1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert, int *errorp); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_down_ipifs(ill_t *, boolean_t); 171 static void ill_free_mib(ill_t *ill); 172 static void ill_glist_delete(ill_t *); 173 static void ill_phyint_reinit(ill_t *ill); 174 static void ill_set_nce_router_flags(ill_t *, boolean_t); 175 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 177 178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 182 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 183 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 184 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 185 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 186 static ip_v4mapinfo_func_t ip_mbcast_mapping; 187 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 188 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 189 static void phyint_free(phyint_t *); 190 191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 197 dl_capability_sub_t *); 198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_dld_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_dld_enable(ill_t *); 203 static void ill_capability_ack_thr(void *); 204 static void ill_capability_lso_enable(ill_t *); 205 206 static ill_t *ill_prev_usesrc(ill_t *); 207 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 208 static void ill_disband_usesrc_group(ill_t *); 209 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 210 211 #ifdef DEBUG 212 static void ill_trace_cleanup(const ill_t *); 213 static void ipif_trace_cleanup(const ipif_t *); 214 #endif 215 216 static void ill_dlpi_clear_deferred(ill_t *ill); 217 218 /* 219 * if we go over the memory footprint limit more than once in this msec 220 * interval, we'll start pruning aggressively. 221 */ 222 int ip_min_frag_prune_time = 0; 223 224 static ipft_t ip_ioctl_ftbl[] = { 225 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 226 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 227 IPFT_F_NO_REPLY }, 228 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 229 { 0 } 230 }; 231 232 /* Simple ICMP IP Header Template */ 233 static ipha_t icmp_ipha = { 234 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 235 }; 236 237 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 238 239 static ip_m_t ip_m_tbl[] = { 240 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 260 ip_ipv4_v6destintfid }, 261 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 263 ip_ipv6_v6destintfid }, 264 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 266 ip_nodef_v6intfid }, 267 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 269 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 270 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 271 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 272 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 273 ip_nodef_v6intfid } 274 }; 275 276 static ill_t ill_null; /* Empty ILL for init. */ 277 char ipif_loopback_name[] = "lo0"; 278 static char *ipv4_forward_suffix = ":ip_forwarding"; 279 static char *ipv6_forward_suffix = ":ip6_forwarding"; 280 static sin6_t sin6_null; /* Zero address for quick clears */ 281 static sin_t sin_null; /* Zero address for quick clears */ 282 283 /* When set search for unused ipif_seqid */ 284 static ipif_t ipif_zero; 285 286 /* 287 * ppa arena is created after these many 288 * interfaces have been plumbed. 289 */ 290 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 291 292 /* 293 * Allocate per-interface mibs. 294 * Returns true if ok. False otherwise. 295 * ipsq may not yet be allocated (loopback case ). 296 */ 297 static boolean_t 298 ill_allocate_mibs(ill_t *ill) 299 { 300 /* Already allocated? */ 301 if (ill->ill_ip_mib != NULL) { 302 if (ill->ill_isv6) 303 ASSERT(ill->ill_icmp6_mib != NULL); 304 return (B_TRUE); 305 } 306 307 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 308 KM_NOSLEEP); 309 if (ill->ill_ip_mib == NULL) { 310 return (B_FALSE); 311 } 312 313 /* Setup static information */ 314 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 315 sizeof (mib2_ipIfStatsEntry_t)); 316 if (ill->ill_isv6) { 317 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 318 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 319 sizeof (mib2_ipv6AddrEntry_t)); 320 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 321 sizeof (mib2_ipv6RouteEntry_t)); 322 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 323 sizeof (mib2_ipv6NetToMediaEntry_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 325 sizeof (ipv6_member_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 327 sizeof (ipv6_grpsrc_t)); 328 } else { 329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 331 sizeof (mib2_ipAddrEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 333 sizeof (mib2_ipRouteEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 335 sizeof (mib2_ipNetToMediaEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 337 sizeof (ip_member_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 339 sizeof (ip_grpsrc_t)); 340 341 /* 342 * For a v4 ill, we are done at this point, because per ill 343 * icmp mibs are only used for v6. 344 */ 345 return (B_TRUE); 346 } 347 348 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 349 KM_NOSLEEP); 350 if (ill->ill_icmp6_mib == NULL) { 351 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 352 ill->ill_ip_mib = NULL; 353 return (B_FALSE); 354 } 355 /* static icmp info */ 356 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 357 sizeof (mib2_ipv6IfIcmpEntry_t); 358 /* 359 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 360 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 361 * -> ill_phyint_reinit 362 */ 363 return (B_TRUE); 364 } 365 366 /* 367 * Completely vaporize a lower level tap and all associated interfaces. 368 * ill_delete is called only out of ip_close when the device control 369 * stream is being closed. 370 */ 371 void 372 ill_delete(ill_t *ill) 373 { 374 ipif_t *ipif; 375 ill_t *prev_ill; 376 ip_stack_t *ipst = ill->ill_ipst; 377 378 /* 379 * ill_delete may be forcibly entering the ipsq. The previous 380 * ioctl may not have completed and may need to be aborted. 381 * ipsq_flush takes care of it. If we don't need to enter the 382 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 383 * ill_delete_tail is sufficient. 384 */ 385 ipsq_flush(ill); 386 387 /* 388 * Nuke all interfaces. ipif_free will take down the interface, 389 * remove it from the list, and free the data structure. 390 * Walk down the ipif list and remove the logical interfaces 391 * first before removing the main ipif. We can't unplumb 392 * zeroth interface first in the case of IPv6 as update_conn_ill 393 * -> ip_ll_multireq de-references ill_ipif for checking 394 * POINTOPOINT. 395 * 396 * If ill_ipif was not properly initialized (i.e low on memory), 397 * then no interfaces to clean up. In this case just clean up the 398 * ill. 399 */ 400 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 401 ipif_free(ipif); 402 403 /* 404 * clean out all the nce_t entries that depend on this 405 * ill for the ill_phys_addr. 406 */ 407 nce_flush(ill, B_TRUE); 408 409 /* Clean up msgs on pending upcalls for mrouted */ 410 reset_mrt_ill(ill); 411 412 update_conn_ill(ill, ipst); 413 414 /* 415 * Remove multicast references added as a result of calls to 416 * ip_join_allmulti(). 417 */ 418 ip_purge_allmulti(ill); 419 420 /* 421 * If the ill being deleted is under IPMP, boot it out of the illgrp. 422 */ 423 if (IS_UNDER_IPMP(ill)) 424 ipmp_ill_leave_illgrp(ill); 425 426 /* 427 * ill_down will arrange to blow off any IRE's dependent on this 428 * ILL, and shut down fragmentation reassembly. 429 */ 430 ill_down(ill); 431 432 /* Let SCTP know, so that it can remove this from its list. */ 433 sctp_update_ill(ill, SCTP_ILL_REMOVE); 434 435 /* 436 * Walk all CONNs that can have a reference on an ire or nce for this 437 * ill (we actually walk all that now have stale references). 438 */ 439 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 440 441 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 442 if (ill->ill_isv6) 443 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 444 445 /* 446 * If an address on this ILL is being used as a source address then 447 * clear out the pointers in other ILLs that point to this ILL. 448 */ 449 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 450 if (ill->ill_usesrc_grp_next != NULL) { 451 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 452 ill_disband_usesrc_group(ill); 453 } else { /* consumer of the usesrc ILL */ 454 prev_ill = ill_prev_usesrc(ill); 455 prev_ill->ill_usesrc_grp_next = 456 ill->ill_usesrc_grp_next; 457 } 458 } 459 rw_exit(&ipst->ips_ill_g_usesrc_lock); 460 } 461 462 static void 463 ipif_non_duplicate(ipif_t *ipif) 464 { 465 ill_t *ill = ipif->ipif_ill; 466 mutex_enter(&ill->ill_lock); 467 if (ipif->ipif_flags & IPIF_DUPLICATE) { 468 ipif->ipif_flags &= ~IPIF_DUPLICATE; 469 ASSERT(ill->ill_ipif_dup_count > 0); 470 ill->ill_ipif_dup_count--; 471 } 472 mutex_exit(&ill->ill_lock); 473 } 474 475 /* 476 * ill_delete_tail is called from ip_modclose after all references 477 * to the closing ill are gone. The wait is done in ip_modclose 478 */ 479 void 480 ill_delete_tail(ill_t *ill) 481 { 482 mblk_t **mpp; 483 ipif_t *ipif; 484 ip_stack_t *ipst = ill->ill_ipst; 485 486 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 487 ipif_non_duplicate(ipif); 488 (void) ipif_down_tail(ipif); 489 } 490 491 ASSERT(ill->ill_ipif_dup_count == 0); 492 493 /* 494 * If polling capability is enabled (which signifies direct 495 * upcall into IP and driver has ill saved as a handle), 496 * we need to make sure that unbind has completed before we 497 * let the ill disappear and driver no longer has any reference 498 * to this ill. 499 */ 500 mutex_enter(&ill->ill_lock); 501 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 502 cv_wait(&ill->ill_cv, &ill->ill_lock); 503 mutex_exit(&ill->ill_lock); 504 ASSERT(!(ill->ill_capabilities & 505 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 506 507 if (ill->ill_net_type != IRE_LOOPBACK) 508 qprocsoff(ill->ill_rq); 509 510 /* 511 * We do an ipsq_flush once again now. New messages could have 512 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 513 * could also have landed up if an ioctl thread had looked up 514 * the ill before we set the ILL_CONDEMNED flag, but not yet 515 * enqueued the ioctl when we did the ipsq_flush last time. 516 */ 517 ipsq_flush(ill); 518 519 /* 520 * Free capabilities. 521 */ 522 if (ill->ill_hcksum_capab != NULL) { 523 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 524 ill->ill_hcksum_capab = NULL; 525 } 526 527 if (ill->ill_zerocopy_capab != NULL) { 528 kmem_free(ill->ill_zerocopy_capab, 529 sizeof (ill_zerocopy_capab_t)); 530 ill->ill_zerocopy_capab = NULL; 531 } 532 533 if (ill->ill_lso_capab != NULL) { 534 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 535 ill->ill_lso_capab = NULL; 536 } 537 538 if (ill->ill_dld_capab != NULL) { 539 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 540 ill->ill_dld_capab = NULL; 541 } 542 543 while (ill->ill_ipif != NULL) 544 ipif_free_tail(ill->ill_ipif); 545 546 /* 547 * We have removed all references to ilm from conn and the ones joined 548 * within the kernel. 549 * 550 * We don't walk conns, mrts and ires because 551 * 552 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 553 * 2) ill_down ->ill_downi walks all the ires and cleans up 554 * ill references. 555 */ 556 557 /* 558 * If this ill is an IPMP meta-interface, blow away the illgrp. This 559 * is safe to do because the illgrp has already been unlinked from the 560 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 561 */ 562 if (IS_IPMP(ill)) { 563 ipmp_illgrp_destroy(ill->ill_grp); 564 ill->ill_grp = NULL; 565 } 566 567 /* 568 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 569 * could free the phyint. No more reference to the phyint after this 570 * point. 571 */ 572 (void) ill_glist_delete(ill); 573 574 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 575 if (ill->ill_ndd_name != NULL) 576 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 577 rw_exit(&ipst->ips_ip_g_nd_lock); 578 579 if (ill->ill_frag_ptr != NULL) { 580 uint_t count; 581 582 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 583 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 584 } 585 mi_free(ill->ill_frag_ptr); 586 ill->ill_frag_ptr = NULL; 587 ill->ill_frag_hash_tbl = NULL; 588 } 589 590 freemsg(ill->ill_nd_lla_mp); 591 /* Free all retained control messages. */ 592 mpp = &ill->ill_first_mp_to_free; 593 do { 594 while (mpp[0]) { 595 mblk_t *mp; 596 mblk_t *mp1; 597 598 mp = mpp[0]; 599 mpp[0] = mp->b_next; 600 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 601 mp1->b_next = NULL; 602 mp1->b_prev = NULL; 603 } 604 freemsg(mp); 605 } 606 } while (mpp++ != &ill->ill_last_mp_to_free); 607 608 ill_free_mib(ill); 609 610 #ifdef DEBUG 611 ill_trace_cleanup(ill); 612 #endif 613 614 /* The default multicast interface might have changed */ 615 ire_increment_multicast_generation(ipst, ill->ill_isv6); 616 617 /* Drop refcnt here */ 618 netstack_rele(ill->ill_ipst->ips_netstack); 619 ill->ill_ipst = NULL; 620 } 621 622 static void 623 ill_free_mib(ill_t *ill) 624 { 625 ip_stack_t *ipst = ill->ill_ipst; 626 627 /* 628 * MIB statistics must not be lost, so when an interface 629 * goes away the counter values will be added to the global 630 * MIBs. 631 */ 632 if (ill->ill_ip_mib != NULL) { 633 if (ill->ill_isv6) { 634 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 635 ill->ill_ip_mib); 636 } else { 637 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 638 ill->ill_ip_mib); 639 } 640 641 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 642 ill->ill_ip_mib = NULL; 643 } 644 if (ill->ill_icmp6_mib != NULL) { 645 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 646 ill->ill_icmp6_mib); 647 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 648 ill->ill_icmp6_mib = NULL; 649 } 650 } 651 652 /* 653 * Concatenate together a physical address and a sap. 654 * 655 * Sap_lengths are interpreted as follows: 656 * sap_length == 0 ==> no sap 657 * sap_length > 0 ==> sap is at the head of the dlpi address 658 * sap_length < 0 ==> sap is at the tail of the dlpi address 659 */ 660 static void 661 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 662 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 663 { 664 uint16_t sap_addr = (uint16_t)sap_src; 665 666 if (sap_length == 0) { 667 if (phys_src == NULL) 668 bzero(dst, phys_length); 669 else 670 bcopy(phys_src, dst, phys_length); 671 } else if (sap_length < 0) { 672 if (phys_src == NULL) 673 bzero(dst, phys_length); 674 else 675 bcopy(phys_src, dst, phys_length); 676 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 677 } else { 678 bcopy(&sap_addr, dst, sizeof (sap_addr)); 679 if (phys_src == NULL) 680 bzero((char *)dst + sap_length, phys_length); 681 else 682 bcopy(phys_src, (char *)dst + sap_length, phys_length); 683 } 684 } 685 686 /* 687 * Generate a dl_unitdata_req mblk for the device and address given. 688 * addr_length is the length of the physical portion of the address. 689 * If addr is NULL include an all zero address of the specified length. 690 * TRUE? In any case, addr_length is taken to be the entire length of the 691 * dlpi address, including the absolute value of sap_length. 692 */ 693 mblk_t * 694 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 695 t_scalar_t sap_length) 696 { 697 dl_unitdata_req_t *dlur; 698 mblk_t *mp; 699 t_scalar_t abs_sap_length; /* absolute value */ 700 701 abs_sap_length = ABS(sap_length); 702 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 703 DL_UNITDATA_REQ); 704 if (mp == NULL) 705 return (NULL); 706 dlur = (dl_unitdata_req_t *)mp->b_rptr; 707 /* HACK: accomodate incompatible DLPI drivers */ 708 if (addr_length == 8) 709 addr_length = 6; 710 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 711 dlur->dl_dest_addr_offset = sizeof (*dlur); 712 dlur->dl_priority.dl_min = 0; 713 dlur->dl_priority.dl_max = 0; 714 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 715 (uchar_t *)&dlur[1]); 716 return (mp); 717 } 718 719 /* 720 * Add the pending mp to the list. There can be only 1 pending mp 721 * in the list. Any exclusive ioctl that needs to wait for a response 722 * from another module or driver needs to use this function to set 723 * the ipx_pending_mp to the ioctl mblk and wait for the response from 724 * the other module/driver. This is also used while waiting for the 725 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 726 */ 727 boolean_t 728 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 729 int waitfor) 730 { 731 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 732 733 ASSERT(IAM_WRITER_IPIF(ipif)); 734 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 735 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 736 ASSERT(ipx->ipx_pending_mp == NULL); 737 /* 738 * The caller may be using a different ipif than the one passed into 739 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 740 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 741 * that `ipx_current_ipif == ipif'. 742 */ 743 ASSERT(ipx->ipx_current_ipif != NULL); 744 745 /* 746 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 747 * driver. 748 */ 749 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 750 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 751 (DB_TYPE(add_mp) == M_PCPROTO)); 752 753 if (connp != NULL) { 754 ASSERT(MUTEX_HELD(&connp->conn_lock)); 755 /* 756 * Return error if the conn has started closing. The conn 757 * could have finished cleaning up the pending mp list, 758 * If so we should not add another mp to the list negating 759 * the cleanup. 760 */ 761 if (connp->conn_state_flags & CONN_CLOSING) 762 return (B_FALSE); 763 } 764 mutex_enter(&ipx->ipx_lock); 765 ipx->ipx_pending_ipif = ipif; 766 /* 767 * Note down the queue in b_queue. This will be returned by 768 * ipsq_pending_mp_get. Caller will then use these values to restart 769 * the processing 770 */ 771 add_mp->b_next = NULL; 772 add_mp->b_queue = q; 773 ipx->ipx_pending_mp = add_mp; 774 ipx->ipx_waitfor = waitfor; 775 mutex_exit(&ipx->ipx_lock); 776 777 if (connp != NULL) 778 connp->conn_oper_pending_ill = ipif->ipif_ill; 779 780 return (B_TRUE); 781 } 782 783 /* 784 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 785 * queued in the list. 786 */ 787 mblk_t * 788 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 789 { 790 mblk_t *curr = NULL; 791 ipxop_t *ipx = ipsq->ipsq_xop; 792 793 *connpp = NULL; 794 mutex_enter(&ipx->ipx_lock); 795 if (ipx->ipx_pending_mp == NULL) { 796 mutex_exit(&ipx->ipx_lock); 797 return (NULL); 798 } 799 800 /* There can be only 1 such excl message */ 801 curr = ipx->ipx_pending_mp; 802 ASSERT(curr->b_next == NULL); 803 ipx->ipx_pending_ipif = NULL; 804 ipx->ipx_pending_mp = NULL; 805 ipx->ipx_waitfor = 0; 806 mutex_exit(&ipx->ipx_lock); 807 808 if (CONN_Q(curr->b_queue)) { 809 /* 810 * This mp did a refhold on the conn, at the start of the ioctl. 811 * So we can safely return a pointer to the conn to the caller. 812 */ 813 *connpp = Q_TO_CONN(curr->b_queue); 814 } else { 815 *connpp = NULL; 816 } 817 curr->b_next = NULL; 818 curr->b_prev = NULL; 819 return (curr); 820 } 821 822 /* 823 * Cleanup the ioctl mp queued in ipx_pending_mp 824 * - Called in the ill_delete path 825 * - Called in the M_ERROR or M_HANGUP path on the ill. 826 * - Called in the conn close path. 827 * 828 * Returns success on finding the pending mblk associated with the ioctl or 829 * exclusive operation in progress, failure otherwise. 830 */ 831 boolean_t 832 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 833 { 834 mblk_t *mp; 835 ipxop_t *ipx; 836 queue_t *q; 837 ipif_t *ipif; 838 int cmd; 839 840 ASSERT(IAM_WRITER_ILL(ill)); 841 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 842 843 mutex_enter(&ipx->ipx_lock); 844 mp = ipx->ipx_pending_mp; 845 if (connp != NULL) { 846 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 847 /* 848 * Nothing to clean since the conn that is closing 849 * does not have a matching pending mblk in 850 * ipx_pending_mp. 851 */ 852 mutex_exit(&ipx->ipx_lock); 853 return (B_FALSE); 854 } 855 } else { 856 /* 857 * A non-zero ill_error signifies we are called in the 858 * M_ERROR or M_HANGUP path and we need to unconditionally 859 * abort any current ioctl and do the corresponding cleanup. 860 * A zero ill_error means we are in the ill_delete path and 861 * we do the cleanup only if there is a pending mp. 862 */ 863 if (mp == NULL && ill->ill_error == 0) { 864 mutex_exit(&ipx->ipx_lock); 865 return (B_FALSE); 866 } 867 } 868 869 /* Now remove from the ipx_pending_mp */ 870 ipx->ipx_pending_mp = NULL; 871 ipif = ipx->ipx_pending_ipif; 872 ipx->ipx_pending_ipif = NULL; 873 ipx->ipx_waitfor = 0; 874 ipx->ipx_current_ipif = NULL; 875 cmd = ipx->ipx_current_ioctl; 876 ipx->ipx_current_ioctl = 0; 877 ipx->ipx_current_done = B_TRUE; 878 mutex_exit(&ipx->ipx_lock); 879 880 if (mp == NULL) 881 return (B_FALSE); 882 883 q = mp->b_queue; 884 mp->b_next = NULL; 885 mp->b_prev = NULL; 886 mp->b_queue = NULL; 887 888 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 889 DTRACE_PROBE4(ipif__ioctl, 890 char *, "ipsq_pending_mp_cleanup", 891 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 892 ipif_t *, ipif); 893 if (connp == NULL) { 894 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 895 } else { 896 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 897 mutex_enter(&ipif->ipif_ill->ill_lock); 898 ipif->ipif_state_flags &= ~IPIF_CHANGING; 899 mutex_exit(&ipif->ipif_ill->ill_lock); 900 } 901 } else { 902 inet_freemsg(mp); 903 } 904 return (B_TRUE); 905 } 906 907 /* 908 * Called in the conn close path and ill delete path 909 */ 910 static void 911 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 912 { 913 ipsq_t *ipsq; 914 mblk_t *prev; 915 mblk_t *curr; 916 mblk_t *next; 917 queue_t *wq, *rq = NULL; 918 mblk_t *tmp_list = NULL; 919 920 ASSERT(IAM_WRITER_ILL(ill)); 921 if (connp != NULL) 922 wq = CONNP_TO_WQ(connp); 923 else 924 wq = ill->ill_wq; 925 926 /* 927 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 928 * against this here. 929 */ 930 if (wq != NULL) 931 rq = RD(wq); 932 933 ipsq = ill->ill_phyint->phyint_ipsq; 934 /* 935 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 936 * In the case of ioctl from a conn, there can be only 1 mp 937 * queued on the ipsq. If an ill is being unplumbed, only messages 938 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 939 * ioctls meant for this ill form conn's are not flushed. They will 940 * be processed during ipsq_exit and will not find the ill and will 941 * return error. 942 */ 943 mutex_enter(&ipsq->ipsq_lock); 944 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 945 curr = next) { 946 next = curr->b_next; 947 if (curr->b_queue == wq || curr->b_queue == rq) { 948 /* Unlink the mblk from the pending mp list */ 949 if (prev != NULL) { 950 prev->b_next = curr->b_next; 951 } else { 952 ASSERT(ipsq->ipsq_xopq_mphead == curr); 953 ipsq->ipsq_xopq_mphead = curr->b_next; 954 } 955 if (ipsq->ipsq_xopq_mptail == curr) 956 ipsq->ipsq_xopq_mptail = prev; 957 /* 958 * Create a temporary list and release the ipsq lock 959 * New elements are added to the head of the tmp_list 960 */ 961 curr->b_next = tmp_list; 962 tmp_list = curr; 963 } else { 964 prev = curr; 965 } 966 } 967 mutex_exit(&ipsq->ipsq_lock); 968 969 while (tmp_list != NULL) { 970 curr = tmp_list; 971 tmp_list = curr->b_next; 972 curr->b_next = NULL; 973 curr->b_prev = NULL; 974 curr->b_queue = NULL; 975 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 976 DTRACE_PROBE4(ipif__ioctl, 977 char *, "ipsq_xopq_mp_cleanup", 978 int, 0, ill_t *, NULL, ipif_t *, NULL); 979 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 980 CONN_CLOSE : NO_COPYOUT, NULL); 981 } else { 982 /* 983 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 984 * this can't be just inet_freemsg. we have to 985 * restart it otherwise the thread will be stuck. 986 */ 987 inet_freemsg(curr); 988 } 989 } 990 } 991 992 /* 993 * This conn has started closing. Cleanup any pending ioctl from this conn. 994 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 995 */ 996 void 997 conn_ioctl_cleanup(conn_t *connp) 998 { 999 ipsq_t *ipsq; 1000 ill_t *ill; 1001 boolean_t refheld; 1002 1003 /* 1004 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1005 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1006 * started the mp could be present in ipx_pending_mp. Note that if 1007 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1008 * not yet queued anywhere. In this case, the conn close code will wait 1009 * until the conn_ref is dropped. If the stream was a tcp stream, then 1010 * tcp_close will wait first until all ioctls have completed for this 1011 * conn. 1012 */ 1013 mutex_enter(&connp->conn_lock); 1014 ill = connp->conn_oper_pending_ill; 1015 if (ill == NULL) { 1016 mutex_exit(&connp->conn_lock); 1017 return; 1018 } 1019 1020 /* 1021 * We may not be able to refhold the ill if the ill/ipif 1022 * is changing. But we need to make sure that the ill will 1023 * not vanish. So we just bump up the ill_waiter count. 1024 */ 1025 refheld = ill_waiter_inc(ill); 1026 mutex_exit(&connp->conn_lock); 1027 if (refheld) { 1028 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1029 ill_waiter_dcr(ill); 1030 /* 1031 * Check whether this ioctl has started and is 1032 * pending. If it is not found there then check 1033 * whether this ioctl has not even started and is in 1034 * the ipsq_xopq list. 1035 */ 1036 if (!ipsq_pending_mp_cleanup(ill, connp)) 1037 ipsq_xopq_mp_cleanup(ill, connp); 1038 ipsq = ill->ill_phyint->phyint_ipsq; 1039 ipsq_exit(ipsq); 1040 return; 1041 } 1042 } 1043 1044 /* 1045 * The ill is also closing and we could not bump up the 1046 * ill_waiter_count or we could not enter the ipsq. Leave 1047 * the cleanup to ill_delete 1048 */ 1049 mutex_enter(&connp->conn_lock); 1050 while (connp->conn_oper_pending_ill != NULL) 1051 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1052 mutex_exit(&connp->conn_lock); 1053 if (refheld) 1054 ill_waiter_dcr(ill); 1055 } 1056 1057 /* 1058 * ipcl_walk function for cleaning up conn_*_ill fields. 1059 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1060 * conn_bound_if in place. We prefer dropping 1061 * packets instead of sending them out the wrong interface, or accepting 1062 * packets from the wrong ifindex. 1063 */ 1064 static void 1065 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1066 { 1067 ill_t *ill = (ill_t *)arg; 1068 1069 mutex_enter(&connp->conn_lock); 1070 if (connp->conn_dhcpinit_ill == ill) { 1071 connp->conn_dhcpinit_ill = NULL; 1072 ASSERT(ill->ill_dhcpinit != 0); 1073 atomic_dec_32(&ill->ill_dhcpinit); 1074 ill_set_inputfn(ill); 1075 } 1076 mutex_exit(&connp->conn_lock); 1077 } 1078 1079 static int 1080 ill_down_ipifs_tail(ill_t *ill) 1081 { 1082 ipif_t *ipif; 1083 int err; 1084 1085 ASSERT(IAM_WRITER_ILL(ill)); 1086 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1087 ipif_non_duplicate(ipif); 1088 /* 1089 * ipif_down_tail will call arp_ll_down on the last ipif 1090 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1091 */ 1092 if ((err = ipif_down_tail(ipif)) != 0) 1093 return (err); 1094 } 1095 return (0); 1096 } 1097 1098 /* ARGSUSED */ 1099 void 1100 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1101 { 1102 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1103 (void) ill_down_ipifs_tail(q->q_ptr); 1104 freemsg(mp); 1105 ipsq_current_finish(ipsq); 1106 } 1107 1108 /* 1109 * ill_down_start is called when we want to down this ill and bring it up again 1110 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1111 * all interfaces, but don't tear down any plumbing. 1112 */ 1113 boolean_t 1114 ill_down_start(queue_t *q, mblk_t *mp) 1115 { 1116 ill_t *ill = q->q_ptr; 1117 ipif_t *ipif; 1118 1119 ASSERT(IAM_WRITER_ILL(ill)); 1120 mutex_enter(&ill->ill_lock); 1121 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1122 /* no more nce addition allowed */ 1123 mutex_exit(&ill->ill_lock); 1124 1125 /* 1126 * It is possible that some ioctl is already in progress while we 1127 * received the M_ERROR / M_HANGUP in which case, we need to abort 1128 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1129 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1130 * the in progress ioctl from ever completing. 1131 * 1132 * The thread that started the ioctl (if any) must have returned, 1133 * since we are now executing as writer. After the 2 calls below, 1134 * the state of the ipsq and the ill would reflect no trace of any 1135 * pending operation. Subsequently if there is any response to the 1136 * original ioctl from the driver, it would be discarded as an 1137 * unsolicited message from the driver. 1138 */ 1139 (void) ipsq_pending_mp_cleanup(ill, NULL); 1140 ill_dlpi_clear_deferred(ill); 1141 1142 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1143 (void) ipif_down(ipif, NULL, NULL); 1144 1145 ill_down(ill); 1146 1147 /* 1148 * Walk all CONNs that can have a reference on an ire or nce for this 1149 * ill (we actually walk all that now have stale references). 1150 */ 1151 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1152 1153 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1154 if (ill->ill_isv6) 1155 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1156 1157 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1158 1159 /* 1160 * Atomically test and add the pending mp if references are active. 1161 */ 1162 mutex_enter(&ill->ill_lock); 1163 if (!ill_is_quiescent(ill)) { 1164 /* call cannot fail since `conn_t *' argument is NULL */ 1165 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1166 mp, ILL_DOWN); 1167 mutex_exit(&ill->ill_lock); 1168 return (B_FALSE); 1169 } 1170 mutex_exit(&ill->ill_lock); 1171 return (B_TRUE); 1172 } 1173 1174 static void 1175 ill_down(ill_t *ill) 1176 { 1177 mblk_t *mp; 1178 ip_stack_t *ipst = ill->ill_ipst; 1179 1180 /* 1181 * Blow off any IREs dependent on this ILL. 1182 * The caller needs to handle conn_ixa_cleanup 1183 */ 1184 ill_delete_ires(ill); 1185 1186 ire_walk_ill(0, 0, ill_downi, ill, ill); 1187 1188 /* Remove any conn_*_ill depending on this ill */ 1189 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1190 1191 /* 1192 * Free state for additional IREs. 1193 */ 1194 mutex_enter(&ill->ill_saved_ire_lock); 1195 mp = ill->ill_saved_ire_mp; 1196 ill->ill_saved_ire_mp = NULL; 1197 ill->ill_saved_ire_cnt = 0; 1198 mutex_exit(&ill->ill_saved_ire_lock); 1199 freemsg(mp); 1200 } 1201 1202 /* 1203 * ire_walk routine used to delete every IRE that depends on 1204 * 'ill'. (Always called as writer.) 1205 * 1206 * Note: since the routes added by the kernel are deleted separately, 1207 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1208 * 1209 * We also remove references on ire_nce_cache entries that refer to the ill. 1210 */ 1211 void 1212 ill_downi(ire_t *ire, char *ill_arg) 1213 { 1214 ill_t *ill = (ill_t *)ill_arg; 1215 nce_t *nce; 1216 1217 mutex_enter(&ire->ire_lock); 1218 nce = ire->ire_nce_cache; 1219 if (nce != NULL && nce->nce_ill == ill) 1220 ire->ire_nce_cache = NULL; 1221 else 1222 nce = NULL; 1223 mutex_exit(&ire->ire_lock); 1224 if (nce != NULL) 1225 nce_refrele(nce); 1226 if (ire->ire_ill == ill) 1227 ire_delete(ire); 1228 } 1229 1230 /* Remove IRE_IF_CLONE on this ill */ 1231 void 1232 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1233 { 1234 ill_t *ill = (ill_t *)ill_arg; 1235 1236 ASSERT(ire->ire_type & IRE_IF_CLONE); 1237 if (ire->ire_ill == ill) 1238 ire_delete(ire); 1239 } 1240 1241 /* Consume an M_IOCACK of the fastpath probe. */ 1242 void 1243 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1244 { 1245 mblk_t *mp1 = mp; 1246 1247 /* 1248 * If this was the first attempt turn on the fastpath probing. 1249 */ 1250 mutex_enter(&ill->ill_lock); 1251 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1252 ill->ill_dlpi_fastpath_state = IDS_OK; 1253 mutex_exit(&ill->ill_lock); 1254 1255 /* Free the M_IOCACK mblk, hold on to the data */ 1256 mp = mp->b_cont; 1257 freeb(mp1); 1258 if (mp == NULL) 1259 return; 1260 if (mp->b_cont != NULL) 1261 nce_fastpath_update(ill, mp); 1262 else 1263 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1264 freemsg(mp); 1265 } 1266 1267 /* 1268 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1269 * The data portion of the request is a dl_unitdata_req_t template for 1270 * what we would send downstream in the absence of a fastpath confirmation. 1271 */ 1272 int 1273 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1274 { 1275 struct iocblk *ioc; 1276 mblk_t *mp; 1277 1278 if (dlur_mp == NULL) 1279 return (EINVAL); 1280 1281 mutex_enter(&ill->ill_lock); 1282 switch (ill->ill_dlpi_fastpath_state) { 1283 case IDS_FAILED: 1284 /* 1285 * Driver NAKed the first fastpath ioctl - assume it doesn't 1286 * support it. 1287 */ 1288 mutex_exit(&ill->ill_lock); 1289 return (ENOTSUP); 1290 case IDS_UNKNOWN: 1291 /* This is the first probe */ 1292 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1293 break; 1294 default: 1295 break; 1296 } 1297 mutex_exit(&ill->ill_lock); 1298 1299 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1300 return (EAGAIN); 1301 1302 mp->b_cont = copyb(dlur_mp); 1303 if (mp->b_cont == NULL) { 1304 freeb(mp); 1305 return (EAGAIN); 1306 } 1307 1308 ioc = (struct iocblk *)mp->b_rptr; 1309 ioc->ioc_count = msgdsize(mp->b_cont); 1310 1311 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1312 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1313 putnext(ill->ill_wq, mp); 1314 return (0); 1315 } 1316 1317 void 1318 ill_capability_probe(ill_t *ill) 1319 { 1320 mblk_t *mp; 1321 1322 ASSERT(IAM_WRITER_ILL(ill)); 1323 1324 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1325 ill->ill_dlpi_capab_state != IDCS_FAILED) 1326 return; 1327 1328 /* 1329 * We are starting a new cycle of capability negotiation. 1330 * Free up the capab reset messages of any previous incarnation. 1331 * We will do a fresh allocation when we get the response to our probe 1332 */ 1333 if (ill->ill_capab_reset_mp != NULL) { 1334 freemsg(ill->ill_capab_reset_mp); 1335 ill->ill_capab_reset_mp = NULL; 1336 } 1337 1338 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1339 1340 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1341 if (mp == NULL) 1342 return; 1343 1344 ill_capability_send(ill, mp); 1345 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1346 } 1347 1348 void 1349 ill_capability_reset(ill_t *ill, boolean_t reneg) 1350 { 1351 ASSERT(IAM_WRITER_ILL(ill)); 1352 1353 if (ill->ill_dlpi_capab_state != IDCS_OK) 1354 return; 1355 1356 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1357 1358 ill_capability_send(ill, ill->ill_capab_reset_mp); 1359 ill->ill_capab_reset_mp = NULL; 1360 /* 1361 * We turn off all capabilities except those pertaining to 1362 * direct function call capabilities viz. ILL_CAPAB_DLD* 1363 * which will be turned off by the corresponding reset functions. 1364 */ 1365 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1366 } 1367 1368 static void 1369 ill_capability_reset_alloc(ill_t *ill) 1370 { 1371 mblk_t *mp; 1372 size_t size = 0; 1373 int err; 1374 dl_capability_req_t *capb; 1375 1376 ASSERT(IAM_WRITER_ILL(ill)); 1377 ASSERT(ill->ill_capab_reset_mp == NULL); 1378 1379 if (ILL_HCKSUM_CAPABLE(ill)) { 1380 size += sizeof (dl_capability_sub_t) + 1381 sizeof (dl_capab_hcksum_t); 1382 } 1383 1384 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1385 size += sizeof (dl_capability_sub_t) + 1386 sizeof (dl_capab_zerocopy_t); 1387 } 1388 1389 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1390 size += sizeof (dl_capability_sub_t) + 1391 sizeof (dl_capab_dld_t); 1392 } 1393 1394 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1395 STR_NOSIG, &err); 1396 1397 mp->b_datap->db_type = M_PROTO; 1398 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1399 1400 capb = (dl_capability_req_t *)mp->b_rptr; 1401 capb->dl_primitive = DL_CAPABILITY_REQ; 1402 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1403 capb->dl_sub_length = size; 1404 1405 mp->b_wptr += sizeof (dl_capability_req_t); 1406 1407 /* 1408 * Each handler fills in the corresponding dl_capability_sub_t 1409 * inside the mblk, 1410 */ 1411 ill_capability_hcksum_reset_fill(ill, mp); 1412 ill_capability_zerocopy_reset_fill(ill, mp); 1413 ill_capability_dld_reset_fill(ill, mp); 1414 1415 ill->ill_capab_reset_mp = mp; 1416 } 1417 1418 static void 1419 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1420 { 1421 dl_capab_id_t *id_ic; 1422 uint_t sub_dl_cap = outers->dl_cap; 1423 dl_capability_sub_t *inners; 1424 uint8_t *capend; 1425 1426 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1427 1428 /* 1429 * Note: range checks here are not absolutely sufficient to 1430 * make us robust against malformed messages sent by drivers; 1431 * this is in keeping with the rest of IP's dlpi handling. 1432 * (Remember, it's coming from something else in the kernel 1433 * address space) 1434 */ 1435 1436 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1437 if (capend > mp->b_wptr) { 1438 cmn_err(CE_WARN, "ill_capability_id_ack: " 1439 "malformed sub-capability too long for mblk"); 1440 return; 1441 } 1442 1443 id_ic = (dl_capab_id_t *)(outers + 1); 1444 1445 if (outers->dl_length < sizeof (*id_ic) || 1446 (inners = &id_ic->id_subcap, 1447 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1448 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1449 "encapsulated capab type %d too long for mblk", 1450 inners->dl_cap); 1451 return; 1452 } 1453 1454 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1455 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1456 "isn't as expected; pass-thru module(s) detected, " 1457 "discarding capability\n", inners->dl_cap)); 1458 return; 1459 } 1460 1461 /* Process the encapsulated sub-capability */ 1462 ill_capability_dispatch(ill, mp, inners); 1463 } 1464 1465 static void 1466 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1467 { 1468 dl_capability_sub_t *dl_subcap; 1469 1470 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1471 return; 1472 1473 /* 1474 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1475 * initialized below since it is not used by DLD. 1476 */ 1477 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1478 dl_subcap->dl_cap = DL_CAPAB_DLD; 1479 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1480 1481 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1482 } 1483 1484 static void 1485 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1486 { 1487 /* 1488 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1489 * is only to get the VRRP capability. 1490 * 1491 * Note that we cannot check ill_ipif_up_count here since 1492 * ill_ipif_up_count is only incremented when the resolver is setup. 1493 * That is done asynchronously, and can race with this function. 1494 */ 1495 if (!ill->ill_dl_up) { 1496 if (subp->dl_cap == DL_CAPAB_VRRP) 1497 ill_capability_vrrp_ack(ill, mp, subp); 1498 return; 1499 } 1500 1501 switch (subp->dl_cap) { 1502 case DL_CAPAB_HCKSUM: 1503 ill_capability_hcksum_ack(ill, mp, subp); 1504 break; 1505 case DL_CAPAB_ZEROCOPY: 1506 ill_capability_zerocopy_ack(ill, mp, subp); 1507 break; 1508 case DL_CAPAB_DLD: 1509 ill_capability_dld_ack(ill, mp, subp); 1510 break; 1511 case DL_CAPAB_VRRP: 1512 break; 1513 default: 1514 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1515 subp->dl_cap)); 1516 } 1517 } 1518 1519 /* 1520 * Process the vrrp capability received from a DLS Provider. isub must point 1521 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1522 */ 1523 static void 1524 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1525 { 1526 dl_capab_vrrp_t *vrrp; 1527 uint_t sub_dl_cap = isub->dl_cap; 1528 uint8_t *capend; 1529 1530 ASSERT(IAM_WRITER_ILL(ill)); 1531 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1532 1533 /* 1534 * Note: range checks here are not absolutely sufficient to 1535 * make us robust against malformed messages sent by drivers; 1536 * this is in keeping with the rest of IP's dlpi handling. 1537 * (Remember, it's coming from something else in the kernel 1538 * address space) 1539 */ 1540 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1541 if (capend > mp->b_wptr) { 1542 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1543 "malformed sub-capability too long for mblk"); 1544 return; 1545 } 1546 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1547 1548 /* 1549 * Compare the IP address family and set ILLF_VRRP for the right ill. 1550 */ 1551 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1552 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1553 ill->ill_flags |= ILLF_VRRP; 1554 } 1555 } 1556 1557 /* 1558 * Process a hardware checksum offload capability negotiation ack received 1559 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1560 * of a DL_CAPABILITY_ACK message. 1561 */ 1562 static void 1563 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1564 { 1565 dl_capability_req_t *ocap; 1566 dl_capab_hcksum_t *ihck, *ohck; 1567 ill_hcksum_capab_t **ill_hcksum; 1568 mblk_t *nmp = NULL; 1569 uint_t sub_dl_cap = isub->dl_cap; 1570 uint8_t *capend; 1571 1572 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1573 1574 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1575 1576 /* 1577 * Note: range checks here are not absolutely sufficient to 1578 * make us robust against malformed messages sent by drivers; 1579 * this is in keeping with the rest of IP's dlpi handling. 1580 * (Remember, it's coming from something else in the kernel 1581 * address space) 1582 */ 1583 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1584 if (capend > mp->b_wptr) { 1585 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1586 "malformed sub-capability too long for mblk"); 1587 return; 1588 } 1589 1590 /* 1591 * There are two types of acks we process here: 1592 * 1. acks in reply to a (first form) generic capability req 1593 * (no ENABLE flag set) 1594 * 2. acks in reply to a ENABLE capability req. 1595 * (ENABLE flag set) 1596 */ 1597 ihck = (dl_capab_hcksum_t *)(isub + 1); 1598 1599 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1600 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1601 "unsupported hardware checksum " 1602 "sub-capability (version %d, expected %d)", 1603 ihck->hcksum_version, HCKSUM_VERSION_1); 1604 return; 1605 } 1606 1607 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1608 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1609 "checksum capability isn't as expected; pass-thru " 1610 "module(s) detected, discarding capability\n")); 1611 return; 1612 } 1613 1614 #define CURR_HCKSUM_CAPAB \ 1615 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1616 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1617 1618 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1619 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1620 /* do ENABLE processing */ 1621 if (*ill_hcksum == NULL) { 1622 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1623 KM_NOSLEEP); 1624 1625 if (*ill_hcksum == NULL) { 1626 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1627 "could not enable hcksum version %d " 1628 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1629 ill->ill_name); 1630 return; 1631 } 1632 } 1633 1634 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1635 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1636 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1637 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1638 "has enabled hardware checksumming\n ", 1639 ill->ill_name)); 1640 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1641 /* 1642 * Enabling hardware checksum offload 1643 * Currently IP supports {TCP,UDP}/IPv4 1644 * partial and full cksum offload and 1645 * IPv4 header checksum offload. 1646 * Allocate new mblk which will 1647 * contain a new capability request 1648 * to enable hardware checksum offload. 1649 */ 1650 uint_t size; 1651 uchar_t *rptr; 1652 1653 size = sizeof (dl_capability_req_t) + 1654 sizeof (dl_capability_sub_t) + isub->dl_length; 1655 1656 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1657 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1658 "could not enable hardware cksum for %s (ENOMEM)\n", 1659 ill->ill_name); 1660 return; 1661 } 1662 1663 rptr = nmp->b_rptr; 1664 /* initialize dl_capability_req_t */ 1665 ocap = (dl_capability_req_t *)nmp->b_rptr; 1666 ocap->dl_sub_offset = 1667 sizeof (dl_capability_req_t); 1668 ocap->dl_sub_length = 1669 sizeof (dl_capability_sub_t) + 1670 isub->dl_length; 1671 nmp->b_rptr += sizeof (dl_capability_req_t); 1672 1673 /* initialize dl_capability_sub_t */ 1674 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1675 nmp->b_rptr += sizeof (*isub); 1676 1677 /* initialize dl_capab_hcksum_t */ 1678 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1679 bcopy(ihck, ohck, sizeof (*ihck)); 1680 1681 nmp->b_rptr = rptr; 1682 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1683 1684 /* Set ENABLE flag */ 1685 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1686 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1687 1688 /* 1689 * nmp points to a DL_CAPABILITY_REQ message to enable 1690 * hardware checksum acceleration. 1691 */ 1692 ill_capability_send(ill, nmp); 1693 } else { 1694 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1695 "advertised %x hardware checksum capability flags\n", 1696 ill->ill_name, ihck->hcksum_txflags)); 1697 } 1698 } 1699 1700 static void 1701 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1702 { 1703 dl_capab_hcksum_t *hck_subcap; 1704 dl_capability_sub_t *dl_subcap; 1705 1706 if (!ILL_HCKSUM_CAPABLE(ill)) 1707 return; 1708 1709 ASSERT(ill->ill_hcksum_capab != NULL); 1710 1711 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1712 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1713 dl_subcap->dl_length = sizeof (*hck_subcap); 1714 1715 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1716 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1717 hck_subcap->hcksum_txflags = 0; 1718 1719 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1720 } 1721 1722 static void 1723 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1724 { 1725 mblk_t *nmp = NULL; 1726 dl_capability_req_t *oc; 1727 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1728 ill_zerocopy_capab_t **ill_zerocopy_capab; 1729 uint_t sub_dl_cap = isub->dl_cap; 1730 uint8_t *capend; 1731 1732 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1733 1734 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1735 1736 /* 1737 * Note: range checks here are not absolutely sufficient to 1738 * make us robust against malformed messages sent by drivers; 1739 * this is in keeping with the rest of IP's dlpi handling. 1740 * (Remember, it's coming from something else in the kernel 1741 * address space) 1742 */ 1743 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1744 if (capend > mp->b_wptr) { 1745 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1746 "malformed sub-capability too long for mblk"); 1747 return; 1748 } 1749 1750 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1751 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1752 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1753 "unsupported ZEROCOPY sub-capability (version %d, " 1754 "expected %d)", zc_ic->zerocopy_version, 1755 ZEROCOPY_VERSION_1); 1756 return; 1757 } 1758 1759 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1760 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1761 "capability isn't as expected; pass-thru module(s) " 1762 "detected, discarding capability\n")); 1763 return; 1764 } 1765 1766 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1767 if (*ill_zerocopy_capab == NULL) { 1768 *ill_zerocopy_capab = 1769 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1770 KM_NOSLEEP); 1771 1772 if (*ill_zerocopy_capab == NULL) { 1773 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1774 "could not enable Zero-copy version %d " 1775 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1776 ill->ill_name); 1777 return; 1778 } 1779 } 1780 1781 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1782 "supports Zero-copy version %d\n", ill->ill_name, 1783 ZEROCOPY_VERSION_1)); 1784 1785 (*ill_zerocopy_capab)->ill_zerocopy_version = 1786 zc_ic->zerocopy_version; 1787 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1788 zc_ic->zerocopy_flags; 1789 1790 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1791 } else { 1792 uint_t size; 1793 uchar_t *rptr; 1794 1795 size = sizeof (dl_capability_req_t) + 1796 sizeof (dl_capability_sub_t) + 1797 sizeof (dl_capab_zerocopy_t); 1798 1799 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1800 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1801 "could not enable zerocopy for %s (ENOMEM)\n", 1802 ill->ill_name); 1803 return; 1804 } 1805 1806 rptr = nmp->b_rptr; 1807 /* initialize dl_capability_req_t */ 1808 oc = (dl_capability_req_t *)rptr; 1809 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1810 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1811 sizeof (dl_capab_zerocopy_t); 1812 rptr += sizeof (dl_capability_req_t); 1813 1814 /* initialize dl_capability_sub_t */ 1815 bcopy(isub, rptr, sizeof (*isub)); 1816 rptr += sizeof (*isub); 1817 1818 /* initialize dl_capab_zerocopy_t */ 1819 zc_oc = (dl_capab_zerocopy_t *)rptr; 1820 *zc_oc = *zc_ic; 1821 1822 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1823 "to enable zero-copy version %d\n", ill->ill_name, 1824 ZEROCOPY_VERSION_1)); 1825 1826 /* set VMSAFE_MEM flag */ 1827 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1828 1829 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1830 ill_capability_send(ill, nmp); 1831 } 1832 } 1833 1834 static void 1835 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1836 { 1837 dl_capab_zerocopy_t *zerocopy_subcap; 1838 dl_capability_sub_t *dl_subcap; 1839 1840 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1841 return; 1842 1843 ASSERT(ill->ill_zerocopy_capab != NULL); 1844 1845 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1846 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1847 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1848 1849 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1850 zerocopy_subcap->zerocopy_version = 1851 ill->ill_zerocopy_capab->ill_zerocopy_version; 1852 zerocopy_subcap->zerocopy_flags = 0; 1853 1854 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1855 } 1856 1857 /* 1858 * DLD capability 1859 * Refer to dld.h for more information regarding the purpose and usage 1860 * of this capability. 1861 */ 1862 static void 1863 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1864 { 1865 dl_capab_dld_t *dld_ic, dld; 1866 uint_t sub_dl_cap = isub->dl_cap; 1867 uint8_t *capend; 1868 ill_dld_capab_t *idc; 1869 1870 ASSERT(IAM_WRITER_ILL(ill)); 1871 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1872 1873 /* 1874 * Note: range checks here are not absolutely sufficient to 1875 * make us robust against malformed messages sent by drivers; 1876 * this is in keeping with the rest of IP's dlpi handling. 1877 * (Remember, it's coming from something else in the kernel 1878 * address space) 1879 */ 1880 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1881 if (capend > mp->b_wptr) { 1882 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1883 "malformed sub-capability too long for mblk"); 1884 return; 1885 } 1886 dld_ic = (dl_capab_dld_t *)(isub + 1); 1887 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1888 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1889 "unsupported DLD sub-capability (version %d, " 1890 "expected %d)", dld_ic->dld_version, 1891 DLD_CURRENT_VERSION); 1892 return; 1893 } 1894 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1895 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1896 "capability isn't as expected; pass-thru module(s) " 1897 "detected, discarding capability\n")); 1898 return; 1899 } 1900 1901 /* 1902 * Copy locally to ensure alignment. 1903 */ 1904 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1905 1906 if ((idc = ill->ill_dld_capab) == NULL) { 1907 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1908 if (idc == NULL) { 1909 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1910 "could not enable DLD version %d " 1911 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1912 ill->ill_name); 1913 return; 1914 } 1915 ill->ill_dld_capab = idc; 1916 } 1917 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1918 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1919 ip1dbg(("ill_capability_dld_ack: interface %s " 1920 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1921 1922 ill_capability_dld_enable(ill); 1923 } 1924 1925 /* 1926 * Typically capability negotiation between IP and the driver happens via 1927 * DLPI message exchange. However GLD also offers a direct function call 1928 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1929 * But arbitrary function calls into IP or GLD are not permitted, since both 1930 * of them are protected by their own perimeter mechanism. The perimeter can 1931 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1932 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1933 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1934 * to enter the mac perimeter and then do the direct function calls into 1935 * GLD to enable squeue polling. The ring related callbacks from the mac into 1936 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1937 * protected by the mac perimeter. 1938 */ 1939 static void 1940 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1941 { 1942 ill_dld_capab_t *idc = ill->ill_dld_capab; 1943 int err; 1944 1945 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1946 DLD_ENABLE); 1947 ASSERT(err == 0); 1948 } 1949 1950 static void 1951 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1952 { 1953 ill_dld_capab_t *idc = ill->ill_dld_capab; 1954 int err; 1955 1956 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1957 DLD_DISABLE); 1958 ASSERT(err == 0); 1959 } 1960 1961 boolean_t 1962 ill_mac_perim_held(ill_t *ill) 1963 { 1964 ill_dld_capab_t *idc = ill->ill_dld_capab; 1965 1966 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1967 DLD_QUERY)); 1968 } 1969 1970 static void 1971 ill_capability_direct_enable(ill_t *ill) 1972 { 1973 ill_dld_capab_t *idc = ill->ill_dld_capab; 1974 ill_dld_direct_t *idd = &idc->idc_direct; 1975 dld_capab_direct_t direct; 1976 int rc; 1977 1978 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1979 1980 bzero(&direct, sizeof (direct)); 1981 direct.di_rx_cf = (uintptr_t)ip_input; 1982 direct.di_rx_ch = ill; 1983 1984 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1985 DLD_ENABLE); 1986 if (rc == 0) { 1987 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 1988 idd->idd_tx_dh = direct.di_tx_dh; 1989 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 1990 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 1991 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 1992 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 1993 ASSERT(idd->idd_tx_cb_df != NULL); 1994 ASSERT(idd->idd_tx_fctl_df != NULL); 1995 ASSERT(idd->idd_tx_df != NULL); 1996 /* 1997 * One time registration of flow enable callback function 1998 */ 1999 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2000 ill_flow_enable, ill); 2001 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2002 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2003 } else { 2004 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2005 "capability, rc = %d\n", rc); 2006 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2007 } 2008 } 2009 2010 static void 2011 ill_capability_poll_enable(ill_t *ill) 2012 { 2013 ill_dld_capab_t *idc = ill->ill_dld_capab; 2014 dld_capab_poll_t poll; 2015 int rc; 2016 2017 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2018 2019 bzero(&poll, sizeof (poll)); 2020 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2021 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2022 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2023 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2024 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2025 poll.poll_ring_ch = ill; 2026 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2027 DLD_ENABLE); 2028 if (rc == 0) { 2029 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2030 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2031 } else { 2032 ip1dbg(("warning: could not enable POLL " 2033 "capability, rc = %d\n", rc)); 2034 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2035 } 2036 } 2037 2038 /* 2039 * Enable the LSO capability. 2040 */ 2041 static void 2042 ill_capability_lso_enable(ill_t *ill) 2043 { 2044 ill_dld_capab_t *idc = ill->ill_dld_capab; 2045 dld_capab_lso_t lso; 2046 int rc; 2047 2048 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2049 2050 if (ill->ill_lso_capab == NULL) { 2051 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2052 KM_NOSLEEP); 2053 if (ill->ill_lso_capab == NULL) { 2054 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2055 "could not enable LSO for %s (ENOMEM)\n", 2056 ill->ill_name); 2057 return; 2058 } 2059 } 2060 2061 bzero(&lso, sizeof (lso)); 2062 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2063 DLD_ENABLE)) == 0) { 2064 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2065 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2066 ill->ill_capabilities |= ILL_CAPAB_LSO; 2067 ip1dbg(("ill_capability_lso_enable: interface %s " 2068 "has enabled LSO\n ", ill->ill_name)); 2069 } else { 2070 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2071 ill->ill_lso_capab = NULL; 2072 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2073 } 2074 } 2075 2076 static void 2077 ill_capability_dld_enable(ill_t *ill) 2078 { 2079 mac_perim_handle_t mph; 2080 2081 ASSERT(IAM_WRITER_ILL(ill)); 2082 2083 if (ill->ill_isv6) 2084 return; 2085 2086 ill_mac_perim_enter(ill, &mph); 2087 if (!ill->ill_isv6) { 2088 ill_capability_direct_enable(ill); 2089 ill_capability_poll_enable(ill); 2090 ill_capability_lso_enable(ill); 2091 } 2092 ill->ill_capabilities |= ILL_CAPAB_DLD; 2093 ill_mac_perim_exit(ill, mph); 2094 } 2095 2096 static void 2097 ill_capability_dld_disable(ill_t *ill) 2098 { 2099 ill_dld_capab_t *idc; 2100 ill_dld_direct_t *idd; 2101 mac_perim_handle_t mph; 2102 2103 ASSERT(IAM_WRITER_ILL(ill)); 2104 2105 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2106 return; 2107 2108 ill_mac_perim_enter(ill, &mph); 2109 2110 idc = ill->ill_dld_capab; 2111 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2112 /* 2113 * For performance we avoid locks in the transmit data path 2114 * and don't maintain a count of the number of threads using 2115 * direct calls. Thus some threads could be using direct 2116 * transmit calls to GLD, even after the capability mechanism 2117 * turns it off. This is still safe since the handles used in 2118 * the direct calls continue to be valid until the unplumb is 2119 * completed. Remove the callback that was added (1-time) at 2120 * capab enable time. 2121 */ 2122 mutex_enter(&ill->ill_lock); 2123 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2124 mutex_exit(&ill->ill_lock); 2125 if (ill->ill_flownotify_mh != NULL) { 2126 idd = &idc->idc_direct; 2127 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2128 ill->ill_flownotify_mh); 2129 ill->ill_flownotify_mh = NULL; 2130 } 2131 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2132 NULL, DLD_DISABLE); 2133 } 2134 2135 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2136 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2137 ip_squeue_clean_all(ill); 2138 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2139 NULL, DLD_DISABLE); 2140 } 2141 2142 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2143 ASSERT(ill->ill_lso_capab != NULL); 2144 /* 2145 * Clear the capability flag for LSO but retain the 2146 * ill_lso_capab structure since it's possible that another 2147 * thread is still referring to it. The structure only gets 2148 * deallocated when we destroy the ill. 2149 */ 2150 2151 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2152 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2153 NULL, DLD_DISABLE); 2154 } 2155 2156 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2157 ill_mac_perim_exit(ill, mph); 2158 } 2159 2160 /* 2161 * Capability Negotiation protocol 2162 * 2163 * We don't wait for DLPI capability operations to finish during interface 2164 * bringup or teardown. Doing so would introduce more asynchrony and the 2165 * interface up/down operations will need multiple return and restarts. 2166 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2167 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2168 * exclusive operation won't start until the DLPI operations of the previous 2169 * exclusive operation complete. 2170 * 2171 * The capability state machine is shown below. 2172 * 2173 * state next state event, action 2174 * 2175 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2176 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2177 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2178 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2179 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2180 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2181 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2182 * ill_capability_probe. 2183 */ 2184 2185 /* 2186 * Dedicated thread started from ip_stack_init that handles capability 2187 * disable. This thread ensures the taskq dispatch does not fail by waiting 2188 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2189 * that direct calls to DLD are done in a cv_waitable context. 2190 */ 2191 void 2192 ill_taskq_dispatch(ip_stack_t *ipst) 2193 { 2194 callb_cpr_t cprinfo; 2195 char name[64]; 2196 mblk_t *mp; 2197 2198 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2199 ipst->ips_netstack->netstack_stackid); 2200 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2201 name); 2202 mutex_enter(&ipst->ips_capab_taskq_lock); 2203 2204 for (;;) { 2205 mp = ipst->ips_capab_taskq_head; 2206 while (mp != NULL) { 2207 ipst->ips_capab_taskq_head = mp->b_next; 2208 if (ipst->ips_capab_taskq_head == NULL) 2209 ipst->ips_capab_taskq_tail = NULL; 2210 mutex_exit(&ipst->ips_capab_taskq_lock); 2211 mp->b_next = NULL; 2212 2213 VERIFY(taskq_dispatch(system_taskq, 2214 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2215 mutex_enter(&ipst->ips_capab_taskq_lock); 2216 mp = ipst->ips_capab_taskq_head; 2217 } 2218 2219 if (ipst->ips_capab_taskq_quit) 2220 break; 2221 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2222 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2223 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2224 } 2225 VERIFY(ipst->ips_capab_taskq_head == NULL); 2226 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2227 CALLB_CPR_EXIT(&cprinfo); 2228 thread_exit(); 2229 } 2230 2231 /* 2232 * Consume a new-style hardware capabilities negotiation ack. 2233 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2234 */ 2235 static void 2236 ill_capability_ack_thr(void *arg) 2237 { 2238 mblk_t *mp = arg; 2239 dl_capability_ack_t *capp; 2240 dl_capability_sub_t *subp, *endp; 2241 ill_t *ill; 2242 boolean_t reneg; 2243 2244 ill = (ill_t *)mp->b_prev; 2245 mp->b_prev = NULL; 2246 2247 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2248 2249 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2250 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2251 /* 2252 * We have received the ack for our DL_CAPAB reset request. 2253 * There isnt' anything in the message that needs processing. 2254 * All message based capabilities have been disabled, now 2255 * do the function call based capability disable. 2256 */ 2257 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2258 ill_capability_dld_disable(ill); 2259 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2260 if (reneg) 2261 ill_capability_probe(ill); 2262 goto done; 2263 } 2264 2265 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2266 ill->ill_dlpi_capab_state = IDCS_OK; 2267 2268 capp = (dl_capability_ack_t *)mp->b_rptr; 2269 2270 if (capp->dl_sub_length == 0) { 2271 /* no new-style capabilities */ 2272 goto done; 2273 } 2274 2275 /* make sure the driver supplied correct dl_sub_length */ 2276 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2277 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2278 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2279 goto done; 2280 } 2281 2282 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2283 /* 2284 * There are sub-capabilities. Process the ones we know about. 2285 * Loop until we don't have room for another sub-cap header.. 2286 */ 2287 for (subp = SC(capp, capp->dl_sub_offset), 2288 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2289 subp <= endp; 2290 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2291 2292 switch (subp->dl_cap) { 2293 case DL_CAPAB_ID_WRAPPER: 2294 ill_capability_id_ack(ill, mp, subp); 2295 break; 2296 default: 2297 ill_capability_dispatch(ill, mp, subp); 2298 break; 2299 } 2300 } 2301 #undef SC 2302 done: 2303 inet_freemsg(mp); 2304 ill_capability_done(ill); 2305 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2306 } 2307 2308 /* 2309 * This needs to be started in a taskq thread to provide a cv_waitable 2310 * context. 2311 */ 2312 void 2313 ill_capability_ack(ill_t *ill, mblk_t *mp) 2314 { 2315 ip_stack_t *ipst = ill->ill_ipst; 2316 2317 mp->b_prev = (mblk_t *)ill; 2318 ASSERT(mp->b_next == NULL); 2319 2320 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2321 TQ_NOSLEEP) != 0) 2322 return; 2323 2324 /* 2325 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2326 * which will do the dispatch using TQ_SLEEP to guarantee success. 2327 */ 2328 mutex_enter(&ipst->ips_capab_taskq_lock); 2329 if (ipst->ips_capab_taskq_head == NULL) { 2330 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2331 ipst->ips_capab_taskq_head = mp; 2332 } else { 2333 ipst->ips_capab_taskq_tail->b_next = mp; 2334 } 2335 ipst->ips_capab_taskq_tail = mp; 2336 2337 cv_signal(&ipst->ips_capab_taskq_cv); 2338 mutex_exit(&ipst->ips_capab_taskq_lock); 2339 } 2340 2341 /* 2342 * This routine is called to scan the fragmentation reassembly table for 2343 * the specified ILL for any packets that are starting to smell. 2344 * dead_interval is the maximum time in seconds that will be tolerated. It 2345 * will either be the value specified in ip_g_frag_timeout, or zero if the 2346 * ILL is shutting down and it is time to blow everything off. 2347 * 2348 * It returns the number of seconds (as a time_t) that the next frag timer 2349 * should be scheduled for, 0 meaning that the timer doesn't need to be 2350 * re-started. Note that the method of calculating next_timeout isn't 2351 * entirely accurate since time will flow between the time we grab 2352 * current_time and the time we schedule the next timeout. This isn't a 2353 * big problem since this is the timer for sending an ICMP reassembly time 2354 * exceeded messages, and it doesn't have to be exactly accurate. 2355 * 2356 * This function is 2357 * sometimes called as writer, although this is not required. 2358 */ 2359 time_t 2360 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2361 { 2362 ipfb_t *ipfb; 2363 ipfb_t *endp; 2364 ipf_t *ipf; 2365 ipf_t *ipfnext; 2366 mblk_t *mp; 2367 time_t current_time = gethrestime_sec(); 2368 time_t next_timeout = 0; 2369 uint32_t hdr_length; 2370 mblk_t *send_icmp_head; 2371 mblk_t *send_icmp_head_v6; 2372 ip_stack_t *ipst = ill->ill_ipst; 2373 ip_recv_attr_t iras; 2374 2375 bzero(&iras, sizeof (iras)); 2376 iras.ira_flags = 0; 2377 iras.ira_ill = iras.ira_rill = ill; 2378 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2379 iras.ira_rifindex = iras.ira_ruifindex; 2380 2381 ipfb = ill->ill_frag_hash_tbl; 2382 if (ipfb == NULL) 2383 return (B_FALSE); 2384 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2385 /* Walk the frag hash table. */ 2386 for (; ipfb < endp; ipfb++) { 2387 send_icmp_head = NULL; 2388 send_icmp_head_v6 = NULL; 2389 mutex_enter(&ipfb->ipfb_lock); 2390 while ((ipf = ipfb->ipfb_ipf) != 0) { 2391 time_t frag_time = current_time - ipf->ipf_timestamp; 2392 time_t frag_timeout; 2393 2394 if (frag_time < dead_interval) { 2395 /* 2396 * There are some outstanding fragments 2397 * that will timeout later. Make note of 2398 * the time so that we can reschedule the 2399 * next timeout appropriately. 2400 */ 2401 frag_timeout = dead_interval - frag_time; 2402 if (next_timeout == 0 || 2403 frag_timeout < next_timeout) { 2404 next_timeout = frag_timeout; 2405 } 2406 break; 2407 } 2408 /* Time's up. Get it out of here. */ 2409 hdr_length = ipf->ipf_nf_hdr_len; 2410 ipfnext = ipf->ipf_hash_next; 2411 if (ipfnext) 2412 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2413 *ipf->ipf_ptphn = ipfnext; 2414 mp = ipf->ipf_mp->b_cont; 2415 for (; mp; mp = mp->b_cont) { 2416 /* Extra points for neatness. */ 2417 IP_REASS_SET_START(mp, 0); 2418 IP_REASS_SET_END(mp, 0); 2419 } 2420 mp = ipf->ipf_mp->b_cont; 2421 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2422 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2423 ipfb->ipfb_count -= ipf->ipf_count; 2424 ASSERT(ipfb->ipfb_frag_pkts > 0); 2425 ipfb->ipfb_frag_pkts--; 2426 /* 2427 * We do not send any icmp message from here because 2428 * we currently are holding the ipfb_lock for this 2429 * hash chain. If we try and send any icmp messages 2430 * from here we may end up via a put back into ip 2431 * trying to get the same lock, causing a recursive 2432 * mutex panic. Instead we build a list and send all 2433 * the icmp messages after we have dropped the lock. 2434 */ 2435 if (ill->ill_isv6) { 2436 if (hdr_length != 0) { 2437 mp->b_next = send_icmp_head_v6; 2438 send_icmp_head_v6 = mp; 2439 } else { 2440 freemsg(mp); 2441 } 2442 } else { 2443 if (hdr_length != 0) { 2444 mp->b_next = send_icmp_head; 2445 send_icmp_head = mp; 2446 } else { 2447 freemsg(mp); 2448 } 2449 } 2450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2451 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2452 freeb(ipf->ipf_mp); 2453 } 2454 mutex_exit(&ipfb->ipfb_lock); 2455 /* 2456 * Now need to send any icmp messages that we delayed from 2457 * above. 