { 15939 ipif_t *ipif; 15940 15941 ASSERT(IAM_WRITER_ILL(ill)); 15942 15943 if (ill->ill_group != NULL) 15944 ill = ill->ill_group->illgrp_ill; 15945 15946 for (; ill != NULL; ill = ill->ill_group_next) { 15947 for (ipif = ill->ill_ipif; ipif != NULL; 15948 ipif = ipif->ipif_next) { 15949 if (ill->ill_isv6) 15950 ipif_recreate_interface_routes_v6(NULL, ipif); 15951 else 15952 ipif_recreate_interface_routes(NULL, ipif); 15953 } 15954 } 15955 } 15956 15957 /* 15958 * Insert ill in a group headed by illgrp_head. The caller can either 15959 * pass a groupname in which case we search for a group with the 15960 * same name to insert in or pass a group to insert in. This function 15961 * would only search groups with names. 15962 * 15963 * NOTE : The caller should make sure that there is at least one ipif 15964 * UP on this ill so that illgrp_scheduler can pick this ill 15965 * for outbound packets. If ill_ipif_up_count is zero, we have 15966 * already sent a DL_UNBIND to the driver and we don't want to 15967 * send anymore packets. We don't assert for ipif_up_count 15968 * to be greater than zero, because ipif_up_done wants to call 15969 * this function before bumping up the ipif_up_count. See 15970 * ipif_up_done() for details. 15971 */ 15972 int 15973 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15974 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15975 { 15976 ill_group_t *illgrp; 15977 ill_t *prev_ill; 15978 phyint_t *phyi; 15979 ip_stack_t *ipst = ill->ill_ipst; 15980 15981 ASSERT(ill->ill_group == NULL); 15982 15983 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15984 mutex_enter(&ill->ill_lock); 15985 15986 if (groupname != NULL) { 15987 /* 15988 * Look for a group with a matching groupname to insert. 15989 */ 15990 for (illgrp = *illgrp_head; illgrp != NULL; 15991 illgrp = illgrp->illgrp_next) { 15992 15993 ill_t *tmp_ill; 15994 15995 /* 15996 * If we have an ill_group_t in the list which has 15997 * no ill_t assigned then we must be in the process of 15998 * removing this group. We skip this as illgrp_delete() 15999 * will remove it from the list. 16000 */ 16001 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16002 ASSERT(illgrp->illgrp_ill_count == 0); 16003 continue; 16004 } 16005 16006 ASSERT(tmp_ill->ill_phyint != NULL); 16007 phyi = tmp_ill->ill_phyint; 16008 /* 16009 * Look at groups which has names only. 16010 */ 16011 if (phyi->phyint_groupname_len == 0) 16012 continue; 16013 /* 16014 * Names are stored in the phyint common to both 16015 * IPv4 and IPv6. 16016 */ 16017 if (mi_strcmp(phyi->phyint_groupname, 16018 groupname) == 0) { 16019 break; 16020 } 16021 } 16022 } else { 16023 /* 16024 * If the caller passes in a NULL "grp_to_insert", we 16025 * allocate one below and insert this singleton. 16026 */ 16027 illgrp = grp_to_insert; 16028 } 16029 16030 ill->ill_group_next = NULL; 16031 16032 if (illgrp == NULL) { 16033 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16034 if (illgrp == NULL) { 16035 return (ENOMEM); 16036 } 16037 illgrp->illgrp_next = *illgrp_head; 16038 *illgrp_head = illgrp; 16039 illgrp->illgrp_ill = ill; 16040 illgrp->illgrp_ill_count = 1; 16041 ill->ill_group = illgrp; 16042 /* 16043 * Used in illgrp_scheduler to protect multiple threads 16044 * from traversing the list. 16045 */ 16046 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16047 } else { 16048 ASSERT(ill->ill_net_type == 16049 illgrp->illgrp_ill->ill_net_type); 16050 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16051 16052 /* Insert ill at tail of this group */ 16053 prev_ill = illgrp->illgrp_ill; 16054 while (prev_ill->ill_group_next != NULL) 16055 prev_ill = prev_ill->ill_group_next; 16056 prev_ill->ill_group_next = ill; 16057 ill->ill_group = illgrp; 16058 illgrp->illgrp_ill_count++; 16059 /* 16060 * Inherit group properties. Currently only forwarding 16061 * is the property we try to keep the same with all the 16062 * ills. When there are more, we will abstract this into 16063 * a function. 16064 */ 16065 ill->ill_flags &= ~ILLF_ROUTER; 16066 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16067 } 16068 mutex_exit(&ill->ill_lock); 16069 rw_exit(&ipst->ips_ill_g_lock); 16070 16071 /* 16072 * 1) When ipif_up_done() calls this function, ipif_up_count 16073 * may be zero as it has not yet been bumped. But the ires 16074 * have already been added. So, we do the nomination here 16075 * itself. But, when ip_sioctl_groupname calls this, it checks 16076 * for ill_ipif_up_count != 0. Thus we don't check for 16077 * ill_ipif_up_count here while nominating broadcast ires for 16078 * receive. 16079 * 16080 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16081 * to group them properly as ire_add() has already happened 16082 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16083 * case, we need to do it here anyway. 16084 */ 16085 if (!ill->ill_isv6) { 16086 ill_group_bcast_for_xmit(ill); 16087 ill_nominate_bcast_rcv(illgrp); 16088 } 16089 16090 if (!ipif_is_coming_up) { 16091 /* 16092 * When ipif_up_done() calls this function, the multicast 16093 * groups have not been joined yet. So, there is no point in 16094 * nomination. ip_join_allmulti will handle groups when 16095 * ill_recover_multicast is called from ipif_up_done() later. 16096 */ 16097 (void) ill_nominate_mcast_rcv(illgrp); 16098 /* 16099 * ipif_up_done calls ill_update_source_selection 16100 * anyway. Moreover, we don't want to re-create 16101 * interface routes while ipif_up_done() still has reference 16102 * to them. Refer to ipif_up_done() for more details. 16103 */ 16104 ill_update_source_selection(ill); 16105 } 16106 16107 /* 16108 * Send a routing sockets message if we are inserting into 16109 * groups with names. 16110 */ 16111 if (groupname != NULL) 16112 ip_rts_ifmsg(ill->ill_ipif); 16113 return (0); 16114 } 16115 16116 /* 16117 * Return the first phyint matching the groupname. There could 16118 * be more than one when there are ill groups. 16119 * 16120 * If 'usable' is set, then we exclude ones that are marked with any of 16121 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16122 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16123 * emulation of ipmp. 16124 */ 16125 phyint_t * 16126 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16127 { 16128 phyint_t *phyi; 16129 16130 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16131 /* 16132 * Group names are stored in the phyint - a common structure 16133 * to both IPv4 and IPv6. 16134 */ 16135 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16136 for (; phyi != NULL; 16137 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16138 phyi, AVL_AFTER)) { 16139 if (phyi->phyint_groupname_len == 0) 16140 continue; 16141 /* 16142 * Skip the ones that should not be used since the callers 16143 * sometime use this for sending packets. 16144 */ 16145 if (usable && (phyi->phyint_flags & 16146 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16147 continue; 16148 16149 ASSERT(phyi->phyint_groupname != NULL); 16150 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16151 return (phyi); 16152 } 16153 return (NULL); 16154 } 16155 16156 16157 /* 16158 * Return the first usable phyint matching the group index. By 'usable' 16159 * we exclude ones that are marked ununsable with any of 16160 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16161 * 16162 * Used only for the ipmp/netinfo emulation of ipmp. 16163 */ 16164 phyint_t * 16165 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16166 { 16167 phyint_t *phyi; 16168 16169 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16170 16171 if (!ipst->ips_ipmp_hook_emulation) 16172 return (NULL); 16173 16174 /* 16175 * Group indicies are stored in the phyint - a common structure 16176 * to both IPv4 and IPv6. 16177 */ 16178 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16179 for (; phyi != NULL; 16180 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16181 phyi, AVL_AFTER)) { 16182 /* Ignore the ones that do not have a group */ 16183 if (phyi->phyint_groupname_len == 0) 16184 continue; 16185 16186 ASSERT(phyi->phyint_group_ifindex != 0); 16187 /* 16188 * Skip the ones that should not be used since the callers 16189 * sometime use this for sending packets. 16190 */ 16191 if (phyi->phyint_flags & 16192 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16193 continue; 16194 if (phyi->phyint_group_ifindex == group_ifindex) 16195 return (phyi); 16196 } 16197 return (NULL); 16198 } 16199 16200 16201 /* 16202 * MT notes on creation and deletion of IPMP groups 16203 * 16204 * Creation and deletion of IPMP groups introduce the need to merge or 16205 * split the associated serialization objects i.e the ipsq's. Normally all 16206 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16207 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16208 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16209 * is a need to change the <ill-ipsq> association and we have to operate on both 16210 * the source and destination IPMP groups. For eg. attempting to set the 16211 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16212 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16213 * source or destination IPMP group are mapped to a single ipsq for executing 16214 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16215 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16216 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16217 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16218 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16219 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16220 * 16221 * In the above example the ioctl handling code locates the current ipsq of hme0 16222 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16223 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16224 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16225 * the destination ipsq. If the destination ipsq is not busy, it also enters 16226 * the destination ipsq exclusively. Now the actual groupname setting operation 16227 * can proceed. If the destination ipsq is busy, the operation is enqueued 16228 * on the destination (merged) ipsq and will be handled in the unwind from 16229 * ipsq_exit. 16230 * 16231 * To prevent other threads accessing the ill while the group name change is 16232 * in progres, we bring down the ipifs which also removes the ill from the 16233 * group. The group is changed in phyint and when the first ipif on the ill 16234 * is brought up, the ill is inserted into the right IPMP group by 16235 * illgrp_insert. 16236 */ 16237 /* ARGSUSED */ 16238 int 16239 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16240 ip_ioctl_cmd_t *ipip, void *ifreq) 16241 { 16242 int i; 16243 char *tmp; 16244 int namelen; 16245 ill_t *ill = ipif->ipif_ill; 16246 ill_t *ill_v4, *ill_v6; 16247 int err = 0; 16248 phyint_t *phyi; 16249 phyint_t *phyi_tmp; 16250 struct lifreq *lifr; 16251 mblk_t *mp1; 16252 char *groupname; 16253 ipsq_t *ipsq; 16254 ip_stack_t *ipst = ill->ill_ipst; 16255 16256 ASSERT(IAM_WRITER_IPIF(ipif)); 16257 16258 /* Existance verified in ip_wput_nondata */ 16259 mp1 = mp->b_cont->b_cont; 16260 lifr = (struct lifreq *)mp1->b_rptr; 16261 groupname = lifr->lifr_groupname; 16262 16263 if (ipif->ipif_id != 0) 16264 return (EINVAL); 16265 16266 phyi = ill->ill_phyint; 16267 ASSERT(phyi != NULL); 16268 16269 if (phyi->phyint_flags & PHYI_VIRTUAL) 16270 return (EINVAL); 16271 16272 tmp = groupname; 16273 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16274 ; 16275 16276 if (i == LIFNAMSIZ) { 16277 /* no null termination */ 16278 return (EINVAL); 16279 } 16280 16281 /* 16282 * Calculate the namelen exclusive of the null 16283 * termination character. 16284 */ 16285 namelen = tmp - groupname; 16286 16287 ill_v4 = phyi->phyint_illv4; 16288 ill_v6 = phyi->phyint_illv6; 16289 16290 /* 16291 * ILL cannot be part of a usesrc group and and IPMP group at the 16292 * same time. No need to grab the ill_g_usesrc_lock here, see 16293 * synchronization notes in ip.c 16294 */ 16295 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16296 return (EINVAL); 16297 } 16298 16299 /* 16300 * mark the ill as changing. 16301 * this should queue all new requests on the syncq. 16302 */ 16303 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16304 16305 if (ill_v4 != NULL) 16306 ill_v4->ill_state_flags |= ILL_CHANGING; 16307 if (ill_v6 != NULL) 16308 ill_v6->ill_state_flags |= ILL_CHANGING; 16309 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16310 16311 if (namelen == 0) { 16312 /* 16313 * Null string means remove this interface from the 16314 * existing group. 16315 */ 16316 if (phyi->phyint_groupname_len == 0) { 16317 /* 16318 * Never was in a group. 16319 */ 16320 err = 0; 16321 goto done; 16322 } 16323 16324 /* 16325 * IPv4 or IPv6 may be temporarily out of the group when all 16326 * the ipifs are down. Thus, we need to check for ill_group to 16327 * be non-NULL. 16328 */ 16329 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16330 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16331 mutex_enter(&ill_v4->ill_lock); 16332 if (!ill_is_quiescent(ill_v4)) { 16333 /* 16334 * ipsq_pending_mp_add will not fail since 16335 * connp is NULL 16336 */ 16337 (void) ipsq_pending_mp_add(NULL, 16338 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16339 mutex_exit(&ill_v4->ill_lock); 16340 err = EINPROGRESS; 16341 goto done; 16342 } 16343 mutex_exit(&ill_v4->ill_lock); 16344 } 16345 16346 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16347 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16348 mutex_enter(&ill_v6->ill_lock); 16349 if (!ill_is_quiescent(ill_v6)) { 16350 (void) ipsq_pending_mp_add(NULL, 16351 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16352 mutex_exit(&ill_v6->ill_lock); 16353 err = EINPROGRESS; 16354 goto done; 16355 } 16356 mutex_exit(&ill_v6->ill_lock); 16357 } 16358 16359 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16360 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16361 mutex_enter(&phyi->phyint_lock); 16362 ASSERT(phyi->phyint_groupname != NULL); 16363 mi_free(phyi->phyint_groupname); 16364 phyi->phyint_groupname = NULL; 16365 phyi->phyint_groupname_len = 0; 16366 16367 /* Restore the ifindex used to be the per interface one */ 16368 phyi->phyint_group_ifindex = 0; 16369 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16370 mutex_exit(&phyi->phyint_lock); 16371 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16372 rw_exit(&ipst->ips_ill_g_lock); 16373 err = ill_up_ipifs(ill, q, mp); 16374 16375 /* 16376 * set the split flag so that the ipsq can be split 16377 */ 16378 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16379 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16380 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16381 16382 } else { 16383 if (phyi->phyint_groupname_len != 0) { 16384 ASSERT(phyi->phyint_groupname != NULL); 16385 /* Are we inserting in the same group ? */ 16386 if (mi_strcmp(groupname, 16387 phyi->phyint_groupname) == 0) { 16388 err = 0; 16389 goto done; 16390 } 16391 } 16392 16393 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16394 /* 16395 * Merge ipsq for the group's. 16396 * This check is here as multiple groups/ills might be 16397 * sharing the same ipsq. 16398 * If we have to merege than the operation is restarted 16399 * on the new ipsq. 16400 */ 16401 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16402 if (phyi->phyint_ipsq != ipsq) { 16403 rw_exit(&ipst->ips_ill_g_lock); 16404 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16405 goto done; 16406 } 16407 /* 16408 * Running exclusive on new ipsq. 16409 */ 16410 16411 ASSERT(ipsq != NULL); 16412 ASSERT(ipsq->ipsq_writer == curthread); 16413 16414 /* 16415 * Check whether the ill_type and ill_net_type matches before 16416 * we allocate any memory so that the cleanup is easier. 16417 * 16418 * We can't group dissimilar ones as we can't load spread 16419 * packets across the group because of potential link-level 16420 * header differences. 16421 */ 16422 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16423 if (phyi_tmp != NULL) { 16424 if ((ill_v4 != NULL && 16425 phyi_tmp->phyint_illv4 != NULL) && 16426 ((ill_v4->ill_net_type != 16427 phyi_tmp->phyint_illv4->ill_net_type) || 16428 (ill_v4->ill_type != 16429 phyi_tmp->phyint_illv4->ill_type))) { 16430 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16431 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16432 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16433 rw_exit(&ipst->ips_ill_g_lock); 16434 return (EINVAL); 16435 } 16436 if ((ill_v6 != NULL && 16437 phyi_tmp->phyint_illv6 != NULL) && 16438 ((ill_v6->ill_net_type != 16439 phyi_tmp->phyint_illv6->ill_net_type) || 16440 (ill_v6->ill_type != 16441 phyi_tmp->phyint_illv6->ill_type))) { 16442 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16443 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16444 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16445 rw_exit(&ipst->ips_ill_g_lock); 16446 return (EINVAL); 16447 } 16448 } 16449 16450 rw_exit(&ipst->ips_ill_g_lock); 16451 16452 /* 16453 * bring down all v4 ipifs. 16454 */ 16455 if (ill_v4 != NULL) { 16456 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16457 } 16458 16459 /* 16460 * bring down all v6 ipifs. 16461 */ 16462 if (ill_v6 != NULL) { 16463 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16464 } 16465 16466 /* 16467 * make sure all ipifs are down and there are no active 16468 * references. Call to ipsq_pending_mp_add will not fail 16469 * since connp is NULL. 16470 */ 16471 if (ill_v4 != NULL) { 16472 mutex_enter(&ill_v4->ill_lock); 16473 if (!ill_is_quiescent(ill_v4)) { 16474 (void) ipsq_pending_mp_add(NULL, 16475 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16476 mutex_exit(&ill_v4->ill_lock); 16477 err = EINPROGRESS; 16478 goto done; 16479 } 16480 mutex_exit(&ill_v4->ill_lock); 16481 } 16482 16483 if (ill_v6 != NULL) { 16484 mutex_enter(&ill_v6->ill_lock); 16485 if (!ill_is_quiescent(ill_v6)) { 16486 (void) ipsq_pending_mp_add(NULL, 16487 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16488 mutex_exit(&ill_v6->ill_lock); 16489 err = EINPROGRESS; 16490 goto done; 16491 } 16492 mutex_exit(&ill_v6->ill_lock); 16493 } 16494 16495 /* 16496 * allocate including space for null terminator 16497 * before we insert. 16498 */ 16499 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16500 if (tmp == NULL) 16501 return (ENOMEM); 16502 16503 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16504 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16505 mutex_enter(&phyi->phyint_lock); 16506 if (phyi->phyint_groupname_len != 0) { 16507 ASSERT(phyi->phyint_groupname != NULL); 16508 mi_free(phyi->phyint_groupname); 16509 } 16510 16511 /* 16512 * setup the new group name. 16513 */ 16514 phyi->phyint_groupname = tmp; 16515 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16516 phyi->phyint_groupname_len = namelen + 1; 16517 16518 if (ipst->ips_ipmp_hook_emulation) { 16519 /* 16520 * If the group already exists we use the existing 16521 * group_ifindex, otherwise we pick a new index here. 16522 */ 16523 if (phyi_tmp != NULL) { 16524 phyi->phyint_group_ifindex = 16525 phyi_tmp->phyint_group_ifindex; 16526 } else { 16527 /* XXX We need a recovery strategy here. */ 16528 if (!ip_assign_ifindex( 16529 &phyi->phyint_group_ifindex, ipst)) 16530 cmn_err(CE_PANIC, 16531 "ip_assign_ifindex() failed"); 16532 } 16533 } 16534 /* 16535 * Select whether the netinfo and hook use the per-interface 16536 * or per-group ifindex. 16537 */ 16538 if (ipst->ips_ipmp_hook_emulation) 16539 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16540 else 16541 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16542 16543 if (ipst->ips_ipmp_hook_emulation && 16544 phyi_tmp != NULL) { 16545 /* First phyint in group - group PLUMB event */ 16546 ill_nic_info_plumb(ill, B_TRUE); 16547 } 16548 mutex_exit(&phyi->phyint_lock); 16549 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16550 rw_exit(&ipst->ips_ill_g_lock); 16551 16552 err = ill_up_ipifs(ill, q, mp); 16553 } 16554 16555 done: 16556 /* 16557 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16558 */ 16559 if (err != EINPROGRESS) { 16560 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16561 if (ill_v4 != NULL) 16562 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16563 if (ill_v6 != NULL) 16564 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16565 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16566 } 16567 return (err); 16568 } 16569 16570 /* ARGSUSED */ 16571 int 16572 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16573 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16574 { 16575 ill_t *ill; 16576 phyint_t *phyi; 16577 struct lifreq *lifr; 16578 mblk_t *mp1; 16579 16580 /* Existence verified in ip_wput_nondata */ 16581 mp1 = mp->b_cont->b_cont; 16582 lifr = (struct lifreq *)mp1->b_rptr; 16583 ill = ipif->ipif_ill; 16584 phyi = ill->ill_phyint; 16585 16586 lifr->lifr_groupname[0] = '\0'; 16587 /* 16588 * ill_group may be null if all the interfaces 16589 * are down. But still, the phyint should always 16590 * hold the name. 16591 */ 16592 if (phyi->phyint_groupname_len != 0) { 16593 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16594 phyi->phyint_groupname_len); 16595 } 16596 16597 return (0); 16598 } 16599 16600 16601 typedef struct conn_move_s { 16602 ill_t *cm_from_ill; 16603 ill_t *cm_to_ill; 16604 int cm_ifindex; 16605 } conn_move_t; 16606 16607 /* 16608 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16609 */ 16610 static void 16611 conn_move(conn_t *connp, caddr_t arg) 16612 { 16613 conn_move_t *connm; 16614 int ifindex; 16615 int i; 16616 ill_t *from_ill; 16617 ill_t *to_ill; 16618 ilg_t *ilg; 16619 ilm_t *ret_ilm; 16620 16621 connm = (conn_move_t *)arg; 16622 ifindex = connm->cm_ifindex; 16623 from_ill = connm->cm_from_ill; 16624 to_ill = connm->cm_to_ill; 16625 16626 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16627 16628 /* All multicast fields protected by conn_lock */ 16629 mutex_enter(&connp->conn_lock); 16630 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16631 if ((connp->conn_outgoing_ill == from_ill) && 16632 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16633 connp->conn_outgoing_ill = to_ill; 16634 connp->conn_incoming_ill = to_ill; 16635 } 16636 16637 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16638 16639 if ((connp->conn_multicast_ill == from_ill) && 16640 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16641 connp->conn_multicast_ill = connm->cm_to_ill; 16642 } 16643 16644 /* 16645 * Change the ilg_ill to point to the new one. This assumes 16646 * ilm_move_v6 has moved the ilms to new_ill and the driver 16647 * has been told to receive packets on this interface. 16648 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16649 * But when doing a FAILOVER, it might fail with ENOMEM and so 16650 * some ilms may not have moved. We check to see whether 16651 * the ilms have moved to to_ill. We can't check on from_ill 16652 * as in the process of moving, we could have split an ilm 16653 * in to two - which has the same orig_ifindex and v6group. 16654 * 16655 * For IPv4, ilg_ipif moves implicitly. The code below really 16656 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16657 */ 16658 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16659 ilg = &connp->conn_ilg[i]; 16660 if ((ilg->ilg_ill == from_ill) && 16661 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16662 /* ifindex != 0 indicates failback */ 16663 if (ifindex != 0) { 16664 connp->conn_ilg[i].ilg_ill = to_ill; 16665 continue; 16666 } 16667 16668 mutex_enter(&to_ill->ill_lock); 16669 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16670 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16671 connp->conn_zoneid); 16672 mutex_exit(&to_ill->ill_lock); 16673 16674 if (ret_ilm != NULL) 16675 connp->conn_ilg[i].ilg_ill = to_ill; 16676 } 16677 } 16678 mutex_exit(&connp->conn_lock); 16679 } 16680 16681 static void 16682 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16683 { 16684 conn_move_t connm; 16685 ip_stack_t *ipst = from_ill->ill_ipst; 16686 16687 connm.cm_from_ill = from_ill; 16688 connm.cm_to_ill = to_ill; 16689 connm.cm_ifindex = ifindex; 16690 16691 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16692 } 16693 16694 /* 16695 * ilm has been moved from from_ill to to_ill. 16696 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16697 * appropriately. 16698 * 16699 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16700 * the code there de-references ipif_ill to get the ill to 16701 * send multicast requests. It does not work as ipif is on its 16702 * move and already moved when this function is called. 16703 * Thus, we need to use from_ill and to_ill send down multicast 16704 * requests. 16705 */ 16706 static void 16707 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16708 { 16709 ipif_t *ipif; 16710 ilm_t *ilm; 16711 16712 /* 16713 * See whether we need to send down DL_ENABMULTI_REQ on 16714 * to_ill as ilm has just been added. 16715 */ 16716 ASSERT(IAM_WRITER_ILL(to_ill)); 16717 ASSERT(IAM_WRITER_ILL(from_ill)); 16718 16719 ILM_WALKER_HOLD(to_ill); 16720 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16721 16722 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16723 continue; 16724 /* 16725 * no locks held, ill/ipif cannot dissappear as long 16726 * as we are writer. 16727 */ 16728 ipif = to_ill->ill_ipif; 16729 /* 16730 * No need to hold any lock as we are the writer and this 16731 * can only be changed by a writer. 16732 */ 16733 ilm->ilm_is_new = B_FALSE; 16734 16735 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16736 ipif->ipif_flags & IPIF_POINTOPOINT) { 16737 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16738 "resolver\n")); 16739 continue; /* Must be IRE_IF_NORESOLVER */ 16740 } 16741 16742 16743 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16744 ip1dbg(("ilm_send_multicast_reqs: " 16745 "to_ill MULTI_BCAST\n")); 16746 goto from; 16747 } 16748 16749 if (to_ill->ill_isv6) 16750 mld_joingroup(ilm); 16751 else 16752 igmp_joingroup(ilm); 16753 16754 if (to_ill->ill_ipif_up_count == 0) { 16755 /* 16756 * Nobody there. All multicast addresses will be 16757 * re-joined when we get the DL_BIND_ACK bringing the 16758 * interface up. 16759 */ 16760 ilm->ilm_notify_driver = B_FALSE; 16761 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16762 goto from; 16763 } 16764 16765 /* 16766 * For allmulti address, we want to join on only one interface. 16767 * Checking for ilm_numentries_v6 is not correct as you may 16768 * find an ilm with zero address on to_ill, but we may not 16769 * have nominated to_ill for receiving. Thus, if we have 16770 * nominated from_ill (ill_join_allmulti is set), nominate 16771 * only if to_ill is not already nominated (to_ill normally 16772 * should not have been nominated if "from_ill" has already 16773 * been nominated. As we don't prevent failovers from happening 16774 * across groups, we don't assert). 16775 */ 16776 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16777 /* 16778 * There is no need to hold ill locks as we are 16779 * writer on both ills and when ill_join_allmulti 16780 * is changed the thread is always a writer. 16781 */ 16782 if (from_ill->ill_join_allmulti && 16783 !to_ill->ill_join_allmulti) { 16784 (void) ip_join_allmulti(to_ill->ill_ipif); 16785 } 16786 } else if (ilm->ilm_notify_driver) { 16787 16788 /* 16789 * This is a newly moved ilm so we need to tell the 16790 * driver about the new group. There can be more than 16791 * one ilm's for the same group in the list each with a 16792 * different orig_ifindex. We have to inform the driver 16793 * once. In ilm_move_v[4,6] we only set the flag 16794 * ilm_notify_driver for the first ilm. 16795 */ 16796 16797 (void) ip_ll_send_enabmulti_req(to_ill, 16798 &ilm->ilm_v6addr); 16799 } 16800 16801 ilm->ilm_notify_driver = B_FALSE; 16802 16803 /* 16804 * See whether we need to send down DL_DISABMULTI_REQ on 16805 * from_ill as ilm has just been removed. 16806 */ 16807 from: 16808 ipif = from_ill->ill_ipif; 16809 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16810 ipif->ipif_flags & IPIF_POINTOPOINT) { 16811 ip1dbg(("ilm_send_multicast_reqs: " 16812 "from_ill not resolver\n")); 16813 continue; /* Must be IRE_IF_NORESOLVER */ 16814 } 16815 16816 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16817 ip1dbg(("ilm_send_multicast_reqs: " 16818 "from_ill MULTI_BCAST\n")); 16819 continue; 16820 } 16821 16822 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16823 if (from_ill->ill_join_allmulti) 16824 (void) ip_leave_allmulti(from_ill->ill_ipif); 16825 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16826 (void) ip_ll_send_disabmulti_req(from_ill, 16827 &ilm->ilm_v6addr); 16828 } 16829 } 16830 ILM_WALKER_RELE(to_ill); 16831 } 16832 16833 /* 16834 * This function is called when all multicast memberships needs 16835 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16836 * called only once unlike the IPv4 counterpart where it is called after 16837 * every logical interface is moved. The reason is due to multicast 16838 * memberships are joined using an interface address in IPv4 while in 16839 * IPv6, interface index is used. 16840 */ 16841 static void 16842 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16843 { 16844 ilm_t *ilm; 16845 ilm_t *ilm_next; 16846 ilm_t *new_ilm; 16847 ilm_t **ilmp; 16848 int count; 16849 char buf[INET6_ADDRSTRLEN]; 16850 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16851 ip_stack_t *ipst = from_ill->ill_ipst; 16852 16853 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16854 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16855 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16856 16857 if (ifindex == 0) { 16858 /* 16859 * Form the solicited node mcast address which is used later. 16860 */ 16861 ipif_t *ipif; 16862 16863 ipif = from_ill->ill_ipif; 16864 ASSERT(ipif->ipif_id == 0); 16865 16866 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16867 } 16868 16869 ilmp = &from_ill->ill_ilm; 16870 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16871 ilm_next = ilm->ilm_next; 16872 16873 if (ilm->ilm_flags & ILM_DELETED) { 16874 ilmp = &ilm->ilm_next; 16875 continue; 16876 } 16877 16878 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16879 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16880 ASSERT(ilm->ilm_orig_ifindex != 0); 16881 if (ilm->ilm_orig_ifindex == ifindex) { 16882 /* 16883 * We are failing back multicast memberships. 16884 * If the same ilm exists in to_ill, it means somebody 16885 * has joined the same group there e.g. ff02::1 16886 * is joined within the kernel when the interfaces 16887 * came UP. 16888 */ 16889 ASSERT(ilm->ilm_ipif == NULL); 16890 if (new_ilm != NULL) { 16891 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16892 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16893 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16894 new_ilm->ilm_is_new = B_TRUE; 16895 } 16896 } else { 16897 /* 16898 * check if we can just move the ilm 16899 */ 16900 if (from_ill->ill_ilm_walker_cnt != 0) { 16901 /* 16902 * We have walkers we cannot move 16903 * the ilm, so allocate a new ilm, 16904 * this (old) ilm will be marked 16905 * ILM_DELETED at the end of the loop 16906 * and will be freed when the 16907 * last walker exits. 16908 */ 16909 new_ilm = (ilm_t *)mi_zalloc 16910 (sizeof (ilm_t)); 16911 if (new_ilm == NULL) { 16912 ip0dbg(("ilm_move_v6: " 16913 "FAILBACK of IPv6" 16914 " multicast address %s : " 16915 "from %s to" 16916 " %s failed : ENOMEM \n", 16917 inet_ntop(AF_INET6, 16918 &ilm->ilm_v6addr, buf, 16919 sizeof (buf)), 16920 from_ill->ill_name, 16921 to_ill->ill_name)); 16922 16923 ilmp = &ilm->ilm_next; 16924 continue; 16925 } 16926 *new_ilm = *ilm; 16927 /* 16928 * we don't want new_ilm linked to 16929 * ilm's filter list. 16930 */ 16931 new_ilm->ilm_filter = NULL; 16932 } else { 16933 /* 16934 * No walkers we can move the ilm. 16935 * lets take it out of the list. 16936 */ 16937 *ilmp = ilm->ilm_next; 16938 ilm->ilm_next = NULL; 16939 DTRACE_PROBE3(ill__decr__cnt, 16940 (ill_t *), from_ill, 16941 (char *), "ilm", (void *), ilm); 16942 ASSERT(from_ill->ill_ilm_cnt > 0); 16943 from_ill->ill_ilm_cnt--; 16944 16945 new_ilm = ilm; 16946 } 16947 16948 /* 16949 * if this is the first ilm for the group 16950 * set ilm_notify_driver so that we notify the 16951 * driver in ilm_send_multicast_reqs. 16952 */ 16953 if (ilm_lookup_ill_v6(to_ill, 16954 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16955 new_ilm->ilm_notify_driver = B_TRUE; 16956 16957 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16958 (char *), "ilm", (void *), new_ilm); 16959 new_ilm->ilm_ill = to_ill; 16960 to_ill->ill_ilm_cnt++; 16961 16962 /* Add to the to_ill's list */ 16963 new_ilm->ilm_next = to_ill->ill_ilm; 16964 to_ill->ill_ilm = new_ilm; 16965 /* 16966 * set the flag so that mld_joingroup is 16967 * called in ilm_send_multicast_reqs(). 16968 */ 16969 new_ilm->ilm_is_new = B_TRUE; 16970 } 16971 goto bottom; 16972 } else if (ifindex != 0) { 16973 /* 16974 * If this is FAILBACK (ifindex != 0) and the ifindex 16975 * has not matched above, look at the next ilm. 16976 */ 16977 ilmp = &ilm->ilm_next; 16978 continue; 16979 } 16980 /* 16981 * If we are here, it means ifindex is 0. Failover 16982 * everything. 16983 * 16984 * We need to handle solicited node mcast address 16985 * and all_nodes mcast address differently as they 16986 * are joined witin the kenrel (ipif_multicast_up) 16987 * and potentially from the userland. We are called 16988 * after the ipifs of from_ill has been moved. 16989 * If we still find ilms on ill with solicited node 16990 * mcast address or all_nodes mcast address, it must 16991 * belong to the UP interface that has not moved e.g. 16992 * ipif_id 0 with the link local prefix does not move. 16993 * We join this on the new ill accounting for all the 16994 * userland memberships so that applications don't 16995 * see any failure. 