1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert, int *errorp); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_down_ipifs(ill_t *, boolean_t); 171 static void ill_free_mib(ill_t *ill); 172 static void ill_glist_delete(ill_t *); 173 static void ill_phyint_reinit(ill_t *ill); 174 static void ill_set_nce_router_flags(ill_t *, boolean_t); 175 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 177 178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 182 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 183 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 184 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 185 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 186 static ip_v4mapinfo_func_t ip_mbcast_mapping; 187 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 188 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 189 static void phyint_free(phyint_t *); 190 191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 197 dl_capability_sub_t *); 198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_dld_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_dld_enable(ill_t *); 203 static void ill_capability_ack_thr(void *); 204 static void ill_capability_lso_enable(ill_t *); 205 206 static ill_t *ill_prev_usesrc(ill_t *); 207 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 208 static void ill_disband_usesrc_group(ill_t *); 209 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 210 211 #ifdef DEBUG 212 static void ill_trace_cleanup(const ill_t *); 213 static void ipif_trace_cleanup(const ipif_t *); 214 #endif 215 216 static void ill_dlpi_clear_deferred(ill_t *ill); 217 218 /* 219 * if we go over the memory footprint limit more than once in this msec 220 * interval, we'll start pruning aggressively. 221 */ 222 int ip_min_frag_prune_time = 0; 223 224 static ipft_t ip_ioctl_ftbl[] = { 225 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 226 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 227 IPFT_F_NO_REPLY }, 228 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 229 { 0 } 230 }; 231 232 /* Simple ICMP IP Header Template */ 233 static ipha_t icmp_ipha = { 234 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 235 }; 236 237 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 238 239 static ip_m_t ip_m_tbl[] = { 240 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 260 ip_ipv4_v6destintfid }, 261 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 263 ip_ipv6_v6destintfid }, 264 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 266 ip_nodef_v6intfid }, 267 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 269 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 270 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 271 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 272 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 273 ip_nodef_v6intfid } 274 }; 275 276 static ill_t ill_null; /* Empty ILL for init. */ 277 char ipif_loopback_name[] = "lo0"; 278 static char *ipv4_forward_suffix = ":ip_forwarding"; 279 static char *ipv6_forward_suffix = ":ip6_forwarding"; 280 281 /* These are used by all IP network modules. */ 282 sin6_t sin6_null; /* Zero address for quick clears */ 283 sin_t sin_null; /* Zero address for quick clears */ 284 285 /* When set search for unused ipif_seqid */ 286 static ipif_t ipif_zero; 287 288 /* 289 * ppa arena is created after these many 290 * interfaces have been plumbed. 291 */ 292 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 293 294 /* 295 * Allocate per-interface mibs. 296 * Returns true if ok. False otherwise. 297 * ipsq may not yet be allocated (loopback case ). 298 */ 299 static boolean_t 300 ill_allocate_mibs(ill_t *ill) 301 { 302 /* Already allocated? */ 303 if (ill->ill_ip_mib != NULL) { 304 if (ill->ill_isv6) 305 ASSERT(ill->ill_icmp6_mib != NULL); 306 return (B_TRUE); 307 } 308 309 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 310 KM_NOSLEEP); 311 if (ill->ill_ip_mib == NULL) { 312 return (B_FALSE); 313 } 314 315 /* Setup static information */ 316 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 317 sizeof (mib2_ipIfStatsEntry_t)); 318 if (ill->ill_isv6) { 319 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 320 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 321 sizeof (mib2_ipv6AddrEntry_t)); 322 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 323 sizeof (mib2_ipv6RouteEntry_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 325 sizeof (mib2_ipv6NetToMediaEntry_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 327 sizeof (ipv6_member_t)); 328 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 329 sizeof (ipv6_grpsrc_t)); 330 } else { 331 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 332 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 333 sizeof (mib2_ipAddrEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 335 sizeof (mib2_ipRouteEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 337 sizeof (mib2_ipNetToMediaEntry_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 339 sizeof (ip_member_t)); 340 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 341 sizeof (ip_grpsrc_t)); 342 343 /* 344 * For a v4 ill, we are done at this point, because per ill 345 * icmp mibs are only used for v6. 346 */ 347 return (B_TRUE); 348 } 349 350 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 351 KM_NOSLEEP); 352 if (ill->ill_icmp6_mib == NULL) { 353 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 354 ill->ill_ip_mib = NULL; 355 return (B_FALSE); 356 } 357 /* static icmp info */ 358 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 359 sizeof (mib2_ipv6IfIcmpEntry_t); 360 /* 361 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 362 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 363 * -> ill_phyint_reinit 364 */ 365 return (B_TRUE); 366 } 367 368 /* 369 * Completely vaporize a lower level tap and all associated interfaces. 370 * ill_delete is called only out of ip_close when the device control 371 * stream is being closed. 372 */ 373 void 374 ill_delete(ill_t *ill) 375 { 376 ipif_t *ipif; 377 ill_t *prev_ill; 378 ip_stack_t *ipst = ill->ill_ipst; 379 380 /* 381 * ill_delete may be forcibly entering the ipsq. The previous 382 * ioctl may not have completed and may need to be aborted. 383 * ipsq_flush takes care of it. If we don't need to enter the 384 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 385 * ill_delete_tail is sufficient. 386 */ 387 ipsq_flush(ill); 388 389 /* 390 * Nuke all interfaces. ipif_free will take down the interface, 391 * remove it from the list, and free the data structure. 392 * Walk down the ipif list and remove the logical interfaces 393 * first before removing the main ipif. We can't unplumb 394 * zeroth interface first in the case of IPv6 as update_conn_ill 395 * -> ip_ll_multireq de-references ill_ipif for checking 396 * POINTOPOINT. 397 * 398 * If ill_ipif was not properly initialized (i.e low on memory), 399 * then no interfaces to clean up. In this case just clean up the 400 * ill. 401 */ 402 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 403 ipif_free(ipif); 404 405 /* 406 * clean out all the nce_t entries that depend on this 407 * ill for the ill_phys_addr. 408 */ 409 nce_flush(ill, B_TRUE); 410 411 /* Clean up msgs on pending upcalls for mrouted */ 412 reset_mrt_ill(ill); 413 414 update_conn_ill(ill, ipst); 415 416 /* 417 * Remove multicast references added as a result of calls to 418 * ip_join_allmulti(). 419 */ 420 ip_purge_allmulti(ill); 421 422 /* 423 * If the ill being deleted is under IPMP, boot it out of the illgrp. 424 */ 425 if (IS_UNDER_IPMP(ill)) 426 ipmp_ill_leave_illgrp(ill); 427 428 /* 429 * ill_down will arrange to blow off any IRE's dependent on this 430 * ILL, and shut down fragmentation reassembly. 431 */ 432 ill_down(ill); 433 434 /* Let SCTP know, so that it can remove this from its list. */ 435 sctp_update_ill(ill, SCTP_ILL_REMOVE); 436 437 /* 438 * Walk all CONNs that can have a reference on an ire or nce for this 439 * ill (we actually walk all that now have stale references). 440 */ 441 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 442 443 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 444 if (ill->ill_isv6) 445 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 446 447 /* 448 * If an address on this ILL is being used as a source address then 449 * clear out the pointers in other ILLs that point to this ILL. 450 */ 451 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 452 if (ill->ill_usesrc_grp_next != NULL) { 453 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 454 ill_disband_usesrc_group(ill); 455 } else { /* consumer of the usesrc ILL */ 456 prev_ill = ill_prev_usesrc(ill); 457 prev_ill->ill_usesrc_grp_next = 458 ill->ill_usesrc_grp_next; 459 } 460 } 461 rw_exit(&ipst->ips_ill_g_usesrc_lock); 462 } 463 464 static void 465 ipif_non_duplicate(ipif_t *ipif) 466 { 467 ill_t *ill = ipif->ipif_ill; 468 mutex_enter(&ill->ill_lock); 469 if (ipif->ipif_flags & IPIF_DUPLICATE) { 470 ipif->ipif_flags &= ~IPIF_DUPLICATE; 471 ASSERT(ill->ill_ipif_dup_count > 0); 472 ill->ill_ipif_dup_count--; 473 } 474 mutex_exit(&ill->ill_lock); 475 } 476 477 /* 478 * ill_delete_tail is called from ip_modclose after all references 479 * to the closing ill are gone. The wait is done in ip_modclose 480 */ 481 void 482 ill_delete_tail(ill_t *ill) 483 { 484 mblk_t **mpp; 485 ipif_t *ipif; 486 ip_stack_t *ipst = ill->ill_ipst; 487 488 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 489 ipif_non_duplicate(ipif); 490 (void) ipif_down_tail(ipif); 491 } 492 493 ASSERT(ill->ill_ipif_dup_count == 0); 494 495 /* 496 * If polling capability is enabled (which signifies direct 497 * upcall into IP and driver has ill saved as a handle), 498 * we need to make sure that unbind has completed before we 499 * let the ill disappear and driver no longer has any reference 500 * to this ill. 501 */ 502 mutex_enter(&ill->ill_lock); 503 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 504 cv_wait(&ill->ill_cv, &ill->ill_lock); 505 mutex_exit(&ill->ill_lock); 506 ASSERT(!(ill->ill_capabilities & 507 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 508 509 if (ill->ill_net_type != IRE_LOOPBACK) 510 qprocsoff(ill->ill_rq); 511 512 /* 513 * We do an ipsq_flush once again now. New messages could have 514 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 515 * could also have landed up if an ioctl thread had looked up 516 * the ill before we set the ILL_CONDEMNED flag, but not yet 517 * enqueued the ioctl when we did the ipsq_flush last time. 518 */ 519 ipsq_flush(ill); 520 521 /* 522 * Free capabilities. 523 */ 524 if (ill->ill_hcksum_capab != NULL) { 525 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 526 ill->ill_hcksum_capab = NULL; 527 } 528 529 if (ill->ill_zerocopy_capab != NULL) { 530 kmem_free(ill->ill_zerocopy_capab, 531 sizeof (ill_zerocopy_capab_t)); 532 ill->ill_zerocopy_capab = NULL; 533 } 534 535 if (ill->ill_lso_capab != NULL) { 536 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 537 ill->ill_lso_capab = NULL; 538 } 539 540 if (ill->ill_dld_capab != NULL) { 541 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 542 ill->ill_dld_capab = NULL; 543 } 544 545 while (ill->ill_ipif != NULL) 546 ipif_free_tail(ill->ill_ipif); 547 548 /* 549 * We have removed all references to ilm from conn and the ones joined 550 * within the kernel. 551 * 552 * We don't walk conns, mrts and ires because 553 * 554 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 555 * 2) ill_down ->ill_downi walks all the ires and cleans up 556 * ill references. 557 */ 558 559 /* 560 * If this ill is an IPMP meta-interface, blow away the illgrp. This 561 * is safe to do because the illgrp has already been unlinked from the 562 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 563 */ 564 if (IS_IPMP(ill)) { 565 ipmp_illgrp_destroy(ill->ill_grp); 566 ill->ill_grp = NULL; 567 } 568 569 /* 570 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 571 * could free the phyint. No more reference to the phyint after this 572 * point. 573 */ 574 (void) ill_glist_delete(ill); 575 576 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 577 if (ill->ill_ndd_name != NULL) 578 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 579 rw_exit(&ipst->ips_ip_g_nd_lock); 580 581 if (ill->ill_frag_ptr != NULL) { 582 uint_t count; 583 584 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 585 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 586 } 587 mi_free(ill->ill_frag_ptr); 588 ill->ill_frag_ptr = NULL; 589 ill->ill_frag_hash_tbl = NULL; 590 } 591 592 freemsg(ill->ill_nd_lla_mp); 593 /* Free all retained control messages. */ 594 mpp = &ill->ill_first_mp_to_free; 595 do { 596 while (mpp[0]) { 597 mblk_t *mp; 598 mblk_t *mp1; 599 600 mp = mpp[0]; 601 mpp[0] = mp->b_next; 602 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 603 mp1->b_next = NULL; 604 mp1->b_prev = NULL; 605 } 606 freemsg(mp); 607 } 608 } while (mpp++ != &ill->ill_last_mp_to_free); 609 610 ill_free_mib(ill); 611 612 #ifdef DEBUG 613 ill_trace_cleanup(ill); 614 #endif 615 616 /* The default multicast interface might have changed */ 617 ire_increment_multicast_generation(ipst, ill->ill_isv6); 618 619 /* Drop refcnt here */ 620 netstack_rele(ill->ill_ipst->ips_netstack); 621 ill->ill_ipst = NULL; 622 } 623 624 static void 625 ill_free_mib(ill_t *ill) 626 { 627 ip_stack_t *ipst = ill->ill_ipst; 628 629 /* 630 * MIB statistics must not be lost, so when an interface 631 * goes away the counter values will be added to the global 632 * MIBs. 633 */ 634 if (ill->ill_ip_mib != NULL) { 635 if (ill->ill_isv6) { 636 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 637 ill->ill_ip_mib); 638 } else { 639 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 640 ill->ill_ip_mib); 641 } 642 643 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 644 ill->ill_ip_mib = NULL; 645 } 646 if (ill->ill_icmp6_mib != NULL) { 647 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 648 ill->ill_icmp6_mib); 649 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 650 ill->ill_icmp6_mib = NULL; 651 } 652 } 653 654 /* 655 * Concatenate together a physical address and a sap. 656 * 657 * Sap_lengths are interpreted as follows: 658 * sap_length == 0 ==> no sap 659 * sap_length > 0 ==> sap is at the head of the dlpi address 660 * sap_length < 0 ==> sap is at the tail of the dlpi address 661 */ 662 static void 663 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 664 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 665 { 666 uint16_t sap_addr = (uint16_t)sap_src; 667 668 if (sap_length == 0) { 669 if (phys_src == NULL) 670 bzero(dst, phys_length); 671 else 672 bcopy(phys_src, dst, phys_length); 673 } else if (sap_length < 0) { 674 if (phys_src == NULL) 675 bzero(dst, phys_length); 676 else 677 bcopy(phys_src, dst, phys_length); 678 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 679 } else { 680 bcopy(&sap_addr, dst, sizeof (sap_addr)); 681 if (phys_src == NULL) 682 bzero((char *)dst + sap_length, phys_length); 683 else 684 bcopy(phys_src, (char *)dst + sap_length, phys_length); 685 } 686 } 687 688 /* 689 * Generate a dl_unitdata_req mblk for the device and address given. 690 * addr_length is the length of the physical portion of the address. 691 * If addr is NULL include an all zero address of the specified length. 692 * TRUE? In any case, addr_length is taken to be the entire length of the 693 * dlpi address, including the absolute value of sap_length. 694 */ 695 mblk_t * 696 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 697 t_scalar_t sap_length) 698 { 699 dl_unitdata_req_t *dlur; 700 mblk_t *mp; 701 t_scalar_t abs_sap_length; /* absolute value */ 702 703 abs_sap_length = ABS(sap_length); 704 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 705 DL_UNITDATA_REQ); 706 if (mp == NULL) 707 return (NULL); 708 dlur = (dl_unitdata_req_t *)mp->b_rptr; 709 /* HACK: accomodate incompatible DLPI drivers */ 710 if (addr_length == 8) 711 addr_length = 6; 712 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 713 dlur->dl_dest_addr_offset = sizeof (*dlur); 714 dlur->dl_priority.dl_min = 0; 715 dlur->dl_priority.dl_max = 0; 716 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 717 (uchar_t *)&dlur[1]); 718 return (mp); 719 } 720 721 /* 722 * Add the pending mp to the list. There can be only 1 pending mp 723 * in the list. Any exclusive ioctl that needs to wait for a response 724 * from another module or driver needs to use this function to set 725 * the ipx_pending_mp to the ioctl mblk and wait for the response from 726 * the other module/driver. This is also used while waiting for the 727 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 728 */ 729 boolean_t 730 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 731 int waitfor) 732 { 733 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 734 735 ASSERT(IAM_WRITER_IPIF(ipif)); 736 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 737 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 738 ASSERT(ipx->ipx_pending_mp == NULL); 739 /* 740 * The caller may be using a different ipif than the one passed into 741 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 742 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 743 * that `ipx_current_ipif == ipif'. 744 */ 745 ASSERT(ipx->ipx_current_ipif != NULL); 746 747 /* 748 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 749 * driver. 750 */ 751 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 752 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 753 (DB_TYPE(add_mp) == M_PCPROTO)); 754 755 if (connp != NULL) { 756 ASSERT(MUTEX_HELD(&connp->conn_lock)); 757 /* 758 * Return error if the conn has started closing. The conn 759 * could have finished cleaning up the pending mp list, 760 * If so we should not add another mp to the list negating 761 * the cleanup. 762 */ 763 if (connp->conn_state_flags & CONN_CLOSING) 764 return (B_FALSE); 765 } 766 mutex_enter(&ipx->ipx_lock); 767 ipx->ipx_pending_ipif = ipif; 768 /* 769 * Note down the queue in b_queue. This will be returned by 770 * ipsq_pending_mp_get. Caller will then use these values to restart 771 * the processing 772 */ 773 add_mp->b_next = NULL; 774 add_mp->b_queue = q; 775 ipx->ipx_pending_mp = add_mp; 776 ipx->ipx_waitfor = waitfor; 777 mutex_exit(&ipx->ipx_lock); 778 779 if (connp != NULL) 780 connp->conn_oper_pending_ill = ipif->ipif_ill; 781 782 return (B_TRUE); 783 } 784 785 /* 786 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 787 * queued in the list. 788 */ 789 mblk_t * 790 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 791 { 792 mblk_t *curr = NULL; 793 ipxop_t *ipx = ipsq->ipsq_xop; 794 795 *connpp = NULL; 796 mutex_enter(&ipx->ipx_lock); 797 if (ipx->ipx_pending_mp == NULL) { 798 mutex_exit(&ipx->ipx_lock); 799 return (NULL); 800 } 801 802 /* There can be only 1 such excl message */ 803 curr = ipx->ipx_pending_mp; 804 ASSERT(curr->b_next == NULL); 805 ipx->ipx_pending_ipif = NULL; 806 ipx->ipx_pending_mp = NULL; 807 ipx->ipx_waitfor = 0; 808 mutex_exit(&ipx->ipx_lock); 809 810 if (CONN_Q(curr->b_queue)) { 811 /* 812 * This mp did a refhold on the conn, at the start of the ioctl. 813 * So we can safely return a pointer to the conn to the caller. 814 */ 815 *connpp = Q_TO_CONN(curr->b_queue); 816 } else { 817 *connpp = NULL; 818 } 819 curr->b_next = NULL; 820 curr->b_prev = NULL; 821 return (curr); 822 } 823 824 /* 825 * Cleanup the ioctl mp queued in ipx_pending_mp 826 * - Called in the ill_delete path 827 * - Called in the M_ERROR or M_HANGUP path on the ill. 828 * - Called in the conn close path. 829 * 830 * Returns success on finding the pending mblk associated with the ioctl or 831 * exclusive operation in progress, failure otherwise. 832 */ 833 boolean_t 834 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 835 { 836 mblk_t *mp; 837 ipxop_t *ipx; 838 queue_t *q; 839 ipif_t *ipif; 840 int cmd; 841 842 ASSERT(IAM_WRITER_ILL(ill)); 843 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 844 845 mutex_enter(&ipx->ipx_lock); 846 mp = ipx->ipx_pending_mp; 847 if (connp != NULL) { 848 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 849 /* 850 * Nothing to clean since the conn that is closing 851 * does not have a matching pending mblk in 852 * ipx_pending_mp. 853 */ 854 mutex_exit(&ipx->ipx_lock); 855 return (B_FALSE); 856 } 857 } else { 858 /* 859 * A non-zero ill_error signifies we are called in the 860 * M_ERROR or M_HANGUP path and we need to unconditionally 861 * abort any current ioctl and do the corresponding cleanup. 862 * A zero ill_error means we are in the ill_delete path and 863 * we do the cleanup only if there is a pending mp. 864 */ 865 if (mp == NULL && ill->ill_error == 0) { 866 mutex_exit(&ipx->ipx_lock); 867 return (B_FALSE); 868 } 869 } 870 871 /* Now remove from the ipx_pending_mp */ 872 ipx->ipx_pending_mp = NULL; 873 ipif = ipx->ipx_pending_ipif; 874 ipx->ipx_pending_ipif = NULL; 875 ipx->ipx_waitfor = 0; 876 ipx->ipx_current_ipif = NULL; 877 cmd = ipx->ipx_current_ioctl; 878 ipx->ipx_current_ioctl = 0; 879 ipx->ipx_current_done = B_TRUE; 880 mutex_exit(&ipx->ipx_lock); 881 882 if (mp == NULL) 883 return (B_FALSE); 884 885 q = mp->b_queue; 886 mp->b_next = NULL; 887 mp->b_prev = NULL; 888 mp->b_queue = NULL; 889 890 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 891 DTRACE_PROBE4(ipif__ioctl, 892 char *, "ipsq_pending_mp_cleanup", 893 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 894 ipif_t *, ipif); 895 if (connp == NULL) { 896 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 897 } else { 898 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 899 mutex_enter(&ipif->ipif_ill->ill_lock); 900 ipif->ipif_state_flags &= ~IPIF_CHANGING; 901 mutex_exit(&ipif->ipif_ill->ill_lock); 902 } 903 } else { 904 inet_freemsg(mp); 905 } 906 return (B_TRUE); 907 } 908 909 /* 910 * Called in the conn close path and ill delete path 911 */ 912 static void 913 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 914 { 915 ipsq_t *ipsq; 916 mblk_t *prev; 917 mblk_t *curr; 918 mblk_t *next; 919 queue_t *wq, *rq = NULL; 920 mblk_t *tmp_list = NULL; 921 922 ASSERT(IAM_WRITER_ILL(ill)); 923 if (connp != NULL) 924 wq = CONNP_TO_WQ(connp); 925 else 926 wq = ill->ill_wq; 927 928 /* 929 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 930 * against this here. 931 */ 932 if (wq != NULL) 933 rq = RD(wq); 934 935 ipsq = ill->ill_phyint->phyint_ipsq; 936 /* 937 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 938 * In the case of ioctl from a conn, there can be only 1 mp 939 * queued on the ipsq. If an ill is being unplumbed flush all 940 * the messages. 941 */ 942 mutex_enter(&ipsq->ipsq_lock); 943 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 944 curr = next) { 945 next = curr->b_next; 946 if (connp == NULL || 947 (curr->b_queue == wq || curr->b_queue == rq)) { 948 /* Unlink the mblk from the pending mp list */ 949 if (prev != NULL) { 950 prev->b_next = curr->b_next; 951 } else { 952 ASSERT(ipsq->ipsq_xopq_mphead == curr); 953 ipsq->ipsq_xopq_mphead = curr->b_next; 954 } 955 if (ipsq->ipsq_xopq_mptail == curr) 956 ipsq->ipsq_xopq_mptail = prev; 957 /* 958 * Create a temporary list and release the ipsq lock 959 * New elements are added to the head of the tmp_list 960 */ 961 curr->b_next = tmp_list; 962 tmp_list = curr; 963 } else { 964 prev = curr; 965 } 966 } 967 mutex_exit(&ipsq->ipsq_lock); 968 969 while (tmp_list != NULL) { 970 curr = tmp_list; 971 tmp_list = curr->b_next; 972 curr->b_next = NULL; 973 curr->b_prev = NULL; 974 wq = curr->b_queue; 975 curr->b_queue = NULL; 976 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 977 DTRACE_PROBE4(ipif__ioctl, 978 char *, "ipsq_xopq_mp_cleanup", 979 int, 0, ill_t *, NULL, ipif_t *, NULL); 980 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 981 CONN_CLOSE : NO_COPYOUT, NULL); 982 } else { 983 /* 984 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 985 * this can't be just inet_freemsg. we have to 986 * restart it otherwise the thread will be stuck. 987 */ 988 inet_freemsg(curr); 989 } 990 } 991 } 992 993 /* 994 * This conn has started closing. Cleanup any pending ioctl from this conn. 995 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 996 */ 997 void 998 conn_ioctl_cleanup(conn_t *connp) 999 { 1000 ipsq_t *ipsq; 1001 ill_t *ill; 1002 boolean_t refheld; 1003 1004 /* 1005 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1006 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1007 * started the mp could be present in ipx_pending_mp. Note that if 1008 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1009 * not yet queued anywhere. In this case, the conn close code will wait 1010 * until the conn_ref is dropped. If the stream was a tcp stream, then 1011 * tcp_close will wait first until all ioctls have completed for this 1012 * conn. 1013 */ 1014 mutex_enter(&connp->conn_lock); 1015 ill = connp->conn_oper_pending_ill; 1016 if (ill == NULL) { 1017 mutex_exit(&connp->conn_lock); 1018 return; 1019 } 1020 1021 /* 1022 * We may not be able to refhold the ill if the ill/ipif 1023 * is changing. But we need to make sure that the ill will 1024 * not vanish. So we just bump up the ill_waiter count. 1025 */ 1026 refheld = ill_waiter_inc(ill); 1027 mutex_exit(&connp->conn_lock); 1028 if (refheld) { 1029 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1030 ill_waiter_dcr(ill); 1031 /* 1032 * Check whether this ioctl has started and is 1033 * pending. If it is not found there then check 1034 * whether this ioctl has not even started and is in 1035 * the ipsq_xopq list. 1036 */ 1037 if (!ipsq_pending_mp_cleanup(ill, connp)) 1038 ipsq_xopq_mp_cleanup(ill, connp); 1039 ipsq = ill->ill_phyint->phyint_ipsq; 1040 ipsq_exit(ipsq); 1041 return; 1042 } 1043 } 1044 1045 /* 1046 * The ill is also closing and we could not bump up the 1047 * ill_waiter_count or we could not enter the ipsq. Leave 1048 * the cleanup to ill_delete 1049 */ 1050 mutex_enter(&connp->conn_lock); 1051 while (connp->conn_oper_pending_ill != NULL) 1052 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1053 mutex_exit(&connp->conn_lock); 1054 if (refheld) 1055 ill_waiter_dcr(ill); 1056 } 1057 1058 /* 1059 * ipcl_walk function for cleaning up conn_*_ill fields. 1060 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1061 * conn_bound_if in place. We prefer dropping 1062 * packets instead of sending them out the wrong interface, or accepting 1063 * packets from the wrong ifindex. 1064 */ 1065 static void 1066 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1067 { 1068 ill_t *ill = (ill_t *)arg; 1069 1070 mutex_enter(&connp->conn_lock); 1071 if (connp->conn_dhcpinit_ill == ill) { 1072 connp->conn_dhcpinit_ill = NULL; 1073 ASSERT(ill->ill_dhcpinit != 0); 1074 atomic_dec_32(&ill->ill_dhcpinit); 1075 ill_set_inputfn(ill); 1076 } 1077 mutex_exit(&connp->conn_lock); 1078 } 1079 1080 static int 1081 ill_down_ipifs_tail(ill_t *ill) 1082 { 1083 ipif_t *ipif; 1084 int err; 1085 1086 ASSERT(IAM_WRITER_ILL(ill)); 1087 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1088 ipif_non_duplicate(ipif); 1089 /* 1090 * ipif_down_tail will call arp_ll_down on the last ipif 1091 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1092 */ 1093 if ((err = ipif_down_tail(ipif)) != 0) 1094 return (err); 1095 } 1096 return (0); 1097 } 1098 1099 /* ARGSUSED */ 1100 void 1101 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1102 { 1103 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1104 (void) ill_down_ipifs_tail(q->q_ptr); 1105 freemsg(mp); 1106 ipsq_current_finish(ipsq); 1107 } 1108 1109 /* 1110 * ill_down_start is called when we want to down this ill and bring it up again 1111 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1112 * all interfaces, but don't tear down any plumbing. 1113 */ 1114 boolean_t 1115 ill_down_start(queue_t *q, mblk_t *mp) 1116 { 1117 ill_t *ill = q->q_ptr; 1118 ipif_t *ipif; 1119 1120 ASSERT(IAM_WRITER_ILL(ill)); 1121 mutex_enter(&ill->ill_lock); 1122 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1123 /* no more nce addition allowed */ 1124 mutex_exit(&ill->ill_lock); 1125 1126 /* 1127 * It is possible that some ioctl is already in progress while we 1128 * received the M_ERROR / M_HANGUP in which case, we need to abort 1129 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1130 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1131 * the in progress ioctl from ever completing. 1132 * 1133 * The thread that started the ioctl (if any) must have returned, 1134 * since we are now executing as writer. After the 2 calls below, 1135 * the state of the ipsq and the ill would reflect no trace of any 1136 * pending operation. Subsequently if there is any response to the 1137 * original ioctl from the driver, it would be discarded as an 1138 * unsolicited message from the driver. 1139 */ 1140 (void) ipsq_pending_mp_cleanup(ill, NULL); 1141 ill_dlpi_clear_deferred(ill); 1142 1143 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1144 (void) ipif_down(ipif, NULL, NULL); 1145 1146 ill_down(ill); 1147 1148 /* 1149 * Walk all CONNs that can have a reference on an ire or nce for this 1150 * ill (we actually walk all that now have stale references). 1151 */ 1152 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1153 1154 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1155 if (ill->ill_isv6) 1156 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1157 1158 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1159 1160 /* 1161 * Atomically test and add the pending mp if references are active. 1162 */ 1163 mutex_enter(&ill->ill_lock); 1164 if (!ill_is_quiescent(ill)) { 1165 /* call cannot fail since `conn_t *' argument is NULL */ 1166 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1167 mp, ILL_DOWN); 1168 mutex_exit(&ill->ill_lock); 1169 return (B_FALSE); 1170 } 1171 mutex_exit(&ill->ill_lock); 1172 return (B_TRUE); 1173 } 1174 1175 static void 1176 ill_down(ill_t *ill) 1177 { 1178 mblk_t *mp; 1179 ip_stack_t *ipst = ill->ill_ipst; 1180 1181 /* 1182 * Blow off any IREs dependent on this ILL. 1183 * The caller needs to handle conn_ixa_cleanup 1184 */ 1185 ill_delete_ires(ill); 1186 1187 ire_walk_ill(0, 0, ill_downi, ill, ill); 1188 1189 /* Remove any conn_*_ill depending on this ill */ 1190 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1191 1192 /* 1193 * Free state for additional IREs. 1194 */ 1195 mutex_enter(&ill->ill_saved_ire_lock); 1196 mp = ill->ill_saved_ire_mp; 1197 ill->ill_saved_ire_mp = NULL; 1198 ill->ill_saved_ire_cnt = 0; 1199 mutex_exit(&ill->ill_saved_ire_lock); 1200 freemsg(mp); 1201 } 1202 1203 /* 1204 * ire_walk routine used to delete every IRE that depends on 1205 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1206 * 1207 * Note: since the routes added by the kernel are deleted separately, 1208 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1209 * 1210 * We also remove references on ire_nce_cache entries that refer to the ill. 1211 */ 1212 void 1213 ill_downi(ire_t *ire, char *ill_arg) 1214 { 1215 ill_t *ill = (ill_t *)ill_arg; 1216 nce_t *nce; 1217 1218 mutex_enter(&ire->ire_lock); 1219 nce = ire->ire_nce_cache; 1220 if (nce != NULL && nce->nce_ill == ill) 1221 ire->ire_nce_cache = NULL; 1222 else 1223 nce = NULL; 1224 mutex_exit(&ire->ire_lock); 1225 if (nce != NULL) 1226 nce_refrele(nce); 1227 if (ire->ire_ill == ill) { 1228 /* 1229 * The existing interface binding for ire must be 1230 * deleted before trying to bind the route to another 1231 * interface. However, since we are using the contents of the 1232 * ire after ire_delete, the caller has to ensure that 1233 * CONDEMNED (deleted) ire's are not removed from the list 1234 * when ire_delete() returns. Currently ill_downi() is 1235 * only called as part of ire_walk*() routines, so that 1236 * the irb_refhold() done by ire_walk*() will ensure that 1237 * ire_delete() does not lead to ire_inactive(). 1238 */ 1239 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1240 ire_delete(ire); 1241 if (ire->ire_unbound) 1242 ire_rebind(ire); 1243 } 1244 } 1245 1246 /* Remove IRE_IF_CLONE on this ill */ 1247 void 1248 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1249 { 1250 ill_t *ill = (ill_t *)ill_arg; 1251 1252 ASSERT(ire->ire_type & IRE_IF_CLONE); 1253 if (ire->ire_ill == ill) 1254 ire_delete(ire); 1255 } 1256 1257 /* Consume an M_IOCACK of the fastpath probe. */ 1258 void 1259 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1260 { 1261 mblk_t *mp1 = mp; 1262 1263 /* 1264 * If this was the first attempt turn on the fastpath probing. 1265 */ 1266 mutex_enter(&ill->ill_lock); 1267 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1268 ill->ill_dlpi_fastpath_state = IDS_OK; 1269 mutex_exit(&ill->ill_lock); 1270 1271 /* Free the M_IOCACK mblk, hold on to the data */ 1272 mp = mp->b_cont; 1273 freeb(mp1); 1274 if (mp == NULL) 1275 return; 1276 if (mp->b_cont != NULL) 1277 nce_fastpath_update(ill, mp); 1278 else 1279 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1280 freemsg(mp); 1281 } 1282 1283 /* 1284 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1285 * The data portion of the request is a dl_unitdata_req_t template for 1286 * what we would send downstream in the absence of a fastpath confirmation. 1287 */ 1288 int 1289 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1290 { 1291 struct iocblk *ioc; 1292 mblk_t *mp; 1293 1294 if (dlur_mp == NULL) 1295 return (EINVAL); 1296 1297 mutex_enter(&ill->ill_lock); 1298 switch (ill->ill_dlpi_fastpath_state) { 1299 case IDS_FAILED: 1300 /* 1301 * Driver NAKed the first fastpath ioctl - assume it doesn't 1302 * support it. 1303 */ 1304 mutex_exit(&ill->ill_lock); 1305 return (ENOTSUP); 1306 case IDS_UNKNOWN: 1307 /* This is the first probe */ 1308 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1309 break; 1310 default: 1311 break; 1312 } 1313 mutex_exit(&ill->ill_lock); 1314 1315 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1316 return (EAGAIN); 1317 1318 mp->b_cont = copyb(dlur_mp); 1319 if (mp->b_cont == NULL) { 1320 freeb(mp); 1321 return (EAGAIN); 1322 } 1323 1324 ioc = (struct iocblk *)mp->b_rptr; 1325 ioc->ioc_count = msgdsize(mp->b_cont); 1326 1327 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1328 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1329 putnext(ill->ill_wq, mp); 1330 return (0); 1331 } 1332 1333 void 1334 ill_capability_probe(ill_t *ill) 1335 { 1336 mblk_t *mp; 1337 1338 ASSERT(IAM_WRITER_ILL(ill)); 1339 1340 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1341 ill->ill_dlpi_capab_state != IDCS_FAILED) 1342 return; 1343 1344 /* 1345 * We are starting a new cycle of capability negotiation. 1346 * Free up the capab reset messages of any previous incarnation. 1347 * We will do a fresh allocation when we get the response to our probe 1348 */ 1349 if (ill->ill_capab_reset_mp != NULL) { 1350 freemsg(ill->ill_capab_reset_mp); 1351 ill->ill_capab_reset_mp = NULL; 1352 } 1353 1354 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1355 1356 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1357 if (mp == NULL) 1358 return; 1359 1360 ill_capability_send(ill, mp); 1361 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1362 } 1363 1364 void 1365 ill_capability_reset(ill_t *ill, boolean_t reneg) 1366 { 1367 ASSERT(IAM_WRITER_ILL(ill)); 1368 1369 if (ill->ill_dlpi_capab_state != IDCS_OK) 1370 return; 1371 1372 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1373 1374 ill_capability_send(ill, ill->ill_capab_reset_mp); 1375 ill->ill_capab_reset_mp = NULL; 1376 /* 1377 * We turn off all capabilities except those pertaining to 1378 * direct function call capabilities viz. ILL_CAPAB_DLD* 1379 * which will be turned off by the corresponding reset functions. 1380 */ 1381 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1382 } 1383 1384 static void 1385 ill_capability_reset_alloc(ill_t *ill) 1386 { 1387 mblk_t *mp; 1388 size_t size = 0; 1389 int err; 1390 dl_capability_req_t *capb; 1391 1392 ASSERT(IAM_WRITER_ILL(ill)); 1393 ASSERT(ill->ill_capab_reset_mp == NULL); 1394 1395 if (ILL_HCKSUM_CAPABLE(ill)) { 1396 size += sizeof (dl_capability_sub_t) + 1397 sizeof (dl_capab_hcksum_t); 1398 } 1399 1400 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1401 size += sizeof (dl_capability_sub_t) + 1402 sizeof (dl_capab_zerocopy_t); 1403 } 1404 1405 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1406 size += sizeof (dl_capability_sub_t) + 1407 sizeof (dl_capab_dld_t); 1408 } 1409 1410 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1411 STR_NOSIG, &err); 1412 1413 mp->b_datap->db_type = M_PROTO; 1414 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1415 1416 capb = (dl_capability_req_t *)mp->b_rptr; 1417 capb->dl_primitive = DL_CAPABILITY_REQ; 1418 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1419 capb->dl_sub_length = size; 1420 1421 mp->b_wptr += sizeof (dl_capability_req_t); 1422 1423 /* 1424 * Each handler fills in the corresponding dl_capability_sub_t 1425 * inside the mblk, 1426 */ 1427 ill_capability_hcksum_reset_fill(ill, mp); 1428 ill_capability_zerocopy_reset_fill(ill, mp); 1429 ill_capability_dld_reset_fill(ill, mp); 1430 1431 ill->ill_capab_reset_mp = mp; 1432 } 1433 1434 static void 1435 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1436 { 1437 dl_capab_id_t *id_ic; 1438 uint_t sub_dl_cap = outers->dl_cap; 1439 dl_capability_sub_t *inners; 1440 uint8_t *capend; 1441 1442 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1443 1444 /* 1445 * Note: range checks here are not absolutely sufficient to 1446 * make us robust against malformed messages sent by drivers; 1447 * this is in keeping with the rest of IP's dlpi handling. 1448 * (Remember, it's coming from something else in the kernel 1449 * address space) 1450 */ 1451 1452 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1453 if (capend > mp->b_wptr) { 1454 cmn_err(CE_WARN, "ill_capability_id_ack: " 1455 "malformed sub-capability too long for mblk"); 1456 return; 1457 } 1458 1459 id_ic = (dl_capab_id_t *)(outers + 1); 1460 1461 if (outers->dl_length < sizeof (*id_ic) || 1462 (inners = &id_ic->id_subcap, 1463 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1464 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1465 "encapsulated capab type %d too long for mblk", 1466 inners->dl_cap); 1467 return; 1468 } 1469 1470 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1471 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1472 "isn't as expected; pass-thru module(s) detected, " 1473 "discarding capability\n", inners->dl_cap)); 1474 return; 1475 } 1476 1477 /* Process the encapsulated sub-capability */ 1478 ill_capability_dispatch(ill, mp, inners); 1479 } 1480 1481 static void 1482 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1483 { 1484 dl_capability_sub_t *dl_subcap; 1485 1486 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1487 return; 1488 1489 /* 1490 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1491 * initialized below since it is not used by DLD. 1492 */ 1493 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1494 dl_subcap->dl_cap = DL_CAPAB_DLD; 1495 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1496 1497 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1498 } 1499 1500 static void 1501 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1502 { 1503 /* 1504 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1505 * is only to get the VRRP capability. 1506 * 1507 * Note that we cannot check ill_ipif_up_count here since 1508 * ill_ipif_up_count is only incremented when the resolver is setup. 1509 * That is done asynchronously, and can race with this function. 1510 */ 1511 if (!ill->ill_dl_up) { 1512 if (subp->dl_cap == DL_CAPAB_VRRP) 1513 ill_capability_vrrp_ack(ill, mp, subp); 1514 return; 1515 } 1516 1517 switch (subp->dl_cap) { 1518 case DL_CAPAB_HCKSUM: 1519 ill_capability_hcksum_ack(ill, mp, subp); 1520 break; 1521 case DL_CAPAB_ZEROCOPY: 1522 ill_capability_zerocopy_ack(ill, mp, subp); 1523 break; 1524 case DL_CAPAB_DLD: 1525 ill_capability_dld_ack(ill, mp, subp); 1526 break; 1527 case DL_CAPAB_VRRP: 1528 break; 1529 default: 1530 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1531 subp->dl_cap)); 1532 } 1533 } 1534 1535 /* 1536 * Process the vrrp capability received from a DLS Provider. isub must point 1537 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1538 */ 1539 static void 1540 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1541 { 1542 dl_capab_vrrp_t *vrrp; 1543 uint_t sub_dl_cap = isub->dl_cap; 1544 uint8_t *capend; 1545 1546 ASSERT(IAM_WRITER_ILL(ill)); 1547 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1548 1549 /* 1550 * Note: range checks here are not absolutely sufficient to 1551 * make us robust against malformed messages sent by drivers; 1552 * this is in keeping with the rest of IP's dlpi handling. 1553 * (Remember, it's coming from something else in the kernel 1554 * address space) 1555 */ 1556 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1557 if (capend > mp->b_wptr) { 1558 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1559 "malformed sub-capability too long for mblk"); 1560 return; 1561 } 1562 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1563 1564 /* 1565 * Compare the IP address family and set ILLF_VRRP for the right ill. 1566 */ 1567 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1568 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1569 ill->ill_flags |= ILLF_VRRP; 1570 } 1571 } 1572 1573 /* 1574 * Process a hardware checksum offload capability negotiation ack received 1575 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1576 * of a DL_CAPABILITY_ACK message. 1577 */ 1578 static void 1579 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1580 { 1581 dl_capability_req_t *ocap; 1582 dl_capab_hcksum_t *ihck, *ohck; 1583 ill_hcksum_capab_t **ill_hcksum; 1584 mblk_t *nmp = NULL; 1585 uint_t sub_dl_cap = isub->dl_cap; 1586 uint8_t *capend; 1587 1588 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1589 1590 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1591 1592 /* 1593 * Note: range checks here are not absolutely sufficient to 1594 * make us robust against malformed messages sent by drivers; 1595 * this is in keeping with the rest of IP's dlpi handling. 1596 * (Remember, it's coming from something else in the kernel 1597 * address space) 1598 */ 1599 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1600 if (capend > mp->b_wptr) { 1601 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1602 "malformed sub-capability too long for mblk"); 1603 return; 1604 } 1605 1606 /* 1607 * There are two types of acks we process here: 1608 * 1. acks in reply to a (first form) generic capability req 1609 * (no ENABLE flag set) 1610 * 2. acks in reply to a ENABLE capability req. 1611 * (ENABLE flag set) 1612 */ 1613 ihck = (dl_capab_hcksum_t *)(isub + 1); 1614 1615 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1616 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1617 "unsupported hardware checksum " 1618 "sub-capability (version %d, expected %d)", 1619 ihck->hcksum_version, HCKSUM_VERSION_1); 1620 return; 1621 } 1622 1623 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1624 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1625 "checksum capability isn't as expected; pass-thru " 1626 "module(s) detected, discarding capability\n")); 1627 return; 1628 } 1629 1630 #define CURR_HCKSUM_CAPAB \ 1631 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1632 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1633 1634 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1635 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1636 /* do ENABLE processing */ 1637 if (*ill_hcksum == NULL) { 1638 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1639 KM_NOSLEEP); 1640 1641 if (*ill_hcksum == NULL) { 1642 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1643 "could not enable hcksum version %d " 1644 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1645 ill->ill_name); 1646 return; 1647 } 1648 } 1649 1650 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1651 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1652 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1653 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1654 "has enabled hardware checksumming\n ", 1655 ill->ill_name)); 1656 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1657 /* 1658 * Enabling hardware checksum offload 1659 * Currently IP supports {TCP,UDP}/IPv4 1660 * partial and full cksum offload and 1661 * IPv4 header checksum offload. 1662 * Allocate new mblk which will 1663 * contain a new capability request 1664 * to enable hardware checksum offload. 1665 */ 1666 uint_t size; 1667 uchar_t *rptr; 1668 1669 size = sizeof (dl_capability_req_t) + 1670 sizeof (dl_capability_sub_t) + isub->dl_length; 1671 1672 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1673 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1674 "could not enable hardware cksum for %s (ENOMEM)\n", 1675 ill->ill_name); 1676 return; 1677 } 1678 1679 rptr = nmp->b_rptr; 1680 /* initialize dl_capability_req_t */ 1681 ocap = (dl_capability_req_t *)nmp->b_rptr; 1682 ocap->dl_sub_offset = 1683 sizeof (dl_capability_req_t); 1684 ocap->dl_sub_length = 1685 sizeof (dl_capability_sub_t) + 1686 isub->dl_length; 1687 nmp->b_rptr += sizeof (dl_capability_req_t); 1688 1689 /* initialize dl_capability_sub_t */ 1690 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1691 nmp->b_rptr += sizeof (*isub); 1692 1693 /* initialize dl_capab_hcksum_t */ 1694 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1695 bcopy(ihck, ohck, sizeof (*ihck)); 1696 1697 nmp->b_rptr = rptr; 1698 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1699 1700 /* Set ENABLE flag */ 1701 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1702 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1703 1704 /* 1705 * nmp points to a DL_CAPABILITY_REQ message to enable 1706 * hardware checksum acceleration. 1707 */ 1708 ill_capability_send(ill, nmp); 1709 } else { 1710 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1711 "advertised %x hardware checksum capability flags\n", 1712 ill->ill_name, ihck->hcksum_txflags)); 1713 } 1714 } 1715 1716 static void 1717 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1718 { 1719 dl_capab_hcksum_t *hck_subcap; 1720 dl_capability_sub_t *dl_subcap; 1721 1722 if (!ILL_HCKSUM_CAPABLE(ill)) 1723 return; 1724 1725 ASSERT(ill->ill_hcksum_capab != NULL); 1726 1727 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1728 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1729 dl_subcap->dl_length = sizeof (*hck_subcap); 1730 1731 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1732 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1733 hck_subcap->hcksum_txflags = 0; 1734 1735 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1736 } 1737 1738 static void 1739 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1740 { 1741 mblk_t *nmp = NULL; 1742 dl_capability_req_t *oc; 1743 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1744 ill_zerocopy_capab_t **ill_zerocopy_capab; 1745 uint_t sub_dl_cap = isub->dl_cap; 1746 uint8_t *capend; 1747 1748 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1749 1750 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1751 1752 /* 1753 * Note: range checks here are not absolutely sufficient to 1754 * make us robust against malformed messages sent by drivers; 1755 * this is in keeping with the rest of IP's dlpi handling. 1756 * (Remember, it's coming from something else in the kernel 1757 * address space) 1758 */ 1759 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1760 if (capend > mp->b_wptr) { 1761 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1762 "malformed sub-capability too long for mblk"); 1763 return; 1764 } 1765 1766 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1767 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1768 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1769 "unsupported ZEROCOPY sub-capability (version %d, " 1770 "expected %d)", zc_ic->zerocopy_version, 1771 ZEROCOPY_VERSION_1); 1772 return; 1773 } 1774 1775 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1776 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1777 "capability isn't as expected; pass-thru module(s) " 1778 "detected, discarding capability\n")); 1779 return; 1780 } 1781 1782 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1783 if (*ill_zerocopy_capab == NULL) { 1784 *ill_zerocopy_capab = 1785 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1786 KM_NOSLEEP); 1787 1788 if (*ill_zerocopy_capab == NULL) { 1789 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1790 "could not enable Zero-copy version %d " 1791 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1792 ill->ill_name); 1793 return; 1794 } 1795 } 1796 1797 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1798 "supports Zero-copy version %d\n", ill->ill_name, 1799 ZEROCOPY_VERSION_1)); 1800 1801 (*ill_zerocopy_capab)->ill_zerocopy_version = 1802 zc_ic->zerocopy_version; 1803 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1804 zc_ic->zerocopy_flags; 1805 1806 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1807 } else { 1808 uint_t size; 1809 uchar_t *rptr; 1810 1811 size = sizeof (dl_capability_req_t) + 1812 sizeof (dl_capability_sub_t) + 1813 sizeof (dl_capab_zerocopy_t); 1814 1815 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1816 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1817 "could not enable zerocopy for %s (ENOMEM)\n", 1818 ill->ill_name); 1819 return; 1820 } 1821 1822 rptr = nmp->b_rptr; 1823 /* initialize dl_capability_req_t */ 1824 oc = (dl_capability_req_t *)rptr; 1825 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1826 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1827 sizeof (dl_capab_zerocopy_t); 1828 rptr += sizeof (dl_capability_req_t); 1829 1830 /* initialize dl_capability_sub_t */ 1831 bcopy(isub, rptr, sizeof (*isub)); 1832 rptr += sizeof (*isub); 1833 1834 /* initialize dl_capab_zerocopy_t */ 1835 zc_oc = (dl_capab_zerocopy_t *)rptr; 1836 *zc_oc = *zc_ic; 1837 1838 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1839 "to enable zero-copy version %d\n", ill->ill_name, 1840 ZEROCOPY_VERSION_1)); 1841 1842 /* set VMSAFE_MEM flag */ 1843 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1844 1845 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1846 ill_capability_send(ill, nmp); 1847 } 1848 } 1849 1850 static void 1851 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1852 { 1853 dl_capab_zerocopy_t *zerocopy_subcap; 1854 dl_capability_sub_t *dl_subcap; 1855 1856 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1857 return; 1858 1859 ASSERT(ill->ill_zerocopy_capab != NULL); 1860 1861 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1862 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1863 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1864 1865 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1866 zerocopy_subcap->zerocopy_version = 1867 ill->ill_zerocopy_capab->ill_zerocopy_version; 1868 zerocopy_subcap->zerocopy_flags = 0; 1869 1870 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1871 } 1872 1873 /* 1874 * DLD capability 1875 * Refer to dld.h for more information regarding the purpose and usage 1876 * of this capability. 1877 */ 1878 static void 1879 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1880 { 1881 dl_capab_dld_t *dld_ic, dld; 1882 uint_t sub_dl_cap = isub->dl_cap; 1883 uint8_t *capend; 1884 ill_dld_capab_t *idc; 1885 1886 ASSERT(IAM_WRITER_ILL(ill)); 1887 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1888 1889 /* 1890 * Note: range checks here are not absolutely sufficient to 1891 * make us robust against malformed messages sent by drivers; 1892 * this is in keeping with the rest of IP's dlpi handling. 1893 * (Remember, it's coming from something else in the kernel 1894 * address space) 1895 */ 1896 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1897 if (capend > mp->b_wptr) { 1898 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1899 "malformed sub-capability too long for mblk"); 1900 return; 1901 } 1902 dld_ic = (dl_capab_dld_t *)(isub + 1); 1903 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1904 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1905 "unsupported DLD sub-capability (version %d, " 1906 "expected %d)", dld_ic->dld_version, 1907 DLD_CURRENT_VERSION); 1908 return; 1909 } 1910 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1911 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1912 "capability isn't as expected; pass-thru module(s) " 1913 "detected, discarding capability\n")); 1914 return; 1915 } 1916 1917 /* 1918 * Copy locally to ensure alignment. 1919 */ 1920 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1921 1922 if ((idc = ill->ill_dld_capab) == NULL) { 1923 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1924 if (idc == NULL) { 1925 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1926 "could not enable DLD version %d " 1927 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1928 ill->ill_name); 1929 return; 1930 } 1931 ill->ill_dld_capab = idc; 1932 } 1933 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1934 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1935 ip1dbg(("ill_capability_dld_ack: interface %s " 1936 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1937 1938 ill_capability_dld_enable(ill); 1939 } 1940 1941 /* 1942 * Typically capability negotiation between IP and the driver happens via 1943 * DLPI message exchange. However GLD also offers a direct function call 1944 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1945 * But arbitrary function calls into IP or GLD are not permitted, since both 1946 * of them are protected by their own perimeter mechanism. The perimeter can 1947 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1948 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1949 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1950 * to enter the mac perimeter and then do the direct function calls into 1951 * GLD to enable squeue polling. The ring related callbacks from the mac into 1952 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1953 * protected by the mac perimeter. 1954 */ 1955 static void 1956 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1957 { 1958 ill_dld_capab_t *idc = ill->ill_dld_capab; 1959 int err; 1960 1961 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1962 DLD_ENABLE); 1963 ASSERT(err == 0); 1964 } 1965 1966 static void 1967 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1968 { 1969 ill_dld_capab_t *idc = ill->ill_dld_capab; 1970 int err; 1971 1972 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1973 DLD_DISABLE); 1974 ASSERT(err == 0); 1975 } 1976 1977 boolean_t 1978 ill_mac_perim_held(ill_t *ill) 1979 { 1980 ill_dld_capab_t *idc = ill->ill_dld_capab; 1981 1982 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1983 DLD_QUERY)); 1984 } 1985 1986 static void 1987 ill_capability_direct_enable(ill_t *ill) 1988 { 1989 ill_dld_capab_t *idc = ill->ill_dld_capab; 1990 ill_dld_direct_t *idd = &idc->idc_direct; 1991 dld_capab_direct_t direct; 1992 int rc; 1993 1994 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1995 1996 bzero(&direct, sizeof (direct)); 1997 direct.di_rx_cf = (uintptr_t)ip_input; 1998 direct.di_rx_ch = ill; 1999 2000 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2001 DLD_ENABLE); 2002 if (rc == 0) { 2003 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2004 idd->idd_tx_dh = direct.di_tx_dh; 2005 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2006 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2007 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2008 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2009 ASSERT(idd->idd_tx_cb_df != NULL); 2010 ASSERT(idd->idd_tx_fctl_df != NULL); 2011 ASSERT(idd->idd_tx_df != NULL); 2012 /* 2013 * One time registration of flow enable callback function 2014 */ 2015 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2016 ill_flow_enable, ill); 2017 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2018 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2019 } else { 2020 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2021 "capability, rc = %d\n", rc); 2022 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2023 } 2024 } 2025 2026 static void 2027 ill_capability_poll_enable(ill_t *ill) 2028 { 2029 ill_dld_capab_t *idc = ill->ill_dld_capab; 2030 dld_capab_poll_t poll; 2031 int rc; 2032 2033 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2034 2035 bzero(&poll, sizeof (poll)); 2036 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2037 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2038 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2039 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2040 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2041 poll.poll_ring_ch = ill; 2042 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2043 DLD_ENABLE); 2044 if (rc == 0) { 2045 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2046 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2047 } else { 2048 ip1dbg(("warning: could not enable POLL " 2049 "capability, rc = %d\n", rc)); 2050 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2051 } 2052 } 2053 2054 /* 2055 * Enable the LSO capability. 2056 */ 2057 static void 2058 ill_capability_lso_enable(ill_t *ill) 2059 { 2060 ill_dld_capab_t *idc = ill->ill_dld_capab; 2061 dld_capab_lso_t lso; 2062 int rc; 2063 2064 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2065 2066 if (ill->ill_lso_capab == NULL) { 2067 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2068 KM_NOSLEEP); 2069 if (ill->ill_lso_capab == NULL) { 2070 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2071 "could not enable LSO for %s (ENOMEM)\n", 2072 ill->ill_name); 2073 return; 2074 } 2075 } 2076 2077 bzero(&lso, sizeof (lso)); 2078 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2079 DLD_ENABLE)) == 0) { 2080 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2081 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2082 ill->ill_capabilities |= ILL_CAPAB_LSO; 2083 ip1dbg(("ill_capability_lso_enable: interface %s " 2084 "has enabled LSO\n ", ill->ill_name)); 2085 } else { 2086 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2087 ill->ill_lso_capab = NULL; 2088 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2089 } 2090 } 2091 2092 static void 2093 ill_capability_dld_enable(ill_t *ill) 2094 { 2095 mac_perim_handle_t mph; 2096 2097 ASSERT(IAM_WRITER_ILL(ill)); 2098 2099 if (ill->ill_isv6) 2100 return; 2101 2102 ill_mac_perim_enter(ill, &mph); 2103 if (!ill->ill_isv6) { 2104 ill_capability_direct_enable(ill); 2105 ill_capability_poll_enable(ill); 2106 ill_capability_lso_enable(ill); 2107 } 2108 ill->ill_capabilities |= ILL_CAPAB_DLD; 2109 ill_mac_perim_exit(ill, mph); 2110 } 2111 2112 static void 2113 ill_capability_dld_disable(ill_t *ill) 2114 { 2115 ill_dld_capab_t *idc; 2116 ill_dld_direct_t *idd; 2117 mac_perim_handle_t mph; 2118 2119 ASSERT(IAM_WRITER_ILL(ill)); 2120 2121 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2122 return; 2123 2124 ill_mac_perim_enter(ill, &mph); 2125 2126 idc = ill->ill_dld_capab; 2127 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2128 /* 2129 * For performance we avoid locks in the transmit data path 2130 * and don't maintain a count of the number of threads using 2131 * direct calls. Thus some threads could be using direct 2132 * transmit calls to GLD, even after the capability mechanism 2133 * turns it off. This is still safe since the handles used in 2134 * the direct calls continue to be valid until the unplumb is 2135 * completed. Remove the callback that was added (1-time) at 2136 * capab enable time. 2137 */ 2138 mutex_enter(&ill->ill_lock); 2139 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2140 mutex_exit(&ill->ill_lock); 2141 if (ill->ill_flownotify_mh != NULL) { 2142 idd = &idc->idc_direct; 2143 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2144 ill->ill_flownotify_mh); 2145 ill->ill_flownotify_mh = NULL; 2146 } 2147 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2148 NULL, DLD_DISABLE); 2149 } 2150 2151 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2152 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2153 ip_squeue_clean_all(ill); 2154 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2155 NULL, DLD_DISABLE); 2156 } 2157 2158 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2159 ASSERT(ill->ill_lso_capab != NULL); 2160 /* 2161 * Clear the capability flag for LSO but retain the 2162 * ill_lso_capab structure since it's possible that another 2163 * thread is still referring to it. The structure only gets 2164 * deallocated when we destroy the ill. 2165 */ 2166 2167 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2168 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2169 NULL, DLD_DISABLE); 2170 } 2171 2172 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2173 ill_mac_perim_exit(ill, mph); 2174 } 2175 2176 /* 2177 * Capability Negotiation protocol 2178 * 2179 * We don't wait for DLPI capability operations to finish during interface 2180 * bringup or teardown. Doing so would introduce more asynchrony and the 2181 * interface up/down operations will need multiple return and restarts. 2182 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2183 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2184 * exclusive operation won't start until the DLPI operations of the previous 2185 * exclusive operation complete. 2186 * 2187 * The capability state machine is shown below. 2188 * 2189 * state next state event, action 2190 * 2191 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2192 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2193 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2194 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2195 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2196 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2197 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2198 * ill_capability_probe. 2199 */ 2200 2201 /* 2202 * Dedicated thread started from ip_stack_init that handles capability 2203 * disable. This thread ensures the taskq dispatch does not fail by waiting 2204 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2205 * that direct calls to DLD are done in a cv_waitable context. 2206 */ 2207 void 2208 ill_taskq_dispatch(ip_stack_t *ipst) 2209 { 2210 callb_cpr_t cprinfo; 2211 char name[64]; 2212 mblk_t *mp; 2213 2214 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2215 ipst->ips_netstack->netstack_stackid); 2216 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2217 name); 2218 mutex_enter(&ipst->ips_capab_taskq_lock); 2219 2220 for (;;) { 2221 mp = ipst->ips_capab_taskq_head; 2222 while (mp != NULL) { 2223 ipst->ips_capab_taskq_head = mp->b_next; 2224 if (ipst->ips_capab_taskq_head == NULL) 2225 ipst->ips_capab_taskq_tail = NULL; 2226 mutex_exit(&ipst->ips_capab_taskq_lock); 2227 mp->b_next = NULL; 2228 2229 VERIFY(taskq_dispatch(system_taskq, 2230 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2231 mutex_enter(&ipst->ips_capab_taskq_lock); 2232 mp = ipst->ips_capab_taskq_head; 2233 } 2234 2235 if (ipst->ips_capab_taskq_quit) 2236 break; 2237 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2238 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2239 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2240 } 2241 VERIFY(ipst->ips_capab_taskq_head == NULL); 2242 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2243 CALLB_CPR_EXIT(&cprinfo); 2244 thread_exit(); 2245 } 2246 2247 /* 2248 * Consume a new-style hardware capabilities negotiation ack. 2249 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2250 */ 2251 static void 2252 ill_capability_ack_thr(void *arg) 2253 { 2254 mblk_t *mp = arg; 2255 dl_capability_ack_t *capp; 2256 dl_capability_sub_t *subp, *endp; 2257 ill_t *ill; 2258 boolean_t reneg; 2259 2260 ill = (ill_t *)mp->b_prev; 2261 mp->b_prev = NULL; 2262 2263 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2264 2265 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2266 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2267 /* 2268 * We have received the ack for our DL_CAPAB reset request. 2269 * There isnt' anything in the message that needs processing. 2270 * All message based capabilities have been disabled, now 2271 * do the function call based capability disable. 2272 */ 2273 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2274 ill_capability_dld_disable(ill); 2275 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2276 if (reneg) 2277 ill_capability_probe(ill); 2278 goto done; 2279 } 2280 2281 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2282 ill->ill_dlpi_capab_state = IDCS_OK; 2283 2284 capp = (dl_capability_ack_t *)mp->b_rptr; 2285 2286 if (capp->dl_sub_length == 0) { 2287 /* no new-style capabilities */ 2288 goto done; 2289 } 2290 2291 /* make sure the driver supplied correct dl_sub_length */ 2292 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2293 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2294 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2295 goto done; 2296 } 2297 2298 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2299 /* 2300 * There are sub-capabilities. Process the ones we know about. 2301 * Loop until we don't have room for another sub-cap header.. 2302 */ 2303 for (subp = SC(capp, capp->dl_sub_offset), 2304 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2305 subp <= endp; 2306 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2307 2308 switch (subp->dl_cap) { 2309 case DL_CAPAB_ID_WRAPPER: 2310 ill_capability_id_ack(ill, mp, subp); 2311 break; 2312 default: 2313 ill_capability_dispatch(ill, mp, subp); 2314 break; 2315 } 2316 } 2317 #undef SC 2318 done: 2319 inet_freemsg(mp); 2320 ill_capability_done(ill); 2321 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2322 } 2323 2324 /* 2325 * This needs to be started in a taskq thread to provide a cv_waitable 2326 * context. 2327 */ 2328 void 2329 ill_capability_ack(ill_t *ill, mblk_t *mp) 2330 { 2331 ip_stack_t *ipst = ill->ill_ipst; 2332 2333 mp->b_prev = (mblk_t *)ill; 2334 ASSERT(mp->b_next == NULL); 2335 2336 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2337 TQ_NOSLEEP) != 0) 2338 return; 2339 2340 /* 2341 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2342 * which will do the dispatch using TQ_SLEEP to guarantee success. 2343 */ 2344 mutex_enter(&ipst->ips_capab_taskq_lock); 2345 if (ipst->ips_capab_taskq_head == NULL) { 2346 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2347 ipst->ips_capab_taskq_head = mp; 2348 } else { 2349 ipst->ips_capab_taskq_tail->b_next = mp; 2350 } 2351 ipst->ips_capab_taskq_tail = mp; 2352 2353 cv_signal(&ipst->ips_capab_taskq_cv); 2354 mutex_exit(&ipst->ips_capab_taskq_lock); 2355 } 2356 2357 /* 2358 * This routine is called to scan the fragmentation reassembly table for 2359 * the specified ILL for any packets that are starting to smell. 2360 * dead_interval is the maximum time in seconds that will be tolerated. It 2361 * will either be the value specified in ip_g_frag_timeout, or zero if the 2362 * ILL is shutting down and it is time to blow everything off. 2363 * 2364 * It returns the number of seconds (as a time_t) that the next frag timer 2365 * should be scheduled for, 0 meaning that the timer doesn't need to be 2366 * re-started. Note that the method of calculating next_timeout isn't 2367 * entirely accurate since time will flow between the time we grab 2368 * current_time and the time we schedule the next timeout. This isn't a 2369 * big problem since this is the timer for sending an ICMP reassembly time 2370 * exceeded messages, and it doesn't have to be exactly accurate. 2371 * 2372 * This function is 2373 * sometimes called as writer, although this is not required. 2374 */ 2375 time_t 2376 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2377 { 2378 ipfb_t *ipfb; 2379 ipfb_t *endp; 2380 ipf_t *ipf; 2381 ipf_t *ipfnext; 2382 mblk_t *mp; 2383 time_t current_time = gethrestime_sec(); 2384 time_t next_timeout = 0; 2385 uint32_t hdr_length; 2386 mblk_t *send_icmp_head; 2387 mblk_t *send_icmp_head_v6; 2388 ip_stack_t *ipst = ill->ill_ipst; 2389 ip_recv_attr_t iras; 2390 2391 bzero(&iras, sizeof (iras)); 2392 iras.ira_flags = 0; 2393 iras.ira_ill = iras.ira_rill = ill; 2394 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2395 iras.ira_rifindex = iras.ira_ruifindex; 2396 2397 ipfb = ill->ill_frag_hash_tbl; 2398 if (ipfb == NULL) 2399 return (B_FALSE); 2400 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2401 /* Walk the frag hash table. */ 2402 for (; ipfb < endp; ipfb++) { 2403 send_icmp_head = NULL; 2404 send_icmp_head_v6 = NULL; 2405 mutex_enter(&ipfb->ipfb_lock); 2406 while ((ipf = ipfb->ipfb_ipf) != 0) { 2407 time_t frag_time = current_time - ipf->ipf_timestamp; 2408 time_t frag_timeout; 2409 2410 if (frag_time < dead_interval) { 2411 /* 2412 * There are some outstanding fragments 2413 * that will timeout later. Make note of 2414 * the time so that we can reschedule the 2415 * next timeout appropriately. 2416 */ 2417 frag_timeout = dead_interval - frag_time; 2418 if (next_timeout == 0 || 2419 frag_timeout < next_timeout) { 2420 next_timeout = frag_timeout; 2421 } 2422 break; 2423 } 2424 /* Time's up. Get it out of here. */ 2425 hdr_length = ipf->ipf_nf_hdr_len; 2426 ipfnext = ipf->ipf_hash_next; 2427 if (ipfnext) 2428 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2429 *ipf->ipf_ptphn = ipfnext; 2430 mp = ipf->ipf_mp->b_cont; 2431 for (; mp; mp = mp->b_cont) { 2432 /* Extra points for neatness. */ 2433 IP_REASS_SET_START(mp, 0); 2434 IP_REASS_SET_END(mp, 0); 2435 } 2436 mp = ipf->ipf_mp->b_cont; 2437 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2438 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2439 ipfb->ipfb_count -= ipf->ipf_count; 2440 ASSERT(ipfb->ipfb_frag_pkts > 0); 2441 ipfb->ipfb_frag_pkts--; 2442 /* 2443 * We do not send any icmp message from here because 2444 * we currently are holding the ipfb_lock for this 2445 * hash chain. If we try and send any icmp messages 2446 * from here we may end up via a put back into ip 2447 * trying to get the same lock, causing a recursive 2448 * mutex panic. Instead we build a list and send all 2449 * the icmp messages after we have dropped the lock. 2450 */ 2451 if (ill->ill_isv6) { 2452 if (hdr_length != 0) { 2453 mp->b_next = send_icmp_head_v6; 2454 send_icmp_head_v6 = mp; 2455 } else { 2456 freemsg(mp); 2457 } 2458 } else { 2459 if (hdr_length != 0) { 2460 mp->b_next = send_icmp_head; 2461 send_icmp_head = mp; 2462 } else { 2463 freemsg(mp); 2464 } 2465 } 2466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2467 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2468 freeb(ipf->ipf_mp); 2469 } 2470 mutex_exit(&ipfb->ipfb_lock); 2471 /* 2472 * Now need to send any icmp messages that we delayed from 2473 * above. 