1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 707 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 708 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 709 710 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 711 mblk_t *); 712 713 static void conn_drain_init(ip_stack_t *); 714 static void conn_drain_fini(ip_stack_t *); 715 static void conn_drain(conn_t *connp, boolean_t closing); 716 717 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 718 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 725 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 726 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 727 const in6_addr_t *); 728 729 static int ip_squeue_switch(int); 730 731 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 732 static void ip_kstat_fini(netstackid_t, kstat_t *); 733 static int ip_kstat_update(kstat_t *kp, int rw); 734 static void *icmp_kstat_init(netstackid_t); 735 static void icmp_kstat_fini(netstackid_t, kstat_t *); 736 static int icmp_kstat_update(kstat_t *kp, int rw); 737 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 738 static void ip_kstat2_fini(netstackid_t, kstat_t *); 739 740 static void ipobs_init(ip_stack_t *); 741 static void ipobs_fini(ip_stack_t *); 742 743 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 744 745 static long ip_rput_pullups; 746 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 747 748 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 749 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 750 751 int ip_debug; 752 753 /* 754 * Multirouting/CGTP stuff 755 */ 756 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 757 758 /* 759 * IP tunables related declarations. Definitions are in ip_tunables.c 760 */ 761 extern mod_prop_info_t ip_propinfo_tbl[]; 762 extern int ip_propinfo_count; 763 764 /* 765 * Table of IP ioctls encoding the various properties of the ioctl and 766 * indexed based on the last byte of the ioctl command. Occasionally there 767 * is a clash, and there is more than 1 ioctl with the same last byte. 768 * In such a case 1 ioctl is encoded in the ndx table and the remaining 769 * ioctls are encoded in the misc table. An entry in the ndx table is 770 * retrieved by indexing on the last byte of the ioctl command and comparing 771 * the ioctl command with the value in the ndx table. In the event of a 772 * mismatch the misc table is then searched sequentially for the desired 773 * ioctl command. 774 * 775 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 776 */ 777 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 778 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 779 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 780 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 781 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 789 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 790 MISC_CMD, ip_siocaddrt, NULL }, 791 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 792 MISC_CMD, ip_siocdelrt, NULL }, 793 794 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 795 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 796 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 797 IF_CMD, ip_sioctl_get_addr, NULL }, 798 799 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 801 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 802 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 803 804 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 805 IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 807 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 808 IPI_MODOK | IPI_GET_CMD, 809 IF_CMD, ip_sioctl_get_flags, NULL }, 810 811 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 812 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 813 814 /* copyin size cannot be coded for SIOCGIFCONF */ 815 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 816 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 817 818 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 819 IF_CMD, ip_sioctl_mtu, NULL }, 820 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 821 IF_CMD, ip_sioctl_get_mtu, NULL }, 822 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 823 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 824 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_brdaddr, NULL }, 826 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 827 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 828 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 829 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 830 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 832 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 833 IF_CMD, ip_sioctl_metric, NULL }, 834 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 835 836 /* See 166-168 below for extended SIOC*XARP ioctls */ 837 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 838 ARP_CMD, ip_sioctl_arp, NULL }, 839 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 840 ARP_CMD, ip_sioctl_arp, NULL }, 841 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 842 ARP_CMD, ip_sioctl_arp, NULL }, 843 844 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 845 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 846 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 847 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 866 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 867 MISC_CMD, if_unitsel, if_unitsel_restart }, 868 869 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 888 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 889 IPI_PRIV | IPI_WR | IPI_MODOK, 890 IF_CMD, ip_sioctl_sifname, NULL }, 891 892 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 906 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 907 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 908 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 909 IF_CMD, ip_sioctl_get_muxid, NULL }, 910 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 911 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 912 913 /* Both if and lif variants share same func */ 914 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_lifindex, NULL }, 916 /* Both if and lif variants share same func */ 917 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 919 920 /* copyin size cannot be coded for SIOCGIFCONF */ 921 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 922 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 923 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 924 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 925 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 926 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 941 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 942 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 943 ip_sioctl_removeif_restart }, 944 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 945 IPI_GET_CMD | IPI_PRIV | IPI_WR, 946 LIF_CMD, ip_sioctl_addif, NULL }, 947 #define SIOCLIFADDR_NDX 112 948 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 949 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 950 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 951 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 952 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 954 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 955 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 956 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 957 IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 959 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 960 IPI_GET_CMD | IPI_MODOK, 961 LIF_CMD, ip_sioctl_get_flags, NULL }, 962 963 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 967 ip_sioctl_get_lifconf, NULL }, 968 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 969 LIF_CMD, ip_sioctl_mtu, NULL }, 970 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 971 LIF_CMD, ip_sioctl_get_mtu, NULL }, 972 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 973 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 974 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_brdaddr, NULL }, 976 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 977 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 978 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 979 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 980 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 982 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 983 LIF_CMD, ip_sioctl_metric, NULL }, 984 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 985 IPI_PRIV | IPI_WR | IPI_MODOK, 986 LIF_CMD, ip_sioctl_slifname, 987 ip_sioctl_slifname_restart }, 988 989 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 990 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 991 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 992 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 993 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 994 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 995 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 996 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 997 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 998 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 999 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1000 LIF_CMD, ip_sioctl_token, NULL }, 1001 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1003 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1004 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1005 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1006 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1007 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1008 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1009 1010 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1012 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1013 LIF_CMD, ip_siocdelndp_v6, NULL }, 1014 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1015 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1016 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1017 LIF_CMD, ip_siocsetndp_v6, NULL }, 1018 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1019 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1020 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1021 MISC_CMD, ip_sioctl_tonlink, NULL }, 1022 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1023 MISC_CMD, ip_sioctl_tmysite, NULL }, 1024 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1027 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1028 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1029 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1030 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 1032 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 1034 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1035 LIF_CMD, ip_sioctl_get_binding, NULL }, 1036 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1037 IPI_PRIV | IPI_WR, 1038 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1039 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1040 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1041 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1042 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1043 1044 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1045 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 1049 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 1051 /* These are handled in ip_sioctl_copyin_setup itself */ 1052 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1053 MISC_CMD, NULL, NULL }, 1054 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1055 MISC_CMD, NULL, NULL }, 1056 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1057 1058 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1059 ip_sioctl_get_lifconf, NULL }, 1060 1061 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1062 XARP_CMD, ip_sioctl_arp, NULL }, 1063 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1064 XARP_CMD, ip_sioctl_arp, NULL }, 1065 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1066 XARP_CMD, ip_sioctl_arp, NULL }, 1067 1068 /* SIOCPOPSOCKFS is not handled by IP */ 1069 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1070 1071 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1072 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1073 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1074 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1075 ip_sioctl_slifzone_restart }, 1076 /* 172-174 are SCTP ioctls and not handled by IP */ 1077 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1081 IPI_GET_CMD, LIF_CMD, 1082 ip_sioctl_get_lifusesrc, 0 }, 1083 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1084 IPI_PRIV | IPI_WR, 1085 LIF_CMD, ip_sioctl_slifusesrc, 1086 NULL }, 1087 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1088 ip_sioctl_get_lifsrcof, NULL }, 1089 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1090 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1091 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1092 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1093 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1094 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1095 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* SIOCSENABLESDP is handled by SDP */ 1099 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1100 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1101 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1102 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1103 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1104 ip_sioctl_ilb_cmd, NULL }, 1105 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1106 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1107 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1108 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1109 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1110 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart } 1111 }; 1112 1113 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1114 1115 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1116 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1117 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1118 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1119 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1120 { ND_GET, 0, 0, 0, NULL, NULL }, 1121 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1122 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1123 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1124 MISC_CMD, mrt_ioctl}, 1125 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1126 MISC_CMD, mrt_ioctl}, 1127 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1128 MISC_CMD, mrt_ioctl} 1129 }; 1130 1131 int ip_misc_ioctl_count = 1132 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1133 1134 int conn_drain_nthreads; /* Number of drainers reqd. */ 1135 /* Settable in /etc/system */ 1136 /* Defined in ip_ire.c */ 1137 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1138 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1139 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1140 1141 static nv_t ire_nv_arr[] = { 1142 { IRE_BROADCAST, "BROADCAST" }, 1143 { IRE_LOCAL, "LOCAL" }, 1144 { IRE_LOOPBACK, "LOOPBACK" }, 1145 { IRE_DEFAULT, "DEFAULT" }, 1146 { IRE_PREFIX, "PREFIX" }, 1147 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1148 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1149 { IRE_IF_CLONE, "IF_CLONE" }, 1150 { IRE_HOST, "HOST" }, 1151 { IRE_MULTICAST, "MULTICAST" }, 1152 { IRE_NOROUTE, "NOROUTE" }, 1153 { 0 } 1154 }; 1155 1156 nv_t *ire_nv_tbl = ire_nv_arr; 1157 1158 /* Simple ICMP IP Header Template */ 1159 static ipha_t icmp_ipha = { 1160 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1161 }; 1162 1163 struct module_info ip_mod_info = { 1164 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1165 IP_MOD_LOWAT 1166 }; 1167 1168 /* 1169 * Duplicate static symbols within a module confuses mdb; so we avoid the 1170 * problem by making the symbols here distinct from those in udp.c. 1171 */ 1172 1173 /* 1174 * Entry points for IP as a device and as a module. 1175 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1176 */ 1177 static struct qinit iprinitv4 = { 1178 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1179 &ip_mod_info 1180 }; 1181 1182 struct qinit iprinitv6 = { 1183 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1184 &ip_mod_info 1185 }; 1186 1187 static struct qinit ipwinit = { 1188 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1189 &ip_mod_info 1190 }; 1191 1192 static struct qinit iplrinit = { 1193 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1194 &ip_mod_info 1195 }; 1196 1197 static struct qinit iplwinit = { 1198 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1199 &ip_mod_info 1200 }; 1201 1202 /* For AF_INET aka /dev/ip */ 1203 struct streamtab ipinfov4 = { 1204 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1205 }; 1206 1207 /* For AF_INET6 aka /dev/ip6 */ 1208 struct streamtab ipinfov6 = { 1209 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1210 }; 1211 1212 #ifdef DEBUG 1213 boolean_t skip_sctp_cksum = B_FALSE; 1214 #endif 1215 1216 /* 1217 * Generate an ICMP fragmentation needed message. 1218 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1219 * constructed by the caller. 1220 */ 1221 void 1222 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1223 { 1224 icmph_t icmph; 1225 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1226 1227 mp = icmp_pkt_err_ok(mp, ira); 1228 if (mp == NULL) 1229 return; 1230 1231 bzero(&icmph, sizeof (icmph_t)); 1232 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1233 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1234 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1237 1238 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1239 } 1240 1241 /* 1242 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1243 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1244 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1245 * Likewise, if the ICMP error is misformed (too short, etc), then it 1246 * returns NULL. The caller uses this to determine whether or not to send 1247 * to raw sockets. 1248 * 1249 * All error messages are passed to the matching transport stream. 1250 * 1251 * The following cases are handled by icmp_inbound: 1252 * 1) It needs to send a reply back and possibly delivering it 1253 * to the "interested" upper clients. 1254 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1255 * 3) It needs to change some values in IP only. 1256 * 4) It needs to change some values in IP and upper layers e.g TCP 1257 * by delivering an error to the upper layers. 1258 * 1259 * We handle the above three cases in the context of IPsec in the 1260 * following way : 1261 * 1262 * 1) Send the reply back in the same way as the request came in. 1263 * If it came in encrypted, it goes out encrypted. If it came in 1264 * clear, it goes out in clear. Thus, this will prevent chosen 1265 * plain text attack. 1266 * 2) The client may or may not expect things to come in secure. 1267 * If it comes in secure, the policy constraints are checked 1268 * before delivering it to the upper layers. If it comes in 1269 * clear, ipsec_inbound_accept_clear will decide whether to 1270 * accept this in clear or not. In both the cases, if the returned 1271 * message (IP header + 8 bytes) that caused the icmp message has 1272 * AH/ESP headers, it is sent up to AH/ESP for validation before 1273 * sending up. If there are only 8 bytes of returned message, then 1274 * upper client will not be notified. 1275 * 3) Check with global policy to see whether it matches the constaints. 1276 * But this will be done only if icmp_accept_messages_in_clear is 1277 * zero. 1278 * 4) If we need to change both in IP and ULP, then the decision taken 1279 * while affecting the values in IP and while delivering up to TCP 1280 * should be the same. 1281 * 1282 * There are two cases. 1283 * 1284 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1285 * failed), we will not deliver it to the ULP, even though they 1286 * are *willing* to accept in *clear*. This is fine as our global 1287 * disposition to icmp messages asks us reject the datagram. 1288 * 1289 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1290 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1291 * to deliver it to ULP (policy failed), it can lead to 1292 * consistency problems. The cases known at this time are 1293 * ICMP_DESTINATION_UNREACHABLE messages with following code 1294 * values : 1295 * 1296 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1297 * and Upper layer rejects. Then the communication will 1298 * come to a stop. This is solved by making similar decisions 1299 * at both levels. Currently, when we are unable to deliver 1300 * to the Upper Layer (due to policy failures) while IP has 1301 * adjusted dce_pmtu, the next outbound datagram would 1302 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1303 * will be with the right level of protection. Thus the right 1304 * value will be communicated even if we are not able to 1305 * communicate when we get from the wire initially. But this 1306 * assumes there would be at least one outbound datagram after 1307 * IP has adjusted its dce_pmtu value. To make things 1308 * simpler, we accept in clear after the validation of 1309 * AH/ESP headers. 1310 * 1311 * - Other ICMP ERRORS : We may not be able to deliver it to the 1312 * upper layer depending on the level of protection the upper 1313 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1314 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1315 * should be accepted in clear when the Upper layer expects secure. 1316 * Thus the communication may get aborted by some bad ICMP 1317 * packets. 1318 */ 1319 mblk_t * 1320 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1321 { 1322 icmph_t *icmph; 1323 ipha_t *ipha; /* Outer header */ 1324 int ip_hdr_length; /* Outer header length */ 1325 boolean_t interested; 1326 ipif_t *ipif; 1327 uint32_t ts; 1328 uint32_t *tsp; 1329 timestruc_t now; 1330 ill_t *ill = ira->ira_ill; 1331 ip_stack_t *ipst = ill->ill_ipst; 1332 zoneid_t zoneid = ira->ira_zoneid; 1333 int len_needed; 1334 mblk_t *mp_ret = NULL; 1335 1336 ipha = (ipha_t *)mp->b_rptr; 1337 1338 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1339 1340 ip_hdr_length = ira->ira_ip_hdr_length; 1341 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1342 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1343 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1344 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1345 freemsg(mp); 1346 return (NULL); 1347 } 1348 /* Last chance to get real. */ 1349 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1350 if (ipha == NULL) { 1351 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1352 freemsg(mp); 1353 return (NULL); 1354 } 1355 } 1356 1357 /* The IP header will always be a multiple of four bytes */ 1358 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1359 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1360 icmph->icmph_code)); 1361 1362 /* 1363 * We will set "interested" to "true" if we should pass a copy to 1364 * the transport or if we handle the packet locally. 1365 */ 1366 interested = B_FALSE; 1367 switch (icmph->icmph_type) { 1368 case ICMP_ECHO_REPLY: 1369 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1370 break; 1371 case ICMP_DEST_UNREACHABLE: 1372 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1373 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1374 interested = B_TRUE; /* Pass up to transport */ 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1376 break; 1377 case ICMP_SOURCE_QUENCH: 1378 interested = B_TRUE; /* Pass up to transport */ 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1380 break; 1381 case ICMP_REDIRECT: 1382 if (!ipst->ips_ip_ignore_redirect) 1383 interested = B_TRUE; 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1385 break; 1386 case ICMP_ECHO_REQUEST: 1387 /* 1388 * Whether to respond to echo requests that come in as IP 1389 * broadcasts or as IP multicast is subject to debate 1390 * (what isn't?). We aim to please, you pick it. 1391 * Default is do it. 1392 */ 1393 if (ira->ira_flags & IRAF_MULTICAST) { 1394 /* multicast: respond based on tunable */ 1395 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1396 } else if (ira->ira_flags & IRAF_BROADCAST) { 1397 /* broadcast: respond based on tunable */ 1398 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1399 } else { 1400 /* unicast: always respond */ 1401 interested = B_TRUE; 1402 } 1403 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1404 if (!interested) { 1405 /* We never pass these to RAW sockets */ 1406 freemsg(mp); 1407 return (NULL); 1408 } 1409 1410 /* Check db_ref to make sure we can modify the packet. */ 1411 if (mp->b_datap->db_ref > 1) { 1412 mblk_t *mp1; 1413 1414 mp1 = copymsg(mp); 1415 freemsg(mp); 1416 if (!mp1) { 1417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1418 return (NULL); 1419 } 1420 mp = mp1; 1421 ipha = (ipha_t *)mp->b_rptr; 1422 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1423 } 1424 icmph->icmph_type = ICMP_ECHO_REPLY; 1425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1426 icmp_send_reply_v4(mp, ipha, icmph, ira); 1427 return (NULL); 1428 1429 case ICMP_ROUTER_ADVERTISEMENT: 1430 case ICMP_ROUTER_SOLICITATION: 1431 break; 1432 case ICMP_TIME_EXCEEDED: 1433 interested = B_TRUE; /* Pass up to transport */ 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1435 break; 1436 case ICMP_PARAM_PROBLEM: 1437 interested = B_TRUE; /* Pass up to transport */ 1438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1439 break; 1440 case ICMP_TIME_STAMP_REQUEST: 1441 /* Response to Time Stamp Requests is local policy. */ 1442 if (ipst->ips_ip_g_resp_to_timestamp) { 1443 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1444 interested = 1445 ipst->ips_ip_g_resp_to_timestamp_bcast; 1446 else 1447 interested = B_TRUE; 1448 } 1449 if (!interested) { 1450 /* We never pass these to RAW sockets */ 1451 freemsg(mp); 1452 return (NULL); 1453 } 1454 1455 /* Make sure we have enough of the packet */ 1456 len_needed = ip_hdr_length + ICMPH_SIZE + 1457 3 * sizeof (uint32_t); 1458 1459 if (mp->b_wptr - mp->b_rptr < len_needed) { 1460 ipha = ip_pullup(mp, len_needed, ira); 1461 if (ipha == NULL) { 1462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1463 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1464 mp, ill); 1465 freemsg(mp); 1466 return (NULL); 1467 } 1468 /* Refresh following the pullup. */ 1469 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1470 } 1471 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1472 /* Check db_ref to make sure we can modify the packet. */ 1473 if (mp->b_datap->db_ref > 1) { 1474 mblk_t *mp1; 1475 1476 mp1 = copymsg(mp); 1477 freemsg(mp); 1478 if (!mp1) { 1479 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1480 return (NULL); 1481 } 1482 mp = mp1; 1483 ipha = (ipha_t *)mp->b_rptr; 1484 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1485 } 1486 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1487 tsp = (uint32_t *)&icmph[1]; 1488 tsp++; /* Skip past 'originate time' */ 1489 /* Compute # of milliseconds since midnight */ 1490 gethrestime(&now); 1491 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1492 now.tv_nsec / (NANOSEC / MILLISEC); 1493 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1494 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1496 icmp_send_reply_v4(mp, ipha, icmph, ira); 1497 return (NULL); 1498 1499 case ICMP_TIME_STAMP_REPLY: 1500 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1501 break; 1502 case ICMP_INFO_REQUEST: 1503 /* Per RFC 1122 3.2.2.7, ignore this. */ 1504 case ICMP_INFO_REPLY: 1505 break; 1506 case ICMP_ADDRESS_MASK_REQUEST: 1507 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1508 interested = 1509 ipst->ips_ip_respond_to_address_mask_broadcast; 1510 } else { 1511 interested = B_TRUE; 1512 } 1513 if (!interested) { 1514 /* We never pass these to RAW sockets */ 1515 freemsg(mp); 1516 return (NULL); 1517 } 1518 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1519 if (mp->b_wptr - mp->b_rptr < len_needed) { 1520 ipha = ip_pullup(mp, len_needed, ira); 1521 if (ipha == NULL) { 1522 BUMP_MIB(ill->ill_ip_mib, 1523 ipIfStatsInTruncatedPkts); 1524 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1525 ill); 1526 freemsg(mp); 1527 return (NULL); 1528 } 1529 /* Refresh following the pullup. */ 1530 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1531 } 1532 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1533 /* Check db_ref to make sure we can modify the packet. */ 1534 if (mp->b_datap->db_ref > 1) { 1535 mblk_t *mp1; 1536 1537 mp1 = copymsg(mp); 1538 freemsg(mp); 1539 if (!mp1) { 1540 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1541 return (NULL); 1542 } 1543 mp = mp1; 1544 ipha = (ipha_t *)mp->b_rptr; 1545 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1546 } 1547 /* 1548 * Need the ipif with the mask be the same as the source 1549 * address of the mask reply. For unicast we have a specific 1550 * ipif. For multicast/broadcast we only handle onlink 1551 * senders, and use the source address to pick an ipif. 1552 */ 1553 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1554 if (ipif == NULL) { 1555 /* Broadcast or multicast */ 1556 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1557 if (ipif == NULL) { 1558 freemsg(mp); 1559 return (NULL); 1560 } 1561 } 1562 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1563 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1564 ipif_refrele(ipif); 1565 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1566 icmp_send_reply_v4(mp, ipha, icmph, ira); 1567 return (NULL); 1568 1569 case ICMP_ADDRESS_MASK_REPLY: 1570 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1571 break; 1572 default: 1573 interested = B_TRUE; /* Pass up to transport */ 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1575 break; 1576 } 1577 /* 1578 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1579 * if there isn't one. 1580 */ 1581 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1582 /* If there is an ICMP client and we want one too, copy it. */ 1583 1584 if (!interested) { 1585 /* Caller will deliver to RAW sockets */ 1586 return (mp); 1587 } 1588 mp_ret = copymsg(mp); 1589 if (mp_ret == NULL) { 1590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1591 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1592 } 1593 } else if (!interested) { 1594 /* Neither we nor raw sockets are interested. Drop packet now */ 1595 freemsg(mp); 1596 return (NULL); 1597 } 1598 1599 /* 1600 * ICMP error or redirect packet. Make sure we have enough of 1601 * the header and that db_ref == 1 since we might end up modifying 1602 * the packet. 1603 */ 1604 if (mp->b_cont != NULL) { 1605 if (ip_pullup(mp, -1, ira) == NULL) { 1606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1607 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1608 mp, ill); 1609 freemsg(mp); 1610 return (mp_ret); 1611 } 1612 } 1613 1614 if (mp->b_datap->db_ref > 1) { 1615 mblk_t *mp1; 1616 1617 mp1 = copymsg(mp); 1618 if (mp1 == NULL) { 1619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1620 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1621 freemsg(mp); 1622 return (mp_ret); 1623 } 1624 freemsg(mp); 1625 mp = mp1; 1626 } 1627 1628 /* 1629 * In case mp has changed, verify the message before any further 1630 * processes. 1631 */ 1632 ipha = (ipha_t *)mp->b_rptr; 1633 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1634 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1635 freemsg(mp); 1636 return (mp_ret); 1637 } 1638 1639 switch (icmph->icmph_type) { 1640 case ICMP_REDIRECT: 1641 icmp_redirect_v4(mp, ipha, icmph, ira); 1642 break; 1643 case ICMP_DEST_UNREACHABLE: 1644 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1645 /* Update DCE and adjust MTU is icmp header if needed */ 1646 icmp_inbound_too_big_v4(icmph, ira); 1647 } 1648 /* FALLTHRU */ 1649 default: 1650 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1651 break; 1652 } 1653 return (mp_ret); 1654 } 1655 1656 /* 1657 * Send an ICMP echo, timestamp or address mask reply. 1658 * The caller has already updated the payload part of the packet. 1659 * We handle the ICMP checksum, IP source address selection and feed 1660 * the packet into ip_output_simple. 1661 */ 1662 static void 1663 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1664 ip_recv_attr_t *ira) 1665 { 1666 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1667 ill_t *ill = ira->ira_ill; 1668 ip_stack_t *ipst = ill->ill_ipst; 1669 ip_xmit_attr_t ixas; 1670 1671 /* Send out an ICMP packet */ 1672 icmph->icmph_checksum = 0; 1673 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1674 /* Reset time to live. */ 1675 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1676 { 1677 /* Swap source and destination addresses */ 1678 ipaddr_t tmp; 1679 1680 tmp = ipha->ipha_src; 1681 ipha->ipha_src = ipha->ipha_dst; 1682 ipha->ipha_dst = tmp; 1683 } 1684 ipha->ipha_ident = 0; 1685 if (!IS_SIMPLE_IPH(ipha)) 1686 icmp_options_update(ipha); 1687 1688 bzero(&ixas, sizeof (ixas)); 1689 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1690 ixas.ixa_zoneid = ira->ira_zoneid; 1691 ixas.ixa_cred = kcred; 1692 ixas.ixa_cpid = NOPID; 1693 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1694 ixas.ixa_ifindex = 0; 1695 ixas.ixa_ipst = ipst; 1696 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1697 1698 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1699 /* 1700 * This packet should go out the same way as it 1701 * came in i.e in clear, independent of the IPsec policy 1702 * for transmitting packets. 1703 */ 1704 ixas.ixa_flags |= IXAF_NO_IPSEC; 1705 } else { 1706 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1707 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1708 /* Note: mp already consumed and ip_drop_packet done */ 1709 return; 1710 } 1711 } 1712 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1713 /* 1714 * Not one or our addresses (IRE_LOCALs), thus we let 1715 * ip_output_simple pick the source. 1716 */ 1717 ipha->ipha_src = INADDR_ANY; 1718 ixas.ixa_flags |= IXAF_SET_SOURCE; 1719 } 1720 /* Should we send with DF and use dce_pmtu? */ 1721 if (ipst->ips_ipv4_icmp_return_pmtu) { 1722 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1723 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1724 } 1725 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1727 1728 (void) ip_output_simple(mp, &ixas); 1729 ixa_cleanup(&ixas); 1730 } 1731 1732 /* 1733 * Verify the ICMP messages for either for ICMP error or redirect packet. 1734 * The caller should have fully pulled up the message. If it's a redirect 1735 * packet, only basic checks on IP header will be done; otherwise, verify 1736 * the packet by looking at the included ULP header. 1737 * 1738 * Called before icmp_inbound_error_fanout_v4 is called. 1739 */ 1740 static boolean_t 1741 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1742 { 1743 ill_t *ill = ira->ira_ill; 1744 int hdr_length; 1745 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1746 conn_t *connp; 1747 ipha_t *ipha; /* Inner IP header */ 1748 1749 ipha = (ipha_t *)&icmph[1]; 1750 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1751 goto truncated; 1752 1753 hdr_length = IPH_HDR_LENGTH(ipha); 1754 1755 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1756 goto discard_pkt; 1757 1758 if (hdr_length < sizeof (ipha_t)) 1759 goto truncated; 1760 1761 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1762 goto truncated; 1763 1764 /* 1765 * Stop here for ICMP_REDIRECT. 1766 */ 1767 if (icmph->icmph_type == ICMP_REDIRECT) 1768 return (B_TRUE); 1769 1770 /* 1771 * ICMP errors only. 1772 */ 1773 switch (ipha->ipha_protocol) { 1774 case IPPROTO_UDP: 1775 /* 1776 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1777 * transport header. 1778 */ 1779 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1780 mp->b_wptr) 1781 goto truncated; 1782 break; 1783 case IPPROTO_TCP: { 1784 tcpha_t *tcpha; 1785 1786 /* 1787 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1788 * transport header. 1789 */ 1790 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1791 mp->b_wptr) 1792 goto truncated; 1793 1794 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1795 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1796 ipst); 1797 if (connp == NULL) 1798 goto discard_pkt; 1799 1800 if ((connp->conn_verifyicmp != NULL) && 1801 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1802 CONN_DEC_REF(connp); 1803 goto discard_pkt; 1804 } 1805 CONN_DEC_REF(connp); 1806 break; 1807 } 1808 case IPPROTO_SCTP: 1809 /* 1810 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1811 * transport header. 