1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains consumer routines of the IPv4 forwarding engine 30 */ 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/stropts.h> 35 #include <sys/strlog.h> 36 #include <sys/dlpi.h> 37 #include <sys/ddi.h> 38 #include <sys/cmn_err.h> 39 #include <sys/policy.h> 40 41 #include <sys/systm.h> 42 #include <sys/strsun.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <sys/strsubr.h> 47 #include <sys/pattr.h> 48 #include <net/if.h> 49 #include <net/route.h> 50 #include <netinet/in.h> 51 #include <net/if_dl.h> 52 #include <netinet/ip6.h> 53 #include <netinet/icmp6.h> 54 55 #include <inet/common.h> 56 #include <inet/mi.h> 57 #include <inet/mib2.h> 58 #include <inet/ip.h> 59 #include <inet/ip_impl.h> 60 #include <inet/ip6.h> 61 #include <inet/ip_ndp.h> 62 #include <inet/arp.h> 63 #include <inet/ip_if.h> 64 #include <inet/ip_ire.h> 65 #include <inet/ip_ftable.h> 66 #include <inet/ip_rts.h> 67 #include <inet/nd.h> 68 69 #include <net/pfkeyv2.h> 70 #include <inet/ipsec_info.h> 71 #include <inet/sadb.h> 72 #include <sys/kmem.h> 73 #include <inet/tcp.h> 74 #include <inet/ipclassifier.h> 75 #include <sys/zone.h> 76 #include <net/radix.h> 77 #include <sys/tsol/label.h> 78 #include <sys/tsol/tnet.h> 79 80 #define IS_DEFAULT_ROUTE(ire) \ 81 (((ire)->ire_type & IRE_DEFAULT) || \ 82 (((ire)->ire_type & IRE_INTERFACE) && ((ire)->ire_addr == 0))) 83 84 /* 85 * structure for passing args between ire_ftable_lookup and ire_find_best_route 86 */ 87 typedef struct ire_ftable_args_s { 88 ipaddr_t ift_addr; 89 ipaddr_t ift_mask; 90 ipaddr_t ift_gateway; 91 int ift_type; 92 const ipif_t *ift_ipif; 93 zoneid_t ift_zoneid; 94 uint32_t ift_ihandle; 95 const ts_label_t *ift_tsl; 96 int ift_flags; 97 ire_t *ift_best_ire; 98 } ire_ftable_args_t; 99 100 static ire_t *route_to_dst(const struct sockaddr *, zoneid_t, ip_stack_t *); 101 static ire_t *ire_round_robin(irb_t *, zoneid_t, ire_ftable_args_t *, 102 ip_stack_t *); 103 static void ire_del_host_redir(ire_t *, char *); 104 static boolean_t ire_find_best_route(struct radix_node *, void *); 105 static int ip_send_align_hcksum_flags(mblk_t *, ill_t *); 106 107 /* 108 * Lookup a route in forwarding table. A specific lookup is indicated by 109 * passing the required parameters and indicating the match required in the 110 * flag field. 111 * 112 * Looking for default route can be done in three ways 113 * 1) pass mask as 0 and set MATCH_IRE_MASK in flags field 114 * along with other matches. 115 * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags 116 * field along with other matches. 117 * 3) if the destination and mask are passed as zeros. 118 * 119 * A request to return a default route if no route 120 * is found, can be specified by setting MATCH_IRE_DEFAULT 121 * in flags. 122 * 123 * It does not support recursion more than one level. It 124 * will do recursive lookup only when the lookup maps to 125 * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed. 126 * 127 * If the routing table is setup to allow more than one level 128 * of recursion, the cleaning up cache table will not work resulting 129 * in invalid routing. 130 * 131 * Supports IP_BOUND_IF by following the ipif/ill when recursing. 132 * 133 * NOTE : When this function returns NULL, pire has already been released. 134 * pire is valid only when this function successfully returns an 135 * ire. 136 */ 137 ire_t * 138 ire_ftable_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 139 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 140 uint32_t ihandle, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 141 { 142 ire_t *ire = NULL; 143 ipaddr_t gw_addr; 144 struct rt_sockaddr rdst, rmask; 145 struct rt_entry *rt; 146 ire_ftable_args_t margs; 147 boolean_t found_incomplete = B_FALSE; 148 149 ASSERT(ipif == NULL || !ipif->ipif_isv6); 150 151 /* 152 * When we return NULL from this function, we should make 153 * sure that *pire is NULL so that the callers will not 154 * wrongly REFRELE the pire. 155 */ 156 if (pire != NULL) 157 *pire = NULL; 158 /* 159 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 160 * MATCH_IRE_ILL is set. 161 */ 162 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 163 (ipif == NULL)) 164 return (NULL); 165 166 (void) memset(&rdst, 0, sizeof (rdst)); 167 rdst.rt_sin_len = sizeof (rdst); 168 rdst.rt_sin_family = AF_INET; 169 rdst.rt_sin_addr.s_addr = addr; 170 171 (void) memset(&rmask, 0, sizeof (rmask)); 172 rmask.rt_sin_len = sizeof (rmask); 173 rmask.rt_sin_family = AF_INET; 174 rmask.rt_sin_addr.s_addr = mask; 175 176 (void) memset(&margs, 0, sizeof (margs)); 177 margs.ift_addr = addr; 178 margs.ift_mask = mask; 179 margs.ift_gateway = gateway; 180 margs.ift_type = type; 181 margs.ift_ipif = ipif; 182 margs.ift_zoneid = zoneid; 183 margs.ift_ihandle = ihandle; 184 margs.ift_tsl = tsl; 185 margs.ift_flags = flags; 186 187 /* 188 * The flags argument passed to ire_ftable_lookup may cause the 189 * search to return, not the longest matching prefix, but the 190 * "best matching prefix", i.e., the longest prefix that also 191 * satisfies constraints imposed via the permutation of flags 192 * passed in. To achieve this, we invoke ire_match_args() on 193 * each matching leaf in the radix tree. ire_match_args is 194 * invoked by the callback function ire_find_best_route() 195 * We hold the global tree lock in read mode when calling 196 * rn_match_args.Before dropping the global tree lock, ensure 197 * that the radix node can't be deleted by incrementing ire_refcnt. 198 */ 199 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 200 rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, 201 ipst->ips_ip_ftable, ire_find_best_route, &margs); 202 ire = margs.ift_best_ire; 203 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 204 205 if (rt == NULL) { 206 return (NULL); 207 } else { 208 ASSERT(ire != NULL); 209 } 210 211 DTRACE_PROBE2(ire__found, ire_ftable_args_t *, &margs, ire_t *, ire); 212 213 if (!IS_DEFAULT_ROUTE(ire)) 214 goto found_ire_held; 215 /* 216 * If default route is found, see if default matching criteria 217 * are satisfied. 218 */ 219 if (flags & MATCH_IRE_MASK) { 220 /* 221 * we were asked to match a 0 mask, and came back with 222 * a default route. Ok to return it. 223 */ 224 goto found_default_ire; 225 } 226 if ((flags & MATCH_IRE_TYPE) && 227 (type & (IRE_DEFAULT | IRE_INTERFACE))) { 228 /* 229 * we were asked to match a default ire type. Ok to return it. 230 */ 231 goto found_default_ire; 232 } 233 if (flags & MATCH_IRE_DEFAULT) { 234 goto found_default_ire; 235 } 236 /* 237 * we found a default route, but default matching criteria 238 * are not specified and we are not explicitly looking for 239 * default. 240 */ 241 IRE_REFRELE(ire); 242 return (NULL); 243 found_default_ire: 244 /* 245 * round-robin only if we have more than one route in the bucket. 