16996 * 16997 * We need to make sure that we account only for the 16998 * solicited node and all node multicast addresses 16999 * that was brought UP on these. In the case of 17000 * a failover from A to B, we might have ilms belonging 17001 * to A (ilm_orig_ifindex pointing at A) on B accounting 17002 * for the membership from the userland. If we are failing 17003 * over from B to C now, we will find the ones belonging 17004 * to A on B. These don't account for the ill_ipif_up_count. 17005 * They just move from B to C. The check below on 17006 * ilm_orig_ifindex ensures that. 17007 */ 17008 if ((ilm->ilm_orig_ifindex == 17009 from_ill->ill_phyint->phyint_ifindex) && 17010 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17011 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17012 &ilm->ilm_v6addr))) { 17013 ASSERT(ilm->ilm_refcnt > 0); 17014 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17015 /* 17016 * For indentation reasons, we are not using a 17017 * "else" here. 17018 */ 17019 if (count == 0) { 17020 ilmp = &ilm->ilm_next; 17021 continue; 17022 } 17023 ilm->ilm_refcnt -= count; 17024 if (new_ilm != NULL) { 17025 /* 17026 * Can find one with the same 17027 * ilm_orig_ifindex, if we are failing 17028 * over to a STANDBY. This happens 17029 * when somebody wants to join a group 17030 * on a STANDBY interface and we 17031 * internally join on a different one. 17032 * If we had joined on from_ill then, a 17033 * failover now will find a new ilm 17034 * with this index. 17035 */ 17036 ip1dbg(("ilm_move_v6: FAILOVER, found" 17037 " new ilm on %s, group address %s\n", 17038 to_ill->ill_name, 17039 inet_ntop(AF_INET6, 17040 &ilm->ilm_v6addr, buf, 17041 sizeof (buf)))); 17042 new_ilm->ilm_refcnt += count; 17043 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17044 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17045 new_ilm->ilm_is_new = B_TRUE; 17046 } 17047 } else { 17048 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17049 if (new_ilm == NULL) { 17050 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17051 " multicast address %s : from %s to" 17052 " %s failed : ENOMEM \n", 17053 inet_ntop(AF_INET6, 17054 &ilm->ilm_v6addr, buf, 17055 sizeof (buf)), from_ill->ill_name, 17056 to_ill->ill_name)); 17057 ilmp = &ilm->ilm_next; 17058 continue; 17059 } 17060 *new_ilm = *ilm; 17061 new_ilm->ilm_filter = NULL; 17062 new_ilm->ilm_refcnt = count; 17063 new_ilm->ilm_timer = INFINITY; 17064 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17065 new_ilm->ilm_is_new = B_TRUE; 17066 /* 17067 * If the to_ill has not joined this 17068 * group we need to tell the driver in 17069 * ill_send_multicast_reqs. 17070 */ 17071 if (ilm_lookup_ill_v6(to_ill, 17072 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17073 new_ilm->ilm_notify_driver = B_TRUE; 17074 17075 new_ilm->ilm_ill = to_ill; 17076 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17077 (char *), "ilm", (void *), new_ilm); 17078 to_ill->ill_ilm_cnt++; 17079 17080 /* Add to the to_ill's list */ 17081 new_ilm->ilm_next = to_ill->ill_ilm; 17082 to_ill->ill_ilm = new_ilm; 17083 ASSERT(new_ilm->ilm_ipif == NULL); 17084 } 17085 if (ilm->ilm_refcnt == 0) { 17086 goto bottom; 17087 } else { 17088 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17089 CLEAR_SLIST(new_ilm->ilm_filter); 17090 ilmp = &ilm->ilm_next; 17091 } 17092 continue; 17093 } else { 17094 /* 17095 * ifindex = 0 means, move everything pointing at 17096 * from_ill. We are doing this becuase ill has 17097 * either FAILED or became INACTIVE. 17098 * 17099 * As we would like to move things later back to 17100 * from_ill, we want to retain the identity of this 17101 * ilm. Thus, we don't blindly increment the reference 17102 * count on the ilms matching the address alone. We 17103 * need to match on the ilm_orig_index also. new_ilm 17104 * was obtained by matching ilm_orig_index also. 17105 */ 17106 if (new_ilm != NULL) { 17107 /* 17108 * This is possible only if a previous restore 17109 * was incomplete i.e restore to 17110 * ilm_orig_ifindex left some ilms because 17111 * of some failures. Thus when we are failing 17112 * again, we might find our old friends there. 17113 */ 17114 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17115 " on %s, group address %s\n", 17116 to_ill->ill_name, 17117 inet_ntop(AF_INET6, 17118 &ilm->ilm_v6addr, buf, 17119 sizeof (buf)))); 17120 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17121 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17122 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17123 new_ilm->ilm_is_new = B_TRUE; 17124 } 17125 } else { 17126 if (from_ill->ill_ilm_walker_cnt != 0) { 17127 new_ilm = (ilm_t *) 17128 mi_zalloc(sizeof (ilm_t)); 17129 if (new_ilm == NULL) { 17130 ip0dbg(("ilm_move_v6: " 17131 "FAILOVER of IPv6" 17132 " multicast address %s : " 17133 "from %s to" 17134 " %s failed : ENOMEM \n", 17135 inet_ntop(AF_INET6, 17136 &ilm->ilm_v6addr, buf, 17137 sizeof (buf)), 17138 from_ill->ill_name, 17139 to_ill->ill_name)); 17140 17141 ilmp = &ilm->ilm_next; 17142 continue; 17143 } 17144 *new_ilm = *ilm; 17145 new_ilm->ilm_filter = NULL; 17146 } else { 17147 *ilmp = ilm->ilm_next; 17148 DTRACE_PROBE3(ill__decr__cnt, 17149 (ill_t *), from_ill, 17150 (char *), "ilm", (void *), ilm); 17151 ASSERT(from_ill->ill_ilm_cnt > 0); 17152 from_ill->ill_ilm_cnt--; 17153 17154 new_ilm = ilm; 17155 } 17156 /* 17157 * If the to_ill has not joined this 17158 * group we need to tell the driver in 17159 * ill_send_multicast_reqs. 17160 */ 17161 if (ilm_lookup_ill_v6(to_ill, 17162 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17163 new_ilm->ilm_notify_driver = B_TRUE; 17164 17165 /* Add to the to_ill's list */ 17166 new_ilm->ilm_next = to_ill->ill_ilm; 17167 to_ill->ill_ilm = new_ilm; 17168 ASSERT(ilm->ilm_ipif == NULL); 17169 new_ilm->ilm_ill = to_ill; 17170 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17171 (char *), "ilm", (void *), new_ilm); 17172 to_ill->ill_ilm_cnt++; 17173 new_ilm->ilm_is_new = B_TRUE; 17174 } 17175 17176 } 17177 17178 bottom: 17179 /* 17180 * Revert multicast filter state to (EXCLUDE, NULL). 17181 * new_ilm->ilm_is_new should already be set if needed. 17182 */ 17183 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17184 CLEAR_SLIST(new_ilm->ilm_filter); 17185 /* 17186 * We allocated/got a new ilm, free the old one. 17187 */ 17188 if (new_ilm != ilm) { 17189 if (from_ill->ill_ilm_walker_cnt == 0) { 17190 *ilmp = ilm->ilm_next; 17191 17192 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17193 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17194 from_ill, (char *), "ilm", (void *), ilm); 17195 ASSERT(from_ill->ill_ilm_cnt > 0); 17196 from_ill->ill_ilm_cnt--; 17197 17198 ilm_inactive(ilm); /* frees this ilm */ 17199 17200 } else { 17201 ilm->ilm_flags |= ILM_DELETED; 17202 from_ill->ill_ilm_cleanup_reqd = 1; 17203 ilmp = &ilm->ilm_next; 17204 } 17205 } 17206 } 17207 } 17208 17209 /* 17210 * Move all the multicast memberships to to_ill. Called when 17211 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17212 * different from IPv6 counterpart as multicast memberships are associated 17213 * with ills in IPv6. This function is called after every ipif is moved 17214 * unlike IPv6, where it is moved only once. 17215 */ 17216 static void 17217 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17218 { 17219 ilm_t *ilm; 17220 ilm_t *ilm_next; 17221 ilm_t *new_ilm; 17222 ilm_t **ilmp; 17223 ip_stack_t *ipst = from_ill->ill_ipst; 17224 17225 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17226 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17227 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17228 17229 ilmp = &from_ill->ill_ilm; 17230 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17231 ilm_next = ilm->ilm_next; 17232 17233 if (ilm->ilm_flags & ILM_DELETED) { 17234 ilmp = &ilm->ilm_next; 17235 continue; 17236 } 17237 17238 ASSERT(ilm->ilm_ipif != NULL); 17239 17240 if (ilm->ilm_ipif != ipif) { 17241 ilmp = &ilm->ilm_next; 17242 continue; 17243 } 17244 17245 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17246 htonl(INADDR_ALLHOSTS_GROUP)) { 17247 new_ilm = ilm_lookup_ipif(ipif, 17248 V4_PART_OF_V6(ilm->ilm_v6addr)); 17249 if (new_ilm != NULL) { 17250 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17251 /* 17252 * We still need to deal with the from_ill. 17253 */ 17254 new_ilm->ilm_is_new = B_TRUE; 17255 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17256 CLEAR_SLIST(new_ilm->ilm_filter); 17257 ASSERT(ilm->ilm_ipif == ipif); 17258 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17259 if (from_ill->ill_ilm_walker_cnt == 0) { 17260 DTRACE_PROBE3(ill__decr__cnt, 17261 (ill_t *), from_ill, 17262 (char *), "ilm", (void *), ilm); 17263 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17264 } 17265 goto delete_ilm; 17266 } 17267 /* 17268 * If we could not find one e.g. ipif is 17269 * still down on to_ill, we add this ilm 17270 * on ill_new to preserve the reference 17271 * count. 17272 */ 17273 } 17274 /* 17275 * When ipifs move, ilms always move with it 17276 * to the NEW ill. Thus we should never be 17277 * able to find ilm till we really move it here. 17278 */ 17279 ASSERT(ilm_lookup_ipif(ipif, 17280 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17281 17282 if (from_ill->ill_ilm_walker_cnt != 0) { 17283 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17284 if (new_ilm == NULL) { 17285 char buf[INET6_ADDRSTRLEN]; 17286 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17287 " multicast address %s : " 17288 "from %s to" 17289 " %s failed : ENOMEM \n", 17290 inet_ntop(AF_INET, 17291 &ilm->ilm_v6addr, buf, 17292 sizeof (buf)), 17293 from_ill->ill_name, 17294 to_ill->ill_name)); 17295 17296 ilmp = &ilm->ilm_next; 17297 continue; 17298 } 17299 *new_ilm = *ilm; 17300 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17301 (char *), "ilm", (void *), ilm); 17302 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17303 /* We don't want new_ilm linked to ilm's filter list */ 17304 new_ilm->ilm_filter = NULL; 17305 } else { 17306 /* Remove from the list */ 17307 *ilmp = ilm->ilm_next; 17308 new_ilm = ilm; 17309 } 17310 17311 /* 17312 * If we have never joined this group on the to_ill 17313 * make sure we tell the driver. 17314 */ 17315 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17316 ALL_ZONES) == NULL) 17317 new_ilm->ilm_notify_driver = B_TRUE; 17318 17319 /* Add to the to_ill's list */ 17320 new_ilm->ilm_next = to_ill->ill_ilm; 17321 to_ill->ill_ilm = new_ilm; 17322 new_ilm->ilm_is_new = B_TRUE; 17323 17324 /* 17325 * Revert multicast filter state to (EXCLUDE, NULL) 17326 */ 17327 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17328 CLEAR_SLIST(new_ilm->ilm_filter); 17329 17330 /* 17331 * Delete only if we have allocated a new ilm. 17332 */ 17333 if (new_ilm != ilm) { 17334 delete_ilm: 17335 if (from_ill->ill_ilm_walker_cnt == 0) { 17336 /* Remove from the list */ 17337 *ilmp = ilm->ilm_next; 17338 ilm->ilm_next = NULL; 17339 DTRACE_PROBE3(ipif__decr__cnt, 17340 (ipif_t *), ilm->ilm_ipif, 17341 (char *), "ilm", (void *), ilm); 17342 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17343 ilm->ilm_ipif->ipif_ilm_cnt--; 17344 ilm_inactive(ilm); 17345 } else { 17346 ilm->ilm_flags |= ILM_DELETED; 17347 from_ill->ill_ilm_cleanup_reqd = 1; 17348 ilmp = &ilm->ilm_next; 17349 } 17350 } 17351 } 17352 } 17353 17354 static uint_t 17355 ipif_get_id(ill_t *ill, uint_t id) 17356 { 17357 uint_t unit; 17358 ipif_t *tipif; 17359 boolean_t found = B_FALSE; 17360 ip_stack_t *ipst = ill->ill_ipst; 17361 17362 /* 17363 * During failback, we want to go back to the same id 17364 * instead of the smallest id so that the original 17365 * configuration is maintained. id is non-zero in that 17366 * case. 17367 */ 17368 if (id != 0) { 17369 /* 17370 * While failing back, if we still have an ipif with 17371 * MAX_ADDRS_PER_IF, it means this will be replaced 17372 * as soon as we return from this function. It was 17373 * to set to MAX_ADDRS_PER_IF by the caller so that 17374 * we can choose the smallest id. Thus we return zero 17375 * in that case ignoring the hint. 17376 */ 17377 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17378 return (0); 17379 for (tipif = ill->ill_ipif; tipif != NULL; 17380 tipif = tipif->ipif_next) { 17381 if (tipif->ipif_id == id) { 17382 found = B_TRUE; 17383 break; 17384 } 17385 } 17386 /* 17387 * If somebody already plumbed another logical 17388 * with the same id, we won't be able to find it. 17389 */ 17390 if (!found) 17391 return (id); 17392 } 17393 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17394 found = B_FALSE; 17395 for (tipif = ill->ill_ipif; tipif != NULL; 17396 tipif = tipif->ipif_next) { 17397 if (tipif->ipif_id == unit) { 17398 found = B_TRUE; 17399 break; 17400 } 17401 } 17402 if (!found) 17403 break; 17404 } 17405 return (unit); 17406 } 17407 17408 /* ARGSUSED */ 17409 static int 17410 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17411 ipif_t **rep_ipif_ptr) 17412 { 17413 ill_t *from_ill; 17414 ipif_t *rep_ipif; 17415 uint_t unit; 17416 int err = 0; 17417 ipif_t *to_ipif; 17418 struct iocblk *iocp; 17419 boolean_t failback_cmd; 17420 boolean_t remove_ipif; 17421 int rc; 17422 ip_stack_t *ipst; 17423 17424 ASSERT(IAM_WRITER_ILL(to_ill)); 17425 ASSERT(IAM_WRITER_IPIF(ipif)); 17426 17427 iocp = (struct iocblk *)mp->b_rptr; 17428 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17429 remove_ipif = B_FALSE; 17430 17431 from_ill = ipif->ipif_ill; 17432 ipst = from_ill->ill_ipst; 17433 17434 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17435 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17436 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17437 17438 /* 17439 * Don't move LINK LOCAL addresses as they are tied to 17440 * physical interface. 17441 */ 17442 if (from_ill->ill_isv6 && 17443 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17444 ipif->ipif_was_up = B_FALSE; 17445 IPIF_UNMARK_MOVING(ipif); 17446 return (0); 17447 } 17448 17449 /* 17450 * We set the ipif_id to maximum so that the search for 17451 * ipif_id will pick the lowest number i.e 0 in the 17452 * following 2 cases : 17453 * 17454 * 1) We have a replacement ipif at the head of to_ill. 17455 * We can't remove it yet as we can exceed ip_addrs_per_if 17456 * on to_ill and hence the MOVE might fail. We want to 17457 * remove it only if we could move the ipif. Thus, by 17458 * setting it to the MAX value, we make the search in 17459 * ipif_get_id return the zeroth id. 17460 * 17461 * 2) When DR pulls out the NIC and re-plumbs the interface, 17462 * we might just have a zero address plumbed on the ipif 17463 * with zero id in the case of IPv4. We remove that while 17464 * doing the failback. We want to remove it only if we 17465 * could move the ipif. Thus, by setting it to the MAX 17466 * value, we make the search in ipif_get_id return the 17467 * zeroth id. 17468 * 17469 * Both (1) and (2) are done only when when we are moving 17470 * an ipif (either due to failover/failback) which originally 17471 * belonged to this interface i.e the ipif_orig_ifindex is 17472 * the same as to_ill's ifindex. This is needed so that 17473 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17474 * from B -> A (B is being removed from the group) and 17475 * FAILBACK from A -> B restores the original configuration. 17476 * Without the check for orig_ifindex, the second FAILOVER 17477 * could make the ipif belonging to B replace the A's zeroth 17478 * ipif and the subsequent failback re-creating the replacement 17479 * ipif again. 17480 * 17481 * NOTE : We created the replacement ipif when we did a 17482 * FAILOVER (See below). We could check for FAILBACK and 17483 * then look for replacement ipif to be removed. But we don't 17484 * want to do that because we wan't to allow the possibility 17485 * of a FAILOVER from A -> B (which creates the replacement ipif), 17486 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17487 * from B -> A. 17488 */ 17489 to_ipif = to_ill->ill_ipif; 17490 if ((to_ill->ill_phyint->phyint_ifindex == 17491 ipif->ipif_orig_ifindex) && 17492 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17493 ASSERT(to_ipif->ipif_id == 0); 17494 remove_ipif = B_TRUE; 17495 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17496 } 17497 /* 17498 * Find the lowest logical unit number on the to_ill. 17499 * If we are failing back, try to get the original id 17500 * rather than the lowest one so that the original 17501 * configuration is maintained. 17502 * 17503 * XXX need a better scheme for this. 17504 */ 17505 if (failback_cmd) { 17506 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17507 } else { 17508 unit = ipif_get_id(to_ill, 0); 17509 } 17510 17511 /* Reset back to zero in case we fail below */ 17512 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17513 to_ipif->ipif_id = 0; 17514 17515 if (unit == ipst->ips_ip_addrs_per_if) { 17516 ipif->ipif_was_up = B_FALSE; 17517 IPIF_UNMARK_MOVING(ipif); 17518 return (EINVAL); 17519 } 17520 17521 /* 17522 * ipif is ready to move from "from_ill" to "to_ill". 17523 * 17524 * 1) If we are moving ipif with id zero, create a 17525 * replacement ipif for this ipif on from_ill. If this fails 17526 * fail the MOVE operation. 17527 * 17528 * 2) Remove the replacement ipif on to_ill if any. 17529 * We could remove the replacement ipif when we are moving 17530 * the ipif with id zero. But what if somebody already 17531 * unplumbed it ? Thus we always remove it if it is present. 17532 * We want to do it only if we are sure we are going to 17533 * move the ipif to to_ill which is why there are no 17534 * returns due to error till ipif is linked to to_ill. 17535 * Note that the first ipif that we failback will always 17536 * be zero if it is present. 17537 */ 17538 if (ipif->ipif_id == 0) { 17539 ipaddr_t inaddr_any = INADDR_ANY; 17540 17541 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17542 if (rep_ipif == NULL) { 17543 ipif->ipif_was_up = B_FALSE; 17544 IPIF_UNMARK_MOVING(ipif); 17545 return (ENOMEM); 17546 } 17547 *rep_ipif = ipif_zero; 17548 /* 17549 * Before we put the ipif on the list, store the addresses 17550 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17551 * assumes so. This logic is not any different from what 17552 * ipif_allocate does. 17553 */ 17554 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17555 &rep_ipif->ipif_v6lcl_addr); 17556 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17557 &rep_ipif->ipif_v6src_addr); 17558 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17559 &rep_ipif->ipif_v6subnet); 17560 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17561 &rep_ipif->ipif_v6net_mask); 17562 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17563 &rep_ipif->ipif_v6brd_addr); 17564 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17565 &rep_ipif->ipif_v6pp_dst_addr); 17566 /* 17567 * We mark IPIF_NOFAILOVER so that this can never 17568 * move. 17569 */ 17570 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17571 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17572 rep_ipif->ipif_replace_zero = B_TRUE; 17573 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17574 MUTEX_DEFAULT, NULL); 17575 rep_ipif->ipif_id = 0; 17576 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17577 rep_ipif->ipif_ill = from_ill; 17578 rep_ipif->ipif_orig_ifindex = 17579 from_ill->ill_phyint->phyint_ifindex; 17580 /* Insert at head */ 17581 rep_ipif->ipif_next = from_ill->ill_ipif; 17582 from_ill->ill_ipif = rep_ipif; 17583 /* 17584 * We don't really care to let apps know about 17585 * this interface. 17586 */ 17587 } 17588 17589 if (remove_ipif) { 17590 /* 17591 * We set to a max value above for this case to get 17592 * id zero. ASSERT that we did get one. 17593 */ 17594 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17595 rep_ipif = to_ipif; 17596 to_ill->ill_ipif = rep_ipif->ipif_next; 17597 rep_ipif->ipif_next = NULL; 17598 /* 17599 * If some apps scanned and find this interface, 17600 * it is time to let them know, so that they can 17601 * delete it. 17602 */ 17603 17604 *rep_ipif_ptr = rep_ipif; 17605 } 17606 17607 /* Get it out of the ILL interface list. */ 17608 ipif_remove(ipif, B_FALSE); 17609 17610 /* Assign the new ill */ 17611 ipif->ipif_ill = to_ill; 17612 ipif->ipif_id = unit; 17613 /* id has already been checked */ 17614 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17615 ASSERT(rc == 0); 17616 /* Let SCTP update its list */ 17617 sctp_move_ipif(ipif, from_ill, to_ill); 17618 /* 17619 * Handle the failover and failback of ipif_t between 17620 * ill_t that have differing maximum mtu values. 17621 */ 17622 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17623 if (ipif->ipif_saved_mtu == 0) { 17624 /* 17625 * As this ipif_t is moving to an ill_t 17626 * that has a lower ill_max_mtu, its 17627 * ipif_mtu needs to be saved so it can 17628 * be restored during failback or during 17629 * failover to an ill_t which has a 17630 * higher ill_max_mtu. 17631 */ 17632 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17633 ipif->ipif_mtu = to_ill->ill_max_mtu; 17634 } else { 17635 /* 17636 * The ipif_t is, once again, moving to 17637 * an ill_t that has a lower maximum mtu 17638 * value. 17639 */ 17640 ipif->ipif_mtu = to_ill->ill_max_mtu; 17641 } 17642 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17643 ipif->ipif_saved_mtu != 0) { 17644 /* 17645 * The mtu of this ipif_t had to be reduced 17646 * during an earlier failover; this is an 17647 * opportunity for it to be increased (either as 17648 * part of another failover or a failback). 17649 */ 17650 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17651 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17652 ipif->ipif_saved_mtu = 0; 17653 } else { 17654 ipif->ipif_mtu = to_ill->ill_max_mtu; 17655 } 17656 } 17657 17658 /* 17659 * We preserve all the other fields of the ipif including 17660 * ipif_saved_ire_mp. The routes that are saved here will 17661 * be recreated on the new interface and back on the old 17662 * interface when we move back. 17663 */ 17664 ASSERT(ipif->ipif_arp_del_mp == NULL); 17665 17666 return (err); 17667 } 17668 17669 static int 17670 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17671 int ifindex, ipif_t **rep_ipif_ptr) 17672 { 17673 ipif_t *mipif; 17674 ipif_t *ipif_next; 17675 int err; 17676 17677 /* 17678 * We don't really try to MOVE back things if some of the 17679 * operations fail. The daemon will take care of moving again 17680 * later on. 17681 */ 17682 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17683 ipif_next = mipif->ipif_next; 17684 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17685 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17686 17687 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17688 17689 /* 17690 * When the MOVE fails, it is the job of the 17691 * application to take care of this properly 17692 * i.e try again if it is ENOMEM. 17693 */ 17694 if (mipif->ipif_ill != from_ill) { 17695 /* 17696 * ipif has moved. 17697 * 17698 * Move the multicast memberships associated 17699 * with this ipif to the new ill. For IPv6, we 17700 * do it once after all the ipifs are moved 17701 * (in ill_move) as they are not associated 17702 * with ipifs. 17703 * 17704 * We need to move the ilms as the ipif has 17705 * already been moved to a new ill even 17706 * in the case of errors. Neither 17707 * ilm_free(ipif) will find the ilm 17708 * when somebody unplumbs this ipif nor 17709 * ilm_delete(ilm) will be able to find the 17710 * ilm, if we don't move now. 17711 */ 17712 if (!from_ill->ill_isv6) 17713 ilm_move_v4(from_ill, to_ill, mipif); 17714 } 17715 17716 if (err != 0) 17717 return (err); 17718 } 17719 } 17720 return (0); 17721 } 17722 17723 static int 17724 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17725 { 17726 int ifindex; 17727 int err; 17728 struct iocblk *iocp; 17729 ipif_t *ipif; 17730 ipif_t *rep_ipif_ptr = NULL; 17731 ipif_t *from_ipif = NULL; 17732 boolean_t check_rep_if = B_FALSE; 17733 ip_stack_t *ipst = from_ill->ill_ipst; 17734 17735 iocp = (struct iocblk *)mp->b_rptr; 17736 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17737 /* 17738 * Move everything pointing at from_ill to to_ill. 17739 * We acheive this by passing in 0 as ifindex. 17740 */ 17741 ifindex = 0; 17742 } else { 17743 /* 17744 * Move everything pointing at from_ill whose original 17745 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17746 * We acheive this by passing in ifindex rather than 0. 17747 * Multicast vifs, ilgs move implicitly because ipifs move. 17748 */ 17749 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17750 ifindex = to_ill->ill_phyint->phyint_ifindex; 17751 } 17752 17753 /* 17754 * Determine if there is at least one ipif that would move from 17755 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17756 * ipif (if it exists) on the to_ill would be consumed as a result of 17757 * the move, in which case we need to quiesce the replacement ipif also. 17758 */ 17759 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17760 from_ipif = from_ipif->ipif_next) { 17761 if (((ifindex == 0) || 17762 (ifindex == from_ipif->ipif_orig_ifindex)) && 17763 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17764 check_rep_if = B_TRUE; 17765 break; 17766 } 17767 } 17768 17769 17770 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17771 17772 GRAB_ILL_LOCKS(from_ill, to_ill); 17773 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17774 (void) ipsq_pending_mp_add(NULL, ipif, q, 17775 mp, ILL_MOVE_OK); 17776 RELEASE_ILL_LOCKS(from_ill, to_ill); 17777 return (EINPROGRESS); 17778 } 17779 17780 /* Check if the replacement ipif is quiescent to delete */ 17781 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17782 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17783 to_ill->ill_ipif->ipif_state_flags |= 17784 IPIF_MOVING | IPIF_CHANGING; 17785 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17786 (void) ipsq_pending_mp_add(NULL, ipif, q, 17787 mp, ILL_MOVE_OK); 17788 RELEASE_ILL_LOCKS(from_ill, to_ill); 17789 return (EINPROGRESS); 17790 } 17791 } 17792 RELEASE_ILL_LOCKS(from_ill, to_ill); 17793 17794 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17795 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17796 GRAB_ILL_LOCKS(from_ill, to_ill); 17797 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17798 17799 /* ilm_move is done inside ipif_move for IPv4 */ 17800 if (err == 0 && from_ill->ill_isv6) 17801 ilm_move_v6(from_ill, to_ill, ifindex); 17802 17803 RELEASE_ILL_LOCKS(from_ill, to_ill); 17804 rw_exit(&ipst->ips_ill_g_lock); 17805 17806 /* 17807 * send rts messages and multicast messages. 17808 */ 17809 if (rep_ipif_ptr != NULL) { 17810 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17811 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17812 rep_ipif_ptr->ipif_recovery_id = 0; 17813 } 17814 ip_rts_ifmsg(rep_ipif_ptr); 17815 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17816 #ifdef DEBUG 17817 ipif_trace_cleanup(rep_ipif_ptr); 17818 #endif 17819 mi_free(rep_ipif_ptr); 17820 } 17821 17822 conn_move_ill(from_ill, to_ill, ifindex); 17823 17824 return (err); 17825 } 17826 17827 /* 17828 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17829 * Also checks for the validity of the arguments. 17830 * Note: We are already exclusive inside the from group. 17831 * It is upto the caller to release refcnt on the to_ill's. 17832 */ 17833 static int 17834 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17835 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17836 { 17837 int dst_index; 17838 ipif_t *ipif_v4, *ipif_v6; 17839 struct lifreq *lifr; 17840 mblk_t *mp1; 17841 boolean_t exists; 17842 sin_t *sin; 17843 int err = 0; 17844 ip_stack_t *ipst; 17845 17846 if (CONN_Q(q)) 17847 ipst = CONNQ_TO_IPST(q); 17848 else 17849 ipst = ILLQ_TO_IPST(q); 17850 17851 17852 if ((mp1 = mp->b_cont) == NULL) 17853 return (EPROTO); 17854 17855 if ((mp1 = mp1->b_cont) == NULL) 17856 return (EPROTO); 17857 17858 lifr = (struct lifreq *)mp1->b_rptr; 17859 sin = (sin_t *)&lifr->lifr_addr; 17860 17861 /* 17862 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17863 * specific operations. 17864 */ 17865 if (sin->sin_family != AF_UNSPEC) 17866 return (EINVAL); 17867 17868 /* 17869 * Get ipif with id 0. We are writer on the from ill. So we can pass 17870 * NULLs for the last 4 args and we know the lookup won't fail 17871 * with EINPROGRESS. 17872 */ 17873 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17874 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17875 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17876 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17877 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17878 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17879 17880 if (ipif_v4 == NULL && ipif_v6 == NULL) 17881 return (ENXIO); 17882 17883 if (ipif_v4 != NULL) { 17884 ASSERT(ipif_v4->ipif_refcnt != 0); 17885 if (ipif_v4->ipif_id != 0) { 17886 err = EINVAL; 17887 goto done; 17888 } 17889 17890 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17891 *ill_from_v4 = ipif_v4->ipif_ill; 17892 } 17893 17894 if (ipif_v6 != NULL) { 17895 ASSERT(ipif_v6->ipif_refcnt != 0); 17896 if (ipif_v6->ipif_id != 0) { 17897 err = EINVAL; 17898 goto done; 17899 } 17900 17901 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17902 *ill_from_v6 = ipif_v6->ipif_ill; 17903 } 17904 17905 err = 0; 17906 dst_index = lifr->lifr_movetoindex; 17907 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17908 q, mp, ip_process_ioctl, &err, ipst); 17909 if (err != 0) { 17910 /* 17911 * There could be only v6. 17912 */ 17913 if (err != ENXIO) 17914 goto done; 17915 err = 0; 17916 } 17917 17918 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17919 q, mp, ip_process_ioctl, &err, ipst); 17920 if (err != 0) { 17921 if (err != ENXIO) 17922 goto done; 17923 if (*ill_to_v4 == NULL) { 17924 err = ENXIO; 17925 goto done; 17926 } 17927 err = 0; 17928 } 17929 17930 /* 17931 * If we have something to MOVE i.e "from" not NULL, 17932 * "to" should be non-NULL. 17933 */ 17934 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17935 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17936 err = EINVAL; 17937 } 17938 17939 done: 17940 if (ipif_v4 != NULL) 17941 ipif_refrele(ipif_v4); 17942 if (ipif_v6 != NULL) 17943 ipif_refrele(ipif_v6); 17944 return (err); 17945 } 17946 17947 /* 17948 * FAILOVER and FAILBACK are modelled as MOVE operations. 17949 * 17950 * We don't check whether the MOVE is within the same group or 17951 * not, because this ioctl can be used as a generic mechanism 17952 * to failover from interface A to B, though things will function 17953 * only if they are really part of the same group. Moreover, 17954 * all ipifs may be down and hence temporarily out of the group. 17955 * 17956 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17957 * down first and then V6. For each we wait for the ipif's to become quiescent. 17958 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17959 * have been deleted and there are no active references. Once quiescent the 17960 * ipif's are moved and brought up on the new ill. 17961 * 17962 * Normally the source ill and destination ill belong to the same IPMP group 17963 * and hence the same ipsq_t. In the event they don't belong to the same 17964 * same group the two ipsq's are first merged into one ipsq - that of the 17965 * to_ill. The multicast memberships on the source and destination ill cannot 17966 * change during the move operation since multicast joins/leaves also have to 17967 * execute on the same ipsq and are hence serialized. 17968 */ 17969 /* ARGSUSED */ 17970 int 17971 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17972 ip_ioctl_cmd_t *ipip, void *ifreq) 17973 { 17974 ill_t *ill_to_v4 = NULL; 17975 ill_t *ill_to_v6 = NULL; 17976 ill_t *ill_from_v4 = NULL; 17977 ill_t *ill_from_v6 = NULL; 17978 int err = 0; 17979 17980 /* 17981 * setup from and to ill's, we can get EINPROGRESS only for 17982 * to_ill's. 17983 */ 17984 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17985 &ill_to_v4, &ill_to_v6); 17986 17987 if (err != 0) { 17988 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17989 goto done; 17990 } 17991 17992 /* 17993 * nothing to do. 17994 */ 17995 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17996 goto done; 17997 } 17998 17999 /* 18000 * nothing to do. 18001 */ 18002 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18003 goto done; 18004 } 18005 18006 /* 18007 * Mark the ill as changing. 18008 * ILL_CHANGING flag is cleared when the ipif's are brought up 18009 * in ill_up_ipifs in case of error they are cleared below. 18010 */ 18011 18012 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18013 if (ill_from_v4 != NULL) 18014 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18015 if (ill_from_v6 != NULL) 18016 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18017 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18018 18019 /* 18020 * Make sure that both src and dst are 18021 * in the same syncq group. If not make it happen. 18022 * We are not holding any locks because we are the writer 18023 * on the from_ipsq and we will hold locks in ill_merge_groups 18024 * to protect to_ipsq against changing. 18025 */ 18026 if (ill_from_v4 != NULL) { 18027 if (ill_from_v4->ill_phyint->phyint_ipsq != 18028 ill_to_v4->ill_phyint->phyint_ipsq) { 18029 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18030 NULL, mp, q); 18031 goto err_ret; 18032 18033 } 18034 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18035 } else { 18036 18037 if (ill_from_v6->ill_phyint->phyint_ipsq != 18038 ill_to_v6->ill_phyint->phyint_ipsq) { 18039 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18040 NULL, mp, q); 18041 goto err_ret; 18042 18043 } 18044 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18045 } 18046 18047 /* 18048 * Now that the ipsq's have been merged and we are the writer 18049 * lets mark to_ill as changing as well. 18050 */ 18051 18052 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18053 if (ill_to_v4 != NULL) 18054 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18055 if (ill_to_v6 != NULL) 18056 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18057 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18058 18059 /* 18060 * Its ok for us to proceed with the move even if 18061 * ill_pending_mp is non null on one of the from ill's as the reply 18062 * should not be looking at the ipif, it should only care about the 18063 * ill itself. 