xref: /illumos-gate/usr/src/uts/common/inet/ip/ip6_if.c (revision ead1f93ee620d7580f7e53350fe5a884fc4f158a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 1990 Mentat Inc.
27  */
28 
29 /*
30  * This file contains the interface control functions for IPv6.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/stream.h>
36 #include <sys/dlpi.h>
37 #include <sys/stropts.h>
38 #include <sys/ddi.h>
39 #include <sys/cmn_err.h>
40 #include <sys/kstat.h>
41 #include <sys/debug.h>
42 #include <sys/zone.h>
43 #include <sys/policy.h>
44 
45 #include <sys/systm.h>
46 #include <sys/param.h>
47 #include <sys/socket.h>
48 #include <sys/isa_defs.h>
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/route.h>
52 #include <netinet/in.h>
53 #include <netinet/igmp_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 
57 #include <inet/common.h>
58 #include <inet/nd.h>
59 #include <inet/mib2.h>
60 #include <inet/ip.h>
61 #include <inet/ip6.h>
62 #include <inet/ip_multi.h>
63 #include <inet/ip_ire.h>
64 #include <inet/ip_rts.h>
65 #include <inet/ip_ndp.h>
66 #include <inet/ip_if.h>
67 #include <inet/ip6_asp.h>
68 #include <inet/ipclassifier.h>
69 #include <inet/sctp_ip.h>
70 
71 #include <sys/tsol/tndb.h>
72 #include <sys/tsol/tnet.h>
73 
74 static in6_addr_t	ipv6_ll_template =
75 			{(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0};
76 
77 static ipif_t *
78 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
79     ip_stack_t *ipst);
80 
81 static int	ipif_add_ires_v6(ipif_t *, boolean_t);
82 
83 /*
84  * This function is called when an application does not specify an interface
85  * to be used for multicast traffic.  It calls ire_lookup_multi_v6() to look
86  * for an interface route for the specified multicast group.  Doing
87  * this allows the administrator to add prefix routes for multicast to
88  * indicate which interface to be used for multicast traffic in the above
89  * scenario.  The route could be for all multicast (ff00::/8), for a single
90  * multicast group (a /128 route) or anything in between.  If there is no
91  * such multicast route, we just find any multicast capable interface and
92  * return it.
93  *
94  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
95  * unicast table. This is used by CGTP.
96  */
97 ill_t *
98 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst,
99     boolean_t *multirtp, in6_addr_t *setsrcp)
100 {
101 	ill_t	*ill;
102 
103 	ill = ire_lookup_multi_ill_v6(group, zoneid, ipst, multirtp, setsrcp);
104 	if (ill != NULL)
105 		return (ill);
106 
107 	return (ill_lookup_multicast(ipst, zoneid, B_TRUE));
108 }
109 
110 /*
111  * Look for an ipif with the specified interface address and destination.
112  * The destination address is used only for matching point-to-point interfaces.
113  */
114 static ipif_t *
115 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst,
116     ip_stack_t *ipst)
117 {
118 	ipif_t	*ipif;
119 	ill_t	*ill;
120 	ill_walk_context_t ctx;
121 
122 	/*
123 	 * First match all the point-to-point interfaces
124 	 * before looking at non-point-to-point interfaces.
125 	 * This is done to avoid returning non-point-to-point
126 	 * ipif instead of unnumbered point-to-point ipif.
127 	 */
128 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
129 	ill = ILL_START_WALK_V6(&ctx, ipst);
130 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
131 		mutex_enter(&ill->ill_lock);
132 		for (ipif = ill->ill_ipif; ipif != NULL;
133 		    ipif = ipif->ipif_next) {
134 			/* Allow the ipif to be down */
135 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
136 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
137 			    if_addr)) &&
138 			    (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
139 			    dst))) {
140 				if (!IPIF_IS_CONDEMNED(ipif)) {
141 					ipif_refhold_locked(ipif);
142 					mutex_exit(&ill->ill_lock);
143 					rw_exit(&ipst->ips_ill_g_lock);
144 					return (ipif);
145 				}
146 			}
147 		}
148 		mutex_exit(&ill->ill_lock);
149 	}
150 	rw_exit(&ipst->ips_ill_g_lock);
151 	/* lookup the ipif based on interface address */
152 	ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, ipst);
153 	ASSERT(ipif == NULL || ipif->ipif_isv6);
154 	return (ipif);
155 }
156 
157 /*
158  * Common function for ipif_lookup_addr_v6() and ipif_lookup_addr_exact_v6().
159  */
160 static ipif_t *
161 ipif_lookup_addr_common_v6(const in6_addr_t *addr, ill_t *match_ill,
162     uint32_t match_flags, zoneid_t zoneid, ip_stack_t *ipst)
163 {
164 	ipif_t	*ipif;
165 	ill_t	*ill;
166 	boolean_t  ptp = B_FALSE;
167 	ill_walk_context_t ctx;
168 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
169 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
170 
171 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
172 	/*
173 	 * Repeat twice, first based on local addresses and
174 	 * next time for pointopoint.
175 	 */
176 repeat:
177 	ill = ILL_START_WALK_V6(&ctx, ipst);
178 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
179 		if (match_ill != NULL && ill != match_ill &&
180 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
181 			continue;
182 		}
183 		mutex_enter(&ill->ill_lock);
184 		for (ipif = ill->ill_ipif; ipif != NULL;
185 		    ipif = ipif->ipif_next) {
186 			if (zoneid != ALL_ZONES &&
187 			    ipif->ipif_zoneid != zoneid &&
188 			    ipif->ipif_zoneid != ALL_ZONES)
189 				continue;
190 
191 			if (no_duplicate &&
192 			    !(ipif->ipif_flags & IPIF_UP)) {
193 				continue;
194 			}
195 
196 			/* Allow the ipif to be down */
197 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
198 			    &ipif->ipif_v6lcl_addr, addr) &&
199 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
200 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
201 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
202 			    addr))) {
203 				if (!IPIF_IS_CONDEMNED(ipif)) {
204 					ipif_refhold_locked(ipif);
205 					mutex_exit(&ill->ill_lock);
206 					rw_exit(&ipst->ips_ill_g_lock);
207 					return (ipif);
208 				}
209 			}
210 		}
211 		mutex_exit(&ill->ill_lock);
212 	}
213 
214 	/* If we already did the ptp case, then we are done */
215 	if (ptp) {
216 		rw_exit(&ipst->ips_ill_g_lock);
217 		return (NULL);
218 	}
219 	ptp = B_TRUE;
220 	goto repeat;
221 }
222 
223 /*
224  * Lookup an ipif with the specified address.  For point-to-point links we
225  * look for matches on either the destination address or the local address,
226  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
227  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
228  * (or illgrp if `match_ill' is in an IPMP group).
229  */
230 ipif_t *
231 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid,
232     ip_stack_t *ipst)
233 {
234 	return (ipif_lookup_addr_common_v6(addr, match_ill, IPIF_MATCH_ILLGRP,
235 	    zoneid, ipst));
236 }
237 
238 /*
239  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
240  * except that we will only return an address if it is not marked as
241  * IPIF_DUPLICATE
242  */
243 ipif_t *
244 ipif_lookup_addr_nondup_v6(const in6_addr_t *addr, ill_t *match_ill,
245     zoneid_t zoneid, ip_stack_t *ipst)
246 {
247 	return (ipif_lookup_addr_common_v6(addr, match_ill,
248 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), zoneid,
249 	    ipst));
250 }
251 
252 /*
253  * Special abbreviated version of ipif_lookup_addr_v6() that doesn't match
254  * `match_ill' across the IPMP group.  This function is only needed in some
255  * corner-cases; almost everything should use ipif_lookup_addr_v6().
256  */
257 ipif_t *
258 ipif_lookup_addr_exact_v6(const in6_addr_t *addr, ill_t *match_ill,
259     ip_stack_t *ipst)
260 {
261 	ASSERT(match_ill != NULL);
262 	return (ipif_lookup_addr_common_v6(addr, match_ill, 0, ALL_ZONES,
263 	    ipst));
264 }
265 
266 /*
267  * Look for an ipif with the specified address. For point-point links
268  * we look for matches on either the destination address and the local
269  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
270  * is set.
271  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
272  * ill (or illgrp if `match_ill' is in an IPMP group).
273  * Return the zoneid for the ipif. ALL_ZONES if none found.
274  */
275 zoneid_t
276 ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill,
277     ip_stack_t *ipst)
278 {
279 	ipif_t	*ipif;
280 	ill_t	*ill;
281 	boolean_t  ptp = B_FALSE;
282 	ill_walk_context_t ctx;
283 	zoneid_t	zoneid;
284 
285 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
286 	/*
287 	 * Repeat twice, first based on local addresses and
288 	 * next time for pointopoint.
289 	 */
290 repeat:
291 	ill = ILL_START_WALK_V6(&ctx, ipst);
292 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
293 		if (match_ill != NULL && ill != match_ill &&
294 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
295 			continue;
296 		}
297 		mutex_enter(&ill->ill_lock);
298 		for (ipif = ill->ill_ipif; ipif != NULL;
299 		    ipif = ipif->ipif_next) {
300 			/* Allow the ipif to be down */
301 			if ((!ptp && (IN6_ARE_ADDR_EQUAL(
302 			    &ipif->ipif_v6lcl_addr, addr) &&
303 			    (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
304 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
305 			    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr,
306 			    addr)) &&
307 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
308 				zoneid = ipif->ipif_zoneid;
309 				mutex_exit(&ill->ill_lock);
310 				rw_exit(&ipst->ips_ill_g_lock);
311 				/*
312 				 * If ipif_zoneid was ALL_ZONES then we have
313 				 * a trusted extensions shared IP address.
314 				 * In that case GLOBAL_ZONEID works to send.
315 				 */
316 				if (zoneid == ALL_ZONES)
317 					zoneid = GLOBAL_ZONEID;
318 				return (zoneid);
319 			}
320 		}
321 		mutex_exit(&ill->ill_lock);
322 	}
323 
324 	/* If we already did the ptp case, then we are done */
325 	if (ptp) {
326 		rw_exit(&ipst->ips_ill_g_lock);
327 		return (ALL_ZONES);
328 	}
329 	ptp = B_TRUE;
330 	goto repeat;
331 }
332 
333 /*
334  * Perform various checks to verify that an address would make sense as a local
335  * interface address.  This is currently only called when an attempt is made
336  * to set a local address.
337  *
338  * Does not allow a v4-mapped address, an address that equals the subnet
339  * anycast address, ... a multicast address, ...
340  */
341 boolean_t
342 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
343 {
344 	in6_addr_t subnet;
345 
346 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
347 		return (B_TRUE);	/* Allow all zeros */
348 
349 	/*
350 	 * Don't allow all zeroes or host part, but allow
351 	 * all ones netmask.
352 	 */
353 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
354 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
355 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
356 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
357 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) ||
358 	    IN6_IS_ADDR_MULTICAST(addr))
359 		return (B_FALSE);
360 
361 	return (B_TRUE);
362 }
363 
364 /*
365  * Perform various checks to verify that an address would make sense as a
366  * remote/subnet interface address.
367  */
368 boolean_t
369 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask)
370 {
371 	in6_addr_t subnet;
372 
373 	if (IN6_IS_ADDR_UNSPECIFIED(addr))
374 		return (B_TRUE);	/* Allow all zeros */
375 
376 	V6_MASK_COPY(*addr, *subnet_mask, subnet);
377 	if (IN6_IS_ADDR_V4MAPPED(addr) ||
378 	    (IN6_ARE_ADDR_EQUAL(addr, &subnet) &&
379 	    !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) ||
380 	    IN6_IS_ADDR_MULTICAST(addr) ||
381 	    (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))))
382 		return (B_FALSE);
383 
384 	return (B_TRUE);
385 }
386 
387 /*
388  * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table.
389  * ill is passed in to associate it with the correct interface
390  * (for link-local destinations and gateways).
391  * If ire_arg is set, then we return the held IRE in that location.
392  */
393 /* ARGSUSED1 */
394 int
395 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
396     const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags,
397     ill_t *ill, ire_t **ire_arg, struct rtsa_s *sp, ip_stack_t *ipst,
398     zoneid_t zoneid)
399 {
400 	ire_t	*ire, *nire;
401 	ire_t	*gw_ire = NULL;
402 	ipif_t	*ipif;
403 	uint_t	type;
404 	int	match_flags = MATCH_IRE_TYPE;
405 	tsol_gc_t *gc = NULL;
406 	tsol_gcgrp_t *gcgrp = NULL;
407 	boolean_t gcgrp_xtraref = B_FALSE;
408 	boolean_t unbound = B_FALSE;
409 
410 	if (ire_arg != NULL)
411 		*ire_arg = NULL;
412 
413 	/*
414 	 * Prevent routes with a zero gateway from being created (since
415 	 * interfaces can currently be plumbed and brought up with no assigned
416 	 * address).