246 */ 247 if ((ire->ire_bucket->irb_ire_cnt > 1) && 248 IS_DEFAULT_ROUTE(ire) && 249 ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) == 250 MATCH_IRE_DEFAULT)) { 251 ire_t *next_ire; 252 253 next_ire = ire_round_robin(ire->ire_bucket, zoneid, &margs, 254 ipst); 255 IRE_REFRELE(ire); 256 if (next_ire != NULL) { 257 ire = next_ire; 258 } else { 259 /* no route */ 260 return (NULL); 261 } 262 } 263 found_ire_held: 264 if ((flags & MATCH_IRE_RJ_BHOLE) && 265 (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) { 266 return (ire); 267 } 268 /* 269 * At this point, IRE that was found must be an IRE_FORWARDTABLE 270 * type. If this is a recursive lookup and an IRE_INTERFACE type was 271 * found, return that. If it was some other IRE_FORWARDTABLE type of 272 * IRE (one of the prefix types), then it is necessary to fill in the 273 * parent IRE pointed to by pire, and then lookup the gateway address of 274 * the parent. For backwards compatiblity, if this lookup returns an 275 * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level 276 * of lookup is done. 277 */ 278 if (flags & MATCH_IRE_RECURSIVE) { 279 ipif_t *gw_ipif; 280 int match_flags = MATCH_IRE_DSTONLY; 281 ire_t *save_ire; 282 283 if (ire->ire_type & IRE_INTERFACE) 284 return (ire); 285 if (pire != NULL) 286 *pire = ire; 287 /* 288 * If we can't find an IRE_INTERFACE or the caller has not 289 * asked for pire, we need to REFRELE the save_ire. 290 */ 291 save_ire = ire; 292 293 /* 294 * Currently MATCH_IRE_ILL is never used with 295 * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while 296 * sending out packets as MATCH_IRE_ILL is used only 297 * for communicating with on-link hosts. We can't assert 298 * that here as RTM_GET calls this function with 299 * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE. 300 * We have already used the MATCH_IRE_ILL in determining 301 * the right prefix route at this point. To match the 302 * behavior of how we locate routes while sending out 303 * packets, we don't want to use MATCH_IRE_ILL below 304 * while locating the interface route. 305 * 306 * ire_ftable_lookup may end up with an incomplete IRE_CACHE 307 * entry for the gateway (i.e., one for which the 308 * ire_nce->nce_state is not yet ND_REACHABLE). If the caller 309 * has specified MATCH_IRE_COMPLETE, such entries will not 310 * be returned; instead, we return the IF_RESOLVER ire. 311 */ 312 if (ire->ire_ipif != NULL) 313 match_flags |= MATCH_IRE_ILL_GROUP; 314 315 ire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0, 316 ire->ire_ipif, NULL, zoneid, tsl, match_flags, ipst); 317 DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire, 318 (ire_t *), save_ire); 319 if (ire == NULL || 320 ((ire->ire_type & IRE_CACHE) && ire->ire_nce && 321 ire->ire_nce->nce_state != ND_REACHABLE && 322 (flags & MATCH_IRE_COMPLETE))) { 323 /* 324 * Do not release the parent ire if MATCH_IRE_PARENT 325 * is set. Also return it via ire. 326 */ 327 if (ire != NULL) { 328 ire_refrele(ire); 329 ire = NULL; 330 found_incomplete = B_TRUE; 331 } 332 if (flags & MATCH_IRE_PARENT) { 333 if (pire != NULL) { 334 /* 335 * Need an extra REFHOLD, if the parent 336 * ire is returned via both ire and 337 * pire. 338 */ 339 IRE_REFHOLD(save_ire); 340 } 341 ire = save_ire; 342 } else { 343 ire_refrele(save_ire); 344 if (pire != NULL) 345 *pire = NULL; 346 } 347 if (!found_incomplete) 348 return (ire); 349 } 350 if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) { 351 /* 352 * If the caller did not ask for pire, release 353 * it now. 354 */ 355 if (pire == NULL) { 356 ire_refrele(save_ire); 357 } 358 return (ire); 359 } 360 match_flags |= MATCH_IRE_TYPE; 361 gw_addr = ire->ire_gateway_addr; 362 gw_ipif = ire->ire_ipif; 363 ire_refrele(ire); 364 ire = ire_route_lookup(gw_addr, 0, 0, 365 (found_incomplete? IRE_INTERFACE : 366 (IRE_CACHETABLE | IRE_INTERFACE)), 367 gw_ipif, NULL, zoneid, tsl, match_flags, ipst); 368 DTRACE_PROBE2(ftable__route__lookup2, (ire_t *), ire, 369 (ire_t *), save_ire); 370 if (ire == NULL || 371 ((ire->ire_type & IRE_CACHE) && ire->ire_nce && 372 ire->ire_nce->nce_state != ND_REACHABLE && 373 (flags & MATCH_IRE_COMPLETE))) { 374 /* 375 * Do not release the parent ire if MATCH_IRE_PARENT 376 * is set. Also return it via ire. 377 */ 378 if (ire != NULL) { 379 ire_refrele(ire); 380 ire = NULL; 381 } 382 if (flags & MATCH_IRE_PARENT) { 383 if (pire != NULL) { 384 /* 385 * Need an extra REFHOLD, if the 386 * parent ire is returned via both 387 * ire and pire. 388 */ 389 IRE_REFHOLD(save_ire); 390 } 391 ire = save_ire; 392 } else { 393 ire_refrele(save_ire); 394 if (pire != NULL) 395 *pire = NULL; 396 } 397 return (ire); 398 } else if (pire == NULL) { 399 /* 400 * If the caller did not ask for pire, release 401 * it now. 402 */ 403 ire_refrele(save_ire); 404 } 405 return (ire); 406 } 407 ASSERT(pire == NULL || *pire == NULL); 408 return (ire); 409 } 410 411 412 /* 413 * Find an IRE_OFFSUBNET IRE entry for the multicast address 'group' 414 * that goes through 'ipif'. As a fallback, a route that goes through 415 * ipif->ipif_ill can be returned. 416 */ 417 ire_t * 418 ipif_lookup_multi_ire(ipif_t *ipif, ipaddr_t group) 419 { 420 ire_t *ire; 421 ire_t *save_ire = NULL; 422 ire_t *gw_ire; 423 irb_t *irb; 424 ipaddr_t gw_addr; 425 int match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 426 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 427 428 ASSERT(CLASSD(group)); 429 430 ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, ALL_ZONES, 0, 431 NULL, MATCH_IRE_DEFAULT, ipst); 432 433 if (ire == NULL) 434 return (NULL); 435 436 irb = ire->ire_bucket; 437 ASSERT(irb); 438 439 IRB_REFHOLD(irb); 440 ire_refrele(ire); 441 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 442 if (ire->ire_addr != group || 443 ipif->ipif_zoneid != ire->ire_zoneid && 444 ire->ire_zoneid != ALL_ZONES) { 445 continue; 446 } 447 448 switch (ire->ire_type) { 449 case IRE_DEFAULT: 450 case IRE_PREFIX: 451 case IRE_HOST: 452 gw_addr = ire->ire_gateway_addr; 453 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 454 ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 455 456 if (gw_ire != NULL) { 457 if (save_ire != NULL) { 458 ire_refrele(save_ire); 459 } 460 IRE_REFHOLD(ire); 461 if (gw_ire->ire_ipif == ipif) { 462 ire_refrele(gw_ire); 463 464 IRB_REFRELE(irb); 465 return (ire); 466 } 467 ire_refrele(gw_ire); 468 save_ire = ire; 469 } 470 break; 471 case IRE_IF_NORESOLVER: 472 case IRE_IF_RESOLVER: 473 if (ire->ire_ipif == ipif) { 474 if (save_ire != NULL) { 475 ire_refrele(save_ire); 476 } 477 IRE_REFHOLD(ire); 478 479 IRB_REFRELE(irb); 480 return (ire); 481 } 482 break; 483 } 484 } 485 IRB_REFRELE(irb); 486 487 return (save_ire); 488 } 489 490 /* 491 * Find an IRE_INTERFACE for the multicast group. 492 * Allows different routes for multicast addresses 493 * in the unicast routing table (akin to 224.0.0.0 but could be more specific) 494 * which point at different interfaces. This is used when IP_MULTICAST_IF 495 * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't 496 * specify the interface to join on. 497 * 498 * Supports IP_BOUND_IF by following the ipif/ill when recursing. 499 */ 500 ire_t * 501 ire_lookup_multi(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 502 { 503 ire_t *ire; 504 ipif_t *ipif = NULL; 505 int match_flags = MATCH_IRE_TYPE; 506 ipaddr_t gw_addr; 507 508 ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid, 509 0, NULL, MATCH_IRE_DEFAULT, ipst); 510 511 /* We search a resolvable ire in case of multirouting. */ 512 if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { 513 ire_t *cire = NULL; 514 /* 515 * If the route is not resolvable, the looked up ire 516 * may be changed here. In that case, ire_multirt_lookup() 517 * IRE_REFRELE the original ire and change it. 518 */ 519 (void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW, 520 NULL, ipst); 521 if (cire != NULL) 522 ire_refrele(cire); 523 } 524 if (ire == NULL) 525 return (NULL); 526 /* 527 * Make sure we follow ire_ipif. 528 * 529 * We need to determine the interface route through 530 * which the gateway will be reached. We don't really 531 * care which interface is picked if the interface is 532 * part of a group. 