2474 */ 2475 while (send_icmp_head_v6 != NULL) { 2476 ip6_t *ip6h; 2477 2478 mp = send_icmp_head_v6; 2479 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2480 mp->b_next = NULL; 2481 ip6h = (ip6_t *)mp->b_rptr; 2482 iras.ira_flags = 0; 2483 /* 2484 * This will result in an incorrect ALL_ZONES zoneid 2485 * for multicast packets, but we 2486 * don't send ICMP errors for those in any case. 2487 */ 2488 iras.ira_zoneid = 2489 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2490 ill, ipst); 2491 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2492 icmp_time_exceeded_v6(mp, 2493 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2494 &iras); 2495 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2496 } 2497 while (send_icmp_head != NULL) { 2498 ipaddr_t dst; 2499 2500 mp = send_icmp_head; 2501 send_icmp_head = send_icmp_head->b_next; 2502 mp->b_next = NULL; 2503 2504 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2505 2506 iras.ira_flags = IRAF_IS_IPV4; 2507 /* 2508 * This will result in an incorrect ALL_ZONES zoneid 2509 * for broadcast and multicast packets, but we 2510 * don't send ICMP errors for those in any case. 2511 */ 2512 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2513 ill, ipst); 2514 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2515 icmp_time_exceeded(mp, 2516 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2517 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2518 } 2519 } 2520 /* 2521 * A non-dying ILL will use the return value to decide whether to 2522 * restart the frag timer, and for how long. 2523 */ 2524 return (next_timeout); 2525 } 2526 2527 /* 2528 * This routine is called when the approximate count of mblk memory used 2529 * for the specified ILL has exceeded max_count. 2530 */ 2531 void 2532 ill_frag_prune(ill_t *ill, uint_t max_count) 2533 { 2534 ipfb_t *ipfb; 2535 ipf_t *ipf; 2536 size_t count; 2537 clock_t now; 2538 2539 /* 2540 * If we are here within ip_min_frag_prune_time msecs remove 2541 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2542 * ill_frag_free_num_pkts. 2543 */ 2544 mutex_enter(&ill->ill_lock); 2545 now = ddi_get_lbolt(); 2546 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2547 (ip_min_frag_prune_time != 0 ? 2548 ip_min_frag_prune_time : msec_per_tick)) { 2549 2550 ill->ill_frag_free_num_pkts++; 2551 2552 } else { 2553 ill->ill_frag_free_num_pkts = 0; 2554 } 2555 ill->ill_last_frag_clean_time = now; 2556 mutex_exit(&ill->ill_lock); 2557 2558 /* 2559 * free ill_frag_free_num_pkts oldest packets from each bucket. 2560 */ 2561 if (ill->ill_frag_free_num_pkts != 0) { 2562 int ix; 2563 2564 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2565 ipfb = &ill->ill_frag_hash_tbl[ix]; 2566 mutex_enter(&ipfb->ipfb_lock); 2567 if (ipfb->ipfb_ipf != NULL) { 2568 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2569 ill->ill_frag_free_num_pkts); 2570 } 2571 mutex_exit(&ipfb->ipfb_lock); 2572 } 2573 } 2574 /* 2575 * While the reassembly list for this ILL is too big, prune a fragment 2576 * queue by age, oldest first. 2577 */ 2578 while (ill->ill_frag_count > max_count) { 2579 int ix; 2580 ipfb_t *oipfb = NULL; 2581 uint_t oldest = UINT_MAX; 2582 2583 count = 0; 2584 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2585 ipfb = &ill->ill_frag_hash_tbl[ix]; 2586 mutex_enter(&ipfb->ipfb_lock); 2587 ipf = ipfb->ipfb_ipf; 2588 if (ipf != NULL && ipf->ipf_gen < oldest) { 2589 oldest = ipf->ipf_gen; 2590 oipfb = ipfb; 2591 } 2592 count += ipfb->ipfb_count; 2593 mutex_exit(&ipfb->ipfb_lock); 2594 } 2595 if (oipfb == NULL) 2596 break; 2597 2598 if (count <= max_count) 2599 return; /* Somebody beat us to it, nothing to do */ 2600 mutex_enter(&oipfb->ipfb_lock); 2601 ipf = oipfb->ipfb_ipf; 2602 if (ipf != NULL) { 2603 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2604 } 2605 mutex_exit(&oipfb->ipfb_lock); 2606 } 2607 } 2608 2609 /* 2610 * free 'free_cnt' fragmented packets starting at ipf. 2611 */ 2612 void 2613 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2614 { 2615 size_t count; 2616 mblk_t *mp; 2617 mblk_t *tmp; 2618 ipf_t **ipfp = ipf->ipf_ptphn; 2619 2620 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2621 ASSERT(ipfp != NULL); 2622 ASSERT(ipf != NULL); 2623 2624 while (ipf != NULL && free_cnt-- > 0) { 2625 count = ipf->ipf_count; 2626 mp = ipf->ipf_mp; 2627 ipf = ipf->ipf_hash_next; 2628 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2629 IP_REASS_SET_START(tmp, 0); 2630 IP_REASS_SET_END(tmp, 0); 2631 } 2632 atomic_add_32(&ill->ill_frag_count, -count); 2633 ASSERT(ipfb->ipfb_count >= count); 2634 ipfb->ipfb_count -= count; 2635 ASSERT(ipfb->ipfb_frag_pkts > 0); 2636 ipfb->ipfb_frag_pkts--; 2637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2638 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2639 freemsg(mp); 2640 } 2641 2642 if (ipf) 2643 ipf->ipf_ptphn = ipfp; 2644 ipfp[0] = ipf; 2645 } 2646 2647 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2648 "obsolete and may be removed in a future release of Solaris. Use " \ 2649 "ifconfig(1M) to manipulate the forwarding status of an interface." 2650 2651 /* 2652 * For obsolete per-interface forwarding configuration; 2653 * called in response to ND_GET. 2654 */ 2655 /* ARGSUSED */ 2656 static int 2657 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2658 { 2659 ill_t *ill = (ill_t *)cp; 2660 2661 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2662 2663 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2664 return (0); 2665 } 2666 2667 /* 2668 * For obsolete per-interface forwarding configuration; 2669 * called in response to ND_SET. 2670 */ 2671 /* ARGSUSED */ 2672 static int 2673 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2674 cred_t *ioc_cr) 2675 { 2676 long value; 2677 int retval; 2678 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2679 2680 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2681 2682 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2683 value < 0 || value > 1) { 2684 return (EINVAL); 2685 } 2686 2687 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2688 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2689 rw_exit(&ipst->ips_ill_g_lock); 2690 return (retval); 2691 } 2692 2693 /* 2694 * Helper function for ill_forward_set(). 2695 */ 2696 static void 2697 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2698 { 2699 ip_stack_t *ipst = ill->ill_ipst; 2700 2701 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2702 2703 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2704 (enable ? "Enabling" : "Disabling"), 2705 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2706 mutex_enter(&ill->ill_lock); 2707 if (enable) 2708 ill->ill_flags |= ILLF_ROUTER; 2709 else 2710 ill->ill_flags &= ~ILLF_ROUTER; 2711 mutex_exit(&ill->ill_lock); 2712 if (ill->ill_isv6) 2713 ill_set_nce_router_flags(ill, enable); 2714 /* Notify routing socket listeners of this change. */ 2715 if (ill->ill_ipif != NULL) 2716 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2717 } 2718 2719 /* 2720 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2721 * socket messages for each interface whose flags we change. 2722 */ 2723 int 2724 ill_forward_set(ill_t *ill, boolean_t enable) 2725 { 2726 ipmp_illgrp_t *illg; 2727 ip_stack_t *ipst = ill->ill_ipst; 2728 2729 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2730 2731 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2732 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2733 return (0); 2734 2735 if (IS_LOOPBACK(ill)) 2736 return (EINVAL); 2737 2738 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2739 /* 2740 * Update all of the interfaces in the group. 2741 */ 2742 illg = ill->ill_grp; 2743 ill = list_head(&illg->ig_if); 2744 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2745 ill_forward_set_on_ill(ill, enable); 2746 2747 /* 2748 * Update the IPMP meta-interface. 2749 */ 2750 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2751 return (0); 2752 } 2753 2754 ill_forward_set_on_ill(ill, enable); 2755 return (0); 2756 } 2757 2758 /* 2759 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2760 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2761 * set or clear. 2762 */ 2763 static void 2764 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2765 { 2766 ipif_t *ipif; 2767 ncec_t *ncec; 2768 nce_t *nce; 2769 2770 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2771 /* 2772 * NOTE: we match across the illgrp because nce's for 2773 * addresses on IPMP interfaces have an nce_ill that points to 2774 * the bound underlying ill. 2775 */ 2776 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2777 if (nce != NULL) { 2778 ncec = nce->nce_common; 2779 mutex_enter(&ncec->ncec_lock); 2780 if (enable) 2781 ncec->ncec_flags |= NCE_F_ISROUTER; 2782 else 2783 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2784 mutex_exit(&ncec->ncec_lock); 2785 nce_refrele(nce); 2786 } 2787 } 2788 } 2789 2790 /* 2791 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2792 * for this ill. Make sure the v6/v4 question has been answered about this 2793 * ill. The creation of this ndd variable is only for backwards compatibility. 2794 * The preferred way to control per-interface IP forwarding is through the 2795 * ILLF_ROUTER interface flag. 2796 */ 2797 static int 2798 ill_set_ndd_name(ill_t *ill) 2799 { 2800 char *suffix; 2801 ip_stack_t *ipst = ill->ill_ipst; 2802 2803 ASSERT(IAM_WRITER_ILL(ill)); 2804 2805 if (ill->ill_isv6) 2806 suffix = ipv6_forward_suffix; 2807 else 2808 suffix = ipv4_forward_suffix; 2809 2810 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2811 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2812 /* 2813 * Copies over the '\0'. 2814 * Note that strlen(suffix) is always bounded. 2815 */ 2816 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2817 strlen(suffix) + 1); 2818 2819 /* 2820 * Use of the nd table requires holding the reader lock. 2821 * Modifying the nd table thru nd_load/nd_unload requires 2822 * the writer lock. 2823 */ 2824 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2825 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2826 nd_ill_forward_set, (caddr_t)ill)) { 2827 /* 2828 * If the nd_load failed, it only meant that it could not 2829 * allocate a new bunch of room for further NDD expansion. 2830 * Because of that, the ill_ndd_name will be set to 0, and 2831 * this interface is at the mercy of the global ip_forwarding 2832 * variable. 2833 */ 2834 rw_exit(&ipst->ips_ip_g_nd_lock); 2835 ill->ill_ndd_name = NULL; 2836 return (ENOMEM); 2837 } 2838 rw_exit(&ipst->ips_ip_g_nd_lock); 2839 return (0); 2840 } 2841 2842 /* 2843 * Intializes the context structure and returns the first ill in the list 2844 * cuurently start_list and end_list can have values: 2845 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2846 * IP_V4_G_HEAD Traverse IPV4 list only. 2847 * IP_V6_G_HEAD Traverse IPV6 list only. 2848 */ 2849 2850 /* 2851 * We don't check for CONDEMNED ills here. Caller must do that if 2852 * necessary under the ill lock. 2853 */ 2854 ill_t * 2855 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2856 ip_stack_t *ipst) 2857 { 2858 ill_if_t *ifp; 2859 ill_t *ill; 2860 avl_tree_t *avl_tree; 2861 2862 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2863 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2864 2865 /* 2866 * setup the lists to search 2867 */ 2868 if (end_list != MAX_G_HEADS) { 2869 ctx->ctx_current_list = start_list; 2870 ctx->ctx_last_list = end_list; 2871 } else { 2872 ctx->ctx_last_list = MAX_G_HEADS - 1; 2873 ctx->ctx_current_list = 0; 2874 } 2875 2876 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2877 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2878 if (ifp != (ill_if_t *) 2879 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2880 avl_tree = &ifp->illif_avl_by_ppa; 2881 ill = avl_first(avl_tree); 2882 /* 2883 * ill is guaranteed to be non NULL or ifp should have 2884 * not existed. 2885 */ 2886 ASSERT(ill != NULL); 2887 return (ill); 2888 } 2889 ctx->ctx_current_list++; 2890 } 2891 2892 return (NULL); 2893 } 2894 2895 /* 2896 * returns the next ill in the list. ill_first() must have been called 2897 * before calling ill_next() or bad things will happen. 2898 */ 2899 2900 /* 2901 * We don't check for CONDEMNED ills here. Caller must do that if 2902 * necessary under the ill lock. 2903 */ 2904 ill_t * 2905 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2906 { 2907 ill_if_t *ifp; 2908 ill_t *ill; 2909 ip_stack_t *ipst = lastill->ill_ipst; 2910 2911 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2912 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2913 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2914 AVL_AFTER)) != NULL) { 2915 return (ill); 2916 } 2917 2918 /* goto next ill_ifp in the list. */ 2919 ifp = lastill->ill_ifptr->illif_next; 2920 2921 /* make sure not at end of circular list */ 2922 while (ifp == 2923 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2924 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2925 return (NULL); 2926 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2927 } 2928 2929 return (avl_first(&ifp->illif_avl_by_ppa)); 2930 } 2931 2932 /* 2933 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2934 * The final number (PPA) must not have any leading zeros. Upon success, a 2935 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2936 */ 2937 static char * 2938 ill_get_ppa_ptr(char *name) 2939 { 2940 int namelen = strlen(name); 2941 int end_ndx = namelen - 1; 2942 int ppa_ndx, i; 2943 2944 /* 2945 * Check that the first character is [a-zA-Z], and that the last 2946 * character is [0-9]. 2947 */ 2948 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2949 return (NULL); 2950 2951 /* 2952 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2953 */ 2954 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2955 if (!isdigit(name[ppa_ndx - 1])) 2956 break; 2957 2958 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2959 return (NULL); 2960 2961 /* 2962 * Check that the intermediate characters are [a-z0-9.] 2963 */ 2964 for (i = 1; i < ppa_ndx; i++) { 2965 if (!isalpha(name[i]) && !isdigit(name[i]) && 2966 name[i] != '.' && name[i] != '_') { 2967 return (NULL); 2968 } 2969 } 2970 2971 return (name + ppa_ndx); 2972 } 2973 2974 /* 2975 * use avl tree to locate the ill. 2976 */ 2977 static ill_t * 2978 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2979 { 2980 char *ppa_ptr = NULL; 2981 int len; 2982 uint_t ppa; 2983 ill_t *ill = NULL; 2984 ill_if_t *ifp; 2985 int list; 2986 2987 /* 2988 * get ppa ptr 2989 */ 2990 if (isv6) 2991 list = IP_V6_G_HEAD; 2992 else 2993 list = IP_V4_G_HEAD; 2994 2995 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2996 return (NULL); 2997 } 2998 2999 len = ppa_ptr - name + 1; 3000 3001 ppa = stoi(&ppa_ptr); 3002 3003 ifp = IP_VX_ILL_G_LIST(list, ipst); 3004 3005 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3006 /* 3007 * match is done on len - 1 as the name is not null 3008 * terminated it contains ppa in addition to the interface 3009 * name. 3010 */ 3011 if ((ifp->illif_name_len == len) && 3012 bcmp(ifp->illif_name, name, len - 1) == 0) { 3013 break; 3014 } else { 3015 ifp = ifp->illif_next; 3016 } 3017 } 3018 3019 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 3020 /* 3021 * Even the interface type does not exist. 3022 */ 3023 return (NULL); 3024 } 3025 3026 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 3027 if (ill != NULL) { 3028 mutex_enter(&ill->ill_lock); 3029 if (ILL_CAN_LOOKUP(ill)) { 3030 ill_refhold_locked(ill); 3031 mutex_exit(&ill->ill_lock); 3032 return (ill); 3033 } 3034 mutex_exit(&ill->ill_lock); 3035 } 3036 return (NULL); 3037 } 3038 3039 /* 3040 * comparison function for use with avl. 3041 */ 3042 static int 3043 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 3044 { 3045 uint_t ppa; 3046 uint_t ill_ppa; 3047 3048 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 3049 3050 ppa = *((uint_t *)ppa_ptr); 3051 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 3052 /* 3053 * We want the ill with the lowest ppa to be on the 3054 * top. 3055 */ 3056 if (ill_ppa < ppa) 3057 return (1); 3058 if (ill_ppa > ppa) 3059 return (-1); 3060 return (0); 3061 } 3062 3063 /* 3064 * remove an interface type from the global list. 3065 */ 3066 static void 3067 ill_delete_interface_type(ill_if_t *interface) 3068 { 3069 ASSERT(interface != NULL); 3070 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 3071 3072 avl_destroy(&interface->illif_avl_by_ppa); 3073 if (interface->illif_ppa_arena != NULL) 3074 vmem_destroy(interface->illif_ppa_arena); 3075 3076 remque(interface); 3077 3078 mi_free(interface); 3079 } 3080 3081 /* 3082 * remove ill from the global list. 3083 */ 3084 static void 3085 ill_glist_delete(ill_t *ill) 3086 { 3087 ip_stack_t *ipst; 3088 phyint_t *phyi; 3089 3090 if (ill == NULL) 3091 return; 3092 ipst = ill->ill_ipst; 3093 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3094 3095 /* 3096 * If the ill was never inserted into the AVL tree 3097 * we skip the if branch. 3098 */ 3099 if (ill->ill_ifptr != NULL) { 3100 /* 3101 * remove from AVL tree and free ppa number 3102 */ 3103 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3104 3105 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3106 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3107 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3108 } 3109 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3110 ill_delete_interface_type(ill->ill_ifptr); 3111 } 3112 3113 /* 3114 * Indicate ill is no longer in the list. 3115 */ 3116 ill->ill_ifptr = NULL; 3117 ill->ill_name_length = 0; 3118 ill->ill_name[0] = '\0'; 3119 ill->ill_ppa = UINT_MAX; 3120 } 3121 3122 /* Generate one last event for this ill. */ 3123 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3124 ill->ill_name_length); 3125 3126 ASSERT(ill->ill_phyint != NULL); 3127 phyi = ill->ill_phyint; 3128 ill->ill_phyint = NULL; 3129 3130 /* 3131 * ill_init allocates a phyint always to store the copy 3132 * of flags relevant to phyint. At that point in time, we could 3133 * not assign the name and hence phyint_illv4/v6 could not be 3134 * initialized. Later in ipif_set_values, we assign the name to 3135 * the ill, at which point in time we assign phyint_illv4/v6. 3136 * Thus we don't rely on phyint_illv6 to be initialized always. 3137 */ 3138 if (ill->ill_flags & ILLF_IPV6) 3139 phyi->phyint_illv6 = NULL; 3140 else 3141 phyi->phyint_illv4 = NULL; 3142 3143 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3144 rw_exit(&ipst->ips_ill_g_lock); 3145 return; 3146 } 3147 3148 /* 3149 * There are no ills left on this phyint; pull it out of the phyint 3150 * avl trees, and free it. 3151 */ 3152 if (phyi->phyint_ifindex > 0) { 3153 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3154 phyi); 3155 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3156 phyi); 3157 } 3158 rw_exit(&ipst->ips_ill_g_lock); 3159 3160 phyint_free(phyi); 3161 } 3162 3163 /* 3164 * allocate a ppa, if the number of plumbed interfaces of this type are 3165 * less than ill_no_arena do a linear search to find a unused ppa. 3166 * When the number goes beyond ill_no_arena switch to using an arena. 3167 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3168 * is the return value for an error condition, so allocation starts at one 3169 * and is decremented by one. 3170 */ 3171 static int 3172 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3173 { 3174 ill_t *tmp_ill; 3175 uint_t start, end; 3176 int ppa; 3177 3178 if (ifp->illif_ppa_arena == NULL && 3179 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3180 /* 3181 * Create an arena. 3182 */ 3183 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3184 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3185 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3186 /* allocate what has already been assigned */ 3187 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3188 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3189 tmp_ill, AVL_AFTER)) { 3190 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3191 1, /* size */ 3192 1, /* align/quantum */ 3193 0, /* phase */ 3194 0, /* nocross */ 3195 /* minaddr */ 3196 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3197 /* maxaddr */ 3198 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3199 VM_NOSLEEP|VM_FIRSTFIT); 3200 if (ppa == 0) { 3201 ip1dbg(("ill_alloc_ppa: ppa allocation" 3202 " failed while switching")); 3203 vmem_destroy(ifp->illif_ppa_arena); 3204 ifp->illif_ppa_arena = NULL; 3205 break; 3206 } 3207 } 3208 } 3209 3210 if (ifp->illif_ppa_arena != NULL) { 3211 if (ill->ill_ppa == UINT_MAX) { 3212 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3213 1, VM_NOSLEEP|VM_FIRSTFIT); 3214 if (ppa == 0) 3215 return (EAGAIN); 3216 ill->ill_ppa = --ppa; 3217 } else { 3218 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3219 1, /* size */ 3220 1, /* align/quantum */ 3221 0, /* phase */ 3222 0, /* nocross */ 3223 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3224 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3225 VM_NOSLEEP|VM_FIRSTFIT); 3226 /* 3227 * Most likely the allocation failed because 3228 * the requested ppa was in use. 3229 */ 3230 if (ppa == 0) 3231 return (EEXIST); 3232 } 3233 return (0); 3234 } 3235 3236 /* 3237 * No arena is in use and not enough (>ill_no_arena) interfaces have 3238 * been plumbed to create one. Do a linear search to get a unused ppa. 3239 */ 3240 if (ill->ill_ppa == UINT_MAX) { 3241 end = UINT_MAX - 1; 3242 start = 0; 3243 } else { 3244 end = start = ill->ill_ppa; 3245 } 3246 3247 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3248 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3249 if (start++ >= end) { 3250 if (ill->ill_ppa == UINT_MAX) 3251 return (EAGAIN); 3252 else 3253 return (EEXIST); 3254 } 3255 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3256 } 3257 ill->ill_ppa = start; 3258 return (0); 3259 } 3260 3261 /* 3262 * Insert ill into the list of configured ill's. Once this function completes, 3263 * the ill is globally visible and is available through lookups. More precisely 3264 * this happens after the caller drops the ill_g_lock. 3265 */ 3266 static int 3267 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3268 { 3269 ill_if_t *ill_interface; 3270 avl_index_t where = 0; 3271 int error; 3272 int name_length; 3273 int index; 3274 boolean_t check_length = B_FALSE; 3275 ip_stack_t *ipst = ill->ill_ipst; 3276 3277 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3278 3279 name_length = mi_strlen(name) + 1; 3280 3281 if (isv6) 3282 index = IP_V6_G_HEAD; 3283 else 3284 index = IP_V4_G_HEAD; 3285 3286 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3287 /* 3288 * Search for interface type based on name 3289 */ 3290 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3291 if ((ill_interface->illif_name_len == name_length) && 3292 (strcmp(ill_interface->illif_name, name) == 0)) { 3293 break; 3294 } 3295 ill_interface = ill_interface->illif_next; 3296 } 3297 3298 /* 3299 * Interface type not found, create one. 3300 */ 3301 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3302 ill_g_head_t ghead; 3303 3304 /* 3305 * allocate ill_if_t structure 3306 */ 3307 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3308 if (ill_interface == NULL) { 3309 return (ENOMEM); 3310 } 3311 3312 (void) strcpy(ill_interface->illif_name, name); 3313 ill_interface->illif_name_len = name_length; 3314 3315 avl_create(&ill_interface->illif_avl_by_ppa, 3316 ill_compare_ppa, sizeof (ill_t), 3317 offsetof(struct ill_s, ill_avl_byppa)); 3318 3319 /* 3320 * link the structure in the back to maintain order 3321 * of configuration for ifconfig output. 3322 */ 3323 ghead = ipst->ips_ill_g_heads[index]; 3324 insque(ill_interface, ghead.ill_g_list_tail); 3325 } 3326 3327 if (ill->ill_ppa == UINT_MAX) 3328 check_length = B_TRUE; 3329 3330 error = ill_alloc_ppa(ill_interface, ill); 3331 if (error != 0) { 3332 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3333 ill_delete_interface_type(ill->ill_ifptr); 3334 return (error); 3335 } 3336 3337 /* 3338 * When the ppa is choosen by the system, check that there is 3339 * enough space to insert ppa. if a specific ppa was passed in this 3340 * check is not required as the interface name passed in will have 3341 * the right ppa in it. 3342 */ 3343 if (check_length) { 3344 /* 3345 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3346 */ 3347 char buf[sizeof (uint_t) * 3]; 3348 3349 /* 3350 * convert ppa to string to calculate the amount of space 3351 * required for it in the name. 3352 */ 3353 numtos(ill->ill_ppa, buf); 3354 3355 /* Do we have enough space to insert ppa ? */ 3356 3357 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3358 /* Free ppa and interface type struct */ 3359 if (ill_interface->illif_ppa_arena != NULL) { 3360 vmem_free(ill_interface->illif_ppa_arena, 3361 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3362 } 3363 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3364 ill_delete_interface_type(ill->ill_ifptr); 3365 3366 return (EINVAL); 3367 } 3368 } 3369 3370 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3371 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3372 3373 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3374 &where); 3375 ill->ill_ifptr = ill_interface; 3376 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3377 3378 ill_phyint_reinit(ill); 3379 return (0); 3380 } 3381 3382 /* Initialize the per phyint ipsq used for serialization */ 3383 static boolean_t 3384 ipsq_init(ill_t *ill, boolean_t enter) 3385 { 3386 ipsq_t *ipsq; 3387 ipxop_t *ipx; 3388 3389 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3390 return (B_FALSE); 3391 3392 ill->ill_phyint->phyint_ipsq = ipsq; 3393 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3394 ipx->ipx_ipsq = ipsq; 3395 ipsq->ipsq_next = ipsq; 3396 ipsq->ipsq_phyint = ill->ill_phyint; 3397 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3398 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3399 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3400 if (enter) { 3401 ipx->ipx_writer = curthread; 3402 ipx->ipx_forced = B_FALSE; 3403 ipx->ipx_reentry_cnt = 1; 3404 #ifdef DEBUG 3405 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3406 #endif 3407 } 3408 return (B_TRUE); 3409 } 3410 3411 /* 3412 * ill_init is called by ip_open when a device control stream is opened. 3413 * It does a few initializations, and shoots a DL_INFO_REQ message down 3414 * to the driver. The response is later picked up in ip_rput_dlpi and 3415 * used to set up default mechanisms for talking to the driver. (Always 3416 * called as writer.) 3417 * 3418 * If this function returns error, ip_open will call ip_close which in 3419 * turn will call ill_delete to clean up any memory allocated here that 3420 * is not yet freed. 3421 */ 3422 int 3423 ill_init(queue_t *q, ill_t *ill) 3424 { 3425 int count; 3426 dl_info_req_t *dlir; 3427 mblk_t *info_mp; 3428 uchar_t *frag_ptr; 3429 3430 /* 3431 * The ill is initialized to zero by mi_alloc*(). In addition 3432 * some fields already contain valid values, initialized in 3433 * ip_open(), before we reach here. 3434 */ 3435 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3436 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3437 ill->ill_saved_ire_cnt = 0; 3438 3439 ill->ill_rq = q; 3440 ill->ill_wq = WR(q); 3441 3442 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3443 BPRI_HI); 3444 if (info_mp == NULL) 3445 return (ENOMEM); 3446 3447 /* 3448 * Allocate sufficient space to contain our fragment hash table and 3449 * the device name. 3450 */ 3451 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3452 2 * LIFNAMSIZ + strlen(ipv6_forward_suffix)); 3453 if (frag_ptr == NULL) { 3454 freemsg(info_mp); 3455 return (ENOMEM); 3456 } 3457 ill->ill_frag_ptr = frag_ptr; 3458 ill->ill_frag_free_num_pkts = 0; 3459 ill->ill_last_frag_clean_time = 0; 3460 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3461 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3462 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3463 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3464 NULL, MUTEX_DEFAULT, NULL); 3465 } 3466 3467 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3468 if (ill->ill_phyint == NULL) { 3469 freemsg(info_mp); 3470 mi_free(frag_ptr); 3471 return (ENOMEM); 3472 } 3473 3474 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3475 /* 3476 * For now pretend this is a v4 ill. We need to set phyint_ill* 3477 * at this point because of the following reason. If we can't 3478 * enter the ipsq at some point and cv_wait, the writer that 3479 * wakes us up tries to locate us using the list of all phyints 3480 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3481 * If we don't set it now, we risk a missed wakeup. 3482 */ 3483 ill->ill_phyint->phyint_illv4 = ill; 3484 ill->ill_ppa = UINT_MAX; 3485 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3486 3487 ill_set_inputfn(ill); 3488 3489 if (!ipsq_init(ill, B_TRUE)) { 3490 freemsg(info_mp); 3491 mi_free(frag_ptr); 3492 mi_free(ill->ill_phyint); 3493 return (ENOMEM); 3494 } 3495 3496 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3497 3498 /* Frag queue limit stuff */ 3499 ill->ill_frag_count = 0; 3500 ill->ill_ipf_gen = 0; 3501 3502 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3503 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3504 ill->ill_global_timer = INFINITY; 3505 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3506 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3507 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3508 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3509 3510 /* 3511 * Initialize IPv6 configuration variables. The IP module is always 3512 * opened as an IPv4 module. Instead tracking down the cases where 3513 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3514 * here for convenience, this has no effect until the ill is set to do 3515 * IPv6. 3516 */ 3517 ill->ill_reachable_time = ND_REACHABLE_TIME; 3518 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3519 ill->ill_max_buf = ND_MAX_Q; 3520 ill->ill_refcnt = 0; 3521 3522 /* Send down the Info Request to the driver. */ 3523 info_mp->b_datap->db_type = M_PCPROTO; 3524 dlir = (dl_info_req_t *)info_mp->b_rptr; 3525 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3526 dlir->dl_primitive = DL_INFO_REQ; 3527 3528 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3529 3530 qprocson(q); 3531 ill_dlpi_send(ill, info_mp); 3532 3533 return (0); 3534 } 3535 3536 /* 3537 * ill_dls_info 3538 * creates datalink socket info from the device. 3539 */ 3540 int 3541 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3542 { 3543 size_t len; 3544 3545 sdl->sdl_family = AF_LINK; 3546 sdl->sdl_index = ill_get_upper_ifindex(ill); 3547 sdl->sdl_type = ill->ill_type; 3548 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3549 len = strlen(sdl->sdl_data); 3550 ASSERT(len < 256); 3551 sdl->sdl_nlen = (uchar_t)len; 3552 sdl->sdl_alen = ill->ill_phys_addr_length; 3553 sdl->sdl_slen = 0; 3554 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3555 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3556 3557 return (sizeof (struct sockaddr_dl)); 3558 } 3559 3560 /* 3561 * ill_xarp_info 3562 * creates xarp info from the device. 3563 */ 3564 static int 3565 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3566 { 3567 sdl->sdl_family = AF_LINK; 3568 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3569 sdl->sdl_type = ill->ill_type; 3570 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3571 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3572 sdl->sdl_alen = ill->ill_phys_addr_length; 3573 sdl->sdl_slen = 0; 3574 return (sdl->sdl_nlen); 3575 } 3576 3577 static int 3578 loopback_kstat_update(kstat_t *ksp, int rw) 3579 { 3580 kstat_named_t *kn; 3581 netstackid_t stackid; 3582 netstack_t *ns; 3583 ip_stack_t *ipst; 3584 3585 if (ksp == NULL || ksp->ks_data == NULL) 3586 return (EIO); 3587 3588 if (rw == KSTAT_WRITE) 3589 return (EACCES); 3590 3591 kn = KSTAT_NAMED_PTR(ksp); 3592 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3593 3594 ns = netstack_find_by_stackid(stackid); 3595 if (ns == NULL) 3596 return (-1); 3597 3598 ipst = ns->netstack_ip; 3599 if (ipst == NULL) { 3600 netstack_rele(ns); 3601 return (-1); 3602 } 3603 kn[0].value.ui32 = ipst->ips_loopback_packets; 3604 kn[1].value.ui32 = ipst->ips_loopback_packets; 3605 netstack_rele(ns); 3606 return (0); 3607 } 3608 3609 /* 3610 * Has ifindex been plumbed already? 3611 */ 3612 static boolean_t 3613 phyint_exists(uint_t index, ip_stack_t *ipst) 3614 { 3615 ASSERT(index != 0); 3616 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3617 3618 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3619 &index, NULL) != NULL); 3620 } 3621 3622 /* Pick a unique ifindex */ 3623 boolean_t 3624 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3625 { 3626 uint_t starting_index; 3627 3628 if (!ipst->ips_ill_index_wrap) { 3629 *indexp = ipst->ips_ill_index++; 3630 if (ipst->ips_ill_index == 0) { 3631 /* Reached the uint_t limit Next time wrap */ 3632 ipst->ips_ill_index_wrap = B_TRUE; 3633 } 3634 return (B_TRUE); 3635 } 3636 3637 /* 3638 * Start reusing unused indexes. Note that we hold the ill_g_lock 3639 * at this point and don't want to call any function that attempts 3640 * to get the lock again. 3641 */ 3642 starting_index = ipst->ips_ill_index++; 3643 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3644 if (ipst->ips_ill_index != 0 && 3645 !phyint_exists(ipst->ips_ill_index, ipst)) { 3646 /* found unused index - use it */ 3647 *indexp = ipst->ips_ill_index; 3648 return (B_TRUE); 3649 } 3650 } 3651 3652 /* 3653 * all interface indicies are inuse. 3654 */ 3655 return (B_FALSE); 3656 } 3657 3658 /* 3659 * Assign a unique interface index for the phyint. 3660 */ 3661 static boolean_t 3662 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3663 { 3664 ASSERT(phyi->phyint_ifindex == 0); 3665 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3666 } 3667 3668 /* 3669 * Initialize the flags on `phyi' as per the provided mactype. 3670 */ 3671 static void 3672 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3673 { 3674 uint64_t flags = 0; 3675 3676 /* 3677 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3678 * we always presume the underlying hardware is working and set 3679 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3680 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3681 * there are no active interfaces in the group so we set PHYI_FAILED. 3682 */ 3683 if (mactype == SUNW_DL_IPMP) 3684 flags |= PHYI_FAILED; 3685 else 3686 flags |= PHYI_RUNNING; 3687 3688 switch (mactype) { 3689 case SUNW_DL_VNI: 3690 flags |= PHYI_VIRTUAL; 3691 break; 3692 case SUNW_DL_IPMP: 3693 flags |= PHYI_IPMP; 3694 break; 3695 case DL_LOOP: 3696 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3697 break; 3698 } 3699 3700 mutex_enter(&phyi->phyint_lock); 3701 phyi->phyint_flags |= flags; 3702 mutex_exit(&phyi->phyint_lock); 3703 } 3704 3705 /* 3706 * Return a pointer to the ill which matches the supplied name. Note that 3707 * the ill name length includes the null termination character. (May be 3708 * called as writer.) 3709 * If do_alloc and the interface is "lo0" it will be automatically created. 3710 * Cannot bump up reference on condemned ills. So dup detect can't be done 3711 * using this func. 3712 */ 3713 ill_t * 3714 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3715 boolean_t *did_alloc, ip_stack_t *ipst) 3716 { 3717 ill_t *ill; 3718 ipif_t *ipif; 3719 ipsq_t *ipsq; 3720 kstat_named_t *kn; 3721 boolean_t isloopback; 3722 in6_addr_t ov6addr; 3723 3724 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3725 3726 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3727 ill = ill_find_by_name(name, isv6, ipst); 3728 rw_exit(&ipst->ips_ill_g_lock); 3729 if (ill != NULL) 3730 return (ill); 3731 3732 /* 3733 * Couldn't find it. Does this happen to be a lookup for the 3734 * loopback device and are we allowed to allocate it? 3735 */ 3736 if (!isloopback || !do_alloc) 3737 return (NULL); 3738 3739 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3740 ill = ill_find_by_name(name, isv6, ipst); 3741 if (ill != NULL) { 3742 rw_exit(&ipst->ips_ill_g_lock); 3743 return (ill); 3744 } 3745 3746 /* Create the loopback device on demand */ 3747 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3748 sizeof (ipif_loopback_name), BPRI_MED)); 3749 if (ill == NULL) 3750 goto done; 3751 3752 *ill = ill_null; 3753 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3754 ill->ill_ipst = ipst; 3755 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3756 netstack_hold(ipst->ips_netstack); 3757 /* 3758 * For exclusive stacks we set the zoneid to zero 3759 * to make IP operate as if in the global zone. 3760 */ 3761 ill->ill_zoneid = GLOBAL_ZONEID; 3762 3763 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3764 if (ill->ill_phyint == NULL) 3765 goto done; 3766 3767 if (isv6) 3768 ill->ill_phyint->phyint_illv6 = ill; 3769 else 3770 ill->ill_phyint->phyint_illv4 = ill; 3771 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3772 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3773 3774 if (isv6) { 3775 ill->ill_isv6 = B_TRUE; 3776 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3777 } else { 3778 ill->ill_max_frag = ip_loopback_mtuplus; 3779 } 3780 if (!ill_allocate_mibs(ill)) 3781 goto done; 3782 ill->ill_current_frag = ill->ill_max_frag; 3783 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3784 /* 3785 * ipif_loopback_name can't be pointed at directly because its used 3786 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3787 * from the glist, ill_glist_delete() sets the first character of 3788 * ill_name to '\0'. 3789 */ 3790 ill->ill_name = (char *)ill + sizeof (*ill); 3791 (void) strcpy(ill->ill_name, ipif_loopback_name); 3792 ill->ill_name_length = sizeof (ipif_loopback_name); 3793 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3794 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3795 3796 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3797 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3798 ill->ill_global_timer = INFINITY; 3799 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3800 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3801 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3802 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3803 3804 /* No resolver here. */ 3805 ill->ill_net_type = IRE_LOOPBACK; 3806 3807 /* Initialize the ipsq */ 3808 if (!ipsq_init(ill, B_FALSE)) 3809 goto done; 3810 3811 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3812 if (ipif == NULL) 3813 goto done; 3814 3815 ill->ill_flags = ILLF_MULTICAST; 3816 3817 ov6addr = ipif->ipif_v6lcl_addr; 3818 /* Set up default loopback address and mask. */ 3819 if (!isv6) { 3820 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3821 3822 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3823 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3824 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3825 ipif->ipif_v6subnet); 3826 ill->ill_flags |= ILLF_IPV4; 3827 } else { 3828 ipif->ipif_v6lcl_addr = ipv6_loopback; 3829 ipif->ipif_v6net_mask = ipv6_all_ones; 3830 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3831 ipif->ipif_v6subnet); 3832 ill->ill_flags |= ILLF_IPV6; 3833 } 3834 3835 /* 3836 * Chain us in at the end of the ill list. hold the ill 3837 * before we make it globally visible. 1 for the lookup. 3838 */ 3839 ill->ill_refcnt = 0; 3840 ill_refhold(ill); 3841 3842 ill->ill_frag_count = 0; 3843 ill->ill_frag_free_num_pkts = 0; 3844 ill->ill_last_frag_clean_time = 0; 3845 3846 ipsq = ill->ill_phyint->phyint_ipsq; 3847 3848 ill_set_inputfn(ill); 3849 3850 if (ill_glist_insert(ill, "lo", isv6) != 0) 3851 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3852 3853 /* Let SCTP know so that it can add this to its list */ 3854 sctp_update_ill(ill, SCTP_ILL_INSERT); 3855 3856 /* 3857 * We have already assigned ipif_v6lcl_addr above, but we need to 3858 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3859 * requires to be after ill_glist_insert() since we need the 3860 * ill_index set. Pass on ipv6_loopback as the old address. 3861 */ 3862 sctp_update_ipif_addr(ipif, ov6addr); 3863 3864 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3865 3866 /* 3867 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3868 * If so, free our original one. 3869 */ 3870 if (ipsq != ill->ill_phyint->phyint_ipsq) 3871 ipsq_delete(ipsq); 3872 3873 if (ipst->ips_loopback_ksp == NULL) { 3874 /* Export loopback interface statistics */ 3875 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3876 ipif_loopback_name, "net", 3877 KSTAT_TYPE_NAMED, 2, 0, 3878 ipst->ips_netstack->netstack_stackid); 3879 if (ipst->ips_loopback_ksp != NULL) { 3880 ipst->ips_loopback_ksp->ks_update = 3881 loopback_kstat_update; 3882 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3883 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3884 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3885 ipst->ips_loopback_ksp->ks_private = 3886 (void *)(uintptr_t)ipst->ips_netstack-> 3887 netstack_stackid; 3888 kstat_install(ipst->ips_loopback_ksp); 3889 } 3890 } 3891 3892 *did_alloc = B_TRUE; 3893 rw_exit(&ipst->ips_ill_g_lock); 3894 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3895 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3896 return (ill); 3897 done: 3898 if (ill != NULL) { 3899 if (ill->ill_phyint != NULL) { 3900 ipsq = ill->ill_phyint->phyint_ipsq; 3901 if (ipsq != NULL) { 3902 ipsq->ipsq_phyint = NULL; 3903 ipsq_delete(ipsq); 3904 } 3905 mi_free(ill->ill_phyint); 3906 } 3907 ill_free_mib(ill); 3908 if (ill->ill_ipst != NULL) 3909 netstack_rele(ill->ill_ipst->ips_netstack); 3910 mi_free(ill); 3911 } 3912 rw_exit(&ipst->ips_ill_g_lock); 3913 return (NULL); 3914 } 3915 3916 /* 3917 * For IPP calls - use the ip_stack_t for global stack. 3918 */ 3919 ill_t * 3920 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3921 { 3922 ip_stack_t *ipst; 3923 ill_t *ill; 3924 3925 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3926 if (ipst == NULL) { 3927 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3928 return (NULL); 3929 } 3930 3931 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3932 netstack_rele(ipst->ips_netstack); 3933 return (ill); 3934 } 3935 3936 /* 3937 * Return a pointer to the ill which matches the index and IP version type. 3938 */ 3939 ill_t * 3940 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3941 { 3942 ill_t *ill; 3943 phyint_t *phyi; 3944 3945 /* 3946 * Indexes are stored in the phyint - a common structure 3947 * to both IPv4 and IPv6. 3948 */ 3949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3950 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3951 (void *) &index, NULL); 3952 if (phyi != NULL) { 3953 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3954 if (ill != NULL) { 3955 mutex_enter(&ill->ill_lock); 3956 if (!ILL_IS_CONDEMNED(ill)) { 3957 ill_refhold_locked(ill); 3958 mutex_exit(&ill->ill_lock); 3959 rw_exit(&ipst->ips_ill_g_lock); 3960 return (ill); 3961 } 3962 mutex_exit(&ill->ill_lock); 3963 } 3964 } 3965 rw_exit(&ipst->ips_ill_g_lock); 3966 return (NULL); 3967 } 3968 3969 /* 3970 * Verify whether or not an interface index is valid for the specified zoneid 3971 * to transmit packets. 3972 * It can be zero (meaning "reset") or an interface index assigned 3973 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3974 */ 3975 boolean_t 3976 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3977 ip_stack_t *ipst) 3978 { 3979 ill_t *ill; 3980 3981 if (ifindex == 0) 3982 return (B_TRUE); 3983 3984 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3985 if (ill == NULL) 3986 return (B_FALSE); 3987 if (IS_VNI(ill)) { 3988 ill_refrele(ill); 3989 return (B_FALSE); 3990 } 3991 ill_refrele(ill); 3992 return (B_TRUE); 3993 } 3994 3995 /* 3996 * Return the ifindex next in sequence after the passed in ifindex. 3997 * If there is no next ifindex for the given protocol, return 0. 3998 */ 3999 uint_t 4000 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 4001 { 4002 phyint_t *phyi; 4003 phyint_t *phyi_initial; 4004 uint_t ifindex; 4005 4006 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4007 4008 if (index == 0) { 4009 phyi = avl_first( 4010 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4011 } else { 4012 phyi = phyi_initial = avl_find( 4013 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4014 (void *) &index, NULL); 4015 } 4016 4017 for (; phyi != NULL; 4018 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4019 phyi, AVL_AFTER)) { 4020 /* 4021 * If we're not returning the first interface in the tree 4022 * and we still haven't moved past the phyint_t that 4023 * corresponds to index, avl_walk needs to be called again 4024 */ 4025 if (!((index != 0) && (phyi == phyi_initial))) { 4026 if (isv6) { 4027 if ((phyi->phyint_illv6) && 4028 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 4029 (phyi->phyint_illv6->ill_isv6 == 1)) 4030 break; 4031 } else { 4032 if ((phyi->phyint_illv4) && 4033 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 4034 (phyi->phyint_illv4->ill_isv6 == 0)) 4035 break; 4036 } 4037 } 4038 } 4039 4040 rw_exit(&ipst->ips_ill_g_lock); 4041 4042 if (phyi != NULL) 4043 ifindex = phyi->phyint_ifindex; 4044 else 4045 ifindex = 0; 4046 4047 return (ifindex); 4048 } 4049 4050 /* 4051 * Return the ifindex for the named interface. 4052 * If there is no next ifindex for the interface, return 0. 4053 */ 4054 uint_t 4055 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 4056 { 4057 phyint_t *phyi; 4058 avl_index_t where = 0; 4059 uint_t ifindex; 4060 4061 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4062 4063 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4064 name, &where)) == NULL) { 4065 rw_exit(&ipst->ips_ill_g_lock); 4066 return (0); 4067 } 4068 4069 ifindex = phyi->phyint_ifindex; 4070 4071 rw_exit(&ipst->ips_ill_g_lock); 4072 4073 return (ifindex); 4074 } 4075 4076 /* 4077 * Return the ifindex to be used by upper layer protocols for instance 4078 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4079 */ 4080 uint_t 4081 ill_get_upper_ifindex(const ill_t *ill) 4082 { 4083 if (IS_UNDER_IPMP(ill)) 4084 return (ipmp_ill_get_ipmp_ifindex(ill)); 4085 else 4086 return (ill->ill_phyint->phyint_ifindex); 4087 } 4088 4089 4090 /* 4091 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4092 * that gives a running thread a reference to the ill. This reference must be 4093 * released by the thread when it is done accessing the ill and related 4094 * objects. ill_refcnt can not be used to account for static references 4095 * such as other structures pointing to an ill. Callers must generally 4096 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4097 * or be sure that the ill is not being deleted or changing state before 4098 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4099 * ill won't change any of its critical state such as address, netmask etc. 4100 */ 4101 void 4102 ill_refhold(ill_t *ill) 4103 { 4104 mutex_enter(&ill->ill_lock); 4105 ill->ill_refcnt++; 4106 ILL_TRACE_REF(ill); 4107 mutex_exit(&ill->ill_lock); 4108 } 4109 4110 void 4111 ill_refhold_locked(ill_t *ill) 4112 { 4113 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4114 ill->ill_refcnt++; 4115 ILL_TRACE_REF(ill); 4116 } 4117 4118 /* Returns true if we managed to get a refhold */ 4119 boolean_t 4120 ill_check_and_refhold(ill_t *ill) 4121 { 4122 mutex_enter(&ill->ill_lock); 4123 if (!ILL_IS_CONDEMNED(ill)) { 4124 ill_refhold_locked(ill); 4125 mutex_exit(&ill->ill_lock); 4126 return (B_TRUE); 4127 } 4128 mutex_exit(&ill->ill_lock); 4129 return (B_FALSE); 4130 } 4131 4132 /* 4133 * Must not be called while holding any locks. Otherwise if this is 4134 * the last reference to be released, there is a chance of recursive mutex 4135 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4136 * to restart an ioctl. 4137 */ 4138 void 4139 ill_refrele(ill_t *ill) 4140 { 4141 mutex_enter(&ill->ill_lock); 4142 ASSERT(ill->ill_refcnt != 0); 4143 ill->ill_refcnt--; 4144 ILL_UNTRACE_REF(ill); 4145 if (ill->ill_refcnt != 0) { 4146 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4147 mutex_exit(&ill->ill_lock); 4148 return; 4149 } 4150 4151 /* Drops the ill_lock */ 4152 ipif_ill_refrele_tail(ill); 4153 } 4154 4155 /* 4156 * Obtain a weak reference count on the ill. This reference ensures the 4157 * ill won't be freed, but the ill may change any of its critical state 4158 * such as netmask, address etc. Returns an error if the ill has started 4159 * closing. 4160 */ 4161 boolean_t 4162 ill_waiter_inc(ill_t *ill) 4163 { 4164 mutex_enter(&ill->ill_lock); 4165 if (ill->ill_state_flags & ILL_CONDEMNED) { 4166 mutex_exit(&ill->ill_lock); 4167 return (B_FALSE); 4168 } 4169 ill->ill_waiters++; 4170 mutex_exit(&ill->ill_lock); 4171 return (B_TRUE); 4172 } 4173 4174 void 4175 ill_waiter_dcr(ill_t *ill) 4176 { 4177 mutex_enter(&ill->ill_lock); 4178 ill->ill_waiters--; 4179 if (ill->ill_waiters == 0) 4180 cv_broadcast(&ill->ill_cv); 4181 mutex_exit(&ill->ill_lock); 4182 } 4183 4184 /* 4185 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4186 * driver. We construct best guess defaults for lower level information that 4187 * we need. If an interface is brought up without injection of any overriding 4188 * information from outside, we have to be ready to go with these defaults. 4189 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4190 * we primarely want the dl_provider_style. 4191 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4192 * at which point we assume the other part of the information is valid. 4193 */ 4194 void 4195 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4196 { 4197 uchar_t *brdcst_addr; 4198 uint_t brdcst_addr_length, phys_addr_length; 4199 t_scalar_t sap_length; 4200 dl_info_ack_t *dlia; 4201 ip_m_t *ipm; 4202 dl_qos_cl_sel1_t *sel1; 4203 int min_mtu; 4204 4205 ASSERT(IAM_WRITER_ILL(ill)); 4206 4207 /* 4208 * Till the ill is fully up the ill is not globally visible. 4209 * So no need for a lock. 4210 */ 4211 dlia = (dl_info_ack_t *)mp->b_rptr; 4212 ill->ill_mactype = dlia->dl_mac_type; 4213 4214 ipm = ip_m_lookup(dlia->dl_mac_type); 4215 if (ipm == NULL) { 4216 ipm = ip_m_lookup(DL_OTHER); 4217 ASSERT(ipm != NULL); 4218 } 4219 ill->ill_media = ipm; 4220 4221 /* 4222 * When the new DLPI stuff is ready we'll pull lengths 4223 * from dlia. 4224 */ 4225 if (dlia->dl_version == DL_VERSION_2) { 4226 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4227 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4228 brdcst_addr_length); 4229 if (brdcst_addr == NULL) { 4230 brdcst_addr_length = 0; 4231 } 4232 sap_length = dlia->dl_sap_length; 4233 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4234 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4235 brdcst_addr_length, sap_length, phys_addr_length)); 4236 } else { 4237 brdcst_addr_length = 6; 4238 brdcst_addr = ip_six_byte_all_ones; 4239 sap_length = -2; 4240 phys_addr_length = brdcst_addr_length; 4241 } 4242 4243 ill->ill_bcast_addr_length = brdcst_addr_length; 4244 ill->ill_phys_addr_length = phys_addr_length; 4245 ill->ill_sap_length = sap_length; 4246 4247 /* 4248 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4249 * but we must ensure a minimum IP MTU is used since other bits of 4250 * IP will fly apart otherwise. 4251 */ 4252 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4253 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4254 ill->ill_current_frag = ill->ill_max_frag; 4255 ill->ill_mtu = ill->ill_max_frag; 4256 4257 ill->ill_type = ipm->ip_m_type; 4258 4259 if (!ill->ill_dlpi_style_set) { 4260 if (dlia->dl_provider_style == DL_STYLE2) 4261 ill->ill_needs_attach = 1; 4262 4263 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4264 4265 /* 4266 * Allocate the first ipif on this ill. We don't delay it 4267 * further as ioctl handling assumes at least one ipif exists. 4268 * 4269 * At this point we don't know whether the ill is v4 or v6. 4270 * We will know this whan the SIOCSLIFNAME happens and 4271 * the correct value for ill_isv6 will be assigned in 4272 * ipif_set_values(). We need to hold the ill lock and 4273 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4274 * the wakeup. 4275 */ 4276 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4277 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4278 mutex_enter(&ill->ill_lock); 4279 ASSERT(ill->ill_dlpi_style_set == 0); 4280 ill->ill_dlpi_style_set = 1; 4281 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4282 cv_broadcast(&ill->ill_cv); 4283 mutex_exit(&ill->ill_lock); 4284 freemsg(mp); 4285 return; 4286 } 4287 ASSERT(ill->ill_ipif != NULL); 4288 /* 4289 * We know whether it is IPv4 or IPv6 now, as this is the 4290 * second DL_INFO_ACK we are recieving in response to the 4291 * DL_INFO_REQ sent in ipif_set_values. 4292 */ 4293 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4294 /* 4295 * Clear all the flags that were set based on ill_bcast_addr_length 4296 * and ill_phys_addr_length (in ipif_set_values) as these could have 4297 * changed now and we need to re-evaluate. 4298 */ 4299 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4300 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4301 4302 /* 4303 * Free ill_bcast_mp as things could have changed now. 4304 * 4305 * NOTE: The IPMP meta-interface is special-cased because it starts 4306 * with no underlying interfaces (and thus an unknown broadcast 4307 * address length), but we enforce that an interface is broadcast- 4308 * capable as part of allowing it to join a group. 4309 */ 4310 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4311 if (ill->ill_bcast_mp != NULL) 4312 freemsg(ill->ill_bcast_mp); 4313 ill->ill_net_type = IRE_IF_NORESOLVER; 4314 4315 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4316 ill->ill_phys_addr_length, 4317 ill->ill_sap, 4318 ill->ill_sap_length); 4319 4320 if (ill->ill_isv6) 4321 /* 4322 * Note: xresolv interfaces will eventually need NOARP 4323 * set here as well, but that will require those 4324 * external resolvers to have some knowledge of 4325 * that flag and act appropriately. Not to be changed 4326 * at present. 4327 */ 4328 ill->ill_flags |= ILLF_NONUD; 4329 else 4330 ill->ill_flags |= ILLF_NOARP; 4331 4332 if (ill->ill_mactype == SUNW_DL_VNI) { 4333 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4334 } else if (ill->ill_phys_addr_length == 0 || 4335 ill->ill_mactype == DL_IPV4 || 4336 ill->ill_mactype == DL_IPV6) { 4337 /* 4338 * The underying link is point-to-point, so mark the 4339 * interface as such. We can do IP multicast over 4340 * such a link since it transmits all network-layer 4341 * packets to the remote side the same way. 4342 */ 4343 ill->ill_flags |= ILLF_MULTICAST; 4344 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4345 } 4346 } else { 4347 ill->ill_net_type = IRE_IF_RESOLVER; 4348 if (ill->ill_bcast_mp != NULL) 4349 freemsg(ill->ill_bcast_mp); 4350 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4351 ill->ill_bcast_addr_length, ill->ill_sap, 4352 ill->ill_sap_length); 4353 /* 4354 * Later detect lack of DLPI driver multicast 4355 * capability by catching DL_ENABMULTI errors in 4356 * ip_rput_dlpi. 4357 */ 4358 ill->ill_flags |= ILLF_MULTICAST; 4359 if (!ill->ill_isv6) 4360 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4361 } 4362 4363 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4364 if (ill->ill_mactype == SUNW_DL_IPMP) 4365 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4366 4367 /* By default an interface does not support any CoS marking */ 4368 ill->ill_flags &= ~ILLF_COS_ENABLED; 4369 4370 /* 4371 * If we get QoS information in DL_INFO_ACK, the device supports 4372 * some form of CoS marking, set ILLF_COS_ENABLED. 4373 */ 4374 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4375 dlia->dl_qos_length); 4376 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4377 ill->ill_flags |= ILLF_COS_ENABLED; 4378 } 4379 4380 /* Clear any previous error indication. */ 4381 ill->ill_error = 0; 4382 freemsg(mp); 4383 } 4384 4385 /* 4386 * Perform various checks to verify that an address would make sense as a 4387 * local, remote, or subnet interface address. 4388 */ 4389 static boolean_t 4390 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4391 { 4392 ipaddr_t net_mask; 4393 4394 /* 4395 * Don't allow all zeroes, or all ones, but allow 4396 * all ones netmask. 4397 */ 4398 if ((net_mask = ip_net_mask(addr)) == 0) 4399 return (B_FALSE); 4400 /* A given netmask overrides the "guess" netmask */ 4401 if (subnet_mask != 0) 4402 net_mask = subnet_mask; 4403 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4404 (addr == (addr | ~net_mask)))) { 4405 return (B_FALSE); 4406 } 4407 4408 /* 4409 * Even if the netmask is all ones, we do not allow address to be 4410 * 255.255.255.255 4411 */ 4412 if (addr == INADDR_BROADCAST) 4413 return (B_FALSE); 4414 4415 if (CLASSD(addr)) 4416 return (B_FALSE); 4417 4418 return (B_TRUE); 4419 } 4420 4421 #define V6_IPIF_LINKLOCAL(p) \ 4422 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4423 4424 /* 4425 * Compare two given ipifs and check if the second one is better than 4426 * the first one using the order of preference (not taking deprecated 4427 * into acount) specified in ipif_lookup_multicast(). 4428 */ 4429 static boolean_t 4430 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4431 { 4432 /* Check the least preferred first. */ 4433 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4434 /* If both ipifs are the same, use the first one. */ 4435 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4436 return (B_FALSE); 4437 else 4438 return (B_TRUE); 4439 } 4440 4441 /* For IPv6, check for link local address. */ 4442 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4443 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4444 V6_IPIF_LINKLOCAL(new_ipif)) { 4445 /* The second one is equal or less preferred. */ 4446 return (B_FALSE); 4447 } else { 4448 return (B_TRUE); 4449 } 4450 } 4451 4452 /* Then check for point to point interface. */ 4453 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4454 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4455 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4456 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4457 return (B_FALSE); 4458 } else { 4459 return (B_TRUE); 4460 } 4461 } 4462 4463 /* old_ipif is a normal interface, so no need to use the new one. */ 4464 return (B_FALSE); 4465 } 4466 4467 /* 4468 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4469 * The ipif must be up, and its ill must multicast-capable, not 4470 * condemned, not an underlying interface in an IPMP group, and 4471 * not a VNI interface. Order of preference: 4472 * 4473 * 1a. normal 4474 * 1b. normal, but deprecated 4475 * 2a. point to point 4476 * 2b. point to point, but deprecated 4477 * 3a. link local 4478 * 3b. link local, but deprecated 4479 * 4. loopback. 4480 */ 4481 static ipif_t * 4482 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4483 { 4484 ill_t *ill; 4485 ill_walk_context_t ctx; 4486 ipif_t *ipif; 4487 ipif_t *saved_ipif = NULL; 4488 ipif_t *dep_ipif = NULL; 4489 4490 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4491 if (isv6) 4492 ill = ILL_START_WALK_V6(&ctx, ipst); 4493 else 4494 ill = ILL_START_WALK_V4(&ctx, ipst); 4495 4496 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4497 mutex_enter(&ill->ill_lock); 4498 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4499 ILL_IS_CONDEMNED(ill) || 4500 !(ill->ill_flags & ILLF_MULTICAST)) { 4501 mutex_exit(&ill->ill_lock); 4502 continue; 4503 } 4504 for (ipif = ill->ill_ipif; ipif != NULL; 4505 ipif = ipif->ipif_next) { 4506 if (zoneid != ipif->ipif_zoneid && 4507 zoneid != ALL_ZONES && 4508 ipif->ipif_zoneid != ALL_ZONES) { 4509 continue; 4510 } 4511 if (!(ipif->ipif_flags & IPIF_UP) || 4512 IPIF_IS_CONDEMNED(ipif)) { 4513 continue; 4514 } 4515 4516 /* 4517 * Found one candidate. If it is deprecated, 4518 * remember it in dep_ipif. If it is not deprecated, 4519 * remember it in saved_ipif. 4520 */ 4521 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4522 if (dep_ipif == NULL) { 4523 dep_ipif = ipif; 4524 } else if (ipif_comp_multi(dep_ipif, ipif, 4525 isv6)) { 4526 /* 4527 * If the previous dep_ipif does not 4528 * belong to the same ill, we've done 4529 * a ipif_refhold() on it. So we need 4530 * to release it. 4531 */ 4532 if (dep_ipif->ipif_ill != ill) 4533 ipif_refrele(dep_ipif); 4534 dep_ipif = ipif; 4535 } 4536 continue; 4537 } 4538 if (saved_ipif == NULL) { 4539 saved_ipif = ipif; 4540 } else { 4541 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4542 if (saved_ipif->ipif_ill != ill) 4543 ipif_refrele(saved_ipif); 4544 saved_ipif = ipif; 4545 } 4546 } 4547 } 4548 /* 4549 * Before going to the next ill, do a ipif_refhold() on the 4550 * saved ones. 4551 */ 4552 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4553 ipif_refhold_locked(saved_ipif); 4554 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4555 ipif_refhold_locked(dep_ipif); 4556 mutex_exit(&ill->ill_lock); 4557 } 4558 rw_exit(&ipst->ips_ill_g_lock); 4559 4560 /* 4561 * If we have only the saved_ipif, return it. But if we have both 4562 * saved_ipif and dep_ipif, check to see which one is better. 4563 */ 4564 if (saved_ipif != NULL) { 4565 if (dep_ipif != NULL) { 4566 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4567 ipif_refrele(saved_ipif); 4568 return (dep_ipif); 4569 } else { 4570 ipif_refrele(dep_ipif); 4571 return (saved_ipif); 4572 } 4573 } 4574 return (saved_ipif); 4575 } else { 4576 return (dep_ipif); 4577 } 4578 } 4579 4580 ill_t * 4581 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4582 { 4583 ipif_t *ipif; 4584 ill_t *ill; 4585 4586 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4587 if (ipif == NULL) 4588 return (NULL); 4589 4590 ill = ipif->ipif_ill; 4591 ill_refhold(ill); 4592 ipif_refrele(ipif); 4593 return (ill); 4594 } 4595 4596 /* 4597 * This function is called when an application does not specify an interface 4598 * to be used for multicast traffic (joining a group/sending data). It 4599 * calls ire_lookup_multi() to look for an interface route for the 4600 * specified multicast group. Doing this allows the administrator to add 4601 * prefix routes for multicast to indicate which interface to be used for 4602 * multicast traffic in the above scenario. The route could be for all 4603 * multicast (224.0/4), for a single multicast group (a /32 route) or 4604 * anything in between. If there is no such multicast route, we just find 4605 * any multicast capable interface and return it. The returned ipif 4606 * is refhold'ed. 4607 * 4608 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4609 * unicast table. This is used by CGTP. 4610 */ 4611 ill_t * 4612 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4613 boolean_t *multirtp, ipaddr_t *setsrcp) 4614 { 4615 ill_t *ill; 4616 4617 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4618 if (ill != NULL) 4619 return (ill); 4620 4621 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4622 } 4623 4624 /* 4625 * Look for an ipif with the specified interface address and destination. 4626 * The destination address is used only for matching point-to-point interfaces. 4627 */ 4628 ipif_t * 4629 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4630 { 4631 ipif_t *ipif; 4632 ill_t *ill; 4633 ill_walk_context_t ctx; 4634 4635 /* 4636 * First match all the point-to-point interfaces 4637 * before looking at non-point-to-point interfaces. 4638 * This is done to avoid returning non-point-to-point 4639 * ipif instead of unnumbered point-to-point ipif. 4640 */ 4641 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4642 ill = ILL_START_WALK_V4(&ctx, ipst); 4643 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4644 mutex_enter(&ill->ill_lock); 4645 for (ipif = ill->ill_ipif; ipif != NULL; 4646 ipif = ipif->ipif_next) { 4647 /* Allow the ipif to be down */ 4648 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4649 (ipif->ipif_lcl_addr == if_addr) && 4650 (ipif->ipif_pp_dst_addr == dst)) { 4651 if (!IPIF_IS_CONDEMNED(ipif)) { 4652 ipif_refhold_locked(ipif); 4653 mutex_exit(&ill->ill_lock); 4654 rw_exit(&ipst->ips_ill_g_lock); 4655 return (ipif); 4656 } 4657 } 4658 } 4659 mutex_exit(&ill->ill_lock); 4660 } 4661 rw_exit(&ipst->ips_ill_g_lock); 4662 4663 /* lookup the ipif based on interface address */ 4664 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4665 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4666 return (ipif); 4667 } 4668 4669 /* 4670 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4671 */ 4672 static ipif_t * 4673 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4674 zoneid_t zoneid, ip_stack_t *ipst) 4675 { 4676 ipif_t *ipif; 4677 ill_t *ill; 4678 boolean_t ptp = B_FALSE; 4679 ill_walk_context_t ctx; 4680 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4681 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4682 4683 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4684 /* 4685 * Repeat twice, first based on local addresses and 4686 * next time for pointopoint. 4687 */ 4688 repeat: 4689 ill = ILL_START_WALK_V4(&ctx, ipst); 4690 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4691 if (match_ill != NULL && ill != match_ill && 4692 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4693 continue; 4694 } 4695 mutex_enter(&ill->ill_lock); 4696 for (ipif = ill->ill_ipif; ipif != NULL; 4697 ipif = ipif->ipif_next) { 4698 if (zoneid != ALL_ZONES && 4699 zoneid != ipif->ipif_zoneid && 4700 ipif->ipif_zoneid != ALL_ZONES) 4701 continue; 4702 4703 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4704 continue; 4705 4706 /* Allow the ipif to be down */ 4707 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4708 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4709 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4710 (ipif->ipif_pp_dst_addr == addr))) { 4711 if (!IPIF_IS_CONDEMNED(ipif)) { 4712 ipif_refhold_locked(ipif); 4713 mutex_exit(&ill->ill_lock); 4714 rw_exit(&ipst->ips_ill_g_lock); 4715 return (ipif); 4716 } 4717 } 4718 } 4719 mutex_exit(&ill->ill_lock); 4720 } 4721 4722 /* If we already did the ptp case, then we are done */ 4723 if (ptp) { 4724 rw_exit(&ipst->ips_ill_g_lock); 4725 return (NULL); 4726 } 4727 ptp = B_TRUE; 4728 goto repeat; 4729 } 4730 4731 /* 4732 * Lookup an ipif with the specified address. For point-to-point links we 4733 * look for matches on either the destination address or the local address, 4734 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4735 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4736 * (or illgrp if `match_ill' is in an IPMP group). 4737 */ 4738 ipif_t * 4739 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4740 ip_stack_t *ipst) 4741 { 4742 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4743 zoneid, ipst)); 4744 } 4745 4746 /* 4747 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4748 * except that we will only return an address if it is not marked as 4749 * IPIF_DUPLICATE 4750 */ 4751 ipif_t * 4752 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4753 ip_stack_t *ipst) 4754 { 4755 return (ipif_lookup_addr_common(addr, match_ill, 4756 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4757 zoneid, ipst)); 4758 } 4759 4760 /* 4761 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4762 * `match_ill' across the IPMP group. This function is only needed in some 4763 * corner-cases; almost everything should use ipif_lookup_addr(). 4764 */ 4765 ipif_t * 4766 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4767 { 4768 ASSERT(match_ill != NULL); 4769 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4770 ipst)); 4771 } 4772 4773 /* 4774 * Look for an ipif with the specified address. For point-point links 4775 * we look for matches on either the destination address and the local 4776 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4777 * is set. 4778 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4779 * ill (or illgrp if `match_ill' is in an IPMP group). 4780 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4781 */ 4782 zoneid_t 4783 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4784 { 4785 zoneid_t zoneid; 4786 ipif_t *ipif; 4787 ill_t *ill; 4788 boolean_t ptp = B_FALSE; 4789 ill_walk_context_t ctx; 4790 4791 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4792 /* 4793 * Repeat twice, first based on local addresses and 4794 * next time for pointopoint. 4795 */ 4796 repeat: 4797 ill = ILL_START_WALK_V4(&ctx, ipst); 4798 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4799 if (match_ill != NULL && ill != match_ill && 4800 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4801 continue; 4802 } 4803 mutex_enter(&ill->ill_lock); 4804 for (ipif = ill->ill_ipif; ipif != NULL; 4805 ipif = ipif->ipif_next) { 4806 /* Allow the ipif to be down */ 4807 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4808 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4809 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4810 (ipif->ipif_pp_dst_addr == addr)) && 4811 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4812 zoneid = ipif->ipif_zoneid; 4813 mutex_exit(&ill->ill_lock); 4814 rw_exit(&ipst->ips_ill_g_lock); 4815 /* 4816 * If ipif_zoneid was ALL_ZONES then we have 4817 * a trusted extensions shared IP address. 4818 * In that case GLOBAL_ZONEID works to send. 4819 */ 4820 if (zoneid == ALL_ZONES) 4821 zoneid = GLOBAL_ZONEID; 4822 return (zoneid); 4823 } 4824 } 4825 mutex_exit(&ill->ill_lock); 4826 } 4827 4828 /* If we already did the ptp case, then we are done */ 4829 if (ptp) { 4830 rw_exit(&ipst->ips_ill_g_lock); 4831 return (ALL_ZONES); 4832 } 4833 ptp = B_TRUE; 4834 goto repeat; 4835 } 4836 4837 /* 4838 * Look for an ipif that matches the specified remote address i.e. the 4839 * ipif that would receive the specified packet. 4840 * First look for directly connected interfaces and then do a recursive 4841 * IRE lookup and pick the first ipif corresponding to the source address in the 4842 * ire. 4843 * Returns: held ipif 4844 * 4845 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4846 */ 4847 ipif_t * 4848 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4849 { 4850 ipif_t *ipif; 4851 4852 ASSERT(!ill->ill_isv6); 4853 4854 /* 4855 * Someone could be changing this ipif currently or change it 4856 * after we return this. Thus a few packets could use the old 4857 * old values. However structure updates/creates (ire, ilg, ilm etc) 4858 * will atomically be updated or cleaned up with the new value 4859 * Thus we don't need a lock to check the flags or other attrs below. 