2458 */ 2459 while (send_icmp_head_v6 != NULL) { 2460 ip6_t *ip6h; 2461 2462 mp = send_icmp_head_v6; 2463 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2464 mp->b_next = NULL; 2465 ip6h = (ip6_t *)mp->b_rptr; 2466 iras.ira_flags = 0; 2467 /* 2468 * This will result in an incorrect ALL_ZONES zoneid 2469 * for multicast packets, but we 2470 * don't send ICMP errors for those in any case. 2471 */ 2472 iras.ira_zoneid = 2473 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2474 ill, ipst); 2475 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2476 icmp_time_exceeded_v6(mp, 2477 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2478 &iras); 2479 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2480 } 2481 while (send_icmp_head != NULL) { 2482 ipaddr_t dst; 2483 2484 mp = send_icmp_head; 2485 send_icmp_head = send_icmp_head->b_next; 2486 mp->b_next = NULL; 2487 2488 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2489 2490 iras.ira_flags = IRAF_IS_IPV4; 2491 /* 2492 * This will result in an incorrect ALL_ZONES zoneid 2493 * for broadcast and multicast packets, but we 2494 * don't send ICMP errors for those in any case. 2495 */ 2496 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2497 ill, ipst); 2498 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2499 icmp_time_exceeded(mp, 2500 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2501 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2502 } 2503 } 2504 /* 2505 * A non-dying ILL will use the return value to decide whether to 2506 * restart the frag timer, and for how long. 2507 */ 2508 return (next_timeout); 2509 } 2510 2511 /* 2512 * This routine is called when the approximate count of mblk memory used 2513 * for the specified ILL has exceeded max_count. 2514 */ 2515 void 2516 ill_frag_prune(ill_t *ill, uint_t max_count) 2517 { 2518 ipfb_t *ipfb; 2519 ipf_t *ipf; 2520 size_t count; 2521 clock_t now; 2522 2523 /* 2524 * If we are here within ip_min_frag_prune_time msecs remove 2525 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2526 * ill_frag_free_num_pkts. 2527 */ 2528 mutex_enter(&ill->ill_lock); 2529 now = ddi_get_lbolt(); 2530 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2531 (ip_min_frag_prune_time != 0 ? 2532 ip_min_frag_prune_time : msec_per_tick)) { 2533 2534 ill->ill_frag_free_num_pkts++; 2535 2536 } else { 2537 ill->ill_frag_free_num_pkts = 0; 2538 } 2539 ill->ill_last_frag_clean_time = now; 2540 mutex_exit(&ill->ill_lock); 2541 2542 /* 2543 * free ill_frag_free_num_pkts oldest packets from each bucket. 2544 */ 2545 if (ill->ill_frag_free_num_pkts != 0) { 2546 int ix; 2547 2548 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2549 ipfb = &ill->ill_frag_hash_tbl[ix]; 2550 mutex_enter(&ipfb->ipfb_lock); 2551 if (ipfb->ipfb_ipf != NULL) { 2552 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2553 ill->ill_frag_free_num_pkts); 2554 } 2555 mutex_exit(&ipfb->ipfb_lock); 2556 } 2557 } 2558 /* 2559 * While the reassembly list for this ILL is too big, prune a fragment 2560 * queue by age, oldest first. 2561 */ 2562 while (ill->ill_frag_count > max_count) { 2563 int ix; 2564 ipfb_t *oipfb = NULL; 2565 uint_t oldest = UINT_MAX; 2566 2567 count = 0; 2568 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2569 ipfb = &ill->ill_frag_hash_tbl[ix]; 2570 mutex_enter(&ipfb->ipfb_lock); 2571 ipf = ipfb->ipfb_ipf; 2572 if (ipf != NULL && ipf->ipf_gen < oldest) { 2573 oldest = ipf->ipf_gen; 2574 oipfb = ipfb; 2575 } 2576 count += ipfb->ipfb_count; 2577 mutex_exit(&ipfb->ipfb_lock); 2578 } 2579 if (oipfb == NULL) 2580 break; 2581 2582 if (count <= max_count) 2583 return; /* Somebody beat us to it, nothing to do */ 2584 mutex_enter(&oipfb->ipfb_lock); 2585 ipf = oipfb->ipfb_ipf; 2586 if (ipf != NULL) { 2587 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2588 } 2589 mutex_exit(&oipfb->ipfb_lock); 2590 } 2591 } 2592 2593 /* 2594 * free 'free_cnt' fragmented packets starting at ipf. 2595 */ 2596 void 2597 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2598 { 2599 size_t count; 2600 mblk_t *mp; 2601 mblk_t *tmp; 2602 ipf_t **ipfp = ipf->ipf_ptphn; 2603 2604 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2605 ASSERT(ipfp != NULL); 2606 ASSERT(ipf != NULL); 2607 2608 while (ipf != NULL && free_cnt-- > 0) { 2609 count = ipf->ipf_count; 2610 mp = ipf->ipf_mp; 2611 ipf = ipf->ipf_hash_next; 2612 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2613 IP_REASS_SET_START(tmp, 0); 2614 IP_REASS_SET_END(tmp, 0); 2615 } 2616 atomic_add_32(&ill->ill_frag_count, -count); 2617 ASSERT(ipfb->ipfb_count >= count); 2618 ipfb->ipfb_count -= count; 2619 ASSERT(ipfb->ipfb_frag_pkts > 0); 2620 ipfb->ipfb_frag_pkts--; 2621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2622 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2623 freemsg(mp); 2624 } 2625 2626 if (ipf) 2627 ipf->ipf_ptphn = ipfp; 2628 ipfp[0] = ipf; 2629 } 2630 2631 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2632 "obsolete and may be removed in a future release of Solaris. Use " \ 2633 "ifconfig(1M) to manipulate the forwarding status of an interface." 2634 2635 /* 2636 * For obsolete per-interface forwarding configuration; 2637 * called in response to ND_GET. 2638 */ 2639 /* ARGSUSED */ 2640 static int 2641 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2642 { 2643 ill_t *ill = (ill_t *)cp; 2644 2645 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2646 2647 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2648 return (0); 2649 } 2650 2651 /* 2652 * For obsolete per-interface forwarding configuration; 2653 * called in response to ND_SET. 2654 */ 2655 /* ARGSUSED */ 2656 static int 2657 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2658 cred_t *ioc_cr) 2659 { 2660 long value; 2661 int retval; 2662 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2663 2664 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2665 2666 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2667 value < 0 || value > 1) { 2668 return (EINVAL); 2669 } 2670 2671 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2672 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2673 rw_exit(&ipst->ips_ill_g_lock); 2674 return (retval); 2675 } 2676 2677 /* 2678 * Helper function for ill_forward_set(). 2679 */ 2680 static void 2681 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2682 { 2683 ip_stack_t *ipst = ill->ill_ipst; 2684 2685 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2686 2687 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2688 (enable ? "Enabling" : "Disabling"), 2689 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2690 mutex_enter(&ill->ill_lock); 2691 if (enable) 2692 ill->ill_flags |= ILLF_ROUTER; 2693 else 2694 ill->ill_flags &= ~ILLF_ROUTER; 2695 mutex_exit(&ill->ill_lock); 2696 if (ill->ill_isv6) 2697 ill_set_nce_router_flags(ill, enable); 2698 /* Notify routing socket listeners of this change. */ 2699 if (ill->ill_ipif != NULL) 2700 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2701 } 2702 2703 /* 2704 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2705 * socket messages for each interface whose flags we change. 2706 */ 2707 int 2708 ill_forward_set(ill_t *ill, boolean_t enable) 2709 { 2710 ipmp_illgrp_t *illg; 2711 ip_stack_t *ipst = ill->ill_ipst; 2712 2713 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2714 2715 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2716 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2717 return (0); 2718 2719 if (IS_LOOPBACK(ill)) 2720 return (EINVAL); 2721 2722 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2723 /* 2724 * Update all of the interfaces in the group. 2725 */ 2726 illg = ill->ill_grp; 2727 ill = list_head(&illg->ig_if); 2728 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2729 ill_forward_set_on_ill(ill, enable); 2730 2731 /* 2732 * Update the IPMP meta-interface. 2733 */ 2734 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2735 return (0); 2736 } 2737 2738 ill_forward_set_on_ill(ill, enable); 2739 return (0); 2740 } 2741 2742 /* 2743 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2744 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2745 * set or clear. 2746 */ 2747 static void 2748 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2749 { 2750 ipif_t *ipif; 2751 ncec_t *ncec; 2752 nce_t *nce; 2753 2754 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2755 /* 2756 * NOTE: we match across the illgrp because nce's for 2757 * addresses on IPMP interfaces have an nce_ill that points to 2758 * the bound underlying ill. 2759 */ 2760 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2761 if (nce != NULL) { 2762 ncec = nce->nce_common; 2763 mutex_enter(&ncec->ncec_lock); 2764 if (enable) 2765 ncec->ncec_flags |= NCE_F_ISROUTER; 2766 else 2767 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2768 mutex_exit(&ncec->ncec_lock); 2769 nce_refrele(nce); 2770 } 2771 } 2772 } 2773 2774 /* 2775 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2776 * for this ill. Make sure the v6/v4 question has been answered about this 2777 * ill. The creation of this ndd variable is only for backwards compatibility. 2778 * The preferred way to control per-interface IP forwarding is through the 2779 * ILLF_ROUTER interface flag. 2780 */ 2781 static int 2782 ill_set_ndd_name(ill_t *ill) 2783 { 2784 char *suffix; 2785 ip_stack_t *ipst = ill->ill_ipst; 2786 2787 ASSERT(IAM_WRITER_ILL(ill)); 2788 2789 if (ill->ill_isv6) 2790 suffix = ipv6_forward_suffix; 2791 else 2792 suffix = ipv4_forward_suffix; 2793 2794 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2795 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2796 /* 2797 * Copies over the '\0'. 2798 * Note that strlen(suffix) is always bounded. 2799 */ 2800 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2801 strlen(suffix) + 1); 2802 2803 /* 2804 * Use of the nd table requires holding the reader lock. 2805 * Modifying the nd table thru nd_load/nd_unload requires 2806 * the writer lock. 2807 */ 2808 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2809 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2810 nd_ill_forward_set, (caddr_t)ill)) { 2811 /* 2812 * If the nd_load failed, it only meant that it could not 2813 * allocate a new bunch of room for further NDD expansion. 2814 * Because of that, the ill_ndd_name will be set to 0, and 2815 * this interface is at the mercy of the global ip_forwarding 2816 * variable. 2817 */ 2818 rw_exit(&ipst->ips_ip_g_nd_lock); 2819 ill->ill_ndd_name = NULL; 2820 return (ENOMEM); 2821 } 2822 rw_exit(&ipst->ips_ip_g_nd_lock); 2823 return (0); 2824 } 2825 2826 /* 2827 * Intializes the context structure and returns the first ill in the list 2828 * cuurently start_list and end_list can have values: 2829 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2830 * IP_V4_G_HEAD Traverse IPV4 list only. 2831 * IP_V6_G_HEAD Traverse IPV6 list only. 2832 */ 2833 2834 /* 2835 * We don't check for CONDEMNED ills here. Caller must do that if 2836 * necessary under the ill lock. 2837 */ 2838 ill_t * 2839 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2840 ip_stack_t *ipst) 2841 { 2842 ill_if_t *ifp; 2843 ill_t *ill; 2844 avl_tree_t *avl_tree; 2845 2846 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2847 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2848 2849 /* 2850 * setup the lists to search 2851 */ 2852 if (end_list != MAX_G_HEADS) { 2853 ctx->ctx_current_list = start_list; 2854 ctx->ctx_last_list = end_list; 2855 } else { 2856 ctx->ctx_last_list = MAX_G_HEADS - 1; 2857 ctx->ctx_current_list = 0; 2858 } 2859 2860 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2861 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2862 if (ifp != (ill_if_t *) 2863 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2864 avl_tree = &ifp->illif_avl_by_ppa; 2865 ill = avl_first(avl_tree); 2866 /* 2867 * ill is guaranteed to be non NULL or ifp should have 2868 * not existed. 2869 */ 2870 ASSERT(ill != NULL); 2871 return (ill); 2872 } 2873 ctx->ctx_current_list++; 2874 } 2875 2876 return (NULL); 2877 } 2878 2879 /* 2880 * returns the next ill in the list. ill_first() must have been called 2881 * before calling ill_next() or bad things will happen. 2882 */ 2883 2884 /* 2885 * We don't check for CONDEMNED ills here. Caller must do that if 2886 * necessary under the ill lock. 2887 */ 2888 ill_t * 2889 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2890 { 2891 ill_if_t *ifp; 2892 ill_t *ill; 2893 ip_stack_t *ipst = lastill->ill_ipst; 2894 2895 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2896 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2897 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2898 AVL_AFTER)) != NULL) { 2899 return (ill); 2900 } 2901 2902 /* goto next ill_ifp in the list. */ 2903 ifp = lastill->ill_ifptr->illif_next; 2904 2905 /* make sure not at end of circular list */ 2906 while (ifp == 2907 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2908 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2909 return (NULL); 2910 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2911 } 2912 2913 return (avl_first(&ifp->illif_avl_by_ppa)); 2914 } 2915 2916 /* 2917 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2918 * The final number (PPA) must not have any leading zeros. Upon success, a 2919 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2920 */ 2921 static char * 2922 ill_get_ppa_ptr(char *name) 2923 { 2924 int namelen = strlen(name); 2925 int end_ndx = namelen - 1; 2926 int ppa_ndx, i; 2927 2928 /* 2929 * Check that the first character is [a-zA-Z], and that the last 2930 * character is [0-9]. 2931 */ 2932 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2933 return (NULL); 2934 2935 /* 2936 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2937 */ 2938 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2939 if (!isdigit(name[ppa_ndx - 1])) 2940 break; 2941 2942 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2943 return (NULL); 2944 2945 /* 2946 * Check that the intermediate characters are [a-z0-9.] 2947 */ 2948 for (i = 1; i < ppa_ndx; i++) { 2949 if (!isalpha(name[i]) && !isdigit(name[i]) && 2950 name[i] != '.' && name[i] != '_') { 2951 return (NULL); 2952 } 2953 } 2954 2955 return (name + ppa_ndx); 2956 } 2957 2958 /* 2959 * use avl tree to locate the ill. 2960 */ 2961 static ill_t * 2962 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2963 { 2964 char *ppa_ptr = NULL; 2965 int len; 2966 uint_t ppa; 2967 ill_t *ill = NULL; 2968 ill_if_t *ifp; 2969 int list; 2970 2971 /* 2972 * get ppa ptr 2973 */ 2974 if (isv6) 2975 list = IP_V6_G_HEAD; 2976 else 2977 list = IP_V4_G_HEAD; 2978 2979 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2980 return (NULL); 2981 } 2982 2983 len = ppa_ptr - name + 1; 2984 2985 ppa = stoi(&ppa_ptr); 2986 2987 ifp = IP_VX_ILL_G_LIST(list, ipst); 2988 2989 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2990 /* 2991 * match is done on len - 1 as the name is not null 2992 * terminated it contains ppa in addition to the interface 2993 * name. 2994 */ 2995 if ((ifp->illif_name_len == len) && 2996 bcmp(ifp->illif_name, name, len - 1) == 0) { 2997 break; 2998 } else { 2999 ifp = ifp->illif_next; 3000 } 3001 } 3002 3003 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3004 /* 3005 * Even the interface type does not exist. 3006 */ 3007 return (NULL); 3008 } 3009 3010 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 3011 if (ill != NULL) { 3012 mutex_enter(&ill->ill_lock); 3013 if (ILL_CAN_LOOKUP(ill)) { 3014 ill_refhold_locked(ill); 3015 mutex_exit(&ill->ill_lock); 3016 return (ill); 3017 } 3018 mutex_exit(&ill->ill_lock); 3019 } 3020 return (NULL); 3021 } 3022 3023 /* 3024 * comparison function for use with avl. 3025 */ 3026 static int 3027 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 3028 { 3029 uint_t ppa; 3030 uint_t ill_ppa; 3031 3032 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 3033 3034 ppa = *((uint_t *)ppa_ptr); 3035 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 3036 /* 3037 * We want the ill with the lowest ppa to be on the 3038 * top. 3039 */ 3040 if (ill_ppa < ppa) 3041 return (1); 3042 if (ill_ppa > ppa) 3043 return (-1); 3044 return (0); 3045 } 3046 3047 /* 3048 * remove an interface type from the global list. 3049 */ 3050 static void 3051 ill_delete_interface_type(ill_if_t *interface) 3052 { 3053 ASSERT(interface != NULL); 3054 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 3055 3056 avl_destroy(&interface->illif_avl_by_ppa); 3057 if (interface->illif_ppa_arena != NULL) 3058 vmem_destroy(interface->illif_ppa_arena); 3059 3060 remque(interface); 3061 3062 mi_free(interface); 3063 } 3064 3065 /* 3066 * remove ill from the global list. 3067 */ 3068 static void 3069 ill_glist_delete(ill_t *ill) 3070 { 3071 ip_stack_t *ipst; 3072 phyint_t *phyi; 3073 3074 if (ill == NULL) 3075 return; 3076 ipst = ill->ill_ipst; 3077 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3078 3079 /* 3080 * If the ill was never inserted into the AVL tree 3081 * we skip the if branch. 3082 */ 3083 if (ill->ill_ifptr != NULL) { 3084 /* 3085 * remove from AVL tree and free ppa number 3086 */ 3087 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3088 3089 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3090 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3091 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3092 } 3093 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3094 ill_delete_interface_type(ill->ill_ifptr); 3095 } 3096 3097 /* 3098 * Indicate ill is no longer in the list. 3099 */ 3100 ill->ill_ifptr = NULL; 3101 ill->ill_name_length = 0; 3102 ill->ill_name[0] = '\0'; 3103 ill->ill_ppa = UINT_MAX; 3104 } 3105 3106 /* Generate one last event for this ill. */ 3107 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3108 ill->ill_name_length); 3109 3110 ASSERT(ill->ill_phyint != NULL); 3111 phyi = ill->ill_phyint; 3112 ill->ill_phyint = NULL; 3113 3114 /* 3115 * ill_init allocates a phyint always to store the copy 3116 * of flags relevant to phyint. At that point in time, we could 3117 * not assign the name and hence phyint_illv4/v6 could not be 3118 * initialized. Later in ipif_set_values, we assign the name to 3119 * the ill, at which point in time we assign phyint_illv4/v6. 3120 * Thus we don't rely on phyint_illv6 to be initialized always. 3121 */ 3122 if (ill->ill_flags & ILLF_IPV6) 3123 phyi->phyint_illv6 = NULL; 3124 else 3125 phyi->phyint_illv4 = NULL; 3126 3127 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3128 rw_exit(&ipst->ips_ill_g_lock); 3129 return; 3130 } 3131 3132 /* 3133 * There are no ills left on this phyint; pull it out of the phyint 3134 * avl trees, and free it. 3135 */ 3136 if (phyi->phyint_ifindex > 0) { 3137 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3138 phyi); 3139 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3140 phyi); 3141 } 3142 rw_exit(&ipst->ips_ill_g_lock); 3143 3144 phyint_free(phyi); 3145 } 3146 3147 /* 3148 * allocate a ppa, if the number of plumbed interfaces of this type are 3149 * less than ill_no_arena do a linear search to find a unused ppa. 3150 * When the number goes beyond ill_no_arena switch to using an arena. 3151 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3152 * is the return value for an error condition, so allocation starts at one 3153 * and is decremented by one. 3154 */ 3155 static int 3156 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3157 { 3158 ill_t *tmp_ill; 3159 uint_t start, end; 3160 int ppa; 3161 3162 if (ifp->illif_ppa_arena == NULL && 3163 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3164 /* 3165 * Create an arena. 3166 */ 3167 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3168 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3169 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3170 /* allocate what has already been assigned */ 3171 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3172 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3173 tmp_ill, AVL_AFTER)) { 3174 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3175 1, /* size */ 3176 1, /* align/quantum */ 3177 0, /* phase */ 3178 0, /* nocross */ 3179 /* minaddr */ 3180 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3181 /* maxaddr */ 3182 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3183 VM_NOSLEEP|VM_FIRSTFIT); 3184 if (ppa == 0) { 3185 ip1dbg(("ill_alloc_ppa: ppa allocation" 3186 " failed while switching")); 3187 vmem_destroy(ifp->illif_ppa_arena); 3188 ifp->illif_ppa_arena = NULL; 3189 break; 3190 } 3191 } 3192 } 3193 3194 if (ifp->illif_ppa_arena != NULL) { 3195 if (ill->ill_ppa == UINT_MAX) { 3196 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3197 1, VM_NOSLEEP|VM_FIRSTFIT); 3198 if (ppa == 0) 3199 return (EAGAIN); 3200 ill->ill_ppa = --ppa; 3201 } else { 3202 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3203 1, /* size */ 3204 1, /* align/quantum */ 3205 0, /* phase */ 3206 0, /* nocross */ 3207 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3208 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3209 VM_NOSLEEP|VM_FIRSTFIT); 3210 /* 3211 * Most likely the allocation failed because 3212 * the requested ppa was in use. 3213 */ 3214 if (ppa == 0) 3215 return (EEXIST); 3216 } 3217 return (0); 3218 } 3219 3220 /* 3221 * No arena is in use and not enough (>ill_no_arena) interfaces have 3222 * been plumbed to create one. Do a linear search to get a unused ppa. 3223 */ 3224 if (ill->ill_ppa == UINT_MAX) { 3225 end = UINT_MAX - 1; 3226 start = 0; 3227 } else { 3228 end = start = ill->ill_ppa; 3229 } 3230 3231 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3232 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3233 if (start++ >= end) { 3234 if (ill->ill_ppa == UINT_MAX) 3235 return (EAGAIN); 3236 else 3237 return (EEXIST); 3238 } 3239 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3240 } 3241 ill->ill_ppa = start; 3242 return (0); 3243 } 3244 3245 /* 3246 * Insert ill into the list of configured ill's. Once this function completes, 3247 * the ill is globally visible and is available through lookups. More precisely 3248 * this happens after the caller drops the ill_g_lock. 3249 */ 3250 static int 3251 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3252 { 3253 ill_if_t *ill_interface; 3254 avl_index_t where = 0; 3255 int error; 3256 int name_length; 3257 int index; 3258 boolean_t check_length = B_FALSE; 3259 ip_stack_t *ipst = ill->ill_ipst; 3260 3261 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3262 3263 name_length = mi_strlen(name) + 1; 3264 3265 if (isv6) 3266 index = IP_V6_G_HEAD; 3267 else 3268 index = IP_V4_G_HEAD; 3269 3270 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3271 /* 3272 * Search for interface type based on name 3273 */ 3274 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3275 if ((ill_interface->illif_name_len == name_length) && 3276 (strcmp(ill_interface->illif_name, name) == 0)) { 3277 break; 3278 } 3279 ill_interface = ill_interface->illif_next; 3280 } 3281 3282 /* 3283 * Interface type not found, create one. 3284 */ 3285 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3286 ill_g_head_t ghead; 3287 3288 /* 3289 * allocate ill_if_t structure 3290 */ 3291 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3292 if (ill_interface == NULL) { 3293 return (ENOMEM); 3294 } 3295 3296 (void) strcpy(ill_interface->illif_name, name); 3297 ill_interface->illif_name_len = name_length; 3298 3299 avl_create(&ill_interface->illif_avl_by_ppa, 3300 ill_compare_ppa, sizeof (ill_t), 3301 offsetof(struct ill_s, ill_avl_byppa)); 3302 3303 /* 3304 * link the structure in the back to maintain order 3305 * of configuration for ifconfig output. 3306 */ 3307 ghead = ipst->ips_ill_g_heads[index]; 3308 insque(ill_interface, ghead.ill_g_list_tail); 3309 } 3310 3311 if (ill->ill_ppa == UINT_MAX) 3312 check_length = B_TRUE; 3313 3314 error = ill_alloc_ppa(ill_interface, ill); 3315 if (error != 0) { 3316 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3317 ill_delete_interface_type(ill->ill_ifptr); 3318 return (error); 3319 } 3320 3321 /* 3322 * When the ppa is choosen by the system, check that there is 3323 * enough space to insert ppa. if a specific ppa was passed in this 3324 * check is not required as the interface name passed in will have 3325 * the right ppa in it. 3326 */ 3327 if (check_length) { 3328 /* 3329 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3330 */ 3331 char buf[sizeof (uint_t) * 3]; 3332 3333 /* 3334 * convert ppa to string to calculate the amount of space 3335 * required for it in the name. 3336 */ 3337 numtos(ill->ill_ppa, buf); 3338 3339 /* Do we have enough space to insert ppa ? */ 3340 3341 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3342 /* Free ppa and interface type struct */ 3343 if (ill_interface->illif_ppa_arena != NULL) { 3344 vmem_free(ill_interface->illif_ppa_arena, 3345 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3346 } 3347 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3348 ill_delete_interface_type(ill->ill_ifptr); 3349 3350 return (EINVAL); 3351 } 3352 } 3353 3354 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3355 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3356 3357 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3358 &where); 3359 ill->ill_ifptr = ill_interface; 3360 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3361 3362 ill_phyint_reinit(ill); 3363 return (0); 3364 } 3365 3366 /* Initialize the per phyint ipsq used for serialization */ 3367 static boolean_t 3368 ipsq_init(ill_t *ill, boolean_t enter) 3369 { 3370 ipsq_t *ipsq; 3371 ipxop_t *ipx; 3372 3373 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3374 return (B_FALSE); 3375 3376 ill->ill_phyint->phyint_ipsq = ipsq; 3377 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3378 ipx->ipx_ipsq = ipsq; 3379 ipsq->ipsq_next = ipsq; 3380 ipsq->ipsq_phyint = ill->ill_phyint; 3381 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3382 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3383 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3384 if (enter) { 3385 ipx->ipx_writer = curthread; 3386 ipx->ipx_forced = B_FALSE; 3387 ipx->ipx_reentry_cnt = 1; 3388 #ifdef DEBUG 3389 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3390 #endif 3391 } 3392 return (B_TRUE); 3393 } 3394 3395 /* 3396 * ill_init is called by ip_open when a device control stream is opened. 3397 * It does a few initializations, and shoots a DL_INFO_REQ message down 3398 * to the driver. The response is later picked up in ip_rput_dlpi and 3399 * used to set up default mechanisms for talking to the driver. (Always 3400 * called as writer.) 3401 * 3402 * If this function returns error, ip_open will call ip_close which in 3403 * turn will call ill_delete to clean up any memory allocated here that 3404 * is not yet freed. 3405 */ 3406 int 3407 ill_init(queue_t *q, ill_t *ill) 3408 { 3409 int count; 3410 dl_info_req_t *dlir; 3411 mblk_t *info_mp; 3412 uchar_t *frag_ptr; 3413 3414 /* 3415 * The ill is initialized to zero by mi_alloc*(). In addition 3416 * some fields already contain valid values, initialized in 3417 * ip_open(), before we reach here. 3418 */ 3419 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3420 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3421 ill->ill_saved_ire_cnt = 0; 3422 3423 ill->ill_rq = q; 3424 ill->ill_wq = WR(q); 3425 3426 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3427 BPRI_HI); 3428 if (info_mp == NULL) 3429 return (ENOMEM); 3430 3431 /* 3432 * Allocate sufficient space to contain our fragment hash table and 3433 * the device name. 3434 */ 3435 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3436 2 * LIFNAMSIZ + strlen(ipv6_forward_suffix)); 3437 if (frag_ptr == NULL) { 3438 freemsg(info_mp); 3439 return (ENOMEM); 3440 } 3441 ill->ill_frag_ptr = frag_ptr; 3442 ill->ill_frag_free_num_pkts = 0; 3443 ill->ill_last_frag_clean_time = 0; 3444 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3445 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3446 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3447 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3448 NULL, MUTEX_DEFAULT, NULL); 3449 } 3450 3451 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3452 if (ill->ill_phyint == NULL) { 3453 freemsg(info_mp); 3454 mi_free(frag_ptr); 3455 return (ENOMEM); 3456 } 3457 3458 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3459 /* 3460 * For now pretend this is a v4 ill. We need to set phyint_ill* 3461 * at this point because of the following reason. If we can't 3462 * enter the ipsq at some point and cv_wait, the writer that 3463 * wakes us up tries to locate us using the list of all phyints 3464 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3465 * If we don't set it now, we risk a missed wakeup. 3466 */ 3467 ill->ill_phyint->phyint_illv4 = ill; 3468 ill->ill_ppa = UINT_MAX; 3469 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3470 3471 ill_set_inputfn(ill); 3472 3473 if (!ipsq_init(ill, B_TRUE)) { 3474 freemsg(info_mp); 3475 mi_free(frag_ptr); 3476 mi_free(ill->ill_phyint); 3477 return (ENOMEM); 3478 } 3479 3480 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3481 3482 /* Frag queue limit stuff */ 3483 ill->ill_frag_count = 0; 3484 ill->ill_ipf_gen = 0; 3485 3486 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3487 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3488 ill->ill_global_timer = INFINITY; 3489 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3490 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3491 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3492 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3493 3494 /* 3495 * Initialize IPv6 configuration variables. The IP module is always 3496 * opened as an IPv4 module. Instead tracking down the cases where 3497 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3498 * here for convenience, this has no effect until the ill is set to do 3499 * IPv6. 3500 */ 3501 ill->ill_reachable_time = ND_REACHABLE_TIME; 3502 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3503 ill->ill_max_buf = ND_MAX_Q; 3504 ill->ill_refcnt = 0; 3505 3506 /* Send down the Info Request to the driver. */ 3507 info_mp->b_datap->db_type = M_PCPROTO; 3508 dlir = (dl_info_req_t *)info_mp->b_rptr; 3509 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3510 dlir->dl_primitive = DL_INFO_REQ; 3511 3512 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3513 3514 qprocson(q); 3515 ill_dlpi_send(ill, info_mp); 3516 3517 return (0); 3518 } 3519 3520 /* 3521 * ill_dls_info 3522 * creates datalink socket info from the device. 3523 */ 3524 int 3525 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3526 { 3527 size_t len; 3528 3529 sdl->sdl_family = AF_LINK; 3530 sdl->sdl_index = ill_get_upper_ifindex(ill); 3531 sdl->sdl_type = ill->ill_type; 3532 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3533 len = strlen(sdl->sdl_data); 3534 ASSERT(len < 256); 3535 sdl->sdl_nlen = (uchar_t)len; 3536 sdl->sdl_alen = ill->ill_phys_addr_length; 3537 sdl->sdl_slen = 0; 3538 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3539 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3540 3541 return (sizeof (struct sockaddr_dl)); 3542 } 3543 3544 /* 3545 * ill_xarp_info 3546 * creates xarp info from the device. 3547 */ 3548 static int 3549 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3550 { 3551 sdl->sdl_family = AF_LINK; 3552 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3553 sdl->sdl_type = ill->ill_type; 3554 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3555 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3556 sdl->sdl_alen = ill->ill_phys_addr_length; 3557 sdl->sdl_slen = 0; 3558 return (sdl->sdl_nlen); 3559 } 3560 3561 static int 3562 loopback_kstat_update(kstat_t *ksp, int rw) 3563 { 3564 kstat_named_t *kn; 3565 netstackid_t stackid; 3566 netstack_t *ns; 3567 ip_stack_t *ipst; 3568 3569 if (ksp == NULL || ksp->ks_data == NULL) 3570 return (EIO); 3571 3572 if (rw == KSTAT_WRITE) 3573 return (EACCES); 3574 3575 kn = KSTAT_NAMED_PTR(ksp); 3576 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3577 3578 ns = netstack_find_by_stackid(stackid); 3579 if (ns == NULL) 3580 return (-1); 3581 3582 ipst = ns->netstack_ip; 3583 if (ipst == NULL) { 3584 netstack_rele(ns); 3585 return (-1); 3586 } 3587 kn[0].value.ui32 = ipst->ips_loopback_packets; 3588 kn[1].value.ui32 = ipst->ips_loopback_packets; 3589 netstack_rele(ns); 3590 return (0); 3591 } 3592 3593 /* 3594 * Has ifindex been plumbed already? 3595 */ 3596 static boolean_t 3597 phyint_exists(uint_t index, ip_stack_t *ipst) 3598 { 3599 ASSERT(index != 0); 3600 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3601 3602 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3603 &index, NULL) != NULL); 3604 } 3605 3606 /* Pick a unique ifindex */ 3607 boolean_t 3608 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3609 { 3610 uint_t starting_index; 3611 3612 if (!ipst->ips_ill_index_wrap) { 3613 *indexp = ipst->ips_ill_index++; 3614 if (ipst->ips_ill_index == 0) { 3615 /* Reached the uint_t limit Next time wrap */ 3616 ipst->ips_ill_index_wrap = B_TRUE; 3617 } 3618 return (B_TRUE); 3619 } 3620 3621 /* 3622 * Start reusing unused indexes. Note that we hold the ill_g_lock 3623 * at this point and don't want to call any function that attempts 3624 * to get the lock again. 3625 */ 3626 starting_index = ipst->ips_ill_index++; 3627 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3628 if (ipst->ips_ill_index != 0 && 3629 !phyint_exists(ipst->ips_ill_index, ipst)) { 3630 /* found unused index - use it */ 3631 *indexp = ipst->ips_ill_index; 3632 return (B_TRUE); 3633 } 3634 } 3635 3636 /* 3637 * all interface indicies are inuse. 3638 */ 3639 return (B_FALSE); 3640 } 3641 3642 /* 3643 * Assign a unique interface index for the phyint. 3644 */ 3645 static boolean_t 3646 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3647 { 3648 ASSERT(phyi->phyint_ifindex == 0); 3649 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3650 } 3651 3652 /* 3653 * Initialize the flags on `phyi' as per the provided mactype. 3654 */ 3655 static void 3656 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3657 { 3658 uint64_t flags = 0; 3659 3660 /* 3661 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3662 * we always presume the underlying hardware is working and set 3663 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3664 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3665 * there are no active interfaces in the group so we set PHYI_FAILED. 3666 */ 3667 if (mactype == SUNW_DL_IPMP) 3668 flags |= PHYI_FAILED; 3669 else 3670 flags |= PHYI_RUNNING; 3671 3672 switch (mactype) { 3673 case SUNW_DL_VNI: 3674 flags |= PHYI_VIRTUAL; 3675 break; 3676 case SUNW_DL_IPMP: 3677 flags |= PHYI_IPMP; 3678 break; 3679 case DL_LOOP: 3680 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3681 break; 3682 } 3683 3684 mutex_enter(&phyi->phyint_lock); 3685 phyi->phyint_flags |= flags; 3686 mutex_exit(&phyi->phyint_lock); 3687 } 3688 3689 /* 3690 * Return a pointer to the ill which matches the supplied name. Note that 3691 * the ill name length includes the null termination character. (May be 3692 * called as writer.) 3693 * If do_alloc and the interface is "lo0" it will be automatically created. 3694 * Cannot bump up reference on condemned ills. So dup detect can't be done 3695 * using this func. 3696 */ 3697 ill_t * 3698 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3699 boolean_t *did_alloc, ip_stack_t *ipst) 3700 { 3701 ill_t *ill; 3702 ipif_t *ipif; 3703 ipsq_t *ipsq; 3704 kstat_named_t *kn; 3705 boolean_t isloopback; 3706 in6_addr_t ov6addr; 3707 3708 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3709 3710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3711 ill = ill_find_by_name(name, isv6, ipst); 3712 rw_exit(&ipst->ips_ill_g_lock); 3713 if (ill != NULL) 3714 return (ill); 3715 3716 /* 3717 * Couldn't find it. Does this happen to be a lookup for the 3718 * loopback device and are we allowed to allocate it? 3719 */ 3720 if (!isloopback || !do_alloc) 3721 return (NULL); 3722 3723 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3724 ill = ill_find_by_name(name, isv6, ipst); 3725 if (ill != NULL) { 3726 rw_exit(&ipst->ips_ill_g_lock); 3727 return (ill); 3728 } 3729 3730 /* Create the loopback device on demand */ 3731 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3732 sizeof (ipif_loopback_name), BPRI_MED)); 3733 if (ill == NULL) 3734 goto done; 3735 3736 *ill = ill_null; 3737 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3738 ill->ill_ipst = ipst; 3739 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3740 netstack_hold(ipst->ips_netstack); 3741 /* 3742 * For exclusive stacks we set the zoneid to zero 3743 * to make IP operate as if in the global zone. 3744 */ 3745 ill->ill_zoneid = GLOBAL_ZONEID; 3746 3747 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3748 if (ill->ill_phyint == NULL) 3749 goto done; 3750 3751 if (isv6) 3752 ill->ill_phyint->phyint_illv6 = ill; 3753 else 3754 ill->ill_phyint->phyint_illv4 = ill; 3755 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3756 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3757 3758 if (isv6) { 3759 ill->ill_isv6 = B_TRUE; 3760 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3761 } else { 3762 ill->ill_max_frag = ip_loopback_mtuplus; 3763 } 3764 if (!ill_allocate_mibs(ill)) 3765 goto done; 3766 ill->ill_current_frag = ill->ill_max_frag; 3767 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3768 /* 3769 * ipif_loopback_name can't be pointed at directly because its used 3770 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3771 * from the glist, ill_glist_delete() sets the first character of 3772 * ill_name to '\0'. 3773 */ 3774 ill->ill_name = (char *)ill + sizeof (*ill); 3775 (void) strcpy(ill->ill_name, ipif_loopback_name); 3776 ill->ill_name_length = sizeof (ipif_loopback_name); 3777 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3778 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3779 3780 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3781 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3782 ill->ill_global_timer = INFINITY; 3783 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3784 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3785 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3786 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3787 3788 /* No resolver here. */ 3789 ill->ill_net_type = IRE_LOOPBACK; 3790 3791 /* Initialize the ipsq */ 3792 if (!ipsq_init(ill, B_FALSE)) 3793 goto done; 3794 3795 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3796 if (ipif == NULL) 3797 goto done; 3798 3799 ill->ill_flags = ILLF_MULTICAST; 3800 3801 ov6addr = ipif->ipif_v6lcl_addr; 3802 /* Set up default loopback address and mask. */ 3803 if (!isv6) { 3804 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3805 3806 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3807 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3808 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3809 ipif->ipif_v6subnet); 3810 ill->ill_flags |= ILLF_IPV4; 3811 } else { 3812 ipif->ipif_v6lcl_addr = ipv6_loopback; 3813 ipif->ipif_v6net_mask = ipv6_all_ones; 3814 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3815 ipif->ipif_v6subnet); 3816 ill->ill_flags |= ILLF_IPV6; 3817 } 3818 3819 /* 3820 * Chain us in at the end of the ill list. hold the ill 3821 * before we make it globally visible. 1 for the lookup. 3822 */ 3823 ill->ill_refcnt = 0; 3824 ill_refhold(ill); 3825 3826 ill->ill_frag_count = 0; 3827 ill->ill_frag_free_num_pkts = 0; 3828 ill->ill_last_frag_clean_time = 0; 3829 3830 ipsq = ill->ill_phyint->phyint_ipsq; 3831 3832 ill_set_inputfn(ill); 3833 3834 if (ill_glist_insert(ill, "lo", isv6) != 0) 3835 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3836 3837 /* Let SCTP know so that it can add this to its list */ 3838 sctp_update_ill(ill, SCTP_ILL_INSERT); 3839 3840 /* 3841 * We have already assigned ipif_v6lcl_addr above, but we need to 3842 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3843 * requires to be after ill_glist_insert() since we need the 3844 * ill_index set. Pass on ipv6_loopback as the old address. 3845 */ 3846 sctp_update_ipif_addr(ipif, ov6addr); 3847 3848 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3849 3850 /* 3851 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3852 * If so, free our original one. 3853 */ 3854 if (ipsq != ill->ill_phyint->phyint_ipsq) 3855 ipsq_delete(ipsq); 3856 3857 if (ipst->ips_loopback_ksp == NULL) { 3858 /* Export loopback interface statistics */ 3859 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3860 ipif_loopback_name, "net", 3861 KSTAT_TYPE_NAMED, 2, 0, 3862 ipst->ips_netstack->netstack_stackid); 3863 if (ipst->ips_loopback_ksp != NULL) { 3864 ipst->ips_loopback_ksp->ks_update = 3865 loopback_kstat_update; 3866 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3867 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3868 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3869 ipst->ips_loopback_ksp->ks_private = 3870 (void *)(uintptr_t)ipst->ips_netstack-> 3871 netstack_stackid; 3872 kstat_install(ipst->ips_loopback_ksp); 3873 } 3874 } 3875 3876 *did_alloc = B_TRUE; 3877 rw_exit(&ipst->ips_ill_g_lock); 3878 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3879 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3880 return (ill); 3881 done: 3882 if (ill != NULL) { 3883 if (ill->ill_phyint != NULL) { 3884 ipsq = ill->ill_phyint->phyint_ipsq; 3885 if (ipsq != NULL) { 3886 ipsq->ipsq_phyint = NULL; 3887 ipsq_delete(ipsq); 3888 } 3889 mi_free(ill->ill_phyint); 3890 } 3891 ill_free_mib(ill); 3892 if (ill->ill_ipst != NULL) 3893 netstack_rele(ill->ill_ipst->ips_netstack); 3894 mi_free(ill); 3895 } 3896 rw_exit(&ipst->ips_ill_g_lock); 3897 return (NULL); 3898 } 3899 3900 /* 3901 * For IPP calls - use the ip_stack_t for global stack. 3902 */ 3903 ill_t * 3904 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3905 { 3906 ip_stack_t *ipst; 3907 ill_t *ill; 3908 3909 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3910 if (ipst == NULL) { 3911 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3912 return (NULL); 3913 } 3914 3915 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3916 netstack_rele(ipst->ips_netstack); 3917 return (ill); 3918 } 3919 3920 /* 3921 * Return a pointer to the ill which matches the index and IP version type. 3922 */ 3923 ill_t * 3924 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3925 { 3926 ill_t *ill; 3927 phyint_t *phyi; 3928 3929 /* 3930 * Indexes are stored in the phyint - a common structure 3931 * to both IPv4 and IPv6. 3932 */ 3933 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3934 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3935 (void *) &index, NULL); 3936 if (phyi != NULL) { 3937 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3938 if (ill != NULL) { 3939 mutex_enter(&ill->ill_lock); 3940 if (!ILL_IS_CONDEMNED(ill)) { 3941 ill_refhold_locked(ill); 3942 mutex_exit(&ill->ill_lock); 3943 rw_exit(&ipst->ips_ill_g_lock); 3944 return (ill); 3945 } 3946 mutex_exit(&ill->ill_lock); 3947 } 3948 } 3949 rw_exit(&ipst->ips_ill_g_lock); 3950 return (NULL); 3951 } 3952 3953 /* 3954 * Verify whether or not an interface index is valid for the specified zoneid 3955 * to transmit packets. 3956 * It can be zero (meaning "reset") or an interface index assigned 3957 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3958 */ 3959 boolean_t 3960 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3961 ip_stack_t *ipst) 3962 { 3963 ill_t *ill; 3964 3965 if (ifindex == 0) 3966 return (B_TRUE); 3967 3968 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3969 if (ill == NULL) 3970 return (B_FALSE); 3971 if (IS_VNI(ill)) { 3972 ill_refrele(ill); 3973 return (B_FALSE); 3974 } 3975 ill_refrele(ill); 3976 return (B_TRUE); 3977 } 3978 3979 /* 3980 * Return the ifindex next in sequence after the passed in ifindex. 3981 * If there is no next ifindex for the given protocol, return 0. 3982 */ 3983 uint_t 3984 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3985 { 3986 phyint_t *phyi; 3987 phyint_t *phyi_initial; 3988 uint_t ifindex; 3989 3990 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3991 3992 if (index == 0) { 3993 phyi = avl_first( 3994 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3995 } else { 3996 phyi = phyi_initial = avl_find( 3997 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3998 (void *) &index, NULL); 3999 } 4000 4001 for (; phyi != NULL; 4002 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4003 phyi, AVL_AFTER)) { 4004 /* 4005 * If we're not returning the first interface in the tree 4006 * and we still haven't moved past the phyint_t that 4007 * corresponds to index, avl_walk needs to be called again 4008 */ 4009 if (!((index != 0) && (phyi == phyi_initial))) { 4010 if (isv6) { 4011 if ((phyi->phyint_illv6) && 4012 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 4013 (phyi->phyint_illv6->ill_isv6 == 1)) 4014 break; 4015 } else { 4016 if ((phyi->phyint_illv4) && 4017 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 4018 (phyi->phyint_illv4->ill_isv6 == 0)) 4019 break; 4020 } 4021 } 4022 } 4023 4024 rw_exit(&ipst->ips_ill_g_lock); 4025 4026 if (phyi != NULL) 4027 ifindex = phyi->phyint_ifindex; 4028 else 4029 ifindex = 0; 4030 4031 return (ifindex); 4032 } 4033 4034 /* 4035 * Return the ifindex for the named interface. 4036 * If there is no next ifindex for the interface, return 0. 4037 */ 4038 uint_t 4039 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 4040 { 4041 phyint_t *phyi; 4042 avl_index_t where = 0; 4043 uint_t ifindex; 4044 4045 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4046 4047 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4048 name, &where)) == NULL) { 4049 rw_exit(&ipst->ips_ill_g_lock); 4050 return (0); 4051 } 4052 4053 ifindex = phyi->phyint_ifindex; 4054 4055 rw_exit(&ipst->ips_ill_g_lock); 4056 4057 return (ifindex); 4058 } 4059 4060 /* 4061 * Return the ifindex to be used by upper layer protocols for instance 4062 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4063 */ 4064 uint_t 4065 ill_get_upper_ifindex(const ill_t *ill) 4066 { 4067 if (IS_UNDER_IPMP(ill)) 4068 return (ipmp_ill_get_ipmp_ifindex(ill)); 4069 else 4070 return (ill->ill_phyint->phyint_ifindex); 4071 } 4072 4073 4074 /* 4075 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4076 * that gives a running thread a reference to the ill. This reference must be 4077 * released by the thread when it is done accessing the ill and related 4078 * objects. ill_refcnt can not be used to account for static references 4079 * such as other structures pointing to an ill. Callers must generally 4080 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4081 * or be sure that the ill is not being deleted or changing state before 4082 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4083 * ill won't change any of its critical state such as address, netmask etc. 4084 */ 4085 void 4086 ill_refhold(ill_t *ill) 4087 { 4088 mutex_enter(&ill->ill_lock); 4089 ill->ill_refcnt++; 4090 ILL_TRACE_REF(ill); 4091 mutex_exit(&ill->ill_lock); 4092 } 4093 4094 void 4095 ill_refhold_locked(ill_t *ill) 4096 { 4097 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4098 ill->ill_refcnt++; 4099 ILL_TRACE_REF(ill); 4100 } 4101 4102 /* Returns true if we managed to get a refhold */ 4103 boolean_t 4104 ill_check_and_refhold(ill_t *ill) 4105 { 4106 mutex_enter(&ill->ill_lock); 4107 if (!ILL_IS_CONDEMNED(ill)) { 4108 ill_refhold_locked(ill); 4109 mutex_exit(&ill->ill_lock); 4110 return (B_TRUE); 4111 } 4112 mutex_exit(&ill->ill_lock); 4113 return (B_FALSE); 4114 } 4115 4116 /* 4117 * Must not be called while holding any locks. Otherwise if this is 4118 * the last reference to be released, there is a chance of recursive mutex 4119 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4120 * to restart an ioctl. 4121 */ 4122 void 4123 ill_refrele(ill_t *ill) 4124 { 4125 mutex_enter(&ill->ill_lock); 4126 ASSERT(ill->ill_refcnt != 0); 4127 ill->ill_refcnt--; 4128 ILL_UNTRACE_REF(ill); 4129 if (ill->ill_refcnt != 0) { 4130 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4131 mutex_exit(&ill->ill_lock); 4132 return; 4133 } 4134 4135 /* Drops the ill_lock */ 4136 ipif_ill_refrele_tail(ill); 4137 } 4138 4139 /* 4140 * Obtain a weak reference count on the ill. This reference ensures the 4141 * ill won't be freed, but the ill may change any of its critical state 4142 * such as netmask, address etc. Returns an error if the ill has started 4143 * closing. 4144 */ 4145 boolean_t 4146 ill_waiter_inc(ill_t *ill) 4147 { 4148 mutex_enter(&ill->ill_lock); 4149 if (ill->ill_state_flags & ILL_CONDEMNED) { 4150 mutex_exit(&ill->ill_lock); 4151 return (B_FALSE); 4152 } 4153 ill->ill_waiters++; 4154 mutex_exit(&ill->ill_lock); 4155 return (B_TRUE); 4156 } 4157 4158 void 4159 ill_waiter_dcr(ill_t *ill) 4160 { 4161 mutex_enter(&ill->ill_lock); 4162 ill->ill_waiters--; 4163 if (ill->ill_waiters == 0) 4164 cv_broadcast(&ill->ill_cv); 4165 mutex_exit(&ill->ill_lock); 4166 } 4167 4168 /* 4169 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4170 * driver. We construct best guess defaults for lower level information that 4171 * we need. If an interface is brought up without injection of any overriding 4172 * information from outside, we have to be ready to go with these defaults. 4173 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4174 * we primarely want the dl_provider_style. 4175 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4176 * at which point we assume the other part of the information is valid. 4177 */ 4178 void 4179 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4180 { 4181 uchar_t *brdcst_addr; 4182 uint_t brdcst_addr_length, phys_addr_length; 4183 t_scalar_t sap_length; 4184 dl_info_ack_t *dlia; 4185 ip_m_t *ipm; 4186 dl_qos_cl_sel1_t *sel1; 4187 int min_mtu; 4188 4189 ASSERT(IAM_WRITER_ILL(ill)); 4190 4191 /* 4192 * Till the ill is fully up the ill is not globally visible. 4193 * So no need for a lock. 4194 */ 4195 dlia = (dl_info_ack_t *)mp->b_rptr; 4196 ill->ill_mactype = dlia->dl_mac_type; 4197 4198 ipm = ip_m_lookup(dlia->dl_mac_type); 4199 if (ipm == NULL) { 4200 ipm = ip_m_lookup(DL_OTHER); 4201 ASSERT(ipm != NULL); 4202 } 4203 ill->ill_media = ipm; 4204 4205 /* 4206 * When the new DLPI stuff is ready we'll pull lengths 4207 * from dlia. 4208 */ 4209 if (dlia->dl_version == DL_VERSION_2) { 4210 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4211 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4212 brdcst_addr_length); 4213 if (brdcst_addr == NULL) { 4214 brdcst_addr_length = 0; 4215 } 4216 sap_length = dlia->dl_sap_length; 4217 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4218 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4219 brdcst_addr_length, sap_length, phys_addr_length)); 4220 } else { 4221 brdcst_addr_length = 6; 4222 brdcst_addr = ip_six_byte_all_ones; 4223 sap_length = -2; 4224 phys_addr_length = brdcst_addr_length; 4225 } 4226 4227 ill->ill_bcast_addr_length = brdcst_addr_length; 4228 ill->ill_phys_addr_length = phys_addr_length; 4229 ill->ill_sap_length = sap_length; 4230 4231 /* 4232 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4233 * but we must ensure a minimum IP MTU is used since other bits of 4234 * IP will fly apart otherwise. 4235 */ 4236 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4237 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4238 ill->ill_current_frag = ill->ill_max_frag; 4239 ill->ill_mtu = ill->ill_max_frag; 4240 4241 ill->ill_type = ipm->ip_m_type; 4242 4243 if (!ill->ill_dlpi_style_set) { 4244 if (dlia->dl_provider_style == DL_STYLE2) 4245 ill->ill_needs_attach = 1; 4246 4247 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4248 4249 /* 4250 * Allocate the first ipif on this ill. We don't delay it 4251 * further as ioctl handling assumes at least one ipif exists. 4252 * 4253 * At this point we don't know whether the ill is v4 or v6. 4254 * We will know this whan the SIOCSLIFNAME happens and 4255 * the correct value for ill_isv6 will be assigned in 4256 * ipif_set_values(). We need to hold the ill lock and 4257 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4258 * the wakeup. 4259 */ 4260 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4261 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4262 mutex_enter(&ill->ill_lock); 4263 ASSERT(ill->ill_dlpi_style_set == 0); 4264 ill->ill_dlpi_style_set = 1; 4265 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4266 cv_broadcast(&ill->ill_cv); 4267 mutex_exit(&ill->ill_lock); 4268 freemsg(mp); 4269 return; 4270 } 4271 ASSERT(ill->ill_ipif != NULL); 4272 /* 4273 * We know whether it is IPv4 or IPv6 now, as this is the 4274 * second DL_INFO_ACK we are recieving in response to the 4275 * DL_INFO_REQ sent in ipif_set_values. 4276 */ 4277 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4278 /* 4279 * Clear all the flags that were set based on ill_bcast_addr_length 4280 * and ill_phys_addr_length (in ipif_set_values) as these could have 4281 * changed now and we need to re-evaluate. 4282 */ 4283 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4284 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4285 4286 /* 4287 * Free ill_bcast_mp as things could have changed now. 4288 * 4289 * NOTE: The IPMP meta-interface is special-cased because it starts 4290 * with no underlying interfaces (and thus an unknown broadcast 4291 * address length), but we enforce that an interface is broadcast- 4292 * capable as part of allowing it to join a group. 4293 */ 4294 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4295 if (ill->ill_bcast_mp != NULL) 4296 freemsg(ill->ill_bcast_mp); 4297 ill->ill_net_type = IRE_IF_NORESOLVER; 4298 4299 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4300 ill->ill_phys_addr_length, 4301 ill->ill_sap, 4302 ill->ill_sap_length); 4303 4304 if (ill->ill_isv6) 4305 /* 4306 * Note: xresolv interfaces will eventually need NOARP 4307 * set here as well, but that will require those 4308 * external resolvers to have some knowledge of 4309 * that flag and act appropriately. Not to be changed 4310 * at present. 4311 */ 4312 ill->ill_flags |= ILLF_NONUD; 4313 else 4314 ill->ill_flags |= ILLF_NOARP; 4315 4316 if (ill->ill_mactype == SUNW_DL_VNI) { 4317 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4318 } else if (ill->ill_phys_addr_length == 0 || 4319 ill->ill_mactype == DL_IPV4 || 4320 ill->ill_mactype == DL_IPV6) { 4321 /* 4322 * The underying link is point-to-point, so mark the 4323 * interface as such. We can do IP multicast over 4324 * such a link since it transmits all network-layer 4325 * packets to the remote side the same way. 4326 */ 4327 ill->ill_flags |= ILLF_MULTICAST; 4328 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4329 } 4330 } else { 4331 ill->ill_net_type = IRE_IF_RESOLVER; 4332 if (ill->ill_bcast_mp != NULL) 4333 freemsg(ill->ill_bcast_mp); 4334 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4335 ill->ill_bcast_addr_length, ill->ill_sap, 4336 ill->ill_sap_length); 4337 /* 4338 * Later detect lack of DLPI driver multicast 4339 * capability by catching DL_ENABMULTI errors in 4340 * ip_rput_dlpi. 4341 */ 4342 ill->ill_flags |= ILLF_MULTICAST; 4343 if (!ill->ill_isv6) 4344 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4345 } 4346 4347 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4348 if (ill->ill_mactype == SUNW_DL_IPMP) 4349 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4350 4351 /* By default an interface does not support any CoS marking */ 4352 ill->ill_flags &= ~ILLF_COS_ENABLED; 4353 4354 /* 4355 * If we get QoS information in DL_INFO_ACK, the device supports 4356 * some form of CoS marking, set ILLF_COS_ENABLED. 4357 */ 4358 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4359 dlia->dl_qos_length); 4360 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4361 ill->ill_flags |= ILLF_COS_ENABLED; 4362 } 4363 4364 /* Clear any previous error indication. */ 4365 ill->ill_error = 0; 4366 freemsg(mp); 4367 } 4368 4369 /* 4370 * Perform various checks to verify that an address would make sense as a 4371 * local, remote, or subnet interface address. 4372 */ 4373 static boolean_t 4374 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4375 { 4376 ipaddr_t net_mask; 4377 4378 /* 4379 * Don't allow all zeroes, or all ones, but allow 4380 * all ones netmask. 4381 */ 4382 if ((net_mask = ip_net_mask(addr)) == 0) 4383 return (B_FALSE); 4384 /* A given netmask overrides the "guess" netmask */ 4385 if (subnet_mask != 0) 4386 net_mask = subnet_mask; 4387 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4388 (addr == (addr | ~net_mask)))) { 4389 return (B_FALSE); 4390 } 4391 4392 /* 4393 * Even if the netmask is all ones, we do not allow address to be 4394 * 255.255.255.255 4395 */ 4396 if (addr == INADDR_BROADCAST) 4397 return (B_FALSE); 4398 4399 if (CLASSD(addr)) 4400 return (B_FALSE); 4401 4402 return (B_TRUE); 4403 } 4404 4405 #define V6_IPIF_LINKLOCAL(p) \ 4406 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4407 4408 /* 4409 * Compare two given ipifs and check if the second one is better than 4410 * the first one using the order of preference (not taking deprecated 4411 * into acount) specified in ipif_lookup_multicast(). 4412 */ 4413 static boolean_t 4414 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4415 { 4416 /* Check the least preferred first. */ 4417 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4418 /* If both ipifs are the same, use the first one. */ 4419 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4420 return (B_FALSE); 4421 else 4422 return (B_TRUE); 4423 } 4424 4425 /* For IPv6, check for link local address. */ 4426 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4427 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4428 V6_IPIF_LINKLOCAL(new_ipif)) { 4429 /* The second one is equal or less preferred. */ 4430 return (B_FALSE); 4431 } else { 4432 return (B_TRUE); 4433 } 4434 } 4435 4436 /* Then check for point to point interface. */ 4437 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4438 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4439 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4440 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4441 return (B_FALSE); 4442 } else { 4443 return (B_TRUE); 4444 } 4445 } 4446 4447 /* old_ipif is a normal interface, so no need to use the new one. */ 4448 return (B_FALSE); 4449 } 4450 4451 /* 4452 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4453 * The ipif must be up, and its ill must multicast-capable, not 4454 * condemned, not an underlying interface in an IPMP group, and 4455 * not a VNI interface. Order of preference: 4456 * 4457 * 1a. normal 4458 * 1b. normal, but deprecated 4459 * 2a. point to point 4460 * 2b. point to point, but deprecated 4461 * 3a. link local 4462 * 3b. link local, but deprecated 4463 * 4. loopback. 4464 */ 4465 static ipif_t * 4466 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4467 { 4468 ill_t *ill; 4469 ill_walk_context_t ctx; 4470 ipif_t *ipif; 4471 ipif_t *saved_ipif = NULL; 4472 ipif_t *dep_ipif = NULL; 4473 4474 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4475 if (isv6) 4476 ill = ILL_START_WALK_V6(&ctx, ipst); 4477 else 4478 ill = ILL_START_WALK_V4(&ctx, ipst); 4479 4480 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4481 mutex_enter(&ill->ill_lock); 4482 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4483 ILL_IS_CONDEMNED(ill) || 4484 !(ill->ill_flags & ILLF_MULTICAST)) { 4485 mutex_exit(&ill->ill_lock); 4486 continue; 4487 } 4488 for (ipif = ill->ill_ipif; ipif != NULL; 4489 ipif = ipif->ipif_next) { 4490 if (zoneid != ipif->ipif_zoneid && 4491 zoneid != ALL_ZONES && 4492 ipif->ipif_zoneid != ALL_ZONES) { 4493 continue; 4494 } 4495 if (!(ipif->ipif_flags & IPIF_UP) || 4496 IPIF_IS_CONDEMNED(ipif)) { 4497 continue; 4498 } 4499 4500 /* 4501 * Found one candidate. If it is deprecated, 4502 * remember it in dep_ipif. If it is not deprecated, 4503 * remember it in saved_ipif. 4504 */ 4505 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4506 if (dep_ipif == NULL) { 4507 dep_ipif = ipif; 4508 } else if (ipif_comp_multi(dep_ipif, ipif, 4509 isv6)) { 4510 /* 4511 * If the previous dep_ipif does not 4512 * belong to the same ill, we've done 4513 * a ipif_refhold() on it. So we need 4514 * to release it. 4515 */ 4516 if (dep_ipif->ipif_ill != ill) 4517 ipif_refrele(dep_ipif); 4518 dep_ipif = ipif; 4519 } 4520 continue; 4521 } 4522 if (saved_ipif == NULL) { 4523 saved_ipif = ipif; 4524 } else { 4525 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4526 if (saved_ipif->ipif_ill != ill) 4527 ipif_refrele(saved_ipif); 4528 saved_ipif = ipif; 4529 } 4530 } 4531 } 4532 /* 4533 * Before going to the next ill, do a ipif_refhold() on the 4534 * saved ones. 4535 */ 4536 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4537 ipif_refhold_locked(saved_ipif); 4538 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4539 ipif_refhold_locked(dep_ipif); 4540 mutex_exit(&ill->ill_lock); 4541 } 4542 rw_exit(&ipst->ips_ill_g_lock); 4543 4544 /* 4545 * If we have only the saved_ipif, return it. But if we have both 4546 * saved_ipif and dep_ipif, check to see which one is better. 4547 */ 4548 if (saved_ipif != NULL) { 4549 if (dep_ipif != NULL) { 4550 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4551 ipif_refrele(saved_ipif); 4552 return (dep_ipif); 4553 } else { 4554 ipif_refrele(dep_ipif); 4555 return (saved_ipif); 4556 } 4557 } 4558 return (saved_ipif); 4559 } else { 4560 return (dep_ipif); 4561 } 4562 } 4563 4564 ill_t * 4565 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4566 { 4567 ipif_t *ipif; 4568 ill_t *ill; 4569 4570 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4571 if (ipif == NULL) 4572 return (NULL); 4573 4574 ill = ipif->ipif_ill; 4575 ill_refhold(ill); 4576 ipif_refrele(ipif); 4577 return (ill); 4578 } 4579 4580 /* 4581 * This function is called when an application does not specify an interface 4582 * to be used for multicast traffic (joining a group/sending data). It 4583 * calls ire_lookup_multi() to look for an interface route for the 4584 * specified multicast group. Doing this allows the administrator to add 4585 * prefix routes for multicast to indicate which interface to be used for 4586 * multicast traffic in the above scenario. The route could be for all 4587 * multicast (224.0/4), for a single multicast group (a /32 route) or 4588 * anything in between. If there is no such multicast route, we just find 4589 * any multicast capable interface and return it. The returned ipif 4590 * is refhold'ed. 4591 * 4592 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4593 * unicast table. This is used by CGTP. 4594 */ 4595 ill_t * 4596 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4597 boolean_t *multirtp, ipaddr_t *setsrcp) 4598 { 4599 ill_t *ill; 4600 4601 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4602 if (ill != NULL) 4603 return (ill); 4604 4605 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4606 } 4607 4608 /* 4609 * Look for an ipif with the specified interface address and destination. 4610 * The destination address is used only for matching point-to-point interfaces. 4611 */ 4612 ipif_t * 4613 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4614 { 4615 ipif_t *ipif; 4616 ill_t *ill; 4617 ill_walk_context_t ctx; 4618 4619 /* 4620 * First match all the point-to-point interfaces 4621 * before looking at non-point-to-point interfaces. 4622 * This is done to avoid returning non-point-to-point 4623 * ipif instead of unnumbered point-to-point ipif. 4624 */ 4625 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4626 ill = ILL_START_WALK_V4(&ctx, ipst); 4627 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4628 mutex_enter(&ill->ill_lock); 4629 for (ipif = ill->ill_ipif; ipif != NULL; 4630 ipif = ipif->ipif_next) { 4631 /* Allow the ipif to be down */ 4632 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4633 (ipif->ipif_lcl_addr == if_addr) && 4634 (ipif->ipif_pp_dst_addr == dst)) { 4635 if (!IPIF_IS_CONDEMNED(ipif)) { 4636 ipif_refhold_locked(ipif); 4637 mutex_exit(&ill->ill_lock); 4638 rw_exit(&ipst->ips_ill_g_lock); 4639 return (ipif); 4640 } 4641 } 4642 } 4643 mutex_exit(&ill->ill_lock); 4644 } 4645 rw_exit(&ipst->ips_ill_g_lock); 4646 4647 /* lookup the ipif based on interface address */ 4648 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4649 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4650 return (ipif); 4651 } 4652 4653 /* 4654 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4655 */ 4656 static ipif_t * 4657 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4658 zoneid_t zoneid, ip_stack_t *ipst) 4659 { 4660 ipif_t *ipif; 4661 ill_t *ill; 4662 boolean_t ptp = B_FALSE; 4663 ill_walk_context_t ctx; 4664 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4665 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4666 4667 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4668 /* 4669 * Repeat twice, first based on local addresses and 4670 * next time for pointopoint. 4671 */ 4672 repeat: 4673 ill = ILL_START_WALK_V4(&ctx, ipst); 4674 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4675 if (match_ill != NULL && ill != match_ill && 4676 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4677 continue; 4678 } 4679 mutex_enter(&ill->ill_lock); 4680 for (ipif = ill->ill_ipif; ipif != NULL; 4681 ipif = ipif->ipif_next) { 4682 if (zoneid != ALL_ZONES && 4683 zoneid != ipif->ipif_zoneid && 4684 ipif->ipif_zoneid != ALL_ZONES) 4685 continue; 4686 4687 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4688 continue; 4689 4690 /* Allow the ipif to be down */ 4691 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4692 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4693 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4694 (ipif->ipif_pp_dst_addr == addr))) { 4695 if (!IPIF_IS_CONDEMNED(ipif)) { 4696 ipif_refhold_locked(ipif); 4697 mutex_exit(&ill->ill_lock); 4698 rw_exit(&ipst->ips_ill_g_lock); 4699 return (ipif); 4700 } 4701 } 4702 } 4703 mutex_exit(&ill->ill_lock); 4704 } 4705 4706 /* If we already did the ptp case, then we are done */ 4707 if (ptp) { 4708 rw_exit(&ipst->ips_ill_g_lock); 4709 return (NULL); 4710 } 4711 ptp = B_TRUE; 4712 goto repeat; 4713 } 4714 4715 /* 4716 * Lookup an ipif with the specified address. For point-to-point links we 4717 * look for matches on either the destination address or the local address, 4718 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4719 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4720 * (or illgrp if `match_ill' is in an IPMP group). 4721 */ 4722 ipif_t * 4723 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4724 ip_stack_t *ipst) 4725 { 4726 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4727 zoneid, ipst)); 4728 } 4729 4730 /* 4731 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4732 * except that we will only return an address if it is not marked as 4733 * IPIF_DUPLICATE 4734 */ 4735 ipif_t * 4736 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4737 ip_stack_t *ipst) 4738 { 4739 return (ipif_lookup_addr_common(addr, match_ill, 4740 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4741 zoneid, ipst)); 4742 } 4743 4744 /* 4745 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4746 * `match_ill' across the IPMP group. This function is only needed in some 4747 * corner-cases; almost everything should use ipif_lookup_addr(). 4748 */ 4749 ipif_t * 4750 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4751 { 4752 ASSERT(match_ill != NULL); 4753 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4754 ipst)); 4755 } 4756 4757 /* 4758 * Look for an ipif with the specified address. For point-point links 4759 * we look for matches on either the destination address and the local 4760 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4761 * is set. 4762 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4763 * ill (or illgrp if `match_ill' is in an IPMP group). 4764 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4765 */ 4766 zoneid_t 4767 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4768 { 4769 zoneid_t zoneid; 4770 ipif_t *ipif; 4771 ill_t *ill; 4772 boolean_t ptp = B_FALSE; 4773 ill_walk_context_t ctx; 4774 4775 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4776 /* 4777 * Repeat twice, first based on local addresses and 4778 * next time for pointopoint. 4779 */ 4780 repeat: 4781 ill = ILL_START_WALK_V4(&ctx, ipst); 4782 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4783 if (match_ill != NULL && ill != match_ill && 4784 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4785 continue; 4786 } 4787 mutex_enter(&ill->ill_lock); 4788 for (ipif = ill->ill_ipif; ipif != NULL; 4789 ipif = ipif->ipif_next) { 4790 /* Allow the ipif to be down */ 4791 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4792 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4793 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4794 (ipif->ipif_pp_dst_addr == addr)) && 4795 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4796 zoneid = ipif->ipif_zoneid; 4797 mutex_exit(&ill->ill_lock); 4798 rw_exit(&ipst->ips_ill_g_lock); 4799 /* 4800 * If ipif_zoneid was ALL_ZONES then we have 4801 * a trusted extensions shared IP address. 4802 * In that case GLOBAL_ZONEID works to send. 4803 */ 4804 if (zoneid == ALL_ZONES) 4805 zoneid = GLOBAL_ZONEID; 4806 return (zoneid); 4807 } 4808 } 4809 mutex_exit(&ill->ill_lock); 4810 } 4811 4812 /* If we already did the ptp case, then we are done */ 4813 if (ptp) { 4814 rw_exit(&ipst->ips_ill_g_lock); 4815 return (ALL_ZONES); 4816 } 4817 ptp = B_TRUE; 4818 goto repeat; 4819 } 4820 4821 /* 4822 * Look for an ipif that matches the specified remote address i.e. the 4823 * ipif that would receive the specified packet. 4824 * First look for directly connected interfaces and then do a recursive 4825 * IRE lookup and pick the first ipif corresponding to the source address in the 4826 * ire. 4827 * Returns: held ipif 4828 * 4829 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4830 */ 4831 ipif_t * 4832 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4833 { 4834 ipif_t *ipif; 4835 4836 ASSERT(!ill->ill_isv6); 4837 4838 /* 4839 * Someone could be changing this ipif currently or change it 4840 * after we return this. Thus a few packets could use the old 4841 * old values. However structure updates/creates (ire, ilg, ilm etc) 4842 * will atomically be updated or cleaned up with the new value 4843 * Thus we don't need a lock to check the flags or other attrs below. 