533 */ 534 if (ire->ire_ipif != NULL) { 535 ipif = ire->ire_ipif; 536 match_flags |= MATCH_IRE_ILL_GROUP; 537 } 538 539 switch (ire->ire_type) { 540 case IRE_DEFAULT: 541 case IRE_PREFIX: 542 case IRE_HOST: 543 gw_addr = ire->ire_gateway_addr; 544 ire_refrele(ire); 545 ire = ire_ftable_lookup(gw_addr, 0, 0, 546 IRE_INTERFACE, ipif, NULL, zoneid, 0, 547 NULL, match_flags, ipst); 548 return (ire); 549 case IRE_IF_NORESOLVER: 550 case IRE_IF_RESOLVER: 551 return (ire); 552 default: 553 ire_refrele(ire); 554 return (NULL); 555 } 556 } 557 558 /* 559 * Delete the passed in ire if the gateway addr matches 560 */ 561 void 562 ire_del_host_redir(ire_t *ire, char *gateway) 563 { 564 if ((ire->ire_flags & RTF_DYNAMIC) && 565 (ire->ire_gateway_addr == *(ipaddr_t *)gateway)) 566 ire_delete(ire); 567 } 568 569 /* 570 * Search for all HOST REDIRECT routes that are 571 * pointing at the specified gateway and 572 * delete them. This routine is called only 573 * when a default gateway is going away. 574 */ 575 void 576 ire_delete_host_redirects(ipaddr_t gateway, ip_stack_t *ipst) 577 { 578 struct rtfuncarg rtfarg; 579 580 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 581 rtfarg.rt_func = ire_del_host_redir; 582 rtfarg.rt_arg = (void *)&gateway; 583 (void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable, 584 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 585 } 586 587 struct ihandle_arg { 588 uint32_t ihandle; 589 ire_t *ire; 590 }; 591 592 static int 593 ire_ihandle_onlink_match(struct radix_node *rn, void *arg) 594 { 595 struct rt_entry *rt; 596 irb_t *irb; 597 ire_t *ire; 598 struct ihandle_arg *ih = arg; 599 600 rt = (struct rt_entry *)rn; 601 ASSERT(rt != NULL); 602 irb = &rt->rt_irb; 603 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 604 if ((ire->ire_type & IRE_INTERFACE) && 605 (ire->ire_ihandle == ih->ihandle)) { 606 ih->ire = ire; 607 IRE_REFHOLD(ire); 608 return (1); 609 } 610 } 611 return (0); 612 } 613 614 /* 615 * Locate the interface ire that is tied to the cache ire 'cire' via 616 * cire->ire_ihandle. 617 * 618 * We are trying to create the cache ire for an onlink destn. or 619 * gateway in 'cire'. We are called from ire_add_v4() in the IRE_IF_RESOLVER 620 * case, after the ire has come back from ARP. 621 */ 622 ire_t * 623 ire_ihandle_lookup_onlink(ire_t *cire) 624 { 625 ire_t *ire; 626 int match_flags; 627 struct ihandle_arg ih; 628 ip_stack_t *ipst; 629 630 ASSERT(cire != NULL); 631 ipst = cire->ire_ipst; 632 633 /* 634 * We don't need to specify the zoneid to ire_ftable_lookup() below 635 * because the ihandle refers to an ipif which can be in only one zone. 636 */ 637 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 638 /* 639 * We know that the mask of the interface ire equals cire->ire_cmask. 640 * (When ip_newroute() created 'cire' for an on-link destn. it set its 641 * cmask from the interface ire's mask) 642 */ 643 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 644 IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle, 645 NULL, match_flags, ipst); 646 if (ire != NULL) 647 return (ire); 648 /* 649 * If we didn't find an interface ire above, we can't declare failure. 650 * For backwards compatibility, we need to support prefix routes 651 * pointing to next hop gateways that are not on-link. 652 * 653 * In the resolver/noresolver case, ip_newroute() thinks it is creating 654 * the cache ire for an onlink destination in 'cire'. But 'cire' is 655 * not actually onlink, because ire_ftable_lookup() cheated it, by 656 * doing ire_route_lookup() twice and returning an interface ire. 657 * 658 * Eg. default - gw1 (line 1) 659 * gw1 - gw2 (line 2) 660 * gw2 - hme0 (line 3) 661 * 662 * In the above example, ip_newroute() tried to create the cache ire 663 * 'cire' for gw1, based on the interface route in line 3. The 664 * ire_ftable_lookup() above fails, because there is no interface route 665 * to reach gw1. (it is gw2). We fall thru below. 666 * 667 * Do a brute force search based on the ihandle in a subset of the 668 * forwarding tables, corresponding to cire->ire_cmask. Otherwise 669 * things become very complex, since we don't have 'pire' in this 670 * case. (Also note that this method is not possible in the offlink 671 * case because we don't know the mask) 672 */ 673 (void) memset(&ih, 0, sizeof (ih)); 674 ih.ihandle = cire->ire_ihandle; 675 (void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable, 676 ire_ihandle_onlink_match, &ih, irb_refhold_rn, irb_refrele_rn); 677 return (ih.ire); 678 } 679 680 /* 681 * IRE iterator used by ire_ftable_lookup[_v6]() to process multiple default 682 * routes. Given a starting point in the hash list (ire_origin), walk the IREs 683 * in the bucket skipping default interface routes and deleted entries. 684 * Returns the next IRE (unheld), or NULL when we're back to the starting point. 685 * Assumes that the caller holds a reference on the IRE bucket. 686 */ 687 ire_t * 688 ire_get_next_default_ire(ire_t *ire, ire_t *ire_origin) 689 { 690 ASSERT(ire_origin->ire_bucket != NULL); 691 ASSERT(ire != NULL); 692 693 do { 694 ire = ire->ire_next; 695 if (ire == NULL) 696 ire = ire_origin->ire_bucket->irb_ire; 697 if (ire == ire_origin) 698 return (NULL); 699 } while ((ire->ire_type & IRE_INTERFACE) || 700 (ire->ire_marks & IRE_MARK_CONDEMNED)); 701 ASSERT(ire != NULL); 702 return (ire); 703 } 704 705 static ipif_t * 706 ire_forward_src_ipif(ipaddr_t dst, ire_t *sire, ire_t *ire, ill_t *dst_ill, 707 int zoneid, ushort_t *marks) 708 { 709 ipif_t *src_ipif; 710 ip_stack_t *ipst = dst_ill->ill_ipst; 711 712 /* 713 * Pick the best source address from dst_ill. 714 * 715 * 1) If it is part of a multipathing group, we would 716 * like to spread the inbound packets across different 717 * interfaces. ipif_select_source picks a random source 718 * across the different ills in the group. 719 * 720 * 2) If it is not part of a multipathing group, we try 721 * to pick the source address from the destination 722 * route. Clustering assumes that when we have multiple 723 * prefixes hosted on an interface, the prefix of the 724 * source address matches the prefix of the destination 725 * route. We do this only if the address is not 726 * DEPRECATED. 727 * 728 * 3) If the conn is in a different zone than the ire, we 729 * need to pick a source address from the right zone. 730 * 731 * NOTE : If we hit case (1) above, the prefix of the source 732 * address picked may not match the prefix of the 733 * destination routes prefix as ipif_select_source 734 * does not look at "dst" while picking a source 735 * address. 736 * If we want the same behavior as (2), we will need 737 * to change the behavior of ipif_select_source. 738 */ 739 740 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 741 /* 742 * The RTF_SETSRC flag is set in the parent ire (sire). 743 * Check that the ipif matching the requested source 744 * address still exists. 745 */ 746 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 747 zoneid, NULL, NULL, NULL, NULL, ipst); 748 return (src_ipif); 749 } 750 *marks |= IRE_MARK_USESRC_CHECK; 751 if ((dst_ill->ill_group != NULL) || 752 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 753 (dst_ill->ill_usesrc_ifindex != 0)) { 754 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 755 if (src_ipif == NULL) 756 return (NULL); 757 758 } else { 759 src_ipif = ire->ire_ipif; 760 ASSERT(src_ipif != NULL); 761 /* hold src_ipif for uniformity */ 762 ipif_refhold(src_ipif); 763 } 764 return (src_ipif); 765 } 766 767 /* 768 * This function is called by ip_rput_noire() and ip_fast_forward() 769 * to resolve the route of incoming packet that needs to be forwarded. 