4860 */ 4861 mutex_enter(&ill->ill_lock); 4862 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4863 if (IPIF_IS_CONDEMNED(ipif)) 4864 continue; 4865 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4866 ipif->ipif_zoneid != ALL_ZONES) 4867 continue; 4868 /* Allow the ipif to be down */ 4869 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4870 if ((ipif->ipif_pp_dst_addr == addr) || 4871 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4872 ipif->ipif_lcl_addr == addr)) { 4873 ipif_refhold_locked(ipif); 4874 mutex_exit(&ill->ill_lock); 4875 return (ipif); 4876 } 4877 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4878 ipif_refhold_locked(ipif); 4879 mutex_exit(&ill->ill_lock); 4880 return (ipif); 4881 } 4882 } 4883 mutex_exit(&ill->ill_lock); 4884 /* 4885 * For a remote destination it isn't possible to nail down a particular 4886 * ipif. 4887 */ 4888 4889 /* Pick the first interface */ 4890 ipif = ipif_get_next_ipif(NULL, ill); 4891 return (ipif); 4892 } 4893 4894 /* 4895 * This func does not prevent refcnt from increasing. But if 4896 * the caller has taken steps to that effect, then this func 4897 * can be used to determine whether the ill has become quiescent 4898 */ 4899 static boolean_t 4900 ill_is_quiescent(ill_t *ill) 4901 { 4902 ipif_t *ipif; 4903 4904 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4905 4906 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4907 if (ipif->ipif_refcnt != 0) 4908 return (B_FALSE); 4909 } 4910 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4911 return (B_FALSE); 4912 } 4913 return (B_TRUE); 4914 } 4915 4916 boolean_t 4917 ill_is_freeable(ill_t *ill) 4918 { 4919 ipif_t *ipif; 4920 4921 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4922 4923 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4924 if (ipif->ipif_refcnt != 0) { 4925 return (B_FALSE); 4926 } 4927 } 4928 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4929 return (B_FALSE); 4930 } 4931 return (B_TRUE); 4932 } 4933 4934 /* 4935 * This func does not prevent refcnt from increasing. But if 4936 * the caller has taken steps to that effect, then this func 4937 * can be used to determine whether the ipif has become quiescent 4938 */ 4939 static boolean_t 4940 ipif_is_quiescent(ipif_t *ipif) 4941 { 4942 ill_t *ill; 4943 4944 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4945 4946 if (ipif->ipif_refcnt != 0) 4947 return (B_FALSE); 4948 4949 ill = ipif->ipif_ill; 4950 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4951 ill->ill_logical_down) { 4952 return (B_TRUE); 4953 } 4954 4955 /* This is the last ipif going down or being deleted on this ill */ 4956 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4957 return (B_FALSE); 4958 } 4959 4960 return (B_TRUE); 4961 } 4962 4963 /* 4964 * return true if the ipif can be destroyed: the ipif has to be quiescent 4965 * with zero references from ire/ilm to it. 4966 */ 4967 static boolean_t 4968 ipif_is_freeable(ipif_t *ipif) 4969 { 4970 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4971 ASSERT(ipif->ipif_id != 0); 4972 return (ipif->ipif_refcnt == 0); 4973 } 4974 4975 /* 4976 * The ipif/ill/ire has been refreled. Do the tail processing. 4977 * Determine if the ipif or ill in question has become quiescent and if so 4978 * wakeup close and/or restart any queued pending ioctl that is waiting 4979 * for the ipif_down (or ill_down) 4980 */ 4981 void 4982 ipif_ill_refrele_tail(ill_t *ill) 4983 { 4984 mblk_t *mp; 4985 conn_t *connp; 4986 ipsq_t *ipsq; 4987 ipxop_t *ipx; 4988 ipif_t *ipif; 4989 dl_notify_ind_t *dlindp; 4990 4991 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4992 4993 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4994 /* ip_modclose() may be waiting */ 4995 cv_broadcast(&ill->ill_cv); 4996 } 4997 4998 ipsq = ill->ill_phyint->phyint_ipsq; 4999 mutex_enter(&ipsq->ipsq_lock); 5000 ipx = ipsq->ipsq_xop; 5001 mutex_enter(&ipx->ipx_lock); 5002 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 5003 goto unlock; 5004 5005 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 5006 5007 ipif = ipx->ipx_pending_ipif; 5008 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 5009 goto unlock; 5010 5011 switch (ipx->ipx_waitfor) { 5012 case IPIF_DOWN: 5013 if (!ipif_is_quiescent(ipif)) 5014 goto unlock; 5015 break; 5016 case IPIF_FREE: 5017 if (!ipif_is_freeable(ipif)) 5018 goto unlock; 5019 break; 5020 case ILL_DOWN: 5021 if (!ill_is_quiescent(ill)) 5022 goto unlock; 5023 break; 5024 case ILL_FREE: 5025 /* 5026 * ILL_FREE is only for loopback; normal ill teardown waits 5027 * synchronously in ip_modclose() without using ipx_waitfor, 5028 * handled by the cv_broadcast() at the top of this function. 5029 */ 5030 if (!ill_is_freeable(ill)) 5031 goto unlock; 5032 break; 5033 default: 5034 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 5035 (void *)ipsq, ipx->ipx_waitfor); 5036 } 5037 5038 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 5039 mutex_exit(&ipx->ipx_lock); 5040 mp = ipsq_pending_mp_get(ipsq, &connp); 5041 mutex_exit(&ipsq->ipsq_lock); 5042 mutex_exit(&ill->ill_lock); 5043 5044 ASSERT(mp != NULL); 5045 /* 5046 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 5047 * we can only get here when the current operation decides it 5048 * it needs to quiesce via ipsq_pending_mp_add(). 5049 */ 5050 switch (mp->b_datap->db_type) { 5051 case M_PCPROTO: 5052 case M_PROTO: 5053 /* 5054 * For now, only DL_NOTIFY_IND messages can use this facility. 5055 */ 5056 dlindp = (dl_notify_ind_t *)mp->b_rptr; 5057 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 5058 5059 switch (dlindp->dl_notification) { 5060 case DL_NOTE_PHYS_ADDR: 5061 qwriter_ip(ill, ill->ill_rq, mp, 5062 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5063 return; 5064 case DL_NOTE_REPLUMB: 5065 qwriter_ip(ill, ill->ill_rq, mp, 5066 ill_replumb_tail, CUR_OP, B_TRUE); 5067 return; 5068 default: 5069 ASSERT(0); 5070 ill_refrele(ill); 5071 } 5072 break; 5073 5074 case M_ERROR: 5075 case M_HANGUP: 5076 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5077 B_TRUE); 5078 return; 5079 5080 case M_IOCTL: 5081 case M_IOCDATA: 5082 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5083 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5084 return; 5085 5086 default: 5087 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5088 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5089 } 5090 return; 5091 unlock: 5092 mutex_exit(&ipsq->ipsq_lock); 5093 mutex_exit(&ipx->ipx_lock); 5094 mutex_exit(&ill->ill_lock); 5095 } 5096 5097 #ifdef DEBUG 5098 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5099 static void 5100 th_trace_rrecord(th_trace_t *th_trace) 5101 { 5102 tr_buf_t *tr_buf; 5103 uint_t lastref; 5104 5105 lastref = th_trace->th_trace_lastref; 5106 lastref++; 5107 if (lastref == TR_BUF_MAX) 5108 lastref = 0; 5109 th_trace->th_trace_lastref = lastref; 5110 tr_buf = &th_trace->th_trbuf[lastref]; 5111 tr_buf->tr_time = ddi_get_lbolt(); 5112 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5113 } 5114 5115 static void 5116 th_trace_free(void *value) 5117 { 5118 th_trace_t *th_trace = value; 5119 5120 ASSERT(th_trace->th_refcnt == 0); 5121 kmem_free(th_trace, sizeof (*th_trace)); 5122 } 5123 5124 /* 5125 * Find or create the per-thread hash table used to track object references. 5126 * The ipst argument is NULL if we shouldn't allocate. 5127 * 5128 * Accesses per-thread data, so there's no need to lock here. 5129 */ 5130 static mod_hash_t * 5131 th_trace_gethash(ip_stack_t *ipst) 5132 { 5133 th_hash_t *thh; 5134 5135 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5136 mod_hash_t *mh; 5137 char name[256]; 5138 size_t objsize, rshift; 5139 int retv; 5140 5141 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5142 return (NULL); 5143 (void) snprintf(name, sizeof (name), "th_trace_%p", 5144 (void *)curthread); 5145 5146 /* 5147 * We use mod_hash_create_extended here rather than the more 5148 * obvious mod_hash_create_ptrhash because the latter has a 5149 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5150 * block. 5151 */ 5152 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5153 MAX(sizeof (ire_t), sizeof (ncec_t))); 5154 rshift = highbit(objsize); 5155 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5156 th_trace_free, mod_hash_byptr, (void *)rshift, 5157 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5158 if (mh == NULL) { 5159 kmem_free(thh, sizeof (*thh)); 5160 return (NULL); 5161 } 5162 thh->thh_hash = mh; 5163 thh->thh_ipst = ipst; 5164 /* 5165 * We trace ills, ipifs, ires, and nces. All of these are 5166 * per-IP-stack, so the lock on the thread list is as well. 5167 */ 5168 rw_enter(&ip_thread_rwlock, RW_WRITER); 5169 list_insert_tail(&ip_thread_list, thh); 5170 rw_exit(&ip_thread_rwlock); 5171 retv = tsd_set(ip_thread_data, thh); 5172 ASSERT(retv == 0); 5173 } 5174 return (thh != NULL ? thh->thh_hash : NULL); 5175 } 5176 5177 boolean_t 5178 th_trace_ref(const void *obj, ip_stack_t *ipst) 5179 { 5180 th_trace_t *th_trace; 5181 mod_hash_t *mh; 5182 mod_hash_val_t val; 5183 5184 if ((mh = th_trace_gethash(ipst)) == NULL) 5185 return (B_FALSE); 5186 5187 /* 5188 * Attempt to locate the trace buffer for this obj and thread. 5189 * If it does not exist, then allocate a new trace buffer and 5190 * insert into the hash. 5191 */ 5192 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5193 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5194 if (th_trace == NULL) 5195 return (B_FALSE); 5196 5197 th_trace->th_id = curthread; 5198 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5199 (mod_hash_val_t)th_trace) != 0) { 5200 kmem_free(th_trace, sizeof (th_trace_t)); 5201 return (B_FALSE); 5202 } 5203 } else { 5204 th_trace = (th_trace_t *)val; 5205 } 5206 5207 ASSERT(th_trace->th_refcnt >= 0 && 5208 th_trace->th_refcnt < TR_BUF_MAX - 1); 5209 5210 th_trace->th_refcnt++; 5211 th_trace_rrecord(th_trace); 5212 return (B_TRUE); 5213 } 5214 5215 /* 5216 * For the purpose of tracing a reference release, we assume that global 5217 * tracing is always on and that the same thread initiated the reference hold 5218 * is releasing. 5219 */ 5220 void 5221 th_trace_unref(const void *obj) 5222 { 5223 int retv; 5224 mod_hash_t *mh; 5225 th_trace_t *th_trace; 5226 mod_hash_val_t val; 5227 5228 mh = th_trace_gethash(NULL); 5229 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5230 ASSERT(retv == 0); 5231 th_trace = (th_trace_t *)val; 5232 5233 ASSERT(th_trace->th_refcnt > 0); 5234 th_trace->th_refcnt--; 5235 th_trace_rrecord(th_trace); 5236 } 5237 5238 /* 5239 * If tracing has been disabled, then we assume that the reference counts are 5240 * now useless, and we clear them out before destroying the entries. 5241 */ 5242 void 5243 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5244 { 5245 th_hash_t *thh; 5246 mod_hash_t *mh; 5247 mod_hash_val_t val; 5248 th_trace_t *th_trace; 5249 int retv; 5250 5251 rw_enter(&ip_thread_rwlock, RW_READER); 5252 for (thh = list_head(&ip_thread_list); thh != NULL; 5253 thh = list_next(&ip_thread_list, thh)) { 5254 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5255 &val) == 0) { 5256 th_trace = (th_trace_t *)val; 5257 if (trace_disable) 5258 th_trace->th_refcnt = 0; 5259 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5260 ASSERT(retv == 0); 5261 } 5262 } 5263 rw_exit(&ip_thread_rwlock); 5264 } 5265 5266 void 5267 ipif_trace_ref(ipif_t *ipif) 5268 { 5269 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5270 5271 if (ipif->ipif_trace_disable) 5272 return; 5273 5274 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5275 ipif->ipif_trace_disable = B_TRUE; 5276 ipif_trace_cleanup(ipif); 5277 } 5278 } 5279 5280 void 5281 ipif_untrace_ref(ipif_t *ipif) 5282 { 5283 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5284 5285 if (!ipif->ipif_trace_disable) 5286 th_trace_unref(ipif); 5287 } 5288 5289 void 5290 ill_trace_ref(ill_t *ill) 5291 { 5292 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5293 5294 if (ill->ill_trace_disable) 5295 return; 5296 5297 if (!th_trace_ref(ill, ill->ill_ipst)) { 5298 ill->ill_trace_disable = B_TRUE; 5299 ill_trace_cleanup(ill); 5300 } 5301 } 5302 5303 void 5304 ill_untrace_ref(ill_t *ill) 5305 { 5306 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5307 5308 if (!ill->ill_trace_disable) 5309 th_trace_unref(ill); 5310 } 5311 5312 /* 5313 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5314 * failure, ipif_trace_disable is set. 5315 */ 5316 static void 5317 ipif_trace_cleanup(const ipif_t *ipif) 5318 { 5319 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5320 } 5321 5322 /* 5323 * Called when ill is unplumbed or when memory alloc fails. Note that on 5324 * failure, ill_trace_disable is set. 5325 */ 5326 static void 5327 ill_trace_cleanup(const ill_t *ill) 5328 { 5329 th_trace_cleanup(ill, ill->ill_trace_disable); 5330 } 5331 #endif /* DEBUG */ 5332 5333 void 5334 ipif_refhold_locked(ipif_t *ipif) 5335 { 5336 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5337 ipif->ipif_refcnt++; 5338 IPIF_TRACE_REF(ipif); 5339 } 5340 5341 void 5342 ipif_refhold(ipif_t *ipif) 5343 { 5344 ill_t *ill; 5345 5346 ill = ipif->ipif_ill; 5347 mutex_enter(&ill->ill_lock); 5348 ipif->ipif_refcnt++; 5349 IPIF_TRACE_REF(ipif); 5350 mutex_exit(&ill->ill_lock); 5351 } 5352 5353 /* 5354 * Must not be called while holding any locks. Otherwise if this is 5355 * the last reference to be released there is a chance of recursive mutex 5356 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5357 * to restart an ioctl. 5358 */ 5359 void 5360 ipif_refrele(ipif_t *ipif) 5361 { 5362 ill_t *ill; 5363 5364 ill = ipif->ipif_ill; 5365 5366 mutex_enter(&ill->ill_lock); 5367 ASSERT(ipif->ipif_refcnt != 0); 5368 ipif->ipif_refcnt--; 5369 IPIF_UNTRACE_REF(ipif); 5370 if (ipif->ipif_refcnt != 0) { 5371 mutex_exit(&ill->ill_lock); 5372 return; 5373 } 5374 5375 /* Drops the ill_lock */ 5376 ipif_ill_refrele_tail(ill); 5377 } 5378 5379 ipif_t * 5380 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5381 { 5382 ipif_t *ipif; 5383 5384 mutex_enter(&ill->ill_lock); 5385 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5386 ipif != NULL; ipif = ipif->ipif_next) { 5387 if (IPIF_IS_CONDEMNED(ipif)) 5388 continue; 5389 ipif_refhold_locked(ipif); 5390 mutex_exit(&ill->ill_lock); 5391 return (ipif); 5392 } 5393 mutex_exit(&ill->ill_lock); 5394 return (NULL); 5395 } 5396 5397 /* 5398 * TODO: make this table extendible at run time 5399 * Return a pointer to the mac type info for 'mac_type' 5400 */ 5401 static ip_m_t * 5402 ip_m_lookup(t_uscalar_t mac_type) 5403 { 5404 ip_m_t *ipm; 5405 5406 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5407 if (ipm->ip_m_mac_type == mac_type) 5408 return (ipm); 5409 return (NULL); 5410 } 5411 5412 /* 5413 * Make a link layer address from the multicast IP address *addr. 5414 * To form the link layer address, invoke the ip_m_v*mapping function 5415 * associated with the link-layer type. 5416 */ 5417 void 5418 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5419 { 5420 ip_m_t *ipm; 5421 5422 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5423 return; 5424 5425 ASSERT(addr != NULL); 5426 5427 ipm = ip_m_lookup(ill->ill_mactype); 5428 if (ipm == NULL || 5429 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5430 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5431 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5432 ill->ill_name, ill->ill_mactype)); 5433 return; 5434 } 5435 if (ill->ill_isv6) 5436 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5437 else 5438 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5439 } 5440 5441 /* 5442 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5443 * ill is passed in to associate it with the correct interface. 5444 * If ire_arg is set, then we return the held IRE in that location. 5445 */ 5446 int 5447 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5448 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5449 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5450 { 5451 ire_t *ire, *nire; 5452 ire_t *gw_ire = NULL; 5453 ipif_t *ipif = NULL; 5454 uint_t type; 5455 int match_flags = MATCH_IRE_TYPE; 5456 tsol_gc_t *gc = NULL; 5457 tsol_gcgrp_t *gcgrp = NULL; 5458 boolean_t gcgrp_xtraref = B_FALSE; 5459 boolean_t cgtp_broadcast; 5460 boolean_t unbound = B_FALSE; 5461 5462 ip1dbg(("ip_rt_add:")); 5463 5464 if (ire_arg != NULL) 5465 *ire_arg = NULL; 5466 5467 /* 5468 * If this is the case of RTF_HOST being set, then we set the netmask 5469 * to all ones (regardless if one was supplied). 5470 */ 5471 if (flags & RTF_HOST) 5472 mask = IP_HOST_MASK; 5473 5474 /* 5475 * Prevent routes with a zero gateway from being created (since 5476 * interfaces can currently be plumbed and brought up no assigned 5477 * address). 5478 */ 5479 if (gw_addr == 0) 5480 return (ENETUNREACH); 5481 /* 5482 * Get the ipif, if any, corresponding to the gw_addr 5483 * If -ifp was specified we restrict ourselves to the ill, otherwise 5484 * we match on the gatway and destination to handle unnumbered pt-pt 5485 * interfaces. 5486 */ 5487 if (ill != NULL) 5488 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5489 else 5490 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5491 if (ipif != NULL) { 5492 if (IS_VNI(ipif->ipif_ill)) { 5493 ipif_refrele(ipif); 5494 return (EINVAL); 5495 } 5496 } 5497 5498 /* 5499 * GateD will attempt to create routes with a loopback interface 5500 * address as the gateway and with RTF_GATEWAY set. We allow 5501 * these routes to be added, but create them as interface routes 5502 * since the gateway is an interface address. 5503 */ 5504 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5505 flags &= ~RTF_GATEWAY; 5506 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5507 mask == IP_HOST_MASK) { 5508 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5509 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5510 NULL); 5511 if (ire != NULL) { 5512 ire_refrele(ire); 5513 ipif_refrele(ipif); 5514 return (EEXIST); 5515 } 5516 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5517 "for 0x%x\n", (void *)ipif, 5518 ipif->ipif_ire_type, 5519 ntohl(ipif->ipif_lcl_addr))); 5520 ire = ire_create( 5521 (uchar_t *)&dst_addr, /* dest address */ 5522 (uchar_t *)&mask, /* mask */ 5523 NULL, /* no gateway */ 5524 ipif->ipif_ire_type, /* LOOPBACK */ 5525 ipif->ipif_ill, 5526 zoneid, 5527 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5528 NULL, 5529 ipst); 5530 5531 if (ire == NULL) { 5532 ipif_refrele(ipif); 5533 return (ENOMEM); 5534 } 5535 /* src address assigned by the caller? */ 5536 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5537 ire->ire_setsrc_addr = src_addr; 5538 5539 nire = ire_add(ire); 5540 if (nire == NULL) { 5541 /* 5542 * In the result of failure, ire_add() will have 5543 * already deleted the ire in question, so there 5544 * is no need to do that here. 5545 */ 5546 ipif_refrele(ipif); 5547 return (ENOMEM); 5548 } 5549 /* 5550 * Check if it was a duplicate entry. This handles 5551 * the case of two racing route adds for the same route 5552 */ 5553 if (nire != ire) { 5554 ASSERT(nire->ire_identical_ref > 1); 5555 ire_delete(nire); 5556 ire_refrele(nire); 5557 ipif_refrele(ipif); 5558 return (EEXIST); 5559 } 5560 ire = nire; 5561 goto save_ire; 5562 } 5563 } 5564 5565 /* 5566 * The routes for multicast with CGTP are quite special in that 5567 * the gateway is the local interface address, yet RTF_GATEWAY 5568 * is set. We turn off RTF_GATEWAY to provide compatibility with 5569 * this undocumented and unusual use of multicast routes. 5570 */ 5571 if ((flags & RTF_MULTIRT) && ipif != NULL) 5572 flags &= ~RTF_GATEWAY; 5573 5574 /* 5575 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5576 * and the gateway address provided is one of the system's interface 5577 * addresses. By using the routing socket interface and supplying an 5578 * RTA_IFP sockaddr with an interface index, an alternate method of 5579 * specifying an interface route to be created is available which uses 5580 * the interface index that specifies the outgoing interface rather than 5581 * the address of an outgoing interface (which may not be able to 5582 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5583 * flag, routes can be specified which not only specify the next-hop to 5584 * be used when routing to a certain prefix, but also which outgoing 5585 * interface should be used. 5586 * 5587 * Previously, interfaces would have unique addresses assigned to them 5588 * and so the address assigned to a particular interface could be used 5589 * to identify a particular interface. One exception to this was the 5590 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5591 * 5592 * With the advent of IPv6 and its link-local addresses, this 5593 * restriction was relaxed and interfaces could share addresses between 5594 * themselves. In fact, typically all of the link-local interfaces on 5595 * an IPv6 node or router will have the same link-local address. In 5596 * order to differentiate between these interfaces, the use of an 5597 * interface index is necessary and this index can be carried inside a 5598 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5599 * of using the interface index, however, is that all of the ipif's that 5600 * are part of an ill have the same index and so the RTA_IFP sockaddr 5601 * cannot be used to differentiate between ipif's (or logical 5602 * interfaces) that belong to the same ill (physical interface). 5603 * 5604 * For example, in the following case involving IPv4 interfaces and 5605 * logical interfaces 5606 * 5607 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5608 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5609 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5610 * 5611 * the ipif's corresponding to each of these interface routes can be 5612 * uniquely identified by the "gateway" (actually interface address). 5613 * 5614 * In this case involving multiple IPv6 default routes to a particular 5615 * link-local gateway, the use of RTA_IFP is necessary to specify which 5616 * default route is of interest: 5617 * 5618 * default fe80::123:4567:89ab:cdef U if0 5619 * default fe80::123:4567:89ab:cdef U if1 5620 */ 5621 5622 /* RTF_GATEWAY not set */ 5623 if (!(flags & RTF_GATEWAY)) { 5624 if (sp != NULL) { 5625 ip2dbg(("ip_rt_add: gateway security attributes " 5626 "cannot be set with interface route\n")); 5627 if (ipif != NULL) 5628 ipif_refrele(ipif); 5629 return (EINVAL); 5630 } 5631 5632 /* 5633 * Whether or not ill (RTA_IFP) is set, we require that 5634 * the gateway is one of our local addresses. 5635 */ 5636 if (ipif == NULL) 5637 return (ENETUNREACH); 5638 5639 /* 5640 * We use MATCH_IRE_ILL here. If the caller specified an 5641 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5642 * we use the ill derived from the gateway address. 5643 * We can always match the gateway address since we record it 5644 * in ire_gateway_addr. 5645 * We don't allow RTA_IFP to specify a different ill than the 5646 * one matching the ipif to make sure we can delete the route. 5647 */ 5648 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5649 if (ill == NULL) { 5650 ill = ipif->ipif_ill; 5651 } else if (ill != ipif->ipif_ill) { 5652 ipif_refrele(ipif); 5653 return (EINVAL); 5654 } 5655 5656 /* 5657 * We check for an existing entry at this point. 5658 * 5659 * Since a netmask isn't passed in via the ioctl interface 5660 * (SIOCADDRT), we don't check for a matching netmask in that 5661 * case. 5662 */ 5663 if (!ioctl_msg) 5664 match_flags |= MATCH_IRE_MASK; 5665 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5666 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5667 NULL); 5668 if (ire != NULL) { 5669 ire_refrele(ire); 5670 ipif_refrele(ipif); 5671 return (EEXIST); 5672 } 5673 5674 /* 5675 * Some software (for example, GateD and Sun Cluster) attempts 5676 * to create (what amount to) IRE_PREFIX routes with the 5677 * loopback address as the gateway. This is primarily done to 5678 * set up prefixes with the RTF_REJECT flag set (for example, 5679 * when generating aggregate routes.) 5680 * 5681 * If the IRE type (as defined by ill->ill_net_type) would be 5682 * IRE_LOOPBACK, then we map the request into a 5683 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5684 * these interface routes, by definition, can only be that. 5685 * 5686 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5687 * routine, but rather using ire_create() directly. 5688 * 5689 */ 5690 type = ill->ill_net_type; 5691 if (type == IRE_LOOPBACK) { 5692 type = IRE_IF_NORESOLVER; 5693 flags |= RTF_BLACKHOLE; 5694 } 5695 5696 /* 5697 * Create a copy of the IRE_IF_NORESOLVER or 5698 * IRE_IF_RESOLVER with the modified address, netmask, and 5699 * gateway. 5700 */ 5701 ire = ire_create( 5702 (uchar_t *)&dst_addr, 5703 (uint8_t *)&mask, 5704 (uint8_t *)&gw_addr, 5705 type, 5706 ill, 5707 zoneid, 5708 flags, 5709 NULL, 5710 ipst); 5711 if (ire == NULL) { 5712 ipif_refrele(ipif); 5713 return (ENOMEM); 5714 } 5715 5716 /* src address assigned by the caller? */ 5717 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5718 ire->ire_setsrc_addr = src_addr; 5719 5720 nire = ire_add(ire); 5721 if (nire == NULL) { 5722 /* 5723 * In the result of failure, ire_add() will have 5724 * already deleted the ire in question, so there 5725 * is no need to do that here. 5726 */ 5727 ipif_refrele(ipif); 5728 return (ENOMEM); 5729 } 5730 /* 5731 * Check if it was a duplicate entry. This handles 5732 * the case of two racing route adds for the same route 5733 */ 5734 if (nire != ire) { 5735 ire_delete(nire); 5736 ire_refrele(nire); 5737 ipif_refrele(ipif); 5738 return (EEXIST); 5739 } 5740 ire = nire; 5741 goto save_ire; 5742 } 5743 5744 /* 5745 * Get an interface IRE for the specified gateway. 5746 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5747 * gateway, it is currently unreachable and we fail the request 5748 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5749 * is an IRE_LOCAL or IRE_LOOPBACK. 5750 * If RTA_IFP was specified we look on that particular ill. 5751 */ 5752 if (ill != NULL) 5753 match_flags |= MATCH_IRE_ILL; 5754 5755 /* Check whether the gateway is reachable. */ 5756 again: 5757 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5758 if (flags & RTF_INDIRECT) 5759 type |= IRE_OFFLINK; 5760 5761 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5762 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5763 if (gw_ire == NULL) { 5764 /* 5765 * With IPMP, we allow host routes to influence in.mpathd's 5766 * target selection. However, if the test addresses are on 5767 * their own network, the above lookup will fail since the 5768 * underlying IRE_INTERFACEs are marked hidden. So allow 5769 * hidden test IREs to be found and try again. 5770 */ 5771 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5772 match_flags |= MATCH_IRE_TESTHIDDEN; 5773 goto again; 5774 } 5775 if (ipif != NULL) 5776 ipif_refrele(ipif); 5777 return (ENETUNREACH); 5778 } 5779 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5780 ire_refrele(gw_ire); 5781 if (ipif != NULL) 5782 ipif_refrele(ipif); 5783 return (ENETUNREACH); 5784 } 5785 5786 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5787 unbound = B_TRUE; 5788 if (ipst->ips_ip_strict_src_multihoming > 0) 5789 ill = gw_ire->ire_ill; 5790 } 5791 5792 /* 5793 * We create one of three types of IREs as a result of this request 5794 * based on the netmask. A netmask of all ones (which is automatically 5795 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5796 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5797 * created. Otherwise, an IRE_PREFIX route is created for the 5798 * destination prefix. 5799 */ 5800 if (mask == IP_HOST_MASK) 5801 type = IRE_HOST; 5802 else if (mask == 0) 5803 type = IRE_DEFAULT; 5804 else 5805 type = IRE_PREFIX; 5806 5807 /* check for a duplicate entry */ 5808 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5809 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5810 0, ipst, NULL); 5811 if (ire != NULL) { 5812 if (ipif != NULL) 5813 ipif_refrele(ipif); 5814 ire_refrele(gw_ire); 5815 ire_refrele(ire); 5816 return (EEXIST); 5817 } 5818 5819 /* Security attribute exists */ 5820 if (sp != NULL) { 5821 tsol_gcgrp_addr_t ga; 5822 5823 /* find or create the gateway credentials group */ 5824 ga.ga_af = AF_INET; 5825 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5826 5827 /* we hold reference to it upon success */ 5828 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5829 if (gcgrp == NULL) { 5830 if (ipif != NULL) 5831 ipif_refrele(ipif); 5832 ire_refrele(gw_ire); 5833 return (ENOMEM); 5834 } 5835 5836 /* 5837 * Create and add the security attribute to the group; a 5838 * reference to the group is made upon allocating a new 5839 * entry successfully. If it finds an already-existing 5840 * entry for the security attribute in the group, it simply 5841 * returns it and no new reference is made to the group. 5842 */ 5843 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5844 if (gc == NULL) { 5845 if (ipif != NULL) 5846 ipif_refrele(ipif); 5847 /* release reference held by gcgrp_lookup */ 5848 GCGRP_REFRELE(gcgrp); 5849 ire_refrele(gw_ire); 5850 return (ENOMEM); 5851 } 5852 } 5853 5854 /* Create the IRE. */ 5855 ire = ire_create( 5856 (uchar_t *)&dst_addr, /* dest address */ 5857 (uchar_t *)&mask, /* mask */ 5858 (uchar_t *)&gw_addr, /* gateway address */ 5859 (ushort_t)type, /* IRE type */ 5860 ill, 5861 zoneid, 5862 flags, 5863 gc, /* security attribute */ 5864 ipst); 5865 5866 /* 5867 * The ire holds a reference to the 'gc' and the 'gc' holds a 5868 * reference to the 'gcgrp'. We can now release the extra reference 5869 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5870 */ 5871 if (gcgrp_xtraref) 5872 GCGRP_REFRELE(gcgrp); 5873 if (ire == NULL) { 5874 if (gc != NULL) 5875 GC_REFRELE(gc); 5876 if (ipif != NULL) 5877 ipif_refrele(ipif); 5878 ire_refrele(gw_ire); 5879 return (ENOMEM); 5880 } 5881 5882 /* Before we add, check if an extra CGTP broadcast is needed */ 5883 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5884 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5885 5886 /* src address assigned by the caller? */ 5887 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5888 ire->ire_setsrc_addr = src_addr; 5889 5890 ire->ire_unbound = unbound; 5891 5892 /* 5893 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5894 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5895 */ 5896 5897 /* Add the new IRE. */ 5898 nire = ire_add(ire); 5899 if (nire == NULL) { 5900 /* 5901 * In the result of failure, ire_add() will have 5902 * already deleted the ire in question, so there 5903 * is no need to do that here. 5904 */ 5905 if (ipif != NULL) 5906 ipif_refrele(ipif); 5907 ire_refrele(gw_ire); 5908 return (ENOMEM); 5909 } 5910 /* 5911 * Check if it was a duplicate entry. This handles 5912 * the case of two racing route adds for the same route 5913 */ 5914 if (nire != ire) { 5915 ire_delete(nire); 5916 ire_refrele(nire); 5917 if (ipif != NULL) 5918 ipif_refrele(ipif); 5919 ire_refrele(gw_ire); 5920 return (EEXIST); 5921 } 5922 ire = nire; 5923 5924 if (flags & RTF_MULTIRT) { 5925 /* 5926 * Invoke the CGTP (multirouting) filtering module 5927 * to add the dst address in the filtering database. 5928 * Replicated inbound packets coming from that address 5929 * will be filtered to discard the duplicates. 5930 * It is not necessary to call the CGTP filter hook 5931 * when the dst address is a broadcast or multicast, 5932 * because an IP source address cannot be a broadcast 5933 * or a multicast. 5934 */ 5935 if (cgtp_broadcast) { 5936 ip_cgtp_bcast_add(ire, ipst); 5937 goto save_ire; 5938 } 5939 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5940 !CLASSD(ire->ire_addr)) { 5941 int res; 5942 ipif_t *src_ipif; 5943 5944 /* Find the source address corresponding to gw_ire */ 5945 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5946 NULL, zoneid, ipst); 5947 if (src_ipif != NULL) { 5948 res = ipst->ips_ip_cgtp_filter_ops-> 5949 cfo_add_dest_v4( 5950 ipst->ips_netstack->netstack_stackid, 5951 ire->ire_addr, 5952 ire->ire_gateway_addr, 5953 ire->ire_setsrc_addr, 5954 src_ipif->ipif_lcl_addr); 5955 ipif_refrele(src_ipif); 5956 } else { 5957 res = EADDRNOTAVAIL; 5958 } 5959 if (res != 0) { 5960 if (ipif != NULL) 5961 ipif_refrele(ipif); 5962 ire_refrele(gw_ire); 5963 ire_delete(ire); 5964 ire_refrele(ire); /* Held in ire_add */ 5965 return (res); 5966 } 5967 } 5968 } 5969 5970 save_ire: 5971 if (gw_ire != NULL) { 5972 ire_refrele(gw_ire); 5973 gw_ire = NULL; 5974 } 5975 if (ill != NULL) { 5976 /* 5977 * Save enough information so that we can recreate the IRE if 5978 * the interface goes down and then up. The metrics associated 5979 * with the route will be saved as well when rts_setmetrics() is 5980 * called after the IRE has been created. In the case where 5981 * memory cannot be allocated, none of this information will be 5982 * saved. 5983 */ 5984 ill_save_ire(ill, ire); 5985 } 5986 if (ioctl_msg) 5987 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5988 if (ire_arg != NULL) { 5989 /* 5990 * Store the ire that was successfully added into where ire_arg 5991 * points to so that callers don't have to look it up 5992 * themselves (but they are responsible for ire_refrele()ing 5993 * the ire when they are finished with it). 5994 */ 5995 *ire_arg = ire; 5996 } else { 5997 ire_refrele(ire); /* Held in ire_add */ 5998 } 5999 if (ipif != NULL) 6000 ipif_refrele(ipif); 6001 return (0); 6002 } 6003 6004 /* 6005 * ip_rt_delete is called to delete an IPv4 route. 6006 * ill is passed in to associate it with the correct interface. 6007 */ 6008 /* ARGSUSED4 */ 6009 int 6010 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6011 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 6012 ip_stack_t *ipst, zoneid_t zoneid) 6013 { 6014 ire_t *ire = NULL; 6015 ipif_t *ipif; 6016 uint_t type; 6017 uint_t match_flags = MATCH_IRE_TYPE; 6018 int err = 0; 6019 6020 ip1dbg(("ip_rt_delete:")); 6021 /* 6022 * If this is the case of RTF_HOST being set, then we set the netmask 6023 * to all ones. Otherwise, we use the netmask if one was supplied. 6024 */ 6025 if (flags & RTF_HOST) { 6026 mask = IP_HOST_MASK; 6027 match_flags |= MATCH_IRE_MASK; 6028 } else if (rtm_addrs & RTA_NETMASK) { 6029 match_flags |= MATCH_IRE_MASK; 6030 } 6031 6032 /* 6033 * Note that RTF_GATEWAY is never set on a delete, therefore 6034 * we check if the gateway address is one of our interfaces first, 6035 * and fall back on RTF_GATEWAY routes. 6036 * 6037 * This makes it possible to delete an original 6038 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6039 * However, we have RTF_KERNEL set on the ones created by ipif_up 6040 * and those can not be deleted here. 6041 * 6042 * We use MATCH_IRE_ILL if we know the interface. If the caller 6043 * specified an interface (from the RTA_IFP sockaddr) we use it, 6044 * otherwise we use the ill derived from the gateway address. 6045 * We can always match the gateway address since we record it 6046 * in ire_gateway_addr. 6047 * 6048 * For more detail on specifying routes by gateway address and by 6049 * interface index, see the comments in ip_rt_add(). 6050 */ 6051 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6052 if (ipif != NULL) { 6053 ill_t *ill_match; 6054 6055 if (ill != NULL) 6056 ill_match = ill; 6057 else 6058 ill_match = ipif->ipif_ill; 6059 6060 match_flags |= MATCH_IRE_ILL; 6061 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6062 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6063 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6064 match_flags, 0, ipst, NULL); 6065 } 6066 if (ire == NULL) { 6067 match_flags |= MATCH_IRE_GW; 6068 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6069 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6070 match_flags, 0, ipst, NULL); 6071 } 6072 /* Avoid deleting routes created by kernel from an ipif */ 6073 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6074 ire_refrele(ire); 6075 ire = NULL; 6076 } 6077 6078 /* Restore in case we didn't find a match */ 6079 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6080 } 6081 6082 if (ire == NULL) { 6083 /* 6084 * At this point, the gateway address is not one of our own 6085 * addresses or a matching interface route was not found. We 6086 * set the IRE type to lookup based on whether 6087 * this is a host route, a default route or just a prefix. 6088 * 6089 * If an ill was passed in, then the lookup is based on an 6090 * interface index so MATCH_IRE_ILL is added to match_flags. 6091 */ 6092 match_flags |= MATCH_IRE_GW; 6093 if (ill != NULL) 6094 match_flags |= MATCH_IRE_ILL; 6095 if (mask == IP_HOST_MASK) 6096 type = IRE_HOST; 6097 else if (mask == 0) 6098 type = IRE_DEFAULT; 6099 else 6100 type = IRE_PREFIX; 6101 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6102 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6103 } 6104 6105 if (ipif != NULL) { 6106 ipif_refrele(ipif); 6107 ipif = NULL; 6108 } 6109 6110 if (ire == NULL) 6111 return (ESRCH); 6112 6113 if (ire->ire_flags & RTF_MULTIRT) { 6114 /* 6115 * Invoke the CGTP (multirouting) filtering module 6116 * to remove the dst address from the filtering database. 6117 * Packets coming from that address will no longer be 6118 * filtered to remove duplicates. 6119 */ 6120 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6121 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6122 ipst->ips_netstack->netstack_stackid, 6123 ire->ire_addr, ire->ire_gateway_addr); 6124 } 6125 ip_cgtp_bcast_delete(ire, ipst); 6126 } 6127 6128 ill = ire->ire_ill; 6129 if (ill != NULL) 6130 ill_remove_saved_ire(ill, ire); 6131 if (ioctl_msg) 6132 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6133 ire_delete(ire); 6134 ire_refrele(ire); 6135 return (err); 6136 } 6137 6138 /* 6139 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6140 */ 6141 /* ARGSUSED */ 6142 int 6143 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6144 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6145 { 6146 ipaddr_t dst_addr; 6147 ipaddr_t gw_addr; 6148 ipaddr_t mask; 6149 int error = 0; 6150 mblk_t *mp1; 6151 struct rtentry *rt; 6152 ipif_t *ipif = NULL; 6153 ip_stack_t *ipst; 6154 6155 ASSERT(q->q_next == NULL); 6156 ipst = CONNQ_TO_IPST(q); 6157 6158 ip1dbg(("ip_siocaddrt:")); 6159 /* Existence of mp1 verified in ip_wput_nondata */ 6160 mp1 = mp->b_cont->b_cont; 6161 rt = (struct rtentry *)mp1->b_rptr; 6162 6163 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6164 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6165 6166 /* 6167 * If the RTF_HOST flag is on, this is a request to assign a gateway 6168 * to a particular host address. In this case, we set the netmask to 6169 * all ones for the particular destination address. Otherwise, 6170 * determine the netmask to be used based on dst_addr and the interfaces 6171 * in use. 6172 */ 6173 if (rt->rt_flags & RTF_HOST) { 6174 mask = IP_HOST_MASK; 6175 } else { 6176 /* 6177 * Note that ip_subnet_mask returns a zero mask in the case of 6178 * default (an all-zeroes address). 6179 */ 6180 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6181 } 6182 6183 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6184 B_TRUE, NULL, ipst, ALL_ZONES); 6185 if (ipif != NULL) 6186 ipif_refrele(ipif); 6187 return (error); 6188 } 6189 6190 /* 6191 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6192 */ 6193 /* ARGSUSED */ 6194 int 6195 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6196 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6197 { 6198 ipaddr_t dst_addr; 6199 ipaddr_t gw_addr; 6200 ipaddr_t mask; 6201 int error; 6202 mblk_t *mp1; 6203 struct rtentry *rt; 6204 ipif_t *ipif = NULL; 6205 ip_stack_t *ipst; 6206 6207 ASSERT(q->q_next == NULL); 6208 ipst = CONNQ_TO_IPST(q); 6209 6210 ip1dbg(("ip_siocdelrt:")); 6211 /* Existence of mp1 verified in ip_wput_nondata */ 6212 mp1 = mp->b_cont->b_cont; 6213 rt = (struct rtentry *)mp1->b_rptr; 6214 6215 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6216 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6217 6218 /* 6219 * If the RTF_HOST flag is on, this is a request to delete a gateway 6220 * to a particular host address. In this case, we set the netmask to 6221 * all ones for the particular destination address. Otherwise, 6222 * determine the netmask to be used based on dst_addr and the interfaces 6223 * in use. 6224 */ 6225 if (rt->rt_flags & RTF_HOST) { 6226 mask = IP_HOST_MASK; 6227 } else { 6228 /* 6229 * Note that ip_subnet_mask returns a zero mask in the case of 6230 * default (an all-zeroes address). 6231 */ 6232 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6233 } 6234 6235 error = ip_rt_delete(dst_addr, mask, gw_addr, 6236 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6237 ipst, ALL_ZONES); 6238 if (ipif != NULL) 6239 ipif_refrele(ipif); 6240 return (error); 6241 } 6242 6243 /* 6244 * Enqueue the mp onto the ipsq, chained by b_next. 6245 * b_prev stores the function to be executed later, and b_queue the queue 6246 * where this mp originated. 6247 */ 6248 void 6249 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6250 ill_t *pending_ill) 6251 { 6252 conn_t *connp; 6253 ipxop_t *ipx = ipsq->ipsq_xop; 6254 6255 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6256 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6257 ASSERT(func != NULL); 6258 6259 mp->b_queue = q; 6260 mp->b_prev = (void *)func; 6261 mp->b_next = NULL; 6262 6263 switch (type) { 6264 case CUR_OP: 6265 if (ipx->ipx_mptail != NULL) { 6266 ASSERT(ipx->ipx_mphead != NULL); 6267 ipx->ipx_mptail->b_next = mp; 6268 } else { 6269 ASSERT(ipx->ipx_mphead == NULL); 6270 ipx->ipx_mphead = mp; 6271 } 6272 ipx->ipx_mptail = mp; 6273 break; 6274 6275 case NEW_OP: 6276 if (ipsq->ipsq_xopq_mptail != NULL) { 6277 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6278 ipsq->ipsq_xopq_mptail->b_next = mp; 6279 } else { 6280 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6281 ipsq->ipsq_xopq_mphead = mp; 6282 } 6283 ipsq->ipsq_xopq_mptail = mp; 6284 ipx->ipx_ipsq_queued = B_TRUE; 6285 break; 6286 6287 case SWITCH_OP: 6288 ASSERT(ipsq->ipsq_swxop != NULL); 6289 /* only one switch operation is currently allowed */ 6290 ASSERT(ipsq->ipsq_switch_mp == NULL); 6291 ipsq->ipsq_switch_mp = mp; 6292 ipx->ipx_ipsq_queued = B_TRUE; 6293 break; 6294 default: 6295 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6296 } 6297 6298 if (CONN_Q(q) && pending_ill != NULL) { 6299 connp = Q_TO_CONN(q); 6300 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6301 connp->conn_oper_pending_ill = pending_ill; 6302 } 6303 } 6304 6305 /* 6306 * Dequeue the next message that requested exclusive access to this IPSQ's 6307 * xop. Specifically: 6308 * 6309 * 1. If we're still processing the current operation on `ipsq', then 6310 * dequeue the next message for the operation (from ipx_mphead), or 6311 * return NULL if there are no queued messages for the operation. 6312 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6313 * 6314 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6315 * not set) see if the ipsq has requested an xop switch. If so, switch 6316 * `ipsq' to a different xop. Xop switches only happen when joining or 6317 * leaving IPMP groups and require a careful dance -- see the comments 6318 * in-line below for details. If we're leaving a group xop or if we're 6319 * joining a group xop and become writer on it, then we proceed to (3). 6320 * Otherwise, we return NULL and exit the xop. 6321 * 6322 * 3. For each IPSQ in the xop, return any switch operation stored on 6323 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6324 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6325 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6326 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6327 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6328 * each phyint in the group, including the IPMP meta-interface phyint. 6329 */ 6330 static mblk_t * 6331 ipsq_dq(ipsq_t *ipsq) 6332 { 6333 ill_t *illv4, *illv6; 6334 mblk_t *mp; 6335 ipsq_t *xopipsq; 6336 ipsq_t *leftipsq = NULL; 6337 ipxop_t *ipx; 6338 phyint_t *phyi = ipsq->ipsq_phyint; 6339 ip_stack_t *ipst = ipsq->ipsq_ipst; 6340 boolean_t emptied = B_FALSE; 6341 6342 /* 6343 * Grab all the locks we need in the defined order (ill_g_lock -> 6344 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6345 */ 6346 rw_enter(&ipst->ips_ill_g_lock, 6347 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6348 mutex_enter(&ipsq->ipsq_lock); 6349 ipx = ipsq->ipsq_xop; 6350 mutex_enter(&ipx->ipx_lock); 6351 6352 /* 6353 * Dequeue the next message associated with the current exclusive 6354 * operation, if any. 6355 */ 6356 if ((mp = ipx->ipx_mphead) != NULL) { 6357 ipx->ipx_mphead = mp->b_next; 6358 if (ipx->ipx_mphead == NULL) 6359 ipx->ipx_mptail = NULL; 6360 mp->b_next = (void *)ipsq; 6361 goto out; 6362 } 6363 6364 if (ipx->ipx_current_ipif != NULL) 6365 goto empty; 6366 6367 if (ipsq->ipsq_swxop != NULL) { 6368 /* 6369 * The exclusive operation that is now being completed has 6370 * requested a switch to a different xop. This happens 6371 * when an interface joins or leaves an IPMP group. Joins 6372 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6373 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6374 * (phyint_free()), or interface plumb for an ill type 6375 * not in the IPMP group (ip_rput_dlpi_writer()). 6376 * 6377 * Xop switches are not allowed on the IPMP meta-interface. 6378 */ 6379 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6380 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6381 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6382 6383 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6384 /* 6385 * We're switching back to our own xop, so we have two 6386 * xop's to drain/exit: our own, and the group xop 6387 * that we are leaving. 6388 * 6389 * First, pull ourselves out of the group ipsq list. 6390 * This is safe since we're writer on ill_g_lock. 6391 */ 6392 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6393 6394 xopipsq = ipx->ipx_ipsq; 6395 while (xopipsq->ipsq_next != ipsq) 6396 xopipsq = xopipsq->ipsq_next; 6397 6398 xopipsq->ipsq_next = ipsq->ipsq_next; 6399 ipsq->ipsq_next = ipsq; 6400 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6401 ipsq->ipsq_swxop = NULL; 6402 6403 /* 6404 * Second, prepare to exit the group xop. The actual 6405 * ipsq_exit() is done at the end of this function 6406 * since we cannot hold any locks across ipsq_exit(). 6407 * Note that although we drop the group's ipx_lock, no 6408 * threads can proceed since we're still ipx_writer. 6409 */ 6410 leftipsq = xopipsq; 6411 mutex_exit(&ipx->ipx_lock); 6412 6413 /* 6414 * Third, set ipx to point to our own xop (which was 6415 * inactive and therefore can be entered). 6416 */ 6417 ipx = ipsq->ipsq_xop; 6418 mutex_enter(&ipx->ipx_lock); 6419 ASSERT(ipx->ipx_writer == NULL); 6420 ASSERT(ipx->ipx_current_ipif == NULL); 6421 } else { 6422 /* 6423 * We're switching from our own xop to a group xop. 6424 * The requestor of the switch must ensure that the 6425 * group xop cannot go away (e.g. by ensuring the 6426 * phyint associated with the xop cannot go away). 6427 * 6428 * If we can become writer on our new xop, then we'll 6429 * do the drain. Otherwise, the current writer of our 6430 * new xop will do the drain when it exits. 6431 * 6432 * First, splice ourselves into the group IPSQ list. 6433 * This is safe since we're writer on ill_g_lock. 6434 */ 6435 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6436 6437 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6438 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6439 xopipsq = xopipsq->ipsq_next; 6440 6441 xopipsq->ipsq_next = ipsq; 6442 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6443 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6444 ipsq->ipsq_swxop = NULL; 6445 6446 /* 6447 * Second, exit our own xop, since it's now unused. 6448 * This is safe since we've got the only reference. 6449 */ 6450 ASSERT(ipx->ipx_writer == curthread); 6451 ipx->ipx_writer = NULL; 6452 VERIFY(--ipx->ipx_reentry_cnt == 0); 6453 ipx->ipx_ipsq_queued = B_FALSE; 6454 mutex_exit(&ipx->ipx_lock); 6455 6456 /* 6457 * Third, set ipx to point to our new xop, and check 6458 * if we can become writer on it. If we cannot, then 6459 * the current writer will drain the IPSQ group when 6460 * it exits. Our ipsq_xop is guaranteed to be stable 6461 * because we're still holding ipsq_lock. 6462 */ 6463 ipx = ipsq->ipsq_xop; 6464 mutex_enter(&ipx->ipx_lock); 6465 if (ipx->ipx_writer != NULL || 6466 ipx->ipx_current_ipif != NULL) { 6467 goto out; 6468 } 6469 } 6470 6471 /* 6472 * Fourth, become writer on our new ipx before we continue 6473 * with the drain. Note that we never dropped ipsq_lock 6474 * above, so no other thread could've raced with us to 6475 * become writer first. Also, we're holding ipx_lock, so 6476 * no other thread can examine the ipx right now. 6477 */ 6478 ASSERT(ipx->ipx_current_ipif == NULL); 6479 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6480 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6481 ipx->ipx_writer = curthread; 6482 ipx->ipx_forced = B_FALSE; 6483 #ifdef DEBUG 6484 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6485 #endif 6486 } 6487 6488 xopipsq = ipsq; 6489 do { 6490 /* 6491 * So that other operations operate on a consistent and 6492 * complete phyint, a switch message on an IPSQ must be 6493 * handled prior to any other operations on that IPSQ. 6494 */ 6495 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6496 xopipsq->ipsq_switch_mp = NULL; 6497 ASSERT(mp->b_next == NULL); 6498 mp->b_next = (void *)xopipsq; 6499 goto out; 6500 } 6501 6502 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6503 xopipsq->ipsq_xopq_mphead = mp->b_next; 6504 if (xopipsq->ipsq_xopq_mphead == NULL) 6505 xopipsq->ipsq_xopq_mptail = NULL; 6506 mp->b_next = (void *)xopipsq; 6507 goto out; 6508 } 6509 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6510 empty: 6511 /* 6512 * There are no messages. Further, we are holding ipx_lock, hence no 6513 * new messages can end up on any IPSQ in the xop. 6514 */ 6515 ipx->ipx_writer = NULL; 6516 ipx->ipx_forced = B_FALSE; 6517 VERIFY(--ipx->ipx_reentry_cnt == 0); 6518 ipx->ipx_ipsq_queued = B_FALSE; 6519 emptied = B_TRUE; 6520 #ifdef DEBUG 6521 ipx->ipx_depth = 0; 6522 #endif 6523 out: 6524 mutex_exit(&ipx->ipx_lock); 6525 mutex_exit(&ipsq->ipsq_lock); 6526 6527 /* 6528 * If we completely emptied the xop, then wake up any threads waiting 6529 * to enter any of the IPSQ's associated with it. 6530 */ 6531 if (emptied) { 6532 xopipsq = ipsq; 6533 do { 6534 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6535 continue; 6536 6537 illv4 = phyi->phyint_illv4; 6538 illv6 = phyi->phyint_illv6; 6539 6540 GRAB_ILL_LOCKS(illv4, illv6); 6541 if (illv4 != NULL) 6542 cv_broadcast(&illv4->ill_cv); 6543 if (illv6 != NULL) 6544 cv_broadcast(&illv6->ill_cv); 6545 RELEASE_ILL_LOCKS(illv4, illv6); 6546 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6547 } 6548 rw_exit(&ipst->ips_ill_g_lock); 6549 6550 /* 6551 * Now that all locks are dropped, exit the IPSQ we left. 6552 */ 6553 if (leftipsq != NULL) 6554 ipsq_exit(leftipsq); 6555 6556 return (mp); 6557 } 6558 6559 /* 6560 * Return completion status of previously initiated DLPI operations on 6561 * ills in the purview of an ipsq. 6562 */ 6563 static boolean_t 6564 ipsq_dlpi_done(ipsq_t *ipsq) 6565 { 6566 ipsq_t *ipsq_start; 6567 phyint_t *phyi; 6568 ill_t *ill; 6569 6570 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6571 ipsq_start = ipsq; 6572 6573 do { 6574 /* 6575 * The only current users of this function are ipsq_try_enter 6576 * and ipsq_enter which have made sure that ipsq_writer is 6577 * NULL before we reach here. ill_dlpi_pending is modified 6578 * only by an ipsq writer 6579 */ 6580 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6581 phyi = ipsq->ipsq_phyint; 6582 /* 6583 * phyi could be NULL if a phyint that is part of an 6584 * IPMP group is being unplumbed. A more detailed 6585 * comment is in ipmp_grp_update_kstats() 6586 */ 6587 if (phyi != NULL) { 6588 ill = phyi->phyint_illv4; 6589 if (ill != NULL && 6590 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6591 ill->ill_arl_dlpi_pending)) 6592 return (B_FALSE); 6593 6594 ill = phyi->phyint_illv6; 6595 if (ill != NULL && 6596 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6597 return (B_FALSE); 6598 } 6599 6600 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6601 6602 return (B_TRUE); 6603 } 6604 6605 /* 6606 * Enter the ipsq corresponding to ill, by waiting synchronously till 6607 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6608 * will have to drain completely before ipsq_enter returns success. 6609 * ipx_current_ipif will be set if some exclusive op is in progress, 6610 * and the ipsq_exit logic will start the next enqueued op after 6611 * completion of the current op. If 'force' is used, we don't wait 6612 * for the enqueued ops. This is needed when a conn_close wants to 6613 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6614 * of an ill can also use this option. But we dont' use it currently. 6615 */ 6616 #define ENTER_SQ_WAIT_TICKS 100 6617 boolean_t 6618 ipsq_enter(ill_t *ill, boolean_t force, int type) 6619 { 6620 ipsq_t *ipsq; 6621 ipxop_t *ipx; 6622 boolean_t waited_enough = B_FALSE; 6623 ip_stack_t *ipst = ill->ill_ipst; 6624 6625 /* 6626 * Note that the relationship between ill and ipsq is fixed as long as 6627 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6628 * relationship between the IPSQ and xop cannot change. However, 6629 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6630 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6631 * waking up all ills in the xop when it becomes available. 6632 */ 6633 for (;;) { 6634 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6635 mutex_enter(&ill->ill_lock); 6636 if (ill->ill_state_flags & ILL_CONDEMNED) { 6637 mutex_exit(&ill->ill_lock); 6638 rw_exit(&ipst->ips_ill_g_lock); 6639 return (B_FALSE); 6640 } 6641 6642 ipsq = ill->ill_phyint->phyint_ipsq; 6643 mutex_enter(&ipsq->ipsq_lock); 6644 ipx = ipsq->ipsq_xop; 6645 mutex_enter(&ipx->ipx_lock); 6646 6647 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6648 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6649 waited_enough)) 6650 break; 6651 6652 rw_exit(&ipst->ips_ill_g_lock); 6653 6654 if (!force || ipx->ipx_writer != NULL) { 6655 mutex_exit(&ipx->ipx_lock); 6656 mutex_exit(&ipsq->ipsq_lock); 6657 cv_wait(&ill->ill_cv, &ill->ill_lock); 6658 } else { 6659 mutex_exit(&ipx->ipx_lock); 6660 mutex_exit(&ipsq->ipsq_lock); 6661 (void) cv_reltimedwait(&ill->ill_cv, 6662 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6663 waited_enough = B_TRUE; 6664 } 6665 mutex_exit(&ill->ill_lock); 6666 } 6667 6668 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6669 ASSERT(ipx->ipx_reentry_cnt == 0); 6670 ipx->ipx_writer = curthread; 6671 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6672 ipx->ipx_reentry_cnt++; 6673 #ifdef DEBUG 6674 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6675 #endif 6676 mutex_exit(&ipx->ipx_lock); 6677 mutex_exit(&ipsq->ipsq_lock); 6678 mutex_exit(&ill->ill_lock); 6679 rw_exit(&ipst->ips_ill_g_lock); 6680 6681 return (B_TRUE); 6682 } 6683 6684 /* 6685 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6686 * across the call to the core interface ipsq_try_enter() and hence calls this 6687 * function directly. This is explained more fully in ipif_set_values(). 6688 * In order to support the above constraint, ipsq_try_enter is implemented as 6689 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6690 */ 6691 static ipsq_t * 6692 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6693 int type, boolean_t reentry_ok) 6694 { 6695 ipsq_t *ipsq; 6696 ipxop_t *ipx; 6697 ip_stack_t *ipst = ill->ill_ipst; 6698 6699 /* 6700 * lock ordering: 6701 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6702 * 6703 * ipx of an ipsq can't change when ipsq_lock is held. 6704 */ 6705 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6706 GRAB_CONN_LOCK(q); 6707 mutex_enter(&ill->ill_lock); 6708 ipsq = ill->ill_phyint->phyint_ipsq; 6709 mutex_enter(&ipsq->ipsq_lock); 6710 ipx = ipsq->ipsq_xop; 6711 mutex_enter(&ipx->ipx_lock); 6712 6713 /* 6714 * 1. Enter the ipsq if we are already writer and reentry is ok. 6715 * (Note: If the caller does not specify reentry_ok then neither 6716 * 'func' nor any of its callees must ever attempt to enter the ipsq 6717 * again. Otherwise it can lead to an infinite loop 6718 * 2. Enter the ipsq if there is no current writer and this attempted 6719 * entry is part of the current operation 6720 * 3. Enter the ipsq if there is no current writer and this is a new 6721 * operation and the operation queue is empty and there is no 6722 * operation currently in progress and if all previously initiated 6723 * DLPI operations have completed. 6724 */ 6725 if ((ipx->ipx_writer == curthread && reentry_ok) || 6726 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6727 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6728 ipsq_dlpi_done(ipsq))))) { 6729 /* Success. */ 6730 ipx->ipx_reentry_cnt++; 6731 ipx->ipx_writer = curthread; 6732 ipx->ipx_forced = B_FALSE; 6733 mutex_exit(&ipx->ipx_lock); 6734 mutex_exit(&ipsq->ipsq_lock); 6735 mutex_exit(&ill->ill_lock); 6736 RELEASE_CONN_LOCK(q); 6737 #ifdef DEBUG 6738 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6739 #endif 6740 return (ipsq); 6741 } 6742 6743 if (func != NULL) 6744 ipsq_enq(ipsq, q, mp, func, type, ill); 6745 6746 mutex_exit(&ipx->ipx_lock); 6747 mutex_exit(&ipsq->ipsq_lock); 6748 mutex_exit(&ill->ill_lock); 6749 RELEASE_CONN_LOCK(q); 6750 return (NULL); 6751 } 6752 6753 /* 6754 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6755 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6756 * There is one ipsq per phyint. The ipsq 6757 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6758 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6759 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6760 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6761 * up the interface) and are enqueued in ipx_mphead. 6762 * 6763 * If a thread does not want to reenter the ipsq when it is already writer, 6764 * it must make sure that the specified reentry point to be called later 6765 * when the ipsq is empty, nor any code path starting from the specified reentry 6766 * point must never ever try to enter the ipsq again. Otherwise it can lead 6767 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6768 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6769 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6770 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6771 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6772 * ioctl if the current ioctl has completed. If the current ioctl is still 6773 * in progress it simply returns. The current ioctl could be waiting for 6774 * a response from another module (the driver or could be waiting for 6775 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6776 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6777 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6778 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6779 * all associated DLPI operations have completed. 6780 */ 6781 6782 /* 6783 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6784 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6785 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6786 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6787 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6788 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6789 */ 6790 ipsq_t * 6791 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6792 ipsq_func_t func, int type, boolean_t reentry_ok) 6793 { 6794 ip_stack_t *ipst; 6795 ipsq_t *ipsq; 6796 6797 /* Only 1 of ipif or ill can be specified */ 6798 ASSERT((ipif != NULL) ^ (ill != NULL)); 6799 6800 if (ipif != NULL) 6801 ill = ipif->ipif_ill; 6802 ipst = ill->ill_ipst; 6803 6804 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6805 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6806 rw_exit(&ipst->ips_ill_g_lock); 6807 6808 return (ipsq); 6809 } 6810 6811 /* 6812 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6813 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6814 * cannot be entered, the mp is queued for completion. 6815 */ 6816 void 6817 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6818 boolean_t reentry_ok) 6819 { 6820 ipsq_t *ipsq; 6821 6822 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6823 6824 /* 6825 * Drop the caller's refhold on the ill. This is safe since we either 6826 * entered the IPSQ (and thus are exclusive), or failed to enter the 6827 * IPSQ, in which case we return without accessing ill anymore. This 6828 * is needed because func needs to see the correct refcount. 6829 * e.g. removeif can work only then. 6830 */ 6831 ill_refrele(ill); 6832 if (ipsq != NULL) { 6833 (*func)(ipsq, q, mp, NULL); 6834 ipsq_exit(ipsq); 6835 } 6836 } 6837 6838 /* 6839 * Exit the specified IPSQ. If this is the final exit on it then drain it 6840 * prior to exiting. Caller must be writer on the specified IPSQ. 6841 */ 6842 void 6843 ipsq_exit(ipsq_t *ipsq) 6844 { 6845 mblk_t *mp; 6846 ipsq_t *mp_ipsq; 6847 queue_t *q; 6848 phyint_t *phyi; 6849 ipsq_func_t func; 6850 6851 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6852 6853 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6854 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6855 ipsq->ipsq_xop->ipx_reentry_cnt--; 6856 return; 6857 } 6858 6859 for (;;) { 6860 phyi = ipsq->ipsq_phyint; 6861 mp = ipsq_dq(ipsq); 6862 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6863 6864 /* 6865 * If we've changed to a new IPSQ, and the phyint associated 6866 * with the old one has gone away, free the old IPSQ. Note 6867 * that this cannot happen while the IPSQ is in a group. 6868 */ 6869 if (mp_ipsq != ipsq && phyi == NULL) { 6870 ASSERT(ipsq->ipsq_next == ipsq); 6871 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6872 ipsq_delete(ipsq); 6873 } 6874 6875 if (mp == NULL) 6876 break; 6877 6878 q = mp->b_queue; 6879 func = (ipsq_func_t)mp->b_prev; 6880 ipsq = mp_ipsq; 6881 mp->b_next = mp->b_prev = NULL; 6882 mp->b_queue = NULL; 6883 6884 /* 6885 * If 'q' is an conn queue, it is valid, since we did a 6886 * a refhold on the conn at the start of the ioctl. 6887 * If 'q' is an ill queue, it is valid, since close of an 6888 * ill will clean up its IPSQ. 6889 */ 6890 (*func)(ipsq, q, mp, NULL); 6891 } 6892 } 6893 6894 /* 6895 * Used to start any igmp or mld timers that could not be started 6896 * while holding ill_mcast_lock. The timers can't be started while holding 6897 * the lock, since mld/igmp_start_timers may need to call untimeout() 6898 * which can't be done while holding the lock which the timeout handler 6899 * acquires. Otherwise 6900 * there could be a deadlock since the timeout handlers 6901 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6902 * ill_mcast_lock. 6903 */ 6904 void 6905 ill_mcast_timer_start(ip_stack_t *ipst) 6906 { 6907 int next; 6908 6909 mutex_enter(&ipst->ips_igmp_timer_lock); 6910 next = ipst->ips_igmp_deferred_next; 6911 ipst->ips_igmp_deferred_next = INFINITY; 6912 mutex_exit(&ipst->ips_igmp_timer_lock); 6913 6914 if (next != INFINITY) 6915 igmp_start_timers(next, ipst); 6916 6917 mutex_enter(&ipst->ips_mld_timer_lock); 6918 next = ipst->ips_mld_deferred_next; 6919 ipst->ips_mld_deferred_next = INFINITY; 6920 mutex_exit(&ipst->ips_mld_timer_lock); 6921 6922 if (next != INFINITY) 6923 mld_start_timers(next, ipst); 6924 } 6925 6926 /* 6927 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6928 * and `ioccmd'. 6929 */ 6930 void 6931 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6932 { 6933 ill_t *ill = ipif->ipif_ill; 6934 ipxop_t *ipx = ipsq->ipsq_xop; 6935 6936 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6937 ASSERT(ipx->ipx_current_ipif == NULL); 6938 ASSERT(ipx->ipx_current_ioctl == 0); 6939 6940 ipx->ipx_current_done = B_FALSE; 6941 ipx->ipx_current_ioctl = ioccmd; 6942 mutex_enter(&ipx->ipx_lock); 6943 ipx->ipx_current_ipif = ipif; 6944 mutex_exit(&ipx->ipx_lock); 6945 6946 /* 6947 * Set IPIF_CHANGING on one or more ipifs associated with the 6948 * current exclusive operation. IPIF_CHANGING prevents any new 6949 * references to the ipif (so that the references will eventually 6950 * drop to zero) and also prevents any "get" operations (e.g., 6951 * SIOCGLIFFLAGS) from being able to access the ipif until the 6952 * operation has completed and the ipif is again in a stable state. 6953 * 6954 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6955 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6956 * on the ill are marked with IPIF_CHANGING since it's unclear which 6957 * ipifs will be affected. 6958 * 6959 * Note that SIOCLIFREMOVEIF is a special case as it sets 6960 * IPIF_CONDEMNED internally after identifying the right ipif to 6961 * operate on. 6962 */ 6963 switch (ioccmd) { 6964 case SIOCLIFREMOVEIF: 6965 break; 6966 case 0: 6967 mutex_enter(&ill->ill_lock); 6968 ipif = ipif->ipif_ill->ill_ipif; 6969 for (; ipif != NULL; ipif = ipif->ipif_next) 6970 ipif->ipif_state_flags |= IPIF_CHANGING; 6971 mutex_exit(&ill->ill_lock); 6972 break; 6973 default: 6974 mutex_enter(&ill->ill_lock); 6975 ipif->ipif_state_flags |= IPIF_CHANGING; 6976 mutex_exit(&ill->ill_lock); 6977 } 6978 } 6979 6980 /* 6981 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6982 * the next exclusive operation to begin once we ipsq_exit(). However, if 6983 * pending DLPI operations remain, then we will wait for the queue to drain 6984 * before allowing the next exclusive operation to begin. This ensures that 6985 * DLPI operations from one exclusive operation are never improperly processed 6986 * as part of a subsequent exclusive operation. 6987 */ 6988 void 6989 ipsq_current_finish(ipsq_t *ipsq) 6990 { 6991 ipxop_t *ipx = ipsq->ipsq_xop; 6992 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6993 ipif_t *ipif = ipx->ipx_current_ipif; 6994 6995 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6996 6997 /* 6998 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6999 * (but in that case, IPIF_CHANGING will already be clear and no 7000 * pending DLPI messages can remain). 7001 */ 7002 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 7003 ill_t *ill = ipif->ipif_ill; 7004 7005 mutex_enter(&ill->ill_lock); 7006 dlpi_pending = ill->ill_dlpi_pending; 7007 if (ipx->ipx_current_ioctl == 0) { 7008 ipif = ill->ill_ipif; 7009 for (; ipif != NULL; ipif = ipif->ipif_next) 7010 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7011 } else { 7012 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7013 } 7014 mutex_exit(&ill->ill_lock); 7015 } 7016 7017 ASSERT(!ipx->ipx_current_done); 7018 ipx->ipx_current_done = B_TRUE; 7019 ipx->ipx_current_ioctl = 0; 7020 if (dlpi_pending == DL_PRIM_INVAL) { 7021 mutex_enter(&ipx->ipx_lock); 7022 ipx->ipx_current_ipif = NULL; 7023 mutex_exit(&ipx->ipx_lock); 7024 } 7025 } 7026 7027 /* 7028 * The ill is closing. Flush all messages on the ipsq that originated 7029 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7030 * for this ill since ipsq_enter could not have entered until then. 7031 * New messages can't be queued since the CONDEMNED flag is set. 7032 */ 7033 static void 7034 ipsq_flush(ill_t *ill) 7035 { 7036 queue_t *q; 7037 mblk_t *prev; 7038 mblk_t *mp; 7039 mblk_t *mp_next; 7040 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7041 7042 ASSERT(IAM_WRITER_ILL(ill)); 7043 7044 /* 7045 * Flush any messages sent up by the driver. 7046 */ 7047 mutex_enter(&ipx->ipx_lock); 7048 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7049 mp_next = mp->b_next; 7050 q = mp->b_queue; 7051 if (q == ill->ill_rq || q == ill->ill_wq) { 7052 /* dequeue mp */ 7053 if (prev == NULL) 7054 ipx->ipx_mphead = mp->b_next; 7055 else 7056 prev->b_next = mp->b_next; 7057 if (ipx->ipx_mptail == mp) { 7058 ASSERT(mp_next == NULL); 7059 ipx->ipx_mptail = prev; 7060 } 7061 inet_freemsg(mp); 7062 } else { 7063 prev = mp; 7064 } 7065 } 7066 mutex_exit(&ipx->ipx_lock); 7067 (void) ipsq_pending_mp_cleanup(ill, NULL); 7068 ipsq_xopq_mp_cleanup(ill, NULL); 7069 } 7070 7071 /* 7072 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7073 * and return the associated ipif. 7074 * Return value: 7075 * Non zero: An error has occurred. ci may not be filled out. 7076 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7077 * a held ipif in ci.ci_ipif. 7078 */ 7079 int 7080 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7081 cmd_info_t *ci) 7082 { 7083 char *name; 7084 struct ifreq *ifr; 7085 struct lifreq *lifr; 7086 ipif_t *ipif = NULL; 7087 ill_t *ill; 7088 conn_t *connp; 7089 boolean_t isv6; 7090 boolean_t exists; 7091 mblk_t *mp1; 7092 zoneid_t zoneid; 7093 ip_stack_t *ipst; 7094 7095 if (q->q_next != NULL) { 7096 ill = (ill_t *)q->q_ptr; 7097 isv6 = ill->ill_isv6; 7098 connp = NULL; 7099 zoneid = ALL_ZONES; 7100 ipst = ill->ill_ipst; 7101 } else { 7102 ill = NULL; 7103 connp = Q_TO_CONN(q); 7104 isv6 = (connp->conn_family == AF_INET6); 7105 zoneid = connp->conn_zoneid; 7106 if (zoneid == GLOBAL_ZONEID) { 7107 /* global zone can access ipifs in all zones */ 7108 zoneid = ALL_ZONES; 7109 } 7110 ipst = connp->conn_netstack->netstack_ip; 7111 } 7112 7113 /* Has been checked in ip_wput_nondata */ 7114 mp1 = mp->b_cont->b_cont; 7115 7116 if (ipip->ipi_cmd_type == IF_CMD) { 7117 /* This a old style SIOC[GS]IF* command */ 7118 ifr = (struct ifreq *)mp1->b_rptr; 7119 /* 7120 * Null terminate the string to protect against buffer 7121 * overrun. String was generated by user code and may not 7122 * be trusted. 7123 */ 7124 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7125 name = ifr->ifr_name; 7126 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7127 ci->ci_sin6 = NULL; 7128 ci->ci_lifr = (struct lifreq *)ifr; 7129 } else { 7130 /* This a new style SIOC[GS]LIF* command */ 7131 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7132 lifr = (struct lifreq *)mp1->b_rptr; 7133 /* 7134 * Null terminate the string to protect against buffer 7135 * overrun. String was generated by user code and may not 7136 * be trusted. 