1812 */ 1813 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1814 mp->b_wptr) 1815 goto truncated; 1816 break; 1817 case IPPROTO_ESP: 1818 case IPPROTO_AH: 1819 break; 1820 case IPPROTO_ENCAP: 1821 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1822 mp->b_wptr) 1823 goto truncated; 1824 break; 1825 default: 1826 break; 1827 } 1828 1829 return (B_TRUE); 1830 1831 discard_pkt: 1832 /* Bogus ICMP error. */ 1833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1834 return (B_FALSE); 1835 1836 truncated: 1837 /* We pulled up everthing already. Must be truncated */ 1838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1839 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1840 return (B_FALSE); 1841 } 1842 1843 /* Table from RFC 1191 */ 1844 static int icmp_frag_size_table[] = 1845 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1846 1847 /* 1848 * Process received ICMP Packet too big. 1849 * Just handles the DCE create/update, including using the above table of 1850 * PMTU guesses. The caller is responsible for validating the packet before 1851 * passing it in and also to fanout the ICMP error to any matching transport 1852 * conns. Assumes the message has been fully pulled up and verified. 1853 * 1854 * Before getting here, the caller has called icmp_inbound_verify_v4() 1855 * that should have verified with ULP to prevent undoing the changes we're 1856 * going to make to DCE. For example, TCP might have verified that the packet 1857 * which generated error is in the send window. 1858 * 1859 * In some cases modified this MTU in the ICMP header packet; the caller 1860 * should pass to the matching ULP after this returns. 1861 */ 1862 static void 1863 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1864 { 1865 dce_t *dce; 1866 int old_mtu; 1867 int mtu, orig_mtu; 1868 ipaddr_t dst; 1869 boolean_t disable_pmtud; 1870 ill_t *ill = ira->ira_ill; 1871 ip_stack_t *ipst = ill->ill_ipst; 1872 uint_t hdr_length; 1873 ipha_t *ipha; 1874 1875 /* Caller already pulled up everything. */ 1876 ipha = (ipha_t *)&icmph[1]; 1877 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1878 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1879 ASSERT(ill != NULL); 1880 1881 hdr_length = IPH_HDR_LENGTH(ipha); 1882 1883 /* 1884 * We handle path MTU for source routed packets since the DCE 1885 * is looked up using the final destination. 1886 */ 1887 dst = ip_get_dst(ipha); 1888 1889 dce = dce_lookup_and_add_v4(dst, ipst); 1890 if (dce == NULL) { 1891 /* Couldn't add a unique one - ENOMEM */ 1892 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1893 ntohl(dst))); 1894 return; 1895 } 1896 1897 /* Check for MTU discovery advice as described in RFC 1191 */ 1898 mtu = ntohs(icmph->icmph_du_mtu); 1899 orig_mtu = mtu; 1900 disable_pmtud = B_FALSE; 1901 1902 mutex_enter(&dce->dce_lock); 1903 if (dce->dce_flags & DCEF_PMTU) 1904 old_mtu = dce->dce_pmtu; 1905 else 1906 old_mtu = ill->ill_mtu; 1907 1908 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1909 uint32_t length; 1910 int i; 1911 1912 /* 1913 * Use the table from RFC 1191 to figure out 1914 * the next "plateau" based on the length in 1915 * the original IP packet. 1916 */ 1917 length = ntohs(ipha->ipha_length); 1918 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1919 uint32_t, length); 1920 if (old_mtu <= length && 1921 old_mtu >= length - hdr_length) { 1922 /* 1923 * Handle broken BSD 4.2 systems that 1924 * return the wrong ipha_length in ICMP 1925 * errors. 1926 */ 1927 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1928 length, old_mtu)); 1929 length -= hdr_length; 1930 } 1931 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1932 if (length > icmp_frag_size_table[i]) 1933 break; 1934 } 1935 if (i == A_CNT(icmp_frag_size_table)) { 1936 /* Smaller than IP_MIN_MTU! */ 1937 ip1dbg(("Too big for packet size %d\n", 1938 length)); 1939 disable_pmtud = B_TRUE; 1940 mtu = ipst->ips_ip_pmtu_min; 1941 } else { 1942 mtu = icmp_frag_size_table[i]; 1943 ip1dbg(("Calculated mtu %d, packet size %d, " 1944 "before %d\n", mtu, length, old_mtu)); 1945 if (mtu < ipst->ips_ip_pmtu_min) { 1946 mtu = ipst->ips_ip_pmtu_min; 1947 disable_pmtud = B_TRUE; 1948 } 1949 } 1950 } 1951 if (disable_pmtud) 1952 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1953 else 1954 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1955 1956 dce->dce_pmtu = MIN(old_mtu, mtu); 1957 /* Prepare to send the new max frag size for the ULP. */ 1958 icmph->icmph_du_zero = 0; 1959 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1960 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1961 dce, int, orig_mtu, int, mtu); 1962 1963 /* We now have a PMTU for sure */ 1964 dce->dce_flags |= DCEF_PMTU; 1965 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1966 mutex_exit(&dce->dce_lock); 1967 /* 1968 * After dropping the lock the new value is visible to everyone. 1969 * Then we bump the generation number so any cached values reinspect 1970 * the dce_t. 1971 */ 1972 dce_increment_generation(dce); 1973 dce_refrele(dce); 1974 } 1975 1976 /* 1977 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1978 * calls this function. 1979 */ 1980 static mblk_t * 1981 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1982 { 1983 int length; 1984 1985 ASSERT(mp->b_datap->db_type == M_DATA); 1986 1987 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1988 ASSERT(mp->b_cont == NULL); 1989 1990 /* 1991 * The length that we want to overlay is the inner header 1992 * and what follows it. 1993 */ 1994 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1995 1996 /* 1997 * Overlay the inner header and whatever follows it over the 1998 * outer header. 1999 */ 2000 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2001 2002 /* Adjust for what we removed */ 2003 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2004 return (mp); 2005 } 2006 2007 /* 2008 * Try to pass the ICMP message upstream in case the ULP cares. 2009 * 2010 * If the packet that caused the ICMP error is secure, we send 2011 * it to AH/ESP to make sure that the attached packet has a 2012 * valid association. ipha in the code below points to the 2013 * IP header of the packet that caused the error. 2014 * 2015 * For IPsec cases, we let the next-layer-up (which has access to 2016 * cached policy on the conn_t, or can query the SPD directly) 2017 * subtract out any IPsec overhead if they must. We therefore make no 2018 * adjustments here for IPsec overhead. 2019 * 2020 * IFN could have been generated locally or by some router. 2021 * 2022 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2023 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2024 * This happens because IP adjusted its value of MTU on an 2025 * earlier IFN message and could not tell the upper layer, 2026 * the new adjusted value of MTU e.g. Packet was encrypted 2027 * or there was not enough information to fanout to upper 2028 * layers. Thus on the next outbound datagram, ire_send_wire 2029 * generates the IFN, where IPsec processing has *not* been 2030 * done. 2031 * 2032 * Note that we retain ixa_fragsize across IPsec thus once 2033 * we have picking ixa_fragsize and entered ipsec_out_process we do 2034 * no change the fragsize even if the path MTU changes before 2035 * we reach ip_output_post_ipsec. 2036 * 2037 * In the local case, IRAF_LOOPBACK will be set indicating 2038 * that IFN was generated locally. 2039 * 2040 * ROUTER : IFN could be secure or non-secure. 2041 * 2042 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2043 * packet in error has AH/ESP headers to validate the AH/ESP 2044 * headers. AH/ESP will verify whether there is a valid SA or 2045 * not and send it back. We will fanout again if we have more 2046 * data in the packet. 2047 * 2048 * If the packet in error does not have AH/ESP, we handle it 2049 * like any other case. 2050 * 2051 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2052 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2053 * valid SA or not and send it back. We will fanout again if 2054 * we have more data in the packet. 2055 * 2056 * If the packet in error does not have AH/ESP, we handle it 2057 * like any other case. 2058 * 2059 * The caller must have called icmp_inbound_verify_v4. 2060 */ 2061 static void 2062 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2063 { 2064 uint16_t *up; /* Pointer to ports in ULP header */ 2065 uint32_t ports; /* reversed ports for fanout */ 2066 ipha_t ripha; /* With reversed addresses */ 2067 ipha_t *ipha; /* Inner IP header */ 2068 uint_t hdr_length; /* Inner IP header length */ 2069 tcpha_t *tcpha; 2070 conn_t *connp; 2071 ill_t *ill = ira->ira_ill; 2072 ip_stack_t *ipst = ill->ill_ipst; 2073 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2074 ill_t *rill = ira->ira_rill; 2075 2076 /* Caller already pulled up everything. */ 2077 ipha = (ipha_t *)&icmph[1]; 2078 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2079 ASSERT(mp->b_cont == NULL); 2080 2081 hdr_length = IPH_HDR_LENGTH(ipha); 2082 ira->ira_protocol = ipha->ipha_protocol; 2083 2084 /* 2085 * We need a separate IP header with the source and destination 2086 * addresses reversed to do fanout/classification because the ipha in 2087 * the ICMP error is in the form we sent it out. 2088 */ 2089 ripha.ipha_src = ipha->ipha_dst; 2090 ripha.ipha_dst = ipha->ipha_src; 2091 ripha.ipha_protocol = ipha->ipha_protocol; 2092 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2093 2094 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2095 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2096 ntohl(ipha->ipha_dst), 2097 icmph->icmph_type, icmph->icmph_code)); 2098 2099 switch (ipha->ipha_protocol) { 2100 case IPPROTO_UDP: 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 2103 /* Attempt to find a client stream based on port. */ 2104 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2105 ntohs(up[0]), ntohs(up[1]))); 2106 2107 /* Note that we send error to all matches. */ 2108 ira->ira_flags |= IRAF_ICMP_ERROR; 2109 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2110 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2111 return; 2112 2113 case IPPROTO_TCP: 2114 /* 2115 * Find a TCP client stream for this packet. 2116 * Note that we do a reverse lookup since the header is 2117 * in the form we sent it out. 2118 */ 2119 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2120 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2121 ipst); 2122 if (connp == NULL) 2123 goto discard_pkt; 2124 2125 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2126 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2127 mp = ipsec_check_inbound_policy(mp, connp, 2128 ipha, NULL, ira); 2129 if (mp == NULL) { 2130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2131 /* Note that mp is NULL */ 2132 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2133 CONN_DEC_REF(connp); 2134 return; 2135 } 2136 } 2137 2138 ira->ira_flags |= IRAF_ICMP_ERROR; 2139 ira->ira_ill = ira->ira_rill = NULL; 2140 if (IPCL_IS_TCP(connp)) { 2141 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2142 connp->conn_recvicmp, connp, ira, SQ_FILL, 2143 SQTAG_TCP_INPUT_ICMP_ERR); 2144 } else { 2145 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2146 (connp->conn_recv)(connp, mp, NULL, ira); 2147 CONN_DEC_REF(connp); 2148 } 2149 ira->ira_ill = ill; 2150 ira->ira_rill = rill; 2151 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2152 return; 2153 2154 case IPPROTO_SCTP: 2155 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2156 /* Find a SCTP client stream for this packet. */ 2157 ((uint16_t *)&ports)[0] = up[1]; 2158 ((uint16_t *)&ports)[1] = up[0]; 2159 2160 ira->ira_flags |= IRAF_ICMP_ERROR; 2161 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2162 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2163 return; 2164 2165 case IPPROTO_ESP: 2166 case IPPROTO_AH: 2167 if (!ipsec_loaded(ipss)) { 2168 ip_proto_not_sup(mp, ira); 2169 return; 2170 } 2171 2172 if (ipha->ipha_protocol == IPPROTO_ESP) 2173 mp = ipsecesp_icmp_error(mp, ira); 2174 else 2175 mp = ipsecah_icmp_error(mp, ira); 2176 if (mp == NULL) 2177 return; 2178 2179 /* Just in case ipsec didn't preserve the NULL b_cont */ 2180 if (mp->b_cont != NULL) { 2181 if (!pullupmsg(mp, -1)) 2182 goto discard_pkt; 2183 } 2184 2185 /* 2186 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2187 * correct, but we don't use them any more here. 2188 * 2189 * If succesful, the mp has been modified to not include 2190 * the ESP/AH header so we can fanout to the ULP's icmp 2191 * error handler. 2192 */ 2193 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2194 goto truncated; 2195 2196 /* Verify the modified message before any further processes. */ 2197 ipha = (ipha_t *)mp->b_rptr; 2198 hdr_length = IPH_HDR_LENGTH(ipha); 2199 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2200 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2201 freemsg(mp); 2202 return; 2203 } 2204 2205 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2206 return; 2207 2208 case IPPROTO_ENCAP: { 2209 /* Look for self-encapsulated packets that caused an error */ 2210 ipha_t *in_ipha; 2211 2212 /* 2213 * Caller has verified that length has to be 2214 * at least the size of IP header. 2215 */ 2216 ASSERT(hdr_length >= sizeof (ipha_t)); 2217 /* 2218 * Check the sanity of the inner IP header like 2219 * we did for the outer header. 2220 */ 2221 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2222 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2223 goto discard_pkt; 2224 } 2225 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2226 goto discard_pkt; 2227 } 2228 /* Check for Self-encapsulated tunnels */ 2229 if (in_ipha->ipha_src == ipha->ipha_src && 2230 in_ipha->ipha_dst == ipha->ipha_dst) { 2231 2232 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2233 in_ipha); 2234 if (mp == NULL) 2235 goto discard_pkt; 2236 2237 /* 2238 * Just in case self_encap didn't preserve the NULL 2239 * b_cont 2240 */ 2241 if (mp->b_cont != NULL) { 2242 if (!pullupmsg(mp, -1)) 2243 goto discard_pkt; 2244 } 2245 /* 2246 * Note that ira_pktlen and ira_ip_hdr_length are no 2247 * longer correct, but we don't use them any more here. 2248 */ 2249 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2250 goto truncated; 2251 2252 /* 2253 * Verify the modified message before any further 2254 * processes. 2255 */ 2256 ipha = (ipha_t *)mp->b_rptr; 2257 hdr_length = IPH_HDR_LENGTH(ipha); 2258 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2259 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2260 freemsg(mp); 2261 return; 2262 } 2263 2264 /* 2265 * The packet in error is self-encapsualted. 2266 * And we are finding it further encapsulated 2267 * which we could not have possibly generated. 2268 */ 2269 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2270 goto discard_pkt; 2271 } 2272 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2273 return; 2274 } 2275 /* No self-encapsulated */ 2276 /* FALLTHRU */ 2277 } 2278 case IPPROTO_IPV6: 2279 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2280 &ripha.ipha_dst, ipst)) != NULL) { 2281 ira->ira_flags |= IRAF_ICMP_ERROR; 2282 connp->conn_recvicmp(connp, mp, NULL, ira); 2283 CONN_DEC_REF(connp); 2284 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2285 return; 2286 } 2287 /* 2288 * No IP tunnel is interested, fallthrough and see 2289 * if a raw socket will want it. 2290 */ 2291 /* FALLTHRU */ 2292 default: 2293 ira->ira_flags |= IRAF_ICMP_ERROR; 2294 ip_fanout_proto_v4(mp, &ripha, ira); 2295 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2296 return; 2297 } 2298 /* NOTREACHED */ 2299 discard_pkt: 2300 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2301 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2302 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2303 freemsg(mp); 2304 return; 2305 2306 truncated: 2307 /* We pulled up everthing already. Must be truncated */ 2308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2309 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2310 freemsg(mp); 2311 } 2312 2313 /* 2314 * Common IP options parser. 2315 * 2316 * Setup routine: fill in *optp with options-parsing state, then 2317 * tail-call ipoptp_next to return the first option. 2318 */ 2319 uint8_t 2320 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2321 { 2322 uint32_t totallen; /* total length of all options */ 2323 2324 totallen = ipha->ipha_version_and_hdr_length - 2325 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2326 totallen <<= 2; 2327 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2328 optp->ipoptp_end = optp->ipoptp_next + totallen; 2329 optp->ipoptp_flags = 0; 2330 return (ipoptp_next(optp)); 2331 } 2332 2333 /* Like above but without an ipha_t */ 2334 uint8_t 2335 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2336 { 2337 optp->ipoptp_next = opt; 2338 optp->ipoptp_end = optp->ipoptp_next + totallen; 2339 optp->ipoptp_flags = 0; 2340 return (ipoptp_next(optp)); 2341 } 2342 2343 /* 2344 * Common IP options parser: extract next option. 2345 */ 2346 uint8_t 2347 ipoptp_next(ipoptp_t *optp) 2348 { 2349 uint8_t *end = optp->ipoptp_end; 2350 uint8_t *cur = optp->ipoptp_next; 2351 uint8_t opt, len, pointer; 2352 2353 /* 2354 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2355 * has been corrupted. 2356 */ 2357 ASSERT(cur <= end); 2358 2359 if (cur == end) 2360 return (IPOPT_EOL); 2361 2362 opt = cur[IPOPT_OPTVAL]; 2363 2364 /* 2365 * Skip any NOP options. 2366 */ 2367 while (opt == IPOPT_NOP) { 2368 cur++; 2369 if (cur == end) 2370 return (IPOPT_EOL); 2371 opt = cur[IPOPT_OPTVAL]; 2372 } 2373 2374 if (opt == IPOPT_EOL) 2375 return (IPOPT_EOL); 2376 2377 /* 2378 * Option requiring a length. 2379 */ 2380 if ((cur + 1) >= end) { 2381 optp->ipoptp_flags |= IPOPTP_ERROR; 2382 return (IPOPT_EOL); 2383 } 2384 len = cur[IPOPT_OLEN]; 2385 if (len < 2) { 2386 optp->ipoptp_flags |= IPOPTP_ERROR; 2387 return (IPOPT_EOL); 2388 } 2389 optp->ipoptp_cur = cur; 2390 optp->ipoptp_len = len; 2391 optp->ipoptp_next = cur + len; 2392 if (cur + len > end) { 2393 optp->ipoptp_flags |= IPOPTP_ERROR; 2394 return (IPOPT_EOL); 2395 } 2396 2397 /* 2398 * For the options which require a pointer field, make sure 2399 * its there, and make sure it points to either something 2400 * inside this option, or the end of the option. 2401 */ 2402 switch (opt) { 2403 case IPOPT_RR: 2404 case IPOPT_TS: 2405 case IPOPT_LSRR: 2406 case IPOPT_SSRR: 2407 if (len <= IPOPT_OFFSET) { 2408 optp->ipoptp_flags |= IPOPTP_ERROR; 2409 return (opt); 2410 } 2411 pointer = cur[IPOPT_OFFSET]; 2412 if (pointer - 1 > len) { 2413 optp->ipoptp_flags |= IPOPTP_ERROR; 2414 return (opt); 2415 } 2416 break; 2417 } 2418 2419 /* 2420 * Sanity check the pointer field based on the type of the 2421 * option. 2422 */ 2423 switch (opt) { 2424 case IPOPT_RR: 2425 case IPOPT_SSRR: 2426 case IPOPT_LSRR: 2427 if (pointer < IPOPT_MINOFF_SR) 2428 optp->ipoptp_flags |= IPOPTP_ERROR; 2429 break; 2430 case IPOPT_TS: 2431 if (pointer < IPOPT_MINOFF_IT) 2432 optp->ipoptp_flags |= IPOPTP_ERROR; 2433 /* 2434 * Note that the Internet Timestamp option also 2435 * contains two four bit fields (the Overflow field, 2436 * and the Flag field), which follow the pointer 2437 * field. We don't need to check that these fields 2438 * fall within the length of the option because this 2439 * was implicitely done above. We've checked that the 2440 * pointer value is at least IPOPT_MINOFF_IT, and that 2441 * it falls within the option. Since IPOPT_MINOFF_IT > 2442 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2443 */ 2444 ASSERT(len > IPOPT_POS_OV_FLG); 2445 break; 2446 } 2447 2448 return (opt); 2449 } 2450 2451 /* 2452 * Use the outgoing IP header to create an IP_OPTIONS option the way 2453 * it was passed down from the application. 2454 * 2455 * This is compatible with BSD in that it returns 2456 * the reverse source route with the final destination 2457 * as the last entry. The first 4 bytes of the option 2458 * will contain the final destination. 2459 */ 2460 int 2461 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2462 { 2463 ipoptp_t opts; 2464 uchar_t *opt; 2465 uint8_t optval; 2466 uint8_t optlen; 2467 uint32_t len = 0; 2468 uchar_t *buf1 = buf; 2469 uint32_t totallen; 2470 ipaddr_t dst; 2471 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2472 2473 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2474 return (0); 2475 2476 totallen = ipp->ipp_ipv4_options_len; 2477 if (totallen & 0x3) 2478 return (0); 2479 2480 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2481 len += IP_ADDR_LEN; 2482 bzero(buf1, IP_ADDR_LEN); 2483 2484 dst = connp->conn_faddr_v4; 2485 2486 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2487 optval != IPOPT_EOL; 2488 optval = ipoptp_next(&opts)) { 2489 int off; 2490 2491 opt = opts.ipoptp_cur; 2492 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2493 break; 2494 } 2495 optlen = opts.ipoptp_len; 2496 2497 switch (optval) { 2498 case IPOPT_SSRR: 2499 case IPOPT_LSRR: 2500 2501 /* 2502 * Insert destination as the first entry in the source 2503 * route and move down the entries on step. 2504 * The last entry gets placed at buf1. 2505 */ 2506 buf[IPOPT_OPTVAL] = optval; 2507 buf[IPOPT_OLEN] = optlen; 2508 buf[IPOPT_OFFSET] = optlen; 2509 2510 off = optlen - IP_ADDR_LEN; 2511 if (off < 0) { 2512 /* No entries in source route */ 2513 break; 2514 } 2515 /* Last entry in source route if not already set */ 2516 if (dst == INADDR_ANY) 2517 bcopy(opt + off, buf1, IP_ADDR_LEN); 2518 off -= IP_ADDR_LEN; 2519 2520 while (off > 0) { 2521 bcopy(opt + off, 2522 buf + off + IP_ADDR_LEN, 2523 IP_ADDR_LEN); 2524 off -= IP_ADDR_LEN; 2525 } 2526 /* ipha_dst into first slot */ 2527 bcopy(&dst, buf + off + IP_ADDR_LEN, 2528 IP_ADDR_LEN); 2529 buf += optlen; 2530 len += optlen; 2531 break; 2532 2533 default: 2534 bcopy(opt, buf, optlen); 2535 buf += optlen; 2536 len += optlen; 2537 break; 2538 } 2539 } 2540 done: 2541 /* Pad the resulting options */ 2542 while (len & 0x3) { 2543 *buf++ = IPOPT_EOL; 2544 len++; 2545 } 2546 return (len); 2547 } 2548 2549 /* 2550 * Update any record route or timestamp options to include this host. 2551 * Reverse any source route option. 2552 * This routine assumes that the options are well formed i.e. that they 2553 * have already been checked. 2554 */ 2555 static void 2556 icmp_options_update(ipha_t *ipha) 2557 { 2558 ipoptp_t opts; 2559 uchar_t *opt; 2560 uint8_t optval; 2561 ipaddr_t src; /* Our local address */ 2562 ipaddr_t dst; 2563 2564 ip2dbg(("icmp_options_update\n")); 2565 src = ipha->ipha_src; 2566 dst = ipha->ipha_dst; 2567 2568 for (optval = ipoptp_first(&opts, ipha); 2569 optval != IPOPT_EOL; 2570 optval = ipoptp_next(&opts)) { 2571 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2572 opt = opts.ipoptp_cur; 2573 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2574 optval, opts.ipoptp_len)); 2575 switch (optval) { 2576 int off1, off2; 2577 case IPOPT_SSRR: 2578 case IPOPT_LSRR: 2579 /* 2580 * Reverse the source route. The first entry 2581 * should be the next to last one in the current 2582 * source route (the last entry is our address). 2583 * The last entry should be the final destination. 2584 */ 2585 off1 = IPOPT_MINOFF_SR - 1; 2586 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2587 if (off2 < 0) { 2588 /* No entries in source route */ 2589 ip1dbg(( 2590 "icmp_options_update: bad src route\n")); 2591 break; 2592 } 2593 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2594 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2595 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2596 off2 -= IP_ADDR_LEN; 2597 2598 while (off1 < off2) { 2599 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2600 bcopy((char *)opt + off2, (char *)opt + off1, 2601 IP_ADDR_LEN); 2602 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2603 off1 += IP_ADDR_LEN; 2604 off2 -= IP_ADDR_LEN; 2605 } 2606 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2607 break; 2608 } 2609 } 2610 } 2611 2612 /* 2613 * Process received ICMP Redirect messages. 2614 * Assumes the caller has verified that the headers are in the pulled up mblk. 2615 * Consumes mp. 2616 */ 2617 static void 2618 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2619 { 2620 ire_t *ire, *nire; 2621 ire_t *prev_ire; 2622 ipaddr_t src, dst, gateway; 2623 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2624 ipha_t *inner_ipha; /* Inner IP header */ 2625 2626 /* Caller already pulled up everything. */ 2627 inner_ipha = (ipha_t *)&icmph[1]; 2628 src = ipha->ipha_src; 2629 dst = inner_ipha->ipha_dst; 2630 gateway = icmph->icmph_rd_gateway; 2631 /* Make sure the new gateway is reachable somehow. */ 2632 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2633 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2634 /* 2635 * Make sure we had a route for the dest in question and that 2636 * that route was pointing to the old gateway (the source of the 2637 * redirect packet.) 2638 * We do longest match and then compare ire_gateway_addr below. 2639 */ 2640 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2641 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2642 /* 2643 * Check that 2644 * the redirect was not from ourselves 2645 * the new gateway and the old gateway are directly reachable 2646 */ 2647 if (prev_ire == NULL || ire == NULL || 2648 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2649 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2650 !(ire->ire_type & IRE_IF_ALL) || 2651 prev_ire->ire_gateway_addr != src) { 2652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2653 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2654 freemsg(mp); 2655 if (ire != NULL) 2656 ire_refrele(ire); 2657 if (prev_ire != NULL) 2658 ire_refrele(prev_ire); 2659 return; 2660 } 2661 2662 ire_refrele(prev_ire); 2663 ire_refrele(ire); 2664 2665 /* 2666 * TODO: more precise handling for cases 0, 2, 3, the latter two 2667 * require TOS routing 2668 */ 2669 switch (icmph->icmph_code) { 2670 case 0: 2671 case 1: 2672 /* TODO: TOS specificity for cases 2 and 3 */ 2673 case 2: 2674 case 3: 2675 break; 2676 default: 2677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2678 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2679 freemsg(mp); 2680 return; 2681 } 2682 /* 2683 * Create a Route Association. This will allow us to remember that 2684 * someone we believe told us to use the particular gateway. 2685 */ 2686 ire = ire_create( 2687 (uchar_t *)&dst, /* dest addr */ 2688 (uchar_t *)&ip_g_all_ones, /* mask */ 2689 (uchar_t *)&gateway, /* gateway addr */ 2690 IRE_HOST, 2691 NULL, /* ill */ 2692 ALL_ZONES, 2693 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2694 NULL, /* tsol_gc_t */ 2695 ipst); 2696 2697 if (ire == NULL) { 2698 freemsg(mp); 2699 return; 2700 } 2701 nire = ire_add(ire); 2702 /* Check if it was a duplicate entry */ 2703 if (nire != NULL && nire != ire) { 2704 ASSERT(nire->ire_identical_ref > 1); 2705 ire_delete(nire); 2706 ire_refrele(nire); 2707 nire = NULL; 2708 } 2709 ire = nire; 2710 if (ire != NULL) { 2711 ire_refrele(ire); /* Held in ire_add */ 2712 2713 /* tell routing sockets that we received a redirect */ 2714 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2715 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2716 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2717 } 2718 2719 /* 2720 * Delete any existing IRE_HOST type redirect ires for this destination. 2721 * This together with the added IRE has the effect of 2722 * modifying an existing redirect. 2723 */ 2724 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2725 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2726 if (prev_ire != NULL) { 2727 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2728 ire_delete(prev_ire); 2729 ire_refrele(prev_ire); 2730 } 2731 2732 freemsg(mp); 2733 } 2734 2735 /* 2736 * Generate an ICMP parameter problem message. 2737 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2738 * constructed by the caller. 2739 */ 2740 static void 2741 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2742 { 2743 icmph_t icmph; 2744 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2745 2746 mp = icmp_pkt_err_ok(mp, ira); 2747 if (mp == NULL) 2748 return; 2749 2750 bzero(&icmph, sizeof (icmph_t)); 2751 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2752 icmph.icmph_pp_ptr = ptr; 2753 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2754 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2755 } 2756 2757 /* 2758 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2759 * the ICMP header pointed to by "stuff". (May be called as writer.) 2760 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2761 * an icmp error packet can be sent. 2762 * Assigns an appropriate source address to the packet. If ipha_dst is 2763 * one of our addresses use it for source. Otherwise let ip_output_simple 2764 * pick the source address. 2765 */ 2766 static void 2767 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2768 { 2769 ipaddr_t dst; 2770 icmph_t *icmph; 2771 ipha_t *ipha; 2772 uint_t len_needed; 2773 size_t msg_len; 2774 mblk_t *mp1; 2775 ipaddr_t src; 2776 ire_t *ire; 2777 ip_xmit_attr_t ixas; 2778 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2779 2780 ipha = (ipha_t *)mp->b_rptr; 2781 2782 bzero(&ixas, sizeof (ixas)); 2783 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2784 ixas.ixa_zoneid = ira->ira_zoneid; 2785 ixas.ixa_ifindex = 0; 2786 ixas.ixa_ipst = ipst; 2787 ixas.ixa_cred = kcred; 2788 ixas.ixa_cpid = NOPID; 2789 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2790 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2791 2792 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2793 /* 2794 * Apply IPsec based on how IPsec was applied to 2795 * the packet that had the error. 2796 * 2797 * If it was an outbound packet that caused the ICMP 2798 * error, then the caller will have setup the IRA 2799 * appropriately. 2800 */ 2801 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2802 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2803 /* Note: mp already consumed and ip_drop_packet done */ 2804 return; 2805 } 2806 } else { 2807 /* 2808 * This is in clear. The icmp message we are building 2809 * here should go out in clear, independent of our policy. 2810 */ 2811 ixas.ixa_flags |= IXAF_NO_IPSEC; 2812 } 2813 2814 /* Remember our eventual destination */ 2815 dst = ipha->ipha_src; 2816 2817 /* 2818 * If the packet was for one of our unicast addresses, make 2819 * sure we respond with that as the source. Otherwise 2820 * have ip_output_simple pick the source address. 2821 */ 2822 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2823 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2824 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2825 if (ire != NULL) { 2826 ire_refrele(ire); 2827 src = ipha->ipha_dst; 2828 } else { 2829 src = INADDR_ANY; 2830 ixas.ixa_flags |= IXAF_SET_SOURCE; 2831 } 2832 2833 /* 2834 * Check if we can send back more then 8 bytes in addition to 2835 * the IP header. We try to send 64 bytes of data and the internal 2836 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2837 */ 2838 len_needed = IPH_HDR_LENGTH(ipha); 2839 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2840 ipha->ipha_protocol == IPPROTO_IPV6) { 2841 if (!pullupmsg(mp, -1)) { 2842 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2843 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2844 freemsg(mp); 2845 return; 2846 } 2847 ipha = (ipha_t *)mp->b_rptr; 2848 2849 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2850 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2851 len_needed)); 2852 } else { 2853 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2854 2855 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2856 len_needed += ip_hdr_length_v6(mp, ip6h); 2857 } 2858 } 2859 len_needed += ipst->ips_ip_icmp_return; 2860 msg_len = msgdsize(mp); 2861 if (msg_len > len_needed) { 2862 (void) adjmsg(mp, len_needed - msg_len); 2863 msg_len = len_needed; 2864 } 2865 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2866 if (mp1 == NULL) { 2867 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2868 freemsg(mp); 2869 return; 2870 } 2871 mp1->b_cont = mp; 2872 mp = mp1; 2873 2874 /* 2875 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2876 * node generates be accepted in peace by all on-host destinations. 2877 * If we do NOT assume that all on-host destinations trust 2878 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2879 * (Look for IXAF_TRUSTED_ICMP). 2880 */ 2881 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2882 2883 ipha = (ipha_t *)mp->b_rptr; 2884 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2885 *ipha = icmp_ipha; 2886 ipha->ipha_src = src; 2887 ipha->ipha_dst = dst; 2888 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2889 msg_len += sizeof (icmp_ipha) + len; 2890 if (msg_len > IP_MAXPACKET) { 2891 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2892 msg_len = IP_MAXPACKET; 2893 } 2894 ipha->ipha_length = htons((uint16_t)msg_len); 2895 icmph = (icmph_t *)&ipha[1]; 2896 bcopy(stuff, icmph, len); 2897 icmph->icmph_checksum = 0; 2898 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2899 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2900 2901 (void) ip_output_simple(mp, &ixas); 2902 ixa_cleanup(&ixas); 2903 } 2904 2905 /* 2906 * Determine if an ICMP error packet can be sent given the rate limit. 2907 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2908 * in milliseconds) and a burst size. Burst size number of packets can 2909 * be sent arbitrarely closely spaced. 2910 * The state is tracked using two variables to implement an approximate 2911 * token bucket filter: 2912 * icmp_pkt_err_last - lbolt value when the last burst started 2913 * icmp_pkt_err_sent - number of packets sent in current burst 2914 */ 2915 boolean_t 2916 icmp_err_rate_limit(ip_stack_t *ipst) 2917 { 2918 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2919 uint_t refilled; /* Number of packets refilled in tbf since last */ 2920 /* Guard against changes by loading into local variable */ 2921 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2922 2923 if (err_interval == 0) 2924 return (B_FALSE); 2925 2926 if (ipst->ips_icmp_pkt_err_last > now) { 2927 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2928 ipst->ips_icmp_pkt_err_last = 0; 2929 ipst->ips_icmp_pkt_err_sent = 0; 2930 } 2931 /* 2932 * If we are in a burst update the token bucket filter. 2933 * Update the "last" time to be close to "now" but make sure 2934 * we don't loose precision. 2935 */ 2936 if (ipst->ips_icmp_pkt_err_sent != 0) { 2937 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2938 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2939 ipst->ips_icmp_pkt_err_sent = 0; 2940 } else { 2941 ipst->ips_icmp_pkt_err_sent -= refilled; 2942 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2943 } 2944 } 2945 if (ipst->ips_icmp_pkt_err_sent == 0) { 2946 /* Start of new burst */ 2947 ipst->ips_icmp_pkt_err_last = now; 2948 } 2949 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2950 ipst->ips_icmp_pkt_err_sent++; 2951 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2952 ipst->ips_icmp_pkt_err_sent)); 2953 return (B_FALSE); 2954 } 2955 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2956 return (B_TRUE); 2957 } 2958 2959 /* 2960 * Check if it is ok to send an IPv4 ICMP error packet in 2961 * response to the IPv4 packet in mp. 2962 * Free the message and return null if no 2963 * ICMP error packet should be sent. 2964 */ 2965 static mblk_t * 2966 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2967 { 2968 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2969 icmph_t *icmph; 2970 ipha_t *ipha; 2971 uint_t len_needed; 2972 2973 if (!mp) 2974 return (NULL); 2975 ipha = (ipha_t *)mp->b_rptr; 2976 if (ip_csum_hdr(ipha)) { 2977 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2978 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2979 freemsg(mp); 2980 return (NULL); 2981 } 2982 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2983 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2984 CLASSD(ipha->ipha_dst) || 2985 CLASSD(ipha->ipha_src) || 2986 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2987 /* Note: only errors to the fragment with offset 0 */ 2988 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2989 freemsg(mp); 2990 return (NULL); 2991 } 2992 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2993 /* 2994 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2995 * errors in response to any ICMP errors. 