417 	 */
418 	if (IN6_IS_ADDR_UNSPECIFIED(gw_addr))
419 		return (ENETUNREACH);
420 
421 	/*
422 	 * If this is the case of RTF_HOST being set, then we set the netmask
423 	 * to all ones (regardless if one was supplied).
424 	 */
425 	if (flags & RTF_HOST)
426 		mask = &ipv6_all_ones;
427 
428 	/*
429 	 * Get the ipif, if any, corresponding to the gw_addr
430 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
431 	 * we match on the gatway and destination to handle unnumbered pt-pt
432 	 * interfaces.
433 	 */
434 	if (ill != NULL)
435 		ipif = ipif_lookup_addr_v6(gw_addr, ill, ALL_ZONES, ipst);
436 	else
437 		ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst);
438 	if (ipif != NULL) {
439 		if (IS_VNI(ipif->ipif_ill)) {
440 			ipif_refrele(ipif);
441 			return (EINVAL);
442 		}
443 	}
444 
445 	/*
446 	 * GateD will attempt to create routes with a loopback interface
447 	 * address as the gateway and with RTF_GATEWAY set.  We allow
448 	 * these routes to be added, but create them as interface routes
449 	 * since the gateway is an interface address.
450 	 */
451 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
452 		flags &= ~RTF_GATEWAY;
453 		if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) &&
454 		    IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) &&
455 		    IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) {
456 			ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK,
457 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
458 			    NULL);
459 			if (ire != NULL) {
460 				ire_refrele(ire);
461 				ipif_refrele(ipif);
462 				return (EEXIST);
463 			}
464 			ip1dbg(("ip_rt_add_v6: 0x%p creating IRE 0x%x"
465 			    "for 0x%x\n", (void *)ipif,
466 			    ipif->ipif_ire_type,
467 			    ntohl(ipif->ipif_lcl_addr)));
468 			ire = ire_create_v6(
469 			    dst_addr,
470 			    mask,
471 			    NULL,
472 			    ipif->ipif_ire_type,	/* LOOPBACK */
473 			    ipif->ipif_ill,
474 			    zoneid,
475 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
476 			    NULL,
477 			    ipst);
478 
479 			if (ire == NULL) {
480 				ipif_refrele(ipif);
481 				return (ENOMEM);
482 			}
483 			/* src address assigned by the caller? */
484 			if ((flags & RTF_SETSRC) &&
485 			    !IN6_IS_ADDR_UNSPECIFIED(src_addr))
486 				ire->ire_setsrc_addr_v6 = *src_addr;
487 
488 			nire = ire_add(ire);
489 			if (nire == NULL) {
490 				/*
491 				 * In the result of failure, ire_add() will have
492 				 * already deleted the ire in question, so there
493 				 * is no need to do that here.
494 				 */
495 				ipif_refrele(ipif);
496 				return (ENOMEM);
497 			}
498 			/*
499 			 * Check if it was a duplicate entry. This handles
500 			 * the case of two racing route adds for the same route
501 			 */
502 			if (nire != ire) {
503 				ASSERT(nire->ire_identical_ref > 1);
504 				ire_delete(nire);
505 				ire_refrele(nire);
506 				ipif_refrele(ipif);
507 				return (EEXIST);
508 			}
509 			ire = nire;
510 			goto save_ire;
511 		}
512 	}
513 
514 	/*
515 	 * The routes for multicast with CGTP are quite special in that
516 	 * the gateway is the local interface address, yet RTF_GATEWAY
517 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
518 	 * this undocumented and unusual use of multicast routes.
519 	 */
520 	if ((flags & RTF_MULTIRT) && ipif != NULL)
521 		flags &= ~RTF_GATEWAY;
522 
523 	/*
524 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
525 	 * and the gateway address provided is one of the system's interface
526 	 * addresses.  By using the routing socket interface and supplying an
527 	 * RTA_IFP sockaddr with an interface index, an alternate method of
528 	 * specifying an interface route to be created is available which uses
529 	 * the interface index that specifies the outgoing interface rather than
530 	 * the address of an outgoing interface (which may not be able to
531 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
532 	 * flag, routes can be specified which not only specify the next-hop to
533 	 * be used when routing to a certain prefix, but also which outgoing
534 	 * interface should be used.
535 	 *
536 	 * Previously, interfaces would have unique addresses assigned to them
537 	 * and so the address assigned to a particular interface could be used
538 	 * to identify a particular interface.  One exception to this was the
539 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
540 	 *
541 	 * With the advent of IPv6 and its link-local addresses, this
542 	 * restriction was relaxed and interfaces could share addresses between
543 	 * themselves.  In fact, typically all of the link-local interfaces on
544 	 * an IPv6 node or router will have the same link-local address.  In
545 	 * order to differentiate between these interfaces, the use of an
546 	 * interface index is necessary and this index can be carried inside a
547 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
548 	 * of using the interface index, however, is that all of the ipif's that
549 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
550 	 * cannot be used to differentiate between ipif's (or logical
551 	 * interfaces) that belong to the same ill (physical interface).
552 	 *
553 	 * For example, in the following case involving IPv4 interfaces and
554 	 * logical interfaces
555 	 *
556 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
557 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
558 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
559 	 *
560 	 * the ipif's corresponding to each of these interface routes can be
561 	 * uniquely identified by the "gateway" (actually interface address).
562 	 *
563 	 * In this case involving multiple IPv6 default routes to a particular
564 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
565 	 * default route is of interest:
566 	 *
567 	 *	default		fe80::123:4567:89ab:cdef	U	if0
568 	 *	default		fe80::123:4567:89ab:cdef	U	if1
569 	 */
570 
571 	/* RTF_GATEWAY not set */
572 	if (!(flags & RTF_GATEWAY)) {
573 		if (sp != NULL) {
574 			ip2dbg(("ip_rt_add_v6: gateway security attributes "
575 			    "cannot be set with interface route\n"));
576 			if (ipif != NULL)
577 				ipif_refrele(ipif);
578 			return (EINVAL);
579 		}
580 
581 		/*
582 		 * Whether or not ill (RTA_IFP) is set, we require that
583 		 * the gateway is one of our local addresses.
584 		 */
585 		if (ipif == NULL)
586 			return (ENETUNREACH);
587 
588 		/*
589 		 * We use MATCH_IRE_ILL here. If the caller specified an
590 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
591 		 * we use the ill derived from the gateway address.
592 		 * We can always match the gateway address since we record it
593 		 * in ire_gateway_addr.
594 		 * We don't allow RTA_IFP to specify a different ill than the
595 		 * one matching the ipif to make sure we can delete the route.
596 		 */
597 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
598 		if (ill == NULL) {
599 			ill = ipif->ipif_ill;
600 		} else if (ill != ipif->ipif_ill) {
601 			ipif_refrele(ipif);
602 			return (EINVAL);
603 		}
604 
605 		/*
606 		 * We check for an existing entry at this point.
607 		 */
608 		match_flags |= MATCH_IRE_MASK;
609 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
610 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
611 		    NULL);
612 		if (ire != NULL) {
613 			ire_refrele(ire);
614 			ipif_refrele(ipif);
615 			return (EEXIST);
616 		}
617 
618 		/*
619 		 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or
620 		 * IRE_IF_RESOLVER with the modified address, netmask, and
621 		 * gateway.
622 		 */
623 		ire = ire_create_v6(
624 		    dst_addr,
625 		    mask,
626 		    gw_addr,
627 		    ill->ill_net_type,
628 		    ill,
629 		    zoneid,
630 		    flags,
631 		    NULL,
632 		    ipst);
633 		if (ire == NULL) {
634 			ipif_refrele(ipif);
635 			return (ENOMEM);
636 		}
637 
638 		/*
639 		 * Some software (for example, GateD and Sun Cluster) attempts
640 		 * to create (what amount to) IRE_PREFIX routes with the
641 		 * loopback address as the gateway.  This is primarily done to
642 		 * set up prefixes with the RTF_REJECT flag set (for example,
643 		 * when generating aggregate routes). We also OR in the
644 		 * RTF_BLACKHOLE flag as these interface routes, by
645 		 * definition, can only be that.
646 		 *
647 		 * If the IRE type (as defined by ill->ill_net_type) is
648 		 * IRE_LOOPBACK, then we map the request into a
649 		 * IRE_IF_NORESOLVER.
650 		 *
651 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
652 		 * routine, but rather using ire_create_v6() directly.
653 		 */
654 		if (ill->ill_net_type == IRE_LOOPBACK) {
655 			ire->ire_type = IRE_IF_NORESOLVER;
656 			ire->ire_flags |= RTF_BLACKHOLE;
657 		}
658 		/* src address assigned by the caller? */
659 		if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr))
660 			ire->ire_setsrc_addr_v6 = *src_addr;
661 
662 		nire = ire_add(ire);
663 		if (nire == NULL) {
664 			/*
665 			 * In the result of failure, ire_add() will have
666 			 * already deleted the ire in question, so there
667 			 * is no need to do that here.
668 			 */
669 			ipif_refrele(ipif);
670 			return (ENOMEM);
671 		}
672 		/*
673 		 * Check if it was a duplicate entry. This handles
674 		 * the case of two racing route adds for the same route
675 		 */
676 		if (nire != ire) {
677 			ASSERT(nire->ire_identical_ref > 1);
678 			ire_delete(nire);
679 			ire_refrele(nire);
680 			ipif_refrele(ipif);
681 			return (EEXIST);
682 		}
683 		ire = nire;
684 		goto save_ire;
685 	}
686 
687 	/*
688 	 * Get an interface IRE for the specified gateway.
689 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
690 	 * gateway, it is currently unreachable and we fail the request
691 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
692 	 * is an IRE_LOCAL or IRE_LOOPBACK.
693 	 * If RTA_IFP was specified we look on that particular ill.
694 	 */
695 	if (ill != NULL)
696 		match_flags |= MATCH_IRE_ILL;
697 
698 	/* Check whether the gateway is reachable. */
699 again:
700 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
701 	if (flags & RTF_INDIRECT)
702 		type |= IRE_OFFLINK;
703 
704 	gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, type, ill,
705 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
706 	if (gw_ire == NULL) {
707 		/*
708 		 * With IPMP, we allow host routes to influence in.mpathd's
709 		 * target selection.  However, if the test addresses are on
710 		 * their own network, the above lookup will fail since the
711 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
712 		 * hidden test IREs to be found and try again.
713 		 */
714 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
715 			match_flags |= MATCH_IRE_TESTHIDDEN;
716 			goto again;
717 		}
718 		if (ipif != NULL)
719 			ipif_refrele(ipif);
720 		return (ENETUNREACH);
721 	}
722 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
723 		ire_refrele(gw_ire);
724 		if (ipif != NULL)
725 			ipif_refrele(ipif);
726 		return (ENETUNREACH);
727 	}
728 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
729 		unbound = B_TRUE;
730 		if (ipst->ips_ipv6_strict_src_multihoming > 0)
731 			ill = gw_ire->ire_ill;
732 	}
733 
734 	/*
735 	 * We create one of three types of IREs as a result of this request
736 	 * based on the netmask.  A netmask of all ones (which is automatically
737 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
738 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
739 	 * created.  Otherwise, an IRE_PREFIX route is created for the
740 	 * destination prefix.
741 	 */
742 	if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
743 		type = IRE_HOST;
744 	else if (IN6_IS_ADDR_UNSPECIFIED(mask))
745 		type = IRE_DEFAULT;
746 	else
747 		type = IRE_PREFIX;
748 
749 	/* check for a duplicate entry */
750 	ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ill,
751 	    ALL_ZONES, NULL,
752 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 0, ipst, NULL);
753 	if (ire != NULL) {
754 		if (ipif != NULL)
755 			ipif_refrele(ipif);
756 		ire_refrele(gw_ire);
757 		ire_refrele(ire);
758 		return (EEXIST);
759 	}
760 
761 	/* Security attribute exists */
762 	if (sp != NULL) {
763 		tsol_gcgrp_addr_t ga;
764 
765 		/* find or create the gateway credentials group */
766 		ga.ga_af = AF_INET6;
767 		ga.ga_addr = *gw_addr;
768 
769 		/* we hold reference to it upon success */
770 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
771 		if (gcgrp == NULL) {
772 			if (ipif != NULL)
773 				ipif_refrele(ipif);
774 			ire_refrele(gw_ire);
775 			return (ENOMEM);
776 		}
777 
778 		/*
779 		 * Create and add the security attribute to the group; a
780 		 * reference to the group is made upon allocating a new
781 		 * entry successfully.  If it finds an already-existing
782 		 * entry for the security attribute in the group, it simply
783 		 * returns it and no new reference is made to the group.