7137 */ 7138 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7139 name = lifr->lifr_name; 7140 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7141 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7142 ci->ci_lifr = lifr; 7143 } 7144 7145 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7146 /* 7147 * The ioctl will be failed if the ioctl comes down 7148 * an conn stream 7149 */ 7150 if (ill == NULL) { 7151 /* 7152 * Not an ill queue, return EINVAL same as the 7153 * old error code. 7154 */ 7155 return (ENXIO); 7156 } 7157 ipif = ill->ill_ipif; 7158 ipif_refhold(ipif); 7159 } else { 7160 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7161 &exists, isv6, zoneid, ipst); 7162 7163 /* 7164 * Ensure that get ioctls don't see any internal state changes 7165 * caused by set ioctls by deferring them if IPIF_CHANGING is 7166 * set. 7167 */ 7168 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7169 !IAM_WRITER_IPIF(ipif)) { 7170 ipsq_t *ipsq; 7171 7172 if (connp != NULL) 7173 mutex_enter(&connp->conn_lock); 7174 mutex_enter(&ipif->ipif_ill->ill_lock); 7175 if (IPIF_IS_CHANGING(ipif) && 7176 !IPIF_IS_CONDEMNED(ipif)) { 7177 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7178 mutex_enter(&ipsq->ipsq_lock); 7179 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7180 mutex_exit(&ipif->ipif_ill->ill_lock); 7181 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7182 NEW_OP, ipif->ipif_ill); 7183 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7184 mutex_exit(&ipsq->ipsq_lock); 7185 if (connp != NULL) 7186 mutex_exit(&connp->conn_lock); 7187 ipif_refrele(ipif); 7188 return (EINPROGRESS); 7189 } 7190 mutex_exit(&ipif->ipif_ill->ill_lock); 7191 if (connp != NULL) 7192 mutex_exit(&connp->conn_lock); 7193 } 7194 } 7195 7196 /* 7197 * Old style [GS]IFCMD does not admit IPv6 ipif 7198 */ 7199 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7200 ipif_refrele(ipif); 7201 return (ENXIO); 7202 } 7203 7204 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7205 name[0] == '\0') { 7206 /* 7207 * Handle a or a SIOC?IF* with a null name 7208 * during plumb (on the ill queue before the I_PLINK). 7209 */ 7210 ipif = ill->ill_ipif; 7211 ipif_refhold(ipif); 7212 } 7213 7214 if (ipif == NULL) 7215 return (ENXIO); 7216 7217 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7218 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7219 7220 ci->ci_ipif = ipif; 7221 return (0); 7222 } 7223 7224 /* 7225 * Return the total number of ipifs. 7226 */ 7227 static uint_t 7228 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7229 { 7230 uint_t numifs = 0; 7231 ill_t *ill; 7232 ill_walk_context_t ctx; 7233 ipif_t *ipif; 7234 7235 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7236 ill = ILL_START_WALK_V4(&ctx, ipst); 7237 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7238 if (IS_UNDER_IPMP(ill)) 7239 continue; 7240 for (ipif = ill->ill_ipif; ipif != NULL; 7241 ipif = ipif->ipif_next) { 7242 if (ipif->ipif_zoneid == zoneid || 7243 ipif->ipif_zoneid == ALL_ZONES) 7244 numifs++; 7245 } 7246 } 7247 rw_exit(&ipst->ips_ill_g_lock); 7248 return (numifs); 7249 } 7250 7251 /* 7252 * Return the total number of ipifs. 7253 */ 7254 static uint_t 7255 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7256 { 7257 uint_t numifs = 0; 7258 ill_t *ill; 7259 ipif_t *ipif; 7260 ill_walk_context_t ctx; 7261 7262 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7263 7264 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7265 if (family == AF_INET) 7266 ill = ILL_START_WALK_V4(&ctx, ipst); 7267 else if (family == AF_INET6) 7268 ill = ILL_START_WALK_V6(&ctx, ipst); 7269 else 7270 ill = ILL_START_WALK_ALL(&ctx, ipst); 7271 7272 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7273 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7274 continue; 7275 7276 for (ipif = ill->ill_ipif; ipif != NULL; 7277 ipif = ipif->ipif_next) { 7278 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7279 !(lifn_flags & LIFC_NOXMIT)) 7280 continue; 7281 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7282 !(lifn_flags & LIFC_TEMPORARY)) 7283 continue; 7284 if (((ipif->ipif_flags & 7285 (IPIF_NOXMIT|IPIF_NOLOCAL| 7286 IPIF_DEPRECATED)) || 7287 IS_LOOPBACK(ill) || 7288 !(ipif->ipif_flags & IPIF_UP)) && 7289 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7290 continue; 7291 7292 if (zoneid != ipif->ipif_zoneid && 7293 ipif->ipif_zoneid != ALL_ZONES && 7294 (zoneid != GLOBAL_ZONEID || 7295 !(lifn_flags & LIFC_ALLZONES))) 7296 continue; 7297 7298 numifs++; 7299 } 7300 } 7301 rw_exit(&ipst->ips_ill_g_lock); 7302 return (numifs); 7303 } 7304 7305 uint_t 7306 ip_get_lifsrcofnum(ill_t *ill) 7307 { 7308 uint_t numifs = 0; 7309 ill_t *ill_head = ill; 7310 ip_stack_t *ipst = ill->ill_ipst; 7311 7312 /* 7313 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7314 * other thread may be trying to relink the ILLs in this usesrc group 7315 * and adjusting the ill_usesrc_grp_next pointers 7316 */ 7317 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7318 if ((ill->ill_usesrc_ifindex == 0) && 7319 (ill->ill_usesrc_grp_next != NULL)) { 7320 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7321 ill = ill->ill_usesrc_grp_next) 7322 numifs++; 7323 } 7324 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7325 7326 return (numifs); 7327 } 7328 7329 /* Null values are passed in for ipif, sin, and ifreq */ 7330 /* ARGSUSED */ 7331 int 7332 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7333 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7334 { 7335 int *nump; 7336 conn_t *connp = Q_TO_CONN(q); 7337 7338 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7339 7340 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7341 nump = (int *)mp->b_cont->b_cont->b_rptr; 7342 7343 *nump = ip_get_numifs(connp->conn_zoneid, 7344 connp->conn_netstack->netstack_ip); 7345 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7346 return (0); 7347 } 7348 7349 /* Null values are passed in for ipif, sin, and ifreq */ 7350 /* ARGSUSED */ 7351 int 7352 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7353 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7354 { 7355 struct lifnum *lifn; 7356 mblk_t *mp1; 7357 conn_t *connp = Q_TO_CONN(q); 7358 7359 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7360 7361 /* Existence checked in ip_wput_nondata */ 7362 mp1 = mp->b_cont->b_cont; 7363 7364 lifn = (struct lifnum *)mp1->b_rptr; 7365 switch (lifn->lifn_family) { 7366 case AF_UNSPEC: 7367 case AF_INET: 7368 case AF_INET6: 7369 break; 7370 default: 7371 return (EAFNOSUPPORT); 7372 } 7373 7374 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7375 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7376 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7377 return (0); 7378 } 7379 7380 /* ARGSUSED */ 7381 int 7382 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7383 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7384 { 7385 STRUCT_HANDLE(ifconf, ifc); 7386 mblk_t *mp1; 7387 struct iocblk *iocp; 7388 struct ifreq *ifr; 7389 ill_walk_context_t ctx; 7390 ill_t *ill; 7391 ipif_t *ipif; 7392 struct sockaddr_in *sin; 7393 int32_t ifclen; 7394 zoneid_t zoneid; 7395 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7396 7397 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7398 7399 ip1dbg(("ip_sioctl_get_ifconf")); 7400 /* Existence verified in ip_wput_nondata */ 7401 mp1 = mp->b_cont->b_cont; 7402 iocp = (struct iocblk *)mp->b_rptr; 7403 zoneid = Q_TO_CONN(q)->conn_zoneid; 7404 7405 /* 7406 * The original SIOCGIFCONF passed in a struct ifconf which specified 7407 * the user buffer address and length into which the list of struct 7408 * ifreqs was to be copied. Since AT&T Streams does not seem to 7409 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7410 * the SIOCGIFCONF operation was redefined to simply provide 7411 * a large output buffer into which we are supposed to jam the ifreq 7412 * array. The same ioctl command code was used, despite the fact that 7413 * both the applications and the kernel code had to change, thus making 7414 * it impossible to support both interfaces. 7415 * 7416 * For reasons not good enough to try to explain, the following 7417 * algorithm is used for deciding what to do with one of these: 7418 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7419 * form with the output buffer coming down as the continuation message. 7420 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7421 * and we have to copy in the ifconf structure to find out how big the 7422 * output buffer is and where to copy out to. Sure no problem... 7423 * 7424 */ 7425 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7426 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7427 int numifs = 0; 7428 size_t ifc_bufsize; 7429 7430 /* 7431 * Must be (better be!) continuation of a TRANSPARENT 7432 * IOCTL. We just copied in the ifconf structure. 7433 */ 7434 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7435 (struct ifconf *)mp1->b_rptr); 7436 7437 /* 7438 * Allocate a buffer to hold requested information. 7439 * 7440 * If ifc_len is larger than what is needed, we only 7441 * allocate what we will use. 7442 * 7443 * If ifc_len is smaller than what is needed, return 7444 * EINVAL. 7445 * 7446 * XXX: the ill_t structure can hava 2 counters, for 7447 * v4 and v6 (not just ill_ipif_up_count) to store the 7448 * number of interfaces for a device, so we don't need 7449 * to count them here... 7450 */ 7451 numifs = ip_get_numifs(zoneid, ipst); 7452 7453 ifclen = STRUCT_FGET(ifc, ifc_len); 7454 ifc_bufsize = numifs * sizeof (struct ifreq); 7455 if (ifc_bufsize > ifclen) { 7456 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7457 /* old behaviour */ 7458 return (EINVAL); 7459 } else { 7460 ifc_bufsize = ifclen; 7461 } 7462 } 7463 7464 mp1 = mi_copyout_alloc(q, mp, 7465 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7466 if (mp1 == NULL) 7467 return (ENOMEM); 7468 7469 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7470 } 7471 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7472 /* 7473 * the SIOCGIFCONF ioctl only knows about 7474 * IPv4 addresses, so don't try to tell 7475 * it about interfaces with IPv6-only 7476 * addresses. (Last parm 'isv6' is B_FALSE) 7477 */ 7478 7479 ifr = (struct ifreq *)mp1->b_rptr; 7480 7481 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7482 ill = ILL_START_WALK_V4(&ctx, ipst); 7483 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7484 if (IS_UNDER_IPMP(ill)) 7485 continue; 7486 for (ipif = ill->ill_ipif; ipif != NULL; 7487 ipif = ipif->ipif_next) { 7488 if (zoneid != ipif->ipif_zoneid && 7489 ipif->ipif_zoneid != ALL_ZONES) 7490 continue; 7491 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7492 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7493 /* old behaviour */ 7494 rw_exit(&ipst->ips_ill_g_lock); 7495 return (EINVAL); 7496 } else { 7497 goto if_copydone; 7498 } 7499 } 7500 ipif_get_name(ipif, ifr->ifr_name, 7501 sizeof (ifr->ifr_name)); 7502 sin = (sin_t *)&ifr->ifr_addr; 7503 *sin = sin_null; 7504 sin->sin_family = AF_INET; 7505 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7506 ifr++; 7507 } 7508 } 7509 if_copydone: 7510 rw_exit(&ipst->ips_ill_g_lock); 7511 mp1->b_wptr = (uchar_t *)ifr; 7512 7513 if (STRUCT_BUF(ifc) != NULL) { 7514 STRUCT_FSET(ifc, ifc_len, 7515 (int)((uchar_t *)ifr - mp1->b_rptr)); 7516 } 7517 return (0); 7518 } 7519 7520 /* 7521 * Get the interfaces using the address hosted on the interface passed in, 7522 * as a source adddress 7523 */ 7524 /* ARGSUSED */ 7525 int 7526 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7527 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7528 { 7529 mblk_t *mp1; 7530 ill_t *ill, *ill_head; 7531 ipif_t *ipif, *orig_ipif; 7532 int numlifs = 0; 7533 size_t lifs_bufsize, lifsmaxlen; 7534 struct lifreq *lifr; 7535 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7536 uint_t ifindex; 7537 zoneid_t zoneid; 7538 boolean_t isv6 = B_FALSE; 7539 struct sockaddr_in *sin; 7540 struct sockaddr_in6 *sin6; 7541 STRUCT_HANDLE(lifsrcof, lifs); 7542 ip_stack_t *ipst; 7543 7544 ipst = CONNQ_TO_IPST(q); 7545 7546 ASSERT(q->q_next == NULL); 7547 7548 zoneid = Q_TO_CONN(q)->conn_zoneid; 7549 7550 /* Existence verified in ip_wput_nondata */ 7551 mp1 = mp->b_cont->b_cont; 7552 7553 /* 7554 * Must be (better be!) continuation of a TRANSPARENT 7555 * IOCTL. We just copied in the lifsrcof structure. 7556 */ 7557 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7558 (struct lifsrcof *)mp1->b_rptr); 7559 7560 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7561 return (EINVAL); 7562 7563 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7564 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7565 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7566 if (ipif == NULL) { 7567 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7568 ifindex)); 7569 return (ENXIO); 7570 } 7571 7572 /* Allocate a buffer to hold requested information */ 7573 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7574 lifs_bufsize = numlifs * sizeof (struct lifreq); 7575 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7576 /* The actual size needed is always returned in lifs_len */ 7577 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7578 7579 /* If the amount we need is more than what is passed in, abort */ 7580 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7581 ipif_refrele(ipif); 7582 return (0); 7583 } 7584 7585 mp1 = mi_copyout_alloc(q, mp, 7586 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7587 if (mp1 == NULL) { 7588 ipif_refrele(ipif); 7589 return (ENOMEM); 7590 } 7591 7592 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7593 bzero(mp1->b_rptr, lifs_bufsize); 7594 7595 lifr = (struct lifreq *)mp1->b_rptr; 7596 7597 ill = ill_head = ipif->ipif_ill; 7598 orig_ipif = ipif; 7599 7600 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7601 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7602 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7603 7604 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7605 for (; (ill != NULL) && (ill != ill_head); 7606 ill = ill->ill_usesrc_grp_next) { 7607 7608 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7609 break; 7610 7611 ipif = ill->ill_ipif; 7612 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7613 if (ipif->ipif_isv6) { 7614 sin6 = (sin6_t *)&lifr->lifr_addr; 7615 *sin6 = sin6_null; 7616 sin6->sin6_family = AF_INET6; 7617 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7618 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7619 &ipif->ipif_v6net_mask); 7620 } else { 7621 sin = (sin_t *)&lifr->lifr_addr; 7622 *sin = sin_null; 7623 sin->sin_family = AF_INET; 7624 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7625 lifr->lifr_addrlen = ip_mask_to_plen( 7626 ipif->ipif_net_mask); 7627 } 7628 lifr++; 7629 } 7630 rw_exit(&ipst->ips_ill_g_lock); 7631 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7632 ipif_refrele(orig_ipif); 7633 mp1->b_wptr = (uchar_t *)lifr; 7634 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7635 7636 return (0); 7637 } 7638 7639 /* ARGSUSED */ 7640 int 7641 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7642 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7643 { 7644 mblk_t *mp1; 7645 int list; 7646 ill_t *ill; 7647 ipif_t *ipif; 7648 int flags; 7649 int numlifs = 0; 7650 size_t lifc_bufsize; 7651 struct lifreq *lifr; 7652 sa_family_t family; 7653 struct sockaddr_in *sin; 7654 struct sockaddr_in6 *sin6; 7655 ill_walk_context_t ctx; 7656 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7657 int32_t lifclen; 7658 zoneid_t zoneid; 7659 STRUCT_HANDLE(lifconf, lifc); 7660 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7661 7662 ip1dbg(("ip_sioctl_get_lifconf")); 7663 7664 ASSERT(q->q_next == NULL); 7665 7666 zoneid = Q_TO_CONN(q)->conn_zoneid; 7667 7668 /* Existence verified in ip_wput_nondata */ 7669 mp1 = mp->b_cont->b_cont; 7670 7671 /* 7672 * An extended version of SIOCGIFCONF that takes an 7673 * additional address family and flags field. 7674 * AF_UNSPEC retrieve both IPv4 and IPv6. 7675 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7676 * interfaces are omitted. 7677 * Similarly, IPIF_TEMPORARY interfaces are omitted 7678 * unless LIFC_TEMPORARY is specified. 7679 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7680 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7681 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7682 * has priority over LIFC_NOXMIT. 7683 */ 7684 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7685 7686 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7687 return (EINVAL); 7688 7689 /* 7690 * Must be (better be!) continuation of a TRANSPARENT 7691 * IOCTL. We just copied in the lifconf structure. 7692 */ 7693 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7694 7695 family = STRUCT_FGET(lifc, lifc_family); 7696 flags = STRUCT_FGET(lifc, lifc_flags); 7697 7698 switch (family) { 7699 case AF_UNSPEC: 7700 /* 7701 * walk all ILL's. 7702 */ 7703 list = MAX_G_HEADS; 7704 break; 7705 case AF_INET: 7706 /* 7707 * walk only IPV4 ILL's. 7708 */ 7709 list = IP_V4_G_HEAD; 7710 break; 7711 case AF_INET6: 7712 /* 7713 * walk only IPV6 ILL's. 7714 */ 7715 list = IP_V6_G_HEAD; 7716 break; 7717 default: 7718 return (EAFNOSUPPORT); 7719 } 7720 7721 /* 7722 * Allocate a buffer to hold requested information. 7723 * 7724 * If lifc_len is larger than what is needed, we only 7725 * allocate what we will use. 7726 * 7727 * If lifc_len is smaller than what is needed, return 7728 * EINVAL. 7729 */ 7730 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7731 lifc_bufsize = numlifs * sizeof (struct lifreq); 7732 lifclen = STRUCT_FGET(lifc, lifc_len); 7733 if (lifc_bufsize > lifclen) { 7734 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7735 return (EINVAL); 7736 else 7737 lifc_bufsize = lifclen; 7738 } 7739 7740 mp1 = mi_copyout_alloc(q, mp, 7741 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7742 if (mp1 == NULL) 7743 return (ENOMEM); 7744 7745 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7746 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7747 7748 lifr = (struct lifreq *)mp1->b_rptr; 7749 7750 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7751 ill = ill_first(list, list, &ctx, ipst); 7752 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7753 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7754 continue; 7755 7756 for (ipif = ill->ill_ipif; ipif != NULL; 7757 ipif = ipif->ipif_next) { 7758 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7759 !(flags & LIFC_NOXMIT)) 7760 continue; 7761 7762 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7763 !(flags & LIFC_TEMPORARY)) 7764 continue; 7765 7766 if (((ipif->ipif_flags & 7767 (IPIF_NOXMIT|IPIF_NOLOCAL| 7768 IPIF_DEPRECATED)) || 7769 IS_LOOPBACK(ill) || 7770 !(ipif->ipif_flags & IPIF_UP)) && 7771 (flags & LIFC_EXTERNAL_SOURCE)) 7772 continue; 7773 7774 if (zoneid != ipif->ipif_zoneid && 7775 ipif->ipif_zoneid != ALL_ZONES && 7776 (zoneid != GLOBAL_ZONEID || 7777 !(flags & LIFC_ALLZONES))) 7778 continue; 7779 7780 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7781 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7782 rw_exit(&ipst->ips_ill_g_lock); 7783 return (EINVAL); 7784 } else { 7785 goto lif_copydone; 7786 } 7787 } 7788 7789 ipif_get_name(ipif, lifr->lifr_name, 7790 sizeof (lifr->lifr_name)); 7791 lifr->lifr_type = ill->ill_type; 7792 if (ipif->ipif_isv6) { 7793 sin6 = (sin6_t *)&lifr->lifr_addr; 7794 *sin6 = sin6_null; 7795 sin6->sin6_family = AF_INET6; 7796 sin6->sin6_addr = 7797 ipif->ipif_v6lcl_addr; 7798 lifr->lifr_addrlen = 7799 ip_mask_to_plen_v6( 7800 &ipif->ipif_v6net_mask); 7801 } else { 7802 sin = (sin_t *)&lifr->lifr_addr; 7803 *sin = sin_null; 7804 sin->sin_family = AF_INET; 7805 sin->sin_addr.s_addr = 7806 ipif->ipif_lcl_addr; 7807 lifr->lifr_addrlen = 7808 ip_mask_to_plen( 7809 ipif->ipif_net_mask); 7810 } 7811 lifr++; 7812 } 7813 } 7814 lif_copydone: 7815 rw_exit(&ipst->ips_ill_g_lock); 7816 7817 mp1->b_wptr = (uchar_t *)lifr; 7818 if (STRUCT_BUF(lifc) != NULL) { 7819 STRUCT_FSET(lifc, lifc_len, 7820 (int)((uchar_t *)lifr - mp1->b_rptr)); 7821 } 7822 return (0); 7823 } 7824 7825 static void 7826 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7827 { 7828 ip6_asp_t *table; 7829 size_t table_size; 7830 mblk_t *data_mp; 7831 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7832 ip_stack_t *ipst; 7833 7834 if (q->q_next == NULL) 7835 ipst = CONNQ_TO_IPST(q); 7836 else 7837 ipst = ILLQ_TO_IPST(q); 7838 7839 /* These two ioctls are I_STR only */ 7840 if (iocp->ioc_count == TRANSPARENT) { 7841 miocnak(q, mp, 0, EINVAL); 7842 return; 7843 } 7844 7845 data_mp = mp->b_cont; 7846 if (data_mp == NULL) { 7847 /* The user passed us a NULL argument */ 7848 table = NULL; 7849 table_size = iocp->ioc_count; 7850 } else { 7851 /* 7852 * The user provided a table. The stream head 7853 * may have copied in the user data in chunks, 7854 * so make sure everything is pulled up 7855 * properly. 7856 */ 7857 if (MBLKL(data_mp) < iocp->ioc_count) { 7858 mblk_t *new_data_mp; 7859 if ((new_data_mp = msgpullup(data_mp, -1)) == 7860 NULL) { 7861 miocnak(q, mp, 0, ENOMEM); 7862 return; 7863 } 7864 freemsg(data_mp); 7865 data_mp = new_data_mp; 7866 mp->b_cont = data_mp; 7867 } 7868 table = (ip6_asp_t *)data_mp->b_rptr; 7869 table_size = iocp->ioc_count; 7870 } 7871 7872 switch (iocp->ioc_cmd) { 7873 case SIOCGIP6ADDRPOLICY: 7874 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7875 if (iocp->ioc_rval == -1) 7876 iocp->ioc_error = EINVAL; 7877 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7878 else if (table != NULL && 7879 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7880 ip6_asp_t *src = table; 7881 ip6_asp32_t *dst = (void *)table; 7882 int count = table_size / sizeof (ip6_asp_t); 7883 int i; 7884 7885 /* 7886 * We need to do an in-place shrink of the array 7887 * to match the alignment attributes of the 7888 * 32-bit ABI looking at it. 7889 */ 7890 /* LINTED: logical expression always true: op "||" */ 7891 ASSERT(sizeof (*src) > sizeof (*dst)); 7892 for (i = 1; i < count; i++) 7893 bcopy(src + i, dst + i, sizeof (*dst)); 7894 } 7895 #endif 7896 break; 7897 7898 case SIOCSIP6ADDRPOLICY: 7899 ASSERT(mp->b_prev == NULL); 7900 mp->b_prev = (void *)q; 7901 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7902 /* 7903 * We pass in the datamodel here so that the ip6_asp_replace() 7904 * routine can handle converting from 32-bit to native formats 7905 * where necessary. 7906 * 7907 * A better way to handle this might be to convert the inbound 7908 * data structure here, and hang it off a new 'mp'; thus the 7909 * ip6_asp_replace() logic would always be dealing with native 7910 * format data structures.. 7911 * 7912 * (An even simpler way to handle these ioctls is to just 7913 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7914 * and just recompile everything that depends on it.) 7915 */ 7916 #endif 7917 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7918 iocp->ioc_flag & IOC_MODELS); 7919 return; 7920 } 7921 7922 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7923 qreply(q, mp); 7924 } 7925 7926 static void 7927 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7928 { 7929 mblk_t *data_mp; 7930 struct dstinforeq *dir; 7931 uint8_t *end, *cur; 7932 in6_addr_t *daddr, *saddr; 7933 ipaddr_t v4daddr; 7934 ire_t *ire; 7935 ipaddr_t v4setsrc; 7936 in6_addr_t v6setsrc; 7937 char *slabel, *dlabel; 7938 boolean_t isipv4; 7939 int match_ire; 7940 ill_t *dst_ill; 7941 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7942 conn_t *connp = Q_TO_CONN(q); 7943 zoneid_t zoneid = IPCL_ZONEID(connp); 7944 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7945 uint64_t ipif_flags; 7946 7947 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7948 7949 /* 7950 * This ioctl is I_STR only, and must have a 7951 * data mblk following the M_IOCTL mblk. 7952 */ 7953 data_mp = mp->b_cont; 7954 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7955 miocnak(q, mp, 0, EINVAL); 7956 return; 7957 } 7958 7959 if (MBLKL(data_mp) < iocp->ioc_count) { 7960 mblk_t *new_data_mp; 7961 7962 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7963 miocnak(q, mp, 0, ENOMEM); 7964 return; 7965 } 7966 freemsg(data_mp); 7967 data_mp = new_data_mp; 7968 mp->b_cont = data_mp; 7969 } 7970 match_ire = MATCH_IRE_DSTONLY; 7971 7972 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7973 end - cur >= sizeof (struct dstinforeq); 7974 cur += sizeof (struct dstinforeq)) { 7975 dir = (struct dstinforeq *)cur; 7976 daddr = &dir->dir_daddr; 7977 saddr = &dir->dir_saddr; 7978 7979 /* 7980 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7981 * v4 mapped addresses; ire_ftable_lookup_v6() 7982 * and ip_select_source_v6() do not. 7983 */ 7984 dir->dir_dscope = ip_addr_scope_v6(daddr); 7985 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7986 7987 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7988 if (isipv4) { 7989 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7990 v4setsrc = INADDR_ANY; 7991 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7992 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7993 NULL, NULL); 7994 } else { 7995 v6setsrc = ipv6_all_zeros; 7996 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7997 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7998 NULL, NULL); 7999 } 8000 ASSERT(ire != NULL); 8001 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 8002 ire_refrele(ire); 8003 dir->dir_dreachable = 0; 8004 8005 /* move on to next dst addr */ 8006 continue; 8007 } 8008 dir->dir_dreachable = 1; 8009 8010 dst_ill = ire_nexthop_ill(ire); 8011 if (dst_ill == NULL) { 8012 ire_refrele(ire); 8013 continue; 8014 } 8015 8016 /* With ipmp we most likely look at the ipmp ill here */ 8017 dir->dir_dmactype = dst_ill->ill_mactype; 8018 8019 if (isipv4) { 8020 ipaddr_t v4saddr; 8021 8022 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 8023 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 8024 &v4saddr, NULL, &ipif_flags) != 0) { 8025 v4saddr = INADDR_ANY; 8026 ipif_flags = 0; 8027 } 8028 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 8029 } else { 8030 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 8031 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8032 saddr, NULL, &ipif_flags) != 0) { 8033 *saddr = ipv6_all_zeros; 8034 ipif_flags = 0; 8035 } 8036 } 8037 8038 dir->dir_sscope = ip_addr_scope_v6(saddr); 8039 slabel = ip6_asp_lookup(saddr, NULL, ipst); 8040 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8041 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8042 ire_refrele(ire); 8043 ill_refrele(dst_ill); 8044 } 8045 miocack(q, mp, iocp->ioc_count, 0); 8046 } 8047 8048 /* 8049 * Check if this is an address assigned to this machine. 8050 * Skips interfaces that are down by using ire checks. 8051 * Translates mapped addresses to v4 addresses and then 8052 * treats them as such, returning true if the v4 address 8053 * associated with this mapped address is configured. 8054 * Note: Applications will have to be careful what they do 8055 * with the response; use of mapped addresses limits 8056 * what can be done with the socket, especially with 8057 * respect to socket options and ioctls - neither IPv4 8058 * options nor IPv6 sticky options/ancillary data options 8059 * may be used. 8060 */ 8061 /* ARGSUSED */ 8062 int 8063 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8064 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8065 { 8066 struct sioc_addrreq *sia; 8067 sin_t *sin; 8068 ire_t *ire; 8069 mblk_t *mp1; 8070 zoneid_t zoneid; 8071 ip_stack_t *ipst; 8072 8073 ip1dbg(("ip_sioctl_tmyaddr")); 8074 8075 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8076 zoneid = Q_TO_CONN(q)->conn_zoneid; 8077 ipst = CONNQ_TO_IPST(q); 8078 8079 /* Existence verified in ip_wput_nondata */ 8080 mp1 = mp->b_cont->b_cont; 8081 sia = (struct sioc_addrreq *)mp1->b_rptr; 8082 sin = (sin_t *)&sia->sa_addr; 8083 switch (sin->sin_family) { 8084 case AF_INET6: { 8085 sin6_t *sin6 = (sin6_t *)sin; 8086 8087 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8088 ipaddr_t v4_addr; 8089 8090 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8091 v4_addr); 8092 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8093 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8094 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8095 } else { 8096 in6_addr_t v6addr; 8097 8098 v6addr = sin6->sin6_addr; 8099 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8100 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8101 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8102 } 8103 break; 8104 } 8105 case AF_INET: { 8106 ipaddr_t v4addr; 8107 8108 v4addr = sin->sin_addr.s_addr; 8109 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8110 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8111 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8112 break; 8113 } 8114 default: 8115 return (EAFNOSUPPORT); 8116 } 8117 if (ire != NULL) { 8118 sia->sa_res = 1; 8119 ire_refrele(ire); 8120 } else { 8121 sia->sa_res = 0; 8122 } 8123 return (0); 8124 } 8125 8126 /* 8127 * Check if this is an address assigned on-link i.e. neighbor, 8128 * and makes sure it's reachable from the current zone. 8129 * Returns true for my addresses as well. 8130 * Translates mapped addresses to v4 addresses and then 8131 * treats them as such, returning true if the v4 address 8132 * associated with this mapped address is configured. 8133 * Note: Applications will have to be careful what they do 8134 * with the response; use of mapped addresses limits 8135 * what can be done with the socket, especially with 8136 * respect to socket options and ioctls - neither IPv4 8137 * options nor IPv6 sticky options/ancillary data options 8138 * may be used. 8139 */ 8140 /* ARGSUSED */ 8141 int 8142 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8143 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8144 { 8145 struct sioc_addrreq *sia; 8146 sin_t *sin; 8147 mblk_t *mp1; 8148 ire_t *ire = NULL; 8149 zoneid_t zoneid; 8150 ip_stack_t *ipst; 8151 8152 ip1dbg(("ip_sioctl_tonlink")); 8153 8154 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8155 zoneid = Q_TO_CONN(q)->conn_zoneid; 8156 ipst = CONNQ_TO_IPST(q); 8157 8158 /* Existence verified in ip_wput_nondata */ 8159 mp1 = mp->b_cont->b_cont; 8160 sia = (struct sioc_addrreq *)mp1->b_rptr; 8161 sin = (sin_t *)&sia->sa_addr; 8162 8163 /* 8164 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8165 * to make sure we only look at on-link unicast address. 8166 */ 8167 switch (sin->sin_family) { 8168 case AF_INET6: { 8169 sin6_t *sin6 = (sin6_t *)sin; 8170 8171 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8172 ipaddr_t v4_addr; 8173 8174 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8175 v4_addr); 8176 if (!CLASSD(v4_addr)) { 8177 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8178 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8179 0, ipst, NULL); 8180 } 8181 } else { 8182 in6_addr_t v6addr; 8183 8184 v6addr = sin6->sin6_addr; 8185 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8186 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8187 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8188 ipst, NULL); 8189 } 8190 } 8191 break; 8192 } 8193 case AF_INET: { 8194 ipaddr_t v4addr; 8195 8196 v4addr = sin->sin_addr.s_addr; 8197 if (!CLASSD(v4addr)) { 8198 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8199 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8200 } 8201 break; 8202 } 8203 default: 8204 return (EAFNOSUPPORT); 8205 } 8206 sia->sa_res = 0; 8207 if (ire != NULL) { 8208 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8209 8210 if ((ire->ire_type & IRE_ONLINK) && 8211 !(ire->ire_type & IRE_BROADCAST)) 8212 sia->sa_res = 1; 8213 ire_refrele(ire); 8214 } 8215 return (0); 8216 } 8217 8218 /* 8219 * TBD: implement when kernel maintaines a list of site prefixes. 8220 */ 8221 /* ARGSUSED */ 8222 int 8223 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8224 ip_ioctl_cmd_t *ipip, void *ifreq) 8225 { 8226 return (ENXIO); 8227 } 8228 8229 /* ARP IOCTLs. */ 8230 /* ARGSUSED */ 8231 int 8232 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8233 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8234 { 8235 int err; 8236 ipaddr_t ipaddr; 8237 struct iocblk *iocp; 8238 conn_t *connp; 8239 struct arpreq *ar; 8240 struct xarpreq *xar; 8241 int arp_flags, flags, alength; 8242 uchar_t *lladdr; 8243 ip_stack_t *ipst; 8244 ill_t *ill = ipif->ipif_ill; 8245 ill_t *proxy_ill = NULL; 8246 ipmp_arpent_t *entp = NULL; 8247 boolean_t proxyarp = B_FALSE; 8248 boolean_t if_arp_ioctl = B_FALSE; 8249 ncec_t *ncec = NULL; 8250 nce_t *nce; 8251 8252 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8253 connp = Q_TO_CONN(q); 8254 ipst = connp->conn_netstack->netstack_ip; 8255 iocp = (struct iocblk *)mp->b_rptr; 8256 8257 if (ipip->ipi_cmd_type == XARP_CMD) { 8258 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8259 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8260 ar = NULL; 8261 8262 arp_flags = xar->xarp_flags; 8263 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8264 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8265 /* 8266 * Validate against user's link layer address length 8267 * input and name and addr length limits. 8268 */ 8269 alength = ill->ill_phys_addr_length; 8270 if (ipip->ipi_cmd == SIOCSXARP) { 8271 if (alength != xar->xarp_ha.sdl_alen || 8272 (alength + xar->xarp_ha.sdl_nlen > 8273 sizeof (xar->xarp_ha.sdl_data))) 8274 return (EINVAL); 8275 } 8276 } else { 8277 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8278 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8279 xar = NULL; 8280 8281 arp_flags = ar->arp_flags; 8282 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8283 /* 8284 * Theoretically, the sa_family could tell us what link 8285 * layer type this operation is trying to deal with. By 8286 * common usage AF_UNSPEC means ethernet. We'll assume 8287 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8288 * for now. Our new SIOC*XARP ioctls can be used more 8289 * generally. 8290 * 8291 * If the underlying media happens to have a non 6 byte 8292 * address, arp module will fail set/get, but the del 8293 * operation will succeed. 8294 */ 8295 alength = 6; 8296 if ((ipip->ipi_cmd != SIOCDARP) && 8297 (alength != ill->ill_phys_addr_length)) { 8298 return (EINVAL); 8299 } 8300 } 8301 8302 /* Translate ATF* flags to NCE* flags */ 8303 flags = 0; 8304 if (arp_flags & ATF_AUTHORITY) 8305 flags |= NCE_F_AUTHORITY; 8306 if (arp_flags & ATF_PERM) 8307 flags |= NCE_F_NONUD; /* not subject to aging */ 8308 if (arp_flags & ATF_PUBL) 8309 flags |= NCE_F_PUBLISH; 8310 8311 /* 8312 * IPMP ARP special handling: 8313 * 8314 * 1. Since ARP mappings must appear consistent across the group, 8315 * prohibit changing ARP mappings on the underlying interfaces. 8316 * 8317 * 2. Since ARP mappings for IPMP data addresses are maintained by 8318 * IP itself, prohibit changing them. 8319 * 8320 * 3. For proxy ARP, use a functioning hardware address in the group, 8321 * provided one exists. If one doesn't, just add the entry as-is; 8322 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8323 */ 8324 if (IS_UNDER_IPMP(ill)) { 8325 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8326 return (EPERM); 8327 } 8328 if (IS_IPMP(ill)) { 8329 ipmp_illgrp_t *illg = ill->ill_grp; 8330 8331 switch (ipip->ipi_cmd) { 8332 case SIOCSARP: 8333 case SIOCSXARP: 8334 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8335 if (proxy_ill != NULL) { 8336 proxyarp = B_TRUE; 8337 if (!ipmp_ill_is_active(proxy_ill)) 8338 proxy_ill = ipmp_illgrp_next_ill(illg); 8339 if (proxy_ill != NULL) 8340 lladdr = proxy_ill->ill_phys_addr; 8341 } 8342 /* FALLTHRU */ 8343 } 8344 } 8345 8346 ipaddr = sin->sin_addr.s_addr; 8347 /* 8348 * don't match across illgrp per case (1) and (2). 8349 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8350 */ 8351 nce = nce_lookup_v4(ill, &ipaddr); 8352 if (nce != NULL) 8353 ncec = nce->nce_common; 8354 8355 switch (iocp->ioc_cmd) { 8356 case SIOCDARP: 8357 case SIOCDXARP: { 8358 /* 8359 * Delete the NCE if any. 8360 */ 8361 if (ncec == NULL) { 8362 iocp->ioc_error = ENXIO; 8363 break; 8364 } 8365 /* Don't allow changes to arp mappings of local addresses. */ 8366 if (NCE_MYADDR(ncec)) { 8367 nce_refrele(nce); 8368 return (ENOTSUP); 8369 } 8370 iocp->ioc_error = 0; 8371 8372 /* 8373 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8374 * This will delete all the nce entries on the under_ills. 8375 */ 8376 ncec_delete(ncec); 8377 /* 8378 * Once the NCE has been deleted, then the ire_dep* consistency 8379 * mechanism will find any IRE which depended on the now 8380 * condemned NCE (as part of sending packets). 8381 * That mechanism handles redirects by deleting redirects 8382 * that refer to UNREACHABLE nces. 8383 */ 8384 break; 8385 } 8386 case SIOCGARP: 8387 case SIOCGXARP: 8388 if (ncec != NULL) { 8389 lladdr = ncec->ncec_lladdr; 8390 flags = ncec->ncec_flags; 8391 iocp->ioc_error = 0; 8392 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8393 } else { 8394 iocp->ioc_error = ENXIO; 8395 } 8396 break; 8397 case SIOCSARP: 8398 case SIOCSXARP: 8399 /* Don't allow changes to arp mappings of local addresses. */ 8400 if (ncec != NULL && NCE_MYADDR(ncec)) { 8401 nce_refrele(nce); 8402 return (ENOTSUP); 8403 } 8404 8405 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8406 flags |= NCE_F_STATIC; 8407 if (!if_arp_ioctl) { 8408 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8409 lladdr, alength, flags); 8410 } else { 8411 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8412 if (ipif != NULL) { 8413 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8414 lladdr, alength, flags); 8415 ipif_refrele(ipif); 8416 } 8417 } 8418 if (nce != NULL) { 8419 nce_refrele(nce); 8420 nce = NULL; 8421 } 8422 /* 8423 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8424 * by nce_add_common() 8425 */ 8426 err = nce_lookup_then_add_v4(ill, lladdr, 8427 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8428 &nce); 8429 if (err == EEXIST) { 8430 ncec = nce->nce_common; 8431 mutex_enter(&ncec->ncec_lock); 8432 ncec->ncec_state = ND_REACHABLE; 8433 ncec->ncec_flags = flags; 8434 nce_update(ncec, ND_UNCHANGED, lladdr); 8435 mutex_exit(&ncec->ncec_lock); 8436 err = 0; 8437 } 8438 if (nce != NULL) { 8439 nce_refrele(nce); 8440 nce = NULL; 8441 } 8442 if (IS_IPMP(ill) && err == 0) { 8443 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8444 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8445 flags); 8446 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8447 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8448 break; 8449 } 8450 } 8451 iocp->ioc_error = err; 8452 } 8453 8454 if (nce != NULL) { 8455 nce_refrele(nce); 8456 } 8457 8458 /* 8459 * If we created an IPMP ARP entry, mark that we've notified ARP. 8460 */ 8461 if (entp != NULL) 8462 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8463 8464 return (iocp->ioc_error); 8465 } 8466 8467 /* 8468 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8469 * the associated sin and refhold and return the associated ipif via `ci'. 8470 */ 8471 int 8472 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8473 cmd_info_t *ci) 8474 { 8475 mblk_t *mp1; 8476 sin_t *sin; 8477 conn_t *connp; 8478 ipif_t *ipif; 8479 ire_t *ire = NULL; 8480 ill_t *ill = NULL; 8481 boolean_t exists; 8482 ip_stack_t *ipst; 8483 struct arpreq *ar; 8484 struct xarpreq *xar; 8485 struct sockaddr_dl *sdl; 8486 8487 /* ioctl comes down on a conn */ 8488 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8489 connp = Q_TO_CONN(q); 8490 if (connp->conn_family == AF_INET6) 8491 return (ENXIO); 8492 8493 ipst = connp->conn_netstack->netstack_ip; 8494 8495 /* Verified in ip_wput_nondata */ 8496 mp1 = mp->b_cont->b_cont; 8497 8498 if (ipip->ipi_cmd_type == XARP_CMD) { 8499 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8500 xar = (struct xarpreq *)mp1->b_rptr; 8501 sin = (sin_t *)&xar->xarp_pa; 8502 sdl = &xar->xarp_ha; 8503 8504 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8505 return (ENXIO); 8506 if (sdl->sdl_nlen >= LIFNAMSIZ) 8507 return (EINVAL); 8508 } else { 8509 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8510 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8511 ar = (struct arpreq *)mp1->b_rptr; 8512 sin = (sin_t *)&ar->arp_pa; 8513 } 8514 8515 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8516 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8517 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8518 if (ipif == NULL) 8519 return (ENXIO); 8520 if (ipif->ipif_id != 0) { 8521 ipif_refrele(ipif); 8522 return (ENXIO); 8523 } 8524 } else { 8525 /* 8526 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8527 * of 0: use the IP address to find the ipif. If the IP 8528 * address is an IPMP test address, ire_ftable_lookup() will 8529 * find the wrong ill, so we first do an ipif_lookup_addr(). 8530 */ 8531 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8532 ipst); 8533 if (ipif == NULL) { 8534 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8535 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8536 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8537 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8538 if (ire != NULL) 8539 ire_refrele(ire); 8540 return (ENXIO); 8541 } 8542 ASSERT(ire != NULL && ill != NULL); 8543 ipif = ill->ill_ipif; 8544 ipif_refhold(ipif); 8545 ire_refrele(ire); 8546 } 8547 } 8548 8549 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8550 ipif_refrele(ipif); 8551 return (ENXIO); 8552 } 8553 8554 ci->ci_sin = sin; 8555 ci->ci_ipif = ipif; 8556 return (0); 8557 } 8558 8559 /* 8560 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8561 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8562 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8563 * up and thus an ill can join that illgrp. 8564 * 8565 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8566 * open()/close() primarily because close() is not allowed to fail or block 8567 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8568 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8569 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8570 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8571 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8572 * state if I_UNLINK didn't occur. 8573 * 8574 * Note that for each plumb/unplumb operation, we may end up here more than 8575 * once because of the way ifconfig works. However, it's OK to link the same 8576 * illgrp more than once, or unlink an illgrp that's already unlinked. 8577 */ 8578 static int 8579 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8580 { 8581 int err; 8582 ip_stack_t *ipst = ill->ill_ipst; 8583 8584 ASSERT(IS_IPMP(ill)); 8585 ASSERT(IAM_WRITER_ILL(ill)); 8586 8587 switch (ioccmd) { 8588 case I_LINK: 8589 return (ENOTSUP); 8590 8591 case I_PLINK: 8592 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8593 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8594 rw_exit(&ipst->ips_ipmp_lock); 8595 break; 8596 8597 case I_PUNLINK: 8598 /* 8599 * Require all UP ipifs be brought down prior to unlinking the 8600 * illgrp so any associated IREs (and other state) is torched. 8601 */ 8602 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8603 return (EBUSY); 8604 8605 /* 8606 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8607 * with an SIOCSLIFGROUPNAME request from an ill trying to 8608 * join this group. Specifically: ills trying to join grab 8609 * ipmp_lock and bump a "pending join" counter checked by 8610 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8611 * joins can occur (since we have ipmp_lock). Once we drop 8612 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8613 * find the illgrp (since we unlinked it) and will return 8614 * EAFNOSUPPORT. This will then take them back through the 8615 * IPMP meta-interface plumbing logic in ifconfig, and thus 8616 * back through I_PLINK above. 8617 */ 8618 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8619 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8620 rw_exit(&ipst->ips_ipmp_lock); 8621 return (err); 8622 default: 8623 break; 8624 } 8625 return (0); 8626 } 8627 8628 /* 8629 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8630 * atomically set/clear the muxids. Also complete the ioctl by acking or 8631 * naking it. Note that the code is structured such that the link type, 8632 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8633 * its clones use the persistent link, while pppd(1M) and perhaps many 8634 * other daemons may use non-persistent link. When combined with some 8635 * ill_t states, linking and unlinking lower streams may be used as 8636 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8637 */ 8638 /* ARGSUSED */ 8639 void 8640 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8641 { 8642 mblk_t *mp1; 8643 struct linkblk *li; 8644 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8645 int err = 0; 8646 8647 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8648 ioccmd == I_LINK || ioccmd == I_UNLINK); 8649 8650 mp1 = mp->b_cont; /* This is the linkblk info */ 8651 li = (struct linkblk *)mp1->b_rptr; 8652 8653 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8654 if (err == EINPROGRESS) 8655 return; 8656 done: 8657 if (err == 0) 8658 miocack(q, mp, 0, 0); 8659 else 8660 miocnak(q, mp, 0, err); 8661 8662 /* Conn was refheld in ip_sioctl_copyin_setup */ 8663 if (CONN_Q(q)) 8664 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8665 } 8666 8667 /* 8668 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8669 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8670 * module stream). If `doconsist' is set, then do the extended consistency 8671 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8672 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8673 * an error code on failure. 8674 */ 8675 static int 8676 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8677 struct linkblk *li) 8678 { 8679 int err = 0; 8680 ill_t *ill; 8681 queue_t *ipwq, *dwq; 8682 const char *name; 8683 struct qinit *qinfo; 8684 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8685 boolean_t entered_ipsq = B_FALSE; 8686 boolean_t is_ip = B_FALSE; 8687 arl_t *arl; 8688 8689 /* 8690 * Walk the lower stream to verify it's the IP module stream. 8691 * The IP module is identified by its name, wput function, 8692 * and non-NULL q_next. STREAMS ensures that the lower stream 8693 * (li->l_qbot) will not vanish until this ioctl completes. 8694 */ 8695 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8696 qinfo = ipwq->q_qinfo; 8697 name = qinfo->qi_minfo->mi_idname; 8698 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8699 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8700 is_ip = B_TRUE; 8701 break; 8702 } 8703 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8704 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8705 break; 8706 } 8707 } 8708 8709 /* 8710 * If this isn't an IP module stream, bail. 8711 */ 8712 if (ipwq == NULL) 8713 return (0); 8714 8715 if (!is_ip) { 8716 arl = (arl_t *)ipwq->q_ptr; 8717 ill = arl_to_ill(arl); 8718 if (ill == NULL) 8719 return (0); 8720 } else { 8721 ill = ipwq->q_ptr; 8722 } 8723 ASSERT(ill != NULL); 8724 8725 if (ipsq == NULL) { 8726 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8727 NEW_OP, B_FALSE); 8728 if (ipsq == NULL) { 8729 if (!is_ip) 8730 ill_refrele(ill); 8731 return (EINPROGRESS); 8732 } 8733 entered_ipsq = B_TRUE; 8734 } 8735 ASSERT(IAM_WRITER_ILL(ill)); 8736 mutex_enter(&ill->ill_lock); 8737 if (!is_ip) { 8738 if (islink && ill->ill_muxid == 0) { 8739 /* 8740 * Plumbing has to be done with IP plumbed first, arp 8741 * second, but here we have arp being plumbed first. 8742 */ 8743 mutex_exit(&ill->ill_lock); 8744 ipsq_exit(ipsq); 8745 ill_refrele(ill); 8746 return (EINVAL); 8747 } 8748 } 8749 mutex_exit(&ill->ill_lock); 8750 if (!is_ip) { 8751 arl->arl_muxid = islink ? li->l_index : 0; 8752 ill_refrele(ill); 8753 goto done; 8754 } 8755 8756 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8757 goto done; 8758 8759 /* 8760 * As part of I_{P}LINKing, stash the number of downstream modules and 8761 * the read queue of the module immediately below IP in the ill. 8762 * These are used during the capability negotiation below. 8763 */ 8764 ill->ill_lmod_rq = NULL; 8765 ill->ill_lmod_cnt = 0; 8766 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8767 ill->ill_lmod_rq = RD(dwq); 8768 for (; dwq != NULL; dwq = dwq->q_next) 8769 ill->ill_lmod_cnt++; 8770 } 8771 8772 ill->ill_muxid = islink ? li->l_index : 0; 8773 8774 /* 8775 * Mark the ipsq busy until the capability operations initiated below 8776 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8777 * returns, but the capability operation may complete asynchronously 8778 * much later. 8779 */ 8780 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8781 /* 8782 * If there's at least one up ipif on this ill, then we're bound to 8783 * the underlying driver via DLPI. In that case, renegotiate 8784 * capabilities to account for any possible change in modules 8785 * interposed between IP and the driver. 8786 */ 8787 if (ill->ill_ipif_up_count > 0) { 8788 if (islink) 8789 ill_capability_probe(ill); 8790 else 8791 ill_capability_reset(ill, B_FALSE); 8792 } 8793 ipsq_current_finish(ipsq); 8794 done: 8795 if (entered_ipsq) 8796 ipsq_exit(ipsq); 8797 8798 return (err); 8799 } 8800 8801 /* 8802 * Search the ioctl command in the ioctl tables and return a pointer 8803 * to the ioctl command information. The ioctl command tables are 8804 * static and fully populated at compile time. 8805 */ 8806 ip_ioctl_cmd_t * 8807 ip_sioctl_lookup(int ioc_cmd) 8808 { 8809 int index; 8810 ip_ioctl_cmd_t *ipip; 8811 ip_ioctl_cmd_t *ipip_end; 8812 8813 if (ioc_cmd == IPI_DONTCARE) 8814 return (NULL); 8815 8816 /* 8817 * Do a 2 step search. First search the indexed table 8818 * based on the least significant byte of the ioctl cmd. 8819 * If we don't find a match, then search the misc table 8820 * serially. 8821 */ 8822 index = ioc_cmd & 0xFF; 8823 if (index < ip_ndx_ioctl_count) { 8824 ipip = &ip_ndx_ioctl_table[index]; 8825 if (ipip->ipi_cmd == ioc_cmd) { 8826 /* Found a match in the ndx table */ 8827 return (ipip); 8828 } 8829 } 8830 8831 /* Search the misc table */ 8832 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8833 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8834 if (ipip->ipi_cmd == ioc_cmd) 8835 /* Found a match in the misc table */ 8836 return (ipip); 8837 } 8838 8839 return (NULL); 8840 } 8841 8842 /* 8843 * Wrapper function for resuming deferred ioctl processing 8844 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8845 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8846 */ 8847 /* ARGSUSED */ 8848 void 8849 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8850 void *dummy_arg) 8851 { 8852 ip_sioctl_copyin_setup(q, mp); 8853 } 8854 8855 /* 8856 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8857 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8858 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8859 * We establish here the size of the block to be copied in. mi_copyin 8860 * arranges for this to happen, an processing continues in ip_wput_nondata with 8861 * an M_IOCDATA message. 8862 */ 8863 void 8864 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8865 { 8866 int copyin_size; 8867 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8868 ip_ioctl_cmd_t *ipip; 8869 cred_t *cr; 8870 ip_stack_t *ipst; 8871 8872 if (CONN_Q(q)) 8873 ipst = CONNQ_TO_IPST(q); 8874 else 8875 ipst = ILLQ_TO_IPST(q); 8876 8877 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8878 if (ipip == NULL) { 8879 /* 8880 * The ioctl is not one we understand or own. 8881 * Pass it along to be processed down stream, 8882 * if this is a module instance of IP, else nak 8883 * the ioctl. 8884 */ 8885 if (q->q_next == NULL) { 8886 goto nak; 8887 } else { 8888 putnext(q, mp); 8889 return; 8890 } 8891 } 8892 8893 /* 8894 * If this is deferred, then we will do all the checks when we 8895 * come back. 8896 */ 8897 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8898 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8899 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8900 return; 8901 } 8902 8903 /* 8904 * Only allow a very small subset of IP ioctls on this stream if 8905 * IP is a module and not a driver. Allowing ioctls to be processed 8906 * in this case may cause assert failures or data corruption. 8907 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8908 * ioctls allowed on an IP module stream, after which this stream 8909 * normally becomes a multiplexor (at which time the stream head 8910 * will fail all ioctls). 8911 */ 8912 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8913 goto nak; 8914 } 8915 8916 /* Make sure we have ioctl data to process. */ 8917 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8918 goto nak; 8919 8920 /* 8921 * Prefer dblk credential over ioctl credential; some synthesized 8922 * ioctls have kcred set because there's no way to crhold() 8923 * a credential in some contexts. (ioc_cr is not crfree() by 8924 * the framework; the caller of ioctl needs to hold the reference 8925 * for the duration of the call). 8926 */ 8927 cr = msg_getcred(mp, NULL); 8928 if (cr == NULL) 8929 cr = iocp->ioc_cr; 8930 8931 /* Make sure normal users don't send down privileged ioctls */ 8932 if ((ipip->ipi_flags & IPI_PRIV) && 8933 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8934 /* We checked the privilege earlier but log it here */ 8935 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8936 return; 8937 } 8938 8939 /* 8940 * The ioctl command tables can only encode fixed length 8941 * ioctl data. If the length is variable, the table will 8942 * encode the length as zero. Such special cases are handled 8943 * below in the switch. 8944 */ 8945 if (ipip->ipi_copyin_size != 0) { 8946 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8947 return; 8948 } 8949 8950 switch (iocp->ioc_cmd) { 8951 case O_SIOCGIFCONF: 8952 case SIOCGIFCONF: 8953 /* 8954 * This IOCTL is hilarious. See comments in 8955 * ip_sioctl_get_ifconf for the story. 8956 */ 8957 if (iocp->ioc_count == TRANSPARENT) 8958 copyin_size = SIZEOF_STRUCT(ifconf, 8959 iocp->ioc_flag); 8960 else 8961 copyin_size = iocp->ioc_count; 8962 mi_copyin(q, mp, NULL, copyin_size); 8963 return; 8964 8965 case O_SIOCGLIFCONF: 8966 case SIOCGLIFCONF: 8967 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8968 mi_copyin(q, mp, NULL, copyin_size); 8969 return; 8970 8971 case SIOCGLIFSRCOF: 8972 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8973 mi_copyin(q, mp, NULL, copyin_size); 8974 return; 8975 case SIOCGIP6ADDRPOLICY: 8976 ip_sioctl_ip6addrpolicy(q, mp); 8977 ip6_asp_table_refrele(ipst); 8978 return; 8979 8980 case SIOCSIP6ADDRPOLICY: 8981 ip_sioctl_ip6addrpolicy(q, mp); 8982 return; 8983 8984 case SIOCGDSTINFO: 8985 ip_sioctl_dstinfo(q, mp); 8986 ip6_asp_table_refrele(ipst); 8987 return; 8988 8989 case I_PLINK: 8990 case I_PUNLINK: 8991 case I_LINK: 8992 case I_UNLINK: 8993 /* 8994 * We treat non-persistent link similarly as the persistent 8995 * link case, in terms of plumbing/unplumbing, as well as 8996 * dynamic re-plumbing events indicator. See comments 8997 * in ip_sioctl_plink() for more. 8998 * 8999 * Request can be enqueued in the 'ipsq' while waiting 9000 * to become exclusive. So bump up the conn ref. 9001 */ 9002 if (CONN_Q(q)) 9003 CONN_INC_REF(Q_TO_CONN(q)); 9004 ip_sioctl_plink(NULL, q, mp, NULL); 9005 return; 9006 9007 case ND_GET: 9008 case ND_SET: 9009 /* 9010 * Use of the nd table requires holding the reader lock. 9011 * Modifying the nd table thru nd_load/nd_unload requires 9012 * the writer lock. 9013 */ 9014 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 9015 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 9016 rw_exit(&ipst->ips_ip_g_nd_lock); 9017 9018 if (iocp->ioc_error) 9019 iocp->ioc_count = 0; 9020 mp->b_datap->db_type = M_IOCACK; 9021 qreply(q, mp); 9022 return; 9023 } 9024 rw_exit(&ipst->ips_ip_g_nd_lock); 9025 /* 9026 * We don't understand this subioctl of ND_GET / ND_SET. 9027 * Maybe intended for some driver / module below us 9028 */ 9029 if (q->q_next) { 9030 putnext(q, mp); 9031 } else { 9032 iocp->ioc_error = ENOENT; 9033 mp->b_datap->db_type = M_IOCNAK; 9034 iocp->ioc_count = 0; 9035 qreply(q, mp); 9036 } 9037 return; 9038 9039 case IP_IOCTL: 9040 ip_wput_ioctl(q, mp); 9041 return; 9042 9043 case SIOCILB: 9044 /* The ioctl length varies depending on the ILB command. */ 9045 copyin_size = iocp->ioc_count; 9046 if (copyin_size < sizeof (ilb_cmd_t)) 9047 goto nak; 9048 mi_copyin(q, mp, NULL, copyin_size); 9049 return; 9050 9051 default: 9052 cmn_err(CE_PANIC, "should not happen "); 9053 } 9054 nak: 9055 if (mp->b_cont != NULL) { 9056 freemsg(mp->b_cont); 9057 mp->b_cont = NULL; 9058 } 9059 iocp->ioc_error = EINVAL; 9060 mp->b_datap->db_type = M_IOCNAK; 9061 iocp->ioc_count = 0; 9062 qreply(q, mp); 9063 } 9064 9065 static void 9066 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9067 { 9068 struct arpreq *ar; 9069 struct xarpreq *xar; 9070 mblk_t *tmp; 9071 struct iocblk *iocp; 9072 int x_arp_ioctl = B_FALSE; 9073 int *flagsp; 9074 char *storage = NULL; 9075 9076 ASSERT(ill != NULL); 9077 9078 iocp = (struct iocblk *)mp->b_rptr; 9079 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9080 9081 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9082 if ((iocp->ioc_cmd == SIOCGXARP) || 9083 (iocp->ioc_cmd == SIOCSXARP)) { 9084 x_arp_ioctl = B_TRUE; 9085 xar = (struct xarpreq *)tmp->b_rptr; 9086 flagsp = &xar->xarp_flags; 9087 storage = xar->xarp_ha.sdl_data; 9088 } else { 9089 ar = (struct arpreq *)tmp->b_rptr; 9090 flagsp = &ar->arp_flags; 9091 storage = ar->arp_ha.sa_data; 9092 } 9093 9094 /* 9095 * We're done if this is not an SIOCG{X}ARP 9096 */ 9097 if (x_arp_ioctl) { 9098 storage += ill_xarp_info(&xar->xarp_ha, ill); 9099 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9100 sizeof (xar->xarp_ha.sdl_data)) { 9101 iocp->ioc_error = EINVAL; 9102 return; 9103 } 9104 } 9105 *flagsp = ATF_INUSE; 9106 /* 9107 * If /sbin/arp told us we are the authority using the "permanent" 9108 * flag, or if this is one of my addresses print "permanent" 9109 * in the /sbin/arp output. 9110 */ 9111 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9112 *flagsp |= ATF_AUTHORITY; 9113 if (flags & NCE_F_NONUD) 9114 *flagsp |= ATF_PERM; /* not subject to aging */ 9115 if (flags & NCE_F_PUBLISH) 9116 *flagsp |= ATF_PUBL; 9117 if (hwaddr != NULL) { 9118 *flagsp |= ATF_COM; 9119 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9120 } 9121 } 9122 9123 /* 9124 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9125 * interface) create the next available logical interface for this 9126 * physical interface. 9127 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9128 * ipif with the specified name. 9129 * 9130 * If the address family is not AF_UNSPEC then set the address as well. 9131 * 9132 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9133 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9134 * 9135 * Executed as a writer on the ill. 9136 * So no lock is needed to traverse the ipif chain, or examine the 9137 * phyint flags. 9138 */ 9139 /* ARGSUSED */ 9140 int 9141 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9142 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9143 { 9144 mblk_t *mp1; 9145 struct lifreq *lifr; 9146 boolean_t isv6; 9147 boolean_t exists; 9148 char *name; 9149 char *endp; 9150 char *cp; 9151 int namelen; 9152 ipif_t *ipif; 9153 long id; 9154 ipsq_t *ipsq; 9155 ill_t *ill; 9156 sin_t *sin; 9157 int err = 0; 9158 boolean_t found_sep = B_FALSE; 9159 conn_t *connp; 9160 zoneid_t zoneid; 9161 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9162 9163 ASSERT(q->q_next == NULL); 9164 ip1dbg(("ip_sioctl_addif\n")); 9165 /* Existence of mp1 has been checked in ip_wput_nondata */ 9166 mp1 = mp->b_cont->b_cont; 9167 /* 9168 * Null terminate the string to protect against buffer 9169 * overrun. String was generated by user code and may not 9170 * be trusted. 9171 */ 9172 lifr = (struct lifreq *)mp1->b_rptr; 9173 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9174 name = lifr->lifr_name; 9175 ASSERT(CONN_Q(q)); 9176 connp = Q_TO_CONN(q); 9177 isv6 = (connp->conn_family == AF_INET6); 9178 zoneid = connp->conn_zoneid; 9179 namelen = mi_strlen(name); 9180 if (namelen == 0) 9181 return (EINVAL); 9182 9183 exists = B_FALSE; 9184 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9185 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9186 /* 9187 * Allow creating lo0 using SIOCLIFADDIF. 9188 * can't be any other writer thread. So can pass null below 9189 * for the last 4 args to ipif_lookup_name. 9190 */ 9191 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9192 &exists, isv6, zoneid, ipst); 9193 /* Prevent any further action */ 9194 if (ipif == NULL) { 9195 return (ENOBUFS); 9196 } else if (!exists) { 9197 /* We created the ipif now and as writer */ 9198 ipif_refrele(ipif); 9199 return (0); 9200 } else { 9201 ill = ipif->ipif_ill; 9202 ill_refhold(ill); 9203 ipif_refrele(ipif); 9204 } 9205 } else { 9206 /* Look for a colon in the name. */ 9207 endp = &name[namelen]; 9208 for (cp = endp; --cp > name; ) { 9209 if (*cp == IPIF_SEPARATOR_CHAR) { 9210 found_sep = B_TRUE; 9211 /* 9212 * Reject any non-decimal aliases for plumbing 9213 * of logical interfaces. Aliases with leading 9214 * zeroes are also rejected as they introduce 9215 * ambiguity in the naming of the interfaces. 9216 * Comparing with "0" takes care of all such 9217 * cases. 9218 */ 9219 if ((strncmp("0", cp+1, 1)) == 0) 9220 return (EINVAL); 9221 9222 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9223 id <= 0 || *endp != '\0') { 9224 return (EINVAL); 9225 } 9226 *cp = '\0'; 9227 break; 9228 } 9229 } 9230 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9231 if (found_sep) 9232 *cp = IPIF_SEPARATOR_CHAR; 9233 if (ill == NULL) 9234 return (ENXIO); 9235 } 9236 9237 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9238 B_TRUE); 9239 9240 /* 9241 * Release the refhold due to the lookup, now that we are excl 9242 * or we are just returning 9243 */ 9244 ill_refrele(ill); 9245 9246 if (ipsq == NULL) 9247 return (EINPROGRESS); 9248 9249 /* We are now exclusive on the IPSQ */ 9250 ASSERT(IAM_WRITER_ILL(ill)); 9251 9252 if (found_sep) { 9253 /* Now see if there is an IPIF with this unit number. */ 9254 for (ipif = ill->ill_ipif; ipif != NULL; 9255 ipif = ipif->ipif_next) { 9256 if (ipif->ipif_id == id) { 9257 err = EEXIST; 9258 goto done; 9259 } 9260 } 9261 } 9262 9263 /* 9264 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9265 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9266 * instead. 9267 */ 9268 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9269 B_TRUE, B_TRUE, &err)) == NULL) { 9270 goto done; 9271 } 9272 9273 /* Return created name with ioctl */ 9274 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9275 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9276 ip1dbg(("created %s\n", lifr->lifr_name)); 9277 9278 /* Set address */ 9279 sin = (sin_t *)&lifr->lifr_addr; 9280 if (sin->sin_family != AF_UNSPEC) { 9281 err = ip_sioctl_addr(ipif, sin, q, mp, 9282 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9283 } 9284 9285 done: 9286 ipsq_exit(ipsq); 9287 return (err); 9288 } 9289 9290 /* 9291 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9292 * interface) delete it based on the IP address (on this physical interface). 9293 * Otherwise delete it based on the ipif_id. 9294 * Also, special handling to allow a removeif of lo0. 9295 */ 9296 /* ARGSUSED */ 9297 int 9298 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9299 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9300 { 9301 conn_t *connp; 9302 ill_t *ill = ipif->ipif_ill; 9303 boolean_t success; 9304 ip_stack_t *ipst; 9305 9306 ipst = CONNQ_TO_IPST(q); 9307 9308 ASSERT(q->q_next == NULL); 9309 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9310 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9311 ASSERT(IAM_WRITER_IPIF(ipif)); 9312 9313 connp = Q_TO_CONN(q); 9314 /* 9315 * Special case for unplumbing lo0 (the loopback physical interface). 9316 * If unplumbing lo0, the incoming address structure has been 9317 * initialized to all zeros. When unplumbing lo0, all its logical 9318 * interfaces must be removed too. 9319 * 9320 * Note that this interface may be called to remove a specific 9321 * loopback logical interface (eg, lo0:1). But in that case 9322 * ipif->ipif_id != 0 so that the code path for that case is the 9323 * same as any other interface (meaning it skips the code directly 9324 * below). 9325 */ 9326 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9327 if (sin->sin_family == AF_UNSPEC && 9328 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9329 /* 9330 * Mark it condemned. No new ref. will be made to ill. 9331 */ 9332 mutex_enter(&ill->ill_lock); 9333 ill->ill_state_flags |= ILL_CONDEMNED; 9334 for (ipif = ill->ill_ipif; ipif != NULL; 9335 ipif = ipif->ipif_next) { 9336 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9337 } 9338 mutex_exit(&ill->ill_lock); 9339 9340 ipif = ill->ill_ipif; 9341 /* unplumb the loopback interface */ 9342 ill_delete(ill); 9343 mutex_enter(&connp->conn_lock); 9344 mutex_enter(&ill->ill_lock); 9345 9346 /* Are any references to this ill active */ 9347 if (ill_is_freeable(ill)) { 9348 mutex_exit(&ill->ill_lock); 9349 mutex_exit(&connp->conn_lock); 9350 ill_delete_tail(ill); 9351 mi_free(ill); 9352 return (0); 9353 } 9354 success = ipsq_pending_mp_add(connp, ipif, 9355 CONNP_TO_WQ(connp), mp, ILL_FREE); 9356 mutex_exit(&connp->conn_lock); 9357 mutex_exit(&ill->ill_lock); 9358 if (success) 9359 return (EINPROGRESS); 9360 else 9361 return (EINTR); 9362 } 9363 } 9364 9365 if (ipif->ipif_id == 0) { 9366 ipsq_t *ipsq; 9367 9368 /* Find based on address */ 9369 if (ipif->ipif_isv6) { 9370 sin6_t *sin6; 9371 9372 if (sin->sin_family != AF_INET6) 9373 return (EAFNOSUPPORT); 9374 9375 sin6 = (sin6_t *)sin; 9376 /* We are a writer, so we should be able to lookup */ 9377 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9378 ipst); 9379 } else { 9380 if (sin->sin_family != AF_INET) 9381 return (EAFNOSUPPORT); 9382 9383 /* We are a writer, so we should be able to lookup */ 9384 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9385 ipst); 9386 } 9387 if (ipif == NULL) { 9388 return (EADDRNOTAVAIL); 9389 } 9390 9391 /* 9392 * It is possible for a user to send an SIOCLIFREMOVEIF with 9393 * lifr_name of the physical interface but with an ip address 9394 * lifr_addr of a logical interface plumbed over it. 9395 * So update ipx_current_ipif now that ipif points to the 9396 * correct one. 9397 */ 9398 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9399 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9400 9401 /* This is a writer */ 9402 ipif_refrele(ipif); 9403 } 9404 9405 /* 9406 * Can not delete instance zero since it is tied to the ill. 9407 */ 9408 if (ipif->ipif_id == 0) 9409 return (EBUSY); 9410 9411 mutex_enter(&ill->ill_lock); 9412 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9413 mutex_exit(&ill->ill_lock); 9414 9415 ipif_free(ipif); 9416 9417 mutex_enter(&connp->conn_lock); 9418 mutex_enter(&ill->ill_lock); 9419 9420 /* Are any references to this ipif active */ 9421 if (ipif_is_freeable(ipif)) { 9422 mutex_exit(&ill->ill_lock); 9423 mutex_exit(&connp->conn_lock); 9424 ipif_non_duplicate(ipif); 9425 (void) ipif_down_tail(ipif); 9426 ipif_free_tail(ipif); /* frees ipif */ 9427 return (0); 9428 } 9429 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9430 IPIF_FREE); 9431 mutex_exit(&ill->ill_lock); 9432 mutex_exit(&connp->conn_lock); 9433 if (success) 9434 return (EINPROGRESS); 9435 else 9436 return (EINTR); 9437 } 9438 9439 /* 9440 * Restart the removeif ioctl. The refcnt has gone down to 0. 9441 * The ipif is already condemned. So can't find it thru lookups. 9442 */ 9443 /* ARGSUSED */ 9444 int 9445 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9446 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9447 { 9448 ill_t *ill = ipif->ipif_ill; 9449 9450 ASSERT(IAM_WRITER_IPIF(ipif)); 9451 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9452 9453 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9454 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9455 9456 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9457 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9458 ill_delete_tail(ill); 9459 mi_free(ill); 9460 return (0); 9461 } 9462 9463 ipif_non_duplicate(ipif); 9464 (void) ipif_down_tail(ipif); 9465 ipif_free_tail(ipif); 9466 9467 return (0); 9468 } 9469 9470 /* 9471 * Set the local interface address. 9472 * Allow an address of all zero when the interface is down. 9473 */ 9474 /* ARGSUSED */ 9475 int 9476 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9477 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9478 { 9479 int err = 0; 9480 in6_addr_t v6addr; 9481 boolean_t need_up = B_FALSE; 9482 9483 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9484 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9485 9486 ASSERT(IAM_WRITER_IPIF(ipif)); 9487 9488 if (ipif->ipif_isv6) { 9489 sin6_t *sin6; 9490 ill_t *ill; 9491 phyint_t *phyi; 9492 9493 if (sin->sin_family != AF_INET6) 9494 return (EAFNOSUPPORT); 9495 9496 sin6 = (sin6_t *)sin; 9497 v6addr = sin6->sin6_addr; 9498 ill = ipif->ipif_ill; 9499 phyi = ill->ill_phyint; 9500 9501 /* 9502 * Enforce that true multicast interfaces have a link-local 9503 * address for logical unit 0. 9504 */ 9505 if (ipif->ipif_id == 0 && 9506 (ill->ill_flags & ILLF_MULTICAST) && 9507 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9508 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9509 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9510 return (EADDRNOTAVAIL); 9511 } 9512 9513 /* 9514 * up interfaces shouldn't have the unspecified address 9515 * unless they also have the IPIF_NOLOCAL flags set and 9516 * have a subnet assigned. 9517 */ 9518 if ((ipif->ipif_flags & IPIF_UP) && 9519 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9520 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9521 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9522 return (EADDRNOTAVAIL); 9523 } 9524 9525 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9526 return (EADDRNOTAVAIL); 9527 } else { 9528 ipaddr_t addr; 9529 9530 if (sin->sin_family != AF_INET) 9531 return (EAFNOSUPPORT); 9532 9533 addr = sin->sin_addr.s_addr; 9534 9535 /* Allow 0 as the local address. */ 9536 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9537 return (EADDRNOTAVAIL); 9538 9539 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9540 } 9541 9542 /* 9543 * Even if there is no change we redo things just to rerun 9544 * ipif_set_default. 