4844 */ 4845 mutex_enter(&ill->ill_lock); 4846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4847 if (IPIF_IS_CONDEMNED(ipif)) 4848 continue; 4849 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4850 ipif->ipif_zoneid != ALL_ZONES) 4851 continue; 4852 /* Allow the ipif to be down */ 4853 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4854 if ((ipif->ipif_pp_dst_addr == addr) || 4855 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4856 ipif->ipif_lcl_addr == addr)) { 4857 ipif_refhold_locked(ipif); 4858 mutex_exit(&ill->ill_lock); 4859 return (ipif); 4860 } 4861 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4862 ipif_refhold_locked(ipif); 4863 mutex_exit(&ill->ill_lock); 4864 return (ipif); 4865 } 4866 } 4867 mutex_exit(&ill->ill_lock); 4868 /* 4869 * For a remote destination it isn't possible to nail down a particular 4870 * ipif. 4871 */ 4872 4873 /* Pick the first interface */ 4874 ipif = ipif_get_next_ipif(NULL, ill); 4875 return (ipif); 4876 } 4877 4878 /* 4879 * This func does not prevent refcnt from increasing. But if 4880 * the caller has taken steps to that effect, then this func 4881 * can be used to determine whether the ill has become quiescent 4882 */ 4883 static boolean_t 4884 ill_is_quiescent(ill_t *ill) 4885 { 4886 ipif_t *ipif; 4887 4888 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4889 4890 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4891 if (ipif->ipif_refcnt != 0) 4892 return (B_FALSE); 4893 } 4894 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4895 return (B_FALSE); 4896 } 4897 return (B_TRUE); 4898 } 4899 4900 boolean_t 4901 ill_is_freeable(ill_t *ill) 4902 { 4903 ipif_t *ipif; 4904 4905 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4906 4907 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4908 if (ipif->ipif_refcnt != 0) { 4909 return (B_FALSE); 4910 } 4911 } 4912 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4913 return (B_FALSE); 4914 } 4915 return (B_TRUE); 4916 } 4917 4918 /* 4919 * This func does not prevent refcnt from increasing. But if 4920 * the caller has taken steps to that effect, then this func 4921 * can be used to determine whether the ipif has become quiescent 4922 */ 4923 static boolean_t 4924 ipif_is_quiescent(ipif_t *ipif) 4925 { 4926 ill_t *ill; 4927 4928 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4929 4930 if (ipif->ipif_refcnt != 0) 4931 return (B_FALSE); 4932 4933 ill = ipif->ipif_ill; 4934 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4935 ill->ill_logical_down) { 4936 return (B_TRUE); 4937 } 4938 4939 /* This is the last ipif going down or being deleted on this ill */ 4940 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4941 return (B_FALSE); 4942 } 4943 4944 return (B_TRUE); 4945 } 4946 4947 /* 4948 * return true if the ipif can be destroyed: the ipif has to be quiescent 4949 * with zero references from ire/ilm to it. 4950 */ 4951 static boolean_t 4952 ipif_is_freeable(ipif_t *ipif) 4953 { 4954 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4955 ASSERT(ipif->ipif_id != 0); 4956 return (ipif->ipif_refcnt == 0); 4957 } 4958 4959 /* 4960 * The ipif/ill/ire has been refreled. Do the tail processing. 4961 * Determine if the ipif or ill in question has become quiescent and if so 4962 * wakeup close and/or restart any queued pending ioctl that is waiting 4963 * for the ipif_down (or ill_down) 4964 */ 4965 void 4966 ipif_ill_refrele_tail(ill_t *ill) 4967 { 4968 mblk_t *mp; 4969 conn_t *connp; 4970 ipsq_t *ipsq; 4971 ipxop_t *ipx; 4972 ipif_t *ipif; 4973 dl_notify_ind_t *dlindp; 4974 4975 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4976 4977 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4978 /* ip_modclose() may be waiting */ 4979 cv_broadcast(&ill->ill_cv); 4980 } 4981 4982 ipsq = ill->ill_phyint->phyint_ipsq; 4983 mutex_enter(&ipsq->ipsq_lock); 4984 ipx = ipsq->ipsq_xop; 4985 mutex_enter(&ipx->ipx_lock); 4986 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4987 goto unlock; 4988 4989 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4990 4991 ipif = ipx->ipx_pending_ipif; 4992 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4993 goto unlock; 4994 4995 switch (ipx->ipx_waitfor) { 4996 case IPIF_DOWN: 4997 if (!ipif_is_quiescent(ipif)) 4998 goto unlock; 4999 break; 5000 case IPIF_FREE: 5001 if (!ipif_is_freeable(ipif)) 5002 goto unlock; 5003 break; 5004 case ILL_DOWN: 5005 if (!ill_is_quiescent(ill)) 5006 goto unlock; 5007 break; 5008 case ILL_FREE: 5009 /* 5010 * ILL_FREE is only for loopback; normal ill teardown waits 5011 * synchronously in ip_modclose() without using ipx_waitfor, 5012 * handled by the cv_broadcast() at the top of this function. 5013 */ 5014 if (!ill_is_freeable(ill)) 5015 goto unlock; 5016 break; 5017 default: 5018 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 5019 (void *)ipsq, ipx->ipx_waitfor); 5020 } 5021 5022 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 5023 mutex_exit(&ipx->ipx_lock); 5024 mp = ipsq_pending_mp_get(ipsq, &connp); 5025 mutex_exit(&ipsq->ipsq_lock); 5026 mutex_exit(&ill->ill_lock); 5027 5028 ASSERT(mp != NULL); 5029 /* 5030 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 5031 * we can only get here when the current operation decides it 5032 * it needs to quiesce via ipsq_pending_mp_add(). 5033 */ 5034 switch (mp->b_datap->db_type) { 5035 case M_PCPROTO: 5036 case M_PROTO: 5037 /* 5038 * For now, only DL_NOTIFY_IND messages can use this facility. 5039 */ 5040 dlindp = (dl_notify_ind_t *)mp->b_rptr; 5041 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 5042 5043 switch (dlindp->dl_notification) { 5044 case DL_NOTE_PHYS_ADDR: 5045 qwriter_ip(ill, ill->ill_rq, mp, 5046 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5047 return; 5048 case DL_NOTE_REPLUMB: 5049 qwriter_ip(ill, ill->ill_rq, mp, 5050 ill_replumb_tail, CUR_OP, B_TRUE); 5051 return; 5052 default: 5053 ASSERT(0); 5054 ill_refrele(ill); 5055 } 5056 break; 5057 5058 case M_ERROR: 5059 case M_HANGUP: 5060 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5061 B_TRUE); 5062 return; 5063 5064 case M_IOCTL: 5065 case M_IOCDATA: 5066 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5067 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5068 return; 5069 5070 default: 5071 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5072 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5073 } 5074 return; 5075 unlock: 5076 mutex_exit(&ipsq->ipsq_lock); 5077 mutex_exit(&ipx->ipx_lock); 5078 mutex_exit(&ill->ill_lock); 5079 } 5080 5081 #ifdef DEBUG 5082 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5083 static void 5084 th_trace_rrecord(th_trace_t *th_trace) 5085 { 5086 tr_buf_t *tr_buf; 5087 uint_t lastref; 5088 5089 lastref = th_trace->th_trace_lastref; 5090 lastref++; 5091 if (lastref == TR_BUF_MAX) 5092 lastref = 0; 5093 th_trace->th_trace_lastref = lastref; 5094 tr_buf = &th_trace->th_trbuf[lastref]; 5095 tr_buf->tr_time = ddi_get_lbolt(); 5096 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5097 } 5098 5099 static void 5100 th_trace_free(void *value) 5101 { 5102 th_trace_t *th_trace = value; 5103 5104 ASSERT(th_trace->th_refcnt == 0); 5105 kmem_free(th_trace, sizeof (*th_trace)); 5106 } 5107 5108 /* 5109 * Find or create the per-thread hash table used to track object references. 5110 * The ipst argument is NULL if we shouldn't allocate. 5111 * 5112 * Accesses per-thread data, so there's no need to lock here. 5113 */ 5114 static mod_hash_t * 5115 th_trace_gethash(ip_stack_t *ipst) 5116 { 5117 th_hash_t *thh; 5118 5119 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5120 mod_hash_t *mh; 5121 char name[256]; 5122 size_t objsize, rshift; 5123 int retv; 5124 5125 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5126 return (NULL); 5127 (void) snprintf(name, sizeof (name), "th_trace_%p", 5128 (void *)curthread); 5129 5130 /* 5131 * We use mod_hash_create_extended here rather than the more 5132 * obvious mod_hash_create_ptrhash because the latter has a 5133 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5134 * block. 5135 */ 5136 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5137 MAX(sizeof (ire_t), sizeof (ncec_t))); 5138 rshift = highbit(objsize); 5139 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5140 th_trace_free, mod_hash_byptr, (void *)rshift, 5141 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5142 if (mh == NULL) { 5143 kmem_free(thh, sizeof (*thh)); 5144 return (NULL); 5145 } 5146 thh->thh_hash = mh; 5147 thh->thh_ipst = ipst; 5148 /* 5149 * We trace ills, ipifs, ires, and nces. All of these are 5150 * per-IP-stack, so the lock on the thread list is as well. 5151 */ 5152 rw_enter(&ip_thread_rwlock, RW_WRITER); 5153 list_insert_tail(&ip_thread_list, thh); 5154 rw_exit(&ip_thread_rwlock); 5155 retv = tsd_set(ip_thread_data, thh); 5156 ASSERT(retv == 0); 5157 } 5158 return (thh != NULL ? thh->thh_hash : NULL); 5159 } 5160 5161 boolean_t 5162 th_trace_ref(const void *obj, ip_stack_t *ipst) 5163 { 5164 th_trace_t *th_trace; 5165 mod_hash_t *mh; 5166 mod_hash_val_t val; 5167 5168 if ((mh = th_trace_gethash(ipst)) == NULL) 5169 return (B_FALSE); 5170 5171 /* 5172 * Attempt to locate the trace buffer for this obj and thread. 5173 * If it does not exist, then allocate a new trace buffer and 5174 * insert into the hash. 5175 */ 5176 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5177 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5178 if (th_trace == NULL) 5179 return (B_FALSE); 5180 5181 th_trace->th_id = curthread; 5182 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5183 (mod_hash_val_t)th_trace) != 0) { 5184 kmem_free(th_trace, sizeof (th_trace_t)); 5185 return (B_FALSE); 5186 } 5187 } else { 5188 th_trace = (th_trace_t *)val; 5189 } 5190 5191 ASSERT(th_trace->th_refcnt >= 0 && 5192 th_trace->th_refcnt < TR_BUF_MAX - 1); 5193 5194 th_trace->th_refcnt++; 5195 th_trace_rrecord(th_trace); 5196 return (B_TRUE); 5197 } 5198 5199 /* 5200 * For the purpose of tracing a reference release, we assume that global 5201 * tracing is always on and that the same thread initiated the reference hold 5202 * is releasing. 5203 */ 5204 void 5205 th_trace_unref(const void *obj) 5206 { 5207 int retv; 5208 mod_hash_t *mh; 5209 th_trace_t *th_trace; 5210 mod_hash_val_t val; 5211 5212 mh = th_trace_gethash(NULL); 5213 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5214 ASSERT(retv == 0); 5215 th_trace = (th_trace_t *)val; 5216 5217 ASSERT(th_trace->th_refcnt > 0); 5218 th_trace->th_refcnt--; 5219 th_trace_rrecord(th_trace); 5220 } 5221 5222 /* 5223 * If tracing has been disabled, then we assume that the reference counts are 5224 * now useless, and we clear them out before destroying the entries. 5225 */ 5226 void 5227 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5228 { 5229 th_hash_t *thh; 5230 mod_hash_t *mh; 5231 mod_hash_val_t val; 5232 th_trace_t *th_trace; 5233 int retv; 5234 5235 rw_enter(&ip_thread_rwlock, RW_READER); 5236 for (thh = list_head(&ip_thread_list); thh != NULL; 5237 thh = list_next(&ip_thread_list, thh)) { 5238 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5239 &val) == 0) { 5240 th_trace = (th_trace_t *)val; 5241 if (trace_disable) 5242 th_trace->th_refcnt = 0; 5243 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5244 ASSERT(retv == 0); 5245 } 5246 } 5247 rw_exit(&ip_thread_rwlock); 5248 } 5249 5250 void 5251 ipif_trace_ref(ipif_t *ipif) 5252 { 5253 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5254 5255 if (ipif->ipif_trace_disable) 5256 return; 5257 5258 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5259 ipif->ipif_trace_disable = B_TRUE; 5260 ipif_trace_cleanup(ipif); 5261 } 5262 } 5263 5264 void 5265 ipif_untrace_ref(ipif_t *ipif) 5266 { 5267 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5268 5269 if (!ipif->ipif_trace_disable) 5270 th_trace_unref(ipif); 5271 } 5272 5273 void 5274 ill_trace_ref(ill_t *ill) 5275 { 5276 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5277 5278 if (ill->ill_trace_disable) 5279 return; 5280 5281 if (!th_trace_ref(ill, ill->ill_ipst)) { 5282 ill->ill_trace_disable = B_TRUE; 5283 ill_trace_cleanup(ill); 5284 } 5285 } 5286 5287 void 5288 ill_untrace_ref(ill_t *ill) 5289 { 5290 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5291 5292 if (!ill->ill_trace_disable) 5293 th_trace_unref(ill); 5294 } 5295 5296 /* 5297 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5298 * failure, ipif_trace_disable is set. 5299 */ 5300 static void 5301 ipif_trace_cleanup(const ipif_t *ipif) 5302 { 5303 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5304 } 5305 5306 /* 5307 * Called when ill is unplumbed or when memory alloc fails. Note that on 5308 * failure, ill_trace_disable is set. 5309 */ 5310 static void 5311 ill_trace_cleanup(const ill_t *ill) 5312 { 5313 th_trace_cleanup(ill, ill->ill_trace_disable); 5314 } 5315 #endif /* DEBUG */ 5316 5317 void 5318 ipif_refhold_locked(ipif_t *ipif) 5319 { 5320 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5321 ipif->ipif_refcnt++; 5322 IPIF_TRACE_REF(ipif); 5323 } 5324 5325 void 5326 ipif_refhold(ipif_t *ipif) 5327 { 5328 ill_t *ill; 5329 5330 ill = ipif->ipif_ill; 5331 mutex_enter(&ill->ill_lock); 5332 ipif->ipif_refcnt++; 5333 IPIF_TRACE_REF(ipif); 5334 mutex_exit(&ill->ill_lock); 5335 } 5336 5337 /* 5338 * Must not be called while holding any locks. Otherwise if this is 5339 * the last reference to be released there is a chance of recursive mutex 5340 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5341 * to restart an ioctl. 5342 */ 5343 void 5344 ipif_refrele(ipif_t *ipif) 5345 { 5346 ill_t *ill; 5347 5348 ill = ipif->ipif_ill; 5349 5350 mutex_enter(&ill->ill_lock); 5351 ASSERT(ipif->ipif_refcnt != 0); 5352 ipif->ipif_refcnt--; 5353 IPIF_UNTRACE_REF(ipif); 5354 if (ipif->ipif_refcnt != 0) { 5355 mutex_exit(&ill->ill_lock); 5356 return; 5357 } 5358 5359 /* Drops the ill_lock */ 5360 ipif_ill_refrele_tail(ill); 5361 } 5362 5363 ipif_t * 5364 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5365 { 5366 ipif_t *ipif; 5367 5368 mutex_enter(&ill->ill_lock); 5369 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5370 ipif != NULL; ipif = ipif->ipif_next) { 5371 if (IPIF_IS_CONDEMNED(ipif)) 5372 continue; 5373 ipif_refhold_locked(ipif); 5374 mutex_exit(&ill->ill_lock); 5375 return (ipif); 5376 } 5377 mutex_exit(&ill->ill_lock); 5378 return (NULL); 5379 } 5380 5381 /* 5382 * TODO: make this table extendible at run time 5383 * Return a pointer to the mac type info for 'mac_type' 5384 */ 5385 static ip_m_t * 5386 ip_m_lookup(t_uscalar_t mac_type) 5387 { 5388 ip_m_t *ipm; 5389 5390 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5391 if (ipm->ip_m_mac_type == mac_type) 5392 return (ipm); 5393 return (NULL); 5394 } 5395 5396 /* 5397 * Make a link layer address from the multicast IP address *addr. 5398 * To form the link layer address, invoke the ip_m_v*mapping function 5399 * associated with the link-layer type. 5400 */ 5401 void 5402 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5403 { 5404 ip_m_t *ipm; 5405 5406 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5407 return; 5408 5409 ASSERT(addr != NULL); 5410 5411 ipm = ip_m_lookup(ill->ill_mactype); 5412 if (ipm == NULL || 5413 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5414 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5415 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5416 ill->ill_name, ill->ill_mactype)); 5417 return; 5418 } 5419 if (ill->ill_isv6) 5420 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5421 else 5422 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5423 } 5424 5425 /* 5426 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5427 * ill is passed in to associate it with the correct interface. 5428 * If ire_arg is set, then we return the held IRE in that location. 5429 */ 5430 int 5431 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5432 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5433 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5434 { 5435 ire_t *ire, *nire; 5436 ire_t *gw_ire = NULL; 5437 ipif_t *ipif = NULL; 5438 uint_t type; 5439 int match_flags = MATCH_IRE_TYPE; 5440 tsol_gc_t *gc = NULL; 5441 tsol_gcgrp_t *gcgrp = NULL; 5442 boolean_t gcgrp_xtraref = B_FALSE; 5443 boolean_t cgtp_broadcast; 5444 5445 ip1dbg(("ip_rt_add:")); 5446 5447 if (ire_arg != NULL) 5448 *ire_arg = NULL; 5449 5450 /* 5451 * If this is the case of RTF_HOST being set, then we set the netmask 5452 * to all ones (regardless if one was supplied). 5453 */ 5454 if (flags & RTF_HOST) 5455 mask = IP_HOST_MASK; 5456 5457 /* 5458 * Prevent routes with a zero gateway from being created (since 5459 * interfaces can currently be plumbed and brought up no assigned 5460 * address). 5461 */ 5462 if (gw_addr == 0) 5463 return (ENETUNREACH); 5464 /* 5465 * Get the ipif, if any, corresponding to the gw_addr 5466 * If -ifp was specified we restrict ourselves to the ill, otherwise 5467 * we match on the gatway and destination to handle unnumbered pt-pt 5468 * interfaces. 5469 */ 5470 if (ill != NULL) 5471 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5472 else 5473 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5474 if (ipif != NULL) { 5475 if (IS_VNI(ipif->ipif_ill)) { 5476 ipif_refrele(ipif); 5477 return (EINVAL); 5478 } 5479 } 5480 5481 /* 5482 * GateD will attempt to create routes with a loopback interface 5483 * address as the gateway and with RTF_GATEWAY set. We allow 5484 * these routes to be added, but create them as interface routes 5485 * since the gateway is an interface address. 5486 */ 5487 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5488 flags &= ~RTF_GATEWAY; 5489 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5490 mask == IP_HOST_MASK) { 5491 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5492 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5493 NULL); 5494 if (ire != NULL) { 5495 ire_refrele(ire); 5496 ipif_refrele(ipif); 5497 return (EEXIST); 5498 } 5499 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5500 "for 0x%x\n", (void *)ipif, 5501 ipif->ipif_ire_type, 5502 ntohl(ipif->ipif_lcl_addr))); 5503 ire = ire_create( 5504 (uchar_t *)&dst_addr, /* dest address */ 5505 (uchar_t *)&mask, /* mask */ 5506 NULL, /* no gateway */ 5507 ipif->ipif_ire_type, /* LOOPBACK */ 5508 ipif->ipif_ill, 5509 zoneid, 5510 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5511 NULL, 5512 ipst); 5513 5514 if (ire == NULL) { 5515 ipif_refrele(ipif); 5516 return (ENOMEM); 5517 } 5518 /* src address assigned by the caller? */ 5519 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5520 ire->ire_setsrc_addr = src_addr; 5521 5522 nire = ire_add(ire); 5523 if (nire == NULL) { 5524 /* 5525 * In the result of failure, ire_add() will have 5526 * already deleted the ire in question, so there 5527 * is no need to do that here. 5528 */ 5529 ipif_refrele(ipif); 5530 return (ENOMEM); 5531 } 5532 /* 5533 * Check if it was a duplicate entry. This handles 5534 * the case of two racing route adds for the same route 5535 */ 5536 if (nire != ire) { 5537 ASSERT(nire->ire_identical_ref > 1); 5538 ire_delete(nire); 5539 ire_refrele(nire); 5540 ipif_refrele(ipif); 5541 return (EEXIST); 5542 } 5543 ire = nire; 5544 goto save_ire; 5545 } 5546 } 5547 5548 /* 5549 * The routes for multicast with CGTP are quite special in that 5550 * the gateway is the local interface address, yet RTF_GATEWAY 5551 * is set. We turn off RTF_GATEWAY to provide compatibility with 5552 * this undocumented and unusual use of multicast routes. 5553 */ 5554 if ((flags & RTF_MULTIRT) && ipif != NULL) 5555 flags &= ~RTF_GATEWAY; 5556 5557 /* 5558 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5559 * and the gateway address provided is one of the system's interface 5560 * addresses. By using the routing socket interface and supplying an 5561 * RTA_IFP sockaddr with an interface index, an alternate method of 5562 * specifying an interface route to be created is available which uses 5563 * the interface index that specifies the outgoing interface rather than 5564 * the address of an outgoing interface (which may not be able to 5565 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5566 * flag, routes can be specified which not only specify the next-hop to 5567 * be used when routing to a certain prefix, but also which outgoing 5568 * interface should be used. 5569 * 5570 * Previously, interfaces would have unique addresses assigned to them 5571 * and so the address assigned to a particular interface could be used 5572 * to identify a particular interface. One exception to this was the 5573 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5574 * 5575 * With the advent of IPv6 and its link-local addresses, this 5576 * restriction was relaxed and interfaces could share addresses between 5577 * themselves. In fact, typically all of the link-local interfaces on 5578 * an IPv6 node or router will have the same link-local address. In 5579 * order to differentiate between these interfaces, the use of an 5580 * interface index is necessary and this index can be carried inside a 5581 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5582 * of using the interface index, however, is that all of the ipif's that 5583 * are part of an ill have the same index and so the RTA_IFP sockaddr 5584 * cannot be used to differentiate between ipif's (or logical 5585 * interfaces) that belong to the same ill (physical interface). 5586 * 5587 * For example, in the following case involving IPv4 interfaces and 5588 * logical interfaces 5589 * 5590 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5591 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5592 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5593 * 5594 * the ipif's corresponding to each of these interface routes can be 5595 * uniquely identified by the "gateway" (actually interface address). 5596 * 5597 * In this case involving multiple IPv6 default routes to a particular 5598 * link-local gateway, the use of RTA_IFP is necessary to specify which 5599 * default route is of interest: 5600 * 5601 * default fe80::123:4567:89ab:cdef U if0 5602 * default fe80::123:4567:89ab:cdef U if1 5603 */ 5604 5605 /* RTF_GATEWAY not set */ 5606 if (!(flags & RTF_GATEWAY)) { 5607 if (sp != NULL) { 5608 ip2dbg(("ip_rt_add: gateway security attributes " 5609 "cannot be set with interface route\n")); 5610 if (ipif != NULL) 5611 ipif_refrele(ipif); 5612 return (EINVAL); 5613 } 5614 5615 /* 5616 * Whether or not ill (RTA_IFP) is set, we require that 5617 * the gateway is one of our local addresses. 5618 */ 5619 if (ipif == NULL) 5620 return (ENETUNREACH); 5621 5622 /* 5623 * We use MATCH_IRE_ILL here. If the caller specified an 5624 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5625 * we use the ill derived from the gateway address. 5626 * We can always match the gateway address since we record it 5627 * in ire_gateway_addr. 5628 * We don't allow RTA_IFP to specify a different ill than the 5629 * one matching the ipif to make sure we can delete the route. 5630 */ 5631 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5632 if (ill == NULL) { 5633 ill = ipif->ipif_ill; 5634 } else if (ill != ipif->ipif_ill) { 5635 ipif_refrele(ipif); 5636 return (EINVAL); 5637 } 5638 5639 /* 5640 * We check for an existing entry at this point. 5641 * 5642 * Since a netmask isn't passed in via the ioctl interface 5643 * (SIOCADDRT), we don't check for a matching netmask in that 5644 * case. 5645 */ 5646 if (!ioctl_msg) 5647 match_flags |= MATCH_IRE_MASK; 5648 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5649 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5650 NULL); 5651 if (ire != NULL) { 5652 ire_refrele(ire); 5653 ipif_refrele(ipif); 5654 return (EEXIST); 5655 } 5656 5657 /* 5658 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 5659 * IRE_IF_RESOLVER with the modified address, netmask, and 5660 * gateway. 5661 */ 5662 ire = ire_create( 5663 (uchar_t *)&dst_addr, 5664 (uint8_t *)&mask, 5665 (uint8_t *)&gw_addr, 5666 ill->ill_net_type, 5667 ill, 5668 zoneid, 5669 flags, 5670 NULL, 5671 ipst); 5672 if (ire == NULL) { 5673 ipif_refrele(ipif); 5674 return (ENOMEM); 5675 } 5676 5677 /* 5678 * Some software (for example, GateD and Sun Cluster) attempts 5679 * to create (what amount to) IRE_PREFIX routes with the 5680 * loopback address as the gateway. This is primarily done to 5681 * set up prefixes with the RTF_REJECT flag set (for example, 5682 * when generating aggregate routes.) 5683 * 5684 * If the IRE type (as defined by ill->ill_net_type) is 5685 * IRE_LOOPBACK, then we map the request into a 5686 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5687 * these interface routes, by definition, can only be that. 5688 * 5689 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5690 * routine, but rather using ire_create() directly. 5691 * 5692 */ 5693 if (ill->ill_net_type == IRE_LOOPBACK) { 5694 ire->ire_type = IRE_IF_NORESOLVER; 5695 ire->ire_flags |= RTF_BLACKHOLE; 5696 } 5697 5698 /* src address assigned by the caller? */ 5699 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5700 ire->ire_setsrc_addr = src_addr; 5701 5702 nire = ire_add(ire); 5703 if (nire == NULL) { 5704 /* 5705 * In the result of failure, ire_add() will have 5706 * already deleted the ire in question, so there 5707 * is no need to do that here. 5708 */ 5709 ipif_refrele(ipif); 5710 return (ENOMEM); 5711 } 5712 /* 5713 * Check if it was a duplicate entry. This handles 5714 * the case of two racing route adds for the same route 5715 */ 5716 if (nire != ire) { 5717 ire_delete(nire); 5718 ire_refrele(nire); 5719 ipif_refrele(ipif); 5720 return (EEXIST); 5721 } 5722 ire = nire; 5723 goto save_ire; 5724 } 5725 5726 /* 5727 * Get an interface IRE for the specified gateway. 5728 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5729 * gateway, it is currently unreachable and we fail the request 5730 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5731 * is an IRE_LOCAL or IRE_LOOPBACK. 5732 * If RTA_IFP was specified we look on that particular ill. 5733 */ 5734 if (ill != NULL) 5735 match_flags |= MATCH_IRE_ILL; 5736 5737 /* Check whether the gateway is reachable. */ 5738 again: 5739 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5740 if (flags & RTF_INDIRECT) 5741 type |= IRE_OFFLINK; 5742 5743 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5744 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5745 if (gw_ire == NULL) { 5746 /* 5747 * With IPMP, we allow host routes to influence in.mpathd's 5748 * target selection. However, if the test addresses are on 5749 * their own network, the above lookup will fail since the 5750 * underlying IRE_INTERFACEs are marked hidden. So allow 5751 * hidden test IREs to be found and try again. 5752 */ 5753 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5754 match_flags |= MATCH_IRE_TESTHIDDEN; 5755 goto again; 5756 } 5757 if (ipif != NULL) 5758 ipif_refrele(ipif); 5759 return (ENETUNREACH); 5760 } 5761 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5762 ire_refrele(gw_ire); 5763 if (ipif != NULL) 5764 ipif_refrele(ipif); 5765 return (ENETUNREACH); 5766 } 5767 5768 /* 5769 * We create one of three types of IREs as a result of this request 5770 * based on the netmask. A netmask of all ones (which is automatically 5771 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5772 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5773 * created. Otherwise, an IRE_PREFIX route is created for the 5774 * destination prefix. 5775 */ 5776 if (mask == IP_HOST_MASK) 5777 type = IRE_HOST; 5778 else if (mask == 0) 5779 type = IRE_DEFAULT; 5780 else 5781 type = IRE_PREFIX; 5782 5783 /* check for a duplicate entry */ 5784 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5785 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5786 0, ipst, NULL); 5787 if (ire != NULL) { 5788 if (ipif != NULL) 5789 ipif_refrele(ipif); 5790 ire_refrele(gw_ire); 5791 ire_refrele(ire); 5792 return (EEXIST); 5793 } 5794 5795 /* Security attribute exists */ 5796 if (sp != NULL) { 5797 tsol_gcgrp_addr_t ga; 5798 5799 /* find or create the gateway credentials group */ 5800 ga.ga_af = AF_INET; 5801 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5802 5803 /* we hold reference to it upon success */ 5804 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5805 if (gcgrp == NULL) { 5806 if (ipif != NULL) 5807 ipif_refrele(ipif); 5808 ire_refrele(gw_ire); 5809 return (ENOMEM); 5810 } 5811 5812 /* 5813 * Create and add the security attribute to the group; a 5814 * reference to the group is made upon allocating a new 5815 * entry successfully. If it finds an already-existing 5816 * entry for the security attribute in the group, it simply 5817 * returns it and no new reference is made to the group. 5818 */ 5819 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5820 if (gc == NULL) { 5821 if (ipif != NULL) 5822 ipif_refrele(ipif); 5823 /* release reference held by gcgrp_lookup */ 5824 GCGRP_REFRELE(gcgrp); 5825 ire_refrele(gw_ire); 5826 return (ENOMEM); 5827 } 5828 } 5829 5830 /* Create the IRE. */ 5831 ire = ire_create( 5832 (uchar_t *)&dst_addr, /* dest address */ 5833 (uchar_t *)&mask, /* mask */ 5834 (uchar_t *)&gw_addr, /* gateway address */ 5835 (ushort_t)type, /* IRE type */ 5836 ill, 5837 zoneid, 5838 flags, 5839 gc, /* security attribute */ 5840 ipst); 5841 5842 /* 5843 * The ire holds a reference to the 'gc' and the 'gc' holds a 5844 * reference to the 'gcgrp'. We can now release the extra reference 5845 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5846 */ 5847 if (gcgrp_xtraref) 5848 GCGRP_REFRELE(gcgrp); 5849 if (ire == NULL) { 5850 if (gc != NULL) 5851 GC_REFRELE(gc); 5852 if (ipif != NULL) 5853 ipif_refrele(ipif); 5854 ire_refrele(gw_ire); 5855 return (ENOMEM); 5856 } 5857 5858 /* Before we add, check if an extra CGTP broadcast is needed */ 5859 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5860 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5861 5862 /* src address assigned by the caller? */ 5863 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5864 ire->ire_setsrc_addr = src_addr; 5865 5866 /* 5867 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5868 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5869 */ 5870 5871 /* Add the new IRE. */ 5872 nire = ire_add(ire); 5873 if (nire == NULL) { 5874 /* 5875 * In the result of failure, ire_add() will have 5876 * already deleted the ire in question, so there 5877 * is no need to do that here. 5878 */ 5879 if (ipif != NULL) 5880 ipif_refrele(ipif); 5881 ire_refrele(gw_ire); 5882 return (ENOMEM); 5883 } 5884 /* 5885 * Check if it was a duplicate entry. This handles 5886 * the case of two racing route adds for the same route 5887 */ 5888 if (nire != ire) { 5889 ire_delete(nire); 5890 ire_refrele(nire); 5891 if (ipif != NULL) 5892 ipif_refrele(ipif); 5893 ire_refrele(gw_ire); 5894 return (EEXIST); 5895 } 5896 ire = nire; 5897 5898 if (flags & RTF_MULTIRT) { 5899 /* 5900 * Invoke the CGTP (multirouting) filtering module 5901 * to add the dst address in the filtering database. 5902 * Replicated inbound packets coming from that address 5903 * will be filtered to discard the duplicates. 5904 * It is not necessary to call the CGTP filter hook 5905 * when the dst address is a broadcast or multicast, 5906 * because an IP source address cannot be a broadcast 5907 * or a multicast. 5908 */ 5909 if (cgtp_broadcast) { 5910 ip_cgtp_bcast_add(ire, ipst); 5911 goto save_ire; 5912 } 5913 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5914 !CLASSD(ire->ire_addr)) { 5915 int res; 5916 ipif_t *src_ipif; 5917 5918 /* Find the source address corresponding to gw_ire */ 5919 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5920 NULL, zoneid, ipst); 5921 if (src_ipif != NULL) { 5922 res = ipst->ips_ip_cgtp_filter_ops-> 5923 cfo_add_dest_v4( 5924 ipst->ips_netstack->netstack_stackid, 5925 ire->ire_addr, 5926 ire->ire_gateway_addr, 5927 ire->ire_setsrc_addr, 5928 src_ipif->ipif_lcl_addr); 5929 ipif_refrele(src_ipif); 5930 } else { 5931 res = EADDRNOTAVAIL; 5932 } 5933 if (res != 0) { 5934 if (ipif != NULL) 5935 ipif_refrele(ipif); 5936 ire_refrele(gw_ire); 5937 ire_delete(ire); 5938 ire_refrele(ire); /* Held in ire_add */ 5939 return (res); 5940 } 5941 } 5942 } 5943 5944 save_ire: 5945 if (gw_ire != NULL) { 5946 ire_refrele(gw_ire); 5947 gw_ire = NULL; 5948 } 5949 if (ill != NULL) { 5950 /* 5951 * Save enough information so that we can recreate the IRE if 5952 * the interface goes down and then up. The metrics associated 5953 * with the route will be saved as well when rts_setmetrics() is 5954 * called after the IRE has been created. In the case where 5955 * memory cannot be allocated, none of this information will be 5956 * saved. 5957 */ 5958 ill_save_ire(ill, ire); 5959 } 5960 if (ioctl_msg) 5961 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5962 if (ire_arg != NULL) { 5963 /* 5964 * Store the ire that was successfully added into where ire_arg 5965 * points to so that callers don't have to look it up 5966 * themselves (but they are responsible for ire_refrele()ing 5967 * the ire when they are finished with it). 5968 */ 5969 *ire_arg = ire; 5970 } else { 5971 ire_refrele(ire); /* Held in ire_add */ 5972 } 5973 if (ipif != NULL) 5974 ipif_refrele(ipif); 5975 return (0); 5976 } 5977 5978 /* 5979 * ip_rt_delete is called to delete an IPv4 route. 5980 * ill is passed in to associate it with the correct interface. 5981 */ 5982 /* ARGSUSED4 */ 5983 int 5984 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5985 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5986 ip_stack_t *ipst, zoneid_t zoneid) 5987 { 5988 ire_t *ire = NULL; 5989 ipif_t *ipif; 5990 uint_t type; 5991 uint_t match_flags = MATCH_IRE_TYPE; 5992 int err = 0; 5993 5994 ip1dbg(("ip_rt_delete:")); 5995 /* 5996 * If this is the case of RTF_HOST being set, then we set the netmask 5997 * to all ones. Otherwise, we use the netmask if one was supplied. 5998 */ 5999 if (flags & RTF_HOST) { 6000 mask = IP_HOST_MASK; 6001 match_flags |= MATCH_IRE_MASK; 6002 } else if (rtm_addrs & RTA_NETMASK) { 6003 match_flags |= MATCH_IRE_MASK; 6004 } 6005 6006 /* 6007 * Note that RTF_GATEWAY is never set on a delete, therefore 6008 * we check if the gateway address is one of our interfaces first, 6009 * and fall back on RTF_GATEWAY routes. 6010 * 6011 * This makes it possible to delete an original 6012 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6013 * However, we have RTF_KERNEL set on the ones created by ipif_up 6014 * and those can not be deleted here. 6015 * 6016 * We use MATCH_IRE_ILL if we know the interface. If the caller 6017 * specified an interface (from the RTA_IFP sockaddr) we use it, 6018 * otherwise we use the ill derived from the gateway address. 6019 * We can always match the gateway address since we record it 6020 * in ire_gateway_addr. 6021 * 6022 * For more detail on specifying routes by gateway address and by 6023 * interface index, see the comments in ip_rt_add(). 6024 */ 6025 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6026 if (ipif != NULL) { 6027 ill_t *ill_match; 6028 6029 if (ill != NULL) 6030 ill_match = ill; 6031 else 6032 ill_match = ipif->ipif_ill; 6033 6034 match_flags |= MATCH_IRE_ILL; 6035 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6036 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 6037 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 6038 NULL); 6039 } 6040 if (ire == NULL) { 6041 match_flags |= MATCH_IRE_GW; 6042 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6043 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6044 match_flags, 0, ipst, NULL); 6045 } 6046 /* Avoid deleting routes created by kernel from an ipif */ 6047 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6048 ire_refrele(ire); 6049 ire = NULL; 6050 } 6051 6052 /* Restore in case we didn't find a match */ 6053 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6054 } 6055 6056 if (ire == NULL) { 6057 /* 6058 * At this point, the gateway address is not one of our own 6059 * addresses or a matching interface route was not found. We 6060 * set the IRE type to lookup based on whether 6061 * this is a host route, a default route or just a prefix. 6062 * 6063 * If an ill was passed in, then the lookup is based on an 6064 * interface index so MATCH_IRE_ILL is added to match_flags. 6065 */ 6066 match_flags |= MATCH_IRE_GW; 6067 if (ill != NULL) 6068 match_flags |= MATCH_IRE_ILL; 6069 if (mask == IP_HOST_MASK) 6070 type = IRE_HOST; 6071 else if (mask == 0) 6072 type = IRE_DEFAULT; 6073 else 6074 type = IRE_PREFIX; 6075 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6076 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6077 } 6078 6079 if (ipif != NULL) { 6080 ipif_refrele(ipif); 6081 ipif = NULL; 6082 } 6083 6084 if (ire == NULL) 6085 return (ESRCH); 6086 6087 if (ire->ire_flags & RTF_MULTIRT) { 6088 /* 6089 * Invoke the CGTP (multirouting) filtering module 6090 * to remove the dst address from the filtering database. 6091 * Packets coming from that address will no longer be 6092 * filtered to remove duplicates. 6093 */ 6094 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6095 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6096 ipst->ips_netstack->netstack_stackid, 6097 ire->ire_addr, ire->ire_gateway_addr); 6098 } 6099 ip_cgtp_bcast_delete(ire, ipst); 6100 } 6101 6102 ill = ire->ire_ill; 6103 if (ill != NULL) 6104 ill_remove_saved_ire(ill, ire); 6105 if (ioctl_msg) 6106 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6107 ire_delete(ire); 6108 ire_refrele(ire); 6109 return (err); 6110 } 6111 6112 /* 6113 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6114 */ 6115 /* ARGSUSED */ 6116 int 6117 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6118 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6119 { 6120 ipaddr_t dst_addr; 6121 ipaddr_t gw_addr; 6122 ipaddr_t mask; 6123 int error = 0; 6124 mblk_t *mp1; 6125 struct rtentry *rt; 6126 ipif_t *ipif = NULL; 6127 ip_stack_t *ipst; 6128 6129 ASSERT(q->q_next == NULL); 6130 ipst = CONNQ_TO_IPST(q); 6131 6132 ip1dbg(("ip_siocaddrt:")); 6133 /* Existence of mp1 verified in ip_wput_nondata */ 6134 mp1 = mp->b_cont->b_cont; 6135 rt = (struct rtentry *)mp1->b_rptr; 6136 6137 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6138 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6139 6140 /* 6141 * If the RTF_HOST flag is on, this is a request to assign a gateway 6142 * to a particular host address. In this case, we set the netmask to 6143 * all ones for the particular destination address. Otherwise, 6144 * determine the netmask to be used based on dst_addr and the interfaces 6145 * in use. 6146 */ 6147 if (rt->rt_flags & RTF_HOST) { 6148 mask = IP_HOST_MASK; 6149 } else { 6150 /* 6151 * Note that ip_subnet_mask returns a zero mask in the case of 6152 * default (an all-zeroes address). 6153 */ 6154 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6155 } 6156 6157 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6158 B_TRUE, NULL, ipst, ALL_ZONES); 6159 if (ipif != NULL) 6160 ipif_refrele(ipif); 6161 return (error); 6162 } 6163 6164 /* 6165 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6166 */ 6167 /* ARGSUSED */ 6168 int 6169 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6170 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6171 { 6172 ipaddr_t dst_addr; 6173 ipaddr_t gw_addr; 6174 ipaddr_t mask; 6175 int error; 6176 mblk_t *mp1; 6177 struct rtentry *rt; 6178 ipif_t *ipif = NULL; 6179 ip_stack_t *ipst; 6180 6181 ASSERT(q->q_next == NULL); 6182 ipst = CONNQ_TO_IPST(q); 6183 6184 ip1dbg(("ip_siocdelrt:")); 6185 /* Existence of mp1 verified in ip_wput_nondata */ 6186 mp1 = mp->b_cont->b_cont; 6187 rt = (struct rtentry *)mp1->b_rptr; 6188 6189 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6190 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6191 6192 /* 6193 * If the RTF_HOST flag is on, this is a request to delete a gateway 6194 * to a particular host address. In this case, we set the netmask to 6195 * all ones for the particular destination address. Otherwise, 6196 * determine the netmask to be used based on dst_addr and the interfaces 6197 * in use. 6198 */ 6199 if (rt->rt_flags & RTF_HOST) { 6200 mask = IP_HOST_MASK; 6201 } else { 6202 /* 6203 * Note that ip_subnet_mask returns a zero mask in the case of 6204 * default (an all-zeroes address). 6205 */ 6206 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6207 } 6208 6209 error = ip_rt_delete(dst_addr, mask, gw_addr, 6210 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6211 ipst, ALL_ZONES); 6212 if (ipif != NULL) 6213 ipif_refrele(ipif); 6214 return (error); 6215 } 6216 6217 /* 6218 * Enqueue the mp onto the ipsq, chained by b_next. 6219 * b_prev stores the function to be executed later, and b_queue the queue 6220 * where this mp originated. 6221 */ 6222 void 6223 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6224 ill_t *pending_ill) 6225 { 6226 conn_t *connp; 6227 ipxop_t *ipx = ipsq->ipsq_xop; 6228 6229 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6230 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6231 ASSERT(func != NULL); 6232 6233 mp->b_queue = q; 6234 mp->b_prev = (void *)func; 6235 mp->b_next = NULL; 6236 6237 switch (type) { 6238 case CUR_OP: 6239 if (ipx->ipx_mptail != NULL) { 6240 ASSERT(ipx->ipx_mphead != NULL); 6241 ipx->ipx_mptail->b_next = mp; 6242 } else { 6243 ASSERT(ipx->ipx_mphead == NULL); 6244 ipx->ipx_mphead = mp; 6245 } 6246 ipx->ipx_mptail = mp; 6247 break; 6248 6249 case NEW_OP: 6250 if (ipsq->ipsq_xopq_mptail != NULL) { 6251 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6252 ipsq->ipsq_xopq_mptail->b_next = mp; 6253 } else { 6254 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6255 ipsq->ipsq_xopq_mphead = mp; 6256 } 6257 ipsq->ipsq_xopq_mptail = mp; 6258 ipx->ipx_ipsq_queued = B_TRUE; 6259 break; 6260 6261 case SWITCH_OP: 6262 ASSERT(ipsq->ipsq_swxop != NULL); 6263 /* only one switch operation is currently allowed */ 6264 ASSERT(ipsq->ipsq_switch_mp == NULL); 6265 ipsq->ipsq_switch_mp = mp; 6266 ipx->ipx_ipsq_queued = B_TRUE; 6267 break; 6268 default: 6269 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6270 } 6271 6272 if (CONN_Q(q) && pending_ill != NULL) { 6273 connp = Q_TO_CONN(q); 6274 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6275 connp->conn_oper_pending_ill = pending_ill; 6276 } 6277 } 6278 6279 /* 6280 * Dequeue the next message that requested exclusive access to this IPSQ's 6281 * xop. Specifically: 6282 * 6283 * 1. If we're still processing the current operation on `ipsq', then 6284 * dequeue the next message for the operation (from ipx_mphead), or 6285 * return NULL if there are no queued messages for the operation. 6286 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6287 * 6288 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6289 * not set) see if the ipsq has requested an xop switch. If so, switch 6290 * `ipsq' to a different xop. Xop switches only happen when joining or 6291 * leaving IPMP groups and require a careful dance -- see the comments 6292 * in-line below for details. If we're leaving a group xop or if we're 6293 * joining a group xop and become writer on it, then we proceed to (3). 6294 * Otherwise, we return NULL and exit the xop. 6295 * 6296 * 3. For each IPSQ in the xop, return any switch operation stored on 6297 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6298 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6299 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6300 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6301 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6302 * each phyint in the group, including the IPMP meta-interface phyint. 6303 */ 6304 static mblk_t * 6305 ipsq_dq(ipsq_t *ipsq) 6306 { 6307 ill_t *illv4, *illv6; 6308 mblk_t *mp; 6309 ipsq_t *xopipsq; 6310 ipsq_t *leftipsq = NULL; 6311 ipxop_t *ipx; 6312 phyint_t *phyi = ipsq->ipsq_phyint; 6313 ip_stack_t *ipst = ipsq->ipsq_ipst; 6314 boolean_t emptied = B_FALSE; 6315 6316 /* 6317 * Grab all the locks we need in the defined order (ill_g_lock -> 6318 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6319 */ 6320 rw_enter(&ipst->ips_ill_g_lock, 6321 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6322 mutex_enter(&ipsq->ipsq_lock); 6323 ipx = ipsq->ipsq_xop; 6324 mutex_enter(&ipx->ipx_lock); 6325 6326 /* 6327 * Dequeue the next message associated with the current exclusive 6328 * operation, if any. 6329 */ 6330 if ((mp = ipx->ipx_mphead) != NULL) { 6331 ipx->ipx_mphead = mp->b_next; 6332 if (ipx->ipx_mphead == NULL) 6333 ipx->ipx_mptail = NULL; 6334 mp->b_next = (void *)ipsq; 6335 goto out; 6336 } 6337 6338 if (ipx->ipx_current_ipif != NULL) 6339 goto empty; 6340 6341 if (ipsq->ipsq_swxop != NULL) { 6342 /* 6343 * The exclusive operation that is now being completed has 6344 * requested a switch to a different xop. This happens 6345 * when an interface joins or leaves an IPMP group. Joins 6346 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6347 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6348 * (phyint_free()), or interface plumb for an ill type 6349 * not in the IPMP group (ip_rput_dlpi_writer()). 6350 * 6351 * Xop switches are not allowed on the IPMP meta-interface. 6352 */ 6353 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6354 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6355 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6356 6357 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6358 /* 6359 * We're switching back to our own xop, so we have two 6360 * xop's to drain/exit: our own, and the group xop 6361 * that we are leaving. 6362 * 6363 * First, pull ourselves out of the group ipsq list. 6364 * This is safe since we're writer on ill_g_lock. 6365 */ 6366 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6367 6368 xopipsq = ipx->ipx_ipsq; 6369 while (xopipsq->ipsq_next != ipsq) 6370 xopipsq = xopipsq->ipsq_next; 6371 6372 xopipsq->ipsq_next = ipsq->ipsq_next; 6373 ipsq->ipsq_next = ipsq; 6374 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6375 ipsq->ipsq_swxop = NULL; 6376 6377 /* 6378 * Second, prepare to exit the group xop. The actual 6379 * ipsq_exit() is done at the end of this function 6380 * since we cannot hold any locks across ipsq_exit(). 6381 * Note that although we drop the group's ipx_lock, no 6382 * threads can proceed since we're still ipx_writer. 6383 */ 6384 leftipsq = xopipsq; 6385 mutex_exit(&ipx->ipx_lock); 6386 6387 /* 6388 * Third, set ipx to point to our own xop (which was 6389 * inactive and therefore can be entered). 6390 */ 6391 ipx = ipsq->ipsq_xop; 6392 mutex_enter(&ipx->ipx_lock); 6393 ASSERT(ipx->ipx_writer == NULL); 6394 ASSERT(ipx->ipx_current_ipif == NULL); 6395 } else { 6396 /* 6397 * We're switching from our own xop to a group xop. 6398 * The requestor of the switch must ensure that the 6399 * group xop cannot go away (e.g. by ensuring the 6400 * phyint associated with the xop cannot go away). 6401 * 6402 * If we can become writer on our new xop, then we'll 6403 * do the drain. Otherwise, the current writer of our 6404 * new xop will do the drain when it exits. 6405 * 6406 * First, splice ourselves into the group IPSQ list. 6407 * This is safe since we're writer on ill_g_lock. 6408 */ 6409 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6410 6411 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6412 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6413 xopipsq = xopipsq->ipsq_next; 6414 6415 xopipsq->ipsq_next = ipsq; 6416 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6417 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6418 ipsq->ipsq_swxop = NULL; 6419 6420 /* 6421 * Second, exit our own xop, since it's now unused. 6422 * This is safe since we've got the only reference. 6423 */ 6424 ASSERT(ipx->ipx_writer == curthread); 6425 ipx->ipx_writer = NULL; 6426 VERIFY(--ipx->ipx_reentry_cnt == 0); 6427 ipx->ipx_ipsq_queued = B_FALSE; 6428 mutex_exit(&ipx->ipx_lock); 6429 6430 /* 6431 * Third, set ipx to point to our new xop, and check 6432 * if we can become writer on it. If we cannot, then 6433 * the current writer will drain the IPSQ group when 6434 * it exits. Our ipsq_xop is guaranteed to be stable 6435 * because we're still holding ipsq_lock. 6436 */ 6437 ipx = ipsq->ipsq_xop; 6438 mutex_enter(&ipx->ipx_lock); 6439 if (ipx->ipx_writer != NULL || 6440 ipx->ipx_current_ipif != NULL) { 6441 goto out; 6442 } 6443 } 6444 6445 /* 6446 * Fourth, become writer on our new ipx before we continue 6447 * with the drain. Note that we never dropped ipsq_lock 6448 * above, so no other thread could've raced with us to 6449 * become writer first. Also, we're holding ipx_lock, so 6450 * no other thread can examine the ipx right now. 6451 */ 6452 ASSERT(ipx->ipx_current_ipif == NULL); 6453 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6454 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6455 ipx->ipx_writer = curthread; 6456 ipx->ipx_forced = B_FALSE; 6457 #ifdef DEBUG 6458 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6459 #endif 6460 } 6461 6462 xopipsq = ipsq; 6463 do { 6464 /* 6465 * So that other operations operate on a consistent and 6466 * complete phyint, a switch message on an IPSQ must be 6467 * handled prior to any other operations on that IPSQ. 6468 */ 6469 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6470 xopipsq->ipsq_switch_mp = NULL; 6471 ASSERT(mp->b_next == NULL); 6472 mp->b_next = (void *)xopipsq; 6473 goto out; 6474 } 6475 6476 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6477 xopipsq->ipsq_xopq_mphead = mp->b_next; 6478 if (xopipsq->ipsq_xopq_mphead == NULL) 6479 xopipsq->ipsq_xopq_mptail = NULL; 6480 mp->b_next = (void *)xopipsq; 6481 goto out; 6482 } 6483 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6484 empty: 6485 /* 6486 * There are no messages. Further, we are holding ipx_lock, hence no 6487 * new messages can end up on any IPSQ in the xop. 6488 */ 6489 ipx->ipx_writer = NULL; 6490 ipx->ipx_forced = B_FALSE; 6491 VERIFY(--ipx->ipx_reentry_cnt == 0); 6492 ipx->ipx_ipsq_queued = B_FALSE; 6493 emptied = B_TRUE; 6494 #ifdef DEBUG 6495 ipx->ipx_depth = 0; 6496 #endif 6497 out: 6498 mutex_exit(&ipx->ipx_lock); 6499 mutex_exit(&ipsq->ipsq_lock); 6500 6501 /* 6502 * If we completely emptied the xop, then wake up any threads waiting 6503 * to enter any of the IPSQ's associated with it. 6504 */ 6505 if (emptied) { 6506 xopipsq = ipsq; 6507 do { 6508 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6509 continue; 6510 6511 illv4 = phyi->phyint_illv4; 6512 illv6 = phyi->phyint_illv6; 6513 6514 GRAB_ILL_LOCKS(illv4, illv6); 6515 if (illv4 != NULL) 6516 cv_broadcast(&illv4->ill_cv); 6517 if (illv6 != NULL) 6518 cv_broadcast(&illv6->ill_cv); 6519 RELEASE_ILL_LOCKS(illv4, illv6); 6520 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6521 } 6522 rw_exit(&ipst->ips_ill_g_lock); 6523 6524 /* 6525 * Now that all locks are dropped, exit the IPSQ we left. 6526 */ 6527 if (leftipsq != NULL) 6528 ipsq_exit(leftipsq); 6529 6530 return (mp); 6531 } 6532 6533 /* 6534 * Return completion status of previously initiated DLPI operations on 6535 * ills in the purview of an ipsq. 6536 */ 6537 static boolean_t 6538 ipsq_dlpi_done(ipsq_t *ipsq) 6539 { 6540 ipsq_t *ipsq_start; 6541 phyint_t *phyi; 6542 ill_t *ill; 6543 6544 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6545 ipsq_start = ipsq; 6546 6547 do { 6548 /* 6549 * The only current users of this function are ipsq_try_enter 6550 * and ipsq_enter which have made sure that ipsq_writer is 6551 * NULL before we reach here. ill_dlpi_pending is modified 6552 * only by an ipsq writer 6553 */ 6554 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6555 phyi = ipsq->ipsq_phyint; 6556 /* 6557 * phyi could be NULL if a phyint that is part of an 6558 * IPMP group is being unplumbed. A more detailed 6559 * comment is in ipmp_grp_update_kstats() 6560 */ 6561 if (phyi != NULL) { 6562 ill = phyi->phyint_illv4; 6563 if (ill != NULL && 6564 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6565 ill->ill_arl_dlpi_pending)) 6566 return (B_FALSE); 6567 6568 ill = phyi->phyint_illv6; 6569 if (ill != NULL && 6570 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6571 return (B_FALSE); 6572 } 6573 6574 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6575 6576 return (B_TRUE); 6577 } 6578 6579 /* 6580 * Enter the ipsq corresponding to ill, by waiting synchronously till 6581 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6582 * will have to drain completely before ipsq_enter returns success. 6583 * ipx_current_ipif will be set if some exclusive op is in progress, 6584 * and the ipsq_exit logic will start the next enqueued op after 6585 * completion of the current op. If 'force' is used, we don't wait 6586 * for the enqueued ops. This is needed when a conn_close wants to 6587 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6588 * of an ill can also use this option. But we dont' use it currently. 6589 */ 6590 #define ENTER_SQ_WAIT_TICKS 100 6591 boolean_t 6592 ipsq_enter(ill_t *ill, boolean_t force, int type) 6593 { 6594 ipsq_t *ipsq; 6595 ipxop_t *ipx; 6596 boolean_t waited_enough = B_FALSE; 6597 ip_stack_t *ipst = ill->ill_ipst; 6598 6599 /* 6600 * Note that the relationship between ill and ipsq is fixed as long as 6601 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6602 * relationship between the IPSQ and xop cannot change. However, 6603 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6604 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6605 * waking up all ills in the xop when it becomes available. 6606 */ 6607 for (;;) { 6608 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6609 mutex_enter(&ill->ill_lock); 6610 if (ill->ill_state_flags & ILL_CONDEMNED) { 6611 mutex_exit(&ill->ill_lock); 6612 rw_exit(&ipst->ips_ill_g_lock); 6613 return (B_FALSE); 6614 } 6615 6616 ipsq = ill->ill_phyint->phyint_ipsq; 6617 mutex_enter(&ipsq->ipsq_lock); 6618 ipx = ipsq->ipsq_xop; 6619 mutex_enter(&ipx->ipx_lock); 6620 6621 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6622 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6623 waited_enough)) 6624 break; 6625 6626 rw_exit(&ipst->ips_ill_g_lock); 6627 6628 if (!force || ipx->ipx_writer != NULL) { 6629 mutex_exit(&ipx->ipx_lock); 6630 mutex_exit(&ipsq->ipsq_lock); 6631 cv_wait(&ill->ill_cv, &ill->ill_lock); 6632 } else { 6633 mutex_exit(&ipx->ipx_lock); 6634 mutex_exit(&ipsq->ipsq_lock); 6635 (void) cv_reltimedwait(&ill->ill_cv, 6636 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6637 waited_enough = B_TRUE; 6638 } 6639 mutex_exit(&ill->ill_lock); 6640 } 6641 6642 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6643 ASSERT(ipx->ipx_reentry_cnt == 0); 6644 ipx->ipx_writer = curthread; 6645 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6646 ipx->ipx_reentry_cnt++; 6647 #ifdef DEBUG 6648 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6649 #endif 6650 mutex_exit(&ipx->ipx_lock); 6651 mutex_exit(&ipsq->ipsq_lock); 6652 mutex_exit(&ill->ill_lock); 6653 rw_exit(&ipst->ips_ill_g_lock); 6654 6655 return (B_TRUE); 6656 } 6657 6658 /* 6659 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6660 * across the call to the core interface ipsq_try_enter() and hence calls this 6661 * function directly. This is explained more fully in ipif_set_values(). 6662 * In order to support the above constraint, ipsq_try_enter is implemented as 6663 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6664 */ 6665 static ipsq_t * 6666 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6667 int type, boolean_t reentry_ok) 6668 { 6669 ipsq_t *ipsq; 6670 ipxop_t *ipx; 6671 ip_stack_t *ipst = ill->ill_ipst; 6672 6673 /* 6674 * lock ordering: 6675 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6676 * 6677 * ipx of an ipsq can't change when ipsq_lock is held. 6678 */ 6679 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6680 GRAB_CONN_LOCK(q); 6681 mutex_enter(&ill->ill_lock); 6682 ipsq = ill->ill_phyint->phyint_ipsq; 6683 mutex_enter(&ipsq->ipsq_lock); 6684 ipx = ipsq->ipsq_xop; 6685 mutex_enter(&ipx->ipx_lock); 6686 6687 /* 6688 * 1. Enter the ipsq if we are already writer and reentry is ok. 6689 * (Note: If the caller does not specify reentry_ok then neither 6690 * 'func' nor any of its callees must ever attempt to enter the ipsq 6691 * again. Otherwise it can lead to an infinite loop 6692 * 2. Enter the ipsq if there is no current writer and this attempted 6693 * entry is part of the current operation 6694 * 3. Enter the ipsq if there is no current writer and this is a new 6695 * operation and the operation queue is empty and there is no 6696 * operation currently in progress and if all previously initiated 6697 * DLPI operations have completed. 6698 */ 6699 if ((ipx->ipx_writer == curthread && reentry_ok) || 6700 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6701 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6702 ipsq_dlpi_done(ipsq))))) { 6703 /* Success. */ 6704 ipx->ipx_reentry_cnt++; 6705 ipx->ipx_writer = curthread; 6706 ipx->ipx_forced = B_FALSE; 6707 mutex_exit(&ipx->ipx_lock); 6708 mutex_exit(&ipsq->ipsq_lock); 6709 mutex_exit(&ill->ill_lock); 6710 RELEASE_CONN_LOCK(q); 6711 #ifdef DEBUG 6712 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6713 #endif 6714 return (ipsq); 6715 } 6716 6717 if (func != NULL) 6718 ipsq_enq(ipsq, q, mp, func, type, ill); 6719 6720 mutex_exit(&ipx->ipx_lock); 6721 mutex_exit(&ipsq->ipsq_lock); 6722 mutex_exit(&ill->ill_lock); 6723 RELEASE_CONN_LOCK(q); 6724 return (NULL); 6725 } 6726 6727 /* 6728 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6729 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6730 * There is one ipsq per phyint. The ipsq 6731 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6732 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6733 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6734 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6735 * up the interface) and are enqueued in ipx_mphead. 6736 * 6737 * If a thread does not want to reenter the ipsq when it is already writer, 6738 * it must make sure that the specified reentry point to be called later 6739 * when the ipsq is empty, nor any code path starting from the specified reentry 6740 * point must never ever try to enter the ipsq again. Otherwise it can lead 6741 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6742 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6743 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6744 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6745 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6746 * ioctl if the current ioctl has completed. If the current ioctl is still 6747 * in progress it simply returns. The current ioctl could be waiting for 6748 * a response from another module (the driver or could be waiting for 6749 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6750 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6751 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6752 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6753 * all associated DLPI operations have completed. 6754 */ 6755 6756 /* 6757 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6758 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6759 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6760 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6761 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6762 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6763 */ 6764 ipsq_t * 6765 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6766 ipsq_func_t func, int type, boolean_t reentry_ok) 6767 { 6768 ip_stack_t *ipst; 6769 ipsq_t *ipsq; 6770 6771 /* Only 1 of ipif or ill can be specified */ 6772 ASSERT((ipif != NULL) ^ (ill != NULL)); 6773 6774 if (ipif != NULL) 6775 ill = ipif->ipif_ill; 6776 ipst = ill->ill_ipst; 6777 6778 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6779 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6780 rw_exit(&ipst->ips_ill_g_lock); 6781 6782 return (ipsq); 6783 } 6784 6785 /* 6786 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6787 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6788 * cannot be entered, the mp is queued for completion. 6789 */ 6790 void 6791 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6792 boolean_t reentry_ok) 6793 { 6794 ipsq_t *ipsq; 6795 6796 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6797 6798 /* 6799 * Drop the caller's refhold on the ill. This is safe since we either 6800 * entered the IPSQ (and thus are exclusive), or failed to enter the 6801 * IPSQ, in which case we return without accessing ill anymore. This 6802 * is needed because func needs to see the correct refcount. 6803 * e.g. removeif can work only then. 6804 */ 6805 ill_refrele(ill); 6806 if (ipsq != NULL) { 6807 (*func)(ipsq, q, mp, NULL); 6808 ipsq_exit(ipsq); 6809 } 6810 } 6811 6812 /* 6813 * Exit the specified IPSQ. If this is the final exit on it then drain it 6814 * prior to exiting. Caller must be writer on the specified IPSQ. 6815 */ 6816 void 6817 ipsq_exit(ipsq_t *ipsq) 6818 { 6819 mblk_t *mp; 6820 ipsq_t *mp_ipsq; 6821 queue_t *q; 6822 phyint_t *phyi; 6823 ipsq_func_t func; 6824 6825 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6826 6827 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6828 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6829 ipsq->ipsq_xop->ipx_reentry_cnt--; 6830 return; 6831 } 6832 6833 for (;;) { 6834 phyi = ipsq->ipsq_phyint; 6835 mp = ipsq_dq(ipsq); 6836 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6837 6838 /* 6839 * If we've changed to a new IPSQ, and the phyint associated 6840 * with the old one has gone away, free the old IPSQ. Note 6841 * that this cannot happen while the IPSQ is in a group. 6842 */ 6843 if (mp_ipsq != ipsq && phyi == NULL) { 6844 ASSERT(ipsq->ipsq_next == ipsq); 6845 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6846 ipsq_delete(ipsq); 6847 } 6848 6849 if (mp == NULL) 6850 break; 6851 6852 q = mp->b_queue; 6853 func = (ipsq_func_t)mp->b_prev; 6854 ipsq = mp_ipsq; 6855 mp->b_next = mp->b_prev = NULL; 6856 mp->b_queue = NULL; 6857 6858 /* 6859 * If 'q' is an conn queue, it is valid, since we did a 6860 * a refhold on the conn at the start of the ioctl. 6861 * If 'q' is an ill queue, it is valid, since close of an 6862 * ill will clean up its IPSQ. 6863 */ 6864 (*func)(ipsq, q, mp, NULL); 6865 } 6866 } 6867 6868 /* 6869 * Used to start any igmp or mld timers that could not be started 6870 * while holding ill_mcast_lock. The timers can't be started while holding 6871 * the lock, since mld/igmp_start_timers may need to call untimeout() 6872 * which can't be done while holding the lock which the timeout handler 6873 * acquires. Otherwise 6874 * there could be a deadlock since the timeout handlers 6875 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6876 * ill_mcast_lock. 6877 */ 6878 void 6879 ill_mcast_timer_start(ip_stack_t *ipst) 6880 { 6881 int next; 6882 6883 mutex_enter(&ipst->ips_igmp_timer_lock); 6884 next = ipst->ips_igmp_deferred_next; 6885 ipst->ips_igmp_deferred_next = INFINITY; 6886 mutex_exit(&ipst->ips_igmp_timer_lock); 6887 6888 if (next != INFINITY) 6889 igmp_start_timers(next, ipst); 6890 6891 mutex_enter(&ipst->ips_mld_timer_lock); 6892 next = ipst->ips_mld_deferred_next; 6893 ipst->ips_mld_deferred_next = INFINITY; 6894 mutex_exit(&ipst->ips_mld_timer_lock); 6895 6896 if (next != INFINITY) 6897 mld_start_timers(next, ipst); 6898 } 6899 6900 /* 6901 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6902 * and `ioccmd'. 6903 */ 6904 void 6905 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6906 { 6907 ill_t *ill = ipif->ipif_ill; 6908 ipxop_t *ipx = ipsq->ipsq_xop; 6909 6910 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6911 ASSERT(ipx->ipx_current_ipif == NULL); 6912 ASSERT(ipx->ipx_current_ioctl == 0); 6913 6914 ipx->ipx_current_done = B_FALSE; 6915 ipx->ipx_current_ioctl = ioccmd; 6916 mutex_enter(&ipx->ipx_lock); 6917 ipx->ipx_current_ipif = ipif; 6918 mutex_exit(&ipx->ipx_lock); 6919 6920 /* 6921 * Set IPIF_CHANGING on one or more ipifs associated with the 6922 * current exclusive operation. IPIF_CHANGING prevents any new 6923 * references to the ipif (so that the references will eventually 6924 * drop to zero) and also prevents any "get" operations (e.g., 6925 * SIOCGLIFFLAGS) from being able to access the ipif until the 6926 * operation has completed and the ipif is again in a stable state. 6927 * 6928 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6929 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6930 * on the ill are marked with IPIF_CHANGING since it's unclear which 6931 * ipifs will be affected. 6932 * 6933 * Note that SIOCLIFREMOVEIF is a special case as it sets 6934 * IPIF_CONDEMNED internally after identifying the right ipif to 6935 * operate on. 6936 */ 6937 switch (ioccmd) { 6938 case SIOCLIFREMOVEIF: 6939 break; 6940 case 0: 6941 mutex_enter(&ill->ill_lock); 6942 ipif = ipif->ipif_ill->ill_ipif; 6943 for (; ipif != NULL; ipif = ipif->ipif_next) 6944 ipif->ipif_state_flags |= IPIF_CHANGING; 6945 mutex_exit(&ill->ill_lock); 6946 break; 6947 default: 6948 mutex_enter(&ill->ill_lock); 6949 ipif->ipif_state_flags |= IPIF_CHANGING; 6950 mutex_exit(&ill->ill_lock); 6951 } 6952 } 6953 6954 /* 6955 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6956 * the next exclusive operation to begin once we ipsq_exit(). However, if 6957 * pending DLPI operations remain, then we will wait for the queue to drain 6958 * before allowing the next exclusive operation to begin. This ensures that 6959 * DLPI operations from one exclusive operation are never improperly processed 6960 * as part of a subsequent exclusive operation. 6961 */ 6962 void 6963 ipsq_current_finish(ipsq_t *ipsq) 6964 { 6965 ipxop_t *ipx = ipsq->ipsq_xop; 6966 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6967 ipif_t *ipif = ipx->ipx_current_ipif; 6968 6969 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6970 6971 /* 6972 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6973 * (but in that case, IPIF_CHANGING will already be clear and no 6974 * pending DLPI messages can remain). 6975 */ 6976 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6977 ill_t *ill = ipif->ipif_ill; 6978 6979 mutex_enter(&ill->ill_lock); 6980 dlpi_pending = ill->ill_dlpi_pending; 6981 if (ipx->ipx_current_ioctl == 0) { 6982 ipif = ill->ill_ipif; 6983 for (; ipif != NULL; ipif = ipif->ipif_next) 6984 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6985 } else { 6986 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6987 } 6988 mutex_exit(&ill->ill_lock); 6989 } 6990 6991 ASSERT(!ipx->ipx_current_done); 6992 ipx->ipx_current_done = B_TRUE; 6993 ipx->ipx_current_ioctl = 0; 6994 if (dlpi_pending == DL_PRIM_INVAL) { 6995 mutex_enter(&ipx->ipx_lock); 6996 ipx->ipx_current_ipif = NULL; 6997 mutex_exit(&ipx->ipx_lock); 6998 } 6999 } 7000 7001 /* 7002 * The ill is closing. Flush all messages on the ipsq that originated 7003 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7004 * for this ill since ipsq_enter could not have entered until then. 7005 * New messages can't be queued since the CONDEMNED flag is set. 7006 */ 7007 static void 7008 ipsq_flush(ill_t *ill) 7009 { 7010 queue_t *q; 7011 mblk_t *prev; 7012 mblk_t *mp; 7013 mblk_t *mp_next; 7014 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7015 7016 ASSERT(IAM_WRITER_ILL(ill)); 7017 7018 /* 7019 * Flush any messages sent up by the driver. 7020 */ 7021 mutex_enter(&ipx->ipx_lock); 7022 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7023 mp_next = mp->b_next; 7024 q = mp->b_queue; 7025 if (q == ill->ill_rq || q == ill->ill_wq) { 7026 /* dequeue mp */ 7027 if (prev == NULL) 7028 ipx->ipx_mphead = mp->b_next; 7029 else 7030 prev->b_next = mp->b_next; 7031 if (ipx->ipx_mptail == mp) { 7032 ASSERT(mp_next == NULL); 7033 ipx->ipx_mptail = prev; 7034 } 7035 inet_freemsg(mp); 7036 } else { 7037 prev = mp; 7038 } 7039 } 7040 mutex_exit(&ipx->ipx_lock); 7041 (void) ipsq_pending_mp_cleanup(ill, NULL); 7042 ipsq_xopq_mp_cleanup(ill, NULL); 7043 } 7044 7045 /* 7046 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7047 * and return the associated ipif. 7048 * Return value: 7049 * Non zero: An error has occurred. ci may not be filled out. 7050 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7051 * a held ipif in ci.ci_ipif. 7052 */ 7053 int 7054 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7055 cmd_info_t *ci) 7056 { 7057 char *name; 7058 struct ifreq *ifr; 7059 struct lifreq *lifr; 7060 ipif_t *ipif = NULL; 7061 ill_t *ill; 7062 conn_t *connp; 7063 boolean_t isv6; 7064 boolean_t exists; 7065 mblk_t *mp1; 7066 zoneid_t zoneid; 7067 ip_stack_t *ipst; 7068 7069 if (q->q_next != NULL) { 7070 ill = (ill_t *)q->q_ptr; 7071 isv6 = ill->ill_isv6; 7072 connp = NULL; 7073 zoneid = ALL_ZONES; 7074 ipst = ill->ill_ipst; 7075 } else { 7076 ill = NULL; 7077 connp = Q_TO_CONN(q); 7078 isv6 = (connp->conn_family == AF_INET6); 7079 zoneid = connp->conn_zoneid; 7080 if (zoneid == GLOBAL_ZONEID) { 7081 /* global zone can access ipifs in all zones */ 7082 zoneid = ALL_ZONES; 7083 } 7084 ipst = connp->conn_netstack->netstack_ip; 7085 } 7086 7087 /* Has been checked in ip_wput_nondata */ 7088 mp1 = mp->b_cont->b_cont; 7089 7090 if (ipip->ipi_cmd_type == IF_CMD) { 7091 /* This a old style SIOC[GS]IF* command */ 7092 ifr = (struct ifreq *)mp1->b_rptr; 7093 /* 7094 * Null terminate the string to protect against buffer 7095 * overrun. String was generated by user code and may not 7096 * be trusted. 7097 */ 7098 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7099 name = ifr->ifr_name; 7100 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7101 ci->ci_sin6 = NULL; 7102 ci->ci_lifr = (struct lifreq *)ifr; 7103 } else { 7104 /* This a new style SIOC[GS]LIF* command */ 7105 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7106 lifr = (struct lifreq *)mp1->b_rptr; 7107 /* 7108 * Null terminate the string to protect against buffer 7109 * overrun. String was generated by user code and may not 7110 * be trusted. 