784 		 */
785 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
786 		if (gc == NULL) {
787 			/* release reference held by gcgrp_lookup */
788 			GCGRP_REFRELE(gcgrp);
789 			if (ipif != NULL)
790 				ipif_refrele(ipif);
791 			ire_refrele(gw_ire);
792 			return (ENOMEM);
793 		}
794 	}
795 
796 	/* Create the IRE. */
797 	ire = ire_create_v6(
798 	    dst_addr,				/* dest address */
799 	    mask,				/* mask */
800 	    gw_addr,				/* gateway address */
801 	    (ushort_t)type,			/* IRE type */
802 	    ill,
803 	    zoneid,
804 	    flags,
805 	    gc,					/* security attribute */
806 	    ipst);
807 
808 	/*
809 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
810 	 * reference to the 'gcgrp'. We can now release the extra reference
811 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
812 	 */
813 	if (gcgrp_xtraref)
814 		GCGRP_REFRELE(gcgrp);
815 	if (ire == NULL) {
816 		if (gc != NULL)
817 			GC_REFRELE(gc);
818 		if (ipif != NULL)
819 			ipif_refrele(ipif);
820 		ire_refrele(gw_ire);
821 		return (ENOMEM);
822 	}
823 
824 	/* src address assigned by the caller? */
825 	if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr))
826 		ire->ire_setsrc_addr_v6 = *src_addr;
827 
828 	ire->ire_unbound = unbound;
829 
830 	/*
831 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
832 	 * SUN/OS socket stuff does but do we really want to allow ::0 ?
833 	 */
834 
835 	/* Add the new IRE. */
836 	nire = ire_add(ire);
837 	if (nire == NULL) {
838 		/*
839 		 * In the result of failure, ire_add() will have
840 		 * already deleted the ire in question, so there
841 		 * is no need to do that here.
842 		 */
843 		if (ipif != NULL)
844 			ipif_refrele(ipif);
845 		ire_refrele(gw_ire);
846 		return (ENOMEM);
847 	}
848 	/*
849 	 * Check if it was a duplicate entry. This handles
850 	 * the case of two racing route adds for the same route
851 	 */
852 	if (nire != ire) {
853 		ASSERT(nire->ire_identical_ref > 1);
854 		ire_delete(nire);
855 		ire_refrele(nire);
856 		if (ipif != NULL)
857 			ipif_refrele(ipif);
858 		ire_refrele(gw_ire);
859 		return (EEXIST);
860 	}
861 	ire = nire;
862 
863 	if (flags & RTF_MULTIRT) {
864 		/*
865 		 * Invoke the CGTP (multirouting) filtering module
866 		 * to add the dst address in the filtering database.
867 		 * Replicated inbound packets coming from that address
868 		 * will be filtered to discard the duplicates.
869 		 * It is not necessary to call the CGTP filter hook
870 		 * when the dst address is a multicast, because an
871 		 * IP source address cannot be a multicast.
872 		 */
873 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
874 		    !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) {
875 			int res;
876 			ipif_t *src_ipif;
877 
878 			/* Find the source address corresponding to gw_ire */
879 			src_ipif = ipif_lookup_addr_v6(
880 			    &gw_ire->ire_gateway_addr_v6, NULL, zoneid, ipst);
881 			if (src_ipif != NULL) {
882 				res = ipst->ips_ip_cgtp_filter_ops->
883 				    cfo_add_dest_v6(
884 				    ipst->ips_netstack->netstack_stackid,
885 				    &ire->ire_addr_v6,
886 				    &ire->ire_gateway_addr_v6,
887 				    &ire->ire_setsrc_addr_v6,
888 				    &src_ipif->ipif_v6lcl_addr);
889 				ipif_refrele(src_ipif);
890 			} else {
891 				res = EADDRNOTAVAIL;
892 			}
893 			if (res != 0) {
894 				if (ipif != NULL)
895 					ipif_refrele(ipif);
896 				ire_refrele(gw_ire);
897 				ire_delete(ire);
898 				ire_refrele(ire);	/* Held in ire_add */
899 				return (res);
900 			}
901 		}
902 	}
903 
904 save_ire:
905 	if (gw_ire != NULL) {
906 		ire_refrele(gw_ire);
907 		gw_ire = NULL;
908 	}
909 	if (ire->ire_ill != NULL) {
910 		/*
911 		 * Save enough information so that we can recreate the IRE if
912 		 * the ILL goes down and then up.  The metrics associated
913 		 * with the route will be saved as well when rts_setmetrics() is
914 		 * called after the IRE has been created.  In the case where
915 		 * memory cannot be allocated, none of this information will be
916 		 * saved.
917 		 */
918 		ill_save_ire(ire->ire_ill, ire);
919 	}
920 
921 	if (ire_arg != NULL) {
922 		/*
923 		 * Store the ire that was successfully added into where ire_arg
924 		 * points to so that callers don't have to look it up
925 		 * themselves (but they are responsible for ire_refrele()ing
926 		 * the ire when they are finished with it).
927 		 */
928 		*ire_arg = ire;
929 	} else {
930 		ire_refrele(ire);		/* Held in ire_add */
931 	}
932 	if (ipif != NULL)
933 		ipif_refrele(ipif);
934 	return (0);
935 }
936 
937 /*
938  * ip_rt_delete_v6 is called to delete an IPv6 route.
939  * ill is passed in to associate it with the correct interface.
940  * (for link-local destinations and gateways).
941  */
942 /* ARGSUSED4 */
943 int
944 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask,
945     const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ill_t *ill,
946     ip_stack_t *ipst, zoneid_t zoneid)
947 {
948 	ire_t	*ire = NULL;
949 	ipif_t	*ipif;
950 	uint_t	type;
951 	uint_t	match_flags = MATCH_IRE_TYPE;
952 	int	err = 0;
953 
954 	/*
955 	 * If this is the case of RTF_HOST being set, then we set the netmask
956 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
957 	 */
958 	if (flags & RTF_HOST) {
959 		mask = &ipv6_all_ones;
960 		match_flags |= MATCH_IRE_MASK;
961 	} else if (rtm_addrs & RTA_NETMASK) {
962 		match_flags |= MATCH_IRE_MASK;
963 	}
964 
965 	/*
966 	 * Note that RTF_GATEWAY is never set on a delete, therefore
967 	 * we check if the gateway address is one of our interfaces first,
968 	 * and fall back on RTF_GATEWAY routes.
969 	 *
970 	 * This makes it possible to delete an original
971 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
972 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
973 	 * and those can not be deleted here.
974 	 *
975 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
976 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
977 	 * otherwise we use the ill derived from the gateway address.
978 	 * We can always match the gateway address since we record it
979 	 * in ire_gateway_addr.
980 	 *
981 	 * For more detail on specifying routes by gateway address and by
982 	 * interface index, see the comments in ip_rt_add_v6().
983 	 */
984 	ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst);
985 	if (ipif != NULL) {
986 		ill_t	*ill_match;
987 
988 		if (ill != NULL)
989 			ill_match = ill;
990 		else
991 			ill_match = ipif->ipif_ill;
992 
993 		match_flags |= MATCH_IRE_ILL;
994 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
995 			ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK,
996 			    ill_match, ALL_ZONES, NULL, match_flags, 0, ipst,
997 			    NULL);
998 		}
999 		if (ire == NULL) {
1000 			match_flags |= MATCH_IRE_GW;
1001 			ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr,
1002 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
1003 			    match_flags, 0, ipst, NULL);
1004 		}
1005 		/* Avoid deleting routes created by kernel from an ipif */
1006 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
1007 			ire_refrele(ire);
1008 			ire = NULL;
1009 		}
1010 
1011 		/* Restore in case we didn't find a match */
1012 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
1013 	}
1014 
1015 	if (ire == NULL) {
1016 		/*
1017 		 * At this point, the gateway address is not one of our own
1018 		 * addresses or a matching interface route was not found.  We
1019 		 * set the IRE type to lookup based on whether
1020 		 * this is a host route, a default route or just a prefix.
1021 		 *
1022 		 * If an ill was passed in, then the lookup is based on an
1023 		 * interface index so MATCH_IRE_ILL is added to match_flags.
1024 		 */
1025 		match_flags |= MATCH_IRE_GW;
1026 		if (ill != NULL)
1027 			match_flags |= MATCH_IRE_ILL;
1028 		if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones))
1029 			type = IRE_HOST;
1030 		else if (IN6_IS_ADDR_UNSPECIFIED(mask))
1031 			type = IRE_DEFAULT;
1032 		else
1033 			type = IRE_PREFIX;
1034 		ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type,
1035 		    ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
1036 	}
1037 
1038 	if (ipif != NULL) {
1039 		ipif_refrele(ipif);
1040 		ipif = NULL;
1041 	}
1042 	if (ire == NULL)
1043 		return (ESRCH);
1044 
1045 	if (ire->ire_flags & RTF_MULTIRT) {
1046 		/*
1047 		 * Invoke the CGTP (multirouting) filtering module
1048 		 * to remove the dst address from the filtering database.
1049 		 * Packets coming from that address will no longer be
1050 		 * filtered to remove duplicates.
1051 		 */
1052 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
1053 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v6(
1054 			    ipst->ips_netstack->netstack_stackid,
1055 			    &ire->ire_addr_v6, &ire->ire_gateway_addr_v6);
1056 		}
1057 	}
1058 
1059 	ill = ire->ire_ill;
1060 	if (ill != NULL)
1061 		ill_remove_saved_ire(ill, ire);
1062 	ire_delete(ire);
1063 	ire_refrele(ire);
1064 	return (err);
1065 }
1066 
1067 /*
1068  * Derive an interface id from the link layer address.
1069  */
1070 void
1071 ill_setdefaulttoken(ill_t *ill)
1072 {
1073 	if (!ill->ill_manual_token) {
1074 		bzero(&ill->ill_token, sizeof (ill->ill_token));
1075 		MEDIA_V6INTFID(ill->ill_media, ill, &ill->ill_token);
1076 		ill->ill_token_length = IPV6_TOKEN_LEN;
1077 	}
1078 }
1079 
1080 void
1081 ill_setdesttoken(ill_t *ill)
1082 {
1083 	bzero(&ill->ill_dest_token, sizeof (ill->ill_dest_token));
1084 	MEDIA_V6DESTINTFID(ill->ill_media, ill, &ill->ill_dest_token);
1085 }
1086 
1087 /*
1088  * Create a link-local address from a token.
1089  */
1090 static void
1091 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token)
1092 {
1093 	int i;
1094 
1095 	for (i = 0; i < 4; i++) {
1096 		dest->s6_addr32[i] =
1097 		    token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i];
1098 	}
1099 }
1100 
1101 /*
1102  * Set a default IPv6 address for a 6to4 tunnel interface 2002:<tsrc>::1/16
1103  */
1104 static void
1105 ipif_set6to4addr(ipif_t *ipif)
1106 {
1107 	ill_t		*ill = ipif->ipif_ill;
1108 	struct in_addr	v4phys;
1109 
1110 	ASSERT(ill->ill_mactype == DL_6TO4);
1111 	ASSERT(ill->ill_phys_addr_length == sizeof (struct in_addr));
1112 	ASSERT(ipif->ipif_isv6);
1113 
1114 	if (ipif->ipif_flags & IPIF_UP)
1115 		return;
1116 
1117 	(void) ip_plen_to_mask_v6(16, &ipif->ipif_v6net_mask);
1118 	bcopy(ill->ill_phys_addr, &v4phys, sizeof (struct in_addr));
1119 	IN6_V4ADDR_TO_6TO4(&v4phys, &ipif->ipif_v6lcl_addr);
1120 	V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1121 	    ipif->ipif_v6subnet);
1122 }
1123 
1124 /*
1125  * Is it not possible to set the link local address?
1126  * The address can be set if the token is set, and the token
1127  * isn't too long.
1128  * Return B_TRUE if the address can't be set, or B_FALSE if it can.
1129  */
1130 boolean_t
1131 ipif_cant_setlinklocal(ipif_t *ipif)
1132 {
1133 	ill_t *ill = ipif->ipif_ill;
1134 
1135 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) ||
1136 	    ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN)
1137 		return (B_TRUE);
1138 
1139 	return (B_FALSE);
1140 }
1141 
1142 /*
1143  * Generate a link-local address from the token.
1144  */
1145 void
1146 ipif_setlinklocal(ipif_t *ipif)
1147 {
1148 	ill_t		*ill = ipif->ipif_ill;
1149 	in6_addr_t	ov6addr;
1150 
1151 	ASSERT(IAM_WRITER_ILL(ill));
1152 
1153 	/*
1154 	 * ill_manual_linklocal is set when the link-local address was
1155 	 * manually configured.
1156 	 */
1157 	if (ill->ill_manual_linklocal)
1158 		return;
1159 
1160 	/*
1161 	 * IPv6 interfaces over 6to4 tunnels are special.  They do not have
1162 	 * link-local addresses, but instead have a single automatically
1163 	 * generated global address.