18064 */ 18065 18066 /* 18067 * lets move ipv4 first. 18068 */ 18069 if (ill_from_v4 != NULL) { 18070 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18071 ill_from_v4->ill_move_in_progress = B_TRUE; 18072 ill_to_v4->ill_move_in_progress = B_TRUE; 18073 ill_to_v4->ill_move_peer = ill_from_v4; 18074 ill_from_v4->ill_move_peer = ill_to_v4; 18075 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18076 } 18077 18078 /* 18079 * Now lets move ipv6. 18080 */ 18081 if (err == 0 && ill_from_v6 != NULL) { 18082 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18083 ill_from_v6->ill_move_in_progress = B_TRUE; 18084 ill_to_v6->ill_move_in_progress = B_TRUE; 18085 ill_to_v6->ill_move_peer = ill_from_v6; 18086 ill_from_v6->ill_move_peer = ill_to_v6; 18087 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18088 } 18089 18090 err_ret: 18091 /* 18092 * EINPROGRESS means we are waiting for the ipif's that need to be 18093 * moved to become quiescent. 18094 */ 18095 if (err == EINPROGRESS) { 18096 goto done; 18097 } 18098 18099 /* 18100 * if err is set ill_up_ipifs will not be called 18101 * lets clear the flags. 18102 */ 18103 18104 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18105 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18106 /* 18107 * Some of the clearing may be redundant. But it is simple 18108 * not making any extra checks. 18109 */ 18110 if (ill_from_v6 != NULL) { 18111 ill_from_v6->ill_move_in_progress = B_FALSE; 18112 ill_from_v6->ill_move_peer = NULL; 18113 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18114 } 18115 if (ill_from_v4 != NULL) { 18116 ill_from_v4->ill_move_in_progress = B_FALSE; 18117 ill_from_v4->ill_move_peer = NULL; 18118 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18119 } 18120 if (ill_to_v6 != NULL) { 18121 ill_to_v6->ill_move_in_progress = B_FALSE; 18122 ill_to_v6->ill_move_peer = NULL; 18123 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18124 } 18125 if (ill_to_v4 != NULL) { 18126 ill_to_v4->ill_move_in_progress = B_FALSE; 18127 ill_to_v4->ill_move_peer = NULL; 18128 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18129 } 18130 18131 /* 18132 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18133 * Do this always to maintain proper state i.e even in case of errors. 18134 * As phyint_inactive looks at both v4 and v6 interfaces, 18135 * we need not call on both v4 and v6 interfaces. 18136 */ 18137 if (ill_from_v4 != NULL) { 18138 if ((ill_from_v4->ill_phyint->phyint_flags & 18139 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18140 phyint_inactive(ill_from_v4->ill_phyint); 18141 } 18142 } else if (ill_from_v6 != NULL) { 18143 if ((ill_from_v6->ill_phyint->phyint_flags & 18144 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18145 phyint_inactive(ill_from_v6->ill_phyint); 18146 } 18147 } 18148 18149 if (ill_to_v4 != NULL) { 18150 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18151 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18152 } 18153 } else if (ill_to_v6 != NULL) { 18154 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18155 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18156 } 18157 } 18158 18159 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18160 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18161 18162 no_err: 18163 /* 18164 * lets bring the interfaces up on the to_ill. 18165 */ 18166 if (err == 0) { 18167 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18168 q, mp); 18169 } 18170 18171 if (err == 0) { 18172 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18173 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18174 18175 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18176 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18177 } 18178 done: 18179 18180 if (ill_to_v4 != NULL) { 18181 ill_refrele(ill_to_v4); 18182 } 18183 if (ill_to_v6 != NULL) { 18184 ill_refrele(ill_to_v6); 18185 } 18186 18187 return (err); 18188 } 18189 18190 static void 18191 ill_dl_down(ill_t *ill) 18192 { 18193 /* 18194 * The ill is down; unbind but stay attached since we're still 18195 * associated with a PPA. If we have negotiated DLPI capabilites 18196 * with the data link service provider (IDS_OK) then reset them. 18197 * The interval between unbinding and rebinding is potentially 18198 * unbounded hence we cannot assume things will be the same. 18199 * The DLPI capabilities will be probed again when the data link 18200 * is brought up. 18201 */ 18202 mblk_t *mp = ill->ill_unbind_mp; 18203 18204 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18205 18206 ill->ill_unbind_mp = NULL; 18207 if (mp != NULL) { 18208 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18209 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18210 ill->ill_name)); 18211 mutex_enter(&ill->ill_lock); 18212 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18213 mutex_exit(&ill->ill_lock); 18214 /* 18215 * Reset the capabilities if the negotiation is done or is 18216 * still in progress. Note that ill_capability_reset() will 18217 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18218 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18219 * 18220 * Further, reset ill_capab_reneg to be B_FALSE so that the 18221 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18222 * the capabilities renegotiation from happening. 18223 */ 18224 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18225 ill_capability_reset(ill); 18226 ill->ill_capab_reneg = B_FALSE; 18227 18228 ill_dlpi_send(ill, mp); 18229 } 18230 18231 /* 18232 * Toss all of our multicast memberships. We could keep them, but 18233 * then we'd have to do bookkeeping of any joins and leaves performed 18234 * by the application while the the interface is down (we can't just 18235 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18236 * on a downed interface). 18237 */ 18238 ill_leave_multicast(ill); 18239 18240 mutex_enter(&ill->ill_lock); 18241 ill->ill_dl_up = 0; 18242 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18243 mutex_exit(&ill->ill_lock); 18244 } 18245 18246 static void 18247 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18248 { 18249 union DL_primitives *dlp; 18250 t_uscalar_t prim; 18251 18252 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18253 18254 dlp = (union DL_primitives *)mp->b_rptr; 18255 prim = dlp->dl_primitive; 18256 18257 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18258 dl_primstr(prim), prim, ill->ill_name)); 18259 18260 switch (prim) { 18261 case DL_PHYS_ADDR_REQ: 18262 { 18263 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18264 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18265 break; 18266 } 18267 case DL_BIND_REQ: 18268 mutex_enter(&ill->ill_lock); 18269 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18270 mutex_exit(&ill->ill_lock); 18271 break; 18272 } 18273 18274 /* 18275 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18276 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18277 * we only wait for the ACK of the DL_UNBIND_REQ. 18278 */ 18279 mutex_enter(&ill->ill_lock); 18280 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18281 (prim == DL_UNBIND_REQ)) { 18282 ill->ill_dlpi_pending = prim; 18283 } 18284 mutex_exit(&ill->ill_lock); 18285 18286 putnext(ill->ill_wq, mp); 18287 } 18288 18289 /* 18290 * Helper function for ill_dlpi_send(). 18291 */ 18292 /* ARGSUSED */ 18293 static void 18294 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18295 { 18296 ill_dlpi_send(q->q_ptr, mp); 18297 } 18298 18299 /* 18300 * Send a DLPI control message to the driver but make sure there 18301 * is only one outstanding message. Uses ill_dlpi_pending to tell 18302 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18303 * when an ACK or a NAK is received to process the next queued message. 18304 */ 18305 void 18306 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18307 { 18308 mblk_t **mpp; 18309 18310 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18311 18312 /* 18313 * To ensure that any DLPI requests for current exclusive operation 18314 * are always completely sent before any DLPI messages for other 18315 * operations, require writer access before enqueuing. 18316 */ 18317 if (!IAM_WRITER_ILL(ill)) { 18318 ill_refhold(ill); 18319 /* qwriter_ip() does the ill_refrele() */ 18320 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18321 NEW_OP, B_TRUE); 18322 return; 18323 } 18324 18325 mutex_enter(&ill->ill_lock); 18326 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18327 /* Must queue message. Tail insertion */ 18328 mpp = &ill->ill_dlpi_deferred; 18329 while (*mpp != NULL) 18330 mpp = &((*mpp)->b_next); 18331 18332 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18333 ill->ill_name)); 18334 18335 *mpp = mp; 18336 mutex_exit(&ill->ill_lock); 18337 return; 18338 } 18339 mutex_exit(&ill->ill_lock); 18340 ill_dlpi_dispatch(ill, mp); 18341 } 18342 18343 /* 18344 * Send all deferred DLPI messages without waiting for their ACKs. 18345 */ 18346 void 18347 ill_dlpi_send_deferred(ill_t *ill) 18348 { 18349 mblk_t *mp, *nextmp; 18350 18351 /* 18352 * Clear ill_dlpi_pending so that the message is not queued in 18353 * ill_dlpi_send(). 18354 */ 18355 mutex_enter(&ill->ill_lock); 18356 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18357 mp = ill->ill_dlpi_deferred; 18358 ill->ill_dlpi_deferred = NULL; 18359 mutex_exit(&ill->ill_lock); 18360 18361 for (; mp != NULL; mp = nextmp) { 18362 nextmp = mp->b_next; 18363 mp->b_next = NULL; 18364 ill_dlpi_send(ill, mp); 18365 } 18366 } 18367 18368 /* 18369 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18370 */ 18371 boolean_t 18372 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18373 { 18374 t_uscalar_t pending; 18375 18376 mutex_enter(&ill->ill_lock); 18377 if (ill->ill_dlpi_pending == prim) { 18378 mutex_exit(&ill->ill_lock); 18379 return (B_TRUE); 18380 } 18381 18382 /* 18383 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18384 * without waiting, so don't print any warnings in that case. 18385 */ 18386 if (ill->ill_state_flags & ILL_CONDEMNED) { 18387 mutex_exit(&ill->ill_lock); 18388 return (B_FALSE); 18389 } 18390 pending = ill->ill_dlpi_pending; 18391 mutex_exit(&ill->ill_lock); 18392 18393 if (pending == DL_PRIM_INVAL) { 18394 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18395 "received unsolicited ack for %s on %s\n", 18396 dl_primstr(prim), ill->ill_name); 18397 } else { 18398 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18399 "received unexpected ack for %s on %s (expecting %s)\n", 18400 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18401 } 18402 return (B_FALSE); 18403 } 18404 18405 /* 18406 * Complete the current DLPI operation associated with `prim' on `ill' and 18407 * start the next queued DLPI operation (if any). If there are no queued DLPI 18408 * operations and the ill's current exclusive IPSQ operation has finished 18409 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18410 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18411 * the comments above ipsq_current_finish() for details. 18412 */ 18413 void 18414 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18415 { 18416 mblk_t *mp; 18417 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18418 18419 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18420 mutex_enter(&ill->ill_lock); 18421 18422 ASSERT(prim != DL_PRIM_INVAL); 18423 ASSERT(ill->ill_dlpi_pending == prim); 18424 18425 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18426 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18427 18428 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18429 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18430 18431 mutex_enter(&ipsq->ipsq_lock); 18432 if (ipsq->ipsq_current_done) 18433 ipsq->ipsq_current_ipif = NULL; 18434 mutex_exit(&ipsq->ipsq_lock); 18435 18436 cv_signal(&ill->ill_cv); 18437 mutex_exit(&ill->ill_lock); 18438 return; 18439 } 18440 18441 ill->ill_dlpi_deferred = mp->b_next; 18442 mp->b_next = NULL; 18443 mutex_exit(&ill->ill_lock); 18444 18445 ill_dlpi_dispatch(ill, mp); 18446 } 18447 18448 void 18449 conn_delete_ire(conn_t *connp, caddr_t arg) 18450 { 18451 ipif_t *ipif = (ipif_t *)arg; 18452 ire_t *ire; 18453 18454 /* 18455 * Look at the cached ires on conns which has pointers to ipifs. 18456 * We just call ire_refrele which clears up the reference 18457 * to ire. Called when a conn closes. Also called from ipif_free 18458 * to cleanup indirect references to the stale ipif via the cached ire. 18459 */ 18460 mutex_enter(&connp->conn_lock); 18461 ire = connp->conn_ire_cache; 18462 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18463 connp->conn_ire_cache = NULL; 18464 mutex_exit(&connp->conn_lock); 18465 IRE_REFRELE_NOTR(ire); 18466 return; 18467 } 18468 mutex_exit(&connp->conn_lock); 18469 18470 } 18471 18472 /* 18473 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18474 * of IREs. Those IREs may have been previously cached in the conn structure. 18475 * This ipcl_walk() walker function releases all references to such IREs based 18476 * on the condemned flag. 18477 */ 18478 /* ARGSUSED */ 18479 void 18480 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18481 { 18482 ire_t *ire; 18483 18484 mutex_enter(&connp->conn_lock); 18485 ire = connp->conn_ire_cache; 18486 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18487 connp->conn_ire_cache = NULL; 18488 mutex_exit(&connp->conn_lock); 18489 IRE_REFRELE_NOTR(ire); 18490 return; 18491 } 18492 mutex_exit(&connp->conn_lock); 18493 } 18494 18495 /* 18496 * Take down a specific interface, but don't lose any information about it. 18497 * Also delete interface from its interface group (ifgrp). 18498 * (Always called as writer.) 18499 * This function goes through the down sequence even if the interface is 18500 * already down. There are 2 reasons. 18501 * a. Currently we permit interface routes that depend on down interfaces 18502 * to be added. This behaviour itself is questionable. However it appears 18503 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18504 * time. We go thru the cleanup in order to remove these routes. 18505 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18506 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18507 * down, but we need to cleanup i.e. do ill_dl_down and 18508 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18509 * 18510 * IP-MT notes: 18511 * 18512 * Model of reference to interfaces. 18513 * 18514 * The following members in ipif_t track references to the ipif. 18515 * int ipif_refcnt; Active reference count 18516 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18517 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18518 * 18519 * The following members in ill_t track references to the ill. 18520 * int ill_refcnt; active refcnt 18521 * uint_t ill_ire_cnt; Number of ires referencing ill 18522 * uint_t ill_nce_cnt; Number of nces referencing ill 18523 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18524 * 18525 * Reference to an ipif or ill can be obtained in any of the following ways. 18526 * 18527 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18528 * Pointers to ipif / ill from other data structures viz ire and conn. 18529 * Implicit reference to the ipif / ill by holding a reference to the ire. 18530 * 18531 * The ipif/ill lookup functions return a reference held ipif / ill. 18532 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18533 * This is a purely dynamic reference count associated with threads holding 18534 * references to the ipif / ill. Pointers from other structures do not 18535 * count towards this reference count. 18536 * 18537 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18538 * associated with the ipif/ill. This is incremented whenever a new 18539 * ire is created referencing the ipif/ill. This is done atomically inside 18540 * ire_add_v[46] where the ire is actually added to the ire hash table. 18541 * The count is decremented in ire_inactive where the ire is destroyed. 18542 * 18543 * nce's reference ill's thru nce_ill and the count of nce's associated with 18544 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18545 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18546 * table. Similarly it is decremented in ndp_inactive() where the nce 18547 * is destroyed. 18548 * 18549 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18550 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18551 * in ilm_walker_cleanup() or ilm_delete(). 18552 * 18553 * Flow of ioctls involving interface down/up 18554 * 18555 * The following is the sequence of an attempt to set some critical flags on an 18556 * up interface. 18557 * ip_sioctl_flags 18558 * ipif_down 18559 * wait for ipif to be quiescent 18560 * ipif_down_tail 18561 * ip_sioctl_flags_tail 18562 * 18563 * All set ioctls that involve down/up sequence would have a skeleton similar 18564 * to the above. All the *tail functions are called after the refcounts have 18565 * dropped to the appropriate values. 18566 * 18567 * The mechanism to quiesce an ipif is as follows. 18568 * 18569 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18570 * on the ipif. Callers either pass a flag requesting wait or the lookup 18571 * functions will return NULL. 18572 * 18573 * Delete all ires referencing this ipif 18574 * 18575 * Any thread attempting to do an ipif_refhold on an ipif that has been 18576 * obtained thru a cached pointer will first make sure that 18577 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18578 * increment the refcount. 18579 * 18580 * The above guarantees that the ipif refcount will eventually come down to 18581 * zero and the ipif will quiesce, once all threads that currently hold a 18582 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18583 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18584 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18585 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18586 * in ip.h 18587 * 18588 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18589 * 18590 * Threads trying to lookup an ipif or ill can pass a flag requesting 18591 * wait and restart if the ipif / ill cannot be looked up currently. 18592 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18593 * failure if the ipif is currently undergoing an exclusive operation, and 18594 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18595 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18596 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18597 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18598 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18599 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18600 * until we release the ipsq_lock, even though the the ill/ipif state flags 18601 * can change after we drop the ill_lock. 18602 * 18603 * An attempt to send out a packet using an ipif that is currently 18604 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18605 * operation and restart it later when the exclusive condition on the ipif ends. 18606 * This is an example of not passing the wait flag to the lookup functions. For 18607 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18608 * out a multicast packet on that ipif will fail while the ipif is 18609 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18610 * currently IPIF_CHANGING will also fail. 18611 */ 18612 int 18613 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18614 { 18615 ill_t *ill = ipif->ipif_ill; 18616 phyint_t *phyi; 18617 conn_t *connp; 18618 boolean_t success; 18619 boolean_t ipif_was_up = B_FALSE; 18620 ip_stack_t *ipst = ill->ill_ipst; 18621 18622 ASSERT(IAM_WRITER_IPIF(ipif)); 18623 18624 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18625 18626 if (ipif->ipif_flags & IPIF_UP) { 18627 mutex_enter(&ill->ill_lock); 18628 ipif->ipif_flags &= ~IPIF_UP; 18629 ASSERT(ill->ill_ipif_up_count > 0); 18630 --ill->ill_ipif_up_count; 18631 mutex_exit(&ill->ill_lock); 18632 ipif_was_up = B_TRUE; 18633 /* Update status in SCTP's list */ 18634 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18635 } 18636 18637 /* 18638 * Blow away memberships we established in ipif_multicast_up(). 18639 */ 18640 ipif_multicast_down(ipif); 18641 18642 /* 18643 * Remove from the mapping for __sin6_src_id. We insert only 18644 * when the address is not INADDR_ANY. As IPv4 addresses are 18645 * stored as mapped addresses, we need to check for mapped 18646 * INADDR_ANY also. 18647 */ 18648 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18649 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18650 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18651 int err; 18652 18653 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18654 ipif->ipif_zoneid, ipst); 18655 if (err != 0) { 18656 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18657 } 18658 } 18659 18660 /* 18661 * Before we delete the ill from the group (if any), we need 18662 * to make sure that we delete all the routes dependent on 18663 * this and also any ipifs dependent on this ipif for 18664 * source address. We need to do before we delete from 18665 * the group because 18666 * 18667 * 1) ipif_down_delete_ire de-references ill->ill_group. 18668 * 18669 * 2) ipif_update_other_ipifs needs to walk the whole group 18670 * for re-doing source address selection. Note that 18671 * ipif_select_source[_v6] called from 18672 * ipif_update_other_ipifs[_v6] will not pick this ipif 18673 * because we have already marked down here i.e cleared 18674 * IPIF_UP. 18675 */ 18676 if (ipif->ipif_isv6) { 18677 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18678 ipst); 18679 } else { 18680 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18681 ipst); 18682 } 18683 18684 /* 18685 * Cleaning up the conn_ire_cache or conns must be done only after the 18686 * ires have been deleted above. Otherwise a thread could end up 18687 * caching an ire in a conn after we have finished the cleanup of the 18688 * conn. The caching is done after making sure that the ire is not yet 18689 * condemned. Also documented in the block comment above ip_output 18690 */ 18691 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18692 /* Also, delete the ires cached in SCTP */ 18693 sctp_ire_cache_flush(ipif); 18694 18695 /* 18696 * Update any other ipifs which have used "our" local address as 18697 * a source address. This entails removing and recreating IRE_INTERFACE 18698 * entries for such ipifs. 18699 */ 18700 if (ipif->ipif_isv6) 18701 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18702 else 18703 ipif_update_other_ipifs(ipif, ill->ill_group); 18704 18705 if (ipif_was_up) { 18706 /* 18707 * Check whether it is last ipif to leave this group. 18708 * If this is the last ipif to leave, we should remove 18709 * this ill from the group as ipif_select_source will not 18710 * be able to find any useful ipifs if this ill is selected 18711 * for load balancing. 18712 * 18713 * For nameless groups, we should call ifgrp_delete if this 18714 * belongs to some group. As this ipif is going down, we may 18715 * need to reconstruct groups. 18716 */ 18717 phyi = ill->ill_phyint; 18718 /* 18719 * If the phyint_groupname_len is 0, it may or may not 18720 * be in the nameless group. If the phyint_groupname_len is 18721 * not 0, then this ill should be part of some group. 18722 * As we always insert this ill in the group if 18723 * phyint_groupname_len is not zero when the first ipif 18724 * comes up (in ipif_up_done), it should be in a group 18725 * when the namelen is not 0. 18726 * 18727 * NOTE : When we delete the ill from the group,it will 18728 * blow away all the IRE_CACHES pointing either at this ipif or 18729 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18730 * should be pointing at this ill. 18731 */ 18732 ASSERT(phyi->phyint_groupname_len == 0 || 18733 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18734 18735 if (phyi->phyint_groupname_len != 0) { 18736 if (ill->ill_ipif_up_count == 0) 18737 illgrp_delete(ill); 18738 } 18739 18740 /* 18741 * If we have deleted some of the broadcast ires associated 18742 * with this ipif, we need to re-nominate somebody else if 18743 * the ires that we deleted were the nominated ones. 18744 */ 18745 if (ill->ill_group != NULL && !ill->ill_isv6) 18746 ipif_renominate_bcast(ipif); 18747 } 18748 18749 /* 18750 * neighbor-discovery or arp entries for this interface. 18751 */ 18752 ipif_ndp_down(ipif); 18753 18754 /* 18755 * If mp is NULL the caller will wait for the appropriate refcnt. 18756 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18757 * and ill_delete -> ipif_free -> ipif_down 18758 */ 18759 if (mp == NULL) { 18760 ASSERT(q == NULL); 18761 return (0); 18762 } 18763 18764 if (CONN_Q(q)) { 18765 connp = Q_TO_CONN(q); 18766 mutex_enter(&connp->conn_lock); 18767 } else { 18768 connp = NULL; 18769 } 18770 mutex_enter(&ill->ill_lock); 18771 /* 18772 * Are there any ire's pointing to this ipif that are still active ? 18773 * If this is the last ipif going down, are there any ire's pointing 18774 * to this ill that are still active ? 18775 */ 18776 if (ipif_is_quiescent(ipif)) { 18777 mutex_exit(&ill->ill_lock); 18778 if (connp != NULL) 18779 mutex_exit(&connp->conn_lock); 18780 return (0); 18781 } 18782 18783 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18784 ill->ill_name, (void *)ill)); 18785 /* 18786 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18787 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18788 * which in turn is called by the last refrele on the ipif/ill/ire. 18789 */ 18790 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18791 if (!success) { 18792 /* The conn is closing. So just return */ 18793 ASSERT(connp != NULL); 18794 mutex_exit(&ill->ill_lock); 18795 mutex_exit(&connp->conn_lock); 18796 return (EINTR); 18797 } 18798 18799 mutex_exit(&ill->ill_lock); 18800 if (connp != NULL) 18801 mutex_exit(&connp->conn_lock); 18802 return (EINPROGRESS); 18803 } 18804 18805 void 18806 ipif_down_tail(ipif_t *ipif) 18807 { 18808 ill_t *ill = ipif->ipif_ill; 18809 18810 /* 18811 * Skip any loopback interface (null wq). 18812 * If this is the last logical interface on the ill 18813 * have ill_dl_down tell the driver we are gone (unbind) 18814 * Note that lun 0 can ipif_down even though 18815 * there are other logical units that are up. 18816 * This occurs e.g. when we change a "significant" IFF_ flag. 18817 */ 18818 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18819 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18820 ill->ill_dl_up) { 18821 ill_dl_down(ill); 18822 } 18823 ill->ill_logical_down = 0; 18824 18825 /* 18826 * Have to be after removing the routes in ipif_down_delete_ire. 18827 */ 18828 if (ipif->ipif_isv6) { 18829 if (ill->ill_flags & ILLF_XRESOLV) 18830 ipif_arp_down(ipif); 18831 } else { 18832 ipif_arp_down(ipif); 18833 } 18834 18835 ip_rts_ifmsg(ipif); 18836 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18837 } 18838 18839 /* 18840 * Bring interface logically down without bringing the physical interface 18841 * down e.g. when the netmask is changed. This avoids long lasting link 18842 * negotiations between an ethernet interface and a certain switches. 18843 */ 18844 static int 18845 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18846 { 18847 /* 18848 * The ill_logical_down flag is a transient flag. It is set here 18849 * and is cleared once the down has completed in ipif_down_tail. 18850 * This flag does not indicate whether the ill stream is in the 18851 * DL_BOUND state with the driver. Instead this flag is used by 18852 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18853 * the driver. The state of the ill stream i.e. whether it is 18854 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18855 */ 18856 ipif->ipif_ill->ill_logical_down = 1; 18857 return (ipif_down(ipif, q, mp)); 18858 } 18859 18860 /* 18861 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18862 * If the usesrc client ILL is already part of a usesrc group or not, 18863 * in either case a ire_stq with the matching usesrc client ILL will 18864 * locate the IRE's that need to be deleted. We want IREs to be created 18865 * with the new source address. 18866 */ 18867 static void 18868 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18869 { 18870 ill_t *ucill = (ill_t *)ill_arg; 18871 18872 ASSERT(IAM_WRITER_ILL(ucill)); 18873 18874 if (ire->ire_stq == NULL) 18875 return; 18876 18877 if ((ire->ire_type == IRE_CACHE) && 18878 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18879 ire_delete(ire); 18880 } 18881 18882 /* 18883 * ire_walk routine to delete every IRE dependent on the interface 18884 * address that is going down. (Always called as writer.) 18885 * Works for both v4 and v6. 18886 * In addition for checking for ire_ipif matches it also checks for 18887 * IRE_CACHE entries which have the same source address as the 18888 * disappearing ipif since ipif_select_source might have picked 18889 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18890 * care of any IRE_INTERFACE with the disappearing source address. 18891 */ 18892 static void 18893 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18894 { 18895 ipif_t *ipif = (ipif_t *)ipif_arg; 18896 ill_t *ire_ill; 18897 ill_t *ipif_ill; 18898 18899 ASSERT(IAM_WRITER_IPIF(ipif)); 18900 if (ire->ire_ipif == NULL) 18901 return; 18902 18903 /* 18904 * For IPv4, we derive source addresses for an IRE from ipif's 18905 * belonging to the same IPMP group as the IRE's outgoing 18906 * interface. If an IRE's outgoing interface isn't in the 18907 * same IPMP group as a particular ipif, then that ipif 18908 * couldn't have been used as a source address for this IRE. 18909 * 18910 * For IPv6, source addresses are only restricted to the IPMP group 18911 * if the IRE is for a link-local address or a multicast address. 18912 * Otherwise, source addresses for an IRE can be chosen from 18913 * interfaces other than the the outgoing interface for that IRE. 18914 * 18915 * For source address selection details, see ipif_select_source() 18916 * and ipif_select_source_v6(). 18917 */ 18918 if (ire->ire_ipversion == IPV4_VERSION || 18919 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18920 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18921 ire_ill = ire->ire_ipif->ipif_ill; 18922 ipif_ill = ipif->ipif_ill; 18923 18924 if (ire_ill->ill_group != ipif_ill->ill_group) { 18925 return; 18926 } 18927 } 18928 18929 18930 if (ire->ire_ipif != ipif) { 18931 /* 18932 * Look for a matching source address. 18933 */ 18934 if (ire->ire_type != IRE_CACHE) 18935 return; 18936 if (ipif->ipif_flags & IPIF_NOLOCAL) 18937 return; 18938 18939 if (ire->ire_ipversion == IPV4_VERSION) { 18940 if (ire->ire_src_addr != ipif->ipif_src_addr) 18941 return; 18942 } else { 18943 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18944 &ipif->ipif_v6lcl_addr)) 18945 return; 18946 } 18947 ire_delete(ire); 18948 return; 18949 } 18950 /* 18951 * ire_delete() will do an ire_flush_cache which will delete 18952 * all ire_ipif matches 18953 */ 18954 ire_delete(ire); 18955 } 18956 18957 /* 18958 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18959 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18960 * 2) when an interface is brought up or down (on that ill). 18961 * This ensures that the IRE_CACHE entries don't retain stale source 18962 * address selection results. 18963 */ 18964 void 18965 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18966 { 18967 ill_t *ill = (ill_t *)ill_arg; 18968 ill_t *ipif_ill; 18969 18970 ASSERT(IAM_WRITER_ILL(ill)); 18971 /* 18972 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18973 * Hence this should be IRE_CACHE. 18974 */ 18975 ASSERT(ire->ire_type == IRE_CACHE); 18976 18977 /* 18978 * We are called for IRE_CACHES whose ire_ipif matches ill. 18979 * We are only interested in IRE_CACHES that has borrowed 18980 * the source address from ill_arg e.g. ipif_up_done[_v6] 18981 * for which we need to look at ire_ipif->ipif_ill match 18982 * with ill. 18983 */ 18984 ASSERT(ire->ire_ipif != NULL); 18985 ipif_ill = ire->ire_ipif->ipif_ill; 18986 if (ipif_ill == ill || (ill->ill_group != NULL && 18987 ipif_ill->ill_group == ill->ill_group)) { 18988 ire_delete(ire); 18989 } 18990 } 18991 18992 /* 18993 * Delete all the ire whose stq references ill_arg. 18994 */ 18995 static void 18996 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18997 { 18998 ill_t *ill = (ill_t *)ill_arg; 18999 ill_t *ire_ill; 19000 19001 ASSERT(IAM_WRITER_ILL(ill)); 19002 /* 19003 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19004 * Hence this should be IRE_CACHE. 19005 */ 19006 ASSERT(ire->ire_type == IRE_CACHE); 19007 19008 /* 19009 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19010 * matches ill. We are only interested in IRE_CACHES that 19011 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19012 * filtering here. 19013 */ 19014 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19015 19016 if (ire_ill == ill) 19017 ire_delete(ire); 19018 } 19019 19020 /* 19021 * This is called when an ill leaves the group. We want to delete 19022 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19023 * pointing at ill. 19024 */ 19025 static void 19026 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19027 { 19028 ill_t *ill = (ill_t *)ill_arg; 19029 19030 ASSERT(IAM_WRITER_ILL(ill)); 19031 ASSERT(ill->ill_group == NULL); 19032 /* 19033 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19034 * Hence this should be IRE_CACHE. 19035 */ 19036 ASSERT(ire->ire_type == IRE_CACHE); 19037 /* 19038 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19039 * matches ill. We are interested in both. 19040 */ 19041 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19042 (ire->ire_ipif->ipif_ill == ill)); 19043 19044 ire_delete(ire); 19045 } 19046 19047 /* 19048 * Initiate deallocate of an IPIF. Always called as writer. Called by 19049 * ill_delete or ip_sioctl_removeif. 