2996 */ 2997 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 2998 if (mp->b_wptr - mp->b_rptr < len_needed) { 2999 if (!pullupmsg(mp, len_needed)) { 3000 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3001 freemsg(mp); 3002 return (NULL); 3003 } 3004 ipha = (ipha_t *)mp->b_rptr; 3005 } 3006 icmph = (icmph_t *) 3007 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3008 switch (icmph->icmph_type) { 3009 case ICMP_DEST_UNREACHABLE: 3010 case ICMP_SOURCE_QUENCH: 3011 case ICMP_TIME_EXCEEDED: 3012 case ICMP_PARAM_PROBLEM: 3013 case ICMP_REDIRECT: 3014 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3015 freemsg(mp); 3016 return (NULL); 3017 default: 3018 break; 3019 } 3020 } 3021 /* 3022 * If this is a labeled system, then check to see if we're allowed to 3023 * send a response to this particular sender. If not, then just drop. 3024 */ 3025 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3026 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3027 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3028 freemsg(mp); 3029 return (NULL); 3030 } 3031 if (icmp_err_rate_limit(ipst)) { 3032 /* 3033 * Only send ICMP error packets every so often. 3034 * This should be done on a per port/source basis, 3035 * but for now this will suffice. 3036 */ 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 return (mp); 3041 } 3042 3043 /* 3044 * Called when a packet was sent out the same link that it arrived on. 3045 * Check if it is ok to send a redirect and then send it. 3046 */ 3047 void 3048 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3049 ip_recv_attr_t *ira) 3050 { 3051 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3052 ipaddr_t src, nhop; 3053 mblk_t *mp1; 3054 ire_t *nhop_ire; 3055 3056 /* 3057 * Check the source address to see if it originated 3058 * on the same logical subnet it is going back out on. 3059 * If so, we should be able to send it a redirect. 3060 * Avoid sending a redirect if the destination 3061 * is directly connected (i.e., we matched an IRE_ONLINK), 3062 * or if the packet was source routed out this interface. 3063 * 3064 * We avoid sending a redirect if the 3065 * destination is directly connected 3066 * because it is possible that multiple 3067 * IP subnets may have been configured on 3068 * the link, and the source may not 3069 * be on the same subnet as ip destination, 3070 * even though they are on the same 3071 * physical link. 3072 */ 3073 if ((ire->ire_type & IRE_ONLINK) || 3074 ip_source_routed(ipha, ipst)) 3075 return; 3076 3077 nhop_ire = ire_nexthop(ire); 3078 if (nhop_ire == NULL) 3079 return; 3080 3081 nhop = nhop_ire->ire_addr; 3082 3083 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3084 ire_t *ire2; 3085 3086 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3087 mutex_enter(&nhop_ire->ire_lock); 3088 ire2 = nhop_ire->ire_dep_parent; 3089 if (ire2 != NULL) 3090 ire_refhold(ire2); 3091 mutex_exit(&nhop_ire->ire_lock); 3092 ire_refrele(nhop_ire); 3093 nhop_ire = ire2; 3094 } 3095 if (nhop_ire == NULL) 3096 return; 3097 3098 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3099 3100 src = ipha->ipha_src; 3101 3102 /* 3103 * We look at the interface ire for the nexthop, 3104 * to see if ipha_src is in the same subnet 3105 * as the nexthop. 3106 */ 3107 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3108 /* 3109 * The source is directly connected. 3110 */ 3111 mp1 = copymsg(mp); 3112 if (mp1 != NULL) { 3113 icmp_send_redirect(mp1, nhop, ira); 3114 } 3115 } 3116 ire_refrele(nhop_ire); 3117 } 3118 3119 /* 3120 * Generate an ICMP redirect message. 3121 */ 3122 static void 3123 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3124 { 3125 icmph_t icmph; 3126 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3127 3128 mp = icmp_pkt_err_ok(mp, ira); 3129 if (mp == NULL) 3130 return; 3131 3132 bzero(&icmph, sizeof (icmph_t)); 3133 icmph.icmph_type = ICMP_REDIRECT; 3134 icmph.icmph_code = 1; 3135 icmph.icmph_rd_gateway = gateway; 3136 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3137 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3138 } 3139 3140 /* 3141 * Generate an ICMP time exceeded message. 3142 */ 3143 void 3144 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3145 { 3146 icmph_t icmph; 3147 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3148 3149 mp = icmp_pkt_err_ok(mp, ira); 3150 if (mp == NULL) 3151 return; 3152 3153 bzero(&icmph, sizeof (icmph_t)); 3154 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3155 icmph.icmph_code = code; 3156 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3157 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3158 } 3159 3160 /* 3161 * Generate an ICMP unreachable message. 3162 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3163 * constructed by the caller. 3164 */ 3165 void 3166 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3167 { 3168 icmph_t icmph; 3169 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3170 3171 mp = icmp_pkt_err_ok(mp, ira); 3172 if (mp == NULL) 3173 return; 3174 3175 bzero(&icmph, sizeof (icmph_t)); 3176 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3177 icmph.icmph_code = code; 3178 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3179 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3180 } 3181 3182 /* 3183 * Latch in the IPsec state for a stream based the policy in the listener 3184 * and the actions in the ip_recv_attr_t. 3185 * Called directly from TCP and SCTP. 3186 */ 3187 boolean_t 3188 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3189 { 3190 ASSERT(lconnp->conn_policy != NULL); 3191 ASSERT(connp->conn_policy == NULL); 3192 3193 IPPH_REFHOLD(lconnp->conn_policy); 3194 connp->conn_policy = lconnp->conn_policy; 3195 3196 if (ira->ira_ipsec_action != NULL) { 3197 if (connp->conn_latch == NULL) { 3198 connp->conn_latch = iplatch_create(); 3199 if (connp->conn_latch == NULL) 3200 return (B_FALSE); 3201 } 3202 ipsec_latch_inbound(connp, ira); 3203 } 3204 return (B_TRUE); 3205 } 3206 3207 /* 3208 * Verify whether or not the IP address is a valid local address. 3209 * Could be a unicast, including one for a down interface. 3210 * If allow_mcbc then a multicast or broadcast address is also 3211 * acceptable. 3212 * 3213 * In the case of a broadcast/multicast address, however, the 3214 * upper protocol is expected to reset the src address 3215 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3216 * no packets are emitted with broadcast/multicast address as 3217 * source address (that violates hosts requirements RFC 1122) 3218 * The addresses valid for bind are: 3219 * (1) - INADDR_ANY (0) 3220 * (2) - IP address of an UP interface 3221 * (3) - IP address of a DOWN interface 3222 * (4) - valid local IP broadcast addresses. In this case 3223 * the conn will only receive packets destined to 3224 * the specified broadcast address. 3225 * (5) - a multicast address. In this case 3226 * the conn will only receive packets destined to 3227 * the specified multicast address. Note: the 3228 * application still has to issue an 3229 * IP_ADD_MEMBERSHIP socket option. 3230 * 3231 * In all the above cases, the bound address must be valid in the current zone. 3232 * When the address is loopback, multicast or broadcast, there might be many 3233 * matching IREs so bind has to look up based on the zone. 3234 */ 3235 ip_laddr_t 3236 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3237 ip_stack_t *ipst, boolean_t allow_mcbc) 3238 { 3239 ire_t *src_ire; 3240 3241 ASSERT(src_addr != INADDR_ANY); 3242 3243 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3244 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3245 3246 /* 3247 * If an address other than in6addr_any is requested, 3248 * we verify that it is a valid address for bind 3249 * Note: Following code is in if-else-if form for 3250 * readability compared to a condition check. 3251 */ 3252 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3253 /* 3254 * (2) Bind to address of local UP interface 3255 */ 3256 ire_refrele(src_ire); 3257 return (IPVL_UNICAST_UP); 3258 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3259 /* 3260 * (4) Bind to broadcast address 3261 */ 3262 ire_refrele(src_ire); 3263 if (allow_mcbc) 3264 return (IPVL_BCAST); 3265 else 3266 return (IPVL_BAD); 3267 } else if (CLASSD(src_addr)) { 3268 /* (5) bind to multicast address. */ 3269 if (src_ire != NULL) 3270 ire_refrele(src_ire); 3271 3272 if (allow_mcbc) 3273 return (IPVL_MCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else { 3277 ipif_t *ipif; 3278 3279 /* 3280 * (3) Bind to address of local DOWN interface? 3281 * (ipif_lookup_addr() looks up all interfaces 3282 * but we do not get here for UP interfaces 3283 * - case (2) above) 3284 */ 3285 if (src_ire != NULL) 3286 ire_refrele(src_ire); 3287 3288 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3289 if (ipif == NULL) 3290 return (IPVL_BAD); 3291 3292 /* Not a useful source? */ 3293 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3294 ipif_refrele(ipif); 3295 return (IPVL_BAD); 3296 } 3297 ipif_refrele(ipif); 3298 return (IPVL_UNICAST_DOWN); 3299 } 3300 } 3301 3302 /* 3303 * Insert in the bind fanout for IPv4 and IPv6. 3304 * The caller should already have used ip_laddr_verify_v*() before calling 3305 * this. 3306 */ 3307 int 3308 ip_laddr_fanout_insert(conn_t *connp) 3309 { 3310 int error; 3311 3312 /* 3313 * Allow setting new policies. For example, disconnects result 3314 * in us being called. As we would have set conn_policy_cached 3315 * to B_TRUE before, we should set it to B_FALSE, so that policy 3316 * can change after the disconnect. 3317 */ 3318 connp->conn_policy_cached = B_FALSE; 3319 3320 error = ipcl_bind_insert(connp); 3321 if (error != 0) { 3322 if (connp->conn_anon_port) { 3323 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3324 connp->conn_mlp_type, connp->conn_proto, 3325 ntohs(connp->conn_lport), B_FALSE); 3326 } 3327 connp->conn_mlp_type = mlptSingle; 3328 } 3329 return (error); 3330 } 3331 3332 /* 3333 * Verify that both the source and destination addresses are valid. If 3334 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3335 * i.e. have no route to it. Protocols like TCP want to verify destination 3336 * reachability, while tunnels do not. 3337 * 3338 * Determine the route, the interface, and (optionally) the source address 3339 * to use to reach a given destination. 3340 * Note that we allow connect to broadcast and multicast addresses when 3341 * IPDF_ALLOW_MCBC is set. 3342 * first_hop and dst_addr are normally the same, but if source routing 3343 * they will differ; in that case the first_hop is what we'll use for the 3344 * routing lookup but the dce and label checks will be done on dst_addr, 3345 * 3346 * If uinfo is set, then we fill in the best available information 3347 * we have for the destination. This is based on (in priority order) any 3348 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3349 * ill_mtu. 3350 * 3351 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3352 * always do the label check on dst_addr. 3353 */ 3354 int 3355 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3356 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3357 { 3358 ire_t *ire = NULL; 3359 int error = 0; 3360 ipaddr_t setsrc; /* RTF_SETSRC */ 3361 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3362 ip_stack_t *ipst = ixa->ixa_ipst; 3363 dce_t *dce; 3364 uint_t pmtu; 3365 uint_t generation; 3366 nce_t *nce; 3367 ill_t *ill = NULL; 3368 boolean_t multirt = B_FALSE; 3369 3370 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3371 3372 /* 3373 * We never send to zero; the ULPs map it to the loopback address. 3374 * We can't allow it since we use zero to mean unitialized in some 3375 * places. 3376 */ 3377 ASSERT(dst_addr != INADDR_ANY); 3378 3379 if (is_system_labeled()) { 3380 ts_label_t *tsl = NULL; 3381 3382 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3383 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3384 if (error != 0) 3385 return (error); 3386 if (tsl != NULL) { 3387 /* Update the label */ 3388 ip_xmit_attr_replace_tsl(ixa, tsl); 3389 } 3390 } 3391 3392 setsrc = INADDR_ANY; 3393 /* 3394 * Select a route; For IPMP interfaces, we would only select 3395 * a "hidden" route (i.e., going through a specific under_ill) 3396 * if ixa_ifindex has been specified. 3397 */ 3398 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3399 &generation, &setsrc, &error, &multirt); 3400 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3401 if (error != 0) 3402 goto bad_addr; 3403 3404 /* 3405 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3406 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3407 * Otherwise the destination needn't be reachable. 3408 * 3409 * If we match on a reject or black hole, then we've got a 3410 * local failure. May as well fail out the connect() attempt, 3411 * since it's never going to succeed. 3412 */ 3413 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3414 /* 3415 * If we're verifying destination reachability, we always want 3416 * to complain here. 3417 * 3418 * If we're not verifying destination reachability but the 3419 * destination has a route, we still want to fail on the 3420 * temporary address and broadcast address tests. 3421 * 3422 * In both cases do we let the code continue so some reasonable 3423 * information is returned to the caller. That enables the 3424 * caller to use (and even cache) the IRE. conn_ip_ouput will 3425 * use the generation mismatch path to check for the unreachable 3426 * case thereby avoiding any specific check in the main path. 3427 */ 3428 ASSERT(generation == IRE_GENERATION_VERIFY); 3429 if (flags & IPDF_VERIFY_DST) { 3430 /* 3431 * Set errno but continue to set up ixa_ire to be 3432 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3433 * That allows callers to use ip_output to get an 3434 * ICMP error back. 3435 */ 3436 if (!(ire->ire_type & IRE_HOST)) 3437 error = ENETUNREACH; 3438 else 3439 error = EHOSTUNREACH; 3440 } 3441 } 3442 3443 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3444 !(flags & IPDF_ALLOW_MCBC)) { 3445 ire_refrele(ire); 3446 ire = ire_reject(ipst, B_FALSE); 3447 generation = IRE_GENERATION_VERIFY; 3448 error = ENETUNREACH; 3449 } 3450 3451 /* Cache things */ 3452 if (ixa->ixa_ire != NULL) 3453 ire_refrele_notr(ixa->ixa_ire); 3454 #ifdef DEBUG 3455 ire_refhold_notr(ire); 3456 ire_refrele(ire); 3457 #endif 3458 ixa->ixa_ire = ire; 3459 ixa->ixa_ire_generation = generation; 3460 3461 /* 3462 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3463 * since some callers will send a packet to conn_ip_output() even if 3464 * there's an error. 3465 */ 3466 if (flags & IPDF_UNIQUE_DCE) { 3467 /* Fallback to the default dce if allocation fails */ 3468 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3469 if (dce != NULL) 3470 generation = dce->dce_generation; 3471 else 3472 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3473 } else { 3474 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3475 } 3476 ASSERT(dce != NULL); 3477 if (ixa->ixa_dce != NULL) 3478 dce_refrele_notr(ixa->ixa_dce); 3479 #ifdef DEBUG 3480 dce_refhold_notr(dce); 3481 dce_refrele(dce); 3482 #endif 3483 ixa->ixa_dce = dce; 3484 ixa->ixa_dce_generation = generation; 3485 3486 /* 3487 * For multicast with multirt we have a flag passed back from 3488 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3489 * possible multicast address. 3490 * We also need a flag for multicast since we can't check 3491 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3492 */ 3493 if (multirt) { 3494 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3495 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3496 } else { 3497 ixa->ixa_postfragfn = ire->ire_postfragfn; 3498 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3499 } 3500 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3501 /* Get an nce to cache. */ 3502 nce = ire_to_nce(ire, firsthop, NULL); 3503 if (nce == NULL) { 3504 /* Allocation failure? */ 3505 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3506 } else { 3507 if (ixa->ixa_nce != NULL) 3508 nce_refrele(ixa->ixa_nce); 3509 ixa->ixa_nce = nce; 3510 } 3511 } 3512 3513 /* 3514 * If the source address is a loopback address, the 3515 * destination had best be local or multicast. 3516 * If we are sending to an IRE_LOCAL using a loopback source then 3517 * it had better be the same zoneid. 3518 */ 3519 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3520 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3521 ire = NULL; /* Stored in ixa_ire */ 3522 error = EADDRNOTAVAIL; 3523 goto bad_addr; 3524 } 3525 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3526 ire = NULL; /* Stored in ixa_ire */ 3527 error = EADDRNOTAVAIL; 3528 goto bad_addr; 3529 } 3530 } 3531 if (ire->ire_type & IRE_BROADCAST) { 3532 /* 3533 * If the ULP didn't have a specified source, then we 3534 * make sure we reselect the source when sending 3535 * broadcasts out different interfaces. 3536 */ 3537 if (flags & IPDF_SELECT_SRC) 3538 ixa->ixa_flags |= IXAF_SET_SOURCE; 3539 else 3540 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3541 } 3542 3543 /* 3544 * Does the caller want us to pick a source address? 3545 */ 3546 if (flags & IPDF_SELECT_SRC) { 3547 ipaddr_t src_addr; 3548 3549 /* 3550 * We use use ire_nexthop_ill to avoid the under ipmp 3551 * interface for source address selection. Note that for ipmp 3552 * probe packets, ixa_ifindex would have been specified, and 3553 * the ip_select_route() invocation would have picked an ire 3554 * will ire_ill pointing at an under interface. 3555 */ 3556 ill = ire_nexthop_ill(ire); 3557 3558 /* If unreachable we have no ill but need some source */ 3559 if (ill == NULL) { 3560 src_addr = htonl(INADDR_LOOPBACK); 3561 /* Make sure we look for a better source address */ 3562 generation = SRC_GENERATION_VERIFY; 3563 } else { 3564 error = ip_select_source_v4(ill, setsrc, dst_addr, 3565 ixa->ixa_multicast_ifaddr, zoneid, 3566 ipst, &src_addr, &generation, NULL); 3567 if (error != 0) { 3568 ire = NULL; /* Stored in ixa_ire */ 3569 goto bad_addr; 3570 } 3571 } 3572 3573 /* 3574 * We allow the source address to to down. 3575 * However, we check that we don't use the loopback address 3576 * as a source when sending out on the wire. 3577 */ 3578 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3579 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3580 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3581 ire = NULL; /* Stored in ixa_ire */ 3582 error = EADDRNOTAVAIL; 3583 goto bad_addr; 3584 } 3585 3586 *src_addrp = src_addr; 3587 ixa->ixa_src_generation = generation; 3588 } 3589 3590 /* 3591 * Make sure we don't leave an unreachable ixa_nce in place 3592 * since ip_select_route is used when we unplumb i.e., remove 3593 * references on ixa_ire, ixa_nce, and ixa_dce. 3594 */ 3595 nce = ixa->ixa_nce; 3596 if (nce != NULL && nce->nce_is_condemned) { 3597 nce_refrele(nce); 3598 ixa->ixa_nce = NULL; 3599 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3600 } 3601 3602 /* 3603 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3604 * However, we can't do it for IPv4 multicast or broadcast. 3605 */ 3606 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3607 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3608 3609 /* 3610 * Set initial value for fragmentation limit. Either conn_ip_output 3611 * or ULP might updates it when there are routing changes. 3612 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3613 */ 3614 pmtu = ip_get_pmtu(ixa); 3615 ixa->ixa_fragsize = pmtu; 3616 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3617 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3618 ixa->ixa_pmtu = pmtu; 3619 3620 /* 3621 * Extract information useful for some transports. 3622 * First we look for DCE metrics. Then we take what we have in 3623 * the metrics in the route, where the offlink is used if we have 3624 * one. 3625 */ 3626 if (uinfo != NULL) { 3627 bzero(uinfo, sizeof (*uinfo)); 3628 3629 if (dce->dce_flags & DCEF_UINFO) 3630 *uinfo = dce->dce_uinfo; 3631 3632 rts_merge_metrics(uinfo, &ire->ire_metrics); 3633 3634 /* Allow ire_metrics to decrease the path MTU from above */ 3635 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3636 uinfo->iulp_mtu = pmtu; 3637 3638 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3639 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3640 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3641 } 3642 3643 if (ill != NULL) 3644 ill_refrele(ill); 3645 3646 return (error); 3647 3648 bad_addr: 3649 if (ire != NULL) 3650 ire_refrele(ire); 3651 3652 if (ill != NULL) 3653 ill_refrele(ill); 3654 3655 /* 3656 * Make sure we don't leave an unreachable ixa_nce in place 3657 * since ip_select_route is used when we unplumb i.e., remove 3658 * references on ixa_ire, ixa_nce, and ixa_dce. 3659 */ 3660 nce = ixa->ixa_nce; 3661 if (nce != NULL && nce->nce_is_condemned) { 3662 nce_refrele(nce); 3663 ixa->ixa_nce = NULL; 3664 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3665 } 3666 3667 return (error); 3668 } 3669 3670 3671 /* 3672 * Get the base MTU for the case when path MTU discovery is not used. 3673 * Takes the MTU of the IRE into account. 3674 */ 3675 uint_t 3676 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3677 { 3678 uint_t mtu = ill->ill_mtu; 3679 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3680 3681 if (iremtu != 0 && iremtu < mtu) 3682 mtu = iremtu; 3683 3684 return (mtu); 3685 } 3686 3687 /* 3688 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3689 * Assumes that ixa_ire, dce, and nce have already been set up. 3690 * 3691 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3692 * We avoid path MTU discovery if it is disabled with ndd. 3693 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3694 * 3695 * NOTE: We also used to turn it off for source routed packets. That 3696 * is no longer required since the dce is per final destination. 3697 */ 3698 uint_t 3699 ip_get_pmtu(ip_xmit_attr_t *ixa) 3700 { 3701 ip_stack_t *ipst = ixa->ixa_ipst; 3702 dce_t *dce; 3703 nce_t *nce; 3704 ire_t *ire; 3705 uint_t pmtu; 3706 3707 ire = ixa->ixa_ire; 3708 dce = ixa->ixa_dce; 3709 nce = ixa->ixa_nce; 3710 3711 /* 3712 * If path MTU discovery has been turned off by ndd, then we ignore 3713 * any dce_pmtu and for IPv4 we will not set DF. 3714 */ 3715 if (!ipst->ips_ip_path_mtu_discovery) 3716 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3717 3718 pmtu = IP_MAXPACKET; 3719 /* 3720 * Decide whether whether IPv4 sets DF 3721 * For IPv6 "no DF" means to use the 1280 mtu 3722 */ 3723 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3724 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3725 } else { 3726 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3727 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3728 pmtu = IPV6_MIN_MTU; 3729 } 3730 3731 /* Check if the PMTU is to old before we use it */ 3732 if ((dce->dce_flags & DCEF_PMTU) && 3733 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3734 ipst->ips_ip_pathmtu_interval) { 3735 /* 3736 * Older than 20 minutes. Drop the path MTU information. 3737 */ 3738 mutex_enter(&dce->dce_lock); 3739 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3740 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3741 mutex_exit(&dce->dce_lock); 3742 dce_increment_generation(dce); 3743 } 3744 3745 /* The metrics on the route can lower the path MTU */ 3746 if (ire->ire_metrics.iulp_mtu != 0 && 3747 ire->ire_metrics.iulp_mtu < pmtu) 3748 pmtu = ire->ire_metrics.iulp_mtu; 3749 3750 /* 3751 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3752 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3753 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3754 */ 3755 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3756 if (dce->dce_flags & DCEF_PMTU) { 3757 if (dce->dce_pmtu < pmtu) 3758 pmtu = dce->dce_pmtu; 3759 3760 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3761 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3762 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3763 } else { 3764 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3765 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3766 } 3767 } else { 3768 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3769 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3770 } 3771 } 3772 3773 /* 3774 * If we have an IRE_LOCAL we use the loopback mtu instead of 3775 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3776 * mtu as IRE_LOOPBACK. 3777 */ 3778 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3779 uint_t loopback_mtu; 3780 3781 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3782 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3783 3784 if (loopback_mtu < pmtu) 3785 pmtu = loopback_mtu; 3786 } else if (nce != NULL) { 3787 /* 3788 * Make sure we don't exceed the interface MTU. 3789 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3790 * an ill. We'd use the above IP_MAXPACKET in that case just 3791 * to tell the transport something larger than zero. 3792 */ 3793 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3794 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3795 if (nce->nce_common->ncec_ill != nce->nce_ill && 3796 nce->nce_ill->ill_mtu < pmtu) { 3797 /* 3798 * for interfaces in an IPMP group, the mtu of 3799 * the nce_ill (under_ill) could be different 3800 * from the mtu of the ncec_ill, so we take the 3801 * min of the two. 3802 */ 3803 pmtu = nce->nce_ill->ill_mtu; 3804 } 3805 } 3806 3807 /* 3808 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3809 * Only applies to IPv6. 3810 */ 3811 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3812 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3813 switch (ixa->ixa_use_min_mtu) { 3814 case IPV6_USE_MIN_MTU_MULTICAST: 3815 if (ire->ire_type & IRE_MULTICAST) 3816 pmtu = IPV6_MIN_MTU; 3817 break; 3818 case IPV6_USE_MIN_MTU_ALWAYS: 3819 pmtu = IPV6_MIN_MTU; 3820 break; 3821 case IPV6_USE_MIN_MTU_NEVER: 3822 break; 3823 } 3824 } else { 3825 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3826 if (ire->ire_type & IRE_MULTICAST) 3827 pmtu = IPV6_MIN_MTU; 3828 } 3829 } 3830 3831 /* 3832 * After receiving an ICMPv6 "packet too big" message with a 3833 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3834 * will insert a 8-byte fragment header in every packet. We compensate 3835 * for those cases by returning a smaller path MTU to the ULP. 3836 * 3837 * In the case of CGTP then ip_output will add a fragment header. 3838 * Make sure there is room for it by telling a smaller number 3839 * to the transport. 3840 * 3841 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3842 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3843 * which is the size of the packets it can send. 3844 */ 3845 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3846 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3847 (ire->ire_flags & RTF_MULTIRT) || 3848 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3849 pmtu -= sizeof (ip6_frag_t); 3850 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3851 } 3852 } 3853 3854 return (pmtu); 3855 } 3856 3857 /* 3858 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3859 * the final piece where we don't. Return a pointer to the first mblk in the 3860 * result, and update the pointer to the next mblk to chew on. If anything 3861 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3862 * NULL pointer. 3863 */ 3864 mblk_t * 3865 ip_carve_mp(mblk_t **mpp, ssize_t len) 3866 { 3867 mblk_t *mp0; 3868 mblk_t *mp1; 3869 mblk_t *mp2; 3870 3871 if (!len || !mpp || !(mp0 = *mpp)) 3872 return (NULL); 3873 /* If we aren't going to consume the first mblk, we need a dup. */ 3874 if (mp0->b_wptr - mp0->b_rptr > len) { 3875 mp1 = dupb(mp0); 3876 if (mp1) { 3877 /* Partition the data between the two mblks. */ 3878 mp1->b_wptr = mp1->b_rptr + len; 3879 mp0->b_rptr = mp1->b_wptr; 3880 /* 3881 * after adjustments if mblk not consumed is now 3882 * unaligned, try to align it. If this fails free 3883 * all messages and let upper layer recover. 3884 */ 3885 if (!OK_32PTR(mp0->b_rptr)) { 3886 if (!pullupmsg(mp0, -1)) { 3887 freemsg(mp0); 3888 freemsg(mp1); 3889 *mpp = NULL; 3890 return (NULL); 3891 } 3892 } 3893 } 3894 return (mp1); 3895 } 3896 /* Eat through as many mblks as we need to get len bytes. */ 3897 len -= mp0->b_wptr - mp0->b_rptr; 3898 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3899 if (mp2->b_wptr - mp2->b_rptr > len) { 3900 /* 3901 * We won't consume the entire last mblk. Like 3902 * above, dup and partition it. 3903 */ 3904 mp1->b_cont = dupb(mp2); 3905 mp1 = mp1->b_cont; 3906 if (!mp1) { 3907 /* 3908 * Trouble. Rather than go to a lot of 3909 * trouble to clean up, we free the messages. 3910 * This won't be any worse than losing it on 3911 * the wire. 3912 */ 3913 freemsg(mp0); 3914 freemsg(mp2); 3915 *mpp = NULL; 3916 return (NULL); 3917 } 3918 mp1->b_wptr = mp1->b_rptr + len; 3919 mp2->b_rptr = mp1->b_wptr; 3920 /* 3921 * after adjustments if mblk not consumed is now 3922 * unaligned, try to align it. If this fails free 3923 * all messages and let upper layer recover. 3924 */ 3925 if (!OK_32PTR(mp2->b_rptr)) { 3926 if (!pullupmsg(mp2, -1)) { 3927 freemsg(mp0); 3928 freemsg(mp2); 3929 *mpp = NULL; 3930 return (NULL); 3931 } 3932 } 3933 *mpp = mp2; 3934 return (mp0); 3935 } 3936 /* Decrement len by the amount we just got. */ 3937 len -= mp2->b_wptr - mp2->b_rptr; 3938 } 3939 /* 3940 * len should be reduced to zero now. If not our caller has 3941 * screwed up. 3942 */ 3943 if (len) { 3944 /* Shouldn't happen! */ 3945 freemsg(mp0); 3946 *mpp = NULL; 3947 return (NULL); 3948 } 3949 /* 3950 * We consumed up to exactly the end of an mblk. Detach the part 3951 * we are returning from the rest of the chain. 3952 */ 3953 mp1->b_cont = NULL; 3954 *mpp = mp2; 3955 return (mp0); 3956 } 3957 3958 /* The ill stream is being unplumbed. Called from ip_close */ 3959 int 3960 ip_modclose(ill_t *ill) 3961 { 3962 boolean_t success; 3963 ipsq_t *ipsq; 3964 ipif_t *ipif; 3965 queue_t *q = ill->ill_rq; 3966 ip_stack_t *ipst = ill->ill_ipst; 3967 int i; 3968 arl_ill_common_t *ai = ill->ill_common; 3969 3970 /* 3971 * The punlink prior to this may have initiated a capability 3972 * negotiation. But ipsq_enter will block until that finishes or 3973 * times out. 3974 */ 3975 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3976 3977 /* 3978 * Open/close/push/pop is guaranteed to be single threaded 3979 * per stream by STREAMS. FS guarantees that all references 3980 * from top are gone before close is called. So there can't 3981 * be another close thread that has set CONDEMNED on this ill. 3982 * and cause ipsq_enter to return failure. 3983 */ 3984 ASSERT(success); 3985 ipsq = ill->ill_phyint->phyint_ipsq; 3986 3987 /* 3988 * Mark it condemned. No new reference will be made to this ill. 3989 * Lookup functions will return an error. Threads that try to 3990 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3991 * that the refcnt will drop down to zero. 3992 */ 3993 mutex_enter(&ill->ill_lock); 3994 ill->ill_state_flags |= ILL_CONDEMNED; 3995 for (ipif = ill->ill_ipif; ipif != NULL; 3996 ipif = ipif->ipif_next) { 3997 ipif->ipif_state_flags |= IPIF_CONDEMNED; 3998 } 3999 /* 4000 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4001 * returns error if ILL_CONDEMNED is set 4002 */ 4003 cv_broadcast(&ill->ill_cv); 4004 mutex_exit(&ill->ill_lock); 4005 4006 /* 4007 * Send all the deferred DLPI messages downstream which came in 4008 * during the small window right before ipsq_enter(). We do this 4009 * without waiting for the ACKs because all the ACKs for M_PROTO 4010 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4011 */ 4012 ill_dlpi_send_deferred(ill); 4013 4014 /* 4015 * Shut down fragmentation reassembly. 4016 * ill_frag_timer won't start a timer again. 4017 * Now cancel any existing timer 4018 */ 4019 (void) untimeout(ill->ill_frag_timer_id); 4020 (void) ill_frag_timeout(ill, 0); 4021 4022 /* 4023 * Call ill_delete to bring down the ipifs, ilms and ill on 4024 * this ill. Then wait for the refcnts to drop to zero. 4025 * ill_is_freeable checks whether the ill is really quiescent. 4026 * Then make sure that threads that are waiting to enter the 4027 * ipsq have seen the error returned by ipsq_enter and have 4028 * gone away. Then we call ill_delete_tail which does the 4029 * DL_UNBIND_REQ with the driver and then qprocsoff. 4030 */ 4031 ill_delete(ill); 4032 mutex_enter(&ill->ill_lock); 4033 while (!ill_is_freeable(ill)) 4034 cv_wait(&ill->ill_cv, &ill->ill_lock); 4035 4036 while (ill->ill_waiters) 4037 cv_wait(&ill->ill_cv, &ill->ill_lock); 4038 4039 mutex_exit(&ill->ill_lock); 4040 4041 /* 4042 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4043 * it held until the end of the function since the cleanup 4044 * below needs to be able to use the ip_stack_t. 4045 */ 4046 netstack_hold(ipst->ips_netstack); 4047 4048 /* qprocsoff is done via ill_delete_tail */ 4049 ill_delete_tail(ill); 4050 /* 4051 * synchronously wait for arp stream to unbind. After this, we 4052 * cannot get any data packets up from the driver. 4053 */ 4054 arp_unbind_complete(ill); 4055 ASSERT(ill->ill_ipst == NULL); 4056 4057 /* 4058 * Walk through all conns and qenable those that have queued data. 4059 * Close synchronization needs this to 4060 * be done to ensure that all upper layers blocked 4061 * due to flow control to the closing device 4062 * get unblocked. 4063 */ 4064 ip1dbg(("ip_wsrv: walking\n")); 4065 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4066 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4067 } 4068 4069 /* 4070 * ai can be null if this is an IPv6 ill, or if the IPv4 4071 * stream is being torn down before ARP was plumbed (e.g., 4072 * /sbin/ifconfig plumbing a stream twice, and encountering 4073 * an error 4074 */ 4075 if (ai != NULL) { 4076 ASSERT(!ill->ill_isv6); 4077 mutex_enter(&ai->ai_lock); 4078 ai->ai_ill = NULL; 4079 if (ai->ai_arl == NULL) { 4080 mutex_destroy(&ai->ai_lock); 4081 kmem_free(ai, sizeof (*ai)); 4082 } else { 4083 cv_signal(&ai->ai_ill_unplumb_done); 4084 mutex_exit(&ai->ai_lock); 4085 } 4086 } 4087 4088 mutex_enter(&ipst->ips_ip_mi_lock); 4089 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4090 mutex_exit(&ipst->ips_ip_mi_lock); 4091 4092 /* 4093 * credp could be null if the open didn't succeed and ip_modopen 4094 * itself calls ip_close. 4095 */ 4096 if (ill->ill_credp != NULL) 4097 crfree(ill->ill_credp); 4098 4099 mutex_destroy(&ill->ill_saved_ire_lock); 4100 mutex_destroy(&ill->ill_lock); 4101 rw_destroy(&ill->ill_mcast_lock); 4102 mutex_destroy(&ill->ill_mcast_serializer); 4103 list_destroy(&ill->ill_nce); 4104 4105 /* 4106 * Now we are done with the module close pieces that 4107 * need the netstack_t. 4108 */ 4109 netstack_rele(ipst->ips_netstack); 4110 4111 mi_close_free((IDP)ill); 4112 q->q_ptr = WR(q)->q_ptr = NULL; 4113 4114 ipsq_exit(ipsq); 4115 4116 return (0); 4117 } 4118 4119 /* 4120 * This is called as part of close() for IP, UDP, ICMP, and RTS 4121 * in order to quiesce the conn. 4122 */ 4123 void 4124 ip_quiesce_conn(conn_t *connp) 4125 { 4126 boolean_t drain_cleanup_reqd = B_FALSE; 4127 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4128 boolean_t ilg_cleanup_reqd = B_FALSE; 4129 ip_stack_t *ipst; 4130 4131 ASSERT(!IPCL_IS_TCP(connp)); 4132 ipst = connp->conn_netstack->netstack_ip; 4133 4134 /* 4135 * Mark the conn as closing, and this conn must not be 4136 * inserted in future into any list. Eg. conn_drain_insert(), 4137 * won't insert this conn into the conn_drain_list. 4138 * 4139 * conn_idl, and conn_ilg cannot get set henceforth. 4140 */ 4141 mutex_enter(&connp->conn_lock); 4142 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4143 connp->conn_state_flags |= CONN_CLOSING; 4144 if (connp->conn_idl != NULL) 4145 drain_cleanup_reqd = B_TRUE; 4146 if (connp->conn_oper_pending_ill != NULL) 4147 conn_ioctl_cleanup_reqd = B_TRUE; 4148 if (connp->conn_dhcpinit_ill != NULL) { 4149 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4150 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4151 ill_set_inputfn(connp->conn_dhcpinit_ill); 4152 connp->conn_dhcpinit_ill = NULL; 4153 } 4154 if (connp->conn_ilg != NULL) 4155 ilg_cleanup_reqd = B_TRUE; 4156 mutex_exit(&connp->conn_lock); 4157 4158 if (conn_ioctl_cleanup_reqd) 4159 conn_ioctl_cleanup(connp); 4160 4161 if (is_system_labeled() && connp->conn_anon_port) { 4162 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4163 connp->conn_mlp_type, connp->conn_proto, 4164 ntohs(connp->conn_lport), B_FALSE); 4165 connp->conn_anon_port = 0; 4166 } 4167 connp->conn_mlp_type = mlptSingle; 4168 4169 /* 4170 * Remove this conn from any fanout list it is on. 4171 * and then wait for any threads currently operating 4172 * on this endpoint to finish 4173 */ 4174 ipcl_hash_remove(connp); 4175 4176 /* 4177 * Remove this conn from the drain list, and do any other cleanup that 4178 * may be required. (TCP conns are never flow controlled, and 4179 * conn_idl will be NULL.) 4180 */ 4181 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4182 idl_t *idl = connp->conn_idl; 4183 4184 mutex_enter(&idl->idl_lock); 4185 conn_drain(connp, B_TRUE); 4186 mutex_exit(&idl->idl_lock); 4187 } 4188 4189 if (connp == ipst->ips_ip_g_mrouter) 4190 (void) ip_mrouter_done(ipst); 4191 4192 if (ilg_cleanup_reqd) 4193 ilg_delete_all(connp); 4194 4195 /* 4196 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4197 * callers from write side can't be there now because close 4198 * is in progress. The only other caller is ipcl_walk 4199 * which checks for the condemned flag. 4200 */ 4201 mutex_enter(&connp->conn_lock); 4202 connp->conn_state_flags |= CONN_CONDEMNED; 4203 while (connp->conn_ref != 1) 4204 cv_wait(&connp->conn_cv, &connp->conn_lock); 4205 connp->conn_state_flags |= CONN_QUIESCED; 4206 mutex_exit(&connp->conn_lock); 4207 } 4208 4209 /* ARGSUSED */ 4210 int 4211 ip_close(queue_t *q, int flags) 4212 { 4213 conn_t *connp; 4214 4215 /* 4216 * Call the appropriate delete routine depending on whether this is 4217 * a module or device. 