1164 	 */
1165 	if (ill->ill_mactype == DL_6TO4) {
1166 		ipif_set6to4addr(ipif);
1167 		return;
1168 	}
1169 
1170 	if (ipif_cant_setlinklocal(ipif))
1171 		return;
1172 
1173 	ov6addr = ipif->ipif_v6lcl_addr;
1174 	ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token);
1175 	sctp_update_ipif_addr(ipif, ov6addr);
1176 	(void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask);
1177 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) {
1178 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
1179 		    ipif->ipif_v6subnet);
1180 	}
1181 
1182 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
1183 }
1184 
1185 /*
1186  * Generate a destination link-local address for a point-to-point IPv6
1187  * interface with a destination interface id (IP tunnels are such interfaces)
1188  * based on the destination token.
1189  */
1190 void
1191 ipif_setdestlinklocal(ipif_t *ipif)
1192 {
1193 	ill_t	*ill = ipif->ipif_ill;
1194 
1195 	ASSERT(IAM_WRITER_ILL(ill));
1196 
1197 	if (ill->ill_manual_dst_linklocal)
1198 		return;
1199 
1200 	if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_dest_token))
1201 		return;
1202 
1203 	ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, &ill->ill_dest_token);
1204 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
1205 }
1206 
1207 /*
1208  * Get the resolver set up for a new ipif.  (Always called as writer.)
1209  */
1210 int
1211 ipif_ndp_up(ipif_t *ipif, boolean_t initial)
1212 {
1213 	ill_t		*ill = ipif->ipif_ill;
1214 	int		err = 0;
1215 	nce_t		*nce = NULL;
1216 	boolean_t	added_ipif = B_FALSE;
1217 
1218 	DTRACE_PROBE3(ipif__downup, char *, "ipif_ndp_up",
1219 	    ill_t *, ill, ipif_t *, ipif);
1220 	ip1dbg(("ipif_ndp_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
1221 
1222 	if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) ||
1223 	    (!(ill->ill_net_type & IRE_INTERFACE))) {
1224 		ipif->ipif_addr_ready = 1;
1225 		return (0);
1226 	}
1227 
1228 	if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) {
1229 		uint16_t	flags;
1230 		uint16_t	state;
1231 		uchar_t		*hw_addr;
1232 		ill_t		*bound_ill;
1233 		ipmp_illgrp_t	*illg = ill->ill_grp;
1234 		uint_t		hw_addr_len;
1235 
1236 		flags = NCE_F_MYADDR | NCE_F_NONUD | NCE_F_PUBLISH |
1237 		    NCE_F_AUTHORITY;
1238 		if (ill->ill_flags & ILLF_ROUTER)
1239 			flags |= NCE_F_ISROUTER;
1240 
1241 		if (ipif->ipif_flags & IPIF_ANYCAST)
1242 			flags |= NCE_F_ANYCAST;
1243 
1244 		if (IS_IPMP(ill)) {
1245 			ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
1246 			/*
1247 			 * If we're here via ipif_up(), then the ipif won't be
1248 			 * bound yet -- add it to the group, which will bind
1249 			 * it if possible.  (We would add it in ipif_up(), but
1250 			 * deleting on failure there is gruesome.)  If we're
1251 			 * here via ipmp_ill_bind_ipif(), then the ipif has
1252 			 * already been added to the group and we just need to
1253 			 * use the binding.
1254 			 */
1255 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
1256 				bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
1257 				if (bound_ill == NULL) {
1258 					/*
1259 					 * We couldn't bind the ipif to an ill
1260 					 * yet, so we have nothing to publish.
1261 					 * Set ipif_addr_ready so that this
1262 					 * address can be used locally for now.
1263 					 * The routing socket message will be
1264 					 * sent from ipif_up_done_v6().
1265 					 */
1266 					ipif->ipif_addr_ready = 1;
1267 					return (0);
1268 				}
1269 				added_ipif = B_TRUE;
1270 			}
1271 			hw_addr = bound_ill->ill_nd_lla;
1272 			hw_addr_len = bound_ill->ill_phys_addr_length;
1273 		} else {
1274 			bound_ill = ill;
1275 			hw_addr = ill->ill_nd_lla;
1276 			hw_addr_len = ill->ill_phys_addr_length;
1277 		}
1278 
1279 		/*
1280 		 * If this is an initial bring-up (or the ipif was never
1281 		 * completely brought up), do DAD.  Otherwise, we're here
1282 		 * because IPMP has rebound an address to this ill: send
1283 		 * unsolicited advertisements to inform others.
1284 		 */
1285 		if (initial || !ipif->ipif_addr_ready) {
1286 			/* Causes Duplicate Address Detection to run */
1287 			state = ND_PROBE;
1288 		} else {
1289 			state = ND_REACHABLE;
1290 			flags |= NCE_F_UNSOL_ADV;
1291 		}
1292 
1293 retry:
1294 		err = nce_lookup_then_add_v6(ill, hw_addr, hw_addr_len,
1295 		    &ipif->ipif_v6lcl_addr, flags, state, &nce);
1296 		switch (err) {
1297 		case 0:
1298 			ip1dbg(("ipif_ndp_up: NCE created for %s\n",
1299 			    ill->ill_name));
1300 			ipif->ipif_addr_ready = 1;
1301 			ipif->ipif_added_nce = 1;
1302 			nce->nce_ipif_cnt++;
1303 			break;
1304 		case EINPROGRESS:
1305 			ip1dbg(("ipif_ndp_up: running DAD now for %s\n",
1306 			    ill->ill_name));
1307 			ipif->ipif_added_nce = 1;
1308 			nce->nce_ipif_cnt++;
1309 			break;
1310 		case EEXIST:
1311 			ip1dbg(("ipif_ndp_up: NCE already exists for %s\n",
1312 			    ill->ill_name));
1313 			if (!NCE_MYADDR(nce->nce_common)) {
1314 				/*
1315 				 * A leftover nce from before this address
1316 				 * existed
1317 				 */
1318 				ncec_delete(nce->nce_common);
1319 				nce_refrele(nce);
1320 				nce = NULL;
1321 				goto retry;
1322 			}
1323 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
1324 				nce_refrele(nce);
1325 				nce = NULL;
1326 				ip1dbg(("ipif_ndp_up: NCE already exists "
1327 				    "for %s\n", ill->ill_name));
1328 				goto fail;
1329 			}
1330 			/*
1331 			 * Duplicate local addresses are permissible for
1332 			 * IPIF_POINTOPOINT interfaces which will get marked
1333 			 * IPIF_UNNUMBERED later in
1334 			 * ip_addr_availability_check().
1335 			 *
1336 			 * The nce_ipif_cnt field tracks the number of
1337 			 * ipifs that have nce_addr as their local address.
1338 			 */
1339 			ipif->ipif_addr_ready = 1;
1340 			ipif->ipif_added_nce = 1;
1341 			nce->nce_ipif_cnt++;
1342 			err = 0;
1343 			break;
1344 		default:
1345 			ip1dbg(("ipif_ndp_up: NCE creation failed for %s\n",
1346 			    ill->ill_name));
1347 			goto fail;
1348 		}
1349 	} else {
1350 		/* No local NCE for this entry */
1351 		ipif->ipif_addr_ready = 1;
1352 	}
1353 	if (nce != NULL)
1354 		nce_refrele(nce);
1355 	return (0);
1356 fail:
1357 	if (added_ipif)
1358 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
1359 
1360 	return (err);
1361 }
1362 
1363 /* Remove all cache entries for this logical interface */
1364 void
1365 ipif_ndp_down(ipif_t *ipif)
1366 {
1367 	ipif_nce_down(ipif);
1368 }
1369 
1370 /*
1371  * Return the scope of the given IPv6 address.  If the address is an
1372  * IPv4 mapped IPv6 address, return the scope of the corresponding
1373  * IPv4 address.
1374  */
1375 in6addr_scope_t
1376 ip_addr_scope_v6(const in6_addr_t *addr)
1377 {
1378 	static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT;
1379 
1380 	if (IN6_IS_ADDR_V4MAPPED(addr)) {
1381 		in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr)));
1382 		if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1383 		    (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET)
1384 			return (IP6_SCOPE_LINKLOCAL);
1385 		if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET ||
1386 		    (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET ||
1387 		    (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET)
1388 			return (IP6_SCOPE_SITELOCAL);
1389 		return (IP6_SCOPE_GLOBAL);
1390 	}
1391 
1392 	if (IN6_IS_ADDR_MULTICAST(addr))
1393 		return (IN6_ADDR_MC_SCOPE(addr));
1394 
1395 	/* link-local and loopback addresses are of link-local scope */
1396 	if (IN6_IS_ADDR_LINKLOCAL(addr) ||
1397 	    IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback))
1398 		return (IP6_SCOPE_LINKLOCAL);
1399 	if (IN6_IS_ADDR_SITELOCAL(addr))
1400 		return (IP6_SCOPE_SITELOCAL);
1401 	return (IP6_SCOPE_GLOBAL);
1402 }
1403 
1404 
1405 /*
1406  * Returns the length of the common prefix of a1 and a2, as per
1407  * CommonPrefixLen() defined in RFC 3484.
1408  */
1409 static int
1410 ip_common_prefix_v6(const in6_addr_t *a1, const in6_addr_t *a2)
1411 {
1412 	int i;
1413 	uint32_t a1val, a2val, mask;
1414 
1415 	for (i = 0; i < 4; i++) {
1416 		if ((a1val = a1->s6_addr32[i]) != (a2val = a2->s6_addr32[i])) {
1417 			a1val ^= a2val;
1418 			i *= 32;
1419 			mask = 0x80000000u;
1420 			while (!(a1val & mask)) {
1421 				mask >>= 1;
1422 				i++;
1423 			}
1424 			return (i);
1425 		}
1426 	}
1427 	return (IPV6_ABITS);
1428 }
1429 
1430 #define	IPIF_VALID_IPV6_SOURCE(ipif) \
1431 	(((ipif)->ipif_flags & IPIF_UP) && \
1432 	!((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \
1433 	!((ipif)->ipif_ill->ill_flags & ILLF_NOACCEPT))
1434 
1435 /* source address candidate */
1436 typedef struct candidate {
1437 	ipif_t		*cand_ipif;
1438 	/* The properties of this candidate */
1439 	boolean_t	cand_isdst;
1440 	boolean_t	cand_isdst_set;
1441 	in6addr_scope_t	cand_scope;
1442 	boolean_t	cand_scope_set;
1443 	boolean_t	cand_isdeprecated;
1444 	boolean_t	cand_isdeprecated_set;
1445 	boolean_t	cand_ispreferred;
1446 	boolean_t	cand_ispreferred_set;
1447 	boolean_t	cand_matchedinterface;
1448 	boolean_t	cand_matchedinterface_set;
1449 	boolean_t	cand_matchedlabel;
1450 	boolean_t	cand_matchedlabel_set;
1451 	boolean_t	cand_istmp;
1452 	boolean_t	cand_istmp_set;
1453 	int		cand_common_pref;
1454 	boolean_t	cand_common_pref_set;
1455 	boolean_t	cand_pref_eq;
1456 	boolean_t	cand_pref_eq_set;
1457 	int		cand_pref_len;
1458 	boolean_t	cand_pref_len_set;
1459 } cand_t;
1460 #define	cand_srcaddr	cand_ipif->ipif_v6lcl_addr
1461 #define	cand_mask	cand_ipif->ipif_v6net_mask
1462 #define	cand_flags	cand_ipif->ipif_flags
1463 #define	cand_ill	cand_ipif->ipif_ill
1464 #define	cand_zoneid	cand_ipif->ipif_zoneid
1465 
1466 /* information about the destination for source address selection */
1467 typedef struct dstinfo {
1468 	const in6_addr_t	*dst_addr;
1469 	ill_t			*dst_ill;
1470 	uint_t			dst_restrict_ill;
1471 	boolean_t		dst_prefer_src_tmp;
1472 	in6addr_scope_t		dst_scope;
1473 	char			*dst_label;
1474 } dstinfo_t;
1475 
1476 /*
1477  * The following functions are rules used to select a source address in
1478  * ipif_select_source_v6().  Each rule compares a current candidate (cc)
1479  * against the best candidate (bc).  Each rule has three possible outcomes;
1480  * the candidate is preferred over the best candidate (CAND_PREFER), the
1481  * candidate is not preferred over the best candidate (CAND_AVOID), or the
1482  * candidate is of equal value as the best candidate (CAND_TIE).
1483  *
1484  * These rules are part of a greater "Default Address Selection for IPv6"
1485  * sheme, which is standards based work coming out of the IETF ipv6 working
1486  * group.  The IETF document defines both IPv6 source address selection and
1487  * destination address ordering.  The rules defined here implement the IPv6
1488  * source address selection.  Destination address ordering is done by
1489  * libnsl, and uses a similar set of rules to implement the sorting.
1490  *
1491  * Most of the rules are defined by the RFC and are not typically altered.  The
1492  * last rule, number 8, has language that allows for local preferences.  In the
1493  * scheme below, this means that new Solaris rules should normally go between
1494  * rule_ifprefix and rule_prefix.