19050 */ 19051 static void 19052 ipif_free(ipif_t *ipif) 19053 { 19054 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19055 19056 ASSERT(IAM_WRITER_IPIF(ipif)); 19057 19058 if (ipif->ipif_recovery_id != 0) 19059 (void) untimeout(ipif->ipif_recovery_id); 19060 ipif->ipif_recovery_id = 0; 19061 19062 /* Remove conn references */ 19063 reset_conn_ipif(ipif); 19064 19065 /* 19066 * Make sure we have valid net and subnet broadcast ire's for the 19067 * other ipif's which share them with this ipif. 19068 */ 19069 if (!ipif->ipif_isv6) 19070 ipif_check_bcast_ires(ipif); 19071 19072 /* 19073 * Take down the interface. We can be called either from ill_delete 19074 * or from ip_sioctl_removeif. 19075 */ 19076 (void) ipif_down(ipif, NULL, NULL); 19077 19078 /* 19079 * Now that the interface is down, there's no chance it can still 19080 * become a duplicate. Cancel any timer that may have been set while 19081 * tearing down. 19082 */ 19083 if (ipif->ipif_recovery_id != 0) 19084 (void) untimeout(ipif->ipif_recovery_id); 19085 ipif->ipif_recovery_id = 0; 19086 19087 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19088 /* Remove pointers to this ill in the multicast routing tables */ 19089 reset_mrt_vif_ipif(ipif); 19090 rw_exit(&ipst->ips_ill_g_lock); 19091 } 19092 19093 /* 19094 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19095 * also ill_move(). 19096 */ 19097 static void 19098 ipif_free_tail(ipif_t *ipif) 19099 { 19100 mblk_t *mp; 19101 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19102 19103 /* 19104 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19105 */ 19106 mutex_enter(&ipif->ipif_saved_ire_lock); 19107 mp = ipif->ipif_saved_ire_mp; 19108 ipif->ipif_saved_ire_mp = NULL; 19109 mutex_exit(&ipif->ipif_saved_ire_lock); 19110 freemsg(mp); 19111 19112 /* 19113 * Need to hold both ill_g_lock and ill_lock while 19114 * inserting or removing an ipif from the linked list 19115 * of ipifs hanging off the ill. 19116 */ 19117 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19118 19119 ASSERT(ilm_walk_ipif(ipif) == 0); 19120 19121 #ifdef DEBUG 19122 ipif_trace_cleanup(ipif); 19123 #endif 19124 19125 /* Ask SCTP to take it out of it list */ 19126 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19127 19128 /* Get it out of the ILL interface list. */ 19129 ipif_remove(ipif, B_TRUE); 19130 rw_exit(&ipst->ips_ill_g_lock); 19131 19132 mutex_destroy(&ipif->ipif_saved_ire_lock); 19133 19134 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19135 ASSERT(ipif->ipif_recovery_id == 0); 19136 19137 /* Free the memory. */ 19138 mi_free(ipif); 19139 } 19140 19141 /* 19142 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19143 * is zero. 19144 */ 19145 void 19146 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19147 { 19148 char lbuf[LIFNAMSIZ]; 19149 char *name; 19150 size_t name_len; 19151 19152 buf[0] = '\0'; 19153 name = ipif->ipif_ill->ill_name; 19154 name_len = ipif->ipif_ill->ill_name_length; 19155 if (ipif->ipif_id != 0) { 19156 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19157 ipif->ipif_id); 19158 name = lbuf; 19159 name_len = mi_strlen(name) + 1; 19160 } 19161 len -= 1; 19162 buf[len] = '\0'; 19163 len = MIN(len, name_len); 19164 bcopy(name, buf, len); 19165 } 19166 19167 /* 19168 * Find an IPIF based on the name passed in. Names can be of the 19169 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19170 * The <phys> string can have forms like <dev><#> (e.g., le0), 19171 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19172 * When there is no colon, the implied unit id is zero. <phys> must 19173 * correspond to the name of an ILL. (May be called as writer.) 19174 */ 19175 static ipif_t * 19176 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19177 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19178 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19179 { 19180 char *cp; 19181 char *endp; 19182 long id; 19183 ill_t *ill; 19184 ipif_t *ipif; 19185 uint_t ire_type; 19186 boolean_t did_alloc = B_FALSE; 19187 ipsq_t *ipsq; 19188 19189 if (error != NULL) 19190 *error = 0; 19191 19192 /* 19193 * If the caller wants to us to create the ipif, make sure we have a 19194 * valid zoneid 19195 */ 19196 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19197 19198 if (namelen == 0) { 19199 if (error != NULL) 19200 *error = ENXIO; 19201 return (NULL); 19202 } 19203 19204 *exists = B_FALSE; 19205 /* Look for a colon in the name. */ 19206 endp = &name[namelen]; 19207 for (cp = endp; --cp > name; ) { 19208 if (*cp == IPIF_SEPARATOR_CHAR) 19209 break; 19210 } 19211 19212 if (*cp == IPIF_SEPARATOR_CHAR) { 19213 /* 19214 * Reject any non-decimal aliases for logical 19215 * interfaces. Aliases with leading zeroes 19216 * are also rejected as they introduce ambiguity 19217 * in the naming of the interfaces. 19218 * In order to confirm with existing semantics, 19219 * and to not break any programs/script relying 19220 * on that behaviour, if<0>:0 is considered to be 19221 * a valid interface. 19222 * 19223 * If alias has two or more digits and the first 19224 * is zero, fail. 19225 */ 19226 if (&cp[2] < endp && cp[1] == '0') { 19227 if (error != NULL) 19228 *error = EINVAL; 19229 return (NULL); 19230 } 19231 } 19232 19233 if (cp <= name) { 19234 cp = endp; 19235 } else { 19236 *cp = '\0'; 19237 } 19238 19239 /* 19240 * Look up the ILL, based on the portion of the name 19241 * before the slash. ill_lookup_on_name returns a held ill. 19242 * Temporary to check whether ill exists already. If so 19243 * ill_lookup_on_name will clear it. 19244 */ 19245 ill = ill_lookup_on_name(name, do_alloc, isv6, 19246 q, mp, func, error, &did_alloc, ipst); 19247 if (cp != endp) 19248 *cp = IPIF_SEPARATOR_CHAR; 19249 if (ill == NULL) 19250 return (NULL); 19251 19252 /* Establish the unit number in the name. */ 19253 id = 0; 19254 if (cp < endp && *endp == '\0') { 19255 /* If there was a colon, the unit number follows. */ 19256 cp++; 19257 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19258 ill_refrele(ill); 19259 if (error != NULL) 19260 *error = ENXIO; 19261 return (NULL); 19262 } 19263 } 19264 19265 GRAB_CONN_LOCK(q); 19266 mutex_enter(&ill->ill_lock); 19267 /* Now see if there is an IPIF with this unit number. */ 19268 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19269 if (ipif->ipif_id == id) { 19270 if (zoneid != ALL_ZONES && 19271 zoneid != ipif->ipif_zoneid && 19272 ipif->ipif_zoneid != ALL_ZONES) { 19273 mutex_exit(&ill->ill_lock); 19274 RELEASE_CONN_LOCK(q); 19275 ill_refrele(ill); 19276 if (error != NULL) 19277 *error = ENXIO; 19278 return (NULL); 19279 } 19280 /* 19281 * The block comment at the start of ipif_down 19282 * explains the use of the macros used below 19283 */ 19284 if (IPIF_CAN_LOOKUP(ipif)) { 19285 ipif_refhold_locked(ipif); 19286 mutex_exit(&ill->ill_lock); 19287 if (!did_alloc) 19288 *exists = B_TRUE; 19289 /* 19290 * Drop locks before calling ill_refrele 19291 * since it can potentially call into 19292 * ipif_ill_refrele_tail which can end up 19293 * in trying to acquire any lock. 19294 */ 19295 RELEASE_CONN_LOCK(q); 19296 ill_refrele(ill); 19297 return (ipif); 19298 } else if (IPIF_CAN_WAIT(ipif, q)) { 19299 ipsq = ill->ill_phyint->phyint_ipsq; 19300 mutex_enter(&ipsq->ipsq_lock); 19301 mutex_exit(&ill->ill_lock); 19302 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19303 mutex_exit(&ipsq->ipsq_lock); 19304 RELEASE_CONN_LOCK(q); 19305 ill_refrele(ill); 19306 if (error != NULL) 19307 *error = EINPROGRESS; 19308 return (NULL); 19309 } 19310 } 19311 } 19312 RELEASE_CONN_LOCK(q); 19313 19314 if (!do_alloc) { 19315 mutex_exit(&ill->ill_lock); 19316 ill_refrele(ill); 19317 if (error != NULL) 19318 *error = ENXIO; 19319 return (NULL); 19320 } 19321 19322 /* 19323 * If none found, atomically allocate and return a new one. 19324 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19325 * to support "receive only" use of lo0:1 etc. as is still done 19326 * below as an initial guess. 19327 * However, this is now likely to be overriden later in ipif_up_done() 19328 * when we know for sure what address has been configured on the 19329 * interface, since we might have more than one loopback interface 19330 * with a loopback address, e.g. in the case of zones, and all the 19331 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19332 */ 19333 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19334 ire_type = IRE_LOOPBACK; 19335 else 19336 ire_type = IRE_LOCAL; 19337 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19338 if (ipif != NULL) 19339 ipif_refhold_locked(ipif); 19340 else if (error != NULL) 19341 *error = ENOMEM; 19342 mutex_exit(&ill->ill_lock); 19343 ill_refrele(ill); 19344 return (ipif); 19345 } 19346 19347 /* 19348 * This routine is called whenever a new address comes up on an ipif. If 19349 * we are configured to respond to address mask requests, then we are supposed 19350 * to broadcast an address mask reply at this time. This routine is also 19351 * called if we are already up, but a netmask change is made. This is legal 19352 * but might not make the system manager very popular. (May be called 19353 * as writer.) 19354 */ 19355 void 19356 ipif_mask_reply(ipif_t *ipif) 19357 { 19358 icmph_t *icmph; 19359 ipha_t *ipha; 19360 mblk_t *mp; 19361 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19362 19363 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19364 19365 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19366 return; 19367 19368 /* ICMP mask reply is IPv4 only */ 19369 ASSERT(!ipif->ipif_isv6); 19370 /* ICMP mask reply is not for a loopback interface */ 19371 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19372 19373 mp = allocb(REPLY_LEN, BPRI_HI); 19374 if (mp == NULL) 19375 return; 19376 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19377 19378 ipha = (ipha_t *)mp->b_rptr; 19379 bzero(ipha, REPLY_LEN); 19380 *ipha = icmp_ipha; 19381 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19382 ipha->ipha_src = ipif->ipif_src_addr; 19383 ipha->ipha_dst = ipif->ipif_brd_addr; 19384 ipha->ipha_length = htons(REPLY_LEN); 19385 ipha->ipha_ident = 0; 19386 19387 icmph = (icmph_t *)&ipha[1]; 19388 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19389 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19390 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19391 19392 put(ipif->ipif_wq, mp); 19393 19394 #undef REPLY_LEN 19395 } 19396 19397 /* 19398 * When the mtu in the ipif changes, we call this routine through ire_walk 19399 * to update all the relevant IREs. 19400 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19401 */ 19402 static void 19403 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19404 { 19405 ipif_t *ipif = (ipif_t *)ipif_arg; 19406 19407 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19408 return; 19409 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19410 } 19411 19412 /* 19413 * When the mtu in the ill changes, we call this routine through ire_walk 19414 * to update all the relevant IREs. 19415 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19416 */ 19417 void 19418 ill_mtu_change(ire_t *ire, char *ill_arg) 19419 { 19420 ill_t *ill = (ill_t *)ill_arg; 19421 19422 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19423 return; 19424 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19425 } 19426 19427 /* 19428 * Join the ipif specific multicast groups. 19429 * Must be called after a mapping has been set up in the resolver. (Always 19430 * called as writer.) 19431 */ 19432 void 19433 ipif_multicast_up(ipif_t *ipif) 19434 { 19435 int err, index; 19436 ill_t *ill; 19437 19438 ASSERT(IAM_WRITER_IPIF(ipif)); 19439 19440 ill = ipif->ipif_ill; 19441 index = ill->ill_phyint->phyint_ifindex; 19442 19443 ip1dbg(("ipif_multicast_up\n")); 19444 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19445 return; 19446 19447 if (ipif->ipif_isv6) { 19448 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19449 return; 19450 19451 /* Join the all hosts multicast address */ 19452 ip1dbg(("ipif_multicast_up - addmulti\n")); 19453 /* 19454 * Passing B_TRUE means we have to join the multicast 19455 * membership on this interface even though this is 19456 * FAILED. If we join on a different one in the group, 19457 * we will not be able to delete the membership later 19458 * as we currently don't track where we join when we 19459 * join within the kernel unlike applications where 19460 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19461 * for more on this. 19462 */ 19463 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19464 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19465 if (err != 0) { 19466 ip0dbg(("ipif_multicast_up: " 19467 "all_hosts_mcast failed %d\n", 19468 err)); 19469 return; 19470 } 19471 /* 19472 * Enable multicast for the solicited node multicast address 19473 */ 19474 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19475 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19476 19477 ipv6_multi.s6_addr32[3] |= 19478 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19479 19480 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19481 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19482 NULL); 19483 if (err != 0) { 19484 ip0dbg(("ipif_multicast_up: solicited MC" 19485 " failed %d\n", err)); 19486 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19487 ill, ill->ill_phyint->phyint_ifindex, 19488 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19489 return; 19490 } 19491 } 19492 } else { 19493 if (ipif->ipif_lcl_addr == INADDR_ANY) 19494 return; 19495 19496 /* Join the all hosts multicast address */ 19497 ip1dbg(("ipif_multicast_up - addmulti\n")); 19498 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19499 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19500 if (err) { 19501 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19502 return; 19503 } 19504 } 19505 ipif->ipif_multicast_up = 1; 19506 } 19507 19508 /* 19509 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19510 * (Explicit memberships are blown away in ill_leave_multicast() when the 19511 * ill is brought down.) 19512 */ 19513 static void 19514 ipif_multicast_down(ipif_t *ipif) 19515 { 19516 int err; 19517 19518 ASSERT(IAM_WRITER_IPIF(ipif)); 19519 19520 ip1dbg(("ipif_multicast_down\n")); 19521 if (!ipif->ipif_multicast_up) 19522 return; 19523 19524 ip1dbg(("ipif_multicast_down - delmulti\n")); 19525 19526 if (!ipif->ipif_isv6) { 19527 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19528 B_TRUE); 19529 if (err != 0) 19530 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19531 19532 ipif->ipif_multicast_up = 0; 19533 return; 19534 } 19535 19536 /* 19537 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19538 * we should look for ilms on this ill rather than the ones that have 19539 * been failed over here. They are here temporarily. As 19540 * ipif_multicast_up has joined on this ill, we should delete only 19541 * from this ill. 19542 */ 19543 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19544 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19545 B_TRUE, B_TRUE); 19546 if (err != 0) { 19547 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19548 err)); 19549 } 19550 /* 19551 * Disable multicast for the solicited node multicast address 19552 */ 19553 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19554 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19555 19556 ipv6_multi.s6_addr32[3] |= 19557 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19558 19559 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19560 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19561 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19562 19563 if (err != 0) { 19564 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19565 err)); 19566 } 19567 } 19568 19569 ipif->ipif_multicast_up = 0; 19570 } 19571 19572 /* 19573 * Used when an interface comes up to recreate any extra routes on this 19574 * interface. 19575 */ 19576 static ire_t ** 19577 ipif_recover_ire(ipif_t *ipif) 19578 { 19579 mblk_t *mp; 19580 ire_t **ipif_saved_irep; 19581 ire_t **irep; 19582 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19583 19584 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19585 ipif->ipif_id)); 19586 19587 mutex_enter(&ipif->ipif_saved_ire_lock); 19588 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19589 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19590 if (ipif_saved_irep == NULL) { 19591 mutex_exit(&ipif->ipif_saved_ire_lock); 19592 return (NULL); 19593 } 19594 19595 irep = ipif_saved_irep; 19596 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19597 ire_t *ire; 19598 queue_t *rfq; 19599 queue_t *stq; 19600 ifrt_t *ifrt; 19601 uchar_t *src_addr; 19602 uchar_t *gateway_addr; 19603 ushort_t type; 19604 19605 /* 19606 * When the ire was initially created and then added in 19607 * ip_rt_add(), it was created either using ipif->ipif_net_type 19608 * in the case of a traditional interface route, or as one of 19609 * the IRE_OFFSUBNET types (with the exception of 19610 * IRE_HOST types ire which is created by icmp_redirect() and 19611 * which we don't need to save or recover). In the case where 19612 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19613 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19614 * to satisfy software like GateD and Sun Cluster which creates 19615 * routes using the the loopback interface's address as a 19616 * gateway. 19617 * 19618 * As ifrt->ifrt_type reflects the already updated ire_type, 19619 * ire_create() will be called in the same way here as 19620 * in ip_rt_add(), namely using ipif->ipif_net_type when 19621 * the route looks like a traditional interface route (where 19622 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19623 * the saved ifrt->ifrt_type. This means that in the case where 19624 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19625 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19626 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19627 */ 19628 ifrt = (ifrt_t *)mp->b_rptr; 19629 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19630 if (ifrt->ifrt_type & IRE_INTERFACE) { 19631 rfq = NULL; 19632 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19633 ? ipif->ipif_rq : ipif->ipif_wq; 19634 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19635 ? (uint8_t *)&ifrt->ifrt_src_addr 19636 : (uint8_t *)&ipif->ipif_src_addr; 19637 gateway_addr = NULL; 19638 type = ipif->ipif_net_type; 19639 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19640 /* Recover multiroute broadcast IRE. */ 19641 rfq = ipif->ipif_rq; 19642 stq = ipif->ipif_wq; 19643 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19644 ? (uint8_t *)&ifrt->ifrt_src_addr 19645 : (uint8_t *)&ipif->ipif_src_addr; 19646 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19647 type = ifrt->ifrt_type; 19648 } else { 19649 rfq = NULL; 19650 stq = NULL; 19651 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19652 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19653 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19654 type = ifrt->ifrt_type; 19655 } 19656 19657 /* 19658 * Create a copy of the IRE with the saved address and netmask. 19659 */ 19660 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19661 "0x%x/0x%x\n", 19662 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19663 ntohl(ifrt->ifrt_addr), 19664 ntohl(ifrt->ifrt_mask))); 19665 ire = ire_create( 19666 (uint8_t *)&ifrt->ifrt_addr, 19667 (uint8_t *)&ifrt->ifrt_mask, 19668 src_addr, 19669 gateway_addr, 19670 &ifrt->ifrt_max_frag, 19671 NULL, 19672 rfq, 19673 stq, 19674 type, 19675 ipif, 19676 0, 19677 0, 19678 0, 19679 ifrt->ifrt_flags, 19680 &ifrt->ifrt_iulp_info, 19681 NULL, 19682 NULL, 19683 ipst); 19684 19685 if (ire == NULL) { 19686 mutex_exit(&ipif->ipif_saved_ire_lock); 19687 kmem_free(ipif_saved_irep, 19688 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19689 return (NULL); 19690 } 19691 19692 /* 19693 * Some software (for example, GateD and Sun Cluster) attempts 19694 * to create (what amount to) IRE_PREFIX routes with the 19695 * loopback address as the gateway. This is primarily done to 19696 * set up prefixes with the RTF_REJECT flag set (for example, 19697 * when generating aggregate routes.) 19698 * 19699 * If the IRE type (as defined by ipif->ipif_net_type) is 19700 * IRE_LOOPBACK, then we map the request into a 19701 * IRE_IF_NORESOLVER. 19702 */ 19703 if (ipif->ipif_net_type == IRE_LOOPBACK) 19704 ire->ire_type = IRE_IF_NORESOLVER; 19705 /* 19706 * ire held by ire_add, will be refreled' towards the 19707 * the end of ipif_up_done 19708 */ 19709 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19710 *irep = ire; 19711 irep++; 19712 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19713 } 19714 mutex_exit(&ipif->ipif_saved_ire_lock); 19715 return (ipif_saved_irep); 19716 } 19717 19718 /* 19719 * Used to set the netmask and broadcast address to default values when the 19720 * interface is brought up. (Always called as writer.) 19721 */ 19722 static void 19723 ipif_set_default(ipif_t *ipif) 19724 { 19725 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19726 19727 if (!ipif->ipif_isv6) { 19728 /* 19729 * Interface holds an IPv4 address. Default 19730 * mask is the natural netmask. 19731 */ 19732 if (!ipif->ipif_net_mask) { 19733 ipaddr_t v4mask; 19734 19735 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19736 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19737 } 19738 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19739 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19740 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19741 } else { 19742 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19743 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19744 } 19745 /* 19746 * NOTE: SunOS 4.X does this even if the broadcast address 19747 * has been already set thus we do the same here. 19748 */ 19749 if (ipif->ipif_flags & IPIF_BROADCAST) { 19750 ipaddr_t v4addr; 19751 19752 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19753 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19754 } 19755 } else { 19756 /* 19757 * Interface holds an IPv6-only address. Default 19758 * mask is all-ones. 19759 */ 19760 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19761 ipif->ipif_v6net_mask = ipv6_all_ones; 19762 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19763 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19764 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19765 } else { 19766 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19767 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19768 } 19769 } 19770 } 19771 19772 /* 19773 * Return 0 if this address can be used as local address without causing 19774 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19775 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19776 * Special checks are needed to allow the same IPv6 link-local address 19777 * on different ills. 19778 * TODO: allowing the same site-local address on different ill's. 19779 */ 19780 int 19781 ip_addr_availability_check(ipif_t *new_ipif) 19782 { 19783 in6_addr_t our_v6addr; 19784 ill_t *ill; 19785 ipif_t *ipif; 19786 ill_walk_context_t ctx; 19787 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19788 19789 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19790 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19791 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19792 19793 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19794 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19795 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19796 return (0); 19797 19798 our_v6addr = new_ipif->ipif_v6lcl_addr; 19799 19800 if (new_ipif->ipif_isv6) 19801 ill = ILL_START_WALK_V6(&ctx, ipst); 19802 else 19803 ill = ILL_START_WALK_V4(&ctx, ipst); 19804 19805 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19806 for (ipif = ill->ill_ipif; ipif != NULL; 19807 ipif = ipif->ipif_next) { 19808 if ((ipif == new_ipif) || 19809 !(ipif->ipif_flags & IPIF_UP) || 19810 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19811 continue; 19812 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19813 &our_v6addr)) { 19814 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19815 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19816 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19817 ipif->ipif_flags |= IPIF_UNNUMBERED; 19818 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19819 new_ipif->ipif_ill != ill) 19820 continue; 19821 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19822 new_ipif->ipif_ill != ill) 19823 continue; 19824 else if (new_ipif->ipif_zoneid != 19825 ipif->ipif_zoneid && 19826 ipif->ipif_zoneid != ALL_ZONES && 19827 IS_LOOPBACK(ill)) 19828 continue; 19829 else if (new_ipif->ipif_ill == ill) 19830 return (EADDRINUSE); 19831 else 19832 return (EADDRNOTAVAIL); 19833 } 19834 } 19835 } 19836 19837 return (0); 19838 } 19839 19840 /* 19841 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19842 * IREs for the ipif. 19843 * When the routine returns EINPROGRESS then mp has been consumed and 19844 * the ioctl will be acked from ip_rput_dlpi. 19845 */ 19846 static int 19847 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19848 { 19849 ill_t *ill = ipif->ipif_ill; 19850 boolean_t isv6 = ipif->ipif_isv6; 19851 int err = 0; 19852 boolean_t success; 19853 19854 ASSERT(IAM_WRITER_IPIF(ipif)); 19855 19856 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19857 19858 /* Shouldn't get here if it is already up. */ 19859 if (ipif->ipif_flags & IPIF_UP) 19860 return (EALREADY); 19861 19862 /* Skip arp/ndp for any loopback interface. */ 19863 if (ill->ill_wq != NULL) { 19864 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19865 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19866 19867 if (!ill->ill_dl_up) { 19868 /* 19869 * ill_dl_up is not yet set. i.e. we are yet to 19870 * DL_BIND with the driver and this is the first 19871 * logical interface on the ill to become "up". 19872 * Tell the driver to get going (via DL_BIND_REQ). 19873 * Note that changing "significant" IFF_ flags 19874 * address/netmask etc cause a down/up dance, but 19875 * does not cause an unbind (DL_UNBIND) with the driver 19876 */ 19877 return (ill_dl_up(ill, ipif, mp, q)); 19878 } 19879 19880 /* 19881 * ipif_resolver_up may end up sending an 19882 * AR_INTERFACE_UP message to ARP, which would, in 19883 * turn send a DLPI message to the driver. ioctls are 19884 * serialized and so we cannot send more than one 19885 * interface up message at a time. If ipif_resolver_up 19886 * does send an interface up message to ARP, we get 19887 * EINPROGRESS and we will complete in ip_arp_done. 19888 */ 19889 19890 ASSERT(connp != NULL || !CONN_Q(q)); 19891 ASSERT(ipsq->ipsq_pending_mp == NULL); 19892 if (connp != NULL) 19893 mutex_enter(&connp->conn_lock); 19894 mutex_enter(&ill->ill_lock); 19895 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19896 mutex_exit(&ill->ill_lock); 19897 if (connp != NULL) 19898 mutex_exit(&connp->conn_lock); 19899 if (!success) 19900 return (EINTR); 19901 19902 /* 19903 * Crank up IPv6 neighbor discovery 19904 * Unlike ARP, this should complete when 19905 * ipif_ndp_up returns. However, for 19906 * ILLF_XRESOLV interfaces we also send a 19907 * AR_INTERFACE_UP to the external resolver. 19908 * That ioctl will complete in ip_rput. 19909 */ 19910 if (isv6) { 19911 err = ipif_ndp_up(ipif); 19912 if (err != 0) { 19913 if (err != EINPROGRESS) 19914 mp = ipsq_pending_mp_get(ipsq, &connp); 19915 return (err); 19916 } 19917 } 19918 /* Now, ARP */ 19919 err = ipif_resolver_up(ipif, Res_act_initial); 19920 if (err == EINPROGRESS) { 19921 /* We will complete it in ip_arp_done */ 19922 return (err); 19923 } 19924 mp = ipsq_pending_mp_get(ipsq, &connp); 19925 ASSERT(mp != NULL); 19926 if (err != 0) 19927 return (err); 19928 } else { 19929 /* 19930 * Interfaces without underlying hardware don't do duplicate 19931 * address detection. 19932 */ 19933 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19934 ipif->ipif_addr_ready = 1; 19935 } 19936 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19937 } 19938 19939 /* 19940 * Perform a bind for the physical device. 19941 * When the routine returns EINPROGRESS then mp has been consumed and 19942 * the ioctl will be acked from ip_rput_dlpi. 19943 * Allocate an unbind message and save it until ipif_down. 19944 */ 19945 static int 19946 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19947 { 19948 areq_t *areq; 19949 mblk_t *areq_mp = NULL; 19950 mblk_t *bind_mp = NULL; 19951 mblk_t *unbind_mp = NULL; 19952 conn_t *connp; 19953 boolean_t success; 19954 uint16_t sap_addr; 19955 19956 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19957 ASSERT(IAM_WRITER_ILL(ill)); 19958 ASSERT(mp != NULL); 19959 19960 /* Create a resolver cookie for ARP */ 19961 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19962 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19963 if (areq_mp == NULL) 19964 return (ENOMEM); 19965 19966 freemsg(ill->ill_resolver_mp); 19967 ill->ill_resolver_mp = areq_mp; 19968 areq = (areq_t *)areq_mp->b_rptr; 19969 sap_addr = ill->ill_sap; 19970 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19971 } 19972 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19973 DL_BIND_REQ); 19974 if (bind_mp == NULL) 19975 goto bad; 19976 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19977 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19978 19979 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19980 if (unbind_mp == NULL) 19981 goto bad; 19982 19983 /* 19984 * Record state needed to complete this operation when the 19985 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19986 */ 19987 ASSERT(WR(q)->q_next == NULL); 19988 connp = Q_TO_CONN(q); 19989 19990 mutex_enter(&connp->conn_lock); 19991 mutex_enter(&ipif->ipif_ill->ill_lock); 19992 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19993 mutex_exit(&ipif->ipif_ill->ill_lock); 19994 mutex_exit(&connp->conn_lock); 19995 if (!success) 19996 goto bad; 19997 19998 /* 19999 * Save the unbind message for ill_dl_down(); it will be consumed when 20000 * the interface goes down. 20001 */ 20002 ASSERT(ill->ill_unbind_mp == NULL); 20003 ill->ill_unbind_mp = unbind_mp; 20004 20005 ill_dlpi_send(ill, bind_mp); 20006 /* Send down link-layer capabilities probe if not already done. */ 20007 ill_capability_probe(ill); 20008 20009 /* 20010 * Sysid used to rely on the fact that netboots set domainname 20011 * and the like. Now that miniroot boots aren't strictly netboots 20012 * and miniroot network configuration is driven from userland 20013 * these things still need to be set. This situation can be detected 20014 * by comparing the interface being configured here to the one 20015 * dhcifname was set to reference by the boot loader. Once sysid is 20016 * converted to use dhcp_ipc_getinfo() this call can go away. 20017 */ 20018 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 20019 (strcmp(ill->ill_name, dhcifname) == 0) && 20020 (strlen(srpc_domain) == 0)) { 20021 if (dhcpinit() != 0) 20022 cmn_err(CE_WARN, "no cached dhcp response"); 20023 } 20024 20025 /* 20026 * This operation will complete in ip_rput_dlpi with either 20027 * a DL_BIND_ACK or DL_ERROR_ACK. 20028 */ 20029 return (EINPROGRESS); 20030 bad: 20031 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20032 /* 20033 * We don't have to check for possible removal from illgrp 20034 * as we have not yet inserted in illgrp. For groups 20035 * without names, this ipif is still not UP and hence 20036 * this could not have possibly had any influence in forming 20037 * groups. 20038 */ 20039 20040 freemsg(bind_mp); 20041 freemsg(unbind_mp); 20042 return (ENOMEM); 20043 } 20044 20045 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20046 20047 /* 20048 * DLPI and ARP is up. 20049 * Create all the IREs associated with an interface bring up multicast. 20050 * Set the interface flag and finish other initialization 20051 * that potentially had to be differed to after DL_BIND_ACK. 20052 */ 20053 int 20054 ipif_up_done(ipif_t *ipif) 20055 { 20056 ire_t *ire_array[20]; 20057 ire_t **irep = ire_array; 20058 ire_t **irep1; 20059 ipaddr_t net_mask = 0; 20060 ipaddr_t subnet_mask, route_mask; 20061 ill_t *ill = ipif->ipif_ill; 20062 queue_t *stq; 20063 ipif_t *src_ipif; 20064 ipif_t *tmp_ipif; 20065 boolean_t flush_ire_cache = B_TRUE; 20066 int err = 0; 20067 phyint_t *phyi; 20068 ire_t **ipif_saved_irep = NULL; 20069 int ipif_saved_ire_cnt; 20070 int cnt; 20071 boolean_t src_ipif_held = B_FALSE; 20072 boolean_t ire_added = B_FALSE; 20073 boolean_t loopback = B_FALSE; 20074 ip_stack_t *ipst = ill->ill_ipst; 20075 20076 ip1dbg(("ipif_up_done(%s:%u)\n", 20077 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20078 /* Check if this is a loopback interface */ 20079 if (ipif->ipif_ill->ill_wq == NULL) 20080 loopback = B_TRUE; 20081 20082 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20083 /* 20084 * If all other interfaces for this ill are down or DEPRECATED, 20085 * or otherwise unsuitable for source address selection, remove 20086 * any IRE_CACHE entries for this ill to make sure source 20087 * address selection gets to take this new ipif into account. 20088 * No need to hold ill_lock while traversing the ipif list since 20089 * we are writer 20090 */ 20091 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20092 tmp_ipif = tmp_ipif->ipif_next) { 20093 if (((tmp_ipif->ipif_flags & 20094 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20095 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20096 (tmp_ipif == ipif)) 20097 continue; 20098 /* first useable pre-existing interface */ 20099 flush_ire_cache = B_FALSE; 20100 break; 20101 } 20102 if (flush_ire_cache) 20103 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20104 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20105 20106 /* 20107 * Figure out which way the send-to queue should go. Only 20108 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20109 * should show up here. 20110 */ 20111 switch (ill->ill_net_type) { 20112 case IRE_IF_RESOLVER: 20113 stq = ill->ill_rq; 20114 break; 20115 case IRE_IF_NORESOLVER: 20116 case IRE_LOOPBACK: 20117 stq = ill->ill_wq; 20118 break; 20119 default: 20120 return (EINVAL); 20121 } 20122 20123 if (IS_LOOPBACK(ill)) { 20124 /* 20125 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20126 * ipif_lookup_on_name(), but in the case of zones we can have 20127 * several loopback addresses on lo0. So all the interfaces with 20128 * loopback addresses need to be marked IRE_LOOPBACK. 