4218 */ 4219 if (WR(q)->q_next != NULL) { 4220 /* This is a module close */ 4221 return (ip_modclose((ill_t *)q->q_ptr)); 4222 } 4223 4224 connp = q->q_ptr; 4225 ip_quiesce_conn(connp); 4226 4227 qprocsoff(q); 4228 4229 /* 4230 * Now we are truly single threaded on this stream, and can 4231 * delete the things hanging off the connp, and finally the connp. 4232 * We removed this connp from the fanout list, it cannot be 4233 * accessed thru the fanouts, and we already waited for the 4234 * conn_ref to drop to 0. We are already in close, so 4235 * there cannot be any other thread from the top. qprocsoff 4236 * has completed, and service has completed or won't run in 4237 * future. 4238 */ 4239 ASSERT(connp->conn_ref == 1); 4240 4241 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4242 4243 connp->conn_ref--; 4244 ipcl_conn_destroy(connp); 4245 4246 q->q_ptr = WR(q)->q_ptr = NULL; 4247 return (0); 4248 } 4249 4250 /* 4251 * Wapper around putnext() so that ip_rts_request can merely use 4252 * conn_recv. 4253 */ 4254 /*ARGSUSED2*/ 4255 static void 4256 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4257 { 4258 conn_t *connp = (conn_t *)arg1; 4259 4260 putnext(connp->conn_rq, mp); 4261 } 4262 4263 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4264 /* ARGSUSED */ 4265 static void 4266 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4267 { 4268 freemsg(mp); 4269 } 4270 4271 /* 4272 * Called when the module is about to be unloaded 4273 */ 4274 void 4275 ip_ddi_destroy(void) 4276 { 4277 tnet_fini(); 4278 4279 icmp_ddi_g_destroy(); 4280 rts_ddi_g_destroy(); 4281 udp_ddi_g_destroy(); 4282 sctp_ddi_g_destroy(); 4283 tcp_ddi_g_destroy(); 4284 ilb_ddi_g_destroy(); 4285 dce_g_destroy(); 4286 ipsec_policy_g_destroy(); 4287 ipcl_g_destroy(); 4288 ip_net_g_destroy(); 4289 ip_ire_g_fini(); 4290 inet_minor_destroy(ip_minor_arena_sa); 4291 #if defined(_LP64) 4292 inet_minor_destroy(ip_minor_arena_la); 4293 #endif 4294 4295 #ifdef DEBUG 4296 list_destroy(&ip_thread_list); 4297 rw_destroy(&ip_thread_rwlock); 4298 tsd_destroy(&ip_thread_data); 4299 #endif 4300 4301 netstack_unregister(NS_IP); 4302 } 4303 4304 /* 4305 * First step in cleanup. 4306 */ 4307 /* ARGSUSED */ 4308 static void 4309 ip_stack_shutdown(netstackid_t stackid, void *arg) 4310 { 4311 ip_stack_t *ipst = (ip_stack_t *)arg; 4312 4313 #ifdef NS_DEBUG 4314 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4315 #endif 4316 4317 /* 4318 * Perform cleanup for special interfaces (loopback and IPMP). 4319 */ 4320 ip_interface_cleanup(ipst); 4321 4322 /* 4323 * The *_hook_shutdown()s start the process of notifying any 4324 * consumers that things are going away.... nothing is destroyed. 4325 */ 4326 ipv4_hook_shutdown(ipst); 4327 ipv6_hook_shutdown(ipst); 4328 arp_hook_shutdown(ipst); 4329 4330 mutex_enter(&ipst->ips_capab_taskq_lock); 4331 ipst->ips_capab_taskq_quit = B_TRUE; 4332 cv_signal(&ipst->ips_capab_taskq_cv); 4333 mutex_exit(&ipst->ips_capab_taskq_lock); 4334 } 4335 4336 /* 4337 * Free the IP stack instance. 4338 */ 4339 static void 4340 ip_stack_fini(netstackid_t stackid, void *arg) 4341 { 4342 ip_stack_t *ipst = (ip_stack_t *)arg; 4343 int ret; 4344 4345 #ifdef NS_DEBUG 4346 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4347 #endif 4348 /* 4349 * At this point, all of the notifications that the events and 4350 * protocols are going away have been run, meaning that we can 4351 * now set about starting to clean things up. 4352 */ 4353 ipobs_fini(ipst); 4354 ipv4_hook_destroy(ipst); 4355 ipv6_hook_destroy(ipst); 4356 arp_hook_destroy(ipst); 4357 ip_net_destroy(ipst); 4358 4359 ipmp_destroy(ipst); 4360 4361 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4362 ipst->ips_ip_mibkp = NULL; 4363 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4364 ipst->ips_icmp_mibkp = NULL; 4365 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4366 ipst->ips_ip_kstat = NULL; 4367 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4368 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4369 ipst->ips_ip6_kstat = NULL; 4370 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4371 4372 kmem_free(ipst->ips_propinfo_tbl, 4373 ip_propinfo_count * sizeof (mod_prop_info_t)); 4374 ipst->ips_propinfo_tbl = NULL; 4375 4376 dce_stack_destroy(ipst); 4377 ip_mrouter_stack_destroy(ipst); 4378 4379 ret = untimeout(ipst->ips_igmp_timeout_id); 4380 if (ret == -1) { 4381 ASSERT(ipst->ips_igmp_timeout_id == 0); 4382 } else { 4383 ASSERT(ipst->ips_igmp_timeout_id != 0); 4384 ipst->ips_igmp_timeout_id = 0; 4385 } 4386 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4387 if (ret == -1) { 4388 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4389 } else { 4390 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4391 ipst->ips_igmp_slowtimeout_id = 0; 4392 } 4393 ret = untimeout(ipst->ips_mld_timeout_id); 4394 if (ret == -1) { 4395 ASSERT(ipst->ips_mld_timeout_id == 0); 4396 } else { 4397 ASSERT(ipst->ips_mld_timeout_id != 0); 4398 ipst->ips_mld_timeout_id = 0; 4399 } 4400 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4401 if (ret == -1) { 4402 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4403 } else { 4404 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4405 ipst->ips_mld_slowtimeout_id = 0; 4406 } 4407 4408 ip_ire_fini(ipst); 4409 ip6_asp_free(ipst); 4410 conn_drain_fini(ipst); 4411 ipcl_destroy(ipst); 4412 4413 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4414 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4415 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4416 ipst->ips_ndp4 = NULL; 4417 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4418 ipst->ips_ndp6 = NULL; 4419 4420 if (ipst->ips_loopback_ksp != NULL) { 4421 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4422 ipst->ips_loopback_ksp = NULL; 4423 } 4424 4425 mutex_destroy(&ipst->ips_capab_taskq_lock); 4426 cv_destroy(&ipst->ips_capab_taskq_cv); 4427 4428 rw_destroy(&ipst->ips_srcid_lock); 4429 4430 mutex_destroy(&ipst->ips_ip_mi_lock); 4431 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4432 4433 mutex_destroy(&ipst->ips_igmp_timer_lock); 4434 mutex_destroy(&ipst->ips_mld_timer_lock); 4435 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4436 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4437 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4438 rw_destroy(&ipst->ips_ill_g_lock); 4439 4440 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4441 ipst->ips_phyint_g_list = NULL; 4442 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4443 ipst->ips_ill_g_heads = NULL; 4444 4445 ldi_ident_release(ipst->ips_ldi_ident); 4446 kmem_free(ipst, sizeof (*ipst)); 4447 } 4448 4449 /* 4450 * This function is called from the TSD destructor, and is used to debug 4451 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4452 * details. 4453 */ 4454 static void 4455 ip_thread_exit(void *phash) 4456 { 4457 th_hash_t *thh = phash; 4458 4459 rw_enter(&ip_thread_rwlock, RW_WRITER); 4460 list_remove(&ip_thread_list, thh); 4461 rw_exit(&ip_thread_rwlock); 4462 mod_hash_destroy_hash(thh->thh_hash); 4463 kmem_free(thh, sizeof (*thh)); 4464 } 4465 4466 /* 4467 * Called when the IP kernel module is loaded into the kernel 4468 */ 4469 void 4470 ip_ddi_init(void) 4471 { 4472 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4473 4474 /* 4475 * For IP and TCP the minor numbers should start from 2 since we have 4 4476 * initial devices: ip, ip6, tcp, tcp6. 4477 */ 4478 /* 4479 * If this is a 64-bit kernel, then create two separate arenas - 4480 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4481 * other for socket apps in the range 2^^18 through 2^^32-1. 4482 */ 4483 ip_minor_arena_la = NULL; 4484 ip_minor_arena_sa = NULL; 4485 #if defined(_LP64) 4486 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4487 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4488 cmn_err(CE_PANIC, 4489 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4490 } 4491 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4492 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4493 cmn_err(CE_PANIC, 4494 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4495 } 4496 #else 4497 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4498 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4499 cmn_err(CE_PANIC, 4500 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4501 } 4502 #endif 4503 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4504 4505 ipcl_g_init(); 4506 ip_ire_g_init(); 4507 ip_net_g_init(); 4508 4509 #ifdef DEBUG 4510 tsd_create(&ip_thread_data, ip_thread_exit); 4511 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4512 list_create(&ip_thread_list, sizeof (th_hash_t), 4513 offsetof(th_hash_t, thh_link)); 4514 #endif 4515 ipsec_policy_g_init(); 4516 tcp_ddi_g_init(); 4517 sctp_ddi_g_init(); 4518 dce_g_init(); 4519 4520 /* 4521 * We want to be informed each time a stack is created or 4522 * destroyed in the kernel, so we can maintain the 4523 * set of udp_stack_t's. 4524 */ 4525 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4526 ip_stack_fini); 4527 4528 tnet_init(); 4529 4530 udp_ddi_g_init(); 4531 rts_ddi_g_init(); 4532 icmp_ddi_g_init(); 4533 ilb_ddi_g_init(); 4534 } 4535 4536 /* 4537 * Initialize the IP stack instance. 4538 */ 4539 static void * 4540 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4541 { 4542 ip_stack_t *ipst; 4543 size_t arrsz; 4544 major_t major; 4545 4546 #ifdef NS_DEBUG 4547 printf("ip_stack_init(stack %d)\n", stackid); 4548 #endif 4549 4550 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4551 ipst->ips_netstack = ns; 4552 4553 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4554 KM_SLEEP); 4555 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4556 KM_SLEEP); 4557 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4558 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4559 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4560 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4561 4562 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4563 ipst->ips_igmp_deferred_next = INFINITY; 4564 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4565 ipst->ips_mld_deferred_next = INFINITY; 4566 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4567 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4568 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4569 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4570 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4571 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4572 4573 ipcl_init(ipst); 4574 ip_ire_init(ipst); 4575 ip6_asp_init(ipst); 4576 ipif_init(ipst); 4577 conn_drain_init(ipst); 4578 ip_mrouter_stack_init(ipst); 4579 dce_stack_init(ipst); 4580 4581 ipst->ips_ip_multirt_log_interval = 1000; 4582 4583 ipst->ips_ill_index = 1; 4584 4585 ipst->ips_saved_ip_forwarding = -1; 4586 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4587 4588 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4589 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4590 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4591 4592 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4593 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4594 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4595 ipst->ips_ip6_kstat = 4596 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4597 4598 ipst->ips_ip_src_id = 1; 4599 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4600 4601 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4602 4603 ip_net_init(ipst, ns); 4604 ipv4_hook_init(ipst); 4605 ipv6_hook_init(ipst); 4606 arp_hook_init(ipst); 4607 ipmp_init(ipst); 4608 ipobs_init(ipst); 4609 4610 /* 4611 * Create the taskq dispatcher thread and initialize related stuff. 4612 */ 4613 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4614 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4615 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4616 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4617 4618 major = mod_name_to_major(INET_NAME); 4619 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4620 return (ipst); 4621 } 4622 4623 /* 4624 * Allocate and initialize a DLPI template of the specified length. (May be 4625 * called as writer.) 4626 */ 4627 mblk_t * 4628 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4629 { 4630 mblk_t *mp; 4631 4632 mp = allocb(len, BPRI_MED); 4633 if (!mp) 4634 return (NULL); 4635 4636 /* 4637 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4638 * of which we don't seem to use) are sent with M_PCPROTO, and 4639 * that other DLPI are M_PROTO. 4640 */ 4641 if (prim == DL_INFO_REQ) { 4642 mp->b_datap->db_type = M_PCPROTO; 4643 } else { 4644 mp->b_datap->db_type = M_PROTO; 4645 } 4646 4647 mp->b_wptr = mp->b_rptr + len; 4648 bzero(mp->b_rptr, len); 4649 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4650 return (mp); 4651 } 4652 4653 /* 4654 * Allocate and initialize a DLPI notification. (May be called as writer.) 4655 */ 4656 mblk_t * 4657 ip_dlnotify_alloc(uint_t notification, uint_t data) 4658 { 4659 dl_notify_ind_t *notifyp; 4660 mblk_t *mp; 4661 4662 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4663 return (NULL); 4664 4665 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4666 notifyp->dl_notification = notification; 4667 notifyp->dl_data = data; 4668 return (mp); 4669 } 4670 4671 /* 4672 * Debug formatting routine. Returns a character string representation of the 4673 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4674 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4675 * 4676 * Once the ndd table-printing interfaces are removed, this can be changed to 4677 * standard dotted-decimal form. 4678 */ 4679 char * 4680 ip_dot_addr(ipaddr_t addr, char *buf) 4681 { 4682 uint8_t *ap = (uint8_t *)&addr; 4683 4684 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4685 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4686 return (buf); 4687 } 4688 4689 /* 4690 * Write the given MAC address as a printable string in the usual colon- 4691 * separated format. 4692 */ 4693 const char * 4694 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4695 { 4696 char *bp; 4697 4698 if (alen == 0 || buflen < 4) 4699 return ("?"); 4700 bp = buf; 4701 for (;;) { 4702 /* 4703 * If there are more MAC address bytes available, but we won't 4704 * have any room to print them, then add "..." to the string 4705 * instead. See below for the 'magic number' explanation. 4706 */ 4707 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4708 (void) strcpy(bp, "..."); 4709 break; 4710 } 4711 (void) sprintf(bp, "%02x", *addr++); 4712 bp += 2; 4713 if (--alen == 0) 4714 break; 4715 *bp++ = ':'; 4716 buflen -= 3; 4717 /* 4718 * At this point, based on the first 'if' statement above, 4719 * either alen == 1 and buflen >= 3, or alen > 1 and 4720 * buflen >= 4. The first case leaves room for the final "xx" 4721 * number and trailing NUL byte. The second leaves room for at 4722 * least "...". Thus the apparently 'magic' numbers chosen for 4723 * that statement. 4724 */ 4725 } 4726 return (buf); 4727 } 4728 4729 /* 4730 * Called when it is conceptually a ULP that would sent the packet 4731 * e.g., port unreachable and protocol unreachable. Check that the packet 4732 * would have passed the IPsec global policy before sending the error. 4733 * 4734 * Send an ICMP error after patching up the packet appropriately. 4735 * Uses ip_drop_input and bumps the appropriate MIB. 4736 */ 4737 void 4738 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4739 ip_recv_attr_t *ira) 4740 { 4741 ipha_t *ipha; 4742 boolean_t secure; 4743 ill_t *ill = ira->ira_ill; 4744 ip_stack_t *ipst = ill->ill_ipst; 4745 netstack_t *ns = ipst->ips_netstack; 4746 ipsec_stack_t *ipss = ns->netstack_ipsec; 4747 4748 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4749 4750 /* 4751 * We are generating an icmp error for some inbound packet. 4752 * Called from all ip_fanout_(udp, tcp, proto) functions. 4753 * Before we generate an error, check with global policy 4754 * to see whether this is allowed to enter the system. As 4755 * there is no "conn", we are checking with global policy. 4756 */ 4757 ipha = (ipha_t *)mp->b_rptr; 4758 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4759 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4760 if (mp == NULL) 4761 return; 4762 } 4763 4764 /* We never send errors for protocols that we do implement */ 4765 if (ira->ira_protocol == IPPROTO_ICMP || 4766 ira->ira_protocol == IPPROTO_IGMP) { 4767 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4768 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4769 freemsg(mp); 4770 return; 4771 } 4772 /* 4773 * Have to correct checksum since 4774 * the packet might have been 4775 * fragmented and the reassembly code in ip_rput 4776 * does not restore the IP checksum. 4777 */ 4778 ipha->ipha_hdr_checksum = 0; 4779 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4780 4781 switch (icmp_type) { 4782 case ICMP_DEST_UNREACHABLE: 4783 switch (icmp_code) { 4784 case ICMP_PROTOCOL_UNREACHABLE: 4785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4786 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4787 break; 4788 case ICMP_PORT_UNREACHABLE: 4789 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4790 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4791 break; 4792 } 4793 4794 icmp_unreachable(mp, icmp_code, ira); 4795 break; 4796 default: 4797 #ifdef DEBUG 4798 panic("ip_fanout_send_icmp_v4: wrong type"); 4799 /*NOTREACHED*/ 4800 #else 4801 freemsg(mp); 4802 break; 4803 #endif 4804 } 4805 } 4806 4807 /* 4808 * Used to send an ICMP error message when a packet is received for 4809 * a protocol that is not supported. The mblk passed as argument 4810 * is consumed by this function. 4811 */ 4812 void 4813 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4814 { 4815 ipha_t *ipha; 4816 4817 ipha = (ipha_t *)mp->b_rptr; 4818 if (ira->ira_flags & IRAF_IS_IPV4) { 4819 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4820 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4821 ICMP_PROTOCOL_UNREACHABLE, ira); 4822 } else { 4823 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4824 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4825 ICMP6_PARAMPROB_NEXTHEADER, ira); 4826 } 4827 } 4828 4829 /* 4830 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4831 * Handles IPv4 and IPv6. 4832 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4833 * Caller is responsible for dropping references to the conn. 4834 */ 4835 void 4836 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4837 ip_recv_attr_t *ira) 4838 { 4839 ill_t *ill = ira->ira_ill; 4840 ip_stack_t *ipst = ill->ill_ipst; 4841 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4842 boolean_t secure; 4843 uint_t protocol = ira->ira_protocol; 4844 iaflags_t iraflags = ira->ira_flags; 4845 queue_t *rq; 4846 4847 secure = iraflags & IRAF_IPSEC_SECURE; 4848 4849 rq = connp->conn_rq; 4850 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4851 switch (protocol) { 4852 case IPPROTO_ICMPV6: 4853 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4854 break; 4855 case IPPROTO_ICMP: 4856 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4857 break; 4858 default: 4859 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4860 break; 4861 } 4862 freemsg(mp); 4863 return; 4864 } 4865 4866 ASSERT(!(IPCL_IS_IPTUN(connp))); 4867 4868 if (((iraflags & IRAF_IS_IPV4) ? 4869 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4870 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4871 secure) { 4872 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4873 ip6h, ira); 4874 if (mp == NULL) { 4875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4876 /* Note that mp is NULL */ 4877 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4878 return; 4879 } 4880 } 4881 4882 if (iraflags & IRAF_ICMP_ERROR) { 4883 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4884 } else { 4885 ill_t *rill = ira->ira_rill; 4886 4887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4888 ira->ira_ill = ira->ira_rill = NULL; 4889 /* Send it upstream */ 4890 (connp->conn_recv)(connp, mp, NULL, ira); 4891 ira->ira_ill = ill; 4892 ira->ira_rill = rill; 4893 } 4894 } 4895 4896 /* 4897 * Handle protocols with which IP is less intimate. There 4898 * can be more than one stream bound to a particular 4899 * protocol. When this is the case, normally each one gets a copy 4900 * of any incoming packets. 4901 * 4902 * IPsec NOTE : 4903 * 4904 * Don't allow a secure packet going up a non-secure connection. 4905 * We don't allow this because 4906 * 4907 * 1) Reply might go out in clear which will be dropped at 4908 * the sending side. 4909 * 2) If the reply goes out in clear it will give the 4910 * adversary enough information for getting the key in 4911 * most of the cases. 4912 * 4913 * Moreover getting a secure packet when we expect clear 4914 * implies that SA's were added without checking for 4915 * policy on both ends. This should not happen once ISAKMP 4916 * is used to negotiate SAs as SAs will be added only after 4917 * verifying the policy. 4918 * 4919 * Zones notes: 4920 * Earlier in ip_input on a system with multiple shared-IP zones we 4921 * duplicate the multicast and broadcast packets and send them up 4922 * with each explicit zoneid that exists on that ill. 4923 * This means that here we can match the zoneid with SO_ALLZONES being special. 4924 */ 4925 void 4926 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4927 { 4928 mblk_t *mp1; 4929 ipaddr_t laddr; 4930 conn_t *connp, *first_connp, *next_connp; 4931 connf_t *connfp; 4932 ill_t *ill = ira->ira_ill; 4933 ip_stack_t *ipst = ill->ill_ipst; 4934 4935 laddr = ipha->ipha_dst; 4936 4937 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4938 mutex_enter(&connfp->connf_lock); 4939 connp = connfp->connf_head; 4940 for (connp = connfp->connf_head; connp != NULL; 4941 connp = connp->conn_next) { 4942 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4943 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4944 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4945 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4946 break; 4947 } 4948 } 4949 4950 if (connp == NULL) { 4951 /* 4952 * No one bound to these addresses. Is 4953 * there a client that wants all 4954 * unclaimed datagrams? 4955 */ 4956 mutex_exit(&connfp->connf_lock); 4957 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4958 ICMP_PROTOCOL_UNREACHABLE, ira); 4959 return; 4960 } 4961 4962 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4963 4964 CONN_INC_REF(connp); 4965 first_connp = connp; 4966 connp = connp->conn_next; 4967 4968 for (;;) { 4969 while (connp != NULL) { 4970 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4971 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4972 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4973 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4974 ira, connp))) 4975 break; 4976 connp = connp->conn_next; 4977 } 4978 4979 if (connp == NULL) { 4980 /* No more interested clients */ 4981 connp = first_connp; 4982 break; 4983 } 4984 if (((mp1 = dupmsg(mp)) == NULL) && 4985 ((mp1 = copymsg(mp)) == NULL)) { 4986 /* Memory allocation failed */ 4987 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4988 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4989 connp = first_connp; 4990 break; 4991 } 4992 4993 CONN_INC_REF(connp); 4994 mutex_exit(&connfp->connf_lock); 4995 4996 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 4997 ira); 4998 4999 mutex_enter(&connfp->connf_lock); 5000 /* Follow the next pointer before releasing the conn. */ 5001 next_connp = connp->conn_next; 5002 CONN_DEC_REF(connp); 5003 connp = next_connp; 5004 } 5005 5006 /* Last one. Send it upstream. */ 5007 mutex_exit(&connfp->connf_lock); 5008 5009 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5010 5011 CONN_DEC_REF(connp); 5012 } 5013 5014 /* 5015 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5016 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5017 * is not consumed. 5018 * 5019 * One of three things can happen, all of which affect the passed-in mblk: 5020 * 5021 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5022 * 5023 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5024 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5025 * 5026 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5027 */ 5028 mblk_t * 5029 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5030 { 5031 int shift, plen, iph_len; 5032 ipha_t *ipha; 5033 udpha_t *udpha; 5034 uint32_t *spi; 5035 uint32_t esp_ports; 5036 uint8_t *orptr; 5037 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5038 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5039 5040 ipha = (ipha_t *)mp->b_rptr; 5041 iph_len = ira->ira_ip_hdr_length; 5042 plen = ira->ira_pktlen; 5043 5044 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5045 /* 5046 * Most likely a keepalive for the benefit of an intervening 5047 * NAT. These aren't for us, per se, so drop it. 5048 * 5049 * RFC 3947/8 doesn't say for sure what to do for 2-3 5050 * byte packets (keepalives are 1-byte), but we'll drop them 5051 * also. 5052 */ 5053 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5054 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5055 return (NULL); 5056 } 5057 5058 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5059 /* might as well pull it all up - it might be ESP. */ 5060 if (!pullupmsg(mp, -1)) { 5061 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5062 DROPPER(ipss, ipds_esp_nomem), 5063 &ipss->ipsec_dropper); 5064 return (NULL); 5065 } 5066 5067 ipha = (ipha_t *)mp->b_rptr; 5068 } 5069 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5070 if (*spi == 0) { 5071 /* UDP packet - remove 0-spi. */ 5072 shift = sizeof (uint32_t); 5073 } else { 5074 /* ESP-in-UDP packet - reduce to ESP. */ 5075 ipha->ipha_protocol = IPPROTO_ESP; 5076 shift = sizeof (udpha_t); 5077 } 5078 5079 /* Fix IP header */ 5080 ira->ira_pktlen = (plen - shift); 5081 ipha->ipha_length = htons(ira->ira_pktlen); 5082 ipha->ipha_hdr_checksum = 0; 5083 5084 orptr = mp->b_rptr; 5085 mp->b_rptr += shift; 5086 5087 udpha = (udpha_t *)(orptr + iph_len); 5088 if (*spi == 0) { 5089 ASSERT((uint8_t *)ipha == orptr); 5090 udpha->uha_length = htons(plen - shift - iph_len); 5091 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5092 esp_ports = 0; 5093 } else { 5094 esp_ports = *((uint32_t *)udpha); 5095 ASSERT(esp_ports != 0); 5096 } 5097 ovbcopy(orptr, orptr + shift, iph_len); 5098 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5099 ipha = (ipha_t *)(orptr + shift); 5100 5101 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5102 ira->ira_esp_udp_ports = esp_ports; 5103 ip_fanout_v4(mp, ipha, ira); 5104 return (NULL); 5105 } 5106 return (mp); 5107 } 5108 5109 /* 5110 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5111 * Handles IPv4 and IPv6. 5112 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5113 * Caller is responsible for dropping references to the conn. 5114 */ 5115 void 5116 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5117 ip_recv_attr_t *ira) 5118 { 5119 ill_t *ill = ira->ira_ill; 5120 ip_stack_t *ipst = ill->ill_ipst; 5121 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5122 boolean_t secure; 5123 iaflags_t iraflags = ira->ira_flags; 5124 5125 secure = iraflags & IRAF_IPSEC_SECURE; 5126 5127 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5128 !canputnext(connp->conn_rq)) { 5129 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5130 freemsg(mp); 5131 return; 5132 } 5133 5134 if (((iraflags & IRAF_IS_IPV4) ? 5135 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5136 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5137 secure) { 5138 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5139 ip6h, ira); 5140 if (mp == NULL) { 5141 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5142 /* Note that mp is NULL */ 5143 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5144 return; 5145 } 5146 } 5147 5148 /* 5149 * Since this code is not used for UDP unicast we don't need a NAT_T 5150 * check. Only ip_fanout_v4 has that check. 5151 */ 5152 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5153 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5154 } else { 5155 ill_t *rill = ira->ira_rill; 5156 5157 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5158 ira->ira_ill = ira->ira_rill = NULL; 5159 /* Send it upstream */ 5160 (connp->conn_recv)(connp, mp, NULL, ira); 5161 ira->ira_ill = ill; 5162 ira->ira_rill = rill; 5163 } 5164 } 5165 5166 /* 5167 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5168 * (Unicast fanout is handled in ip_input_v4.) 5169 * 5170 * If SO_REUSEADDR is set all multicast and broadcast packets 5171 * will be delivered to all conns bound to the same port. 5172 * 5173 * If there is at least one matching AF_INET receiver, then we will 5174 * ignore any AF_INET6 receivers. 5175 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5176 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5177 * packets. 5178 * 5179 * Zones notes: 5180 * Earlier in ip_input on a system with multiple shared-IP zones we 5181 * duplicate the multicast and broadcast packets and send them up 5182 * with each explicit zoneid that exists on that ill. 5183 * This means that here we can match the zoneid with SO_ALLZONES being special. 5184 */ 5185 void 5186 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5187 ip_recv_attr_t *ira) 5188 { 5189 ipaddr_t laddr; 5190 in6_addr_t v6faddr; 5191 conn_t *connp; 5192 connf_t *connfp; 5193 ipaddr_t faddr; 5194 ill_t *ill = ira->ira_ill; 5195 ip_stack_t *ipst = ill->ill_ipst; 5196 5197 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5198 5199 laddr = ipha->ipha_dst; 5200 faddr = ipha->ipha_src; 5201 5202 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5203 mutex_enter(&connfp->connf_lock); 5204 connp = connfp->connf_head; 5205 5206 /* 5207 * If SO_REUSEADDR has been set on the first we send the 5208 * packet to all clients that have joined the group and 5209 * match the port. 5210 */ 5211 while (connp != NULL) { 5212 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5213 conn_wantpacket(connp, ira, ipha) && 5214 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5215 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5216 break; 5217 connp = connp->conn_next; 5218 } 5219 5220 if (connp == NULL) 5221 goto notfound; 5222 5223 CONN_INC_REF(connp); 5224 5225 if (connp->conn_reuseaddr) { 5226 conn_t *first_connp = connp; 5227 conn_t *next_connp; 5228 mblk_t *mp1; 5229 5230 connp = connp->conn_next; 5231 for (;;) { 5232 while (connp != NULL) { 5233 if (IPCL_UDP_MATCH(connp, lport, laddr, 5234 fport, faddr) && 5235 conn_wantpacket(connp, ira, ipha) && 5236 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5237 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5238 ira, connp))) 5239 break; 5240 connp = connp->conn_next; 5241 } 5242 if (connp == NULL) { 5243 /* No more interested clients */ 5244 connp = first_connp; 5245 break; 5246 } 5247 if (((mp1 = dupmsg(mp)) == NULL) && 5248 ((mp1 = copymsg(mp)) == NULL)) { 5249 /* Memory allocation failed */ 5250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5251 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5252 connp = first_connp; 5253 break; 5254 } 5255 CONN_INC_REF(connp); 5256 mutex_exit(&connfp->connf_lock); 5257 5258 IP_STAT(ipst, ip_udp_fanmb); 5259 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5260 NULL, ira); 5261 mutex_enter(&connfp->connf_lock); 5262 /* Follow the next pointer before releasing the conn */ 5263 next_connp = connp->conn_next; 5264 CONN_DEC_REF(connp); 5265 connp = next_connp; 5266 } 5267 } 5268 5269 /* Last one. Send it upstream. */ 5270 mutex_exit(&connfp->connf_lock); 5271 IP_STAT(ipst, ip_udp_fanmb); 5272 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5273 CONN_DEC_REF(connp); 5274 return; 5275 5276 notfound: 5277 mutex_exit(&connfp->connf_lock); 5278 /* 5279 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5280 * have already been matched above, since they live in the IPv4 5281 * fanout tables. This implies we only need to 5282 * check for IPv6 in6addr_any endpoints here. 5283 * Thus we compare using ipv6_all_zeros instead of the destination 5284 * address, except for the multicast group membership lookup which 5285 * uses the IPv4 destination. 5286 */ 5287 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5288 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5289 mutex_enter(&connfp->connf_lock); 5290 connp = connfp->connf_head; 5291 /* 5292 * IPv4 multicast packet being delivered to an AF_INET6 5293 * in6addr_any endpoint. 5294 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5295 * and not conn_wantpacket_v6() since any multicast membership is 5296 * for an IPv4-mapped multicast address. 5297 */ 5298 while (connp != NULL) { 5299 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5300 fport, v6faddr) && 5301 conn_wantpacket(connp, ira, ipha) && 5302 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5303 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5304 break; 5305 connp = connp->conn_next; 5306 } 5307 5308 if (connp == NULL) { 5309 /* 5310 * No one bound to this port. Is 5311 * there a client that wants all 5312 * unclaimed datagrams? 5313 */ 5314 mutex_exit(&connfp->connf_lock); 5315 5316 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5317 NULL) { 5318 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5319 ip_fanout_proto_v4(mp, ipha, ira); 5320 } else { 5321 /* 5322 * We used to attempt to send an icmp error here, but 5323 * since this is known to be a multicast packet 5324 * and we don't send icmp errors in response to 5325 * multicast, just drop the packet and give up sooner. 5326 */ 5327 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5328 freemsg(mp); 5329 } 5330 return; 5331 } 5332 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5333 5334 /* 5335 * If SO_REUSEADDR has been set on the first we send the 5336 * packet to all clients that have joined the group and 5337 * match the port. 5338 */ 5339 if (connp->conn_reuseaddr) { 5340 conn_t *first_connp = connp; 5341 conn_t *next_connp; 5342 mblk_t *mp1; 5343 5344 CONN_INC_REF(connp); 5345 connp = connp->conn_next; 5346 for (;;) { 5347 while (connp != NULL) { 5348 if (IPCL_UDP_MATCH_V6(connp, lport, 5349 ipv6_all_zeros, fport, v6faddr) && 5350 conn_wantpacket(connp, ira, ipha) && 5351 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5352 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5353 ira, connp))) 5354 break; 5355 connp = connp->conn_next; 5356 } 5357 if (connp == NULL) { 5358 /* No more interested clients */ 5359 connp = first_connp; 5360 break; 5361 } 5362 if (((mp1 = dupmsg(mp)) == NULL) && 5363 ((mp1 = copymsg(mp)) == NULL)) { 5364 /* Memory allocation failed */ 5365 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5366 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5367 connp = first_connp; 5368 break; 5369 } 5370 CONN_INC_REF(connp); 5371 mutex_exit(&connfp->connf_lock); 5372 5373 IP_STAT(ipst, ip_udp_fanmb); 5374 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5375 NULL, ira); 5376 mutex_enter(&connfp->connf_lock); 5377 /* Follow the next pointer before releasing the conn */ 5378 next_connp = connp->conn_next; 5379 CONN_DEC_REF(connp); 5380 connp = next_connp; 5381 } 5382 } 5383 5384 /* Last one. Send it upstream. */ 5385 mutex_exit(&connfp->connf_lock); 5386 IP_STAT(ipst, ip_udp_fanmb); 5387 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5388 CONN_DEC_REF(connp); 5389 } 5390 5391 /* 5392 * Split an incoming packet's IPv4 options into the label and the other options. 5393 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5394 * clearing out any leftover label or options. 5395 * Otherwise it just makes ipp point into the packet. 5396 * 5397 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5398 */ 5399 int 5400 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5401 { 5402 uchar_t *opt; 5403 uint32_t totallen; 5404 uint32_t optval; 5405 uint32_t optlen; 5406 5407 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5408 ipp->ipp_hoplimit = ipha->ipha_ttl; 5409 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5410 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5411 5412 /* 5413 * Get length (in 4 byte octets) of IP header options. 