770 * If the ire of the nexthop is not already in the cachetable, this 771 * routine will insert it to the table, but won't trigger ARP resolution yet. 772 * Thus unlike ip_newroute, this function adds incomplete ires to 773 * the cachetable. ARP resolution for these ires are delayed until 774 * after all of the packet processing is completed and its ready to 775 * be sent out on the wire, Eventually, the packet transmit routine 776 * ip_xmit_v4() attempts to send a packet to the driver. If it finds 777 * that there is no link layer information, it will do the arp 778 * resolution and queue the packet in ire->ire_nce->nce_qd_mp and 779 * then send it out once the arp resolution is over 780 * (see ip_xmit_v4()->ire_arpresolve()). This scheme is similar to 781 * the model of BSD/SunOS 4 782 * 783 * In future, the insertion of incomplete ires in the cachetable should 784 * be implemented in hostpath as well, as doing so will greatly reduce 785 * the existing complexity for code paths that depend on the context of 786 * the sender (such as IPsec). 787 * 788 * Thus this scheme of adding incomplete ires in cachetable in forwarding 789 * path can be used as a template for simplifying the hostpath. 790 */ 791 792 ire_t * 793 ire_forward(ipaddr_t dst, boolean_t *check_multirt, ire_t *supplied_ire, 794 ire_t *supplied_sire, const struct ts_label_s *tsl, ip_stack_t *ipst) 795 { 796 ipaddr_t gw = 0; 797 ire_t *ire = NULL; 798 ire_t *sire = NULL, *save_ire; 799 ill_t *dst_ill = NULL; 800 int error; 801 zoneid_t zoneid; 802 ipif_t *src_ipif = NULL; 803 mblk_t *res_mp; 804 ushort_t ire_marks = 0; 805 tsol_gcgrp_t *gcgrp = NULL; 806 tsol_gcgrp_addr_t ga; 807 808 zoneid = GLOBAL_ZONEID; 809 810 if (supplied_ire != NULL) { 811 /* We have arrived here from ipfil_sendpkt */ 812 ire = supplied_ire; 813 sire = supplied_sire; 814 goto create_irecache; 815 } 816 817 ire = ire_ftable_lookup(dst, 0, 0, 0, NULL, &sire, zoneid, 0, 818 tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 819 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT|MATCH_IRE_SECATTR, ipst); 820 821 if (ire == NULL) { 822 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst); 823 goto icmp_err_ret; 824 } 825 826 /* 827 * If we encounter CGTP, we should have the caller use 828 * ip_newroute to resolve multirt instead of this function. 829 * CGTP specs explicitly state that it can't be used with routers. 830 * This essentially prevents insertion of incomplete RTF_MULTIRT 831 * ires in cachetable. 832 */ 833 if (ipst->ips_ip_cgtp_filter && 834 ((ire->ire_flags & RTF_MULTIRT) || 835 ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) { 836 ip3dbg(("ire_forward: packet is to be multirouted- " 837 "handing it to ip_newroute\n")); 838 if (sire != NULL) 839 ire_refrele(sire); 840 ire_refrele(ire); 841 /* 842 * Inform caller about encountering of multirt so that 843 * ip_newroute() can be called. 844 */ 845 *check_multirt = B_TRUE; 846 return (NULL); 847 } 848 849 *check_multirt = B_FALSE; 850 851 /* 852 * Verify that the returned IRE does not have either 853 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 854 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 855 */ 856 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 857 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 858 ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n", 859 (void *)ire)); 860 goto icmp_err_ret; 861 } 862 863 /* 864 * If we already have a fully resolved IRE CACHE of the 865 * nexthop router, just hand over the cache entry 866 * and we are done. 867 */ 868 869 if (ire->ire_type & IRE_CACHE) { 870 871 /* 872 * If we are using this ire cache entry as a 873 * gateway to forward packets, chances are we 874 * will be using it again. So turn off 875 * the temporary flag, thus reducing its 876 * chances of getting deleted frequently. 877 */ 878 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 879 irb_t *irb = ire->ire_bucket; 880 rw_enter(&irb->irb_lock, RW_WRITER); 881 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 882 irb->irb_tmp_ire_cnt--; 883 rw_exit(&irb->irb_lock); 884 } 885 886 if (sire != NULL) { 887 UPDATE_OB_PKT_COUNT(sire); 888 sire->ire_last_used_time = lbolt; 889 ire_refrele(sire); 890 } 891 return (ire); 892 } 893 create_irecache: 894 /* 895 * Increment the ire_ob_pkt_count field for ire if it is an 896 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 897 * increment the same for the parent IRE, sire, if it is some 898 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST). 899 */ 900 if ((ire->ire_type & IRE_INTERFACE) != 0) { 901 UPDATE_OB_PKT_COUNT(ire); 902 ire->ire_last_used_time = lbolt; 903 } 904 905 /* 906 * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type 907 */ 908 if (sire != NULL) { 909 gw = sire->ire_gateway_addr; 910 ASSERT((sire->ire_type & 911 (IRE_CACHETABLE | IRE_INTERFACE)) == 0); 912 UPDATE_OB_PKT_COUNT(sire); 913 sire->ire_last_used_time = lbolt; 914 } 915 916 /* Obtain dst_ill */ 917 dst_ill = ip_newroute_get_dst_ill(ire->ire_ipif->ipif_ill); 918 if (dst_ill == NULL) { 919 ip2dbg(("ire_forward no dst ill; ire 0x%p\n", 920 (void *)ire)); 921 goto icmp_err_ret; 922 } 923 924 ASSERT(src_ipif == NULL); 925 /* Now obtain the src_ipif */ 926 src_ipif = ire_forward_src_ipif(dst, sire, ire, dst_ill, 927 zoneid, &ire_marks); 928 if (src_ipif == NULL) 929 goto icmp_err_ret; 930 931 switch (ire->ire_type) { 932 case IRE_IF_NORESOLVER: 933 /* create ire_cache for ire_addr endpoint */ 934 case IRE_IF_RESOLVER: 935 /* 936 * We have the IRE_IF_RESOLVER of the nexthop gateway 937 * and now need to build a IRE_CACHE for it. 938 * In this case, we have the following : 939 * 940 * 1) src_ipif - used for getting a source address. 941 * 942 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 943 * means packets using the IRE_CACHE that we will build 944 * here will go out on dst_ill. 945 * 946 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 947 * to be created will only be tied to the IRE_INTERFACE 948 * that was derived from the ire_ihandle field. 949 * 950 * If sire is non-NULL, it means the destination is 951 * off-link and we will first create the IRE_CACHE for the 952 * gateway. 953 */ 954 res_mp = dst_ill->ill_resolver_mp; 955 if (ire->ire_type == IRE_IF_RESOLVER && 956 (!OK_RESOLVER_MP(res_mp))) { 957 ire_refrele(ire); 958 ire = NULL; 959 goto out; 960 } 961 /* 962 * To be at this point in the code with a non-zero gw 963 * means that dst is reachable through a gateway that 964 * we have never resolved. By changing dst to the gw 965 * addr we resolve the gateway first. 966 */ 967 if (gw != INADDR_ANY) { 968 /* 969 * The source ipif that was determined above was 970 * relative to the destination address, not the 971 * gateway's. If src_ipif was not taken out of 972 * the IRE_IF_RESOLVER entry, we'll need to call 973 * ipif_select_source() again. 974 */ 975 if (src_ipif != ire->ire_ipif) { 976 ipif_refrele(src_ipif); 977 src_ipif = ipif_select_source(dst_ill, 978 gw, zoneid); 979 if (src_ipif == NULL) 980 goto icmp_err_ret; 981 } 982 dst = gw; 983 gw = INADDR_ANY; 984 } 985 /* 986 * dst has been set to the address of the nexthop. 987 * 988 * TSol note: get security attributes of the nexthop; 989 * Note that the nexthop may either be a gateway, or the 990 * packet destination itself; Detailed explanation of 991 * issues involved is provided in the IRE_IF_NORESOLVER 992 * logic in ip_newroute(). 993 */ 994 ga.ga_af = AF_INET; 995 IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr); 996 gcgrp = gcgrp_lookup(&ga, B_FALSE); 997 998 if (ire->ire_type == IRE_IF_NORESOLVER) 999 dst = ire->ire_addr; /* ire_cache for tunnel endpoint */ 1000 1001 save_ire = ire; 1002 /* 1003 * create an incomplete IRE_CACHE. 1004 * An areq_mp will be generated in ire_arpresolve() for 1005 * RESOLVER interfaces. 