20129 */ 20130 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20131 htonl(INADDR_LOOPBACK)) 20132 ipif->ipif_ire_type = IRE_LOOPBACK; 20133 else 20134 ipif->ipif_ire_type = IRE_LOCAL; 20135 } 20136 20137 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20138 /* 20139 * Can't use our source address. Select a different 20140 * source address for the IRE_INTERFACE and IRE_LOCAL 20141 */ 20142 src_ipif = ipif_select_source(ipif->ipif_ill, 20143 ipif->ipif_subnet, ipif->ipif_zoneid); 20144 if (src_ipif == NULL) 20145 src_ipif = ipif; /* Last resort */ 20146 else 20147 src_ipif_held = B_TRUE; 20148 } else { 20149 src_ipif = ipif; 20150 } 20151 20152 /* Create all the IREs associated with this interface */ 20153 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20154 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20155 20156 /* 20157 * If we're on a labeled system then make sure that zone- 20158 * private addresses have proper remote host database entries. 20159 */ 20160 if (is_system_labeled() && 20161 ipif->ipif_ire_type != IRE_LOOPBACK && 20162 !tsol_check_interface_address(ipif)) 20163 return (EINVAL); 20164 20165 /* Register the source address for __sin6_src_id */ 20166 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20167 ipif->ipif_zoneid, ipst); 20168 if (err != 0) { 20169 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20170 return (err); 20171 } 20172 20173 /* If the interface address is set, create the local IRE. */ 20174 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20175 (void *)ipif, 20176 ipif->ipif_ire_type, 20177 ntohl(ipif->ipif_lcl_addr))); 20178 *irep++ = ire_create( 20179 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20180 (uchar_t *)&ip_g_all_ones, /* mask */ 20181 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20182 NULL, /* no gateway */ 20183 &ip_loopback_mtuplus, /* max frag size */ 20184 NULL, 20185 ipif->ipif_rq, /* recv-from queue */ 20186 NULL, /* no send-to queue */ 20187 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20188 ipif, 20189 0, 20190 0, 20191 0, 20192 (ipif->ipif_flags & IPIF_PRIVATE) ? 20193 RTF_PRIVATE : 0, 20194 &ire_uinfo_null, 20195 NULL, 20196 NULL, 20197 ipst); 20198 } else { 20199 ip1dbg(( 20200 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20201 ipif->ipif_ire_type, 20202 ntohl(ipif->ipif_lcl_addr), 20203 (uint_t)ipif->ipif_flags)); 20204 } 20205 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20206 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20207 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20208 } else { 20209 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20210 } 20211 20212 subnet_mask = ipif->ipif_net_mask; 20213 20214 /* 20215 * If mask was not specified, use natural netmask of 20216 * interface address. Also, store this mask back into the 20217 * ipif struct. 20218 */ 20219 if (subnet_mask == 0) { 20220 subnet_mask = net_mask; 20221 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20222 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20223 ipif->ipif_v6subnet); 20224 } 20225 20226 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20227 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20228 ipif->ipif_subnet != INADDR_ANY) { 20229 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20230 20231 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20232 route_mask = IP_HOST_MASK; 20233 } else { 20234 route_mask = subnet_mask; 20235 } 20236 20237 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20238 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20239 (void *)ipif, (void *)ill, 20240 ill->ill_net_type, 20241 ntohl(ipif->ipif_subnet))); 20242 *irep++ = ire_create( 20243 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20244 (uchar_t *)&route_mask, /* mask */ 20245 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20246 NULL, /* no gateway */ 20247 &ipif->ipif_mtu, /* max frag */ 20248 NULL, 20249 NULL, /* no recv queue */ 20250 stq, /* send-to queue */ 20251 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20252 ipif, 20253 0, 20254 0, 20255 0, 20256 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20257 &ire_uinfo_null, 20258 NULL, 20259 NULL, 20260 ipst); 20261 } 20262 20263 /* 20264 * Create any necessary broadcast IREs. 20265 */ 20266 if (ipif->ipif_flags & IPIF_BROADCAST) 20267 irep = ipif_create_bcast_ires(ipif, irep); 20268 20269 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20270 20271 /* If an earlier ire_create failed, get out now */ 20272 for (irep1 = irep; irep1 > ire_array; ) { 20273 irep1--; 20274 if (*irep1 == NULL) { 20275 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20276 err = ENOMEM; 20277 goto bad; 20278 } 20279 } 20280 20281 /* 20282 * Need to atomically check for ip_addr_availablity_check 20283 * under ip_addr_avail_lock, and if it fails got bad, and remove 20284 * from group also.The ill_g_lock is grabbed as reader 20285 * just to make sure no new ills or new ipifs are being added 20286 * to the system while we are checking the uniqueness of addresses. 20287 */ 20288 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20289 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20290 /* Mark it up, and increment counters. */ 20291 ipif->ipif_flags |= IPIF_UP; 20292 ill->ill_ipif_up_count++; 20293 err = ip_addr_availability_check(ipif); 20294 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20295 rw_exit(&ipst->ips_ill_g_lock); 20296 20297 if (err != 0) { 20298 /* 20299 * Our address may already be up on the same ill. In this case, 20300 * the ARP entry for our ipif replaced the one for the other 20301 * ipif. So we don't want to delete it (otherwise the other ipif 20302 * would be unable to send packets). 20303 * ip_addr_availability_check() identifies this case for us and 20304 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20305 * which is the expected error code. 20306 */ 20307 if (err == EADDRINUSE) { 20308 freemsg(ipif->ipif_arp_del_mp); 20309 ipif->ipif_arp_del_mp = NULL; 20310 err = EADDRNOTAVAIL; 20311 } 20312 ill->ill_ipif_up_count--; 20313 ipif->ipif_flags &= ~IPIF_UP; 20314 goto bad; 20315 } 20316 20317 /* 20318 * Add in all newly created IREs. ire_create_bcast() has 20319 * already checked for duplicates of the IRE_BROADCAST type. 20320 * We want to add before we call ifgrp_insert which wants 20321 * to know whether IRE_IF_RESOLVER exists or not. 20322 * 20323 * NOTE : We refrele the ire though we may branch to "bad" 20324 * later on where we do ire_delete. This is okay 20325 * because nobody can delete it as we are running 20326 * exclusively. 20327 */ 20328 for (irep1 = irep; irep1 > ire_array; ) { 20329 irep1--; 20330 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20331 /* 20332 * refheld by ire_add. refele towards the end of the func 20333 */ 20334 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20335 } 20336 ire_added = B_TRUE; 20337 /* 20338 * Form groups if possible. 20339 * 20340 * If we are supposed to be in a ill_group with a name, insert it 20341 * now as we know that at least one ipif is UP. Otherwise form 20342 * nameless groups. 20343 * 20344 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20345 * this ipif into the appropriate interface group, or create a 20346 * new one. If this is already in a nameless group, we try to form 20347 * a bigger group looking at other ills potentially sharing this 20348 * ipif's prefix. 20349 */ 20350 phyi = ill->ill_phyint; 20351 if (phyi->phyint_groupname_len != 0) { 20352 ASSERT(phyi->phyint_groupname != NULL); 20353 if (ill->ill_ipif_up_count == 1) { 20354 ASSERT(ill->ill_group == NULL); 20355 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20356 phyi->phyint_groupname, NULL, B_TRUE); 20357 if (err != 0) { 20358 ip1dbg(("ipif_up_done: illgrp allocation " 20359 "failed, error %d\n", err)); 20360 goto bad; 20361 } 20362 } 20363 ASSERT(ill->ill_group != NULL); 20364 } 20365 20366 /* 20367 * When this is part of group, we need to make sure that 20368 * any broadcast ires created because of this ipif coming 20369 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20370 * so that we don't receive duplicate broadcast packets. 20371 */ 20372 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20373 ipif_renominate_bcast(ipif); 20374 20375 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20376 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20377 ipif_saved_irep = ipif_recover_ire(ipif); 20378 20379 if (!loopback) { 20380 /* 20381 * If the broadcast address has been set, make sure it makes 20382 * sense based on the interface address. 20383 * Only match on ill since we are sharing broadcast addresses. 20384 */ 20385 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20386 (ipif->ipif_flags & IPIF_BROADCAST)) { 20387 ire_t *ire; 20388 20389 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20390 IRE_BROADCAST, ipif, ALL_ZONES, 20391 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20392 20393 if (ire == NULL) { 20394 /* 20395 * If there isn't a matching broadcast IRE, 20396 * revert to the default for this netmask. 20397 */ 20398 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20399 mutex_enter(&ipif->ipif_ill->ill_lock); 20400 ipif_set_default(ipif); 20401 mutex_exit(&ipif->ipif_ill->ill_lock); 20402 } else { 20403 ire_refrele(ire); 20404 } 20405 } 20406 20407 } 20408 20409 /* This is the first interface on this ill */ 20410 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20411 /* 20412 * Need to recover all multicast memberships in the driver. 20413 * This had to be deferred until we had attached. 20414 */ 20415 ill_recover_multicast(ill); 20416 } 20417 /* Join the allhosts multicast address */ 20418 ipif_multicast_up(ipif); 20419 20420 if (!loopback) { 20421 /* 20422 * See whether anybody else would benefit from the 20423 * new ipif that we added. We call this always rather 20424 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20425 * ipif is for the benefit of illgrp_insert (done above) 20426 * which does not do source address selection as it does 20427 * not want to re-create interface routes that we are 20428 * having reference to it here. 20429 */ 20430 ill_update_source_selection(ill); 20431 } 20432 20433 for (irep1 = irep; irep1 > ire_array; ) { 20434 irep1--; 20435 if (*irep1 != NULL) { 20436 /* was held in ire_add */ 20437 ire_refrele(*irep1); 20438 } 20439 } 20440 20441 cnt = ipif_saved_ire_cnt; 20442 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20443 if (*irep1 != NULL) { 20444 /* was held in ire_add */ 20445 ire_refrele(*irep1); 20446 } 20447 } 20448 20449 if (!loopback && ipif->ipif_addr_ready) { 20450 /* Broadcast an address mask reply. */ 20451 ipif_mask_reply(ipif); 20452 } 20453 if (ipif_saved_irep != NULL) { 20454 kmem_free(ipif_saved_irep, 20455 ipif_saved_ire_cnt * sizeof (ire_t *)); 20456 } 20457 if (src_ipif_held) 20458 ipif_refrele(src_ipif); 20459 20460 /* 20461 * This had to be deferred until we had bound. Tell routing sockets and 20462 * others that this interface is up if it looks like the address has 20463 * been validated. Otherwise, if it isn't ready yet, wait for 20464 * duplicate address detection to do its thing. 20465 */ 20466 if (ipif->ipif_addr_ready) { 20467 ip_rts_ifmsg(ipif); 20468 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20469 /* Let SCTP update the status for this ipif */ 20470 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20471 } 20472 return (0); 20473 20474 bad: 20475 ip1dbg(("ipif_up_done: FAILED \n")); 20476 /* 20477 * We don't have to bother removing from ill groups because 20478 * 20479 * 1) For groups with names, we insert only when the first ipif 20480 * comes up. In that case if it fails, it will not be in any 20481 * group. So, we need not try to remove for that case. 20482 * 20483 * 2) For groups without names, either we tried to insert ipif_ill 20484 * in a group as singleton or found some other group to become 20485 * a bigger group. For the former, if it fails we don't have 20486 * anything to do as ipif_ill is not in the group and for the 20487 * latter, there are no failures in illgrp_insert/illgrp_delete 20488 * (ENOMEM can't occur for this. Check ifgrp_insert). 20489 */ 20490 while (irep > ire_array) { 20491 irep--; 20492 if (*irep != NULL) { 20493 ire_delete(*irep); 20494 if (ire_added) 20495 ire_refrele(*irep); 20496 } 20497 } 20498 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20499 20500 if (ipif_saved_irep != NULL) { 20501 kmem_free(ipif_saved_irep, 20502 ipif_saved_ire_cnt * sizeof (ire_t *)); 20503 } 20504 if (src_ipif_held) 20505 ipif_refrele(src_ipif); 20506 20507 ipif_arp_down(ipif); 20508 return (err); 20509 } 20510 20511 /* 20512 * Turn off the ARP with the ILLF_NOARP flag. 20513 */ 20514 static int 20515 ill_arp_off(ill_t *ill) 20516 { 20517 mblk_t *arp_off_mp = NULL; 20518 mblk_t *arp_on_mp = NULL; 20519 20520 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20521 20522 ASSERT(IAM_WRITER_ILL(ill)); 20523 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20524 20525 /* 20526 * If the on message is still around we've already done 20527 * an arp_off without doing an arp_on thus there is no 20528 * work needed. 20529 */ 20530 if (ill->ill_arp_on_mp != NULL) 20531 return (0); 20532 20533 /* 20534 * Allocate an ARP on message (to be saved) and an ARP off message 20535 */ 20536 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20537 if (!arp_off_mp) 20538 return (ENOMEM); 20539 20540 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20541 if (!arp_on_mp) 20542 goto failed; 20543 20544 ASSERT(ill->ill_arp_on_mp == NULL); 20545 ill->ill_arp_on_mp = arp_on_mp; 20546 20547 /* Send an AR_INTERFACE_OFF request */ 20548 putnext(ill->ill_rq, arp_off_mp); 20549 return (0); 20550 failed: 20551 20552 if (arp_off_mp) 20553 freemsg(arp_off_mp); 20554 return (ENOMEM); 20555 } 20556 20557 /* 20558 * Turn on ARP by turning off the ILLF_NOARP flag. 20559 */ 20560 static int 20561 ill_arp_on(ill_t *ill) 20562 { 20563 mblk_t *mp; 20564 20565 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20566 20567 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20568 20569 ASSERT(IAM_WRITER_ILL(ill)); 20570 /* 20571 * Send an AR_INTERFACE_ON request if we have already done 20572 * an arp_off (which allocated the message). 20573 */ 20574 if (ill->ill_arp_on_mp != NULL) { 20575 mp = ill->ill_arp_on_mp; 20576 ill->ill_arp_on_mp = NULL; 20577 putnext(ill->ill_rq, mp); 20578 } 20579 return (0); 20580 } 20581 20582 /* 20583 * Called after either deleting ill from the group or when setting 20584 * FAILED or STANDBY on the interface. 20585 */ 20586 static void 20587 illgrp_reset_schednext(ill_t *ill) 20588 { 20589 ill_group_t *illgrp; 20590 ill_t *save_ill; 20591 20592 ASSERT(IAM_WRITER_ILL(ill)); 20593 /* 20594 * When called from illgrp_delete, ill_group will be non-NULL. 20595 * But when called from ip_sioctl_flags, it could be NULL if 20596 * somebody is setting FAILED/INACTIVE on some interface which 20597 * is not part of a group. 20598 */ 20599 illgrp = ill->ill_group; 20600 if (illgrp == NULL) 20601 return; 20602 if (illgrp->illgrp_ill_schednext != ill) 20603 return; 20604 20605 illgrp->illgrp_ill_schednext = NULL; 20606 save_ill = ill; 20607 /* 20608 * Choose a good ill to be the next one for 20609 * outbound traffic. As the flags FAILED/STANDBY is 20610 * not yet marked when called from ip_sioctl_flags, 20611 * we check for ill separately. 20612 */ 20613 for (ill = illgrp->illgrp_ill; ill != NULL; 20614 ill = ill->ill_group_next) { 20615 if ((ill != save_ill) && 20616 !(ill->ill_phyint->phyint_flags & 20617 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20618 illgrp->illgrp_ill_schednext = ill; 20619 return; 20620 } 20621 } 20622 } 20623 20624 /* 20625 * Given an ill, find the next ill in the group to be scheduled. 20626 * (This should be called by ip_newroute() before ire_create().) 20627 * The passed in ill may be pulled out of the group, after we have picked 20628 * up a different outgoing ill from the same group. However ire add will 20629 * atomically check this. 20630 */ 20631 ill_t * 20632 illgrp_scheduler(ill_t *ill) 20633 { 20634 ill_t *retill; 20635 ill_group_t *illgrp; 20636 int illcnt; 20637 int i; 20638 uint64_t flags; 20639 ip_stack_t *ipst = ill->ill_ipst; 20640 20641 /* 20642 * We don't use a lock to check for the ill_group. If this ill 20643 * is currently being inserted we may end up just returning this 20644 * ill itself. That is ok. 20645 */ 20646 if (ill->ill_group == NULL) { 20647 ill_refhold(ill); 20648 return (ill); 20649 } 20650 20651 /* 20652 * Grab the ill_g_lock as reader to make sure we are dealing with 20653 * a set of stable ills. No ill can be added or deleted or change 20654 * group while we hold the reader lock. 20655 */ 20656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20657 if ((illgrp = ill->ill_group) == NULL) { 20658 rw_exit(&ipst->ips_ill_g_lock); 20659 ill_refhold(ill); 20660 return (ill); 20661 } 20662 20663 illcnt = illgrp->illgrp_ill_count; 20664 mutex_enter(&illgrp->illgrp_lock); 20665 retill = illgrp->illgrp_ill_schednext; 20666 20667 if (retill == NULL) 20668 retill = illgrp->illgrp_ill; 20669 20670 /* 20671 * We do a circular search beginning at illgrp_ill_schednext 20672 * or illgrp_ill. We don't check the flags against the ill lock 20673 * since it can change anytime. The ire creation will be atomic 20674 * and will fail if the ill is FAILED or OFFLINE. 20675 */ 20676 for (i = 0; i < illcnt; i++) { 20677 flags = retill->ill_phyint->phyint_flags; 20678 20679 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20680 ILL_CAN_LOOKUP(retill)) { 20681 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20682 ill_refhold(retill); 20683 break; 20684 } 20685 retill = retill->ill_group_next; 20686 if (retill == NULL) 20687 retill = illgrp->illgrp_ill; 20688 } 20689 mutex_exit(&illgrp->illgrp_lock); 20690 rw_exit(&ipst->ips_ill_g_lock); 20691 20692 return (i == illcnt ? NULL : retill); 20693 } 20694 20695 /* 20696 * Checks for availbility of a usable source address (if there is one) when the 20697 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20698 * this selection is done regardless of the destination. 20699 */ 20700 boolean_t 20701 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20702 { 20703 uint_t ifindex; 20704 ipif_t *ipif = NULL; 20705 ill_t *uill; 20706 boolean_t isv6; 20707 ip_stack_t *ipst = ill->ill_ipst; 20708 20709 ASSERT(ill != NULL); 20710 20711 isv6 = ill->ill_isv6; 20712 ifindex = ill->ill_usesrc_ifindex; 20713 if (ifindex != 0) { 20714 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20715 NULL, ipst); 20716 if (uill == NULL) 20717 return (NULL); 20718 mutex_enter(&uill->ill_lock); 20719 for (ipif = uill->ill_ipif; ipif != NULL; 20720 ipif = ipif->ipif_next) { 20721 if (!IPIF_CAN_LOOKUP(ipif)) 20722 continue; 20723 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20724 continue; 20725 if (!(ipif->ipif_flags & IPIF_UP)) 20726 continue; 20727 if (ipif->ipif_zoneid != zoneid) 20728 continue; 20729 if ((isv6 && 20730 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20731 (ipif->ipif_lcl_addr == INADDR_ANY)) 20732 continue; 20733 mutex_exit(&uill->ill_lock); 20734 ill_refrele(uill); 20735 return (B_TRUE); 20736 } 20737 mutex_exit(&uill->ill_lock); 20738 ill_refrele(uill); 20739 } 20740 return (B_FALSE); 20741 } 20742 20743 /* 20744 * Determine the best source address given a destination address and an ill. 20745 * Prefers non-deprecated over deprecated but will return a deprecated 20746 * address if there is no other choice. If there is a usable source address 20747 * on the interface pointed to by ill_usesrc_ifindex then that is given 20748 * first preference. 20749 * 20750 * Returns NULL if there is no suitable source address for the ill. 20751 * This only occurs when there is no valid source address for the ill. 20752 */ 20753 ipif_t * 20754 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20755 { 20756 ipif_t *ipif; 20757 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20758 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20759 int index = 0; 20760 boolean_t wrapped = B_FALSE; 20761 boolean_t same_subnet_only = B_FALSE; 20762 boolean_t ipif_same_found, ipif_other_found; 20763 boolean_t specific_found; 20764 ill_t *till, *usill = NULL; 20765 tsol_tpc_t *src_rhtp, *dst_rhtp; 20766 ip_stack_t *ipst = ill->ill_ipst; 20767 20768 if (ill->ill_usesrc_ifindex != 0) { 20769 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20770 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20771 if (usill != NULL) 20772 ill = usill; /* Select source from usesrc ILL */ 20773 else 20774 return (NULL); 20775 } 20776 20777 /* 20778 * If we're dealing with an unlabeled destination on a labeled system, 20779 * make sure that we ignore source addresses that are incompatible with 20780 * the destination's default label. That destination's default label 20781 * must dominate the minimum label on the source address. 20782 */ 20783 dst_rhtp = NULL; 20784 if (is_system_labeled()) { 20785 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20786 if (dst_rhtp == NULL) 20787 return (NULL); 20788 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20789 TPC_RELE(dst_rhtp); 20790 dst_rhtp = NULL; 20791 } 20792 } 20793 20794 /* 20795 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20796 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20797 * After selecting the right ipif, under ill_lock make sure ipif is 20798 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20799 * we retry. Inside the loop we still need to check for CONDEMNED, 20800 * but not under a lock. 20801 */ 20802 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20803 20804 retry: 20805 till = ill; 20806 ipif_arr[0] = NULL; 20807 20808 if (till->ill_group != NULL) 20809 till = till->ill_group->illgrp_ill; 20810 20811 /* 20812 * Choose one good source address from each ill across the group. 20813 * If possible choose a source address in the same subnet as 20814 * the destination address. 20815 * 20816 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20817 * This is okay because of the following. 20818 * 20819 * If PHYI_FAILED is set and we still have non-deprecated 20820 * addresses, it means the addresses have not yet been 20821 * failed over to a different interface. We potentially 20822 * select them to create IRE_CACHES, which will be later 20823 * flushed when the addresses move over. 20824 * 20825 * If PHYI_INACTIVE is set and we still have non-deprecated 20826 * addresses, it means either the user has configured them 20827 * or PHYI_INACTIVE has not been cleared after the addresses 20828 * been moved over. For the former, in.mpathd does a failover 20829 * when the interface becomes INACTIVE and hence we should 20830 * not find them. Once INACTIVE is set, we don't allow them 20831 * to create logical interfaces anymore. For the latter, a 20832 * flush will happen when INACTIVE is cleared which will 20833 * flush the IRE_CACHES. 20834 * 20835 * If PHYI_OFFLINE is set, all the addresses will be failed 20836 * over soon. We potentially select them to create IRE_CACHEs, 20837 * which will be later flushed when the addresses move over. 20838 * 20839 * NOTE : As ipif_select_source is called to borrow source address 20840 * for an ipif that is part of a group, source address selection 20841 * will be re-done whenever the group changes i.e either an 20842 * insertion/deletion in the group. 20843 * 20844 * Fill ipif_arr[] with source addresses, using these rules: 20845 * 20846 * 1. At most one source address from a given ill ends up 20847 * in ipif_arr[] -- that is, at most one of the ipif's 20848 * associated with a given ill ends up in ipif_arr[]. 20849 * 20850 * 2. If there is at least one non-deprecated ipif in the 20851 * IPMP group with a source address on the same subnet as 20852 * our destination, then fill ipif_arr[] only with 20853 * source addresses on the same subnet as our destination. 20854 * Note that because of (1), only the first 20855 * non-deprecated ipif found with a source address 20856 * matching the destination ends up in ipif_arr[]. 20857 * 20858 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20859 * addresses not in the same subnet as our destination. 20860 * Again, because of (1), only the first off-subnet source 20861 * address will be chosen. 20862 * 20863 * 4. If there are no non-deprecated ipifs, then just use 20864 * the source address associated with the last deprecated 20865 * one we find that happens to be on the same subnet, 20866 * otherwise the first one not in the same subnet. 20867 */ 20868 specific_found = B_FALSE; 20869 for (; till != NULL; till = till->ill_group_next) { 20870 ipif_same_found = B_FALSE; 20871 ipif_other_found = B_FALSE; 20872 for (ipif = till->ill_ipif; ipif != NULL; 20873 ipif = ipif->ipif_next) { 20874 if (!IPIF_CAN_LOOKUP(ipif)) 20875 continue; 20876 /* Always skip NOLOCAL and ANYCAST interfaces */ 20877 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20878 continue; 20879 if (!(ipif->ipif_flags & IPIF_UP) || 20880 !ipif->ipif_addr_ready) 20881 continue; 20882 if (ipif->ipif_zoneid != zoneid && 20883 ipif->ipif_zoneid != ALL_ZONES) 20884 continue; 20885 /* 20886 * Interfaces with 0.0.0.0 address are allowed to be UP, 20887 * but are not valid as source addresses. 20888 */ 20889 if (ipif->ipif_lcl_addr == INADDR_ANY) 20890 continue; 20891 20892 /* 20893 * Check compatibility of local address for 20894 * destination's default label if we're on a labeled 20895 * system. Incompatible addresses can't be used at 20896 * all. 20897 */ 20898 if (dst_rhtp != NULL) { 20899 boolean_t incompat; 20900 20901 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20902 IPV4_VERSION, B_FALSE); 20903 if (src_rhtp == NULL) 20904 continue; 20905 incompat = 20906 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20907 src_rhtp->tpc_tp.tp_doi != 20908 dst_rhtp->tpc_tp.tp_doi || 20909 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20910 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20911 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20912 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20913 TPC_RELE(src_rhtp); 20914 if (incompat) 20915 continue; 20916 } 20917 20918 /* 20919 * We prefer not to use all all-zones addresses, if we 20920 * can avoid it, as they pose problems with unlabeled 20921 * destinations. 20922 */ 20923 if (ipif->ipif_zoneid != ALL_ZONES) { 20924 if (!specific_found && 20925 (!same_subnet_only || 20926 (ipif->ipif_net_mask & dst) == 20927 ipif->ipif_subnet)) { 20928 index = 0; 20929 specific_found = B_TRUE; 20930 ipif_other_found = B_FALSE; 20931 } 20932 } else { 20933 if (specific_found) 20934 continue; 20935 } 20936 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20937 if (ipif_dep == NULL || 20938 (ipif->ipif_net_mask & dst) == 20939 ipif->ipif_subnet) 20940 ipif_dep = ipif; 20941 continue; 20942 } 20943 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20944 /* found a source address in the same subnet */ 20945 if (!same_subnet_only) { 20946 same_subnet_only = B_TRUE; 20947 index = 0; 20948 } 20949 ipif_same_found = B_TRUE; 20950 } else { 20951 if (same_subnet_only || ipif_other_found) 20952 continue; 20953 ipif_other_found = B_TRUE; 20954 } 20955 ipif_arr[index++] = ipif; 20956 if (index == MAX_IPIF_SELECT_SOURCE) { 20957 wrapped = B_TRUE; 20958 index = 0; 20959 } 20960 if (ipif_same_found) 20961 break; 20962 } 20963 } 20964 20965 if (ipif_arr[0] == NULL) { 20966 ipif = ipif_dep; 20967 } else { 20968 if (wrapped) 20969 index = MAX_IPIF_SELECT_SOURCE; 20970 ipif = ipif_arr[ipif_rand(ipst) % index]; 20971 ASSERT(ipif != NULL); 20972 } 20973 20974 if (ipif != NULL) { 20975 mutex_enter(&ipif->ipif_ill->ill_lock); 20976 if (!IPIF_CAN_LOOKUP(ipif)) { 20977 mutex_exit(&ipif->ipif_ill->ill_lock); 20978 goto retry; 20979 } 20980 ipif_refhold_locked(ipif); 20981 mutex_exit(&ipif->ipif_ill->ill_lock); 20982 } 20983 20984 rw_exit(&ipst->ips_ill_g_lock); 20985 if (usill != NULL) 20986 ill_refrele(usill); 20987 if (dst_rhtp != NULL) 20988 TPC_RELE(dst_rhtp); 20989 20990 #ifdef DEBUG 20991 if (ipif == NULL) { 20992 char buf1[INET6_ADDRSTRLEN]; 20993 20994 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20995 ill->ill_name, 20996 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20997 } else { 20998 char buf1[INET6_ADDRSTRLEN]; 20999 char buf2[INET6_ADDRSTRLEN]; 21000 21001 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21002 ipif->ipif_ill->ill_name, 21003 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21004 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21005 buf2, sizeof (buf2)))); 21006 } 21007 #endif /* DEBUG */ 21008 return (ipif); 21009 } 21010 21011 21012 /* 21013 * If old_ipif is not NULL, see if ipif was derived from old 21014 * ipif and if so, recreate the interface route by re-doing 21015 * source address selection. This happens when ipif_down -> 21016 * ipif_update_other_ipifs calls us. 21017 * 21018 * If old_ipif is NULL, just redo the source address selection 21019 * if needed. This happens when illgrp_insert or ipif_up_done 21020 * calls us. 21021 */ 21022 static void 21023 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21024 { 21025 ire_t *ire; 21026 ire_t *ipif_ire; 21027 queue_t *stq; 21028 ipif_t *nipif; 21029 ill_t *ill; 21030 boolean_t need_rele = B_FALSE; 21031 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21032 21033 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21034 ASSERT(IAM_WRITER_IPIF(ipif)); 21035 21036 ill = ipif->ipif_ill; 21037 if (!(ipif->ipif_flags & 21038 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21039 /* 21040 * Can't possibly have borrowed the source 21041 * from old_ipif. 21042 */ 21043 return; 21044 } 21045 21046 /* 21047 * Is there any work to be done? No work if the address 21048 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21049 * ipif_select_source() does not borrow addresses from 21050 * NOLOCAL and ANYCAST interfaces). 21051 */ 21052 if ((old_ipif != NULL) && 21053 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21054 (old_ipif->ipif_ill->ill_wq == NULL) || 21055 (old_ipif->ipif_flags & 21056 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21057 return; 21058 } 21059 21060 /* 21061 * Perform the same checks as when creating the 21062 * IRE_INTERFACE in ipif_up_done. 21063 */ 21064 if (!(ipif->ipif_flags & IPIF_UP)) 21065 return; 21066 21067 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21068 (ipif->ipif_subnet == INADDR_ANY)) 21069 return; 21070 21071 ipif_ire = ipif_to_ire(ipif); 21072 if (ipif_ire == NULL) 21073 return; 21074 21075 /* 21076 * We know that ipif uses some other source for its 21077 * IRE_INTERFACE. Is it using the source of this 21078 * old_ipif? 21079 */ 21080 if (old_ipif != NULL && 21081 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21082 ire_refrele(ipif_ire); 21083 return; 21084 } 21085 if (ip_debug > 2) { 21086 /* ip1dbg */ 21087 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21088 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21089 } 21090 21091 stq = ipif_ire->ire_stq; 21092 21093 /* 21094 * Can't use our source address. Select a different 21095 * source address for the IRE_INTERFACE. 21096 */ 21097 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21098 if (nipif == NULL) { 21099 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21100 nipif = ipif; 21101 } else { 21102 need_rele = B_TRUE; 21103 } 21104 21105 ire = ire_create( 21106 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21107 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21108 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21109 NULL, /* no gateway */ 21110 &ipif->ipif_mtu, /* max frag */ 21111 NULL, /* no src nce */ 21112 NULL, /* no recv from queue */ 21113 stq, /* send-to queue */ 21114 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21115 ipif, 21116 0, 21117 0, 21118 0, 21119 0, 21120 &ire_uinfo_null, 21121 NULL, 21122 NULL, 21123 ipst); 21124 21125 if (ire != NULL) { 21126 ire_t *ret_ire; 21127 int error; 21128 21129 /* 21130 * We don't need ipif_ire anymore. We need to delete 21131 * before we add so that ire_add does not detect 21132 * duplicates. 21133 */ 21134 ire_delete(ipif_ire); 21135 ret_ire = ire; 21136 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21137 ASSERT(error == 0); 21138 ASSERT(ire == ret_ire); 21139 /* Held in ire_add */ 21140 ire_refrele(ret_ire); 21141 } 21142 /* 21143 * Either we are falling through from above or could not 21144 * allocate a replacement. 21145 */ 21146 ire_refrele(ipif_ire); 21147 if (need_rele) 21148 ipif_refrele(nipif); 21149 } 21150 21151 /* 21152 * This old_ipif is going away. 21153 * 21154 * Determine if any other ipif's is using our address as 21155 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21156 * IPIF_DEPRECATED). 21157 * Find the IRE_INTERFACE for such ipifs and recreate them 21158 * to use an different source address following the rules in 21159 * ipif_up_done. 21160 * 21161 * This function takes an illgrp as an argument so that illgrp_delete 21162 * can call this to update source address even after deleting the 21163 * old_ipif->ipif_ill from the ill group. 21164 */ 21165 static void 21166 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21167 { 21168 ipif_t *ipif; 21169 ill_t *ill; 21170 char buf[INET6_ADDRSTRLEN]; 21171 21172 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21173 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21174 21175 ill = old_ipif->ipif_ill; 21176 21177 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21178 ill->ill_name, 21179 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21180 buf, sizeof (buf)))); 21181 /* 21182 * If this part of a group, look at all ills as ipif_select_source 21183 * borrows source address across all the ills in the group. 