5414 */ 5415 totallen = ipha->ipha_version_and_hdr_length - 5416 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5417 5418 if (totallen == 0) { 5419 if (!allocate) 5420 return (0); 5421 5422 /* Clear out anything from a previous packet */ 5423 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5424 kmem_free(ipp->ipp_ipv4_options, 5425 ipp->ipp_ipv4_options_len); 5426 ipp->ipp_ipv4_options = NULL; 5427 ipp->ipp_ipv4_options_len = 0; 5428 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5429 } 5430 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5431 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5432 ipp->ipp_label_v4 = NULL; 5433 ipp->ipp_label_len_v4 = 0; 5434 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5435 } 5436 return (0); 5437 } 5438 5439 totallen <<= 2; 5440 opt = (uchar_t *)&ipha[1]; 5441 if (!is_system_labeled()) { 5442 5443 copyall: 5444 if (!allocate) { 5445 if (totallen != 0) { 5446 ipp->ipp_ipv4_options = opt; 5447 ipp->ipp_ipv4_options_len = totallen; 5448 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5449 } 5450 return (0); 5451 } 5452 /* Just copy all of options */ 5453 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5454 if (totallen == ipp->ipp_ipv4_options_len) { 5455 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5456 return (0); 5457 } 5458 kmem_free(ipp->ipp_ipv4_options, 5459 ipp->ipp_ipv4_options_len); 5460 ipp->ipp_ipv4_options = NULL; 5461 ipp->ipp_ipv4_options_len = 0; 5462 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5463 } 5464 if (totallen == 0) 5465 return (0); 5466 5467 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5468 if (ipp->ipp_ipv4_options == NULL) 5469 return (ENOMEM); 5470 ipp->ipp_ipv4_options_len = totallen; 5471 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5472 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5473 return (0); 5474 } 5475 5476 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5477 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5478 ipp->ipp_label_v4 = NULL; 5479 ipp->ipp_label_len_v4 = 0; 5480 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5481 } 5482 5483 /* 5484 * Search for CIPSO option. 5485 * We assume CIPSO is first in options if it is present. 5486 * If it isn't, then ipp_opt_ipv4_options will not include the options 5487 * prior to the CIPSO option. 5488 */ 5489 while (totallen != 0) { 5490 switch (optval = opt[IPOPT_OPTVAL]) { 5491 case IPOPT_EOL: 5492 return (0); 5493 case IPOPT_NOP: 5494 optlen = 1; 5495 break; 5496 default: 5497 if (totallen <= IPOPT_OLEN) 5498 return (EINVAL); 5499 optlen = opt[IPOPT_OLEN]; 5500 if (optlen < 2) 5501 return (EINVAL); 5502 } 5503 if (optlen > totallen) 5504 return (EINVAL); 5505 5506 switch (optval) { 5507 case IPOPT_COMSEC: 5508 if (!allocate) { 5509 ipp->ipp_label_v4 = opt; 5510 ipp->ipp_label_len_v4 = optlen; 5511 ipp->ipp_fields |= IPPF_LABEL_V4; 5512 } else { 5513 ipp->ipp_label_v4 = kmem_alloc(optlen, 5514 KM_NOSLEEP); 5515 if (ipp->ipp_label_v4 == NULL) 5516 return (ENOMEM); 5517 ipp->ipp_label_len_v4 = optlen; 5518 ipp->ipp_fields |= IPPF_LABEL_V4; 5519 bcopy(opt, ipp->ipp_label_v4, optlen); 5520 } 5521 totallen -= optlen; 5522 opt += optlen; 5523 5524 /* Skip padding bytes until we get to a multiple of 4 */ 5525 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5526 totallen--; 5527 opt++; 5528 } 5529 /* Remaining as ipp_ipv4_options */ 5530 goto copyall; 5531 } 5532 totallen -= optlen; 5533 opt += optlen; 5534 } 5535 /* No CIPSO found; return everything as ipp_ipv4_options */ 5536 totallen = ipha->ipha_version_and_hdr_length - 5537 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5538 totallen <<= 2; 5539 opt = (uchar_t *)&ipha[1]; 5540 goto copyall; 5541 } 5542 5543 /* 5544 * Efficient versions of lookup for an IRE when we only 5545 * match the address. 5546 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5547 * Does not handle multicast addresses. 5548 */ 5549 uint_t 5550 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5551 { 5552 ire_t *ire; 5553 uint_t result; 5554 5555 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5556 ASSERT(ire != NULL); 5557 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5558 result = IRE_NOROUTE; 5559 else 5560 result = ire->ire_type; 5561 ire_refrele(ire); 5562 return (result); 5563 } 5564 5565 /* 5566 * Efficient versions of lookup for an IRE when we only 5567 * match the address. 5568 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5569 * Does not handle multicast addresses. 5570 */ 5571 uint_t 5572 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5573 { 5574 ire_t *ire; 5575 uint_t result; 5576 5577 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5578 ASSERT(ire != NULL); 5579 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5580 result = IRE_NOROUTE; 5581 else 5582 result = ire->ire_type; 5583 ire_refrele(ire); 5584 return (result); 5585 } 5586 5587 /* 5588 * Nobody should be sending 5589 * packets up this stream 5590 */ 5591 static void 5592 ip_lrput(queue_t *q, mblk_t *mp) 5593 { 5594 switch (mp->b_datap->db_type) { 5595 case M_FLUSH: 5596 /* Turn around */ 5597 if (*mp->b_rptr & FLUSHW) { 5598 *mp->b_rptr &= ~FLUSHR; 5599 qreply(q, mp); 5600 return; 5601 } 5602 break; 5603 } 5604 freemsg(mp); 5605 } 5606 5607 /* Nobody should be sending packets down this stream */ 5608 /* ARGSUSED */ 5609 void 5610 ip_lwput(queue_t *q, mblk_t *mp) 5611 { 5612 freemsg(mp); 5613 } 5614 5615 /* 5616 * Move the first hop in any source route to ipha_dst and remove that part of 5617 * the source route. Called by other protocols. Errors in option formatting 5618 * are ignored - will be handled by ip_output_options. Return the final 5619 * destination (either ipha_dst or the last entry in a source route.) 5620 */ 5621 ipaddr_t 5622 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5623 { 5624 ipoptp_t opts; 5625 uchar_t *opt; 5626 uint8_t optval; 5627 uint8_t optlen; 5628 ipaddr_t dst; 5629 int i; 5630 ip_stack_t *ipst = ns->netstack_ip; 5631 5632 ip2dbg(("ip_massage_options\n")); 5633 dst = ipha->ipha_dst; 5634 for (optval = ipoptp_first(&opts, ipha); 5635 optval != IPOPT_EOL; 5636 optval = ipoptp_next(&opts)) { 5637 opt = opts.ipoptp_cur; 5638 switch (optval) { 5639 uint8_t off; 5640 case IPOPT_SSRR: 5641 case IPOPT_LSRR: 5642 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5643 ip1dbg(("ip_massage_options: bad src route\n")); 5644 break; 5645 } 5646 optlen = opts.ipoptp_len; 5647 off = opt[IPOPT_OFFSET]; 5648 off--; 5649 redo_srr: 5650 if (optlen < IP_ADDR_LEN || 5651 off > optlen - IP_ADDR_LEN) { 5652 /* End of source route */ 5653 ip1dbg(("ip_massage_options: end of SR\n")); 5654 break; 5655 } 5656 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5657 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5658 ntohl(dst))); 5659 /* 5660 * Check if our address is present more than 5661 * once as consecutive hops in source route. 5662 * XXX verify per-interface ip_forwarding 5663 * for source route? 5664 */ 5665 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5666 off += IP_ADDR_LEN; 5667 goto redo_srr; 5668 } 5669 if (dst == htonl(INADDR_LOOPBACK)) { 5670 ip1dbg(("ip_massage_options: loopback addr in " 5671 "source route!\n")); 5672 break; 5673 } 5674 /* 5675 * Update ipha_dst to be the first hop and remove the 5676 * first hop from the source route (by overwriting 5677 * part of the option with NOP options). 5678 */ 5679 ipha->ipha_dst = dst; 5680 /* Put the last entry in dst */ 5681 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5682 3; 5683 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5684 5685 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5686 ntohl(dst))); 5687 /* Move down and overwrite */ 5688 opt[IP_ADDR_LEN] = opt[0]; 5689 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5690 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5691 for (i = 0; i < IP_ADDR_LEN; i++) 5692 opt[i] = IPOPT_NOP; 5693 break; 5694 } 5695 } 5696 return (dst); 5697 } 5698 5699 /* 5700 * Return the network mask 5701 * associated with the specified address. 5702 */ 5703 ipaddr_t 5704 ip_net_mask(ipaddr_t addr) 5705 { 5706 uchar_t *up = (uchar_t *)&addr; 5707 ipaddr_t mask = 0; 5708 uchar_t *maskp = (uchar_t *)&mask; 5709 5710 #if defined(__i386) || defined(__amd64) 5711 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5712 #endif 5713 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5714 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5715 #endif 5716 if (CLASSD(addr)) { 5717 maskp[0] = 0xF0; 5718 return (mask); 5719 } 5720 5721 /* We assume Class E default netmask to be 32 */ 5722 if (CLASSE(addr)) 5723 return (0xffffffffU); 5724 5725 if (addr == 0) 5726 return (0); 5727 maskp[0] = 0xFF; 5728 if ((up[0] & 0x80) == 0) 5729 return (mask); 5730 5731 maskp[1] = 0xFF; 5732 if ((up[0] & 0xC0) == 0x80) 5733 return (mask); 5734 5735 maskp[2] = 0xFF; 5736 if ((up[0] & 0xE0) == 0xC0) 5737 return (mask); 5738 5739 /* Otherwise return no mask */ 5740 return ((ipaddr_t)0); 5741 } 5742 5743 /* Name/Value Table Lookup Routine */ 5744 char * 5745 ip_nv_lookup(nv_t *nv, int value) 5746 { 5747 if (!nv) 5748 return (NULL); 5749 for (; nv->nv_name; nv++) { 5750 if (nv->nv_value == value) 5751 return (nv->nv_name); 5752 } 5753 return ("unknown"); 5754 } 5755 5756 static int 5757 ip_wait_for_info_ack(ill_t *ill) 5758 { 5759 int err; 5760 5761 mutex_enter(&ill->ill_lock); 5762 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5763 /* 5764 * Return value of 0 indicates a pending signal. 5765 */ 5766 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5767 if (err == 0) { 5768 mutex_exit(&ill->ill_lock); 5769 return (EINTR); 5770 } 5771 } 5772 mutex_exit(&ill->ill_lock); 5773 /* 5774 * ip_rput_other could have set an error in ill_error on 5775 * receipt of M_ERROR. 5776 */ 5777 return (ill->ill_error); 5778 } 5779 5780 /* 5781 * This is a module open, i.e. this is a control stream for access 5782 * to a DLPI device. We allocate an ill_t as the instance data in 5783 * this case. 5784 */ 5785 static int 5786 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5787 { 5788 ill_t *ill; 5789 int err; 5790 zoneid_t zoneid; 5791 netstack_t *ns; 5792 ip_stack_t *ipst; 5793 5794 /* 5795 * Prevent unprivileged processes from pushing IP so that 5796 * they can't send raw IP. 5797 */ 5798 if (secpolicy_net_rawaccess(credp) != 0) 5799 return (EPERM); 5800 5801 ns = netstack_find_by_cred(credp); 5802 ASSERT(ns != NULL); 5803 ipst = ns->netstack_ip; 5804 ASSERT(ipst != NULL); 5805 5806 /* 5807 * For exclusive stacks we set the zoneid to zero 5808 * to make IP operate as if in the global zone. 5809 */ 5810 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5811 zoneid = GLOBAL_ZONEID; 5812 else 5813 zoneid = crgetzoneid(credp); 5814 5815 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5816 q->q_ptr = WR(q)->q_ptr = ill; 5817 ill->ill_ipst = ipst; 5818 ill->ill_zoneid = zoneid; 5819 5820 /* 5821 * ill_init initializes the ill fields and then sends down 5822 * down a DL_INFO_REQ after calling qprocson. 5823 */ 5824 err = ill_init(q, ill); 5825 5826 if (err != 0) { 5827 mi_free(ill); 5828 netstack_rele(ipst->ips_netstack); 5829 q->q_ptr = NULL; 5830 WR(q)->q_ptr = NULL; 5831 return (err); 5832 } 5833 5834 /* 5835 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5836 * 5837 * ill_init initializes the ipsq marking this thread as 5838 * writer 5839 */ 5840 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5841 err = ip_wait_for_info_ack(ill); 5842 if (err == 0) 5843 ill->ill_credp = credp; 5844 else 5845 goto fail; 5846 5847 crhold(credp); 5848 5849 mutex_enter(&ipst->ips_ip_mi_lock); 5850 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5851 sflag, credp); 5852 mutex_exit(&ipst->ips_ip_mi_lock); 5853 fail: 5854 if (err) { 5855 (void) ip_close(q, 0); 5856 return (err); 5857 } 5858 return (0); 5859 } 5860 5861 /* For /dev/ip aka AF_INET open */ 5862 int 5863 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5864 { 5865 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5866 } 5867 5868 /* For /dev/ip6 aka AF_INET6 open */ 5869 int 5870 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5871 { 5872 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5873 } 5874 5875 /* IP open routine. */ 5876 int 5877 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5878 boolean_t isv6) 5879 { 5880 conn_t *connp; 5881 major_t maj; 5882 zoneid_t zoneid; 5883 netstack_t *ns; 5884 ip_stack_t *ipst; 5885 5886 /* Allow reopen. */ 5887 if (q->q_ptr != NULL) 5888 return (0); 5889 5890 if (sflag & MODOPEN) { 5891 /* This is a module open */ 5892 return (ip_modopen(q, devp, flag, sflag, credp)); 5893 } 5894 5895 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5896 /* 5897 * Non streams based socket looking for a stream 5898 * to access IP 5899 */ 5900 return (ip_helper_stream_setup(q, devp, flag, sflag, 5901 credp, isv6)); 5902 } 5903 5904 ns = netstack_find_by_cred(credp); 5905 ASSERT(ns != NULL); 5906 ipst = ns->netstack_ip; 5907 ASSERT(ipst != NULL); 5908 5909 /* 5910 * For exclusive stacks we set the zoneid to zero 5911 * to make IP operate as if in the global zone. 5912 */ 5913 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5914 zoneid = GLOBAL_ZONEID; 5915 else 5916 zoneid = crgetzoneid(credp); 5917 5918 /* 5919 * We are opening as a device. This is an IP client stream, and we 5920 * allocate an conn_t as the instance data. 5921 */ 5922 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5923 5924 /* 5925 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5926 * done by netstack_find_by_cred() 5927 */ 5928 netstack_rele(ipst->ips_netstack); 5929 5930 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5931 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5932 connp->conn_ixa->ixa_zoneid = zoneid; 5933 connp->conn_zoneid = zoneid; 5934 5935 connp->conn_rq = q; 5936 q->q_ptr = WR(q)->q_ptr = connp; 5937 5938 /* Minor tells us which /dev entry was opened */ 5939 if (isv6) { 5940 connp->conn_family = AF_INET6; 5941 connp->conn_ipversion = IPV6_VERSION; 5942 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5943 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5944 } else { 5945 connp->conn_family = AF_INET; 5946 connp->conn_ipversion = IPV4_VERSION; 5947 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5948 } 5949 5950 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5951 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5952 connp->conn_minor_arena = ip_minor_arena_la; 5953 } else { 5954 /* 5955 * Either minor numbers in the large arena were exhausted 5956 * or a non socket application is doing the open. 5957 * Try to allocate from the small arena. 5958 */ 5959 if ((connp->conn_dev = 5960 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5961 /* CONN_DEC_REF takes care of netstack_rele() */ 5962 q->q_ptr = WR(q)->q_ptr = NULL; 5963 CONN_DEC_REF(connp); 5964 return (EBUSY); 5965 } 5966 connp->conn_minor_arena = ip_minor_arena_sa; 5967 } 5968 5969 maj = getemajor(*devp); 5970 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5971 5972 /* 5973 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5974 */ 5975 connp->conn_cred = credp; 5976 connp->conn_cpid = curproc->p_pid; 5977 /* Cache things in ixa without an extra refhold */ 5978 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5979 connp->conn_ixa->ixa_cred = connp->conn_cred; 5980 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5981 if (is_system_labeled()) 5982 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5983 5984 /* 5985 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 5986 */ 5987 connp->conn_recv = ip_conn_input; 5988 connp->conn_recvicmp = ip_conn_input_icmp; 5989 5990 crhold(connp->conn_cred); 5991 5992 /* 5993 * If the caller has the process-wide flag set, then default to MAC 5994 * exempt mode. This allows read-down to unlabeled hosts. 5995 */ 5996 if (getpflags(NET_MAC_AWARE, credp) != 0) 5997 connp->conn_mac_mode = CONN_MAC_AWARE; 5998 5999 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6000 6001 connp->conn_rq = q; 6002 connp->conn_wq = WR(q); 6003 6004 /* Non-zero default values */ 6005 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6006 6007 /* 6008 * Make the conn globally visible to walkers 6009 */ 6010 ASSERT(connp->conn_ref == 1); 6011 mutex_enter(&connp->conn_lock); 6012 connp->conn_state_flags &= ~CONN_INCIPIENT; 6013 mutex_exit(&connp->conn_lock); 6014 6015 qprocson(q); 6016 6017 return (0); 6018 } 6019 6020 /* 6021 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6022 * all of them are copied to the conn_t. If the req is "zero", the policy is 6023 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6024 * fields. 6025 * We keep only the latest setting of the policy and thus policy setting 6026 * is not incremental/cumulative. 6027 * 6028 * Requests to set policies with multiple alternative actions will 6029 * go through a different API. 6030 */ 6031 int 6032 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6033 { 6034 uint_t ah_req = 0; 6035 uint_t esp_req = 0; 6036 uint_t se_req = 0; 6037 ipsec_act_t *actp = NULL; 6038 uint_t nact; 6039 ipsec_policy_head_t *ph; 6040 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6041 int error = 0; 6042 netstack_t *ns = connp->conn_netstack; 6043 ip_stack_t *ipst = ns->netstack_ip; 6044 ipsec_stack_t *ipss = ns->netstack_ipsec; 6045 6046 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6047 6048 /* 6049 * The IP_SEC_OPT option does not allow variable length parameters, 6050 * hence a request cannot be NULL. 6051 */ 6052 if (req == NULL) 6053 return (EINVAL); 6054 6055 ah_req = req->ipsr_ah_req; 6056 esp_req = req->ipsr_esp_req; 6057 se_req = req->ipsr_self_encap_req; 6058 6059 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6060 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6061 return (EINVAL); 6062 6063 /* 6064 * Are we dealing with a request to reset the policy (i.e. 6065 * zero requests). 6066 */ 6067 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6068 (esp_req & REQ_MASK) == 0 && 6069 (se_req & REQ_MASK) == 0); 6070 6071 if (!is_pol_reset) { 6072 /* 6073 * If we couldn't load IPsec, fail with "protocol 6074 * not supported". 6075 * IPsec may not have been loaded for a request with zero 6076 * policies, so we don't fail in this case. 6077 */ 6078 mutex_enter(&ipss->ipsec_loader_lock); 6079 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6080 mutex_exit(&ipss->ipsec_loader_lock); 6081 return (EPROTONOSUPPORT); 6082 } 6083 mutex_exit(&ipss->ipsec_loader_lock); 6084 6085 /* 6086 * Test for valid requests. Invalid algorithms 6087 * need to be tested by IPsec code because new 6088 * algorithms can be added dynamically. 6089 */ 6090 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6091 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6092 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6093 return (EINVAL); 6094 } 6095 6096 /* 6097 * Only privileged users can issue these 6098 * requests. 6099 */ 6100 if (((ah_req & IPSEC_PREF_NEVER) || 6101 (esp_req & IPSEC_PREF_NEVER) || 6102 (se_req & IPSEC_PREF_NEVER)) && 6103 secpolicy_ip_config(cr, B_FALSE) != 0) { 6104 return (EPERM); 6105 } 6106 6107 /* 6108 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6109 * are mutually exclusive. 6110 */ 6111 if (((ah_req & REQ_MASK) == REQ_MASK) || 6112 ((esp_req & REQ_MASK) == REQ_MASK) || 6113 ((se_req & REQ_MASK) == REQ_MASK)) { 6114 /* Both of them are set */ 6115 return (EINVAL); 6116 } 6117 } 6118 6119 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6120 6121 /* 6122 * If we have already cached policies in conn_connect(), don't 6123 * let them change now. We cache policies for connections 6124 * whose src,dst [addr, port] is known. 6125 */ 6126 if (connp->conn_policy_cached) { 6127 return (EINVAL); 6128 } 6129 6130 /* 6131 * We have a zero policies, reset the connection policy if already 6132 * set. This will cause the connection to inherit the 6133 * global policy, if any. 6134 */ 6135 if (is_pol_reset) { 6136 if (connp->conn_policy != NULL) { 6137 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6138 connp->conn_policy = NULL; 6139 } 6140 connp->conn_in_enforce_policy = B_FALSE; 6141 connp->conn_out_enforce_policy = B_FALSE; 6142 return (0); 6143 } 6144 6145 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6146 ipst->ips_netstack); 6147 if (ph == NULL) 6148 goto enomem; 6149 6150 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6151 if (actp == NULL) 6152 goto enomem; 6153 6154 /* 6155 * Always insert IPv4 policy entries, since they can also apply to 6156 * ipv6 sockets being used in ipv4-compat mode. 6157 */ 6158 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6159 IPSEC_TYPE_INBOUND, ns)) 6160 goto enomem; 6161 is_pol_inserted = B_TRUE; 6162 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6163 IPSEC_TYPE_OUTBOUND, ns)) 6164 goto enomem; 6165 6166 /* 6167 * We're looking at a v6 socket, also insert the v6-specific 6168 * entries. 6169 */ 6170 if (connp->conn_family == AF_INET6) { 6171 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6172 IPSEC_TYPE_INBOUND, ns)) 6173 goto enomem; 6174 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6175 IPSEC_TYPE_OUTBOUND, ns)) 6176 goto enomem; 6177 } 6178 6179 ipsec_actvec_free(actp, nact); 6180 6181 /* 6182 * If the requests need security, set enforce_policy. 6183 * If the requests are IPSEC_PREF_NEVER, one should 6184 * still set conn_out_enforce_policy so that ip_set_destination 6185 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6186 * for connections that we don't cache policy in at connect time, 6187 * if global policy matches in ip_output_attach_policy, we 6188 * don't wrongly inherit global policy. Similarly, we need 6189 * to set conn_in_enforce_policy also so that we don't verify 6190 * policy wrongly. 6191 */ 6192 if ((ah_req & REQ_MASK) != 0 || 6193 (esp_req & REQ_MASK) != 0 || 6194 (se_req & REQ_MASK) != 0) { 6195 connp->conn_in_enforce_policy = B_TRUE; 6196 connp->conn_out_enforce_policy = B_TRUE; 6197 } 6198 6199 return (error); 6200 #undef REQ_MASK 6201 6202 /* 6203 * Common memory-allocation-failure exit path. 6204 */ 6205 enomem: 6206 if (actp != NULL) 6207 ipsec_actvec_free(actp, nact); 6208 if (is_pol_inserted) 6209 ipsec_polhead_flush(ph, ns); 6210 return (ENOMEM); 6211 } 6212 6213 /* 6214 * Set socket options for joining and leaving multicast groups. 6215 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6216 * The caller has already check that the option name is consistent with 6217 * the address family of the socket. 6218 */ 6219 int 6220 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6221 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6222 { 6223 int *i1 = (int *)invalp; 6224 int error = 0; 6225 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6226 struct ip_mreq *v4_mreqp; 6227 struct ipv6_mreq *v6_mreqp; 6228 struct group_req *greqp; 6229 ire_t *ire; 6230 boolean_t done = B_FALSE; 6231 ipaddr_t ifaddr; 6232 in6_addr_t v6group; 6233 uint_t ifindex; 6234 boolean_t mcast_opt = B_TRUE; 6235 mcast_record_t fmode; 6236 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6237 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6238 6239 switch (name) { 6240 case IP_ADD_MEMBERSHIP: 6241 case IPV6_JOIN_GROUP: 6242 mcast_opt = B_FALSE; 6243 /* FALLTHRU */ 6244 case MCAST_JOIN_GROUP: 6245 fmode = MODE_IS_EXCLUDE; 6246 optfn = ip_opt_add_group; 6247 break; 6248 6249 case IP_DROP_MEMBERSHIP: 6250 case IPV6_LEAVE_GROUP: 6251 mcast_opt = B_FALSE; 6252 /* FALLTHRU */ 6253 case MCAST_LEAVE_GROUP: 6254 fmode = MODE_IS_INCLUDE; 6255 optfn = ip_opt_delete_group; 6256 break; 6257 default: 6258 ASSERT(0); 6259 } 6260 6261 if (mcast_opt) { 6262 struct sockaddr_in *sin; 6263 struct sockaddr_in6 *sin6; 6264 6265 greqp = (struct group_req *)i1; 6266 if (greqp->gr_group.ss_family == AF_INET) { 6267 sin = (struct sockaddr_in *)&(greqp->gr_group); 6268 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6269 } else { 6270 if (!inet6) 6271 return (EINVAL); /* Not on INET socket */ 6272 6273 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6274 v6group = sin6->sin6_addr; 6275 } 6276 ifaddr = INADDR_ANY; 6277 ifindex = greqp->gr_interface; 6278 } else if (inet6) { 6279 v6_mreqp = (struct ipv6_mreq *)i1; 6280 v6group = v6_mreqp->ipv6mr_multiaddr; 6281 ifaddr = INADDR_ANY; 6282 ifindex = v6_mreqp->ipv6mr_interface; 6283 } else { 6284 v4_mreqp = (struct ip_mreq *)i1; 6285 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6286 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6287 ifindex = 0; 6288 } 6289 6290 /* 6291 * In the multirouting case, we need to replicate 6292 * the request on all interfaces that will take part 6293 * in replication. We do so because multirouting is 6294 * reflective, thus we will probably receive multi- 6295 * casts on those interfaces. 6296 * The ip_multirt_apply_membership() succeeds if 6297 * the operation succeeds on at least one interface. 6298 */ 6299 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6300 ipaddr_t group; 6301 6302 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6303 6304 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6305 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6306 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6307 } else { 6308 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6309 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6310 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6311 } 6312 if (ire != NULL) { 6313 if (ire->ire_flags & RTF_MULTIRT) { 6314 error = ip_multirt_apply_membership(optfn, ire, connp, 6315 checkonly, &v6group, fmode, &ipv6_all_zeros); 6316 done = B_TRUE; 6317 } 6318 ire_refrele(ire); 6319 } 6320 6321 if (!done) { 6322 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6323 fmode, &ipv6_all_zeros); 6324 } 6325 return (error); 6326 } 6327 6328 /* 6329 * Set socket options for joining and leaving multicast groups 6330 * for specific sources. 6331 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6332 * The caller has already check that the option name is consistent with 6333 * the address family of the socket. 6334 */ 6335 int 6336 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6337 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6338 { 6339 int *i1 = (int *)invalp; 6340 int error = 0; 6341 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6342 struct ip_mreq_source *imreqp; 6343 struct group_source_req *gsreqp; 6344 in6_addr_t v6group, v6src; 6345 uint32_t ifindex; 6346 ipaddr_t ifaddr; 6347 boolean_t mcast_opt = B_TRUE; 6348 mcast_record_t fmode; 6349 ire_t *ire; 6350 boolean_t done = B_FALSE; 6351 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6352 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6353 6354 switch (name) { 6355 case IP_BLOCK_SOURCE: 6356 mcast_opt = B_FALSE; 6357 /* FALLTHRU */ 6358 case MCAST_BLOCK_SOURCE: 6359 fmode = MODE_IS_EXCLUDE; 6360 optfn = ip_opt_add_group; 6361 break; 6362 6363 case IP_UNBLOCK_SOURCE: 6364 mcast_opt = B_FALSE; 6365 /* FALLTHRU */ 6366 case MCAST_UNBLOCK_SOURCE: 6367 fmode = MODE_IS_EXCLUDE; 6368 optfn = ip_opt_delete_group; 6369 break; 6370 6371 case IP_ADD_SOURCE_MEMBERSHIP: 6372 mcast_opt = B_FALSE; 6373 /* FALLTHRU */ 6374 case MCAST_JOIN_SOURCE_GROUP: 6375 fmode = MODE_IS_INCLUDE; 6376 optfn = ip_opt_add_group; 6377 break; 6378 6379 case IP_DROP_SOURCE_MEMBERSHIP: 6380 mcast_opt = B_FALSE; 6381 /* FALLTHRU */ 6382 case MCAST_LEAVE_SOURCE_GROUP: 6383 fmode = MODE_IS_INCLUDE; 6384 optfn = ip_opt_delete_group; 6385 break; 6386 default: 6387 ASSERT(0); 6388 } 6389 6390 if (mcast_opt) { 6391 gsreqp = (struct group_source_req *)i1; 6392 ifindex = gsreqp->gsr_interface; 6393 if (gsreqp->gsr_group.ss_family == AF_INET) { 6394 struct sockaddr_in *s; 6395 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6396 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6397 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6398 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6399 } else { 6400 struct sockaddr_in6 *s6; 6401 6402 if (!inet6) 6403 return (EINVAL); /* Not on INET socket */ 6404 6405 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6406 v6group = s6->sin6_addr; 6407 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6408 v6src = s6->sin6_addr; 6409 } 6410 ifaddr = INADDR_ANY; 6411 } else { 6412 imreqp = (struct ip_mreq_source *)i1; 6413 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6414 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6415 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6416 ifindex = 0; 6417 } 6418 6419 /* 6420 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6421 */ 6422 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6423 v6src = ipv6_all_zeros; 6424 6425 /* 6426 * In the multirouting case, we need to replicate 6427 * the request as noted in the mcast cases above. 6428 */ 6429 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6430 ipaddr_t group; 6431 6432 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6433 6434 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6435 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6436 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6437 } else { 6438 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6439 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6440 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6441 } 6442 if (ire != NULL) { 6443 if (ire->ire_flags & RTF_MULTIRT) { 6444 error = ip_multirt_apply_membership(optfn, ire, connp, 6445 checkonly, &v6group, fmode, &v6src); 6446 done = B_TRUE; 6447 } 6448 ire_refrele(ire); 6449 } 6450 if (!done) { 6451 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6452 fmode, &v6src); 6453 } 6454 return (error); 6455 } 6456 6457 /* 6458 * Given a destination address and a pointer to where to put the information 6459 * this routine fills in the mtuinfo. 6460 * The socket must be connected. 6461 * For sctp conn_faddr is the primary address. 6462 */ 6463 int 6464 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6465 { 6466 uint32_t pmtu = IP_MAXPACKET; 6467 uint_t scopeid; 6468 6469 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6470 return (-1); 6471 6472 /* In case we never sent or called ip_set_destination_v4/v6 */ 6473 if (ixa->ixa_ire != NULL) 6474 pmtu = ip_get_pmtu(ixa); 6475 6476 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6477 scopeid = ixa->ixa_scopeid; 6478 else 6479 scopeid = 0; 6480 6481 bzero(mtuinfo, sizeof (*mtuinfo)); 6482 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6483 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6484 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6485 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6486 mtuinfo->ip6m_mtu = pmtu; 6487 6488 return (sizeof (struct ip6_mtuinfo)); 6489 } 6490 6491 /* 6492 * When the src multihoming is changed from weak to [strong, preferred] 6493 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6494 * and identify routes that were created by user-applications in the 6495 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6496 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6497 * is selected by finding an interface route for the gateway. 6498 */ 6499 /* ARGSUSED */ 6500 void 6501 ip_ire_rebind_walker(ire_t *ire, void *notused) 6502 { 6503 if (!ire->ire_unbound || ire->ire_ill != NULL) 6504 return; 6505 ire_rebind(ire); 6506 ire_delete(ire); 6507 } 6508 6509 /* 6510 * When the src multihoming is changed from [strong, preferred] to weak, 6511 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6512 * set any entries that were created by user-applications in the unbound state 6513 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6514 */ 6515 /* ARGSUSED */ 6516 void 6517 ip_ire_unbind_walker(ire_t *ire, void *notused) 6518 { 6519 ire_t *new_ire; 6520 6521 if (!ire->ire_unbound || ire->ire_ill == NULL) 6522 return; 6523 if (ire->ire_ipversion == IPV6_VERSION) { 6524 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6525 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6526 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6527 } else { 6528 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6529 (uchar_t *)&ire->ire_mask, 6530 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6531 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6532 } 6533 if (new_ire == NULL) 6534 return; 6535 new_ire->ire_unbound = B_TRUE; 6536 /* 6537 * The bound ire must first be deleted so that we don't return 6538 * the existing one on the attempt to add the unbound new_ire. 6539 */ 6540 ire_delete(ire); 6541 new_ire = ire_add(new_ire); 6542 if (new_ire != NULL) 6543 ire_refrele(new_ire); 6544 } 6545 6546 /* 6547 * When the settings of ip*_strict_src_multihoming tunables are changed, 6548 * all cached routes need to be recomputed. This recomputation needs to be 6549 * done when going from weaker to stronger modes so that the cached ire 6550 * for the connection does not violate the current ip*_strict_src_multihoming 6551 * setting. It also needs to be done when going from stronger to weaker modes, 6552 * so that we fall back to matching on the longest-matching-route (as opposed 6553 * to a shorter match that may have been selected in the strong mode 6554 * to satisfy src_multihoming settings). 6555 * 6556 * The cached ixa_ire entires for all conn_t entries are marked as 6557 * "verify" so that they will be recomputed for the next packet. 6558 */ 6559 void 6560 conn_ire_revalidate(conn_t *connp, void *arg) 6561 { 6562 boolean_t isv6 = (boolean_t)arg; 6563 6564 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6565 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6566 return; 6567 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6568 } 6569 6570 /* 6571 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6572 * When an ipf is passed here for the first time, if 6573 * we already have in-order fragments on the queue, we convert from the fast- 6574 * path reassembly scheme to the hard-case scheme. From then on, additional 6575 * fragments are reassembled here. We keep track of the start and end offsets 6576 * of each piece, and the number of holes in the chain. When the hole count 6577 * goes to zero, we are done! 6578 * 6579 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6580 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6581 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6582 * after the call to ip_reassemble(). 6583 */ 6584 int 6585 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6586 size_t msg_len) 6587 { 6588 uint_t end; 6589 mblk_t *next_mp; 6590 mblk_t *mp1; 6591 uint_t offset; 6592 boolean_t incr_dups = B_TRUE; 6593 boolean_t offset_zero_seen = B_FALSE; 6594 boolean_t pkt_boundary_checked = B_FALSE; 6595 6596 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6597 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6598 6599 /* Add in byte count */ 6600 ipf->ipf_count += msg_len; 6601 if (ipf->ipf_end) { 6602 /* 6603 * We were part way through in-order reassembly, but now there 6604 * is a hole. We walk through messages already queued, and 6605 * mark them for hard case reassembly. We know that up till 6606 * now they were in order starting from offset zero. 6607 */ 6608 offset = 0; 6609 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6610 IP_REASS_SET_START(mp1, offset); 6611 if (offset == 0) { 6612 ASSERT(ipf->ipf_nf_hdr_len != 0); 6613 offset = -ipf->ipf_nf_hdr_len; 6614 } 6615 offset += mp1->b_wptr - mp1->b_rptr; 6616 IP_REASS_SET_END(mp1, offset); 6617 } 6618 /* One hole at the end. */ 6619 ipf->ipf_hole_cnt = 1; 6620 /* Brand it as a hard case, forever. */ 6621 ipf->ipf_end = 0; 6622 } 6623 /* Walk through all the new pieces. */ 6624 do { 6625 end = start + (mp->b_wptr - mp->b_rptr); 6626 /* 6627 * If start is 0, decrease 'end' only for the first mblk of 6628 * the fragment. Otherwise 'end' can get wrong value in the 6629 * second pass of the loop if first mblk is exactly the 6630 * size of ipf_nf_hdr_len. 6631 */ 6632 if (start == 0 && !offset_zero_seen) { 6633 /* First segment */ 6634 ASSERT(ipf->ipf_nf_hdr_len != 0); 6635 end -= ipf->ipf_nf_hdr_len; 6636 offset_zero_seen = B_TRUE; 6637 } 6638 next_mp = mp->b_cont; 6639 /* 6640 * We are checking to see if there is any interesing data 6641 * to process. If there isn't and the mblk isn't the 6642 * one which carries the unfragmentable header then we 6643 * drop it. It's possible to have just the unfragmentable 6644 * header come through without any data. That needs to be 6645 * saved. 6646 * 6647 * If the assert at the top of this function holds then the 6648 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6649 * is infrequently traveled enough that the test is left in 6650 * to protect against future code changes which break that 6651 * invariant. 6652 */ 6653 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6654 /* Empty. Blast it. */ 6655 IP_REASS_SET_START(mp, 0); 6656 IP_REASS_SET_END(mp, 0); 6657 /* 6658 * If the ipf points to the mblk we are about to free, 6659 * update ipf to point to the next mblk (or NULL 6660 * if none). 