1495  */
1496 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t;
1497 typedef	rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *,
1498     ip_stack_t *);
1499 
1500 /* Prefer an address if it is equal to the destination address. */
1501 /* ARGSUSED3 */
1502 static rule_res_t
1503 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1504 {
1505 	if (!bc->cand_isdst_set) {
1506 		bc->cand_isdst =
1507 		    IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr);
1508 		bc->cand_isdst_set = B_TRUE;
1509 	}
1510 
1511 	cc->cand_isdst =
1512 	    IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr);
1513 	cc->cand_isdst_set = B_TRUE;
1514 
1515 	if (cc->cand_isdst == bc->cand_isdst)
1516 		return (CAND_TIE);
1517 	else if (cc->cand_isdst)
1518 		return (CAND_PREFER);
1519 	else
1520 		return (CAND_AVOID);
1521 }
1522 
1523 /*
1524  * Prefer addresses that are of closest scope to the destination.  Always
1525  * prefer addresses that are of greater scope than the destination over
1526  * those that are of lesser scope than the destination.
1527  */
1528 /* ARGSUSED3 */
1529 static rule_res_t
1530 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1531 {
1532 	if (!bc->cand_scope_set) {
1533 		bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr);
1534 		bc->cand_scope_set = B_TRUE;
1535 	}
1536 
1537 	cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr);
1538 	cc->cand_scope_set = B_TRUE;
1539 
1540 	if (cc->cand_scope < bc->cand_scope) {
1541 		if (cc->cand_scope < dstinfo->dst_scope)
1542 			return (CAND_AVOID);
1543 		else
1544 			return (CAND_PREFER);
1545 	} else if (bc->cand_scope < cc->cand_scope) {
1546 		if (bc->cand_scope < dstinfo->dst_scope)
1547 			return (CAND_PREFER);
1548 		else
1549 			return (CAND_AVOID);
1550 	} else {
1551 		return (CAND_TIE);
1552 	}
1553 }
1554 
1555 /*
1556  * Prefer non-deprecated source addresses.
1557  */
1558 /* ARGSUSED2 */
1559 static rule_res_t
1560 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1561     ip_stack_t *ipst)
1562 {
1563 	if (!bc->cand_isdeprecated_set) {
1564 		bc->cand_isdeprecated =
1565 		    ((bc->cand_flags & IPIF_DEPRECATED) != 0);
1566 		bc->cand_isdeprecated_set = B_TRUE;
1567 	}
1568 
1569 	cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0);
1570 	cc->cand_isdeprecated_set = B_TRUE;
1571 
1572 	if (bc->cand_isdeprecated == cc->cand_isdeprecated)
1573 		return (CAND_TIE);
1574 	else if (cc->cand_isdeprecated)
1575 		return (CAND_AVOID);
1576 	else
1577 		return (CAND_PREFER);
1578 }
1579 
1580 /*
1581  * Prefer source addresses that have the IPIF_PREFERRED flag set.  This
1582  * rule must be before rule_interface because the flag could be set on any
1583  * interface, not just the interface being used for outgoing packets (for
1584  * example, the IFF_PREFERRED could be set on an address assigned to the
1585  * loopback interface).
1586  */
1587 /* ARGSUSED2 */
1588 static rule_res_t
1589 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1590     ip_stack_t *ipst)
1591 {
1592 	if (!bc->cand_ispreferred_set) {
1593 		bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0);
1594 		bc->cand_ispreferred_set = B_TRUE;
1595 	}
1596 
1597 	cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0);
1598 	cc->cand_ispreferred_set = B_TRUE;
1599 
1600 	if (bc->cand_ispreferred == cc->cand_ispreferred)
1601 		return (CAND_TIE);
1602 	else if (cc->cand_ispreferred)
1603 		return (CAND_PREFER);
1604 	else
1605 		return (CAND_AVOID);
1606 }
1607 
1608 /*
1609  * Prefer source addresses that are assigned to the outgoing interface.
1610  */
1611 /* ARGSUSED3 */
1612 static rule_res_t
1613 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1614     ip_stack_t *ipst)
1615 {
1616 	ill_t *dstill = dstinfo->dst_ill;
1617 
1618 	/*
1619 	 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary
1620 	 * since we know all candidates will be on the same link.
1621 	 */
1622 	if (dstinfo->dst_restrict_ill)
1623 		return (CAND_TIE);
1624 
1625 	if (!bc->cand_matchedinterface_set) {
1626 		bc->cand_matchedinterface = bc->cand_ill == dstill;
1627 		bc->cand_matchedinterface_set = B_TRUE;
1628 	}
1629 
1630 	cc->cand_matchedinterface = cc->cand_ill == dstill;
1631 	cc->cand_matchedinterface_set = B_TRUE;
1632 
1633 	if (bc->cand_matchedinterface == cc->cand_matchedinterface)
1634 		return (CAND_TIE);
1635 	else if (cc->cand_matchedinterface)
1636 		return (CAND_PREFER);
1637 	else
1638 		return (CAND_AVOID);
1639 }
1640 
1641 /*
1642  * Prefer source addresses whose label matches the destination's label.
1643  */
1644 static rule_res_t
1645 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1646 {
1647 	char *label;
1648 
1649 	if (!bc->cand_matchedlabel_set) {
1650 		label = ip6_asp_lookup(&bc->cand_srcaddr, NULL, ipst);
1651 		bc->cand_matchedlabel =
1652 		    ip6_asp_labelcmp(label, dstinfo->dst_label);
1653 		bc->cand_matchedlabel_set = B_TRUE;
1654 	}
1655 
1656 	label = ip6_asp_lookup(&cc->cand_srcaddr, NULL, ipst);
1657 	cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label);
1658 	cc->cand_matchedlabel_set = B_TRUE;
1659 
1660 	if (bc->cand_matchedlabel == cc->cand_matchedlabel)
1661 		return (CAND_TIE);
1662 	else if (cc->cand_matchedlabel)
1663 		return (CAND_PREFER);
1664 	else
1665 		return (CAND_AVOID);
1666 }
1667 
1668 /*
1669  * Prefer public addresses over temporary ones.  An application can reverse
1670  * the logic of this rule and prefer temporary addresses by using the
1671  * IPV6_SRC_PREFERENCES socket option.
1672  */
1673 /* ARGSUSED3 */
1674 static rule_res_t
1675 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1676     ip_stack_t *ipst)
1677 {
1678 	if (!bc->cand_istmp_set) {
1679 		bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0);
1680 		bc->cand_istmp_set = B_TRUE;
1681 	}
1682 
1683 	cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0);
1684 	cc->cand_istmp_set = B_TRUE;
1685 
1686 	if (bc->cand_istmp == cc->cand_istmp)
1687 		return (CAND_TIE);
1688 
1689 	if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp)
1690 		return (CAND_PREFER);
1691 	else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp)
1692 		return (CAND_PREFER);
1693 	else
1694 		return (CAND_AVOID);
1695 }
1696 
1697 /*
1698  * Prefer source addresses with longer matching prefix with the destination
1699  * under the interface mask.  This gets us on the same subnet before applying
1700  * any Solaris-specific rules.
1701  */
1702 /* ARGSUSED3 */
1703 static rule_res_t
1704 rule_ifprefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1705     ip_stack_t *ipst)
1706 {
1707 	if (!bc->cand_pref_eq_set) {
1708 		bc->cand_pref_eq = V6_MASK_EQ_2(bc->cand_srcaddr,
1709 		    bc->cand_mask, *dstinfo->dst_addr);
1710 		bc->cand_pref_eq_set = B_TRUE;
1711 	}
1712 
1713 	cc->cand_pref_eq = V6_MASK_EQ_2(cc->cand_srcaddr, cc->cand_mask,
1714 	    *dstinfo->dst_addr);
1715 	cc->cand_pref_eq_set = B_TRUE;
1716 
1717 	if (bc->cand_pref_eq) {
1718 		if (cc->cand_pref_eq) {
1719 			if (!bc->cand_pref_len_set) {
1720 				bc->cand_pref_len =
1721 				    ip_mask_to_plen_v6(&bc->cand_mask);
1722 				bc->cand_pref_len_set = B_TRUE;
1723 			}
1724 			cc->cand_pref_len = ip_mask_to_plen_v6(&cc->cand_mask);
1725 			cc->cand_pref_len_set = B_TRUE;
1726 			if (bc->cand_pref_len == cc->cand_pref_len)
1727 				return (CAND_TIE);
1728 			else if (bc->cand_pref_len > cc->cand_pref_len)
1729 				return (CAND_AVOID);
1730 			else
1731 				return (CAND_PREFER);
1732 		} else {
1733 			return (CAND_AVOID);
1734 		}
1735 	} else {
1736 		if (cc->cand_pref_eq)
1737 			return (CAND_PREFER);
1738 		else
1739 			return (CAND_TIE);
1740 	}
1741 }
1742 
1743 /*
1744  * Prefer to use zone-specific addresses when possible instead of all-zones
1745  * addresses.
1746  */
1747 /* ARGSUSED2 */
1748 static rule_res_t
1749 rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1750     ip_stack_t *ipst)
1751 {
1752 	if ((bc->cand_zoneid == ALL_ZONES) ==
1753 	    (cc->cand_zoneid == ALL_ZONES))
1754 		return (CAND_TIE);
1755 	else if (cc->cand_zoneid == ALL_ZONES)
1756 		return (CAND_AVOID);
1757 	else
1758 		return (CAND_PREFER);
1759 }
1760 
1761 /*
1762  * Prefer to use DHCPv6 (first) and static addresses (second) when possible
1763  * instead of statelessly autoconfigured addresses.
1764  *
1765  * This is done after trying all other preferences (and before the final tie
1766  * breaker) so that, if all else is equal, we select addresses configured by
1767  * DHCPv6 over other addresses.  We presume that DHCPv6 addresses, unlike
1768  * stateless autoconfigured addresses, are deliberately configured by an
1769  * administrator, and thus are correctly set up in DNS and network packet
1770  * filters.
1771  */
1772 /* ARGSUSED2 */
1773 static rule_res_t
1774 rule_addr_type(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1775     ip_stack_t *ipst)
1776 {
1777 #define	ATYPE(x)	\
1778 	((x) & IPIF_DHCPRUNNING) ? 1 : ((x) & IPIF_ADDRCONF) ? 3 : 2
1779 	int bcval = ATYPE(bc->cand_flags);
1780 	int ccval = ATYPE(cc->cand_flags);
1781 #undef ATYPE
1782 
1783 	if (bcval == ccval)
1784 		return (CAND_TIE);
1785 	else if (ccval < bcval)
1786 		return (CAND_PREFER);
1787 	else
1788 		return (CAND_AVOID);
1789 }
1790 
1791 /*
1792  * Prefer source addresses with longer matching prefix with the destination.
1793  * We do the longest matching prefix calculation by doing an xor of both
1794  * addresses with the destination, and pick the address with the longest string
1795  * of leading zeros, as per CommonPrefixLen() defined in RFC 3484.
1796  */
1797 /* ARGSUSED3 */
1798 static rule_res_t
1799 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst)
1800 {
1801 	if (!bc->cand_common_pref_set) {
1802 		bc->cand_common_pref = ip_common_prefix_v6(&bc->cand_srcaddr,
1803 		    dstinfo->dst_addr);
1804 		bc->cand_common_pref_set = B_TRUE;
1805 	}
1806 
1807 	cc->cand_common_pref = ip_common_prefix_v6(&cc->cand_srcaddr,
1808 	    dstinfo->dst_addr);
1809 	cc->cand_common_pref_set = B_TRUE;
1810 
1811 	if (bc->cand_common_pref == cc->cand_common_pref)
1812 		return (CAND_TIE);
1813 	else if (bc->cand_common_pref > cc->cand_common_pref)
1814 		return (CAND_AVOID);
1815 	else
1816 		return (CAND_PREFER);
1817 }
1818 
1819 /*
1820  * Last rule: we must pick something, so just prefer the current best
1821  * candidate.
1822  */
1823 /* ARGSUSED */
1824 static rule_res_t
1825 rule_must_be_last(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo,
1826     ip_stack_t *ipst)
1827 {
1828 	return (CAND_AVOID);
1829 }
1830 
1831 /*
1832  * Determine the best source address given a destination address and a
1833  * destination ill.  If no suitable source address is found, it returns
1834  * NULL. If there is a usable address pointed to by the usesrc
1835  * (i.e ill_usesrc_ifindex != 0) then return that first since it is more
1836  * fine grained (i.e per interface)
1837  *
1838  * This implementation is based on the "Default Address Selection for IPv6"
1839  * specification produced by the IETF IPv6 working group.  It has been
1840  * implemented so that the list of addresses is only traversed once (the
1841  * specification's algorithm could traverse the list of addresses once for
1842  * every rule).
1843  *
1844  * The restrict_ill argument restricts the algorithm to choose a source
1845  * address that is assigned to the destination ill.  This is used when
1846  * the destination address is a link-local or multicast address, and when
1847  * ipv6_strict_dst_multihoming is turned on.