9545 */ 9546 if (ipif->ipif_flags & IPIF_UP) { 9547 /* 9548 * Setting a new local address, make sure 9549 * we have net and subnet bcast ire's for 9550 * the old address if we need them. 9551 */ 9552 /* 9553 * If the interface is already marked up, 9554 * we call ipif_down which will take care 9555 * of ditching any IREs that have been set 9556 * up based on the old interface address. 9557 */ 9558 err = ipif_logical_down(ipif, q, mp); 9559 if (err == EINPROGRESS) 9560 return (err); 9561 (void) ipif_down_tail(ipif); 9562 need_up = 1; 9563 } 9564 9565 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9566 return (err); 9567 } 9568 9569 int 9570 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9571 boolean_t need_up) 9572 { 9573 in6_addr_t v6addr; 9574 in6_addr_t ov6addr; 9575 ipaddr_t addr; 9576 sin6_t *sin6; 9577 int sinlen; 9578 int err = 0; 9579 ill_t *ill = ipif->ipif_ill; 9580 boolean_t need_dl_down; 9581 boolean_t need_arp_down; 9582 struct iocblk *iocp; 9583 9584 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9585 9586 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9587 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9588 ASSERT(IAM_WRITER_IPIF(ipif)); 9589 9590 /* Must cancel any pending timer before taking the ill_lock */ 9591 if (ipif->ipif_recovery_id != 0) 9592 (void) untimeout(ipif->ipif_recovery_id); 9593 ipif->ipif_recovery_id = 0; 9594 9595 if (ipif->ipif_isv6) { 9596 sin6 = (sin6_t *)sin; 9597 v6addr = sin6->sin6_addr; 9598 sinlen = sizeof (struct sockaddr_in6); 9599 } else { 9600 addr = sin->sin_addr.s_addr; 9601 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9602 sinlen = sizeof (struct sockaddr_in); 9603 } 9604 mutex_enter(&ill->ill_lock); 9605 ov6addr = ipif->ipif_v6lcl_addr; 9606 ipif->ipif_v6lcl_addr = v6addr; 9607 sctp_update_ipif_addr(ipif, ov6addr); 9608 ipif->ipif_addr_ready = 0; 9609 9610 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9611 9612 /* 9613 * If the interface was previously marked as a duplicate, then since 9614 * we've now got a "new" address, it should no longer be considered a 9615 * duplicate -- even if the "new" address is the same as the old one. 9616 * Note that if all ipifs are down, we may have a pending ARP down 9617 * event to handle. This is because we want to recover from duplicates 9618 * and thus delay tearing down ARP until the duplicates have been 9619 * removed or disabled. 9620 */ 9621 need_dl_down = need_arp_down = B_FALSE; 9622 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9623 need_arp_down = !need_up; 9624 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9625 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9626 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9627 need_dl_down = B_TRUE; 9628 } 9629 } 9630 9631 ipif_set_default(ipif); 9632 9633 /* 9634 * If we've just manually set the IPv6 link-local address (0th ipif), 9635 * tag the ill so that future updates to the interface ID don't result 9636 * in this address getting automatically reconfigured from under the 9637 * administrator. 9638 */ 9639 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9640 ill->ill_manual_linklocal = 1; 9641 9642 /* 9643 * When publishing an interface address change event, we only notify 9644 * the event listeners of the new address. It is assumed that if they 9645 * actively care about the addresses assigned that they will have 9646 * already discovered the previous address assigned (if there was one.) 9647 * 9648 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9649 */ 9650 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9651 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9652 NE_ADDRESS_CHANGE, sin, sinlen); 9653 } 9654 9655 mutex_exit(&ill->ill_lock); 9656 9657 if (need_up) { 9658 /* 9659 * Now bring the interface back up. If this 9660 * is the only IPIF for the ILL, ipif_up 9661 * will have to re-bind to the device, so 9662 * we may get back EINPROGRESS, in which 9663 * case, this IOCTL will get completed in 9664 * ip_rput_dlpi when we see the DL_BIND_ACK. 9665 */ 9666 err = ipif_up(ipif, q, mp); 9667 } else { 9668 /* Perhaps ilgs should use this ill */ 9669 update_conn_ill(NULL, ill->ill_ipst); 9670 } 9671 9672 if (need_dl_down) 9673 ill_dl_down(ill); 9674 9675 if (need_arp_down && !ill->ill_isv6) 9676 (void) ipif_arp_down(ipif); 9677 9678 /* 9679 * The default multicast interface might have changed (for 9680 * instance if the IPv6 scope of the address changed) 9681 */ 9682 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9683 9684 return (err); 9685 } 9686 9687 /* 9688 * Restart entry point to restart the address set operation after the 9689 * refcounts have dropped to zero. 9690 */ 9691 /* ARGSUSED */ 9692 int 9693 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9694 ip_ioctl_cmd_t *ipip, void *ifreq) 9695 { 9696 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9697 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9698 ASSERT(IAM_WRITER_IPIF(ipif)); 9699 (void) ipif_down_tail(ipif); 9700 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9701 } 9702 9703 /* ARGSUSED */ 9704 int 9705 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9706 ip_ioctl_cmd_t *ipip, void *if_req) 9707 { 9708 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9709 struct lifreq *lifr = (struct lifreq *)if_req; 9710 9711 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9712 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9713 /* 9714 * The net mask and address can't change since we have a 9715 * reference to the ipif. So no lock is necessary. 9716 */ 9717 if (ipif->ipif_isv6) { 9718 *sin6 = sin6_null; 9719 sin6->sin6_family = AF_INET6; 9720 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9721 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9722 lifr->lifr_addrlen = 9723 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9724 } else { 9725 *sin = sin_null; 9726 sin->sin_family = AF_INET; 9727 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9728 if (ipip->ipi_cmd_type == LIF_CMD) { 9729 lifr->lifr_addrlen = 9730 ip_mask_to_plen(ipif->ipif_net_mask); 9731 } 9732 } 9733 return (0); 9734 } 9735 9736 /* 9737 * Set the destination address for a pt-pt interface. 9738 */ 9739 /* ARGSUSED */ 9740 int 9741 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9742 ip_ioctl_cmd_t *ipip, void *if_req) 9743 { 9744 int err = 0; 9745 in6_addr_t v6addr; 9746 boolean_t need_up = B_FALSE; 9747 9748 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9749 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9750 ASSERT(IAM_WRITER_IPIF(ipif)); 9751 9752 if (ipif->ipif_isv6) { 9753 sin6_t *sin6; 9754 9755 if (sin->sin_family != AF_INET6) 9756 return (EAFNOSUPPORT); 9757 9758 sin6 = (sin6_t *)sin; 9759 v6addr = sin6->sin6_addr; 9760 9761 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9762 return (EADDRNOTAVAIL); 9763 } else { 9764 ipaddr_t addr; 9765 9766 if (sin->sin_family != AF_INET) 9767 return (EAFNOSUPPORT); 9768 9769 addr = sin->sin_addr.s_addr; 9770 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9771 return (EADDRNOTAVAIL); 9772 9773 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9774 } 9775 9776 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9777 return (0); /* No change */ 9778 9779 if (ipif->ipif_flags & IPIF_UP) { 9780 /* 9781 * If the interface is already marked up, 9782 * we call ipif_down which will take care 9783 * of ditching any IREs that have been set 9784 * up based on the old pp dst address. 9785 */ 9786 err = ipif_logical_down(ipif, q, mp); 9787 if (err == EINPROGRESS) 9788 return (err); 9789 (void) ipif_down_tail(ipif); 9790 need_up = B_TRUE; 9791 } 9792 /* 9793 * could return EINPROGRESS. If so ioctl will complete in 9794 * ip_rput_dlpi_writer 9795 */ 9796 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9797 return (err); 9798 } 9799 9800 static int 9801 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9802 boolean_t need_up) 9803 { 9804 in6_addr_t v6addr; 9805 ill_t *ill = ipif->ipif_ill; 9806 int err = 0; 9807 boolean_t need_dl_down; 9808 boolean_t need_arp_down; 9809 9810 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9811 ipif->ipif_id, (void *)ipif)); 9812 9813 /* Must cancel any pending timer before taking the ill_lock */ 9814 if (ipif->ipif_recovery_id != 0) 9815 (void) untimeout(ipif->ipif_recovery_id); 9816 ipif->ipif_recovery_id = 0; 9817 9818 if (ipif->ipif_isv6) { 9819 sin6_t *sin6; 9820 9821 sin6 = (sin6_t *)sin; 9822 v6addr = sin6->sin6_addr; 9823 } else { 9824 ipaddr_t addr; 9825 9826 addr = sin->sin_addr.s_addr; 9827 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9828 } 9829 mutex_enter(&ill->ill_lock); 9830 /* Set point to point destination address. */ 9831 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9832 /* 9833 * Allow this as a means of creating logical 9834 * pt-pt interfaces on top of e.g. an Ethernet. 9835 * XXX Undocumented HACK for testing. 9836 * pt-pt interfaces are created with NUD disabled. 9837 */ 9838 ipif->ipif_flags |= IPIF_POINTOPOINT; 9839 ipif->ipif_flags &= ~IPIF_BROADCAST; 9840 if (ipif->ipif_isv6) 9841 ill->ill_flags |= ILLF_NONUD; 9842 } 9843 9844 /* 9845 * If the interface was previously marked as a duplicate, then since 9846 * we've now got a "new" address, it should no longer be considered a 9847 * duplicate -- even if the "new" address is the same as the old one. 9848 * Note that if all ipifs are down, we may have a pending ARP down 9849 * event to handle. 9850 */ 9851 need_dl_down = need_arp_down = B_FALSE; 9852 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9853 need_arp_down = !need_up; 9854 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9855 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9856 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9857 need_dl_down = B_TRUE; 9858 } 9859 } 9860 9861 /* 9862 * If we've just manually set the IPv6 destination link-local address 9863 * (0th ipif), tag the ill so that future updates to the destination 9864 * interface ID (as can happen with interfaces over IP tunnels) don't 9865 * result in this address getting automatically reconfigured from 9866 * under the administrator. 9867 */ 9868 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9869 ill->ill_manual_dst_linklocal = 1; 9870 9871 /* Set the new address. */ 9872 ipif->ipif_v6pp_dst_addr = v6addr; 9873 /* Make sure subnet tracks pp_dst */ 9874 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9875 mutex_exit(&ill->ill_lock); 9876 9877 if (need_up) { 9878 /* 9879 * Now bring the interface back up. If this 9880 * is the only IPIF for the ILL, ipif_up 9881 * will have to re-bind to the device, so 9882 * we may get back EINPROGRESS, in which 9883 * case, this IOCTL will get completed in 9884 * ip_rput_dlpi when we see the DL_BIND_ACK. 9885 */ 9886 err = ipif_up(ipif, q, mp); 9887 } 9888 9889 if (need_dl_down) 9890 ill_dl_down(ill); 9891 if (need_arp_down && !ipif->ipif_isv6) 9892 (void) ipif_arp_down(ipif); 9893 9894 return (err); 9895 } 9896 9897 /* 9898 * Restart entry point to restart the dstaddress set operation after the 9899 * refcounts have dropped to zero. 9900 */ 9901 /* ARGSUSED */ 9902 int 9903 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9904 ip_ioctl_cmd_t *ipip, void *ifreq) 9905 { 9906 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9907 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9908 (void) ipif_down_tail(ipif); 9909 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9910 } 9911 9912 /* ARGSUSED */ 9913 int 9914 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9915 ip_ioctl_cmd_t *ipip, void *if_req) 9916 { 9917 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9918 9919 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9920 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9921 /* 9922 * Get point to point destination address. The addresses can't 9923 * change since we hold a reference to the ipif. 9924 */ 9925 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9926 return (EADDRNOTAVAIL); 9927 9928 if (ipif->ipif_isv6) { 9929 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9930 *sin6 = sin6_null; 9931 sin6->sin6_family = AF_INET6; 9932 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9933 } else { 9934 *sin = sin_null; 9935 sin->sin_family = AF_INET; 9936 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9937 } 9938 return (0); 9939 } 9940 9941 /* 9942 * Check which flags will change by the given flags being set 9943 * silently ignore flags which userland is not allowed to control. 9944 * (Because these flags may change between SIOCGLIFFLAGS and 9945 * SIOCSLIFFLAGS, and that's outside of userland's control, 9946 * we need to silently ignore them rather than fail.) 9947 */ 9948 static void 9949 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 9950 uint64_t *offp) 9951 { 9952 ill_t *ill = ipif->ipif_ill; 9953 phyint_t *phyi = ill->ill_phyint; 9954 uint64_t cantchange_flags, intf_flags; 9955 uint64_t turn_on, turn_off; 9956 9957 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9958 cantchange_flags = IFF_CANTCHANGE; 9959 if (IS_IPMP(ill)) 9960 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9961 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9962 turn_off = intf_flags & turn_on; 9963 turn_on ^= turn_off; 9964 *onp = turn_on; 9965 *offp = turn_off; 9966 } 9967 9968 /* 9969 * Set interface flags. Many flags require special handling (e.g., 9970 * bringing the interface down); see below for details. 9971 * 9972 * NOTE : We really don't enforce that ipif_id zero should be used 9973 * for setting any flags other than IFF_LOGINT_FLAGS. This 9974 * is because applications generally does SICGLIFFLAGS and 9975 * ORs in the new flags (that affects the logical) and does a 9976 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9977 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9978 * flags that will be turned on is correct with respect to 9979 * ipif_id 0. For backward compatibility reasons, it is not done. 9980 */ 9981 /* ARGSUSED */ 9982 int 9983 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9984 ip_ioctl_cmd_t *ipip, void *if_req) 9985 { 9986 uint64_t turn_on; 9987 uint64_t turn_off; 9988 int err = 0; 9989 phyint_t *phyi; 9990 ill_t *ill; 9991 conn_t *connp; 9992 uint64_t intf_flags; 9993 boolean_t phyint_flags_modified = B_FALSE; 9994 uint64_t flags; 9995 struct ifreq *ifr; 9996 struct lifreq *lifr; 9997 boolean_t set_linklocal = B_FALSE; 9998 9999 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10000 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10001 10002 ASSERT(IAM_WRITER_IPIF(ipif)); 10003 10004 ill = ipif->ipif_ill; 10005 phyi = ill->ill_phyint; 10006 10007 if (ipip->ipi_cmd_type == IF_CMD) { 10008 ifr = (struct ifreq *)if_req; 10009 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10010 } else { 10011 lifr = (struct lifreq *)if_req; 10012 flags = lifr->lifr_flags; 10013 } 10014 10015 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10016 10017 /* 10018 * Have the flags been set correctly until now? 10019 */ 10020 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10021 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10022 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10023 /* 10024 * Compare the new flags to the old, and partition 10025 * into those coming on and those going off. 10026 * For the 16 bit command keep the bits above bit 16 unchanged. 10027 */ 10028 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10029 flags |= intf_flags & ~0xFFFF; 10030 10031 /* 10032 * Explicitly fail attempts to change flags that are always invalid on 10033 * an IPMP meta-interface. 10034 */ 10035 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10036 return (EINVAL); 10037 10038 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10039 if ((turn_on|turn_off) == 0) 10040 return (0); /* No change */ 10041 10042 /* 10043 * All test addresses must be IFF_DEPRECATED (to ensure source address 10044 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10045 * allow it to be turned off. 10046 */ 10047 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10048 (turn_on|intf_flags) & IFF_NOFAILOVER) 10049 return (EINVAL); 10050 10051 if ((connp = Q_TO_CONN(q)) == NULL) 10052 return (EINVAL); 10053 10054 /* 10055 * Only vrrp control socket is allowed to change IFF_UP and 10056 * IFF_NOACCEPT flags when IFF_VRRP is set. 10057 */ 10058 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10059 if (!connp->conn_isvrrp) 10060 return (EINVAL); 10061 } 10062 10063 /* 10064 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10065 * VRRP control socket. 10066 */ 10067 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10068 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10069 return (EINVAL); 10070 } 10071 10072 if (turn_on & IFF_NOFAILOVER) { 10073 turn_on |= IFF_DEPRECATED; 10074 flags |= IFF_DEPRECATED; 10075 } 10076 10077 /* 10078 * On underlying interfaces, only allow applications to manage test 10079 * addresses -- otherwise, they may get confused when the address 10080 * moves as part of being brought up. Likewise, prevent an 10081 * application-managed test address from being converted to a data 10082 * address. To prevent migration of administratively up addresses in 10083 * the kernel, we don't allow them to be converted either. 10084 */ 10085 if (IS_UNDER_IPMP(ill)) { 10086 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10087 10088 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10089 return (EINVAL); 10090 10091 if ((turn_off & IFF_NOFAILOVER) && 10092 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10093 return (EINVAL); 10094 } 10095 10096 /* 10097 * Only allow IFF_TEMPORARY flag to be set on 10098 * IPv6 interfaces. 10099 */ 10100 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10101 return (EINVAL); 10102 10103 /* 10104 * cannot turn off IFF_NOXMIT on VNI interfaces. 10105 */ 10106 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10107 return (EINVAL); 10108 10109 /* 10110 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10111 * interfaces. It makes no sense in that context. 10112 */ 10113 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10114 return (EINVAL); 10115 10116 /* 10117 * For IPv6 ipif_id 0, don't allow the interface to be up without 10118 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10119 * If the link local address isn't set, and can be set, it will get 10120 * set later on in this function. 10121 */ 10122 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10123 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10124 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10125 if (ipif_cant_setlinklocal(ipif)) 10126 return (EINVAL); 10127 set_linklocal = B_TRUE; 10128 } 10129 10130 /* 10131 * If we modify physical interface flags, we'll potentially need to 10132 * send up two routing socket messages for the changes (one for the 10133 * IPv4 ill, and another for the IPv6 ill). Note that here. 10134 */ 10135 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10136 phyint_flags_modified = B_TRUE; 10137 10138 /* 10139 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10140 * (otherwise, we'd immediately use them, defeating standby). Also, 10141 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10142 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10143 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10144 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10145 * will not be honored. 10146 */ 10147 if (turn_on & PHYI_STANDBY) { 10148 /* 10149 * No need to grab ill_g_usesrc_lock here; see the 10150 * synchronization notes in ip.c. 10151 */ 10152 if (ill->ill_usesrc_grp_next != NULL || 10153 intf_flags & PHYI_INACTIVE) 10154 return (EINVAL); 10155 if (!(flags & PHYI_FAILED)) { 10156 flags |= PHYI_INACTIVE; 10157 turn_on |= PHYI_INACTIVE; 10158 } 10159 } 10160 10161 if (turn_off & PHYI_STANDBY) { 10162 flags &= ~PHYI_INACTIVE; 10163 turn_off |= PHYI_INACTIVE; 10164 } 10165 10166 /* 10167 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10168 * would end up on. 10169 */ 10170 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10171 (PHYI_FAILED | PHYI_INACTIVE)) 10172 return (EINVAL); 10173 10174 /* 10175 * If ILLF_ROUTER changes, we need to change the ip forwarding 10176 * status of the interface. 10177 */ 10178 if ((turn_on | turn_off) & ILLF_ROUTER) 10179 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10180 10181 /* 10182 * If the interface is not UP and we are not going to 10183 * bring it UP, record the flags and return. When the 10184 * interface comes UP later, the right actions will be 10185 * taken. 10186 */ 10187 if (!(ipif->ipif_flags & IPIF_UP) && 10188 !(turn_on & IPIF_UP)) { 10189 /* Record new flags in their respective places. */ 10190 mutex_enter(&ill->ill_lock); 10191 mutex_enter(&ill->ill_phyint->phyint_lock); 10192 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10193 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10194 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10195 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10196 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10197 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10198 mutex_exit(&ill->ill_lock); 10199 mutex_exit(&ill->ill_phyint->phyint_lock); 10200 10201 /* 10202 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10203 * same to the kernel: if any of them has been set by 10204 * userland, the interface cannot be used for data traffic. 10205 */ 10206 if ((turn_on|turn_off) & 10207 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10208 ASSERT(!IS_IPMP(ill)); 10209 /* 10210 * It's possible the ill is part of an "anonymous" 10211 * IPMP group rather than a real group. In that case, 10212 * there are no other interfaces in the group and thus 10213 * no need to call ipmp_phyint_refresh_active(). 10214 */ 10215 if (IS_UNDER_IPMP(ill)) 10216 ipmp_phyint_refresh_active(phyi); 10217 } 10218 10219 if (phyint_flags_modified) { 10220 if (phyi->phyint_illv4 != NULL) { 10221 ip_rts_ifmsg(phyi->phyint_illv4-> 10222 ill_ipif, RTSQ_DEFAULT); 10223 } 10224 if (phyi->phyint_illv6 != NULL) { 10225 ip_rts_ifmsg(phyi->phyint_illv6-> 10226 ill_ipif, RTSQ_DEFAULT); 10227 } 10228 } 10229 /* The default multicast interface might have changed */ 10230 ire_increment_multicast_generation(ill->ill_ipst, 10231 ill->ill_isv6); 10232 10233 return (0); 10234 } else if (set_linklocal) { 10235 mutex_enter(&ill->ill_lock); 10236 if (set_linklocal) 10237 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10238 mutex_exit(&ill->ill_lock); 10239 } 10240 10241 /* 10242 * Disallow IPv6 interfaces coming up that have the unspecified address, 10243 * or point-to-point interfaces with an unspecified destination. We do 10244 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10245 * have a subnet assigned, which is how in.ndpd currently manages its 10246 * onlink prefix list when no addresses are configured with those 10247 * prefixes. 10248 */ 10249 if (ipif->ipif_isv6 && 10250 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10251 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10252 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10253 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10254 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10255 return (EINVAL); 10256 } 10257 10258 /* 10259 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10260 * from being brought up. 10261 */ 10262 if (!ipif->ipif_isv6 && 10263 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10264 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10265 return (EINVAL); 10266 } 10267 10268 /* 10269 * If we are going to change one or more of the flags that are 10270 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10271 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10272 * IPIF_NOFAILOVER, we will take special action. This is 10273 * done by bring the ipif down, changing the flags and bringing 10274 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10275 * back up will trigger the address to be moved. 10276 * 10277 * If we are going to change IFF_NOACCEPT, we need to bring 10278 * all the ipifs down then bring them up again. The act of 10279 * bringing all the ipifs back up will trigger the local 10280 * ires being recreated with "no_accept" set/cleared. 10281 * 10282 * Note that ILLF_NOACCEPT is always set separately from the 10283 * other flags. 10284 */ 10285 if ((turn_on|turn_off) & 10286 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10287 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10288 IPIF_NOFAILOVER)) { 10289 /* 10290 * ipif_down() will ire_delete bcast ire's for the subnet, 10291 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10292 * entries shared between multiple ipifs on the same subnet. 10293 */ 10294 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10295 !(turn_off & IPIF_UP)) { 10296 if (ipif->ipif_flags & IPIF_UP) 10297 ill->ill_logical_down = 1; 10298 turn_on &= ~IPIF_UP; 10299 } 10300 err = ipif_down(ipif, q, mp); 10301 ip1dbg(("ipif_down returns %d err ", err)); 10302 if (err == EINPROGRESS) 10303 return (err); 10304 (void) ipif_down_tail(ipif); 10305 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10306 /* 10307 * If we can quiesce the ill, then continue. If not, then 10308 * ip_sioctl_flags_tail() will be called from 10309 * ipif_ill_refrele_tail(). 10310 */ 10311 ill_down_ipifs(ill, B_TRUE); 10312 10313 mutex_enter(&connp->conn_lock); 10314 mutex_enter(&ill->ill_lock); 10315 if (!ill_is_quiescent(ill)) { 10316 boolean_t success; 10317 10318 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10319 q, mp, ILL_DOWN); 10320 mutex_exit(&ill->ill_lock); 10321 mutex_exit(&connp->conn_lock); 10322 return (success ? EINPROGRESS : EINTR); 10323 } 10324 mutex_exit(&ill->ill_lock); 10325 mutex_exit(&connp->conn_lock); 10326 } 10327 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10328 } 10329 10330 static int 10331 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10332 { 10333 ill_t *ill; 10334 phyint_t *phyi; 10335 uint64_t turn_on, turn_off; 10336 boolean_t phyint_flags_modified = B_FALSE; 10337 int err = 0; 10338 boolean_t set_linklocal = B_FALSE; 10339 10340 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10341 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10342 10343 ASSERT(IAM_WRITER_IPIF(ipif)); 10344 10345 ill = ipif->ipif_ill; 10346 phyi = ill->ill_phyint; 10347 10348 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10349 10350 /* 10351 * IFF_UP is handled separately. 10352 */ 10353 turn_on &= ~IFF_UP; 10354 turn_off &= ~IFF_UP; 10355 10356 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10357 phyint_flags_modified = B_TRUE; 10358 10359 /* 10360 * Now we change the flags. Track current value of 10361 * other flags in their respective places. 10362 */ 10363 mutex_enter(&ill->ill_lock); 10364 mutex_enter(&phyi->phyint_lock); 10365 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10366 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10367 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10368 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10369 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10370 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10371 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10372 set_linklocal = B_TRUE; 10373 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10374 } 10375 10376 mutex_exit(&ill->ill_lock); 10377 mutex_exit(&phyi->phyint_lock); 10378 10379 if (set_linklocal) 10380 (void) ipif_setlinklocal(ipif); 10381 10382 /* 10383 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10384 * the kernel: if any of them has been set by userland, the interface 10385 * cannot be used for data traffic. 10386 */ 10387 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10388 ASSERT(!IS_IPMP(ill)); 10389 /* 10390 * It's possible the ill is part of an "anonymous" IPMP group 10391 * rather than a real group. In that case, there are no other 10392 * interfaces in the group and thus no need for us to call 10393 * ipmp_phyint_refresh_active(). 10394 */ 10395 if (IS_UNDER_IPMP(ill)) 10396 ipmp_phyint_refresh_active(phyi); 10397 } 10398 10399 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10400 /* 10401 * If the ILLF_NOACCEPT flag is changed, bring up all the 10402 * ipifs that were brought down. 10403 * 10404 * The routing sockets messages are sent as the result 10405 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10406 * as well. 10407 */ 10408 err = ill_up_ipifs(ill, q, mp); 10409 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10410 /* 10411 * XXX ipif_up really does not know whether a phyint flags 10412 * was modified or not. So, it sends up information on 10413 * only one routing sockets message. As we don't bring up 10414 * the interface and also set PHYI_ flags simultaneously 10415 * it should be okay. 10416 */ 10417 err = ipif_up(ipif, q, mp); 10418 } else { 10419 /* 10420 * Make sure routing socket sees all changes to the flags. 10421 * ipif_up_done* handles this when we use ipif_up. 10422 */ 10423 if (phyint_flags_modified) { 10424 if (phyi->phyint_illv4 != NULL) { 10425 ip_rts_ifmsg(phyi->phyint_illv4-> 10426 ill_ipif, RTSQ_DEFAULT); 10427 } 10428 if (phyi->phyint_illv6 != NULL) { 10429 ip_rts_ifmsg(phyi->phyint_illv6-> 10430 ill_ipif, RTSQ_DEFAULT); 10431 } 10432 } else { 10433 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10434 } 10435 /* 10436 * Update the flags in SCTP's IPIF list, ipif_up() will do 10437 * this in need_up case. 10438 */ 10439 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10440 } 10441 10442 /* The default multicast interface might have changed */ 10443 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10444 return (err); 10445 } 10446 10447 /* 10448 * Restart the flags operation now that the refcounts have dropped to zero. 10449 */ 10450 /* ARGSUSED */ 10451 int 10452 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10453 ip_ioctl_cmd_t *ipip, void *if_req) 10454 { 10455 uint64_t flags; 10456 struct ifreq *ifr = if_req; 10457 struct lifreq *lifr = if_req; 10458 uint64_t turn_on, turn_off; 10459 10460 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10461 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10462 10463 if (ipip->ipi_cmd_type == IF_CMD) { 10464 /* cast to uint16_t prevents unwanted sign extension */ 10465 flags = (uint16_t)ifr->ifr_flags; 10466 } else { 10467 flags = lifr->lifr_flags; 10468 } 10469 10470 /* 10471 * If this function call is a result of the ILLF_NOACCEPT flag 10472 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10473 */ 10474 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10475 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10476 (void) ipif_down_tail(ipif); 10477 10478 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10479 } 10480 10481 /* 10482 * Can operate on either a module or a driver queue. 10483 */ 10484 /* ARGSUSED */ 10485 int 10486 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10487 ip_ioctl_cmd_t *ipip, void *if_req) 10488 { 10489 /* 10490 * Has the flags been set correctly till now ? 10491 */ 10492 ill_t *ill = ipif->ipif_ill; 10493 phyint_t *phyi = ill->ill_phyint; 10494 10495 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10496 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10497 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10498 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10499 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10500 10501 /* 10502 * Need a lock since some flags can be set even when there are 10503 * references to the ipif. 10504 */ 10505 mutex_enter(&ill->ill_lock); 10506 if (ipip->ipi_cmd_type == IF_CMD) { 10507 struct ifreq *ifr = (struct ifreq *)if_req; 10508 10509 /* Get interface flags (low 16 only). */ 10510 ifr->ifr_flags = ((ipif->ipif_flags | 10511 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10512 } else { 10513 struct lifreq *lifr = (struct lifreq *)if_req; 10514 10515 /* Get interface flags. */ 10516 lifr->lifr_flags = ipif->ipif_flags | 10517 ill->ill_flags | phyi->phyint_flags; 10518 } 10519 mutex_exit(&ill->ill_lock); 10520 return (0); 10521 } 10522 10523 /* 10524 * We allow the MTU to be set on an ILL, but not have it be different 10525 * for different IPIFs since we don't actually send packets on IPIFs. 10526 */ 10527 /* ARGSUSED */ 10528 int 10529 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10530 ip_ioctl_cmd_t *ipip, void *if_req) 10531 { 10532 int mtu; 10533 int ip_min_mtu; 10534 struct ifreq *ifr; 10535 struct lifreq *lifr; 10536 ill_t *ill; 10537 10538 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10539 ipif->ipif_id, (void *)ipif)); 10540 if (ipip->ipi_cmd_type == IF_CMD) { 10541 ifr = (struct ifreq *)if_req; 10542 mtu = ifr->ifr_metric; 10543 } else { 10544 lifr = (struct lifreq *)if_req; 10545 mtu = lifr->lifr_mtu; 10546 } 10547 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10548 if (ipif->ipif_id != 0) 10549 return (EINVAL); 10550 10551 ill = ipif->ipif_ill; 10552 if (ipif->ipif_isv6) 10553 ip_min_mtu = IPV6_MIN_MTU; 10554 else 10555 ip_min_mtu = IP_MIN_MTU; 10556 10557 mutex_enter(&ill->ill_lock); 10558 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10559 mutex_exit(&ill->ill_lock); 10560 return (EINVAL); 10561 } 10562 /* 10563 * The dce and fragmentation code can handle changes to ill_mtu 10564 * concurrent with sending/fragmenting packets. 10565 */ 10566 ill->ill_mtu = mtu; 10567 ill->ill_flags |= ILLF_FIXEDMTU; 10568 mutex_exit(&ill->ill_lock); 10569 10570 /* 10571 * Make sure all dce_generation checks find out 10572 * that ill_mtu has changed. 10573 */ 10574 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10575 10576 /* Update the MTU in SCTP's list */ 10577 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10578 return (0); 10579 } 10580 10581 /* Get interface MTU. */ 10582 /* ARGSUSED */ 10583 int 10584 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10585 ip_ioctl_cmd_t *ipip, void *if_req) 10586 { 10587 struct ifreq *ifr; 10588 struct lifreq *lifr; 10589 10590 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10591 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10592 10593 /* 10594 * We allow a get on any logical interface even though the set 10595 * can only be done on logical unit 0. 10596 */ 10597 if (ipip->ipi_cmd_type == IF_CMD) { 10598 ifr = (struct ifreq *)if_req; 10599 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10600 } else { 10601 lifr = (struct lifreq *)if_req; 10602 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10603 } 10604 return (0); 10605 } 10606 10607 /* Set interface broadcast address. */ 10608 /* ARGSUSED2 */ 10609 int 10610 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10611 ip_ioctl_cmd_t *ipip, void *if_req) 10612 { 10613 ipaddr_t addr; 10614 ire_t *ire; 10615 ill_t *ill = ipif->ipif_ill; 10616 ip_stack_t *ipst = ill->ill_ipst; 10617 10618 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10619 ipif->ipif_id)); 10620 10621 ASSERT(IAM_WRITER_IPIF(ipif)); 10622 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10623 return (EADDRNOTAVAIL); 10624 10625 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10626 10627 if (sin->sin_family != AF_INET) 10628 return (EAFNOSUPPORT); 10629 10630 addr = sin->sin_addr.s_addr; 10631 if (ipif->ipif_flags & IPIF_UP) { 10632 /* 10633 * If we are already up, make sure the new 10634 * broadcast address makes sense. If it does, 10635 * there should be an IRE for it already. 10636 */ 10637 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10638 ill, ipif->ipif_zoneid, NULL, 10639 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10640 if (ire == NULL) { 10641 return (EINVAL); 10642 } else { 10643 ire_refrele(ire); 10644 } 10645 } 10646 /* 10647 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10648 * needs to already exist we never need to change the set of 10649 * IRE_BROADCASTs when we are UP. 10650 */ 10651 if (addr != ipif->ipif_brd_addr) 10652 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10653 10654 return (0); 10655 } 10656 10657 /* Get interface broadcast address. */ 10658 /* ARGSUSED */ 10659 int 10660 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10661 ip_ioctl_cmd_t *ipip, void *if_req) 10662 { 10663 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10665 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10666 return (EADDRNOTAVAIL); 10667 10668 /* IPIF_BROADCAST not possible with IPv6 */ 10669 ASSERT(!ipif->ipif_isv6); 10670 *sin = sin_null; 10671 sin->sin_family = AF_INET; 10672 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10673 return (0); 10674 } 10675 10676 /* 10677 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10678 */ 10679 /* ARGSUSED */ 10680 int 10681 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10682 ip_ioctl_cmd_t *ipip, void *if_req) 10683 { 10684 int err = 0; 10685 in6_addr_t v6mask; 10686 10687 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10688 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10689 10690 ASSERT(IAM_WRITER_IPIF(ipif)); 10691 10692 if (ipif->ipif_isv6) { 10693 sin6_t *sin6; 10694 10695 if (sin->sin_family != AF_INET6) 10696 return (EAFNOSUPPORT); 10697 10698 sin6 = (sin6_t *)sin; 10699 v6mask = sin6->sin6_addr; 10700 } else { 10701 ipaddr_t mask; 10702 10703 if (sin->sin_family != AF_INET) 10704 return (EAFNOSUPPORT); 10705 10706 mask = sin->sin_addr.s_addr; 10707 V4MASK_TO_V6(mask, v6mask); 10708 } 10709 10710 /* 10711 * No big deal if the interface isn't already up, or the mask 10712 * isn't really changing, or this is pt-pt. 10713 */ 10714 if (!(ipif->ipif_flags & IPIF_UP) || 10715 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10716 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10717 ipif->ipif_v6net_mask = v6mask; 10718 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10719 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10720 ipif->ipif_v6net_mask, 10721 ipif->ipif_v6subnet); 10722 } 10723 return (0); 10724 } 10725 /* 10726 * Make sure we have valid net and subnet broadcast ire's 10727 * for the old netmask, if needed by other logical interfaces. 10728 */ 10729 err = ipif_logical_down(ipif, q, mp); 10730 if (err == EINPROGRESS) 10731 return (err); 10732 (void) ipif_down_tail(ipif); 10733 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10734 return (err); 10735 } 10736 10737 static int 10738 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10739 { 10740 in6_addr_t v6mask; 10741 int err = 0; 10742 10743 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10744 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10745 10746 if (ipif->ipif_isv6) { 10747 sin6_t *sin6; 10748 10749 sin6 = (sin6_t *)sin; 10750 v6mask = sin6->sin6_addr; 10751 } else { 10752 ipaddr_t mask; 10753 10754 mask = sin->sin_addr.s_addr; 10755 V4MASK_TO_V6(mask, v6mask); 10756 } 10757 10758 ipif->ipif_v6net_mask = v6mask; 10759 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10760 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10761 ipif->ipif_v6subnet); 10762 } 10763 err = ipif_up(ipif, q, mp); 10764 10765 if (err == 0 || err == EINPROGRESS) { 10766 /* 10767 * The interface must be DL_BOUND if this packet has to 10768 * go out on the wire. Since we only go through a logical 10769 * down and are bound with the driver during an internal 10770 * down/up that is satisfied. 10771 */ 10772 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10773 /* Potentially broadcast an address mask reply. */ 10774 ipif_mask_reply(ipif); 10775 } 10776 } 10777 return (err); 10778 } 10779 10780 /* ARGSUSED */ 10781 int 10782 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10783 ip_ioctl_cmd_t *ipip, void *if_req) 10784 { 10785 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10786 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10787 (void) ipif_down_tail(ipif); 10788 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10789 } 10790 10791 /* Get interface net mask. */ 10792 /* ARGSUSED */ 10793 int 10794 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10795 ip_ioctl_cmd_t *ipip, void *if_req) 10796 { 10797 struct lifreq *lifr = (struct lifreq *)if_req; 10798 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10799 10800 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10801 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10802 10803 /* 10804 * net mask can't change since we have a reference to the ipif. 10805 */ 10806 if (ipif->ipif_isv6) { 10807 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10808 *sin6 = sin6_null; 10809 sin6->sin6_family = AF_INET6; 10810 sin6->sin6_addr = ipif->ipif_v6net_mask; 10811 lifr->lifr_addrlen = 10812 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10813 } else { 10814 *sin = sin_null; 10815 sin->sin_family = AF_INET; 10816 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10817 if (ipip->ipi_cmd_type == LIF_CMD) { 10818 lifr->lifr_addrlen = 10819 ip_mask_to_plen(ipif->ipif_net_mask); 10820 } 10821 } 10822 return (0); 10823 } 10824 10825 /* ARGSUSED */ 10826 int 10827 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10828 ip_ioctl_cmd_t *ipip, void *if_req) 10829 { 10830 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10831 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10832 10833 /* 10834 * Since no applications should ever be setting metrics on underlying 10835 * interfaces, we explicitly fail to smoke 'em out. 10836 */ 10837 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10838 return (EINVAL); 10839 10840 /* 10841 * Set interface metric. We don't use this for 10842 * anything but we keep track of it in case it is 10843 * important to routing applications or such. 10844 */ 10845 if (ipip->ipi_cmd_type == IF_CMD) { 10846 struct ifreq *ifr; 10847 10848 ifr = (struct ifreq *)if_req; 10849 ipif->ipif_metric = ifr->ifr_metric; 10850 } else { 10851 struct lifreq *lifr; 10852 10853 lifr = (struct lifreq *)if_req; 10854 ipif->ipif_metric = lifr->lifr_metric; 10855 } 10856 return (0); 10857 } 10858 10859 /* ARGSUSED */ 10860 int 10861 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10862 ip_ioctl_cmd_t *ipip, void *if_req) 10863 { 10864 /* Get interface metric. */ 10865 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10866 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10867 10868 if (ipip->ipi_cmd_type == IF_CMD) { 10869 struct ifreq *ifr; 10870 10871 ifr = (struct ifreq *)if_req; 10872 ifr->ifr_metric = ipif->ipif_metric; 10873 } else { 10874 struct lifreq *lifr; 10875 10876 lifr = (struct lifreq *)if_req; 10877 lifr->lifr_metric = ipif->ipif_metric; 10878 } 10879 10880 return (0); 10881 } 10882 10883 /* ARGSUSED */ 10884 int 10885 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10886 ip_ioctl_cmd_t *ipip, void *if_req) 10887 { 10888 int arp_muxid; 10889 10890 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10891 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10892 /* 10893 * Set the muxid returned from I_PLINK. 10894 */ 10895 if (ipip->ipi_cmd_type == IF_CMD) { 10896 struct ifreq *ifr = (struct ifreq *)if_req; 10897 10898 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10899 arp_muxid = ifr->ifr_arp_muxid; 10900 } else { 10901 struct lifreq *lifr = (struct lifreq *)if_req; 10902 10903 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10904 arp_muxid = lifr->lifr_arp_muxid; 10905 } 10906 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10907 return (0); 10908 } 10909 10910 /* ARGSUSED */ 10911 int 10912 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10913 ip_ioctl_cmd_t *ipip, void *if_req) 10914 { 10915 int arp_muxid = 0; 10916 10917 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10918 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10919 /* 10920 * Get the muxid saved in ill for I_PUNLINK. 10921 */ 10922 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10923 if (ipip->ipi_cmd_type == IF_CMD) { 10924 struct ifreq *ifr = (struct ifreq *)if_req; 10925 10926 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10927 ifr->ifr_arp_muxid = arp_muxid; 10928 } else { 10929 struct lifreq *lifr = (struct lifreq *)if_req; 10930 10931 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10932 lifr->lifr_arp_muxid = arp_muxid; 10933 } 10934 return (0); 10935 } 10936 10937 /* 10938 * Set the subnet prefix. Does not modify the broadcast address. 10939 */ 10940 /* ARGSUSED */ 10941 int 10942 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10943 ip_ioctl_cmd_t *ipip, void *if_req) 10944 { 10945 int err = 0; 10946 in6_addr_t v6addr; 10947 in6_addr_t v6mask; 10948 boolean_t need_up = B_FALSE; 10949 int addrlen; 10950 10951 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10952 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10953 10954 ASSERT(IAM_WRITER_IPIF(ipif)); 10955 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10956 10957 if (ipif->ipif_isv6) { 10958 sin6_t *sin6; 10959 10960 if (sin->sin_family != AF_INET6) 10961 return (EAFNOSUPPORT); 10962 10963 sin6 = (sin6_t *)sin; 10964 v6addr = sin6->sin6_addr; 10965 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10966 return (EADDRNOTAVAIL); 10967 } else { 10968 ipaddr_t addr; 10969 10970 if (sin->sin_family != AF_INET) 10971 return (EAFNOSUPPORT); 10972 10973 addr = sin->sin_addr.s_addr; 10974 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10975 return (EADDRNOTAVAIL); 10976 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10977 /* Add 96 bits */ 10978 addrlen += IPV6_ABITS - IP_ABITS; 10979 } 10980 10981 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10982 return (EINVAL); 10983 10984 /* Check if bits in the address is set past the mask */ 10985 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10986 return (EINVAL); 10987 10988 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10989 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10990 return (0); /* No change */ 10991 10992 if (ipif->ipif_flags & IPIF_UP) { 10993 /* 10994 * If the interface is already marked up, 10995 * we call ipif_down which will take care 10996 * of ditching any IREs that have been set 10997 * up based on the old interface address. 10998 */ 10999 err = ipif_logical_down(ipif, q, mp); 11000 if (err == EINPROGRESS) 11001 return (err); 11002 (void) ipif_down_tail(ipif); 11003 need_up = B_TRUE; 11004 } 11005 11006 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11007 return (err); 11008 } 11009 11010 static int 11011 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11012 queue_t *q, mblk_t *mp, boolean_t need_up) 11013 { 11014 ill_t *ill = ipif->ipif_ill; 11015 int err = 0; 11016 11017 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11018 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11019 11020 /* Set the new address. */ 11021 mutex_enter(&ill->ill_lock); 11022 ipif->ipif_v6net_mask = v6mask; 11023 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11024 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11025 ipif->ipif_v6subnet); 11026 } 11027 mutex_exit(&ill->ill_lock); 11028 11029 if (need_up) { 11030 /* 11031 * Now bring the interface back up. If this 11032 * is the only IPIF for the ILL, ipif_up 11033 * will have to re-bind to the device, so 11034 * we may get back EINPROGRESS, in which 11035 * case, this IOCTL will get completed in 11036 * ip_rput_dlpi when we see the DL_BIND_ACK. 11037 */ 11038 err = ipif_up(ipif, q, mp); 11039 if (err == EINPROGRESS) 11040 return (err); 11041 } 11042 return (err); 11043 } 11044 11045 /* ARGSUSED */ 11046 int 11047 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11048 ip_ioctl_cmd_t *ipip, void *if_req) 11049 { 11050 int addrlen; 11051 in6_addr_t v6addr; 11052 in6_addr_t v6mask; 11053 struct lifreq *lifr = (struct lifreq *)if_req; 11054 11055 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11056 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11057 (void) ipif_down_tail(ipif); 11058 11059 addrlen = lifr->lifr_addrlen; 11060 if (ipif->ipif_isv6) { 11061 sin6_t *sin6; 11062 11063 sin6 = (sin6_t *)sin; 11064 v6addr = sin6->sin6_addr; 11065 } else { 11066 ipaddr_t addr; 11067 11068 addr = sin->sin_addr.s_addr; 11069 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11070 addrlen += IPV6_ABITS - IP_ABITS; 11071 } 11072 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11073 11074 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11075 } 11076 11077 /* ARGSUSED */ 11078 int 11079 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11080 ip_ioctl_cmd_t *ipip, void *if_req) 11081 { 11082 struct lifreq *lifr = (struct lifreq *)if_req; 11083 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11084 11085 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11086 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11087 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11088 11089 if (ipif->ipif_isv6) { 11090 *sin6 = sin6_null; 11091 sin6->sin6_family = AF_INET6; 11092 sin6->sin6_addr = ipif->ipif_v6subnet; 11093 lifr->lifr_addrlen = 11094 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11095 } else { 11096 *sin = sin_null; 11097 sin->sin_family = AF_INET; 11098 sin->sin_addr.s_addr = ipif->ipif_subnet; 11099 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11100 } 11101 return (0); 11102 } 11103 11104 /* 11105 * Set the IPv6 address token. 11106 */ 11107 /* ARGSUSED */ 11108 int 11109 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11110 ip_ioctl_cmd_t *ipi, void *if_req) 11111 { 11112 ill_t *ill = ipif->ipif_ill; 11113 int err; 11114 in6_addr_t v6addr; 11115 in6_addr_t v6mask; 11116 boolean_t need_up = B_FALSE; 11117 int i; 11118 sin6_t *sin6 = (sin6_t *)sin; 11119 struct lifreq *lifr = (struct lifreq *)if_req; 11120 int addrlen; 11121 11122 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11123 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11124 ASSERT(IAM_WRITER_IPIF(ipif)); 11125 11126 addrlen = lifr->lifr_addrlen; 11127 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11128 if (ipif->ipif_id != 0) 11129 return (EINVAL); 11130 11131 if (!ipif->ipif_isv6) 11132 return (EINVAL); 11133 11134 if (addrlen > IPV6_ABITS) 11135 return (EINVAL); 11136 11137 v6addr = sin6->sin6_addr; 11138 11139 /* 11140 * The length of the token is the length from the end. To get 11141 * the proper mask for this, compute the mask of the bits not 11142 * in the token; ie. the prefix, and then xor to get the mask. 11143 */ 11144 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11145 return (EINVAL); 11146 for (i = 0; i < 4; i++) { 11147 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11148 } 11149 11150 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11151 ill->ill_token_length == addrlen) 11152 return (0); /* No change */ 11153 11154 if (ipif->ipif_flags & IPIF_UP) { 11155 err = ipif_logical_down(ipif, q, mp); 11156 if (err == EINPROGRESS) 11157 return (err); 11158 (void) ipif_down_tail(ipif); 11159 need_up = B_TRUE; 11160 } 11161 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11162 return (err); 11163 } 11164 11165 static int 11166 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11167 mblk_t *mp, boolean_t need_up) 11168 { 11169 in6_addr_t v6addr; 11170 in6_addr_t v6mask; 11171 ill_t *ill = ipif->ipif_ill; 11172 int i; 11173 int err = 0; 11174 11175 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11176 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11177 v6addr = sin6->sin6_addr; 11178 /* 11179 * The length of the token is the length from the end. To get 11180 * the proper mask for this, compute the mask of the bits not 11181 * in the token; ie. the prefix, and then xor to get the mask. 11182 */ 11183 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11184 for (i = 0; i < 4; i++) 11185 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11186 11187 mutex_enter(&ill->ill_lock); 11188 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11189 ill->ill_token_length = addrlen; 11190 ill->ill_manual_token = 1; 11191 11192 /* Reconfigure the link-local address based on this new token */ 11193 ipif_setlinklocal(ill->ill_ipif); 11194 11195 mutex_exit(&ill->ill_lock); 11196 11197 if (need_up) { 11198 /* 11199 * Now bring the interface back up. If this 11200 * is the only IPIF for the ILL, ipif_up 11201 * will have to re-bind to the device, so 11202 * we may get back EINPROGRESS, in which 11203 * case, this IOCTL will get completed in 11204 * ip_rput_dlpi when we see the DL_BIND_ACK. 11205 */ 11206 err = ipif_up(ipif, q, mp); 11207 if (err == EINPROGRESS) 11208 return (err); 11209 } 11210 return (err); 11211 } 11212 11213 /* ARGSUSED */ 11214 int 11215 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11216 ip_ioctl_cmd_t *ipi, void *if_req) 11217 { 11218 ill_t *ill; 11219 sin6_t *sin6 = (sin6_t *)sin; 11220 struct lifreq *lifr = (struct lifreq *)if_req; 11221 11222 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11223 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11224 if (ipif->ipif_id != 0) 11225 return (EINVAL); 11226 11227 ill = ipif->ipif_ill; 11228 if (!ill->ill_isv6) 11229 return (ENXIO); 11230 11231 *sin6 = sin6_null; 11232 sin6->sin6_family = AF_INET6; 11233 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11234 sin6->sin6_addr = ill->ill_token; 11235 lifr->lifr_addrlen = ill->ill_token_length; 11236 return (0); 11237 } 11238 11239 /* 11240 * Set (hardware) link specific information that might override 11241 * what was acquired through the DL_INFO_ACK. 11242 */ 11243 /* ARGSUSED */ 11244 int 11245 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11246 ip_ioctl_cmd_t *ipi, void *if_req) 11247 { 11248 ill_t *ill = ipif->ipif_ill; 11249 int ip_min_mtu; 11250 struct lifreq *lifr = (struct lifreq *)if_req; 11251 lif_ifinfo_req_t *lir; 11252 11253 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11254 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11255 lir = &lifr->lifr_ifinfo; 11256 ASSERT(IAM_WRITER_IPIF(ipif)); 11257 11258 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11259 if (ipif->ipif_id != 0) 11260 return (EINVAL); 11261 11262 /* Set interface MTU. */ 11263 if (ipif->ipif_isv6) 11264 ip_min_mtu = IPV6_MIN_MTU; 11265 else 11266 ip_min_mtu = IP_MIN_MTU; 11267 11268 /* 11269 * Verify values before we set anything. Allow zero to 11270 * mean unspecified. 11271 * 11272 * XXX We should be able to set the user-defined lir_mtu to some value 11273 * that is greater than ill_current_frag but less than ill_max_frag- the 11274 * ill_max_frag value tells us the max MTU that can be handled by the 11275 * datalink, whereas the ill_current_frag is dynamically computed for 11276 * some link-types like tunnels, based on the tunnel PMTU. However, 11277 * since there is currently no way of distinguishing between 11278 * administratively fixed link mtu values (e.g., those set via 11279 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11280 * for tunnels) we conservatively choose the ill_current_frag as the 11281 * upper-bound. 11282 */ 11283 if (lir->lir_maxmtu != 0 && 11284 (lir->lir_maxmtu > ill->ill_current_frag || 11285 lir->lir_maxmtu < ip_min_mtu)) 11286 return (EINVAL); 11287 if (lir->lir_reachtime != 0 && 11288 lir->lir_reachtime > ND_MAX_REACHTIME) 11289 return (EINVAL); 11290 if (lir->lir_reachretrans != 0 && 11291 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11292 return (EINVAL); 11293 11294 mutex_enter(&ill->ill_lock); 11295 /* 11296 * The dce and fragmentation code can handle changes to ill_mtu 11297 * concurrent with sending/fragmenting packets. 11298 */ 11299 if (lir->lir_maxmtu != 0) 11300 ill->ill_user_mtu = lir->lir_maxmtu; 11301 11302 if (lir->lir_reachtime != 0) 11303 ill->ill_reachable_time = lir->lir_reachtime; 11304 11305 if (lir->lir_reachretrans != 0) 11306 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11307 11308 ill->ill_max_hops = lir->lir_maxhops; 11309 ill->ill_max_buf = ND_MAX_Q; 11310 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11311 /* 11312 * ill_mtu is the actual interface MTU, obtained as the min 11313 * of user-configured mtu and the value announced by the 11314 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11315 * we have already made the choice of requiring 11316 * ill_user_mtu < ill_current_frag by the time we get here, 11317 * the ill_mtu effectively gets assigned to the ill_user_mtu 11318 * here. 11319 */ 11320 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11321 } 11322 mutex_exit(&ill->ill_lock); 11323 11324 /* 11325 * Make sure all dce_generation checks find out 11326 * that ill_mtu has changed. 11327 */ 11328 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11329 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11330 11331 /* 11332 * Refresh IPMP meta-interface MTU if necessary. 11333 */ 11334 if (IS_UNDER_IPMP(ill)) 11335 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11336 11337 return (0); 11338 } 11339 11340 /* ARGSUSED */ 11341 int 11342 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11343 ip_ioctl_cmd_t *ipi, void *if_req) 11344 { 11345 struct lif_ifinfo_req *lir; 11346 ill_t *ill = ipif->ipif_ill; 11347 11348 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11349 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11350 if (ipif->ipif_id != 0) 11351 return (EINVAL); 11352 11353 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11354 lir->lir_maxhops = ill->ill_max_hops; 11355 lir->lir_reachtime = ill->ill_reachable_time; 11356 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11357 lir->lir_maxmtu = ill->ill_mtu; 11358 11359 return (0); 11360 } 11361 11362 /* 11363 * Return best guess as to the subnet mask for the specified address. 11364 * Based on the subnet masks for all the configured interfaces. 11365 * 11366 * We end up returning a zero mask in the case of default, multicast or 11367 * experimental. 11368 */ 11369 static ipaddr_t 11370 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11371 { 11372 ipaddr_t net_mask; 11373 ill_t *ill; 11374 ipif_t *ipif; 11375 ill_walk_context_t ctx; 11376 ipif_t *fallback_ipif = NULL; 11377 11378 net_mask = ip_net_mask(addr); 11379 if (net_mask == 0) { 11380 *ipifp = NULL; 11381 return (0); 11382 } 11383 11384 /* Let's check to see if this is maybe a local subnet route. */ 11385 /* this function only applies to IPv4 interfaces */ 11386 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11387 ill = ILL_START_WALK_V4(&ctx, ipst); 11388 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11389 mutex_enter(&ill->ill_lock); 11390 for (ipif = ill->ill_ipif; ipif != NULL; 11391 ipif = ipif->ipif_next) { 11392 if (IPIF_IS_CONDEMNED(ipif)) 11393 continue; 11394 if (!(ipif->ipif_flags & IPIF_UP)) 11395 continue; 11396 if ((ipif->ipif_subnet & net_mask) == 11397 (addr & net_mask)) { 11398 /* 11399 * Don't trust pt-pt interfaces if there are 11400 * other interfaces. 11401 */ 11402 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11403 if (fallback_ipif == NULL) { 11404 ipif_refhold_locked(ipif); 11405 fallback_ipif = ipif; 11406 } 11407 continue; 11408 } 11409 11410 /* 11411 * Fine. Just assume the same net mask as the 11412 * directly attached subnet interface is using. 11413 */ 11414 ipif_refhold_locked(ipif); 11415 mutex_exit(&ill->ill_lock); 11416 rw_exit(&ipst->ips_ill_g_lock); 11417 if (fallback_ipif != NULL) 11418 ipif_refrele(fallback_ipif); 11419 *ipifp = ipif; 11420 return (ipif->ipif_net_mask); 11421 } 11422 } 11423 mutex_exit(&ill->ill_lock); 11424 } 11425 rw_exit(&ipst->ips_ill_g_lock); 11426 11427 *ipifp = fallback_ipif; 11428 return ((fallback_ipif != NULL) ? 11429 fallback_ipif->ipif_net_mask : net_mask); 11430 } 11431 11432 /* 11433 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11434 */ 11435 static void 11436 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11437 { 11438 IOCP iocp; 11439 ipft_t *ipft; 11440 ipllc_t *ipllc; 11441 mblk_t *mp1; 11442 cred_t *cr; 11443 int error = 0; 11444 conn_t *connp; 11445 11446 ip1dbg(("ip_wput_ioctl")); 11447 iocp = (IOCP)mp->b_rptr; 11448 mp1 = mp->b_cont; 11449 if (mp1 == NULL) { 11450 iocp->ioc_error = EINVAL; 11451 mp->b_datap->db_type = M_IOCNAK; 11452 iocp->ioc_count = 0; 11453 qreply(q, mp); 11454 return; 11455 } 11456 11457 /* 11458 * These IOCTLs provide various control capabilities to 11459 * upstream agents such as ULPs and processes. There 11460 * are currently two such IOCTLs implemented. They 11461 * are used by TCP to provide update information for 11462 * existing IREs and to forcibly delete an IRE for a 11463 * host that is not responding, thereby forcing an 11464 * attempt at a new route. 11465 */ 11466 iocp->ioc_error = EINVAL; 11467 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11468 goto done; 11469 11470 ipllc = (ipllc_t *)mp1->b_rptr; 11471 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11472 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11473 break; 11474 } 11475 /* 11476 * prefer credential from mblk over ioctl; 11477 * see ip_sioctl_copyin_setup 11478 */ 11479 cr = msg_getcred(mp, NULL); 11480 if (cr == NULL) 11481 cr = iocp->ioc_cr; 11482 11483 /* 11484 * Refhold the conn in case the request gets queued up in some lookup 11485 */ 11486 ASSERT(CONN_Q(q)); 11487 connp = Q_TO_CONN(q); 11488 CONN_INC_REF(connp); 11489 if (ipft->ipft_pfi && 11490 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11491 pullupmsg(mp1, ipft->ipft_min_size))) { 11492 error = (*ipft->ipft_pfi)(q, 11493 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11494 } 11495 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11496 /* 11497 * CONN_OPER_PENDING_DONE happens in the function called 11498 * through ipft_pfi above. 11499 */ 11500 return; 11501 } 11502 11503 CONN_OPER_PENDING_DONE(connp); 11504 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11505 freemsg(mp); 11506 return; 11507 } 11508 iocp->ioc_error = error; 11509 11510 done: 11511 mp->b_datap->db_type = M_IOCACK; 11512 if (iocp->ioc_error) 11513 iocp->ioc_count = 0; 11514 qreply(q, mp); 11515 } 11516 11517 /* 11518 * Assign a unique id for the ipif. This is used by sctp_addr.c 11519 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11520 */ 11521 static void 11522 ipif_assign_seqid(ipif_t *ipif) 11523 { 11524 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11525 11526 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11527 } 11528 11529 /* 11530 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11531 * administratively down (i.e., no DAD), of the same type, and locked. Note 11532 * that the clone is complete -- including the seqid -- and the expectation is 11533 * that the caller will either free or overwrite `sipif' before it's unlocked. 11534 */ 11535 static void 11536 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11537 { 11538 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11539 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11540 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11541 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11542 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11543 11544 dipif->ipif_flags = sipif->ipif_flags; 11545 dipif->ipif_metric = sipif->ipif_metric; 11546 dipif->ipif_zoneid = sipif->ipif_zoneid; 11547 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11548 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11549 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11550 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11551 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11552 11553 /* 11554 * As per the comment atop the function, we assume that these sipif 11555 * fields will be changed before sipif is unlocked. 11556 */ 11557 dipif->ipif_seqid = sipif->ipif_seqid; 11558 dipif->ipif_state_flags = sipif->ipif_state_flags; 11559 } 11560 11561 /* 11562 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11563 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11564 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11565 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11566 * down (i.e., no DAD), of the same type, and unlocked. 11567 */ 11568 static void 11569 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11570 { 11571 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11572 ipxop_t *ipx = ipsq->ipsq_xop; 11573 11574 ASSERT(sipif != dipif); 11575 ASSERT(sipif != virgipif); 11576 11577 /* 11578 * Grab all of the locks that protect the ipif in a defined order. 11579 */ 11580 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11581 11582 ipif_clone(sipif, dipif); 11583 if (virgipif != NULL) { 11584 ipif_clone(virgipif, sipif); 11585 mi_free(virgipif); 11586 } 11587 11588 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11589 11590 /* 11591 * Transfer ownership of the current xop, if necessary. 11592 */ 11593 if (ipx->ipx_current_ipif == sipif) { 11594 ASSERT(ipx->ipx_pending_ipif == NULL); 11595 mutex_enter(&ipx->ipx_lock); 11596 ipx->ipx_current_ipif = dipif; 11597 mutex_exit(&ipx->ipx_lock); 11598 } 11599 11600 if (virgipif == NULL) 11601 mi_free(sipif); 11602 } 11603 11604 /* 11605 * checks if: 11606 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11607 * - logical interface is within the allowed range 11608 */ 11609 static int 11610 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11611 { 11612 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11613 return (ENAMETOOLONG); 11614 11615 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11616 return (ERANGE); 11617 return (0); 11618 } 11619 11620 /* 11621 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11622 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11623 * be inserted into the first space available in the list. The value of 11624 * ipif_id will then be set to the appropriate value for its position. 11625 */ 11626 static int 11627 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11628 { 11629 ill_t *ill; 11630 ipif_t *tipif; 11631 ipif_t **tipifp; 11632 int id, err; 11633 ip_stack_t *ipst; 11634 11635 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11636 IAM_WRITER_IPIF(ipif)); 11637 11638 ill = ipif->ipif_ill; 11639 ASSERT(ill != NULL); 11640 ipst = ill->ill_ipst; 11641 11642 /* 11643 * In the case of lo0:0 we already hold the ill_g_lock. 11644 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11645 * ipif_insert. 11646 */ 11647 if (acquire_g_lock) 11648 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11649 mutex_enter(&ill->ill_lock); 11650 id = ipif->ipif_id; 11651 tipifp = &(ill->ill_ipif); 11652 if (id == -1) { /* need to find a real id */ 11653 id = 0; 11654 while ((tipif = *tipifp) != NULL) { 11655 ASSERT(tipif->ipif_id >= id); 11656 if (tipif->ipif_id != id) 11657 break; /* non-consecutive id */ 11658 id++; 11659 tipifp = &(tipif->ipif_next); 11660 } 11661 if ((err = is_lifname_valid(ill, id)) != 0) { 11662 mutex_exit(&ill->ill_lock); 11663 if (acquire_g_lock) 11664 rw_exit(&ipst->ips_ill_g_lock); 11665 return (err); 11666 } 11667 ipif->ipif_id = id; /* assign new id */ 11668 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11669 /* we have a real id; insert ipif in the right place */ 11670 while ((tipif = *tipifp) != NULL) { 11671 ASSERT(tipif->ipif_id != id); 11672 if (tipif->ipif_id > id) 11673 break; /* found correct location */ 11674 tipifp = &(tipif->ipif_next); 11675 } 11676 } else { 11677 mutex_exit(&ill->ill_lock); 11678 if (acquire_g_lock) 11679 rw_exit(&ipst->ips_ill_g_lock); 11680 return (err); 11681 } 11682 11683 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11684 11685 ipif->ipif_next = tipif; 11686 *tipifp = ipif; 11687 mutex_exit(&ill->ill_lock); 11688 if (acquire_g_lock) 11689 rw_exit(&ipst->ips_ill_g_lock); 11690 11691 return (0); 11692 } 11693 11694 static void 11695 ipif_remove(ipif_t *ipif) 11696 { 11697 ipif_t **ipifp; 11698 ill_t *ill = ipif->ipif_ill; 11699 11700 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11701 11702 mutex_enter(&ill->ill_lock); 11703 ipifp = &ill->ill_ipif; 11704 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11705 if (*ipifp == ipif) { 11706 *ipifp = ipif->ipif_next; 11707 break; 11708 } 11709 } 11710 mutex_exit(&ill->ill_lock); 11711 } 11712 11713 /* 11714 * Allocate and initialize a new interface control structure. (Always 11715 * called as writer.) 11716 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11717 * is not part of the global linked list of ills. ipif_seqid is unique 11718 * in the system and to preserve the uniqueness, it is assigned only 11719 * when ill becomes part of the global list. At that point ill will 11720 * have a name. If it doesn't get assigned here, it will get assigned 11721 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11722 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11723 * the interface flags or any other information from the DL_INFO_ACK for 11724 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11725 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11726 * second DL_INFO_ACK comes in from the driver. 11727 */ 11728 static ipif_t * 11729 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11730 boolean_t insert, int *errorp) 11731 { 11732 int err; 11733 ipif_t *ipif; 11734 ip_stack_t *ipst = ill->ill_ipst; 11735 11736 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11737 ill->ill_name, id, (void *)ill)); 11738 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11739 11740 if (errorp != NULL) 11741 *errorp = 0; 11742 11743 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11744 if (errorp != NULL) 11745 *errorp = ENOMEM; 11746 return (NULL); 11747 } 11748 *ipif = ipif_zero; /* start clean */ 11749 11750 ipif->ipif_ill = ill; 11751 ipif->ipif_id = id; /* could be -1 */ 11752 /* 11753 * Inherit the zoneid from the ill; for the shared stack instance 11754 * this is always the global zone 11755 */ 11756 ipif->ipif_zoneid = ill->ill_zoneid; 11757 11758 ipif->ipif_refcnt = 0; 11759 11760 if (insert) { 11761 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11762 mi_free(ipif); 11763 if (errorp != NULL) 11764 *errorp = err; 11765 return (NULL); 11766 } 11767 /* -1 id should have been replaced by real id */ 11768 id = ipif->ipif_id; 11769 ASSERT(id >= 0); 11770 } 11771 11772 if (ill->ill_name[0] != '\0') 11773 ipif_assign_seqid(ipif); 11774 11775 /* 11776 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11777 * (which must not exist yet because the zeroth ipif is created once 11778 * per ill). However, do not not link it to the ipmp_grp_t until 11779 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11780 */ 11781 if (id == 0 && IS_IPMP(ill)) { 11782 if (ipmp_illgrp_create(ill) == NULL) { 11783 if (insert) { 11784 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11785 ipif_remove(ipif); 11786 rw_exit(&ipst->ips_ill_g_lock); 11787 } 11788 mi_free(ipif); 11789 if (errorp != NULL) 11790 *errorp = ENOMEM; 11791 return (NULL); 11792 } 11793 } 11794 11795 /* 11796 * We grab ill_lock to protect the flag changes. The ipif is still 11797 * not up and can't be looked up until the ioctl completes and the 11798 * IPIF_CHANGING flag is cleared. 