7111 */ 7112 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7113 name = lifr->lifr_name; 7114 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7115 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7116 ci->ci_lifr = lifr; 7117 } 7118 7119 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7120 /* 7121 * The ioctl will be failed if the ioctl comes down 7122 * an conn stream 7123 */ 7124 if (ill == NULL) { 7125 /* 7126 * Not an ill queue, return EINVAL same as the 7127 * old error code. 7128 */ 7129 return (ENXIO); 7130 } 7131 ipif = ill->ill_ipif; 7132 ipif_refhold(ipif); 7133 } else { 7134 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7135 &exists, isv6, zoneid, ipst); 7136 7137 /* 7138 * Ensure that get ioctls don't see any internal state changes 7139 * caused by set ioctls by deferring them if IPIF_CHANGING is 7140 * set. 7141 */ 7142 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7143 !IAM_WRITER_IPIF(ipif)) { 7144 ipsq_t *ipsq; 7145 7146 if (connp != NULL) 7147 mutex_enter(&connp->conn_lock); 7148 mutex_enter(&ipif->ipif_ill->ill_lock); 7149 if (IPIF_IS_CHANGING(ipif) && 7150 !IPIF_IS_CONDEMNED(ipif)) { 7151 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7152 mutex_enter(&ipsq->ipsq_lock); 7153 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7154 mutex_exit(&ipif->ipif_ill->ill_lock); 7155 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7156 NEW_OP, ipif->ipif_ill); 7157 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7158 mutex_exit(&ipsq->ipsq_lock); 7159 if (connp != NULL) 7160 mutex_exit(&connp->conn_lock); 7161 ipif_refrele(ipif); 7162 return (EINPROGRESS); 7163 } 7164 mutex_exit(&ipif->ipif_ill->ill_lock); 7165 if (connp != NULL) 7166 mutex_exit(&connp->conn_lock); 7167 } 7168 } 7169 7170 /* 7171 * Old style [GS]IFCMD does not admit IPv6 ipif 7172 */ 7173 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7174 ipif_refrele(ipif); 7175 return (ENXIO); 7176 } 7177 7178 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7179 name[0] == '\0') { 7180 /* 7181 * Handle a or a SIOC?IF* with a null name 7182 * during plumb (on the ill queue before the I_PLINK). 7183 */ 7184 ipif = ill->ill_ipif; 7185 ipif_refhold(ipif); 7186 } 7187 7188 if (ipif == NULL) 7189 return (ENXIO); 7190 7191 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7192 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7193 7194 ci->ci_ipif = ipif; 7195 return (0); 7196 } 7197 7198 /* 7199 * Return the total number of ipifs. 7200 */ 7201 static uint_t 7202 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7203 { 7204 uint_t numifs = 0; 7205 ill_t *ill; 7206 ill_walk_context_t ctx; 7207 ipif_t *ipif; 7208 7209 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7210 ill = ILL_START_WALK_V4(&ctx, ipst); 7211 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7212 if (IS_UNDER_IPMP(ill)) 7213 continue; 7214 for (ipif = ill->ill_ipif; ipif != NULL; 7215 ipif = ipif->ipif_next) { 7216 if (ipif->ipif_zoneid == zoneid || 7217 ipif->ipif_zoneid == ALL_ZONES) 7218 numifs++; 7219 } 7220 } 7221 rw_exit(&ipst->ips_ill_g_lock); 7222 return (numifs); 7223 } 7224 7225 /* 7226 * Return the total number of ipifs. 7227 */ 7228 static uint_t 7229 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7230 { 7231 uint_t numifs = 0; 7232 ill_t *ill; 7233 ipif_t *ipif; 7234 ill_walk_context_t ctx; 7235 7236 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7237 7238 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7239 if (family == AF_INET) 7240 ill = ILL_START_WALK_V4(&ctx, ipst); 7241 else if (family == AF_INET6) 7242 ill = ILL_START_WALK_V6(&ctx, ipst); 7243 else 7244 ill = ILL_START_WALK_ALL(&ctx, ipst); 7245 7246 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7247 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7248 continue; 7249 7250 for (ipif = ill->ill_ipif; ipif != NULL; 7251 ipif = ipif->ipif_next) { 7252 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7253 !(lifn_flags & LIFC_NOXMIT)) 7254 continue; 7255 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7256 !(lifn_flags & LIFC_TEMPORARY)) 7257 continue; 7258 if (((ipif->ipif_flags & 7259 (IPIF_NOXMIT|IPIF_NOLOCAL| 7260 IPIF_DEPRECATED)) || 7261 IS_LOOPBACK(ill) || 7262 !(ipif->ipif_flags & IPIF_UP)) && 7263 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7264 continue; 7265 7266 if (zoneid != ipif->ipif_zoneid && 7267 ipif->ipif_zoneid != ALL_ZONES && 7268 (zoneid != GLOBAL_ZONEID || 7269 !(lifn_flags & LIFC_ALLZONES))) 7270 continue; 7271 7272 numifs++; 7273 } 7274 } 7275 rw_exit(&ipst->ips_ill_g_lock); 7276 return (numifs); 7277 } 7278 7279 uint_t 7280 ip_get_lifsrcofnum(ill_t *ill) 7281 { 7282 uint_t numifs = 0; 7283 ill_t *ill_head = ill; 7284 ip_stack_t *ipst = ill->ill_ipst; 7285 7286 /* 7287 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7288 * other thread may be trying to relink the ILLs in this usesrc group 7289 * and adjusting the ill_usesrc_grp_next pointers 7290 */ 7291 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7292 if ((ill->ill_usesrc_ifindex == 0) && 7293 (ill->ill_usesrc_grp_next != NULL)) { 7294 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7295 ill = ill->ill_usesrc_grp_next) 7296 numifs++; 7297 } 7298 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7299 7300 return (numifs); 7301 } 7302 7303 /* Null values are passed in for ipif, sin, and ifreq */ 7304 /* ARGSUSED */ 7305 int 7306 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7307 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7308 { 7309 int *nump; 7310 conn_t *connp = Q_TO_CONN(q); 7311 7312 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7313 7314 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7315 nump = (int *)mp->b_cont->b_cont->b_rptr; 7316 7317 *nump = ip_get_numifs(connp->conn_zoneid, 7318 connp->conn_netstack->netstack_ip); 7319 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7320 return (0); 7321 } 7322 7323 /* Null values are passed in for ipif, sin, and ifreq */ 7324 /* ARGSUSED */ 7325 int 7326 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7327 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7328 { 7329 struct lifnum *lifn; 7330 mblk_t *mp1; 7331 conn_t *connp = Q_TO_CONN(q); 7332 7333 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7334 7335 /* Existence checked in ip_wput_nondata */ 7336 mp1 = mp->b_cont->b_cont; 7337 7338 lifn = (struct lifnum *)mp1->b_rptr; 7339 switch (lifn->lifn_family) { 7340 case AF_UNSPEC: 7341 case AF_INET: 7342 case AF_INET6: 7343 break; 7344 default: 7345 return (EAFNOSUPPORT); 7346 } 7347 7348 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7349 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7350 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7351 return (0); 7352 } 7353 7354 /* ARGSUSED */ 7355 int 7356 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7357 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7358 { 7359 STRUCT_HANDLE(ifconf, ifc); 7360 mblk_t *mp1; 7361 struct iocblk *iocp; 7362 struct ifreq *ifr; 7363 ill_walk_context_t ctx; 7364 ill_t *ill; 7365 ipif_t *ipif; 7366 struct sockaddr_in *sin; 7367 int32_t ifclen; 7368 zoneid_t zoneid; 7369 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7370 7371 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7372 7373 ip1dbg(("ip_sioctl_get_ifconf")); 7374 /* Existence verified in ip_wput_nondata */ 7375 mp1 = mp->b_cont->b_cont; 7376 iocp = (struct iocblk *)mp->b_rptr; 7377 zoneid = Q_TO_CONN(q)->conn_zoneid; 7378 7379 /* 7380 * The original SIOCGIFCONF passed in a struct ifconf which specified 7381 * the user buffer address and length into which the list of struct 7382 * ifreqs was to be copied. Since AT&T Streams does not seem to 7383 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7384 * the SIOCGIFCONF operation was redefined to simply provide 7385 * a large output buffer into which we are supposed to jam the ifreq 7386 * array. The same ioctl command code was used, despite the fact that 7387 * both the applications and the kernel code had to change, thus making 7388 * it impossible to support both interfaces. 7389 * 7390 * For reasons not good enough to try to explain, the following 7391 * algorithm is used for deciding what to do with one of these: 7392 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7393 * form with the output buffer coming down as the continuation message. 7394 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7395 * and we have to copy in the ifconf structure to find out how big the 7396 * output buffer is and where to copy out to. Sure no problem... 7397 * 7398 */ 7399 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7400 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7401 int numifs = 0; 7402 size_t ifc_bufsize; 7403 7404 /* 7405 * Must be (better be!) continuation of a TRANSPARENT 7406 * IOCTL. We just copied in the ifconf structure. 7407 */ 7408 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7409 (struct ifconf *)mp1->b_rptr); 7410 7411 /* 7412 * Allocate a buffer to hold requested information. 7413 * 7414 * If ifc_len is larger than what is needed, we only 7415 * allocate what we will use. 7416 * 7417 * If ifc_len is smaller than what is needed, return 7418 * EINVAL. 7419 * 7420 * XXX: the ill_t structure can hava 2 counters, for 7421 * v4 and v6 (not just ill_ipif_up_count) to store the 7422 * number of interfaces for a device, so we don't need 7423 * to count them here... 7424 */ 7425 numifs = ip_get_numifs(zoneid, ipst); 7426 7427 ifclen = STRUCT_FGET(ifc, ifc_len); 7428 ifc_bufsize = numifs * sizeof (struct ifreq); 7429 if (ifc_bufsize > ifclen) { 7430 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7431 /* old behaviour */ 7432 return (EINVAL); 7433 } else { 7434 ifc_bufsize = ifclen; 7435 } 7436 } 7437 7438 mp1 = mi_copyout_alloc(q, mp, 7439 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7440 if (mp1 == NULL) 7441 return (ENOMEM); 7442 7443 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7444 } 7445 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7446 /* 7447 * the SIOCGIFCONF ioctl only knows about 7448 * IPv4 addresses, so don't try to tell 7449 * it about interfaces with IPv6-only 7450 * addresses. (Last parm 'isv6' is B_FALSE) 7451 */ 7452 7453 ifr = (struct ifreq *)mp1->b_rptr; 7454 7455 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7456 ill = ILL_START_WALK_V4(&ctx, ipst); 7457 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7458 if (IS_UNDER_IPMP(ill)) 7459 continue; 7460 for (ipif = ill->ill_ipif; ipif != NULL; 7461 ipif = ipif->ipif_next) { 7462 if (zoneid != ipif->ipif_zoneid && 7463 ipif->ipif_zoneid != ALL_ZONES) 7464 continue; 7465 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7466 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7467 /* old behaviour */ 7468 rw_exit(&ipst->ips_ill_g_lock); 7469 return (EINVAL); 7470 } else { 7471 goto if_copydone; 7472 } 7473 } 7474 ipif_get_name(ipif, ifr->ifr_name, 7475 sizeof (ifr->ifr_name)); 7476 sin = (sin_t *)&ifr->ifr_addr; 7477 *sin = sin_null; 7478 sin->sin_family = AF_INET; 7479 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7480 ifr++; 7481 } 7482 } 7483 if_copydone: 7484 rw_exit(&ipst->ips_ill_g_lock); 7485 mp1->b_wptr = (uchar_t *)ifr; 7486 7487 if (STRUCT_BUF(ifc) != NULL) { 7488 STRUCT_FSET(ifc, ifc_len, 7489 (int)((uchar_t *)ifr - mp1->b_rptr)); 7490 } 7491 return (0); 7492 } 7493 7494 /* 7495 * Get the interfaces using the address hosted on the interface passed in, 7496 * as a source adddress 7497 */ 7498 /* ARGSUSED */ 7499 int 7500 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7501 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7502 { 7503 mblk_t *mp1; 7504 ill_t *ill, *ill_head; 7505 ipif_t *ipif, *orig_ipif; 7506 int numlifs = 0; 7507 size_t lifs_bufsize, lifsmaxlen; 7508 struct lifreq *lifr; 7509 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7510 uint_t ifindex; 7511 zoneid_t zoneid; 7512 boolean_t isv6 = B_FALSE; 7513 struct sockaddr_in *sin; 7514 struct sockaddr_in6 *sin6; 7515 STRUCT_HANDLE(lifsrcof, lifs); 7516 ip_stack_t *ipst; 7517 7518 ipst = CONNQ_TO_IPST(q); 7519 7520 ASSERT(q->q_next == NULL); 7521 7522 zoneid = Q_TO_CONN(q)->conn_zoneid; 7523 7524 /* Existence verified in ip_wput_nondata */ 7525 mp1 = mp->b_cont->b_cont; 7526 7527 /* 7528 * Must be (better be!) continuation of a TRANSPARENT 7529 * IOCTL. We just copied in the lifsrcof structure. 7530 */ 7531 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7532 (struct lifsrcof *)mp1->b_rptr); 7533 7534 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7535 return (EINVAL); 7536 7537 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7538 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7539 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7540 if (ipif == NULL) { 7541 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7542 ifindex)); 7543 return (ENXIO); 7544 } 7545 7546 /* Allocate a buffer to hold requested information */ 7547 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7548 lifs_bufsize = numlifs * sizeof (struct lifreq); 7549 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7550 /* The actual size needed is always returned in lifs_len */ 7551 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7552 7553 /* If the amount we need is more than what is passed in, abort */ 7554 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7555 ipif_refrele(ipif); 7556 return (0); 7557 } 7558 7559 mp1 = mi_copyout_alloc(q, mp, 7560 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7561 if (mp1 == NULL) { 7562 ipif_refrele(ipif); 7563 return (ENOMEM); 7564 } 7565 7566 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7567 bzero(mp1->b_rptr, lifs_bufsize); 7568 7569 lifr = (struct lifreq *)mp1->b_rptr; 7570 7571 ill = ill_head = ipif->ipif_ill; 7572 orig_ipif = ipif; 7573 7574 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7575 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7576 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7577 7578 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7579 for (; (ill != NULL) && (ill != ill_head); 7580 ill = ill->ill_usesrc_grp_next) { 7581 7582 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7583 break; 7584 7585 ipif = ill->ill_ipif; 7586 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7587 if (ipif->ipif_isv6) { 7588 sin6 = (sin6_t *)&lifr->lifr_addr; 7589 *sin6 = sin6_null; 7590 sin6->sin6_family = AF_INET6; 7591 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7592 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7593 &ipif->ipif_v6net_mask); 7594 } else { 7595 sin = (sin_t *)&lifr->lifr_addr; 7596 *sin = sin_null; 7597 sin->sin_family = AF_INET; 7598 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7599 lifr->lifr_addrlen = ip_mask_to_plen( 7600 ipif->ipif_net_mask); 7601 } 7602 lifr++; 7603 } 7604 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7605 rw_exit(&ipst->ips_ill_g_lock); 7606 ipif_refrele(orig_ipif); 7607 mp1->b_wptr = (uchar_t *)lifr; 7608 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7609 7610 return (0); 7611 } 7612 7613 /* ARGSUSED */ 7614 int 7615 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7616 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7617 { 7618 mblk_t *mp1; 7619 int list; 7620 ill_t *ill; 7621 ipif_t *ipif; 7622 int flags; 7623 int numlifs = 0; 7624 size_t lifc_bufsize; 7625 struct lifreq *lifr; 7626 sa_family_t family; 7627 struct sockaddr_in *sin; 7628 struct sockaddr_in6 *sin6; 7629 ill_walk_context_t ctx; 7630 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7631 int32_t lifclen; 7632 zoneid_t zoneid; 7633 STRUCT_HANDLE(lifconf, lifc); 7634 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7635 7636 ip1dbg(("ip_sioctl_get_lifconf")); 7637 7638 ASSERT(q->q_next == NULL); 7639 7640 zoneid = Q_TO_CONN(q)->conn_zoneid; 7641 7642 /* Existence verified in ip_wput_nondata */ 7643 mp1 = mp->b_cont->b_cont; 7644 7645 /* 7646 * An extended version of SIOCGIFCONF that takes an 7647 * additional address family and flags field. 7648 * AF_UNSPEC retrieve both IPv4 and IPv6. 7649 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7650 * interfaces are omitted. 7651 * Similarly, IPIF_TEMPORARY interfaces are omitted 7652 * unless LIFC_TEMPORARY is specified. 7653 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7654 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7655 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7656 * has priority over LIFC_NOXMIT. 7657 */ 7658 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7659 7660 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7661 return (EINVAL); 7662 7663 /* 7664 * Must be (better be!) continuation of a TRANSPARENT 7665 * IOCTL. We just copied in the lifconf structure. 7666 */ 7667 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7668 7669 family = STRUCT_FGET(lifc, lifc_family); 7670 flags = STRUCT_FGET(lifc, lifc_flags); 7671 7672 switch (family) { 7673 case AF_UNSPEC: 7674 /* 7675 * walk all ILL's. 7676 */ 7677 list = MAX_G_HEADS; 7678 break; 7679 case AF_INET: 7680 /* 7681 * walk only IPV4 ILL's. 7682 */ 7683 list = IP_V4_G_HEAD; 7684 break; 7685 case AF_INET6: 7686 /* 7687 * walk only IPV6 ILL's. 7688 */ 7689 list = IP_V6_G_HEAD; 7690 break; 7691 default: 7692 return (EAFNOSUPPORT); 7693 } 7694 7695 /* 7696 * Allocate a buffer to hold requested information. 7697 * 7698 * If lifc_len is larger than what is needed, we only 7699 * allocate what we will use. 7700 * 7701 * If lifc_len is smaller than what is needed, return 7702 * EINVAL. 7703 */ 7704 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7705 lifc_bufsize = numlifs * sizeof (struct lifreq); 7706 lifclen = STRUCT_FGET(lifc, lifc_len); 7707 if (lifc_bufsize > lifclen) { 7708 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7709 return (EINVAL); 7710 else 7711 lifc_bufsize = lifclen; 7712 } 7713 7714 mp1 = mi_copyout_alloc(q, mp, 7715 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7716 if (mp1 == NULL) 7717 return (ENOMEM); 7718 7719 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7720 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7721 7722 lifr = (struct lifreq *)mp1->b_rptr; 7723 7724 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7725 ill = ill_first(list, list, &ctx, ipst); 7726 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7727 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7728 continue; 7729 7730 for (ipif = ill->ill_ipif; ipif != NULL; 7731 ipif = ipif->ipif_next) { 7732 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7733 !(flags & LIFC_NOXMIT)) 7734 continue; 7735 7736 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7737 !(flags & LIFC_TEMPORARY)) 7738 continue; 7739 7740 if (((ipif->ipif_flags & 7741 (IPIF_NOXMIT|IPIF_NOLOCAL| 7742 IPIF_DEPRECATED)) || 7743 IS_LOOPBACK(ill) || 7744 !(ipif->ipif_flags & IPIF_UP)) && 7745 (flags & LIFC_EXTERNAL_SOURCE)) 7746 continue; 7747 7748 if (zoneid != ipif->ipif_zoneid && 7749 ipif->ipif_zoneid != ALL_ZONES && 7750 (zoneid != GLOBAL_ZONEID || 7751 !(flags & LIFC_ALLZONES))) 7752 continue; 7753 7754 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7755 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7756 rw_exit(&ipst->ips_ill_g_lock); 7757 return (EINVAL); 7758 } else { 7759 goto lif_copydone; 7760 } 7761 } 7762 7763 ipif_get_name(ipif, lifr->lifr_name, 7764 sizeof (lifr->lifr_name)); 7765 lifr->lifr_type = ill->ill_type; 7766 if (ipif->ipif_isv6) { 7767 sin6 = (sin6_t *)&lifr->lifr_addr; 7768 *sin6 = sin6_null; 7769 sin6->sin6_family = AF_INET6; 7770 sin6->sin6_addr = 7771 ipif->ipif_v6lcl_addr; 7772 lifr->lifr_addrlen = 7773 ip_mask_to_plen_v6( 7774 &ipif->ipif_v6net_mask); 7775 } else { 7776 sin = (sin_t *)&lifr->lifr_addr; 7777 *sin = sin_null; 7778 sin->sin_family = AF_INET; 7779 sin->sin_addr.s_addr = 7780 ipif->ipif_lcl_addr; 7781 lifr->lifr_addrlen = 7782 ip_mask_to_plen( 7783 ipif->ipif_net_mask); 7784 } 7785 lifr++; 7786 } 7787 } 7788 lif_copydone: 7789 rw_exit(&ipst->ips_ill_g_lock); 7790 7791 mp1->b_wptr = (uchar_t *)lifr; 7792 if (STRUCT_BUF(lifc) != NULL) { 7793 STRUCT_FSET(lifc, lifc_len, 7794 (int)((uchar_t *)lifr - mp1->b_rptr)); 7795 } 7796 return (0); 7797 } 7798 7799 static void 7800 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7801 { 7802 ip6_asp_t *table; 7803 size_t table_size; 7804 mblk_t *data_mp; 7805 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7806 ip_stack_t *ipst; 7807 7808 if (q->q_next == NULL) 7809 ipst = CONNQ_TO_IPST(q); 7810 else 7811 ipst = ILLQ_TO_IPST(q); 7812 7813 /* These two ioctls are I_STR only */ 7814 if (iocp->ioc_count == TRANSPARENT) { 7815 miocnak(q, mp, 0, EINVAL); 7816 return; 7817 } 7818 7819 data_mp = mp->b_cont; 7820 if (data_mp == NULL) { 7821 /* The user passed us a NULL argument */ 7822 table = NULL; 7823 table_size = iocp->ioc_count; 7824 } else { 7825 /* 7826 * The user provided a table. The stream head 7827 * may have copied in the user data in chunks, 7828 * so make sure everything is pulled up 7829 * properly. 7830 */ 7831 if (MBLKL(data_mp) < iocp->ioc_count) { 7832 mblk_t *new_data_mp; 7833 if ((new_data_mp = msgpullup(data_mp, -1)) == 7834 NULL) { 7835 miocnak(q, mp, 0, ENOMEM); 7836 return; 7837 } 7838 freemsg(data_mp); 7839 data_mp = new_data_mp; 7840 mp->b_cont = data_mp; 7841 } 7842 table = (ip6_asp_t *)data_mp->b_rptr; 7843 table_size = iocp->ioc_count; 7844 } 7845 7846 switch (iocp->ioc_cmd) { 7847 case SIOCGIP6ADDRPOLICY: 7848 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7849 if (iocp->ioc_rval == -1) 7850 iocp->ioc_error = EINVAL; 7851 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7852 else if (table != NULL && 7853 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7854 ip6_asp_t *src = table; 7855 ip6_asp32_t *dst = (void *)table; 7856 int count = table_size / sizeof (ip6_asp_t); 7857 int i; 7858 7859 /* 7860 * We need to do an in-place shrink of the array 7861 * to match the alignment attributes of the 7862 * 32-bit ABI looking at it. 7863 */ 7864 /* LINTED: logical expression always true: op "||" */ 7865 ASSERT(sizeof (*src) > sizeof (*dst)); 7866 for (i = 1; i < count; i++) 7867 bcopy(src + i, dst + i, sizeof (*dst)); 7868 } 7869 #endif 7870 break; 7871 7872 case SIOCSIP6ADDRPOLICY: 7873 ASSERT(mp->b_prev == NULL); 7874 mp->b_prev = (void *)q; 7875 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7876 /* 7877 * We pass in the datamodel here so that the ip6_asp_replace() 7878 * routine can handle converting from 32-bit to native formats 7879 * where necessary. 7880 * 7881 * A better way to handle this might be to convert the inbound 7882 * data structure here, and hang it off a new 'mp'; thus the 7883 * ip6_asp_replace() logic would always be dealing with native 7884 * format data structures.. 7885 * 7886 * (An even simpler way to handle these ioctls is to just 7887 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7888 * and just recompile everything that depends on it.) 7889 */ 7890 #endif 7891 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7892 iocp->ioc_flag & IOC_MODELS); 7893 return; 7894 } 7895 7896 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7897 qreply(q, mp); 7898 } 7899 7900 static void 7901 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7902 { 7903 mblk_t *data_mp; 7904 struct dstinforeq *dir; 7905 uint8_t *end, *cur; 7906 in6_addr_t *daddr, *saddr; 7907 ipaddr_t v4daddr; 7908 ire_t *ire; 7909 ipaddr_t v4setsrc; 7910 in6_addr_t v6setsrc; 7911 char *slabel, *dlabel; 7912 boolean_t isipv4; 7913 int match_ire; 7914 ill_t *dst_ill; 7915 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7916 conn_t *connp = Q_TO_CONN(q); 7917 zoneid_t zoneid = IPCL_ZONEID(connp); 7918 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7919 uint64_t ipif_flags; 7920 7921 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7922 7923 /* 7924 * This ioctl is I_STR only, and must have a 7925 * data mblk following the M_IOCTL mblk. 7926 */ 7927 data_mp = mp->b_cont; 7928 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7929 miocnak(q, mp, 0, EINVAL); 7930 return; 7931 } 7932 7933 if (MBLKL(data_mp) < iocp->ioc_count) { 7934 mblk_t *new_data_mp; 7935 7936 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7937 miocnak(q, mp, 0, ENOMEM); 7938 return; 7939 } 7940 freemsg(data_mp); 7941 data_mp = new_data_mp; 7942 mp->b_cont = data_mp; 7943 } 7944 match_ire = MATCH_IRE_DSTONLY; 7945 7946 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7947 end - cur >= sizeof (struct dstinforeq); 7948 cur += sizeof (struct dstinforeq)) { 7949 dir = (struct dstinforeq *)cur; 7950 daddr = &dir->dir_daddr; 7951 saddr = &dir->dir_saddr; 7952 7953 /* 7954 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7955 * v4 mapped addresses; ire_ftable_lookup_v6() 7956 * and ip_select_source_v6() do not. 7957 */ 7958 dir->dir_dscope = ip_addr_scope_v6(daddr); 7959 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7960 7961 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7962 if (isipv4) { 7963 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7964 v4setsrc = INADDR_ANY; 7965 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7966 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7967 NULL, NULL); 7968 } else { 7969 v6setsrc = ipv6_all_zeros; 7970 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7971 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7972 NULL, NULL); 7973 } 7974 ASSERT(ire != NULL); 7975 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7976 ire_refrele(ire); 7977 dir->dir_dreachable = 0; 7978 7979 /* move on to next dst addr */ 7980 continue; 7981 } 7982 dir->dir_dreachable = 1; 7983 7984 dst_ill = ire_nexthop_ill(ire); 7985 if (dst_ill == NULL) { 7986 ire_refrele(ire); 7987 continue; 7988 } 7989 7990 /* With ipmp we most likely look at the ipmp ill here */ 7991 dir->dir_dmactype = dst_ill->ill_mactype; 7992 7993 if (isipv4) { 7994 ipaddr_t v4saddr; 7995 7996 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7997 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7998 &v4saddr, NULL, &ipif_flags) != 0) { 7999 v4saddr = INADDR_ANY; 8000 ipif_flags = 0; 8001 } 8002 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 8003 } else { 8004 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 8005 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8006 saddr, NULL, &ipif_flags) != 0) { 8007 *saddr = ipv6_all_zeros; 8008 ipif_flags = 0; 8009 } 8010 } 8011 8012 dir->dir_sscope = ip_addr_scope_v6(saddr); 8013 slabel = ip6_asp_lookup(saddr, NULL, ipst); 8014 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8015 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8016 ire_refrele(ire); 8017 ill_refrele(dst_ill); 8018 } 8019 miocack(q, mp, iocp->ioc_count, 0); 8020 } 8021 8022 /* 8023 * Check if this is an address assigned to this machine. 8024 * Skips interfaces that are down by using ire checks. 8025 * Translates mapped addresses to v4 addresses and then 8026 * treats them as such, returning true if the v4 address 8027 * associated with this mapped address is configured. 8028 * Note: Applications will have to be careful what they do 8029 * with the response; use of mapped addresses limits 8030 * what can be done with the socket, especially with 8031 * respect to socket options and ioctls - neither IPv4 8032 * options nor IPv6 sticky options/ancillary data options 8033 * may be used. 8034 */ 8035 /* ARGSUSED */ 8036 int 8037 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8038 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8039 { 8040 struct sioc_addrreq *sia; 8041 sin_t *sin; 8042 ire_t *ire; 8043 mblk_t *mp1; 8044 zoneid_t zoneid; 8045 ip_stack_t *ipst; 8046 8047 ip1dbg(("ip_sioctl_tmyaddr")); 8048 8049 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8050 zoneid = Q_TO_CONN(q)->conn_zoneid; 8051 ipst = CONNQ_TO_IPST(q); 8052 8053 /* Existence verified in ip_wput_nondata */ 8054 mp1 = mp->b_cont->b_cont; 8055 sia = (struct sioc_addrreq *)mp1->b_rptr; 8056 sin = (sin_t *)&sia->sa_addr; 8057 switch (sin->sin_family) { 8058 case AF_INET6: { 8059 sin6_t *sin6 = (sin6_t *)sin; 8060 8061 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8062 ipaddr_t v4_addr; 8063 8064 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8065 v4_addr); 8066 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8067 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8068 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8069 } else { 8070 in6_addr_t v6addr; 8071 8072 v6addr = sin6->sin6_addr; 8073 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8074 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8075 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8076 } 8077 break; 8078 } 8079 case AF_INET: { 8080 ipaddr_t v4addr; 8081 8082 v4addr = sin->sin_addr.s_addr; 8083 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8084 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8085 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8086 break; 8087 } 8088 default: 8089 return (EAFNOSUPPORT); 8090 } 8091 if (ire != NULL) { 8092 sia->sa_res = 1; 8093 ire_refrele(ire); 8094 } else { 8095 sia->sa_res = 0; 8096 } 8097 return (0); 8098 } 8099 8100 /* 8101 * Check if this is an address assigned on-link i.e. neighbor, 8102 * and makes sure it's reachable from the current zone. 8103 * Returns true for my addresses as well. 8104 * Translates mapped addresses to v4 addresses and then 8105 * treats them as such, returning true if the v4 address 8106 * associated with this mapped address is configured. 8107 * Note: Applications will have to be careful what they do 8108 * with the response; use of mapped addresses limits 8109 * what can be done with the socket, especially with 8110 * respect to socket options and ioctls - neither IPv4 8111 * options nor IPv6 sticky options/ancillary data options 8112 * may be used. 8113 */ 8114 /* ARGSUSED */ 8115 int 8116 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8117 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8118 { 8119 struct sioc_addrreq *sia; 8120 sin_t *sin; 8121 mblk_t *mp1; 8122 ire_t *ire = NULL; 8123 zoneid_t zoneid; 8124 ip_stack_t *ipst; 8125 8126 ip1dbg(("ip_sioctl_tonlink")); 8127 8128 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8129 zoneid = Q_TO_CONN(q)->conn_zoneid; 8130 ipst = CONNQ_TO_IPST(q); 8131 8132 /* Existence verified in ip_wput_nondata */ 8133 mp1 = mp->b_cont->b_cont; 8134 sia = (struct sioc_addrreq *)mp1->b_rptr; 8135 sin = (sin_t *)&sia->sa_addr; 8136 8137 /* 8138 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8139 * to make sure we only look at on-link unicast address. 8140 */ 8141 switch (sin->sin_family) { 8142 case AF_INET6: { 8143 sin6_t *sin6 = (sin6_t *)sin; 8144 8145 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8146 ipaddr_t v4_addr; 8147 8148 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8149 v4_addr); 8150 if (!CLASSD(v4_addr)) { 8151 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8152 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8153 0, ipst, NULL); 8154 } 8155 } else { 8156 in6_addr_t v6addr; 8157 8158 v6addr = sin6->sin6_addr; 8159 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8160 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8161 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8162 ipst, NULL); 8163 } 8164 } 8165 break; 8166 } 8167 case AF_INET: { 8168 ipaddr_t v4addr; 8169 8170 v4addr = sin->sin_addr.s_addr; 8171 if (!CLASSD(v4addr)) { 8172 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8173 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8174 } 8175 break; 8176 } 8177 default: 8178 return (EAFNOSUPPORT); 8179 } 8180 sia->sa_res = 0; 8181 if (ire != NULL) { 8182 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8183 8184 if ((ire->ire_type & IRE_ONLINK) && 8185 !(ire->ire_type & IRE_BROADCAST)) 8186 sia->sa_res = 1; 8187 ire_refrele(ire); 8188 } 8189 return (0); 8190 } 8191 8192 /* 8193 * TBD: implement when kernel maintaines a list of site prefixes. 8194 */ 8195 /* ARGSUSED */ 8196 int 8197 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8198 ip_ioctl_cmd_t *ipip, void *ifreq) 8199 { 8200 return (ENXIO); 8201 } 8202 8203 /* ARP IOCTLs. */ 8204 /* ARGSUSED */ 8205 int 8206 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8207 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8208 { 8209 int err; 8210 ipaddr_t ipaddr; 8211 struct iocblk *iocp; 8212 conn_t *connp; 8213 struct arpreq *ar; 8214 struct xarpreq *xar; 8215 int arp_flags, flags, alength; 8216 uchar_t *lladdr; 8217 ip_stack_t *ipst; 8218 ill_t *ill = ipif->ipif_ill; 8219 ill_t *proxy_ill = NULL; 8220 ipmp_arpent_t *entp = NULL; 8221 boolean_t proxyarp = B_FALSE; 8222 boolean_t if_arp_ioctl = B_FALSE; 8223 ncec_t *ncec = NULL; 8224 nce_t *nce; 8225 8226 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8227 connp = Q_TO_CONN(q); 8228 ipst = connp->conn_netstack->netstack_ip; 8229 iocp = (struct iocblk *)mp->b_rptr; 8230 8231 if (ipip->ipi_cmd_type == XARP_CMD) { 8232 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8233 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8234 ar = NULL; 8235 8236 arp_flags = xar->xarp_flags; 8237 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8238 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8239 /* 8240 * Validate against user's link layer address length 8241 * input and name and addr length limits. 8242 */ 8243 alength = ill->ill_phys_addr_length; 8244 if (ipip->ipi_cmd == SIOCSXARP) { 8245 if (alength != xar->xarp_ha.sdl_alen || 8246 (alength + xar->xarp_ha.sdl_nlen > 8247 sizeof (xar->xarp_ha.sdl_data))) 8248 return (EINVAL); 8249 } 8250 } else { 8251 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8252 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8253 xar = NULL; 8254 8255 arp_flags = ar->arp_flags; 8256 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8257 /* 8258 * Theoretically, the sa_family could tell us what link 8259 * layer type this operation is trying to deal with. By 8260 * common usage AF_UNSPEC means ethernet. We'll assume 8261 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8262 * for now. Our new SIOC*XARP ioctls can be used more 8263 * generally. 8264 * 8265 * If the underlying media happens to have a non 6 byte 8266 * address, arp module will fail set/get, but the del 8267 * operation will succeed. 8268 */ 8269 alength = 6; 8270 if ((ipip->ipi_cmd != SIOCDARP) && 8271 (alength != ill->ill_phys_addr_length)) { 8272 return (EINVAL); 8273 } 8274 } 8275 8276 /* Translate ATF* flags to NCE* flags */ 8277 flags = 0; 8278 if (arp_flags & ATF_AUTHORITY) 8279 flags |= NCE_F_AUTHORITY; 8280 if (arp_flags & ATF_PERM) 8281 flags |= NCE_F_NONUD; /* not subject to aging */ 8282 if (arp_flags & ATF_PUBL) 8283 flags |= NCE_F_PUBLISH; 8284 8285 /* 8286 * IPMP ARP special handling: 8287 * 8288 * 1. Since ARP mappings must appear consistent across the group, 8289 * prohibit changing ARP mappings on the underlying interfaces. 8290 * 8291 * 2. Since ARP mappings for IPMP data addresses are maintained by 8292 * IP itself, prohibit changing them. 8293 * 8294 * 3. For proxy ARP, use a functioning hardware address in the group, 8295 * provided one exists. If one doesn't, just add the entry as-is; 8296 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8297 */ 8298 if (IS_UNDER_IPMP(ill)) { 8299 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8300 return (EPERM); 8301 } 8302 if (IS_IPMP(ill)) { 8303 ipmp_illgrp_t *illg = ill->ill_grp; 8304 8305 switch (ipip->ipi_cmd) { 8306 case SIOCSARP: 8307 case SIOCSXARP: 8308 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8309 if (proxy_ill != NULL) { 8310 proxyarp = B_TRUE; 8311 if (!ipmp_ill_is_active(proxy_ill)) 8312 proxy_ill = ipmp_illgrp_next_ill(illg); 8313 if (proxy_ill != NULL) 8314 lladdr = proxy_ill->ill_phys_addr; 8315 } 8316 /* FALLTHRU */ 8317 } 8318 } 8319 8320 ipaddr = sin->sin_addr.s_addr; 8321 /* 8322 * don't match across illgrp per case (1) and (2). 8323 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8324 */ 8325 nce = nce_lookup_v4(ill, &ipaddr); 8326 if (nce != NULL) 8327 ncec = nce->nce_common; 8328 8329 switch (iocp->ioc_cmd) { 8330 case SIOCDARP: 8331 case SIOCDXARP: { 8332 /* 8333 * Delete the NCE if any. 8334 */ 8335 if (ncec == NULL) { 8336 iocp->ioc_error = ENXIO; 8337 break; 8338 } 8339 /* Don't allow changes to arp mappings of local addresses. */ 8340 if (NCE_MYADDR(ncec)) { 8341 nce_refrele(nce); 8342 return (ENOTSUP); 8343 } 8344 iocp->ioc_error = 0; 8345 8346 /* 8347 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8348 * This will delete all the nce entries on the under_ills. 8349 */ 8350 ncec_delete(ncec); 8351 /* 8352 * Once the NCE has been deleted, then the ire_dep* consistency 8353 * mechanism will find any IRE which depended on the now 8354 * condemned NCE (as part of sending packets). 8355 * That mechanism handles redirects by deleting redirects 8356 * that refer to UNREACHABLE nces. 8357 */ 8358 break; 8359 } 8360 case SIOCGARP: 8361 case SIOCGXARP: 8362 if (ncec != NULL) { 8363 lladdr = ncec->ncec_lladdr; 8364 flags = ncec->ncec_flags; 8365 iocp->ioc_error = 0; 8366 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8367 } else { 8368 iocp->ioc_error = ENXIO; 8369 } 8370 break; 8371 case SIOCSARP: 8372 case SIOCSXARP: 8373 /* Don't allow changes to arp mappings of local addresses. */ 8374 if (ncec != NULL && NCE_MYADDR(ncec)) { 8375 nce_refrele(nce); 8376 return (ENOTSUP); 8377 } 8378 8379 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8380 flags |= NCE_F_STATIC; 8381 if (!if_arp_ioctl) { 8382 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8383 lladdr, alength, flags); 8384 } else { 8385 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8386 if (ipif != NULL) { 8387 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8388 lladdr, alength, flags); 8389 ipif_refrele(ipif); 8390 } 8391 } 8392 if (nce != NULL) { 8393 nce_refrele(nce); 8394 nce = NULL; 8395 } 8396 /* 8397 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8398 * by nce_add_common() 8399 */ 8400 err = nce_lookup_then_add_v4(ill, lladdr, 8401 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8402 &nce); 8403 if (err == EEXIST) { 8404 ncec = nce->nce_common; 8405 mutex_enter(&ncec->ncec_lock); 8406 ncec->ncec_state = ND_REACHABLE; 8407 ncec->ncec_flags = flags; 8408 nce_update(ncec, ND_UNCHANGED, lladdr); 8409 mutex_exit(&ncec->ncec_lock); 8410 err = 0; 8411 } 8412 if (nce != NULL) { 8413 nce_refrele(nce); 8414 nce = NULL; 8415 } 8416 if (IS_IPMP(ill) && err == 0) { 8417 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8418 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8419 flags); 8420 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8421 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8422 break; 8423 } 8424 } 8425 iocp->ioc_error = err; 8426 } 8427 8428 if (nce != NULL) { 8429 nce_refrele(nce); 8430 } 8431 8432 /* 8433 * If we created an IPMP ARP entry, mark that we've notified ARP. 8434 */ 8435 if (entp != NULL) 8436 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8437 8438 return (iocp->ioc_error); 8439 } 8440 8441 /* 8442 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8443 * the associated sin and refhold and return the associated ipif via `ci'. 8444 */ 8445 int 8446 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8447 cmd_info_t *ci) 8448 { 8449 mblk_t *mp1; 8450 sin_t *sin; 8451 conn_t *connp; 8452 ipif_t *ipif; 8453 ire_t *ire = NULL; 8454 ill_t *ill = NULL; 8455 boolean_t exists; 8456 ip_stack_t *ipst; 8457 struct arpreq *ar; 8458 struct xarpreq *xar; 8459 struct sockaddr_dl *sdl; 8460 8461 /* ioctl comes down on a conn */ 8462 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8463 connp = Q_TO_CONN(q); 8464 if (connp->conn_family == AF_INET6) 8465 return (ENXIO); 8466 8467 ipst = connp->conn_netstack->netstack_ip; 8468 8469 /* Verified in ip_wput_nondata */ 8470 mp1 = mp->b_cont->b_cont; 8471 8472 if (ipip->ipi_cmd_type == XARP_CMD) { 8473 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8474 xar = (struct xarpreq *)mp1->b_rptr; 8475 sin = (sin_t *)&xar->xarp_pa; 8476 sdl = &xar->xarp_ha; 8477 8478 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8479 return (ENXIO); 8480 if (sdl->sdl_nlen >= LIFNAMSIZ) 8481 return (EINVAL); 8482 } else { 8483 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8484 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8485 ar = (struct arpreq *)mp1->b_rptr; 8486 sin = (sin_t *)&ar->arp_pa; 8487 } 8488 8489 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8490 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8491 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8492 if (ipif == NULL) 8493 return (ENXIO); 8494 if (ipif->ipif_id != 0) { 8495 ipif_refrele(ipif); 8496 return (ENXIO); 8497 } 8498 } else { 8499 /* 8500 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8501 * of 0: use the IP address to find the ipif. If the IP 8502 * address is an IPMP test address, ire_ftable_lookup() will 8503 * find the wrong ill, so we first do an ipif_lookup_addr(). 8504 */ 8505 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8506 ipst); 8507 if (ipif == NULL) { 8508 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8509 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8510 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8511 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8512 if (ire != NULL) 8513 ire_refrele(ire); 8514 return (ENXIO); 8515 } 8516 ASSERT(ire != NULL && ill != NULL); 8517 ipif = ill->ill_ipif; 8518 ipif_refhold(ipif); 8519 ire_refrele(ire); 8520 } 8521 } 8522 8523 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8524 ipif_refrele(ipif); 8525 return (ENXIO); 8526 } 8527 8528 ci->ci_sin = sin; 8529 ci->ci_ipif = ipif; 8530 return (0); 8531 } 8532 8533 /* 8534 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8535 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8536 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8537 * up and thus an ill can join that illgrp. 8538 * 8539 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8540 * open()/close() primarily because close() is not allowed to fail or block 8541 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8542 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8543 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8544 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8545 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8546 * state if I_UNLINK didn't occur. 8547 * 8548 * Note that for each plumb/unplumb operation, we may end up here more than 8549 * once because of the way ifconfig works. However, it's OK to link the same 8550 * illgrp more than once, or unlink an illgrp that's already unlinked. 8551 */ 8552 static int 8553 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8554 { 8555 int err; 8556 ip_stack_t *ipst = ill->ill_ipst; 8557 8558 ASSERT(IS_IPMP(ill)); 8559 ASSERT(IAM_WRITER_ILL(ill)); 8560 8561 switch (ioccmd) { 8562 case I_LINK: 8563 return (ENOTSUP); 8564 8565 case I_PLINK: 8566 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8567 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8568 rw_exit(&ipst->ips_ipmp_lock); 8569 break; 8570 8571 case I_PUNLINK: 8572 /* 8573 * Require all UP ipifs be brought down prior to unlinking the 8574 * illgrp so any associated IREs (and other state) is torched. 8575 */ 8576 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8577 return (EBUSY); 8578 8579 /* 8580 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8581 * with an SIOCSLIFGROUPNAME request from an ill trying to 8582 * join this group. Specifically: ills trying to join grab 8583 * ipmp_lock and bump a "pending join" counter checked by 8584 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8585 * joins can occur (since we have ipmp_lock). Once we drop 8586 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8587 * find the illgrp (since we unlinked it) and will return 8588 * EAFNOSUPPORT. This will then take them back through the 8589 * IPMP meta-interface plumbing logic in ifconfig, and thus 8590 * back through I_PLINK above. 8591 */ 8592 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8593 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8594 rw_exit(&ipst->ips_ipmp_lock); 8595 return (err); 8596 default: 8597 break; 8598 } 8599 return (0); 8600 } 8601 8602 /* 8603 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8604 * atomically set/clear the muxids. Also complete the ioctl by acking or 8605 * naking it. Note that the code is structured such that the link type, 8606 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8607 * its clones use the persistent link, while pppd(1M) and perhaps many 8608 * other daemons may use non-persistent link. When combined with some 8609 * ill_t states, linking and unlinking lower streams may be used as 8610 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8611 */ 8612 /* ARGSUSED */ 8613 void 8614 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8615 { 8616 mblk_t *mp1; 8617 struct linkblk *li; 8618 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8619 int err = 0; 8620 8621 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8622 ioccmd == I_LINK || ioccmd == I_UNLINK); 8623 8624 mp1 = mp->b_cont; /* This is the linkblk info */ 8625 li = (struct linkblk *)mp1->b_rptr; 8626 8627 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8628 if (err == EINPROGRESS) 8629 return; 8630 done: 8631 if (err == 0) 8632 miocack(q, mp, 0, 0); 8633 else 8634 miocnak(q, mp, 0, err); 8635 8636 /* Conn was refheld in ip_sioctl_copyin_setup */ 8637 if (CONN_Q(q)) 8638 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8639 } 8640 8641 /* 8642 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8643 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8644 * module stream). If `doconsist' is set, then do the extended consistency 8645 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8646 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8647 * an error code on failure. 8648 */ 8649 static int 8650 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8651 struct linkblk *li) 8652 { 8653 int err = 0; 8654 ill_t *ill; 8655 queue_t *ipwq, *dwq; 8656 const char *name; 8657 struct qinit *qinfo; 8658 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8659 boolean_t entered_ipsq = B_FALSE; 8660 boolean_t is_ip = B_FALSE; 8661 arl_t *arl; 8662 8663 /* 8664 * Walk the lower stream to verify it's the IP module stream. 8665 * The IP module is identified by its name, wput function, 8666 * and non-NULL q_next. STREAMS ensures that the lower stream 8667 * (li->l_qbot) will not vanish until this ioctl completes. 8668 */ 8669 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8670 qinfo = ipwq->q_qinfo; 8671 name = qinfo->qi_minfo->mi_idname; 8672 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8673 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8674 is_ip = B_TRUE; 8675 break; 8676 } 8677 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8678 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8679 break; 8680 } 8681 } 8682 8683 /* 8684 * If this isn't an IP module stream, bail. 8685 */ 8686 if (ipwq == NULL) 8687 return (0); 8688 8689 if (!is_ip) { 8690 arl = (arl_t *)ipwq->q_ptr; 8691 ill = arl_to_ill(arl); 8692 if (ill == NULL) 8693 return (0); 8694 } else { 8695 ill = ipwq->q_ptr; 8696 } 8697 ASSERT(ill != NULL); 8698 8699 if (ipsq == NULL) { 8700 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8701 NEW_OP, B_FALSE); 8702 if (ipsq == NULL) { 8703 if (!is_ip) 8704 ill_refrele(ill); 8705 return (EINPROGRESS); 8706 } 8707 entered_ipsq = B_TRUE; 8708 } 8709 ASSERT(IAM_WRITER_ILL(ill)); 8710 mutex_enter(&ill->ill_lock); 8711 if (!is_ip) { 8712 if (islink && ill->ill_muxid == 0) { 8713 /* 8714 * Plumbing has to be done with IP plumbed first, arp 8715 * second, but here we have arp being plumbed first. 8716 */ 8717 mutex_exit(&ill->ill_lock); 8718 ipsq_exit(ipsq); 8719 ill_refrele(ill); 8720 return (EINVAL); 8721 } 8722 } 8723 mutex_exit(&ill->ill_lock); 8724 if (!is_ip) { 8725 arl->arl_muxid = islink ? li->l_index : 0; 8726 ill_refrele(ill); 8727 goto done; 8728 } 8729 8730 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8731 goto done; 8732 8733 /* 8734 * As part of I_{P}LINKing, stash the number of downstream modules and 8735 * the read queue of the module immediately below IP in the ill. 8736 * These are used during the capability negotiation below. 8737 */ 8738 ill->ill_lmod_rq = NULL; 8739 ill->ill_lmod_cnt = 0; 8740 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8741 ill->ill_lmod_rq = RD(dwq); 8742 for (; dwq != NULL; dwq = dwq->q_next) 8743 ill->ill_lmod_cnt++; 8744 } 8745 8746 ill->ill_muxid = islink ? li->l_index : 0; 8747 8748 /* 8749 * Mark the ipsq busy until the capability operations initiated below 8750 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8751 * returns, but the capability operation may complete asynchronously 8752 * much later. 8753 */ 8754 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8755 /* 8756 * If there's at least one up ipif on this ill, then we're bound to 8757 * the underlying driver via DLPI. In that case, renegotiate 8758 * capabilities to account for any possible change in modules 8759 * interposed between IP and the driver. 8760 */ 8761 if (ill->ill_ipif_up_count > 0) { 8762 if (islink) 8763 ill_capability_probe(ill); 8764 else 8765 ill_capability_reset(ill, B_FALSE); 8766 } 8767 ipsq_current_finish(ipsq); 8768 done: 8769 if (entered_ipsq) 8770 ipsq_exit(ipsq); 8771 8772 return (err); 8773 } 8774 8775 /* 8776 * Search the ioctl command in the ioctl tables and return a pointer 8777 * to the ioctl command information. The ioctl command tables are 8778 * static and fully populated at compile time. 8779 */ 8780 ip_ioctl_cmd_t * 8781 ip_sioctl_lookup(int ioc_cmd) 8782 { 8783 int index; 8784 ip_ioctl_cmd_t *ipip; 8785 ip_ioctl_cmd_t *ipip_end; 8786 8787 if (ioc_cmd == IPI_DONTCARE) 8788 return (NULL); 8789 8790 /* 8791 * Do a 2 step search. First search the indexed table 8792 * based on the least significant byte of the ioctl cmd. 8793 * If we don't find a match, then search the misc table 8794 * serially. 8795 */ 8796 index = ioc_cmd & 0xFF; 8797 if (index < ip_ndx_ioctl_count) { 8798 ipip = &ip_ndx_ioctl_table[index]; 8799 if (ipip->ipi_cmd == ioc_cmd) { 8800 /* Found a match in the ndx table */ 8801 return (ipip); 8802 } 8803 } 8804 8805 /* Search the misc table */ 8806 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8807 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8808 if (ipip->ipi_cmd == ioc_cmd) 8809 /* Found a match in the misc table */ 8810 return (ipip); 8811 } 8812 8813 return (NULL); 8814 } 8815 8816 /* 8817 * Wrapper function for resuming deferred ioctl processing 8818 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8819 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8820 */ 8821 /* ARGSUSED */ 8822 void 8823 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8824 void *dummy_arg) 8825 { 8826 ip_sioctl_copyin_setup(q, mp); 8827 } 8828 8829 /* 8830 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8831 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8832 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8833 * We establish here the size of the block to be copied in. mi_copyin 8834 * arranges for this to happen, an processing continues in ip_wput_nondata with 8835 * an M_IOCDATA message. 8836 */ 8837 void 8838 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8839 { 8840 int copyin_size; 8841 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8842 ip_ioctl_cmd_t *ipip; 8843 cred_t *cr; 8844 ip_stack_t *ipst; 8845 8846 if (CONN_Q(q)) 8847 ipst = CONNQ_TO_IPST(q); 8848 else 8849 ipst = ILLQ_TO_IPST(q); 8850 8851 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8852 if (ipip == NULL) { 8853 /* 8854 * The ioctl is not one we understand or own. 8855 * Pass it along to be processed down stream, 8856 * if this is a module instance of IP, else nak 8857 * the ioctl. 8858 */ 8859 if (q->q_next == NULL) { 8860 goto nak; 8861 } else { 8862 putnext(q, mp); 8863 return; 8864 } 8865 } 8866 8867 /* 8868 * If this is deferred, then we will do all the checks when we 8869 * come back. 8870 */ 8871 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8872 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8873 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8874 return; 8875 } 8876 8877 /* 8878 * Only allow a very small subset of IP ioctls on this stream if 8879 * IP is a module and not a driver. Allowing ioctls to be processed 8880 * in this case may cause assert failures or data corruption. 8881 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8882 * ioctls allowed on an IP module stream, after which this stream 8883 * normally becomes a multiplexor (at which time the stream head 8884 * will fail all ioctls). 8885 */ 8886 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8887 goto nak; 8888 } 8889 8890 /* Make sure we have ioctl data to process. */ 8891 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8892 goto nak; 8893 8894 /* 8895 * Prefer dblk credential over ioctl credential; some synthesized 8896 * ioctls have kcred set because there's no way to crhold() 8897 * a credential in some contexts. (ioc_cr is not crfree() by 8898 * the framework; the caller of ioctl needs to hold the reference 8899 * for the duration of the call). 8900 */ 8901 cr = msg_getcred(mp, NULL); 8902 if (cr == NULL) 8903 cr = iocp->ioc_cr; 8904 8905 /* Make sure normal users don't send down privileged ioctls */ 8906 if ((ipip->ipi_flags & IPI_PRIV) && 8907 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8908 /* We checked the privilege earlier but log it here */ 8909 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8910 return; 8911 } 8912 8913 /* 8914 * The ioctl command tables can only encode fixed length 8915 * ioctl data. If the length is variable, the table will 8916 * encode the length as zero. Such special cases are handled 8917 * below in the switch. 8918 */ 8919 if (ipip->ipi_copyin_size != 0) { 8920 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8921 return; 8922 } 8923 8924 switch (iocp->ioc_cmd) { 8925 case O_SIOCGIFCONF: 8926 case SIOCGIFCONF: 8927 /* 8928 * This IOCTL is hilarious. See comments in 8929 * ip_sioctl_get_ifconf for the story. 8930 */ 8931 if (iocp->ioc_count == TRANSPARENT) 8932 copyin_size = SIZEOF_STRUCT(ifconf, 8933 iocp->ioc_flag); 8934 else 8935 copyin_size = iocp->ioc_count; 8936 mi_copyin(q, mp, NULL, copyin_size); 8937 return; 8938 8939 case O_SIOCGLIFCONF: 8940 case SIOCGLIFCONF: 8941 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8942 mi_copyin(q, mp, NULL, copyin_size); 8943 return; 8944 8945 case SIOCGLIFSRCOF: 8946 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8947 mi_copyin(q, mp, NULL, copyin_size); 8948 return; 8949 case SIOCGIP6ADDRPOLICY: 8950 ip_sioctl_ip6addrpolicy(q, mp); 8951 ip6_asp_table_refrele(ipst); 8952 return; 8953 8954 case SIOCSIP6ADDRPOLICY: 8955 ip_sioctl_ip6addrpolicy(q, mp); 8956 return; 8957 8958 case SIOCGDSTINFO: 8959 ip_sioctl_dstinfo(q, mp); 8960 ip6_asp_table_refrele(ipst); 8961 return; 8962 8963 case I_PLINK: 8964 case I_PUNLINK: 8965 case I_LINK: 8966 case I_UNLINK: 8967 /* 8968 * We treat non-persistent link similarly as the persistent 8969 * link case, in terms of plumbing/unplumbing, as well as 8970 * dynamic re-plumbing events indicator. See comments 8971 * in ip_sioctl_plink() for more. 8972 * 8973 * Request can be enqueued in the 'ipsq' while waiting 8974 * to become exclusive. So bump up the conn ref. 8975 */ 8976 if (CONN_Q(q)) 8977 CONN_INC_REF(Q_TO_CONN(q)); 8978 ip_sioctl_plink(NULL, q, mp, NULL); 8979 return; 8980 8981 case ND_GET: 8982 case ND_SET: 8983 /* 8984 * Use of the nd table requires holding the reader lock. 8985 * Modifying the nd table thru nd_load/nd_unload requires 8986 * the writer lock. 8987 */ 8988 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 8989 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 8990 rw_exit(&ipst->ips_ip_g_nd_lock); 8991 8992 if (iocp->ioc_error) 8993 iocp->ioc_count = 0; 8994 mp->b_datap->db_type = M_IOCACK; 8995 qreply(q, mp); 8996 return; 8997 } 8998 rw_exit(&ipst->ips_ip_g_nd_lock); 8999 /* 9000 * We don't understand this subioctl of ND_GET / ND_SET. 9001 * Maybe intended for some driver / module below us 9002 */ 9003 if (q->q_next) { 9004 putnext(q, mp); 9005 } else { 9006 iocp->ioc_error = ENOENT; 9007 mp->b_datap->db_type = M_IOCNAK; 9008 iocp->ioc_count = 0; 9009 qreply(q, mp); 9010 } 9011 return; 9012 9013 case IP_IOCTL: 9014 ip_wput_ioctl(q, mp); 9015 return; 9016 9017 case SIOCILB: 9018 /* The ioctl length varies depending on the ILB command. */ 9019 copyin_size = iocp->ioc_count; 9020 if (copyin_size < sizeof (ilb_cmd_t)) 9021 goto nak; 9022 mi_copyin(q, mp, NULL, copyin_size); 9023 return; 9024 9025 default: 9026 cmn_err(CE_PANIC, "should not happen "); 9027 } 9028 nak: 9029 if (mp->b_cont != NULL) { 9030 freemsg(mp->b_cont); 9031 mp->b_cont = NULL; 9032 } 9033 iocp->ioc_error = EINVAL; 9034 mp->b_datap->db_type = M_IOCNAK; 9035 iocp->ioc_count = 0; 9036 qreply(q, mp); 9037 } 9038 9039 static void 9040 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9041 { 9042 struct arpreq *ar; 9043 struct xarpreq *xar; 9044 mblk_t *tmp; 9045 struct iocblk *iocp; 9046 int x_arp_ioctl = B_FALSE; 9047 int *flagsp; 9048 char *storage = NULL; 9049 9050 ASSERT(ill != NULL); 9051 9052 iocp = (struct iocblk *)mp->b_rptr; 9053 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9054 9055 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9056 if ((iocp->ioc_cmd == SIOCGXARP) || 9057 (iocp->ioc_cmd == SIOCSXARP)) { 9058 x_arp_ioctl = B_TRUE; 9059 xar = (struct xarpreq *)tmp->b_rptr; 9060 flagsp = &xar->xarp_flags; 9061 storage = xar->xarp_ha.sdl_data; 9062 } else { 9063 ar = (struct arpreq *)tmp->b_rptr; 9064 flagsp = &ar->arp_flags; 9065 storage = ar->arp_ha.sa_data; 9066 } 9067 9068 /* 9069 * We're done if this is not an SIOCG{X}ARP 9070 */ 9071 if (x_arp_ioctl) { 9072 storage += ill_xarp_info(&xar->xarp_ha, ill); 9073 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9074 sizeof (xar->xarp_ha.sdl_data)) { 9075 iocp->ioc_error = EINVAL; 9076 return; 9077 } 9078 } 9079 *flagsp = ATF_INUSE; 9080 /* 9081 * If /sbin/arp told us we are the authority using the "permanent" 9082 * flag, or if this is one of my addresses print "permanent" 9083 * in the /sbin/arp output. 9084 */ 9085 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9086 *flagsp |= ATF_AUTHORITY; 9087 if (flags & NCE_F_NONUD) 9088 *flagsp |= ATF_PERM; /* not subject to aging */ 9089 if (flags & NCE_F_PUBLISH) 9090 *flagsp |= ATF_PUBL; 9091 if (hwaddr != NULL) { 9092 *flagsp |= ATF_COM; 9093 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9094 } 9095 } 9096 9097 /* 9098 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9099 * interface) create the next available logical interface for this 9100 * physical interface. 9101 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9102 * ipif with the specified name. 9103 * 9104 * If the address family is not AF_UNSPEC then set the address as well. 9105 * 9106 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9107 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9108 * 9109 * Executed as a writer on the ill. 9110 * So no lock is needed to traverse the ipif chain, or examine the 9111 * phyint flags. 9112 */ 9113 /* ARGSUSED */ 9114 int 9115 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9116 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9117 { 9118 mblk_t *mp1; 9119 struct lifreq *lifr; 9120 boolean_t isv6; 9121 boolean_t exists; 9122 char *name; 9123 char *endp; 9124 char *cp; 9125 int namelen; 9126 ipif_t *ipif; 9127 long id; 9128 ipsq_t *ipsq; 9129 ill_t *ill; 9130 sin_t *sin; 9131 int err = 0; 9132 boolean_t found_sep = B_FALSE; 9133 conn_t *connp; 9134 zoneid_t zoneid; 9135 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9136 9137 ASSERT(q->q_next == NULL); 9138 ip1dbg(("ip_sioctl_addif\n")); 9139 /* Existence of mp1 has been checked in ip_wput_nondata */ 9140 mp1 = mp->b_cont->b_cont; 9141 /* 9142 * Null terminate the string to protect against buffer 9143 * overrun. String was generated by user code and may not 9144 * be trusted. 9145 */ 9146 lifr = (struct lifreq *)mp1->b_rptr; 9147 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9148 name = lifr->lifr_name; 9149 ASSERT(CONN_Q(q)); 9150 connp = Q_TO_CONN(q); 9151 isv6 = (connp->conn_family == AF_INET6); 9152 zoneid = connp->conn_zoneid; 9153 namelen = mi_strlen(name); 9154 if (namelen == 0) 9155 return (EINVAL); 9156 9157 exists = B_FALSE; 9158 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9159 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9160 /* 9161 * Allow creating lo0 using SIOCLIFADDIF. 9162 * can't be any other writer thread. So can pass null below 9163 * for the last 4 args to ipif_lookup_name. 9164 */ 9165 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9166 &exists, isv6, zoneid, ipst); 9167 /* Prevent any further action */ 9168 if (ipif == NULL) { 9169 return (ENOBUFS); 9170 } else if (!exists) { 9171 /* We created the ipif now and as writer */ 9172 ipif_refrele(ipif); 9173 return (0); 9174 } else { 9175 ill = ipif->ipif_ill; 9176 ill_refhold(ill); 9177 ipif_refrele(ipif); 9178 } 9179 } else { 9180 /* Look for a colon in the name. */ 9181 endp = &name[namelen]; 9182 for (cp = endp; --cp > name; ) { 9183 if (*cp == IPIF_SEPARATOR_CHAR) { 9184 found_sep = B_TRUE; 9185 /* 9186 * Reject any non-decimal aliases for plumbing 9187 * of logical interfaces. Aliases with leading 9188 * zeroes are also rejected as they introduce 9189 * ambiguity in the naming of the interfaces. 9190 * Comparing with "0" takes care of all such 9191 * cases. 9192 */ 9193 if ((strncmp("0", cp+1, 1)) == 0) 9194 return (EINVAL); 9195 9196 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9197 id <= 0 || *endp != '\0') { 9198 return (EINVAL); 9199 } 9200 *cp = '\0'; 9201 break; 9202 } 9203 } 9204 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9205 if (found_sep) 9206 *cp = IPIF_SEPARATOR_CHAR; 9207 if (ill == NULL) 9208 return (ENXIO); 9209 } 9210 9211 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9212 B_TRUE); 9213 9214 /* 9215 * Release the refhold due to the lookup, now that we are excl 9216 * or we are just returning 9217 */ 9218 ill_refrele(ill); 9219 9220 if (ipsq == NULL) 9221 return (EINPROGRESS); 9222 9223 /* We are now exclusive on the IPSQ */ 9224 ASSERT(IAM_WRITER_ILL(ill)); 9225 9226 if (found_sep) { 9227 /* Now see if there is an IPIF with this unit number. */ 9228 for (ipif = ill->ill_ipif; ipif != NULL; 9229 ipif = ipif->ipif_next) { 9230 if (ipif->ipif_id == id) { 9231 err = EEXIST; 9232 goto done; 9233 } 9234 } 9235 } 9236 9237 /* 9238 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9239 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9240 * instead. 9241 */ 9242 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9243 B_TRUE, B_TRUE, &err)) == NULL) { 9244 goto done; 9245 } 9246 9247 /* Return created name with ioctl */ 9248 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9249 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9250 ip1dbg(("created %s\n", lifr->lifr_name)); 9251 9252 /* Set address */ 9253 sin = (sin_t *)&lifr->lifr_addr; 9254 if (sin->sin_family != AF_UNSPEC) { 9255 err = ip_sioctl_addr(ipif, sin, q, mp, 9256 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9257 } 9258 9259 done: 9260 ipsq_exit(ipsq); 9261 return (err); 9262 } 9263 9264 /* 9265 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9266 * interface) delete it based on the IP address (on this physical interface). 9267 * Otherwise delete it based on the ipif_id. 9268 * Also, special handling to allow a removeif of lo0. 9269 */ 9270 /* ARGSUSED */ 9271 int 9272 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9273 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9274 { 9275 conn_t *connp; 9276 ill_t *ill = ipif->ipif_ill; 9277 boolean_t success; 9278 ip_stack_t *ipst; 9279 9280 ipst = CONNQ_TO_IPST(q); 9281 9282 ASSERT(q->q_next == NULL); 9283 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9284 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9285 ASSERT(IAM_WRITER_IPIF(ipif)); 9286 9287 connp = Q_TO_CONN(q); 9288 /* 9289 * Special case for unplumbing lo0 (the loopback physical interface). 9290 * If unplumbing lo0, the incoming address structure has been 9291 * initialized to all zeros. When unplumbing lo0, all its logical 9292 * interfaces must be removed too. 9293 * 9294 * Note that this interface may be called to remove a specific 9295 * loopback logical interface (eg, lo0:1). But in that case 9296 * ipif->ipif_id != 0 so that the code path for that case is the 9297 * same as any other interface (meaning it skips the code directly 9298 * below). 9299 */ 9300 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9301 if (sin->sin_family == AF_UNSPEC && 9302 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9303 /* 9304 * Mark it condemned. No new ref. will be made to ill. 9305 */ 9306 mutex_enter(&ill->ill_lock); 9307 ill->ill_state_flags |= ILL_CONDEMNED; 9308 for (ipif = ill->ill_ipif; ipif != NULL; 9309 ipif = ipif->ipif_next) { 9310 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9311 } 9312 mutex_exit(&ill->ill_lock); 9313 9314 ipif = ill->ill_ipif; 9315 /* unplumb the loopback interface */ 9316 ill_delete(ill); 9317 mutex_enter(&connp->conn_lock); 9318 mutex_enter(&ill->ill_lock); 9319 9320 /* Are any references to this ill active */ 9321 if (ill_is_freeable(ill)) { 9322 mutex_exit(&ill->ill_lock); 9323 mutex_exit(&connp->conn_lock); 9324 ill_delete_tail(ill); 9325 mi_free(ill); 9326 return (0); 9327 } 9328 success = ipsq_pending_mp_add(connp, ipif, 9329 CONNP_TO_WQ(connp), mp, ILL_FREE); 9330 mutex_exit(&connp->conn_lock); 9331 mutex_exit(&ill->ill_lock); 9332 if (success) 9333 return (EINPROGRESS); 9334 else 9335 return (EINTR); 9336 } 9337 } 9338 9339 if (ipif->ipif_id == 0) { 9340 ipsq_t *ipsq; 9341 9342 /* Find based on address */ 9343 if (ipif->ipif_isv6) { 9344 sin6_t *sin6; 9345 9346 if (sin->sin_family != AF_INET6) 9347 return (EAFNOSUPPORT); 9348 9349 sin6 = (sin6_t *)sin; 9350 /* We are a writer, so we should be able to lookup */ 9351 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9352 ipst); 9353 } else { 9354 if (sin->sin_family != AF_INET) 9355 return (EAFNOSUPPORT); 9356 9357 /* We are a writer, so we should be able to lookup */ 9358 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9359 ipst); 9360 } 9361 if (ipif == NULL) { 9362 return (EADDRNOTAVAIL); 9363 } 9364 9365 /* 9366 * It is possible for a user to send an SIOCLIFREMOVEIF with 9367 * lifr_name of the physical interface but with an ip address 9368 * lifr_addr of a logical interface plumbed over it. 9369 * So update ipx_current_ipif now that ipif points to the 9370 * correct one. 9371 */ 9372 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9373 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9374 9375 /* This is a writer */ 9376 ipif_refrele(ipif); 9377 } 9378 9379 /* 9380 * Can not delete instance zero since it is tied to the ill. 9381 */ 9382 if (ipif->ipif_id == 0) 9383 return (EBUSY); 9384 9385 mutex_enter(&ill->ill_lock); 9386 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9387 mutex_exit(&ill->ill_lock); 9388 9389 ipif_free(ipif); 9390 9391 mutex_enter(&connp->conn_lock); 9392 mutex_enter(&ill->ill_lock); 9393 9394 /* Are any references to this ipif active */ 9395 if (ipif_is_freeable(ipif)) { 9396 mutex_exit(&ill->ill_lock); 9397 mutex_exit(&connp->conn_lock); 9398 ipif_non_duplicate(ipif); 9399 (void) ipif_down_tail(ipif); 9400 ipif_free_tail(ipif); /* frees ipif */ 9401 return (0); 9402 } 9403 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9404 IPIF_FREE); 9405 mutex_exit(&ill->ill_lock); 9406 mutex_exit(&connp->conn_lock); 9407 if (success) 9408 return (EINPROGRESS); 9409 else 9410 return (EINTR); 9411 } 9412 9413 /* 9414 * Restart the removeif ioctl. The refcnt has gone down to 0. 9415 * The ipif is already condemned. So can't find it thru lookups. 9416 */ 9417 /* ARGSUSED */ 9418 int 9419 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9420 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9421 { 9422 ill_t *ill = ipif->ipif_ill; 9423 9424 ASSERT(IAM_WRITER_IPIF(ipif)); 9425 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9426 9427 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9428 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9429 9430 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9431 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9432 ill_delete_tail(ill); 9433 mi_free(ill); 9434 return (0); 9435 } 9436 9437 ipif_non_duplicate(ipif); 9438 (void) ipif_down_tail(ipif); 9439 ipif_free_tail(ipif); 9440 9441 return (0); 9442 } 9443 9444 /* 9445 * Set the local interface address. 9446 * Allow an address of all zero when the interface is down. 9447 */ 9448 /* ARGSUSED */ 9449 int 9450 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9451 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9452 { 9453 int err = 0; 9454 in6_addr_t v6addr; 9455 boolean_t need_up = B_FALSE; 9456 9457 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9458 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9459 9460 ASSERT(IAM_WRITER_IPIF(ipif)); 9461 9462 if (ipif->ipif_isv6) { 9463 sin6_t *sin6; 9464 ill_t *ill; 9465 phyint_t *phyi; 9466 9467 if (sin->sin_family != AF_INET6) 9468 return (EAFNOSUPPORT); 9469 9470 sin6 = (sin6_t *)sin; 9471 v6addr = sin6->sin6_addr; 9472 ill = ipif->ipif_ill; 9473 phyi = ill->ill_phyint; 9474 9475 /* 9476 * Enforce that true multicast interfaces have a link-local 9477 * address for logical unit 0. 9478 */ 9479 if (ipif->ipif_id == 0 && 9480 (ill->ill_flags & ILLF_MULTICAST) && 9481 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9482 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9483 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9484 return (EADDRNOTAVAIL); 9485 } 9486 9487 /* 9488 * up interfaces shouldn't have the unspecified address 9489 * unless they also have the IPIF_NOLOCAL flags set and 9490 * have a subnet assigned. 9491 */ 9492 if ((ipif->ipif_flags & IPIF_UP) && 9493 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9494 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9495 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9496 return (EADDRNOTAVAIL); 9497 } 9498 9499 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9500 return (EADDRNOTAVAIL); 9501 } else { 9502 ipaddr_t addr; 9503 9504 if (sin->sin_family != AF_INET) 9505 return (EAFNOSUPPORT); 9506 9507 addr = sin->sin_addr.s_addr; 9508 9509 /* Allow 0 as the local address. */ 9510 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9511 return (EADDRNOTAVAIL); 9512 9513 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9514 } 9515 9516 /* 9517 * Even if there is no change we redo things just to rerun 9518 * ipif_set_default. 