1006 */ 1007 ire = ire_create( 1008 (uchar_t *)&dst, /* dest address */ 1009 (uchar_t *)&ip_g_all_ones, /* mask */ 1010 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 1011 (uchar_t *)&gw, /* gateway address */ 1012 (save_ire->ire_type == IRE_IF_RESOLVER ? NULL: 1013 &save_ire->ire_max_frag), 1014 NULL, 1015 dst_ill->ill_rq, /* recv-from queue */ 1016 dst_ill->ill_wq, /* send-to queue */ 1017 IRE_CACHE, /* IRE type */ 1018 src_ipif, 1019 ire->ire_mask, /* Parent mask */ 1020 0, 1021 ire->ire_ihandle, /* Interface handle */ 1022 0, 1023 &(ire->ire_uinfo), 1024 NULL, 1025 gcgrp, 1026 ipst); 1027 ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire)); 1028 if (ire != NULL) { 1029 gcgrp = NULL; /* reference now held by IRE */ 1030 ire->ire_marks |= ire_marks; 1031 /* add the incomplete ire: */ 1032 error = ire_add(&ire, NULL, NULL, NULL, B_TRUE); 1033 if (error == 0 && ire != NULL) { 1034 ire->ire_max_frag = save_ire->ire_max_frag; 1035 ip1dbg(("setting max_frag to %d in ire 0x%p\n", 1036 ire->ire_max_frag, (void *)ire)); 1037 } else { 1038 ire_refrele(save_ire); 1039 goto icmp_err_ret; 1040 } 1041 } else { 1042 if (gcgrp != NULL) { 1043 GCGRP_REFRELE(gcgrp); 1044 gcgrp = NULL; 1045 } 1046 } 1047 1048 ire_refrele(save_ire); 1049 break; 1050 default: 1051 break; 1052 } 1053 1054 out: 1055 if (sire != NULL) 1056 ire_refrele(sire); 1057 if (dst_ill != NULL) 1058 ill_refrele(dst_ill); 1059 if (src_ipif != NULL) 1060 ipif_refrele(src_ipif); 1061 return (ire); 1062 icmp_err_ret: 1063 if (src_ipif != NULL) 1064 ipif_refrele(src_ipif); 1065 if (dst_ill != NULL) 1066 ill_refrele(dst_ill); 1067 if (sire != NULL) 1068 ire_refrele(sire); 1069 if (ire != NULL) { 1070 ire_refrele(ire); 1071 } 1072 /* caller needs to send icmp error message */ 1073 return (NULL); 1074 1075 } 1076 1077 /* 1078 * Obtain the rt_entry and rt_irb for the route to be added to 1079 * the ips_ip_ftable. 1080 * First attempt to add a node to the radix tree via rn_addroute. If the 1081 * route already exists, return the bucket for the existing route. 1082 * 1083 * Locking notes: Need to hold the global radix tree lock in write mode to 1084 * add a radix node. To prevent the node from being deleted, ire_get_bucket() 1085 * returns with a ref'ed irb_t. The ire itself is added in ire_add_v4() 1086 * while holding the irb_lock, but not the radix tree lock. 1087 */ 1088 irb_t * 1089 ire_get_bucket(ire_t *ire) 1090 { 1091 struct radix_node *rn; 1092 struct rt_entry *rt; 1093 struct rt_sockaddr rmask, rdst; 1094 irb_t *irb = NULL; 1095 ip_stack_t *ipst = ire->ire_ipst; 1096 1097 ASSERT(ipst->ips_ip_ftable != NULL); 1098 1099 /* first try to see if route exists (based on rtalloc1) */ 1100 (void) memset(&rdst, 0, sizeof (rdst)); 1101 rdst.rt_sin_len = sizeof (rdst); 1102 rdst.rt_sin_family = AF_INET; 1103 rdst.rt_sin_addr.s_addr = ire->ire_addr; 1104 1105 (void) memset(&rmask, 0, sizeof (rmask)); 1106 rmask.rt_sin_len = sizeof (rmask); 1107 rmask.rt_sin_family = AF_INET; 1108 rmask.rt_sin_addr.s_addr = ire->ire_mask; 1109 1110 /* 1111 * add the route. based on BSD's rtrequest1(RTM_ADD) 1112 */ 1113 R_Malloc(rt, rt_entry_cache, sizeof (*rt)); 1114 /* kmem_alloc failed */ 1115 if (rt == NULL) 1116 return (NULL); 1117 1118 (void) memset(rt, 0, sizeof (*rt)); 1119 rt->rt_nodes->rn_key = (char *)&rt->rt_dst; 1120 rt->rt_dst = rdst; 1121 irb = &rt->rt_irb; 1122 irb->irb_marks |= IRB_MARK_FTABLE; /* dynamically allocated/freed */ 1123 irb->irb_ipst = ipst; 1124 rw_init(&irb->irb_lock, NULL, RW_DEFAULT, NULL); 1125 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 1126 rn = ipst->ips_ip_ftable->rnh_addaddr(&rt->rt_dst, &rmask, 1127 ipst->ips_ip_ftable, (struct radix_node *)rt); 1128 if (rn == NULL) { 1129 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1130 Free(rt, rt_entry_cache); 1131 rt = NULL; 1132 irb = NULL; 1133 RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); 1134 rn = ipst->ips_ip_ftable->rnh_lookup(&rdst, &rmask, 1135 ipst->ips_ip_ftable); 1136 if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { 1137 /* found a non-root match */ 1138 rt = (struct rt_entry *)rn; 1139 } 1140 } 1141 if (rt != NULL) { 1142 irb = &rt->rt_irb; 1143 IRB_REFHOLD(irb); 1144 } 1145 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 1146 return (irb); 1147 } 1148 1149 /* 1150 * This function is used when the caller wants to know the outbound 1151 * interface for a packet given only the address. 1152 * If this is a offlink IP address and there are multiple 1153 * routes to this destination, this routine will utilise the 1154 * first route it finds to IP address 1155 * Return values: 1156 * 0 - FAILURE 1157 * nonzero - ifindex 1158 */ 1159 uint_t 1160 ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid) 1161 { 1162 uint_t ifindex = 0; 1163 ire_t *ire; 1164 ill_t *ill; 1165 netstack_t *ns; 1166 ip_stack_t *ipst; 1167 1168 if (zoneid == ALL_ZONES) 1169 ns = netstack_find_by_zoneid(GLOBAL_ZONEID); 1170 else 1171 ns = netstack_find_by_zoneid(zoneid); 1172 ASSERT(ns != NULL); 1173 1174 /* 1175 * For exclusive stacks we set the zoneid to zero 1176 * since IP uses the global zoneid in the exclusive stacks. 1177 */ 1178 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 1179 zoneid = GLOBAL_ZONEID; 1180 ipst = ns->netstack_ip; 1181 1182 ASSERT(ipaddr->sa_family == AF_INET || ipaddr->sa_family == AF_INET6); 1183 1184 if ((ire = route_to_dst(ipaddr, zoneid, ipst)) != NULL) { 1185 ill = ire_to_ill(ire); 1186 if (ill != NULL) 1187 ifindex = ill->ill_phyint->phyint_ifindex; 1188 ire_refrele(ire); 1189 } 1190 netstack_rele(ns); 1191 return (ifindex); 1192 } 1193 1194 /* 1195 * Routine to find the route to a destination. If a ifindex is supplied 1196 * it tries to match the the route to the corresponding ipif for the ifindex 1197 */ 1198 static ire_t * 1199 route_to_dst(const struct sockaddr *dst_addr, zoneid_t zoneid, ip_stack_t *ipst) 1200 { 1201 ire_t *ire = NULL; 1202 int match_flags; 1203 1204 match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | 1205 MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE); 1206 1207 /* XXX pass NULL tsl for now */ 1208 1209 if (dst_addr->sa_family == AF_INET) { 1210 ire = ire_route_lookup( 1211 ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr, 1212 0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst); 1213 } else { 1214 ire = ire_route_lookup_v6( 1215 &((struct sockaddr_in6 *)dst_addr)->sin6_addr, 1216 0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst); 1217 } 1218 return (ire); 1219 } 1220 1221 /* 1222 * This routine is called by IP Filter to send a packet out on the wire 1223 * to a specified V4 dst (which may be onlink or offlink). The ifindex may or 1224 * may not be 0. A non-null ifindex indicates IP Filter has stipulated 1225 * an outgoing interface and requires the nexthop to be on that interface. 1226 * IP WILL NOT DO the following to the data packet before sending it out: 1227 * a. manipulate ttl 1228 * b. ipsec work 1229 * c. fragmentation 1230 * 1231 * If the packet has been prepared for hardware checksum then it will be 1232 * passed off to ip_send_align_cksum() to check that the flags set on the 1233 * packet are in alignment with the capabilities of the new outgoing NIC. 1234 * 1235 * Return values: 1236 * 0: IP was able to send of the data pkt 1237 * ECOMM: Could not send packet 1238 * ENONET No route to dst. It is up to the caller 1239 * to send icmp unreachable error message, 1240 * EINPROGRESS The macaddr of the onlink dst or that 1241 * of the offlink dst's nexthop needs to get 1242 * resolved before packet can be sent to dst. 1243 * Thus transmission is not guaranteed. 1244 * 1245 */ 1246 1247 int 1248 ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex, 1249 zoneid_t zoneid) 1250 { 1251 ire_t *ire = NULL, *sire = NULL; 1252 ire_t *ire_cache = NULL; 1253 boolean_t check_multirt = B_FALSE; 1254 int value; 1255 int match_flags; 1256 ipaddr_t dst; 1257 netstack_t *ns; 1258 ip_stack_t *ipst; 1259 1260 ASSERT(mp != NULL); 1261 1262 if (zoneid == ALL_ZONES) 1263 ns = netstack_find_by_zoneid(GLOBAL_ZONEID); 1264 else 1265 ns = netstack_find_by_zoneid(zoneid); 1266 ASSERT(ns != NULL); 1267 1268 /* 1269 * For exclusive stacks we set the zoneid to zero 1270 * since IP uses the global zoneid in the exclusive stacks. 