11799 */ 11800 mutex_enter(&ill->ill_lock); 11801 11802 ipif->ipif_ire_type = ire_type; 11803 11804 if (ipif->ipif_isv6) { 11805 ill->ill_flags |= ILLF_IPV6; 11806 } else { 11807 ipaddr_t inaddr_any = INADDR_ANY; 11808 11809 ill->ill_flags |= ILLF_IPV4; 11810 11811 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11812 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11813 &ipif->ipif_v6lcl_addr); 11814 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11815 &ipif->ipif_v6subnet); 11816 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11817 &ipif->ipif_v6net_mask); 11818 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11819 &ipif->ipif_v6brd_addr); 11820 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11821 &ipif->ipif_v6pp_dst_addr); 11822 } 11823 11824 /* 11825 * Don't set the interface flags etc. now, will do it in 11826 * ip_ll_subnet_defaults. 11827 */ 11828 if (!initialize) 11829 goto out; 11830 11831 /* 11832 * NOTE: The IPMP meta-interface is special-cased because it starts 11833 * with no underlying interfaces (and thus an unknown broadcast 11834 * address length), but all interfaces that can be placed into an IPMP 11835 * group are required to be broadcast-capable. 11836 */ 11837 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11838 /* 11839 * Later detect lack of DLPI driver multicast capability by 11840 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11841 */ 11842 ill->ill_flags |= ILLF_MULTICAST; 11843 if (!ipif->ipif_isv6) 11844 ipif->ipif_flags |= IPIF_BROADCAST; 11845 } else { 11846 if (ill->ill_net_type != IRE_LOOPBACK) { 11847 if (ipif->ipif_isv6) 11848 /* 11849 * Note: xresolv interfaces will eventually need 11850 * NOARP set here as well, but that will require 11851 * those external resolvers to have some 11852 * knowledge of that flag and act appropriately. 11853 * Not to be changed at present. 11854 */ 11855 ill->ill_flags |= ILLF_NONUD; 11856 else 11857 ill->ill_flags |= ILLF_NOARP; 11858 } 11859 if (ill->ill_phys_addr_length == 0) { 11860 if (IS_VNI(ill)) { 11861 ipif->ipif_flags |= IPIF_NOXMIT; 11862 } else { 11863 /* pt-pt supports multicast. */ 11864 ill->ill_flags |= ILLF_MULTICAST; 11865 if (ill->ill_net_type != IRE_LOOPBACK) 11866 ipif->ipif_flags |= IPIF_POINTOPOINT; 11867 } 11868 } 11869 } 11870 out: 11871 mutex_exit(&ill->ill_lock); 11872 return (ipif); 11873 } 11874 11875 /* 11876 * Remove the neighbor cache entries associated with this logical 11877 * interface. 11878 */ 11879 int 11880 ipif_arp_down(ipif_t *ipif) 11881 { 11882 ill_t *ill = ipif->ipif_ill; 11883 int err = 0; 11884 11885 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11886 ASSERT(IAM_WRITER_IPIF(ipif)); 11887 11888 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11889 ill_t *, ill, ipif_t *, ipif); 11890 ipif_nce_down(ipif); 11891 11892 /* 11893 * If this is the last ipif that is going down and there are no 11894 * duplicate addresses we may yet attempt to re-probe, then we need to 11895 * clean up ARP completely. 11896 */ 11897 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11898 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11899 /* 11900 * If this was the last ipif on an IPMP interface, purge any 11901 * static ARP entries associated with it. 11902 */ 11903 if (IS_IPMP(ill)) 11904 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11905 11906 /* UNBIND, DETACH */ 11907 err = arp_ll_down(ill); 11908 } 11909 11910 return (err); 11911 } 11912 11913 /* 11914 * Get the resolver set up for a new IP address. (Always called as writer.) 11915 * Called both for IPv4 and IPv6 interfaces, though it only does some 11916 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11917 * 11918 * The enumerated value res_act tunes the behavior: 11919 * * Res_act_initial: set up all the resolver structures for a new 11920 * IP address. 11921 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11922 * ARP message in defense of the address. 11923 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11924 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11925 * 11926 * Returns zero on success, or an errno upon failure. 11927 */ 11928 int 11929 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11930 { 11931 ill_t *ill = ipif->ipif_ill; 11932 int err; 11933 boolean_t was_dup; 11934 11935 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11936 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11937 ASSERT(IAM_WRITER_IPIF(ipif)); 11938 11939 was_dup = B_FALSE; 11940 if (res_act == Res_act_initial) { 11941 ipif->ipif_addr_ready = 0; 11942 /* 11943 * We're bringing an interface up here. There's no way that we 11944 * should need to shut down ARP now. 11945 */ 11946 mutex_enter(&ill->ill_lock); 11947 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11948 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11949 ill->ill_ipif_dup_count--; 11950 was_dup = B_TRUE; 11951 } 11952 mutex_exit(&ill->ill_lock); 11953 } 11954 if (ipif->ipif_recovery_id != 0) 11955 (void) untimeout(ipif->ipif_recovery_id); 11956 ipif->ipif_recovery_id = 0; 11957 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11958 ipif->ipif_addr_ready = 1; 11959 return (0); 11960 } 11961 /* NDP will set the ipif_addr_ready flag when it's ready */ 11962 if (ill->ill_isv6) 11963 return (0); 11964 11965 err = ipif_arp_up(ipif, res_act, was_dup); 11966 return (err); 11967 } 11968 11969 /* 11970 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11971 * when a link has just gone back up. 11972 */ 11973 static void 11974 ipif_nce_start_dad(ipif_t *ipif) 11975 { 11976 ncec_t *ncec; 11977 ill_t *ill = ipif->ipif_ill; 11978 boolean_t isv6 = ill->ill_isv6; 11979 11980 if (isv6) { 11981 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11982 &ipif->ipif_v6lcl_addr); 11983 } else { 11984 ipaddr_t v4addr; 11985 11986 if (ill->ill_net_type != IRE_IF_RESOLVER || 11987 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11988 ipif->ipif_lcl_addr == INADDR_ANY) { 11989 /* 11990 * If we can't contact ARP for some reason, 11991 * that's not really a problem. Just send 11992 * out the routing socket notification that 11993 * DAD completion would have done, and continue. 11994 */ 11995 ipif_mask_reply(ipif); 11996 ipif_up_notify(ipif); 11997 ipif->ipif_addr_ready = 1; 11998 return; 11999 } 12000 12001 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12002 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12003 } 12004 12005 if (ncec == NULL) { 12006 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12007 (void *)ipif)); 12008 return; 12009 } 12010 if (!nce_restart_dad(ncec)) { 12011 /* 12012 * If we can't restart DAD for some reason, that's not really a 12013 * problem. Just send out the routing socket notification that 12014 * DAD completion would have done, and continue. 12015 */ 12016 ipif_up_notify(ipif); 12017 ipif->ipif_addr_ready = 1; 12018 } 12019 ncec_refrele(ncec); 12020 } 12021 12022 /* 12023 * Restart duplicate address detection on all interfaces on the given ill. 12024 * 12025 * This is called when an interface transitions from down to up 12026 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12027 * 12028 * Note that since the underlying physical link has transitioned, we must cause 12029 * at least one routing socket message to be sent here, either via DAD 12030 * completion or just by default on the first ipif. (If we don't do this, then 12031 * in.mpathd will see long delays when doing link-based failure recovery.) 12032 */ 12033 void 12034 ill_restart_dad(ill_t *ill, boolean_t went_up) 12035 { 12036 ipif_t *ipif; 12037 12038 if (ill == NULL) 12039 return; 12040 12041 /* 12042 * If layer two doesn't support duplicate address detection, then just 12043 * send the routing socket message now and be done with it. 12044 */ 12045 if (!ill->ill_isv6 && arp_no_defense) { 12046 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12047 return; 12048 } 12049 12050 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12051 if (went_up) { 12052 12053 if (ipif->ipif_flags & IPIF_UP) { 12054 ipif_nce_start_dad(ipif); 12055 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12056 /* 12057 * kick off the bring-up process now. 12058 */ 12059 ipif_do_recovery(ipif); 12060 } else { 12061 /* 12062 * Unfortunately, the first ipif is "special" 12063 * and represents the underlying ill in the 12064 * routing socket messages. Thus, when this 12065 * one ipif is down, we must still notify so 12066 * that the user knows the IFF_RUNNING status 12067 * change. (If the first ipif is up, then 12068 * we'll handle eventual routing socket 12069 * notification via DAD completion.) 12070 */ 12071 if (ipif == ill->ill_ipif) { 12072 ip_rts_ifmsg(ill->ill_ipif, 12073 RTSQ_DEFAULT); 12074 } 12075 } 12076 } else { 12077 /* 12078 * After link down, we'll need to send a new routing 12079 * message when the link comes back, so clear 12080 * ipif_addr_ready. 12081 */ 12082 ipif->ipif_addr_ready = 0; 12083 } 12084 } 12085 12086 /* 12087 * If we've torn down links, then notify the user right away. 12088 */ 12089 if (!went_up) 12090 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12091 } 12092 12093 static void 12094 ipsq_delete(ipsq_t *ipsq) 12095 { 12096 ipxop_t *ipx = ipsq->ipsq_xop; 12097 12098 ipsq->ipsq_ipst = NULL; 12099 ASSERT(ipsq->ipsq_phyint == NULL); 12100 ASSERT(ipsq->ipsq_xop != NULL); 12101 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12102 ASSERT(ipx->ipx_pending_mp == NULL); 12103 kmem_free(ipsq, sizeof (ipsq_t)); 12104 } 12105 12106 static int 12107 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12108 { 12109 int err = 0; 12110 ipif_t *ipif; 12111 12112 if (ill == NULL) 12113 return (0); 12114 12115 ASSERT(IAM_WRITER_ILL(ill)); 12116 ill->ill_up_ipifs = B_TRUE; 12117 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12118 if (ipif->ipif_was_up) { 12119 if (!(ipif->ipif_flags & IPIF_UP)) 12120 err = ipif_up(ipif, q, mp); 12121 ipif->ipif_was_up = B_FALSE; 12122 if (err != 0) { 12123 ASSERT(err == EINPROGRESS); 12124 return (err); 12125 } 12126 } 12127 } 12128 ill->ill_up_ipifs = B_FALSE; 12129 return (0); 12130 } 12131 12132 /* 12133 * This function is called to bring up all the ipifs that were up before 12134 * bringing the ill down via ill_down_ipifs(). 12135 */ 12136 int 12137 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12138 { 12139 int err; 12140 12141 ASSERT(IAM_WRITER_ILL(ill)); 12142 12143 if (ill->ill_replumbing) { 12144 ill->ill_replumbing = 0; 12145 /* 12146 * Send down REPLUMB_DONE notification followed by the 12147 * BIND_REQ on the arp stream. 12148 */ 12149 if (!ill->ill_isv6) 12150 arp_send_replumb_conf(ill); 12151 } 12152 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12153 if (err != 0) 12154 return (err); 12155 12156 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12157 } 12158 12159 /* 12160 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12161 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12162 */ 12163 static void 12164 ill_down_ipifs(ill_t *ill, boolean_t logical) 12165 { 12166 ipif_t *ipif; 12167 12168 ASSERT(IAM_WRITER_ILL(ill)); 12169 12170 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12171 /* 12172 * We go through the ipif_down logic even if the ipif 12173 * is already down, since routes can be added based 12174 * on down ipifs. Going through ipif_down once again 12175 * will delete any IREs created based on these routes. 12176 */ 12177 if (ipif->ipif_flags & IPIF_UP) 12178 ipif->ipif_was_up = B_TRUE; 12179 12180 if (logical) { 12181 (void) ipif_logical_down(ipif, NULL, NULL); 12182 ipif_non_duplicate(ipif); 12183 (void) ipif_down_tail(ipif); 12184 } else { 12185 (void) ipif_down(ipif, NULL, NULL); 12186 } 12187 } 12188 } 12189 12190 /* 12191 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12192 * a look again at valid source addresses. 12193 * This should be called each time after the set of source addresses has been 12194 * changed. 12195 */ 12196 void 12197 ip_update_source_selection(ip_stack_t *ipst) 12198 { 12199 /* We skip past SRC_GENERATION_VERIFY */ 12200 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12201 SRC_GENERATION_VERIFY) 12202 atomic_add_32(&ipst->ips_src_generation, 1); 12203 } 12204 12205 /* 12206 * Finish the group join started in ip_sioctl_groupname(). 12207 */ 12208 /* ARGSUSED */ 12209 static void 12210 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12211 { 12212 ill_t *ill = q->q_ptr; 12213 phyint_t *phyi = ill->ill_phyint; 12214 ipmp_grp_t *grp = phyi->phyint_grp; 12215 ip_stack_t *ipst = ill->ill_ipst; 12216 12217 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12218 ASSERT(!IS_IPMP(ill) && grp != NULL); 12219 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12220 12221 if (phyi->phyint_illv4 != NULL) { 12222 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12223 VERIFY(grp->gr_pendv4-- > 0); 12224 rw_exit(&ipst->ips_ipmp_lock); 12225 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12226 } 12227 if (phyi->phyint_illv6 != NULL) { 12228 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12229 VERIFY(grp->gr_pendv6-- > 0); 12230 rw_exit(&ipst->ips_ipmp_lock); 12231 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12232 } 12233 freemsg(mp); 12234 } 12235 12236 /* 12237 * Process an SIOCSLIFGROUPNAME request. 12238 */ 12239 /* ARGSUSED */ 12240 int 12241 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12242 ip_ioctl_cmd_t *ipip, void *ifreq) 12243 { 12244 struct lifreq *lifr = ifreq; 12245 ill_t *ill = ipif->ipif_ill; 12246 ip_stack_t *ipst = ill->ill_ipst; 12247 phyint_t *phyi = ill->ill_phyint; 12248 ipmp_grp_t *grp = phyi->phyint_grp; 12249 mblk_t *ipsq_mp; 12250 int err = 0; 12251 12252 /* 12253 * Note that phyint_grp can only change here, where we're exclusive. 12254 */ 12255 ASSERT(IAM_WRITER_ILL(ill)); 12256 12257 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12258 (phyi->phyint_flags & PHYI_VIRTUAL)) 12259 return (EINVAL); 12260 12261 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12262 12263 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12264 12265 /* 12266 * If the name hasn't changed, there's nothing to do. 12267 */ 12268 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12269 goto unlock; 12270 12271 /* 12272 * Handle requests to rename an IPMP meta-interface. 12273 * 12274 * Note that creation of the IPMP meta-interface is handled in 12275 * userland through the standard plumbing sequence. As part of the 12276 * plumbing the IPMP meta-interface, its initial groupname is set to 12277 * the name of the interface (see ipif_set_values_tail()). 12278 */ 12279 if (IS_IPMP(ill)) { 12280 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12281 goto unlock; 12282 } 12283 12284 /* 12285 * Handle requests to add or remove an IP interface from a group. 12286 */ 12287 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12288 /* 12289 * Moves are handled by first removing the interface from 12290 * its existing group, and then adding it to another group. 12291 * So, fail if it's already in a group. 12292 */ 12293 if (IS_UNDER_IPMP(ill)) { 12294 err = EALREADY; 12295 goto unlock; 12296 } 12297 12298 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12299 if (grp == NULL) { 12300 err = ENOENT; 12301 goto unlock; 12302 } 12303 12304 /* 12305 * Check if the phyint and its ills are suitable for 12306 * inclusion into the group. 12307 */ 12308 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12309 goto unlock; 12310 12311 /* 12312 * Checks pass; join the group, and enqueue the remaining 12313 * illgrp joins for when we've become part of the group xop 12314 * and are exclusive across its IPSQs. Since qwriter_ip() 12315 * requires an mblk_t to scribble on, and since `mp' will be 12316 * freed as part of completing the ioctl, allocate another. 12317 */ 12318 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12319 err = ENOMEM; 12320 goto unlock; 12321 } 12322 12323 /* 12324 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12325 * IPMP meta-interface ills needed by `phyi' cannot go away 12326 * before ip_join_illgrps() is called back. See the comments 12327 * in ip_sioctl_plink_ipmp() for more. 12328 */ 12329 if (phyi->phyint_illv4 != NULL) 12330 grp->gr_pendv4++; 12331 if (phyi->phyint_illv6 != NULL) 12332 grp->gr_pendv6++; 12333 12334 rw_exit(&ipst->ips_ipmp_lock); 12335 12336 ipmp_phyint_join_grp(phyi, grp); 12337 ill_refhold(ill); 12338 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12339 SWITCH_OP, B_FALSE); 12340 return (0); 12341 } else { 12342 /* 12343 * Request to remove the interface from a group. If the 12344 * interface is not in a group, this trivially succeeds. 12345 */ 12346 rw_exit(&ipst->ips_ipmp_lock); 12347 if (IS_UNDER_IPMP(ill)) 12348 ipmp_phyint_leave_grp(phyi); 12349 return (0); 12350 } 12351 unlock: 12352 rw_exit(&ipst->ips_ipmp_lock); 12353 return (err); 12354 } 12355 12356 /* 12357 * Process an SIOCGLIFBINDING request. 12358 */ 12359 /* ARGSUSED */ 12360 int 12361 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12362 ip_ioctl_cmd_t *ipip, void *ifreq) 12363 { 12364 ill_t *ill; 12365 struct lifreq *lifr = ifreq; 12366 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12367 12368 if (!IS_IPMP(ipif->ipif_ill)) 12369 return (EINVAL); 12370 12371 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12372 if ((ill = ipif->ipif_bound_ill) == NULL) 12373 lifr->lifr_binding[0] = '\0'; 12374 else 12375 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12376 rw_exit(&ipst->ips_ipmp_lock); 12377 return (0); 12378 } 12379 12380 /* 12381 * Process an SIOCGLIFGROUPNAME request. 12382 */ 12383 /* ARGSUSED */ 12384 int 12385 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12386 ip_ioctl_cmd_t *ipip, void *ifreq) 12387 { 12388 ipmp_grp_t *grp; 12389 struct lifreq *lifr = ifreq; 12390 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12391 12392 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12393 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12394 lifr->lifr_groupname[0] = '\0'; 12395 else 12396 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12397 rw_exit(&ipst->ips_ipmp_lock); 12398 return (0); 12399 } 12400 12401 /* 12402 * Process an SIOCGLIFGROUPINFO request. 12403 */ 12404 /* ARGSUSED */ 12405 int 12406 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12407 ip_ioctl_cmd_t *ipip, void *dummy) 12408 { 12409 ipmp_grp_t *grp; 12410 lifgroupinfo_t *lifgr; 12411 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12412 12413 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12414 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12415 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12416 12417 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12418 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12419 rw_exit(&ipst->ips_ipmp_lock); 12420 return (ENOENT); 12421 } 12422 ipmp_grp_info(grp, lifgr); 12423 rw_exit(&ipst->ips_ipmp_lock); 12424 return (0); 12425 } 12426 12427 static void 12428 ill_dl_down(ill_t *ill) 12429 { 12430 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12431 12432 /* 12433 * The ill is down; unbind but stay attached since we're still 12434 * associated with a PPA. If we have negotiated DLPI capabilites 12435 * with the data link service provider (IDS_OK) then reset them. 12436 * The interval between unbinding and rebinding is potentially 12437 * unbounded hence we cannot assume things will be the same. 12438 * The DLPI capabilities will be probed again when the data link 12439 * is brought up. 12440 */ 12441 mblk_t *mp = ill->ill_unbind_mp; 12442 12443 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12444 12445 if (!ill->ill_replumbing) { 12446 /* Free all ilms for this ill */ 12447 update_conn_ill(ill, ill->ill_ipst); 12448 } else { 12449 ill_leave_multicast(ill); 12450 } 12451 12452 ill->ill_unbind_mp = NULL; 12453 if (mp != NULL) { 12454 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12455 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12456 ill->ill_name)); 12457 mutex_enter(&ill->ill_lock); 12458 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12459 mutex_exit(&ill->ill_lock); 12460 /* 12461 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12462 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12463 * ill_capability_dld_disable disable rightaway. If this is not 12464 * an unplumb operation then the disable happens on receipt of 12465 * the capab ack via ip_rput_dlpi_writer -> 12466 * ill_capability_ack_thr. In both cases the order of 12467 * the operations seen by DLD is capability disable followed 12468 * by DL_UNBIND. Also the DLD capability disable needs a 12469 * cv_wait'able context. 12470 */ 12471 if (ill->ill_state_flags & ILL_CONDEMNED) 12472 ill_capability_dld_disable(ill); 12473 ill_capability_reset(ill, B_FALSE); 12474 ill_dlpi_send(ill, mp); 12475 } 12476 mutex_enter(&ill->ill_lock); 12477 ill->ill_dl_up = 0; 12478 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12479 mutex_exit(&ill->ill_lock); 12480 } 12481 12482 void 12483 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12484 { 12485 union DL_primitives *dlp; 12486 t_uscalar_t prim; 12487 boolean_t waitack = B_FALSE; 12488 12489 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12490 12491 dlp = (union DL_primitives *)mp->b_rptr; 12492 prim = dlp->dl_primitive; 12493 12494 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12495 dl_primstr(prim), prim, ill->ill_name)); 12496 12497 switch (prim) { 12498 case DL_PHYS_ADDR_REQ: 12499 { 12500 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12501 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12502 break; 12503 } 12504 case DL_BIND_REQ: 12505 mutex_enter(&ill->ill_lock); 12506 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12507 mutex_exit(&ill->ill_lock); 12508 break; 12509 } 12510 12511 /* 12512 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12513 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12514 * we only wait for the ACK of the DL_UNBIND_REQ. 12515 */ 12516 mutex_enter(&ill->ill_lock); 12517 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12518 (prim == DL_UNBIND_REQ)) { 12519 ill->ill_dlpi_pending = prim; 12520 waitack = B_TRUE; 12521 } 12522 12523 mutex_exit(&ill->ill_lock); 12524 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12525 char *, dl_primstr(prim), ill_t *, ill); 12526 putnext(ill->ill_wq, mp); 12527 12528 /* 12529 * There is no ack for DL_NOTIFY_CONF messages 12530 */ 12531 if (waitack && prim == DL_NOTIFY_CONF) 12532 ill_dlpi_done(ill, prim); 12533 } 12534 12535 /* 12536 * Helper function for ill_dlpi_send(). 12537 */ 12538 /* ARGSUSED */ 12539 static void 12540 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12541 { 12542 ill_dlpi_send(q->q_ptr, mp); 12543 } 12544 12545 /* 12546 * Send a DLPI control message to the driver but make sure there 12547 * is only one outstanding message. Uses ill_dlpi_pending to tell 12548 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12549 * when an ACK or a NAK is received to process the next queued message. 12550 */ 12551 void 12552 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12553 { 12554 mblk_t **mpp; 12555 12556 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12557 12558 /* 12559 * To ensure that any DLPI requests for current exclusive operation 12560 * are always completely sent before any DLPI messages for other 12561 * operations, require writer access before enqueuing. 12562 */ 12563 if (!IAM_WRITER_ILL(ill)) { 12564 ill_refhold(ill); 12565 /* qwriter_ip() does the ill_refrele() */ 12566 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12567 NEW_OP, B_TRUE); 12568 return; 12569 } 12570 12571 mutex_enter(&ill->ill_lock); 12572 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12573 /* Must queue message. Tail insertion */ 12574 mpp = &ill->ill_dlpi_deferred; 12575 while (*mpp != NULL) 12576 mpp = &((*mpp)->b_next); 12577 12578 ip1dbg(("ill_dlpi_send: deferring request for %s " 12579 "while %s pending\n", ill->ill_name, 12580 dl_primstr(ill->ill_dlpi_pending))); 12581 12582 *mpp = mp; 12583 mutex_exit(&ill->ill_lock); 12584 return; 12585 } 12586 mutex_exit(&ill->ill_lock); 12587 ill_dlpi_dispatch(ill, mp); 12588 } 12589 12590 void 12591 ill_capability_send(ill_t *ill, mblk_t *mp) 12592 { 12593 ill->ill_capab_pending_cnt++; 12594 ill_dlpi_send(ill, mp); 12595 } 12596 12597 void 12598 ill_capability_done(ill_t *ill) 12599 { 12600 ASSERT(ill->ill_capab_pending_cnt != 0); 12601 12602 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12603 12604 ill->ill_capab_pending_cnt--; 12605 if (ill->ill_capab_pending_cnt == 0 && 12606 ill->ill_dlpi_capab_state == IDCS_OK) 12607 ill_capability_reset_alloc(ill); 12608 } 12609 12610 /* 12611 * Send all deferred DLPI messages without waiting for their ACKs. 12612 */ 12613 void 12614 ill_dlpi_send_deferred(ill_t *ill) 12615 { 12616 mblk_t *mp, *nextmp; 12617 12618 /* 12619 * Clear ill_dlpi_pending so that the message is not queued in 12620 * ill_dlpi_send(). 12621 */ 12622 mutex_enter(&ill->ill_lock); 12623 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12624 mp = ill->ill_dlpi_deferred; 12625 ill->ill_dlpi_deferred = NULL; 12626 mutex_exit(&ill->ill_lock); 12627 12628 for (; mp != NULL; mp = nextmp) { 12629 nextmp = mp->b_next; 12630 mp->b_next = NULL; 12631 ill_dlpi_send(ill, mp); 12632 } 12633 } 12634 12635 /* 12636 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12637 * or M_HANGUP 12638 */ 12639 static void 12640 ill_dlpi_clear_deferred(ill_t *ill) 12641 { 12642 mblk_t *mp, *nextmp; 12643 12644 mutex_enter(&ill->ill_lock); 12645 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12646 mp = ill->ill_dlpi_deferred; 12647 ill->ill_dlpi_deferred = NULL; 12648 mutex_exit(&ill->ill_lock); 12649 12650 for (; mp != NULL; mp = nextmp) { 12651 nextmp = mp->b_next; 12652 inet_freemsg(mp); 12653 } 12654 } 12655 12656 /* 12657 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12658 */ 12659 boolean_t 12660 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12661 { 12662 t_uscalar_t pending; 12663 12664 mutex_enter(&ill->ill_lock); 12665 if (ill->ill_dlpi_pending == prim) { 12666 mutex_exit(&ill->ill_lock); 12667 return (B_TRUE); 12668 } 12669 12670 /* 12671 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12672 * without waiting, so don't print any warnings in that case. 12673 */ 12674 if (ill->ill_state_flags & ILL_CONDEMNED) { 12675 mutex_exit(&ill->ill_lock); 12676 return (B_FALSE); 12677 } 12678 pending = ill->ill_dlpi_pending; 12679 mutex_exit(&ill->ill_lock); 12680 12681 if (pending == DL_PRIM_INVAL) { 12682 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12683 "received unsolicited ack for %s on %s\n", 12684 dl_primstr(prim), ill->ill_name); 12685 } else { 12686 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12687 "received unexpected ack for %s on %s (expecting %s)\n", 12688 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12689 } 12690 return (B_FALSE); 12691 } 12692 12693 /* 12694 * Complete the current DLPI operation associated with `prim' on `ill' and 12695 * start the next queued DLPI operation (if any). If there are no queued DLPI 12696 * operations and the ill's current exclusive IPSQ operation has finished 12697 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12698 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12699 * the comments above ipsq_current_finish() for details. 12700 */ 12701 void 12702 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12703 { 12704 mblk_t *mp; 12705 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12706 ipxop_t *ipx = ipsq->ipsq_xop; 12707 12708 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12709 mutex_enter(&ill->ill_lock); 12710 12711 ASSERT(prim != DL_PRIM_INVAL); 12712 ASSERT(ill->ill_dlpi_pending == prim); 12713 12714 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12715 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12716 12717 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12718 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12719 if (ipx->ipx_current_done) { 12720 mutex_enter(&ipx->ipx_lock); 12721 ipx->ipx_current_ipif = NULL; 12722 mutex_exit(&ipx->ipx_lock); 12723 } 12724 cv_signal(&ill->ill_cv); 12725 mutex_exit(&ill->ill_lock); 12726 return; 12727 } 12728 12729 ill->ill_dlpi_deferred = mp->b_next; 12730 mp->b_next = NULL; 12731 mutex_exit(&ill->ill_lock); 12732 12733 ill_dlpi_dispatch(ill, mp); 12734 } 12735 12736 /* 12737 * Queue a (multicast) DLPI control message to be sent to the driver by 12738 * later calling ill_dlpi_send_queued. 12739 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12740 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12741 * for the same group to race. 12742 * We send DLPI control messages in order using ill_lock. 12743 * For IPMP we should be called on the cast_ill. 12744 */ 12745 void 12746 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12747 { 12748 mblk_t **mpp; 12749 12750 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12751 12752 mutex_enter(&ill->ill_lock); 12753 /* Must queue message. Tail insertion */ 12754 mpp = &ill->ill_dlpi_deferred; 12755 while (*mpp != NULL) 12756 mpp = &((*mpp)->b_next); 12757 12758 *mpp = mp; 12759 mutex_exit(&ill->ill_lock); 12760 } 12761 12762 /* 12763 * Send the messages that were queued. Make sure there is only 12764 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12765 * when an ACK or a NAK is received to process the next queued message. 12766 * For IPMP we are called on the upper ill, but when send what is queued 12767 * on the cast_ill. 12768 */ 12769 void 12770 ill_dlpi_send_queued(ill_t *ill) 12771 { 12772 mblk_t *mp; 12773 union DL_primitives *dlp; 12774 t_uscalar_t prim; 12775 ill_t *release_ill = NULL; 12776 12777 if (IS_IPMP(ill)) { 12778 /* On the upper IPMP ill. */ 12779 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12780 if (release_ill == NULL) { 12781 /* Avoid ever sending anything down to the ipmpstub */ 12782 return; 12783 } 12784 ill = release_ill; 12785 } 12786 mutex_enter(&ill->ill_lock); 12787 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12788 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12789 /* Can't send. Somebody else will send it */ 12790 mutex_exit(&ill->ill_lock); 12791 goto done; 12792 } 12793 ill->ill_dlpi_deferred = mp->b_next; 12794 mp->b_next = NULL; 12795 if (!ill->ill_dl_up) { 12796 /* 12797 * Nobody there. All multicast addresses will be 12798 * re-joined when we get the DL_BIND_ACK bringing the 12799 * interface up. 12800 */ 12801 freemsg(mp); 12802 continue; 12803 } 12804 dlp = (union DL_primitives *)mp->b_rptr; 12805 prim = dlp->dl_primitive; 12806 12807 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12808 (prim == DL_UNBIND_REQ)) { 12809 ill->ill_dlpi_pending = prim; 12810 } 12811 mutex_exit(&ill->ill_lock); 12812 12813 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12814 char *, dl_primstr(prim), ill_t *, ill); 12815 putnext(ill->ill_wq, mp); 12816 mutex_enter(&ill->ill_lock); 12817 } 12818 mutex_exit(&ill->ill_lock); 12819 done: 12820 if (release_ill != NULL) 12821 ill_refrele(release_ill); 12822 } 12823 12824 /* 12825 * Queue an IP (IGMP/MLD) message to be sent by IP from 12826 * ill_mcast_send_queued 12827 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12828 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12829 * group to race. 12830 * We send them in order using ill_lock. 12831 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12832 */ 12833 void 12834 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12835 { 12836 mblk_t **mpp; 12837 ill_t *release_ill = NULL; 12838 12839 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12840 12841 if (IS_IPMP(ill)) { 12842 /* On the upper IPMP ill. */ 12843 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12844 if (release_ill == NULL) { 12845 /* Discard instead of queuing for the ipmp interface */ 12846 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12847 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12848 mp, ill); 12849 freemsg(mp); 12850 return; 12851 } 12852 ill = release_ill; 12853 } 12854 12855 mutex_enter(&ill->ill_lock); 12856 /* Must queue message. Tail insertion */ 12857 mpp = &ill->ill_mcast_deferred; 12858 while (*mpp != NULL) 12859 mpp = &((*mpp)->b_next); 12860 12861 *mpp = mp; 12862 mutex_exit(&ill->ill_lock); 12863 if (release_ill != NULL) 12864 ill_refrele(release_ill); 12865 } 12866 12867 /* 12868 * Send the IP packets that were queued by ill_mcast_queue. 12869 * These are IGMP/MLD packets. 12870 * 12871 * For IPMP we are called on the upper ill, but when send what is queued 12872 * on the cast_ill. 12873 * 12874 * Request loopback of the report if we are acting as a multicast 12875 * router, so that the process-level routing demon can hear it. 12876 * This will run multiple times for the same group if there are members 12877 * on the same group for multiple ipif's on the same ill. The 12878 * igmp_input/mld_input code will suppress this due to the loopback thus we 12879 * always loopback membership report. 12880 * 12881 * We also need to make sure that this does not get load balanced 12882 * by IPMP. We do this by passing an ill to ip_output_simple. 12883 */ 12884 void 12885 ill_mcast_send_queued(ill_t *ill) 12886 { 12887 mblk_t *mp; 12888 ip_xmit_attr_t ixas; 12889 ill_t *release_ill = NULL; 12890 12891 if (IS_IPMP(ill)) { 12892 /* On the upper IPMP ill. */ 12893 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12894 if (release_ill == NULL) { 12895 /* 12896 * We should have no messages on the ipmp interface 12897 * but no point in trying to send them. 12898 */ 12899 return; 12900 } 12901 ill = release_ill; 12902 } 12903 bzero(&ixas, sizeof (ixas)); 12904 ixas.ixa_zoneid = ALL_ZONES; 12905 ixas.ixa_cred = kcred; 12906 ixas.ixa_cpid = NOPID; 12907 ixas.ixa_tsl = NULL; 12908 /* 12909 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12910 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12911 * That is necessary to handle IGMP/MLD snooping switches. 12912 */ 12913 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12914 ixas.ixa_ipst = ill->ill_ipst; 12915 12916 mutex_enter(&ill->ill_lock); 12917 while ((mp = ill->ill_mcast_deferred) != NULL) { 12918 ill->ill_mcast_deferred = mp->b_next; 12919 mp->b_next = NULL; 12920 if (!ill->ill_dl_up) { 12921 /* 12922 * Nobody there. Just drop the ip packets. 12923 * IGMP/MLD will resend later, if this is a replumb. 12924 */ 12925 freemsg(mp); 12926 continue; 12927 } 12928 mutex_enter(&ill->ill_phyint->phyint_lock); 12929 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12930 /* 12931 * When the ill is getting deactivated, we only want to 12932 * send the DLPI messages, so drop IGMP/MLD packets. 12933 * DLPI messages are handled by ill_dlpi_send_queued() 12934 */ 12935 mutex_exit(&ill->ill_phyint->phyint_lock); 12936 freemsg(mp); 12937 continue; 12938 } 12939 mutex_exit(&ill->ill_phyint->phyint_lock); 12940 mutex_exit(&ill->ill_lock); 12941 12942 /* Check whether we are sending IPv4 or IPv6. */ 12943 if (ill->ill_isv6) { 12944 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12945 12946 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12947 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12948 } else { 12949 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12950 12951 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12952 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12953 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12954 } 12955 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 12956 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12957 (void) ip_output_simple(mp, &ixas); 12958 ixa_cleanup(&ixas); 12959 12960 mutex_enter(&ill->ill_lock); 12961 } 12962 mutex_exit(&ill->ill_lock); 12963 12964 done: 12965 if (release_ill != NULL) 12966 ill_refrele(release_ill); 12967 } 12968 12969 /* 12970 * Take down a specific interface, but don't lose any information about it. 12971 * (Always called as writer.) 12972 * This function goes through the down sequence even if the interface is 12973 * already down. There are 2 reasons. 12974 * a. Currently we permit interface routes that depend on down interfaces 12975 * to be added. This behaviour itself is questionable. However it appears 12976 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12977 * time. We go thru the cleanup in order to remove these routes. 12978 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12979 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12980 * down, but we need to cleanup i.e. do ill_dl_down and 12981 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12982 * 12983 * IP-MT notes: 12984 * 12985 * Model of reference to interfaces. 12986 * 12987 * The following members in ipif_t track references to the ipif. 12988 * int ipif_refcnt; Active reference count 12989 * 12990 * The following members in ill_t track references to the ill. 12991 * int ill_refcnt; active refcnt 12992 * uint_t ill_ire_cnt; Number of ires referencing ill 12993 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12994 * uint_t ill_nce_cnt; Number of nces referencing ill 12995 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12996 * 12997 * Reference to an ipif or ill can be obtained in any of the following ways. 12998 * 12999 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13000 * Pointers to ipif / ill from other data structures viz ire and conn. 13001 * Implicit reference to the ipif / ill by holding a reference to the ire. 13002 * 13003 * The ipif/ill lookup functions return a reference held ipif / ill. 13004 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13005 * This is a purely dynamic reference count associated with threads holding 13006 * references to the ipif / ill. Pointers from other structures do not 13007 * count towards this reference count. 13008 * 13009 * ill_ire_cnt is the number of ire's associated with the 13010 * ill. This is incremented whenever a new ire is created referencing the 13011 * ill. This is done atomically inside ire_add_v[46] where the ire is 13012 * actually added to the ire hash table. The count is decremented in 13013 * ire_inactive where the ire is destroyed. 13014 * 13015 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13016 * This is incremented atomically in 13017 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13018 * table. Similarly it is decremented in ncec_inactive() where the ncec 13019 * is destroyed. 13020 * 13021 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13022 * incremented atomically in nce_add() where the nce is actually added to the 13023 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13024 * is destroyed. 13025 * 13026 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13027 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13028 * 13029 * Flow of ioctls involving interface down/up 13030 * 13031 * The following is the sequence of an attempt to set some critical flags on an 13032 * up interface. 13033 * ip_sioctl_flags 13034 * ipif_down 13035 * wait for ipif to be quiescent 13036 * ipif_down_tail 13037 * ip_sioctl_flags_tail 13038 * 13039 * All set ioctls that involve down/up sequence would have a skeleton similar 13040 * to the above. All the *tail functions are called after the refcounts have 13041 * dropped to the appropriate values. 13042 * 13043 * SIOC ioctls during the IPIF_CHANGING interval. 13044 * 13045 * Threads handling SIOC set ioctls serialize on the squeue, but this 13046 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13047 * steps of internal changes to the state, some of which are visible in 13048 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13049 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13050 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13051 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13052 * the current exclusive operation completes. The IPIF_CHANGING check 13053 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13054 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13055 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13056 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13057 * until we release the ipsq_lock, even though the ill/ipif state flags 13058 * can change after we drop the ill_lock. 13059 */ 13060 int 13061 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13062 { 13063 ill_t *ill = ipif->ipif_ill; 13064 conn_t *connp; 13065 boolean_t success; 13066 boolean_t ipif_was_up = B_FALSE; 13067 ip_stack_t *ipst = ill->ill_ipst; 13068 13069 ASSERT(IAM_WRITER_IPIF(ipif)); 13070 13071 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13072 13073 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13074 ill_t *, ill, ipif_t *, ipif); 13075 13076 if (ipif->ipif_flags & IPIF_UP) { 13077 mutex_enter(&ill->ill_lock); 13078 ipif->ipif_flags &= ~IPIF_UP; 13079 ASSERT(ill->ill_ipif_up_count > 0); 13080 --ill->ill_ipif_up_count; 13081 mutex_exit(&ill->ill_lock); 13082 ipif_was_up = B_TRUE; 13083 /* Update status in SCTP's list */ 13084 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13085 ill_nic_event_dispatch(ipif->ipif_ill, 13086 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13087 } 13088 13089 /* 13090 * Blow away memberships we established in ipif_multicast_up(). 13091 */ 13092 ipif_multicast_down(ipif); 13093 13094 /* 13095 * Remove from the mapping for __sin6_src_id. We insert only 13096 * when the address is not INADDR_ANY. As IPv4 addresses are 13097 * stored as mapped addresses, we need to check for mapped 13098 * INADDR_ANY also. 13099 */ 13100 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13101 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13102 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13103 int err; 13104 13105 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13106 ipif->ipif_zoneid, ipst); 13107 if (err != 0) { 13108 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13109 } 13110 } 13111 13112 if (ipif_was_up) { 13113 /* only delete if we'd added ire's before */ 13114 if (ipif->ipif_isv6) 13115 ipif_delete_ires_v6(ipif); 13116 else 13117 ipif_delete_ires_v4(ipif); 13118 } 13119 13120 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13121 /* 13122 * Since the interface is now down, it may have just become 13123 * inactive. Note that this needs to be done even for a 13124 * lll_logical_down(), or ARP entries will not get correctly 13125 * restored when the interface comes back up. 13126 */ 13127 if (IS_UNDER_IPMP(ill)) 13128 ipmp_ill_refresh_active(ill); 13129 } 13130 13131 /* 13132 * neighbor-discovery or arp entries for this interface. The ipif 13133 * has to be quiesced, so we walk all the nce's and delete those 13134 * that point at the ipif->ipif_ill. At the same time, we also 13135 * update IPMP so that ipifs for data addresses are unbound. We dont 13136 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13137 * that for ipif_down_tail() 13138 */ 13139 ipif_nce_down(ipif); 13140 13141 /* 13142 * If this is the last ipif on the ill, we also need to remove 13143 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13144 * never succeed. 13145 */ 13146 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13147 ire_walk_ill(0, 0, ill_downi, ill, ill); 13148 13149 /* 13150 * Walk all CONNs that can have a reference on an ire for this 13151 * ipif (we actually walk all that now have stale references). 13152 */ 13153 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13154 13155 /* 13156 * If mp is NULL the caller will wait for the appropriate refcnt. 13157 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13158 * and ill_delete -> ipif_free -> ipif_down 13159 */ 13160 if (mp == NULL) { 13161 ASSERT(q == NULL); 13162 return (0); 13163 } 13164 13165 if (CONN_Q(q)) { 13166 connp = Q_TO_CONN(q); 13167 mutex_enter(&connp->conn_lock); 13168 } else { 13169 connp = NULL; 13170 } 13171 mutex_enter(&ill->ill_lock); 13172 /* 13173 * Are there any ire's pointing to this ipif that are still active ? 13174 * If this is the last ipif going down, are there any ire's pointing 13175 * to this ill that are still active ? 13176 */ 13177 if (ipif_is_quiescent(ipif)) { 13178 mutex_exit(&ill->ill_lock); 13179 if (connp != NULL) 13180 mutex_exit(&connp->conn_lock); 13181 return (0); 13182 } 13183 13184 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13185 ill->ill_name, (void *)ill)); 13186 /* 13187 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13188 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13189 * which in turn is called by the last refrele on the ipif/ill/ire. 13190 */ 13191 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13192 if (!success) { 13193 /* The conn is closing. So just return */ 13194 ASSERT(connp != NULL); 13195 mutex_exit(&ill->ill_lock); 13196 mutex_exit(&connp->conn_lock); 13197 return (EINTR); 13198 } 13199 13200 mutex_exit(&ill->ill_lock); 13201 if (connp != NULL) 13202 mutex_exit(&connp->conn_lock); 13203 return (EINPROGRESS); 13204 } 13205 13206 int 13207 ipif_down_tail(ipif_t *ipif) 13208 { 13209 ill_t *ill = ipif->ipif_ill; 13210 int err = 0; 13211 13212 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13213 ill_t *, ill, ipif_t *, ipif); 13214 13215 /* 13216 * Skip any loopback interface (null wq). 13217 * If this is the last logical interface on the ill 13218 * have ill_dl_down tell the driver we are gone (unbind) 13219 * Note that lun 0 can ipif_down even though 13220 * there are other logical units that are up. 13221 * This occurs e.g. when we change a "significant" IFF_ flag. 13222 */ 13223 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13224 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13225 ill->ill_dl_up) { 13226 ill_dl_down(ill); 13227 } 13228 if (!ipif->ipif_isv6) 13229 err = ipif_arp_down(ipif); 13230 13231 ill->ill_logical_down = 0; 13232 13233 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13234 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13235 return (err); 13236 } 13237 13238 /* 13239 * Bring interface logically down without bringing the physical interface 13240 * down e.g. when the netmask is changed. This avoids long lasting link 13241 * negotiations between an ethernet interface and a certain switches. 13242 */ 13243 static int 13244 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13245 { 13246 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13247 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13248 13249 /* 13250 * The ill_logical_down flag is a transient flag. It is set here 13251 * and is cleared once the down has completed in ipif_down_tail. 13252 * This flag does not indicate whether the ill stream is in the 13253 * DL_BOUND state with the driver. Instead this flag is used by 13254 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13255 * the driver. The state of the ill stream i.e. whether it is 13256 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13257 */ 13258 ipif->ipif_ill->ill_logical_down = 1; 13259 return (ipif_down(ipif, q, mp)); 13260 } 13261 13262 /* 13263 * Initiate deallocate of an IPIF. Always called as writer. Called by 13264 * ill_delete or ip_sioctl_removeif. 13265 */ 13266 static void 13267 ipif_free(ipif_t *ipif) 13268 { 13269 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13270 13271 ASSERT(IAM_WRITER_IPIF(ipif)); 13272 13273 if (ipif->ipif_recovery_id != 0) 13274 (void) untimeout(ipif->ipif_recovery_id); 13275 ipif->ipif_recovery_id = 0; 13276 13277 /* 13278 * Take down the interface. We can be called either from ill_delete 13279 * or from ip_sioctl_removeif. 13280 */ 13281 (void) ipif_down(ipif, NULL, NULL); 13282 13283 /* 13284 * Now that the interface is down, there's no chance it can still 13285 * become a duplicate. Cancel any timer that may have been set while 13286 * tearing down. 13287 */ 13288 if (ipif->ipif_recovery_id != 0) 13289 (void) untimeout(ipif->ipif_recovery_id); 13290 ipif->ipif_recovery_id = 0; 13291 13292 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13293 /* Remove pointers to this ill in the multicast routing tables */ 13294 reset_mrt_vif_ipif(ipif); 13295 /* If necessary, clear the cached source ipif rotor. */ 13296 if (ipif->ipif_ill->ill_src_ipif == ipif) 13297 ipif->ipif_ill->ill_src_ipif = NULL; 13298 rw_exit(&ipst->ips_ill_g_lock); 13299 } 13300 13301 static void 13302 ipif_free_tail(ipif_t *ipif) 13303 { 13304 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13305 13306 /* 13307 * Need to hold both ill_g_lock and ill_lock while 13308 * inserting or removing an ipif from the linked list 13309 * of ipifs hanging off the ill. 13310 */ 13311 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13312 13313 #ifdef DEBUG 13314 ipif_trace_cleanup(ipif); 13315 #endif 13316 13317 /* Ask SCTP to take it out of it list */ 13318 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13319 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13320 13321 /* Get it out of the ILL interface list. */ 13322 ipif_remove(ipif); 13323 rw_exit(&ipst->ips_ill_g_lock); 13324 13325 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13326 ASSERT(ipif->ipif_recovery_id == 0); 13327 ASSERT(ipif->ipif_ire_local == NULL); 13328 ASSERT(ipif->ipif_ire_if == NULL); 13329 13330 /* Free the memory. */ 13331 mi_free(ipif); 13332 } 13333 13334 /* 13335 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13336 * is zero. 13337 */ 13338 void 13339 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13340 { 13341 char lbuf[LIFNAMSIZ]; 13342 char *name; 13343 size_t name_len; 13344 13345 buf[0] = '\0'; 13346 name = ipif->ipif_ill->ill_name; 13347 name_len = ipif->ipif_ill->ill_name_length; 13348 if (ipif->ipif_id != 0) { 13349 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13350 ipif->ipif_id); 13351 name = lbuf; 13352 name_len = mi_strlen(name) + 1; 13353 } 13354 len -= 1; 13355 buf[len] = '\0'; 13356 len = MIN(len, name_len); 13357 bcopy(name, buf, len); 13358 } 13359 13360 /* 13361 * Sets `buf' to an ill name. 13362 */ 13363 void 13364 ill_get_name(const ill_t *ill, char *buf, int len) 13365 { 13366 char *name; 13367 size_t name_len; 13368 13369 name = ill->ill_name; 13370 name_len = ill->ill_name_length; 13371 len -= 1; 13372 buf[len] = '\0'; 13373 len = MIN(len, name_len); 13374 bcopy(name, buf, len); 13375 } 13376 13377 /* 13378 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13379 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13380 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13381 * (May be called as writer.) 13382 */ 13383 static ipif_t * 13384 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13385 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13386 { 13387 char *cp; 13388 char *endp; 13389 long id; 13390 ill_t *ill; 13391 ipif_t *ipif; 13392 uint_t ire_type; 13393 boolean_t did_alloc = B_FALSE; 13394 13395 /* 13396 * If the caller wants to us to create the ipif, make sure we have a 13397 * valid zoneid 13398 */ 13399 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13400 13401 if (namelen == 0) { 13402 return (NULL); 13403 } 13404 13405 *exists = B_FALSE; 13406 /* Look for a colon in the name. */ 13407 endp = &name[namelen]; 13408 for (cp = endp; --cp > name; ) { 13409 if (*cp == IPIF_SEPARATOR_CHAR) 13410 break; 13411 } 13412 13413 if (*cp == IPIF_SEPARATOR_CHAR) { 13414 /* 13415 * Reject any non-decimal aliases for logical 13416 * interfaces. Aliases with leading zeroes 13417 * are also rejected as they introduce ambiguity 13418 * in the naming of the interfaces. 13419 * In order to confirm with existing semantics, 13420 * and to not break any programs/script relying 13421 * on that behaviour, if<0>:0 is considered to be 13422 * a valid interface. 13423 * 13424 * If alias has two or more digits and the first 13425 * is zero, fail. 13426 */ 13427 if (&cp[2] < endp && cp[1] == '0') { 13428 return (NULL); 13429 } 13430 } 13431 13432 if (cp <= name) { 13433 cp = endp; 13434 } else { 13435 *cp = '\0'; 13436 } 13437 13438 /* 13439 * Look up the ILL, based on the portion of the name 13440 * before the slash. ill_lookup_on_name returns a held ill. 13441 * Temporary to check whether ill exists already. If so 13442 * ill_lookup_on_name will clear it. 13443 */ 13444 ill = ill_lookup_on_name(name, do_alloc, isv6, 13445 &did_alloc, ipst); 13446 if (cp != endp) 13447 *cp = IPIF_SEPARATOR_CHAR; 13448 if (ill == NULL) 13449 return (NULL); 13450 13451 /* Establish the unit number in the name. */ 13452 id = 0; 13453 if (cp < endp && *endp == '\0') { 13454 /* If there was a colon, the unit number follows. */ 13455 cp++; 13456 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13457 ill_refrele(ill); 13458 return (NULL); 13459 } 13460 } 13461 13462 mutex_enter(&ill->ill_lock); 13463 /* Now see if there is an IPIF with this unit number. */ 13464 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13465 if (ipif->ipif_id == id) { 13466 if (zoneid != ALL_ZONES && 13467 zoneid != ipif->ipif_zoneid && 13468 ipif->ipif_zoneid != ALL_ZONES) { 13469 mutex_exit(&ill->ill_lock); 13470 ill_refrele(ill); 13471 return (NULL); 13472 } 13473 if (IPIF_CAN_LOOKUP(ipif)) { 13474 ipif_refhold_locked(ipif); 13475 mutex_exit(&ill->ill_lock); 13476 if (!did_alloc) 13477 *exists = B_TRUE; 13478 /* 13479 * Drop locks before calling ill_refrele 13480 * since it can potentially call into 13481 * ipif_ill_refrele_tail which can end up 13482 * in trying to acquire any lock. 13483 */ 13484 ill_refrele(ill); 13485 return (ipif); 13486 } 13487 } 13488 } 13489 13490 if (!do_alloc) { 13491 mutex_exit(&ill->ill_lock); 13492 ill_refrele(ill); 13493 return (NULL); 13494 } 13495 13496 /* 13497 * If none found, atomically allocate and return a new one. 13498 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13499 * to support "receive only" use of lo0:1 etc. as is still done 13500 * below as an initial guess. 13501 * However, this is now likely to be overriden later in ipif_up_done() 13502 * when we know for sure what address has been configured on the 13503 * interface, since we might have more than one loopback interface 13504 * with a loopback address, e.g. in the case of zones, and all the 13505 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13506 */ 13507 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13508 ire_type = IRE_LOOPBACK; 13509 else 13510 ire_type = IRE_LOCAL; 13511 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13512 if (ipif != NULL) 13513 ipif_refhold_locked(ipif); 13514 mutex_exit(&ill->ill_lock); 13515 ill_refrele(ill); 13516 return (ipif); 13517 } 13518 13519 /* 13520 * This routine is called whenever a new address comes up on an ipif. If 13521 * we are configured to respond to address mask requests, then we are supposed 13522 * to broadcast an address mask reply at this time. This routine is also 13523 * called if we are already up, but a netmask change is made. This is legal 13524 * but might not make the system manager very popular. (May be called 13525 * as writer.) 13526 */ 13527 void 13528 ipif_mask_reply(ipif_t *ipif) 13529 { 13530 icmph_t *icmph; 13531 ipha_t *ipha; 13532 mblk_t *mp; 13533 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13534 ip_xmit_attr_t ixas; 13535 13536 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13537 13538 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13539 return; 13540 13541 /* ICMP mask reply is IPv4 only */ 13542 ASSERT(!ipif->ipif_isv6); 13543 /* ICMP mask reply is not for a loopback interface */ 13544 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13545 13546 if (ipif->ipif_lcl_addr == INADDR_ANY) 13547 return; 13548 13549 mp = allocb(REPLY_LEN, BPRI_HI); 13550 if (mp == NULL) 13551 return; 13552 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13553 13554 ipha = (ipha_t *)mp->b_rptr; 13555 bzero(ipha, REPLY_LEN); 13556 *ipha = icmp_ipha; 13557 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13558 ipha->ipha_src = ipif->ipif_lcl_addr; 13559 ipha->ipha_dst = ipif->ipif_brd_addr; 13560 ipha->ipha_length = htons(REPLY_LEN); 13561 ipha->ipha_ident = 0; 13562 13563 icmph = (icmph_t *)&ipha[1]; 13564 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13565 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13566 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13567 13568 bzero(&ixas, sizeof (ixas)); 13569 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13570 ixas.ixa_zoneid = ALL_ZONES; 13571 ixas.ixa_ifindex = 0; 13572 ixas.ixa_ipst = ipst; 13573 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13574 (void) ip_output_simple(mp, &ixas); 13575 ixa_cleanup(&ixas); 13576 #undef REPLY_LEN 13577 } 13578 13579 /* 13580 * Join the ipif specific multicast groups. 13581 * Must be called after a mapping has been set up in the resolver. (Always 13582 * called as writer.) 13583 */ 13584 void 13585 ipif_multicast_up(ipif_t *ipif) 13586 { 13587 int err; 13588 ill_t *ill; 13589 ilm_t *ilm; 13590 13591 ASSERT(IAM_WRITER_IPIF(ipif)); 13592 13593 ill = ipif->ipif_ill; 13594 13595 ip1dbg(("ipif_multicast_up\n")); 13596 if (!(ill->ill_flags & ILLF_MULTICAST) || 13597 ipif->ipif_allhosts_ilm != NULL) 13598 return; 13599 13600 if (ipif->ipif_isv6) { 13601 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13602 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13603 13604 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13605 13606 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13607 return; 13608 13609 ip1dbg(("ipif_multicast_up - addmulti\n")); 13610 13611 /* 13612 * Join the all hosts multicast address. We skip this for 13613 * underlying IPMP interfaces since they should be invisible. 13614 */ 13615 if (!IS_UNDER_IPMP(ill)) { 13616 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13617 &err); 13618 if (ilm == NULL) { 13619 ASSERT(err != 0); 13620 ip0dbg(("ipif_multicast_up: " 13621 "all_hosts_mcast failed %d\n", err)); 13622 return; 13623 } 13624 ipif->ipif_allhosts_ilm = ilm; 13625 } 13626 13627 /* 13628 * Enable multicast for the solicited node multicast address. 13629 * If IPMP we need to put the membership on the upper ill. 13630 */ 13631 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13632 ill_t *mcast_ill = NULL; 13633 boolean_t need_refrele; 13634 13635 if (IS_UNDER_IPMP(ill) && 13636 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13637 need_refrele = B_TRUE; 13638 } else { 13639 mcast_ill = ill; 13640 need_refrele = B_FALSE; 13641 } 13642 13643 ilm = ip_addmulti(&v6solmc, mcast_ill, 13644 ipif->ipif_zoneid, &err); 13645 if (need_refrele) 13646 ill_refrele(mcast_ill); 13647 13648 if (ilm == NULL) { 13649 ASSERT(err != 0); 13650 ip0dbg(("ipif_multicast_up: solicited MC" 13651 " failed %d\n", err)); 13652 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13653 ipif->ipif_allhosts_ilm = NULL; 13654 (void) ip_delmulti(ilm); 13655 } 13656 return; 13657 } 13658 ipif->ipif_solmulti_ilm = ilm; 13659 } 13660 } else { 13661 in6_addr_t v6group; 13662 13663 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13664 return; 13665 13666 /* Join the all hosts multicast address */ 13667 ip1dbg(("ipif_multicast_up - addmulti\n")); 13668 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13669 13670 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13671 if (ilm == NULL) { 13672 ASSERT(err != 0); 13673 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13674 return; 13675 } 13676 ipif->ipif_allhosts_ilm = ilm; 13677 } 13678 } 13679 13680 /* 13681 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13682 * (ilms from explicit memberships are handled in conn_update_ill.) 13683 */ 13684 void 13685 ipif_multicast_down(ipif_t *ipif) 13686 { 13687 ASSERT(IAM_WRITER_IPIF(ipif)); 13688 13689 ip1dbg(("ipif_multicast_down\n")); 13690 13691 if (ipif->ipif_allhosts_ilm != NULL) { 13692 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13693 ipif->ipif_allhosts_ilm = NULL; 13694 } 13695 if (ipif->ipif_solmulti_ilm != NULL) { 13696 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13697 ipif->ipif_solmulti_ilm = NULL; 13698 } 13699 } 13700 13701 /* 13702 * Used when an interface comes up to recreate any extra routes on this 13703 * interface. 13704 */ 13705 int 13706 ill_recover_saved_ire(ill_t *ill) 13707 { 13708 mblk_t *mp; 13709 ip_stack_t *ipst = ill->ill_ipst; 13710 13711 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13712 13713 mutex_enter(&ill->ill_saved_ire_lock); 13714 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13715 ire_t *ire, *nire; 13716 ifrt_t *ifrt; 13717 13718 ifrt = (ifrt_t *)mp->b_rptr; 13719 /* 13720 * Create a copy of the IRE with the saved address and netmask. 13721 */ 13722 if (ill->ill_isv6) { 13723 ire = ire_create_v6( 13724 &ifrt->ifrt_v6addr, 13725 &ifrt->ifrt_v6mask, 13726 &ifrt->ifrt_v6gateway_addr, 13727 ifrt->ifrt_type, 13728 ill, 13729 ifrt->ifrt_zoneid, 13730 ifrt->ifrt_flags, 13731 NULL, 13732 ipst); 13733 } else { 13734 ire = ire_create( 13735 (uint8_t *)&ifrt->ifrt_addr, 13736 (uint8_t *)&ifrt->ifrt_mask, 13737 (uint8_t *)&ifrt->ifrt_gateway_addr, 13738 ifrt->ifrt_type, 13739 ill, 13740 ifrt->ifrt_zoneid, 13741 ifrt->ifrt_flags, 13742 NULL, 13743 ipst); 13744 } 13745 if (ire == NULL) { 13746 mutex_exit(&ill->ill_saved_ire_lock); 13747 return (ENOMEM); 13748 } 13749 13750 if (ifrt->ifrt_flags & RTF_SETSRC) { 13751 if (ill->ill_isv6) { 13752 ire->ire_setsrc_addr_v6 = 13753 ifrt->ifrt_v6setsrc_addr; 13754 } else { 13755 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13756 } 13757 } 13758 13759 /* 13760 * Some software (for example, GateD and Sun Cluster) attempts 13761 * to create (what amount to) IRE_PREFIX routes with the 13762 * loopback address as the gateway. This is primarily done to 13763 * set up prefixes with the RTF_REJECT flag set (for example, 13764 * when generating aggregate routes.) 13765 * 13766 * If the IRE type (as defined by ill->ill_net_type) is 13767 * IRE_LOOPBACK, then we map the request into a 13768 * IRE_IF_NORESOLVER. 13769 */ 13770 if (ill->ill_net_type == IRE_LOOPBACK) 13771 ire->ire_type = IRE_IF_NORESOLVER; 13772 13773 /* 13774 * ire held by ire_add, will be refreled' towards the 13775 * the end of ipif_up_done 13776 */ 13777 nire = ire_add(ire); 13778 /* 13779 * Check if it was a duplicate entry. This handles 13780 * the case of two racing route adds for the same route 13781 */ 13782 if (nire == NULL) { 13783 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13784 } else if (nire != ire) { 13785 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13786 (void *)nire)); 13787 ire_delete(nire); 13788 } else { 13789 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13790 (void *)nire)); 13791 } 13792 if (nire != NULL) 13793 ire_refrele(nire); 13794 } 13795 mutex_exit(&ill->ill_saved_ire_lock); 13796 return (0); 13797 } 13798 13799 /* 13800 * Used to set the netmask and broadcast address to default values when the 13801 * interface is brought up. (Always called as writer.) 13802 */ 13803 static void 13804 ipif_set_default(ipif_t *ipif) 13805 { 13806 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13807 13808 if (!ipif->ipif_isv6) { 13809 /* 13810 * Interface holds an IPv4 address. Default 13811 * mask is the natural netmask. 13812 */ 13813 if (!ipif->ipif_net_mask) { 13814 ipaddr_t v4mask; 13815 13816 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13817 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13818 } 13819 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13820 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13821 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13822 } else { 13823 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13824 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13825 } 13826 /* 13827 * NOTE: SunOS 4.X does this even if the broadcast address 13828 * has been already set thus we do the same here. 13829 */ 13830 if (ipif->ipif_flags & IPIF_BROADCAST) { 13831 ipaddr_t v4addr; 13832 13833 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13834 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13835 } 13836 } else { 13837 /* 13838 * Interface holds an IPv6-only address. Default 13839 * mask is all-ones. 13840 */ 13841 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13842 ipif->ipif_v6net_mask = ipv6_all_ones; 13843 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13844 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13845 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13846 } else { 13847 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13848 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13849 } 13850 } 13851 } 13852 13853 /* 13854 * Return 0 if this address can be used as local address without causing 13855 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13856 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13857 * Note that the same IPv6 link-local address is allowed as long as the ills 13858 * are not on the same link. 13859 */ 13860 int 13861 ip_addr_availability_check(ipif_t *new_ipif) 13862 { 13863 in6_addr_t our_v6addr; 13864 ill_t *ill; 13865 ipif_t *ipif; 13866 ill_walk_context_t ctx; 13867 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13868 13869 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13870 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13871 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13872 13873 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13874 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13875 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13876 return (0); 13877 13878 our_v6addr = new_ipif->ipif_v6lcl_addr; 13879 13880 if (new_ipif->ipif_isv6) 13881 ill = ILL_START_WALK_V6(&ctx, ipst); 13882 else 13883 ill = ILL_START_WALK_V4(&ctx, ipst); 13884 13885 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13886 for (ipif = ill->ill_ipif; ipif != NULL; 13887 ipif = ipif->ipif_next) { 13888 if ((ipif == new_ipif) || 13889 !(ipif->ipif_flags & IPIF_UP) || 13890 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13891 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13892 &our_v6addr)) 13893 continue; 13894 13895 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13896 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13897 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13898 ipif->ipif_flags |= IPIF_UNNUMBERED; 13899 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13900 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13901 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13902 continue; 13903 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13904 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13905 continue; 13906 else if (new_ipif->ipif_ill == ill) 13907 return (EADDRINUSE); 13908 else 13909 return (EADDRNOTAVAIL); 13910 } 13911 } 13912 13913 return (0); 13914 } 13915 13916 /* 13917 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13918 * IREs for the ipif. 13919 * When the routine returns EINPROGRESS then mp has been consumed and 13920 * the ioctl will be acked from ip_rput_dlpi. 13921 */ 13922 int 13923 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13924 { 13925 ill_t *ill = ipif->ipif_ill; 13926 boolean_t isv6 = ipif->ipif_isv6; 13927 int err = 0; 13928 boolean_t success; 13929 uint_t ipif_orig_id; 13930 ip_stack_t *ipst = ill->ill_ipst; 13931 13932 ASSERT(IAM_WRITER_IPIF(ipif)); 13933 13934 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13935 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13936 ill_t *, ill, ipif_t *, ipif); 13937 13938 /* Shouldn't get here if it is already up. */ 13939 if (ipif->ipif_flags & IPIF_UP) 13940 return (EALREADY); 13941 13942 /* 13943 * If this is a request to bring up a data address on an interface 13944 * under IPMP, then move the address to its IPMP meta-interface and 13945 * try to bring it up. One complication is that the zeroth ipif for 13946 * an ill is special, in that every ill always has one, and that code 13947 * throughout IP deferences ill->ill_ipif without holding any locks. 13948 */ 13949 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13950 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13951 ipif_t *stubipif = NULL, *moveipif = NULL; 13952 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13953 13954 /* 13955 * The ipif being brought up should be quiesced. If it's not, 13956 * something has gone amiss and we need to bail out. (If it's 13957 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13958 */ 13959 mutex_enter(&ill->ill_lock); 13960 if (!ipif_is_quiescent(ipif)) { 13961 mutex_exit(&ill->ill_lock); 13962 return (EINVAL); 13963 } 13964 mutex_exit(&ill->ill_lock); 13965 13966 /* 13967 * If we're going to need to allocate ipifs, do it prior 13968 * to starting the move (and grabbing locks). 13969 */ 13970 if (ipif->ipif_id == 0) { 13971 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13972 B_FALSE, &err)) == NULL) { 13973 return (err); 13974 } 13975 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13976 B_FALSE, &err)) == NULL) { 13977 mi_free(moveipif); 13978 return (err); 13979 } 13980 } 13981 13982 /* 13983 * Grab or transfer the ipif to move. During the move, keep 13984 * ill_g_lock held to prevent any ill walker threads from 13985 * seeing things in an inconsistent state. 13986 */ 13987 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13988 if (ipif->ipif_id != 0) { 13989 ipif_remove(ipif); 13990 } else { 13991 ipif_transfer(ipif, moveipif, stubipif); 13992 ipif = moveipif; 13993 } 13994 13995 /* 13996 * Place the ipif on the IPMP ill. If the zeroth ipif on 13997 * the IPMP ill is a stub (0.0.0.0 down address) then we 13998 * replace that one. Otherwise, pick the next available slot. 13999 */ 14000 ipif->ipif_ill = ipmp_ill; 14001 ipif_orig_id = ipif->ipif_id; 14002 14003 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14004 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14005 ipif = ipmp_ill->ill_ipif; 14006 } else { 14007 ipif->ipif_id = -1; 14008 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14009 /* 14010 * No more available ipif_id's -- put it back 14011 * on the original ill and fail the operation. 14012 * Since we're writer on the ill, we can be 14013 * sure our old slot is still available. 