9519 */ 9520 if (ipif->ipif_flags & IPIF_UP) { 9521 /* 9522 * Setting a new local address, make sure 9523 * we have net and subnet bcast ire's for 9524 * the old address if we need them. 9525 */ 9526 /* 9527 * If the interface is already marked up, 9528 * we call ipif_down which will take care 9529 * of ditching any IREs that have been set 9530 * up based on the old interface address. 9531 */ 9532 err = ipif_logical_down(ipif, q, mp); 9533 if (err == EINPROGRESS) 9534 return (err); 9535 (void) ipif_down_tail(ipif); 9536 need_up = 1; 9537 } 9538 9539 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9540 return (err); 9541 } 9542 9543 int 9544 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9545 boolean_t need_up) 9546 { 9547 in6_addr_t v6addr; 9548 in6_addr_t ov6addr; 9549 ipaddr_t addr; 9550 sin6_t *sin6; 9551 int sinlen; 9552 int err = 0; 9553 ill_t *ill = ipif->ipif_ill; 9554 boolean_t need_dl_down; 9555 boolean_t need_arp_down; 9556 struct iocblk *iocp; 9557 9558 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9559 9560 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9561 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9562 ASSERT(IAM_WRITER_IPIF(ipif)); 9563 9564 /* Must cancel any pending timer before taking the ill_lock */ 9565 if (ipif->ipif_recovery_id != 0) 9566 (void) untimeout(ipif->ipif_recovery_id); 9567 ipif->ipif_recovery_id = 0; 9568 9569 if (ipif->ipif_isv6) { 9570 sin6 = (sin6_t *)sin; 9571 v6addr = sin6->sin6_addr; 9572 sinlen = sizeof (struct sockaddr_in6); 9573 } else { 9574 addr = sin->sin_addr.s_addr; 9575 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9576 sinlen = sizeof (struct sockaddr_in); 9577 } 9578 mutex_enter(&ill->ill_lock); 9579 ov6addr = ipif->ipif_v6lcl_addr; 9580 ipif->ipif_v6lcl_addr = v6addr; 9581 sctp_update_ipif_addr(ipif, ov6addr); 9582 ipif->ipif_addr_ready = 0; 9583 9584 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9585 9586 /* 9587 * If the interface was previously marked as a duplicate, then since 9588 * we've now got a "new" address, it should no longer be considered a 9589 * duplicate -- even if the "new" address is the same as the old one. 9590 * Note that if all ipifs are down, we may have a pending ARP down 9591 * event to handle. This is because we want to recover from duplicates 9592 * and thus delay tearing down ARP until the duplicates have been 9593 * removed or disabled. 9594 */ 9595 need_dl_down = need_arp_down = B_FALSE; 9596 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9597 need_arp_down = !need_up; 9598 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9599 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9600 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9601 need_dl_down = B_TRUE; 9602 } 9603 } 9604 9605 ipif_set_default(ipif); 9606 9607 /* 9608 * If we've just manually set the IPv6 link-local address (0th ipif), 9609 * tag the ill so that future updates to the interface ID don't result 9610 * in this address getting automatically reconfigured from under the 9611 * administrator. 9612 */ 9613 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9614 ill->ill_manual_linklocal = 1; 9615 9616 /* 9617 * When publishing an interface address change event, we only notify 9618 * the event listeners of the new address. It is assumed that if they 9619 * actively care about the addresses assigned that they will have 9620 * already discovered the previous address assigned (if there was one.) 9621 * 9622 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9623 */ 9624 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9625 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9626 NE_ADDRESS_CHANGE, sin, sinlen); 9627 } 9628 9629 mutex_exit(&ill->ill_lock); 9630 9631 if (need_up) { 9632 /* 9633 * Now bring the interface back up. If this 9634 * is the only IPIF for the ILL, ipif_up 9635 * will have to re-bind to the device, so 9636 * we may get back EINPROGRESS, in which 9637 * case, this IOCTL will get completed in 9638 * ip_rput_dlpi when we see the DL_BIND_ACK. 9639 */ 9640 err = ipif_up(ipif, q, mp); 9641 } else { 9642 /* Perhaps ilgs should use this ill */ 9643 update_conn_ill(NULL, ill->ill_ipst); 9644 } 9645 9646 if (need_dl_down) 9647 ill_dl_down(ill); 9648 9649 if (need_arp_down && !ill->ill_isv6) 9650 (void) ipif_arp_down(ipif); 9651 9652 /* 9653 * The default multicast interface might have changed (for 9654 * instance if the IPv6 scope of the address changed) 9655 */ 9656 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9657 9658 return (err); 9659 } 9660 9661 /* 9662 * Restart entry point to restart the address set operation after the 9663 * refcounts have dropped to zero. 9664 */ 9665 /* ARGSUSED */ 9666 int 9667 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9668 ip_ioctl_cmd_t *ipip, void *ifreq) 9669 { 9670 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9671 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9672 ASSERT(IAM_WRITER_IPIF(ipif)); 9673 (void) ipif_down_tail(ipif); 9674 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9675 } 9676 9677 /* ARGSUSED */ 9678 int 9679 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9680 ip_ioctl_cmd_t *ipip, void *if_req) 9681 { 9682 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9683 struct lifreq *lifr = (struct lifreq *)if_req; 9684 9685 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9686 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9687 /* 9688 * The net mask and address can't change since we have a 9689 * reference to the ipif. So no lock is necessary. 9690 */ 9691 if (ipif->ipif_isv6) { 9692 *sin6 = sin6_null; 9693 sin6->sin6_family = AF_INET6; 9694 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9695 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9696 lifr->lifr_addrlen = 9697 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9698 } else { 9699 *sin = sin_null; 9700 sin->sin_family = AF_INET; 9701 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9702 if (ipip->ipi_cmd_type == LIF_CMD) { 9703 lifr->lifr_addrlen = 9704 ip_mask_to_plen(ipif->ipif_net_mask); 9705 } 9706 } 9707 return (0); 9708 } 9709 9710 /* 9711 * Set the destination address for a pt-pt interface. 9712 */ 9713 /* ARGSUSED */ 9714 int 9715 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9716 ip_ioctl_cmd_t *ipip, void *if_req) 9717 { 9718 int err = 0; 9719 in6_addr_t v6addr; 9720 boolean_t need_up = B_FALSE; 9721 9722 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9723 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9724 ASSERT(IAM_WRITER_IPIF(ipif)); 9725 9726 if (ipif->ipif_isv6) { 9727 sin6_t *sin6; 9728 9729 if (sin->sin_family != AF_INET6) 9730 return (EAFNOSUPPORT); 9731 9732 sin6 = (sin6_t *)sin; 9733 v6addr = sin6->sin6_addr; 9734 9735 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9736 return (EADDRNOTAVAIL); 9737 } else { 9738 ipaddr_t addr; 9739 9740 if (sin->sin_family != AF_INET) 9741 return (EAFNOSUPPORT); 9742 9743 addr = sin->sin_addr.s_addr; 9744 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9745 return (EADDRNOTAVAIL); 9746 9747 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9748 } 9749 9750 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9751 return (0); /* No change */ 9752 9753 if (ipif->ipif_flags & IPIF_UP) { 9754 /* 9755 * If the interface is already marked up, 9756 * we call ipif_down which will take care 9757 * of ditching any IREs that have been set 9758 * up based on the old pp dst address. 9759 */ 9760 err = ipif_logical_down(ipif, q, mp); 9761 if (err == EINPROGRESS) 9762 return (err); 9763 (void) ipif_down_tail(ipif); 9764 need_up = B_TRUE; 9765 } 9766 /* 9767 * could return EINPROGRESS. If so ioctl will complete in 9768 * ip_rput_dlpi_writer 9769 */ 9770 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9771 return (err); 9772 } 9773 9774 static int 9775 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9776 boolean_t need_up) 9777 { 9778 in6_addr_t v6addr; 9779 ill_t *ill = ipif->ipif_ill; 9780 int err = 0; 9781 boolean_t need_dl_down; 9782 boolean_t need_arp_down; 9783 9784 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9785 ipif->ipif_id, (void *)ipif)); 9786 9787 /* Must cancel any pending timer before taking the ill_lock */ 9788 if (ipif->ipif_recovery_id != 0) 9789 (void) untimeout(ipif->ipif_recovery_id); 9790 ipif->ipif_recovery_id = 0; 9791 9792 if (ipif->ipif_isv6) { 9793 sin6_t *sin6; 9794 9795 sin6 = (sin6_t *)sin; 9796 v6addr = sin6->sin6_addr; 9797 } else { 9798 ipaddr_t addr; 9799 9800 addr = sin->sin_addr.s_addr; 9801 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9802 } 9803 mutex_enter(&ill->ill_lock); 9804 /* Set point to point destination address. */ 9805 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9806 /* 9807 * Allow this as a means of creating logical 9808 * pt-pt interfaces on top of e.g. an Ethernet. 9809 * XXX Undocumented HACK for testing. 9810 * pt-pt interfaces are created with NUD disabled. 9811 */ 9812 ipif->ipif_flags |= IPIF_POINTOPOINT; 9813 ipif->ipif_flags &= ~IPIF_BROADCAST; 9814 if (ipif->ipif_isv6) 9815 ill->ill_flags |= ILLF_NONUD; 9816 } 9817 9818 /* 9819 * If the interface was previously marked as a duplicate, then since 9820 * we've now got a "new" address, it should no longer be considered a 9821 * duplicate -- even if the "new" address is the same as the old one. 9822 * Note that if all ipifs are down, we may have a pending ARP down 9823 * event to handle. 9824 */ 9825 need_dl_down = need_arp_down = B_FALSE; 9826 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9827 need_arp_down = !need_up; 9828 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9829 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9830 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9831 need_dl_down = B_TRUE; 9832 } 9833 } 9834 9835 /* 9836 * If we've just manually set the IPv6 destination link-local address 9837 * (0th ipif), tag the ill so that future updates to the destination 9838 * interface ID (as can happen with interfaces over IP tunnels) don't 9839 * result in this address getting automatically reconfigured from 9840 * under the administrator. 9841 */ 9842 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9843 ill->ill_manual_dst_linklocal = 1; 9844 9845 /* Set the new address. */ 9846 ipif->ipif_v6pp_dst_addr = v6addr; 9847 /* Make sure subnet tracks pp_dst */ 9848 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9849 mutex_exit(&ill->ill_lock); 9850 9851 if (need_up) { 9852 /* 9853 * Now bring the interface back up. If this 9854 * is the only IPIF for the ILL, ipif_up 9855 * will have to re-bind to the device, so 9856 * we may get back EINPROGRESS, in which 9857 * case, this IOCTL will get completed in 9858 * ip_rput_dlpi when we see the DL_BIND_ACK. 9859 */ 9860 err = ipif_up(ipif, q, mp); 9861 } 9862 9863 if (need_dl_down) 9864 ill_dl_down(ill); 9865 if (need_arp_down && !ipif->ipif_isv6) 9866 (void) ipif_arp_down(ipif); 9867 9868 return (err); 9869 } 9870 9871 /* 9872 * Restart entry point to restart the dstaddress set operation after the 9873 * refcounts have dropped to zero. 9874 */ 9875 /* ARGSUSED */ 9876 int 9877 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9878 ip_ioctl_cmd_t *ipip, void *ifreq) 9879 { 9880 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9881 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9882 (void) ipif_down_tail(ipif); 9883 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9884 } 9885 9886 /* ARGSUSED */ 9887 int 9888 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9889 ip_ioctl_cmd_t *ipip, void *if_req) 9890 { 9891 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9892 9893 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9894 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9895 /* 9896 * Get point to point destination address. The addresses can't 9897 * change since we hold a reference to the ipif. 9898 */ 9899 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9900 return (EADDRNOTAVAIL); 9901 9902 if (ipif->ipif_isv6) { 9903 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9904 *sin6 = sin6_null; 9905 sin6->sin6_family = AF_INET6; 9906 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9907 } else { 9908 *sin = sin_null; 9909 sin->sin_family = AF_INET; 9910 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9911 } 9912 return (0); 9913 } 9914 9915 /* 9916 * Check which flags will change by the given flags being set 9917 * silently ignore flags which userland is not allowed to control. 9918 * (Because these flags may change between SIOCGLIFFLAGS and 9919 * SIOCSLIFFLAGS, and that's outside of userland's control, 9920 * we need to silently ignore them rather than fail.) 9921 */ 9922 static void 9923 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 9924 uint64_t *offp) 9925 { 9926 ill_t *ill = ipif->ipif_ill; 9927 phyint_t *phyi = ill->ill_phyint; 9928 uint64_t cantchange_flags, intf_flags; 9929 uint64_t turn_on, turn_off; 9930 9931 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9932 cantchange_flags = IFF_CANTCHANGE; 9933 if (IS_IPMP(ill)) 9934 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9935 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9936 turn_off = intf_flags & turn_on; 9937 turn_on ^= turn_off; 9938 *onp = turn_on; 9939 *offp = turn_off; 9940 } 9941 9942 /* 9943 * Set interface flags. Many flags require special handling (e.g., 9944 * bringing the interface down); see below for details. 9945 * 9946 * NOTE : We really don't enforce that ipif_id zero should be used 9947 * for setting any flags other than IFF_LOGINT_FLAGS. This 9948 * is because applications generally does SICGLIFFLAGS and 9949 * ORs in the new flags (that affects the logical) and does a 9950 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9951 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9952 * flags that will be turned on is correct with respect to 9953 * ipif_id 0. For backward compatibility reasons, it is not done. 9954 */ 9955 /* ARGSUSED */ 9956 int 9957 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9958 ip_ioctl_cmd_t *ipip, void *if_req) 9959 { 9960 uint64_t turn_on; 9961 uint64_t turn_off; 9962 int err = 0; 9963 phyint_t *phyi; 9964 ill_t *ill; 9965 conn_t *connp; 9966 uint64_t intf_flags; 9967 boolean_t phyint_flags_modified = B_FALSE; 9968 uint64_t flags; 9969 struct ifreq *ifr; 9970 struct lifreq *lifr; 9971 boolean_t set_linklocal = B_FALSE; 9972 9973 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9974 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9975 9976 ASSERT(IAM_WRITER_IPIF(ipif)); 9977 9978 ill = ipif->ipif_ill; 9979 phyi = ill->ill_phyint; 9980 9981 if (ipip->ipi_cmd_type == IF_CMD) { 9982 ifr = (struct ifreq *)if_req; 9983 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 9984 } else { 9985 lifr = (struct lifreq *)if_req; 9986 flags = lifr->lifr_flags; 9987 } 9988 9989 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9990 9991 /* 9992 * Have the flags been set correctly until now? 9993 */ 9994 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 9995 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 9996 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 9997 /* 9998 * Compare the new flags to the old, and partition 9999 * into those coming on and those going off. 10000 * For the 16 bit command keep the bits above bit 16 unchanged. 10001 */ 10002 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10003 flags |= intf_flags & ~0xFFFF; 10004 10005 /* 10006 * Explicitly fail attempts to change flags that are always invalid on 10007 * an IPMP meta-interface. 10008 */ 10009 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10010 return (EINVAL); 10011 10012 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10013 if ((turn_on|turn_off) == 0) 10014 return (0); /* No change */ 10015 10016 /* 10017 * All test addresses must be IFF_DEPRECATED (to ensure source address 10018 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10019 * allow it to be turned off. 10020 */ 10021 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10022 (turn_on|intf_flags) & IFF_NOFAILOVER) 10023 return (EINVAL); 10024 10025 if ((connp = Q_TO_CONN(q)) == NULL) 10026 return (EINVAL); 10027 10028 /* 10029 * Only vrrp control socket is allowed to change IFF_UP and 10030 * IFF_NOACCEPT flags when IFF_VRRP is set. 10031 */ 10032 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10033 if (!connp->conn_isvrrp) 10034 return (EINVAL); 10035 } 10036 10037 /* 10038 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10039 * VRRP control socket. 10040 */ 10041 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10042 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10043 return (EINVAL); 10044 } 10045 10046 if (turn_on & IFF_NOFAILOVER) { 10047 turn_on |= IFF_DEPRECATED; 10048 flags |= IFF_DEPRECATED; 10049 } 10050 10051 /* 10052 * On underlying interfaces, only allow applications to manage test 10053 * addresses -- otherwise, they may get confused when the address 10054 * moves as part of being brought up. Likewise, prevent an 10055 * application-managed test address from being converted to a data 10056 * address. To prevent migration of administratively up addresses in 10057 * the kernel, we don't allow them to be converted either. 10058 */ 10059 if (IS_UNDER_IPMP(ill)) { 10060 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10061 10062 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10063 return (EINVAL); 10064 10065 if ((turn_off & IFF_NOFAILOVER) && 10066 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10067 return (EINVAL); 10068 } 10069 10070 /* 10071 * Only allow IFF_TEMPORARY flag to be set on 10072 * IPv6 interfaces. 10073 */ 10074 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10075 return (EINVAL); 10076 10077 /* 10078 * cannot turn off IFF_NOXMIT on VNI interfaces. 10079 */ 10080 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10081 return (EINVAL); 10082 10083 /* 10084 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10085 * interfaces. It makes no sense in that context. 10086 */ 10087 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10088 return (EINVAL); 10089 10090 /* 10091 * For IPv6 ipif_id 0, don't allow the interface to be up without 10092 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10093 * If the link local address isn't set, and can be set, it will get 10094 * set later on in this function. 10095 */ 10096 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10097 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10098 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10099 if (ipif_cant_setlinklocal(ipif)) 10100 return (EINVAL); 10101 set_linklocal = B_TRUE; 10102 } 10103 10104 /* 10105 * If we modify physical interface flags, we'll potentially need to 10106 * send up two routing socket messages for the changes (one for the 10107 * IPv4 ill, and another for the IPv6 ill). Note that here. 10108 */ 10109 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10110 phyint_flags_modified = B_TRUE; 10111 10112 /* 10113 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10114 * (otherwise, we'd immediately use them, defeating standby). Also, 10115 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10116 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10117 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10118 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10119 * will not be honored. 10120 */ 10121 if (turn_on & PHYI_STANDBY) { 10122 /* 10123 * No need to grab ill_g_usesrc_lock here; see the 10124 * synchronization notes in ip.c. 10125 */ 10126 if (ill->ill_usesrc_grp_next != NULL || 10127 intf_flags & PHYI_INACTIVE) 10128 return (EINVAL); 10129 if (!(flags & PHYI_FAILED)) { 10130 flags |= PHYI_INACTIVE; 10131 turn_on |= PHYI_INACTIVE; 10132 } 10133 } 10134 10135 if (turn_off & PHYI_STANDBY) { 10136 flags &= ~PHYI_INACTIVE; 10137 turn_off |= PHYI_INACTIVE; 10138 } 10139 10140 /* 10141 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10142 * would end up on. 10143 */ 10144 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10145 (PHYI_FAILED | PHYI_INACTIVE)) 10146 return (EINVAL); 10147 10148 /* 10149 * If ILLF_ROUTER changes, we need to change the ip forwarding 10150 * status of the interface. 10151 */ 10152 if ((turn_on | turn_off) & ILLF_ROUTER) 10153 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10154 10155 /* 10156 * If the interface is not UP and we are not going to 10157 * bring it UP, record the flags and return. When the 10158 * interface comes UP later, the right actions will be 10159 * taken. 10160 */ 10161 if (!(ipif->ipif_flags & IPIF_UP) && 10162 !(turn_on & IPIF_UP)) { 10163 /* Record new flags in their respective places. */ 10164 mutex_enter(&ill->ill_lock); 10165 mutex_enter(&ill->ill_phyint->phyint_lock); 10166 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10167 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10168 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10169 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10170 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10171 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10172 mutex_exit(&ill->ill_lock); 10173 mutex_exit(&ill->ill_phyint->phyint_lock); 10174 10175 /* 10176 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10177 * same to the kernel: if any of them has been set by 10178 * userland, the interface cannot be used for data traffic. 10179 */ 10180 if ((turn_on|turn_off) & 10181 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10182 ASSERT(!IS_IPMP(ill)); 10183 /* 10184 * It's possible the ill is part of an "anonymous" 10185 * IPMP group rather than a real group. In that case, 10186 * there are no other interfaces in the group and thus 10187 * no need to call ipmp_phyint_refresh_active(). 10188 */ 10189 if (IS_UNDER_IPMP(ill)) 10190 ipmp_phyint_refresh_active(phyi); 10191 } 10192 10193 if (phyint_flags_modified) { 10194 if (phyi->phyint_illv4 != NULL) { 10195 ip_rts_ifmsg(phyi->phyint_illv4-> 10196 ill_ipif, RTSQ_DEFAULT); 10197 } 10198 if (phyi->phyint_illv6 != NULL) { 10199 ip_rts_ifmsg(phyi->phyint_illv6-> 10200 ill_ipif, RTSQ_DEFAULT); 10201 } 10202 } 10203 /* The default multicast interface might have changed */ 10204 ire_increment_multicast_generation(ill->ill_ipst, 10205 ill->ill_isv6); 10206 10207 return (0); 10208 } else if (set_linklocal) { 10209 mutex_enter(&ill->ill_lock); 10210 if (set_linklocal) 10211 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10212 mutex_exit(&ill->ill_lock); 10213 } 10214 10215 /* 10216 * Disallow IPv6 interfaces coming up that have the unspecified address, 10217 * or point-to-point interfaces with an unspecified destination. We do 10218 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10219 * have a subnet assigned, which is how in.ndpd currently manages its 10220 * onlink prefix list when no addresses are configured with those 10221 * prefixes. 10222 */ 10223 if (ipif->ipif_isv6 && 10224 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10225 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10226 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10227 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10228 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10229 return (EINVAL); 10230 } 10231 10232 /* 10233 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10234 * from being brought up. 10235 */ 10236 if (!ipif->ipif_isv6 && 10237 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10238 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10239 return (EINVAL); 10240 } 10241 10242 /* 10243 * If we are going to change one or more of the flags that are 10244 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10245 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10246 * IPIF_NOFAILOVER, we will take special action. This is 10247 * done by bring the ipif down, changing the flags and bringing 10248 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10249 * back up will trigger the address to be moved. 10250 * 10251 * If we are going to change IFF_NOACCEPT, we need to bring 10252 * all the ipifs down then bring them up again. The act of 10253 * bringing all the ipifs back up will trigger the local 10254 * ires being recreated with "no_accept" set/cleared. 10255 * 10256 * Note that ILLF_NOACCEPT is always set separately from the 10257 * other flags. 10258 */ 10259 if ((turn_on|turn_off) & 10260 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10261 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10262 IPIF_NOFAILOVER)) { 10263 /* 10264 * ipif_down() will ire_delete bcast ire's for the subnet, 10265 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10266 * entries shared between multiple ipifs on the same subnet. 10267 */ 10268 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10269 !(turn_off & IPIF_UP)) { 10270 if (ipif->ipif_flags & IPIF_UP) 10271 ill->ill_logical_down = 1; 10272 turn_on &= ~IPIF_UP; 10273 } 10274 err = ipif_down(ipif, q, mp); 10275 ip1dbg(("ipif_down returns %d err ", err)); 10276 if (err == EINPROGRESS) 10277 return (err); 10278 (void) ipif_down_tail(ipif); 10279 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10280 /* 10281 * If we can quiesce the ill, then continue. If not, then 10282 * ip_sioctl_flags_tail() will be called from 10283 * ipif_ill_refrele_tail(). 10284 */ 10285 ill_down_ipifs(ill, B_TRUE); 10286 10287 mutex_enter(&connp->conn_lock); 10288 mutex_enter(&ill->ill_lock); 10289 if (!ill_is_quiescent(ill)) { 10290 boolean_t success; 10291 10292 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10293 q, mp, ILL_DOWN); 10294 mutex_exit(&ill->ill_lock); 10295 mutex_exit(&connp->conn_lock); 10296 return (success ? EINPROGRESS : EINTR); 10297 } 10298 mutex_exit(&ill->ill_lock); 10299 mutex_exit(&connp->conn_lock); 10300 } 10301 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10302 } 10303 10304 static int 10305 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10306 { 10307 ill_t *ill; 10308 phyint_t *phyi; 10309 uint64_t turn_on, turn_off; 10310 boolean_t phyint_flags_modified = B_FALSE; 10311 int err = 0; 10312 boolean_t set_linklocal = B_FALSE; 10313 10314 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10315 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10316 10317 ASSERT(IAM_WRITER_IPIF(ipif)); 10318 10319 ill = ipif->ipif_ill; 10320 phyi = ill->ill_phyint; 10321 10322 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10323 10324 /* 10325 * IFF_UP is handled separately. 10326 */ 10327 turn_on &= ~IFF_UP; 10328 turn_off &= ~IFF_UP; 10329 10330 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10331 phyint_flags_modified = B_TRUE; 10332 10333 /* 10334 * Now we change the flags. Track current value of 10335 * other flags in their respective places. 10336 */ 10337 mutex_enter(&ill->ill_lock); 10338 mutex_enter(&phyi->phyint_lock); 10339 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10340 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10341 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10342 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10343 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10344 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10345 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10346 set_linklocal = B_TRUE; 10347 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10348 } 10349 10350 mutex_exit(&ill->ill_lock); 10351 mutex_exit(&phyi->phyint_lock); 10352 10353 if (set_linklocal) 10354 (void) ipif_setlinklocal(ipif); 10355 10356 /* 10357 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10358 * the kernel: if any of them has been set by userland, the interface 10359 * cannot be used for data traffic. 10360 */ 10361 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10362 ASSERT(!IS_IPMP(ill)); 10363 /* 10364 * It's possible the ill is part of an "anonymous" IPMP group 10365 * rather than a real group. In that case, there are no other 10366 * interfaces in the group and thus no need for us to call 10367 * ipmp_phyint_refresh_active(). 10368 */ 10369 if (IS_UNDER_IPMP(ill)) 10370 ipmp_phyint_refresh_active(phyi); 10371 } 10372 10373 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10374 /* 10375 * If the ILLF_NOACCEPT flag is changed, bring up all the 10376 * ipifs that were brought down. 10377 * 10378 * The routing sockets messages are sent as the result 10379 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10380 * as well. 10381 */ 10382 err = ill_up_ipifs(ill, q, mp); 10383 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10384 /* 10385 * XXX ipif_up really does not know whether a phyint flags 10386 * was modified or not. So, it sends up information on 10387 * only one routing sockets message. As we don't bring up 10388 * the interface and also set PHYI_ flags simultaneously 10389 * it should be okay. 10390 */ 10391 err = ipif_up(ipif, q, mp); 10392 } else { 10393 /* 10394 * Make sure routing socket sees all changes to the flags. 10395 * ipif_up_done* handles this when we use ipif_up. 10396 */ 10397 if (phyint_flags_modified) { 10398 if (phyi->phyint_illv4 != NULL) { 10399 ip_rts_ifmsg(phyi->phyint_illv4-> 10400 ill_ipif, RTSQ_DEFAULT); 10401 } 10402 if (phyi->phyint_illv6 != NULL) { 10403 ip_rts_ifmsg(phyi->phyint_illv6-> 10404 ill_ipif, RTSQ_DEFAULT); 10405 } 10406 } else { 10407 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10408 } 10409 /* 10410 * Update the flags in SCTP's IPIF list, ipif_up() will do 10411 * this in need_up case. 10412 */ 10413 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10414 } 10415 10416 /* The default multicast interface might have changed */ 10417 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10418 return (err); 10419 } 10420 10421 /* 10422 * Restart the flags operation now that the refcounts have dropped to zero. 10423 */ 10424 /* ARGSUSED */ 10425 int 10426 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10427 ip_ioctl_cmd_t *ipip, void *if_req) 10428 { 10429 uint64_t flags; 10430 struct ifreq *ifr = if_req; 10431 struct lifreq *lifr = if_req; 10432 uint64_t turn_on, turn_off; 10433 10434 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10435 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10436 10437 if (ipip->ipi_cmd_type == IF_CMD) { 10438 /* cast to uint16_t prevents unwanted sign extension */ 10439 flags = (uint16_t)ifr->ifr_flags; 10440 } else { 10441 flags = lifr->lifr_flags; 10442 } 10443 10444 /* 10445 * If this function call is a result of the ILLF_NOACCEPT flag 10446 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10447 */ 10448 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10449 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10450 (void) ipif_down_tail(ipif); 10451 10452 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10453 } 10454 10455 /* 10456 * Can operate on either a module or a driver queue. 10457 */ 10458 /* ARGSUSED */ 10459 int 10460 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10461 ip_ioctl_cmd_t *ipip, void *if_req) 10462 { 10463 /* 10464 * Has the flags been set correctly till now ? 10465 */ 10466 ill_t *ill = ipif->ipif_ill; 10467 phyint_t *phyi = ill->ill_phyint; 10468 10469 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10470 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10471 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10472 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10473 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10474 10475 /* 10476 * Need a lock since some flags can be set even when there are 10477 * references to the ipif. 10478 */ 10479 mutex_enter(&ill->ill_lock); 10480 if (ipip->ipi_cmd_type == IF_CMD) { 10481 struct ifreq *ifr = (struct ifreq *)if_req; 10482 10483 /* Get interface flags (low 16 only). */ 10484 ifr->ifr_flags = ((ipif->ipif_flags | 10485 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10486 } else { 10487 struct lifreq *lifr = (struct lifreq *)if_req; 10488 10489 /* Get interface flags. */ 10490 lifr->lifr_flags = ipif->ipif_flags | 10491 ill->ill_flags | phyi->phyint_flags; 10492 } 10493 mutex_exit(&ill->ill_lock); 10494 return (0); 10495 } 10496 10497 /* 10498 * We allow the MTU to be set on an ILL, but not have it be different 10499 * for different IPIFs since we don't actually send packets on IPIFs. 10500 */ 10501 /* ARGSUSED */ 10502 int 10503 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10504 ip_ioctl_cmd_t *ipip, void *if_req) 10505 { 10506 int mtu; 10507 int ip_min_mtu; 10508 struct ifreq *ifr; 10509 struct lifreq *lifr; 10510 ill_t *ill; 10511 10512 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10513 ipif->ipif_id, (void *)ipif)); 10514 if (ipip->ipi_cmd_type == IF_CMD) { 10515 ifr = (struct ifreq *)if_req; 10516 mtu = ifr->ifr_metric; 10517 } else { 10518 lifr = (struct lifreq *)if_req; 10519 mtu = lifr->lifr_mtu; 10520 } 10521 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10522 if (ipif->ipif_id != 0) 10523 return (EINVAL); 10524 10525 ill = ipif->ipif_ill; 10526 if (ipif->ipif_isv6) 10527 ip_min_mtu = IPV6_MIN_MTU; 10528 else 10529 ip_min_mtu = IP_MIN_MTU; 10530 10531 mutex_enter(&ill->ill_lock); 10532 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10533 mutex_exit(&ill->ill_lock); 10534 return (EINVAL); 10535 } 10536 /* 10537 * The dce and fragmentation code can handle changes to ill_mtu 10538 * concurrent with sending/fragmenting packets. 10539 */ 10540 ill->ill_mtu = mtu; 10541 ill->ill_flags |= ILLF_FIXEDMTU; 10542 mutex_exit(&ill->ill_lock); 10543 10544 /* 10545 * Make sure all dce_generation checks find out 10546 * that ill_mtu has changed. 10547 */ 10548 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10549 10550 /* Update the MTU in SCTP's list */ 10551 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10552 return (0); 10553 } 10554 10555 /* Get interface MTU. */ 10556 /* ARGSUSED */ 10557 int 10558 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10559 ip_ioctl_cmd_t *ipip, void *if_req) 10560 { 10561 struct ifreq *ifr; 10562 struct lifreq *lifr; 10563 10564 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10565 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10566 10567 /* 10568 * We allow a get on any logical interface even though the set 10569 * can only be done on logical unit 0. 10570 */ 10571 if (ipip->ipi_cmd_type == IF_CMD) { 10572 ifr = (struct ifreq *)if_req; 10573 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10574 } else { 10575 lifr = (struct lifreq *)if_req; 10576 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10577 } 10578 return (0); 10579 } 10580 10581 /* Set interface broadcast address. */ 10582 /* ARGSUSED2 */ 10583 int 10584 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10585 ip_ioctl_cmd_t *ipip, void *if_req) 10586 { 10587 ipaddr_t addr; 10588 ire_t *ire; 10589 ill_t *ill = ipif->ipif_ill; 10590 ip_stack_t *ipst = ill->ill_ipst; 10591 10592 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10593 ipif->ipif_id)); 10594 10595 ASSERT(IAM_WRITER_IPIF(ipif)); 10596 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10597 return (EADDRNOTAVAIL); 10598 10599 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10600 10601 if (sin->sin_family != AF_INET) 10602 return (EAFNOSUPPORT); 10603 10604 addr = sin->sin_addr.s_addr; 10605 if (ipif->ipif_flags & IPIF_UP) { 10606 /* 10607 * If we are already up, make sure the new 10608 * broadcast address makes sense. If it does, 10609 * there should be an IRE for it already. 10610 */ 10611 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10612 ill, ipif->ipif_zoneid, NULL, 10613 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10614 if (ire == NULL) { 10615 return (EINVAL); 10616 } else { 10617 ire_refrele(ire); 10618 } 10619 } 10620 /* 10621 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10622 * needs to already exist we never need to change the set of 10623 * IRE_BROADCASTs when we are UP. 10624 */ 10625 if (addr != ipif->ipif_brd_addr) 10626 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10627 10628 return (0); 10629 } 10630 10631 /* Get interface broadcast address. */ 10632 /* ARGSUSED */ 10633 int 10634 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10635 ip_ioctl_cmd_t *ipip, void *if_req) 10636 { 10637 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10638 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10639 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10640 return (EADDRNOTAVAIL); 10641 10642 /* IPIF_BROADCAST not possible with IPv6 */ 10643 ASSERT(!ipif->ipif_isv6); 10644 *sin = sin_null; 10645 sin->sin_family = AF_INET; 10646 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10647 return (0); 10648 } 10649 10650 /* 10651 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10652 */ 10653 /* ARGSUSED */ 10654 int 10655 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10656 ip_ioctl_cmd_t *ipip, void *if_req) 10657 { 10658 int err = 0; 10659 in6_addr_t v6mask; 10660 10661 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10662 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10663 10664 ASSERT(IAM_WRITER_IPIF(ipif)); 10665 10666 if (ipif->ipif_isv6) { 10667 sin6_t *sin6; 10668 10669 if (sin->sin_family != AF_INET6) 10670 return (EAFNOSUPPORT); 10671 10672 sin6 = (sin6_t *)sin; 10673 v6mask = sin6->sin6_addr; 10674 } else { 10675 ipaddr_t mask; 10676 10677 if (sin->sin_family != AF_INET) 10678 return (EAFNOSUPPORT); 10679 10680 mask = sin->sin_addr.s_addr; 10681 V4MASK_TO_V6(mask, v6mask); 10682 } 10683 10684 /* 10685 * No big deal if the interface isn't already up, or the mask 10686 * isn't really changing, or this is pt-pt. 10687 */ 10688 if (!(ipif->ipif_flags & IPIF_UP) || 10689 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10690 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10691 ipif->ipif_v6net_mask = v6mask; 10692 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10693 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10694 ipif->ipif_v6net_mask, 10695 ipif->ipif_v6subnet); 10696 } 10697 return (0); 10698 } 10699 /* 10700 * Make sure we have valid net and subnet broadcast ire's 10701 * for the old netmask, if needed by other logical interfaces. 10702 */ 10703 err = ipif_logical_down(ipif, q, mp); 10704 if (err == EINPROGRESS) 10705 return (err); 10706 (void) ipif_down_tail(ipif); 10707 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10708 return (err); 10709 } 10710 10711 static int 10712 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10713 { 10714 in6_addr_t v6mask; 10715 int err = 0; 10716 10717 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10718 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10719 10720 if (ipif->ipif_isv6) { 10721 sin6_t *sin6; 10722 10723 sin6 = (sin6_t *)sin; 10724 v6mask = sin6->sin6_addr; 10725 } else { 10726 ipaddr_t mask; 10727 10728 mask = sin->sin_addr.s_addr; 10729 V4MASK_TO_V6(mask, v6mask); 10730 } 10731 10732 ipif->ipif_v6net_mask = v6mask; 10733 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10734 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10735 ipif->ipif_v6subnet); 10736 } 10737 err = ipif_up(ipif, q, mp); 10738 10739 if (err == 0 || err == EINPROGRESS) { 10740 /* 10741 * The interface must be DL_BOUND if this packet has to 10742 * go out on the wire. Since we only go through a logical 10743 * down and are bound with the driver during an internal 10744 * down/up that is satisfied. 10745 */ 10746 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10747 /* Potentially broadcast an address mask reply. */ 10748 ipif_mask_reply(ipif); 10749 } 10750 } 10751 return (err); 10752 } 10753 10754 /* ARGSUSED */ 10755 int 10756 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10757 ip_ioctl_cmd_t *ipip, void *if_req) 10758 { 10759 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10760 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10761 (void) ipif_down_tail(ipif); 10762 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10763 } 10764 10765 /* Get interface net mask. */ 10766 /* ARGSUSED */ 10767 int 10768 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10769 ip_ioctl_cmd_t *ipip, void *if_req) 10770 { 10771 struct lifreq *lifr = (struct lifreq *)if_req; 10772 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10773 10774 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10775 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10776 10777 /* 10778 * net mask can't change since we have a reference to the ipif. 10779 */ 10780 if (ipif->ipif_isv6) { 10781 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10782 *sin6 = sin6_null; 10783 sin6->sin6_family = AF_INET6; 10784 sin6->sin6_addr = ipif->ipif_v6net_mask; 10785 lifr->lifr_addrlen = 10786 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10787 } else { 10788 *sin = sin_null; 10789 sin->sin_family = AF_INET; 10790 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10791 if (ipip->ipi_cmd_type == LIF_CMD) { 10792 lifr->lifr_addrlen = 10793 ip_mask_to_plen(ipif->ipif_net_mask); 10794 } 10795 } 10796 return (0); 10797 } 10798 10799 /* ARGSUSED */ 10800 int 10801 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10802 ip_ioctl_cmd_t *ipip, void *if_req) 10803 { 10804 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10805 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10806 10807 /* 10808 * Since no applications should ever be setting metrics on underlying 10809 * interfaces, we explicitly fail to smoke 'em out. 10810 */ 10811 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10812 return (EINVAL); 10813 10814 /* 10815 * Set interface metric. We don't use this for 10816 * anything but we keep track of it in case it is 10817 * important to routing applications or such. 10818 */ 10819 if (ipip->ipi_cmd_type == IF_CMD) { 10820 struct ifreq *ifr; 10821 10822 ifr = (struct ifreq *)if_req; 10823 ipif->ipif_metric = ifr->ifr_metric; 10824 } else { 10825 struct lifreq *lifr; 10826 10827 lifr = (struct lifreq *)if_req; 10828 ipif->ipif_metric = lifr->lifr_metric; 10829 } 10830 return (0); 10831 } 10832 10833 /* ARGSUSED */ 10834 int 10835 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10836 ip_ioctl_cmd_t *ipip, void *if_req) 10837 { 10838 /* Get interface metric. */ 10839 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10840 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10841 10842 if (ipip->ipi_cmd_type == IF_CMD) { 10843 struct ifreq *ifr; 10844 10845 ifr = (struct ifreq *)if_req; 10846 ifr->ifr_metric = ipif->ipif_metric; 10847 } else { 10848 struct lifreq *lifr; 10849 10850 lifr = (struct lifreq *)if_req; 10851 lifr->lifr_metric = ipif->ipif_metric; 10852 } 10853 10854 return (0); 10855 } 10856 10857 /* ARGSUSED */ 10858 int 10859 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10860 ip_ioctl_cmd_t *ipip, void *if_req) 10861 { 10862 int arp_muxid; 10863 10864 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10865 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10866 /* 10867 * Set the muxid returned from I_PLINK. 10868 */ 10869 if (ipip->ipi_cmd_type == IF_CMD) { 10870 struct ifreq *ifr = (struct ifreq *)if_req; 10871 10872 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10873 arp_muxid = ifr->ifr_arp_muxid; 10874 } else { 10875 struct lifreq *lifr = (struct lifreq *)if_req; 10876 10877 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10878 arp_muxid = lifr->lifr_arp_muxid; 10879 } 10880 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10881 return (0); 10882 } 10883 10884 /* ARGSUSED */ 10885 int 10886 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10887 ip_ioctl_cmd_t *ipip, void *if_req) 10888 { 10889 int arp_muxid = 0; 10890 10891 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10892 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10893 /* 10894 * Get the muxid saved in ill for I_PUNLINK. 10895 */ 10896 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10897 if (ipip->ipi_cmd_type == IF_CMD) { 10898 struct ifreq *ifr = (struct ifreq *)if_req; 10899 10900 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10901 ifr->ifr_arp_muxid = arp_muxid; 10902 } else { 10903 struct lifreq *lifr = (struct lifreq *)if_req; 10904 10905 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10906 lifr->lifr_arp_muxid = arp_muxid; 10907 } 10908 return (0); 10909 } 10910 10911 /* 10912 * Set the subnet prefix. Does not modify the broadcast address. 10913 */ 10914 /* ARGSUSED */ 10915 int 10916 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10917 ip_ioctl_cmd_t *ipip, void *if_req) 10918 { 10919 int err = 0; 10920 in6_addr_t v6addr; 10921 in6_addr_t v6mask; 10922 boolean_t need_up = B_FALSE; 10923 int addrlen; 10924 10925 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10926 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10927 10928 ASSERT(IAM_WRITER_IPIF(ipif)); 10929 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10930 10931 if (ipif->ipif_isv6) { 10932 sin6_t *sin6; 10933 10934 if (sin->sin_family != AF_INET6) 10935 return (EAFNOSUPPORT); 10936 10937 sin6 = (sin6_t *)sin; 10938 v6addr = sin6->sin6_addr; 10939 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10940 return (EADDRNOTAVAIL); 10941 } else { 10942 ipaddr_t addr; 10943 10944 if (sin->sin_family != AF_INET) 10945 return (EAFNOSUPPORT); 10946 10947 addr = sin->sin_addr.s_addr; 10948 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10949 return (EADDRNOTAVAIL); 10950 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10951 /* Add 96 bits */ 10952 addrlen += IPV6_ABITS - IP_ABITS; 10953 } 10954 10955 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10956 return (EINVAL); 10957 10958 /* Check if bits in the address is set past the mask */ 10959 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10960 return (EINVAL); 10961 10962 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10963 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10964 return (0); /* No change */ 10965 10966 if (ipif->ipif_flags & IPIF_UP) { 10967 /* 10968 * If the interface is already marked up, 10969 * we call ipif_down which will take care 10970 * of ditching any IREs that have been set 10971 * up based on the old interface address. 10972 */ 10973 err = ipif_logical_down(ipif, q, mp); 10974 if (err == EINPROGRESS) 10975 return (err); 10976 (void) ipif_down_tail(ipif); 10977 need_up = B_TRUE; 10978 } 10979 10980 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 10981 return (err); 10982 } 10983 10984 static int 10985 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 10986 queue_t *q, mblk_t *mp, boolean_t need_up) 10987 { 10988 ill_t *ill = ipif->ipif_ill; 10989 int err = 0; 10990 10991 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 10992 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10993 10994 /* Set the new address. */ 10995 mutex_enter(&ill->ill_lock); 10996 ipif->ipif_v6net_mask = v6mask; 10997 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10998 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 10999 ipif->ipif_v6subnet); 11000 } 11001 mutex_exit(&ill->ill_lock); 11002 11003 if (need_up) { 11004 /* 11005 * Now bring the interface back up. If this 11006 * is the only IPIF for the ILL, ipif_up 11007 * will have to re-bind to the device, so 11008 * we may get back EINPROGRESS, in which 11009 * case, this IOCTL will get completed in 11010 * ip_rput_dlpi when we see the DL_BIND_ACK. 11011 */ 11012 err = ipif_up(ipif, q, mp); 11013 if (err == EINPROGRESS) 11014 return (err); 11015 } 11016 return (err); 11017 } 11018 11019 /* ARGSUSED */ 11020 int 11021 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11022 ip_ioctl_cmd_t *ipip, void *if_req) 11023 { 11024 int addrlen; 11025 in6_addr_t v6addr; 11026 in6_addr_t v6mask; 11027 struct lifreq *lifr = (struct lifreq *)if_req; 11028 11029 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11030 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11031 (void) ipif_down_tail(ipif); 11032 11033 addrlen = lifr->lifr_addrlen; 11034 if (ipif->ipif_isv6) { 11035 sin6_t *sin6; 11036 11037 sin6 = (sin6_t *)sin; 11038 v6addr = sin6->sin6_addr; 11039 } else { 11040 ipaddr_t addr; 11041 11042 addr = sin->sin_addr.s_addr; 11043 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11044 addrlen += IPV6_ABITS - IP_ABITS; 11045 } 11046 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11047 11048 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11049 } 11050 11051 /* ARGSUSED */ 11052 int 11053 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11054 ip_ioctl_cmd_t *ipip, void *if_req) 11055 { 11056 struct lifreq *lifr = (struct lifreq *)if_req; 11057 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11058 11059 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11060 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11061 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11062 11063 if (ipif->ipif_isv6) { 11064 *sin6 = sin6_null; 11065 sin6->sin6_family = AF_INET6; 11066 sin6->sin6_addr = ipif->ipif_v6subnet; 11067 lifr->lifr_addrlen = 11068 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11069 } else { 11070 *sin = sin_null; 11071 sin->sin_family = AF_INET; 11072 sin->sin_addr.s_addr = ipif->ipif_subnet; 11073 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11074 } 11075 return (0); 11076 } 11077 11078 /* 11079 * Set the IPv6 address token. 11080 */ 11081 /* ARGSUSED */ 11082 int 11083 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11084 ip_ioctl_cmd_t *ipi, void *if_req) 11085 { 11086 ill_t *ill = ipif->ipif_ill; 11087 int err; 11088 in6_addr_t v6addr; 11089 in6_addr_t v6mask; 11090 boolean_t need_up = B_FALSE; 11091 int i; 11092 sin6_t *sin6 = (sin6_t *)sin; 11093 struct lifreq *lifr = (struct lifreq *)if_req; 11094 int addrlen; 11095 11096 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11097 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11098 ASSERT(IAM_WRITER_IPIF(ipif)); 11099 11100 addrlen = lifr->lifr_addrlen; 11101 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11102 if (ipif->ipif_id != 0) 11103 return (EINVAL); 11104 11105 if (!ipif->ipif_isv6) 11106 return (EINVAL); 11107 11108 if (addrlen > IPV6_ABITS) 11109 return (EINVAL); 11110 11111 v6addr = sin6->sin6_addr; 11112 11113 /* 11114 * The length of the token is the length from the end. To get 11115 * the proper mask for this, compute the mask of the bits not 11116 * in the token; ie. the prefix, and then xor to get the mask. 11117 */ 11118 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11119 return (EINVAL); 11120 for (i = 0; i < 4; i++) { 11121 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11122 } 11123 11124 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11125 ill->ill_token_length == addrlen) 11126 return (0); /* No change */ 11127 11128 if (ipif->ipif_flags & IPIF_UP) { 11129 err = ipif_logical_down(ipif, q, mp); 11130 if (err == EINPROGRESS) 11131 return (err); 11132 (void) ipif_down_tail(ipif); 11133 need_up = B_TRUE; 11134 } 11135 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11136 return (err); 11137 } 11138 11139 static int 11140 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11141 mblk_t *mp, boolean_t need_up) 11142 { 11143 in6_addr_t v6addr; 11144 in6_addr_t v6mask; 11145 ill_t *ill = ipif->ipif_ill; 11146 int i; 11147 int err = 0; 11148 11149 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11151 v6addr = sin6->sin6_addr; 11152 /* 11153 * The length of the token is the length from the end. To get 11154 * the proper mask for this, compute the mask of the bits not 11155 * in the token; ie. the prefix, and then xor to get the mask. 11156 */ 11157 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11158 for (i = 0; i < 4; i++) 11159 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11160 11161 mutex_enter(&ill->ill_lock); 11162 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11163 ill->ill_token_length = addrlen; 11164 ill->ill_manual_token = 1; 11165 11166 /* Reconfigure the link-local address based on this new token */ 11167 ipif_setlinklocal(ill->ill_ipif); 11168 11169 mutex_exit(&ill->ill_lock); 11170 11171 if (need_up) { 11172 /* 11173 * Now bring the interface back up. If this 11174 * is the only IPIF for the ILL, ipif_up 11175 * will have to re-bind to the device, so 11176 * we may get back EINPROGRESS, in which 11177 * case, this IOCTL will get completed in 11178 * ip_rput_dlpi when we see the DL_BIND_ACK. 11179 */ 11180 err = ipif_up(ipif, q, mp); 11181 if (err == EINPROGRESS) 11182 return (err); 11183 } 11184 return (err); 11185 } 11186 11187 /* ARGSUSED */ 11188 int 11189 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11190 ip_ioctl_cmd_t *ipi, void *if_req) 11191 { 11192 ill_t *ill; 11193 sin6_t *sin6 = (sin6_t *)sin; 11194 struct lifreq *lifr = (struct lifreq *)if_req; 11195 11196 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11197 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11198 if (ipif->ipif_id != 0) 11199 return (EINVAL); 11200 11201 ill = ipif->ipif_ill; 11202 if (!ill->ill_isv6) 11203 return (ENXIO); 11204 11205 *sin6 = sin6_null; 11206 sin6->sin6_family = AF_INET6; 11207 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11208 sin6->sin6_addr = ill->ill_token; 11209 lifr->lifr_addrlen = ill->ill_token_length; 11210 return (0); 11211 } 11212 11213 /* 11214 * Set (hardware) link specific information that might override 11215 * what was acquired through the DL_INFO_ACK. 11216 */ 11217 /* ARGSUSED */ 11218 int 11219 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11220 ip_ioctl_cmd_t *ipi, void *if_req) 11221 { 11222 ill_t *ill = ipif->ipif_ill; 11223 int ip_min_mtu; 11224 struct lifreq *lifr = (struct lifreq *)if_req; 11225 lif_ifinfo_req_t *lir; 11226 11227 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11228 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11229 lir = &lifr->lifr_ifinfo; 11230 ASSERT(IAM_WRITER_IPIF(ipif)); 11231 11232 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11233 if (ipif->ipif_id != 0) 11234 return (EINVAL); 11235 11236 /* Set interface MTU. */ 11237 if (ipif->ipif_isv6) 11238 ip_min_mtu = IPV6_MIN_MTU; 11239 else 11240 ip_min_mtu = IP_MIN_MTU; 11241 11242 /* 11243 * Verify values before we set anything. Allow zero to 11244 * mean unspecified. 11245 * 11246 * XXX We should be able to set the user-defined lir_mtu to some value 11247 * that is greater than ill_current_frag but less than ill_max_frag- the 11248 * ill_max_frag value tells us the max MTU that can be handled by the 11249 * datalink, whereas the ill_current_frag is dynamically computed for 11250 * some link-types like tunnels, based on the tunnel PMTU. However, 11251 * since there is currently no way of distinguishing between 11252 * administratively fixed link mtu values (e.g., those set via 11253 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11254 * for tunnels) we conservatively choose the ill_current_frag as the 11255 * upper-bound. 11256 */ 11257 if (lir->lir_maxmtu != 0 && 11258 (lir->lir_maxmtu > ill->ill_current_frag || 11259 lir->lir_maxmtu < ip_min_mtu)) 11260 return (EINVAL); 11261 if (lir->lir_reachtime != 0 && 11262 lir->lir_reachtime > ND_MAX_REACHTIME) 11263 return (EINVAL); 11264 if (lir->lir_reachretrans != 0 && 11265 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11266 return (EINVAL); 11267 11268 mutex_enter(&ill->ill_lock); 11269 /* 11270 * The dce and fragmentation code can handle changes to ill_mtu 11271 * concurrent with sending/fragmenting packets. 11272 */ 11273 if (lir->lir_maxmtu != 0) 11274 ill->ill_user_mtu = lir->lir_maxmtu; 11275 11276 if (lir->lir_reachtime != 0) 11277 ill->ill_reachable_time = lir->lir_reachtime; 11278 11279 if (lir->lir_reachretrans != 0) 11280 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11281 11282 ill->ill_max_hops = lir->lir_maxhops; 11283 ill->ill_max_buf = ND_MAX_Q; 11284 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11285 /* 11286 * ill_mtu is the actual interface MTU, obtained as the min 11287 * of user-configured mtu and the value announced by the 11288 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11289 * we have already made the choice of requiring 11290 * ill_user_mtu < ill_current_frag by the time we get here, 11291 * the ill_mtu effectively gets assigned to the ill_user_mtu 11292 * here. 11293 */ 11294 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11295 } 11296 mutex_exit(&ill->ill_lock); 11297 11298 /* 11299 * Make sure all dce_generation checks find out 11300 * that ill_mtu has changed. 11301 */ 11302 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11303 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11304 11305 /* 11306 * Refresh IPMP meta-interface MTU if necessary. 11307 */ 11308 if (IS_UNDER_IPMP(ill)) 11309 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11310 11311 return (0); 11312 } 11313 11314 /* ARGSUSED */ 11315 int 11316 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11317 ip_ioctl_cmd_t *ipi, void *if_req) 11318 { 11319 struct lif_ifinfo_req *lir; 11320 ill_t *ill = ipif->ipif_ill; 11321 11322 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11323 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11324 if (ipif->ipif_id != 0) 11325 return (EINVAL); 11326 11327 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11328 lir->lir_maxhops = ill->ill_max_hops; 11329 lir->lir_reachtime = ill->ill_reachable_time; 11330 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11331 lir->lir_maxmtu = ill->ill_mtu; 11332 11333 return (0); 11334 } 11335 11336 /* 11337 * Return best guess as to the subnet mask for the specified address. 11338 * Based on the subnet masks for all the configured interfaces. 11339 * 11340 * We end up returning a zero mask in the case of default, multicast or 11341 * experimental. 11342 */ 11343 static ipaddr_t 11344 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11345 { 11346 ipaddr_t net_mask; 11347 ill_t *ill; 11348 ipif_t *ipif; 11349 ill_walk_context_t ctx; 11350 ipif_t *fallback_ipif = NULL; 11351 11352 net_mask = ip_net_mask(addr); 11353 if (net_mask == 0) { 11354 *ipifp = NULL; 11355 return (0); 11356 } 11357 11358 /* Let's check to see if this is maybe a local subnet route. */ 11359 /* this function only applies to IPv4 interfaces */ 11360 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11361 ill = ILL_START_WALK_V4(&ctx, ipst); 11362 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11363 mutex_enter(&ill->ill_lock); 11364 for (ipif = ill->ill_ipif; ipif != NULL; 11365 ipif = ipif->ipif_next) { 11366 if (IPIF_IS_CONDEMNED(ipif)) 11367 continue; 11368 if (!(ipif->ipif_flags & IPIF_UP)) 11369 continue; 11370 if ((ipif->ipif_subnet & net_mask) == 11371 (addr & net_mask)) { 11372 /* 11373 * Don't trust pt-pt interfaces if there are 11374 * other interfaces. 11375 */ 11376 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11377 if (fallback_ipif == NULL) { 11378 ipif_refhold_locked(ipif); 11379 fallback_ipif = ipif; 11380 } 11381 continue; 11382 } 11383 11384 /* 11385 * Fine. Just assume the same net mask as the 11386 * directly attached subnet interface is using. 11387 */ 11388 ipif_refhold_locked(ipif); 11389 mutex_exit(&ill->ill_lock); 11390 rw_exit(&ipst->ips_ill_g_lock); 11391 if (fallback_ipif != NULL) 11392 ipif_refrele(fallback_ipif); 11393 *ipifp = ipif; 11394 return (ipif->ipif_net_mask); 11395 } 11396 } 11397 mutex_exit(&ill->ill_lock); 11398 } 11399 rw_exit(&ipst->ips_ill_g_lock); 11400 11401 *ipifp = fallback_ipif; 11402 return ((fallback_ipif != NULL) ? 11403 fallback_ipif->ipif_net_mask : net_mask); 11404 } 11405 11406 /* 11407 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11408 */ 11409 static void 11410 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11411 { 11412 IOCP iocp; 11413 ipft_t *ipft; 11414 ipllc_t *ipllc; 11415 mblk_t *mp1; 11416 cred_t *cr; 11417 int error = 0; 11418 conn_t *connp; 11419 11420 ip1dbg(("ip_wput_ioctl")); 11421 iocp = (IOCP)mp->b_rptr; 11422 mp1 = mp->b_cont; 11423 if (mp1 == NULL) { 11424 iocp->ioc_error = EINVAL; 11425 mp->b_datap->db_type = M_IOCNAK; 11426 iocp->ioc_count = 0; 11427 qreply(q, mp); 11428 return; 11429 } 11430 11431 /* 11432 * These IOCTLs provide various control capabilities to 11433 * upstream agents such as ULPs and processes. There 11434 * are currently two such IOCTLs implemented. They 11435 * are used by TCP to provide update information for 11436 * existing IREs and to forcibly delete an IRE for a 11437 * host that is not responding, thereby forcing an 11438 * attempt at a new route. 11439 */ 11440 iocp->ioc_error = EINVAL; 11441 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11442 goto done; 11443 11444 ipllc = (ipllc_t *)mp1->b_rptr; 11445 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11446 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11447 break; 11448 } 11449 /* 11450 * prefer credential from mblk over ioctl; 11451 * see ip_sioctl_copyin_setup 11452 */ 11453 cr = msg_getcred(mp, NULL); 11454 if (cr == NULL) 11455 cr = iocp->ioc_cr; 11456 11457 /* 11458 * Refhold the conn in case the request gets queued up in some lookup 11459 */ 11460 ASSERT(CONN_Q(q)); 11461 connp = Q_TO_CONN(q); 11462 CONN_INC_REF(connp); 11463 if (ipft->ipft_pfi && 11464 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11465 pullupmsg(mp1, ipft->ipft_min_size))) { 11466 error = (*ipft->ipft_pfi)(q, 11467 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11468 } 11469 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11470 /* 11471 * CONN_OPER_PENDING_DONE happens in the function called 11472 * through ipft_pfi above. 11473 */ 11474 return; 11475 } 11476 11477 CONN_OPER_PENDING_DONE(connp); 11478 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11479 freemsg(mp); 11480 return; 11481 } 11482 iocp->ioc_error = error; 11483 11484 done: 11485 mp->b_datap->db_type = M_IOCACK; 11486 if (iocp->ioc_error) 11487 iocp->ioc_count = 0; 11488 qreply(q, mp); 11489 } 11490 11491 /* 11492 * Assign a unique id for the ipif. This is used by sctp_addr.c 11493 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11494 */ 11495 static void 11496 ipif_assign_seqid(ipif_t *ipif) 11497 { 11498 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11499 11500 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11501 } 11502 11503 /* 11504 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11505 * administratively down (i.e., no DAD), of the same type, and locked. Note 11506 * that the clone is complete -- including the seqid -- and the expectation is 11507 * that the caller will either free or overwrite `sipif' before it's unlocked. 11508 */ 11509 static void 11510 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11511 { 11512 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11513 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11514 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11515 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11516 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11517 11518 dipif->ipif_flags = sipif->ipif_flags; 11519 dipif->ipif_metric = sipif->ipif_metric; 11520 dipif->ipif_zoneid = sipif->ipif_zoneid; 11521 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11522 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11523 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11524 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11525 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11526 11527 /* 11528 * As per the comment atop the function, we assume that these sipif 11529 * fields will be changed before sipif is unlocked. 11530 */ 11531 dipif->ipif_seqid = sipif->ipif_seqid; 11532 dipif->ipif_state_flags = sipif->ipif_state_flags; 11533 } 11534 11535 /* 11536 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11537 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11538 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11539 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11540 * down (i.e., no DAD), of the same type, and unlocked. 11541 */ 11542 static void 11543 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11544 { 11545 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11546 ipxop_t *ipx = ipsq->ipsq_xop; 11547 11548 ASSERT(sipif != dipif); 11549 ASSERT(sipif != virgipif); 11550 11551 /* 11552 * Grab all of the locks that protect the ipif in a defined order. 11553 */ 11554 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11555 11556 ipif_clone(sipif, dipif); 11557 if (virgipif != NULL) { 11558 ipif_clone(virgipif, sipif); 11559 mi_free(virgipif); 11560 } 11561 11562 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11563 11564 /* 11565 * Transfer ownership of the current xop, if necessary. 11566 */ 11567 if (ipx->ipx_current_ipif == sipif) { 11568 ASSERT(ipx->ipx_pending_ipif == NULL); 11569 mutex_enter(&ipx->ipx_lock); 11570 ipx->ipx_current_ipif = dipif; 11571 mutex_exit(&ipx->ipx_lock); 11572 } 11573 11574 if (virgipif == NULL) 11575 mi_free(sipif); 11576 } 11577 11578 /* 11579 * checks if: 11580 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11581 * - logical interface is within the allowed range 11582 */ 11583 static int 11584 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11585 { 11586 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11587 return (ENAMETOOLONG); 11588 11589 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11590 return (ERANGE); 11591 return (0); 11592 } 11593 11594 /* 11595 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11596 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11597 * be inserted into the first space available in the list. The value of 11598 * ipif_id will then be set to the appropriate value for its position. 11599 */ 11600 static int 11601 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11602 { 11603 ill_t *ill; 11604 ipif_t *tipif; 11605 ipif_t **tipifp; 11606 int id, err; 11607 ip_stack_t *ipst; 11608 11609 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11610 IAM_WRITER_IPIF(ipif)); 11611 11612 ill = ipif->ipif_ill; 11613 ASSERT(ill != NULL); 11614 ipst = ill->ill_ipst; 11615 11616 /* 11617 * In the case of lo0:0 we already hold the ill_g_lock. 11618 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11619 * ipif_insert. 11620 */ 11621 if (acquire_g_lock) 11622 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11623 mutex_enter(&ill->ill_lock); 11624 id = ipif->ipif_id; 11625 tipifp = &(ill->ill_ipif); 11626 if (id == -1) { /* need to find a real id */ 11627 id = 0; 11628 while ((tipif = *tipifp) != NULL) { 11629 ASSERT(tipif->ipif_id >= id); 11630 if (tipif->ipif_id != id) 11631 break; /* non-consecutive id */ 11632 id++; 11633 tipifp = &(tipif->ipif_next); 11634 } 11635 if ((err = is_lifname_valid(ill, id)) != 0) { 11636 mutex_exit(&ill->ill_lock); 11637 if (acquire_g_lock) 11638 rw_exit(&ipst->ips_ill_g_lock); 11639 return (err); 11640 } 11641 ipif->ipif_id = id; /* assign new id */ 11642 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11643 /* we have a real id; insert ipif in the right place */ 11644 while ((tipif = *tipifp) != NULL) { 11645 ASSERT(tipif->ipif_id != id); 11646 if (tipif->ipif_id > id) 11647 break; /* found correct location */ 11648 tipifp = &(tipif->ipif_next); 11649 } 11650 } else { 11651 mutex_exit(&ill->ill_lock); 11652 if (acquire_g_lock) 11653 rw_exit(&ipst->ips_ill_g_lock); 11654 return (err); 11655 } 11656 11657 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11658 11659 ipif->ipif_next = tipif; 11660 *tipifp = ipif; 11661 mutex_exit(&ill->ill_lock); 11662 if (acquire_g_lock) 11663 rw_exit(&ipst->ips_ill_g_lock); 11664 11665 return (0); 11666 } 11667 11668 static void 11669 ipif_remove(ipif_t *ipif) 11670 { 11671 ipif_t **ipifp; 11672 ill_t *ill = ipif->ipif_ill; 11673 11674 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11675 11676 mutex_enter(&ill->ill_lock); 11677 ipifp = &ill->ill_ipif; 11678 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11679 if (*ipifp == ipif) { 11680 *ipifp = ipif->ipif_next; 11681 break; 11682 } 11683 } 11684 mutex_exit(&ill->ill_lock); 11685 } 11686 11687 /* 11688 * Allocate and initialize a new interface control structure. (Always 11689 * called as writer.) 11690 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11691 * is not part of the global linked list of ills. ipif_seqid is unique 11692 * in the system and to preserve the uniqueness, it is assigned only 11693 * when ill becomes part of the global list. At that point ill will 11694 * have a name. If it doesn't get assigned here, it will get assigned 11695 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11696 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11697 * the interface flags or any other information from the DL_INFO_ACK for 11698 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11699 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11700 * second DL_INFO_ACK comes in from the driver. 11701 */ 11702 static ipif_t * 11703 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11704 boolean_t insert, int *errorp) 11705 { 11706 int err; 11707 ipif_t *ipif; 11708 ip_stack_t *ipst = ill->ill_ipst; 11709 11710 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11711 ill->ill_name, id, (void *)ill)); 11712 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11713 11714 if (errorp != NULL) 11715 *errorp = 0; 11716 11717 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11718 if (errorp != NULL) 11719 *errorp = ENOMEM; 11720 return (NULL); 11721 } 11722 *ipif = ipif_zero; /* start clean */ 11723 11724 ipif->ipif_ill = ill; 11725 ipif->ipif_id = id; /* could be -1 */ 11726 /* 11727 * Inherit the zoneid from the ill; for the shared stack instance 11728 * this is always the global zone 11729 */ 11730 ipif->ipif_zoneid = ill->ill_zoneid; 11731 11732 ipif->ipif_refcnt = 0; 11733 11734 if (insert) { 11735 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11736 mi_free(ipif); 11737 if (errorp != NULL) 11738 *errorp = err; 11739 return (NULL); 11740 } 11741 /* -1 id should have been replaced by real id */ 11742 id = ipif->ipif_id; 11743 ASSERT(id >= 0); 11744 } 11745 11746 if (ill->ill_name[0] != '\0') 11747 ipif_assign_seqid(ipif); 11748 11749 /* 11750 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11751 * (which must not exist yet because the zeroth ipif is created once 11752 * per ill). However, do not not link it to the ipmp_grp_t until 11753 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11754 */ 11755 if (id == 0 && IS_IPMP(ill)) { 11756 if (ipmp_illgrp_create(ill) == NULL) { 11757 if (insert) { 11758 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11759 ipif_remove(ipif); 11760 rw_exit(&ipst->ips_ill_g_lock); 11761 } 11762 mi_free(ipif); 11763 if (errorp != NULL) 11764 *errorp = ENOMEM; 11765 return (NULL); 11766 } 11767 } 11768 11769 /* 11770 * We grab ill_lock to protect the flag changes. The ipif is still 11771 * not up and can't be looked up until the ioctl completes and the 11772 * IPIF_CHANGING flag is cleared. 