1271 */ 1272 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 1273 zoneid = GLOBAL_ZONEID; 1274 ipst = ns->netstack_ip; 1275 1276 ASSERT(dst_addr->sa_family == AF_INET || 1277 dst_addr->sa_family == AF_INET6); 1278 1279 if (dst_addr->sa_family == AF_INET) { 1280 dst = ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr; 1281 } else { 1282 /* 1283 * We dont have support for V6 yet. It will be provided 1284 * once RFE 6399103 has been delivered. 1285 * Until then, for V6 dsts, IP Filter will not call 1286 * this function. Instead the netinfo framework provides 1287 * its own code path, in ip_inject_impl(), to achieve 1288 * what it needs to do, for the time being. 1289 */ 1290 ip1dbg(("ipfil_sendpkt: no V6 support \n")); 1291 value = ECOMM; 1292 freemsg(mp); 1293 goto discard; 1294 } 1295 1296 /* 1297 * Lets get the ire. We might get the ire cache entry, 1298 * or the ire,sire pair needed to create the cache entry. 1299 * XXX pass NULL tsl for now. 1300 */ 1301 1302 if (ifindex == 0) { 1303 /* There is no supplied index. So use the FIB info */ 1304 1305 match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | 1306 MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE); 1307 ire = ire_route_lookup(dst, 1308 0, 0, 0, NULL, &sire, zoneid, MBLK_GETLABEL(mp), 1309 match_flags, ipst); 1310 } else { 1311 ipif_t *supplied_ipif; 1312 ill_t *ill; 1313 1314 match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | 1315 MATCH_IRE_RECURSIVE| MATCH_IRE_RJ_BHOLE| 1316 MATCH_IRE_SECATTR); 1317 1318 /* 1319 * If supplied ifindex is non-null, the only valid 1320 * nexthop is one off of the interface or group corresponding 1321 * to the specified ifindex. 1322 */ 1323 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 1324 NULL, NULL, NULL, NULL, ipst); 1325 if (ill != NULL) { 1326 match_flags |= MATCH_IRE_ILL; 1327 } else { 1328 /* Fallback to group names if hook_emulation set */ 1329 if (ipst->ips_ipmp_hook_emulation) { 1330 ill = ill_group_lookup_on_ifindex(ifindex, 1331 B_FALSE, ipst); 1332 } 1333 if (ill == NULL) { 1334 ip1dbg(("ipfil_sendpkt: Could not find" 1335 " route to dst\n")); 1336 value = ECOMM; 1337 freemsg(mp); 1338 goto discard; 1339 } 1340 match_flags |= MATCH_IRE_ILL_GROUP; 1341 } 1342 supplied_ipif = ipif_get_next_ipif(NULL, ill); 1343 1344 ire = ire_route_lookup(dst, 0, 0, 0, supplied_ipif, 1345 &sire, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 1346 ipif_refrele(supplied_ipif); 1347 ill_refrele(ill); 1348 } 1349 1350 /* 1351 * Verify that the returned IRE is non-null and does 1352 * not have either the RTF_REJECT or RTF_BLACKHOLE 1353 * flags set and that the IRE is either an IRE_CACHE, 1354 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 1355 */ 1356 if (ire == NULL || 1357 ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 1358 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0)) { 1359 /* 1360 * Either ire could not be found or we got 1361 * an invalid one 1362 */ 1363 ip1dbg(("ipfil_sendpkt: Could not find route to dst\n")); 1364 value = ENONET; 1365 freemsg(mp); 1366 goto discard; 1367 } 1368 1369 /* IP Filter and CGTP dont mix. So bail out if CGTP is on */ 1370 if (ipst->ips_ip_cgtp_filter && 1371 ((ire->ire_flags & RTF_MULTIRT) || 1372 ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) { 1373 ip1dbg(("ipfil_sendpkt: IPFilter does not work with CGTP\n")); 1374 value = ECOMM; 1375 freemsg(mp); 1376 goto discard; 1377 } 1378 1379 ASSERT(ire->ire_type != IRE_CACHE || ire->ire_nce != NULL); 1380 1381 /* 1382 * If needed, we will create the ire cache entry for the 1383 * nexthop, resolve its link-layer address and then send 1384 * the packet out without ttl or IPSec processing. 1385 */ 1386 switch (ire->ire_type) { 1387 case IRE_CACHE: 1388 if (sire != NULL) { 1389 UPDATE_OB_PKT_COUNT(sire); 1390 sire->ire_last_used_time = lbolt; 1391 ire_refrele(sire); 1392 } 1393 ire_cache = ire; 1394 break; 1395 case IRE_IF_NORESOLVER: 1396 case IRE_IF_RESOLVER: 1397 /* 1398 * Call ire_forward(). This function 1399 * will, create the ire cache entry of the 1400 * the nexthop and adds this incomplete ire 1401 * to the ire cache table 1402 */ 1403 ire_cache = ire_forward(dst, &check_multirt, ire, sire, 1404 MBLK_GETLABEL(mp), ipst); 1405 if (ire_cache == NULL) { 1406 ip1dbg(("ipfil_sendpkt: failed to create the" 1407 " ire cache entry \n")); 1408 value = ENONET; 1409 freemsg(mp); 1410 sire = NULL; 1411 ire = NULL; 1412 goto discard; 1413 } 1414 break; 1415 } 1416 1417 if (DB_CKSUMFLAGS(mp)) { 1418 if (ip_send_align_hcksum_flags(mp, ire_to_ill(ire_cache))) 1419 goto cleanup; 1420 } 1421 1422 /* 1423 * Now that we have the ire cache entry of the nexthop, call 1424 * ip_xmit_v4() to trigger mac addr resolution 1425 * if necessary and send it once ready. 1426 */ 1427 1428 value = ip_xmit_v4(mp, ire_cache, NULL, B_FALSE); 1429 cleanup: 1430 ire_refrele(ire_cache); 1431 /* 1432 * At this point, the reference for these have already been 1433 * released within ire_forward() and/or ip_xmit_v4(). So we set 1434 * them to NULL to make sure we dont drop the references 1435 * again in case ip_xmit_v4() returns with either SEND_FAILED 1436 * or LLHDR_RESLV_FAILED 1437 */ 1438 sire = NULL; 1439 ire = NULL; 1440 1441 switch (value) { 1442 case SEND_FAILED: 1443 ip1dbg(("ipfil_sendpkt: Send failed\n")); 1444 value = ECOMM; 1445 break; 1446 case LLHDR_RESLV_FAILED: 1447 ip1dbg(("ipfil_sendpkt: Link-layer resolution" 1448 " failed\n")); 1449 value = ECOMM; 1450 break; 1451 case LOOKUP_IN_PROGRESS: 1452 netstack_rele(ns); 1453 return (EINPROGRESS); 1454 case SEND_PASSED: 1455 netstack_rele(ns); 1456 return (0); 1457 } 1458 discard: 1459 if (dst_addr->sa_family == AF_INET) { 1460 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 1461 } else { 1462 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 1463 } 1464 if (ire != NULL) 1465 ire_refrele(ire); 1466 if (sire != NULL) 1467 ire_refrele(sire); 1468 netstack_rele(ns); 1469 return (value); 1470 } 1471 1472 1473 /* 1474 * We don't check for dohwcksum in here because it should be being used 1475 * elsewhere to control what flags are being set on the mblk. That is, 1476 * if DB_CKSUMFLAGS() is non-zero then we assume dohwcksum to be true 1477 * for this packet. 1478 * 1479 * This function assumes that it is *only* being called for TCP or UDP 1480 * packets and nothing else. 1481 */ 1482 static int 1483 ip_send_align_hcksum_flags(mblk_t *mp, ill_t *ill) 1484 { 1485 int illhckflags; 1486 int mbhckflags; 1487 uint16_t *up; 1488 uint32_t cksum; 1489 ipha_t *ipha; 1490 ip6_t *ip6; 1491 int proto; 1492 int ipversion; 1493 int length; 1494 int start; 1495 ip6_pkt_t ipp; 1496 1497 mbhckflags = DB_CKSUMFLAGS(mp); 1498 ASSERT(mbhckflags != 0); 1499 ASSERT(mp->b_datap->db_type == M_DATA); 1500 /* 1501 * Since this function only knows how to manage the hardware checksum 1502 * issue, reject and packets that have flags set on the aside from 1503 * checksum related attributes as we cannot necessarily safely map 1504 * that packet onto the new NIC. Packets that can be potentially 1505 * dropped here include those marked for LSO. 1506 */ 1507 if ((mbhckflags & 1508 ~(HCK_FULLCKSUM|HCK_PARTIALCKSUM|HCK_IPV4_HDRCKSUM)) != 0) { 1509 DTRACE_PROBE2(pbr__incapable, (mblk_t *), mp, (ill_t *), ill); 1510 freemsg(mp); 1511 return (-1); 1512 } 1513 1514 ipha = (ipha_t *)mp->b_rptr; 1515 1516 /* 1517 * Find out what the new NIC is capable of, if anything, and 1518 * only allow it to be used with M_DATA mblks being sent out. 1519 */ 1520 if (ILL_HCKSUM_CAPABLE(ill)) { 1521 illhckflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 1522 } else { 1523 /* 1524 * No capabilities, so turn off everything. 