14014 */ 14015 ipif->ipif_id = ipif_orig_id; 14016 ipif->ipif_ill = ill; 14017 if (ipif_orig_id == 0) { 14018 ipif_transfer(ipif, ill->ill_ipif, 14019 NULL); 14020 } else { 14021 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14022 } 14023 rw_exit(&ipst->ips_ill_g_lock); 14024 return (err); 14025 } 14026 } 14027 rw_exit(&ipst->ips_ill_g_lock); 14028 14029 /* 14030 * Tell SCTP that the ipif has moved. Note that even if we 14031 * had to allocate a new ipif, the original sequence id was 14032 * preserved and therefore SCTP won't know. 14033 */ 14034 sctp_move_ipif(ipif, ill, ipmp_ill); 14035 14036 /* 14037 * If the ipif being brought up was on slot zero, then we 14038 * first need to bring up the placeholder we stuck there. In 14039 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14040 * call to ipif_up() itself, if we successfully bring up the 14041 * placeholder, we'll check ill_move_ipif and bring it up too. 14042 */ 14043 if (ipif_orig_id == 0) { 14044 ASSERT(ill->ill_move_ipif == NULL); 14045 ill->ill_move_ipif = ipif; 14046 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14047 ASSERT(ill->ill_move_ipif == NULL); 14048 if (err != EINPROGRESS) 14049 ill->ill_move_ipif = NULL; 14050 return (err); 14051 } 14052 14053 /* 14054 * Bring it up on the IPMP ill. 14055 */ 14056 return (ipif_up(ipif, q, mp)); 14057 } 14058 14059 /* Skip arp/ndp for any loopback interface. */ 14060 if (ill->ill_wq != NULL) { 14061 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14062 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14063 14064 if (!ill->ill_dl_up) { 14065 /* 14066 * ill_dl_up is not yet set. i.e. we are yet to 14067 * DL_BIND with the driver and this is the first 14068 * logical interface on the ill to become "up". 14069 * Tell the driver to get going (via DL_BIND_REQ). 14070 * Note that changing "significant" IFF_ flags 14071 * address/netmask etc cause a down/up dance, but 14072 * does not cause an unbind (DL_UNBIND) with the driver 14073 */ 14074 return (ill_dl_up(ill, ipif, mp, q)); 14075 } 14076 14077 /* 14078 * ipif_resolver_up may end up needeing to bind/attach 14079 * the ARP stream, which in turn necessitates a 14080 * DLPI message exchange with the driver. ioctls are 14081 * serialized and so we cannot send more than one 14082 * interface up message at a time. If ipif_resolver_up 14083 * does need to wait for the DLPI handshake for the ARP stream, 14084 * we get EINPROGRESS and we will complete in arp_bringup_done. 14085 */ 14086 14087 ASSERT(connp != NULL || !CONN_Q(q)); 14088 if (connp != NULL) 14089 mutex_enter(&connp->conn_lock); 14090 mutex_enter(&ill->ill_lock); 14091 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14092 mutex_exit(&ill->ill_lock); 14093 if (connp != NULL) 14094 mutex_exit(&connp->conn_lock); 14095 if (!success) 14096 return (EINTR); 14097 14098 /* 14099 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14100 * complete when ipif_ndp_up returns. 14101 */ 14102 err = ipif_resolver_up(ipif, Res_act_initial); 14103 if (err == EINPROGRESS) { 14104 /* We will complete it in arp_bringup_done() */ 14105 return (err); 14106 } 14107 14108 if (isv6 && err == 0) 14109 err = ipif_ndp_up(ipif, B_TRUE); 14110 14111 ASSERT(err != EINPROGRESS); 14112 mp = ipsq_pending_mp_get(ipsq, &connp); 14113 ASSERT(mp != NULL); 14114 if (err != 0) 14115 return (err); 14116 } else { 14117 /* 14118 * Interfaces without underlying hardware don't do duplicate 14119 * address detection. 14120 */ 14121 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14122 ipif->ipif_addr_ready = 1; 14123 err = ill_add_ires(ill); 14124 /* allocation failure? */ 14125 if (err != 0) 14126 return (err); 14127 } 14128 14129 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14130 if (err == 0 && ill->ill_move_ipif != NULL) { 14131 ipif = ill->ill_move_ipif; 14132 ill->ill_move_ipif = NULL; 14133 return (ipif_up(ipif, q, mp)); 14134 } 14135 return (err); 14136 } 14137 14138 /* 14139 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14140 * The identical set of IREs need to be removed in ill_delete_ires(). 14141 */ 14142 int 14143 ill_add_ires(ill_t *ill) 14144 { 14145 ire_t *ire; 14146 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14147 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14148 14149 if (ill->ill_ire_multicast != NULL) 14150 return (0); 14151 14152 /* 14153 * provide some dummy ire_addr for creating the ire. 14154 */ 14155 if (ill->ill_isv6) { 14156 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14157 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14158 } else { 14159 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14160 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14161 } 14162 if (ire == NULL) 14163 return (ENOMEM); 14164 14165 ill->ill_ire_multicast = ire; 14166 return (0); 14167 } 14168 14169 void 14170 ill_delete_ires(ill_t *ill) 14171 { 14172 if (ill->ill_ire_multicast != NULL) { 14173 /* 14174 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14175 * which was taken without any th_tracing enabled. 14176 * We also mark it as condemned (note that it was never added) 14177 * so that caching conn's can move off of it. 14178 */ 14179 ire_make_condemned(ill->ill_ire_multicast); 14180 ire_refrele_notr(ill->ill_ire_multicast); 14181 ill->ill_ire_multicast = NULL; 14182 } 14183 } 14184 14185 /* 14186 * Perform a bind for the physical device. 14187 * When the routine returns EINPROGRESS then mp has been consumed and 14188 * the ioctl will be acked from ip_rput_dlpi. 14189 * Allocate an unbind message and save it until ipif_down. 14190 */ 14191 static int 14192 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14193 { 14194 mblk_t *bind_mp = NULL; 14195 mblk_t *unbind_mp = NULL; 14196 conn_t *connp; 14197 boolean_t success; 14198 int err; 14199 14200 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14201 14202 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14203 ASSERT(IAM_WRITER_ILL(ill)); 14204 ASSERT(mp != NULL); 14205 14206 /* 14207 * Make sure we have an IRE_MULTICAST in case we immediately 14208 * start receiving packets. 14209 */ 14210 err = ill_add_ires(ill); 14211 if (err != 0) 14212 goto bad; 14213 14214 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14215 DL_BIND_REQ); 14216 if (bind_mp == NULL) 14217 goto bad; 14218 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14219 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14220 14221 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14222 if (unbind_mp == NULL) 14223 goto bad; 14224 14225 /* 14226 * Record state needed to complete this operation when the 14227 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14228 */ 14229 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14230 ASSERT(connp != NULL || !CONN_Q(q)); 14231 GRAB_CONN_LOCK(q); 14232 mutex_enter(&ipif->ipif_ill->ill_lock); 14233 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14234 mutex_exit(&ipif->ipif_ill->ill_lock); 14235 RELEASE_CONN_LOCK(q); 14236 if (!success) 14237 goto bad; 14238 14239 /* 14240 * Save the unbind message for ill_dl_down(); it will be consumed when 14241 * the interface goes down. 14242 */ 14243 ASSERT(ill->ill_unbind_mp == NULL); 14244 ill->ill_unbind_mp = unbind_mp; 14245 14246 ill_dlpi_send(ill, bind_mp); 14247 /* Send down link-layer capabilities probe if not already done. */ 14248 ill_capability_probe(ill); 14249 14250 /* 14251 * Sysid used to rely on the fact that netboots set domainname 14252 * and the like. Now that miniroot boots aren't strictly netboots 14253 * and miniroot network configuration is driven from userland 14254 * these things still need to be set. This situation can be detected 14255 * by comparing the interface being configured here to the one 14256 * dhcifname was set to reference by the boot loader. Once sysid is 14257 * converted to use dhcp_ipc_getinfo() this call can go away. 14258 */ 14259 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14260 (strcmp(ill->ill_name, dhcifname) == 0) && 14261 (strlen(srpc_domain) == 0)) { 14262 if (dhcpinit() != 0) 14263 cmn_err(CE_WARN, "no cached dhcp response"); 14264 } 14265 14266 /* 14267 * This operation will complete in ip_rput_dlpi with either 14268 * a DL_BIND_ACK or DL_ERROR_ACK. 14269 */ 14270 return (EINPROGRESS); 14271 bad: 14272 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14273 14274 freemsg(bind_mp); 14275 freemsg(unbind_mp); 14276 return (ENOMEM); 14277 } 14278 14279 /* Add room for tcp+ip headers */ 14280 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14281 14282 /* 14283 * DLPI and ARP is up. 14284 * Create all the IREs associated with an interface. Bring up multicast. 14285 * Set the interface flag and finish other initialization 14286 * that potentially had to be deferred to after DL_BIND_ACK. 14287 */ 14288 int 14289 ipif_up_done(ipif_t *ipif) 14290 { 14291 ill_t *ill = ipif->ipif_ill; 14292 int err = 0; 14293 boolean_t loopback = B_FALSE; 14294 boolean_t update_src_selection = B_TRUE; 14295 ipif_t *tmp_ipif; 14296 14297 ip1dbg(("ipif_up_done(%s:%u)\n", 14298 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14299 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14300 ill_t *, ill, ipif_t *, ipif); 14301 14302 /* Check if this is a loopback interface */ 14303 if (ipif->ipif_ill->ill_wq == NULL) 14304 loopback = B_TRUE; 14305 14306 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14307 14308 /* 14309 * If all other interfaces for this ill are down or DEPRECATED, 14310 * or otherwise unsuitable for source address selection, 14311 * reset the src generation numbers to make sure source 14312 * address selection gets to take this new ipif into account. 14313 * No need to hold ill_lock while traversing the ipif list since 14314 * we are writer 14315 */ 14316 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14317 tmp_ipif = tmp_ipif->ipif_next) { 14318 if (((tmp_ipif->ipif_flags & 14319 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14320 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14321 (tmp_ipif == ipif)) 14322 continue; 14323 /* first useable pre-existing interface */ 14324 update_src_selection = B_FALSE; 14325 break; 14326 } 14327 if (update_src_selection) 14328 ip_update_source_selection(ill->ill_ipst); 14329 14330 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14331 nce_t *loop_nce = NULL; 14332 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14333 14334 /* 14335 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14336 * ipif_lookup_on_name(), but in the case of zones we can have 14337 * several loopback addresses on lo0. So all the interfaces with 14338 * loopback addresses need to be marked IRE_LOOPBACK. 14339 */ 14340 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14341 htonl(INADDR_LOOPBACK)) 14342 ipif->ipif_ire_type = IRE_LOOPBACK; 14343 else 14344 ipif->ipif_ire_type = IRE_LOCAL; 14345 if (ill->ill_net_type != IRE_LOOPBACK) 14346 flags |= NCE_F_PUBLISH; 14347 14348 /* add unicast nce for the local addr */ 14349 err = nce_lookup_then_add_v4(ill, NULL, 14350 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14351 ND_REACHABLE, &loop_nce); 14352 /* A shared-IP zone sees EEXIST for lo0:N */ 14353 if (err == 0 || err == EEXIST) { 14354 ipif->ipif_added_nce = 1; 14355 loop_nce->nce_ipif_cnt++; 14356 nce_refrele(loop_nce); 14357 err = 0; 14358 } else { 14359 ASSERT(loop_nce == NULL); 14360 return (err); 14361 } 14362 } 14363 14364 /* Create all the IREs associated with this interface */ 14365 err = ipif_add_ires_v4(ipif, loopback); 14366 if (err != 0) { 14367 /* 14368 * see comments about return value from 14369 * ip_addr_availability_check() in ipif_add_ires_v4(). 14370 */ 14371 if (err != EADDRINUSE) { 14372 (void) ipif_arp_down(ipif); 14373 } else { 14374 /* 14375 * Make IPMP aware of the deleted ipif so that 14376 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14377 * can be completed. Note that we do not want to 14378 * destroy the nce that was created on the ipmp_ill 14379 * for the active copy of the duplicate address in 14380 * use. 14381 */ 14382 if (IS_IPMP(ill)) 14383 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14384 err = EADDRNOTAVAIL; 14385 } 14386 return (err); 14387 } 14388 14389 if (ill->ill_ipif_up_count == 1 && !loopback) { 14390 /* Recover any additional IREs entries for this ill */ 14391 (void) ill_recover_saved_ire(ill); 14392 } 14393 14394 if (ill->ill_need_recover_multicast) { 14395 /* 14396 * Need to recover all multicast memberships in the driver. 14397 * This had to be deferred until we had attached. The same 14398 * code exists in ipif_up_done_v6() to recover IPv6 14399 * memberships. 14400 * 14401 * Note that it would be preferable to unconditionally do the 14402 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14403 * that since ill_join_allmulti() depends on ill_dl_up being 14404 * set, and it is not set until we receive a DL_BIND_ACK after 14405 * having called ill_dl_up(). 14406 */ 14407 ill_recover_multicast(ill); 14408 } 14409 14410 if (ill->ill_ipif_up_count == 1) { 14411 /* 14412 * Since the interface is now up, it may now be active. 14413 */ 14414 if (IS_UNDER_IPMP(ill)) 14415 ipmp_ill_refresh_active(ill); 14416 14417 /* 14418 * If this is an IPMP interface, we may now be able to 14419 * establish ARP entries. 14420 */ 14421 if (IS_IPMP(ill)) 14422 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14423 } 14424 14425 /* Join the allhosts multicast address */ 14426 ipif_multicast_up(ipif); 14427 14428 if (!loopback && !update_src_selection && 14429 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14430 ip_update_source_selection(ill->ill_ipst); 14431 14432 if (!loopback && ipif->ipif_addr_ready) { 14433 /* Broadcast an address mask reply. */ 14434 ipif_mask_reply(ipif); 14435 } 14436 /* Perhaps ilgs should use this ill */ 14437 update_conn_ill(NULL, ill->ill_ipst); 14438 14439 /* 14440 * This had to be deferred until we had bound. Tell routing sockets and 14441 * others that this interface is up if it looks like the address has 14442 * been validated. Otherwise, if it isn't ready yet, wait for 14443 * duplicate address detection to do its thing. 14444 */ 14445 if (ipif->ipif_addr_ready) 14446 ipif_up_notify(ipif); 14447 return (0); 14448 } 14449 14450 /* 14451 * Add the IREs associated with the ipif. 14452 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14453 */ 14454 static int 14455 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14456 { 14457 ill_t *ill = ipif->ipif_ill; 14458 ip_stack_t *ipst = ill->ill_ipst; 14459 ire_t *ire_array[20]; 14460 ire_t **irep = ire_array; 14461 ire_t **irep1; 14462 ipaddr_t net_mask = 0; 14463 ipaddr_t subnet_mask, route_mask; 14464 int err; 14465 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14466 ire_t *ire_if = NULL; 14467 uchar_t *gw; 14468 14469 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14470 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14471 /* 14472 * If we're on a labeled system then make sure that zone- 14473 * private addresses have proper remote host database entries. 14474 */ 14475 if (is_system_labeled() && 14476 ipif->ipif_ire_type != IRE_LOOPBACK && 14477 !tsol_check_interface_address(ipif)) 14478 return (EINVAL); 14479 14480 /* Register the source address for __sin6_src_id */ 14481 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14482 ipif->ipif_zoneid, ipst); 14483 if (err != 0) { 14484 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14485 return (err); 14486 } 14487 14488 if (loopback) 14489 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14490 else 14491 gw = NULL; 14492 14493 /* If the interface address is set, create the local IRE. */ 14494 ire_local = ire_create( 14495 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14496 (uchar_t *)&ip_g_all_ones, /* mask */ 14497 gw, /* gateway */ 14498 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14499 ipif->ipif_ill, 14500 ipif->ipif_zoneid, 14501 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14502 RTF_PRIVATE : 0) | RTF_KERNEL, 14503 NULL, 14504 ipst); 14505 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14506 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14507 ipif->ipif_ire_type, 14508 ntohl(ipif->ipif_lcl_addr))); 14509 if (ire_local == NULL) { 14510 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14511 err = ENOMEM; 14512 goto bad; 14513 } 14514 } else { 14515 ip1dbg(( 14516 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14517 ipif->ipif_ire_type, 14518 ntohl(ipif->ipif_lcl_addr), 14519 (uint_t)ipif->ipif_flags)); 14520 } 14521 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14522 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14523 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14524 } else { 14525 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14526 } 14527 14528 subnet_mask = ipif->ipif_net_mask; 14529 14530 /* 14531 * If mask was not specified, use natural netmask of 14532 * interface address. Also, store this mask back into the 14533 * ipif struct. 14534 */ 14535 if (subnet_mask == 0) { 14536 subnet_mask = net_mask; 14537 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14538 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14539 ipif->ipif_v6subnet); 14540 } 14541 14542 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14543 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14544 ipif->ipif_subnet != INADDR_ANY) { 14545 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14546 14547 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14548 route_mask = IP_HOST_MASK; 14549 } else { 14550 route_mask = subnet_mask; 14551 } 14552 14553 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14554 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14555 (void *)ipif, (void *)ill, ill->ill_net_type, 14556 ntohl(ipif->ipif_subnet))); 14557 ire_if = ire_create( 14558 (uchar_t *)&ipif->ipif_subnet, 14559 (uchar_t *)&route_mask, 14560 (uchar_t *)&ipif->ipif_lcl_addr, 14561 ill->ill_net_type, 14562 ill, 14563 ipif->ipif_zoneid, 14564 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14565 RTF_PRIVATE: 0) | RTF_KERNEL, 14566 NULL, 14567 ipst); 14568 if (ire_if == NULL) { 14569 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14570 err = ENOMEM; 14571 goto bad; 14572 } 14573 } 14574 14575 /* 14576 * Create any necessary broadcast IREs. 14577 */ 14578 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14579 !(ipif->ipif_flags & IPIF_NOXMIT)) 14580 irep = ipif_create_bcast_ires(ipif, irep); 14581 14582 /* If an earlier ire_create failed, get out now */ 14583 for (irep1 = irep; irep1 > ire_array; ) { 14584 irep1--; 14585 if (*irep1 == NULL) { 14586 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14587 err = ENOMEM; 14588 goto bad; 14589 } 14590 } 14591 14592 /* 14593 * Need to atomically check for IP address availability under 14594 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14595 * ills or new ipifs can be added while we are checking availability. 14596 */ 14597 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14598 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14599 /* Mark it up, and increment counters. */ 14600 ipif->ipif_flags |= IPIF_UP; 14601 ill->ill_ipif_up_count++; 14602 err = ip_addr_availability_check(ipif); 14603 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14604 rw_exit(&ipst->ips_ill_g_lock); 14605 14606 if (err != 0) { 14607 /* 14608 * Our address may already be up on the same ill. In this case, 14609 * the ARP entry for our ipif replaced the one for the other 14610 * ipif. So we don't want to delete it (otherwise the other ipif 14611 * would be unable to send packets). 14612 * ip_addr_availability_check() identifies this case for us and 14613 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14614 * which is the expected error code. 14615 */ 14616 ill->ill_ipif_up_count--; 14617 ipif->ipif_flags &= ~IPIF_UP; 14618 goto bad; 14619 } 14620 14621 /* 14622 * Add in all newly created IREs. ire_create_bcast() has 14623 * already checked for duplicates of the IRE_BROADCAST type. 14624 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14625 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14626 * a /32 route. 14627 */ 14628 if (ire_if != NULL) { 14629 ire_if = ire_add(ire_if); 14630 if (ire_if == NULL) { 14631 err = ENOMEM; 14632 goto bad2; 14633 } 14634 #ifdef DEBUG 14635 ire_refhold_notr(ire_if); 14636 ire_refrele(ire_if); 14637 #endif 14638 } 14639 if (ire_local != NULL) { 14640 ire_local = ire_add(ire_local); 14641 if (ire_local == NULL) { 14642 err = ENOMEM; 14643 goto bad2; 14644 } 14645 #ifdef DEBUG 14646 ire_refhold_notr(ire_local); 14647 ire_refrele(ire_local); 14648 #endif 14649 } 14650 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14651 if (ire_local != NULL) 14652 ipif->ipif_ire_local = ire_local; 14653 if (ire_if != NULL) 14654 ipif->ipif_ire_if = ire_if; 14655 rw_exit(&ipst->ips_ill_g_lock); 14656 ire_local = NULL; 14657 ire_if = NULL; 14658 14659 /* 14660 * We first add all of them, and if that succeeds we refrele the 14661 * bunch. That enables us to delete all of them should any of the 14662 * ire_adds fail. 14663 */ 14664 for (irep1 = irep; irep1 > ire_array; ) { 14665 irep1--; 14666 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14667 *irep1 = ire_add(*irep1); 14668 if (*irep1 == NULL) { 14669 err = ENOMEM; 14670 goto bad2; 14671 } 14672 } 14673 14674 for (irep1 = irep; irep1 > ire_array; ) { 14675 irep1--; 14676 /* refheld by ire_add. */ 14677 if (*irep1 != NULL) { 14678 ire_refrele(*irep1); 14679 *irep1 = NULL; 14680 } 14681 } 14682 14683 if (!loopback) { 14684 /* 14685 * If the broadcast address has been set, make sure it makes 14686 * sense based on the interface address. 14687 * Only match on ill since we are sharing broadcast addresses. 14688 */ 14689 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14690 (ipif->ipif_flags & IPIF_BROADCAST)) { 14691 ire_t *ire; 14692 14693 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14694 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14695 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14696 14697 if (ire == NULL) { 14698 /* 14699 * If there isn't a matching broadcast IRE, 14700 * revert to the default for this netmask. 14701 */ 14702 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14703 mutex_enter(&ipif->ipif_ill->ill_lock); 14704 ipif_set_default(ipif); 14705 mutex_exit(&ipif->ipif_ill->ill_lock); 14706 } else { 14707 ire_refrele(ire); 14708 } 14709 } 14710 14711 } 14712 return (0); 14713 14714 bad2: 14715 ill->ill_ipif_up_count--; 14716 ipif->ipif_flags &= ~IPIF_UP; 14717 14718 bad: 14719 ip1dbg(("ipif_add_ires: FAILED \n")); 14720 if (ire_local != NULL) 14721 ire_delete(ire_local); 14722 if (ire_if != NULL) 14723 ire_delete(ire_if); 14724 14725 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14726 ire_local = ipif->ipif_ire_local; 14727 ipif->ipif_ire_local = NULL; 14728 ire_if = ipif->ipif_ire_if; 14729 ipif->ipif_ire_if = NULL; 14730 rw_exit(&ipst->ips_ill_g_lock); 14731 if (ire_local != NULL) { 14732 ire_delete(ire_local); 14733 ire_refrele_notr(ire_local); 14734 } 14735 if (ire_if != NULL) { 14736 ire_delete(ire_if); 14737 ire_refrele_notr(ire_if); 14738 } 14739 14740 while (irep > ire_array) { 14741 irep--; 14742 if (*irep != NULL) { 14743 ire_delete(*irep); 14744 } 14745 } 14746 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14747 14748 return (err); 14749 } 14750 14751 /* Remove all the IREs created by ipif_add_ires_v4 */ 14752 void 14753 ipif_delete_ires_v4(ipif_t *ipif) 14754 { 14755 ill_t *ill = ipif->ipif_ill; 14756 ip_stack_t *ipst = ill->ill_ipst; 14757 ire_t *ire; 14758 14759 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14760 ire = ipif->ipif_ire_local; 14761 ipif->ipif_ire_local = NULL; 14762 rw_exit(&ipst->ips_ill_g_lock); 14763 if (ire != NULL) { 14764 /* 14765 * Move count to ipif so we don't loose the count due to 14766 * a down/up dance. 14767 */ 14768 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14769 14770 ire_delete(ire); 14771 ire_refrele_notr(ire); 14772 } 14773 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14774 ire = ipif->ipif_ire_if; 14775 ipif->ipif_ire_if = NULL; 14776 rw_exit(&ipst->ips_ill_g_lock); 14777 if (ire != NULL) { 14778 ire_delete(ire); 14779 ire_refrele_notr(ire); 14780 } 14781 14782 /* 14783 * Delete the broadcast IREs. 14784 */ 14785 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14786 !(ipif->ipif_flags & IPIF_NOXMIT)) 14787 ipif_delete_bcast_ires(ipif); 14788 } 14789 14790 /* 14791 * Checks for availbility of a usable source address (if there is one) when the 14792 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14793 * this selection is done regardless of the destination. 14794 */ 14795 boolean_t 14796 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14797 ip_stack_t *ipst) 14798 { 14799 ipif_t *ipif = NULL; 14800 ill_t *uill; 14801 14802 ASSERT(ifindex != 0); 14803 14804 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14805 if (uill == NULL) 14806 return (B_FALSE); 14807 14808 mutex_enter(&uill->ill_lock); 14809 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14810 if (IPIF_IS_CONDEMNED(ipif)) 14811 continue; 14812 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14813 continue; 14814 if (!(ipif->ipif_flags & IPIF_UP)) 14815 continue; 14816 if (ipif->ipif_zoneid != zoneid) 14817 continue; 14818 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14819 ipif->ipif_lcl_addr == INADDR_ANY) 14820 continue; 14821 mutex_exit(&uill->ill_lock); 14822 ill_refrele(uill); 14823 return (B_TRUE); 14824 } 14825 mutex_exit(&uill->ill_lock); 14826 ill_refrele(uill); 14827 return (B_FALSE); 14828 } 14829 14830 /* 14831 * Find an ipif with a good local address on the ill+zoneid. 14832 */ 14833 ipif_t * 14834 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14835 { 14836 ipif_t *ipif; 14837 14838 mutex_enter(&ill->ill_lock); 14839 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14840 if (IPIF_IS_CONDEMNED(ipif)) 14841 continue; 14842 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14843 continue; 14844 if (!(ipif->ipif_flags & IPIF_UP)) 14845 continue; 14846 if (ipif->ipif_zoneid != zoneid && 14847 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14848 continue; 14849 if (ill->ill_isv6 ? 14850 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14851 ipif->ipif_lcl_addr == INADDR_ANY) 14852 continue; 14853 ipif_refhold_locked(ipif); 14854 mutex_exit(&ill->ill_lock); 14855 return (ipif); 14856 } 14857 mutex_exit(&ill->ill_lock); 14858 return (NULL); 14859 } 14860 14861 /* 14862 * IP source address type, sorted from worst to best. For a given type, 14863 * always prefer IP addresses on the same subnet. All-zones addresses are 14864 * suboptimal because they pose problems with unlabeled destinations. 14865 */ 14866 typedef enum { 14867 IPIF_NONE, 14868 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14869 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14870 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14871 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14872 IPIF_DIFFNET, /* normal and different subnet */ 14873 IPIF_SAMENET, /* normal and same subnet */ 14874 IPIF_LOCALADDR /* local loopback */ 14875 } ipif_type_t; 14876 14877 /* 14878 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14879 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14880 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14881 * the first one, unless IPMP is used in which case we round-robin among them; 14882 * see below for more. 14883 * 14884 * Returns NULL if there is no suitable source address for the ill. 14885 * This only occurs when there is no valid source address for the ill. 14886 */ 14887 ipif_t * 14888 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14889 boolean_t allow_usesrc, boolean_t *notreadyp) 14890 { 14891 ill_t *usill = NULL; 14892 ill_t *ipmp_ill = NULL; 14893 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14894 ipif_type_t type, best_type; 14895 tsol_tpc_t *src_rhtp, *dst_rhtp; 14896 ip_stack_t *ipst = ill->ill_ipst; 14897 boolean_t samenet; 14898 14899 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14900 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14901 B_FALSE, ipst); 14902 if (usill != NULL) 14903 ill = usill; /* Select source from usesrc ILL */ 14904 else 14905 return (NULL); 14906 } 14907 14908 /* 14909 * Test addresses should never be used for source address selection, 14910 * so if we were passed one, switch to the IPMP meta-interface. 14911 */ 14912 if (IS_UNDER_IPMP(ill)) { 14913 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14914 ill = ipmp_ill; /* Select source from IPMP ill */ 14915 else 14916 return (NULL); 14917 } 14918 14919 /* 14920 * If we're dealing with an unlabeled destination on a labeled system, 14921 * make sure that we ignore source addresses that are incompatible with 14922 * the destination's default label. That destination's default label 14923 * must dominate the minimum label on the source address. 14924 */ 14925 dst_rhtp = NULL; 14926 if (is_system_labeled()) { 14927 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14928 if (dst_rhtp == NULL) 14929 return (NULL); 14930 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14931 TPC_RELE(dst_rhtp); 14932 dst_rhtp = NULL; 14933 } 14934 } 14935 14936 /* 14937 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14938 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14939 * After selecting the right ipif, under ill_lock make sure ipif is 14940 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14941 * we retry. Inside the loop we still need to check for CONDEMNED, 14942 * but not under a lock. 14943 */ 14944 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14945 retry: 14946 /* 14947 * For source address selection, we treat the ipif list as circular 14948 * and continue until we get back to where we started. This allows 14949 * IPMP to vary source address selection (which improves inbound load 14950 * spreading) by caching its last ending point and starting from 14951 * there. NOTE: we don't have to worry about ill_src_ipif changing 14952 * ills since that can't happen on the IPMP ill. 14953 */ 14954 start_ipif = ill->ill_ipif; 14955 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14956 start_ipif = ill->ill_src_ipif; 14957 14958 ipif = start_ipif; 14959 best_ipif = NULL; 14960 best_type = IPIF_NONE; 14961 do { 14962 if ((next_ipif = ipif->ipif_next) == NULL) 14963 next_ipif = ill->ill_ipif; 14964 14965 if (IPIF_IS_CONDEMNED(ipif)) 14966 continue; 14967 /* Always skip NOLOCAL and ANYCAST interfaces */ 14968 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14969 continue; 14970 /* Always skip NOACCEPT interfaces */ 14971 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 14972 continue; 14973 if (!(ipif->ipif_flags & IPIF_UP)) 14974 continue; 14975 14976 if (!ipif->ipif_addr_ready) { 14977 if (notreadyp != NULL) 14978 *notreadyp = B_TRUE; 14979 continue; 14980 } 14981 14982 if (zoneid != ALL_ZONES && 14983 ipif->ipif_zoneid != zoneid && 14984 ipif->ipif_zoneid != ALL_ZONES) 14985 continue; 14986 14987 /* 14988 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14989 * are not valid as source addresses. 14990 */ 14991 if (ipif->ipif_lcl_addr == INADDR_ANY) 14992 continue; 14993 14994 /* 14995 * Check compatibility of local address for destination's 14996 * default label if we're on a labeled system. Incompatible 14997 * addresses can't be used at all. 14998 */ 14999 if (dst_rhtp != NULL) { 15000 boolean_t incompat; 15001 15002 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15003 IPV4_VERSION, B_FALSE); 15004 if (src_rhtp == NULL) 15005 continue; 15006 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15007 src_rhtp->tpc_tp.tp_doi != 15008 dst_rhtp->tpc_tp.tp_doi || 15009 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15010 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15011 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15012 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15013 TPC_RELE(src_rhtp); 15014 if (incompat) 15015 continue; 15016 } 15017 15018 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15019 15020 if (ipif->ipif_lcl_addr == dst) { 15021 type = IPIF_LOCALADDR; 15022 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15023 type = samenet ? IPIF_SAMENET_DEPRECATED : 15024 IPIF_DIFFNET_DEPRECATED; 15025 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15026 type = samenet ? IPIF_SAMENET_ALLZONES : 15027 IPIF_DIFFNET_ALLZONES; 15028 } else { 15029 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15030 } 15031 15032 if (type > best_type) { 15033 best_type = type; 15034 best_ipif = ipif; 15035 if (best_type == IPIF_LOCALADDR) 15036 break; /* can't get better */ 15037 } 15038 } while ((ipif = next_ipif) != start_ipif); 15039 15040 if ((ipif = best_ipif) != NULL) { 15041 mutex_enter(&ipif->ipif_ill->ill_lock); 15042 if (IPIF_IS_CONDEMNED(ipif)) { 15043 mutex_exit(&ipif->ipif_ill->ill_lock); 15044 goto retry; 15045 } 15046 ipif_refhold_locked(ipif); 15047 15048 /* 15049 * For IPMP, update the source ipif rotor to the next ipif, 15050 * provided we can look it up. (We must not use it if it's 15051 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15052 * ipif_free() checked ill_src_ipif.) 15053 */ 15054 if (IS_IPMP(ill) && ipif != NULL) { 15055 next_ipif = ipif->ipif_next; 15056 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15057 ill->ill_src_ipif = next_ipif; 15058 else 15059 ill->ill_src_ipif = NULL; 15060 } 15061 mutex_exit(&ipif->ipif_ill->ill_lock); 15062 } 15063 15064 rw_exit(&ipst->ips_ill_g_lock); 15065 if (usill != NULL) 15066 ill_refrele(usill); 15067 if (ipmp_ill != NULL) 15068 ill_refrele(ipmp_ill); 15069 if (dst_rhtp != NULL) 15070 TPC_RELE(dst_rhtp); 15071 15072 #ifdef DEBUG 15073 if (ipif == NULL) { 15074 char buf1[INET6_ADDRSTRLEN]; 15075 15076 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15077 ill->ill_name, 15078 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15079 } else { 15080 char buf1[INET6_ADDRSTRLEN]; 15081 char buf2[INET6_ADDRSTRLEN]; 15082 15083 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15084 ipif->ipif_ill->ill_name, 15085 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15086 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15087 buf2, sizeof (buf2)))); 15088 } 15089 #endif /* DEBUG */ 15090 return (ipif); 15091 } 15092 15093 /* 15094 * Pick a source address based on the destination ill and an optional setsrc 15095 * address. 15096 * The result is stored in srcp. If generation is set, then put the source 15097 * generation number there before we look for the source address (to avoid 15098 * missing changes in the set of source addresses. 15099 * If flagsp is set, then us it to pass back ipif_flags. 15100 * 15101 * If the caller wants to cache the returned source address and detect when 15102 * that might be stale, the caller should pass in a generation argument, 15103 * which the caller can later compare against ips_src_generation 15104 * 15105 * The precedence order for selecting an IPv4 source address is: 15106 * - RTF_SETSRC on the offlink ire always wins. 15107 * - If usrsrc is set, swap the ill to be the usesrc one. 15108 * - If IPMP is used on the ill, select a random address from the most 15109 * preferred ones below: 15110 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15111 * 2. Not deprecated, not ALL_ZONES 15112 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15113 * 4. Not deprecated, ALL_ZONES 15114 * 5. If onlink destination, same subnet and deprecated 15115 * 6. Deprecated. 15116 * 15117 * We have lower preference for ALL_ZONES IP addresses, 15118 * as they pose problems with unlabeled destinations. 15119 * 15120 * Note that when multiple IP addresses match e.g., #1 we pick 15121 * the first one if IPMP is not in use. With IPMP we randomize. 15122 */ 15123 int 15124 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15125 ipaddr_t multicast_ifaddr, 15126 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15127 uint32_t *generation, uint64_t *flagsp) 15128 { 15129 ipif_t *ipif; 15130 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15131 15132 if (flagsp != NULL) 15133 *flagsp = 0; 15134 15135 /* 15136 * Need to grab the generation number before we check to 15137 * avoid a race with a change to the set of local addresses. 15138 * No lock needed since the thread which updates the set of local 15139 * addresses use ipif/ill locks and exit those (hence a store memory 15140 * barrier) before doing the atomic increase of ips_src_generation. 15141 */ 15142 if (generation != NULL) { 15143 *generation = ipst->ips_src_generation; 15144 } 15145 15146 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15147 *srcp = multicast_ifaddr; 15148 return (0); 15149 } 15150 15151 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15152 if (setsrc != INADDR_ANY) { 15153 *srcp = setsrc; 15154 return (0); 15155 } 15156 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15157 if (ipif == NULL) { 15158 if (notready) 15159 return (ENETDOWN); 15160 else 15161 return (EADDRNOTAVAIL); 15162 } 15163 *srcp = ipif->ipif_lcl_addr; 15164 if (flagsp != NULL) 15165 *flagsp = ipif->ipif_flags; 15166 ipif_refrele(ipif); 15167 return (0); 15168 } 15169 15170 /* ARGSUSED */ 15171 int 15172 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15173 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15174 { 15175 /* 15176 * ill_phyint_reinit merged the v4 and v6 into a single 15177 * ipsq. We might not have been able to complete the 15178 * operation in ipif_set_values, if we could not become 15179 * exclusive. If so restart it here. 15180 */ 15181 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15182 } 15183 15184 /* 15185 * Can operate on either a module or a driver queue. 15186 * Returns an error if not a module queue. 15187 */ 15188 /* ARGSUSED */ 15189 int 15190 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15191 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15192 { 15193 queue_t *q1 = q; 15194 char *cp; 15195 char interf_name[LIFNAMSIZ]; 15196 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15197 15198 if (q->q_next == NULL) { 15199 ip1dbg(( 15200 "if_unitsel: IF_UNITSEL: no q_next\n")); 15201 return (EINVAL); 15202 } 15203 15204 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15205 return (EALREADY); 15206 15207 do { 15208 q1 = q1->q_next; 15209 } while (q1->q_next); 15210 cp = q1->q_qinfo->qi_minfo->mi_idname; 15211 (void) sprintf(interf_name, "%s%d", cp, ppa); 15212 15213 /* 15214 * Here we are not going to delay the ioack until after 15215 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15216 * original ioctl message before sending the requests. 15217 */ 15218 return (ipif_set_values(q, mp, interf_name, &ppa)); 15219 } 15220 15221 /* ARGSUSED */ 15222 int 15223 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15224 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15225 { 15226 return (ENXIO); 15227 } 15228 15229 /* 15230 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15231 * `irep'. Returns a pointer to the next free `irep' entry 15232 * A mirror exists in ipif_delete_bcast_ires(). 15233 * 15234 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15235 * done in ire_add. 15236 */ 15237 static ire_t ** 15238 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15239 { 15240 ipaddr_t addr; 15241 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15242 ipaddr_t subnetmask = ipif->ipif_net_mask; 15243 ill_t *ill = ipif->ipif_ill; 15244 zoneid_t zoneid = ipif->ipif_zoneid; 15245 15246 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15247 15248 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15249 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15250 15251 if (ipif->ipif_lcl_addr == INADDR_ANY || 15252 (ipif->ipif_flags & IPIF_NOLOCAL)) 15253 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15254 15255 irep = ire_create_bcast(ill, 0, zoneid, irep); 15256 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15257 15258 /* 15259 * For backward compatibility, we create net broadcast IREs based on 15260 * the old "IP address class system", since some old machines only 15261 * respond to these class derived net broadcast. However, we must not 15262 * create these net broadcast IREs if the subnetmask is shorter than 15263 * the IP address class based derived netmask. Otherwise, we may 15264 * create a net broadcast address which is the same as an IP address 15265 * on the subnet -- and then TCP will refuse to talk to that address. 15266 */ 15267 if (netmask < subnetmask) { 15268 addr = netmask & ipif->ipif_subnet; 15269 irep = ire_create_bcast(ill, addr, zoneid, irep); 15270 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15271 } 15272 15273 /* 15274 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15275 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15276 * created. Creating these broadcast IREs will only create confusion 15277 * as `addr' will be the same as the IP address. 15278 */ 15279 if (subnetmask != 0xFFFFFFFF) { 15280 addr = ipif->ipif_subnet; 15281 irep = ire_create_bcast(ill, addr, zoneid, irep); 15282 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15283 } 15284 15285 return (irep); 15286 } 15287 15288 /* 15289 * Mirror of ipif_create_bcast_ires() 15290 */ 15291 static void 15292 ipif_delete_bcast_ires(ipif_t *ipif) 15293 { 15294 ipaddr_t addr; 15295 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15296 ipaddr_t subnetmask = ipif->ipif_net_mask; 15297 ill_t *ill = ipif->ipif_ill; 15298 zoneid_t zoneid = ipif->ipif_zoneid; 15299 ire_t *ire; 15300 15301 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15302 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15303 15304 if (ipif->ipif_lcl_addr == INADDR_ANY || 15305 (ipif->ipif_flags & IPIF_NOLOCAL)) 15306 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15307 15308 ire = ire_lookup_bcast(ill, 0, zoneid); 15309 ASSERT(ire != NULL); 15310 ire_delete(ire); ire_refrele(ire); 15311 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15312 ASSERT(ire != NULL); 15313 ire_delete(ire); ire_refrele(ire); 15314 15315 /* 15316 * For backward compatibility, we create net broadcast IREs based on 15317 * the old "IP address class system", since some old machines only 15318 * respond to these class derived net broadcast. However, we must not 15319 * create these net broadcast IREs if the subnetmask is shorter than 15320 * the IP address class based derived netmask. Otherwise, we may 15321 * create a net broadcast address which is the same as an IP address 15322 * on the subnet -- and then TCP will refuse to talk to that address. 15323 */ 15324 if (netmask < subnetmask) { 15325 addr = netmask & ipif->ipif_subnet; 15326 ire = ire_lookup_bcast(ill, addr, zoneid); 15327 ASSERT(ire != NULL); 15328 ire_delete(ire); ire_refrele(ire); 15329 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15330 ASSERT(ire != NULL); 15331 ire_delete(ire); ire_refrele(ire); 15332 } 15333 15334 /* 15335 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15336 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15337 * created. Creating these broadcast IREs will only create confusion 15338 * as `addr' will be the same as the IP address. 15339 */ 15340 if (subnetmask != 0xFFFFFFFF) { 15341 addr = ipif->ipif_subnet; 15342 ire = ire_lookup_bcast(ill, addr, zoneid); 15343 ASSERT(ire != NULL); 15344 ire_delete(ire); ire_refrele(ire); 15345 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15346 ASSERT(ire != NULL); 15347 ire_delete(ire); ire_refrele(ire); 15348 } 15349 } 15350 15351 /* 15352 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15353 * from lifr_flags and the name from lifr_name. 15354 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15355 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15356 * Returns EINPROGRESS when mp has been consumed by queueing it on 15357 * ipx_pending_mp and the ioctl will complete in ip_rput. 15358 * 15359 * Can operate on either a module or a driver queue. 15360 * Returns an error if not a module queue. 15361 */ 15362 /* ARGSUSED */ 15363 int 15364 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15365 ip_ioctl_cmd_t *ipip, void *if_req) 15366 { 15367 ill_t *ill = q->q_ptr; 15368 phyint_t *phyi; 15369 ip_stack_t *ipst; 15370 struct lifreq *lifr = if_req; 15371 uint64_t new_flags; 15372 15373 ASSERT(ipif != NULL); 15374 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15375 15376 if (q->q_next == NULL) { 15377 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15378 return (EINVAL); 15379 } 15380 15381 /* 15382 * If we are not writer on 'q' then this interface exists already 15383 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15384 * so return EALREADY. 15385 */ 15386 if (ill != ipif->ipif_ill) 15387 return (EALREADY); 15388 15389 if (ill->ill_name[0] != '\0') 15390 return (EALREADY); 15391 15392 /* 15393 * If there's another ill already with the requested name, ensure 15394 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15395 * fuse together two unrelated ills, which will cause chaos. 15396 */ 15397 ipst = ill->ill_ipst; 15398 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15399 lifr->lifr_name, NULL); 15400 if (phyi != NULL) { 15401 ill_t *ill_mate = phyi->phyint_illv4; 15402 15403 if (ill_mate == NULL) 15404 ill_mate = phyi->phyint_illv6; 15405 ASSERT(ill_mate != NULL); 15406 15407 if (ill_mate->ill_media->ip_m_mac_type != 15408 ill->ill_media->ip_m_mac_type) { 15409 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15410 "use the same ill name on differing media\n")); 15411 return (EINVAL); 15412 } 15413 } 15414 15415 /* 15416 * We start off as IFF_IPV4 in ipif_allocate and become 15417 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15418 * The only flags that we read from user space are IFF_IPV4, 15419 * IFF_IPV6, and IFF_BROADCAST. 15420 * 15421 * This ill has not been inserted into the global list. 15422 * So we are still single threaded and don't need any lock 15423 * 15424 * Saniy check the flags. 15425 */ 15426 15427 if ((lifr->lifr_flags & IFF_BROADCAST) && 15428 ((lifr->lifr_flags & IFF_IPV6) || 15429 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15430 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15431 "or IPv6 i.e., no broadcast \n")); 15432 return (EINVAL); 15433 } 15434 15435 new_flags = 15436 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15437 15438 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15439 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15440 "IFF_IPV4 or IFF_IPV6\n")); 15441 return (EINVAL); 15442 } 15443 15444 /* 15445 * We always start off as IPv4, so only need to check for IPv6. 15446 */ 15447 if ((new_flags & IFF_IPV6) != 0) { 15448 ill->ill_flags |= ILLF_IPV6; 15449 ill->ill_flags &= ~ILLF_IPV4; 15450 } 15451 15452 if ((new_flags & IFF_BROADCAST) != 0) 15453 ipif->ipif_flags |= IPIF_BROADCAST; 15454 else 15455 ipif->ipif_flags &= ~IPIF_BROADCAST; 15456 15457 /* We started off as V4. */ 15458 if (ill->ill_flags & ILLF_IPV6) { 15459 ill->ill_phyint->phyint_illv6 = ill; 15460 ill->ill_phyint->phyint_illv4 = NULL; 15461 } 15462 15463 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15464 } 15465 15466 /* ARGSUSED */ 15467 int 15468 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15469 ip_ioctl_cmd_t *ipip, void *if_req) 15470 { 15471 /* 15472 * ill_phyint_reinit merged the v4 and v6 into a single 15473 * ipsq. We might not have been able to complete the 15474 * slifname in ipif_set_values, if we could not become 15475 * exclusive. If so restart it here 15476 */ 15477 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15478 } 15479 15480 /* 15481 * Return a pointer to the ipif which matches the index, IP version type and 15482 * zoneid. 15483 */ 15484 ipif_t * 15485 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15486 ip_stack_t *ipst) 15487 { 15488 ill_t *ill; 15489 ipif_t *ipif = NULL; 15490 15491 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15492 if (ill != NULL) { 15493 mutex_enter(&ill->ill_lock); 15494 for (ipif = ill->ill_ipif; ipif != NULL; 15495 ipif = ipif->ipif_next) { 15496 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15497 zoneid == ipif->ipif_zoneid || 15498 ipif->ipif_zoneid == ALL_ZONES)) { 15499 ipif_refhold_locked(ipif); 15500 break; 15501 } 15502 } 15503 mutex_exit(&ill->ill_lock); 15504 ill_refrele(ill); 15505 } 15506 return (ipif); 15507 } 15508 15509 /* 15510 * Change an existing physical interface's index. If the new index 15511 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15512 * Finally, we update other systems which may have a dependence on the 15513 * index value. 15514 */ 15515 /* ARGSUSED */ 15516 int 15517 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15518 ip_ioctl_cmd_t *ipip, void *ifreq) 15519 { 15520 ill_t *ill; 15521 phyint_t *phyi; 15522 struct ifreq *ifr = (struct ifreq *)ifreq; 15523 struct lifreq *lifr = (struct lifreq *)ifreq; 15524 uint_t old_index, index; 15525 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15526 avl_index_t where; 15527 15528 if (ipip->ipi_cmd_type == IF_CMD) 15529 index = ifr->ifr_index; 15530 else 15531 index = lifr->lifr_index; 15532 15533 /* 15534 * Only allow on physical interface. Also, index zero is illegal. 15535 */ 15536 ill = ipif->ipif_ill; 15537 phyi = ill->ill_phyint; 15538 if (ipif->ipif_id != 0 || index == 0) { 15539 return (EINVAL); 15540 } 15541 15542 /* If the index is not changing, no work to do */ 15543 if (phyi->phyint_ifindex == index) 15544 return (0); 15545 15546 /* 15547 * Use phyint_exists() to determine if the new interface index 15548 * is already in use. If the index is unused then we need to 15549 * change the phyint's position in the phyint_list_avl_by_index 15550 * tree. If we do not do this, subsequent lookups (using the new 15551 * index value) will not find the phyint. 15552 */ 15553 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15554 if (phyint_exists(index, ipst)) { 15555 rw_exit(&ipst->ips_ill_g_lock); 15556 return (EEXIST); 15557 } 15558 15559 /* 15560 * The new index is unused. Set it in the phyint. However we must not 15561 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15562 * changes. The event must be bound to old ifindex value. 15563 */ 15564 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15565 &index, sizeof (index)); 15566 15567 old_index = phyi->phyint_ifindex; 15568 phyi->phyint_ifindex = index; 15569 15570 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15571 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15572 &index, &where); 15573 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15574 phyi, where); 15575 rw_exit(&ipst->ips_ill_g_lock); 15576 15577 /* Update SCTP's ILL list */ 15578 sctp_ill_reindex(ill, old_index); 15579 15580 /* Send the routing sockets message */ 15581 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15582 if (ILL_OTHER(ill)) 15583 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15584 15585 /* Perhaps ilgs should use this ill */ 15586 update_conn_ill(NULL, ill->ill_ipst); 15587 return (0); 15588 } 15589 15590 /* ARGSUSED */ 15591 int 15592 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15593 ip_ioctl_cmd_t *ipip, void *ifreq) 15594 { 15595 struct ifreq *ifr = (struct ifreq *)ifreq; 15596 struct lifreq *lifr = (struct lifreq *)ifreq; 15597 15598 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15599 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15600 /* Get the interface index */ 15601 if (ipip->ipi_cmd_type == IF_CMD) { 15602 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15603 } else { 15604 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15605 } 15606 return (0); 15607 } 15608 15609 /* ARGSUSED */ 15610 int 15611 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15612 ip_ioctl_cmd_t *ipip, void *ifreq) 15613 { 15614 struct lifreq *lifr = (struct lifreq *)ifreq; 15615 15616 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15617 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15618 /* Get the interface zone */ 15619 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15620 lifr->lifr_zoneid = ipif->ipif_zoneid; 15621 return (0); 15622 } 15623 15624 /* 15625 * Set the zoneid of an interface. 15626 */ 15627 /* ARGSUSED */ 15628 int 15629 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15630 ip_ioctl_cmd_t *ipip, void *ifreq) 15631 { 15632 struct lifreq *lifr = (struct lifreq *)ifreq; 15633 int err = 0; 15634 boolean_t need_up = B_FALSE; 15635 zone_t *zptr; 15636 zone_status_t status; 15637 zoneid_t zoneid; 15638 15639 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15640 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15641 if (!is_system_labeled()) 15642 return (ENOTSUP); 15643 zoneid = GLOBAL_ZONEID; 15644 } 15645 15646 /* cannot assign instance zero to a non-global zone */ 15647 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15648 return (ENOTSUP); 15649 15650 /* 15651 * Cannot assign to a zone that doesn't exist or is shutting down. In 15652 * the event of a race with the zone shutdown processing, since IP 15653 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15654 * interface will be cleaned up even if the zone is shut down 15655 * immediately after the status check. If the interface can't be brought 15656 * down right away, and the zone is shut down before the restart 15657 * function is called, we resolve the possible races by rechecking the 15658 * zone status in the restart function. 15659 */ 15660 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15661 return (EINVAL); 15662 status = zone_status_get(zptr); 15663 zone_rele(zptr); 15664 15665 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15666 return (EINVAL); 15667 15668 if (ipif->ipif_flags & IPIF_UP) { 15669 /* 15670 * If the interface is already marked up, 15671 * we call ipif_down which will take care 15672 * of ditching any IREs that have been set 15673 * up based on the old interface address. 15674 */ 15675 err = ipif_logical_down(ipif, q, mp); 15676 if (err == EINPROGRESS) 15677 return (err); 15678 (void) ipif_down_tail(ipif); 15679 need_up = B_TRUE; 15680 } 15681 15682 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15683 return (err); 15684 } 15685 15686 static int 15687 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15688 queue_t *q, mblk_t *mp, boolean_t need_up) 15689 { 15690 int err = 0; 15691 ip_stack_t *ipst; 15692 15693 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15694 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15695 15696 if (CONN_Q(q)) 15697 ipst = CONNQ_TO_IPST(q); 15698 else 15699 ipst = ILLQ_TO_IPST(q); 15700 15701 /* 15702 * For exclusive stacks we don't allow a different zoneid than 15703 * global. 15704 */ 15705 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15706 zoneid != GLOBAL_ZONEID) 15707 return (EINVAL); 15708 15709 /* Set the new zone id. */ 15710 ipif->ipif_zoneid = zoneid; 15711 15712 /* Update sctp list */ 15713 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15714 15715 /* The default multicast interface might have changed */ 15716 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15717 15718 if (need_up) { 15719 /* 15720 * Now bring the interface back up. If this 15721 * is the only IPIF for the ILL, ipif_up 15722 * will have to re-bind to the device, so 15723 * we may get back EINPROGRESS, in which 15724 * case, this IOCTL will get completed in 15725 * ip_rput_dlpi when we see the DL_BIND_ACK. 15726 */ 15727 err = ipif_up(ipif, q, mp); 15728 } 15729 return (err); 15730 } 15731 15732 /* ARGSUSED */ 15733 int 15734 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15735 ip_ioctl_cmd_t *ipip, void *if_req) 15736 { 15737 struct lifreq *lifr = (struct lifreq *)if_req; 15738 zoneid_t zoneid; 15739 zone_t *zptr; 15740 zone_status_t status; 15741 15742 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15743 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15744 zoneid = GLOBAL_ZONEID; 15745 15746 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15747 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15748 15749 /* 15750 * We recheck the zone status to resolve the following race condition: 15751 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15752 * 2) hme0:1 is up and can't be brought down right away; 15753 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15754 * 3) zone "myzone" is halted; the zone status switches to 15755 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15756 * the interfaces to remove - hme0:1 is not returned because it's not 15757 * yet in "myzone", so it won't be removed; 15758 * 4) the restart function for SIOCSLIFZONE is called; without the 15759 * status check here, we would have hme0:1 in "myzone" after it's been 15760 * destroyed. 15761 * Note that if the status check fails, we need to bring the interface 15762 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15763 * ipif_up_done[_v6](). 15764 */ 15765 status = ZONE_IS_UNINITIALIZED; 15766 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15767 status = zone_status_get(zptr); 15768 zone_rele(zptr); 15769 } 15770 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15771 if (ipif->ipif_isv6) { 15772 (void) ipif_up_done_v6(ipif); 15773 } else { 15774 (void) ipif_up_done(ipif); 15775 } 15776 return (EINVAL); 15777 } 15778 15779 (void) ipif_down_tail(ipif); 15780 15781 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15782 B_TRUE)); 15783 } 15784 15785 /* 15786 * Return the number of addresses on `ill' with one or more of the values 15787 * in `set' set and all of the values in `clear' clear. 15788 */ 15789 static uint_t 15790 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15791 { 15792 ipif_t *ipif; 15793 uint_t cnt = 0; 15794 15795 ASSERT(IAM_WRITER_ILL(ill)); 15796 15797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15798 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15799 cnt++; 15800 15801 return (cnt); 15802 } 15803 15804 /* 15805 * Return the number of migratable addresses on `ill' that are under 15806 * application control. 15807 */ 15808 uint_t 15809 ill_appaddr_cnt(const ill_t *ill) 15810 { 15811 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15812 IPIF_NOFAILOVER)); 15813 } 15814 15815 /* 15816 * Return the number of point-to-point addresses on `ill'. 15817 */ 15818 uint_t 15819 ill_ptpaddr_cnt(const ill_t *ill) 15820 { 15821 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15822 } 15823 15824 /* ARGSUSED */ 15825 int 15826 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15827 ip_ioctl_cmd_t *ipip, void *ifreq) 15828 { 15829 struct lifreq *lifr = ifreq; 15830 15831 ASSERT(q->q_next == NULL); 15832 ASSERT(CONN_Q(q)); 15833 15834 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15835 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15836 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15837 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15838 15839 return (0); 15840 } 15841 15842 /* Find the previous ILL in this usesrc group */ 15843 static ill_t * 15844 ill_prev_usesrc(ill_t *uill) 15845 { 15846 ill_t *ill; 15847 15848 for (ill = uill->ill_usesrc_grp_next; 15849 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15850 ill = ill->ill_usesrc_grp_next) 15851 /* do nothing */; 15852 return (ill); 15853 } 15854 15855 /* 15856 * Release all members of the usesrc group. This routine is called 15857 * from ill_delete when the interface being unplumbed is the 15858 * group head. 15859 * 15860 * This silently clears the usesrc that ifconfig setup. 15861 * An alternative would be to keep that ifindex, and drop packets on the floor 15862 * since no source address can be selected. 15863 * Even if we keep the current semantics, don't need a lock and a linked list. 15864 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15865 * the one that is being removed. Issue is how we return the usesrc users 15866 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15867 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15868 * ill walk, but the walker would need to insert in the ioctl response. 15869 */ 15870 static void 15871 ill_disband_usesrc_group(ill_t *uill) 15872 { 15873 ill_t *next_ill, *tmp_ill; 15874 ip_stack_t *ipst = uill->ill_ipst; 15875 15876 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15877 next_ill = uill->ill_usesrc_grp_next; 15878 15879 do { 15880 ASSERT(next_ill != NULL); 15881 tmp_ill = next_ill->ill_usesrc_grp_next; 15882 ASSERT(tmp_ill != NULL); 15883 next_ill->ill_usesrc_grp_next = NULL; 15884 next_ill->ill_usesrc_ifindex = 0; 15885 next_ill = tmp_ill; 15886 } while (next_ill->ill_usesrc_ifindex != 0); 15887 uill->ill_usesrc_grp_next = NULL; 15888 } 15889 15890 /* 15891 * Remove the client usesrc ILL from the list and relink to a new list 15892 */ 15893 int 15894 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15895 { 15896 ill_t *ill, *tmp_ill; 15897 ip_stack_t *ipst = ucill->ill_ipst; 15898 15899 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15900 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15901 15902 /* 15903 * Check if the usesrc client ILL passed in is not already 15904 * in use as a usesrc ILL i.e one whose source address is 15905 * in use OR a usesrc ILL is not already in use as a usesrc 15906 * client ILL 15907 */ 15908 if ((ucill->ill_usesrc_ifindex == 0) || 15909 (uill->ill_usesrc_ifindex != 0)) { 15910 return (-1); 15911 } 15912 15913 ill = ill_prev_usesrc(ucill); 15914 ASSERT(ill->ill_usesrc_grp_next != NULL); 15915 15916 /* Remove from the current list */ 15917 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15918 /* Only two elements in the list */ 15919 ASSERT(ill->ill_usesrc_ifindex == 0); 15920 ill->ill_usesrc_grp_next = NULL; 15921 } else { 15922 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15923 } 15924 15925 if (ifindex == 0) { 15926 ucill->ill_usesrc_ifindex = 0; 15927 ucill->ill_usesrc_grp_next = NULL; 15928 return (0); 15929 } 15930 15931 ucill->ill_usesrc_ifindex = ifindex; 15932 tmp_ill = uill->ill_usesrc_grp_next; 15933 uill->ill_usesrc_grp_next = ucill; 15934 ucill->ill_usesrc_grp_next = 15935 (tmp_ill != NULL) ? tmp_ill : uill; 15936 return (0); 15937 } 15938 15939 /* 15940 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15941 * ip.c for locking details. 15942 */ 15943 /* ARGSUSED */ 15944 int 15945 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15946 ip_ioctl_cmd_t *ipip, void *ifreq) 15947 { 15948 struct lifreq *lifr = (struct lifreq *)ifreq; 15949 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15950 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15951 int err = 0, ret; 15952 uint_t ifindex; 15953 ipsq_t *ipsq = NULL; 15954 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15955 15956 ASSERT(IAM_WRITER_IPIF(ipif)); 15957 ASSERT(q->q_next == NULL); 15958 ASSERT(CONN_Q(q)); 15959 15960 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15961 15962 ifindex = lifr->lifr_index; 15963 if (ifindex == 0) { 15964 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15965 /* non usesrc group interface, nothing to reset */ 15966 return (0); 15967 } 15968 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15969 /* valid reset request */ 15970 reset_flg = B_TRUE; 15971 } 15972 15973 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15974 if (usesrc_ill == NULL) { 15975 return (ENXIO); 15976 } 15977 15978 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15979 NEW_OP, B_TRUE); 15980 if (ipsq == NULL) { 15981 err = EINPROGRESS; 15982 /* Operation enqueued on the ipsq of the usesrc ILL */ 15983 goto done; 15984 } 15985 15986 /* USESRC isn't currently supported with IPMP */ 15987 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15988 err = ENOTSUP; 15989 goto done; 15990 } 15991 15992 /* 15993 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15994 * used by IPMP underlying interfaces, but someone might think it's 15995 * more general and try to use it independently with VNI.) 15996 */ 15997 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15998 err = ENOTSUP; 15999 goto done; 16000 } 16001 16002 /* 16003 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16004 * already a client then return EINVAL 16005 */ 16006 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16007 err = EINVAL; 16008 goto done; 16009 } 16010 16011 /* 16012 * If the ill_usesrc_ifindex field is already set to what it needs to 16013 * be then this is a duplicate operation. 16014 */ 16015 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16016 err = 0; 16017 goto done; 16018 } 16019 16020 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16021 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16022 usesrc_ill->ill_isv6)); 16023 16024 /* 16025 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16026 * and the ill_usesrc_ifindex fields 16027 */ 16028 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16029 16030 if (reset_flg) { 16031 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16032 if (ret != 0) { 16033 err = EINVAL; 16034 } 16035 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16036 goto done; 16037 } 16038 16039 /* 16040 * Four possibilities to consider: 16041 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16042 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16043 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16044 * 4. Both are part of their respective usesrc groups 16045 */ 16046 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16047 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16048 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16049 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16050 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16051 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16052 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16053 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16054 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16055 /* Insert at head of list */ 16056 usesrc_cli_ill->ill_usesrc_grp_next = 16057 usesrc_ill->ill_usesrc_grp_next; 16058 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16059 } else { 16060 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16061 ifindex); 16062 if (ret != 0) 16063 err = EINVAL; 16064 } 16065 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16066 16067 done: 16068 if (ipsq != NULL) 16069 ipsq_exit(ipsq); 16070 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16071 ill_refrele(usesrc_ill); 16072 16073 /* Let conn_ixa caching know that source address selection changed */ 16074 ip_update_source_selection(ipst); 16075 16076 return (err); 16077 } 16078 16079 /* 16080 * comparison function used by avl. 16081 */ 16082 static int 16083 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16084 { 16085 16086 uint_t index; 16087 16088 ASSERT(phyip != NULL && index_ptr != NULL); 16089 16090 index = *((uint_t *)index_ptr); 16091 /* 16092 * let the phyint with the lowest index be on top. 16093 */ 16094 if (((phyint_t *)phyip)->phyint_ifindex < index) 16095 return (1); 16096 if (((phyint_t *)phyip)->phyint_ifindex > index) 16097 return (-1); 16098 return (0); 16099 } 16100 16101 /* 16102 * comparison function used by avl. 16103 */ 16104 static int 16105 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16106 { 16107 ill_t *ill; 16108 int res = 0; 16109 16110 ASSERT(phyip != NULL && name_ptr != NULL); 16111 16112 if (((phyint_t *)phyip)->phyint_illv4) 16113 ill = ((phyint_t *)phyip)->phyint_illv4; 16114 else 16115 ill = ((phyint_t *)phyip)->phyint_illv6; 16116 ASSERT(ill != NULL); 16117 16118 res = strcmp(ill->ill_name, (char *)name_ptr); 16119 if (res > 0) 16120 return (1); 16121 else if (res < 0) 16122 return (-1); 16123 return (0); 16124 } 16125 16126 /* 16127 * This function is called on the unplumb path via ill_glist_delete() when 16128 * there are no ills left on the phyint and thus the phyint can be freed. 16129 */ 16130 static void 16131 phyint_free(phyint_t *phyi) 16132 { 16133 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16134 16135 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16136 16137 /* 16138 * If this phyint was an IPMP meta-interface, blow away the group. 16139 * This is safe to do because all of the illgrps have already been 16140 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16141 * If we're cleaning up as a result of failed initialization, 16142 * phyint_grp may be NULL. 16143 */ 16144 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16145 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16146 ipmp_grp_destroy(phyi->phyint_grp); 16147 phyi->phyint_grp = NULL; 16148 rw_exit(&ipst->ips_ipmp_lock); 16149 } 16150 16151 /* 16152 * If this interface was under IPMP, take it out of the group. 16153 */ 16154 if (phyi->phyint_grp != NULL) 16155 ipmp_phyint_leave_grp(phyi); 16156 16157 /* 16158 * Delete the phyint and disassociate its ipsq. The ipsq itself 16159 * will be freed in ipsq_exit(). 16160 */ 16161 phyi->phyint_ipsq->ipsq_phyint = NULL; 16162 phyi->phyint_name[0] = '\0'; 16163 16164 mi_free(phyi); 16165 } 16166 16167 /* 16168 * Attach the ill to the phyint structure which can be shared by both 16169 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16170 * function is called from ipif_set_values and ill_lookup_on_name (for 16171 * loopback) where we know the name of the ill. We lookup the ill and if 16172 * there is one present already with the name use that phyint. Otherwise 16173 * reuse the one allocated by ill_init. 16174 */ 16175 static void 16176 ill_phyint_reinit(ill_t *ill) 16177 { 16178 boolean_t isv6 = ill->ill_isv6; 16179 phyint_t *phyi_old; 16180 phyint_t *phyi; 16181 avl_index_t where = 0; 16182 ill_t *ill_other = NULL; 16183 ip_stack_t *ipst = ill->ill_ipst; 16184 16185 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16186 16187 phyi_old = ill->ill_phyint; 16188 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16189 phyi_old->phyint_illv6 == NULL)); 16190 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16191 phyi_old->phyint_illv4 == NULL)); 16192 ASSERT(phyi_old->phyint_ifindex == 0); 16193 16194 /* 16195 * Now that our ill has a name, set it in the phyint. 16196 */ 16197 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16198 16199 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16200 ill->ill_name, &where); 16201 16202 /* 16203 * 1. We grabbed the ill_g_lock before inserting this ill into 16204 * the global list of ills. So no other thread could have located 16205 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16206 * 2. Now locate the other protocol instance of this ill. 16207 * 3. Now grab both ill locks in the right order, and the phyint lock of 16208 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16209 * of neither ill can change. 16210 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16211 * other ill. 16212 * 5. Release all locks. 16213 */ 16214 16215 /* 16216 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16217 * we are initializing IPv4. 16218 */ 16219 if (phyi != NULL) { 16220 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16221 ASSERT(ill_other->ill_phyint != NULL); 16222 ASSERT((isv6 && !ill_other->ill_isv6) || 16223 (!isv6 && ill_other->ill_isv6)); 16224 GRAB_ILL_LOCKS(ill, ill_other); 16225 /* 16226 * We are potentially throwing away phyint_flags which 16227 * could be different from the one that we obtain from 16228 * ill_other->ill_phyint. But it is okay as we are assuming 16229 * that the state maintained within IP is correct. 16230 */ 16231 mutex_enter(&phyi->phyint_lock); 16232 if (isv6) { 16233 ASSERT(phyi->phyint_illv6 == NULL); 16234 phyi->phyint_illv6 = ill; 16235 } else { 16236 ASSERT(phyi->phyint_illv4 == NULL); 16237 phyi->phyint_illv4 = ill; 16238 } 16239 16240 /* 16241 * Delete the old phyint and make its ipsq eligible 16242 * to be freed in ipsq_exit(). 