11773 */ 11774 mutex_enter(&ill->ill_lock); 11775 11776 ipif->ipif_ire_type = ire_type; 11777 11778 if (ipif->ipif_isv6) { 11779 ill->ill_flags |= ILLF_IPV6; 11780 } else { 11781 ipaddr_t inaddr_any = INADDR_ANY; 11782 11783 ill->ill_flags |= ILLF_IPV4; 11784 11785 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11786 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11787 &ipif->ipif_v6lcl_addr); 11788 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11789 &ipif->ipif_v6subnet); 11790 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11791 &ipif->ipif_v6net_mask); 11792 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11793 &ipif->ipif_v6brd_addr); 11794 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11795 &ipif->ipif_v6pp_dst_addr); 11796 } 11797 11798 /* 11799 * Don't set the interface flags etc. now, will do it in 11800 * ip_ll_subnet_defaults. 11801 */ 11802 if (!initialize) 11803 goto out; 11804 11805 /* 11806 * NOTE: The IPMP meta-interface is special-cased because it starts 11807 * with no underlying interfaces (and thus an unknown broadcast 11808 * address length), but all interfaces that can be placed into an IPMP 11809 * group are required to be broadcast-capable. 11810 */ 11811 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11812 /* 11813 * Later detect lack of DLPI driver multicast capability by 11814 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11815 */ 11816 ill->ill_flags |= ILLF_MULTICAST; 11817 if (!ipif->ipif_isv6) 11818 ipif->ipif_flags |= IPIF_BROADCAST; 11819 } else { 11820 if (ill->ill_net_type != IRE_LOOPBACK) { 11821 if (ipif->ipif_isv6) 11822 /* 11823 * Note: xresolv interfaces will eventually need 11824 * NOARP set here as well, but that will require 11825 * those external resolvers to have some 11826 * knowledge of that flag and act appropriately. 11827 * Not to be changed at present. 11828 */ 11829 ill->ill_flags |= ILLF_NONUD; 11830 else 11831 ill->ill_flags |= ILLF_NOARP; 11832 } 11833 if (ill->ill_phys_addr_length == 0) { 11834 if (IS_VNI(ill)) { 11835 ipif->ipif_flags |= IPIF_NOXMIT; 11836 } else { 11837 /* pt-pt supports multicast. */ 11838 ill->ill_flags |= ILLF_MULTICAST; 11839 if (ill->ill_net_type != IRE_LOOPBACK) 11840 ipif->ipif_flags |= IPIF_POINTOPOINT; 11841 } 11842 } 11843 } 11844 out: 11845 mutex_exit(&ill->ill_lock); 11846 return (ipif); 11847 } 11848 11849 /* 11850 * Remove the neighbor cache entries associated with this logical 11851 * interface. 11852 */ 11853 int 11854 ipif_arp_down(ipif_t *ipif) 11855 { 11856 ill_t *ill = ipif->ipif_ill; 11857 int err = 0; 11858 11859 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11860 ASSERT(IAM_WRITER_IPIF(ipif)); 11861 11862 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11863 ill_t *, ill, ipif_t *, ipif); 11864 ipif_nce_down(ipif); 11865 11866 /* 11867 * If this is the last ipif that is going down and there are no 11868 * duplicate addresses we may yet attempt to re-probe, then we need to 11869 * clean up ARP completely. 11870 */ 11871 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11872 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11873 /* 11874 * If this was the last ipif on an IPMP interface, purge any 11875 * static ARP entries associated with it. 11876 */ 11877 if (IS_IPMP(ill)) 11878 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11879 11880 /* UNBIND, DETACH */ 11881 err = arp_ll_down(ill); 11882 } 11883 11884 return (err); 11885 } 11886 11887 /* 11888 * Get the resolver set up for a new IP address. (Always called as writer.) 11889 * Called both for IPv4 and IPv6 interfaces, though it only does some 11890 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11891 * 11892 * The enumerated value res_act tunes the behavior: 11893 * * Res_act_initial: set up all the resolver structures for a new 11894 * IP address. 11895 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11896 * ARP message in defense of the address. 11897 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11898 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11899 * 11900 * Returns zero on success, or an errno upon failure. 11901 */ 11902 int 11903 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11904 { 11905 ill_t *ill = ipif->ipif_ill; 11906 int err; 11907 boolean_t was_dup; 11908 11909 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11910 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11911 ASSERT(IAM_WRITER_IPIF(ipif)); 11912 11913 was_dup = B_FALSE; 11914 if (res_act == Res_act_initial) { 11915 ipif->ipif_addr_ready = 0; 11916 /* 11917 * We're bringing an interface up here. There's no way that we 11918 * should need to shut down ARP now. 11919 */ 11920 mutex_enter(&ill->ill_lock); 11921 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11922 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11923 ill->ill_ipif_dup_count--; 11924 was_dup = B_TRUE; 11925 } 11926 mutex_exit(&ill->ill_lock); 11927 } 11928 if (ipif->ipif_recovery_id != 0) 11929 (void) untimeout(ipif->ipif_recovery_id); 11930 ipif->ipif_recovery_id = 0; 11931 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11932 ipif->ipif_addr_ready = 1; 11933 return (0); 11934 } 11935 /* NDP will set the ipif_addr_ready flag when it's ready */ 11936 if (ill->ill_isv6) 11937 return (0); 11938 11939 err = ipif_arp_up(ipif, res_act, was_dup); 11940 return (err); 11941 } 11942 11943 /* 11944 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11945 * when a link has just gone back up. 11946 */ 11947 static void 11948 ipif_nce_start_dad(ipif_t *ipif) 11949 { 11950 ncec_t *ncec; 11951 ill_t *ill = ipif->ipif_ill; 11952 boolean_t isv6 = ill->ill_isv6; 11953 11954 if (isv6) { 11955 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11956 &ipif->ipif_v6lcl_addr); 11957 } else { 11958 ipaddr_t v4addr; 11959 11960 if (ill->ill_net_type != IRE_IF_RESOLVER || 11961 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11962 ipif->ipif_lcl_addr == INADDR_ANY) { 11963 /* 11964 * If we can't contact ARP for some reason, 11965 * that's not really a problem. Just send 11966 * out the routing socket notification that 11967 * DAD completion would have done, and continue. 11968 */ 11969 ipif_mask_reply(ipif); 11970 ipif_up_notify(ipif); 11971 ipif->ipif_addr_ready = 1; 11972 return; 11973 } 11974 11975 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 11976 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 11977 } 11978 11979 if (ncec == NULL) { 11980 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 11981 (void *)ipif)); 11982 return; 11983 } 11984 if (!nce_restart_dad(ncec)) { 11985 /* 11986 * If we can't restart DAD for some reason, that's not really a 11987 * problem. Just send out the routing socket notification that 11988 * DAD completion would have done, and continue. 11989 */ 11990 ipif_up_notify(ipif); 11991 ipif->ipif_addr_ready = 1; 11992 } 11993 ncec_refrele(ncec); 11994 } 11995 11996 /* 11997 * Restart duplicate address detection on all interfaces on the given ill. 11998 * 11999 * This is called when an interface transitions from down to up 12000 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12001 * 12002 * Note that since the underlying physical link has transitioned, we must cause 12003 * at least one routing socket message to be sent here, either via DAD 12004 * completion or just by default on the first ipif. (If we don't do this, then 12005 * in.mpathd will see long delays when doing link-based failure recovery.) 12006 */ 12007 void 12008 ill_restart_dad(ill_t *ill, boolean_t went_up) 12009 { 12010 ipif_t *ipif; 12011 12012 if (ill == NULL) 12013 return; 12014 12015 /* 12016 * If layer two doesn't support duplicate address detection, then just 12017 * send the routing socket message now and be done with it. 12018 */ 12019 if (!ill->ill_isv6 && arp_no_defense) { 12020 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12021 return; 12022 } 12023 12024 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12025 if (went_up) { 12026 12027 if (ipif->ipif_flags & IPIF_UP) { 12028 ipif_nce_start_dad(ipif); 12029 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12030 /* 12031 * kick off the bring-up process now. 12032 */ 12033 ipif_do_recovery(ipif); 12034 } else { 12035 /* 12036 * Unfortunately, the first ipif is "special" 12037 * and represents the underlying ill in the 12038 * routing socket messages. Thus, when this 12039 * one ipif is down, we must still notify so 12040 * that the user knows the IFF_RUNNING status 12041 * change. (If the first ipif is up, then 12042 * we'll handle eventual routing socket 12043 * notification via DAD completion.) 12044 */ 12045 if (ipif == ill->ill_ipif) { 12046 ip_rts_ifmsg(ill->ill_ipif, 12047 RTSQ_DEFAULT); 12048 } 12049 } 12050 } else { 12051 /* 12052 * After link down, we'll need to send a new routing 12053 * message when the link comes back, so clear 12054 * ipif_addr_ready. 12055 */ 12056 ipif->ipif_addr_ready = 0; 12057 } 12058 } 12059 12060 /* 12061 * If we've torn down links, then notify the user right away. 12062 */ 12063 if (!went_up) 12064 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12065 } 12066 12067 static void 12068 ipsq_delete(ipsq_t *ipsq) 12069 { 12070 ipxop_t *ipx = ipsq->ipsq_xop; 12071 12072 ipsq->ipsq_ipst = NULL; 12073 ASSERT(ipsq->ipsq_phyint == NULL); 12074 ASSERT(ipsq->ipsq_xop != NULL); 12075 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12076 ASSERT(ipx->ipx_pending_mp == NULL); 12077 kmem_free(ipsq, sizeof (ipsq_t)); 12078 } 12079 12080 static int 12081 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12082 { 12083 int err = 0; 12084 ipif_t *ipif; 12085 12086 if (ill == NULL) 12087 return (0); 12088 12089 ASSERT(IAM_WRITER_ILL(ill)); 12090 ill->ill_up_ipifs = B_TRUE; 12091 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12092 if (ipif->ipif_was_up) { 12093 if (!(ipif->ipif_flags & IPIF_UP)) 12094 err = ipif_up(ipif, q, mp); 12095 ipif->ipif_was_up = B_FALSE; 12096 if (err != 0) { 12097 ASSERT(err == EINPROGRESS); 12098 return (err); 12099 } 12100 } 12101 } 12102 ill->ill_up_ipifs = B_FALSE; 12103 return (0); 12104 } 12105 12106 /* 12107 * This function is called to bring up all the ipifs that were up before 12108 * bringing the ill down via ill_down_ipifs(). 12109 */ 12110 int 12111 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12112 { 12113 int err; 12114 12115 ASSERT(IAM_WRITER_ILL(ill)); 12116 12117 if (ill->ill_replumbing) { 12118 ill->ill_replumbing = 0; 12119 /* 12120 * Send down REPLUMB_DONE notification followed by the 12121 * BIND_REQ on the arp stream. 12122 */ 12123 if (!ill->ill_isv6) 12124 arp_send_replumb_conf(ill); 12125 } 12126 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12127 if (err != 0) 12128 return (err); 12129 12130 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12131 } 12132 12133 /* 12134 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12135 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12136 */ 12137 static void 12138 ill_down_ipifs(ill_t *ill, boolean_t logical) 12139 { 12140 ipif_t *ipif; 12141 12142 ASSERT(IAM_WRITER_ILL(ill)); 12143 12144 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12145 /* 12146 * We go through the ipif_down logic even if the ipif 12147 * is already down, since routes can be added based 12148 * on down ipifs. Going through ipif_down once again 12149 * will delete any IREs created based on these routes. 12150 */ 12151 if (ipif->ipif_flags & IPIF_UP) 12152 ipif->ipif_was_up = B_TRUE; 12153 12154 if (logical) { 12155 (void) ipif_logical_down(ipif, NULL, NULL); 12156 ipif_non_duplicate(ipif); 12157 (void) ipif_down_tail(ipif); 12158 } else { 12159 (void) ipif_down(ipif, NULL, NULL); 12160 } 12161 } 12162 } 12163 12164 /* 12165 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12166 * a look again at valid source addresses. 12167 * This should be called each time after the set of source addresses has been 12168 * changed. 12169 */ 12170 void 12171 ip_update_source_selection(ip_stack_t *ipst) 12172 { 12173 /* We skip past SRC_GENERATION_VERIFY */ 12174 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12175 SRC_GENERATION_VERIFY) 12176 atomic_add_32(&ipst->ips_src_generation, 1); 12177 } 12178 12179 /* 12180 * Finish the group join started in ip_sioctl_groupname(). 12181 */ 12182 /* ARGSUSED */ 12183 static void 12184 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12185 { 12186 ill_t *ill = q->q_ptr; 12187 phyint_t *phyi = ill->ill_phyint; 12188 ipmp_grp_t *grp = phyi->phyint_grp; 12189 ip_stack_t *ipst = ill->ill_ipst; 12190 12191 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12192 ASSERT(!IS_IPMP(ill) && grp != NULL); 12193 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12194 12195 if (phyi->phyint_illv4 != NULL) { 12196 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12197 VERIFY(grp->gr_pendv4-- > 0); 12198 rw_exit(&ipst->ips_ipmp_lock); 12199 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12200 } 12201 if (phyi->phyint_illv6 != NULL) { 12202 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12203 VERIFY(grp->gr_pendv6-- > 0); 12204 rw_exit(&ipst->ips_ipmp_lock); 12205 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12206 } 12207 freemsg(mp); 12208 } 12209 12210 /* 12211 * Process an SIOCSLIFGROUPNAME request. 12212 */ 12213 /* ARGSUSED */ 12214 int 12215 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12216 ip_ioctl_cmd_t *ipip, void *ifreq) 12217 { 12218 struct lifreq *lifr = ifreq; 12219 ill_t *ill = ipif->ipif_ill; 12220 ip_stack_t *ipst = ill->ill_ipst; 12221 phyint_t *phyi = ill->ill_phyint; 12222 ipmp_grp_t *grp = phyi->phyint_grp; 12223 mblk_t *ipsq_mp; 12224 int err = 0; 12225 12226 /* 12227 * Note that phyint_grp can only change here, where we're exclusive. 12228 */ 12229 ASSERT(IAM_WRITER_ILL(ill)); 12230 12231 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12232 (phyi->phyint_flags & PHYI_VIRTUAL)) 12233 return (EINVAL); 12234 12235 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12236 12237 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12238 12239 /* 12240 * If the name hasn't changed, there's nothing to do. 12241 */ 12242 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12243 goto unlock; 12244 12245 /* 12246 * Handle requests to rename an IPMP meta-interface. 12247 * 12248 * Note that creation of the IPMP meta-interface is handled in 12249 * userland through the standard plumbing sequence. As part of the 12250 * plumbing the IPMP meta-interface, its initial groupname is set to 12251 * the name of the interface (see ipif_set_values_tail()). 12252 */ 12253 if (IS_IPMP(ill)) { 12254 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12255 goto unlock; 12256 } 12257 12258 /* 12259 * Handle requests to add or remove an IP interface from a group. 12260 */ 12261 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12262 /* 12263 * Moves are handled by first removing the interface from 12264 * its existing group, and then adding it to another group. 12265 * So, fail if it's already in a group. 12266 */ 12267 if (IS_UNDER_IPMP(ill)) { 12268 err = EALREADY; 12269 goto unlock; 12270 } 12271 12272 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12273 if (grp == NULL) { 12274 err = ENOENT; 12275 goto unlock; 12276 } 12277 12278 /* 12279 * Check if the phyint and its ills are suitable for 12280 * inclusion into the group. 12281 */ 12282 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12283 goto unlock; 12284 12285 /* 12286 * Checks pass; join the group, and enqueue the remaining 12287 * illgrp joins for when we've become part of the group xop 12288 * and are exclusive across its IPSQs. Since qwriter_ip() 12289 * requires an mblk_t to scribble on, and since `mp' will be 12290 * freed as part of completing the ioctl, allocate another. 12291 */ 12292 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12293 err = ENOMEM; 12294 goto unlock; 12295 } 12296 12297 /* 12298 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12299 * IPMP meta-interface ills needed by `phyi' cannot go away 12300 * before ip_join_illgrps() is called back. See the comments 12301 * in ip_sioctl_plink_ipmp() for more. 12302 */ 12303 if (phyi->phyint_illv4 != NULL) 12304 grp->gr_pendv4++; 12305 if (phyi->phyint_illv6 != NULL) 12306 grp->gr_pendv6++; 12307 12308 rw_exit(&ipst->ips_ipmp_lock); 12309 12310 ipmp_phyint_join_grp(phyi, grp); 12311 ill_refhold(ill); 12312 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12313 SWITCH_OP, B_FALSE); 12314 return (0); 12315 } else { 12316 /* 12317 * Request to remove the interface from a group. If the 12318 * interface is not in a group, this trivially succeeds. 12319 */ 12320 rw_exit(&ipst->ips_ipmp_lock); 12321 if (IS_UNDER_IPMP(ill)) 12322 ipmp_phyint_leave_grp(phyi); 12323 return (0); 12324 } 12325 unlock: 12326 rw_exit(&ipst->ips_ipmp_lock); 12327 return (err); 12328 } 12329 12330 /* 12331 * Process an SIOCGLIFBINDING request. 12332 */ 12333 /* ARGSUSED */ 12334 int 12335 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12336 ip_ioctl_cmd_t *ipip, void *ifreq) 12337 { 12338 ill_t *ill; 12339 struct lifreq *lifr = ifreq; 12340 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12341 12342 if (!IS_IPMP(ipif->ipif_ill)) 12343 return (EINVAL); 12344 12345 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12346 if ((ill = ipif->ipif_bound_ill) == NULL) 12347 lifr->lifr_binding[0] = '\0'; 12348 else 12349 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12350 rw_exit(&ipst->ips_ipmp_lock); 12351 return (0); 12352 } 12353 12354 /* 12355 * Process an SIOCGLIFGROUPNAME request. 12356 */ 12357 /* ARGSUSED */ 12358 int 12359 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12360 ip_ioctl_cmd_t *ipip, void *ifreq) 12361 { 12362 ipmp_grp_t *grp; 12363 struct lifreq *lifr = ifreq; 12364 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12365 12366 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12367 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12368 lifr->lifr_groupname[0] = '\0'; 12369 else 12370 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12371 rw_exit(&ipst->ips_ipmp_lock); 12372 return (0); 12373 } 12374 12375 /* 12376 * Process an SIOCGLIFGROUPINFO request. 12377 */ 12378 /* ARGSUSED */ 12379 int 12380 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12381 ip_ioctl_cmd_t *ipip, void *dummy) 12382 { 12383 ipmp_grp_t *grp; 12384 lifgroupinfo_t *lifgr; 12385 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12386 12387 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12388 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12389 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12390 12391 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12392 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12393 rw_exit(&ipst->ips_ipmp_lock); 12394 return (ENOENT); 12395 } 12396 ipmp_grp_info(grp, lifgr); 12397 rw_exit(&ipst->ips_ipmp_lock); 12398 return (0); 12399 } 12400 12401 static void 12402 ill_dl_down(ill_t *ill) 12403 { 12404 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12405 12406 /* 12407 * The ill is down; unbind but stay attached since we're still 12408 * associated with a PPA. If we have negotiated DLPI capabilites 12409 * with the data link service provider (IDS_OK) then reset them. 12410 * The interval between unbinding and rebinding is potentially 12411 * unbounded hence we cannot assume things will be the same. 12412 * The DLPI capabilities will be probed again when the data link 12413 * is brought up. 12414 */ 12415 mblk_t *mp = ill->ill_unbind_mp; 12416 12417 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12418 12419 if (!ill->ill_replumbing) { 12420 /* Free all ilms for this ill */ 12421 update_conn_ill(ill, ill->ill_ipst); 12422 } else { 12423 ill_leave_multicast(ill); 12424 } 12425 12426 ill->ill_unbind_mp = NULL; 12427 if (mp != NULL) { 12428 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12429 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12430 ill->ill_name)); 12431 mutex_enter(&ill->ill_lock); 12432 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12433 mutex_exit(&ill->ill_lock); 12434 /* 12435 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12436 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12437 * ill_capability_dld_disable disable rightaway. If this is not 12438 * an unplumb operation then the disable happens on receipt of 12439 * the capab ack via ip_rput_dlpi_writer -> 12440 * ill_capability_ack_thr. In both cases the order of 12441 * the operations seen by DLD is capability disable followed 12442 * by DL_UNBIND. Also the DLD capability disable needs a 12443 * cv_wait'able context. 12444 */ 12445 if (ill->ill_state_flags & ILL_CONDEMNED) 12446 ill_capability_dld_disable(ill); 12447 ill_capability_reset(ill, B_FALSE); 12448 ill_dlpi_send(ill, mp); 12449 } 12450 mutex_enter(&ill->ill_lock); 12451 ill->ill_dl_up = 0; 12452 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12453 mutex_exit(&ill->ill_lock); 12454 } 12455 12456 void 12457 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12458 { 12459 union DL_primitives *dlp; 12460 t_uscalar_t prim; 12461 boolean_t waitack = B_FALSE; 12462 12463 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12464 12465 dlp = (union DL_primitives *)mp->b_rptr; 12466 prim = dlp->dl_primitive; 12467 12468 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12469 dl_primstr(prim), prim, ill->ill_name)); 12470 12471 switch (prim) { 12472 case DL_PHYS_ADDR_REQ: 12473 { 12474 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12475 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12476 break; 12477 } 12478 case DL_BIND_REQ: 12479 mutex_enter(&ill->ill_lock); 12480 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12481 mutex_exit(&ill->ill_lock); 12482 break; 12483 } 12484 12485 /* 12486 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12487 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12488 * we only wait for the ACK of the DL_UNBIND_REQ. 12489 */ 12490 mutex_enter(&ill->ill_lock); 12491 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12492 (prim == DL_UNBIND_REQ)) { 12493 ill->ill_dlpi_pending = prim; 12494 waitack = B_TRUE; 12495 } 12496 12497 mutex_exit(&ill->ill_lock); 12498 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12499 char *, dl_primstr(prim), ill_t *, ill); 12500 putnext(ill->ill_wq, mp); 12501 12502 /* 12503 * There is no ack for DL_NOTIFY_CONF messages 12504 */ 12505 if (waitack && prim == DL_NOTIFY_CONF) 12506 ill_dlpi_done(ill, prim); 12507 } 12508 12509 /* 12510 * Helper function for ill_dlpi_send(). 12511 */ 12512 /* ARGSUSED */ 12513 static void 12514 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12515 { 12516 ill_dlpi_send(q->q_ptr, mp); 12517 } 12518 12519 /* 12520 * Send a DLPI control message to the driver but make sure there 12521 * is only one outstanding message. Uses ill_dlpi_pending to tell 12522 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12523 * when an ACK or a NAK is received to process the next queued message. 12524 */ 12525 void 12526 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12527 { 12528 mblk_t **mpp; 12529 12530 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12531 12532 /* 12533 * To ensure that any DLPI requests for current exclusive operation 12534 * are always completely sent before any DLPI messages for other 12535 * operations, require writer access before enqueuing. 12536 */ 12537 if (!IAM_WRITER_ILL(ill)) { 12538 ill_refhold(ill); 12539 /* qwriter_ip() does the ill_refrele() */ 12540 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12541 NEW_OP, B_TRUE); 12542 return; 12543 } 12544 12545 mutex_enter(&ill->ill_lock); 12546 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12547 /* Must queue message. Tail insertion */ 12548 mpp = &ill->ill_dlpi_deferred; 12549 while (*mpp != NULL) 12550 mpp = &((*mpp)->b_next); 12551 12552 ip1dbg(("ill_dlpi_send: deferring request for %s " 12553 "while %s pending\n", ill->ill_name, 12554 dl_primstr(ill->ill_dlpi_pending))); 12555 12556 *mpp = mp; 12557 mutex_exit(&ill->ill_lock); 12558 return; 12559 } 12560 mutex_exit(&ill->ill_lock); 12561 ill_dlpi_dispatch(ill, mp); 12562 } 12563 12564 void 12565 ill_capability_send(ill_t *ill, mblk_t *mp) 12566 { 12567 ill->ill_capab_pending_cnt++; 12568 ill_dlpi_send(ill, mp); 12569 } 12570 12571 void 12572 ill_capability_done(ill_t *ill) 12573 { 12574 ASSERT(ill->ill_capab_pending_cnt != 0); 12575 12576 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12577 12578 ill->ill_capab_pending_cnt--; 12579 if (ill->ill_capab_pending_cnt == 0 && 12580 ill->ill_dlpi_capab_state == IDCS_OK) 12581 ill_capability_reset_alloc(ill); 12582 } 12583 12584 /* 12585 * Send all deferred DLPI messages without waiting for their ACKs. 12586 */ 12587 void 12588 ill_dlpi_send_deferred(ill_t *ill) 12589 { 12590 mblk_t *mp, *nextmp; 12591 12592 /* 12593 * Clear ill_dlpi_pending so that the message is not queued in 12594 * ill_dlpi_send(). 12595 */ 12596 mutex_enter(&ill->ill_lock); 12597 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12598 mp = ill->ill_dlpi_deferred; 12599 ill->ill_dlpi_deferred = NULL; 12600 mutex_exit(&ill->ill_lock); 12601 12602 for (; mp != NULL; mp = nextmp) { 12603 nextmp = mp->b_next; 12604 mp->b_next = NULL; 12605 ill_dlpi_send(ill, mp); 12606 } 12607 } 12608 12609 /* 12610 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12611 * or M_HANGUP 12612 */ 12613 static void 12614 ill_dlpi_clear_deferred(ill_t *ill) 12615 { 12616 mblk_t *mp, *nextmp; 12617 12618 mutex_enter(&ill->ill_lock); 12619 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12620 mp = ill->ill_dlpi_deferred; 12621 ill->ill_dlpi_deferred = NULL; 12622 mutex_exit(&ill->ill_lock); 12623 12624 for (; mp != NULL; mp = nextmp) { 12625 nextmp = mp->b_next; 12626 inet_freemsg(mp); 12627 } 12628 } 12629 12630 /* 12631 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12632 */ 12633 boolean_t 12634 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12635 { 12636 t_uscalar_t pending; 12637 12638 mutex_enter(&ill->ill_lock); 12639 if (ill->ill_dlpi_pending == prim) { 12640 mutex_exit(&ill->ill_lock); 12641 return (B_TRUE); 12642 } 12643 12644 /* 12645 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12646 * without waiting, so don't print any warnings in that case. 12647 */ 12648 if (ill->ill_state_flags & ILL_CONDEMNED) { 12649 mutex_exit(&ill->ill_lock); 12650 return (B_FALSE); 12651 } 12652 pending = ill->ill_dlpi_pending; 12653 mutex_exit(&ill->ill_lock); 12654 12655 if (pending == DL_PRIM_INVAL) { 12656 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12657 "received unsolicited ack for %s on %s\n", 12658 dl_primstr(prim), ill->ill_name); 12659 } else { 12660 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12661 "received unexpected ack for %s on %s (expecting %s)\n", 12662 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12663 } 12664 return (B_FALSE); 12665 } 12666 12667 /* 12668 * Complete the current DLPI operation associated with `prim' on `ill' and 12669 * start the next queued DLPI operation (if any). If there are no queued DLPI 12670 * operations and the ill's current exclusive IPSQ operation has finished 12671 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12672 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12673 * the comments above ipsq_current_finish() for details. 12674 */ 12675 void 12676 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12677 { 12678 mblk_t *mp; 12679 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12680 ipxop_t *ipx = ipsq->ipsq_xop; 12681 12682 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12683 mutex_enter(&ill->ill_lock); 12684 12685 ASSERT(prim != DL_PRIM_INVAL); 12686 ASSERT(ill->ill_dlpi_pending == prim); 12687 12688 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12689 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12690 12691 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12692 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12693 if (ipx->ipx_current_done) { 12694 mutex_enter(&ipx->ipx_lock); 12695 ipx->ipx_current_ipif = NULL; 12696 mutex_exit(&ipx->ipx_lock); 12697 } 12698 cv_signal(&ill->ill_cv); 12699 mutex_exit(&ill->ill_lock); 12700 return; 12701 } 12702 12703 ill->ill_dlpi_deferred = mp->b_next; 12704 mp->b_next = NULL; 12705 mutex_exit(&ill->ill_lock); 12706 12707 ill_dlpi_dispatch(ill, mp); 12708 } 12709 12710 /* 12711 * Queue a (multicast) DLPI control message to be sent to the driver by 12712 * later calling ill_dlpi_send_queued. 12713 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12714 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12715 * for the same group to race. 12716 * We send DLPI control messages in order using ill_lock. 12717 * For IPMP we should be called on the cast_ill. 12718 */ 12719 void 12720 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12721 { 12722 mblk_t **mpp; 12723 12724 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12725 12726 mutex_enter(&ill->ill_lock); 12727 /* Must queue message. Tail insertion */ 12728 mpp = &ill->ill_dlpi_deferred; 12729 while (*mpp != NULL) 12730 mpp = &((*mpp)->b_next); 12731 12732 *mpp = mp; 12733 mutex_exit(&ill->ill_lock); 12734 } 12735 12736 /* 12737 * Send the messages that were queued. Make sure there is only 12738 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12739 * when an ACK or a NAK is received to process the next queued message. 12740 * For IPMP we are called on the upper ill, but when send what is queued 12741 * on the cast_ill. 12742 */ 12743 void 12744 ill_dlpi_send_queued(ill_t *ill) 12745 { 12746 mblk_t *mp; 12747 union DL_primitives *dlp; 12748 t_uscalar_t prim; 12749 ill_t *release_ill = NULL; 12750 12751 if (IS_IPMP(ill)) { 12752 /* On the upper IPMP ill. */ 12753 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12754 if (release_ill == NULL) { 12755 /* Avoid ever sending anything down to the ipmpstub */ 12756 return; 12757 } 12758 ill = release_ill; 12759 } 12760 mutex_enter(&ill->ill_lock); 12761 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12762 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12763 /* Can't send. Somebody else will send it */ 12764 mutex_exit(&ill->ill_lock); 12765 goto done; 12766 } 12767 ill->ill_dlpi_deferred = mp->b_next; 12768 mp->b_next = NULL; 12769 if (!ill->ill_dl_up) { 12770 /* 12771 * Nobody there. All multicast addresses will be 12772 * re-joined when we get the DL_BIND_ACK bringing the 12773 * interface up. 12774 */ 12775 freemsg(mp); 12776 continue; 12777 } 12778 dlp = (union DL_primitives *)mp->b_rptr; 12779 prim = dlp->dl_primitive; 12780 12781 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12782 (prim == DL_UNBIND_REQ)) { 12783 ill->ill_dlpi_pending = prim; 12784 } 12785 mutex_exit(&ill->ill_lock); 12786 12787 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12788 char *, dl_primstr(prim), ill_t *, ill); 12789 putnext(ill->ill_wq, mp); 12790 mutex_enter(&ill->ill_lock); 12791 } 12792 mutex_exit(&ill->ill_lock); 12793 done: 12794 if (release_ill != NULL) 12795 ill_refrele(release_ill); 12796 } 12797 12798 /* 12799 * Queue an IP (IGMP/MLD) message to be sent by IP from 12800 * ill_mcast_send_queued 12801 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12802 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12803 * group to race. 12804 * We send them in order using ill_lock. 12805 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12806 */ 12807 void 12808 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12809 { 12810 mblk_t **mpp; 12811 ill_t *release_ill = NULL; 12812 12813 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12814 12815 if (IS_IPMP(ill)) { 12816 /* On the upper IPMP ill. */ 12817 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12818 if (release_ill == NULL) { 12819 /* Discard instead of queuing for the ipmp interface */ 12820 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12821 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12822 mp, ill); 12823 freemsg(mp); 12824 return; 12825 } 12826 ill = release_ill; 12827 } 12828 12829 mutex_enter(&ill->ill_lock); 12830 /* Must queue message. Tail insertion */ 12831 mpp = &ill->ill_mcast_deferred; 12832 while (*mpp != NULL) 12833 mpp = &((*mpp)->b_next); 12834 12835 *mpp = mp; 12836 mutex_exit(&ill->ill_lock); 12837 if (release_ill != NULL) 12838 ill_refrele(release_ill); 12839 } 12840 12841 /* 12842 * Send the IP packets that were queued by ill_mcast_queue. 12843 * These are IGMP/MLD packets. 12844 * 12845 * For IPMP we are called on the upper ill, but when send what is queued 12846 * on the cast_ill. 12847 * 12848 * Request loopback of the report if we are acting as a multicast 12849 * router, so that the process-level routing demon can hear it. 12850 * This will run multiple times for the same group if there are members 12851 * on the same group for multiple ipif's on the same ill. The 12852 * igmp_input/mld_input code will suppress this due to the loopback thus we 12853 * always loopback membership report. 12854 * 12855 * We also need to make sure that this does not get load balanced 12856 * by IPMP. We do this by passing an ill to ip_output_simple. 12857 */ 12858 void 12859 ill_mcast_send_queued(ill_t *ill) 12860 { 12861 mblk_t *mp; 12862 ip_xmit_attr_t ixas; 12863 ill_t *release_ill = NULL; 12864 12865 if (IS_IPMP(ill)) { 12866 /* On the upper IPMP ill. */ 12867 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12868 if (release_ill == NULL) { 12869 /* 12870 * We should have no messages on the ipmp interface 12871 * but no point in trying to send them. 12872 */ 12873 return; 12874 } 12875 ill = release_ill; 12876 } 12877 bzero(&ixas, sizeof (ixas)); 12878 ixas.ixa_zoneid = ALL_ZONES; 12879 ixas.ixa_cred = kcred; 12880 ixas.ixa_cpid = NOPID; 12881 ixas.ixa_tsl = NULL; 12882 /* 12883 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12884 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12885 * That is necessary to handle IGMP/MLD snooping switches. 12886 */ 12887 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12888 ixas.ixa_ipst = ill->ill_ipst; 12889 12890 mutex_enter(&ill->ill_lock); 12891 while ((mp = ill->ill_mcast_deferred) != NULL) { 12892 ill->ill_mcast_deferred = mp->b_next; 12893 mp->b_next = NULL; 12894 if (!ill->ill_dl_up) { 12895 /* 12896 * Nobody there. Just drop the ip packets. 12897 * IGMP/MLD will resend later, if this is a replumb. 12898 */ 12899 freemsg(mp); 12900 continue; 12901 } 12902 mutex_enter(&ill->ill_phyint->phyint_lock); 12903 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12904 /* 12905 * When the ill is getting deactivated, we only want to 12906 * send the DLPI messages, so drop IGMP/MLD packets. 12907 * DLPI messages are handled by ill_dlpi_send_queued() 12908 */ 12909 mutex_exit(&ill->ill_phyint->phyint_lock); 12910 freemsg(mp); 12911 continue; 12912 } 12913 mutex_exit(&ill->ill_phyint->phyint_lock); 12914 mutex_exit(&ill->ill_lock); 12915 12916 /* Check whether we are sending IPv4 or IPv6. */ 12917 if (ill->ill_isv6) { 12918 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12919 12920 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12921 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12922 } else { 12923 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12924 12925 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12926 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12927 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12928 } 12929 12930 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12931 (void) ip_output_simple(mp, &ixas); 12932 ixa_cleanup(&ixas); 12933 12934 mutex_enter(&ill->ill_lock); 12935 } 12936 mutex_exit(&ill->ill_lock); 12937 12938 done: 12939 if (release_ill != NULL) 12940 ill_refrele(release_ill); 12941 } 12942 12943 /* 12944 * Take down a specific interface, but don't lose any information about it. 12945 * (Always called as writer.) 12946 * This function goes through the down sequence even if the interface is 12947 * already down. There are 2 reasons. 12948 * a. Currently we permit interface routes that depend on down interfaces 12949 * to be added. This behaviour itself is questionable. However it appears 12950 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12951 * time. We go thru the cleanup in order to remove these routes. 12952 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12953 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12954 * down, but we need to cleanup i.e. do ill_dl_down and 12955 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12956 * 12957 * IP-MT notes: 12958 * 12959 * Model of reference to interfaces. 12960 * 12961 * The following members in ipif_t track references to the ipif. 12962 * int ipif_refcnt; Active reference count 12963 * 12964 * The following members in ill_t track references to the ill. 12965 * int ill_refcnt; active refcnt 12966 * uint_t ill_ire_cnt; Number of ires referencing ill 12967 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12968 * uint_t ill_nce_cnt; Number of nces referencing ill 12969 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12970 * 12971 * Reference to an ipif or ill can be obtained in any of the following ways. 12972 * 12973 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12974 * Pointers to ipif / ill from other data structures viz ire and conn. 12975 * Implicit reference to the ipif / ill by holding a reference to the ire. 12976 * 12977 * The ipif/ill lookup functions return a reference held ipif / ill. 12978 * ipif_refcnt and ill_refcnt track the reference counts respectively. 12979 * This is a purely dynamic reference count associated with threads holding 12980 * references to the ipif / ill. Pointers from other structures do not 12981 * count towards this reference count. 12982 * 12983 * ill_ire_cnt is the number of ire's associated with the 12984 * ill. This is incremented whenever a new ire is created referencing the 12985 * ill. This is done atomically inside ire_add_v[46] where the ire is 12986 * actually added to the ire hash table. The count is decremented in 12987 * ire_inactive where the ire is destroyed. 12988 * 12989 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 12990 * This is incremented atomically in 12991 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 12992 * table. Similarly it is decremented in ncec_inactive() where the ncec 12993 * is destroyed. 12994 * 12995 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 12996 * incremented atomically in nce_add() where the nce is actually added to the 12997 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 12998 * is destroyed. 12999 * 13000 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13001 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13002 * 13003 * Flow of ioctls involving interface down/up 13004 * 13005 * The following is the sequence of an attempt to set some critical flags on an 13006 * up interface. 13007 * ip_sioctl_flags 13008 * ipif_down 13009 * wait for ipif to be quiescent 13010 * ipif_down_tail 13011 * ip_sioctl_flags_tail 13012 * 13013 * All set ioctls that involve down/up sequence would have a skeleton similar 13014 * to the above. All the *tail functions are called after the refcounts have 13015 * dropped to the appropriate values. 13016 * 13017 * SIOC ioctls during the IPIF_CHANGING interval. 13018 * 13019 * Threads handling SIOC set ioctls serialize on the squeue, but this 13020 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13021 * steps of internal changes to the state, some of which are visible in 13022 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13023 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13024 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13025 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13026 * the current exclusive operation completes. The IPIF_CHANGING check 13027 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13028 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13029 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13030 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13031 * until we release the ipsq_lock, even though the ill/ipif state flags 13032 * can change after we drop the ill_lock. 13033 */ 13034 int 13035 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13036 { 13037 ill_t *ill = ipif->ipif_ill; 13038 conn_t *connp; 13039 boolean_t success; 13040 boolean_t ipif_was_up = B_FALSE; 13041 ip_stack_t *ipst = ill->ill_ipst; 13042 13043 ASSERT(IAM_WRITER_IPIF(ipif)); 13044 13045 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13046 13047 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13048 ill_t *, ill, ipif_t *, ipif); 13049 13050 if (ipif->ipif_flags & IPIF_UP) { 13051 mutex_enter(&ill->ill_lock); 13052 ipif->ipif_flags &= ~IPIF_UP; 13053 ASSERT(ill->ill_ipif_up_count > 0); 13054 --ill->ill_ipif_up_count; 13055 mutex_exit(&ill->ill_lock); 13056 ipif_was_up = B_TRUE; 13057 /* Update status in SCTP's list */ 13058 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13059 ill_nic_event_dispatch(ipif->ipif_ill, 13060 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13061 } 13062 13063 /* 13064 * Blow away memberships we established in ipif_multicast_up(). 13065 */ 13066 ipif_multicast_down(ipif); 13067 13068 /* 13069 * Remove from the mapping for __sin6_src_id. We insert only 13070 * when the address is not INADDR_ANY. As IPv4 addresses are 13071 * stored as mapped addresses, we need to check for mapped 13072 * INADDR_ANY also. 13073 */ 13074 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13075 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13076 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13077 int err; 13078 13079 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13080 ipif->ipif_zoneid, ipst); 13081 if (err != 0) { 13082 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13083 } 13084 } 13085 13086 if (ipif_was_up) { 13087 /* only delete if we'd added ire's before */ 13088 if (ipif->ipif_isv6) 13089 ipif_delete_ires_v6(ipif); 13090 else 13091 ipif_delete_ires_v4(ipif); 13092 } 13093 13094 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13095 /* 13096 * Since the interface is now down, it may have just become 13097 * inactive. Note that this needs to be done even for a 13098 * lll_logical_down(), or ARP entries will not get correctly 13099 * restored when the interface comes back up. 13100 */ 13101 if (IS_UNDER_IPMP(ill)) 13102 ipmp_ill_refresh_active(ill); 13103 } 13104 13105 /* 13106 * neighbor-discovery or arp entries for this interface. The ipif 13107 * has to be quiesced, so we walk all the nce's and delete those 13108 * that point at the ipif->ipif_ill. At the same time, we also 13109 * update IPMP so that ipifs for data addresses are unbound. We dont 13110 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13111 * that for ipif_down_tail() 13112 */ 13113 ipif_nce_down(ipif); 13114 13115 /* 13116 * If this is the last ipif on the ill, we also need to remove 13117 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13118 * never succeed. 13119 */ 13120 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13121 ire_walk_ill(0, 0, ill_downi, ill, ill); 13122 13123 /* 13124 * Walk all CONNs that can have a reference on an ire for this 13125 * ipif (we actually walk all that now have stale references). 13126 */ 13127 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13128 13129 /* 13130 * If mp is NULL the caller will wait for the appropriate refcnt. 13131 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13132 * and ill_delete -> ipif_free -> ipif_down 13133 */ 13134 if (mp == NULL) { 13135 ASSERT(q == NULL); 13136 return (0); 13137 } 13138 13139 if (CONN_Q(q)) { 13140 connp = Q_TO_CONN(q); 13141 mutex_enter(&connp->conn_lock); 13142 } else { 13143 connp = NULL; 13144 } 13145 mutex_enter(&ill->ill_lock); 13146 /* 13147 * Are there any ire's pointing to this ipif that are still active ? 13148 * If this is the last ipif going down, are there any ire's pointing 13149 * to this ill that are still active ? 13150 */ 13151 if (ipif_is_quiescent(ipif)) { 13152 mutex_exit(&ill->ill_lock); 13153 if (connp != NULL) 13154 mutex_exit(&connp->conn_lock); 13155 return (0); 13156 } 13157 13158 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13159 ill->ill_name, (void *)ill)); 13160 /* 13161 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13162 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13163 * which in turn is called by the last refrele on the ipif/ill/ire. 13164 */ 13165 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13166 if (!success) { 13167 /* The conn is closing. So just return */ 13168 ASSERT(connp != NULL); 13169 mutex_exit(&ill->ill_lock); 13170 mutex_exit(&connp->conn_lock); 13171 return (EINTR); 13172 } 13173 13174 mutex_exit(&ill->ill_lock); 13175 if (connp != NULL) 13176 mutex_exit(&connp->conn_lock); 13177 return (EINPROGRESS); 13178 } 13179 13180 int 13181 ipif_down_tail(ipif_t *ipif) 13182 { 13183 ill_t *ill = ipif->ipif_ill; 13184 int err = 0; 13185 13186 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13187 ill_t *, ill, ipif_t *, ipif); 13188 13189 /* 13190 * Skip any loopback interface (null wq). 13191 * If this is the last logical interface on the ill 13192 * have ill_dl_down tell the driver we are gone (unbind) 13193 * Note that lun 0 can ipif_down even though 13194 * there are other logical units that are up. 13195 * This occurs e.g. when we change a "significant" IFF_ flag. 13196 */ 13197 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13198 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13199 ill->ill_dl_up) { 13200 ill_dl_down(ill); 13201 } 13202 if (!ipif->ipif_isv6) 13203 err = ipif_arp_down(ipif); 13204 13205 ill->ill_logical_down = 0; 13206 13207 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13208 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13209 return (err); 13210 } 13211 13212 /* 13213 * Bring interface logically down without bringing the physical interface 13214 * down e.g. when the netmask is changed. This avoids long lasting link 13215 * negotiations between an ethernet interface and a certain switches. 13216 */ 13217 static int 13218 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13219 { 13220 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13221 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13222 13223 /* 13224 * The ill_logical_down flag is a transient flag. It is set here 13225 * and is cleared once the down has completed in ipif_down_tail. 13226 * This flag does not indicate whether the ill stream is in the 13227 * DL_BOUND state with the driver. Instead this flag is used by 13228 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13229 * the driver. The state of the ill stream i.e. whether it is 13230 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13231 */ 13232 ipif->ipif_ill->ill_logical_down = 1; 13233 return (ipif_down(ipif, q, mp)); 13234 } 13235 13236 /* 13237 * Initiate deallocate of an IPIF. Always called as writer. Called by 13238 * ill_delete or ip_sioctl_removeif. 13239 */ 13240 static void 13241 ipif_free(ipif_t *ipif) 13242 { 13243 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13244 13245 ASSERT(IAM_WRITER_IPIF(ipif)); 13246 13247 if (ipif->ipif_recovery_id != 0) 13248 (void) untimeout(ipif->ipif_recovery_id); 13249 ipif->ipif_recovery_id = 0; 13250 13251 /* 13252 * Take down the interface. We can be called either from ill_delete 13253 * or from ip_sioctl_removeif. 13254 */ 13255 (void) ipif_down(ipif, NULL, NULL); 13256 13257 /* 13258 * Now that the interface is down, there's no chance it can still 13259 * become a duplicate. Cancel any timer that may have been set while 13260 * tearing down. 13261 */ 13262 if (ipif->ipif_recovery_id != 0) 13263 (void) untimeout(ipif->ipif_recovery_id); 13264 ipif->ipif_recovery_id = 0; 13265 13266 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13267 /* Remove pointers to this ill in the multicast routing tables */ 13268 reset_mrt_vif_ipif(ipif); 13269 /* If necessary, clear the cached source ipif rotor. */ 13270 if (ipif->ipif_ill->ill_src_ipif == ipif) 13271 ipif->ipif_ill->ill_src_ipif = NULL; 13272 rw_exit(&ipst->ips_ill_g_lock); 13273 } 13274 13275 static void 13276 ipif_free_tail(ipif_t *ipif) 13277 { 13278 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13279 13280 /* 13281 * Need to hold both ill_g_lock and ill_lock while 13282 * inserting or removing an ipif from the linked list 13283 * of ipifs hanging off the ill. 13284 */ 13285 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13286 13287 #ifdef DEBUG 13288 ipif_trace_cleanup(ipif); 13289 #endif 13290 13291 /* Ask SCTP to take it out of it list */ 13292 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13293 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13294 13295 /* Get it out of the ILL interface list. */ 13296 ipif_remove(ipif); 13297 rw_exit(&ipst->ips_ill_g_lock); 13298 13299 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13300 ASSERT(ipif->ipif_recovery_id == 0); 13301 ASSERT(ipif->ipif_ire_local == NULL); 13302 ASSERT(ipif->ipif_ire_if == NULL); 13303 13304 /* Free the memory. */ 13305 mi_free(ipif); 13306 } 13307 13308 /* 13309 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13310 * is zero. 13311 */ 13312 void 13313 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13314 { 13315 char lbuf[LIFNAMSIZ]; 13316 char *name; 13317 size_t name_len; 13318 13319 buf[0] = '\0'; 13320 name = ipif->ipif_ill->ill_name; 13321 name_len = ipif->ipif_ill->ill_name_length; 13322 if (ipif->ipif_id != 0) { 13323 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13324 ipif->ipif_id); 13325 name = lbuf; 13326 name_len = mi_strlen(name) + 1; 13327 } 13328 len -= 1; 13329 buf[len] = '\0'; 13330 len = MIN(len, name_len); 13331 bcopy(name, buf, len); 13332 } 13333 13334 /* 13335 * Sets `buf' to an ill name. 13336 */ 13337 void 13338 ill_get_name(const ill_t *ill, char *buf, int len) 13339 { 13340 char *name; 13341 size_t name_len; 13342 13343 name = ill->ill_name; 13344 name_len = ill->ill_name_length; 13345 len -= 1; 13346 buf[len] = '\0'; 13347 len = MIN(len, name_len); 13348 bcopy(name, buf, len); 13349 } 13350 13351 /* 13352 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13353 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13354 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13355 * (May be called as writer.) 13356 */ 13357 static ipif_t * 13358 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13359 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13360 { 13361 char *cp; 13362 char *endp; 13363 long id; 13364 ill_t *ill; 13365 ipif_t *ipif; 13366 uint_t ire_type; 13367 boolean_t did_alloc = B_FALSE; 13368 13369 /* 13370 * If the caller wants to us to create the ipif, make sure we have a 13371 * valid zoneid 13372 */ 13373 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13374 13375 if (namelen == 0) { 13376 return (NULL); 13377 } 13378 13379 *exists = B_FALSE; 13380 /* Look for a colon in the name. */ 13381 endp = &name[namelen]; 13382 for (cp = endp; --cp > name; ) { 13383 if (*cp == IPIF_SEPARATOR_CHAR) 13384 break; 13385 } 13386 13387 if (*cp == IPIF_SEPARATOR_CHAR) { 13388 /* 13389 * Reject any non-decimal aliases for logical 13390 * interfaces. Aliases with leading zeroes 13391 * are also rejected as they introduce ambiguity 13392 * in the naming of the interfaces. 13393 * In order to confirm with existing semantics, 13394 * and to not break any programs/script relying 13395 * on that behaviour, if<0>:0 is considered to be 13396 * a valid interface. 13397 * 13398 * If alias has two or more digits and the first 13399 * is zero, fail. 13400 */ 13401 if (&cp[2] < endp && cp[1] == '0') { 13402 return (NULL); 13403 } 13404 } 13405 13406 if (cp <= name) { 13407 cp = endp; 13408 } else { 13409 *cp = '\0'; 13410 } 13411 13412 /* 13413 * Look up the ILL, based on the portion of the name 13414 * before the slash. ill_lookup_on_name returns a held ill. 13415 * Temporary to check whether ill exists already. If so 13416 * ill_lookup_on_name will clear it. 13417 */ 13418 ill = ill_lookup_on_name(name, do_alloc, isv6, 13419 &did_alloc, ipst); 13420 if (cp != endp) 13421 *cp = IPIF_SEPARATOR_CHAR; 13422 if (ill == NULL) 13423 return (NULL); 13424 13425 /* Establish the unit number in the name. */ 13426 id = 0; 13427 if (cp < endp && *endp == '\0') { 13428 /* If there was a colon, the unit number follows. */ 13429 cp++; 13430 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13431 ill_refrele(ill); 13432 return (NULL); 13433 } 13434 } 13435 13436 mutex_enter(&ill->ill_lock); 13437 /* Now see if there is an IPIF with this unit number. */ 13438 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13439 if (ipif->ipif_id == id) { 13440 if (zoneid != ALL_ZONES && 13441 zoneid != ipif->ipif_zoneid && 13442 ipif->ipif_zoneid != ALL_ZONES) { 13443 mutex_exit(&ill->ill_lock); 13444 ill_refrele(ill); 13445 return (NULL); 13446 } 13447 if (IPIF_CAN_LOOKUP(ipif)) { 13448 ipif_refhold_locked(ipif); 13449 mutex_exit(&ill->ill_lock); 13450 if (!did_alloc) 13451 *exists = B_TRUE; 13452 /* 13453 * Drop locks before calling ill_refrele 13454 * since it can potentially call into 13455 * ipif_ill_refrele_tail which can end up 13456 * in trying to acquire any lock. 13457 */ 13458 ill_refrele(ill); 13459 return (ipif); 13460 } 13461 } 13462 } 13463 13464 if (!do_alloc) { 13465 mutex_exit(&ill->ill_lock); 13466 ill_refrele(ill); 13467 return (NULL); 13468 } 13469 13470 /* 13471 * If none found, atomically allocate and return a new one. 13472 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13473 * to support "receive only" use of lo0:1 etc. as is still done 13474 * below as an initial guess. 13475 * However, this is now likely to be overriden later in ipif_up_done() 13476 * when we know for sure what address has been configured on the 13477 * interface, since we might have more than one loopback interface 13478 * with a loopback address, e.g. in the case of zones, and all the 13479 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13480 */ 13481 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13482 ire_type = IRE_LOOPBACK; 13483 else 13484 ire_type = IRE_LOCAL; 13485 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13486 if (ipif != NULL) 13487 ipif_refhold_locked(ipif); 13488 mutex_exit(&ill->ill_lock); 13489 ill_refrele(ill); 13490 return (ipif); 13491 } 13492 13493 /* 13494 * This routine is called whenever a new address comes up on an ipif. If 13495 * we are configured to respond to address mask requests, then we are supposed 13496 * to broadcast an address mask reply at this time. This routine is also 13497 * called if we are already up, but a netmask change is made. This is legal 13498 * but might not make the system manager very popular. (May be called 13499 * as writer.) 13500 */ 13501 void 13502 ipif_mask_reply(ipif_t *ipif) 13503 { 13504 icmph_t *icmph; 13505 ipha_t *ipha; 13506 mblk_t *mp; 13507 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13508 ip_xmit_attr_t ixas; 13509 13510 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13511 13512 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13513 return; 13514 13515 /* ICMP mask reply is IPv4 only */ 13516 ASSERT(!ipif->ipif_isv6); 13517 /* ICMP mask reply is not for a loopback interface */ 13518 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13519 13520 if (ipif->ipif_lcl_addr == INADDR_ANY) 13521 return; 13522 13523 mp = allocb(REPLY_LEN, BPRI_HI); 13524 if (mp == NULL) 13525 return; 13526 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13527 13528 ipha = (ipha_t *)mp->b_rptr; 13529 bzero(ipha, REPLY_LEN); 13530 *ipha = icmp_ipha; 13531 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13532 ipha->ipha_src = ipif->ipif_lcl_addr; 13533 ipha->ipha_dst = ipif->ipif_brd_addr; 13534 ipha->ipha_length = htons(REPLY_LEN); 13535 ipha->ipha_ident = 0; 13536 13537 icmph = (icmph_t *)&ipha[1]; 13538 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13539 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13540 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13541 13542 bzero(&ixas, sizeof (ixas)); 13543 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13544 ixas.ixa_flags |= IXAF_SET_SOURCE; 13545 ixas.ixa_zoneid = ALL_ZONES; 13546 ixas.ixa_ifindex = 0; 13547 ixas.ixa_ipst = ipst; 13548 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13549 (void) ip_output_simple(mp, &ixas); 13550 ixa_cleanup(&ixas); 13551 #undef REPLY_LEN 13552 } 13553 13554 /* 13555 * Join the ipif specific multicast groups. 13556 * Must be called after a mapping has been set up in the resolver. (Always 13557 * called as writer.) 13558 */ 13559 void 13560 ipif_multicast_up(ipif_t *ipif) 13561 { 13562 int err; 13563 ill_t *ill; 13564 ilm_t *ilm; 13565 13566 ASSERT(IAM_WRITER_IPIF(ipif)); 13567 13568 ill = ipif->ipif_ill; 13569 13570 ip1dbg(("ipif_multicast_up\n")); 13571 if (!(ill->ill_flags & ILLF_MULTICAST) || 13572 ipif->ipif_allhosts_ilm != NULL) 13573 return; 13574 13575 if (ipif->ipif_isv6) { 13576 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13577 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13578 13579 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13580 13581 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13582 return; 13583 13584 ip1dbg(("ipif_multicast_up - addmulti\n")); 13585 13586 /* 13587 * Join the all hosts multicast address. We skip this for 13588 * underlying IPMP interfaces since they should be invisible. 13589 */ 13590 if (!IS_UNDER_IPMP(ill)) { 13591 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13592 &err); 13593 if (ilm == NULL) { 13594 ASSERT(err != 0); 13595 ip0dbg(("ipif_multicast_up: " 13596 "all_hosts_mcast failed %d\n", err)); 13597 return; 13598 } 13599 ipif->ipif_allhosts_ilm = ilm; 13600 } 13601 13602 /* 13603 * Enable multicast for the solicited node multicast address. 13604 * If IPMP we need to put the membership on the upper ill. 13605 */ 13606 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13607 ill_t *mcast_ill = NULL; 13608 boolean_t need_refrele; 13609 13610 if (IS_UNDER_IPMP(ill) && 13611 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13612 need_refrele = B_TRUE; 13613 } else { 13614 mcast_ill = ill; 13615 need_refrele = B_FALSE; 13616 } 13617 13618 ilm = ip_addmulti(&v6solmc, mcast_ill, 13619 ipif->ipif_zoneid, &err); 13620 if (need_refrele) 13621 ill_refrele(mcast_ill); 13622 13623 if (ilm == NULL) { 13624 ASSERT(err != 0); 13625 ip0dbg(("ipif_multicast_up: solicited MC" 13626 " failed %d\n", err)); 13627 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13628 ipif->ipif_allhosts_ilm = NULL; 13629 (void) ip_delmulti(ilm); 13630 } 13631 return; 13632 } 13633 ipif->ipif_solmulti_ilm = ilm; 13634 } 13635 } else { 13636 in6_addr_t v6group; 13637 13638 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13639 return; 13640 13641 /* Join the all hosts multicast address */ 13642 ip1dbg(("ipif_multicast_up - addmulti\n")); 13643 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13644 13645 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13646 if (ilm == NULL) { 13647 ASSERT(err != 0); 13648 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13649 return; 13650 } 13651 ipif->ipif_allhosts_ilm = ilm; 13652 } 13653 } 13654 13655 /* 13656 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13657 * (ilms from explicit memberships are handled in conn_update_ill.) 13658 */ 13659 void 13660 ipif_multicast_down(ipif_t *ipif) 13661 { 13662 ASSERT(IAM_WRITER_IPIF(ipif)); 13663 13664 ip1dbg(("ipif_multicast_down\n")); 13665 13666 if (ipif->ipif_allhosts_ilm != NULL) { 13667 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13668 ipif->ipif_allhosts_ilm = NULL; 13669 } 13670 if (ipif->ipif_solmulti_ilm != NULL) { 13671 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13672 ipif->ipif_solmulti_ilm = NULL; 13673 } 13674 } 13675 13676 /* 13677 * Used when an interface comes up to recreate any extra routes on this 13678 * interface. 13679 */ 13680 int 13681 ill_recover_saved_ire(ill_t *ill) 13682 { 13683 mblk_t *mp; 13684 ip_stack_t *ipst = ill->ill_ipst; 13685 13686 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13687 13688 mutex_enter(&ill->ill_saved_ire_lock); 13689 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13690 ire_t *ire, *nire; 13691 ifrt_t *ifrt; 13692 13693 ifrt = (ifrt_t *)mp->b_rptr; 13694 /* 13695 * Create a copy of the IRE with the saved address and netmask. 13696 */ 13697 if (ill->ill_isv6) { 13698 ire = ire_create_v6( 13699 &ifrt->ifrt_v6addr, 13700 &ifrt->ifrt_v6mask, 13701 &ifrt->ifrt_v6gateway_addr, 13702 ifrt->ifrt_type, 13703 ill, 13704 ifrt->ifrt_zoneid, 13705 ifrt->ifrt_flags, 13706 NULL, 13707 ipst); 13708 } else { 13709 ire = ire_create( 13710 (uint8_t *)&ifrt->ifrt_addr, 13711 (uint8_t *)&ifrt->ifrt_mask, 13712 (uint8_t *)&ifrt->ifrt_gateway_addr, 13713 ifrt->ifrt_type, 13714 ill, 13715 ifrt->ifrt_zoneid, 13716 ifrt->ifrt_flags, 13717 NULL, 13718 ipst); 13719 } 13720 if (ire == NULL) { 13721 mutex_exit(&ill->ill_saved_ire_lock); 13722 return (ENOMEM); 13723 } 13724 13725 if (ifrt->ifrt_flags & RTF_SETSRC) { 13726 if (ill->ill_isv6) { 13727 ire->ire_setsrc_addr_v6 = 13728 ifrt->ifrt_v6setsrc_addr; 13729 } else { 13730 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13731 } 13732 } 13733 13734 /* 13735 * Some software (for example, GateD and Sun Cluster) attempts 13736 * to create (what amount to) IRE_PREFIX routes with the 13737 * loopback address as the gateway. This is primarily done to 13738 * set up prefixes with the RTF_REJECT flag set (for example, 13739 * when generating aggregate routes.) 13740 * 13741 * If the IRE type (as defined by ill->ill_net_type) is 13742 * IRE_LOOPBACK, then we map the request into a 13743 * IRE_IF_NORESOLVER. 13744 */ 13745 if (ill->ill_net_type == IRE_LOOPBACK) 13746 ire->ire_type = IRE_IF_NORESOLVER; 13747 13748 /* 13749 * ire held by ire_add, will be refreled' towards the 13750 * the end of ipif_up_done 13751 */ 13752 nire = ire_add(ire); 13753 /* 13754 * Check if it was a duplicate entry. This handles 13755 * the case of two racing route adds for the same route 13756 */ 13757 if (nire == NULL) { 13758 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13759 } else if (nire != ire) { 13760 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13761 (void *)nire)); 13762 ire_delete(nire); 13763 } else { 13764 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13765 (void *)nire)); 13766 } 13767 if (nire != NULL) 13768 ire_refrele(nire); 13769 } 13770 mutex_exit(&ill->ill_saved_ire_lock); 13771 return (0); 13772 } 13773 13774 /* 13775 * Used to set the netmask and broadcast address to default values when the 13776 * interface is brought up. (Always called as writer.) 13777 */ 13778 static void 13779 ipif_set_default(ipif_t *ipif) 13780 { 13781 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13782 13783 if (!ipif->ipif_isv6) { 13784 /* 13785 * Interface holds an IPv4 address. Default 13786 * mask is the natural netmask. 13787 */ 13788 if (!ipif->ipif_net_mask) { 13789 ipaddr_t v4mask; 13790 13791 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13792 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13793 } 13794 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13795 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13796 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13797 } else { 13798 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13799 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13800 } 13801 /* 13802 * NOTE: SunOS 4.X does this even if the broadcast address 13803 * has been already set thus we do the same here. 13804 */ 13805 if (ipif->ipif_flags & IPIF_BROADCAST) { 13806 ipaddr_t v4addr; 13807 13808 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13809 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13810 } 13811 } else { 13812 /* 13813 * Interface holds an IPv6-only address. Default 13814 * mask is all-ones. 13815 */ 13816 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13817 ipif->ipif_v6net_mask = ipv6_all_ones; 13818 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13819 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13820 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13821 } else { 13822 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13823 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13824 } 13825 } 13826 } 13827 13828 /* 13829 * Return 0 if this address can be used as local address without causing 13830 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13831 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13832 * Note that the same IPv6 link-local address is allowed as long as the ills 13833 * are not on the same link. 13834 */ 13835 int 13836 ip_addr_availability_check(ipif_t *new_ipif) 13837 { 13838 in6_addr_t our_v6addr; 13839 ill_t *ill; 13840 ipif_t *ipif; 13841 ill_walk_context_t ctx; 13842 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13843 13844 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13845 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13846 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13847 13848 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13849 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13850 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13851 return (0); 13852 13853 our_v6addr = new_ipif->ipif_v6lcl_addr; 13854 13855 if (new_ipif->ipif_isv6) 13856 ill = ILL_START_WALK_V6(&ctx, ipst); 13857 else 13858 ill = ILL_START_WALK_V4(&ctx, ipst); 13859 13860 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13861 for (ipif = ill->ill_ipif; ipif != NULL; 13862 ipif = ipif->ipif_next) { 13863 if ((ipif == new_ipif) || 13864 !(ipif->ipif_flags & IPIF_UP) || 13865 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13866 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13867 &our_v6addr)) 13868 continue; 13869 13870 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13871 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13872 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13873 ipif->ipif_flags |= IPIF_UNNUMBERED; 13874 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13875 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13876 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13877 continue; 13878 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13879 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13880 continue; 13881 else if (new_ipif->ipif_ill == ill) 13882 return (EADDRINUSE); 13883 else 13884 return (EADDRNOTAVAIL); 13885 } 13886 } 13887 13888 return (0); 13889 } 13890 13891 /* 13892 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13893 * IREs for the ipif. 13894 * When the routine returns EINPROGRESS then mp has been consumed and 13895 * the ioctl will be acked from ip_rput_dlpi. 13896 */ 13897 int 13898 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13899 { 13900 ill_t *ill = ipif->ipif_ill; 13901 boolean_t isv6 = ipif->ipif_isv6; 13902 int err = 0; 13903 boolean_t success; 13904 uint_t ipif_orig_id; 13905 ip_stack_t *ipst = ill->ill_ipst; 13906 13907 ASSERT(IAM_WRITER_IPIF(ipif)); 13908 13909 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13910 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13911 ill_t *, ill, ipif_t *, ipif); 13912 13913 /* Shouldn't get here if it is already up. */ 13914 if (ipif->ipif_flags & IPIF_UP) 13915 return (EALREADY); 13916 13917 /* 13918 * If this is a request to bring up a data address on an interface 13919 * under IPMP, then move the address to its IPMP meta-interface and 13920 * try to bring it up. One complication is that the zeroth ipif for 13921 * an ill is special, in that every ill always has one, and that code 13922 * throughout IP deferences ill->ill_ipif without holding any locks. 13923 */ 13924 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13925 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13926 ipif_t *stubipif = NULL, *moveipif = NULL; 13927 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13928 13929 /* 13930 * The ipif being brought up should be quiesced. If it's not, 13931 * something has gone amiss and we need to bail out. (If it's 13932 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13933 */ 13934 mutex_enter(&ill->ill_lock); 13935 if (!ipif_is_quiescent(ipif)) { 13936 mutex_exit(&ill->ill_lock); 13937 return (EINVAL); 13938 } 13939 mutex_exit(&ill->ill_lock); 13940 13941 /* 13942 * If we're going to need to allocate ipifs, do it prior 13943 * to starting the move (and grabbing locks). 13944 */ 13945 if (ipif->ipif_id == 0) { 13946 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13947 B_FALSE, &err)) == NULL) { 13948 return (err); 13949 } 13950 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13951 B_FALSE, &err)) == NULL) { 13952 mi_free(moveipif); 13953 return (err); 13954 } 13955 } 13956 13957 /* 13958 * Grab or transfer the ipif to move. During the move, keep 13959 * ill_g_lock held to prevent any ill walker threads from 13960 * seeing things in an inconsistent state. 13961 */ 13962 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13963 if (ipif->ipif_id != 0) { 13964 ipif_remove(ipif); 13965 } else { 13966 ipif_transfer(ipif, moveipif, stubipif); 13967 ipif = moveipif; 13968 } 13969 13970 /* 13971 * Place the ipif on the IPMP ill. If the zeroth ipif on 13972 * the IPMP ill is a stub (0.0.0.0 down address) then we 13973 * replace that one. Otherwise, pick the next available slot. 13974 */ 13975 ipif->ipif_ill = ipmp_ill; 13976 ipif_orig_id = ipif->ipif_id; 13977 13978 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 13979 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 13980 ipif = ipmp_ill->ill_ipif; 13981 } else { 13982 ipif->ipif_id = -1; 13983 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 13984 /* 13985 * No more available ipif_id's -- put it back 13986 * on the original ill and fail the operation. 13987 * Since we're writer on the ill, we can be 13988 * sure our old slot is still available. 