6661 */ 6662 if (ipf->ipf_mp->b_cont == mp) 6663 ipf->ipf_mp->b_cont = next_mp; 6664 freeb(mp); 6665 continue; 6666 } 6667 mp->b_cont = NULL; 6668 IP_REASS_SET_START(mp, start); 6669 IP_REASS_SET_END(mp, end); 6670 if (!ipf->ipf_tail_mp) { 6671 ipf->ipf_tail_mp = mp; 6672 ipf->ipf_mp->b_cont = mp; 6673 if (start == 0 || !more) { 6674 ipf->ipf_hole_cnt = 1; 6675 /* 6676 * if the first fragment comes in more than one 6677 * mblk, this loop will be executed for each 6678 * mblk. Need to adjust hole count so exiting 6679 * this routine will leave hole count at 1. 6680 */ 6681 if (next_mp) 6682 ipf->ipf_hole_cnt++; 6683 } else 6684 ipf->ipf_hole_cnt = 2; 6685 continue; 6686 } else if (ipf->ipf_last_frag_seen && !more && 6687 !pkt_boundary_checked) { 6688 /* 6689 * We check datagram boundary only if this fragment 6690 * claims to be the last fragment and we have seen a 6691 * last fragment in the past too. We do this only 6692 * once for a given fragment. 6693 * 6694 * start cannot be 0 here as fragments with start=0 6695 * and MF=0 gets handled as a complete packet. These 6696 * fragments should not reach here. 6697 */ 6698 6699 if (start + msgdsize(mp) != 6700 IP_REASS_END(ipf->ipf_tail_mp)) { 6701 /* 6702 * We have two fragments both of which claim 6703 * to be the last fragment but gives conflicting 6704 * information about the whole datagram size. 6705 * Something fishy is going on. Drop the 6706 * fragment and free up the reassembly list. 6707 */ 6708 return (IP_REASS_FAILED); 6709 } 6710 6711 /* 6712 * We shouldn't come to this code block again for this 6713 * particular fragment. 6714 */ 6715 pkt_boundary_checked = B_TRUE; 6716 } 6717 6718 /* New stuff at or beyond tail? */ 6719 offset = IP_REASS_END(ipf->ipf_tail_mp); 6720 if (start >= offset) { 6721 if (ipf->ipf_last_frag_seen) { 6722 /* current fragment is beyond last fragment */ 6723 return (IP_REASS_FAILED); 6724 } 6725 /* Link it on end. */ 6726 ipf->ipf_tail_mp->b_cont = mp; 6727 ipf->ipf_tail_mp = mp; 6728 if (more) { 6729 if (start != offset) 6730 ipf->ipf_hole_cnt++; 6731 } else if (start == offset && next_mp == NULL) 6732 ipf->ipf_hole_cnt--; 6733 continue; 6734 } 6735 mp1 = ipf->ipf_mp->b_cont; 6736 offset = IP_REASS_START(mp1); 6737 /* New stuff at the front? */ 6738 if (start < offset) { 6739 if (start == 0) { 6740 if (end >= offset) { 6741 /* Nailed the hole at the begining. */ 6742 ipf->ipf_hole_cnt--; 6743 } 6744 } else if (end < offset) { 6745 /* 6746 * A hole, stuff, and a hole where there used 6747 * to be just a hole. 6748 */ 6749 ipf->ipf_hole_cnt++; 6750 } 6751 mp->b_cont = mp1; 6752 /* Check for overlap. */ 6753 while (end > offset) { 6754 if (end < IP_REASS_END(mp1)) { 6755 mp->b_wptr -= end - offset; 6756 IP_REASS_SET_END(mp, offset); 6757 BUMP_MIB(ill->ill_ip_mib, 6758 ipIfStatsReasmPartDups); 6759 break; 6760 } 6761 /* Did we cover another hole? */ 6762 if ((mp1->b_cont && 6763 IP_REASS_END(mp1) != 6764 IP_REASS_START(mp1->b_cont) && 6765 end >= IP_REASS_START(mp1->b_cont)) || 6766 (!ipf->ipf_last_frag_seen && !more)) { 6767 ipf->ipf_hole_cnt--; 6768 } 6769 /* Clip out mp1. */ 6770 if ((mp->b_cont = mp1->b_cont) == NULL) { 6771 /* 6772 * After clipping out mp1, this guy 6773 * is now hanging off the end. 6774 */ 6775 ipf->ipf_tail_mp = mp; 6776 } 6777 IP_REASS_SET_START(mp1, 0); 6778 IP_REASS_SET_END(mp1, 0); 6779 /* Subtract byte count */ 6780 ipf->ipf_count -= mp1->b_datap->db_lim - 6781 mp1->b_datap->db_base; 6782 freeb(mp1); 6783 BUMP_MIB(ill->ill_ip_mib, 6784 ipIfStatsReasmPartDups); 6785 mp1 = mp->b_cont; 6786 if (!mp1) 6787 break; 6788 offset = IP_REASS_START(mp1); 6789 } 6790 ipf->ipf_mp->b_cont = mp; 6791 continue; 6792 } 6793 /* 6794 * The new piece starts somewhere between the start of the head 6795 * and before the end of the tail. 6796 */ 6797 for (; mp1; mp1 = mp1->b_cont) { 6798 offset = IP_REASS_END(mp1); 6799 if (start < offset) { 6800 if (end <= offset) { 6801 /* Nothing new. */ 6802 IP_REASS_SET_START(mp, 0); 6803 IP_REASS_SET_END(mp, 0); 6804 /* Subtract byte count */ 6805 ipf->ipf_count -= mp->b_datap->db_lim - 6806 mp->b_datap->db_base; 6807 if (incr_dups) { 6808 ipf->ipf_num_dups++; 6809 incr_dups = B_FALSE; 6810 } 6811 freeb(mp); 6812 BUMP_MIB(ill->ill_ip_mib, 6813 ipIfStatsReasmDuplicates); 6814 break; 6815 } 6816 /* 6817 * Trim redundant stuff off beginning of new 6818 * piece. 6819 */ 6820 IP_REASS_SET_START(mp, offset); 6821 mp->b_rptr += offset - start; 6822 BUMP_MIB(ill->ill_ip_mib, 6823 ipIfStatsReasmPartDups); 6824 start = offset; 6825 if (!mp1->b_cont) { 6826 /* 6827 * After trimming, this guy is now 6828 * hanging off the end. 6829 */ 6830 mp1->b_cont = mp; 6831 ipf->ipf_tail_mp = mp; 6832 if (!more) { 6833 ipf->ipf_hole_cnt--; 6834 } 6835 break; 6836 } 6837 } 6838 if (start >= IP_REASS_START(mp1->b_cont)) 6839 continue; 6840 /* Fill a hole */ 6841 if (start > offset) 6842 ipf->ipf_hole_cnt++; 6843 mp->b_cont = mp1->b_cont; 6844 mp1->b_cont = mp; 6845 mp1 = mp->b_cont; 6846 offset = IP_REASS_START(mp1); 6847 if (end >= offset) { 6848 ipf->ipf_hole_cnt--; 6849 /* Check for overlap. */ 6850 while (end > offset) { 6851 if (end < IP_REASS_END(mp1)) { 6852 mp->b_wptr -= end - offset; 6853 IP_REASS_SET_END(mp, offset); 6854 /* 6855 * TODO we might bump 6856 * this up twice if there is 6857 * overlap at both ends. 6858 */ 6859 BUMP_MIB(ill->ill_ip_mib, 6860 ipIfStatsReasmPartDups); 6861 break; 6862 } 6863 /* Did we cover another hole? */ 6864 if ((mp1->b_cont && 6865 IP_REASS_END(mp1) 6866 != IP_REASS_START(mp1->b_cont) && 6867 end >= 6868 IP_REASS_START(mp1->b_cont)) || 6869 (!ipf->ipf_last_frag_seen && 6870 !more)) { 6871 ipf->ipf_hole_cnt--; 6872 } 6873 /* Clip out mp1. */ 6874 if ((mp->b_cont = mp1->b_cont) == 6875 NULL) { 6876 /* 6877 * After clipping out mp1, 6878 * this guy is now hanging 6879 * off the end. 6880 */ 6881 ipf->ipf_tail_mp = mp; 6882 } 6883 IP_REASS_SET_START(mp1, 0); 6884 IP_REASS_SET_END(mp1, 0); 6885 /* Subtract byte count */ 6886 ipf->ipf_count -= 6887 mp1->b_datap->db_lim - 6888 mp1->b_datap->db_base; 6889 freeb(mp1); 6890 BUMP_MIB(ill->ill_ip_mib, 6891 ipIfStatsReasmPartDups); 6892 mp1 = mp->b_cont; 6893 if (!mp1) 6894 break; 6895 offset = IP_REASS_START(mp1); 6896 } 6897 } 6898 break; 6899 } 6900 } while (start = end, mp = next_mp); 6901 6902 /* Fragment just processed could be the last one. Remember this fact */ 6903 if (!more) 6904 ipf->ipf_last_frag_seen = B_TRUE; 6905 6906 /* Still got holes? */ 6907 if (ipf->ipf_hole_cnt) 6908 return (IP_REASS_PARTIAL); 6909 /* Clean up overloaded fields to avoid upstream disasters. */ 6910 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6911 IP_REASS_SET_START(mp1, 0); 6912 IP_REASS_SET_END(mp1, 0); 6913 } 6914 return (IP_REASS_COMPLETE); 6915 } 6916 6917 /* 6918 * Fragmentation reassembly. Each ILL has a hash table for 6919 * queuing packets undergoing reassembly for all IPIFs 6920 * associated with the ILL. The hash is based on the packet 6921 * IP ident field. The ILL frag hash table was allocated 6922 * as a timer block at the time the ILL was created. Whenever 6923 * there is anything on the reassembly queue, the timer will 6924 * be running. Returns the reassembled packet if reassembly completes. 6925 */ 6926 mblk_t * 6927 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6928 { 6929 uint32_t frag_offset_flags; 6930 mblk_t *t_mp; 6931 ipaddr_t dst; 6932 uint8_t proto = ipha->ipha_protocol; 6933 uint32_t sum_val; 6934 uint16_t sum_flags; 6935 ipf_t *ipf; 6936 ipf_t **ipfp; 6937 ipfb_t *ipfb; 6938 uint16_t ident; 6939 uint32_t offset; 6940 ipaddr_t src; 6941 uint_t hdr_length; 6942 uint32_t end; 6943 mblk_t *mp1; 6944 mblk_t *tail_mp; 6945 size_t count; 6946 size_t msg_len; 6947 uint8_t ecn_info = 0; 6948 uint32_t packet_size; 6949 boolean_t pruned = B_FALSE; 6950 ill_t *ill = ira->ira_ill; 6951 ip_stack_t *ipst = ill->ill_ipst; 6952 6953 /* 6954 * Drop the fragmented as early as possible, if 6955 * we don't have resource(s) to re-assemble. 6956 */ 6957 if (ipst->ips_ip_reass_queue_bytes == 0) { 6958 freemsg(mp); 6959 return (NULL); 6960 } 6961 6962 /* Check for fragmentation offset; return if there's none */ 6963 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6964 (IPH_MF | IPH_OFFSET)) == 0) 6965 return (mp); 6966 6967 /* 6968 * We utilize hardware computed checksum info only for UDP since 6969 * IP fragmentation is a normal occurrence for the protocol. In 6970 * addition, checksum offload support for IP fragments carrying 6971 * UDP payload is commonly implemented across network adapters. 6972 */ 6973 ASSERT(ira->ira_rill != NULL); 6974 if (proto == IPPROTO_UDP && dohwcksum && 6975 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6976 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6977 mblk_t *mp1 = mp->b_cont; 6978 int32_t len; 6979 6980 /* Record checksum information from the packet */ 6981 sum_val = (uint32_t)DB_CKSUM16(mp); 6982 sum_flags = DB_CKSUMFLAGS(mp); 6983 6984 /* IP payload offset from beginning of mblk */ 6985 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 6986 6987 if ((sum_flags & HCK_PARTIALCKSUM) && 6988 (mp1 == NULL || mp1->b_cont == NULL) && 6989 offset >= DB_CKSUMSTART(mp) && 6990 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 6991 uint32_t adj; 6992 /* 6993 * Partial checksum has been calculated by hardware 6994 * and attached to the packet; in addition, any 6995 * prepended extraneous data is even byte aligned. 6996 * If any such data exists, we adjust the checksum; 6997 * this would also handle any postpended data. 6998 */ 6999 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7000 mp, mp1, len, adj); 7001 7002 /* One's complement subtract extraneous checksum */ 7003 if (adj >= sum_val) 7004 sum_val = ~(adj - sum_val) & 0xFFFF; 7005 else 7006 sum_val -= adj; 7007 } 7008 } else { 7009 sum_val = 0; 7010 sum_flags = 0; 7011 } 7012 7013 /* Clear hardware checksumming flag */ 7014 DB_CKSUMFLAGS(mp) = 0; 7015 7016 ident = ipha->ipha_ident; 7017 offset = (frag_offset_flags << 3) & 0xFFFF; 7018 src = ipha->ipha_src; 7019 dst = ipha->ipha_dst; 7020 hdr_length = IPH_HDR_LENGTH(ipha); 7021 end = ntohs(ipha->ipha_length) - hdr_length; 7022 7023 /* If end == 0 then we have a packet with no data, so just free it */ 7024 if (end == 0) { 7025 freemsg(mp); 7026 return (NULL); 7027 } 7028 7029 /* Record the ECN field info. */ 7030 ecn_info = (ipha->ipha_type_of_service & 0x3); 7031 if (offset != 0) { 7032 /* 7033 * If this isn't the first piece, strip the header, and 7034 * add the offset to the end value. 7035 */ 7036 mp->b_rptr += hdr_length; 7037 end += offset; 7038 } 7039 7040 /* Handle vnic loopback of fragments */ 7041 if (mp->b_datap->db_ref > 2) 7042 msg_len = 0; 7043 else 7044 msg_len = MBLKSIZE(mp); 7045 7046 tail_mp = mp; 7047 while (tail_mp->b_cont != NULL) { 7048 tail_mp = tail_mp->b_cont; 7049 if (tail_mp->b_datap->db_ref <= 2) 7050 msg_len += MBLKSIZE(tail_mp); 7051 } 7052 7053 /* If the reassembly list for this ILL will get too big, prune it */ 7054 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7055 ipst->ips_ip_reass_queue_bytes) { 7056 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7057 uint_t, ill->ill_frag_count, 7058 uint_t, ipst->ips_ip_reass_queue_bytes); 7059 ill_frag_prune(ill, 7060 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7061 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7062 pruned = B_TRUE; 7063 } 7064 7065 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7066 mutex_enter(&ipfb->ipfb_lock); 7067 7068 ipfp = &ipfb->ipfb_ipf; 7069 /* Try to find an existing fragment queue for this packet. */ 7070 for (;;) { 7071 ipf = ipfp[0]; 7072 if (ipf != NULL) { 7073 /* 7074 * It has to match on ident and src/dst address. 7075 */ 7076 if (ipf->ipf_ident == ident && 7077 ipf->ipf_src == src && 7078 ipf->ipf_dst == dst && 7079 ipf->ipf_protocol == proto) { 7080 /* 7081 * If we have received too many 7082 * duplicate fragments for this packet 7083 * free it. 7084 */ 7085 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7086 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7087 freemsg(mp); 7088 mutex_exit(&ipfb->ipfb_lock); 7089 return (NULL); 7090 } 7091 /* Found it. */ 7092 break; 7093 } 7094 ipfp = &ipf->ipf_hash_next; 7095 continue; 7096 } 7097 7098 /* 7099 * If we pruned the list, do we want to store this new 7100 * fragment?. We apply an optimization here based on the 7101 * fact that most fragments will be received in order. 7102 * So if the offset of this incoming fragment is zero, 7103 * it is the first fragment of a new packet. We will 7104 * keep it. Otherwise drop the fragment, as we have 7105 * probably pruned the packet already (since the 7106 * packet cannot be found). 7107 */ 7108 if (pruned && offset != 0) { 7109 mutex_exit(&ipfb->ipfb_lock); 7110 freemsg(mp); 7111 return (NULL); 7112 } 7113 7114 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7115 /* 7116 * Too many fragmented packets in this hash 7117 * bucket. Free the oldest. 7118 */ 7119 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7120 } 7121 7122 /* New guy. Allocate a frag message. */ 7123 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7124 if (mp1 == NULL) { 7125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7126 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7127 freemsg(mp); 7128 reass_done: 7129 mutex_exit(&ipfb->ipfb_lock); 7130 return (NULL); 7131 } 7132 7133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7134 mp1->b_cont = mp; 7135 7136 /* Initialize the fragment header. */ 7137 ipf = (ipf_t *)mp1->b_rptr; 7138 ipf->ipf_mp = mp1; 7139 ipf->ipf_ptphn = ipfp; 7140 ipfp[0] = ipf; 7141 ipf->ipf_hash_next = NULL; 7142 ipf->ipf_ident = ident; 7143 ipf->ipf_protocol = proto; 7144 ipf->ipf_src = src; 7145 ipf->ipf_dst = dst; 7146 ipf->ipf_nf_hdr_len = 0; 7147 /* Record reassembly start time. */ 7148 ipf->ipf_timestamp = gethrestime_sec(); 7149 /* Record ipf generation and account for frag header */ 7150 ipf->ipf_gen = ill->ill_ipf_gen++; 7151 ipf->ipf_count = MBLKSIZE(mp1); 7152 ipf->ipf_last_frag_seen = B_FALSE; 7153 ipf->ipf_ecn = ecn_info; 7154 ipf->ipf_num_dups = 0; 7155 ipfb->ipfb_frag_pkts++; 7156 ipf->ipf_checksum = 0; 7157 ipf->ipf_checksum_flags = 0; 7158 7159 /* Store checksum value in fragment header */ 7160 if (sum_flags != 0) { 7161 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7162 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7163 ipf->ipf_checksum = sum_val; 7164 ipf->ipf_checksum_flags = sum_flags; 7165 } 7166 7167 /* 7168 * We handle reassembly two ways. In the easy case, 7169 * where all the fragments show up in order, we do 7170 * minimal bookkeeping, and just clip new pieces on 7171 * the end. If we ever see a hole, then we go off 7172 * to ip_reassemble which has to mark the pieces and 7173 * keep track of the number of holes, etc. Obviously, 7174 * the point of having both mechanisms is so we can 7175 * handle the easy case as efficiently as possible. 7176 */ 7177 if (offset == 0) { 7178 /* Easy case, in-order reassembly so far. */ 7179 ipf->ipf_count += msg_len; 7180 ipf->ipf_tail_mp = tail_mp; 7181 /* 7182 * Keep track of next expected offset in 7183 * ipf_end. 7184 */ 7185 ipf->ipf_end = end; 7186 ipf->ipf_nf_hdr_len = hdr_length; 7187 } else { 7188 /* Hard case, hole at the beginning. */ 7189 ipf->ipf_tail_mp = NULL; 7190 /* 7191 * ipf_end == 0 means that we have given up 7192 * on easy reassembly. 7193 */ 7194 ipf->ipf_end = 0; 7195 7196 /* Forget checksum offload from now on */ 7197 ipf->ipf_checksum_flags = 0; 7198 7199 /* 7200 * ipf_hole_cnt is set by ip_reassemble. 7201 * ipf_count is updated by ip_reassemble. 7202 * No need to check for return value here 7203 * as we don't expect reassembly to complete 7204 * or fail for the first fragment itself. 7205 */ 7206 (void) ip_reassemble(mp, ipf, 7207 (frag_offset_flags & IPH_OFFSET) << 3, 7208 (frag_offset_flags & IPH_MF), ill, msg_len); 7209 } 7210 /* Update per ipfb and ill byte counts */ 7211 ipfb->ipfb_count += ipf->ipf_count; 7212 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7213 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7214 /* If the frag timer wasn't already going, start it. */ 7215 mutex_enter(&ill->ill_lock); 7216 ill_frag_timer_start(ill); 7217 mutex_exit(&ill->ill_lock); 7218 goto reass_done; 7219 } 7220 7221 /* 7222 * If the packet's flag has changed (it could be coming up 7223 * from an interface different than the previous, therefore 7224 * possibly different checksum capability), then forget about 7225 * any stored checksum states. Otherwise add the value to 7226 * the existing one stored in the fragment header. 7227 */ 7228 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7229 sum_val += ipf->ipf_checksum; 7230 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7231 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7232 ipf->ipf_checksum = sum_val; 7233 } else if (ipf->ipf_checksum_flags != 0) { 7234 /* Forget checksum offload from now on */ 7235 ipf->ipf_checksum_flags = 0; 7236 } 7237 7238 /* 7239 * We have a new piece of a datagram which is already being 7240 * reassembled. Update the ECN info if all IP fragments 7241 * are ECN capable. If there is one which is not, clear 7242 * all the info. If there is at least one which has CE 7243 * code point, IP needs to report that up to transport. 7244 */ 7245 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7246 if (ecn_info == IPH_ECN_CE) 7247 ipf->ipf_ecn = IPH_ECN_CE; 7248 } else { 7249 ipf->ipf_ecn = IPH_ECN_NECT; 7250 } 7251 if (offset && ipf->ipf_end == offset) { 7252 /* The new fragment fits at the end */ 7253 ipf->ipf_tail_mp->b_cont = mp; 7254 /* Update the byte count */ 7255 ipf->ipf_count += msg_len; 7256 /* Update per ipfb and ill byte counts */ 7257 ipfb->ipfb_count += msg_len; 7258 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7259 atomic_add_32(&ill->ill_frag_count, msg_len); 7260 if (frag_offset_flags & IPH_MF) { 7261 /* More to come. */ 7262 ipf->ipf_end = end; 7263 ipf->ipf_tail_mp = tail_mp; 7264 goto reass_done; 7265 } 7266 } else { 7267 /* Go do the hard cases. */ 7268 int ret; 7269 7270 if (offset == 0) 7271 ipf->ipf_nf_hdr_len = hdr_length; 7272 7273 /* Save current byte count */ 7274 count = ipf->ipf_count; 7275 ret = ip_reassemble(mp, ipf, 7276 (frag_offset_flags & IPH_OFFSET) << 3, 7277 (frag_offset_flags & IPH_MF), ill, msg_len); 7278 /* Count of bytes added and subtracted (freeb()ed) */ 7279 count = ipf->ipf_count - count; 7280 if (count) { 7281 /* Update per ipfb and ill byte counts */ 7282 ipfb->ipfb_count += count; 7283 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7284 atomic_add_32(&ill->ill_frag_count, count); 7285 } 7286 if (ret == IP_REASS_PARTIAL) { 7287 goto reass_done; 7288 } else if (ret == IP_REASS_FAILED) { 7289 /* Reassembly failed. Free up all resources */ 7290 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7291 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7292 IP_REASS_SET_START(t_mp, 0); 7293 IP_REASS_SET_END(t_mp, 0); 7294 } 7295 freemsg(mp); 7296 goto reass_done; 7297 } 7298 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7299 } 7300 /* 7301 * We have completed reassembly. Unhook the frag header from 7302 * the reassembly list. 7303 * 7304 * Before we free the frag header, record the ECN info 7305 * to report back to the transport. 7306 */ 7307 ecn_info = ipf->ipf_ecn; 7308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7309 ipfp = ipf->ipf_ptphn; 7310 7311 /* We need to supply these to caller */ 7312 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7313 sum_val = ipf->ipf_checksum; 7314 else 7315 sum_val = 0; 7316 7317 mp1 = ipf->ipf_mp; 7318 count = ipf->ipf_count; 7319 ipf = ipf->ipf_hash_next; 7320 if (ipf != NULL) 7321 ipf->ipf_ptphn = ipfp; 7322 ipfp[0] = ipf; 7323 atomic_add_32(&ill->ill_frag_count, -count); 7324 ASSERT(ipfb->ipfb_count >= count); 7325 ipfb->ipfb_count -= count; 7326 ipfb->ipfb_frag_pkts--; 7327 mutex_exit(&ipfb->ipfb_lock); 7328 /* Ditch the frag header. */ 7329 mp = mp1->b_cont; 7330 7331 freeb(mp1); 7332 7333 /* Restore original IP length in header. */ 7334 packet_size = (uint32_t)msgdsize(mp); 7335 if (packet_size > IP_MAXPACKET) { 7336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7337 ip_drop_input("Reassembled packet too large", mp, ill); 7338 freemsg(mp); 7339 return (NULL); 7340 } 7341 7342 if (DB_REF(mp) > 1) { 7343 mblk_t *mp2 = copymsg(mp); 7344 7345 if (mp2 == NULL) { 7346 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7347 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7348 freemsg(mp); 7349 return (NULL); 7350 } 7351 freemsg(mp); 7352 mp = mp2; 7353 } 7354 ipha = (ipha_t *)mp->b_rptr; 7355 7356 ipha->ipha_length = htons((uint16_t)packet_size); 7357 /* We're now complete, zip the frag state */ 7358 ipha->ipha_fragment_offset_and_flags = 0; 7359 /* Record the ECN info. */ 7360 ipha->ipha_type_of_service &= 0xFC; 7361 ipha->ipha_type_of_service |= ecn_info; 7362 7363 /* Update the receive attributes */ 7364 ira->ira_pktlen = packet_size; 7365 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7366 7367 /* Reassembly is successful; set checksum information in packet */ 7368 DB_CKSUM16(mp) = (uint16_t)sum_val; 7369 DB_CKSUMFLAGS(mp) = sum_flags; 7370 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7371 7372 return (mp); 7373 } 7374 7375 /* 7376 * Pullup function that should be used for IP input in order to 7377 * ensure we do not loose the L2 source address; we need the l2 source 7378 * address for IP_RECVSLLA and for ndp_input. 7379 * 7380 * We return either NULL or b_rptr. 7381 */ 7382 void * 7383 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7384 { 7385 ill_t *ill = ira->ira_ill; 7386 7387 if (ip_rput_pullups++ == 0) { 7388 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7389 "ip_pullup: %s forced us to " 7390 " pullup pkt, hdr len %ld, hdr addr %p", 7391 ill->ill_name, len, (void *)mp->b_rptr); 7392 } 7393 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7394 ip_setl2src(mp, ira, ira->ira_rill); 7395 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7396 if (!pullupmsg(mp, len)) 7397 return (NULL); 7398 else 7399 return (mp->b_rptr); 7400 } 7401 7402 /* 7403 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7404 * When called from the ULP ira_rill will be NULL hence the caller has to 7405 * pass in the ill. 7406 */ 7407 /* ARGSUSED */ 7408 void 7409 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7410 { 7411 const uchar_t *addr; 7412 int alen; 7413 7414 if (ira->ira_flags & IRAF_L2SRC_SET) 7415 return; 7416 7417 ASSERT(ill != NULL); 7418 alen = ill->ill_phys_addr_length; 7419 ASSERT(alen <= sizeof (ira->ira_l2src)); 7420 if (ira->ira_mhip != NULL && 7421 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7422 bcopy(addr, ira->ira_l2src, alen); 7423 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7424 (addr = ill->ill_phys_addr) != NULL) { 7425 bcopy(addr, ira->ira_l2src, alen); 7426 } else { 7427 bzero(ira->ira_l2src, alen); 7428 } 7429 ira->ira_flags |= IRAF_L2SRC_SET; 7430 } 7431 7432 /* 7433 * check ip header length and align it. 7434 */ 7435 mblk_t * 7436 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7437 { 7438 ill_t *ill = ira->ira_ill; 7439 ssize_t len; 7440 7441 len = MBLKL(mp); 7442 7443 if (!OK_32PTR(mp->b_rptr)) 7444 IP_STAT(ill->ill_ipst, ip_notaligned); 7445 else 7446 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7447 7448 /* Guard against bogus device drivers */ 7449 if (len < 0) { 7450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7451 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7452 freemsg(mp); 7453 return (NULL); 7454 } 7455 7456 if (len == 0) { 7457 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7458 mblk_t *mp1 = mp->b_cont; 7459 7460 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7461 ip_setl2src(mp, ira, ira->ira_rill); 7462 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7463 7464 freeb(mp); 7465 mp = mp1; 7466 if (mp == NULL) 7467 return (NULL); 7468 7469 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7470 return (mp); 7471 } 7472 if (ip_pullup(mp, min_size, ira) == NULL) { 7473 if (msgdsize(mp) < min_size) { 7474 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7475 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7476 } else { 7477 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7478 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7479 } 7480 freemsg(mp); 7481 return (NULL); 7482 } 7483 return (mp); 7484 } 7485 7486 /* 7487 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7488 */ 7489 mblk_t * 7490 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7491 uint_t min_size, ip_recv_attr_t *ira) 7492 { 7493 ill_t *ill = ira->ira_ill; 7494 7495 /* 7496 * Make sure we have data length consistent 7497 * with the IP header. 7498 */ 7499 if (mp->b_cont == NULL) { 7500 /* pkt_len is based on ipha_len, not the mblk length */ 7501 if (pkt_len < min_size) { 7502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7503 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7504 freemsg(mp); 7505 return (NULL); 7506 } 7507 if (len < 0) { 7508 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7509 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7510 freemsg(mp); 7511 return (NULL); 7512 } 7513 /* Drop any pad */ 7514 mp->b_wptr = rptr + pkt_len; 7515 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7516 ASSERT(pkt_len >= min_size); 7517 if (pkt_len < min_size) { 7518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7519 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7520 freemsg(mp); 7521 return (NULL); 7522 } 7523 if (len < 0) { 7524 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7525 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7526 freemsg(mp); 7527 return (NULL); 7528 } 7529 /* Drop any pad */ 7530 (void) adjmsg(mp, -len); 7531 /* 7532 * adjmsg may have freed an mblk from the chain, hence 7533 * invalidate any hw checksum here. This will force IP to 7534 * calculate the checksum in sw, but only for this packet. 7535 */ 7536 DB_CKSUMFLAGS(mp) = 0; 7537 IP_STAT(ill->ill_ipst, ip_multimblk); 7538 } 7539 return (mp); 7540 } 7541 7542 /* 7543 * Check that the IPv4 opt_len is consistent with the packet and pullup 7544 * the options. 7545 */ 7546 mblk_t * 7547 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7548 ip_recv_attr_t *ira) 7549 { 7550 ill_t *ill = ira->ira_ill; 7551 ssize_t len; 7552 7553 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7554 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7557 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7558 freemsg(mp); 7559 return (NULL); 7560 } 7561 7562 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7564 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7565 freemsg(mp); 7566 return (NULL); 7567 } 7568 /* 7569 * Recompute complete header length and make sure we 7570 * have access to all of it. 7571 */ 7572 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7573 if (len > (mp->b_wptr - mp->b_rptr)) { 7574 if (len > pkt_len) { 7575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7576 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7577 freemsg(mp); 7578 return (NULL); 7579 } 7580 if (ip_pullup(mp, len, ira) == NULL) { 7581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7582 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7583 freemsg(mp); 7584 return (NULL); 7585 } 7586 } 7587 return (mp); 7588 } 7589 7590 /* 7591 * Returns a new ire, or the same ire, or NULL. 7592 * If a different IRE is returned, then it is held; the caller 7593 * needs to release it. 7594 * In no case is there any hold/release on the ire argument. 7595 */ 7596 ire_t * 7597 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7598 { 7599 ire_t *new_ire; 7600 ill_t *ire_ill; 7601 uint_t ifindex; 7602 ip_stack_t *ipst = ill->ill_ipst; 7603 boolean_t strict_check = B_FALSE; 7604 7605 /* 7606 * IPMP common case: if IRE and ILL are in the same group, there's no 7607 * issue (e.g. packet received on an underlying interface matched an 7608 * IRE_LOCAL on its associated group interface). 7609 */ 7610 ASSERT(ire->ire_ill != NULL); 7611 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7612 return (ire); 7613 7614 /* 7615 * Do another ire lookup here, using the ingress ill, to see if the 7616 * interface is in a usesrc group. 7617 * As long as the ills belong to the same group, we don't consider 7618 * them to be arriving on the wrong interface. Thus, if the switch 7619 * is doing inbound load spreading, we won't drop packets when the 7620 * ip*_strict_dst_multihoming switch is on. 7621 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7622 * where the local address may not be unique. In this case we were 7623 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7624 * actually returned. The new lookup, which is more specific, should 7625 * only find the IRE_LOCAL associated with the ingress ill if one 7626 * exists. 7627 */ 7628 if (ire->ire_ipversion == IPV4_VERSION) { 7629 if (ipst->ips_ip_strict_dst_multihoming) 7630 strict_check = B_TRUE; 7631 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7632 IRE_LOCAL, ill, ALL_ZONES, NULL, 7633 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7634 } else { 7635 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7636 if (ipst->ips_ipv6_strict_dst_multihoming) 7637 strict_check = B_TRUE; 7638 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7639 IRE_LOCAL, ill, ALL_ZONES, NULL, 7640 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7641 } 7642 /* 7643 * If the same ire that was returned in ip_input() is found then this 7644 * is an indication that usesrc groups are in use. The packet 7645 * arrived on a different ill in the group than the one associated with 7646 * the destination address. If a different ire was found then the same 7647 * IP address must be hosted on multiple ills. This is possible with 7648 * unnumbered point2point interfaces. We switch to use this new ire in 7649 * order to have accurate interface statistics. 7650 */ 7651 if (new_ire != NULL) { 7652 /* Note: held in one case but not the other? Caller handles */ 7653 if (new_ire != ire) 7654 return (new_ire); 7655 /* Unchanged */ 7656 ire_refrele(new_ire); 7657 return (ire); 7658 } 7659 7660 /* 7661 * Chase pointers once and store locally. 7662 */ 7663 ASSERT(ire->ire_ill != NULL); 7664 ire_ill = ire->ire_ill; 7665 ifindex = ill->ill_usesrc_ifindex; 7666 7667 /* 7668 * Check if it's a legal address on the 'usesrc' interface. 7669 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7670 * can just check phyint_ifindex. 7671 */ 7672 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7673 return (ire); 7674 } 7675 7676 /* 7677 * If the ip*_strict_dst_multihoming switch is on then we can 7678 * only accept this packet if the interface is marked as routing. 7679 */ 7680 if (!(strict_check)) 7681 return (ire); 7682 7683 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7684 return (ire); 7685 } 7686 return (NULL); 7687 } 7688 7689 /* 7690 * This function is used to construct a mac_header_info_s from a 7691 * DL_UNITDATA_IND message. 7692 * The address fields in the mhi structure points into the message, 7693 * thus the caller can't use those fields after freeing the message. 7694 * 7695 * We determine whether the packet received is a non-unicast packet 7696 * and in doing so, determine whether or not it is broadcast vs multicast. 7697 * For it to be a broadcast packet, we must have the appropriate mblk_t 7698 * hanging off the ill_t. If this is either not present or doesn't match 7699 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7700 * to be multicast. Thus NICs that have no broadcast address (or no 7701 * capability for one, such as point to point links) cannot return as 7702 * the packet being broadcast. 7703 */ 7704 void 7705 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7706 { 7707 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7708 mblk_t *bmp; 7709 uint_t extra_offset; 7710 7711 bzero(mhip, sizeof (struct mac_header_info_s)); 7712 7713 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7714 7715 if (ill->ill_sap_length < 0) 7716 extra_offset = 0; 7717 else 7718 extra_offset = ill->ill_sap_length; 7719 7720 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7721 extra_offset; 7722 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7723 extra_offset; 7724 7725 if (!ind->dl_group_address) 7726 return; 7727 7728 /* Multicast or broadcast */ 7729 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7730 7731 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7732 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7733 (bmp = ill->ill_bcast_mp) != NULL) { 7734 dl_unitdata_req_t *dlur; 7735 uint8_t *bphys_addr; 7736 7737 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7738 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7739 extra_offset; 7740 7741 if (bcmp(mhip->mhi_daddr, bphys_addr, 7742 ind->dl_dest_addr_length) == 0) 7743 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7744 } 7745 } 7746 7747 /* 7748 * This function is used to construct a mac_header_info_s from a 7749 * M_DATA fastpath message from a DLPI driver. 7750 * The address fields in the mhi structure points into the message, 7751 * thus the caller can't use those fields after freeing the message. 7752 * 7753 * We determine whether the packet received is a non-unicast packet 7754 * and in doing so, determine whether or not it is broadcast vs multicast. 7755 * For it to be a broadcast packet, we must have the appropriate mblk_t 7756 * hanging off the ill_t. If this is either not present or doesn't match 7757 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7758 * to be multicast. Thus NICs that have no broadcast address (or no 7759 * capability for one, such as point to point links) cannot return as 7760 * the packet being broadcast. 7761 */ 7762 void 7763 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7764 { 7765 mblk_t *bmp; 7766 struct ether_header *pether; 7767 7768 bzero(mhip, sizeof (struct mac_header_info_s)); 7769 7770 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7771 7772 pether = (struct ether_header *)((char *)mp->b_rptr 7773 - sizeof (struct ether_header)); 7774 7775 /* 7776 * Make sure the interface is an ethernet type, since we don't 7777 * know the header format for anything but Ethernet. Also make 7778 * sure we are pointing correctly above db_base. 7779 */ 7780 if (ill->ill_type != IFT_ETHER) 7781 return; 7782 7783 retry: 7784 if ((uchar_t *)pether < mp->b_datap->db_base) 7785 return; 7786 7787 /* Is there a VLAN tag? */ 7788 if (ill->ill_isv6) { 7789 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7790 pether = (struct ether_header *)((char *)pether - 4); 7791 goto retry; 7792 } 7793 } else { 7794 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7795 pether = (struct ether_header *)((char *)pether - 4); 7796 goto retry; 7797 } 7798 } 7799 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7800 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7801 7802 if (!(mhip->mhi_daddr[0] & 0x01)) 7803 return; 7804 7805 /* Multicast or broadcast */ 7806 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7807 7808 if ((bmp = ill->ill_bcast_mp) != NULL) { 7809 dl_unitdata_req_t *dlur; 7810 uint8_t *bphys_addr; 7811 uint_t addrlen; 7812 7813 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7814 addrlen = dlur->dl_dest_addr_length; 7815 if (ill->ill_sap_length < 0) { 7816 bphys_addr = (uchar_t *)dlur + 7817 dlur->dl_dest_addr_offset; 7818 addrlen += ill->ill_sap_length; 7819 } else { 7820 bphys_addr = (uchar_t *)dlur + 7821 dlur->dl_dest_addr_offset + 7822 ill->ill_sap_length; 7823 addrlen -= ill->ill_sap_length; 7824 } 7825 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7826 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7827 } 7828 } 7829 7830 /* 7831 * Handle anything but M_DATA messages 7832 * We see the DL_UNITDATA_IND which are part 7833 * of the data path, and also the other messages from the driver. 7834 */ 7835 void 7836 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7837 { 7838 mblk_t *first_mp; 7839 struct iocblk *iocp; 7840 struct mac_header_info_s mhi; 7841 7842 switch (DB_TYPE(mp)) { 7843 case M_PROTO: 7844 case M_PCPROTO: { 7845 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7846 DL_UNITDATA_IND) { 7847 /* Go handle anything other than data elsewhere. */ 7848 ip_rput_dlpi(ill, mp); 7849 return; 7850 } 7851 7852 first_mp = mp; 7853 mp = first_mp->b_cont; 7854 first_mp->b_cont = NULL; 7855 7856 if (mp == NULL) { 7857 freeb(first_mp); 7858 return; 7859 } 7860 ip_dlur_to_mhi(ill, first_mp, &mhi); 7861 if (ill->ill_isv6) 7862 ip_input_v6(ill, NULL, mp, &mhi); 7863 else 7864 ip_input(ill, NULL, mp, &mhi); 7865 7866 /* Ditch the DLPI header. */ 7867 freeb(first_mp); 7868 return; 7869 } 7870 case M_IOCACK: 7871 iocp = (struct iocblk *)mp->b_rptr; 7872 switch (iocp->ioc_cmd) { 7873 case DL_IOC_HDR_INFO: 7874 ill_fastpath_ack(ill, mp); 7875 return; 7876 default: 7877 putnext(ill->ill_rq, mp); 7878 return; 7879 } 7880 /* FALLTHRU */ 7881 case M_ERROR: 7882 case M_HANGUP: 7883 mutex_enter(&ill->ill_lock); 7884 if (ill->ill_state_flags & ILL_CONDEMNED) { 7885 mutex_exit(&ill->ill_lock); 7886 freemsg(mp); 7887 return; 7888 } 7889 ill_refhold_locked(ill); 7890 mutex_exit(&ill->ill_lock); 7891 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7892 B_FALSE); 7893 return; 7894 case M_CTL: 7895 putnext(ill->ill_rq, mp); 7896 return; 7897 case M_IOCNAK: 7898 ip1dbg(("got iocnak ")); 7899 iocp = (struct iocblk *)mp->b_rptr; 7900 switch (iocp->ioc_cmd) { 7901 case DL_IOC_HDR_INFO: 7902 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7903 return; 7904 default: 7905 break; 7906 } 7907 /* FALLTHRU */ 7908 default: 7909 putnext(ill->ill_rq, mp); 7910 return; 7911 } 7912 } 7913 7914 /* Read side put procedure. Packets coming from the wire arrive here. */ 7915 void 7916 ip_rput(queue_t *q, mblk_t *mp) 7917 { 7918 ill_t *ill; 7919 union DL_primitives *dl; 7920 7921 ill = (ill_t *)q->q_ptr; 7922 7923 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7924 /* 7925 * If things are opening or closing, only accept high-priority 7926 * DLPI messages. (On open ill->ill_ipif has not yet been 7927 * created; on close, things hanging off the ill may have been 7928 * freed already.) 