16243 */ 16244 phyi_old->phyint_illv4 = NULL; 16245 phyi_old->phyint_illv6 = NULL; 16246 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16247 phyi_old->phyint_name[0] = '\0'; 16248 mi_free(phyi_old); 16249 } else { 16250 mutex_enter(&ill->ill_lock); 16251 /* 16252 * We don't need to acquire any lock, since 16253 * the ill is not yet visible globally and we 16254 * have not yet released the ill_g_lock. 16255 */ 16256 phyi = phyi_old; 16257 mutex_enter(&phyi->phyint_lock); 16258 /* XXX We need a recovery strategy here. */ 16259 if (!phyint_assign_ifindex(phyi, ipst)) 16260 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16261 16262 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16263 (void *)phyi, where); 16264 16265 (void) avl_find(&ipst->ips_phyint_g_list-> 16266 phyint_list_avl_by_index, 16267 &phyi->phyint_ifindex, &where); 16268 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16269 (void *)phyi, where); 16270 } 16271 16272 /* 16273 * Reassigning ill_phyint automatically reassigns the ipsq also. 16274 * pending mp is not affected because that is per ill basis. 16275 */ 16276 ill->ill_phyint = phyi; 16277 16278 /* 16279 * Now that the phyint's ifindex has been assigned, complete the 16280 * remaining 16281 */ 16282 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16283 if (ill->ill_isv6) { 16284 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16285 ill->ill_phyint->phyint_ifindex; 16286 ill->ill_mcast_type = ipst->ips_mld_max_version; 16287 } else { 16288 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16289 } 16290 16291 /* 16292 * Generate an event within the hooks framework to indicate that 16293 * a new interface has just been added to IP. For this event to 16294 * be generated, the network interface must, at least, have an 16295 * ifindex assigned to it. (We don't generate the event for 16296 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16297 * 16298 * This needs to be run inside the ill_g_lock perimeter to ensure 16299 * that the ordering of delivered events to listeners matches the 16300 * order of them in the kernel. 16301 */ 16302 if (!IS_LOOPBACK(ill)) { 16303 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16304 ill->ill_name_length); 16305 } 16306 RELEASE_ILL_LOCKS(ill, ill_other); 16307 mutex_exit(&phyi->phyint_lock); 16308 } 16309 16310 /* 16311 * Notify any downstream modules of the name of this interface. 16312 * An M_IOCTL is used even though we don't expect a successful reply. 16313 * Any reply message from the driver (presumably an M_IOCNAK) will 16314 * eventually get discarded somewhere upstream. The message format is 16315 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16316 * to IP. 16317 */ 16318 static void 16319 ip_ifname_notify(ill_t *ill, queue_t *q) 16320 { 16321 mblk_t *mp1, *mp2; 16322 struct iocblk *iocp; 16323 struct lifreq *lifr; 16324 16325 mp1 = mkiocb(SIOCSLIFNAME); 16326 if (mp1 == NULL) 16327 return; 16328 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16329 if (mp2 == NULL) { 16330 freeb(mp1); 16331 return; 16332 } 16333 16334 mp1->b_cont = mp2; 16335 iocp = (struct iocblk *)mp1->b_rptr; 16336 iocp->ioc_count = sizeof (struct lifreq); 16337 16338 lifr = (struct lifreq *)mp2->b_rptr; 16339 mp2->b_wptr += sizeof (struct lifreq); 16340 bzero(lifr, sizeof (struct lifreq)); 16341 16342 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16343 lifr->lifr_ppa = ill->ill_ppa; 16344 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16345 16346 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16347 char *, "SIOCSLIFNAME", ill_t *, ill); 16348 putnext(q, mp1); 16349 } 16350 16351 static int 16352 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16353 { 16354 int err; 16355 ip_stack_t *ipst = ill->ill_ipst; 16356 phyint_t *phyi = ill->ill_phyint; 16357 16358 /* Set the obsolete NDD per-interface forwarding name. */ 16359 err = ill_set_ndd_name(ill); 16360 if (err != 0) { 16361 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16362 err); 16363 } 16364 16365 /* 16366 * Now that ill_name is set, the configuration for the IPMP 16367 * meta-interface can be performed. 16368 */ 16369 if (IS_IPMP(ill)) { 16370 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16371 /* 16372 * If phyi->phyint_grp is NULL, then this is the first IPMP 16373 * meta-interface and we need to create the IPMP group. 16374 */ 16375 if (phyi->phyint_grp == NULL) { 16376 /* 16377 * If someone has renamed another IPMP group to have 16378 * the same name as our interface, bail. 16379 */ 16380 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16381 rw_exit(&ipst->ips_ipmp_lock); 16382 return (EEXIST); 16383 } 16384 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16385 if (phyi->phyint_grp == NULL) { 16386 rw_exit(&ipst->ips_ipmp_lock); 16387 return (ENOMEM); 16388 } 16389 } 16390 rw_exit(&ipst->ips_ipmp_lock); 16391 } 16392 16393 /* Tell downstream modules where they are. */ 16394 ip_ifname_notify(ill, q); 16395 16396 /* 16397 * ill_dl_phys returns EINPROGRESS in the usual case. 16398 * Error cases are ENOMEM ... 16399 */ 16400 err = ill_dl_phys(ill, ipif, mp, q); 16401 16402 if (ill->ill_isv6) { 16403 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16404 if (ipst->ips_mld_slowtimeout_id == 0) { 16405 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16406 (void *)ipst, 16407 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16408 } 16409 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16410 } else { 16411 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16412 if (ipst->ips_igmp_slowtimeout_id == 0) { 16413 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16414 (void *)ipst, 16415 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16416 } 16417 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16418 } 16419 16420 return (err); 16421 } 16422 16423 /* 16424 * Common routine for ppa and ifname setting. Should be called exclusive. 16425 * 16426 * Returns EINPROGRESS when mp has been consumed by queueing it on 16427 * ipx_pending_mp and the ioctl will complete in ip_rput. 16428 * 16429 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16430 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16431 * For SLIFNAME, we pass these values back to the userland. 16432 */ 16433 static int 16434 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16435 { 16436 ill_t *ill; 16437 ipif_t *ipif; 16438 ipsq_t *ipsq; 16439 char *ppa_ptr; 16440 char *old_ptr; 16441 char old_char; 16442 int error; 16443 ip_stack_t *ipst; 16444 16445 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16446 ASSERT(q->q_next != NULL); 16447 ASSERT(interf_name != NULL); 16448 16449 ill = (ill_t *)q->q_ptr; 16450 ipst = ill->ill_ipst; 16451 16452 ASSERT(ill->ill_ipst != NULL); 16453 ASSERT(ill->ill_name[0] == '\0'); 16454 ASSERT(IAM_WRITER_ILL(ill)); 16455 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16456 ASSERT(ill->ill_ppa == UINT_MAX); 16457 16458 ill->ill_defend_start = ill->ill_defend_count = 0; 16459 /* The ppa is sent down by ifconfig or is chosen */ 16460 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16461 return (EINVAL); 16462 } 16463 16464 /* 16465 * make sure ppa passed in is same as ppa in the name. 16466 * This check is not made when ppa == UINT_MAX in that case ppa 16467 * in the name could be anything. System will choose a ppa and 16468 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16469 */ 16470 if (*new_ppa_ptr != UINT_MAX) { 16471 /* stoi changes the pointer */ 16472 old_ptr = ppa_ptr; 16473 /* 16474 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16475 * (they don't have an externally visible ppa). We assign one 16476 * here so that we can manage the interface. Note that in 16477 * the past this value was always 0 for DLPI 1 drivers. 16478 */ 16479 if (*new_ppa_ptr == 0) 16480 *new_ppa_ptr = stoi(&old_ptr); 16481 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16482 return (EINVAL); 16483 } 16484 /* 16485 * terminate string before ppa 16486 * save char at that location. 16487 */ 16488 old_char = ppa_ptr[0]; 16489 ppa_ptr[0] = '\0'; 16490 16491 ill->ill_ppa = *new_ppa_ptr; 16492 /* 16493 * Finish as much work now as possible before calling ill_glist_insert 16494 * which makes the ill globally visible and also merges it with the 16495 * other protocol instance of this phyint. The remaining work is 16496 * done after entering the ipsq which may happen sometime later. 16497 * ill_set_ndd_name occurs after the ill has been made globally visible. 16498 */ 16499 ipif = ill->ill_ipif; 16500 16501 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16502 ipif_assign_seqid(ipif); 16503 16504 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16505 ill->ill_flags |= ILLF_IPV4; 16506 16507 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16508 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16509 16510 if (ill->ill_flags & ILLF_IPV6) { 16511 16512 ill->ill_isv6 = B_TRUE; 16513 ill_set_inputfn(ill); 16514 if (ill->ill_rq != NULL) { 16515 ill->ill_rq->q_qinfo = &iprinitv6; 16516 } 16517 16518 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16519 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16520 ipif->ipif_v6subnet = ipv6_all_zeros; 16521 ipif->ipif_v6net_mask = ipv6_all_zeros; 16522 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16523 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16524 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16525 /* 16526 * point-to-point or Non-mulicast capable 16527 * interfaces won't do NUD unless explicitly 16528 * configured to do so. 16529 */ 16530 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16531 !(ill->ill_flags & ILLF_MULTICAST)) { 16532 ill->ill_flags |= ILLF_NONUD; 16533 } 16534 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16535 if (ill->ill_flags & ILLF_NOARP) { 16536 /* 16537 * Note: xresolv interfaces will eventually need 16538 * NOARP set here as well, but that will require 16539 * those external resolvers to have some 16540 * knowledge of that flag and act appropriately. 16541 * Not to be changed at present. 16542 */ 16543 ill->ill_flags &= ~ILLF_NOARP; 16544 } 16545 /* 16546 * Set the ILLF_ROUTER flag according to the global 16547 * IPv6 forwarding policy. 16548 */ 16549 if (ipst->ips_ipv6_forward != 0) 16550 ill->ill_flags |= ILLF_ROUTER; 16551 } else if (ill->ill_flags & ILLF_IPV4) { 16552 ill->ill_isv6 = B_FALSE; 16553 ill_set_inputfn(ill); 16554 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16555 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16556 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16557 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16558 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16559 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16560 /* 16561 * Set the ILLF_ROUTER flag according to the global 16562 * IPv4 forwarding policy. 16563 */ 16564 if (ipst->ips_ip_g_forward != 0) 16565 ill->ill_flags |= ILLF_ROUTER; 16566 } 16567 16568 ASSERT(ill->ill_phyint != NULL); 16569 16570 /* 16571 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16572 * be completed in ill_glist_insert -> ill_phyint_reinit 16573 */ 16574 if (!ill_allocate_mibs(ill)) 16575 return (ENOMEM); 16576 16577 /* 16578 * Pick a default sap until we get the DL_INFO_ACK back from 16579 * the driver. 16580 */ 16581 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16582 ill->ill_media->ip_m_ipv4sap; 16583 16584 ill->ill_ifname_pending = 1; 16585 ill->ill_ifname_pending_err = 0; 16586 16587 /* 16588 * When the first ipif comes up in ipif_up_done(), multicast groups 16589 * that were joined while this ill was not bound to the DLPI link need 16590 * to be recovered by ill_recover_multicast(). 16591 */ 16592 ill->ill_need_recover_multicast = 1; 16593 16594 ill_refhold(ill); 16595 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16596 if ((error = ill_glist_insert(ill, interf_name, 16597 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16598 ill->ill_ppa = UINT_MAX; 16599 ill->ill_name[0] = '\0'; 16600 /* 16601 * undo null termination done above. 16602 */ 16603 ppa_ptr[0] = old_char; 16604 rw_exit(&ipst->ips_ill_g_lock); 16605 ill_refrele(ill); 16606 return (error); 16607 } 16608 16609 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16610 16611 /* 16612 * When we return the buffer pointed to by interf_name should contain 16613 * the same name as in ill_name. 16614 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16615 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16616 * so copy full name and update the ppa ptr. 16617 * When ppa passed in != UINT_MAX all values are correct just undo 16618 * null termination, this saves a bcopy. 16619 */ 16620 if (*new_ppa_ptr == UINT_MAX) { 16621 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16622 *new_ppa_ptr = ill->ill_ppa; 16623 } else { 16624 /* 16625 * undo null termination done above. 16626 */ 16627 ppa_ptr[0] = old_char; 16628 } 16629 16630 /* Let SCTP know about this ILL */ 16631 sctp_update_ill(ill, SCTP_ILL_INSERT); 16632 16633 /* 16634 * ill_glist_insert has made the ill visible globally, and 16635 * ill_phyint_reinit could have changed the ipsq. At this point, 16636 * we need to hold the ips_ill_g_lock across the call to enter the 16637 * ipsq to enforce atomicity and prevent reordering. In the event 16638 * the ipsq has changed, and if the new ipsq is currently busy, 16639 * we need to make sure that this half-completed ioctl is ahead of 16640 * any subsequent ioctl. We achieve this by not dropping the 16641 * ips_ill_g_lock which prevents any ill lookup itself thereby 16642 * ensuring that new ioctls can't start. 16643 */ 16644 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16645 B_TRUE); 16646 16647 rw_exit(&ipst->ips_ill_g_lock); 16648 ill_refrele(ill); 16649 if (ipsq == NULL) 16650 return (EINPROGRESS); 16651 16652 /* 16653 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16654 */ 16655 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16656 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16657 else 16658 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16659 16660 error = ipif_set_values_tail(ill, ipif, mp, q); 16661 ipsq_exit(ipsq); 16662 if (error != 0 && error != EINPROGRESS) { 16663 /* 16664 * restore previous values 16665 */ 16666 ill->ill_isv6 = B_FALSE; 16667 ill_set_inputfn(ill); 16668 } 16669 return (error); 16670 } 16671 16672 void 16673 ipif_init(ip_stack_t *ipst) 16674 { 16675 int i; 16676 16677 for (i = 0; i < MAX_G_HEADS; i++) { 16678 ipst->ips_ill_g_heads[i].ill_g_list_head = 16679 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16680 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16681 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16682 } 16683 16684 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16685 ill_phyint_compare_index, 16686 sizeof (phyint_t), 16687 offsetof(struct phyint, phyint_avl_by_index)); 16688 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16689 ill_phyint_compare_name, 16690 sizeof (phyint_t), 16691 offsetof(struct phyint, phyint_avl_by_name)); 16692 } 16693 16694 /* 16695 * Save enough information so that we can recreate the IRE if 16696 * the interface goes down and then up. 16697 */ 16698 void 16699 ill_save_ire(ill_t *ill, ire_t *ire) 16700 { 16701 mblk_t *save_mp; 16702 16703 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16704 if (save_mp != NULL) { 16705 ifrt_t *ifrt; 16706 16707 save_mp->b_wptr += sizeof (ifrt_t); 16708 ifrt = (ifrt_t *)save_mp->b_rptr; 16709 bzero(ifrt, sizeof (ifrt_t)); 16710 ifrt->ifrt_type = ire->ire_type; 16711 if (ire->ire_ipversion == IPV4_VERSION) { 16712 ASSERT(!ill->ill_isv6); 16713 ifrt->ifrt_addr = ire->ire_addr; 16714 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16715 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16716 ifrt->ifrt_mask = ire->ire_mask; 16717 } else { 16718 ASSERT(ill->ill_isv6); 16719 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16720 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16721 mutex_enter(&ire->ire_lock); 16722 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16723 mutex_exit(&ire->ire_lock); 16724 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16725 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16726 } 16727 ifrt->ifrt_flags = ire->ire_flags; 16728 ifrt->ifrt_zoneid = ire->ire_zoneid; 16729 mutex_enter(&ill->ill_saved_ire_lock); 16730 save_mp->b_cont = ill->ill_saved_ire_mp; 16731 ill->ill_saved_ire_mp = save_mp; 16732 ill->ill_saved_ire_cnt++; 16733 mutex_exit(&ill->ill_saved_ire_lock); 16734 } 16735 } 16736 16737 /* 16738 * Remove one entry from ill_saved_ire_mp. 16739 */ 16740 void 16741 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16742 { 16743 mblk_t **mpp; 16744 mblk_t *mp; 16745 ifrt_t *ifrt; 16746 16747 /* Remove from ill_saved_ire_mp list if it is there */ 16748 mutex_enter(&ill->ill_saved_ire_lock); 16749 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16750 mpp = &(*mpp)->b_cont) { 16751 in6_addr_t gw_addr_v6; 16752 16753 /* 16754 * On a given ill, the tuple of address, gateway, mask, 16755 * ire_type, and zoneid is unique for each saved IRE. 16756 */ 16757 mp = *mpp; 16758 ifrt = (ifrt_t *)mp->b_rptr; 16759 /* ire_gateway_addr_v6 can change - need lock */ 16760 mutex_enter(&ire->ire_lock); 16761 gw_addr_v6 = ire->ire_gateway_addr_v6; 16762 mutex_exit(&ire->ire_lock); 16763 16764 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16765 ifrt->ifrt_type != ire->ire_type) 16766 continue; 16767 16768 if (ill->ill_isv6 ? 16769 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16770 &ire->ire_addr_v6) && 16771 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16772 &gw_addr_v6) && 16773 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16774 &ire->ire_mask_v6)) : 16775 (ifrt->ifrt_addr == ire->ire_addr && 16776 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16777 ifrt->ifrt_mask == ire->ire_mask)) { 16778 *mpp = mp->b_cont; 16779 ill->ill_saved_ire_cnt--; 16780 freeb(mp); 16781 break; 16782 } 16783 } 16784 mutex_exit(&ill->ill_saved_ire_lock); 16785 } 16786 16787 /* 16788 * IP multirouting broadcast routes handling 16789 * Append CGTP broadcast IREs to regular ones created 16790 * at ifconfig time. 16791 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16792 * the destination and the gateway are broadcast addresses. 16793 * The caller has verified that the destination is an IRE_BROADCAST and that 16794 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16795 * we create a MULTIRT IRE_BROADCAST. 16796 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16797 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16798 */ 16799 static void 16800 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16801 { 16802 ire_t *ire_prim; 16803 16804 ASSERT(ire != NULL); 16805 16806 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16807 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16808 NULL); 16809 if (ire_prim != NULL) { 16810 /* 16811 * We are in the special case of broadcasts for 16812 * CGTP. We add an IRE_BROADCAST that holds 16813 * the RTF_MULTIRT flag, the destination 16814 * address and the low level 16815 * info of ire_prim. In other words, CGTP 16816 * broadcast is added to the redundant ipif. 16817 */ 16818 ill_t *ill_prim; 16819 ire_t *bcast_ire; 16820 16821 ill_prim = ire_prim->ire_ill; 16822 16823 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16824 (void *)ire_prim, (void *)ill_prim)); 16825 16826 bcast_ire = ire_create( 16827 (uchar_t *)&ire->ire_addr, 16828 (uchar_t *)&ip_g_all_ones, 16829 (uchar_t *)&ire->ire_gateway_addr, 16830 IRE_BROADCAST, 16831 ill_prim, 16832 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16833 ire->ire_flags | RTF_KERNEL, 16834 NULL, 16835 ipst); 16836 16837 /* 16838 * Here we assume that ire_add does head insertion so that 16839 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16840 */ 16841 if (bcast_ire != NULL) { 16842 if (ire->ire_flags & RTF_SETSRC) { 16843 bcast_ire->ire_setsrc_addr = 16844 ire->ire_setsrc_addr; 16845 } 16846 bcast_ire = ire_add(bcast_ire); 16847 if (bcast_ire != NULL) { 16848 ip2dbg(("ip_cgtp_filter_bcast_add: " 16849 "added bcast_ire %p\n", 16850 (void *)bcast_ire)); 16851 16852 ill_save_ire(ill_prim, bcast_ire); 16853 ire_refrele(bcast_ire); 16854 } 16855 } 16856 ire_refrele(ire_prim); 16857 } 16858 } 16859 16860 /* 16861 * IP multirouting broadcast routes handling 16862 * Remove the broadcast ire. 16863 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16864 * the destination and the gateway are broadcast addresses. 16865 * The caller has only verified that RTF_MULTIRT was set. We check 16866 * that the destination is broadcast and that the gateway is a broadcast 16867 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16868 */ 16869 static void 16870 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16871 { 16872 ASSERT(ire != NULL); 16873 16874 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16875 ire_t *ire_prim; 16876 16877 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16878 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16879 ipst, NULL); 16880 if (ire_prim != NULL) { 16881 ill_t *ill_prim; 16882 ire_t *bcast_ire; 16883 16884 ill_prim = ire_prim->ire_ill; 16885 16886 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16887 "ire_prim %p, ill_prim %p\n", 16888 (void *)ire_prim, (void *)ill_prim)); 16889 16890 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16891 ire->ire_gateway_addr, IRE_BROADCAST, 16892 ill_prim, ALL_ZONES, NULL, 16893 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16894 MATCH_IRE_MASK, 0, ipst, NULL); 16895 16896 if (bcast_ire != NULL) { 16897 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16898 "looked up bcast_ire %p\n", 16899 (void *)bcast_ire)); 16900 ill_remove_saved_ire(bcast_ire->ire_ill, 16901 bcast_ire); 16902 ire_delete(bcast_ire); 16903 ire_refrele(bcast_ire); 16904 } 16905 ire_refrele(ire_prim); 16906 } 16907 } 16908 } 16909 16910 /* 16911 * Derive an interface id from the link layer address. 16912 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16913 */ 16914 static void 16915 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16916 { 16917 char *addr; 16918 16919 /* 16920 * Note that some IPv6 interfaces get plumbed over links that claim to 16921 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16922 * PPP links). The ETHERADDRL check here ensures that we only set the 16923 * interface ID on IPv6 interfaces above links that actually have real 16924 * Ethernet addresses. 16925 */ 16926 if (ill->ill_phys_addr_length == ETHERADDRL) { 16927 /* Form EUI-64 like address */ 16928 addr = (char *)&v6addr->s6_addr32[2]; 16929 bcopy(ill->ill_phys_addr, addr, 3); 16930 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16931 addr[3] = (char)0xff; 16932 addr[4] = (char)0xfe; 16933 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16934 } 16935 } 16936 16937 /* ARGSUSED */ 16938 static void 16939 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16940 { 16941 } 16942 16943 typedef struct ipmp_ifcookie { 16944 uint32_t ic_hostid; 16945 char ic_ifname[LIFNAMSIZ]; 16946 char ic_zonename[ZONENAME_MAX]; 16947 } ipmp_ifcookie_t; 16948 16949 /* 16950 * Construct a pseudo-random interface ID for the IPMP interface that's both 16951 * predictable and (almost) guaranteed to be unique. 16952 */ 16953 static void 16954 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16955 { 16956 zone_t *zp; 16957 uint8_t *addr; 16958 uchar_t hash[16]; 16959 ulong_t hostid; 16960 MD5_CTX ctx; 16961 ipmp_ifcookie_t ic = { 0 }; 16962 16963 ASSERT(IS_IPMP(ill)); 16964 16965 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16966 ic.ic_hostid = htonl((uint32_t)hostid); 16967 16968 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16969 16970 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16971 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16972 zone_rele(zp); 16973 } 16974 16975 MD5Init(&ctx); 16976 MD5Update(&ctx, &ic, sizeof (ic)); 16977 MD5Final(hash, &ctx); 16978 16979 /* 16980 * Map the hash to an interface ID per the basic approach in RFC3041. 16981 */ 16982 addr = &v6addr->s6_addr8[8]; 16983 bcopy(hash + 8, addr, sizeof (uint64_t)); 16984 addr[0] &= ~0x2; /* set local bit */ 16985 } 16986 16987 /* 16988 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16989 */ 16990 static void 16991 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16992 { 16993 phyint_t *phyi = ill->ill_phyint; 16994 16995 /* 16996 * Check PHYI_MULTI_BCAST and length of physical 16997 * address to determine if we use the mapping or the 16998 * broadcast address. 16999 */ 17000 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17001 ill->ill_phys_addr_length != ETHERADDRL) { 17002 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17003 return; 17004 } 17005 m_physaddr[0] = 0x33; 17006 m_physaddr[1] = 0x33; 17007 m_physaddr[2] = m_ip6addr[12]; 17008 m_physaddr[3] = m_ip6addr[13]; 17009 m_physaddr[4] = m_ip6addr[14]; 17010 m_physaddr[5] = m_ip6addr[15]; 17011 } 17012 17013 /* 17014 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17015 */ 17016 static void 17017 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17018 { 17019 phyint_t *phyi = ill->ill_phyint; 17020 17021 /* 17022 * Check PHYI_MULTI_BCAST and length of physical 17023 * address to determine if we use the mapping or the 17024 * broadcast address. 17025 */ 17026 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17027 ill->ill_phys_addr_length != ETHERADDRL) { 17028 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17029 return; 17030 } 17031 m_physaddr[0] = 0x01; 17032 m_physaddr[1] = 0x00; 17033 m_physaddr[2] = 0x5e; 17034 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17035 m_physaddr[4] = m_ipaddr[2]; 17036 m_physaddr[5] = m_ipaddr[3]; 17037 } 17038 17039 /* ARGSUSED */ 17040 static void 17041 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17042 { 17043 /* 17044 * for the MULTI_BCAST case and other cases when we want to 17045 * use the link-layer broadcast address for multicast. 17046 */ 17047 uint8_t *bphys_addr; 17048 dl_unitdata_req_t *dlur; 17049 17050 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17051 if (ill->ill_sap_length < 0) { 17052 bphys_addr = (uchar_t *)dlur + 17053 dlur->dl_dest_addr_offset; 17054 } else { 17055 bphys_addr = (uchar_t *)dlur + 17056 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17057 } 17058 17059 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17060 } 17061 17062 /* 17063 * Derive IPoIB interface id from the link layer address. 17064 */ 17065 static void 17066 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17067 { 17068 char *addr; 17069 17070 ASSERT(ill->ill_phys_addr_length == 20); 17071 addr = (char *)&v6addr->s6_addr32[2]; 17072 bcopy(ill->ill_phys_addr + 12, addr, 8); 17073 /* 17074 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17075 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17076 * rules. In these cases, the IBA considers these GUIDs to be in 17077 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17078 * required; vendors are required not to assign global EUI-64's 17079 * that differ only in u/l bit values, thus guaranteeing uniqueness 17080 * of the interface identifier. Whether the GUID is in modified 17081 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17082 * bit set to 1. 17083 */ 17084 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17085 } 17086 17087 /* 17088 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17089 * Note on mapping from multicast IP addresses to IPoIB multicast link 17090 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17091 * The format of an IPoIB multicast address is: 17092 * 17093 * 4 byte QPN Scope Sign. Pkey 17094 * +--------------------------------------------+ 17095 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17096 * +--------------------------------------------+ 17097 * 17098 * The Scope and Pkey components are properties of the IBA port and 17099 * network interface. They can be ascertained from the broadcast address. 17100 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17101 */ 17102 static void 17103 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17104 { 17105 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17106 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17107 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17108 uint8_t *bphys_addr; 17109 dl_unitdata_req_t *dlur; 17110 17111 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17112 17113 /* 17114 * RFC 4391: IPv4 MGID is 28-bit long. 17115 */ 17116 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17117 m_physaddr[17] = m_ipaddr[1]; 17118 m_physaddr[18] = m_ipaddr[2]; 17119 m_physaddr[19] = m_ipaddr[3]; 17120 17121 17122 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17123 if (ill->ill_sap_length < 0) { 17124 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17125 } else { 17126 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17127 ill->ill_sap_length; 17128 } 17129 /* 17130 * Now fill in the IBA scope/Pkey values from the broadcast address. 17131 */ 17132 m_physaddr[5] = bphys_addr[5]; 17133 m_physaddr[8] = bphys_addr[8]; 17134 m_physaddr[9] = bphys_addr[9]; 17135 } 17136 17137 static void 17138 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17139 { 17140 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17141 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17142 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17143 uint8_t *bphys_addr; 17144 dl_unitdata_req_t *dlur; 17145 17146 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17147 17148 /* 17149 * RFC 4391: IPv4 MGID is 80-bit long. 17150 */ 17151 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17152 17153 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17154 if (ill->ill_sap_length < 0) { 17155 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17156 } else { 17157 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17158 ill->ill_sap_length; 17159 } 17160 /* 17161 * Now fill in the IBA scope/Pkey values from the broadcast address. 17162 */ 17163 m_physaddr[5] = bphys_addr[5]; 17164 m_physaddr[8] = bphys_addr[8]; 17165 m_physaddr[9] = bphys_addr[9]; 17166 } 17167 17168 /* 17169 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17170 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17171 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17172 * of RFC4213. 17173 */ 17174 static void 17175 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17176 { 17177 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17178 v6addr->s6_addr32[2] = 0; 17179 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17180 } 17181 17182 /* 17183 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17184 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17185 * id. 17186 */ 17187 static void 17188 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17189 { 17190 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17191 17192 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17193 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17194 } 17195 17196 static void 17197 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17198 { 17199 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17200 } 17201 17202 static void 17203 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17204 { 17205 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17206 } 17207 17208 static void 17209 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17210 { 17211 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17212 } 17213 17214 static void 17215 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17216 { 17217 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17218 } 17219 17220 /* 17221 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17222 * Returns an held ill, or NULL. 17223 */ 17224 ill_t * 17225 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17226 ip_stack_t *ipst) 17227 { 17228 ill_t *ill; 17229 ipif_t *ipif; 17230 17231 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17232 if (ill == NULL) 17233 return (NULL); 17234 17235 mutex_enter(&ill->ill_lock); 17236 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17237 if (IPIF_IS_CONDEMNED(ipif)) 17238 continue; 17239 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17240 ipif->ipif_zoneid != ALL_ZONES) 17241 continue; 17242 17243 mutex_exit(&ill->ill_lock); 17244 return (ill); 17245 } 17246 mutex_exit(&ill->ill_lock); 17247 ill_refrele(ill); 17248 return (NULL); 17249 } 17250 17251 /* 17252 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17253 * If a pointer to an ipif_t is returned then the caller will need to do 17254 * an ill_refrele(). 17255 */ 17256 ipif_t * 17257 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17258 ip_stack_t *ipst) 17259 { 17260 ipif_t *ipif; 17261 ill_t *ill; 17262 17263 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17264 if (ill == NULL) 17265 return (NULL); 17266 17267 mutex_enter(&ill->ill_lock); 17268 if (ill->ill_state_flags & ILL_CONDEMNED) { 17269 mutex_exit(&ill->ill_lock); 17270 ill_refrele(ill); 17271 return (NULL); 17272 } 17273 17274 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17275 if (!IPIF_CAN_LOOKUP(ipif)) 17276 continue; 17277 if (lifidx == ipif->ipif_id) { 17278 ipif_refhold_locked(ipif); 17279 break; 17280 } 17281 } 17282 17283 mutex_exit(&ill->ill_lock); 17284 ill_refrele(ill); 17285 return (ipif); 17286 } 17287 17288 /* 17289 * Set ill_inputfn based on the current know state. 17290 * This needs to be called when any of the factors taken into 17291 * account changes. 17292 */ 17293 void 17294 ill_set_inputfn(ill_t *ill) 17295 { 17296 ip_stack_t *ipst = ill->ill_ipst; 17297 17298 if (ill->ill_isv6) { 17299 if (is_system_labeled()) 17300 ill->ill_inputfn = ill_input_full_v6; 17301 else 17302 ill->ill_inputfn = ill_input_short_v6; 17303 } else { 17304 if (is_system_labeled()) 17305 ill->ill_inputfn = ill_input_full_v4; 17306 else if (ill->ill_dhcpinit != 0) 17307 ill->ill_inputfn = ill_input_full_v4; 17308 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17309 != NULL) 17310 ill->ill_inputfn = ill_input_full_v4; 17311 else if (ipst->ips_ip_cgtp_filter && 17312 ipst->ips_ip_cgtp_filter_ops != NULL) 17313 ill->ill_inputfn = ill_input_full_v4; 17314 else 17315 ill->ill_inputfn = ill_input_short_v4; 17316 } 17317 } 17318 17319 /* 17320 * Re-evaluate ill_inputfn for all the IPv4 ills. 17321 * Used when RSVP and CGTP comes and goes. 17322 */ 17323 void 17324 ill_set_inputfn_all(ip_stack_t *ipst) 17325 { 17326 ill_walk_context_t ctx; 17327 ill_t *ill; 17328 17329 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17330 ill = ILL_START_WALK_V4(&ctx, ipst); 17331 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17332 ill_set_inputfn(ill); 17333 17334 rw_exit(&ipst->ips_ill_g_lock); 17335 } 17336 17337 /* 17338 * Set the physical address information for `ill' to the contents of the 17339 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17340 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17341 * EINPROGRESS will be returned. 17342 */ 17343 int 17344 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17345 { 17346 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17347 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17348 17349 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17350 17351 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17352 dlindp->dl_data != DL_CURR_DEST_ADDR && 17353 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17354 /* Changing DL_IPV6_TOKEN is not yet supported */ 17355 return (0); 17356 } 17357 17358 /* 17359 * We need to store up to two copies of `mp' in `ill'. Due to the 17360 * design of ipsq_pending_mp_add(), we can't pass them as separate 17361 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17362 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17363 */ 17364 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17365 freemsg(mp); 17366 return (ENOMEM); 17367 } 17368 17369 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17370 mutex_enter(&ill->ill_lock); 17371 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17372 /* no more nce addition allowed */ 17373 mutex_exit(&ill->ill_lock); 17374 17375 /* 17376 * If we can quiesce the ill, then set the address. If not, then 17377 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17378 */ 17379 ill_down_ipifs(ill, B_TRUE); 17380 mutex_enter(&ill->ill_lock); 17381 if (!ill_is_quiescent(ill)) { 17382 /* call cannot fail since `conn_t *' argument is NULL */ 17383 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17384 mp, ILL_DOWN); 17385 mutex_exit(&ill->ill_lock); 17386 return (EINPROGRESS); 17387 } 17388 mutex_exit(&ill->ill_lock); 17389 17390 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17391 return (0); 17392 } 17393 17394 /* 17395 * Once the ill associated with `q' has quiesced, set its physical address 17396 * information to the values in `addrmp'. Note that two copies of `addrmp' 17397 * are passed (linked by b_cont), since we sometimes need to save two distinct 17398 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17399 * failure (we'll free the other copy if it's not needed). Since the ill_t 17400 * is quiesced, we know any stale nce's with the old address information have 17401 * already been removed, so we don't need to call nce_flush(). 17402 */ 17403 /* ARGSUSED */ 17404 static void 17405 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17406 { 17407 ill_t *ill = q->q_ptr; 17408 mblk_t *addrmp2 = unlinkb(addrmp); 17409 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17410 uint_t addrlen, addroff; 17411 int status; 17412 17413 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17414 17415 addroff = dlindp->dl_addr_offset; 17416 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17417 17418 switch (dlindp->dl_data) { 17419 case DL_IPV6_LINK_LAYER_ADDR: 17420 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17421 freemsg(addrmp2); 17422 break; 17423 17424 case DL_CURR_DEST_ADDR: 17425 freemsg(ill->ill_dest_addr_mp); 17426 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17427 ill->ill_dest_addr_mp = addrmp; 17428 if (ill->ill_isv6) { 17429 ill_setdesttoken(ill); 17430 ipif_setdestlinklocal(ill->ill_ipif); 17431 } 17432 freemsg(addrmp2); 17433 break; 17434 17435 case DL_CURR_PHYS_ADDR: 17436 freemsg(ill->ill_phys_addr_mp); 17437 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17438 ill->ill_phys_addr_mp = addrmp; 17439 ill->ill_phys_addr_length = addrlen; 17440 if (ill->ill_isv6) 17441 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17442 else 17443 freemsg(addrmp2); 17444 if (ill->ill_isv6) { 17445 ill_setdefaulttoken(ill); 17446 ipif_setlinklocal(ill->ill_ipif); 17447 } 17448 break; 17449 default: 17450 ASSERT(0); 17451 } 17452 17453 /* 17454 * If there are ipifs to bring up, ill_up_ipifs() will return 17455 * EINPROGRESS, and ipsq_current_finish() will be called by 17456 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17457 * brought up. 17458 */ 17459 status = ill_up_ipifs(ill, q, addrmp); 17460 mutex_enter(&ill->ill_lock); 17461 if (ill->ill_dl_up) 17462 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17463 mutex_exit(&ill->ill_lock); 17464 if (status != EINPROGRESS) 17465 ipsq_current_finish(ipsq); 17466 } 17467 17468 /* 17469 * Helper routine for setting the ill_nd_lla fields. 17470 */ 17471 void 17472 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17473 { 17474 freemsg(ill->ill_nd_lla_mp); 17475 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17476 ill->ill_nd_lla_mp = ndmp; 17477 ill->ill_nd_lla_len = addrlen; 17478 } 17479 17480 /* 17481 * Replumb the ill. 17482 */ 17483 int 17484 ill_replumb(ill_t *ill, mblk_t *mp) 17485 { 17486 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17487 17488 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17489 17490 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17491 17492 mutex_enter(&ill->ill_lock); 17493 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17494 /* no more nce addition allowed */ 17495 mutex_exit(&ill->ill_lock); 17496 17497 /* 17498 * If we can quiesce the ill, then continue. If not, then 17499 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17500 */ 17501 ill_down_ipifs(ill, B_FALSE); 17502 17503 mutex_enter(&ill->ill_lock); 17504 if (!ill_is_quiescent(ill)) { 17505 /* call cannot fail since `conn_t *' argument is NULL */ 17506 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17507 mp, ILL_DOWN); 17508 mutex_exit(&ill->ill_lock); 17509 return (EINPROGRESS); 17510 } 17511 mutex_exit(&ill->ill_lock); 17512 17513 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17514 return (0); 17515 } 17516 17517 /* ARGSUSED */ 17518 static void 17519 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17520 { 17521 ill_t *ill = q->q_ptr; 17522 int err; 17523 conn_t *connp = NULL; 17524 17525 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17526 freemsg(ill->ill_replumb_mp); 17527 ill->ill_replumb_mp = copyb(mp); 17528 17529 if (ill->ill_replumb_mp == NULL) { 17530 /* out of memory */ 17531 ipsq_current_finish(ipsq); 17532 return; 17533 } 17534 17535 mutex_enter(&ill->ill_lock); 17536 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17537 ill->ill_rq, ill->ill_replumb_mp, 0); 17538 mutex_exit(&ill->ill_lock); 17539 17540 if (!ill->ill_up_ipifs) { 17541 /* already closing */ 17542 ipsq_current_finish(ipsq); 17543 return; 17544 } 17545 ill->ill_replumbing = 1; 17546 err = ill_down_ipifs_tail(ill); 17547 17548 /* 17549 * Successfully quiesced and brought down the interface, now we send 17550 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17551 * DL_NOTE_REPLUMB message. 17552 */ 17553 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17554 DL_NOTIFY_CONF); 17555 ASSERT(mp != NULL); 17556 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17557 DL_NOTE_REPLUMB_DONE; 17558 ill_dlpi_send(ill, mp); 17559 17560 /* 17561 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17562 * streams have to be unbound. When all the DLPI exchanges are done, 17563 * ipsq_current_finish() will be called by arp_bringup_done(). The 17564 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17565 * arp_bringup_done(). 17566 */ 17567 ASSERT(ill->ill_replumb_mp != NULL); 17568 if (err == EINPROGRESS) 17569 return; 17570 else 17571 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17572 ASSERT(connp == NULL); 17573 if (err == 0 && ill->ill_replumb_mp != NULL && 17574 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17575 return; 17576 } 17577 ipsq_current_finish(ipsq); 17578 } 17579 17580 /* 17581 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17582 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17583 * as per the ioctl. On failure, an errno is returned. 17584 */ 17585 static int 17586 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17587 { 17588 int rval; 17589 struct strioctl iocb; 17590 17591 iocb.ic_cmd = cmd; 17592 iocb.ic_timout = 15; 17593 iocb.ic_len = bufsize; 17594 iocb.ic_dp = buf; 17595 17596 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17597 } 17598 17599 /* 17600 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17601 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17602 */ 17603 static int 17604 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17605 uint_t *bufsizep, cred_t *cr) 17606 { 17607 int err; 17608 struct lifnum lifn; 17609 17610 bzero(&lifn, sizeof (lifn)); 17611 lifn.lifn_family = af; 17612 lifn.lifn_flags = LIFC_UNDER_IPMP; 17613 17614 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17615 return (err); 17616 17617 /* 17618 * Pad the interface count to account for additional interfaces that 17619 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17620 */ 17621 lifn.lifn_count += 4; 17622 bzero(lifcp, sizeof (*lifcp)); 17623 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17624 lifcp->lifc_family = af; 17625 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17626 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17627 17628 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17629 if (err != 0) { 17630 kmem_free(lifcp->lifc_buf, *bufsizep); 17631 return (err); 17632 } 17633 17634 return (0); 17635 } 17636 17637 /* 17638 * Helper for ip_interface_cleanup() that removes the loopback interface. 17639 */ 17640 static void 17641 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17642 { 17643 int err; 17644 struct lifreq lifr; 17645 17646 bzero(&lifr, sizeof (lifr)); 17647 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17648 17649 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17650 if (err != 0) { 17651 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17652 "error %d\n", isv6 ? "v6" : "v4", err)); 17653 } 17654 } 17655 17656 /* 17657 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17658 * groups and that IPMP data addresses are down. These conditions must be met 17659 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17660 */ 17661 static void 17662 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17663 { 17664 int af = isv6 ? AF_INET6 : AF_INET; 17665 int i, nifs; 17666 int err; 17667 uint_t bufsize; 17668 uint_t lifrsize = sizeof (struct lifreq); 17669 struct lifconf lifc; 17670 struct lifreq *lifrp; 17671 17672 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17673 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17674 "(error %d); any IPMP interfaces cannot be shutdown", err); 17675 return; 17676 } 17677 17678 nifs = lifc.lifc_len / lifrsize; 17679 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17680 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17681 if (err != 0) { 17682 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17683 "flags: error %d", lifrp->lifr_name, err); 17684 continue; 17685 } 17686 17687 if (lifrp->lifr_flags & IFF_IPMP) { 17688 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17689 continue; 17690 17691 lifrp->lifr_flags &= ~IFF_UP; 17692 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17693 if (err != 0) { 17694 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17695 "bring down (error %d); IPMP interface may " 17696 "not be shutdown", lifrp->lifr_name, err); 17697 } 17698 17699 /* 17700 * Check if IFF_DUPLICATE is still set -- and if so, 17701 * reset the address to clear it. 17702 */ 17703 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17704 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17705 continue; 17706 17707 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17708 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17709 lifrp, lifrsize, cr)) != 0) { 17710 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17711 "reset DAD (error %d); IPMP interface may " 17712 "not be shutdown", lifrp->lifr_name, err); 17713 } 17714 continue; 17715 } 17716 17717 lifrp->lifr_groupname[0] = '\0'; 17718 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17719 if (err != 0) { 17720 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17721 "IPMP group (error %d); associated IPMP interface " 17722 "may not be shutdown", lifrp->lifr_name, err); 17723 continue; 17724 } 17725 } 17726 17727 kmem_free(lifc.lifc_buf, bufsize); 17728 } 17729 17730 #define UDPDEV "/devices/pseudo/udp@0:udp" 17731 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17732 17733 /* 17734 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17735 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17736 * when the user-level processes in the zone are killed and the latter are 17737 * cleaned up by str_stack_shutdown(). 17738 */ 17739 void 17740 ip_interface_cleanup(ip_stack_t *ipst) 17741 { 17742 ldi_handle_t lh; 17743 ldi_ident_t li; 17744 cred_t *cr; 17745 int err; 17746 int i; 17747 char *devs[] = { UDP6DEV, UDPDEV }; 17748 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17749 17750 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17751 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17752 " error %d", err); 17753 return; 17754 } 17755 17756 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17757 ASSERT(cr != NULL); 17758 17759 /* 17760 * NOTE: loop executes exactly twice and is hardcoded to know that the 17761 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17762 * the loop.) 17763 */ 17764 for (i = 0; i < 2; i++) { 17765 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17766 if (err != 0) { 17767 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17768 " error %d", devs[i], err); 17769 continue; 17770 } 17771 17772 ip_loopback_removeif(lh, i == 0, cr); 17773 ip_ipmp_cleanup(lh, i == 0, cr); 17774 17775 (void) ldi_close(lh, FREAD|FWRITE, cr); 17776 } 17777 17778 ldi_ident_release(li); 17779 crfree(cr); 17780 } 17781 17782 /* 17783 * This needs to be in-sync with nic_event_t definition 17784 */ 17785 static const char * 17786 ill_hook_event2str(nic_event_t event) 17787 { 17788 switch (event) { 17789 case NE_PLUMB: 17790 return ("PLUMB"); 17791 case NE_UNPLUMB: 17792 return ("UNPLUMB"); 17793 case NE_UP: 17794 return ("UP"); 17795 case NE_DOWN: 17796 return ("DOWN"); 17797 case NE_ADDRESS_CHANGE: 17798 return ("ADDRESS_CHANGE"); 17799 case NE_LIF_UP: 17800 return ("LIF_UP"); 17801 case NE_LIF_DOWN: 17802 return ("LIF_DOWN"); 17803 case NE_IFINDEX_CHANGE: 17804 return ("IFINDEX_CHANGE"); 17805 default: 17806 return ("UNKNOWN"); 17807 } 17808 } 17809 17810 void 17811 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17812 nic_event_data_t data, size_t datalen) 17813 { 17814 ip_stack_t *ipst = ill->ill_ipst; 17815 hook_nic_event_int_t *info; 17816 const char *str = NULL; 17817 17818 /* create a new nic event info */ 17819 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17820 goto fail; 17821 17822 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17823 info->hnei_event.hne_lif = lif; 17824 info->hnei_event.hne_event = event; 17825 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17826 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17827 info->hnei_event.hne_data = NULL; 17828 info->hnei_event.hne_datalen = 0; 17829 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17830 17831 if (data != NULL && datalen != 0) { 17832 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17833 if (info->hnei_event.hne_data == NULL) 17834 goto fail; 17835 bcopy(data, info->hnei_event.hne_data, datalen); 17836 info->hnei_event.hne_datalen = datalen; 17837 } 17838 17839 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17840 DDI_NOSLEEP) == DDI_SUCCESS) 17841 return; 17842 17843 fail: 17844 if (info != NULL) { 17845 if (info->hnei_event.hne_data != NULL) { 17846 kmem_free(info->hnei_event.hne_data, 17847 info->hnei_event.hne_datalen); 17848 } 17849 kmem_free(info, sizeof (hook_nic_event_t)); 17850 } 17851 str = ill_hook_event2str(event); 17852 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17853 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17854 } 17855 17856 static int 17857 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17858 { 17859 int err = 0; 17860 const in_addr_t *addr = NULL; 17861 nce_t *nce = NULL; 17862 ill_t *ill = ipif->ipif_ill; 17863 ill_t *bound_ill; 17864 boolean_t added_ipif = B_FALSE; 17865 uint16_t state; 17866 uint16_t flags; 17867 17868 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17869 ill_t *, ill, ipif_t *, ipif); 17870 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17871 addr = &ipif->ipif_lcl_addr; 17872 } 17873 17874 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17875 if (res_act != Res_act_initial) 17876 return (EINVAL); 17877 } 17878 17879 if (addr != NULL) { 17880 ipmp_illgrp_t *illg = ill->ill_grp; 17881 17882 /* add unicast nce for the local addr */ 17883 17884 if (IS_IPMP(ill)) { 17885 /* 17886 * If we're here via ipif_up(), then the ipif 17887 * won't be bound yet -- add it to the group, 17888 * which will bind it if possible. (We would 17889 * add it in ipif_up(), but deleting on failure 17890 * there is gruesome.) If we're here via 17891 * ipmp_ill_bind_ipif(), then the ipif has 17892 * already been added to the group and we 17893 * just need to use the binding. 17894 */ 17895 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17896 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17897 if (bound_ill == NULL) { 17898 /* 17899 * We couldn't bind the ipif to an ill 17900 * yet, so we have nothing to publish. 17901 * Mark the address as ready and return. 17902 */ 17903 ipif->ipif_addr_ready = 1; 17904 return (0); 17905 } 17906 added_ipif = B_TRUE; 17907 } 17908 } else { 17909 bound_ill = ill; 17910 } 17911 17912 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17913 NCE_F_NONUD); 17914 /* 17915 * If this is an initial bring-up (or the ipif was never 17916 * completely brought up), do DAD. Otherwise, we're here 17917 * because IPMP has rebound an address to this ill: send 17918 * unsolicited advertisements (ARP announcements) to 17919 * inform others. 17920 */ 17921 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17922 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17923 } else { 17924 state = ND_REACHABLE; 17925 flags |= NCE_F_UNSOL_ADV; 17926 } 17927 17928 retry: 17929 err = nce_lookup_then_add_v4(ill, 17930 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17931 addr, flags, state, &nce); 17932 17933 /* 17934 * note that we may encounter EEXIST if we are moving 17935 * the nce as a result of a rebind operation. 17936 */ 17937 switch (err) { 17938 case 0: 17939 ipif->ipif_added_nce = 1; 17940 nce->nce_ipif_cnt++; 17941 break; 17942 case EEXIST: 17943 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17944 ill->ill_name)); 17945 if (!NCE_MYADDR(nce->nce_common)) { 17946 /* 17947 * A leftover nce from before this address 17948 * existed 17949 */ 17950 ncec_delete(nce->nce_common); 17951 nce_refrele(nce); 17952 nce = NULL; 17953 goto retry; 17954 } 17955 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17956 nce_refrele(nce); 17957 nce = NULL; 17958 ip1dbg(("ipif_arp_up: NCE already exists " 17959 "for %s:%u\n", ill->ill_name, 17960 ipif->ipif_id)); 17961 goto arp_up_done; 17962 } 17963 /* 17964 * Duplicate local addresses are permissible for 17965 * IPIF_POINTOPOINT interfaces which will get marked 17966 * IPIF_UNNUMBERED later in 17967 * ip_addr_availability_check(). 17968 * 17969 * The nce_ipif_cnt field tracks the number of 17970 * ipifs that have nce_addr as their local address. 17971 */ 17972 ipif->ipif_addr_ready = 1; 17973 ipif->ipif_added_nce = 1; 17974 nce->nce_ipif_cnt++; 17975 err = 0; 17976 break; 17977 default: 17978 ASSERT(nce == NULL); 17979 goto arp_up_done; 17980 } 17981 if (arp_no_defense) { 17982 if ((ipif->ipif_flags & IPIF_UP) && 17983 !ipif->ipif_addr_ready) 17984 ipif_up_notify(ipif); 17985 ipif->ipif_addr_ready = 1; 17986 } 17987 } else { 17988 /* zero address. nothing to publish */ 17989 ipif->ipif_addr_ready = 1; 17990 } 17991 if (nce != NULL) 17992 nce_refrele(nce); 17993 arp_up_done: 17994 if (added_ipif && err != 0) 17995 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17996 return (err); 17997 } 17998 17999 int 18000 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18001 { 18002 int err = 0; 18003 ill_t *ill = ipif->ipif_ill; 18004 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18005 18006 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18007 ill_t *, ill, ipif_t *, ipif); 18008 18009 /* 18010 * need to bring up ARP or setup mcast mapping only 18011 * when the first interface is coming UP. 18012 */ 18013 first_interface = (ill->ill_ipif_up_count == 0 && 18014 ill->ill_ipif_dup_count == 0 && !was_dup); 18015 18016 if (res_act == Res_act_initial && first_interface) { 18017 /* 18018 * Send ATTACH + BIND 18019 */ 18020 err = arp_ll_up(ill); 18021 if (err != EINPROGRESS && err != 0) 18022 return (err); 18023 18024 /* 18025 * Add NCE for local address. Start DAD. 18026 * we'll wait to hear that DAD has finished 18027 * before using the interface. 18028 */ 18029 if (err == EINPROGRESS) 18030 wait_for_dlpi = B_TRUE; 18031 } 18032 18033 if (!wait_for_dlpi) 18034 (void) ipif_arp_up_done_tail(ipif, res_act); 18035 18036 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18037 } 18038 18039 /* 18040 * Finish processing of "arp_up" after all the DLPI message 18041 * exchanges have completed between arp and the driver. 18042 */ 18043 void 18044 arp_bringup_done(ill_t *ill, int err) 18045 { 18046 mblk_t *mp1; 18047 ipif_t *ipif; 18048 conn_t *connp = NULL; 18049 ipsq_t *ipsq; 18050 queue_t *q; 18051 18052 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18053 18054 ASSERT(IAM_WRITER_ILL(ill)); 18055 18056 ipsq = ill->ill_phyint->phyint_ipsq; 18057 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18058 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18059 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18060 if (mp1 == NULL) /* bringup was aborted by the user */ 18061 return; 18062 18063 /* 18064 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18065 * must have an associated conn_t. Otherwise, we're bringing this 18066 * interface back up as part of handling an asynchronous event (e.g., 18067 * physical address change). 18068 */ 18069 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18070 ASSERT(connp != NULL); 18071 q = CONNP_TO_WQ(connp); 18072 } else { 18073 ASSERT(connp == NULL); 18074 q = ill->ill_rq; 18075 } 18076 if (err == 0) { 18077 if (ipif->ipif_isv6) { 18078 if ((err = ipif_up_done_v6(ipif)) != 0) 18079 ip0dbg(("arp_bringup_done: init failed\n")); 18080 } else { 18081 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18082 if (err != 0 || 18083 (err = ipif_up_done(ipif)) != 0) { 18084 ip0dbg(("arp_bringup_done: " 18085 "init failed err %x\n", err)); 18086 (void) ipif_arp_down(ipif); 18087 } 18088 18089 } 18090 } else { 18091 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18092 } 18093 18094 if ((err == 0) && (ill->ill_up_ipifs)) { 18095 err = ill_up_ipifs(ill, q, mp1); 18096 if (err == EINPROGRESS) 18097 return; 18098 } 18099 18100 /* 18101 * If we have a moved ipif to bring up, and everything has succeeded 18102 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18103 * down -- the admin can try to bring it up by hand if need be. 18104 */ 18105 if (ill->ill_move_ipif != NULL) { 18106 ipif = ill->ill_move_ipif; 18107 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18108 ipif->ipif_ill->ill_name)); 18109 ill->ill_move_ipif = NULL; 18110 if (err == 0) { 18111 err = ipif_up(ipif, q, mp1); 18112 if (err == EINPROGRESS) 18113 return; 18114 } 18115 } 18116 18117 /* 18118 * The operation must complete without EINPROGRESS since 18119 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18120 * Otherwise, the operation will be stuck forever in the ipsq. 18121 */ 18122 ASSERT(err != EINPROGRESS); 18123 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18124 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18125 int, ipsq->ipsq_xop->ipx_current_ioctl, 18126 ill_t *, ill, ipif_t *, ipif); 18127 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18128 } else { 18129 ipsq_current_finish(ipsq); 18130 } 18131 } 18132 18133 /* 18134 * Finish processing of arp replumb after all the DLPI message 18135 * exchanges have completed between arp and the driver. 18136 */ 18137 void 18138 arp_replumb_done(ill_t *ill, int err) 18139 { 18140 mblk_t *mp1; 18141 ipif_t *ipif; 18142 conn_t *connp = NULL; 18143 ipsq_t *ipsq; 18144 queue_t *q; 18145 18146 ASSERT(IAM_WRITER_ILL(ill)); 18147 18148 ipsq = ill->ill_phyint->phyint_ipsq; 18149 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18150 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18151 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18152 if (mp1 == NULL) { 18153 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18154 ipsq->ipsq_xop->ipx_current_ioctl)); 18155 /* bringup was aborted by the user */ 18156 return; 18157 } 18158 /* 18159 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18160 * must have an associated conn_t. Otherwise, we're bringing this 18161 * interface back up as part of handling an asynchronous event (e.g., 18162 * physical address change). 18163 */ 18164 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18165 ASSERT(connp != NULL); 18166 q = CONNP_TO_WQ(connp); 18167 } else { 18168 ASSERT(connp == NULL); 18169 q = ill->ill_rq; 18170 } 18171 if ((err == 0) && (ill->ill_up_ipifs)) { 18172 err = ill_up_ipifs(ill, q, mp1); 18173 if (err == EINPROGRESS) 18174 return; 18175 } 18176 /* 18177 * The operation must complete without EINPROGRESS since 18178 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18179 * Otherwise, the operation will be stuck forever in the ipsq. 18180 */ 18181 ASSERT(err != EINPROGRESS); 18182 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18183 DTRACE_PROBE4(ipif__ioctl, char *, 18184 "arp_replumb_done finish", 18185 int, ipsq->ipsq_xop->ipx_current_ioctl, 18186 ill_t *, ill, ipif_t *, ipif); 18187 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18188 } else { 18189 ipsq_current_finish(ipsq); 18190 } 18191 } 18192 18193 void 18194 ipif_up_notify(ipif_t *ipif) 18195 { 18196 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18197 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18198 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18199 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18200 NE_LIF_UP, NULL, 0); 18201 } 18202 18203 /* 18204 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18205 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18206 * TPI end points with STREAMS modules pushed above. This is assured by not 18207 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18208 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18209 * while unwinding from the ispq and that could be a thread from the bottom. 18210 */ 18211 /* ARGSUSED */ 18212 int 18213 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18214 ip_ioctl_cmd_t *ipip, void *arg) 18215 { 18216 mblk_t *cmd_mp = mp->b_cont->b_cont; 18217 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18218 int ret = 0; 18219 int i; 18220 size_t size; 18221 ip_stack_t *ipst; 18222 zoneid_t zoneid; 18223 ilb_stack_t *ilbs; 18224 18225 ipst = CONNQ_TO_IPST(q); 18226 ilbs = ipst->ips_netstack->netstack_ilb; 18227 zoneid = Q_TO_CONN(q)->conn_zoneid; 18228 18229 switch (command) { 18230 case ILB_CREATE_RULE: { 18231 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18232 18233 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18234 ret = EINVAL; 18235 break; 18236 } 18237 18238 ret = ilb_rule_add(ilbs, zoneid, cmd); 18239 break; 18240 } 18241 case ILB_DESTROY_RULE: 18242 case ILB_ENABLE_RULE: 18243 case ILB_DISABLE_RULE: { 18244 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18245 18246 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18247 ret = EINVAL; 18248 break; 18249 } 18250 18251 if (cmd->flags & ILB_RULE_ALLRULES) { 18252 if (command == ILB_DESTROY_RULE) { 18253 ilb_rule_del_all(ilbs, zoneid); 18254 break; 18255 } else if (command == ILB_ENABLE_RULE) { 18256 ilb_rule_enable_all(ilbs, zoneid); 18257 break; 18258 } else if (command == ILB_DISABLE_RULE) { 18259 ilb_rule_disable_all(ilbs, zoneid); 18260 break; 18261 } 18262 } else { 18263 if (command == ILB_DESTROY_RULE) { 18264 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18265 } else if (command == ILB_ENABLE_RULE) { 18266 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18267 NULL); 18268 } else if (command == ILB_DISABLE_RULE) { 18269 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18270 NULL); 18271 } 18272 } 18273 break; 18274 } 18275 case ILB_NUM_RULES: { 18276 ilb_num_rules_cmd_t *cmd; 18277 18278 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18279 ret = EINVAL; 18280 break; 18281 } 18282 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18283 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18284 break; 18285 } 18286 case ILB_RULE_NAMES: { 18287 ilb_rule_names_cmd_t *cmd; 18288 18289 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18290 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18291 cmd->num_names == 0) { 18292 ret = EINVAL; 18293 break; 18294 } 18295 size = cmd->num_names * ILB_RULE_NAMESZ; 18296 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18297 size != cmd_mp->b_wptr) { 18298 ret = EINVAL; 18299 break; 18300 } 18301 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18302 break; 18303 } 18304 case ILB_NUM_SERVERS: { 18305 ilb_num_servers_cmd_t *cmd; 18306 18307 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18308 ret = EINVAL; 18309 break; 18310 } 18311 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18312 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18313 &(cmd->num)); 18314 break; 18315 } 18316 case ILB_LIST_RULE: { 18317 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18318 18319 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18320 ret = EINVAL; 18321 break; 18322 } 18323 ret = ilb_rule_list(ilbs, zoneid, cmd); 18324 break; 18325 } 18326 case ILB_LIST_SERVERS: { 18327 ilb_servers_info_cmd_t *cmd; 18328 18329 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18330 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18331 cmd->num_servers == 0) { 18332 ret = EINVAL; 18333 break; 18334 } 18335 size = cmd->num_servers * sizeof (ilb_server_info_t); 18336 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18337 size != cmd_mp->b_wptr) { 18338 ret = EINVAL; 18339 break; 18340 } 18341 18342 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18343 &cmd->num_servers); 18344 break; 18345 } 18346 case ILB_ADD_SERVERS: { 18347 ilb_servers_info_cmd_t *cmd; 18348 ilb_rule_t *rule; 18349 18350 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18351 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18352 ret = EINVAL; 18353 break; 18354 } 18355 size = cmd->num_servers * sizeof (ilb_server_info_t); 18356 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18357 size != cmd_mp->b_wptr) { 18358 ret = EINVAL; 18359 break; 18360 } 18361 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18362 if (rule == NULL) { 18363 ASSERT(ret != 0); 18364 break; 18365 } 18366 for (i = 0; i < cmd->num_servers; i++) { 18367 ilb_server_info_t *s; 18368 18369 s = &cmd->servers[i]; 18370 s->err = ilb_server_add(ilbs, rule, s); 18371 } 18372 ILB_RULE_REFRELE(rule); 18373 break; 18374 } 18375 case ILB_DEL_SERVERS: 18376 case ILB_ENABLE_SERVERS: 18377 case ILB_DISABLE_SERVERS: { 18378 ilb_servers_cmd_t *cmd; 18379 ilb_rule_t *rule; 18380 int (*f)(); 18381 18382 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18383 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18384 ret = EINVAL; 18385 break; 18386 } 18387 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18388 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18389 size != cmd_mp->b_wptr) { 18390 ret = EINVAL; 18391 break; 18392 } 18393 18394 if (command == ILB_DEL_SERVERS) 18395 f = ilb_server_del; 18396 else if (command == ILB_ENABLE_SERVERS) 18397 f = ilb_server_enable; 18398 else if (command == ILB_DISABLE_SERVERS) 18399 f = ilb_server_disable; 18400 18401 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18402 if (rule == NULL) { 18403 ASSERT(ret != 0); 18404 break; 18405 } 18406 18407 for (i = 0; i < cmd->num_servers; i++) { 18408 ilb_server_arg_t *s; 18409 18410 s = &cmd->servers[i]; 18411 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18412 } 18413 ILB_RULE_REFRELE(rule); 18414 break; 18415 } 18416 case ILB_LIST_NAT_TABLE: { 18417 ilb_list_nat_cmd_t *cmd; 18418 18419 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18420 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18421 ret = EINVAL; 18422 break; 18423 } 18424 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18425 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18426 size != cmd_mp->b_wptr) { 18427 ret = EINVAL; 18428 break; 18429 } 18430 18431 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18432 &cmd->flags); 18433 break; 18434 } 18435 case ILB_LIST_STICKY_TABLE: { 18436 ilb_list_sticky_cmd_t *cmd; 18437 18438 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18439 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18440 ret = EINVAL; 18441 break; 18442 } 18443 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18444 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18445 size != cmd_mp->b_wptr) { 18446 ret = EINVAL; 18447 break; 18448 } 18449 18450 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18451 &cmd->num_sticky, &cmd->flags); 18452 break; 18453 } 18454 default: 18455 ret = EINVAL; 18456 break; 18457 } 18458 done: 18459 return (ret); 18460 } 18461 18462 /* Remove all cache entries for this logical interface */ 18463 void 18464 ipif_nce_down(ipif_t *ipif) 18465 { 18466 ill_t *ill = ipif->ipif_ill; 18467 nce_t *nce; 18468 18469 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18470 ill_t *, ill, ipif_t *, ipif); 18471 if (ipif->ipif_added_nce) { 18472 if (ipif->ipif_isv6) 18473 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18474 else 18475 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18476 if (nce != NULL) { 18477 if (--nce->nce_ipif_cnt == 0) 18478 ncec_delete(nce->nce_common); 18479 ipif->ipif_added_nce = 0; 18480 nce_refrele(nce); 18481 } else { 18482 /* 18483 * nce may already be NULL because it was already 18484 * flushed, e.g., due to a call to nce_flush 18485 */ 18486 ipif->ipif_added_nce = 0; 18487 } 18488 } 18489 /* 18490 * Make IPMP aware of the deleted data address. 18491 */ 18492 if (IS_IPMP(ill)) 18493 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18494 18495 /* 18496 * Remove all other nces dependent on this ill when the last ipif 18497 * is going away. 18498 */ 18499 if (ill->ill_ipif_up_count == 0) { 18500 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18501 (uchar_t *)ill, ill->ill_ipst); 18502 if (IS_UNDER_IPMP(ill)) 18503 nce_flush(ill, B_TRUE); 18504 } 18505 } 18506 18507 /* 18508 * find the first interface that uses usill for its source address. 18509 */ 18510 ill_t * 18511 ill_lookup_usesrc(ill_t *usill) 18512 { 18513 ip_stack_t *ipst = usill->ill_ipst; 18514 ill_t *ill; 18515 18516 ASSERT(usill != NULL); 18517 18518 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 18519 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18520 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18521 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 18522 ill = ill->ill_usesrc_grp_next) { 18523 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 18524 !ILL_IS_CONDEMNED(ill)) { 18525 ill_refhold(ill); 18526 break; 18527 } 18528 } 18529 rw_exit(&ipst->ips_ill_g_lock); 18530 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18531 return (ill); 18532 } 18533