13989 */ 13990 ipif->ipif_id = ipif_orig_id; 13991 ipif->ipif_ill = ill; 13992 if (ipif_orig_id == 0) { 13993 ipif_transfer(ipif, ill->ill_ipif, 13994 NULL); 13995 } else { 13996 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 13997 } 13998 rw_exit(&ipst->ips_ill_g_lock); 13999 return (err); 14000 } 14001 } 14002 rw_exit(&ipst->ips_ill_g_lock); 14003 14004 /* 14005 * Tell SCTP that the ipif has moved. Note that even if we 14006 * had to allocate a new ipif, the original sequence id was 14007 * preserved and therefore SCTP won't know. 14008 */ 14009 sctp_move_ipif(ipif, ill, ipmp_ill); 14010 14011 /* 14012 * If the ipif being brought up was on slot zero, then we 14013 * first need to bring up the placeholder we stuck there. In 14014 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14015 * call to ipif_up() itself, if we successfully bring up the 14016 * placeholder, we'll check ill_move_ipif and bring it up too. 14017 */ 14018 if (ipif_orig_id == 0) { 14019 ASSERT(ill->ill_move_ipif == NULL); 14020 ill->ill_move_ipif = ipif; 14021 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14022 ASSERT(ill->ill_move_ipif == NULL); 14023 if (err != EINPROGRESS) 14024 ill->ill_move_ipif = NULL; 14025 return (err); 14026 } 14027 14028 /* 14029 * Bring it up on the IPMP ill. 14030 */ 14031 return (ipif_up(ipif, q, mp)); 14032 } 14033 14034 /* Skip arp/ndp for any loopback interface. */ 14035 if (ill->ill_wq != NULL) { 14036 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14037 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14038 14039 if (!ill->ill_dl_up) { 14040 /* 14041 * ill_dl_up is not yet set. i.e. we are yet to 14042 * DL_BIND with the driver and this is the first 14043 * logical interface on the ill to become "up". 14044 * Tell the driver to get going (via DL_BIND_REQ). 14045 * Note that changing "significant" IFF_ flags 14046 * address/netmask etc cause a down/up dance, but 14047 * does not cause an unbind (DL_UNBIND) with the driver 14048 */ 14049 return (ill_dl_up(ill, ipif, mp, q)); 14050 } 14051 14052 /* 14053 * ipif_resolver_up may end up needeing to bind/attach 14054 * the ARP stream, which in turn necessitates a 14055 * DLPI message exchange with the driver. ioctls are 14056 * serialized and so we cannot send more than one 14057 * interface up message at a time. If ipif_resolver_up 14058 * does need to wait for the DLPI handshake for the ARP stream, 14059 * we get EINPROGRESS and we will complete in arp_bringup_done. 14060 */ 14061 14062 ASSERT(connp != NULL || !CONN_Q(q)); 14063 if (connp != NULL) 14064 mutex_enter(&connp->conn_lock); 14065 mutex_enter(&ill->ill_lock); 14066 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14067 mutex_exit(&ill->ill_lock); 14068 if (connp != NULL) 14069 mutex_exit(&connp->conn_lock); 14070 if (!success) 14071 return (EINTR); 14072 14073 /* 14074 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14075 * complete when ipif_ndp_up returns. 14076 */ 14077 err = ipif_resolver_up(ipif, Res_act_initial); 14078 if (err == EINPROGRESS) { 14079 /* We will complete it in arp_bringup_done() */ 14080 return (err); 14081 } 14082 14083 if (isv6 && err == 0) 14084 err = ipif_ndp_up(ipif, B_TRUE); 14085 14086 ASSERT(err != EINPROGRESS); 14087 mp = ipsq_pending_mp_get(ipsq, &connp); 14088 ASSERT(mp != NULL); 14089 if (err != 0) 14090 return (err); 14091 } else { 14092 /* 14093 * Interfaces without underlying hardware don't do duplicate 14094 * address detection. 14095 */ 14096 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14097 ipif->ipif_addr_ready = 1; 14098 err = ill_add_ires(ill); 14099 /* allocation failure? */ 14100 if (err != 0) 14101 return (err); 14102 } 14103 14104 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14105 if (err == 0 && ill->ill_move_ipif != NULL) { 14106 ipif = ill->ill_move_ipif; 14107 ill->ill_move_ipif = NULL; 14108 return (ipif_up(ipif, q, mp)); 14109 } 14110 return (err); 14111 } 14112 14113 /* 14114 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14115 * The identical set of IREs need to be removed in ill_delete_ires(). 14116 */ 14117 int 14118 ill_add_ires(ill_t *ill) 14119 { 14120 ire_t *ire; 14121 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14122 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14123 14124 if (ill->ill_ire_multicast != NULL) 14125 return (0); 14126 14127 /* 14128 * provide some dummy ire_addr for creating the ire. 14129 */ 14130 if (ill->ill_isv6) { 14131 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14132 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14133 } else { 14134 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14135 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14136 } 14137 if (ire == NULL) 14138 return (ENOMEM); 14139 14140 ill->ill_ire_multicast = ire; 14141 return (0); 14142 } 14143 14144 void 14145 ill_delete_ires(ill_t *ill) 14146 { 14147 if (ill->ill_ire_multicast != NULL) { 14148 /* 14149 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14150 * which was taken without any th_tracing enabled. 14151 * We also mark it as condemned (note that it was never added) 14152 * so that caching conn's can move off of it. 14153 */ 14154 ire_make_condemned(ill->ill_ire_multicast); 14155 ire_refrele_notr(ill->ill_ire_multicast); 14156 ill->ill_ire_multicast = NULL; 14157 } 14158 } 14159 14160 /* 14161 * Perform a bind for the physical device. 14162 * When the routine returns EINPROGRESS then mp has been consumed and 14163 * the ioctl will be acked from ip_rput_dlpi. 14164 * Allocate an unbind message and save it until ipif_down. 14165 */ 14166 static int 14167 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14168 { 14169 mblk_t *bind_mp = NULL; 14170 mblk_t *unbind_mp = NULL; 14171 conn_t *connp; 14172 boolean_t success; 14173 int err; 14174 14175 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14176 14177 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14178 ASSERT(IAM_WRITER_ILL(ill)); 14179 ASSERT(mp != NULL); 14180 14181 /* 14182 * Make sure we have an IRE_MULTICAST in case we immediately 14183 * start receiving packets. 14184 */ 14185 err = ill_add_ires(ill); 14186 if (err != 0) 14187 goto bad; 14188 14189 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14190 DL_BIND_REQ); 14191 if (bind_mp == NULL) 14192 goto bad; 14193 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14194 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14195 14196 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14197 if (unbind_mp == NULL) 14198 goto bad; 14199 14200 /* 14201 * Record state needed to complete this operation when the 14202 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14203 */ 14204 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14205 ASSERT(connp != NULL || !CONN_Q(q)); 14206 GRAB_CONN_LOCK(q); 14207 mutex_enter(&ipif->ipif_ill->ill_lock); 14208 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14209 mutex_exit(&ipif->ipif_ill->ill_lock); 14210 RELEASE_CONN_LOCK(q); 14211 if (!success) 14212 goto bad; 14213 14214 /* 14215 * Save the unbind message for ill_dl_down(); it will be consumed when 14216 * the interface goes down. 14217 */ 14218 ASSERT(ill->ill_unbind_mp == NULL); 14219 ill->ill_unbind_mp = unbind_mp; 14220 14221 ill_dlpi_send(ill, bind_mp); 14222 /* Send down link-layer capabilities probe if not already done. */ 14223 ill_capability_probe(ill); 14224 14225 /* 14226 * Sysid used to rely on the fact that netboots set domainname 14227 * and the like. Now that miniroot boots aren't strictly netboots 14228 * and miniroot network configuration is driven from userland 14229 * these things still need to be set. This situation can be detected 14230 * by comparing the interface being configured here to the one 14231 * dhcifname was set to reference by the boot loader. Once sysid is 14232 * converted to use dhcp_ipc_getinfo() this call can go away. 14233 */ 14234 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14235 (strcmp(ill->ill_name, dhcifname) == 0) && 14236 (strlen(srpc_domain) == 0)) { 14237 if (dhcpinit() != 0) 14238 cmn_err(CE_WARN, "no cached dhcp response"); 14239 } 14240 14241 /* 14242 * This operation will complete in ip_rput_dlpi with either 14243 * a DL_BIND_ACK or DL_ERROR_ACK. 14244 */ 14245 return (EINPROGRESS); 14246 bad: 14247 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14248 14249 freemsg(bind_mp); 14250 freemsg(unbind_mp); 14251 return (ENOMEM); 14252 } 14253 14254 /* Add room for tcp+ip headers */ 14255 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14256 14257 /* 14258 * DLPI and ARP is up. 14259 * Create all the IREs associated with an interface. Bring up multicast. 14260 * Set the interface flag and finish other initialization 14261 * that potentially had to be deferred to after DL_BIND_ACK. 14262 */ 14263 int 14264 ipif_up_done(ipif_t *ipif) 14265 { 14266 ill_t *ill = ipif->ipif_ill; 14267 int err = 0; 14268 boolean_t loopback = B_FALSE; 14269 boolean_t update_src_selection = B_TRUE; 14270 ipif_t *tmp_ipif; 14271 14272 ip1dbg(("ipif_up_done(%s:%u)\n", 14273 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14274 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14275 ill_t *, ill, ipif_t *, ipif); 14276 14277 /* Check if this is a loopback interface */ 14278 if (ipif->ipif_ill->ill_wq == NULL) 14279 loopback = B_TRUE; 14280 14281 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14282 14283 /* 14284 * If all other interfaces for this ill are down or DEPRECATED, 14285 * or otherwise unsuitable for source address selection, 14286 * reset the src generation numbers to make sure source 14287 * address selection gets to take this new ipif into account. 14288 * No need to hold ill_lock while traversing the ipif list since 14289 * we are writer 14290 */ 14291 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14292 tmp_ipif = tmp_ipif->ipif_next) { 14293 if (((tmp_ipif->ipif_flags & 14294 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14295 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14296 (tmp_ipif == ipif)) 14297 continue; 14298 /* first useable pre-existing interface */ 14299 update_src_selection = B_FALSE; 14300 break; 14301 } 14302 if (update_src_selection) 14303 ip_update_source_selection(ill->ill_ipst); 14304 14305 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14306 nce_t *loop_nce = NULL; 14307 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14308 14309 /* 14310 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14311 * ipif_lookup_on_name(), but in the case of zones we can have 14312 * several loopback addresses on lo0. So all the interfaces with 14313 * loopback addresses need to be marked IRE_LOOPBACK. 14314 */ 14315 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14316 htonl(INADDR_LOOPBACK)) 14317 ipif->ipif_ire_type = IRE_LOOPBACK; 14318 else 14319 ipif->ipif_ire_type = IRE_LOCAL; 14320 if (ill->ill_net_type != IRE_LOOPBACK) 14321 flags |= NCE_F_PUBLISH; 14322 14323 /* add unicast nce for the local addr */ 14324 err = nce_lookup_then_add_v4(ill, NULL, 14325 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14326 ND_REACHABLE, &loop_nce); 14327 /* A shared-IP zone sees EEXIST for lo0:N */ 14328 if (err == 0 || err == EEXIST) { 14329 ipif->ipif_added_nce = 1; 14330 loop_nce->nce_ipif_cnt++; 14331 nce_refrele(loop_nce); 14332 err = 0; 14333 } else { 14334 ASSERT(loop_nce == NULL); 14335 return (err); 14336 } 14337 } 14338 14339 /* Create all the IREs associated with this interface */ 14340 err = ipif_add_ires_v4(ipif, loopback); 14341 if (err != 0) { 14342 /* 14343 * see comments about return value from 14344 * ip_addr_availability_check() in ipif_add_ires_v4(). 14345 */ 14346 if (err != EADDRINUSE) { 14347 (void) ipif_arp_down(ipif); 14348 } else { 14349 /* 14350 * Make IPMP aware of the deleted ipif so that 14351 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14352 * can be completed. Note that we do not want to 14353 * destroy the nce that was created on the ipmp_ill 14354 * for the active copy of the duplicate address in 14355 * use. 14356 */ 14357 if (IS_IPMP(ill)) 14358 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14359 err = EADDRNOTAVAIL; 14360 } 14361 return (err); 14362 } 14363 14364 if (ill->ill_ipif_up_count == 1 && !loopback) { 14365 /* Recover any additional IREs entries for this ill */ 14366 (void) ill_recover_saved_ire(ill); 14367 } 14368 14369 if (ill->ill_need_recover_multicast) { 14370 /* 14371 * Need to recover all multicast memberships in the driver. 14372 * This had to be deferred until we had attached. The same 14373 * code exists in ipif_up_done_v6() to recover IPv6 14374 * memberships. 14375 * 14376 * Note that it would be preferable to unconditionally do the 14377 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14378 * that since ill_join_allmulti() depends on ill_dl_up being 14379 * set, and it is not set until we receive a DL_BIND_ACK after 14380 * having called ill_dl_up(). 14381 */ 14382 ill_recover_multicast(ill); 14383 } 14384 14385 if (ill->ill_ipif_up_count == 1) { 14386 /* 14387 * Since the interface is now up, it may now be active. 14388 */ 14389 if (IS_UNDER_IPMP(ill)) 14390 ipmp_ill_refresh_active(ill); 14391 14392 /* 14393 * If this is an IPMP interface, we may now be able to 14394 * establish ARP entries. 14395 */ 14396 if (IS_IPMP(ill)) 14397 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14398 } 14399 14400 /* Join the allhosts multicast address */ 14401 ipif_multicast_up(ipif); 14402 14403 if (!loopback && !update_src_selection && 14404 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14405 ip_update_source_selection(ill->ill_ipst); 14406 14407 if (!loopback && ipif->ipif_addr_ready) { 14408 /* Broadcast an address mask reply. */ 14409 ipif_mask_reply(ipif); 14410 } 14411 /* Perhaps ilgs should use this ill */ 14412 update_conn_ill(NULL, ill->ill_ipst); 14413 14414 /* 14415 * This had to be deferred until we had bound. Tell routing sockets and 14416 * others that this interface is up if it looks like the address has 14417 * been validated. Otherwise, if it isn't ready yet, wait for 14418 * duplicate address detection to do its thing. 14419 */ 14420 if (ipif->ipif_addr_ready) 14421 ipif_up_notify(ipif); 14422 return (0); 14423 } 14424 14425 /* 14426 * Add the IREs associated with the ipif. 14427 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14428 */ 14429 static int 14430 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14431 { 14432 ill_t *ill = ipif->ipif_ill; 14433 ip_stack_t *ipst = ill->ill_ipst; 14434 ire_t *ire_array[20]; 14435 ire_t **irep = ire_array; 14436 ire_t **irep1; 14437 ipaddr_t net_mask = 0; 14438 ipaddr_t subnet_mask, route_mask; 14439 int err; 14440 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14441 ire_t *ire_if = NULL; 14442 uchar_t *gw; 14443 14444 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14445 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14446 /* 14447 * If we're on a labeled system then make sure that zone- 14448 * private addresses have proper remote host database entries. 14449 */ 14450 if (is_system_labeled() && 14451 ipif->ipif_ire_type != IRE_LOOPBACK && 14452 !tsol_check_interface_address(ipif)) 14453 return (EINVAL); 14454 14455 /* Register the source address for __sin6_src_id */ 14456 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14457 ipif->ipif_zoneid, ipst); 14458 if (err != 0) { 14459 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14460 return (err); 14461 } 14462 14463 if (loopback) 14464 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14465 else 14466 gw = NULL; 14467 14468 /* If the interface address is set, create the local IRE. */ 14469 ire_local = ire_create( 14470 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14471 (uchar_t *)&ip_g_all_ones, /* mask */ 14472 gw, /* gateway */ 14473 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14474 ipif->ipif_ill, 14475 ipif->ipif_zoneid, 14476 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14477 RTF_PRIVATE : 0) | RTF_KERNEL, 14478 NULL, 14479 ipst); 14480 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14481 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14482 ipif->ipif_ire_type, 14483 ntohl(ipif->ipif_lcl_addr))); 14484 if (ire_local == NULL) { 14485 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14486 err = ENOMEM; 14487 goto bad; 14488 } 14489 } else { 14490 ip1dbg(( 14491 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14492 ipif->ipif_ire_type, 14493 ntohl(ipif->ipif_lcl_addr), 14494 (uint_t)ipif->ipif_flags)); 14495 } 14496 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14497 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14498 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14499 } else { 14500 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14501 } 14502 14503 subnet_mask = ipif->ipif_net_mask; 14504 14505 /* 14506 * If mask was not specified, use natural netmask of 14507 * interface address. Also, store this mask back into the 14508 * ipif struct. 14509 */ 14510 if (subnet_mask == 0) { 14511 subnet_mask = net_mask; 14512 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14513 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14514 ipif->ipif_v6subnet); 14515 } 14516 14517 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14518 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14519 ipif->ipif_subnet != INADDR_ANY) { 14520 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14521 14522 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14523 route_mask = IP_HOST_MASK; 14524 } else { 14525 route_mask = subnet_mask; 14526 } 14527 14528 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14529 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14530 (void *)ipif, (void *)ill, ill->ill_net_type, 14531 ntohl(ipif->ipif_subnet))); 14532 ire_if = ire_create( 14533 (uchar_t *)&ipif->ipif_subnet, 14534 (uchar_t *)&route_mask, 14535 (uchar_t *)&ipif->ipif_lcl_addr, 14536 ill->ill_net_type, 14537 ill, 14538 ipif->ipif_zoneid, 14539 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14540 RTF_PRIVATE: 0) | RTF_KERNEL, 14541 NULL, 14542 ipst); 14543 if (ire_if == NULL) { 14544 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14545 err = ENOMEM; 14546 goto bad; 14547 } 14548 } 14549 14550 /* 14551 * Create any necessary broadcast IREs. 14552 */ 14553 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14554 !(ipif->ipif_flags & IPIF_NOXMIT)) 14555 irep = ipif_create_bcast_ires(ipif, irep); 14556 14557 /* If an earlier ire_create failed, get out now */ 14558 for (irep1 = irep; irep1 > ire_array; ) { 14559 irep1--; 14560 if (*irep1 == NULL) { 14561 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14562 err = ENOMEM; 14563 goto bad; 14564 } 14565 } 14566 14567 /* 14568 * Need to atomically check for IP address availability under 14569 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14570 * ills or new ipifs can be added while we are checking availability. 14571 */ 14572 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14573 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14574 /* Mark it up, and increment counters. */ 14575 ipif->ipif_flags |= IPIF_UP; 14576 ill->ill_ipif_up_count++; 14577 err = ip_addr_availability_check(ipif); 14578 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14579 rw_exit(&ipst->ips_ill_g_lock); 14580 14581 if (err != 0) { 14582 /* 14583 * Our address may already be up on the same ill. In this case, 14584 * the ARP entry for our ipif replaced the one for the other 14585 * ipif. So we don't want to delete it (otherwise the other ipif 14586 * would be unable to send packets). 14587 * ip_addr_availability_check() identifies this case for us and 14588 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14589 * which is the expected error code. 14590 */ 14591 ill->ill_ipif_up_count--; 14592 ipif->ipif_flags &= ~IPIF_UP; 14593 goto bad; 14594 } 14595 14596 /* 14597 * Add in all newly created IREs. ire_create_bcast() has 14598 * already checked for duplicates of the IRE_BROADCAST type. 14599 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14600 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14601 * a /32 route. 14602 */ 14603 if (ire_if != NULL) { 14604 ire_if = ire_add(ire_if); 14605 if (ire_if == NULL) { 14606 err = ENOMEM; 14607 goto bad2; 14608 } 14609 #ifdef DEBUG 14610 ire_refhold_notr(ire_if); 14611 ire_refrele(ire_if); 14612 #endif 14613 } 14614 if (ire_local != NULL) { 14615 ire_local = ire_add(ire_local); 14616 if (ire_local == NULL) { 14617 err = ENOMEM; 14618 goto bad2; 14619 } 14620 #ifdef DEBUG 14621 ire_refhold_notr(ire_local); 14622 ire_refrele(ire_local); 14623 #endif 14624 } 14625 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14626 if (ire_local != NULL) 14627 ipif->ipif_ire_local = ire_local; 14628 if (ire_if != NULL) 14629 ipif->ipif_ire_if = ire_if; 14630 rw_exit(&ipst->ips_ill_g_lock); 14631 ire_local = NULL; 14632 ire_if = NULL; 14633 14634 /* 14635 * We first add all of them, and if that succeeds we refrele the 14636 * bunch. That enables us to delete all of them should any of the 14637 * ire_adds fail. 14638 */ 14639 for (irep1 = irep; irep1 > ire_array; ) { 14640 irep1--; 14641 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14642 *irep1 = ire_add(*irep1); 14643 if (*irep1 == NULL) { 14644 err = ENOMEM; 14645 goto bad2; 14646 } 14647 } 14648 14649 for (irep1 = irep; irep1 > ire_array; ) { 14650 irep1--; 14651 /* refheld by ire_add. */ 14652 if (*irep1 != NULL) { 14653 ire_refrele(*irep1); 14654 *irep1 = NULL; 14655 } 14656 } 14657 14658 if (!loopback) { 14659 /* 14660 * If the broadcast address has been set, make sure it makes 14661 * sense based on the interface address. 14662 * Only match on ill since we are sharing broadcast addresses. 14663 */ 14664 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14665 (ipif->ipif_flags & IPIF_BROADCAST)) { 14666 ire_t *ire; 14667 14668 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14669 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14670 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14671 14672 if (ire == NULL) { 14673 /* 14674 * If there isn't a matching broadcast IRE, 14675 * revert to the default for this netmask. 14676 */ 14677 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14678 mutex_enter(&ipif->ipif_ill->ill_lock); 14679 ipif_set_default(ipif); 14680 mutex_exit(&ipif->ipif_ill->ill_lock); 14681 } else { 14682 ire_refrele(ire); 14683 } 14684 } 14685 14686 } 14687 return (0); 14688 14689 bad2: 14690 ill->ill_ipif_up_count--; 14691 ipif->ipif_flags &= ~IPIF_UP; 14692 14693 bad: 14694 ip1dbg(("ipif_add_ires: FAILED \n")); 14695 if (ire_local != NULL) 14696 ire_delete(ire_local); 14697 if (ire_if != NULL) 14698 ire_delete(ire_if); 14699 14700 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14701 ire_local = ipif->ipif_ire_local; 14702 ipif->ipif_ire_local = NULL; 14703 ire_if = ipif->ipif_ire_if; 14704 ipif->ipif_ire_if = NULL; 14705 rw_exit(&ipst->ips_ill_g_lock); 14706 if (ire_local != NULL) { 14707 ire_delete(ire_local); 14708 ire_refrele_notr(ire_local); 14709 } 14710 if (ire_if != NULL) { 14711 ire_delete(ire_if); 14712 ire_refrele_notr(ire_if); 14713 } 14714 14715 while (irep > ire_array) { 14716 irep--; 14717 if (*irep != NULL) { 14718 ire_delete(*irep); 14719 } 14720 } 14721 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14722 14723 return (err); 14724 } 14725 14726 /* Remove all the IREs created by ipif_add_ires_v4 */ 14727 void 14728 ipif_delete_ires_v4(ipif_t *ipif) 14729 { 14730 ill_t *ill = ipif->ipif_ill; 14731 ip_stack_t *ipst = ill->ill_ipst; 14732 ire_t *ire; 14733 14734 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14735 ire = ipif->ipif_ire_local; 14736 ipif->ipif_ire_local = NULL; 14737 rw_exit(&ipst->ips_ill_g_lock); 14738 if (ire != NULL) { 14739 /* 14740 * Move count to ipif so we don't loose the count due to 14741 * a down/up dance. 14742 */ 14743 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14744 14745 ire_delete(ire); 14746 ire_refrele_notr(ire); 14747 } 14748 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14749 ire = ipif->ipif_ire_if; 14750 ipif->ipif_ire_if = NULL; 14751 rw_exit(&ipst->ips_ill_g_lock); 14752 if (ire != NULL) { 14753 ire_delete(ire); 14754 ire_refrele_notr(ire); 14755 } 14756 14757 /* 14758 * Delete the broadcast IREs. 14759 */ 14760 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14761 !(ipif->ipif_flags & IPIF_NOXMIT)) 14762 ipif_delete_bcast_ires(ipif); 14763 } 14764 14765 /* 14766 * Checks for availbility of a usable source address (if there is one) when the 14767 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14768 * this selection is done regardless of the destination. 14769 */ 14770 boolean_t 14771 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14772 ip_stack_t *ipst) 14773 { 14774 ipif_t *ipif = NULL; 14775 ill_t *uill; 14776 14777 ASSERT(ifindex != 0); 14778 14779 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14780 if (uill == NULL) 14781 return (B_FALSE); 14782 14783 mutex_enter(&uill->ill_lock); 14784 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14785 if (IPIF_IS_CONDEMNED(ipif)) 14786 continue; 14787 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14788 continue; 14789 if (!(ipif->ipif_flags & IPIF_UP)) 14790 continue; 14791 if (ipif->ipif_zoneid != zoneid) 14792 continue; 14793 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14794 ipif->ipif_lcl_addr == INADDR_ANY) 14795 continue; 14796 mutex_exit(&uill->ill_lock); 14797 ill_refrele(uill); 14798 return (B_TRUE); 14799 } 14800 mutex_exit(&uill->ill_lock); 14801 ill_refrele(uill); 14802 return (B_FALSE); 14803 } 14804 14805 /* 14806 * Find an ipif with a good local address on the ill+zoneid. 14807 */ 14808 ipif_t * 14809 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14810 { 14811 ipif_t *ipif; 14812 14813 mutex_enter(&ill->ill_lock); 14814 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14815 if (IPIF_IS_CONDEMNED(ipif)) 14816 continue; 14817 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14818 continue; 14819 if (!(ipif->ipif_flags & IPIF_UP)) 14820 continue; 14821 if (ipif->ipif_zoneid != zoneid && 14822 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14823 continue; 14824 if (ill->ill_isv6 ? 14825 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14826 ipif->ipif_lcl_addr == INADDR_ANY) 14827 continue; 14828 ipif_refhold_locked(ipif); 14829 mutex_exit(&ill->ill_lock); 14830 return (ipif); 14831 } 14832 mutex_exit(&ill->ill_lock); 14833 return (NULL); 14834 } 14835 14836 /* 14837 * IP source address type, sorted from worst to best. For a given type, 14838 * always prefer IP addresses on the same subnet. All-zones addresses are 14839 * suboptimal because they pose problems with unlabeled destinations. 14840 */ 14841 typedef enum { 14842 IPIF_NONE, 14843 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14844 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14845 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14846 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14847 IPIF_DIFFNET, /* normal and different subnet */ 14848 IPIF_SAMENET, /* normal and same subnet */ 14849 IPIF_LOCALADDR /* local loopback */ 14850 } ipif_type_t; 14851 14852 /* 14853 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14854 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14855 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14856 * the first one, unless IPMP is used in which case we round-robin among them; 14857 * see below for more. 14858 * 14859 * Returns NULL if there is no suitable source address for the ill. 14860 * This only occurs when there is no valid source address for the ill. 14861 */ 14862 ipif_t * 14863 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14864 boolean_t allow_usesrc, boolean_t *notreadyp) 14865 { 14866 ill_t *usill = NULL; 14867 ill_t *ipmp_ill = NULL; 14868 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14869 ipif_type_t type, best_type; 14870 tsol_tpc_t *src_rhtp, *dst_rhtp; 14871 ip_stack_t *ipst = ill->ill_ipst; 14872 boolean_t samenet; 14873 14874 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14875 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14876 B_FALSE, ipst); 14877 if (usill != NULL) 14878 ill = usill; /* Select source from usesrc ILL */ 14879 else 14880 return (NULL); 14881 } 14882 14883 /* 14884 * Test addresses should never be used for source address selection, 14885 * so if we were passed one, switch to the IPMP meta-interface. 14886 */ 14887 if (IS_UNDER_IPMP(ill)) { 14888 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14889 ill = ipmp_ill; /* Select source from IPMP ill */ 14890 else 14891 return (NULL); 14892 } 14893 14894 /* 14895 * If we're dealing with an unlabeled destination on a labeled system, 14896 * make sure that we ignore source addresses that are incompatible with 14897 * the destination's default label. That destination's default label 14898 * must dominate the minimum label on the source address. 14899 */ 14900 dst_rhtp = NULL; 14901 if (is_system_labeled()) { 14902 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14903 if (dst_rhtp == NULL) 14904 return (NULL); 14905 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14906 TPC_RELE(dst_rhtp); 14907 dst_rhtp = NULL; 14908 } 14909 } 14910 14911 /* 14912 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14913 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14914 * After selecting the right ipif, under ill_lock make sure ipif is 14915 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14916 * we retry. Inside the loop we still need to check for CONDEMNED, 14917 * but not under a lock. 14918 */ 14919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14920 retry: 14921 /* 14922 * For source address selection, we treat the ipif list as circular 14923 * and continue until we get back to where we started. This allows 14924 * IPMP to vary source address selection (which improves inbound load 14925 * spreading) by caching its last ending point and starting from 14926 * there. NOTE: we don't have to worry about ill_src_ipif changing 14927 * ills since that can't happen on the IPMP ill. 14928 */ 14929 start_ipif = ill->ill_ipif; 14930 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14931 start_ipif = ill->ill_src_ipif; 14932 14933 ipif = start_ipif; 14934 best_ipif = NULL; 14935 best_type = IPIF_NONE; 14936 do { 14937 if ((next_ipif = ipif->ipif_next) == NULL) 14938 next_ipif = ill->ill_ipif; 14939 14940 if (IPIF_IS_CONDEMNED(ipif)) 14941 continue; 14942 /* Always skip NOLOCAL and ANYCAST interfaces */ 14943 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14944 continue; 14945 /* Always skip NOACCEPT interfaces */ 14946 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 14947 continue; 14948 if (!(ipif->ipif_flags & IPIF_UP)) 14949 continue; 14950 14951 if (!ipif->ipif_addr_ready) { 14952 if (notreadyp != NULL) 14953 *notreadyp = B_TRUE; 14954 continue; 14955 } 14956 14957 if (zoneid != ALL_ZONES && 14958 ipif->ipif_zoneid != zoneid && 14959 ipif->ipif_zoneid != ALL_ZONES) 14960 continue; 14961 14962 /* 14963 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14964 * are not valid as source addresses. 14965 */ 14966 if (ipif->ipif_lcl_addr == INADDR_ANY) 14967 continue; 14968 14969 /* 14970 * Check compatibility of local address for destination's 14971 * default label if we're on a labeled system. Incompatible 14972 * addresses can't be used at all. 14973 */ 14974 if (dst_rhtp != NULL) { 14975 boolean_t incompat; 14976 14977 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 14978 IPV4_VERSION, B_FALSE); 14979 if (src_rhtp == NULL) 14980 continue; 14981 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 14982 src_rhtp->tpc_tp.tp_doi != 14983 dst_rhtp->tpc_tp.tp_doi || 14984 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 14985 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 14986 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 14987 src_rhtp->tpc_tp.tp_sl_set_cipso)); 14988 TPC_RELE(src_rhtp); 14989 if (incompat) 14990 continue; 14991 } 14992 14993 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 14994 14995 if (ipif->ipif_lcl_addr == dst) { 14996 type = IPIF_LOCALADDR; 14997 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 14998 type = samenet ? IPIF_SAMENET_DEPRECATED : 14999 IPIF_DIFFNET_DEPRECATED; 15000 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15001 type = samenet ? IPIF_SAMENET_ALLZONES : 15002 IPIF_DIFFNET_ALLZONES; 15003 } else { 15004 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15005 } 15006 15007 if (type > best_type) { 15008 best_type = type; 15009 best_ipif = ipif; 15010 if (best_type == IPIF_LOCALADDR) 15011 break; /* can't get better */ 15012 } 15013 } while ((ipif = next_ipif) != start_ipif); 15014 15015 if ((ipif = best_ipif) != NULL) { 15016 mutex_enter(&ipif->ipif_ill->ill_lock); 15017 if (IPIF_IS_CONDEMNED(ipif)) { 15018 mutex_exit(&ipif->ipif_ill->ill_lock); 15019 goto retry; 15020 } 15021 ipif_refhold_locked(ipif); 15022 15023 /* 15024 * For IPMP, update the source ipif rotor to the next ipif, 15025 * provided we can look it up. (We must not use it if it's 15026 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15027 * ipif_free() checked ill_src_ipif.) 15028 */ 15029 if (IS_IPMP(ill) && ipif != NULL) { 15030 next_ipif = ipif->ipif_next; 15031 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15032 ill->ill_src_ipif = next_ipif; 15033 else 15034 ill->ill_src_ipif = NULL; 15035 } 15036 mutex_exit(&ipif->ipif_ill->ill_lock); 15037 } 15038 15039 rw_exit(&ipst->ips_ill_g_lock); 15040 if (usill != NULL) 15041 ill_refrele(usill); 15042 if (ipmp_ill != NULL) 15043 ill_refrele(ipmp_ill); 15044 if (dst_rhtp != NULL) 15045 TPC_RELE(dst_rhtp); 15046 15047 #ifdef DEBUG 15048 if (ipif == NULL) { 15049 char buf1[INET6_ADDRSTRLEN]; 15050 15051 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15052 ill->ill_name, 15053 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15054 } else { 15055 char buf1[INET6_ADDRSTRLEN]; 15056 char buf2[INET6_ADDRSTRLEN]; 15057 15058 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15059 ipif->ipif_ill->ill_name, 15060 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15061 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15062 buf2, sizeof (buf2)))); 15063 } 15064 #endif /* DEBUG */ 15065 return (ipif); 15066 } 15067 15068 /* 15069 * Pick a source address based on the destination ill and an optional setsrc 15070 * address. 15071 * The result is stored in srcp. If generation is set, then put the source 15072 * generation number there before we look for the source address (to avoid 15073 * missing changes in the set of source addresses. 15074 * If flagsp is set, then us it to pass back ipif_flags. 15075 * 15076 * If the caller wants to cache the returned source address and detect when 15077 * that might be stale, the caller should pass in a generation argument, 15078 * which the caller can later compare against ips_src_generation 15079 * 15080 * The precedence order for selecting an IPv4 source address is: 15081 * - RTF_SETSRC on the offlink ire always wins. 15082 * - If usrsrc is set, swap the ill to be the usesrc one. 15083 * - If IPMP is used on the ill, select a random address from the most 15084 * preferred ones below: 15085 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15086 * 2. Not deprecated, not ALL_ZONES 15087 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15088 * 4. Not deprecated, ALL_ZONES 15089 * 5. If onlink destination, same subnet and deprecated 15090 * 6. Deprecated. 15091 * 15092 * We have lower preference for ALL_ZONES IP addresses, 15093 * as they pose problems with unlabeled destinations. 15094 * 15095 * Note that when multiple IP addresses match e.g., #1 we pick 15096 * the first one if IPMP is not in use. With IPMP we randomize. 15097 */ 15098 int 15099 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15100 ipaddr_t multicast_ifaddr, 15101 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15102 uint32_t *generation, uint64_t *flagsp) 15103 { 15104 ipif_t *ipif; 15105 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15106 15107 if (flagsp != NULL) 15108 *flagsp = 0; 15109 15110 /* 15111 * Need to grab the generation number before we check to 15112 * avoid a race with a change to the set of local addresses. 15113 * No lock needed since the thread which updates the set of local 15114 * addresses use ipif/ill locks and exit those (hence a store memory 15115 * barrier) before doing the atomic increase of ips_src_generation. 15116 */ 15117 if (generation != NULL) { 15118 *generation = ipst->ips_src_generation; 15119 } 15120 15121 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15122 *srcp = multicast_ifaddr; 15123 return (0); 15124 } 15125 15126 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15127 if (setsrc != INADDR_ANY) { 15128 *srcp = setsrc; 15129 return (0); 15130 } 15131 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15132 if (ipif == NULL) { 15133 if (notready) 15134 return (ENETDOWN); 15135 else 15136 return (EADDRNOTAVAIL); 15137 } 15138 *srcp = ipif->ipif_lcl_addr; 15139 if (flagsp != NULL) 15140 *flagsp = ipif->ipif_flags; 15141 ipif_refrele(ipif); 15142 return (0); 15143 } 15144 15145 /* ARGSUSED */ 15146 int 15147 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15148 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15149 { 15150 /* 15151 * ill_phyint_reinit merged the v4 and v6 into a single 15152 * ipsq. We might not have been able to complete the 15153 * operation in ipif_set_values, if we could not become 15154 * exclusive. If so restart it here. 15155 */ 15156 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15157 } 15158 15159 /* 15160 * Can operate on either a module or a driver queue. 15161 * Returns an error if not a module queue. 15162 */ 15163 /* ARGSUSED */ 15164 int 15165 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15166 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15167 { 15168 queue_t *q1 = q; 15169 char *cp; 15170 char interf_name[LIFNAMSIZ]; 15171 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15172 15173 if (q->q_next == NULL) { 15174 ip1dbg(( 15175 "if_unitsel: IF_UNITSEL: no q_next\n")); 15176 return (EINVAL); 15177 } 15178 15179 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15180 return (EALREADY); 15181 15182 do { 15183 q1 = q1->q_next; 15184 } while (q1->q_next); 15185 cp = q1->q_qinfo->qi_minfo->mi_idname; 15186 (void) sprintf(interf_name, "%s%d", cp, ppa); 15187 15188 /* 15189 * Here we are not going to delay the ioack until after 15190 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15191 * original ioctl message before sending the requests. 15192 */ 15193 return (ipif_set_values(q, mp, interf_name, &ppa)); 15194 } 15195 15196 /* ARGSUSED */ 15197 int 15198 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15199 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15200 { 15201 return (ENXIO); 15202 } 15203 15204 /* 15205 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15206 * `irep'. Returns a pointer to the next free `irep' entry 15207 * A mirror exists in ipif_delete_bcast_ires(). 15208 * 15209 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15210 * done in ire_add. 15211 */ 15212 static ire_t ** 15213 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15214 { 15215 ipaddr_t addr; 15216 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15217 ipaddr_t subnetmask = ipif->ipif_net_mask; 15218 ill_t *ill = ipif->ipif_ill; 15219 zoneid_t zoneid = ipif->ipif_zoneid; 15220 15221 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15222 15223 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15224 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15225 15226 if (ipif->ipif_lcl_addr == INADDR_ANY || 15227 (ipif->ipif_flags & IPIF_NOLOCAL)) 15228 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15229 15230 irep = ire_create_bcast(ill, 0, zoneid, irep); 15231 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15232 15233 /* 15234 * For backward compatibility, we create net broadcast IREs based on 15235 * the old "IP address class system", since some old machines only 15236 * respond to these class derived net broadcast. However, we must not 15237 * create these net broadcast IREs if the subnetmask is shorter than 15238 * the IP address class based derived netmask. Otherwise, we may 15239 * create a net broadcast address which is the same as an IP address 15240 * on the subnet -- and then TCP will refuse to talk to that address. 15241 */ 15242 if (netmask < subnetmask) { 15243 addr = netmask & ipif->ipif_subnet; 15244 irep = ire_create_bcast(ill, addr, zoneid, irep); 15245 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15246 } 15247 15248 /* 15249 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15250 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15251 * created. Creating these broadcast IREs will only create confusion 15252 * as `addr' will be the same as the IP address. 15253 */ 15254 if (subnetmask != 0xFFFFFFFF) { 15255 addr = ipif->ipif_subnet; 15256 irep = ire_create_bcast(ill, addr, zoneid, irep); 15257 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15258 } 15259 15260 return (irep); 15261 } 15262 15263 /* 15264 * Mirror of ipif_create_bcast_ires() 15265 */ 15266 static void 15267 ipif_delete_bcast_ires(ipif_t *ipif) 15268 { 15269 ipaddr_t addr; 15270 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15271 ipaddr_t subnetmask = ipif->ipif_net_mask; 15272 ill_t *ill = ipif->ipif_ill; 15273 zoneid_t zoneid = ipif->ipif_zoneid; 15274 ire_t *ire; 15275 15276 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15277 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15278 15279 if (ipif->ipif_lcl_addr == INADDR_ANY || 15280 (ipif->ipif_flags & IPIF_NOLOCAL)) 15281 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15282 15283 ire = ire_lookup_bcast(ill, 0, zoneid); 15284 ASSERT(ire != NULL); 15285 ire_delete(ire); ire_refrele(ire); 15286 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15287 ASSERT(ire != NULL); 15288 ire_delete(ire); ire_refrele(ire); 15289 15290 /* 15291 * For backward compatibility, we create net broadcast IREs based on 15292 * the old "IP address class system", since some old machines only 15293 * respond to these class derived net broadcast. However, we must not 15294 * create these net broadcast IREs if the subnetmask is shorter than 15295 * the IP address class based derived netmask. Otherwise, we may 15296 * create a net broadcast address which is the same as an IP address 15297 * on the subnet -- and then TCP will refuse to talk to that address. 15298 */ 15299 if (netmask < subnetmask) { 15300 addr = netmask & ipif->ipif_subnet; 15301 ire = ire_lookup_bcast(ill, addr, zoneid); 15302 ASSERT(ire != NULL); 15303 ire_delete(ire); ire_refrele(ire); 15304 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15305 ASSERT(ire != NULL); 15306 ire_delete(ire); ire_refrele(ire); 15307 } 15308 15309 /* 15310 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15311 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15312 * created. Creating these broadcast IREs will only create confusion 15313 * as `addr' will be the same as the IP address. 15314 */ 15315 if (subnetmask != 0xFFFFFFFF) { 15316 addr = ipif->ipif_subnet; 15317 ire = ire_lookup_bcast(ill, addr, zoneid); 15318 ASSERT(ire != NULL); 15319 ire_delete(ire); ire_refrele(ire); 15320 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15321 ASSERT(ire != NULL); 15322 ire_delete(ire); ire_refrele(ire); 15323 } 15324 } 15325 15326 /* 15327 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15328 * from lifr_flags and the name from lifr_name. 15329 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15330 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15331 * Returns EINPROGRESS when mp has been consumed by queueing it on 15332 * ipx_pending_mp and the ioctl will complete in ip_rput. 15333 * 15334 * Can operate on either a module or a driver queue. 15335 * Returns an error if not a module queue. 15336 */ 15337 /* ARGSUSED */ 15338 int 15339 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15340 ip_ioctl_cmd_t *ipip, void *if_req) 15341 { 15342 ill_t *ill = q->q_ptr; 15343 phyint_t *phyi; 15344 ip_stack_t *ipst; 15345 struct lifreq *lifr = if_req; 15346 uint64_t new_flags; 15347 15348 ASSERT(ipif != NULL); 15349 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15350 15351 if (q->q_next == NULL) { 15352 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15353 return (EINVAL); 15354 } 15355 15356 /* 15357 * If we are not writer on 'q' then this interface exists already 15358 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15359 * so return EALREADY. 15360 */ 15361 if (ill != ipif->ipif_ill) 15362 return (EALREADY); 15363 15364 if (ill->ill_name[0] != '\0') 15365 return (EALREADY); 15366 15367 /* 15368 * If there's another ill already with the requested name, ensure 15369 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15370 * fuse together two unrelated ills, which will cause chaos. 15371 */ 15372 ipst = ill->ill_ipst; 15373 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15374 lifr->lifr_name, NULL); 15375 if (phyi != NULL) { 15376 ill_t *ill_mate = phyi->phyint_illv4; 15377 15378 if (ill_mate == NULL) 15379 ill_mate = phyi->phyint_illv6; 15380 ASSERT(ill_mate != NULL); 15381 15382 if (ill_mate->ill_media->ip_m_mac_type != 15383 ill->ill_media->ip_m_mac_type) { 15384 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15385 "use the same ill name on differing media\n")); 15386 return (EINVAL); 15387 } 15388 } 15389 15390 /* 15391 * We start off as IFF_IPV4 in ipif_allocate and become 15392 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15393 * The only flags that we read from user space are IFF_IPV4, 15394 * IFF_IPV6, and IFF_BROADCAST. 15395 * 15396 * This ill has not been inserted into the global list. 15397 * So we are still single threaded and don't need any lock 15398 * 15399 * Saniy check the flags. 15400 */ 15401 15402 if ((lifr->lifr_flags & IFF_BROADCAST) && 15403 ((lifr->lifr_flags & IFF_IPV6) || 15404 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15405 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15406 "or IPv6 i.e., no broadcast \n")); 15407 return (EINVAL); 15408 } 15409 15410 new_flags = 15411 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15412 15413 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15414 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15415 "IFF_IPV4 or IFF_IPV6\n")); 15416 return (EINVAL); 15417 } 15418 15419 /* 15420 * We always start off as IPv4, so only need to check for IPv6. 15421 */ 15422 if ((new_flags & IFF_IPV6) != 0) { 15423 ill->ill_flags |= ILLF_IPV6; 15424 ill->ill_flags &= ~ILLF_IPV4; 15425 } 15426 15427 if ((new_flags & IFF_BROADCAST) != 0) 15428 ipif->ipif_flags |= IPIF_BROADCAST; 15429 else 15430 ipif->ipif_flags &= ~IPIF_BROADCAST; 15431 15432 /* We started off as V4. */ 15433 if (ill->ill_flags & ILLF_IPV6) { 15434 ill->ill_phyint->phyint_illv6 = ill; 15435 ill->ill_phyint->phyint_illv4 = NULL; 15436 } 15437 15438 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15439 } 15440 15441 /* ARGSUSED */ 15442 int 15443 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15444 ip_ioctl_cmd_t *ipip, void *if_req) 15445 { 15446 /* 15447 * ill_phyint_reinit merged the v4 and v6 into a single 15448 * ipsq. We might not have been able to complete the 15449 * slifname in ipif_set_values, if we could not become 15450 * exclusive. If so restart it here 15451 */ 15452 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15453 } 15454 15455 /* 15456 * Return a pointer to the ipif which matches the index, IP version type and 15457 * zoneid. 15458 */ 15459 ipif_t * 15460 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15461 ip_stack_t *ipst) 15462 { 15463 ill_t *ill; 15464 ipif_t *ipif = NULL; 15465 15466 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15467 if (ill != NULL) { 15468 mutex_enter(&ill->ill_lock); 15469 for (ipif = ill->ill_ipif; ipif != NULL; 15470 ipif = ipif->ipif_next) { 15471 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15472 zoneid == ipif->ipif_zoneid || 15473 ipif->ipif_zoneid == ALL_ZONES)) { 15474 ipif_refhold_locked(ipif); 15475 break; 15476 } 15477 } 15478 mutex_exit(&ill->ill_lock); 15479 ill_refrele(ill); 15480 } 15481 return (ipif); 15482 } 15483 15484 /* 15485 * Change an existing physical interface's index. If the new index 15486 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15487 * Finally, we update other systems which may have a dependence on the 15488 * index value. 15489 */ 15490 /* ARGSUSED */ 15491 int 15492 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15493 ip_ioctl_cmd_t *ipip, void *ifreq) 15494 { 15495 ill_t *ill; 15496 phyint_t *phyi; 15497 struct ifreq *ifr = (struct ifreq *)ifreq; 15498 struct lifreq *lifr = (struct lifreq *)ifreq; 15499 uint_t old_index, index; 15500 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15501 avl_index_t where; 15502 15503 if (ipip->ipi_cmd_type == IF_CMD) 15504 index = ifr->ifr_index; 15505 else 15506 index = lifr->lifr_index; 15507 15508 /* 15509 * Only allow on physical interface. Also, index zero is illegal. 15510 */ 15511 ill = ipif->ipif_ill; 15512 phyi = ill->ill_phyint; 15513 if (ipif->ipif_id != 0 || index == 0) { 15514 return (EINVAL); 15515 } 15516 15517 /* If the index is not changing, no work to do */ 15518 if (phyi->phyint_ifindex == index) 15519 return (0); 15520 15521 /* 15522 * Use phyint_exists() to determine if the new interface index 15523 * is already in use. If the index is unused then we need to 15524 * change the phyint's position in the phyint_list_avl_by_index 15525 * tree. If we do not do this, subsequent lookups (using the new 15526 * index value) will not find the phyint. 15527 */ 15528 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15529 if (phyint_exists(index, ipst)) { 15530 rw_exit(&ipst->ips_ill_g_lock); 15531 return (EEXIST); 15532 } 15533 15534 /* 15535 * The new index is unused. Set it in the phyint. However we must not 15536 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15537 * changes. The event must be bound to old ifindex value. 15538 */ 15539 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15540 &index, sizeof (index)); 15541 15542 old_index = phyi->phyint_ifindex; 15543 phyi->phyint_ifindex = index; 15544 15545 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15546 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15547 &index, &where); 15548 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15549 phyi, where); 15550 rw_exit(&ipst->ips_ill_g_lock); 15551 15552 /* Update SCTP's ILL list */ 15553 sctp_ill_reindex(ill, old_index); 15554 15555 /* Send the routing sockets message */ 15556 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15557 if (ILL_OTHER(ill)) 15558 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15559 15560 /* Perhaps ilgs should use this ill */ 15561 update_conn_ill(NULL, ill->ill_ipst); 15562 return (0); 15563 } 15564 15565 /* ARGSUSED */ 15566 int 15567 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15568 ip_ioctl_cmd_t *ipip, void *ifreq) 15569 { 15570 struct ifreq *ifr = (struct ifreq *)ifreq; 15571 struct lifreq *lifr = (struct lifreq *)ifreq; 15572 15573 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15574 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15575 /* Get the interface index */ 15576 if (ipip->ipi_cmd_type == IF_CMD) { 15577 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15578 } else { 15579 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15580 } 15581 return (0); 15582 } 15583 15584 /* ARGSUSED */ 15585 int 15586 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15587 ip_ioctl_cmd_t *ipip, void *ifreq) 15588 { 15589 struct lifreq *lifr = (struct lifreq *)ifreq; 15590 15591 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15592 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15593 /* Get the interface zone */ 15594 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15595 lifr->lifr_zoneid = ipif->ipif_zoneid; 15596 return (0); 15597 } 15598 15599 /* 15600 * Set the zoneid of an interface. 15601 */ 15602 /* ARGSUSED */ 15603 int 15604 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15605 ip_ioctl_cmd_t *ipip, void *ifreq) 15606 { 15607 struct lifreq *lifr = (struct lifreq *)ifreq; 15608 int err = 0; 15609 boolean_t need_up = B_FALSE; 15610 zone_t *zptr; 15611 zone_status_t status; 15612 zoneid_t zoneid; 15613 15614 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15615 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15616 if (!is_system_labeled()) 15617 return (ENOTSUP); 15618 zoneid = GLOBAL_ZONEID; 15619 } 15620 15621 /* cannot assign instance zero to a non-global zone */ 15622 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15623 return (ENOTSUP); 15624 15625 /* 15626 * Cannot assign to a zone that doesn't exist or is shutting down. In 15627 * the event of a race with the zone shutdown processing, since IP 15628 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15629 * interface will be cleaned up even if the zone is shut down 15630 * immediately after the status check. If the interface can't be brought 15631 * down right away, and the zone is shut down before the restart 15632 * function is called, we resolve the possible races by rechecking the 15633 * zone status in the restart function. 15634 */ 15635 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15636 return (EINVAL); 15637 status = zone_status_get(zptr); 15638 zone_rele(zptr); 15639 15640 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15641 return (EINVAL); 15642 15643 if (ipif->ipif_flags & IPIF_UP) { 15644 /* 15645 * If the interface is already marked up, 15646 * we call ipif_down which will take care 15647 * of ditching any IREs that have been set 15648 * up based on the old interface address. 15649 */ 15650 err = ipif_logical_down(ipif, q, mp); 15651 if (err == EINPROGRESS) 15652 return (err); 15653 (void) ipif_down_tail(ipif); 15654 need_up = B_TRUE; 15655 } 15656 15657 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15658 return (err); 15659 } 15660 15661 static int 15662 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15663 queue_t *q, mblk_t *mp, boolean_t need_up) 15664 { 15665 int err = 0; 15666 ip_stack_t *ipst; 15667 15668 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15670 15671 if (CONN_Q(q)) 15672 ipst = CONNQ_TO_IPST(q); 15673 else 15674 ipst = ILLQ_TO_IPST(q); 15675 15676 /* 15677 * For exclusive stacks we don't allow a different zoneid than 15678 * global. 15679 */ 15680 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15681 zoneid != GLOBAL_ZONEID) 15682 return (EINVAL); 15683 15684 /* Set the new zone id. */ 15685 ipif->ipif_zoneid = zoneid; 15686 15687 /* Update sctp list */ 15688 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15689 15690 /* The default multicast interface might have changed */ 15691 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15692 15693 if (need_up) { 15694 /* 15695 * Now bring the interface back up. If this 15696 * is the only IPIF for the ILL, ipif_up 15697 * will have to re-bind to the device, so 15698 * we may get back EINPROGRESS, in which 15699 * case, this IOCTL will get completed in 15700 * ip_rput_dlpi when we see the DL_BIND_ACK. 15701 */ 15702 err = ipif_up(ipif, q, mp); 15703 } 15704 return (err); 15705 } 15706 15707 /* ARGSUSED */ 15708 int 15709 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15710 ip_ioctl_cmd_t *ipip, void *if_req) 15711 { 15712 struct lifreq *lifr = (struct lifreq *)if_req; 15713 zoneid_t zoneid; 15714 zone_t *zptr; 15715 zone_status_t status; 15716 15717 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15718 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15719 zoneid = GLOBAL_ZONEID; 15720 15721 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15722 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15723 15724 /* 15725 * We recheck the zone status to resolve the following race condition: 15726 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15727 * 2) hme0:1 is up and can't be brought down right away; 15728 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15729 * 3) zone "myzone" is halted; the zone status switches to 15730 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15731 * the interfaces to remove - hme0:1 is not returned because it's not 15732 * yet in "myzone", so it won't be removed; 15733 * 4) the restart function for SIOCSLIFZONE is called; without the 15734 * status check here, we would have hme0:1 in "myzone" after it's been 15735 * destroyed. 15736 * Note that if the status check fails, we need to bring the interface 15737 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15738 * ipif_up_done[_v6](). 15739 */ 15740 status = ZONE_IS_UNINITIALIZED; 15741 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15742 status = zone_status_get(zptr); 15743 zone_rele(zptr); 15744 } 15745 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15746 if (ipif->ipif_isv6) { 15747 (void) ipif_up_done_v6(ipif); 15748 } else { 15749 (void) ipif_up_done(ipif); 15750 } 15751 return (EINVAL); 15752 } 15753 15754 (void) ipif_down_tail(ipif); 15755 15756 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15757 B_TRUE)); 15758 } 15759 15760 /* 15761 * Return the number of addresses on `ill' with one or more of the values 15762 * in `set' set and all of the values in `clear' clear. 15763 */ 15764 static uint_t 15765 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15766 { 15767 ipif_t *ipif; 15768 uint_t cnt = 0; 15769 15770 ASSERT(IAM_WRITER_ILL(ill)); 15771 15772 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15773 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15774 cnt++; 15775 15776 return (cnt); 15777 } 15778 15779 /* 15780 * Return the number of migratable addresses on `ill' that are under 15781 * application control. 15782 */ 15783 uint_t 15784 ill_appaddr_cnt(const ill_t *ill) 15785 { 15786 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15787 IPIF_NOFAILOVER)); 15788 } 15789 15790 /* 15791 * Return the number of point-to-point addresses on `ill'. 15792 */ 15793 uint_t 15794 ill_ptpaddr_cnt(const ill_t *ill) 15795 { 15796 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15797 } 15798 15799 /* ARGSUSED */ 15800 int 15801 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15802 ip_ioctl_cmd_t *ipip, void *ifreq) 15803 { 15804 struct lifreq *lifr = ifreq; 15805 15806 ASSERT(q->q_next == NULL); 15807 ASSERT(CONN_Q(q)); 15808 15809 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15810 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15811 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15812 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15813 15814 return (0); 15815 } 15816 15817 /* Find the previous ILL in this usesrc group */ 15818 static ill_t * 15819 ill_prev_usesrc(ill_t *uill) 15820 { 15821 ill_t *ill; 15822 15823 for (ill = uill->ill_usesrc_grp_next; 15824 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15825 ill = ill->ill_usesrc_grp_next) 15826 /* do nothing */; 15827 return (ill); 15828 } 15829 15830 /* 15831 * Release all members of the usesrc group. This routine is called 15832 * from ill_delete when the interface being unplumbed is the 15833 * group head. 15834 * 15835 * This silently clears the usesrc that ifconfig setup. 15836 * An alternative would be to keep that ifindex, and drop packets on the floor 15837 * since no source address can be selected. 15838 * Even if we keep the current semantics, don't need a lock and a linked list. 15839 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15840 * the one that is being removed. Issue is how we return the usesrc users 15841 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15842 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15843 * ill walk, but the walker would need to insert in the ioctl response. 15844 */ 15845 static void 15846 ill_disband_usesrc_group(ill_t *uill) 15847 { 15848 ill_t *next_ill, *tmp_ill; 15849 ip_stack_t *ipst = uill->ill_ipst; 15850 15851 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15852 next_ill = uill->ill_usesrc_grp_next; 15853 15854 do { 15855 ASSERT(next_ill != NULL); 15856 tmp_ill = next_ill->ill_usesrc_grp_next; 15857 ASSERT(tmp_ill != NULL); 15858 next_ill->ill_usesrc_grp_next = NULL; 15859 next_ill->ill_usesrc_ifindex = 0; 15860 next_ill = tmp_ill; 15861 } while (next_ill->ill_usesrc_ifindex != 0); 15862 uill->ill_usesrc_grp_next = NULL; 15863 } 15864 15865 /* 15866 * Remove the client usesrc ILL from the list and relink to a new list 15867 */ 15868 int 15869 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15870 { 15871 ill_t *ill, *tmp_ill; 15872 ip_stack_t *ipst = ucill->ill_ipst; 15873 15874 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15875 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15876 15877 /* 15878 * Check if the usesrc client ILL passed in is not already 15879 * in use as a usesrc ILL i.e one whose source address is 15880 * in use OR a usesrc ILL is not already in use as a usesrc 15881 * client ILL 15882 */ 15883 if ((ucill->ill_usesrc_ifindex == 0) || 15884 (uill->ill_usesrc_ifindex != 0)) { 15885 return (-1); 15886 } 15887 15888 ill = ill_prev_usesrc(ucill); 15889 ASSERT(ill->ill_usesrc_grp_next != NULL); 15890 15891 /* Remove from the current list */ 15892 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15893 /* Only two elements in the list */ 15894 ASSERT(ill->ill_usesrc_ifindex == 0); 15895 ill->ill_usesrc_grp_next = NULL; 15896 } else { 15897 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15898 } 15899 15900 if (ifindex == 0) { 15901 ucill->ill_usesrc_ifindex = 0; 15902 ucill->ill_usesrc_grp_next = NULL; 15903 return (0); 15904 } 15905 15906 ucill->ill_usesrc_ifindex = ifindex; 15907 tmp_ill = uill->ill_usesrc_grp_next; 15908 uill->ill_usesrc_grp_next = ucill; 15909 ucill->ill_usesrc_grp_next = 15910 (tmp_ill != NULL) ? tmp_ill : uill; 15911 return (0); 15912 } 15913 15914 /* 15915 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15916 * ip.c for locking details. 15917 */ 15918 /* ARGSUSED */ 15919 int 15920 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15921 ip_ioctl_cmd_t *ipip, void *ifreq) 15922 { 15923 struct lifreq *lifr = (struct lifreq *)ifreq; 15924 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15925 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15926 int err = 0, ret; 15927 uint_t ifindex; 15928 ipsq_t *ipsq = NULL; 15929 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15930 15931 ASSERT(IAM_WRITER_IPIF(ipif)); 15932 ASSERT(q->q_next == NULL); 15933 ASSERT(CONN_Q(q)); 15934 15935 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15936 15937 ifindex = lifr->lifr_index; 15938 if (ifindex == 0) { 15939 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15940 /* non usesrc group interface, nothing to reset */ 15941 return (0); 15942 } 15943 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15944 /* valid reset request */ 15945 reset_flg = B_TRUE; 15946 } 15947 15948 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15949 if (usesrc_ill == NULL) { 15950 return (ENXIO); 15951 } 15952 15953 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15954 NEW_OP, B_TRUE); 15955 if (ipsq == NULL) { 15956 err = EINPROGRESS; 15957 /* Operation enqueued on the ipsq of the usesrc ILL */ 15958 goto done; 15959 } 15960 15961 /* USESRC isn't currently supported with IPMP */ 15962 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15963 err = ENOTSUP; 15964 goto done; 15965 } 15966 15967 /* 15968 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15969 * used by IPMP underlying interfaces, but someone might think it's 15970 * more general and try to use it independently with VNI.) 15971 */ 15972 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15973 err = ENOTSUP; 15974 goto done; 15975 } 15976 15977 /* 15978 * If the client is already in use as a usesrc_ill or a usesrc_ill is 15979 * already a client then return EINVAL 15980 */ 15981 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 15982 err = EINVAL; 15983 goto done; 15984 } 15985 15986 /* 15987 * If the ill_usesrc_ifindex field is already set to what it needs to 15988 * be then this is a duplicate operation. 15989 */ 15990 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 15991 err = 0; 15992 goto done; 15993 } 15994 15995 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 15996 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 15997 usesrc_ill->ill_isv6)); 15998 15999 /* 16000 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16001 * and the ill_usesrc_ifindex fields 16002 */ 16003 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16004 16005 if (reset_flg) { 16006 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16007 if (ret != 0) { 16008 err = EINVAL; 16009 } 16010 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16011 goto done; 16012 } 16013 16014 /* 16015 * Four possibilities to consider: 16016 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16017 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16018 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16019 * 4. Both are part of their respective usesrc groups 16020 */ 16021 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16022 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16023 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16024 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16025 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16026 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16027 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16028 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16029 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16030 /* Insert at head of list */ 16031 usesrc_cli_ill->ill_usesrc_grp_next = 16032 usesrc_ill->ill_usesrc_grp_next; 16033 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16034 } else { 16035 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16036 ifindex); 16037 if (ret != 0) 16038 err = EINVAL; 16039 } 16040 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16041 16042 done: 16043 if (ipsq != NULL) 16044 ipsq_exit(ipsq); 16045 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16046 ill_refrele(usesrc_ill); 16047 16048 /* Let conn_ixa caching know that source address selection changed */ 16049 ip_update_source_selection(ipst); 16050 16051 return (err); 16052 } 16053 16054 /* 16055 * comparison function used by avl. 16056 */ 16057 static int 16058 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16059 { 16060 16061 uint_t index; 16062 16063 ASSERT(phyip != NULL && index_ptr != NULL); 16064 16065 index = *((uint_t *)index_ptr); 16066 /* 16067 * let the phyint with the lowest index be on top. 16068 */ 16069 if (((phyint_t *)phyip)->phyint_ifindex < index) 16070 return (1); 16071 if (((phyint_t *)phyip)->phyint_ifindex > index) 16072 return (-1); 16073 return (0); 16074 } 16075 16076 /* 16077 * comparison function used by avl. 16078 */ 16079 static int 16080 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16081 { 16082 ill_t *ill; 16083 int res = 0; 16084 16085 ASSERT(phyip != NULL && name_ptr != NULL); 16086 16087 if (((phyint_t *)phyip)->phyint_illv4) 16088 ill = ((phyint_t *)phyip)->phyint_illv4; 16089 else 16090 ill = ((phyint_t *)phyip)->phyint_illv6; 16091 ASSERT(ill != NULL); 16092 16093 res = strcmp(ill->ill_name, (char *)name_ptr); 16094 if (res > 0) 16095 return (1); 16096 else if (res < 0) 16097 return (-1); 16098 return (0); 16099 } 16100 16101 /* 16102 * This function is called on the unplumb path via ill_glist_delete() when 16103 * there are no ills left on the phyint and thus the phyint can be freed. 16104 */ 16105 static void 16106 phyint_free(phyint_t *phyi) 16107 { 16108 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16109 16110 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16111 16112 /* 16113 * If this phyint was an IPMP meta-interface, blow away the group. 16114 * This is safe to do because all of the illgrps have already been 16115 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16116 * If we're cleaning up as a result of failed initialization, 16117 * phyint_grp may be NULL. 16118 */ 16119 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16120 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16121 ipmp_grp_destroy(phyi->phyint_grp); 16122 phyi->phyint_grp = NULL; 16123 rw_exit(&ipst->ips_ipmp_lock); 16124 } 16125 16126 /* 16127 * If this interface was under IPMP, take it out of the group. 16128 */ 16129 if (phyi->phyint_grp != NULL) 16130 ipmp_phyint_leave_grp(phyi); 16131 16132 /* 16133 * Delete the phyint and disassociate its ipsq. The ipsq itself 16134 * will be freed in ipsq_exit(). 16135 */ 16136 phyi->phyint_ipsq->ipsq_phyint = NULL; 16137 phyi->phyint_name[0] = '\0'; 16138 16139 mi_free(phyi); 16140 } 16141 16142 /* 16143 * Attach the ill to the phyint structure which can be shared by both 16144 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16145 * function is called from ipif_set_values and ill_lookup_on_name (for 16146 * loopback) where we know the name of the ill. We lookup the ill and if 16147 * there is one present already with the name use that phyint. Otherwise 16148 * reuse the one allocated by ill_init. 16149 */ 16150 static void 16151 ill_phyint_reinit(ill_t *ill) 16152 { 16153 boolean_t isv6 = ill->ill_isv6; 16154 phyint_t *phyi_old; 16155 phyint_t *phyi; 16156 avl_index_t where = 0; 16157 ill_t *ill_other = NULL; 16158 ip_stack_t *ipst = ill->ill_ipst; 16159 16160 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16161 16162 phyi_old = ill->ill_phyint; 16163 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16164 phyi_old->phyint_illv6 == NULL)); 16165 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16166 phyi_old->phyint_illv4 == NULL)); 16167 ASSERT(phyi_old->phyint_ifindex == 0); 16168 16169 /* 16170 * Now that our ill has a name, set it in the phyint. 16171 */ 16172 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16173 16174 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16175 ill->ill_name, &where); 16176 16177 /* 16178 * 1. We grabbed the ill_g_lock before inserting this ill into 16179 * the global list of ills. So no other thread could have located 16180 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16181 * 2. Now locate the other protocol instance of this ill. 16182 * 3. Now grab both ill locks in the right order, and the phyint lock of 16183 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16184 * of neither ill can change. 16185 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16186 * other ill. 16187 * 5. Release all locks. 16188 */ 16189 16190 /* 16191 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16192 * we are initializing IPv4. 