21184 */ 21185 if (illgrp != NULL) 21186 ill = illgrp->illgrp_ill; 21187 21188 for (; ill != NULL; ill = ill->ill_group_next) { 21189 for (ipif = ill->ill_ipif; ipif != NULL; 21190 ipif = ipif->ipif_next) { 21191 21192 if (ipif == old_ipif) 21193 continue; 21194 21195 ipif_recreate_interface_routes(old_ipif, ipif); 21196 } 21197 } 21198 } 21199 21200 /* ARGSUSED */ 21201 int 21202 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21203 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21204 { 21205 /* 21206 * ill_phyint_reinit merged the v4 and v6 into a single 21207 * ipsq. Could also have become part of a ipmp group in the 21208 * process, and we might not have been able to complete the 21209 * operation in ipif_set_values, if we could not become 21210 * exclusive. If so restart it here. 21211 */ 21212 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21213 } 21214 21215 21216 /* 21217 * Can operate on either a module or a driver queue. 21218 * Returns an error if not a module queue. 21219 */ 21220 /* ARGSUSED */ 21221 int 21222 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21223 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21224 { 21225 queue_t *q1 = q; 21226 char *cp; 21227 char interf_name[LIFNAMSIZ]; 21228 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21229 21230 if (q->q_next == NULL) { 21231 ip1dbg(( 21232 "if_unitsel: IF_UNITSEL: no q_next\n")); 21233 return (EINVAL); 21234 } 21235 21236 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21237 return (EALREADY); 21238 21239 do { 21240 q1 = q1->q_next; 21241 } while (q1->q_next); 21242 cp = q1->q_qinfo->qi_minfo->mi_idname; 21243 (void) sprintf(interf_name, "%s%d", cp, ppa); 21244 21245 /* 21246 * Here we are not going to delay the ioack until after 21247 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21248 * original ioctl message before sending the requests. 21249 */ 21250 return (ipif_set_values(q, mp, interf_name, &ppa)); 21251 } 21252 21253 /* ARGSUSED */ 21254 int 21255 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21256 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21257 { 21258 return (ENXIO); 21259 } 21260 21261 /* 21262 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21263 * `irep'. Returns a pointer to the next free `irep' entry (just like 21264 * ire_check_and_create_bcast()). 21265 */ 21266 static ire_t ** 21267 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21268 { 21269 ipaddr_t addr; 21270 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21271 ipaddr_t subnetmask = ipif->ipif_net_mask; 21272 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21273 21274 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21275 21276 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21277 21278 if (ipif->ipif_lcl_addr == INADDR_ANY || 21279 (ipif->ipif_flags & IPIF_NOLOCAL)) 21280 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21281 21282 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21283 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21284 21285 /* 21286 * For backward compatibility, we create net broadcast IREs based on 21287 * the old "IP address class system", since some old machines only 21288 * respond to these class derived net broadcast. However, we must not 21289 * create these net broadcast IREs if the subnetmask is shorter than 21290 * the IP address class based derived netmask. Otherwise, we may 21291 * create a net broadcast address which is the same as an IP address 21292 * on the subnet -- and then TCP will refuse to talk to that address. 21293 */ 21294 if (netmask < subnetmask) { 21295 addr = netmask & ipif->ipif_subnet; 21296 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21297 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21298 flags); 21299 } 21300 21301 /* 21302 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21303 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21304 * created. Creating these broadcast IREs will only create confusion 21305 * as `addr' will be the same as the IP address. 21306 */ 21307 if (subnetmask != 0xFFFFFFFF) { 21308 addr = ipif->ipif_subnet; 21309 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21310 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21311 irep, flags); 21312 } 21313 21314 return (irep); 21315 } 21316 21317 /* 21318 * Broadcast IRE info structure used in the functions below. Since we 21319 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21320 */ 21321 typedef struct bcast_ireinfo { 21322 uchar_t bi_type; /* BCAST_* value from below */ 21323 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21324 bi_needrep:1, /* do we need to replace it? */ 21325 bi_haverep:1, /* have we replaced it? */ 21326 bi_pad:5; 21327 ipaddr_t bi_addr; /* IRE address */ 21328 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21329 } bcast_ireinfo_t; 21330 21331 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21332 21333 /* 21334 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21335 * return B_TRUE if it should immediately be used to recreate the IRE. 21336 */ 21337 static boolean_t 21338 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21339 { 21340 ipaddr_t addr; 21341 21342 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21343 21344 switch (bireinfop->bi_type) { 21345 case BCAST_NET: 21346 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21347 if (addr != bireinfop->bi_addr) 21348 return (B_FALSE); 21349 break; 21350 case BCAST_SUBNET: 21351 if (ipif->ipif_subnet != bireinfop->bi_addr) 21352 return (B_FALSE); 21353 break; 21354 } 21355 21356 bireinfop->bi_needrep = 1; 21357 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21358 if (bireinfop->bi_backup == NULL) 21359 bireinfop->bi_backup = ipif; 21360 return (B_FALSE); 21361 } 21362 return (B_TRUE); 21363 } 21364 21365 /* 21366 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21367 * them ala ire_check_and_create_bcast(). 21368 */ 21369 static ire_t ** 21370 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21371 { 21372 ipaddr_t mask, addr; 21373 21374 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21375 21376 addr = bireinfop->bi_addr; 21377 irep = ire_create_bcast(ipif, addr, irep); 21378 21379 switch (bireinfop->bi_type) { 21380 case BCAST_NET: 21381 mask = ip_net_mask(ipif->ipif_subnet); 21382 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21383 break; 21384 case BCAST_SUBNET: 21385 mask = ipif->ipif_net_mask; 21386 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21387 break; 21388 } 21389 21390 bireinfop->bi_haverep = 1; 21391 return (irep); 21392 } 21393 21394 /* 21395 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21396 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21397 * that are going away are still needed. If so, have ipif_create_bcast() 21398 * recreate them (except for the deprecated case, as explained below). 21399 */ 21400 static ire_t ** 21401 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21402 ire_t **irep) 21403 { 21404 int i; 21405 ipif_t *ipif; 21406 21407 ASSERT(!ill->ill_isv6); 21408 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21409 /* 21410 * Skip this ipif if it's (a) the one being taken down, (b) 21411 * not in the same zone, or (c) has no valid local address. 21412 */ 21413 if (ipif == test_ipif || 21414 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21415 ipif->ipif_subnet == 0 || 21416 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21417 (IPIF_UP|IPIF_BROADCAST)) 21418 continue; 21419 21420 /* 21421 * For each dying IRE that hasn't yet been replaced, see if 21422 * `ipif' needs it and whether the IRE should be recreated on 21423 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21424 * will return B_FALSE even if `ipif' needs the IRE on the 21425 * hopes that we'll later find a needy non-deprecated ipif. 21426 * However, the ipif is recorded in bi_backup for possible 21427 * subsequent use by ipif_check_bcast_ires(). 21428 */ 21429 for (i = 0; i < BCAST_COUNT; i++) { 21430 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21431 continue; 21432 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21433 continue; 21434 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21435 } 21436 21437 /* 21438 * If we've replaced all of the broadcast IREs that are going 21439 * to be taken down, we know we're done. 21440 */ 21441 for (i = 0; i < BCAST_COUNT; i++) { 21442 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21443 break; 21444 } 21445 if (i == BCAST_COUNT) 21446 break; 21447 } 21448 return (irep); 21449 } 21450 21451 /* 21452 * Check if `test_ipif' (which is going away) is associated with any existing 21453 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21454 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21455 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21456 * 21457 * This is necessary because broadcast IREs are shared. In particular, a 21458 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21459 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21460 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21461 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21462 * same zone, they will share the same set of broadcast IREs. 21463 * 21464 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21465 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21466 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21467 */ 21468 static void 21469 ipif_check_bcast_ires(ipif_t *test_ipif) 21470 { 21471 ill_t *ill = test_ipif->ipif_ill; 21472 ire_t *ire, *ire_array[12]; /* see note above */ 21473 ire_t **irep1, **irep = &ire_array[0]; 21474 uint_t i, willdie; 21475 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21476 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21477 21478 ASSERT(!test_ipif->ipif_isv6); 21479 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21480 21481 /* 21482 * No broadcast IREs for the LOOPBACK interface 21483 * or others such as point to point and IPIF_NOXMIT. 21484 */ 21485 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21486 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21487 return; 21488 21489 bzero(bireinfo, sizeof (bireinfo)); 21490 bireinfo[0].bi_type = BCAST_ALLZEROES; 21491 bireinfo[0].bi_addr = 0; 21492 21493 bireinfo[1].bi_type = BCAST_ALLONES; 21494 bireinfo[1].bi_addr = INADDR_BROADCAST; 21495 21496 bireinfo[2].bi_type = BCAST_NET; 21497 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21498 21499 if (test_ipif->ipif_net_mask != 0) 21500 mask = test_ipif->ipif_net_mask; 21501 bireinfo[3].bi_type = BCAST_SUBNET; 21502 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21503 21504 /* 21505 * Figure out what (if any) broadcast IREs will die as a result of 21506 * `test_ipif' going away. If none will die, we're done. 21507 */ 21508 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21509 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21510 test_ipif, ALL_ZONES, NULL, 21511 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21512 if (ire != NULL) { 21513 willdie++; 21514 bireinfo[i].bi_willdie = 1; 21515 ire_refrele(ire); 21516 } 21517 } 21518 21519 if (willdie == 0) 21520 return; 21521 21522 /* 21523 * Walk through all the ipifs that will be affected by the dying IREs, 21524 * and recreate the IREs as necessary. 21525 */ 21526 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21527 21528 /* 21529 * Scan through the set of broadcast IREs and see if there are any 21530 * that we need to replace that have not yet been replaced. If so, 21531 * replace them using the appropriate backup ipif. 21532 */ 21533 for (i = 0; i < BCAST_COUNT; i++) { 21534 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21535 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21536 &bireinfo[i], irep); 21537 } 21538 21539 /* 21540 * If we can't create all of them, don't add any of them. (Code in 21541 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21542 * non-loopback copy and loopback copy for a given address.) 21543 */ 21544 for (irep1 = irep; irep1 > ire_array; ) { 21545 irep1--; 21546 if (*irep1 == NULL) { 21547 ip0dbg(("ipif_check_bcast_ires: can't create " 21548 "IRE_BROADCAST, memory allocation failure\n")); 21549 while (irep > ire_array) { 21550 irep--; 21551 if (*irep != NULL) 21552 ire_delete(*irep); 21553 } 21554 return; 21555 } 21556 } 21557 21558 for (irep1 = irep; irep1 > ire_array; ) { 21559 irep1--; 21560 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21561 ire_refrele(*irep1); /* Held in ire_add */ 21562 } 21563 } 21564 21565 /* 21566 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21567 * from lifr_flags and the name from lifr_name. 21568 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21569 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21570 * Returns EINPROGRESS when mp has been consumed by queueing it on 21571 * ill_pending_mp and the ioctl will complete in ip_rput. 21572 * 21573 * Can operate on either a module or a driver queue. 21574 * Returns an error if not a module queue. 21575 */ 21576 /* ARGSUSED */ 21577 int 21578 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21579 ip_ioctl_cmd_t *ipip, void *if_req) 21580 { 21581 ill_t *ill = q->q_ptr; 21582 phyint_t *phyi; 21583 ip_stack_t *ipst; 21584 struct lifreq *lifr = if_req; 21585 21586 ASSERT(ipif != NULL); 21587 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21588 21589 if (q->q_next == NULL) { 21590 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21591 return (EINVAL); 21592 } 21593 21594 /* 21595 * If we are not writer on 'q' then this interface exists already 21596 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21597 * so return EALREADY. 21598 */ 21599 if (ill != ipif->ipif_ill) 21600 return (EALREADY); 21601 21602 if (ill->ill_name[0] != '\0') 21603 return (EALREADY); 21604 21605 /* 21606 * Set all the flags. Allows all kinds of override. Provide some 21607 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21608 * unless there is either multicast/broadcast support in the driver 21609 * or it is a pt-pt link. 21610 */ 21611 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21612 /* Meaningless to IP thus don't allow them to be set. */ 21613 ip1dbg(("ip_setname: EINVAL 1\n")); 21614 return (EINVAL); 21615 } 21616 21617 /* 21618 * If there's another ill already with the requested name, ensure 21619 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21620 * fuse together two unrelated ills, which will cause chaos. 21621 */ 21622 ipst = ill->ill_ipst; 21623 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21624 lifr->lifr_name, NULL); 21625 if (phyi != NULL) { 21626 ill_t *ill_mate = phyi->phyint_illv4; 21627 21628 if (ill_mate == NULL) 21629 ill_mate = phyi->phyint_illv6; 21630 ASSERT(ill_mate != NULL); 21631 21632 if (ill_mate->ill_media->ip_m_mac_type != 21633 ill->ill_media->ip_m_mac_type) { 21634 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21635 "use the same ill name on differing media\n")); 21636 return (EINVAL); 21637 } 21638 } 21639 21640 /* 21641 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21642 * ill_bcast_addr_length info. 21643 */ 21644 if (!ill->ill_needs_attach && 21645 ((lifr->lifr_flags & IFF_MULTICAST) && 21646 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21647 ill->ill_bcast_addr_length == 0)) { 21648 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21649 ip1dbg(("ip_setname: EINVAL 2\n")); 21650 return (EINVAL); 21651 } 21652 if ((lifr->lifr_flags & IFF_BROADCAST) && 21653 ((lifr->lifr_flags & IFF_IPV6) || 21654 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21655 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21656 ip1dbg(("ip_setname: EINVAL 3\n")); 21657 return (EINVAL); 21658 } 21659 if (lifr->lifr_flags & IFF_UP) { 21660 /* Can only be set with SIOCSLIFFLAGS */ 21661 ip1dbg(("ip_setname: EINVAL 4\n")); 21662 return (EINVAL); 21663 } 21664 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21665 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21666 ip1dbg(("ip_setname: EINVAL 5\n")); 21667 return (EINVAL); 21668 } 21669 /* 21670 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21671 */ 21672 if ((lifr->lifr_flags & IFF_XRESOLV) && 21673 !(lifr->lifr_flags & IFF_IPV6) && 21674 !(ipif->ipif_isv6)) { 21675 ip1dbg(("ip_setname: EINVAL 6\n")); 21676 return (EINVAL); 21677 } 21678 21679 /* 21680 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21681 * we have all the flags here. So, we assign rather than we OR. 21682 * We can't OR the flags here because we don't want to set 21683 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21684 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21685 * on lifr_flags value here. 21686 */ 21687 /* 21688 * This ill has not been inserted into the global list. 21689 * So we are still single threaded and don't need any lock 21690 */ 21691 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21692 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21693 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21694 21695 /* We started off as V4. */ 21696 if (ill->ill_flags & ILLF_IPV6) { 21697 ill->ill_phyint->phyint_illv6 = ill; 21698 ill->ill_phyint->phyint_illv4 = NULL; 21699 } 21700 21701 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21702 } 21703 21704 /* ARGSUSED */ 21705 int 21706 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21707 ip_ioctl_cmd_t *ipip, void *if_req) 21708 { 21709 /* 21710 * ill_phyint_reinit merged the v4 and v6 into a single 21711 * ipsq. Could also have become part of a ipmp group in the 21712 * process, and we might not have been able to complete the 21713 * slifname in ipif_set_values, if we could not become 21714 * exclusive. If so restart it here 21715 */ 21716 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21717 } 21718 21719 /* 21720 * Return a pointer to the ipif which matches the index, IP version type and 21721 * zoneid. 21722 */ 21723 ipif_t * 21724 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21725 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21726 { 21727 ill_t *ill; 21728 ipif_t *ipif = NULL; 21729 21730 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21731 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21732 21733 if (err != NULL) 21734 *err = 0; 21735 21736 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21737 if (ill != NULL) { 21738 mutex_enter(&ill->ill_lock); 21739 for (ipif = ill->ill_ipif; ipif != NULL; 21740 ipif = ipif->ipif_next) { 21741 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21742 zoneid == ipif->ipif_zoneid || 21743 ipif->ipif_zoneid == ALL_ZONES)) { 21744 ipif_refhold_locked(ipif); 21745 break; 21746 } 21747 } 21748 mutex_exit(&ill->ill_lock); 21749 ill_refrele(ill); 21750 if (ipif == NULL && err != NULL) 21751 *err = ENXIO; 21752 } 21753 return (ipif); 21754 } 21755 21756 typedef struct conn_change_s { 21757 uint_t cc_old_ifindex; 21758 uint_t cc_new_ifindex; 21759 } conn_change_t; 21760 21761 /* 21762 * ipcl_walk function for changing interface index. 21763 */ 21764 static void 21765 conn_change_ifindex(conn_t *connp, caddr_t arg) 21766 { 21767 conn_change_t *connc; 21768 uint_t old_ifindex; 21769 uint_t new_ifindex; 21770 int i; 21771 ilg_t *ilg; 21772 21773 connc = (conn_change_t *)arg; 21774 old_ifindex = connc->cc_old_ifindex; 21775 new_ifindex = connc->cc_new_ifindex; 21776 21777 if (connp->conn_orig_bound_ifindex == old_ifindex) 21778 connp->conn_orig_bound_ifindex = new_ifindex; 21779 21780 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21781 connp->conn_orig_multicast_ifindex = new_ifindex; 21782 21783 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21784 ilg = &connp->conn_ilg[i]; 21785 if (ilg->ilg_orig_ifindex == old_ifindex) 21786 ilg->ilg_orig_ifindex = new_ifindex; 21787 } 21788 } 21789 21790 /* 21791 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21792 * to new_index if it matches the old_index. 21793 * 21794 * Failovers typically happen within a group of ills. But somebody 21795 * can remove an ill from the group after a failover happened. If 21796 * we are setting the ifindex after this, we potentially need to 21797 * look at all the ills rather than just the ones in the group. 21798 * We cut down the work by looking at matching ill_net_types 21799 * and ill_types as we could not possibly grouped them together. 21800 */ 21801 static void 21802 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21803 { 21804 ill_t *ill; 21805 ipif_t *ipif; 21806 uint_t old_ifindex; 21807 uint_t new_ifindex; 21808 ilm_t *ilm; 21809 ill_walk_context_t ctx; 21810 ip_stack_t *ipst = ill_orig->ill_ipst; 21811 21812 old_ifindex = connc->cc_old_ifindex; 21813 new_ifindex = connc->cc_new_ifindex; 21814 21815 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21816 ill = ILL_START_WALK_ALL(&ctx, ipst); 21817 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21818 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21819 (ill_orig->ill_type != ill->ill_type)) { 21820 continue; 21821 } 21822 for (ipif = ill->ill_ipif; ipif != NULL; 21823 ipif = ipif->ipif_next) { 21824 if (ipif->ipif_orig_ifindex == old_ifindex) 21825 ipif->ipif_orig_ifindex = new_ifindex; 21826 } 21827 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21828 if (ilm->ilm_orig_ifindex == old_ifindex) 21829 ilm->ilm_orig_ifindex = new_ifindex; 21830 } 21831 } 21832 rw_exit(&ipst->ips_ill_g_lock); 21833 } 21834 21835 /* 21836 * We first need to ensure that the new index is unique, and 21837 * then carry the change across both v4 and v6 ill representation 21838 * of the physical interface. 21839 */ 21840 /* ARGSUSED */ 21841 int 21842 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21843 ip_ioctl_cmd_t *ipip, void *ifreq) 21844 { 21845 ill_t *ill; 21846 ill_t *ill_other; 21847 phyint_t *phyi; 21848 int old_index; 21849 conn_change_t connc; 21850 struct ifreq *ifr = (struct ifreq *)ifreq; 21851 struct lifreq *lifr = (struct lifreq *)ifreq; 21852 uint_t index; 21853 ill_t *ill_v4; 21854 ill_t *ill_v6; 21855 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21856 21857 if (ipip->ipi_cmd_type == IF_CMD) 21858 index = ifr->ifr_index; 21859 else 21860 index = lifr->lifr_index; 21861 21862 /* 21863 * Only allow on physical interface. Also, index zero is illegal. 21864 * 21865 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21866 * 21867 * 1) If PHYI_FAILED is set, a failover could have happened which 21868 * implies a possible failback might have to happen. As failback 21869 * depends on the old index, we should fail setting the index. 21870 * 21871 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21872 * any addresses or multicast memberships are failed over to 21873 * a non-STANDBY interface. As failback depends on the old 21874 * index, we should fail setting the index for this case also. 21875 * 21876 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21877 * Be consistent with PHYI_FAILED and fail the ioctl. 21878 */ 21879 ill = ipif->ipif_ill; 21880 phyi = ill->ill_phyint; 21881 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21882 ipif->ipif_id != 0 || index == 0) { 21883 return (EINVAL); 21884 } 21885 old_index = phyi->phyint_ifindex; 21886 21887 /* If the index is not changing, no work to do */ 21888 if (old_index == index) 21889 return (0); 21890 21891 /* 21892 * Use ill_lookup_on_ifindex to determine if the 21893 * new index is unused and if so allow the change. 21894 */ 21895 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21896 ipst); 21897 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21898 ipst); 21899 if (ill_v6 != NULL || ill_v4 != NULL) { 21900 if (ill_v4 != NULL) 21901 ill_refrele(ill_v4); 21902 if (ill_v6 != NULL) 21903 ill_refrele(ill_v6); 21904 return (EBUSY); 21905 } 21906 21907 /* 21908 * The new index is unused. Set it in the phyint. 21909 * Locate the other ill so that we can send a routing 21910 * sockets message. 21911 */ 21912 if (ill->ill_isv6) { 21913 ill_other = phyi->phyint_illv4; 21914 } else { 21915 ill_other = phyi->phyint_illv6; 21916 } 21917 21918 phyi->phyint_ifindex = index; 21919 21920 /* Update SCTP's ILL list */ 21921 sctp_ill_reindex(ill, old_index); 21922 21923 connc.cc_old_ifindex = old_index; 21924 connc.cc_new_ifindex = index; 21925 ip_change_ifindex(ill, &connc); 21926 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21927 21928 /* Send the routing sockets message */ 21929 ip_rts_ifmsg(ipif); 21930 if (ill_other != NULL) 21931 ip_rts_ifmsg(ill_other->ill_ipif); 21932 21933 return (0); 21934 } 21935 21936 /* ARGSUSED */ 21937 int 21938 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21939 ip_ioctl_cmd_t *ipip, void *ifreq) 21940 { 21941 struct ifreq *ifr = (struct ifreq *)ifreq; 21942 struct lifreq *lifr = (struct lifreq *)ifreq; 21943 21944 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21946 /* Get the interface index */ 21947 if (ipip->ipi_cmd_type == IF_CMD) { 21948 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21949 } else { 21950 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21951 } 21952 return (0); 21953 } 21954 21955 /* ARGSUSED */ 21956 int 21957 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21958 ip_ioctl_cmd_t *ipip, void *ifreq) 21959 { 21960 struct lifreq *lifr = (struct lifreq *)ifreq; 21961 21962 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21963 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21964 /* Get the interface zone */ 21965 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21966 lifr->lifr_zoneid = ipif->ipif_zoneid; 21967 return (0); 21968 } 21969 21970 /* 21971 * Set the zoneid of an interface. 21972 */ 21973 /* ARGSUSED */ 21974 int 21975 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21976 ip_ioctl_cmd_t *ipip, void *ifreq) 21977 { 21978 struct lifreq *lifr = (struct lifreq *)ifreq; 21979 int err = 0; 21980 boolean_t need_up = B_FALSE; 21981 zone_t *zptr; 21982 zone_status_t status; 21983 zoneid_t zoneid; 21984 21985 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21986 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21987 if (!is_system_labeled()) 21988 return (ENOTSUP); 21989 zoneid = GLOBAL_ZONEID; 21990 } 21991 21992 /* cannot assign instance zero to a non-global zone */ 21993 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21994 return (ENOTSUP); 21995 21996 /* 21997 * Cannot assign to a zone that doesn't exist or is shutting down. In 21998 * the event of a race with the zone shutdown processing, since IP 21999 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22000 * interface will be cleaned up even if the zone is shut down 22001 * immediately after the status check. If the interface can't be brought 22002 * down right away, and the zone is shut down before the restart 22003 * function is called, we resolve the possible races by rechecking the 22004 * zone status in the restart function. 22005 */ 22006 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22007 return (EINVAL); 22008 status = zone_status_get(zptr); 22009 zone_rele(zptr); 22010 22011 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22012 return (EINVAL); 22013 22014 if (ipif->ipif_flags & IPIF_UP) { 22015 /* 22016 * If the interface is already marked up, 22017 * we call ipif_down which will take care 22018 * of ditching any IREs that have been set 22019 * up based on the old interface address. 22020 */ 22021 err = ipif_logical_down(ipif, q, mp); 22022 if (err == EINPROGRESS) 22023 return (err); 22024 ipif_down_tail(ipif); 22025 need_up = B_TRUE; 22026 } 22027 22028 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22029 return (err); 22030 } 22031 22032 static int 22033 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22034 queue_t *q, mblk_t *mp, boolean_t need_up) 22035 { 22036 int err = 0; 22037 ip_stack_t *ipst; 22038 22039 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22041 22042 if (CONN_Q(q)) 22043 ipst = CONNQ_TO_IPST(q); 22044 else 22045 ipst = ILLQ_TO_IPST(q); 22046 22047 /* 22048 * For exclusive stacks we don't allow a different zoneid than 22049 * global. 22050 */ 22051 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22052 zoneid != GLOBAL_ZONEID) 22053 return (EINVAL); 22054 22055 /* Set the new zone id. */ 22056 ipif->ipif_zoneid = zoneid; 22057 22058 /* Update sctp list */ 22059 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22060 22061 if (need_up) { 22062 /* 22063 * Now bring the interface back up. If this 22064 * is the only IPIF for the ILL, ipif_up 22065 * will have to re-bind to the device, so 22066 * we may get back EINPROGRESS, in which 22067 * case, this IOCTL will get completed in 22068 * ip_rput_dlpi when we see the DL_BIND_ACK. 22069 */ 22070 err = ipif_up(ipif, q, mp); 22071 } 22072 return (err); 22073 } 22074 22075 /* ARGSUSED */ 22076 int 22077 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22078 ip_ioctl_cmd_t *ipip, void *if_req) 22079 { 22080 struct lifreq *lifr = (struct lifreq *)if_req; 22081 zoneid_t zoneid; 22082 zone_t *zptr; 22083 zone_status_t status; 22084 22085 ASSERT(ipif->ipif_id != 0); 22086 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22087 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22088 zoneid = GLOBAL_ZONEID; 22089 22090 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22091 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22092 22093 /* 22094 * We recheck the zone status to resolve the following race condition: 22095 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22096 * 2) hme0:1 is up and can't be brought down right away; 22097 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22098 * 3) zone "myzone" is halted; the zone status switches to 22099 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22100 * the interfaces to remove - hme0:1 is not returned because it's not 22101 * yet in "myzone", so it won't be removed; 22102 * 4) the restart function for SIOCSLIFZONE is called; without the 22103 * status check here, we would have hme0:1 in "myzone" after it's been 22104 * destroyed. 22105 * Note that if the status check fails, we need to bring the interface 22106 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22107 * ipif_up_done[_v6](). 22108 */ 22109 status = ZONE_IS_UNINITIALIZED; 22110 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22111 status = zone_status_get(zptr); 22112 zone_rele(zptr); 22113 } 22114 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22115 if (ipif->ipif_isv6) { 22116 (void) ipif_up_done_v6(ipif); 22117 } else { 22118 (void) ipif_up_done(ipif); 22119 } 22120 return (EINVAL); 22121 } 22122 22123 ipif_down_tail(ipif); 22124 22125 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22126 B_TRUE)); 22127 } 22128 22129 /* ARGSUSED */ 22130 int 22131 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22132 ip_ioctl_cmd_t *ipip, void *ifreq) 22133 { 22134 struct lifreq *lifr = ifreq; 22135 22136 ASSERT(q->q_next == NULL); 22137 ASSERT(CONN_Q(q)); 22138 22139 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22141 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22142 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22143 22144 return (0); 22145 } 22146 22147 22148 /* Find the previous ILL in this usesrc group */ 22149 static ill_t * 22150 ill_prev_usesrc(ill_t *uill) 22151 { 22152 ill_t *ill; 22153 22154 for (ill = uill->ill_usesrc_grp_next; 22155 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22156 ill = ill->ill_usesrc_grp_next) 22157 /* do nothing */; 22158 return (ill); 22159 } 22160 22161 /* 22162 * Release all members of the usesrc group. This routine is called 22163 * from ill_delete when the interface being unplumbed is the 22164 * group head. 22165 */ 22166 static void 22167 ill_disband_usesrc_group(ill_t *uill) 22168 { 22169 ill_t *next_ill, *tmp_ill; 22170 ip_stack_t *ipst = uill->ill_ipst; 22171 22172 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22173 next_ill = uill->ill_usesrc_grp_next; 22174 22175 do { 22176 ASSERT(next_ill != NULL); 22177 tmp_ill = next_ill->ill_usesrc_grp_next; 22178 ASSERT(tmp_ill != NULL); 22179 next_ill->ill_usesrc_grp_next = NULL; 22180 next_ill->ill_usesrc_ifindex = 0; 22181 next_ill = tmp_ill; 22182 } while (next_ill->ill_usesrc_ifindex != 0); 22183 uill->ill_usesrc_grp_next = NULL; 22184 } 22185 22186 /* 22187 * Remove the client usesrc ILL from the list and relink to a new list 22188 */ 22189 int 22190 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22191 { 22192 ill_t *ill, *tmp_ill; 22193 ip_stack_t *ipst = ucill->ill_ipst; 22194 22195 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22196 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22197 22198 /* 22199 * Check if the usesrc client ILL passed in is not already 22200 * in use as a usesrc ILL i.e one whose source address is 22201 * in use OR a usesrc ILL is not already in use as a usesrc 22202 * client ILL 22203 */ 22204 if ((ucill->ill_usesrc_ifindex == 0) || 22205 (uill->ill_usesrc_ifindex != 0)) { 22206 return (-1); 22207 } 22208 22209 ill = ill_prev_usesrc(ucill); 22210 ASSERT(ill->ill_usesrc_grp_next != NULL); 22211 22212 /* Remove from the current list */ 22213 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22214 /* Only two elements in the list */ 22215 ASSERT(ill->ill_usesrc_ifindex == 0); 22216 ill->ill_usesrc_grp_next = NULL; 22217 } else { 22218 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22219 } 22220 22221 if (ifindex == 0) { 22222 ucill->ill_usesrc_ifindex = 0; 22223 ucill->ill_usesrc_grp_next = NULL; 22224 return (0); 22225 } 22226 22227 ucill->ill_usesrc_ifindex = ifindex; 22228 tmp_ill = uill->ill_usesrc_grp_next; 22229 uill->ill_usesrc_grp_next = ucill; 22230 ucill->ill_usesrc_grp_next = 22231 (tmp_ill != NULL) ? tmp_ill : uill; 22232 return (0); 22233 } 22234 22235 /* 22236 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22237 * ip.c for locking details. 22238 */ 22239 /* ARGSUSED */ 22240 int 22241 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22242 ip_ioctl_cmd_t *ipip, void *ifreq) 22243 { 22244 struct lifreq *lifr = (struct lifreq *)ifreq; 22245 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22246 ill_flag_changed = B_FALSE; 22247 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22248 int err = 0, ret; 22249 uint_t ifindex; 22250 phyint_t *us_phyint, *us_cli_phyint; 22251 ipsq_t *ipsq = NULL; 22252 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22253 22254 ASSERT(IAM_WRITER_IPIF(ipif)); 22255 ASSERT(q->q_next == NULL); 22256 ASSERT(CONN_Q(q)); 22257 22258 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22259 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22260 22261 ASSERT(us_cli_phyint != NULL); 22262 22263 /* 22264 * If the client ILL is being used for IPMP, abort. 