1848  *
1849  * src_prefs is the caller's set of source address preferences.  If source
1850  * address selection is being called to determine the source address of a
1851  * connected socket (from ip_set_destination_v6()), then the preferences are
1852  * taken from conn_ixa->ixa_src_preferences.  These preferences can be set on a
1853  * per-socket basis using the IPV6_SRC_PREFERENCES socket option.  The only
1854  * preference currently implemented is for rfc3041 temporary addresses.
1855  */
1856 ipif_t *
1857 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst,
1858     boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid,
1859     boolean_t allow_usesrc, boolean_t *notreadyp)
1860 {
1861 	dstinfo_t	dstinfo;
1862 	char		dstr[INET6_ADDRSTRLEN];
1863 	char		sstr[INET6_ADDRSTRLEN];
1864 	ipif_t		*ipif, *start_ipif, *next_ipif;
1865 	ill_t		*ill, *usesrc_ill = NULL, *ipmp_ill = NULL;
1866 	ill_walk_context_t	ctx;
1867 	cand_t		best_c;	/* The best candidate */
1868 	cand_t		curr_c;	/* The current candidate */
1869 	uint_t		index;
1870 	boolean_t	first_candidate = B_TRUE;
1871 	rule_res_t	rule_result;
1872 	tsol_tpc_t	*src_rhtp, *dst_rhtp;
1873 	ip_stack_t	*ipst = dstill->ill_ipst;
1874 
1875 	/*
1876 	 * The list of ordering rules.  They are applied in the order they
1877 	 * appear in the list.
1878 	 *
1879 	 * Solaris doesn't currently support Mobile IPv6, so there's no
1880 	 * rule_mipv6 corresponding to rule 4 in the specification.
1881 	 */
1882 	rulef_t	rules[] = {
1883 		rule_isdst,
1884 		rule_scope,
1885 		rule_deprecated,
1886 		rule_preferred,
1887 		rule_interface,
1888 		rule_label,
1889 		rule_temporary,
1890 		rule_ifprefix,			/* local rules after this */
1891 		rule_zone_specific,
1892 		rule_addr_type,
1893 		rule_prefix,			/* local rules before this */
1894 		rule_must_be_last,		/* must always be last */
1895 		NULL
1896 	};
1897 
1898 	ASSERT(dstill->ill_isv6);
1899 	ASSERT(!IN6_IS_ADDR_V4MAPPED(dst));
1900 
1901 	/*
1902 	 * Check if there is a usable src address pointed to by the
1903 	 * usesrc ifindex. This has higher precedence since it is
1904 	 * finer grained (i.e per interface) v/s being system wide.
1905 	 */
1906 	if (dstill->ill_usesrc_ifindex != 0 && allow_usesrc) {
1907 		if ((usesrc_ill =
1908 		    ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE,
1909 		    ipst)) != NULL) {
1910 			dstinfo.dst_ill = usesrc_ill;
1911 		} else {
1912 			return (NULL);
1913 		}
1914 	} else if (IS_UNDER_IPMP(dstill)) {
1915 		/*
1916 		 * Test addresses should never be used for source address
1917 		 * selection, so if we were passed an underlying ill, switch
1918 		 * to the IPMP meta-interface.
1919 		 */
1920 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(dstill)) != NULL)
1921 			dstinfo.dst_ill = ipmp_ill;
1922 		else
1923 			return (NULL);
1924 	} else {
1925 		dstinfo.dst_ill = dstill;
1926 	}
1927 
1928 	/*
1929 	 * If we're dealing with an unlabeled destination on a labeled system,
1930 	 * make sure that we ignore source addresses that are incompatible with
1931 	 * the destination's default label.  That destination's default label
1932 	 * must dominate the minimum label on the source address.
1933 	 *
1934 	 * (Note that this has to do with Trusted Solaris.  It's not related to
1935 	 * the labels described by ip6_asp_lookup.)
1936 	 */
1937 	dst_rhtp = NULL;
1938 	if (is_system_labeled()) {
1939 		dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE);
1940 		if (dst_rhtp == NULL)
1941 			return (NULL);
1942 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
1943 			TPC_RELE(dst_rhtp);
1944 			dst_rhtp = NULL;
1945 		}
1946 	}
1947 
1948 	dstinfo.dst_addr = dst;
1949 	dstinfo.dst_scope = ip_addr_scope_v6(dst);
1950 	dstinfo.dst_label = ip6_asp_lookup(dst, NULL, ipst);
1951 	dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0);
1952 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
1953 	/*
1954 	 * Section three of the I-D states that for multicast and
1955 	 * link-local destinations, the candidate set must be restricted to
1956 	 * an interface that is on the same link as the outgoing interface.
1957 	 * Also, when ipv6_strict_dst_multihoming is turned on, always
1958 	 * restrict the source address to the destination link as doing
1959 	 * otherwise will almost certainly cause problems.
1960 	 */
1961 	if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) ||
1962 	    ipst->ips_ipv6_strict_dst_multihoming || usesrc_ill != NULL) {
1963 		dstinfo.dst_restrict_ill = B_TRUE;
1964 	} else {
1965 		dstinfo.dst_restrict_ill = restrict_ill;
1966 	}
1967 
1968 	bzero(&best_c, sizeof (cand_t));
1969 
1970 	/*
1971 	 * Take a pass through the list of IPv6 interfaces to choose the best
1972 	 * possible source address.  If restrict_ill is set, just use dst_ill.
1973 	 */
1974 	if (dstinfo.dst_restrict_ill)
1975 		ill = dstinfo.dst_ill;
1976 	else
1977 		ill = ILL_START_WALK_V6(&ctx, ipst);
1978 
1979 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
1980 		ASSERT(ill->ill_isv6);
1981 
1982 		/*
1983 		 * Test addresses should never be used for source address
1984 		 * selection, so ignore underlying ills.
1985 		 */
1986 		if (IS_UNDER_IPMP(ill))
1987 			continue;
1988 
1989 		if (ill->ill_ipif == NULL)
1990 			continue;
1991 		/*
1992 		 * For source address selection, we treat the ipif list as
1993 		 * circular and continue until we get back to where we
1994 		 * started.  This allows IPMP to vary source address selection
1995 		 * (which improves inbound load spreading) by caching its last
1996 		 * ending point and starting from there.  NOTE: we don't have
1997 		 * to worry about ill_src_ipif changing ills since that can't
1998 		 * happen on the IPMP ill.
1999 		 */
2000 		start_ipif = ill->ill_ipif;
2001 		if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
2002 			start_ipif = ill->ill_src_ipif;
2003 
2004 		ipif = start_ipif;
2005 		do {
2006 			if ((next_ipif = ipif->ipif_next) == NULL)
2007 				next_ipif = ill->ill_ipif;
2008 
2009 			if (!IPIF_VALID_IPV6_SOURCE(ipif))
2010 				continue;
2011 
2012 			if (!ipif->ipif_addr_ready) {
2013 				if (notreadyp != NULL)
2014 					*notreadyp = B_TRUE;
2015 				continue;
2016 			}
2017 
2018 			if (zoneid != ALL_ZONES &&
2019 			    ipif->ipif_zoneid != zoneid &&
2020 			    ipif->ipif_zoneid != ALL_ZONES)
2021 				continue;
2022 
2023 			/*
2024 			 * Check compatibility of local address for
2025 			 * destination's default label if we're on a labeled
2026 			 * system.  Incompatible addresses can't be used at
2027 			 * all and must be skipped over.
2028 			 */
2029 			if (dst_rhtp != NULL) {
2030 				boolean_t incompat;
2031 
2032 				src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr,
2033 				    IPV6_VERSION, B_FALSE);
2034 				if (src_rhtp == NULL)
2035 					continue;
2036 				incompat =
2037 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
2038 				    src_rhtp->tpc_tp.tp_doi !=
2039 				    dst_rhtp->tpc_tp.tp_doi ||
2040 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
2041 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
2042 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
2043 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
2044 				TPC_RELE(src_rhtp);
2045 				if (incompat)
2046 					continue;
2047 			}
2048 
2049 			if (first_candidate) {
2050 				/*
2051 				 * This is first valid address in the list.
2052 				 * It is automatically the best candidate
2053 				 * so far.
2054 				 */
2055 				best_c.cand_ipif = ipif;
2056 				first_candidate = B_FALSE;
2057 				continue;
2058 			}
2059 
2060 			bzero(&curr_c, sizeof (cand_t));
2061 			curr_c.cand_ipif = ipif;
2062 
2063 			/*
2064 			 * Compare this current candidate (curr_c) with the
2065 			 * best candidate (best_c) by applying the
2066 			 * comparison rules in order until one breaks the
2067 			 * tie.
2068 			 */
2069 			for (index = 0; rules[index] != NULL; index++) {
2070 				/* Apply a comparison rule. */
2071 				rule_result = (rules[index])(&best_c, &curr_c,
2072 				    &dstinfo, ipst);
2073 				if (rule_result == CAND_AVOID) {
2074 					/*
2075 					 * The best candidate is still the
2076 					 * best candidate.  Forget about
2077 					 * this current candidate and go on
2078 					 * to the next one.
2079 					 */
2080 					break;
2081 				} else if (rule_result == CAND_PREFER) {
2082 					/*
2083 					 * This candidate is prefered.  It
2084 					 * becomes the best candidate so
2085 					 * far.  Go on to the next address.
2086 					 */
2087 					best_c = curr_c;
2088 					break;
2089 				}
2090 				/* We have a tie, apply the next rule. */
2091 			}
2092 
2093 			/*
2094 			 * The last rule must be a tie breaker rule and
2095 			 * must never produce a tie.  At this point, the
2096 			 * candidate should have either been rejected, or
2097 			 * have been prefered as the best candidate so far.
2098 			 */
2099 			ASSERT(rule_result != CAND_TIE);
2100 		} while ((ipif = next_ipif) != start_ipif);
2101 
2102 		/*
2103 		 * For IPMP, update the source ipif rotor to the next ipif,
2104 		 * provided we can look it up.  (We must not use it if it's
2105 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
2106 		 * ipif_free() checked ill_src_ipif.)
2107 		 */
2108 		if (IS_IPMP(ill) && ipif != NULL) {
2109 			mutex_enter(&ipif->ipif_ill->ill_lock);
2110 			next_ipif = ipif->ipif_next;
2111 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
2112 				ill->ill_src_ipif = next_ipif;
2113 			else
2114 				ill->ill_src_ipif = NULL;
2115 			mutex_exit(&ipif->ipif_ill->ill_lock);
2116 		}
2117 
2118 		/*
2119 		 * Only one ill to consider if dst_restrict_ill is set.
2120 		 */
2121 		if (dstinfo.dst_restrict_ill)
2122 			break;
2123 	}
2124 
2125 	ipif = best_c.cand_ipif;
2126 	ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n",
2127 	    dstinfo.dst_ill->ill_name,
2128 	    inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)),
2129 	    (ipif == NULL ? "NULL" :
2130 	    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr)))));
2131 
2132 	if (usesrc_ill != NULL)
2133 		ill_refrele(usesrc_ill);
2134 
2135 	if (ipmp_ill != NULL)
2136 		ill_refrele(ipmp_ill);
2137 
2138 	if (dst_rhtp != NULL)
2139 		TPC_RELE(dst_rhtp);
2140 
2141 	if (ipif == NULL) {
2142 		rw_exit(&ipst->ips_ill_g_lock);
2143 		return (NULL);
2144 	}
2145 
2146 	mutex_enter(&ipif->ipif_ill->ill_lock);
2147 	if (!IPIF_IS_CONDEMNED(ipif)) {
2148 		ipif_refhold_locked(ipif);
2149 		mutex_exit(&ipif->ipif_ill->ill_lock);
2150 		rw_exit(&ipst->ips_ill_g_lock);
2151 		return (ipif);
2152 	}
2153 	mutex_exit(&ipif->ipif_ill->ill_lock);
2154 	rw_exit(&ipst->ips_ill_g_lock);
2155 	ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p"
2156 	    " returning null \n", (void *)ipif));
2157 
2158 	return (NULL);
2159 }
2160 
2161 /*
2162  * Pick a source address based on the destination ill and an optional setsrc
2163  * address.
2164  * The result is stored in srcp. If generation is set, then put the source
2165  * generation number there before we look for the source address (to avoid
2166  * missing changes in the set of source addresses.
2167  * If flagsp is set, then us it to pass back ipif_flags.
2168  *
2169  * If the caller wants to cache the returned source address and detect when
2170  * that might be stale, the caller should pass in a generation argument,
2171  * which the caller can later compare against ips_src_generation
2172  *
2173  * The precedence order for selecting an IPv6 source address is:
2174  *  - RTF_SETSRC on the first ire in the recursive lookup always wins.
2175  *  - If usrsrc is set, swap the ill to be the usesrc one.