16193 */ 16194 if (phyi != NULL) { 16195 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16196 ASSERT(ill_other->ill_phyint != NULL); 16197 ASSERT((isv6 && !ill_other->ill_isv6) || 16198 (!isv6 && ill_other->ill_isv6)); 16199 GRAB_ILL_LOCKS(ill, ill_other); 16200 /* 16201 * We are potentially throwing away phyint_flags which 16202 * could be different from the one that we obtain from 16203 * ill_other->ill_phyint. But it is okay as we are assuming 16204 * that the state maintained within IP is correct. 16205 */ 16206 mutex_enter(&phyi->phyint_lock); 16207 if (isv6) { 16208 ASSERT(phyi->phyint_illv6 == NULL); 16209 phyi->phyint_illv6 = ill; 16210 } else { 16211 ASSERT(phyi->phyint_illv4 == NULL); 16212 phyi->phyint_illv4 = ill; 16213 } 16214 16215 /* 16216 * Delete the old phyint and make its ipsq eligible 16217 * to be freed in ipsq_exit(). 16218 */ 16219 phyi_old->phyint_illv4 = NULL; 16220 phyi_old->phyint_illv6 = NULL; 16221 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16222 phyi_old->phyint_name[0] = '\0'; 16223 mi_free(phyi_old); 16224 } else { 16225 mutex_enter(&ill->ill_lock); 16226 /* 16227 * We don't need to acquire any lock, since 16228 * the ill is not yet visible globally and we 16229 * have not yet released the ill_g_lock. 16230 */ 16231 phyi = phyi_old; 16232 mutex_enter(&phyi->phyint_lock); 16233 /* XXX We need a recovery strategy here. */ 16234 if (!phyint_assign_ifindex(phyi, ipst)) 16235 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16236 16237 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16238 (void *)phyi, where); 16239 16240 (void) avl_find(&ipst->ips_phyint_g_list-> 16241 phyint_list_avl_by_index, 16242 &phyi->phyint_ifindex, &where); 16243 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16244 (void *)phyi, where); 16245 } 16246 16247 /* 16248 * Reassigning ill_phyint automatically reassigns the ipsq also. 16249 * pending mp is not affected because that is per ill basis. 16250 */ 16251 ill->ill_phyint = phyi; 16252 16253 /* 16254 * Now that the phyint's ifindex has been assigned, complete the 16255 * remaining 16256 */ 16257 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16258 if (ill->ill_isv6) { 16259 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16260 ill->ill_phyint->phyint_ifindex; 16261 ill->ill_mcast_type = ipst->ips_mld_max_version; 16262 } else { 16263 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16264 } 16265 16266 /* 16267 * Generate an event within the hooks framework to indicate that 16268 * a new interface has just been added to IP. For this event to 16269 * be generated, the network interface must, at least, have an 16270 * ifindex assigned to it. (We don't generate the event for 16271 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16272 * 16273 * This needs to be run inside the ill_g_lock perimeter to ensure 16274 * that the ordering of delivered events to listeners matches the 16275 * order of them in the kernel. 16276 */ 16277 if (!IS_LOOPBACK(ill)) { 16278 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16279 ill->ill_name_length); 16280 } 16281 RELEASE_ILL_LOCKS(ill, ill_other); 16282 mutex_exit(&phyi->phyint_lock); 16283 } 16284 16285 /* 16286 * Notify any downstream modules of the name of this interface. 16287 * An M_IOCTL is used even though we don't expect a successful reply. 16288 * Any reply message from the driver (presumably an M_IOCNAK) will 16289 * eventually get discarded somewhere upstream. The message format is 16290 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16291 * to IP. 16292 */ 16293 static void 16294 ip_ifname_notify(ill_t *ill, queue_t *q) 16295 { 16296 mblk_t *mp1, *mp2; 16297 struct iocblk *iocp; 16298 struct lifreq *lifr; 16299 16300 mp1 = mkiocb(SIOCSLIFNAME); 16301 if (mp1 == NULL) 16302 return; 16303 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16304 if (mp2 == NULL) { 16305 freeb(mp1); 16306 return; 16307 } 16308 16309 mp1->b_cont = mp2; 16310 iocp = (struct iocblk *)mp1->b_rptr; 16311 iocp->ioc_count = sizeof (struct lifreq); 16312 16313 lifr = (struct lifreq *)mp2->b_rptr; 16314 mp2->b_wptr += sizeof (struct lifreq); 16315 bzero(lifr, sizeof (struct lifreq)); 16316 16317 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16318 lifr->lifr_ppa = ill->ill_ppa; 16319 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16320 16321 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16322 char *, "SIOCSLIFNAME", ill_t *, ill); 16323 putnext(q, mp1); 16324 } 16325 16326 static int 16327 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16328 { 16329 int err; 16330 ip_stack_t *ipst = ill->ill_ipst; 16331 phyint_t *phyi = ill->ill_phyint; 16332 16333 /* Set the obsolete NDD per-interface forwarding name. */ 16334 err = ill_set_ndd_name(ill); 16335 if (err != 0) { 16336 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16337 err); 16338 } 16339 16340 /* 16341 * Now that ill_name is set, the configuration for the IPMP 16342 * meta-interface can be performed. 16343 */ 16344 if (IS_IPMP(ill)) { 16345 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16346 /* 16347 * If phyi->phyint_grp is NULL, then this is the first IPMP 16348 * meta-interface and we need to create the IPMP group. 16349 */ 16350 if (phyi->phyint_grp == NULL) { 16351 /* 16352 * If someone has renamed another IPMP group to have 16353 * the same name as our interface, bail. 16354 */ 16355 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16356 rw_exit(&ipst->ips_ipmp_lock); 16357 return (EEXIST); 16358 } 16359 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16360 if (phyi->phyint_grp == NULL) { 16361 rw_exit(&ipst->ips_ipmp_lock); 16362 return (ENOMEM); 16363 } 16364 } 16365 rw_exit(&ipst->ips_ipmp_lock); 16366 } 16367 16368 /* Tell downstream modules where they are. */ 16369 ip_ifname_notify(ill, q); 16370 16371 /* 16372 * ill_dl_phys returns EINPROGRESS in the usual case. 16373 * Error cases are ENOMEM ... 16374 */ 16375 err = ill_dl_phys(ill, ipif, mp, q); 16376 16377 if (ill->ill_isv6) { 16378 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16379 if (ipst->ips_mld_slowtimeout_id == 0) { 16380 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16381 (void *)ipst, 16382 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16383 } 16384 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16385 } else { 16386 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16387 if (ipst->ips_igmp_slowtimeout_id == 0) { 16388 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16389 (void *)ipst, 16390 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16391 } 16392 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16393 } 16394 16395 return (err); 16396 } 16397 16398 /* 16399 * Common routine for ppa and ifname setting. Should be called exclusive. 16400 * 16401 * Returns EINPROGRESS when mp has been consumed by queueing it on 16402 * ipx_pending_mp and the ioctl will complete in ip_rput. 16403 * 16404 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16405 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16406 * For SLIFNAME, we pass these values back to the userland. 16407 */ 16408 static int 16409 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16410 { 16411 ill_t *ill; 16412 ipif_t *ipif; 16413 ipsq_t *ipsq; 16414 char *ppa_ptr; 16415 char *old_ptr; 16416 char old_char; 16417 int error; 16418 ip_stack_t *ipst; 16419 16420 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16421 ASSERT(q->q_next != NULL); 16422 ASSERT(interf_name != NULL); 16423 16424 ill = (ill_t *)q->q_ptr; 16425 ipst = ill->ill_ipst; 16426 16427 ASSERT(ill->ill_ipst != NULL); 16428 ASSERT(ill->ill_name[0] == '\0'); 16429 ASSERT(IAM_WRITER_ILL(ill)); 16430 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16431 ASSERT(ill->ill_ppa == UINT_MAX); 16432 16433 ill->ill_defend_start = ill->ill_defend_count = 0; 16434 /* The ppa is sent down by ifconfig or is chosen */ 16435 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16436 return (EINVAL); 16437 } 16438 16439 /* 16440 * make sure ppa passed in is same as ppa in the name. 16441 * This check is not made when ppa == UINT_MAX in that case ppa 16442 * in the name could be anything. System will choose a ppa and 16443 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16444 */ 16445 if (*new_ppa_ptr != UINT_MAX) { 16446 /* stoi changes the pointer */ 16447 old_ptr = ppa_ptr; 16448 /* 16449 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16450 * (they don't have an externally visible ppa). We assign one 16451 * here so that we can manage the interface. Note that in 16452 * the past this value was always 0 for DLPI 1 drivers. 16453 */ 16454 if (*new_ppa_ptr == 0) 16455 *new_ppa_ptr = stoi(&old_ptr); 16456 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16457 return (EINVAL); 16458 } 16459 /* 16460 * terminate string before ppa 16461 * save char at that location. 16462 */ 16463 old_char = ppa_ptr[0]; 16464 ppa_ptr[0] = '\0'; 16465 16466 ill->ill_ppa = *new_ppa_ptr; 16467 /* 16468 * Finish as much work now as possible before calling ill_glist_insert 16469 * which makes the ill globally visible and also merges it with the 16470 * other protocol instance of this phyint. The remaining work is 16471 * done after entering the ipsq which may happen sometime later. 16472 * ill_set_ndd_name occurs after the ill has been made globally visible. 16473 */ 16474 ipif = ill->ill_ipif; 16475 16476 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16477 ipif_assign_seqid(ipif); 16478 16479 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16480 ill->ill_flags |= ILLF_IPV4; 16481 16482 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16483 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16484 16485 if (ill->ill_flags & ILLF_IPV6) { 16486 16487 ill->ill_isv6 = B_TRUE; 16488 ill_set_inputfn(ill); 16489 if (ill->ill_rq != NULL) { 16490 ill->ill_rq->q_qinfo = &iprinitv6; 16491 } 16492 16493 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16494 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16495 ipif->ipif_v6subnet = ipv6_all_zeros; 16496 ipif->ipif_v6net_mask = ipv6_all_zeros; 16497 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16498 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16499 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16500 /* 16501 * point-to-point or Non-mulicast capable 16502 * interfaces won't do NUD unless explicitly 16503 * configured to do so. 16504 */ 16505 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16506 !(ill->ill_flags & ILLF_MULTICAST)) { 16507 ill->ill_flags |= ILLF_NONUD; 16508 } 16509 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16510 if (ill->ill_flags & ILLF_NOARP) { 16511 /* 16512 * Note: xresolv interfaces will eventually need 16513 * NOARP set here as well, but that will require 16514 * those external resolvers to have some 16515 * knowledge of that flag and act appropriately. 16516 * Not to be changed at present. 16517 */ 16518 ill->ill_flags &= ~ILLF_NOARP; 16519 } 16520 /* 16521 * Set the ILLF_ROUTER flag according to the global 16522 * IPv6 forwarding policy. 16523 */ 16524 if (ipst->ips_ipv6_forward != 0) 16525 ill->ill_flags |= ILLF_ROUTER; 16526 } else if (ill->ill_flags & ILLF_IPV4) { 16527 ill->ill_isv6 = B_FALSE; 16528 ill_set_inputfn(ill); 16529 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16530 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16531 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16532 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16533 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16534 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16535 /* 16536 * Set the ILLF_ROUTER flag according to the global 16537 * IPv4 forwarding policy. 16538 */ 16539 if (ipst->ips_ip_g_forward != 0) 16540 ill->ill_flags |= ILLF_ROUTER; 16541 } 16542 16543 ASSERT(ill->ill_phyint != NULL); 16544 16545 /* 16546 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16547 * be completed in ill_glist_insert -> ill_phyint_reinit 16548 */ 16549 if (!ill_allocate_mibs(ill)) 16550 return (ENOMEM); 16551 16552 /* 16553 * Pick a default sap until we get the DL_INFO_ACK back from 16554 * the driver. 16555 */ 16556 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16557 ill->ill_media->ip_m_ipv4sap; 16558 16559 ill->ill_ifname_pending = 1; 16560 ill->ill_ifname_pending_err = 0; 16561 16562 /* 16563 * When the first ipif comes up in ipif_up_done(), multicast groups 16564 * that were joined while this ill was not bound to the DLPI link need 16565 * to be recovered by ill_recover_multicast(). 16566 */ 16567 ill->ill_need_recover_multicast = 1; 16568 16569 ill_refhold(ill); 16570 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16571 if ((error = ill_glist_insert(ill, interf_name, 16572 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16573 ill->ill_ppa = UINT_MAX; 16574 ill->ill_name[0] = '\0'; 16575 /* 16576 * undo null termination done above. 16577 */ 16578 ppa_ptr[0] = old_char; 16579 rw_exit(&ipst->ips_ill_g_lock); 16580 ill_refrele(ill); 16581 return (error); 16582 } 16583 16584 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16585 16586 /* 16587 * When we return the buffer pointed to by interf_name should contain 16588 * the same name as in ill_name. 16589 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16590 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16591 * so copy full name and update the ppa ptr. 16592 * When ppa passed in != UINT_MAX all values are correct just undo 16593 * null termination, this saves a bcopy. 16594 */ 16595 if (*new_ppa_ptr == UINT_MAX) { 16596 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16597 *new_ppa_ptr = ill->ill_ppa; 16598 } else { 16599 /* 16600 * undo null termination done above. 16601 */ 16602 ppa_ptr[0] = old_char; 16603 } 16604 16605 /* Let SCTP know about this ILL */ 16606 sctp_update_ill(ill, SCTP_ILL_INSERT); 16607 16608 /* 16609 * ill_glist_insert has made the ill visible globally, and 16610 * ill_phyint_reinit could have changed the ipsq. At this point, 16611 * we need to hold the ips_ill_g_lock across the call to enter the 16612 * ipsq to enforce atomicity and prevent reordering. In the event 16613 * the ipsq has changed, and if the new ipsq is currently busy, 16614 * we need to make sure that this half-completed ioctl is ahead of 16615 * any subsequent ioctl. We achieve this by not dropping the 16616 * ips_ill_g_lock which prevents any ill lookup itself thereby 16617 * ensuring that new ioctls can't start. 16618 */ 16619 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16620 B_TRUE); 16621 16622 rw_exit(&ipst->ips_ill_g_lock); 16623 ill_refrele(ill); 16624 if (ipsq == NULL) 16625 return (EINPROGRESS); 16626 16627 /* 16628 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16629 */ 16630 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16631 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16632 else 16633 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16634 16635 error = ipif_set_values_tail(ill, ipif, mp, q); 16636 ipsq_exit(ipsq); 16637 if (error != 0 && error != EINPROGRESS) { 16638 /* 16639 * restore previous values 16640 */ 16641 ill->ill_isv6 = B_FALSE; 16642 ill_set_inputfn(ill); 16643 } 16644 return (error); 16645 } 16646 16647 void 16648 ipif_init(ip_stack_t *ipst) 16649 { 16650 int i; 16651 16652 for (i = 0; i < MAX_G_HEADS; i++) { 16653 ipst->ips_ill_g_heads[i].ill_g_list_head = 16654 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16655 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16656 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16657 } 16658 16659 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16660 ill_phyint_compare_index, 16661 sizeof (phyint_t), 16662 offsetof(struct phyint, phyint_avl_by_index)); 16663 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16664 ill_phyint_compare_name, 16665 sizeof (phyint_t), 16666 offsetof(struct phyint, phyint_avl_by_name)); 16667 } 16668 16669 /* 16670 * Save enough information so that we can recreate the IRE if 16671 * the interface goes down and then up. 16672 */ 16673 void 16674 ill_save_ire(ill_t *ill, ire_t *ire) 16675 { 16676 mblk_t *save_mp; 16677 16678 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16679 if (save_mp != NULL) { 16680 ifrt_t *ifrt; 16681 16682 save_mp->b_wptr += sizeof (ifrt_t); 16683 ifrt = (ifrt_t *)save_mp->b_rptr; 16684 bzero(ifrt, sizeof (ifrt_t)); 16685 ifrt->ifrt_type = ire->ire_type; 16686 if (ire->ire_ipversion == IPV4_VERSION) { 16687 ASSERT(!ill->ill_isv6); 16688 ifrt->ifrt_addr = ire->ire_addr; 16689 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16690 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16691 ifrt->ifrt_mask = ire->ire_mask; 16692 } else { 16693 ASSERT(ill->ill_isv6); 16694 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16695 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16696 mutex_enter(&ire->ire_lock); 16697 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16698 mutex_exit(&ire->ire_lock); 16699 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16700 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16701 } 16702 ifrt->ifrt_flags = ire->ire_flags; 16703 ifrt->ifrt_zoneid = ire->ire_zoneid; 16704 mutex_enter(&ill->ill_saved_ire_lock); 16705 save_mp->b_cont = ill->ill_saved_ire_mp; 16706 ill->ill_saved_ire_mp = save_mp; 16707 ill->ill_saved_ire_cnt++; 16708 mutex_exit(&ill->ill_saved_ire_lock); 16709 } 16710 } 16711 16712 /* 16713 * Remove one entry from ill_saved_ire_mp. 16714 */ 16715 void 16716 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16717 { 16718 mblk_t **mpp; 16719 mblk_t *mp; 16720 ifrt_t *ifrt; 16721 16722 /* Remove from ill_saved_ire_mp list if it is there */ 16723 mutex_enter(&ill->ill_saved_ire_lock); 16724 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16725 mpp = &(*mpp)->b_cont) { 16726 in6_addr_t gw_addr_v6; 16727 16728 /* 16729 * On a given ill, the tuple of address, gateway, mask, 16730 * ire_type, and zoneid is unique for each saved IRE. 16731 */ 16732 mp = *mpp; 16733 ifrt = (ifrt_t *)mp->b_rptr; 16734 /* ire_gateway_addr_v6 can change - need lock */ 16735 mutex_enter(&ire->ire_lock); 16736 gw_addr_v6 = ire->ire_gateway_addr_v6; 16737 mutex_exit(&ire->ire_lock); 16738 16739 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16740 ifrt->ifrt_type != ire->ire_type) 16741 continue; 16742 16743 if (ill->ill_isv6 ? 16744 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16745 &ire->ire_addr_v6) && 16746 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16747 &gw_addr_v6) && 16748 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16749 &ire->ire_mask_v6)) : 16750 (ifrt->ifrt_addr == ire->ire_addr && 16751 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16752 ifrt->ifrt_mask == ire->ire_mask)) { 16753 *mpp = mp->b_cont; 16754 ill->ill_saved_ire_cnt--; 16755 freeb(mp); 16756 break; 16757 } 16758 } 16759 mutex_exit(&ill->ill_saved_ire_lock); 16760 } 16761 16762 /* 16763 * IP multirouting broadcast routes handling 16764 * Append CGTP broadcast IREs to regular ones created 16765 * at ifconfig time. 16766 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16767 * the destination and the gateway are broadcast addresses. 16768 * The caller has verified that the destination is an IRE_BROADCAST and that 16769 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16770 * we create a MULTIRT IRE_BROADCAST. 16771 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16772 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16773 */ 16774 static void 16775 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16776 { 16777 ire_t *ire_prim; 16778 16779 ASSERT(ire != NULL); 16780 16781 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16782 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16783 NULL); 16784 if (ire_prim != NULL) { 16785 /* 16786 * We are in the special case of broadcasts for 16787 * CGTP. We add an IRE_BROADCAST that holds 16788 * the RTF_MULTIRT flag, the destination 16789 * address and the low level 16790 * info of ire_prim. In other words, CGTP 16791 * broadcast is added to the redundant ipif. 16792 */ 16793 ill_t *ill_prim; 16794 ire_t *bcast_ire; 16795 16796 ill_prim = ire_prim->ire_ill; 16797 16798 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16799 (void *)ire_prim, (void *)ill_prim)); 16800 16801 bcast_ire = ire_create( 16802 (uchar_t *)&ire->ire_addr, 16803 (uchar_t *)&ip_g_all_ones, 16804 (uchar_t *)&ire->ire_gateway_addr, 16805 IRE_BROADCAST, 16806 ill_prim, 16807 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16808 ire->ire_flags | RTF_KERNEL, 16809 NULL, 16810 ipst); 16811 16812 /* 16813 * Here we assume that ire_add does head insertion so that 16814 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16815 */ 16816 if (bcast_ire != NULL) { 16817 if (ire->ire_flags & RTF_SETSRC) { 16818 bcast_ire->ire_setsrc_addr = 16819 ire->ire_setsrc_addr; 16820 } 16821 bcast_ire = ire_add(bcast_ire); 16822 if (bcast_ire != NULL) { 16823 ip2dbg(("ip_cgtp_filter_bcast_add: " 16824 "added bcast_ire %p\n", 16825 (void *)bcast_ire)); 16826 16827 ill_save_ire(ill_prim, bcast_ire); 16828 ire_refrele(bcast_ire); 16829 } 16830 } 16831 ire_refrele(ire_prim); 16832 } 16833 } 16834 16835 /* 16836 * IP multirouting broadcast routes handling 16837 * Remove the broadcast ire. 16838 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16839 * the destination and the gateway are broadcast addresses. 16840 * The caller has only verified that RTF_MULTIRT was set. We check 16841 * that the destination is broadcast and that the gateway is a broadcast 16842 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16843 */ 16844 static void 16845 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16846 { 16847 ASSERT(ire != NULL); 16848 16849 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16850 ire_t *ire_prim; 16851 16852 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16853 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16854 ipst, NULL); 16855 if (ire_prim != NULL) { 16856 ill_t *ill_prim; 16857 ire_t *bcast_ire; 16858 16859 ill_prim = ire_prim->ire_ill; 16860 16861 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16862 "ire_prim %p, ill_prim %p\n", 16863 (void *)ire_prim, (void *)ill_prim)); 16864 16865 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16866 ire->ire_gateway_addr, IRE_BROADCAST, 16867 ill_prim, ALL_ZONES, NULL, 16868 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16869 MATCH_IRE_MASK, 0, ipst, NULL); 16870 16871 if (bcast_ire != NULL) { 16872 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16873 "looked up bcast_ire %p\n", 16874 (void *)bcast_ire)); 16875 ill_remove_saved_ire(bcast_ire->ire_ill, 16876 bcast_ire); 16877 ire_delete(bcast_ire); 16878 ire_refrele(bcast_ire); 16879 } 16880 ire_refrele(ire_prim); 16881 } 16882 } 16883 } 16884 16885 /* 16886 * Derive an interface id from the link layer address. 16887 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16888 */ 16889 static void 16890 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16891 { 16892 char *addr; 16893 16894 /* 16895 * Note that some IPv6 interfaces get plumbed over links that claim to 16896 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16897 * PPP links). The ETHERADDRL check here ensures that we only set the 16898 * interface ID on IPv6 interfaces above links that actually have real 16899 * Ethernet addresses. 16900 */ 16901 if (ill->ill_phys_addr_length == ETHERADDRL) { 16902 /* Form EUI-64 like address */ 16903 addr = (char *)&v6addr->s6_addr32[2]; 16904 bcopy(ill->ill_phys_addr, addr, 3); 16905 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16906 addr[3] = (char)0xff; 16907 addr[4] = (char)0xfe; 16908 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16909 } 16910 } 16911 16912 /* ARGSUSED */ 16913 static void 16914 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16915 { 16916 } 16917 16918 typedef struct ipmp_ifcookie { 16919 uint32_t ic_hostid; 16920 char ic_ifname[LIFNAMSIZ]; 16921 char ic_zonename[ZONENAME_MAX]; 16922 } ipmp_ifcookie_t; 16923 16924 /* 16925 * Construct a pseudo-random interface ID for the IPMP interface that's both 16926 * predictable and (almost) guaranteed to be unique. 16927 */ 16928 static void 16929 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16930 { 16931 zone_t *zp; 16932 uint8_t *addr; 16933 uchar_t hash[16]; 16934 ulong_t hostid; 16935 MD5_CTX ctx; 16936 ipmp_ifcookie_t ic = { 0 }; 16937 16938 ASSERT(IS_IPMP(ill)); 16939 16940 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16941 ic.ic_hostid = htonl((uint32_t)hostid); 16942 16943 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16944 16945 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16946 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16947 zone_rele(zp); 16948 } 16949 16950 MD5Init(&ctx); 16951 MD5Update(&ctx, &ic, sizeof (ic)); 16952 MD5Final(hash, &ctx); 16953 16954 /* 16955 * Map the hash to an interface ID per the basic approach in RFC3041. 16956 */ 16957 addr = &v6addr->s6_addr8[8]; 16958 bcopy(hash + 8, addr, sizeof (uint64_t)); 16959 addr[0] &= ~0x2; /* set local bit */ 16960 } 16961 16962 /* 16963 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16964 */ 16965 static void 16966 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16967 { 16968 phyint_t *phyi = ill->ill_phyint; 16969 16970 /* 16971 * Check PHYI_MULTI_BCAST and length of physical 16972 * address to determine if we use the mapping or the 16973 * broadcast address. 16974 */ 16975 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16976 ill->ill_phys_addr_length != ETHERADDRL) { 16977 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 16978 return; 16979 } 16980 m_physaddr[0] = 0x33; 16981 m_physaddr[1] = 0x33; 16982 m_physaddr[2] = m_ip6addr[12]; 16983 m_physaddr[3] = m_ip6addr[13]; 16984 m_physaddr[4] = m_ip6addr[14]; 16985 m_physaddr[5] = m_ip6addr[15]; 16986 } 16987 16988 /* 16989 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 16990 */ 16991 static void 16992 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16993 { 16994 phyint_t *phyi = ill->ill_phyint; 16995 16996 /* 16997 * Check PHYI_MULTI_BCAST and length of physical 16998 * address to determine if we use the mapping or the 16999 * broadcast address. 17000 */ 17001 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17002 ill->ill_phys_addr_length != ETHERADDRL) { 17003 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17004 return; 17005 } 17006 m_physaddr[0] = 0x01; 17007 m_physaddr[1] = 0x00; 17008 m_physaddr[2] = 0x5e; 17009 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17010 m_physaddr[4] = m_ipaddr[2]; 17011 m_physaddr[5] = m_ipaddr[3]; 17012 } 17013 17014 /* ARGSUSED */ 17015 static void 17016 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17017 { 17018 /* 17019 * for the MULTI_BCAST case and other cases when we want to 17020 * use the link-layer broadcast address for multicast. 17021 */ 17022 uint8_t *bphys_addr; 17023 dl_unitdata_req_t *dlur; 17024 17025 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17026 if (ill->ill_sap_length < 0) { 17027 bphys_addr = (uchar_t *)dlur + 17028 dlur->dl_dest_addr_offset; 17029 } else { 17030 bphys_addr = (uchar_t *)dlur + 17031 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17032 } 17033 17034 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17035 } 17036 17037 /* 17038 * Derive IPoIB interface id from the link layer address. 17039 */ 17040 static void 17041 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17042 { 17043 char *addr; 17044 17045 ASSERT(ill->ill_phys_addr_length == 20); 17046 addr = (char *)&v6addr->s6_addr32[2]; 17047 bcopy(ill->ill_phys_addr + 12, addr, 8); 17048 /* 17049 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17050 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17051 * rules. In these cases, the IBA considers these GUIDs to be in 17052 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17053 * required; vendors are required not to assign global EUI-64's 17054 * that differ only in u/l bit values, thus guaranteeing uniqueness 17055 * of the interface identifier. Whether the GUID is in modified 17056 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17057 * bit set to 1. 17058 */ 17059 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17060 } 17061 17062 /* 17063 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17064 * Note on mapping from multicast IP addresses to IPoIB multicast link 17065 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17066 * The format of an IPoIB multicast address is: 17067 * 17068 * 4 byte QPN Scope Sign. Pkey 17069 * +--------------------------------------------+ 17070 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17071 * +--------------------------------------------+ 17072 * 17073 * The Scope and Pkey components are properties of the IBA port and 17074 * network interface. They can be ascertained from the broadcast address. 17075 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17076 */ 17077 static void 17078 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17079 { 17080 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17081 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17082 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17083 uint8_t *bphys_addr; 17084 dl_unitdata_req_t *dlur; 17085 17086 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17087 17088 /* 17089 * RFC 4391: IPv4 MGID is 28-bit long. 17090 */ 17091 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17092 m_physaddr[17] = m_ipaddr[1]; 17093 m_physaddr[18] = m_ipaddr[2]; 17094 m_physaddr[19] = m_ipaddr[3]; 17095 17096 17097 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17098 if (ill->ill_sap_length < 0) { 17099 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17100 } else { 17101 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17102 ill->ill_sap_length; 17103 } 17104 /* 17105 * Now fill in the IBA scope/Pkey values from the broadcast address. 17106 */ 17107 m_physaddr[5] = bphys_addr[5]; 17108 m_physaddr[8] = bphys_addr[8]; 17109 m_physaddr[9] = bphys_addr[9]; 17110 } 17111 17112 static void 17113 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17114 { 17115 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17116 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17117 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17118 uint8_t *bphys_addr; 17119 dl_unitdata_req_t *dlur; 17120 17121 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17122 17123 /* 17124 * RFC 4391: IPv4 MGID is 80-bit long. 17125 */ 17126 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17127 17128 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17129 if (ill->ill_sap_length < 0) { 17130 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17131 } else { 17132 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17133 ill->ill_sap_length; 17134 } 17135 /* 17136 * Now fill in the IBA scope/Pkey values from the broadcast address. 17137 */ 17138 m_physaddr[5] = bphys_addr[5]; 17139 m_physaddr[8] = bphys_addr[8]; 17140 m_physaddr[9] = bphys_addr[9]; 17141 } 17142 17143 /* 17144 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17145 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17146 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17147 * of RFC4213. 17148 */ 17149 static void 17150 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17151 { 17152 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17153 v6addr->s6_addr32[2] = 0; 17154 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17155 } 17156 17157 /* 17158 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17159 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17160 * id. 17161 */ 17162 static void 17163 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17164 { 17165 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17166 17167 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17168 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17169 } 17170 17171 static void 17172 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17173 { 17174 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17175 } 17176 17177 static void 17178 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17179 { 17180 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17181 } 17182 17183 static void 17184 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17185 { 17186 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17187 } 17188 17189 static void 17190 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17191 { 17192 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17193 } 17194 17195 /* 17196 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17197 * Returns an held ill, or NULL. 17198 */ 17199 ill_t * 17200 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17201 ip_stack_t *ipst) 17202 { 17203 ill_t *ill; 17204 ipif_t *ipif; 17205 17206 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17207 if (ill == NULL) 17208 return (NULL); 17209 17210 mutex_enter(&ill->ill_lock); 17211 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17212 if (IPIF_IS_CONDEMNED(ipif)) 17213 continue; 17214 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17215 ipif->ipif_zoneid != ALL_ZONES) 17216 continue; 17217 17218 mutex_exit(&ill->ill_lock); 17219 return (ill); 17220 } 17221 mutex_exit(&ill->ill_lock); 17222 ill_refrele(ill); 17223 return (NULL); 17224 } 17225 17226 /* 17227 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17228 * If a pointer to an ipif_t is returned then the caller will need to do 17229 * an ill_refrele(). 17230 */ 17231 ipif_t * 17232 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17233 ip_stack_t *ipst) 17234 { 17235 ipif_t *ipif; 17236 ill_t *ill; 17237 17238 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17239 if (ill == NULL) 17240 return (NULL); 17241 17242 mutex_enter(&ill->ill_lock); 17243 if (ill->ill_state_flags & ILL_CONDEMNED) { 17244 mutex_exit(&ill->ill_lock); 17245 ill_refrele(ill); 17246 return (NULL); 17247 } 17248 17249 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17250 if (!IPIF_CAN_LOOKUP(ipif)) 17251 continue; 17252 if (lifidx == ipif->ipif_id) { 17253 ipif_refhold_locked(ipif); 17254 break; 17255 } 17256 } 17257 17258 mutex_exit(&ill->ill_lock); 17259 ill_refrele(ill); 17260 return (ipif); 17261 } 17262 17263 /* 17264 * Set ill_inputfn based on the current know state. 17265 * This needs to be called when any of the factors taken into 17266 * account changes. 17267 */ 17268 void 17269 ill_set_inputfn(ill_t *ill) 17270 { 17271 ip_stack_t *ipst = ill->ill_ipst; 17272 17273 if (ill->ill_isv6) { 17274 if (is_system_labeled()) 17275 ill->ill_inputfn = ill_input_full_v6; 17276 else 17277 ill->ill_inputfn = ill_input_short_v6; 17278 } else { 17279 if (is_system_labeled()) 17280 ill->ill_inputfn = ill_input_full_v4; 17281 else if (ill->ill_dhcpinit != 0) 17282 ill->ill_inputfn = ill_input_full_v4; 17283 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17284 != NULL) 17285 ill->ill_inputfn = ill_input_full_v4; 17286 else if (ipst->ips_ip_cgtp_filter && 17287 ipst->ips_ip_cgtp_filter_ops != NULL) 17288 ill->ill_inputfn = ill_input_full_v4; 17289 else 17290 ill->ill_inputfn = ill_input_short_v4; 17291 } 17292 } 17293 17294 /* 17295 * Re-evaluate ill_inputfn for all the IPv4 ills. 17296 * Used when RSVP and CGTP comes and goes. 17297 */ 17298 void 17299 ill_set_inputfn_all(ip_stack_t *ipst) 17300 { 17301 ill_walk_context_t ctx; 17302 ill_t *ill; 17303 17304 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17305 ill = ILL_START_WALK_V4(&ctx, ipst); 17306 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17307 ill_set_inputfn(ill); 17308 17309 rw_exit(&ipst->ips_ill_g_lock); 17310 } 17311 17312 /* 17313 * Set the physical address information for `ill' to the contents of the 17314 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17315 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17316 * EINPROGRESS will be returned. 17317 */ 17318 int 17319 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17320 { 17321 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17322 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17323 17324 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17325 17326 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17327 dlindp->dl_data != DL_CURR_DEST_ADDR && 17328 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17329 /* Changing DL_IPV6_TOKEN is not yet supported */ 17330 return (0); 17331 } 17332 17333 /* 17334 * We need to store up to two copies of `mp' in `ill'. Due to the 17335 * design of ipsq_pending_mp_add(), we can't pass them as separate 17336 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17337 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17338 */ 17339 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17340 freemsg(mp); 17341 return (ENOMEM); 17342 } 17343 17344 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17345 mutex_enter(&ill->ill_lock); 17346 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17347 /* no more nce addition allowed */ 17348 mutex_exit(&ill->ill_lock); 17349 17350 /* 17351 * If we can quiesce the ill, then set the address. If not, then 17352 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17353 */ 17354 ill_down_ipifs(ill, B_TRUE); 17355 mutex_enter(&ill->ill_lock); 17356 if (!ill_is_quiescent(ill)) { 17357 /* call cannot fail since `conn_t *' argument is NULL */ 17358 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17359 mp, ILL_DOWN); 17360 mutex_exit(&ill->ill_lock); 17361 return (EINPROGRESS); 17362 } 17363 mutex_exit(&ill->ill_lock); 17364 17365 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17366 return (0); 17367 } 17368 17369 /* 17370 * Once the ill associated with `q' has quiesced, set its physical address 17371 * information to the values in `addrmp'. Note that two copies of `addrmp' 17372 * are passed (linked by b_cont), since we sometimes need to save two distinct 17373 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17374 * failure (we'll free the other copy if it's not needed). Since the ill_t 17375 * is quiesced, we know any stale nce's with the old address information have 17376 * already been removed, so we don't need to call nce_flush(). 17377 */ 17378 /* ARGSUSED */ 17379 static void 17380 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17381 { 17382 ill_t *ill = q->q_ptr; 17383 mblk_t *addrmp2 = unlinkb(addrmp); 17384 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17385 uint_t addrlen, addroff; 17386 int status; 17387 17388 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17389 17390 addroff = dlindp->dl_addr_offset; 17391 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17392 17393 switch (dlindp->dl_data) { 17394 case DL_IPV6_LINK_LAYER_ADDR: 17395 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17396 freemsg(addrmp2); 17397 break; 17398 17399 case DL_CURR_DEST_ADDR: 17400 freemsg(ill->ill_dest_addr_mp); 17401 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17402 ill->ill_dest_addr_mp = addrmp; 17403 if (ill->ill_isv6) { 17404 ill_setdesttoken(ill); 17405 ipif_setdestlinklocal(ill->ill_ipif); 17406 } 17407 freemsg(addrmp2); 17408 break; 17409 17410 case DL_CURR_PHYS_ADDR: 17411 freemsg(ill->ill_phys_addr_mp); 17412 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17413 ill->ill_phys_addr_mp = addrmp; 17414 ill->ill_phys_addr_length = addrlen; 17415 if (ill->ill_isv6) 17416 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17417 else 17418 freemsg(addrmp2); 17419 if (ill->ill_isv6) { 17420 ill_setdefaulttoken(ill); 17421 ipif_setlinklocal(ill->ill_ipif); 17422 } 17423 break; 17424 default: 17425 ASSERT(0); 17426 } 17427 17428 /* 17429 * If there are ipifs to bring up, ill_up_ipifs() will return 17430 * EINPROGRESS, and ipsq_current_finish() will be called by 17431 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17432 * brought up. 17433 */ 17434 status = ill_up_ipifs(ill, q, addrmp); 17435 mutex_enter(&ill->ill_lock); 17436 if (ill->ill_dl_up) 17437 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17438 mutex_exit(&ill->ill_lock); 17439 if (status != EINPROGRESS) 17440 ipsq_current_finish(ipsq); 17441 } 17442 17443 /* 17444 * Helper routine for setting the ill_nd_lla fields. 17445 */ 17446 void 17447 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17448 { 17449 freemsg(ill->ill_nd_lla_mp); 17450 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17451 ill->ill_nd_lla_mp = ndmp; 17452 ill->ill_nd_lla_len = addrlen; 17453 } 17454 17455 /* 17456 * Replumb the ill. 17457 */ 17458 int 17459 ill_replumb(ill_t *ill, mblk_t *mp) 17460 { 17461 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17462 17463 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17464 17465 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17466 17467 mutex_enter(&ill->ill_lock); 17468 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17469 /* no more nce addition allowed */ 17470 mutex_exit(&ill->ill_lock); 17471 17472 /* 17473 * If we can quiesce the ill, then continue. If not, then 17474 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17475 */ 17476 ill_down_ipifs(ill, B_FALSE); 17477 17478 mutex_enter(&ill->ill_lock); 17479 if (!ill_is_quiescent(ill)) { 17480 /* call cannot fail since `conn_t *' argument is NULL */ 17481 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17482 mp, ILL_DOWN); 17483 mutex_exit(&ill->ill_lock); 17484 return (EINPROGRESS); 17485 } 17486 mutex_exit(&ill->ill_lock); 17487 17488 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17489 return (0); 17490 } 17491 17492 /* ARGSUSED */ 17493 static void 17494 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17495 { 17496 ill_t *ill = q->q_ptr; 17497 int err; 17498 conn_t *connp = NULL; 17499 17500 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17501 freemsg(ill->ill_replumb_mp); 17502 ill->ill_replumb_mp = copyb(mp); 17503 17504 if (ill->ill_replumb_mp == NULL) { 17505 /* out of memory */ 17506 ipsq_current_finish(ipsq); 17507 return; 17508 } 17509 17510 mutex_enter(&ill->ill_lock); 17511 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17512 ill->ill_rq, ill->ill_replumb_mp, 0); 17513 mutex_exit(&ill->ill_lock); 17514 17515 if (!ill->ill_up_ipifs) { 17516 /* already closing */ 17517 ipsq_current_finish(ipsq); 17518 return; 17519 } 17520 ill->ill_replumbing = 1; 17521 err = ill_down_ipifs_tail(ill); 17522 17523 /* 17524 * Successfully quiesced and brought down the interface, now we send 17525 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17526 * DL_NOTE_REPLUMB message. 17527 */ 17528 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17529 DL_NOTIFY_CONF); 17530 ASSERT(mp != NULL); 17531 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17532 DL_NOTE_REPLUMB_DONE; 17533 ill_dlpi_send(ill, mp); 17534 17535 /* 17536 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17537 * streams have to be unbound. When all the DLPI exchanges are done, 17538 * ipsq_current_finish() will be called by arp_bringup_done(). The 17539 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17540 * arp_bringup_done(). 17541 */ 17542 ASSERT(ill->ill_replumb_mp != NULL); 17543 if (err == EINPROGRESS) 17544 return; 17545 else 17546 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17547 ASSERT(connp == NULL); 17548 if (err == 0 && ill->ill_replumb_mp != NULL && 17549 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17550 return; 17551 } 17552 ipsq_current_finish(ipsq); 17553 } 17554 17555 /* 17556 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17557 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17558 * as per the ioctl. On failure, an errno is returned. 17559 */ 17560 static int 17561 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17562 { 17563 int rval; 17564 struct strioctl iocb; 17565 17566 iocb.ic_cmd = cmd; 17567 iocb.ic_timout = 15; 17568 iocb.ic_len = bufsize; 17569 iocb.ic_dp = buf; 17570 17571 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17572 } 17573 17574 /* 17575 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17576 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17577 */ 17578 static int 17579 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17580 uint_t *bufsizep, cred_t *cr) 17581 { 17582 int err; 17583 struct lifnum lifn; 17584 17585 bzero(&lifn, sizeof (lifn)); 17586 lifn.lifn_family = af; 17587 lifn.lifn_flags = LIFC_UNDER_IPMP; 17588 17589 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17590 return (err); 17591 17592 /* 17593 * Pad the interface count to account for additional interfaces that 17594 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17595 */ 17596 lifn.lifn_count += 4; 17597 bzero(lifcp, sizeof (*lifcp)); 17598 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17599 lifcp->lifc_family = af; 17600 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17601 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17602 17603 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17604 if (err != 0) { 17605 kmem_free(lifcp->lifc_buf, *bufsizep); 17606 return (err); 17607 } 17608 17609 return (0); 17610 } 17611 17612 /* 17613 * Helper for ip_interface_cleanup() that removes the loopback interface. 17614 */ 17615 static void 17616 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17617 { 17618 int err; 17619 struct lifreq lifr; 17620 17621 bzero(&lifr, sizeof (lifr)); 17622 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17623 17624 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17625 if (err != 0) { 17626 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17627 "error %d\n", isv6 ? "v6" : "v4", err)); 17628 } 17629 } 17630 17631 /* 17632 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17633 * groups and that IPMP data addresses are down. These conditions must be met 17634 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17635 */ 17636 static void 17637 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17638 { 17639 int af = isv6 ? AF_INET6 : AF_INET; 17640 int i, nifs; 17641 int err; 17642 uint_t bufsize; 17643 uint_t lifrsize = sizeof (struct lifreq); 17644 struct lifconf lifc; 17645 struct lifreq *lifrp; 17646 17647 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17648 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17649 "(error %d); any IPMP interfaces cannot be shutdown", err); 17650 return; 17651 } 17652 17653 nifs = lifc.lifc_len / lifrsize; 17654 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17655 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17656 if (err != 0) { 17657 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17658 "flags: error %d", lifrp->lifr_name, err); 17659 continue; 17660 } 17661 17662 if (lifrp->lifr_flags & IFF_IPMP) { 17663 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17664 continue; 17665 17666 lifrp->lifr_flags &= ~IFF_UP; 17667 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17668 if (err != 0) { 17669 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17670 "bring down (error %d); IPMP interface may " 17671 "not be shutdown", lifrp->lifr_name, err); 17672 } 17673 17674 /* 17675 * Check if IFF_DUPLICATE is still set -- and if so, 17676 * reset the address to clear it. 17677 */ 17678 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17679 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17680 continue; 17681 17682 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17683 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17684 lifrp, lifrsize, cr)) != 0) { 17685 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17686 "reset DAD (error %d); IPMP interface may " 17687 "not be shutdown", lifrp->lifr_name, err); 17688 } 17689 continue; 17690 } 17691 17692 lifrp->lifr_groupname[0] = '\0'; 17693 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17694 if (err != 0) { 17695 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17696 "IPMP group (error %d); associated IPMP interface " 17697 "may not be shutdown", lifrp->lifr_name, err); 17698 continue; 17699 } 17700 } 17701 17702 kmem_free(lifc.lifc_buf, bufsize); 17703 } 17704 17705 #define UDPDEV "/devices/pseudo/udp@0:udp" 17706 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17707 17708 /* 17709 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17710 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17711 * when the user-level processes in the zone are killed and the latter are 17712 * cleaned up by str_stack_shutdown(). 17713 */ 17714 void 17715 ip_interface_cleanup(ip_stack_t *ipst) 17716 { 17717 ldi_handle_t lh; 17718 ldi_ident_t li; 17719 cred_t *cr; 17720 int err; 17721 int i; 17722 char *devs[] = { UDP6DEV, UDPDEV }; 17723 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17724 17725 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17726 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17727 " error %d", err); 17728 return; 17729 } 17730 17731 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17732 ASSERT(cr != NULL); 17733 17734 /* 17735 * NOTE: loop executes exactly twice and is hardcoded to know that the 17736 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17737 * the loop.) 17738 */ 17739 for (i = 0; i < 2; i++) { 17740 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17741 if (err != 0) { 17742 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17743 " error %d", devs[i], err); 17744 continue; 17745 } 17746 17747 ip_loopback_removeif(lh, i == 0, cr); 17748 ip_ipmp_cleanup(lh, i == 0, cr); 17749 17750 (void) ldi_close(lh, FREAD|FWRITE, cr); 17751 } 17752 17753 ldi_ident_release(li); 17754 crfree(cr); 17755 } 17756 17757 /* 17758 * This needs to be in-sync with nic_event_t definition 17759 */ 17760 static const char * 17761 ill_hook_event2str(nic_event_t event) 17762 { 17763 switch (event) { 17764 case NE_PLUMB: 17765 return ("PLUMB"); 17766 case NE_UNPLUMB: 17767 return ("UNPLUMB"); 17768 case NE_UP: 17769 return ("UP"); 17770 case NE_DOWN: 17771 return ("DOWN"); 17772 case NE_ADDRESS_CHANGE: 17773 return ("ADDRESS_CHANGE"); 17774 case NE_LIF_UP: 17775 return ("LIF_UP"); 17776 case NE_LIF_DOWN: 17777 return ("LIF_DOWN"); 17778 case NE_IFINDEX_CHANGE: 17779 return ("IFINDEX_CHANGE"); 17780 default: 17781 return ("UNKNOWN"); 17782 } 17783 } 17784 17785 void 17786 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17787 nic_event_data_t data, size_t datalen) 17788 { 17789 ip_stack_t *ipst = ill->ill_ipst; 17790 hook_nic_event_int_t *info; 17791 const char *str = NULL; 17792 17793 /* create a new nic event info */ 17794 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17795 goto fail; 17796 17797 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17798 info->hnei_event.hne_lif = lif; 17799 info->hnei_event.hne_event = event; 17800 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17801 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17802 info->hnei_event.hne_data = NULL; 17803 info->hnei_event.hne_datalen = 0; 17804 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17805 17806 if (data != NULL && datalen != 0) { 17807 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17808 if (info->hnei_event.hne_data == NULL) 17809 goto fail; 17810 bcopy(data, info->hnei_event.hne_data, datalen); 17811 info->hnei_event.hne_datalen = datalen; 17812 } 17813 17814 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17815 DDI_NOSLEEP) == DDI_SUCCESS) 17816 return; 17817 17818 fail: 17819 if (info != NULL) { 17820 if (info->hnei_event.hne_data != NULL) { 17821 kmem_free(info->hnei_event.hne_data, 17822 info->hnei_event.hne_datalen); 17823 } 17824 kmem_free(info, sizeof (hook_nic_event_t)); 17825 } 17826 str = ill_hook_event2str(event); 17827 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17828 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17829 } 17830 17831 static int 17832 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17833 { 17834 int err = 0; 17835 const in_addr_t *addr = NULL; 17836 nce_t *nce = NULL; 17837 ill_t *ill = ipif->ipif_ill; 17838 ill_t *bound_ill; 17839 boolean_t added_ipif = B_FALSE; 17840 uint16_t state; 17841 uint16_t flags; 17842 17843 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17844 ill_t *, ill, ipif_t *, ipif); 17845 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17846 addr = &ipif->ipif_lcl_addr; 17847 } 17848 17849 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17850 if (res_act != Res_act_initial) 17851 return (EINVAL); 17852 } 17853 17854 if (addr != NULL) { 17855 ipmp_illgrp_t *illg = ill->ill_grp; 17856 17857 /* add unicast nce for the local addr */ 17858 17859 if (IS_IPMP(ill)) { 17860 /* 17861 * If we're here via ipif_up(), then the ipif 17862 * won't be bound yet -- add it to the group, 17863 * which will bind it if possible. (We would 17864 * add it in ipif_up(), but deleting on failure 17865 * there is gruesome.) If we're here via 17866 * ipmp_ill_bind_ipif(), then the ipif has 17867 * already been added to the group and we 17868 * just need to use the binding. 17869 */ 17870 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17871 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17872 if (bound_ill == NULL) { 17873 /* 17874 * We couldn't bind the ipif to an ill 17875 * yet, so we have nothing to publish. 17876 * Mark the address as ready and return. 17877 */ 17878 ipif->ipif_addr_ready = 1; 17879 return (0); 17880 } 17881 added_ipif = B_TRUE; 17882 } 17883 } else { 17884 bound_ill = ill; 17885 } 17886 17887 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17888 NCE_F_NONUD); 17889 /* 17890 * If this is an initial bring-up (or the ipif was never 17891 * completely brought up), do DAD. Otherwise, we're here 17892 * because IPMP has rebound an address to this ill: send 17893 * unsolicited advertisements (ARP announcements) to 17894 * inform others. 17895 */ 17896 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17897 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17898 } else { 17899 state = ND_REACHABLE; 17900 flags |= NCE_F_UNSOL_ADV; 17901 } 17902 17903 retry: 17904 err = nce_lookup_then_add_v4(ill, 17905 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17906 addr, flags, state, &nce); 17907 17908 /* 17909 * note that we may encounter EEXIST if we are moving 17910 * the nce as a result of a rebind operation. 17911 */ 17912 switch (err) { 17913 case 0: 17914 ipif->ipif_added_nce = 1; 17915 nce->nce_ipif_cnt++; 17916 break; 17917 case EEXIST: 17918 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17919 ill->ill_name)); 17920 if (!NCE_MYADDR(nce->nce_common)) { 17921 /* 17922 * A leftover nce from before this address 17923 * existed 17924 */ 17925 ncec_delete(nce->nce_common); 17926 nce_refrele(nce); 17927 nce = NULL; 17928 goto retry; 17929 } 17930 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17931 nce_refrele(nce); 17932 nce = NULL; 17933 ip1dbg(("ipif_arp_up: NCE already exists " 17934 "for %s:%u\n", ill->ill_name, 17935 ipif->ipif_id)); 17936 goto arp_up_done; 17937 } 17938 /* 17939 * Duplicate local addresses are permissible for 17940 * IPIF_POINTOPOINT interfaces which will get marked 17941 * IPIF_UNNUMBERED later in 17942 * ip_addr_availability_check(). 17943 * 17944 * The nce_ipif_cnt field tracks the number of 17945 * ipifs that have nce_addr as their local address. 17946 */ 17947 ipif->ipif_addr_ready = 1; 17948 ipif->ipif_added_nce = 1; 17949 nce->nce_ipif_cnt++; 17950 err = 0; 17951 break; 17952 default: 17953 ASSERT(nce == NULL); 17954 goto arp_up_done; 17955 } 17956 if (arp_no_defense) { 17957 if ((ipif->ipif_flags & IPIF_UP) && 17958 !ipif->ipif_addr_ready) 17959 ipif_up_notify(ipif); 17960 ipif->ipif_addr_ready = 1; 17961 } 17962 } else { 17963 /* zero address. nothing to publish */ 17964 ipif->ipif_addr_ready = 1; 17965 } 17966 if (nce != NULL) 17967 nce_refrele(nce); 17968 arp_up_done: 17969 if (added_ipif && err != 0) 17970 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17971 return (err); 17972 } 17973 17974 int 17975 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 17976 { 17977 int err = 0; 17978 ill_t *ill = ipif->ipif_ill; 17979 boolean_t first_interface, wait_for_dlpi = B_FALSE; 17980 17981 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 17982 ill_t *, ill, ipif_t *, ipif); 17983 17984 /* 17985 * need to bring up ARP or setup mcast mapping only 17986 * when the first interface is coming UP. 17987 */ 17988 first_interface = (ill->ill_ipif_up_count == 0 && 17989 ill->ill_ipif_dup_count == 0 && !was_dup); 17990 17991 if (res_act == Res_act_initial && first_interface) { 17992 /* 17993 * Send ATTACH + BIND 17994 */ 17995 err = arp_ll_up(ill); 17996 if (err != EINPROGRESS && err != 0) 17997 return (err); 17998 17999 /* 18000 * Add NCE for local address. Start DAD. 18001 * we'll wait to hear that DAD has finished 18002 * before using the interface. 18003 */ 18004 if (err == EINPROGRESS) 18005 wait_for_dlpi = B_TRUE; 18006 } 18007 18008 if (!wait_for_dlpi) 18009 (void) ipif_arp_up_done_tail(ipif, res_act); 18010 18011 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18012 } 18013 18014 /* 18015 * Finish processing of "arp_up" after all the DLPI message 18016 * exchanges have completed between arp and the driver. 18017 */ 18018 void 18019 arp_bringup_done(ill_t *ill, int err) 18020 { 18021 mblk_t *mp1; 18022 ipif_t *ipif; 18023 conn_t *connp = NULL; 18024 ipsq_t *ipsq; 18025 queue_t *q; 18026 18027 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18028 18029 ASSERT(IAM_WRITER_ILL(ill)); 18030 18031 ipsq = ill->ill_phyint->phyint_ipsq; 18032 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18033 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18034 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18035 if (mp1 == NULL) /* bringup was aborted by the user */ 18036 return; 18037 18038 /* 18039 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18040 * must have an associated conn_t. Otherwise, we're bringing this 18041 * interface back up as part of handling an asynchronous event (e.g., 18042 * physical address change). 18043 */ 18044 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18045 ASSERT(connp != NULL); 18046 q = CONNP_TO_WQ(connp); 18047 } else { 18048 ASSERT(connp == NULL); 18049 q = ill->ill_rq; 18050 } 18051 if (err == 0) { 18052 if (ipif->ipif_isv6) { 18053 if ((err = ipif_up_done_v6(ipif)) != 0) 18054 ip0dbg(("arp_bringup_done: init failed\n")); 18055 } else { 18056 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18057 if (err != 0 || 18058 (err = ipif_up_done(ipif)) != 0) { 18059 ip0dbg(("arp_bringup_done: " 18060 "init failed err %x\n", err)); 18061 (void) ipif_arp_down(ipif); 18062 } 18063 18064 } 18065 } else { 18066 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18067 } 18068 18069 if ((err == 0) && (ill->ill_up_ipifs)) { 18070 err = ill_up_ipifs(ill, q, mp1); 18071 if (err == EINPROGRESS) 18072 return; 18073 } 18074 18075 /* 18076 * If we have a moved ipif to bring up, and everything has succeeded 18077 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18078 * down -- the admin can try to bring it up by hand if need be. 18079 */ 18080 if (ill->ill_move_ipif != NULL) { 18081 ipif = ill->ill_move_ipif; 18082 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18083 ipif->ipif_ill->ill_name)); 18084 ill->ill_move_ipif = NULL; 18085 if (err == 0) { 18086 err = ipif_up(ipif, q, mp1); 18087 if (err == EINPROGRESS) 18088 return; 18089 } 18090 } 18091 18092 /* 18093 * The operation must complete without EINPROGRESS since 18094 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18095 * Otherwise, the operation will be stuck forever in the ipsq. 18096 */ 18097 ASSERT(err != EINPROGRESS); 18098 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18099 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18100 int, ipsq->ipsq_xop->ipx_current_ioctl, 18101 ill_t *, ill, ipif_t *, ipif); 18102 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18103 } else { 18104 ipsq_current_finish(ipsq); 18105 } 18106 } 18107 18108 /* 18109 * Finish processing of arp replumb after all the DLPI message 18110 * exchanges have completed between arp and the driver. 18111 */ 18112 void 18113 arp_replumb_done(ill_t *ill, int err) 18114 { 18115 mblk_t *mp1; 18116 ipif_t *ipif; 18117 conn_t *connp = NULL; 18118 ipsq_t *ipsq; 18119 queue_t *q; 18120 18121 ASSERT(IAM_WRITER_ILL(ill)); 18122 18123 ipsq = ill->ill_phyint->phyint_ipsq; 18124 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18125 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18126 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18127 if (mp1 == NULL) { 18128 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18129 ipsq->ipsq_xop->ipx_current_ioctl)); 18130 /* bringup was aborted by the user */ 18131 return; 18132 } 18133 /* 18134 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18135 * must have an associated conn_t. Otherwise, we're bringing this 18136 * interface back up as part of handling an asynchronous event (e.g., 18137 * physical address change). 18138 */ 18139 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18140 ASSERT(connp != NULL); 18141 q = CONNP_TO_WQ(connp); 18142 } else { 18143 ASSERT(connp == NULL); 18144 q = ill->ill_rq; 18145 } 18146 if ((err == 0) && (ill->ill_up_ipifs)) { 18147 err = ill_up_ipifs(ill, q, mp1); 18148 if (err == EINPROGRESS) 18149 return; 18150 } 18151 /* 18152 * The operation must complete without EINPROGRESS since 18153 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18154 * Otherwise, the operation will be stuck forever in the ipsq. 18155 */ 18156 ASSERT(err != EINPROGRESS); 18157 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18158 DTRACE_PROBE4(ipif__ioctl, char *, 18159 "arp_replumb_done finish", 18160 int, ipsq->ipsq_xop->ipx_current_ioctl, 18161 ill_t *, ill, ipif_t *, ipif); 18162 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18163 } else { 18164 ipsq_current_finish(ipsq); 18165 } 18166 } 18167 18168 void 18169 ipif_up_notify(ipif_t *ipif) 18170 { 18171 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18172 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18173 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18174 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18175 NE_LIF_UP, NULL, 0); 18176 } 18177 18178 /* 18179 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18180 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18181 * TPI end points with STREAMS modules pushed above. This is assured by not 18182 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18183 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18184 * while unwinding from the ispq and that could be a thread from the bottom. 18185 */ 18186 /* ARGSUSED */ 18187 int 18188 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18189 ip_ioctl_cmd_t *ipip, void *arg) 18190 { 18191 mblk_t *cmd_mp = mp->b_cont->b_cont; 18192 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18193 int ret = 0; 18194 int i; 18195 size_t size; 18196 ip_stack_t *ipst; 18197 zoneid_t zoneid; 18198 ilb_stack_t *ilbs; 18199 18200 ipst = CONNQ_TO_IPST(q); 18201 ilbs = ipst->ips_netstack->netstack_ilb; 18202 zoneid = Q_TO_CONN(q)->conn_zoneid; 18203 18204 switch (command) { 18205 case ILB_CREATE_RULE: { 18206 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18207 18208 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18209 ret = EINVAL; 18210 break; 18211 } 18212 18213 ret = ilb_rule_add(ilbs, zoneid, cmd); 18214 break; 18215 } 18216 case ILB_DESTROY_RULE: 18217 case ILB_ENABLE_RULE: 18218 case ILB_DISABLE_RULE: { 18219 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18220 18221 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18222 ret = EINVAL; 18223 break; 18224 } 18225 18226 if (cmd->flags & ILB_RULE_ALLRULES) { 18227 if (command == ILB_DESTROY_RULE) { 18228 ilb_rule_del_all(ilbs, zoneid); 18229 break; 18230 } else if (command == ILB_ENABLE_RULE) { 18231 ilb_rule_enable_all(ilbs, zoneid); 18232 break; 18233 } else if (command == ILB_DISABLE_RULE) { 18234 ilb_rule_disable_all(ilbs, zoneid); 18235 break; 18236 } 18237 } else { 18238 if (command == ILB_DESTROY_RULE) { 18239 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18240 } else if (command == ILB_ENABLE_RULE) { 18241 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18242 NULL); 18243 } else if (command == ILB_DISABLE_RULE) { 18244 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18245 NULL); 18246 } 18247 } 18248 break; 18249 } 18250 case ILB_NUM_RULES: { 18251 ilb_num_rules_cmd_t *cmd; 18252 18253 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18254 ret = EINVAL; 18255 break; 18256 } 18257 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18258 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18259 break; 18260 } 18261 case ILB_RULE_NAMES: { 18262 ilb_rule_names_cmd_t *cmd; 18263 18264 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18265 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18266 cmd->num_names == 0) { 18267 ret = EINVAL; 18268 break; 18269 } 18270 size = cmd->num_names * ILB_RULE_NAMESZ; 18271 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18272 size != cmd_mp->b_wptr) { 18273 ret = EINVAL; 18274 break; 18275 } 18276 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18277 break; 18278 } 18279 case ILB_NUM_SERVERS: { 18280 ilb_num_servers_cmd_t *cmd; 18281 18282 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18283 ret = EINVAL; 18284 break; 18285 } 18286 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18287 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18288 &(cmd->num)); 18289 break; 18290 } 18291 case ILB_LIST_RULE: { 18292 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18293 18294 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18295 ret = EINVAL; 18296 break; 18297 } 18298 ret = ilb_rule_list(ilbs, zoneid, cmd); 18299 break; 18300 } 18301 case ILB_LIST_SERVERS: { 18302 ilb_servers_info_cmd_t *cmd; 18303 18304 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18305 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18306 cmd->num_servers == 0) { 18307 ret = EINVAL; 18308 break; 18309 } 18310 size = cmd->num_servers * sizeof (ilb_server_info_t); 18311 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18312 size != cmd_mp->b_wptr) { 18313 ret = EINVAL; 18314 break; 18315 } 18316 18317 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18318 &cmd->num_servers); 18319 break; 18320 } 18321 case ILB_ADD_SERVERS: { 18322 ilb_servers_info_cmd_t *cmd; 18323 ilb_rule_t *rule; 18324 18325 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18326 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18327 ret = EINVAL; 18328 break; 18329 } 18330 size = cmd->num_servers * sizeof (ilb_server_info_t); 18331 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18332 size != cmd_mp->b_wptr) { 18333 ret = EINVAL; 18334 break; 18335 } 18336 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18337 if (rule == NULL) { 18338 ASSERT(ret != 0); 18339 break; 18340 } 18341 for (i = 0; i < cmd->num_servers; i++) { 18342 ilb_server_info_t *s; 18343 18344 s = &cmd->servers[i]; 18345 s->err = ilb_server_add(ilbs, rule, s); 18346 } 18347 ILB_RULE_REFRELE(rule); 18348 break; 18349 } 18350 case ILB_DEL_SERVERS: 18351 case ILB_ENABLE_SERVERS: 18352 case ILB_DISABLE_SERVERS: { 18353 ilb_servers_cmd_t *cmd; 18354 ilb_rule_t *rule; 18355 int (*f)(); 18356 18357 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18358 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18359 ret = EINVAL; 18360 break; 18361 } 18362 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18363 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18364 size != cmd_mp->b_wptr) { 18365 ret = EINVAL; 18366 break; 18367 } 18368 18369 if (command == ILB_DEL_SERVERS) 18370 f = ilb_server_del; 18371 else if (command == ILB_ENABLE_SERVERS) 18372 f = ilb_server_enable; 18373 else if (command == ILB_DISABLE_SERVERS) 18374 f = ilb_server_disable; 18375 18376 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18377 if (rule == NULL) { 18378 ASSERT(ret != 0); 18379 break; 18380 } 18381 18382 for (i = 0; i < cmd->num_servers; i++) { 18383 ilb_server_arg_t *s; 18384 18385 s = &cmd->servers[i]; 18386 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18387 } 18388 ILB_RULE_REFRELE(rule); 18389 break; 18390 } 18391 case ILB_LIST_NAT_TABLE: { 18392 ilb_list_nat_cmd_t *cmd; 18393 18394 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18395 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18396 ret = EINVAL; 18397 break; 18398 } 18399 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18400 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18401 size != cmd_mp->b_wptr) { 18402 ret = EINVAL; 18403 break; 18404 } 18405 18406 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18407 &cmd->flags); 18408 break; 18409 } 18410 case ILB_LIST_STICKY_TABLE: { 18411 ilb_list_sticky_cmd_t *cmd; 18412 18413 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18414 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18415 ret = EINVAL; 18416 break; 18417 } 18418 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18419 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18420 size != cmd_mp->b_wptr) { 18421 ret = EINVAL; 18422 break; 18423 } 18424 18425 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18426 &cmd->num_sticky, &cmd->flags); 18427 break; 18428 } 18429 default: 18430 ret = EINVAL; 18431 break; 18432 } 18433 done: 18434 return (ret); 18435 } 18436 18437 /* Remove all cache entries for this logical interface */ 18438 void 18439 ipif_nce_down(ipif_t *ipif) 18440 { 18441 ill_t *ill = ipif->ipif_ill; 18442 nce_t *nce; 18443 18444 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18445 ill_t *, ill, ipif_t *, ipif); 18446 if (ipif->ipif_added_nce) { 18447 if (ipif->ipif_isv6) 18448 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18449 else 18450 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18451 if (nce != NULL) { 18452 if (--nce->nce_ipif_cnt == 0) 18453 ncec_delete(nce->nce_common); 18454 ipif->ipif_added_nce = 0; 18455 nce_refrele(nce); 18456 } else { 18457 /* 18458 * nce may already be NULL because it was already 18459 * flushed, e.g., due to a call to nce_flush 18460 */ 18461 ipif->ipif_added_nce = 0; 18462 } 18463 } 18464 /* 18465 * Make IPMP aware of the deleted data address. 18466 */ 18467 if (IS_IPMP(ill)) 18468 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18469 18470 /* 18471 * Remove all other nces dependent on this ill when the last ipif 18472 * is going away. 18473 */ 18474 if (ill->ill_ipif_up_count == 0) { 18475 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18476 (uchar_t *)ill, ill->ill_ipst); 18477 if (IS_UNDER_IPMP(ill)) 18478 nce_flush(ill, B_TRUE); 18479 } 18480 } 18481