1525 */ 1526 illhckflags = 0; 1527 (void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, 0, 0); 1528 mp->b_datap->db_struioflag &= ~STRUIO_IP; 1529 } 1530 1531 DTRACE_PROBE4(pbr__info__a, (mblk_t *), mp, (ill_t *), ill, 1532 uint32_t, illhckflags, uint32_t, mbhckflags); 1533 /* 1534 * This block of code that looks for the position of the TCP/UDP 1535 * checksum is early in this function because we need to know 1536 * what needs to be blanked out for the hardware checksum case. 1537 * 1538 * That we're in this function implies that the packet is either 1539 * TCP or UDP on Solaris, so checks are made for one protocol and 1540 * if that fails, the other is therefore implied. 1541 */ 1542 ipversion = IPH_HDR_VERSION(ipha); 1543 1544 if (ipversion == IPV4_VERSION) { 1545 proto = ipha->ipha_protocol; 1546 if (proto == IPPROTO_TCP) { 1547 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 1548 } else { 1549 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 1550 } 1551 } else { 1552 uint8_t lasthdr; 1553 1554 /* 1555 * Nothing I've seen indicates that IPv6 checksum'ing 1556 * precludes the presence of extension headers, so we 1557 * can't just look at the next header value in the IPv6 1558 * packet header to see if it is TCP/UDP. 1559 */ 1560 ip6 = (ip6_t *)ipha; 1561 (void) memset(&ipp, 0, sizeof (ipp)); 1562 start = ip_find_hdr_v6(mp, ip6, &ipp, &lasthdr); 1563 proto = lasthdr; 1564 1565 if (proto == IPPROTO_TCP) { 1566 up = IPH_TCPH_CHECKSUMP(ipha, start); 1567 } else { 1568 up = IPH_UDPH_CHECKSUMP(ipha, start); 1569 } 1570 } 1571 1572 /* 1573 * The first case here is easiest: 1574 * mblk hasn't asked for full checksum, but the card supports it. 1575 * 1576 * In addition, check for IPv4 header capability. Note that only 1577 * the mblk flag is checked and not ipversion. 1578 */ 1579 if ((((illhckflags & HCKSUM_INET_FULL_V4) && (ipversion == 4)) || 1580 (((illhckflags & HCKSUM_INET_FULL_V6) && (ipversion == 6)))) && 1581 ((mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) != 0)) { 1582 int newflags = HCK_FULLCKSUM; 1583 1584 if ((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) { 1585 if ((illhckflags & HCKSUM_IPHDRCKSUM) != 0) { 1586 newflags |= HCK_IPV4_HDRCKSUM; 1587 } else { 1588 /* 1589 * Rather than call a function, just inline 1590 * the computation of the basic IPv4 header. 1591 */ 1592 cksum = (ipha->ipha_dst >> 16) + 1593 (ipha->ipha_dst & 0xFFFF) + 1594 (ipha->ipha_src >> 16) + 1595 (ipha->ipha_src & 0xFFFF); 1596 IP_HDR_CKSUM(ipha, cksum, 1597 ((uint32_t *)ipha)[0], 1598 ((uint16_t *)ipha)[4]); 1599 } 1600 } 1601 1602 *up = 0; 1603 (void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, 1604 newflags, 0); 1605 return (0); 1606 } 1607 1608 DTRACE_PROBE2(pbr__info__b, int, ipversion, int, proto); 1609 1610 /* 1611 * Start calculating the pseudo checksum over the IP packet header. 1612 * Although the final pseudo checksum used by TCP/UDP consists of 1613 * more than just the address fields, we can use the result of 1614 * adding those together a little bit further down for IPv4. 1615 */ 1616 if (ipversion == IPV4_VERSION) { 1617 cksum = (ipha->ipha_dst >> 16) + (ipha->ipha_dst & 0xFFFF) + 1618 (ipha->ipha_src >> 16) + (ipha->ipha_src & 0xFFFF); 1619 start = IP_SIMPLE_HDR_LENGTH; 1620 length = ntohs(ipha->ipha_length); 1621 DTRACE_PROBE3(pbr__info__e, uint32_t, ipha->ipha_src, 1622 uint32_t, ipha->ipha_dst, int, cksum); 1623 } else { 1624 uint16_t *pseudo; 1625 1626 pseudo = (uint16_t *)&ip6->ip6_src; 1627 1628 /* calculate pseudo-header checksum */ 1629 cksum = pseudo[0] + pseudo[1] + pseudo[2] + pseudo[3] + 1630 pseudo[4] + pseudo[5] + pseudo[6] + pseudo[7] + 1631 pseudo[8] + pseudo[9] + pseudo[10] + pseudo[11] + 1632 pseudo[12] + pseudo[13] + pseudo[14] + pseudo[15]; 1633 1634 length = ntohs(ip6->ip6_plen) + sizeof (ip6_t); 1635 } 1636 1637 /* Fold the initial sum */ 1638 cksum = (cksum & 0xffff) + (cksum >> 16); 1639 1640 /* 1641 * If the packet was asking for an IPv4 header checksum to be 1642 * calculated but the interface doesn't support that, fill it in 1643 * using our pseudo checksum as a starting point. 1644 */ 1645 if (((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) && 1646 ((illhckflags & HCKSUM_IPHDRCKSUM) == 0)) { 1647 /* 1648 * IP_HDR_CKSUM uses the 2rd arg to the macro in a destructive 1649 * way so pass in a copy of the checksum calculated thus far. 1650 */ 1651 uint32_t ipsum = cksum; 1652 1653 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 1654 1655 IP_HDR_CKSUM(ipha, ipsum, ((uint32_t *)ipha)[0], 1656 ((uint16_t *)ipha)[4]); 1657 } 1658 1659 DTRACE_PROBE3(pbr__info__c, int, start, int, length, int, cksum); 1660 1661 if (proto == IPPROTO_TCP) { 1662 cksum += IP_TCP_CSUM_COMP; 1663 } else { 1664 cksum += IP_UDP_CSUM_COMP; 1665 } 1666 cksum += htons(length - start); 1667 cksum = (cksum & 0xffff) + (cksum >> 16); 1668 1669 /* 1670 * For TCP/UDP, we either want to setup the packet for partial 1671 * checksum or we want to do it all ourselves because the NIC 1672 * offers no support for either partial or full checksum. 1673 */ 1674 if ((illhckflags & HCKSUM_INET_PARTIAL) != 0) { 1675 /* 1676 * The only case we care about here is if the mblk was 1677 * previously set for full checksum offload. If it was 1678 * marked for partial (and the NIC does partial), then 1679 * we have nothing to do. Similarly if the packet was 1680 * not set for partial or full, we do nothing as this 1681 * is cheaper than more work to set something up. 1682 */ 1683 if ((mbhckflags & HCK_FULLCKSUM) != 0) { 1684 uint32_t offset; 1685 1686 if (proto == IPPROTO_TCP) { 1687 offset = TCP_CHECKSUM_OFFSET; 1688 } else { 1689 offset = UDP_CHECKSUM_OFFSET; 1690 } 1691 *up = cksum; 1692 1693 DTRACE_PROBE3(pbr__info__f, int, length - start, int, 1694 cksum, int, offset); 1695 1696 (void) hcksum_assoc(mp, NULL, NULL, start, 1697 start + offset, length, 0, 1698 DB_CKSUMFLAGS(mp) | HCK_PARTIALCKSUM, 0); 1699 } 1700 1701 } else if (mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) { 1702 DB_CKSUMFLAGS(mp) &= ~(HCK_PARTIALCKSUM|HCK_FULLCKSUM); 1703 1704 *up = 0; 1705 *up = IP_CSUM(mp, start, cksum); 1706 } 1707 1708 DTRACE_PROBE4(pbr__info__d, (mblk_t *), mp, (ipha_t *), ipha, 1709 (uint16_t *), up, int, cksum); 1710 return (0); 1711 } 1712 1713 1714 /* ire_walk routine invoked for ip_ire_report for each IRE. */ 1715 void 1716 ire_report_ftable(ire_t *ire, char *m) 1717 { 1718 char buf1[16]; 1719 char buf2[16]; 1720 char buf3[16]; 1721 char buf4[16]; 1722 uint_t fo_pkt_count; 1723 uint_t ib_pkt_count; 1724 int ref; 1725 uint_t print_len, buf_len; 1726 mblk_t *mp = (mblk_t *)m; 1727 1728 if (ire->ire_type & IRE_CACHETABLE) 1729 return; 1730 buf_len = mp->b_datap->db_lim - mp->b_wptr; 1731 if (buf_len <= 0) 1732 return; 1733 1734 /* Number of active references of this ire */ 1735 ref = ire->ire_refcnt; 1736 /* "inbound" to a non local address is a forward */ 1737 ib_pkt_count = ire->ire_ib_pkt_count; 1738 fo_pkt_count = 0; 1739 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 1740 fo_pkt_count = ib_pkt_count; 1741 ib_pkt_count = 0; 1742 } 1743 print_len = snprintf((char *)mp->b_wptr, buf_len, 1744 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 1745 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 1746 "%04d %08d %08d %d/%d/%d %s\n", 1747 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 1748 (int)ire->ire_zoneid, 1749 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 1750 ip_dot_addr(ire->ire_src_addr, buf3), 1751 ip_dot_addr(ire->ire_gateway_addr, buf4), 1752 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 1753 ire->ire_uinfo.iulp_rtt_sd, 1754 ire->ire_uinfo.iulp_ssthresh, ref, 1755 ire->ire_uinfo.iulp_rtomax, 1756 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 