2176  *  - If IPMP is used on the ill, select a random address from the most
2177  *    preferred ones below:
2178  * That is followed by the long list of IPv6 source address selection rules
2179  * starting with rule_isdst(), rule_scope(), etc.
2180  *
2181  * We have lower preference for ALL_ZONES IP addresses,
2182  * as they pose problems with unlabeled destinations.
2183  *
2184  * Note that when multiple IP addresses match e.g., with rule_scope() we pick
2185  * the first one if IPMP is not in use. With IPMP we randomize.
2186  */
2187 int
2188 ip_select_source_v6(ill_t *ill, const in6_addr_t *setsrc, const in6_addr_t *dst,
2189     zoneid_t zoneid, ip_stack_t *ipst, uint_t restrict_ill, uint32_t src_prefs,
2190     in6_addr_t *srcp, uint32_t *generation, uint64_t *flagsp)
2191 {
2192 	ipif_t *ipif;
2193 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
2194 
2195 	if (flagsp != NULL)
2196 		*flagsp = 0;
2197 
2198 	/*
2199 	 * Need to grab the generation number before we check to
2200 	 * avoid a race with a change to the set of local addresses.
2201 	 * No lock needed since the thread which updates the set of local
2202 	 * addresses use ipif/ill locks and exit those (hence a store memory
2203 	 * barrier) before doing the atomic increase of ips_src_generation.
2204 	 */
2205 	if (generation != NULL) {
2206 		*generation = ipst->ips_src_generation;
2207 	}
2208 
2209 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
2210 	if (setsrc != NULL && !IN6_IS_ADDR_UNSPECIFIED(setsrc)) {
2211 		*srcp = *setsrc;
2212 		return (0);
2213 	}
2214 
2215 	ipif = ipif_select_source_v6(ill, dst, restrict_ill, src_prefs, zoneid,
2216 	    B_TRUE, &notready);
2217 	if (ipif == NULL) {
2218 		if (notready)
2219 			return (ENETDOWN);
2220 		else
2221 			return (EADDRNOTAVAIL);
2222 	}
2223 	*srcp = ipif->ipif_v6lcl_addr;
2224 	if (flagsp != NULL)
2225 		*flagsp = ipif->ipif_flags;
2226 	ipif_refrele(ipif);
2227 	return (0);
2228 }
2229 
2230 /*
2231  * Perform an attach and bind to get phys addr plus info_req for
2232  * the physical device.
2233  * q and mp represents an ioctl which will be queued waiting for
2234  * completion of the DLPI message exchange.
2235  * MUST be called on an ill queue.
2236  *
2237  * Returns EINPROGRESS when mp has been consumed by queueing it.
2238  * The ioctl will complete in ip_rput.
2239  */
2240 int
2241 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
2242 {
2243 	mblk_t	*v6token_mp = NULL;
2244 	mblk_t	*v6lla_mp = NULL;
2245 	mblk_t	*dest_mp = NULL;
2246 	mblk_t	*phys_mp = NULL;
2247 	mblk_t	*info_mp = NULL;
2248 	mblk_t	*attach_mp = NULL;
2249 	mblk_t	*bind_mp = NULL;
2250 	mblk_t	*unbind_mp = NULL;
2251 	mblk_t	*notify_mp = NULL;
2252 	mblk_t  *capab_mp = NULL;
2253 
2254 	ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id));
2255 	ASSERT(ill->ill_dlpi_style_set);
2256 	ASSERT(WR(q)->q_next != NULL);
2257 
2258 	if (ill->ill_isv6) {
2259 		v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2260 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2261 		if (v6token_mp == NULL)
2262 			goto bad;
2263 		((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type =
2264 		    DL_IPV6_TOKEN;
2265 
2266 		v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2267 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2268 		if (v6lla_mp == NULL)
2269 			goto bad;
2270 		((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type =
2271 		    DL_IPV6_LINK_LAYER_ADDR;
2272 	}
2273 
2274 	if (ill->ill_mactype == DL_IPV4 || ill->ill_mactype == DL_IPV6) {
2275 		dest_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2276 		    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2277 		if (dest_mp == NULL)
2278 			goto bad;
2279 		((dl_phys_addr_req_t *)dest_mp->b_rptr)->dl_addr_type =
2280 		    DL_CURR_DEST_ADDR;
2281 	}
2282 
2283 	/*
2284 	 * Allocate a DL_NOTIFY_REQ and set the notifications we want.
2285 	 */
2286 	notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long),
2287 	    DL_NOTIFY_REQ);
2288 	if (notify_mp == NULL)
2289 		goto bad;
2290 	((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications =
2291 	    (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH |
2292 	    DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG |
2293 	    DL_NOTE_PROMISC_ON_PHYS | DL_NOTE_PROMISC_OFF_PHYS |
2294 	    DL_NOTE_REPLUMB);
2295 
2296 	phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) +
2297 	    sizeof (t_scalar_t), DL_PHYS_ADDR_REQ);
2298 	if (phys_mp == NULL)
2299 		goto bad;
2300 	((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type =
2301 	    DL_CURR_PHYS_ADDR;
2302 
2303 	info_mp = ip_dlpi_alloc(
2304 	    sizeof (dl_info_req_t) + sizeof (dl_info_ack_t),
2305 	    DL_INFO_REQ);
2306 	if (info_mp == NULL)
2307 		goto bad;
2308 
2309 	ASSERT(ill->ill_dlpi_capab_state == IDCS_UNKNOWN);
2310 	capab_mp = ip_dlpi_alloc(sizeof (dl_capability_req_t),
2311 	    DL_CAPABILITY_REQ);
2312 	if (capab_mp == NULL)
2313 		goto bad;
2314 
2315 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
2316 	    DL_BIND_REQ);
2317 	if (bind_mp == NULL)
2318 		goto bad;
2319 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
2320 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
2321 
2322 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
2323 	if (unbind_mp == NULL)
2324 		goto bad;
2325 
2326 	/* If we need to attach, pre-alloc and initialize the mblk */
2327 	if (ill->ill_needs_attach) {
2328 		attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t),
2329 		    DL_ATTACH_REQ);
2330 		if (attach_mp == NULL)
2331 			goto bad;
2332 		((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa;
2333 	}
2334 
2335 	/*
2336 	 * Here we are going to delay the ioctl ack until after
2337 	 * ACKs from DL_PHYS_ADDR_REQ. So need to save the
2338 	 * original ioctl message before sending the requests
2339 	 */
2340 	mutex_enter(&ill->ill_lock);
2341 	/* ipsq_pending_mp_add won't fail since we pass in a NULL connp */
2342 	(void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0);
2343 	/*
2344 	 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of
2345 	 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will
2346 	 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd.
2347 	 */
2348 	ill->ill_phys_addr_pend = 0;
2349 	mutex_exit(&ill->ill_lock);
2350 
2351 	if (attach_mp != NULL) {
2352 		ip1dbg(("ill_dl_phys: attach\n"));
2353 		ill_dlpi_send(ill, attach_mp);
2354 	}
2355 	ill_dlpi_send(ill, bind_mp);
2356 	ill_dlpi_send(ill, info_mp);
2357 
2358 	/*
2359 	 * Send the capability request to get the VRRP capability information.
2360 	 */
2361 	ill_capability_send(ill, capab_mp);
2362 
2363 	if (v6token_mp != NULL)
2364 		ill_dlpi_send(ill, v6token_mp);
2365 	if (v6lla_mp != NULL)
2366 		ill_dlpi_send(ill, v6lla_mp);
2367 	if (dest_mp != NULL)
2368 		ill_dlpi_send(ill, dest_mp);
2369 	ill_dlpi_send(ill, phys_mp);
2370 	ill_dlpi_send(ill, notify_mp);
2371 	ill_dlpi_send(ill, unbind_mp);
2372 
2373 	/*
2374 	 * This operation will complete in ip_rput_dlpi_writer with either
2375 	 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK.
2376 	 */
2377 	return (EINPROGRESS);
2378 bad:
2379 	freemsg(v6token_mp);
2380 	freemsg(v6lla_mp);
2381 	freemsg(dest_mp);
2382 	freemsg(phys_mp);
2383 	freemsg(info_mp);
2384 	freemsg(attach_mp);
2385 	freemsg(bind_mp);
2386 	freemsg(capab_mp);
2387 	freemsg(unbind_mp);
2388 	freemsg(notify_mp);
2389 	return (ENOMEM);
2390 }
2391 
2392 /* Add room for tcp+ip headers */
2393 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20;
2394 
2395 /*
2396  * DLPI is up.
2397  * Create all the IREs associated with an interface bring up multicast.
2398  * Set the interface flag and finish other initialization
2399  * that potentially had to be differed to after DL_BIND_ACK.
2400  */
2401 int
2402 ipif_up_done_v6(ipif_t *ipif)
2403 {
2404 	ill_t	*ill = ipif->ipif_ill;
2405 	int	err;
2406 	boolean_t loopback = B_FALSE;
2407 
2408 	ip1dbg(("ipif_up_done_v6(%s:%u)\n",
2409 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
2410 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done_v6",
2411 	    ill_t *, ill, ipif_t *, ipif);
2412 
2413 	/* Check if this is a loopback interface */
2414 	if (ipif->ipif_ill->ill_wq == NULL)
2415 		loopback = B_TRUE;
2416 
2417 	ASSERT(ipif->ipif_isv6);
2418 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
2419 
2420 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
2421 		nce_t *loop_nce = NULL;
2422 		uint16_t flags = (NCE_F_MYADDR | NCE_F_NONUD | NCE_F_AUTHORITY);
2423 
2424 		/*
2425 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
2426 		 * ipif_lookup_on_name(), but in the case of zones we can have
2427 		 * several loopback addresses on lo0. So all the interfaces with
2428 		 * loopback addresses need to be marked IRE_LOOPBACK.
2429 		 */
2430 		if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback))
2431 			ipif->ipif_ire_type = IRE_LOOPBACK;
2432 		else
2433 			ipif->ipif_ire_type = IRE_LOCAL;
2434 		if (ill->ill_net_type != IRE_LOOPBACK)
2435 			flags |= NCE_F_PUBLISH;
2436 		err = nce_lookup_then_add_v6(ill, NULL,
2437 		    ill->ill_phys_addr_length,
2438 		    &ipif->ipif_v6lcl_addr, flags, ND_REACHABLE, &loop_nce);
2439 
2440 		/* A shared-IP zone sees EEXIST for lo0:N */
2441 		if (err == 0 || err == EEXIST) {
2442 			ipif->ipif_added_nce = 1;
2443 			loop_nce->nce_ipif_cnt++;
2444 			nce_refrele(loop_nce);
2445 			err = 0;
2446 		} else {
2447 			ASSERT(loop_nce == NULL);
2448 			return (err);
2449 		}
2450 	}
2451 
2452 	err = ipif_add_ires_v6(ipif, loopback);
2453 	if (err != 0) {
2454 		/*
2455 		 * See comments about return value from
2456 		 * ipif_addr_availability_check() in ipif_add_ires_v6().
2457 		 */
2458 		if (err != EADDRINUSE) {
2459 			ipif_ndp_down(ipif);
2460 		} else {
2461 			/*
2462 			 * Make IPMP aware of the deleted ipif so that
2463 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
2464 			 * can be completed. Note that we do not want to
2465 			 * destroy the nce that was created on the ipmp_ill
2466 			 * for the active copy of the duplicate address in
2467 			 * use.
2468 			 */
2469 			if (IS_IPMP(ill))
2470 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
2471 			err = EADDRNOTAVAIL;
2472 		}
2473 		return (err);
2474 	}
2475 
2476 	if (ill->ill_ipif_up_count == 1 && !loopback) {
2477 		/* Recover any additional IREs entries for this ill */
2478 		(void) ill_recover_saved_ire(ill);
2479 	}
2480 
2481 	if (ill->ill_need_recover_multicast) {
2482 		/*
2483 		 * Need to recover all multicast memberships in the driver.
2484 		 * This had to be deferred until we had attached.
2485 		 */
2486 		ill_recover_multicast(ill);
2487 	}
2488 
2489 	if (ill->ill_ipif_up_count == 1) {
2490 		/*
2491 		 * Since the interface is now up, it may now be active.
2492 		 */
2493 		if (IS_UNDER_IPMP(ill))
2494 			ipmp_ill_refresh_active(ill);
2495 	}
2496 
2497 	/* Join the allhosts multicast address and the solicited node MC */
2498 	ipif_multicast_up(ipif);
2499 
2500 	/* Perhaps ilgs should use this ill */
2501 	update_conn_ill(NULL, ill->ill_ipst);
2502 
2503 	if (ipif->ipif_addr_ready)
2504 		ipif_up_notify(ipif);
2505 
2506 	return (0);
2507 }
2508 
2509 /*
2510  * Add the IREs associated with the ipif.
2511  * Those MUST be explicitly removed in ipif_delete_ires_v6.