22265 * Note, this can be done before ipsq_try_enter since we are already 22266 * exclusive on this ILL 22267 */ 22268 if ((us_cli_phyint->phyint_groupname != NULL) || 22269 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22270 return (EINVAL); 22271 } 22272 22273 ifindex = lifr->lifr_index; 22274 if (ifindex == 0) { 22275 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22276 /* non usesrc group interface, nothing to reset */ 22277 return (0); 22278 } 22279 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22280 /* valid reset request */ 22281 reset_flg = B_TRUE; 22282 } 22283 22284 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22285 ip_process_ioctl, &err, ipst); 22286 22287 if (usesrc_ill == NULL) { 22288 return (err); 22289 } 22290 22291 /* 22292 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22293 * group nor can either of the interfaces be used for standy. So 22294 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22295 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22296 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22297 * We are already exlusive on this ipsq i.e ipsq corresponding to 22298 * the usesrc_cli_ill 22299 */ 22300 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22301 NEW_OP, B_TRUE); 22302 if (ipsq == NULL) { 22303 err = EINPROGRESS; 22304 /* Operation enqueued on the ipsq of the usesrc ILL */ 22305 goto done; 22306 } 22307 22308 /* Check if the usesrc_ill is used for IPMP */ 22309 us_phyint = usesrc_ill->ill_phyint; 22310 if ((us_phyint->phyint_groupname != NULL) || 22311 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22312 err = EINVAL; 22313 goto done; 22314 } 22315 22316 /* 22317 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22318 * already a client then return EINVAL 22319 */ 22320 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22321 err = EINVAL; 22322 goto done; 22323 } 22324 22325 /* 22326 * If the ill_usesrc_ifindex field is already set to what it needs to 22327 * be then this is a duplicate operation. 22328 */ 22329 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22330 err = 0; 22331 goto done; 22332 } 22333 22334 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22335 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22336 usesrc_ill->ill_isv6)); 22337 22338 /* 22339 * The next step ensures that no new ires will be created referencing 22340 * the client ill, until the ILL_CHANGING flag is cleared. Then 22341 * we go through an ire walk deleting all ire caches that reference 22342 * the client ill. New ires referencing the client ill that are added 22343 * to the ire table before the ILL_CHANGING flag is set, will be 22344 * cleaned up by the ire walk below. Attempt to add new ires referencing 22345 * the client ill while the ILL_CHANGING flag is set will be failed 22346 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22347 * checks (under the ill_g_usesrc_lock) that the ire being added 22348 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22349 * belong to the same usesrc group. 22350 */ 22351 mutex_enter(&usesrc_cli_ill->ill_lock); 22352 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22353 mutex_exit(&usesrc_cli_ill->ill_lock); 22354 ill_flag_changed = B_TRUE; 22355 22356 if (ipif->ipif_isv6) 22357 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22358 ALL_ZONES, ipst); 22359 else 22360 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22361 ALL_ZONES, ipst); 22362 22363 /* 22364 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22365 * and the ill_usesrc_ifindex fields 22366 */ 22367 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22368 22369 if (reset_flg) { 22370 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22371 if (ret != 0) { 22372 err = EINVAL; 22373 } 22374 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22375 goto done; 22376 } 22377 22378 /* 22379 * Four possibilities to consider: 22380 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22381 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22382 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22383 * 4. Both are part of their respective usesrc groups 22384 */ 22385 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22386 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22387 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22388 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22389 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22390 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22391 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22392 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22393 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22394 /* Insert at head of list */ 22395 usesrc_cli_ill->ill_usesrc_grp_next = 22396 usesrc_ill->ill_usesrc_grp_next; 22397 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22398 } else { 22399 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22400 ifindex); 22401 if (ret != 0) 22402 err = EINVAL; 22403 } 22404 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22405 22406 done: 22407 if (ill_flag_changed) { 22408 mutex_enter(&usesrc_cli_ill->ill_lock); 22409 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22410 mutex_exit(&usesrc_cli_ill->ill_lock); 22411 } 22412 if (ipsq != NULL) 22413 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22414 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22415 ill_refrele(usesrc_ill); 22416 return (err); 22417 } 22418 22419 /* 22420 * comparison function used by avl. 22421 */ 22422 static int 22423 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22424 { 22425 22426 uint_t index; 22427 22428 ASSERT(phyip != NULL && index_ptr != NULL); 22429 22430 index = *((uint_t *)index_ptr); 22431 /* 22432 * let the phyint with the lowest index be on top. 22433 */ 22434 if (((phyint_t *)phyip)->phyint_ifindex < index) 22435 return (1); 22436 if (((phyint_t *)phyip)->phyint_ifindex > index) 22437 return (-1); 22438 return (0); 22439 } 22440 22441 /* 22442 * comparison function used by avl. 22443 */ 22444 static int 22445 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22446 { 22447 ill_t *ill; 22448 int res = 0; 22449 22450 ASSERT(phyip != NULL && name_ptr != NULL); 22451 22452 if (((phyint_t *)phyip)->phyint_illv4) 22453 ill = ((phyint_t *)phyip)->phyint_illv4; 22454 else 22455 ill = ((phyint_t *)phyip)->phyint_illv6; 22456 ASSERT(ill != NULL); 22457 22458 res = strcmp(ill->ill_name, (char *)name_ptr); 22459 if (res > 0) 22460 return (1); 22461 else if (res < 0) 22462 return (-1); 22463 return (0); 22464 } 22465 /* 22466 * This function is called from ill_delete when the ill is being 22467 * unplumbed. We remove the reference from the phyint and we also 22468 * free the phyint when there are no more references to it. 22469 */ 22470 static void 22471 ill_phyint_free(ill_t *ill) 22472 { 22473 phyint_t *phyi; 22474 phyint_t *next_phyint; 22475 ipsq_t *cur_ipsq; 22476 ip_stack_t *ipst = ill->ill_ipst; 22477 22478 ASSERT(ill->ill_phyint != NULL); 22479 22480 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22481 phyi = ill->ill_phyint; 22482 ill->ill_phyint = NULL; 22483 /* 22484 * ill_init allocates a phyint always to store the copy 22485 * of flags relevant to phyint. At that point in time, we could 22486 * not assign the name and hence phyint_illv4/v6 could not be 22487 * initialized. Later in ipif_set_values, we assign the name to 22488 * the ill, at which point in time we assign phyint_illv4/v6. 22489 * Thus we don't rely on phyint_illv6 to be initialized always. 22490 */ 22491 if (ill->ill_flags & ILLF_IPV6) { 22492 phyi->phyint_illv6 = NULL; 22493 } else { 22494 phyi->phyint_illv4 = NULL; 22495 } 22496 /* 22497 * ipif_down removes it from the group when the last ipif goes 22498 * down. 22499 */ 22500 ASSERT(ill->ill_group == NULL); 22501 22502 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22503 return; 22504 22505 /* 22506 * Make sure this phyint was put in the list. 22507 */ 22508 if (phyi->phyint_ifindex > 0) { 22509 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22510 phyi); 22511 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22512 phyi); 22513 } 22514 /* 22515 * remove phyint from the ipsq list. 22516 */ 22517 cur_ipsq = phyi->phyint_ipsq; 22518 if (phyi == cur_ipsq->ipsq_phyint_list) { 22519 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22520 } else { 22521 next_phyint = cur_ipsq->ipsq_phyint_list; 22522 while (next_phyint != NULL) { 22523 if (next_phyint->phyint_ipsq_next == phyi) { 22524 next_phyint->phyint_ipsq_next = 22525 phyi->phyint_ipsq_next; 22526 break; 22527 } 22528 next_phyint = next_phyint->phyint_ipsq_next; 22529 } 22530 ASSERT(next_phyint != NULL); 22531 } 22532 IPSQ_DEC_REF(cur_ipsq, ipst); 22533 22534 if (phyi->phyint_groupname_len != 0) { 22535 ASSERT(phyi->phyint_groupname != NULL); 22536 mi_free(phyi->phyint_groupname); 22537 } 22538 mi_free(phyi); 22539 } 22540 22541 /* 22542 * Attach the ill to the phyint structure which can be shared by both 22543 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22544 * function is called from ipif_set_values and ill_lookup_on_name (for 22545 * loopback) where we know the name of the ill. We lookup the ill and if 22546 * there is one present already with the name use that phyint. Otherwise 22547 * reuse the one allocated by ill_init. 22548 */ 22549 static void 22550 ill_phyint_reinit(ill_t *ill) 22551 { 22552 boolean_t isv6 = ill->ill_isv6; 22553 phyint_t *phyi_old; 22554 phyint_t *phyi; 22555 avl_index_t where = 0; 22556 ill_t *ill_other = NULL; 22557 ipsq_t *ipsq; 22558 ip_stack_t *ipst = ill->ill_ipst; 22559 22560 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22561 22562 phyi_old = ill->ill_phyint; 22563 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22564 phyi_old->phyint_illv6 == NULL)); 22565 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22566 phyi_old->phyint_illv4 == NULL)); 22567 ASSERT(phyi_old->phyint_ifindex == 0); 22568 22569 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22570 ill->ill_name, &where); 22571 22572 /* 22573 * 1. We grabbed the ill_g_lock before inserting this ill into 22574 * the global list of ills. So no other thread could have located 22575 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22576 * 2. Now locate the other protocol instance of this ill. 22577 * 3. Now grab both ill locks in the right order, and the phyint lock of 22578 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22579 * of neither ill can change. 22580 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22581 * other ill. 22582 * 5. Release all locks. 22583 */ 22584 22585 /* 22586 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22587 * we are initializing IPv4. 22588 */ 22589 if (phyi != NULL) { 22590 ill_other = (isv6) ? phyi->phyint_illv4 : 22591 phyi->phyint_illv6; 22592 ASSERT(ill_other->ill_phyint != NULL); 22593 ASSERT((isv6 && !ill_other->ill_isv6) || 22594 (!isv6 && ill_other->ill_isv6)); 22595 GRAB_ILL_LOCKS(ill, ill_other); 22596 /* 22597 * We are potentially throwing away phyint_flags which 22598 * could be different from the one that we obtain from 22599 * ill_other->ill_phyint. But it is okay as we are assuming 22600 * that the state maintained within IP is correct. 22601 */ 22602 mutex_enter(&phyi->phyint_lock); 22603 if (isv6) { 22604 ASSERT(phyi->phyint_illv6 == NULL); 22605 phyi->phyint_illv6 = ill; 22606 } else { 22607 ASSERT(phyi->phyint_illv4 == NULL); 22608 phyi->phyint_illv4 = ill; 22609 } 22610 /* 22611 * This is a new ill, currently undergoing SLIFNAME 22612 * So we could not have joined an IPMP group until now. 22613 */ 22614 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22615 phyi_old->phyint_groupname == NULL); 22616 22617 /* 22618 * This phyi_old is going away. Decref ipsq_refs and 22619 * assert it is zero. The ipsq itself will be freed in 22620 * ipsq_exit 22621 */ 22622 ipsq = phyi_old->phyint_ipsq; 22623 IPSQ_DEC_REF(ipsq, ipst); 22624 ASSERT(ipsq->ipsq_refs == 0); 22625 /* Get the singleton phyint out of the ipsq list */ 22626 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22627 ipsq->ipsq_phyint_list = NULL; 22628 phyi_old->phyint_illv4 = NULL; 22629 phyi_old->phyint_illv6 = NULL; 22630 mi_free(phyi_old); 22631 } else { 22632 mutex_enter(&ill->ill_lock); 22633 /* 22634 * We don't need to acquire any lock, since 22635 * the ill is not yet visible globally and we 22636 * have not yet released the ill_g_lock. 22637 */ 22638 phyi = phyi_old; 22639 mutex_enter(&phyi->phyint_lock); 22640 /* XXX We need a recovery strategy here. */ 22641 if (!phyint_assign_ifindex(phyi, ipst)) 22642 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22643 22644 /* No IPMP group yet, thus the hook uses the ifindex */ 22645 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22646 22647 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22648 (void *)phyi, where); 22649 22650 (void) avl_find(&ipst->ips_phyint_g_list-> 22651 phyint_list_avl_by_index, 22652 &phyi->phyint_ifindex, &where); 22653 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22654 (void *)phyi, where); 22655 } 22656 22657 /* 22658 * Reassigning ill_phyint automatically reassigns the ipsq also. 22659 * pending mp is not affected because that is per ill basis. 22660 */ 22661 ill->ill_phyint = phyi; 22662 22663 /* 22664 * Keep the index on ipif_orig_index to be used by FAILOVER. 22665 * We do this here as when the first ipif was allocated, 22666 * ipif_allocate does not know the right interface index. 22667 */ 22668 22669 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22670 /* 22671 * Now that the phyint's ifindex has been assigned, complete the 22672 * remaining 22673 */ 22674 22675 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22676 if (ill->ill_isv6) { 22677 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22678 ill->ill_phyint->phyint_ifindex; 22679 ill->ill_mcast_type = ipst->ips_mld_max_version; 22680 } else { 22681 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22682 } 22683 22684 /* 22685 * Generate an event within the hooks framework to indicate that 22686 * a new interface has just been added to IP. For this event to 22687 * be generated, the network interface must, at least, have an 22688 * ifindex assigned to it. 22689 * 22690 * This needs to be run inside the ill_g_lock perimeter to ensure 22691 * that the ordering of delivered events to listeners matches the 22692 * order of them in the kernel. 22693 * 22694 * This function could be called from ill_lookup_on_name. In that case 22695 * the interface is loopback "lo", which will not generate a NIC event. 22696 */ 22697 if (ill->ill_name_length <= 2 || 22698 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22699 /* 22700 * Generate nic plumb event for ill_name even if 22701 * ipmp_hook_emulation is set. That avoids generating events 22702 * for the ill_names should ipmp_hook_emulation be turned on 22703 * later. 22704 */ 22705 ill_nic_info_plumb(ill, B_FALSE); 22706 } 22707 RELEASE_ILL_LOCKS(ill, ill_other); 22708 mutex_exit(&phyi->phyint_lock); 22709 } 22710 22711 /* 22712 * Allocate a NE_PLUMB nic info event and store in the ill. 22713 * If 'group' is set we do it for the group name, otherwise the ill name. 22714 * It will be sent when we leave the ipsq. 22715 */ 22716 void 22717 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22718 { 22719 phyint_t *phyi = ill->ill_phyint; 22720 char *name; 22721 int namelen; 22722 22723 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22724 22725 if (group) { 22726 ASSERT(phyi->phyint_groupname_len != 0); 22727 namelen = phyi->phyint_groupname_len; 22728 name = phyi->phyint_groupname; 22729 } else { 22730 namelen = ill->ill_name_length; 22731 name = ill->ill_name; 22732 } 22733 22734 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22735 } 22736 22737 /* 22738 * Unhook the nic event message from the ill and enqueue it 22739 * into the nic event taskq. 22740 */ 22741 void 22742 ill_nic_info_dispatch(ill_t *ill) 22743 { 22744 hook_nic_event_t *info; 22745 22746 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22747 22748 if ((info = ill->ill_nic_event_info) != NULL) { 22749 if (ddi_taskq_dispatch(eventq_queue_nic, 22750 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22751 ip2dbg(("ill_nic_info_dispatch: " 22752 "ddi_taskq_dispatch failed\n")); 22753 if (info->hne_data != NULL) 22754 kmem_free(info->hne_data, info->hne_datalen); 22755 kmem_free(info, sizeof (hook_nic_event_t)); 22756 } 22757 ill->ill_nic_event_info = NULL; 22758 } 22759 } 22760 22761 /* 22762 * Notify any downstream modules of the name of this interface. 22763 * An M_IOCTL is used even though we don't expect a successful reply. 22764 * Any reply message from the driver (presumably an M_IOCNAK) will 22765 * eventually get discarded somewhere upstream. The message format is 22766 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22767 * to IP. 22768 */ 22769 static void 22770 ip_ifname_notify(ill_t *ill, queue_t *q) 22771 { 22772 mblk_t *mp1, *mp2; 22773 struct iocblk *iocp; 22774 struct lifreq *lifr; 22775 22776 mp1 = mkiocb(SIOCSLIFNAME); 22777 if (mp1 == NULL) 22778 return; 22779 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22780 if (mp2 == NULL) { 22781 freeb(mp1); 22782 return; 22783 } 22784 22785 mp1->b_cont = mp2; 22786 iocp = (struct iocblk *)mp1->b_rptr; 22787 iocp->ioc_count = sizeof (struct lifreq); 22788 22789 lifr = (struct lifreq *)mp2->b_rptr; 22790 mp2->b_wptr += sizeof (struct lifreq); 22791 bzero(lifr, sizeof (struct lifreq)); 22792 22793 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22794 lifr->lifr_ppa = ill->ill_ppa; 22795 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22796 22797 putnext(q, mp1); 22798 } 22799 22800 static int 22801 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22802 { 22803 int err; 22804 ip_stack_t *ipst = ill->ill_ipst; 22805 22806 /* Set the obsolete NDD per-interface forwarding name. */ 22807 err = ill_set_ndd_name(ill); 22808 if (err != 0) { 22809 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22810 err); 22811 } 22812 22813 /* Tell downstream modules where they are. */ 22814 ip_ifname_notify(ill, q); 22815 22816 /* 22817 * ill_dl_phys returns EINPROGRESS in the usual case. 22818 * Error cases are ENOMEM ... 22819 */ 22820 err = ill_dl_phys(ill, ipif, mp, q); 22821 22822 /* 22823 * If there is no IRE expiration timer running, get one started. 22824 * igmp and mld timers will be triggered by the first multicast 22825 */ 22826 if (ipst->ips_ip_ire_expire_id == 0) { 22827 /* 22828 * acquire the lock and check again. 22829 */ 22830 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22831 if (ipst->ips_ip_ire_expire_id == 0) { 22832 ipst->ips_ip_ire_expire_id = timeout( 22833 ip_trash_timer_expire, ipst, 22834 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22835 } 22836 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22837 } 22838 22839 if (ill->ill_isv6) { 22840 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22841 if (ipst->ips_mld_slowtimeout_id == 0) { 22842 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22843 (void *)ipst, 22844 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22845 } 22846 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22847 } else { 22848 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22849 if (ipst->ips_igmp_slowtimeout_id == 0) { 22850 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22851 (void *)ipst, 22852 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22853 } 22854 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22855 } 22856 22857 return (err); 22858 } 22859 22860 /* 22861 * Common routine for ppa and ifname setting. Should be called exclusive. 22862 * 22863 * Returns EINPROGRESS when mp has been consumed by queueing it on 22864 * ill_pending_mp and the ioctl will complete in ip_rput. 22865 * 22866 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22867 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22868 * For SLIFNAME, we pass these values back to the userland. 22869 */ 22870 static int 22871 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22872 { 22873 ill_t *ill; 22874 ipif_t *ipif; 22875 ipsq_t *ipsq; 22876 char *ppa_ptr; 22877 char *old_ptr; 22878 char old_char; 22879 int error; 22880 ip_stack_t *ipst; 22881 22882 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22883 ASSERT(q->q_next != NULL); 22884 ASSERT(interf_name != NULL); 22885 22886 ill = (ill_t *)q->q_ptr; 22887 ipst = ill->ill_ipst; 22888 22889 ASSERT(ill->ill_ipst != NULL); 22890 ASSERT(ill->ill_name[0] == '\0'); 22891 ASSERT(IAM_WRITER_ILL(ill)); 22892 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22893 ASSERT(ill->ill_ppa == UINT_MAX); 22894 22895 /* The ppa is sent down by ifconfig or is chosen */ 22896 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22897 return (EINVAL); 22898 } 22899 22900 /* 22901 * make sure ppa passed in is same as ppa in the name. 22902 * This check is not made when ppa == UINT_MAX in that case ppa 22903 * in the name could be anything. System will choose a ppa and 22904 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22905 */ 22906 if (*new_ppa_ptr != UINT_MAX) { 22907 /* stoi changes the pointer */ 22908 old_ptr = ppa_ptr; 22909 /* 22910 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22911 * (they don't have an externally visible ppa). We assign one 22912 * here so that we can manage the interface. Note that in 22913 * the past this value was always 0 for DLPI 1 drivers. 22914 */ 22915 if (*new_ppa_ptr == 0) 22916 *new_ppa_ptr = stoi(&old_ptr); 22917 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22918 return (EINVAL); 22919 } 22920 /* 22921 * terminate string before ppa 22922 * save char at that location. 22923 */ 22924 old_char = ppa_ptr[0]; 22925 ppa_ptr[0] = '\0'; 22926 22927 ill->ill_ppa = *new_ppa_ptr; 22928 /* 22929 * Finish as much work now as possible before calling ill_glist_insert 22930 * which makes the ill globally visible and also merges it with the 22931 * other protocol instance of this phyint. The remaining work is 22932 * done after entering the ipsq which may happen sometime later. 22933 * ill_set_ndd_name occurs after the ill has been made globally visible. 22934 */ 22935 ipif = ill->ill_ipif; 22936 22937 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22938 ipif_assign_seqid(ipif); 22939 22940 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22941 ill->ill_flags |= ILLF_IPV4; 22942 22943 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22944 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22945 22946 if (ill->ill_flags & ILLF_IPV6) { 22947 22948 ill->ill_isv6 = B_TRUE; 22949 if (ill->ill_rq != NULL) { 22950 ill->ill_rq->q_qinfo = &iprinitv6; 22951 ill->ill_wq->q_qinfo = &ipwinitv6; 22952 } 22953 22954 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22955 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22956 ipif->ipif_v6src_addr = ipv6_all_zeros; 22957 ipif->ipif_v6subnet = ipv6_all_zeros; 22958 ipif->ipif_v6net_mask = ipv6_all_zeros; 22959 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22960 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22961 /* 22962 * point-to-point or Non-mulicast capable 22963 * interfaces won't do NUD unless explicitly 22964 * configured to do so. 22965 */ 22966 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22967 !(ill->ill_flags & ILLF_MULTICAST)) { 22968 ill->ill_flags |= ILLF_NONUD; 22969 } 22970 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22971 if (ill->ill_flags & ILLF_NOARP) { 22972 /* 22973 * Note: xresolv interfaces will eventually need 22974 * NOARP set here as well, but that will require 22975 * those external resolvers to have some 22976 * knowledge of that flag and act appropriately. 22977 * Not to be changed at present. 22978 */ 22979 ill->ill_flags &= ~ILLF_NOARP; 22980 } 22981 /* 22982 * Set the ILLF_ROUTER flag according to the global 22983 * IPv6 forwarding policy. 22984 */ 22985 if (ipst->ips_ipv6_forward != 0) 22986 ill->ill_flags |= ILLF_ROUTER; 22987 } else if (ill->ill_flags & ILLF_IPV4) { 22988 ill->ill_isv6 = B_FALSE; 22989 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22990 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22991 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22992 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22993 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22994 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22995 /* 22996 * Set the ILLF_ROUTER flag according to the global 22997 * IPv4 forwarding policy. 22998 */ 22999 if (ipst->ips_ip_g_forward != 0) 23000 ill->ill_flags |= ILLF_ROUTER; 23001 } 23002 23003 ASSERT(ill->ill_phyint != NULL); 23004 23005 /* 23006 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23007 * be completed in ill_glist_insert -> ill_phyint_reinit 23008 */ 23009 if (!ill_allocate_mibs(ill)) 23010 return (ENOMEM); 23011 23012 /* 23013 * Pick a default sap until we get the DL_INFO_ACK back from 23014 * the driver. 23015 */ 23016 if (ill->ill_sap == 0) { 23017 if (ill->ill_isv6) 23018 ill->ill_sap = IP6_DL_SAP; 23019 else 23020 ill->ill_sap = IP_DL_SAP; 23021 } 23022 23023 ill->ill_ifname_pending = 1; 23024 ill->ill_ifname_pending_err = 0; 23025 23026 ill_refhold(ill); 23027 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23028 if ((error = ill_glist_insert(ill, interf_name, 23029 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23030 ill->ill_ppa = UINT_MAX; 23031 ill->ill_name[0] = '\0'; 23032 /* 23033 * undo null termination done above. 23034 */ 23035 ppa_ptr[0] = old_char; 23036 rw_exit(&ipst->ips_ill_g_lock); 23037 ill_refrele(ill); 23038 return (error); 23039 } 23040 23041 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23042 23043 /* 23044 * When we return the buffer pointed to by interf_name should contain 23045 * the same name as in ill_name. 23046 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23047 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23048 * so copy full name and update the ppa ptr. 23049 * When ppa passed in != UINT_MAX all values are correct just undo 23050 * null termination, this saves a bcopy. 23051 */ 23052 if (*new_ppa_ptr == UINT_MAX) { 23053 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23054 *new_ppa_ptr = ill->ill_ppa; 23055 } else { 23056 /* 23057 * undo null termination done above. 23058 */ 23059 ppa_ptr[0] = old_char; 23060 } 23061 23062 /* Let SCTP know about this ILL */ 23063 sctp_update_ill(ill, SCTP_ILL_INSERT); 23064 23065 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23066 B_TRUE); 23067 23068 rw_exit(&ipst->ips_ill_g_lock); 23069 ill_refrele(ill); 23070 if (ipsq == NULL) 23071 return (EINPROGRESS); 23072 23073 /* 23074 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23075 */ 23076 if (ipsq->ipsq_current_ipif == NULL) 23077 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23078 else 23079 ASSERT(ipsq->ipsq_current_ipif == ipif); 23080 23081 error = ipif_set_values_tail(ill, ipif, mp, q); 23082 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23083 if (error != 0 && error != EINPROGRESS) { 23084 /* 23085 * restore previous values 23086 */ 23087 ill->ill_isv6 = B_FALSE; 23088 } 23089 return (error); 23090 } 23091 23092 23093 void 23094 ipif_init(ip_stack_t *ipst) 23095 { 23096 hrtime_t hrt; 23097 int i; 23098 23099 /* 23100 * Can't call drv_getparm here as it is too early in the boot. 23101 * As we use ipif_src_random just for picking a different 23102 * source address everytime, this need not be really random. 23103 */ 23104 hrt = gethrtime(); 23105 ipst->ips_ipif_src_random = 23106 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23107 23108 for (i = 0; i < MAX_G_HEADS; i++) { 23109 ipst->ips_ill_g_heads[i].ill_g_list_head = 23110 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23111 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23112 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23113 } 23114 23115 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23116 ill_phyint_compare_index, 23117 sizeof (phyint_t), 23118 offsetof(struct phyint, phyint_avl_by_index)); 23119 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23120 ill_phyint_compare_name, 23121 sizeof (phyint_t), 23122 offsetof(struct phyint, phyint_avl_by_name)); 23123 } 23124 23125 /* 23126 * Lookup the ipif corresponding to the onlink destination address. For 23127 * point-to-point interfaces, it matches with remote endpoint destination 23128 * address. For point-to-multipoint interfaces it only tries to match the 23129 * destination with the interface's subnet address. The longest, most specific 23130 * match is found to take care of such rare network configurations like - 23131 * le0: 129.146.1.1/16 23132 * le1: 129.146.2.2/24 23133 * It is used only by SO_DONTROUTE at the moment. 23134 */ 23135 ipif_t * 23136 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23137 { 23138 ipif_t *ipif, *best_ipif; 23139 ill_t *ill; 23140 ill_walk_context_t ctx; 23141 23142 ASSERT(zoneid != ALL_ZONES); 23143 best_ipif = NULL; 23144 23145 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23146 ill = ILL_START_WALK_V4(&ctx, ipst); 23147 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23148 mutex_enter(&ill->ill_lock); 23149 for (ipif = ill->ill_ipif; ipif != NULL; 23150 ipif = ipif->ipif_next) { 23151 if (!IPIF_CAN_LOOKUP(ipif)) 23152 continue; 23153 if (ipif->ipif_zoneid != zoneid && 23154 ipif->ipif_zoneid != ALL_ZONES) 23155 continue; 23156 /* 23157 * Point-to-point case. Look for exact match with 23158 * destination address. 23159 */ 23160 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23161 if (ipif->ipif_pp_dst_addr == addr) { 23162 ipif_refhold_locked(ipif); 23163 mutex_exit(&ill->ill_lock); 23164 rw_exit(&ipst->ips_ill_g_lock); 23165 if (best_ipif != NULL) 23166 ipif_refrele(best_ipif); 23167 return (ipif); 23168 } 23169 } else if (ipif->ipif_subnet == (addr & 23170 ipif->ipif_net_mask)) { 23171 /* 23172 * Point-to-multipoint case. Looping through to 23173 * find the most specific match. If there are 23174 * multiple best match ipif's then prefer ipif's 23175 * that are UP. If there is only one best match 23176 * ipif and it is DOWN we must still return it. 23177 */ 23178 if ((best_ipif == NULL) || 23179 (ipif->ipif_net_mask > 23180 best_ipif->ipif_net_mask) || 23181 ((ipif->ipif_net_mask == 23182 best_ipif->ipif_net_mask) && 23183 ((ipif->ipif_flags & IPIF_UP) && 23184 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23185 ipif_refhold_locked(ipif); 23186 mutex_exit(&ill->ill_lock); 23187 rw_exit(&ipst->ips_ill_g_lock); 23188 if (best_ipif != NULL) 23189 ipif_refrele(best_ipif); 23190 best_ipif = ipif; 23191 rw_enter(&ipst->ips_ill_g_lock, 23192 RW_READER); 23193 mutex_enter(&ill->ill_lock); 23194 } 23195 } 23196 } 23197 mutex_exit(&ill->ill_lock); 23198 } 23199 rw_exit(&ipst->ips_ill_g_lock); 23200 return (best_ipif); 23201 } 23202 23203 23204 /* 23205 * Save enough information so that we can recreate the IRE if 23206 * the interface goes down and then up. 23207 */ 23208 static void 23209 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23210 { 23211 mblk_t *save_mp; 23212 23213 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23214 if (save_mp != NULL) { 23215 ifrt_t *ifrt; 23216 23217 save_mp->b_wptr += sizeof (ifrt_t); 23218 ifrt = (ifrt_t *)save_mp->b_rptr; 23219 bzero(ifrt, sizeof (ifrt_t)); 23220 ifrt->ifrt_type = ire->ire_type; 23221 ifrt->ifrt_addr = ire->ire_addr; 23222 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23223 ifrt->ifrt_src_addr = ire->ire_src_addr; 23224 ifrt->ifrt_mask = ire->ire_mask; 23225 ifrt->ifrt_flags = ire->ire_flags; 23226 ifrt->ifrt_max_frag = ire->ire_max_frag; 23227 mutex_enter(&ipif->ipif_saved_ire_lock); 23228 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23229 ipif->ipif_saved_ire_mp = save_mp; 23230 ipif->ipif_saved_ire_cnt++; 23231 mutex_exit(&ipif->ipif_saved_ire_lock); 23232 } 23233 } 23234 23235 23236 static void 23237 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23238 { 23239 mblk_t **mpp; 23240 mblk_t *mp; 23241 ifrt_t *ifrt; 23242 23243 /* Remove from ipif_saved_ire_mp list if it is there */ 23244 mutex_enter(&ipif->ipif_saved_ire_lock); 23245 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23246 mpp = &(*mpp)->b_cont) { 23247 /* 23248 * On a given ipif, the triple of address, gateway and 23249 * mask is unique for each saved IRE (in the case of 23250 * ordinary interface routes, the gateway address is 23251 * all-zeroes). 