7929 */ 7930 dl = (union DL_primitives *)mp->b_rptr; 7931 if (DB_TYPE(mp) != M_PCPROTO || 7932 dl->dl_primitive == DL_UNITDATA_IND) { 7933 inet_freemsg(mp); 7934 return; 7935 } 7936 } 7937 if (DB_TYPE(mp) == M_DATA) { 7938 struct mac_header_info_s mhi; 7939 7940 ip_mdata_to_mhi(ill, mp, &mhi); 7941 ip_input(ill, NULL, mp, &mhi); 7942 } else { 7943 ip_rput_notdata(ill, mp); 7944 } 7945 } 7946 7947 /* 7948 * Move the information to a copy. 7949 */ 7950 mblk_t * 7951 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7952 { 7953 mblk_t *mp1; 7954 ill_t *ill = ira->ira_ill; 7955 ip_stack_t *ipst = ill->ill_ipst; 7956 7957 IP_STAT(ipst, ip_db_ref); 7958 7959 /* Make sure we have ira_l2src before we loose the original mblk */ 7960 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7961 ip_setl2src(mp, ira, ira->ira_rill); 7962 7963 mp1 = copymsg(mp); 7964 if (mp1 == NULL) { 7965 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7966 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7967 freemsg(mp); 7968 return (NULL); 7969 } 7970 /* preserve the hardware checksum flags and data, if present */ 7971 if (DB_CKSUMFLAGS(mp) != 0) { 7972 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7973 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7974 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7975 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7976 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7977 } 7978 freemsg(mp); 7979 return (mp1); 7980 } 7981 7982 static void 7983 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 7984 t_uscalar_t err) 7985 { 7986 if (dl_err == DL_SYSERR) { 7987 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7988 "%s: %s failed: DL_SYSERR (errno %u)\n", 7989 ill->ill_name, dl_primstr(prim), err); 7990 return; 7991 } 7992 7993 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7994 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 7995 dl_errstr(dl_err)); 7996 } 7997 7998 /* 7999 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8000 * than DL_UNITDATA_IND messages. If we need to process this message 8001 * exclusively, we call qwriter_ip, in which case we also need to call 8002 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8003 */ 8004 void 8005 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8006 { 8007 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8008 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8009 queue_t *q = ill->ill_rq; 8010 t_uscalar_t prim = dloa->dl_primitive; 8011 t_uscalar_t reqprim = DL_PRIM_INVAL; 8012 8013 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8014 char *, dl_primstr(prim), ill_t *, ill); 8015 ip1dbg(("ip_rput_dlpi")); 8016 8017 /* 8018 * If we received an ACK but didn't send a request for it, then it 8019 * can't be part of any pending operation; discard up-front. 8020 */ 8021 switch (prim) { 8022 case DL_ERROR_ACK: 8023 reqprim = dlea->dl_error_primitive; 8024 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8025 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8026 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8027 dlea->dl_unix_errno)); 8028 break; 8029 case DL_OK_ACK: 8030 reqprim = dloa->dl_correct_primitive; 8031 break; 8032 case DL_INFO_ACK: 8033 reqprim = DL_INFO_REQ; 8034 break; 8035 case DL_BIND_ACK: 8036 reqprim = DL_BIND_REQ; 8037 break; 8038 case DL_PHYS_ADDR_ACK: 8039 reqprim = DL_PHYS_ADDR_REQ; 8040 break; 8041 case DL_NOTIFY_ACK: 8042 reqprim = DL_NOTIFY_REQ; 8043 break; 8044 case DL_CAPABILITY_ACK: 8045 reqprim = DL_CAPABILITY_REQ; 8046 break; 8047 } 8048 8049 if (prim != DL_NOTIFY_IND) { 8050 if (reqprim == DL_PRIM_INVAL || 8051 !ill_dlpi_pending(ill, reqprim)) { 8052 /* Not a DLPI message we support or expected */ 8053 freemsg(mp); 8054 return; 8055 } 8056 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8057 dl_primstr(reqprim))); 8058 } 8059 8060 switch (reqprim) { 8061 case DL_UNBIND_REQ: 8062 /* 8063 * NOTE: we mark the unbind as complete even if we got a 8064 * DL_ERROR_ACK, since there's not much else we can do. 8065 */ 8066 mutex_enter(&ill->ill_lock); 8067 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8068 cv_signal(&ill->ill_cv); 8069 mutex_exit(&ill->ill_lock); 8070 break; 8071 8072 case DL_ENABMULTI_REQ: 8073 if (prim == DL_OK_ACK) { 8074 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8075 ill->ill_dlpi_multicast_state = IDS_OK; 8076 } 8077 break; 8078 } 8079 8080 /* 8081 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8082 * need to become writer to continue to process it. Because an 8083 * exclusive operation doesn't complete until replies to all queued 8084 * DLPI messages have been received, we know we're in the middle of an 8085 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8086 * 8087 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8088 * Since this is on the ill stream we unconditionally bump up the 8089 * refcount without doing ILL_CAN_LOOKUP(). 8090 */ 8091 ill_refhold(ill); 8092 if (prim == DL_NOTIFY_IND) 8093 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8094 else 8095 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8096 } 8097 8098 /* 8099 * Handling of DLPI messages that require exclusive access to the ipsq. 8100 * 8101 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8102 * happen here. (along with mi_copy_done) 8103 */ 8104 /* ARGSUSED */ 8105 static void 8106 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8107 { 8108 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8109 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8110 int err = 0; 8111 ill_t *ill = (ill_t *)q->q_ptr; 8112 ipif_t *ipif = NULL; 8113 mblk_t *mp1 = NULL; 8114 conn_t *connp = NULL; 8115 t_uscalar_t paddrreq; 8116 mblk_t *mp_hw; 8117 boolean_t success; 8118 boolean_t ioctl_aborted = B_FALSE; 8119 boolean_t log = B_TRUE; 8120 8121 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8122 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8123 8124 ip1dbg(("ip_rput_dlpi_writer ..")); 8125 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8126 ASSERT(IAM_WRITER_ILL(ill)); 8127 8128 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8129 /* 8130 * The current ioctl could have been aborted by the user and a new 8131 * ioctl to bring up another ill could have started. We could still 8132 * get a response from the driver later. 8133 */ 8134 if (ipif != NULL && ipif->ipif_ill != ill) 8135 ioctl_aborted = B_TRUE; 8136 8137 switch (dloa->dl_primitive) { 8138 case DL_ERROR_ACK: 8139 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8140 dl_primstr(dlea->dl_error_primitive))); 8141 8142 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8143 char *, dl_primstr(dlea->dl_error_primitive), 8144 ill_t *, ill); 8145 8146 switch (dlea->dl_error_primitive) { 8147 case DL_DISABMULTI_REQ: 8148 ill_dlpi_done(ill, dlea->dl_error_primitive); 8149 break; 8150 case DL_PROMISCON_REQ: 8151 case DL_PROMISCOFF_REQ: 8152 case DL_UNBIND_REQ: 8153 case DL_ATTACH_REQ: 8154 case DL_INFO_REQ: 8155 ill_dlpi_done(ill, dlea->dl_error_primitive); 8156 break; 8157 case DL_NOTIFY_REQ: 8158 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8159 log = B_FALSE; 8160 break; 8161 case DL_PHYS_ADDR_REQ: 8162 /* 8163 * For IPv6 only, there are two additional 8164 * phys_addr_req's sent to the driver to get the 8165 * IPv6 token and lla. This allows IP to acquire 8166 * the hardware address format for a given interface 8167 * without having built in knowledge of the hardware 8168 * address. ill_phys_addr_pend keeps track of the last 8169 * DL_PAR sent so we know which response we are 8170 * dealing with. ill_dlpi_done will update 8171 * ill_phys_addr_pend when it sends the next req. 8172 * We don't complete the IOCTL until all three DL_PARs 8173 * have been attempted, so set *_len to 0 and break. 8174 */ 8175 paddrreq = ill->ill_phys_addr_pend; 8176 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8177 if (paddrreq == DL_IPV6_TOKEN) { 8178 ill->ill_token_length = 0; 8179 log = B_FALSE; 8180 break; 8181 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8182 ill->ill_nd_lla_len = 0; 8183 log = B_FALSE; 8184 break; 8185 } 8186 /* 8187 * Something went wrong with the DL_PHYS_ADDR_REQ. 8188 * We presumably have an IOCTL hanging out waiting 8189 * for completion. Find it and complete the IOCTL 8190 * with the error noted. 8191 * However, ill_dl_phys was called on an ill queue 8192 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8193 * set. But the ioctl is known to be pending on ill_wq. 8194 */ 8195 if (!ill->ill_ifname_pending) 8196 break; 8197 ill->ill_ifname_pending = 0; 8198 if (!ioctl_aborted) 8199 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8200 if (mp1 != NULL) { 8201 /* 8202 * This operation (SIOCSLIFNAME) must have 8203 * happened on the ill. Assert there is no conn 8204 */ 8205 ASSERT(connp == NULL); 8206 q = ill->ill_wq; 8207 } 8208 break; 8209 case DL_BIND_REQ: 8210 ill_dlpi_done(ill, DL_BIND_REQ); 8211 if (ill->ill_ifname_pending) 8212 break; 8213 mutex_enter(&ill->ill_lock); 8214 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8215 mutex_exit(&ill->ill_lock); 8216 /* 8217 * Something went wrong with the bind. We presumably 8218 * have an IOCTL hanging out waiting for completion. 8219 * Find it, take down the interface that was coming 8220 * up, and complete the IOCTL with the error noted. 8221 */ 8222 if (!ioctl_aborted) 8223 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8224 if (mp1 != NULL) { 8225 /* 8226 * This might be a result of a DL_NOTE_REPLUMB 8227 * notification. In that case, connp is NULL. 8228 */ 8229 if (connp != NULL) 8230 q = CONNP_TO_WQ(connp); 8231 8232 (void) ipif_down(ipif, NULL, NULL); 8233 /* error is set below the switch */ 8234 } 8235 break; 8236 case DL_ENABMULTI_REQ: 8237 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8238 8239 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8240 ill->ill_dlpi_multicast_state = IDS_FAILED; 8241 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8242 8243 printf("ip: joining multicasts failed (%d)" 8244 " on %s - will use link layer " 8245 "broadcasts for multicast\n", 8246 dlea->dl_errno, ill->ill_name); 8247 8248 /* 8249 * Set up for multi_bcast; We are the 8250 * writer, so ok to access ill->ill_ipif 8251 * without any lock. 8252 */ 8253 mutex_enter(&ill->ill_phyint->phyint_lock); 8254 ill->ill_phyint->phyint_flags |= 8255 PHYI_MULTI_BCAST; 8256 mutex_exit(&ill->ill_phyint->phyint_lock); 8257 8258 } 8259 freemsg(mp); /* Don't want to pass this up */ 8260 return; 8261 case DL_CAPABILITY_REQ: 8262 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8263 "DL_CAPABILITY REQ\n")); 8264 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8265 ill->ill_dlpi_capab_state = IDCS_FAILED; 8266 ill_capability_done(ill); 8267 freemsg(mp); 8268 return; 8269 } 8270 /* 8271 * Note the error for IOCTL completion (mp1 is set when 8272 * ready to complete ioctl). If ill_ifname_pending_err is 8273 * set, an error occured during plumbing (ill_ifname_pending), 8274 * so we want to report that error. 8275 * 8276 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8277 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8278 * expected to get errack'd if the driver doesn't support 8279 * these flags (e.g. ethernet). log will be set to B_FALSE 8280 * if these error conditions are encountered. 8281 */ 8282 if (mp1 != NULL) { 8283 if (ill->ill_ifname_pending_err != 0) { 8284 err = ill->ill_ifname_pending_err; 8285 ill->ill_ifname_pending_err = 0; 8286 } else { 8287 err = dlea->dl_unix_errno ? 8288 dlea->dl_unix_errno : ENXIO; 8289 } 8290 /* 8291 * If we're plumbing an interface and an error hasn't already 8292 * been saved, set ill_ifname_pending_err to the error passed 8293 * up. Ignore the error if log is B_FALSE (see comment above). 8294 */ 8295 } else if (log && ill->ill_ifname_pending && 8296 ill->ill_ifname_pending_err == 0) { 8297 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8298 dlea->dl_unix_errno : ENXIO; 8299 } 8300 8301 if (log) 8302 ip_dlpi_error(ill, dlea->dl_error_primitive, 8303 dlea->dl_errno, dlea->dl_unix_errno); 8304 break; 8305 case DL_CAPABILITY_ACK: 8306 ill_capability_ack(ill, mp); 8307 /* 8308 * The message has been handed off to ill_capability_ack 8309 * and must not be freed below 8310 */ 8311 mp = NULL; 8312 break; 8313 8314 case DL_INFO_ACK: 8315 /* Call a routine to handle this one. */ 8316 ill_dlpi_done(ill, DL_INFO_REQ); 8317 ip_ll_subnet_defaults(ill, mp); 8318 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8319 return; 8320 case DL_BIND_ACK: 8321 /* 8322 * We should have an IOCTL waiting on this unless 8323 * sent by ill_dl_phys, in which case just return 8324 */ 8325 ill_dlpi_done(ill, DL_BIND_REQ); 8326 8327 if (ill->ill_ifname_pending) { 8328 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8329 ill_t *, ill, mblk_t *, mp); 8330 break; 8331 } 8332 mutex_enter(&ill->ill_lock); 8333 ill->ill_dl_up = 1; 8334 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8335 mutex_exit(&ill->ill_lock); 8336 8337 if (!ioctl_aborted) 8338 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8339 if (mp1 == NULL) { 8340 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8341 break; 8342 } 8343 /* 8344 * mp1 was added by ill_dl_up(). if that is a result of 8345 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8346 */ 8347 if (connp != NULL) 8348 q = CONNP_TO_WQ(connp); 8349 /* 8350 * We are exclusive. So nothing can change even after 8351 * we get the pending mp. 8352 */ 8353 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8354 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8355 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8356 8357 /* 8358 * Now bring up the resolver; when that is complete, we'll 8359 * create IREs. Note that we intentionally mirror what 8360 * ipif_up() would have done, because we got here by way of 8361 * ill_dl_up(), which stopped ipif_up()'s processing. 8362 */ 8363 if (ill->ill_isv6) { 8364 /* 8365 * v6 interfaces. 8366 * Unlike ARP which has to do another bind 8367 * and attach, once we get here we are 8368 * done with NDP 8369 */ 8370 (void) ipif_resolver_up(ipif, Res_act_initial); 8371 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8372 err = ipif_up_done_v6(ipif); 8373 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8374 /* 8375 * ARP and other v4 external resolvers. 8376 * Leave the pending mblk intact so that 8377 * the ioctl completes in ip_rput(). 8378 */ 8379 if (connp != NULL) 8380 mutex_enter(&connp->conn_lock); 8381 mutex_enter(&ill->ill_lock); 8382 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8383 mutex_exit(&ill->ill_lock); 8384 if (connp != NULL) 8385 mutex_exit(&connp->conn_lock); 8386 if (success) { 8387 err = ipif_resolver_up(ipif, Res_act_initial); 8388 if (err == EINPROGRESS) { 8389 freemsg(mp); 8390 return; 8391 } 8392 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8393 } else { 8394 /* The conn has started closing */ 8395 err = EINTR; 8396 } 8397 } else { 8398 /* 8399 * This one is complete. Reply to pending ioctl. 8400 */ 8401 (void) ipif_resolver_up(ipif, Res_act_initial); 8402 err = ipif_up_done(ipif); 8403 } 8404 8405 if ((err == 0) && (ill->ill_up_ipifs)) { 8406 err = ill_up_ipifs(ill, q, mp1); 8407 if (err == EINPROGRESS) { 8408 freemsg(mp); 8409 return; 8410 } 8411 } 8412 8413 /* 8414 * If we have a moved ipif to bring up, and everything has 8415 * succeeded to this point, bring it up on the IPMP ill. 8416 * Otherwise, leave it down -- the admin can try to bring it 8417 * up by hand if need be. 8418 */ 8419 if (ill->ill_move_ipif != NULL) { 8420 if (err != 0) { 8421 ill->ill_move_ipif = NULL; 8422 } else { 8423 ipif = ill->ill_move_ipif; 8424 ill->ill_move_ipif = NULL; 8425 err = ipif_up(ipif, q, mp1); 8426 if (err == EINPROGRESS) { 8427 freemsg(mp); 8428 return; 8429 } 8430 } 8431 } 8432 break; 8433 8434 case DL_NOTIFY_IND: { 8435 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8436 uint_t orig_mtu; 8437 8438 switch (notify->dl_notification) { 8439 case DL_NOTE_PHYS_ADDR: 8440 err = ill_set_phys_addr(ill, mp); 8441 break; 8442 8443 case DL_NOTE_REPLUMB: 8444 /* 8445 * Directly return after calling ill_replumb(). 8446 * Note that we should not free mp as it is reused 8447 * in the ill_replumb() function. 8448 */ 8449 err = ill_replumb(ill, mp); 8450 return; 8451 8452 case DL_NOTE_FASTPATH_FLUSH: 8453 nce_flush(ill, B_FALSE); 8454 break; 8455 8456 case DL_NOTE_SDU_SIZE: 8457 /* 8458 * The dce and fragmentation code can cope with 8459 * this changing while packets are being sent. 8460 * When packets are sent ip_output will discover 8461 * a change. 8462 * 8463 * Change the MTU size of the interface. 8464 */ 8465 mutex_enter(&ill->ill_lock); 8466 ill->ill_current_frag = (uint_t)notify->dl_data; 8467 if (ill->ill_current_frag > ill->ill_max_frag) 8468 ill->ill_max_frag = ill->ill_current_frag; 8469 8470 orig_mtu = ill->ill_mtu; 8471 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8472 ill->ill_mtu = ill->ill_current_frag; 8473 8474 /* 8475 * If ill_user_mtu was set (via 8476 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8477 */ 8478 if (ill->ill_user_mtu != 0 && 8479 ill->ill_user_mtu < ill->ill_mtu) 8480 ill->ill_mtu = ill->ill_user_mtu; 8481 8482 if (ill->ill_isv6) { 8483 if (ill->ill_mtu < IPV6_MIN_MTU) 8484 ill->ill_mtu = IPV6_MIN_MTU; 8485 } else { 8486 if (ill->ill_mtu < IP_MIN_MTU) 8487 ill->ill_mtu = IP_MIN_MTU; 8488 } 8489 } 8490 mutex_exit(&ill->ill_lock); 8491 /* 8492 * Make sure all dce_generation checks find out 8493 * that ill_mtu has changed. 8494 */ 8495 if (orig_mtu != ill->ill_mtu) { 8496 dce_increment_all_generations(ill->ill_isv6, 8497 ill->ill_ipst); 8498 } 8499 8500 /* 8501 * Refresh IPMP meta-interface MTU if necessary. 8502 */ 8503 if (IS_UNDER_IPMP(ill)) 8504 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8505 break; 8506 8507 case DL_NOTE_LINK_UP: 8508 case DL_NOTE_LINK_DOWN: { 8509 /* 8510 * We are writer. ill / phyint / ipsq assocs stable. 8511 * The RUNNING flag reflects the state of the link. 8512 */ 8513 phyint_t *phyint = ill->ill_phyint; 8514 uint64_t new_phyint_flags; 8515 boolean_t changed = B_FALSE; 8516 boolean_t went_up; 8517 8518 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8519 mutex_enter(&phyint->phyint_lock); 8520 8521 new_phyint_flags = went_up ? 8522 phyint->phyint_flags | PHYI_RUNNING : 8523 phyint->phyint_flags & ~PHYI_RUNNING; 8524 8525 if (IS_IPMP(ill)) { 8526 new_phyint_flags = went_up ? 8527 new_phyint_flags & ~PHYI_FAILED : 8528 new_phyint_flags | PHYI_FAILED; 8529 } 8530 8531 if (new_phyint_flags != phyint->phyint_flags) { 8532 phyint->phyint_flags = new_phyint_flags; 8533 changed = B_TRUE; 8534 } 8535 mutex_exit(&phyint->phyint_lock); 8536 /* 8537 * ill_restart_dad handles the DAD restart and routing 8538 * socket notification logic. 8539 */ 8540 if (changed) { 8541 ill_restart_dad(phyint->phyint_illv4, went_up); 8542 ill_restart_dad(phyint->phyint_illv6, went_up); 8543 } 8544 break; 8545 } 8546 case DL_NOTE_PROMISC_ON_PHYS: { 8547 phyint_t *phyint = ill->ill_phyint; 8548 8549 mutex_enter(&phyint->phyint_lock); 8550 phyint->phyint_flags |= PHYI_PROMISC; 8551 mutex_exit(&phyint->phyint_lock); 8552 break; 8553 } 8554 case DL_NOTE_PROMISC_OFF_PHYS: { 8555 phyint_t *phyint = ill->ill_phyint; 8556 8557 mutex_enter(&phyint->phyint_lock); 8558 phyint->phyint_flags &= ~PHYI_PROMISC; 8559 mutex_exit(&phyint->phyint_lock); 8560 break; 8561 } 8562 case DL_NOTE_CAPAB_RENEG: 8563 /* 8564 * Something changed on the driver side. 8565 * It wants us to renegotiate the capabilities 8566 * on this ill. One possible cause is the aggregation 8567 * interface under us where a port got added or 8568 * went away. 8569 * 8570 * If the capability negotiation is already done 8571 * or is in progress, reset the capabilities and 8572 * mark the ill's ill_capab_reneg to be B_TRUE, 8573 * so that when the ack comes back, we can start 8574 * the renegotiation process. 8575 * 8576 * Note that if ill_capab_reneg is already B_TRUE 8577 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8578 * the capability resetting request has been sent 8579 * and the renegotiation has not been started yet; 8580 * nothing needs to be done in this case. 8581 */ 8582 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8583 ill_capability_reset(ill, B_TRUE); 8584 ipsq_current_finish(ipsq); 8585 break; 8586 8587 case DL_NOTE_ALLOWED_IPS: 8588 ill_set_allowed_ips(ill, mp); 8589 break; 8590 default: 8591 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8592 "type 0x%x for DL_NOTIFY_IND\n", 8593 notify->dl_notification)); 8594 break; 8595 } 8596 8597 /* 8598 * As this is an asynchronous operation, we 8599 * should not call ill_dlpi_done 8600 */ 8601 break; 8602 } 8603 case DL_NOTIFY_ACK: { 8604 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8605 8606 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8607 ill->ill_note_link = 1; 8608 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8609 break; 8610 } 8611 case DL_PHYS_ADDR_ACK: { 8612 /* 8613 * As part of plumbing the interface via SIOCSLIFNAME, 8614 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8615 * whose answers we receive here. As each answer is received, 8616 * we call ill_dlpi_done() to dispatch the next request as 8617 * we're processing the current one. Once all answers have 8618 * been received, we use ipsq_pending_mp_get() to dequeue the 8619 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8620 * is invoked from an ill queue, conn_oper_pending_ill is not 8621 * available, but we know the ioctl is pending on ill_wq.) 8622 */ 8623 uint_t paddrlen, paddroff; 8624 uint8_t *addr; 8625 8626 paddrreq = ill->ill_phys_addr_pend; 8627 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8628 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8629 addr = mp->b_rptr + paddroff; 8630 8631 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8632 if (paddrreq == DL_IPV6_TOKEN) { 8633 /* 8634 * bcopy to low-order bits of ill_token 8635 * 8636 * XXX Temporary hack - currently, all known tokens 8637 * are 64 bits, so I'll cheat for the moment. 8638 */ 8639 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8640 ill->ill_token_length = paddrlen; 8641 break; 8642 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8643 ASSERT(ill->ill_nd_lla_mp == NULL); 8644 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8645 mp = NULL; 8646 break; 8647 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8648 ASSERT(ill->ill_dest_addr_mp == NULL); 8649 ill->ill_dest_addr_mp = mp; 8650 ill->ill_dest_addr = addr; 8651 mp = NULL; 8652 if (ill->ill_isv6) { 8653 ill_setdesttoken(ill); 8654 ipif_setdestlinklocal(ill->ill_ipif); 8655 } 8656 break; 8657 } 8658 8659 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8660 ASSERT(ill->ill_phys_addr_mp == NULL); 8661 if (!ill->ill_ifname_pending) 8662 break; 8663 ill->ill_ifname_pending = 0; 8664 if (!ioctl_aborted) 8665 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8666 if (mp1 != NULL) { 8667 ASSERT(connp == NULL); 8668 q = ill->ill_wq; 8669 } 8670 /* 8671 * If any error acks received during the plumbing sequence, 8672 * ill_ifname_pending_err will be set. Break out and send up 8673 * the error to the pending ioctl. 8674 */ 8675 if (ill->ill_ifname_pending_err != 0) { 8676 err = ill->ill_ifname_pending_err; 8677 ill->ill_ifname_pending_err = 0; 8678 break; 8679 } 8680 8681 ill->ill_phys_addr_mp = mp; 8682 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8683 mp = NULL; 8684 8685 /* 8686 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8687 * provider doesn't support physical addresses. We check both 8688 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8689 * not have physical addresses, but historically adversises a 8690 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8691 * its DL_PHYS_ADDR_ACK. 8692 */ 8693 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8694 ill->ill_phys_addr = NULL; 8695 } else if (paddrlen != ill->ill_phys_addr_length) { 8696 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8697 paddrlen, ill->ill_phys_addr_length)); 8698 err = EINVAL; 8699 break; 8700 } 8701 8702 if (ill->ill_nd_lla_mp == NULL) { 8703 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8704 err = ENOMEM; 8705 break; 8706 } 8707 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8708 } 8709 8710 if (ill->ill_isv6) { 8711 ill_setdefaulttoken(ill); 8712 ipif_setlinklocal(ill->ill_ipif); 8713 } 8714 break; 8715 } 8716 case DL_OK_ACK: 8717 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8718 dl_primstr((int)dloa->dl_correct_primitive), 8719 dloa->dl_correct_primitive)); 8720 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8721 char *, dl_primstr(dloa->dl_correct_primitive), 8722 ill_t *, ill); 8723 8724 switch (dloa->dl_correct_primitive) { 8725 case DL_ENABMULTI_REQ: 8726 case DL_DISABMULTI_REQ: 8727 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8728 break; 8729 case DL_PROMISCON_REQ: 8730 case DL_PROMISCOFF_REQ: 8731 case DL_UNBIND_REQ: 8732 case DL_ATTACH_REQ: 8733 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8734 break; 8735 } 8736 break; 8737 default: 8738 break; 8739 } 8740 8741 freemsg(mp); 8742 if (mp1 == NULL) 8743 return; 8744 8745 /* 8746 * The operation must complete without EINPROGRESS since 8747 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8748 * the operation will be stuck forever inside the IPSQ. 8749 */ 8750 ASSERT(err != EINPROGRESS); 8751 8752 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8753 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8754 ipif_t *, NULL); 8755 8756 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8757 case 0: 8758 ipsq_current_finish(ipsq); 8759 break; 8760 8761 case SIOCSLIFNAME: 8762 case IF_UNITSEL: { 8763 ill_t *ill_other = ILL_OTHER(ill); 8764 8765 /* 8766 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8767 * ill has a peer which is in an IPMP group, then place ill 8768 * into the same group. One catch: although ifconfig plumbs 8769 * the appropriate IPMP meta-interface prior to plumbing this 8770 * ill, it is possible for multiple ifconfig applications to 8771 * race (or for another application to adjust plumbing), in 8772 * which case the IPMP meta-interface we need will be missing. 8773 * If so, kick the phyint out of the group. 8774 */ 8775 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8776 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8777 ipmp_illgrp_t *illg; 8778 8779 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8780 if (illg == NULL) 8781 ipmp_phyint_leave_grp(ill->ill_phyint); 8782 else 8783 ipmp_ill_join_illgrp(ill, illg); 8784 } 8785 8786 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8787 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8788 else 8789 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8790 break; 8791 } 8792 case SIOCLIFADDIF: 8793 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8794 break; 8795 8796 default: 8797 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8798 break; 8799 } 8800 } 8801 8802 /* 8803 * ip_rput_other is called by ip_rput to handle messages modifying the global 8804 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8805 */ 8806 /* ARGSUSED */ 8807 void 8808 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8809 { 8810 ill_t *ill = q->q_ptr; 8811 struct iocblk *iocp; 8812 8813 ip1dbg(("ip_rput_other ")); 8814 if (ipsq != NULL) { 8815 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8816 ASSERT(ipsq->ipsq_xop == 8817 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8818 } 8819 8820 switch (mp->b_datap->db_type) { 8821 case M_ERROR: 8822 case M_HANGUP: 8823 /* 8824 * The device has a problem. We force the ILL down. It can 8825 * be brought up again manually using SIOCSIFFLAGS (via 8826 * ifconfig or equivalent). 8827 */ 8828 ASSERT(ipsq != NULL); 8829 if (mp->b_rptr < mp->b_wptr) 8830 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8831 if (ill->ill_error == 0) 8832 ill->ill_error = ENXIO; 8833 if (!ill_down_start(q, mp)) 8834 return; 8835 ipif_all_down_tail(ipsq, q, mp, NULL); 8836 break; 8837 case M_IOCNAK: { 8838 iocp = (struct iocblk *)mp->b_rptr; 8839 8840 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8841 /* 8842 * If this was the first attempt, turn off the fastpath 8843 * probing. 8844 */ 8845 mutex_enter(&ill->ill_lock); 8846 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8847 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8848 mutex_exit(&ill->ill_lock); 8849 /* 8850 * don't flush the nce_t entries: we use them 8851 * as an index to the ncec itself. 8852 */ 8853 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8854 ill->ill_name)); 8855 } else { 8856 mutex_exit(&ill->ill_lock); 8857 } 8858 freemsg(mp); 8859 break; 8860 } 8861 default: 8862 ASSERT(0); 8863 break; 8864 } 8865 } 8866 8867 /* 8868 * Update any source route, record route or timestamp options 8869 * When it fails it has consumed the message and BUMPed the MIB. 8870 */ 8871 boolean_t 8872 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8873 ip_recv_attr_t *ira) 8874 { 8875 ipoptp_t opts; 8876 uchar_t *opt; 8877 uint8_t optval; 8878 uint8_t optlen; 8879 ipaddr_t dst; 8880 ipaddr_t ifaddr; 8881 uint32_t ts; 8882 timestruc_t now; 8883 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8884 8885 ip2dbg(("ip_forward_options\n")); 8886 dst = ipha->ipha_dst; 8887 for (optval = ipoptp_first(&opts, ipha); 8888 optval != IPOPT_EOL; 8889 optval = ipoptp_next(&opts)) { 8890 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8891 opt = opts.ipoptp_cur; 8892 optlen = opts.ipoptp_len; 8893 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8894 optval, opts.ipoptp_len)); 8895 switch (optval) { 8896 uint32_t off; 8897 case IPOPT_SSRR: 8898 case IPOPT_LSRR: 8899 /* Check if adminstratively disabled */ 8900 if (!ipst->ips_ip_forward_src_routed) { 8901 BUMP_MIB(dst_ill->ill_ip_mib, 8902 ipIfStatsForwProhibits); 8903 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8904 mp, dst_ill); 8905 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8906 ira); 8907 return (B_FALSE); 8908 } 8909 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8910 /* 8911 * Must be partial since ip_input_options 8912 * checked for strict. 8913 */ 8914 break; 8915 } 8916 off = opt[IPOPT_OFFSET]; 8917 off--; 8918 redo_srr: 8919 if (optlen < IP_ADDR_LEN || 8920 off > optlen - IP_ADDR_LEN) { 8921 /* End of source route */ 8922 ip1dbg(( 8923 "ip_forward_options: end of SR\n")); 8924 break; 8925 } 8926 /* Pick a reasonable address on the outbound if */ 8927 ASSERT(dst_ill != NULL); 8928 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8929 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8930 NULL) != 0) { 8931 /* No source! Shouldn't happen */ 8932 ifaddr = INADDR_ANY; 8933 } 8934 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8935 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8936 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8937 ntohl(dst))); 8938 8939 /* 8940 * Check if our address is present more than 8941 * once as consecutive hops in source route. 8942 */ 8943 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8944 off += IP_ADDR_LEN; 8945 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8946 goto redo_srr; 8947 } 8948 ipha->ipha_dst = dst; 8949 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8950 break; 8951 case IPOPT_RR: 8952 off = opt[IPOPT_OFFSET]; 8953 off--; 8954 if (optlen < IP_ADDR_LEN || 8955 off > optlen - IP_ADDR_LEN) { 8956 /* No more room - ignore */ 8957 ip1dbg(( 8958 "ip_forward_options: end of RR\n")); 8959 break; 8960 } 8961 /* Pick a reasonable address on the outbound if */ 8962 ASSERT(dst_ill != NULL); 8963 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8964 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8965 NULL) != 0) { 8966 /* No source! Shouldn't happen */ 8967 ifaddr = INADDR_ANY; 8968 } 8969 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8970 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8971 break; 8972 case IPOPT_TS: 8973 /* Insert timestamp if there is room */ 8974 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8975 case IPOPT_TS_TSONLY: 8976 off = IPOPT_TS_TIMELEN; 8977 break; 8978 case IPOPT_TS_PRESPEC: 8979 case IPOPT_TS_PRESPEC_RFC791: 8980 /* Verify that the address matched */ 8981 off = opt[IPOPT_OFFSET] - 1; 8982 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8983 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8984 /* Not for us */ 8985 break; 8986 } 8987 /* FALLTHRU */ 8988 case IPOPT_TS_TSANDADDR: 8989 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 8990 break; 8991 default: 8992 /* 8993 * ip_*put_options should have already 8994 * dropped this packet. 8995 */ 8996 cmn_err(CE_PANIC, "ip_forward_options: " 8997 "unknown IT - bug in ip_input_options?\n"); 8998 return (B_TRUE); /* Keep "lint" happy */ 8999 } 9000 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9001 /* Increase overflow counter */ 9002 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9003 opt[IPOPT_POS_OV_FLG] = 9004 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9005 (off << 4)); 9006 break; 9007 } 9008 off = opt[IPOPT_OFFSET] - 1; 9009 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9010 case IPOPT_TS_PRESPEC: 9011 case IPOPT_TS_PRESPEC_RFC791: 9012 case IPOPT_TS_TSANDADDR: 9013 /* Pick a reasonable addr on the outbound if */ 9014 ASSERT(dst_ill != NULL); 9015 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9016 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9017 NULL, NULL) != 0) { 9018 /* No source! Shouldn't happen */ 9019 ifaddr = INADDR_ANY; 9020 } 9021 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9022 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9023 /* FALLTHRU */ 9024 case IPOPT_TS_TSONLY: 9025 off = opt[IPOPT_OFFSET] - 1; 9026 /* Compute # of milliseconds since midnight */ 9027 gethrestime(&now); 9028 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9029 now.tv_nsec / (NANOSEC / MILLISEC); 9030 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9031 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9032 break; 9033 } 9034 break; 9035 } 9036 } 9037 return (B_TRUE); 9038 } 9039 9040 /* 9041 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9042 * returns 'true' if there are still fragments left on the queue, in 9043 * which case we restart the timer. 9044 */ 9045 void 9046 ill_frag_timer(void *arg) 9047 { 9048 ill_t *ill = (ill_t *)arg; 9049 boolean_t frag_pending; 9050 ip_stack_t *ipst = ill->ill_ipst; 9051 time_t timeout; 9052 9053 mutex_enter(&ill->ill_lock); 9054 ASSERT(!ill->ill_fragtimer_executing); 9055 if (ill->ill_state_flags & ILL_CONDEMNED) { 9056 ill->ill_frag_timer_id = 0; 9057 mutex_exit(&ill->ill_lock); 9058 return; 9059 } 9060 ill->ill_fragtimer_executing = 1; 9061 mutex_exit(&ill->ill_lock); 9062 9063 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9064 ipst->ips_ip_reassembly_timeout); 9065 9066 frag_pending = ill_frag_timeout(ill, timeout); 9067 9068 /* 9069 * Restart the timer, if we have fragments pending or if someone 9070 * wanted us to be scheduled again. 9071 */ 9072 mutex_enter(&ill->ill_lock); 9073 ill->ill_fragtimer_executing = 0; 9074 ill->ill_frag_timer_id = 0; 9075 if (frag_pending || ill->ill_fragtimer_needrestart) 9076 ill_frag_timer_start(ill); 9077 mutex_exit(&ill->ill_lock); 9078 } 9079 9080 void 9081 ill_frag_timer_start(ill_t *ill) 9082 { 9083 ip_stack_t *ipst = ill->ill_ipst; 9084 clock_t timeo_ms; 9085 9086 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9087 9088 /* If the ill is closing or opening don't proceed */ 9089 if (ill->ill_state_flags & ILL_CONDEMNED) 9090 return; 9091 9092 if (ill->ill_fragtimer_executing) { 9093 /* 9094 * ill_frag_timer is currently executing. Just record the 9095 * the fact that we want the timer to be restarted. 9096 * ill_frag_timer will post a timeout before it returns, 9097 * ensuring it will be called again. 