2512  */
2513 static int
2514 ipif_add_ires_v6(ipif_t *ipif, boolean_t loopback)
2515 {
2516 	ill_t		*ill = ipif->ipif_ill;
2517 	ip_stack_t	*ipst = ill->ill_ipst;
2518 	in6_addr_t	v6addr;
2519 	in6_addr_t	route_mask;
2520 	int		err;
2521 	char		buf[INET6_ADDRSTRLEN];
2522 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
2523 	ire_t		*ire_if = NULL;
2524 	in6_addr_t	*gw;
2525 
2526 	if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
2527 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
2528 
2529 		/*
2530 		 * If we're on a labeled system then make sure that zone-
2531 		 * private addresses have proper remote host database entries.
2532 		 */
2533 		if (is_system_labeled() &&
2534 		    ipif->ipif_ire_type != IRE_LOOPBACK) {
2535 			if (ip6opt_ls == 0) {
2536 				cmn_err(CE_WARN, "IPv6 not enabled "
2537 				    "via /etc/system");
2538 				return (EINVAL);
2539 			}
2540 			if (!tsol_check_interface_address(ipif))
2541 				return (EINVAL);
2542 		}
2543 
2544 		if (loopback)
2545 			gw = &ipif->ipif_v6lcl_addr;
2546 		else
2547 			gw = NULL;
2548 
2549 		/* Register the source address for __sin6_src_id */
2550 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
2551 		    ipif->ipif_zoneid, ipst);
2552 		if (err != 0) {
2553 			ip0dbg(("ipif_add_ires_v6: srcid_insert %d\n", err));
2554 			return (err);
2555 		}
2556 		/*
2557 		 * If the interface address is set, create the LOCAL
2558 		 * or LOOPBACK IRE.
2559 		 */
2560 		ip1dbg(("ipif_add_ires_v6: creating IRE %d for %s\n",
2561 		    ipif->ipif_ire_type,
2562 		    inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr,
2563 		    buf, sizeof (buf))));
2564 
2565 		ire_local = ire_create_v6(
2566 		    &ipif->ipif_v6lcl_addr,		/* dest address */
2567 		    &ipv6_all_ones,			/* mask */
2568 		    gw,					/* gateway */
2569 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
2570 		    ipif->ipif_ill,			/* interface */
2571 		    ipif->ipif_zoneid,
2572 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
2573 		    RTF_PRIVATE : 0) | RTF_KERNEL,
2574 		    NULL,
2575 		    ipst);
2576 		if (ire_local == NULL) {
2577 			ip1dbg(("ipif_up_done_v6: NULL ire_local\n"));
2578 			err = ENOMEM;
2579 			goto bad;
2580 		}
2581 	}
2582 
2583 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
2584 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
2585 	    !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) &&
2586 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) {
2587 		/* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */
2588 		v6addr = ipif->ipif_v6subnet;
2589 
2590 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
2591 			route_mask = ipv6_all_ones;
2592 		} else {
2593 			route_mask = ipif->ipif_v6net_mask;
2594 		}
2595 
2596 		ip1dbg(("ipif_add_ires_v6: creating if IRE %d for %s\n",
2597 		    ill->ill_net_type,
2598 		    inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf))));
2599 
2600 		ire_if = ire_create_v6(
2601 		    &v6addr,			/* dest pref */
2602 		    &route_mask,		/* mask */
2603 		    &ipif->ipif_v6lcl_addr,	/* gateway */
2604 		    ill->ill_net_type,		/* IF_[NO]RESOLVER */
2605 		    ipif->ipif_ill,
2606 		    ipif->ipif_zoneid,
2607 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
2608 		    RTF_PRIVATE : 0) | RTF_KERNEL,
2609 		    NULL,
2610 		    ipst);
2611 		if (ire_if == NULL) {
2612 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
2613 			err = ENOMEM;
2614 			goto bad;
2615 		}
2616 	}
2617 
2618 	/*
2619 	 * Need to atomically check for IP address availability under
2620 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
2621 	 * ills or new ipifs can be added while we are checking availability.
2622 	 */
2623 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2624 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
2625 	ill->ill_ipif_up_count++;
2626 	ipif->ipif_flags |= IPIF_UP;
2627 	err = ip_addr_availability_check(ipif);
2628 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
2629 	rw_exit(&ipst->ips_ill_g_lock);
2630 
2631 	if (err != 0) {
2632 		/*
2633 		 * Our address may already be up on the same ill. In this case,
2634 		 * the external resolver entry for our ipif replaced the one for
2635 		 * the other ipif. So we don't want to delete it (otherwise the
2636 		 * other ipif would be unable to send packets).
2637 		 * ip_addr_availability_check() identifies this case for us and
2638 		 * returns EADDRINUSE; Caller must  turn it into EADDRNOTAVAIL
2639 		 * which is the expected error code.
2640 		 *
2641 		 * Note that ipif_ndp_down() will only delete the nce in the
2642 		 * case when the nce_ipif_cnt drops to 0.
2643 		 */
2644 		ill->ill_ipif_up_count--;
2645 		ipif->ipif_flags &= ~IPIF_UP;
2646 		goto bad;
2647 	}
2648 
2649 	/*
2650 	 * Add in all newly created IREs.
2651 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
2652 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
2653 	 * a /128 route.
2654 	 */
2655 	if (ire_if != NULL) {
2656 		ire_if = ire_add(ire_if);
2657 		if (ire_if == NULL) {
2658 			err = ENOMEM;
2659 			goto bad2;
2660 		}
2661 #ifdef DEBUG
2662 		ire_refhold_notr(ire_if);
2663 		ire_refrele(ire_if);
2664 #endif
2665 	}
2666 	if (ire_local != NULL) {
2667 		ire_local = ire_add(ire_local);
2668 		if (ire_local == NULL) {
2669 			err = ENOMEM;
2670 			goto bad2;
2671 		}
2672 #ifdef DEBUG
2673 		ire_refhold_notr(ire_local);
2674 		ire_refrele(ire_local);
2675 #endif
2676 	}
2677 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2678 	if (ire_local != NULL)
2679 		ipif->ipif_ire_local = ire_local;
2680 	if (ire_if != NULL)
2681 		ipif->ipif_ire_if = ire_if;
2682 	rw_exit(&ipst->ips_ill_g_lock);
2683 	ire_local = NULL;
2684 	ire_if = NULL;
2685 
2686 	if (ipif->ipif_addr_ready)
2687 		ipif_up_notify(ipif);
2688 	return (0);
2689 
2690 bad2:
2691 	ill->ill_ipif_up_count--;
2692 	ipif->ipif_flags &= ~IPIF_UP;
2693 
2694 bad:
2695 	if (ire_local != NULL)
2696 		ire_delete(ire_local);
2697 	if (ire_if != NULL)
2698 		ire_delete(ire_if);
2699 
2700 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2701 	ire_local = ipif->ipif_ire_local;
2702 	ipif->ipif_ire_local = NULL;
2703 	ire_if = ipif->ipif_ire_if;
2704 	ipif->ipif_ire_if = NULL;
2705 	rw_exit(&ipst->ips_ill_g_lock);
2706 	if (ire_local != NULL) {
2707 		ire_delete(ire_local);
2708 		ire_refrele_notr(ire_local);
2709 	}
2710 	if (ire_if != NULL) {
2711 		ire_delete(ire_if);
2712 		ire_refrele_notr(ire_if);
2713 	}
2714 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
2715 
2716 	return (err);
2717 }
2718 
2719 /* Remove all the IREs created by ipif_add_ires_v6 */
2720 void
2721 ipif_delete_ires_v6(ipif_t *ipif)
2722 {
2723 	ill_t		*ill = ipif->ipif_ill;
2724 	ip_stack_t	*ipst = ill->ill_ipst;
2725 	ire_t		*ire;
2726 
2727 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2728 	ire = ipif->ipif_ire_local;
2729 	ipif->ipif_ire_local = NULL;
2730 	rw_exit(&ipst->ips_ill_g_lock);
2731 	if (ire != NULL) {
2732 		/*
2733 		 * Move count to ipif so we don't loose the count due to
2734 		 * a down/up dance.
2735 		 */
2736 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
2737 
2738 		ire_delete(ire);
2739 		ire_refrele_notr(ire);
2740 	}
2741 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
2742 	ire = ipif->ipif_ire_if;
2743 	ipif->ipif_ire_if = NULL;
2744 	rw_exit(&ipst->ips_ill_g_lock);
2745 	if (ire != NULL) {
2746 		ire_delete(ire);
2747 		ire_refrele_notr(ire);
2748 	}
2749 }
2750 
2751 /*
2752  * Delete an ND entry if it exists.
2753  */
2754 /* ARGSUSED */
2755 int
2756 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2757     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2758 {
2759 	sin6_t		*sin6;
2760 	struct lifreq	*lifr;
2761 	lif_nd_req_t	*lnr;
2762 	ill_t		*ill = ipif->ipif_ill;
2763 	nce_t		*nce;
2764 
2765 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2766 	lnr = &lifr->lifr_nd;
2767 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2768 	if (ipif->ipif_id != 0)
2769 		return (EINVAL);
2770 
2771 	if (!ipif->ipif_isv6)
2772 		return (EINVAL);
2773 
2774 	if (lnr->lnr_addr.ss_family != AF_INET6)
2775 		return (EAFNOSUPPORT);
2776 
2777 	sin6 = (sin6_t *)&lnr->lnr_addr;
2778 
2779 	/*
2780 	 * Since ND mappings must be consistent across an IPMP group, prohibit
2781 	 * deleting ND mappings on underlying interfaces.
2782 	 * Don't allow deletion of mappings for local addresses.
2783 	 */
2784 	if (IS_UNDER_IPMP(ill))
2785 		return (EPERM);
2786 
2787 	nce = nce_lookup_v6(ill, &sin6->sin6_addr);
2788 	if (nce == NULL)
2789 		return (ESRCH);
2790 
2791 	if (NCE_MYADDR(nce->nce_common)) {
2792 		nce_refrele(nce);
2793 		return (EPERM);
2794 	}
2795 
2796 	/*
2797 	 * delete the nce_common which will also delete the nces on any
2798 	 * under_ill in the case of ipmp.
2799 	 */
2800 	ncec_delete(nce->nce_common);
2801 	nce_refrele(nce);
2802 	return (0);
2803 }
2804 
2805 /*
2806  * Return nbr cache info.
2807  */
2808 /* ARGSUSED */
2809 int
2810 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2811     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2812 {
2813 	ill_t		*ill = ipif->ipif_ill;
2814 	struct lifreq	*lifr;
2815 	lif_nd_req_t	*lnr;
2816 
2817 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2818 	lnr = &lifr->lifr_nd;
2819 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2820 	if (ipif->ipif_id != 0)
2821 		return (EINVAL);
2822 
2823 	if (!ipif->ipif_isv6)
2824 		return (EINVAL);
2825 
2826 	if (lnr->lnr_addr.ss_family != AF_INET6)
2827 		return (EAFNOSUPPORT);
2828 
2829 	if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr))
2830 		return (EINVAL);
2831 
2832 	return (ndp_query(ill, lnr));
2833 }
2834 
2835 /*
2836  * Perform an update of the nd entry for the specified address.
2837  */
2838 /* ARGSUSED */
2839 int
2840 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
2841     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
2842 {
2843 	sin6_t		*sin6;
2844 	ill_t		*ill = ipif->ipif_ill;
2845 	struct	lifreq	*lifr;
2846 	lif_nd_req_t	*lnr;
2847 	ire_t		*ire;
2848 
2849 	lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr;
2850 	lnr = &lifr->lifr_nd;
2851 	/* Only allow for logical unit zero i.e. not on "le0:17" */
2852 	if (ipif->ipif_id != 0)
2853 		return (EINVAL);
2854 
2855 	if (!ipif->ipif_isv6)
2856 		return (EINVAL);
2857 
2858 	if (lnr->lnr_addr.ss_family != AF_INET6)
2859 		return (EAFNOSUPPORT);
2860 
2861 	sin6 = (sin6_t *)&lnr->lnr_addr;
2862 
2863 	/*
2864 	 * Since ND mappings must be consistent across an IPMP group, prohibit
2865 	 * updating ND mappings on underlying interfaces.  Also, since ND
2866 	 * mappings for IPMP data addresses are owned by IP itself, prohibit
2867 	 * updating them.
2868 	 */
2869 	if (IS_UNDER_IPMP(ill))
2870 		return (EPERM);
2871 
2872 	if (IS_IPMP(ill)) {
2873 		ire = ire_ftable_lookup_v6(&sin6->sin6_addr, NULL, NULL,
2874 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
2875 		    MATCH_IRE_TYPE | MATCH_IRE_ILL, 0, ill->ill_ipst, NULL);
2876 		if (ire != NULL) {
2877 			ire_refrele(ire);
2878 			return (EPERM);
2879 		}
2880 	}
2881 
2882 	return (ndp_sioc_update(ill, lnr));
2883 }
2884