23252 */ 23253 mp = *mpp; 23254 ifrt = (ifrt_t *)mp->b_rptr; 23255 if (ifrt->ifrt_addr == ire->ire_addr && 23256 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23257 ifrt->ifrt_mask == ire->ire_mask) { 23258 *mpp = mp->b_cont; 23259 ipif->ipif_saved_ire_cnt--; 23260 freeb(mp); 23261 break; 23262 } 23263 } 23264 mutex_exit(&ipif->ipif_saved_ire_lock); 23265 } 23266 23267 23268 /* 23269 * IP multirouting broadcast routes handling 23270 * Append CGTP broadcast IREs to regular ones created 23271 * at ifconfig time. 23272 */ 23273 static void 23274 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23275 { 23276 ire_t *ire_prim; 23277 23278 ASSERT(ire != NULL); 23279 ASSERT(ire_dst != NULL); 23280 23281 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23282 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23283 if (ire_prim != NULL) { 23284 /* 23285 * We are in the special case of broadcasts for 23286 * CGTP. We add an IRE_BROADCAST that holds 23287 * the RTF_MULTIRT flag, the destination 23288 * address of ire_dst and the low level 23289 * info of ire_prim. In other words, CGTP 23290 * broadcast is added to the redundant ipif. 23291 */ 23292 ipif_t *ipif_prim; 23293 ire_t *bcast_ire; 23294 23295 ipif_prim = ire_prim->ire_ipif; 23296 23297 ip2dbg(("ip_cgtp_filter_bcast_add: " 23298 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23299 (void *)ire_dst, (void *)ire_prim, 23300 (void *)ipif_prim)); 23301 23302 bcast_ire = ire_create( 23303 (uchar_t *)&ire->ire_addr, 23304 (uchar_t *)&ip_g_all_ones, 23305 (uchar_t *)&ire_dst->ire_src_addr, 23306 (uchar_t *)&ire->ire_gateway_addr, 23307 &ipif_prim->ipif_mtu, 23308 NULL, 23309 ipif_prim->ipif_rq, 23310 ipif_prim->ipif_wq, 23311 IRE_BROADCAST, 23312 ipif_prim, 23313 0, 23314 0, 23315 0, 23316 ire->ire_flags, 23317 &ire_uinfo_null, 23318 NULL, 23319 NULL, 23320 ipst); 23321 23322 if (bcast_ire != NULL) { 23323 23324 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23325 B_FALSE) == 0) { 23326 ip2dbg(("ip_cgtp_filter_bcast_add: " 23327 "added bcast_ire %p\n", 23328 (void *)bcast_ire)); 23329 23330 ipif_save_ire(bcast_ire->ire_ipif, 23331 bcast_ire); 23332 ire_refrele(bcast_ire); 23333 } 23334 } 23335 ire_refrele(ire_prim); 23336 } 23337 } 23338 23339 23340 /* 23341 * IP multirouting broadcast routes handling 23342 * Remove the broadcast ire 23343 */ 23344 static void 23345 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23346 { 23347 ire_t *ire_dst; 23348 23349 ASSERT(ire != NULL); 23350 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23351 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23352 if (ire_dst != NULL) { 23353 ire_t *ire_prim; 23354 23355 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23356 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23357 if (ire_prim != NULL) { 23358 ipif_t *ipif_prim; 23359 ire_t *bcast_ire; 23360 23361 ipif_prim = ire_prim->ire_ipif; 23362 23363 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23364 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23365 (void *)ire_dst, (void *)ire_prim, 23366 (void *)ipif_prim)); 23367 23368 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23369 ire->ire_gateway_addr, 23370 IRE_BROADCAST, 23371 ipif_prim, ALL_ZONES, 23372 NULL, 23373 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23374 MATCH_IRE_MASK, ipst); 23375 23376 if (bcast_ire != NULL) { 23377 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23378 "looked up bcast_ire %p\n", 23379 (void *)bcast_ire)); 23380 ipif_remove_ire(bcast_ire->ire_ipif, 23381 bcast_ire); 23382 ire_delete(bcast_ire); 23383 ire_refrele(bcast_ire); 23384 } 23385 ire_refrele(ire_prim); 23386 } 23387 ire_refrele(ire_dst); 23388 } 23389 } 23390 23391 /* 23392 * IPsec hardware acceleration capabilities related functions. 23393 */ 23394 23395 /* 23396 * Free a per-ill IPsec capabilities structure. 23397 */ 23398 static void 23399 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23400 { 23401 if (capab->auth_hw_algs != NULL) 23402 kmem_free(capab->auth_hw_algs, capab->algs_size); 23403 if (capab->encr_hw_algs != NULL) 23404 kmem_free(capab->encr_hw_algs, capab->algs_size); 23405 if (capab->encr_algparm != NULL) 23406 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23407 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23408 } 23409 23410 /* 23411 * Allocate a new per-ill IPsec capabilities structure. This structure 23412 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23413 * an array which specifies, for each algorithm, whether this algorithm 23414 * is supported by the ill or not. 23415 */ 23416 static ill_ipsec_capab_t * 23417 ill_ipsec_capab_alloc(void) 23418 { 23419 ill_ipsec_capab_t *capab; 23420 uint_t nelems; 23421 23422 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23423 if (capab == NULL) 23424 return (NULL); 23425 23426 /* we need one bit per algorithm */ 23427 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23428 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23429 23430 /* allocate memory to store algorithm flags */ 23431 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23432 if (capab->encr_hw_algs == NULL) 23433 goto nomem; 23434 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23435 if (capab->auth_hw_algs == NULL) 23436 goto nomem; 23437 /* 23438 * Leave encr_algparm NULL for now since we won't need it half 23439 * the time 23440 */ 23441 return (capab); 23442 23443 nomem: 23444 ill_ipsec_capab_free(capab); 23445 return (NULL); 23446 } 23447 23448 /* 23449 * Resize capability array. Since we're exclusive, this is OK. 23450 */ 23451 static boolean_t 23452 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23453 { 23454 ipsec_capab_algparm_t *nalp, *oalp; 23455 uint32_t olen, nlen; 23456 23457 oalp = capab->encr_algparm; 23458 olen = capab->encr_algparm_size; 23459 23460 if (oalp != NULL) { 23461 if (algid < capab->encr_algparm_end) 23462 return (B_TRUE); 23463 } 23464 23465 nlen = (algid + 1) * sizeof (*nalp); 23466 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23467 if (nalp == NULL) 23468 return (B_FALSE); 23469 23470 if (oalp != NULL) { 23471 bcopy(oalp, nalp, olen); 23472 kmem_free(oalp, olen); 23473 } 23474 capab->encr_algparm = nalp; 23475 capab->encr_algparm_size = nlen; 23476 capab->encr_algparm_end = algid + 1; 23477 23478 return (B_TRUE); 23479 } 23480 23481 /* 23482 * Compare the capabilities of the specified ill with the protocol 23483 * and algorithms specified by the SA passed as argument. 23484 * If they match, returns B_TRUE, B_FALSE if they do not match. 23485 * 23486 * The ill can be passed as a pointer to it, or by specifying its index 23487 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23488 * 23489 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23490 * packet is eligible for hardware acceleration, and by 23491 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23492 * to a particular ill. 23493 */ 23494 boolean_t 23495 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23496 ipsa_t *sa, netstack_t *ns) 23497 { 23498 boolean_t sa_isv6; 23499 uint_t algid; 23500 struct ill_ipsec_capab_s *cpp; 23501 boolean_t need_refrele = B_FALSE; 23502 ip_stack_t *ipst = ns->netstack_ip; 23503 23504 if (ill == NULL) { 23505 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23506 NULL, NULL, NULL, ipst); 23507 if (ill == NULL) { 23508 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23509 return (B_FALSE); 23510 } 23511 need_refrele = B_TRUE; 23512 } 23513 23514 /* 23515 * Use the address length specified by the SA to determine 23516 * if it corresponds to a IPv6 address, and fail the matching 23517 * if the isv6 flag passed as argument does not match. 23518 * Note: this check is used for SADB capability checking before 23519 * sending SA information to an ill. 23520 */ 23521 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23522 if (sa_isv6 != ill_isv6) 23523 /* protocol mismatch */ 23524 goto done; 23525 23526 /* 23527 * Check if the ill supports the protocol, algorithm(s) and 23528 * key size(s) specified by the SA, and get the pointers to 23529 * the algorithms supported by the ill. 23530 */ 23531 switch (sa->ipsa_type) { 23532 23533 case SADB_SATYPE_ESP: 23534 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23535 /* ill does not support ESP acceleration */ 23536 goto done; 23537 cpp = ill->ill_ipsec_capab_esp; 23538 algid = sa->ipsa_auth_alg; 23539 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23540 goto done; 23541 algid = sa->ipsa_encr_alg; 23542 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23543 goto done; 23544 if (algid < cpp->encr_algparm_end) { 23545 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23546 if (sa->ipsa_encrkeybits < alp->minkeylen) 23547 goto done; 23548 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23549 goto done; 23550 } 23551 break; 23552 23553 case SADB_SATYPE_AH: 23554 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23555 /* ill does not support AH acceleration */ 23556 goto done; 23557 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23558 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23559 goto done; 23560 break; 23561 } 23562 23563 if (need_refrele) 23564 ill_refrele(ill); 23565 return (B_TRUE); 23566 done: 23567 if (need_refrele) 23568 ill_refrele(ill); 23569 return (B_FALSE); 23570 } 23571 23572 23573 /* 23574 * Add a new ill to the list of IPsec capable ills. 23575 * Called from ill_capability_ipsec_ack() when an ACK was received 23576 * indicating that IPsec hardware processing was enabled for an ill. 23577 * 23578 * ill must point to the ill for which acceleration was enabled. 23579 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23580 */ 23581 static void 23582 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23583 { 23584 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23585 uint_t sa_type; 23586 uint_t ipproto; 23587 ip_stack_t *ipst = ill->ill_ipst; 23588 23589 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23590 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23591 23592 switch (dl_cap) { 23593 case DL_CAPAB_IPSEC_AH: 23594 sa_type = SADB_SATYPE_AH; 23595 ills = &ipst->ips_ipsec_capab_ills_ah; 23596 ipproto = IPPROTO_AH; 23597 break; 23598 case DL_CAPAB_IPSEC_ESP: 23599 sa_type = SADB_SATYPE_ESP; 23600 ills = &ipst->ips_ipsec_capab_ills_esp; 23601 ipproto = IPPROTO_ESP; 23602 break; 23603 } 23604 23605 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23606 23607 /* 23608 * Add ill index to list of hardware accelerators. If 23609 * already in list, do nothing. 23610 */ 23611 for (cur_ill = *ills; cur_ill != NULL && 23612 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23613 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23614 ; 23615 23616 if (cur_ill == NULL) { 23617 /* if this is a new entry for this ill */ 23618 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23619 if (new_ill == NULL) { 23620 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23621 return; 23622 } 23623 23624 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23625 new_ill->ill_isv6 = ill->ill_isv6; 23626 new_ill->next = *ills; 23627 *ills = new_ill; 23628 } else if (!sadb_resync) { 23629 /* not resync'ing SADB and an entry exists for this ill */ 23630 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23631 return; 23632 } 23633 23634 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23635 23636 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23637 /* 23638 * IPsec module for protocol loaded, initiate dump 23639 * of the SADB to this ill. 23640 */ 23641 sadb_ill_download(ill, sa_type); 23642 } 23643 23644 /* 23645 * Remove an ill from the list of IPsec capable ills. 23646 */ 23647 static void 23648 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23649 { 23650 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23651 ip_stack_t *ipst = ill->ill_ipst; 23652 23653 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23654 dl_cap == DL_CAPAB_IPSEC_ESP); 23655 23656 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23657 &ipst->ips_ipsec_capab_ills_esp; 23658 23659 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23660 23661 prev_ill = NULL; 23662 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23663 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23664 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23665 ; 23666 if (cur_ill == NULL) { 23667 /* entry not found */ 23668 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23669 return; 23670 } 23671 if (prev_ill == NULL) { 23672 /* entry at front of list */ 23673 *ills = NULL; 23674 } else { 23675 prev_ill->next = cur_ill->next; 23676 } 23677 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23678 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23679 } 23680 23681 /* 23682 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23683 * supporting the specified IPsec protocol acceleration. 23684 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23685 * We free the mblk and, if sa is non-null, release the held referece. 23686 */ 23687 void 23688 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23689 netstack_t *ns) 23690 { 23691 ipsec_capab_ill_t *ici, *cur_ici; 23692 ill_t *ill; 23693 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23694 ip_stack_t *ipst = ns->netstack_ip; 23695 23696 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23697 ipst->ips_ipsec_capab_ills_esp; 23698 23699 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23700 23701 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23702 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23703 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23704 23705 /* 23706 * Handle the case where the ill goes away while the SADB is 23707 * attempting to send messages. If it's going away, it's 23708 * nuking its shadow SADB, so we don't care.. 23709 */ 23710 23711 if (ill == NULL) 23712 continue; 23713 23714 if (sa != NULL) { 23715 /* 23716 * Make sure capabilities match before 23717 * sending SA to ill. 23718 */ 23719 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23720 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23721 ill_refrele(ill); 23722 continue; 23723 } 23724 23725 mutex_enter(&sa->ipsa_lock); 23726 sa->ipsa_flags |= IPSA_F_HW; 23727 mutex_exit(&sa->ipsa_lock); 23728 } 23729 23730 /* 23731 * Copy template message, and add it to the front 23732 * of the mblk ship list. We want to avoid holding 23733 * the ipsec_capab_ills_lock while sending the 23734 * message to the ills. 23735 * 23736 * The b_next and b_prev are temporarily used 23737 * to build a list of mblks to be sent down, and to 23738 * save the ill to which they must be sent. 23739 */ 23740 nmp = copymsg(mp); 23741 if (nmp == NULL) { 23742 ill_refrele(ill); 23743 continue; 23744 } 23745 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23746 nmp->b_next = mp_ship_list; 23747 mp_ship_list = nmp; 23748 nmp->b_prev = (mblk_t *)ill; 23749 } 23750 23751 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23752 23753 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23754 /* restore the mblk to a sane state */ 23755 next_mp = nmp->b_next; 23756 nmp->b_next = NULL; 23757 ill = (ill_t *)nmp->b_prev; 23758 nmp->b_prev = NULL; 23759 23760 ill_dlpi_send(ill, nmp); 23761 ill_refrele(ill); 23762 } 23763 23764 if (sa != NULL) 23765 IPSA_REFRELE(sa); 23766 freemsg(mp); 23767 } 23768 23769 /* 23770 * Derive an interface id from the link layer address. 23771 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23772 */ 23773 static boolean_t 23774 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23775 { 23776 char *addr; 23777 23778 if (phys_length != ETHERADDRL) 23779 return (B_FALSE); 23780 23781 /* Form EUI-64 like address */ 23782 addr = (char *)&v6addr->s6_addr32[2]; 23783 bcopy((char *)phys_addr, addr, 3); 23784 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23785 addr[3] = (char)0xff; 23786 addr[4] = (char)0xfe; 23787 bcopy((char *)phys_addr + 3, addr + 5, 3); 23788 return (B_TRUE); 23789 } 23790 23791 /* ARGSUSED */ 23792 static boolean_t 23793 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23794 { 23795 return (B_FALSE); 23796 } 23797 23798 /* ARGSUSED */ 23799 static boolean_t 23800 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23801 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23802 { 23803 /* 23804 * Multicast address mappings used over Ethernet/802.X. 23805 * This address is used as a base for mappings. 23806 */ 23807 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23808 0x00, 0x00, 0x00}; 23809 23810 /* 23811 * Extract low order 32 bits from IPv6 multicast address. 23812 * Or that into the link layer address, starting from the 23813 * second byte. 23814 */ 23815 *hw_start = 2; 23816 v6_extract_mask->s6_addr32[0] = 0; 23817 v6_extract_mask->s6_addr32[1] = 0; 23818 v6_extract_mask->s6_addr32[2] = 0; 23819 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23820 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23821 return (B_TRUE); 23822 } 23823 23824 /* 23825 * Indicate by return value whether multicast is supported. If not, 23826 * this code should not touch/change any parameters. 23827 */ 23828 /* ARGSUSED */ 23829 static boolean_t 23830 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23831 uint32_t *hw_start, ipaddr_t *extract_mask) 23832 { 23833 /* 23834 * Multicast address mappings used over Ethernet/802.X. 23835 * This address is used as a base for mappings. 23836 */ 23837 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23838 0x00, 0x00, 0x00 }; 23839 23840 if (phys_length != ETHERADDRL) 23841 return (B_FALSE); 23842 23843 *extract_mask = htonl(0x007fffff); 23844 *hw_start = 2; 23845 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23846 return (B_TRUE); 23847 } 23848 23849 /* 23850 * Derive IPoIB interface id from the link layer address. 23851 */ 23852 static boolean_t 23853 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23854 { 23855 char *addr; 23856 23857 if (phys_length != 20) 23858 return (B_FALSE); 23859 addr = (char *)&v6addr->s6_addr32[2]; 23860 bcopy(phys_addr + 12, addr, 8); 23861 /* 23862 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23863 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23864 * rules. In these cases, the IBA considers these GUIDs to be in 23865 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23866 * required; vendors are required not to assign global EUI-64's 23867 * that differ only in u/l bit values, thus guaranteeing uniqueness 23868 * of the interface identifier. Whether the GUID is in modified 23869 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23870 * bit set to 1. 23871 */ 23872 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23873 return (B_TRUE); 23874 } 23875 23876 /* 23877 * Note on mapping from multicast IP addresses to IPoIB multicast link 23878 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23879 * The format of an IPoIB multicast address is: 23880 * 23881 * 4 byte QPN Scope Sign. Pkey 23882 * +--------------------------------------------+ 23883 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23884 * +--------------------------------------------+ 23885 * 23886 * The Scope and Pkey components are properties of the IBA port and 23887 * network interface. They can be ascertained from the broadcast address. 23888 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23889 */ 23890 23891 static boolean_t 23892 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23893 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23894 { 23895 /* 23896 * Base IPoIB IPv6 multicast address used for mappings. 23897 * Does not contain the IBA scope/Pkey values. 23898 */ 23899 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23900 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23901 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23902 23903 /* 23904 * Extract low order 80 bits from IPv6 multicast address. 23905 * Or that into the link layer address, starting from the 23906 * sixth byte. 23907 */ 23908 *hw_start = 6; 23909 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23910 23911 /* 23912 * Now fill in the IBA scope/Pkey values from the broadcast address. 23913 */ 23914 *(maddr + 5) = *(bphys_addr + 5); 23915 *(maddr + 8) = *(bphys_addr + 8); 23916 *(maddr + 9) = *(bphys_addr + 9); 23917 23918 v6_extract_mask->s6_addr32[0] = 0; 23919 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23920 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23921 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23922 return (B_TRUE); 23923 } 23924 23925 static boolean_t 23926 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23927 uint32_t *hw_start, ipaddr_t *extract_mask) 23928 { 23929 /* 23930 * Base IPoIB IPv4 multicast address used for mappings. 23931 * Does not contain the IBA scope/Pkey values. 23932 */ 23933 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23934 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23936 23937 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23938 return (B_FALSE); 23939 23940 /* 23941 * Extract low order 28 bits from IPv4 multicast address. 23942 * Or that into the link layer address, starting from the 23943 * sixteenth byte. 23944 */ 23945 *extract_mask = htonl(0x0fffffff); 23946 *hw_start = 16; 23947 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23948 23949 /* 23950 * Now fill in the IBA scope/Pkey values from the broadcast address. 23951 */ 23952 *(maddr + 5) = *(bphys_addr + 5); 23953 *(maddr + 8) = *(bphys_addr + 8); 23954 *(maddr + 9) = *(bphys_addr + 9); 23955 return (B_TRUE); 23956 } 23957 23958 /* 23959 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23960 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23961 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23962 * the link-local address is preferred. 23963 */ 23964 boolean_t 23965 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23966 { 23967 ipif_t *ipif; 23968 ipif_t *maybe_ipif = NULL; 23969 23970 mutex_enter(&ill->ill_lock); 23971 if (ill->ill_state_flags & ILL_CONDEMNED) { 23972 mutex_exit(&ill->ill_lock); 23973 if (ipifp != NULL) 23974 *ipifp = NULL; 23975 return (B_FALSE); 23976 } 23977 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23978 if (!IPIF_CAN_LOOKUP(ipif)) 23979 continue; 23980 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23981 ipif->ipif_zoneid != ALL_ZONES) 23982 continue; 23983 if ((ipif->ipif_flags & flags) != flags) 23984 continue; 23985 23986 if (ipifp == NULL) { 23987 mutex_exit(&ill->ill_lock); 23988 ASSERT(maybe_ipif == NULL); 23989 return (B_TRUE); 23990 } 23991 if (!ill->ill_isv6 || 23992 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23993 ipif_refhold_locked(ipif); 23994 mutex_exit(&ill->ill_lock); 23995 *ipifp = ipif; 23996 return (B_TRUE); 23997 } 23998 if (maybe_ipif == NULL) 23999 maybe_ipif = ipif; 24000 } 24001 if (ipifp != NULL) { 24002 if (maybe_ipif != NULL) 24003 ipif_refhold_locked(maybe_ipif); 24004 *ipifp = maybe_ipif; 24005 } 24006 mutex_exit(&ill->ill_lock); 24007 return (maybe_ipif != NULL); 24008 } 24009 24010 /* 24011 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24012 */ 24013 boolean_t 24014 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24015 { 24016 ill_t *illg; 24017 ip_stack_t *ipst = ill->ill_ipst; 24018 24019 /* 24020 * We look at the passed-in ill first without grabbing ill_g_lock. 24021 */ 24022 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24023 return (B_TRUE); 24024 } 24025 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24026 if (ill->ill_group == NULL) { 24027 /* ill not in a group */ 24028 rw_exit(&ipst->ips_ill_g_lock); 24029 return (B_FALSE); 24030 } 24031 24032 /* 24033 * There's no ipif in the zone on ill, however ill is part of an IPMP 24034 * group. We need to look for an ipif in the zone on all the ills in the 24035 * group. 24036 */ 24037 illg = ill->ill_group->illgrp_ill; 24038 do { 24039 /* 24040 * We don't call ipif_lookup_zoneid() on ill as we already know 24041 * that it's not there. 24042 */ 24043 if (illg != ill && 24044 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24045 break; 24046 } 24047 } while ((illg = illg->ill_group_next) != NULL); 24048 rw_exit(&ipst->ips_ill_g_lock); 24049 return (illg != NULL); 24050 } 24051 24052 /* 24053 * Check if this ill is only being used to send ICMP probes for IPMP 24054 */ 24055 boolean_t 24056 ill_is_probeonly(ill_t *ill) 24057 { 24058 /* 24059 * Check if the interface is FAILED, or INACTIVE 24060 */ 24061 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24062 return (B_TRUE); 24063 24064 return (B_FALSE); 24065 } 24066 24067 /* 24068 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24069 * If a pointer to an ipif_t is returned then the caller will need to do 24070 * an ill_refrele(). 24071 * 24072 * If there is no real interface which matches the ifindex, then it looks 24073 * for a group that has a matching index. In the case of a group match the 24074 * lifidx must be zero. We don't need emulate the logical interfaces 24075 * since IP Filter's use of netinfo doesn't use that. 24076 */ 24077 ipif_t * 24078 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24079 ip_stack_t *ipst) 24080 { 24081 ipif_t *ipif; 24082 ill_t *ill; 24083 24084 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24085 ipst); 24086 24087 if (ill == NULL) { 24088 /* Fallback to group names only if hook_emulation set */ 24089 if (!ipst->ips_ipmp_hook_emulation) 24090 return (NULL); 24091 24092 if (lifidx != 0) 24093 return (NULL); 24094 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24095 if (ill == NULL) 24096 return (NULL); 24097 } 24098 24099 mutex_enter(&ill->ill_lock); 24100 if (ill->ill_state_flags & ILL_CONDEMNED) { 24101 mutex_exit(&ill->ill_lock); 24102 ill_refrele(ill); 24103 return (NULL); 24104 } 24105 24106 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24107 if (!IPIF_CAN_LOOKUP(ipif)) 24108 continue; 24109 if (lifidx == ipif->ipif_id) { 24110 ipif_refhold_locked(ipif); 24111 break; 24112 } 24113 } 24114 24115 mutex_exit(&ill->ill_lock); 24116 ill_refrele(ill); 24117 return (ipif); 24118 } 24119 24120 /* 24121 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24122 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24123 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24124 * for details. 24125 */ 24126 void 24127 ill_fastpath_flush(ill_t *ill) 24128 { 24129 ip_stack_t *ipst = ill->ill_ipst; 24130 24131 nce_fastpath_list_dispatch(ill, NULL, NULL); 24132 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24133 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24134 } 24135 24136 /* 24137 * Set the physical address information for `ill' to the contents of the 24138 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24139 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24140 * EINPROGRESS will be returned. 24141 */ 24142 int 24143 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24144 { 24145 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24146 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24147 24148 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24149 24150 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24151 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24152 /* Changing DL_IPV6_TOKEN is not yet supported */ 24153 return (0); 24154 } 24155 24156 /* 24157 * We need to store up to two copies of `mp' in `ill'. Due to the 24158 * design of ipsq_pending_mp_add(), we can't pass them as separate 24159 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24160 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24161 */ 24162 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24163 freemsg(mp); 24164 return (ENOMEM); 24165 } 24166 24167 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24168 24169 /* 24170 * If we can quiesce the ill, then set the address. If not, then 24171 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24172 */ 24173 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24174 mutex_enter(&ill->ill_lock); 24175 if (!ill_is_quiescent(ill)) { 24176 /* call cannot fail since `conn_t *' argument is NULL */ 24177 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24178 mp, ILL_DOWN); 24179 mutex_exit(&ill->ill_lock); 24180 return (EINPROGRESS); 24181 } 24182 mutex_exit(&ill->ill_lock); 24183 24184 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24185 return (0); 24186 } 24187 24188 /* 24189 * Once the ill associated with `q' has quiesced, set its physical address 24190 * information to the values in `addrmp'. Note that two copies of `addrmp' 24191 * are passed (linked by b_cont), since we sometimes need to save two distinct 24192 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24193 * failure (we'll free the other copy if it's not needed). Since the ill_t 24194 * is quiesced, we know any stale IREs with the old address information have 24195 * already been removed, so we don't need to call ill_fastpath_flush(). 24196 */ 24197 /* ARGSUSED */ 24198 static void 24199 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24200 { 24201 ill_t *ill = q->q_ptr; 24202 mblk_t *addrmp2 = unlinkb(addrmp); 24203 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24204 uint_t addrlen, addroff; 24205 24206 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24207 24208 addroff = dlindp->dl_addr_offset; 24209 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24210 24211 switch (dlindp->dl_data) { 24212 case DL_IPV6_LINK_LAYER_ADDR: 24213 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24214 freemsg(addrmp2); 24215 break; 24216 24217 case DL_CURR_PHYS_ADDR: 24218 freemsg(ill->ill_phys_addr_mp); 24219 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24220 ill->ill_phys_addr_mp = addrmp; 24221 ill->ill_phys_addr_length = addrlen; 24222 24223 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24224 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24225 else 24226 freemsg(addrmp2); 24227 break; 24228 default: 24229 ASSERT(0); 24230 } 24231 24232 /* 24233 * If there are ipifs to bring up, ill_up_ipifs() will return 24234 * EINPROGRESS, and ipsq_current_finish() will be called by 24235 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24236 * brought up. 24237 */ 24238 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24239 ipsq_current_finish(ipsq); 24240 } 24241 24242 /* 24243 * Helper routine for setting the ill_nd_lla fields. 24244 */ 24245 void 24246 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24247 { 24248 freemsg(ill->ill_nd_lla_mp); 24249 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24250 ill->ill_nd_lla_mp = ndmp; 24251 ill->ill_nd_lla_len = addrlen; 24252 } 24253 24254 major_t IP_MAJ; 24255 #define IP "ip" 24256 24257 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24258 #define UDPDEV "/devices/pseudo/udp@0:udp" 24259 24260 /* 24261 * Issue REMOVEIF ioctls to have the loopback interfaces 24262 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24263 * the former going away when the user-level processes in the zone 24264 * are killed * and the latter are cleaned up by the stream head 24265 * str_stack_shutdown callback that undoes all I_PLINKs. 24266 */ 24267 void 24268 ip_loopback_cleanup(ip_stack_t *ipst) 24269 { 24270 int error; 24271 ldi_handle_t lh = NULL; 24272 ldi_ident_t li = NULL; 24273 int rval; 24274 cred_t *cr; 24275 struct strioctl iocb; 24276 struct lifreq lifreq; 24277 24278 IP_MAJ = ddi_name_to_major(IP); 24279 24280 #ifdef NS_DEBUG 24281 (void) printf("ip_loopback_cleanup() stackid %d\n", 24282 ipst->ips_netstack->netstack_stackid); 24283 #endif 24284 24285 bzero(&lifreq, sizeof (lifreq)); 24286 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24287 24288 error = ldi_ident_from_major(IP_MAJ, &li); 24289 if (error) { 24290 #ifdef DEBUG 24291 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24292 error); 24293 #endif 24294 return; 24295 } 24296 24297 cr = zone_get_kcred(netstackid_to_zoneid( 24298 ipst->ips_netstack->netstack_stackid)); 24299 ASSERT(cr != NULL); 24300 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24301 if (error) { 24302 #ifdef DEBUG 24303 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24304 error); 24305 #endif 24306 goto out; 24307 } 24308 iocb.ic_cmd = SIOCLIFREMOVEIF; 24309 iocb.ic_timout = 15; 24310 iocb.ic_len = sizeof (lifreq); 24311 iocb.ic_dp = (char *)&lifreq; 24312 24313 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24314 /* LINTED - statement has no consequent */ 24315 if (error) { 24316 #ifdef NS_DEBUG 24317 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24318 "UDP6 error %d\n", error); 24319 #endif 24320 } 24321 (void) ldi_close(lh, FREAD|FWRITE, cr); 24322 lh = NULL; 24323 24324 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24325 if (error) { 24326 #ifdef NS_DEBUG 24327 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24328 error); 24329 #endif 24330 goto out; 24331 } 24332 24333 iocb.ic_cmd = SIOCLIFREMOVEIF; 24334 iocb.ic_timout = 15; 24335 iocb.ic_len = sizeof (lifreq); 24336 iocb.ic_dp = (char *)&lifreq; 24337 24338 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24339 /* LINTED - statement has no consequent */ 24340 if (error) { 24341 #ifdef NS_DEBUG 24342 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24343 "UDP error %d\n", error); 24344 #endif 24345 } 24346 (void) ldi_close(lh, FREAD|FWRITE, cr); 24347 lh = NULL; 24348 24349 out: 24350 /* Close layered handles */ 24351 if (lh) 24352 (void) ldi_close(lh, FREAD|FWRITE, cr); 24353 if (li) 24354 ldi_ident_release(li); 24355 24356 crfree(cr); 24357 } 24358 24359 /* 24360 * This needs to be in-sync with nic_event_t definition 24361 */ 24362 static const char * 24363 ill_hook_event2str(nic_event_t event) 24364 { 24365 switch (event) { 24366 case NE_PLUMB: 24367 return ("PLUMB"); 24368 case NE_UNPLUMB: 24369 return ("UNPLUMB"); 24370 case NE_UP: 24371 return ("UP"); 24372 case NE_DOWN: 24373 return ("DOWN"); 24374 case NE_ADDRESS_CHANGE: 24375 return ("ADDRESS_CHANGE"); 24376 default: 24377 return ("UNKNOWN"); 24378 } 24379 } 24380 24381 static void 24382 ill_hook_event_destroy(ill_t *ill) 24383 { 24384 hook_nic_event_t *info; 24385 24386 if ((info = ill->ill_nic_event_info) != NULL) { 24387 if (info->hne_data != NULL) 24388 kmem_free(info->hne_data, info->hne_datalen); 24389 kmem_free(info, sizeof (hook_nic_event_t)); 24390 24391 ill->ill_nic_event_info = NULL; 24392 } 24393 24394 } 24395 24396 boolean_t 24397 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24398 nic_event_data_t data, size_t datalen) 24399 { 24400 ip_stack_t *ipst = ill->ill_ipst; 24401 hook_nic_event_t *info; 24402 const char *str = NULL; 24403 24404 /* destroy nic event info if it exists */ 24405 if ((info = ill->ill_nic_event_info) != NULL) { 24406 str = ill_hook_event2str(info->hne_event); 24407 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24408 "attached for %s\n", str, ill->ill_name)); 24409 ill_hook_event_destroy(ill); 24410 } 24411 24412 /* create a new nic event info */ 24413 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24414 goto fail; 24415 24416 ill->ill_nic_event_info = info; 24417 24418 if (event == NE_UNPLUMB) 24419 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24420 else 24421 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24422 info->hne_lif = lif; 24423 info->hne_event = event; 24424 info->hne_family = ill->ill_isv6 ? 24425 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24426 info->hne_data = NULL; 24427 info->hne_datalen = 0; 24428 24429 if (data != NULL && datalen != 0) { 24430 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24431 if (info->hne_data != NULL) { 24432 bcopy(data, info->hne_data, datalen); 24433 info->hne_datalen = datalen; 24434 } else { 24435 ill_hook_event_destroy(ill); 24436 goto fail; 24437 } 24438 } 24439 24440 return (B_TRUE); 24441 fail: 24442 str = ill_hook_event2str(event); 24443 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24444 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24445 return (B_FALSE); 24446 } 24447