1757 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 1758 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 1759 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 1760 ire->ire_uinfo.iulp_sack, 1761 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 1762 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 1763 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 1764 if (print_len < buf_len) { 1765 mp->b_wptr += print_len; 1766 } else { 1767 mp->b_wptr += buf_len; 1768 } 1769 } 1770 1771 /* 1772 * callback function provided by ire_ftable_lookup when calling 1773 * rn_match_args(). Invoke ire_match_args on each matching leaf node in 1774 * the radix tree. 1775 */ 1776 boolean_t 1777 ire_find_best_route(struct radix_node *rn, void *arg) 1778 { 1779 struct rt_entry *rt = (struct rt_entry *)rn; 1780 irb_t *irb_ptr; 1781 ire_t *ire; 1782 ire_ftable_args_t *margs = arg; 1783 ipaddr_t match_mask; 1784 1785 ASSERT(rt != NULL); 1786 1787 irb_ptr = &rt->rt_irb; 1788 1789 if (irb_ptr->irb_ire_cnt == 0) 1790 return (B_FALSE); 1791 1792 rw_enter(&irb_ptr->irb_lock, RW_READER); 1793 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 1794 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1795 continue; 1796 if (margs->ift_flags & MATCH_IRE_MASK) 1797 match_mask = margs->ift_mask; 1798 else 1799 match_mask = ire->ire_mask; 1800 1801 if (ire_match_args(ire, margs->ift_addr, match_mask, 1802 margs->ift_gateway, margs->ift_type, margs->ift_ipif, 1803 margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl, 1804 margs->ift_flags)) { 1805 IRE_REFHOLD(ire); 1806 rw_exit(&irb_ptr->irb_lock); 1807 margs->ift_best_ire = ire; 1808 return (B_TRUE); 1809 } 1810 } 1811 rw_exit(&irb_ptr->irb_lock); 1812 return (B_FALSE); 1813 } 1814 1815 /* 1816 * ftable irb_t structures are dynamically allocated, and we need to 1817 * check if the irb_t (and associated ftable tree attachment) needs to 1818 * be cleaned up when the irb_refcnt goes to 0. The conditions that need 1819 * be verified are: 1820 * - no other walkers of the irebucket, i.e., quiescent irb_refcnt, 1821 * - no other threads holding references to ire's in the bucket, 1822 * i.e., irb_nire == 0 1823 * - no active ire's in the bucket, i.e., irb_ire_cnt == 0 1824 * - need to hold the global tree lock and irb_lock in write mode. 1825 */ 1826 void 1827 irb_refrele_ftable(irb_t *irb) 1828 { 1829 for (;;) { 1830 rw_enter(&irb->irb_lock, RW_WRITER); 1831 ASSERT(irb->irb_refcnt != 0); 1832 if (irb->irb_refcnt != 1) { 1833 /* 1834 * Someone has a reference to this radix node 1835 * or there is some bucket walker. 1836 */ 1837 irb->irb_refcnt--; 1838 rw_exit(&irb->irb_lock); 1839 return; 1840 } else { 1841 /* 1842 * There is no other walker, nor is there any 1843 * other thread that holds a direct ref to this 1844 * radix node. Do the clean up if needed. Call 1845 * to ire_unlink will clear the IRB_MARK_CONDEMNED flag 1846 */ 1847 if (irb->irb_marks & IRB_MARK_CONDEMNED) { 1848 ire_t *ire_list; 1849 1850 ire_list = ire_unlink(irb); 1851 rw_exit(&irb->irb_lock); 1852 1853 if (ire_list != NULL) 1854 ire_cleanup(ire_list); 1855 /* 1856 * more CONDEMNED entries could have 1857 * been added while we dropped the lock, 1858 * so we have to re-check. 1859 */ 1860 continue; 1861 } 1862 1863 /* 1864 * Now check if there are still any ires 1865 * associated with this radix node. 1866 */ 1867 if (irb->irb_nire != 0) { 1868 /* 1869 * someone is still holding on 1870 * to ires in this bucket 1871 */ 1872 irb->irb_refcnt--; 1873 rw_exit(&irb->irb_lock); 1874 return; 1875 } else { 1876 /* 1877 * Everything is clear. Zero walkers, 1878 * Zero threads with a ref to this 1879 * radix node, Zero ires associated with 1880 * this radix node. Due to lock order, 1881 * check the above conditions again 1882 * after grabbing all locks in the right order 1883 */ 1884 rw_exit(&irb->irb_lock); 1885 if (irb_inactive(irb)) 1886 return; 1887 /* 1888 * irb_inactive could not free the irb. 1889 * See if there are any walkers, if not 1890 * try to clean up again. 1891 */ 1892 } 1893 } 1894 } 1895 } 1896 1897 /* 1898 * IRE iterator used by ire_ftable_lookup() to process multiple default 1899 * routes. Given a starting point in the hash list (ire_origin), walk the IREs 1900 * in the bucket skipping default interface routes and deleted entries. 1901 * Returns the next IRE (unheld), or NULL when we're back to the starting point. 1902 * Assumes that the caller holds a reference on the IRE bucket. 1903 * 1904 * In the absence of good IRE_DEFAULT routes, this function will return 1905 * the first IRE_INTERFACE route found (if any). 1906 */ 1907 ire_t * 1908 ire_round_robin(irb_t *irb_ptr, zoneid_t zoneid, ire_ftable_args_t *margs, 1909 ip_stack_t *ipst) 1910 { 1911 ire_t *ire_origin; 1912 ire_t *ire, *maybe_ire = NULL; 1913 1914 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 1915 ire_origin = irb_ptr->irb_rr_origin; 1916 if (ire_origin != NULL) { 1917 ire_origin = ire_origin->ire_next; 1918 IRE_FIND_NEXT_ORIGIN(ire_origin); 1919 } 1920 1921 if (ire_origin == NULL) { 1922 /* 1923 * first time through routine, or we dropped off the end 1924 * of list. 1925 */ 1926 ire_origin = irb_ptr->irb_ire; 1927 IRE_FIND_NEXT_ORIGIN(ire_origin); 1928 } 1929 irb_ptr->irb_rr_origin = ire_origin; 1930 IRB_REFHOLD_LOCKED(irb_ptr); 1931 rw_exit(&irb_ptr->irb_lock); 1932 1933 DTRACE_PROBE2(ire__rr__origin, (irb_t *), irb_ptr, 1934 (ire_t *), ire_origin); 1935 1936 /* 1937 * Round-robin the routers list looking for a route that 1938 * matches the passed in parameters. 1939 * We start with the ire we found above and we walk the hash 1940 * list until we're back where we started. It doesn't matter if 1941 * routes are added or deleted by other threads - we know this 1942 * ire will stay in the list because we hold a reference on the 1943 * ire bucket. 1944 */ 1945 ire = ire_origin; 1946 while (ire != NULL) { 1947 int match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; 1948 ire_t *rire; 1949 1950 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1951 goto next_ire; 1952 1953 if (!ire_match_args(ire, margs->ift_addr, (ipaddr_t)0, 1954 margs->ift_gateway, margs->ift_type, margs->ift_ipif, 1955 margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl, 1956 margs->ift_flags)) 1957 goto next_ire; 1958 1959 if (ire->ire_type & IRE_INTERFACE) { 1960 /* 1961 * keep looking to see if there is a non-interface 1962 * default ire, but save this one as a last resort. 1963 */ 1964 if (maybe_ire == NULL) 1965 maybe_ire = ire; 1966 goto next_ire; 1967 } 1968 1969 if (zoneid == ALL_ZONES) { 1970 IRE_REFHOLD(ire); 1971 IRB_REFRELE(irb_ptr); 1972 return (ire); 1973 } 1974 /* 1975 * When we're in a non-global zone, we're only 1976 * interested in routers that are 1977 * reachable through ipifs within our zone. 1978 */ 1979 if (ire->ire_ipif != NULL) { 1980 match_flags |= MATCH_IRE_ILL_GROUP; 1981 } 1982 rire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 1983 IRE_INTERFACE, ire->ire_ipif, NULL, zoneid, margs->ift_tsl, 1984 match_flags, ipst); 1985 if (rire != NULL) { 1986 ire_refrele(rire); 1987 IRE_REFHOLD(ire); 1988 IRB_REFRELE(irb_ptr); 1989 return (ire); 1990 } 1991 next_ire: 1992 ire = (ire->ire_next ? ire->ire_next : irb_ptr->irb_ire); 1993 if (ire == ire_origin) 1994 break; 1995 } 1996 if (maybe_ire != NULL) 1997 IRE_REFHOLD(maybe_ire); 1998 IRB_REFRELE(irb_ptr); 1999 return (maybe_ire); 2000 } 2001 2002 void 2003 irb_refhold_rn(struct radix_node *rn) 2004 { 2005 if ((rn->rn_flags & RNF_ROOT) == 0) 2006 IRB_REFHOLD(&((rt_t *)(rn))->rt_irb); 2007 } 2008 2009 void 2010 irb_refrele_rn(struct radix_node *rn) 2011 { 2012 if ((rn->rn_flags & RNF_ROOT) == 0) 2013 irb_refrele_ftable(&((rt_t *)(rn))->rt_irb); 2014 } 2015