9098 */ 9099 ill->ill_fragtimer_needrestart = 1; 9100 return; 9101 } 9102 9103 if (ill->ill_frag_timer_id == 0) { 9104 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9105 ipst->ips_ip_reassembly_timeout) * SECONDS; 9106 9107 /* 9108 * The timer is neither running nor is the timeout handler 9109 * executing. Post a timeout so that ill_frag_timer will be 9110 * called 9111 */ 9112 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9113 MSEC_TO_TICK(timeo_ms >> 1)); 9114 ill->ill_fragtimer_needrestart = 0; 9115 } 9116 } 9117 9118 /* 9119 * Update any source route, record route or timestamp options. 9120 * Check that we are at end of strict source route. 9121 * The options have already been checked for sanity in ip_input_options(). 9122 */ 9123 boolean_t 9124 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9125 { 9126 ipoptp_t opts; 9127 uchar_t *opt; 9128 uint8_t optval; 9129 uint8_t optlen; 9130 ipaddr_t dst; 9131 ipaddr_t ifaddr; 9132 uint32_t ts; 9133 timestruc_t now; 9134 ill_t *ill = ira->ira_ill; 9135 ip_stack_t *ipst = ill->ill_ipst; 9136 9137 ip2dbg(("ip_input_local_options\n")); 9138 9139 for (optval = ipoptp_first(&opts, ipha); 9140 optval != IPOPT_EOL; 9141 optval = ipoptp_next(&opts)) { 9142 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9143 opt = opts.ipoptp_cur; 9144 optlen = opts.ipoptp_len; 9145 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9146 optval, optlen)); 9147 switch (optval) { 9148 uint32_t off; 9149 case IPOPT_SSRR: 9150 case IPOPT_LSRR: 9151 off = opt[IPOPT_OFFSET]; 9152 off--; 9153 if (optlen < IP_ADDR_LEN || 9154 off > optlen - IP_ADDR_LEN) { 9155 /* End of source route */ 9156 ip1dbg(("ip_input_local_options: end of SR\n")); 9157 break; 9158 } 9159 /* 9160 * This will only happen if two consecutive entries 9161 * in the source route contains our address or if 9162 * it is a packet with a loose source route which 9163 * reaches us before consuming the whole source route 9164 */ 9165 ip1dbg(("ip_input_local_options: not end of SR\n")); 9166 if (optval == IPOPT_SSRR) { 9167 goto bad_src_route; 9168 } 9169 /* 9170 * Hack: instead of dropping the packet truncate the 9171 * source route to what has been used by filling the 9172 * rest with IPOPT_NOP. 9173 */ 9174 opt[IPOPT_OLEN] = (uint8_t)off; 9175 while (off < optlen) { 9176 opt[off++] = IPOPT_NOP; 9177 } 9178 break; 9179 case IPOPT_RR: 9180 off = opt[IPOPT_OFFSET]; 9181 off--; 9182 if (optlen < IP_ADDR_LEN || 9183 off > optlen - IP_ADDR_LEN) { 9184 /* No more room - ignore */ 9185 ip1dbg(( 9186 "ip_input_local_options: end of RR\n")); 9187 break; 9188 } 9189 /* Pick a reasonable address on the outbound if */ 9190 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9191 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9192 NULL) != 0) { 9193 /* No source! Shouldn't happen */ 9194 ifaddr = INADDR_ANY; 9195 } 9196 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9197 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9198 break; 9199 case IPOPT_TS: 9200 /* Insert timestamp if there is romm */ 9201 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9202 case IPOPT_TS_TSONLY: 9203 off = IPOPT_TS_TIMELEN; 9204 break; 9205 case IPOPT_TS_PRESPEC: 9206 case IPOPT_TS_PRESPEC_RFC791: 9207 /* Verify that the address matched */ 9208 off = opt[IPOPT_OFFSET] - 1; 9209 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9210 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9211 /* Not for us */ 9212 break; 9213 } 9214 /* FALLTHRU */ 9215 case IPOPT_TS_TSANDADDR: 9216 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9217 break; 9218 default: 9219 /* 9220 * ip_*put_options should have already 9221 * dropped this packet. 9222 */ 9223 cmn_err(CE_PANIC, "ip_input_local_options: " 9224 "unknown IT - bug in ip_input_options?\n"); 9225 return (B_TRUE); /* Keep "lint" happy */ 9226 } 9227 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9228 /* Increase overflow counter */ 9229 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9230 opt[IPOPT_POS_OV_FLG] = 9231 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9232 (off << 4)); 9233 break; 9234 } 9235 off = opt[IPOPT_OFFSET] - 1; 9236 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9237 case IPOPT_TS_PRESPEC: 9238 case IPOPT_TS_PRESPEC_RFC791: 9239 case IPOPT_TS_TSANDADDR: 9240 /* Pick a reasonable addr on the outbound if */ 9241 if (ip_select_source_v4(ill, INADDR_ANY, 9242 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9243 &ifaddr, NULL, NULL) != 0) { 9244 /* No source! Shouldn't happen */ 9245 ifaddr = INADDR_ANY; 9246 } 9247 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9248 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9249 /* FALLTHRU */ 9250 case IPOPT_TS_TSONLY: 9251 off = opt[IPOPT_OFFSET] - 1; 9252 /* Compute # of milliseconds since midnight */ 9253 gethrestime(&now); 9254 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9255 now.tv_nsec / (NANOSEC / MILLISEC); 9256 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9257 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9258 break; 9259 } 9260 break; 9261 } 9262 } 9263 return (B_TRUE); 9264 9265 bad_src_route: 9266 /* make sure we clear any indication of a hardware checksum */ 9267 DB_CKSUMFLAGS(mp) = 0; 9268 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9269 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9270 return (B_FALSE); 9271 9272 } 9273 9274 /* 9275 * Process IP options in an inbound packet. Always returns the nexthop. 9276 * Normally this is the passed in nexthop, but if there is an option 9277 * that effects the nexthop (such as a source route) that will be returned. 9278 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9279 * and mp freed. 9280 */ 9281 ipaddr_t 9282 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9283 ip_recv_attr_t *ira, int *errorp) 9284 { 9285 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9286 ipoptp_t opts; 9287 uchar_t *opt; 9288 uint8_t optval; 9289 uint8_t optlen; 9290 intptr_t code = 0; 9291 ire_t *ire; 9292 9293 ip2dbg(("ip_input_options\n")); 9294 *errorp = 0; 9295 for (optval = ipoptp_first(&opts, ipha); 9296 optval != IPOPT_EOL; 9297 optval = ipoptp_next(&opts)) { 9298 opt = opts.ipoptp_cur; 9299 optlen = opts.ipoptp_len; 9300 ip2dbg(("ip_input_options: opt %d, len %d\n", 9301 optval, optlen)); 9302 /* 9303 * Note: we need to verify the checksum before we 9304 * modify anything thus this routine only extracts the next 9305 * hop dst from any source route. 9306 */ 9307 switch (optval) { 9308 uint32_t off; 9309 case IPOPT_SSRR: 9310 case IPOPT_LSRR: 9311 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9312 if (optval == IPOPT_SSRR) { 9313 ip1dbg(("ip_input_options: not next" 9314 " strict source route 0x%x\n", 9315 ntohl(dst))); 9316 code = (char *)&ipha->ipha_dst - 9317 (char *)ipha; 9318 goto param_prob; /* RouterReq's */ 9319 } 9320 ip2dbg(("ip_input_options: " 9321 "not next source route 0x%x\n", 9322 ntohl(dst))); 9323 break; 9324 } 9325 9326 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9327 ip1dbg(( 9328 "ip_input_options: bad option offset\n")); 9329 code = (char *)&opt[IPOPT_OLEN] - 9330 (char *)ipha; 9331 goto param_prob; 9332 } 9333 off = opt[IPOPT_OFFSET]; 9334 off--; 9335 redo_srr: 9336 if (optlen < IP_ADDR_LEN || 9337 off > optlen - IP_ADDR_LEN) { 9338 /* End of source route */ 9339 ip1dbg(("ip_input_options: end of SR\n")); 9340 break; 9341 } 9342 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9343 ip1dbg(("ip_input_options: next hop 0x%x\n", 9344 ntohl(dst))); 9345 9346 /* 9347 * Check if our address is present more than 9348 * once as consecutive hops in source route. 9349 * XXX verify per-interface ip_forwarding 9350 * for source route? 9351 */ 9352 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9353 off += IP_ADDR_LEN; 9354 goto redo_srr; 9355 } 9356 9357 if (dst == htonl(INADDR_LOOPBACK)) { 9358 ip1dbg(("ip_input_options: loopback addr in " 9359 "source route!\n")); 9360 goto bad_src_route; 9361 } 9362 /* 9363 * For strict: verify that dst is directly 9364 * reachable. 9365 */ 9366 if (optval == IPOPT_SSRR) { 9367 ire = ire_ftable_lookup_v4(dst, 0, 0, 9368 IRE_IF_ALL, NULL, ALL_ZONES, 9369 ira->ira_tsl, 9370 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9371 NULL); 9372 if (ire == NULL) { 9373 ip1dbg(("ip_input_options: SSRR not " 9374 "directly reachable: 0x%x\n", 9375 ntohl(dst))); 9376 goto bad_src_route; 9377 } 9378 ire_refrele(ire); 9379 } 9380 /* 9381 * Defer update of the offset and the record route 9382 * until the packet is forwarded. 9383 */ 9384 break; 9385 case IPOPT_RR: 9386 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9387 ip1dbg(( 9388 "ip_input_options: bad option offset\n")); 9389 code = (char *)&opt[IPOPT_OLEN] - 9390 (char *)ipha; 9391 goto param_prob; 9392 } 9393 break; 9394 case IPOPT_TS: 9395 /* 9396 * Verify that length >= 5 and that there is either 9397 * room for another timestamp or that the overflow 9398 * counter is not maxed out. 9399 */ 9400 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9401 if (optlen < IPOPT_MINLEN_IT) { 9402 goto param_prob; 9403 } 9404 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9405 ip1dbg(( 9406 "ip_input_options: bad option offset\n")); 9407 code = (char *)&opt[IPOPT_OFFSET] - 9408 (char *)ipha; 9409 goto param_prob; 9410 } 9411 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9412 case IPOPT_TS_TSONLY: 9413 off = IPOPT_TS_TIMELEN; 9414 break; 9415 case IPOPT_TS_TSANDADDR: 9416 case IPOPT_TS_PRESPEC: 9417 case IPOPT_TS_PRESPEC_RFC791: 9418 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9419 break; 9420 default: 9421 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9422 (char *)ipha; 9423 goto param_prob; 9424 } 9425 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9426 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9427 /* 9428 * No room and the overflow counter is 15 9429 * already. 9430 */ 9431 goto param_prob; 9432 } 9433 break; 9434 } 9435 } 9436 9437 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9438 return (dst); 9439 } 9440 9441 ip1dbg(("ip_input_options: error processing IP options.")); 9442 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9443 9444 param_prob: 9445 /* make sure we clear any indication of a hardware checksum */ 9446 DB_CKSUMFLAGS(mp) = 0; 9447 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9448 icmp_param_problem(mp, (uint8_t)code, ira); 9449 *errorp = -1; 9450 return (dst); 9451 9452 bad_src_route: 9453 /* make sure we clear any indication of a hardware checksum */ 9454 DB_CKSUMFLAGS(mp) = 0; 9455 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9456 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9457 *errorp = -1; 9458 return (dst); 9459 } 9460 9461 /* 9462 * IP & ICMP info in >=14 msg's ... 9463 * - ip fixed part (mib2_ip_t) 9464 * - icmp fixed part (mib2_icmp_t) 9465 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9466 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9467 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9468 * - ipRouteAttributeTable (ip 102) labeled routes 9469 * - ip multicast membership (ip_member_t) 9470 * - ip multicast source filtering (ip_grpsrc_t) 9471 * - igmp fixed part (struct igmpstat) 9472 * - multicast routing stats (struct mrtstat) 9473 * - multicast routing vifs (array of struct vifctl) 9474 * - multicast routing routes (array of struct mfcctl) 9475 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9476 * One per ill plus one generic 9477 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9478 * One per ill plus one generic 9479 * - ipv6RouteEntry all IPv6 IREs 9480 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9481 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9482 * - ipv6AddrEntry all IPv6 ipifs 9483 * - ipv6 multicast membership (ipv6_member_t) 9484 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9485 * 9486 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9487 * already filled in by the caller. 9488 * Return value of 0 indicates that no messages were sent and caller 9489 * should free mpctl. 9490 */ 9491 int 9492 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9493 { 9494 ip_stack_t *ipst; 9495 sctp_stack_t *sctps; 9496 9497 if (q->q_next != NULL) { 9498 ipst = ILLQ_TO_IPST(q); 9499 } else { 9500 ipst = CONNQ_TO_IPST(q); 9501 } 9502 ASSERT(ipst != NULL); 9503 sctps = ipst->ips_netstack->netstack_sctp; 9504 9505 if (mpctl == NULL || mpctl->b_cont == NULL) { 9506 return (0); 9507 } 9508 9509 /* 9510 * For the purposes of the (broken) packet shell use 9511 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9512 * to make TCP and UDP appear first in the list of mib items. 9513 * TBD: We could expand this and use it in netstat so that 9514 * the kernel doesn't have to produce large tables (connections, 9515 * routes, etc) when netstat only wants the statistics or a particular 9516 * table. 9517 */ 9518 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9519 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9520 return (1); 9521 } 9522 } 9523 9524 if (level != MIB2_TCP) { 9525 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9526 return (1); 9527 } 9528 } 9529 9530 if (level != MIB2_UDP) { 9531 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9532 return (1); 9533 } 9534 } 9535 9536 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9537 ipst)) == NULL) { 9538 return (1); 9539 } 9540 9541 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9542 return (1); 9543 } 9544 9545 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9546 return (1); 9547 } 9548 9549 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9550 return (1); 9551 } 9552 9553 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9554 return (1); 9555 } 9556 9557 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9558 return (1); 9559 } 9560 9561 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9562 return (1); 9563 } 9564 9565 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9566 return (1); 9567 } 9568 9569 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9570 return (1); 9571 } 9572 9573 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9574 return (1); 9575 } 9576 9577 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9578 return (1); 9579 } 9580 9581 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9582 return (1); 9583 } 9584 9585 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9586 return (1); 9587 } 9588 9589 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9590 return (1); 9591 } 9592 9593 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9594 if (mpctl == NULL) 9595 return (1); 9596 9597 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9598 if (mpctl == NULL) 9599 return (1); 9600 9601 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9602 return (1); 9603 } 9604 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9605 return (1); 9606 } 9607 freemsg(mpctl); 9608 return (1); 9609 } 9610 9611 /* Get global (legacy) IPv4 statistics */ 9612 static mblk_t * 9613 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9614 ip_stack_t *ipst) 9615 { 9616 mib2_ip_t old_ip_mib; 9617 struct opthdr *optp; 9618 mblk_t *mp2ctl; 9619 9620 /* 9621 * make a copy of the original message 9622 */ 9623 mp2ctl = copymsg(mpctl); 9624 9625 /* fixed length IP structure... */ 9626 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9627 optp->level = MIB2_IP; 9628 optp->name = 0; 9629 SET_MIB(old_ip_mib.ipForwarding, 9630 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9631 SET_MIB(old_ip_mib.ipDefaultTTL, 9632 (uint32_t)ipst->ips_ip_def_ttl); 9633 SET_MIB(old_ip_mib.ipReasmTimeout, 9634 ipst->ips_ip_reassembly_timeout); 9635 SET_MIB(old_ip_mib.ipAddrEntrySize, 9636 sizeof (mib2_ipAddrEntry_t)); 9637 SET_MIB(old_ip_mib.ipRouteEntrySize, 9638 sizeof (mib2_ipRouteEntry_t)); 9639 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9640 sizeof (mib2_ipNetToMediaEntry_t)); 9641 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9642 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9643 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9644 sizeof (mib2_ipAttributeEntry_t)); 9645 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9646 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9647 9648 /* 9649 * Grab the statistics from the new IP MIB 9650 */ 9651 SET_MIB(old_ip_mib.ipInReceives, 9652 (uint32_t)ipmib->ipIfStatsHCInReceives); 9653 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9654 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9655 SET_MIB(old_ip_mib.ipForwDatagrams, 9656 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9657 SET_MIB(old_ip_mib.ipInUnknownProtos, 9658 ipmib->ipIfStatsInUnknownProtos); 9659 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9660 SET_MIB(old_ip_mib.ipInDelivers, 9661 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9662 SET_MIB(old_ip_mib.ipOutRequests, 9663 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9664 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9665 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9666 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9667 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9668 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9669 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9670 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9671 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9672 9673 /* ipRoutingDiscards is not being used */ 9674 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9675 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9676 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9677 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9678 SET_MIB(old_ip_mib.ipReasmDuplicates, 9679 ipmib->ipIfStatsReasmDuplicates); 9680 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9681 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9682 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9683 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9684 SET_MIB(old_ip_mib.rawipInOverflows, 9685 ipmib->rawipIfStatsInOverflows); 9686 9687 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9688 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9689 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9690 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9691 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9692 ipmib->ipIfStatsOutSwitchIPVersion); 9693 9694 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9695 (int)sizeof (old_ip_mib))) { 9696 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9697 (uint_t)sizeof (old_ip_mib))); 9698 } 9699 9700 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9701 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9702 (int)optp->level, (int)optp->name, (int)optp->len)); 9703 qreply(q, mpctl); 9704 return (mp2ctl); 9705 } 9706 9707 /* Per interface IPv4 statistics */ 9708 static mblk_t * 9709 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9710 { 9711 struct opthdr *optp; 9712 mblk_t *mp2ctl; 9713 ill_t *ill; 9714 ill_walk_context_t ctx; 9715 mblk_t *mp_tail = NULL; 9716 mib2_ipIfStatsEntry_t global_ip_mib; 9717 9718 /* 9719 * Make a copy of the original message 9720 */ 9721 mp2ctl = copymsg(mpctl); 9722 9723 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9724 optp->level = MIB2_IP; 9725 optp->name = MIB2_IP_TRAFFIC_STATS; 9726 /* Include "unknown interface" ip_mib */ 9727 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9728 ipst->ips_ip_mib.ipIfStatsIfIndex = 9729 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9730 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9731 (ipst->ips_ip_forwarding ? 1 : 2)); 9732 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9733 (uint32_t)ipst->ips_ip_def_ttl); 9734 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9735 sizeof (mib2_ipIfStatsEntry_t)); 9736 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9737 sizeof (mib2_ipAddrEntry_t)); 9738 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9739 sizeof (mib2_ipRouteEntry_t)); 9740 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9741 sizeof (mib2_ipNetToMediaEntry_t)); 9742 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9743 sizeof (ip_member_t)); 9744 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9745 sizeof (ip_grpsrc_t)); 9746 9747 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9748 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9749 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9750 "failed to allocate %u bytes\n", 9751 (uint_t)sizeof (ipst->ips_ip_mib))); 9752 } 9753 9754 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9755 9756 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9757 ill = ILL_START_WALK_V4(&ctx, ipst); 9758 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9759 ill->ill_ip_mib->ipIfStatsIfIndex = 9760 ill->ill_phyint->phyint_ifindex; 9761 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9762 (ipst->ips_ip_forwarding ? 1 : 2)); 9763 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9764 (uint32_t)ipst->ips_ip_def_ttl); 9765 9766 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9767 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9768 (char *)ill->ill_ip_mib, 9769 (int)sizeof (*ill->ill_ip_mib))) { 9770 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9771 "failed to allocate %u bytes\n", 9772 (uint_t)sizeof (*ill->ill_ip_mib))); 9773 } 9774 } 9775 rw_exit(&ipst->ips_ill_g_lock); 9776 9777 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9778 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9779 "level %d, name %d, len %d\n", 9780 (int)optp->level, (int)optp->name, (int)optp->len)); 9781 qreply(q, mpctl); 9782 9783 if (mp2ctl == NULL) 9784 return (NULL); 9785 9786 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 9787 } 9788 9789 /* Global IPv4 ICMP statistics */ 9790 static mblk_t * 9791 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9792 { 9793 struct opthdr *optp; 9794 mblk_t *mp2ctl; 9795 9796 /* 9797 * Make a copy of the original message 9798 */ 9799 mp2ctl = copymsg(mpctl); 9800 9801 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9802 optp->level = MIB2_ICMP; 9803 optp->name = 0; 9804 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9805 (int)sizeof (ipst->ips_icmp_mib))) { 9806 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9807 (uint_t)sizeof (ipst->ips_icmp_mib))); 9808 } 9809 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9810 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9811 (int)optp->level, (int)optp->name, (int)optp->len)); 9812 qreply(q, mpctl); 9813 return (mp2ctl); 9814 } 9815 9816 /* Global IPv4 IGMP statistics */ 9817 static mblk_t * 9818 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9819 { 9820 struct opthdr *optp; 9821 mblk_t *mp2ctl; 9822 9823 /* 9824 * make a copy of the original message 9825 */ 9826 mp2ctl = copymsg(mpctl); 9827 9828 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9829 optp->level = EXPER_IGMP; 9830 optp->name = 0; 9831 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9832 (int)sizeof (ipst->ips_igmpstat))) { 9833 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9834 (uint_t)sizeof (ipst->ips_igmpstat))); 9835 } 9836 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9837 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9838 (int)optp->level, (int)optp->name, (int)optp->len)); 9839 qreply(q, mpctl); 9840 return (mp2ctl); 9841 } 9842 9843 /* Global IPv4 Multicast Routing statistics */ 9844 static mblk_t * 9845 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9846 { 9847 struct opthdr *optp; 9848 mblk_t *mp2ctl; 9849 9850 /* 9851 * make a copy of the original message 9852 */ 9853 mp2ctl = copymsg(mpctl); 9854 9855 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9856 optp->level = EXPER_DVMRP; 9857 optp->name = 0; 9858 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9859 ip0dbg(("ip_mroute_stats: failed\n")); 9860 } 9861 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9862 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9863 (int)optp->level, (int)optp->name, (int)optp->len)); 9864 qreply(q, mpctl); 9865 return (mp2ctl); 9866 } 9867 9868 /* IPv4 address information */ 9869 static mblk_t * 9870 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9871 { 9872 struct opthdr *optp; 9873 mblk_t *mp2ctl; 9874 mblk_t *mp_tail = NULL; 9875 ill_t *ill; 9876 ipif_t *ipif; 9877 uint_t bitval; 9878 mib2_ipAddrEntry_t mae; 9879 zoneid_t zoneid; 9880 ill_walk_context_t ctx; 9881 9882 /* 9883 * make a copy of the original message 9884 */ 9885 mp2ctl = copymsg(mpctl); 9886 9887 /* ipAddrEntryTable */ 9888 9889 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9890 optp->level = MIB2_IP; 9891 optp->name = MIB2_IP_ADDR; 9892 zoneid = Q_TO_CONN(q)->conn_zoneid; 9893 9894 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9895 ill = ILL_START_WALK_V4(&ctx, ipst); 9896 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9897 for (ipif = ill->ill_ipif; ipif != NULL; 9898 ipif = ipif->ipif_next) { 9899 if (ipif->ipif_zoneid != zoneid && 9900 ipif->ipif_zoneid != ALL_ZONES) 9901 continue; 9902 /* Sum of count from dead IRE_LO* and our current */ 9903 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9904 if (ipif->ipif_ire_local != NULL) { 9905 mae.ipAdEntInfo.ae_ibcnt += 9906 ipif->ipif_ire_local->ire_ib_pkt_count; 9907 } 9908 mae.ipAdEntInfo.ae_obcnt = 0; 9909 mae.ipAdEntInfo.ae_focnt = 0; 9910 9911 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9912 OCTET_LENGTH); 9913 mae.ipAdEntIfIndex.o_length = 9914 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9915 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9916 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9917 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9918 mae.ipAdEntInfo.ae_subnet_len = 9919 ip_mask_to_plen(ipif->ipif_net_mask); 9920 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9921 for (bitval = 1; 9922 bitval && 9923 !(bitval & ipif->ipif_brd_addr); 9924 bitval <<= 1) 9925 noop; 9926 mae.ipAdEntBcastAddr = bitval; 9927 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9928 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9929 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9930 mae.ipAdEntInfo.ae_broadcast_addr = 9931 ipif->ipif_brd_addr; 9932 mae.ipAdEntInfo.ae_pp_dst_addr = 9933 ipif->ipif_pp_dst_addr; 9934 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9935 ill->ill_flags | ill->ill_phyint->phyint_flags; 9936 mae.ipAdEntRetransmitTime = 9937 ill->ill_reachable_retrans_time; 9938 9939 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9940 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 9941 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9942 "allocate %u bytes\n", 9943 (uint_t)sizeof (mib2_ipAddrEntry_t))); 9944 } 9945 } 9946 } 9947 rw_exit(&ipst->ips_ill_g_lock); 9948 9949 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9950 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9951 (int)optp->level, (int)optp->name, (int)optp->len)); 9952 qreply(q, mpctl); 9953 return (mp2ctl); 9954 } 9955 9956 /* IPv6 address information */ 9957 static mblk_t * 9958 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9959 { 9960 struct opthdr *optp; 9961 mblk_t *mp2ctl; 9962 mblk_t *mp_tail = NULL; 9963 ill_t *ill; 9964 ipif_t *ipif; 9965 mib2_ipv6AddrEntry_t mae6; 9966 zoneid_t zoneid; 9967 ill_walk_context_t ctx; 9968 9969 /* 9970 * make a copy of the original message 9971 */ 9972 mp2ctl = copymsg(mpctl); 9973 9974 /* ipv6AddrEntryTable */ 9975 9976 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9977 optp->level = MIB2_IP6; 9978 optp->name = MIB2_IP6_ADDR; 9979 zoneid = Q_TO_CONN(q)->conn_zoneid; 9980 9981 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9982 ill = ILL_START_WALK_V6(&ctx, ipst); 9983 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9984 for (ipif = ill->ill_ipif; ipif != NULL; 9985 ipif = ipif->ipif_next) { 9986 if (ipif->ipif_zoneid != zoneid && 9987 ipif->ipif_zoneid != ALL_ZONES) 9988 continue; 9989 /* Sum of count from dead IRE_LO* and our current */ 9990 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9991 if (ipif->ipif_ire_local != NULL) { 9992 mae6.ipv6AddrInfo.ae_ibcnt += 9993 ipif->ipif_ire_local->ire_ib_pkt_count; 9994 } 9995 mae6.ipv6AddrInfo.ae_obcnt = 0; 9996 mae6.ipv6AddrInfo.ae_focnt = 0; 9997 9998 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 9999 OCTET_LENGTH); 10000 mae6.ipv6AddrIfIndex.o_length = 10001 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10002 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10003 mae6.ipv6AddrPfxLength = 10004 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10005 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10006 mae6.ipv6AddrInfo.ae_subnet_len = 10007 mae6.ipv6AddrPfxLength; 10008 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10009 10010 /* Type: stateless(1), stateful(2), unknown(3) */ 10011 if (ipif->ipif_flags & IPIF_ADDRCONF) 10012 mae6.ipv6AddrType = 1; 10013 else 10014 mae6.ipv6AddrType = 2; 10015 /* Anycast: true(1), false(2) */ 10016 if (ipif->ipif_flags & IPIF_ANYCAST) 10017 mae6.ipv6AddrAnycastFlag = 1; 10018 else 10019 mae6.ipv6AddrAnycastFlag = 2; 10020 10021 /* 10022 * Address status: preferred(1), deprecated(2), 10023 * invalid(3), inaccessible(4), unknown(5) 10024 */ 10025 if (ipif->ipif_flags & IPIF_NOLOCAL) 10026 mae6.ipv6AddrStatus = 3; 10027 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10028 mae6.ipv6AddrStatus = 2; 10029 else 10030 mae6.ipv6AddrStatus = 1; 10031 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10032 mae6.ipv6AddrInfo.ae_metric = 10033 ipif->ipif_ill->ill_metric; 10034 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10035 ipif->ipif_v6pp_dst_addr; 10036 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10037 ill->ill_flags | ill->ill_phyint->phyint_flags; 10038 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10039 mae6.ipv6AddrIdentifier = ill->ill_token; 10040 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10041 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10042 mae6.ipv6AddrRetransmitTime = 10043 ill->ill_reachable_retrans_time; 10044 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10045 (char *)&mae6, 10046 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10047 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10048 "allocate %u bytes\n", 10049 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10050 } 10051 } 10052 } 10053 rw_exit(&ipst->ips_ill_g_lock); 10054 10055 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10056 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10057 (int)optp->level, (int)optp->name, (int)optp->len)); 10058 qreply(q, mpctl); 10059 return (mp2ctl); 10060 } 10061 10062 /* IPv4 multicast group membership. */ 10063 static mblk_t * 10064 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10065 { 10066 struct opthdr *optp; 10067 mblk_t *mp2ctl; 10068 ill_t *ill; 10069 ipif_t *ipif; 10070 ilm_t *ilm; 10071 ip_member_t ipm; 10072 mblk_t *mp_tail = NULL; 10073 ill_walk_context_t ctx; 10074 zoneid_t zoneid; 10075 10076 /* 10077 * make a copy of the original message 10078 */ 10079 mp2ctl = copymsg(mpctl); 10080 zoneid = Q_TO_CONN(q)->conn_zoneid; 10081 10082 /* ipGroupMember table */ 10083 optp = (struct opthdr *)&mpctl->b_rptr[ 10084 sizeof (struct T_optmgmt_ack)]; 10085 optp->level = MIB2_IP; 10086 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10087 10088 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10089 ill = ILL_START_WALK_V4(&ctx, ipst); 10090 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10091 /* Make sure the ill isn't going away. */ 10092 if (!ill_check_and_refhold(ill)) 10093 continue; 10094 rw_exit(&ipst->ips_ill_g_lock); 10095 rw_enter(&ill->ill_mcast_lock, RW_READER); 10096 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10097 if (ilm->ilm_zoneid != zoneid && 10098 ilm->ilm_zoneid != ALL_ZONES) 10099 continue; 10100 10101 /* Is there an ipif for ilm_ifaddr? */ 10102 for (ipif = ill->ill_ipif; ipif != NULL; 10103 ipif = ipif->ipif_next) { 10104 if (!IPIF_IS_CONDEMNED(ipif) && 10105 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10106 ilm->ilm_ifaddr != INADDR_ANY) 10107 break; 10108 } 10109 if (ipif != NULL) { 10110 ipif_get_name(ipif, 10111 ipm.ipGroupMemberIfIndex.o_bytes, 10112 OCTET_LENGTH); 10113 } else { 10114 ill_get_name(ill, 10115 ipm.ipGroupMemberIfIndex.o_bytes, 10116 OCTET_LENGTH); 10117 } 10118 ipm.ipGroupMemberIfIndex.o_length = 10119 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10120 10121 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10122 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10123 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10124 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10125 (char *)&ipm, (int)sizeof (ipm))) { 10126 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10127 "failed to allocate %u bytes\n", 10128 (uint_t)sizeof (ipm))); 10129 } 10130 } 10131 rw_exit(&ill->ill_mcast_lock); 10132 ill_refrele(ill); 10133 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10134 } 10135 rw_exit(&ipst->ips_ill_g_lock); 10136 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10137 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10138 (int)optp->level, (int)optp->name, (int)optp->len)); 10139 qreply(q, mpctl); 10140 return (mp2ctl); 10141 } 10142 10143 /* IPv6 multicast group membership. */ 10144 static mblk_t * 10145 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10146 { 10147 struct opthdr *optp; 10148 mblk_t *mp2ctl; 10149 ill_t *ill; 10150 ilm_t *ilm; 10151 ipv6_member_t ipm6; 10152 mblk_t *mp_tail = NULL; 10153 ill_walk_context_t ctx; 10154 zoneid_t zoneid; 10155 10156 /* 10157 * make a copy of the original message 10158 */ 10159 mp2ctl = copymsg(mpctl); 10160 zoneid = Q_TO_CONN(q)->conn_zoneid; 10161 10162 /* ip6GroupMember table */ 10163 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10164 optp->level = MIB2_IP6; 10165 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10166 10167 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10168 ill = ILL_START_WALK_V6(&ctx, ipst); 10169 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10170 /* Make sure the ill isn't going away. */ 10171 if (!ill_check_and_refhold(ill)) 10172 continue; 10173 rw_exit(&ipst->ips_ill_g_lock); 10174 /* 10175 * Normally we don't have any members on under IPMP interfaces. 10176 * We report them as a debugging aid. 10177 */ 10178 rw_enter(&ill->ill_mcast_lock, RW_READER); 10179 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10180 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10181 if (ilm->ilm_zoneid != zoneid && 10182 ilm->ilm_zoneid != ALL_ZONES) 10183 continue; /* not this zone */ 10184 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10185 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10186 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10187 if (!snmp_append_data2(mpctl->b_cont, 10188 &mp_tail, 10189 (char *)&ipm6, (int)sizeof (ipm6))) { 10190 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10191 "failed to allocate %u bytes\n", 10192 (uint_t)sizeof (ipm6))); 10193 } 10194 } 10195 rw_exit(&ill->ill_mcast_lock); 10196 ill_refrele(ill); 10197 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10198 } 10199 rw_exit(&ipst->ips_ill_g_lock); 10200 10201 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10202 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10203 (int)optp->level, (int)optp->name, (int)optp->len)); 10204 qreply(q, mpctl); 10205 return (mp2ctl); 10206 } 10207 10208 /* IP multicast filtered sources */ 10209 static mblk_t * 10210 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10211 { 10212 struct opthdr *optp; 10213 mblk_t *mp2ctl; 10214 ill_t *ill; 10215 ipif_t *ipif; 10216 ilm_t *ilm; 10217 ip_grpsrc_t ips; 10218 mblk_t *mp_tail = NULL; 10219 ill_walk_context_t ctx; 10220 zoneid_t zoneid; 10221 int i; 10222 slist_t *sl; 10223 10224 /* 10225 * make a copy of the original message 10226 */ 10227 mp2ctl = copymsg(mpctl); 10228 zoneid = Q_TO_CONN(q)->conn_zoneid; 10229 10230 /* ipGroupSource table */ 10231 optp = (struct opthdr *)&mpctl->b_rptr[ 10232 sizeof (struct T_optmgmt_ack)]; 10233 optp->level = MIB2_IP; 10234 optp->name = EXPER_IP_GROUP_SOURCES; 10235 10236 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10237 ill = ILL_START_WALK_V4(&ctx, ipst); 10238 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10239 /* Make sure the ill isn't going away. */ 10240 if (!ill_check_and_refhold(ill)) 10241 continue; 10242 rw_exit(&ipst->ips_ill_g_lock); 10243 rw_enter(&ill->ill_mcast_lock, RW_READER); 10244 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10245 sl = ilm->ilm_filter; 10246 if (ilm->ilm_zoneid != zoneid && 10247 ilm->ilm_zoneid != ALL_ZONES) 10248 continue; 10249 if (SLIST_IS_EMPTY(sl)) 10250 continue; 10251 10252 /* Is there an ipif for ilm_ifaddr? */ 10253 for (ipif = ill->ill_ipif; ipif != NULL; 10254 ipif = ipif->ipif_next) { 10255 if (!IPIF_IS_CONDEMNED(ipif) && 10256 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10257 ilm->ilm_ifaddr != INADDR_ANY) 10258 break; 10259 } 10260 if (ipif != NULL) { 10261 ipif_get_name(ipif, 10262 ips.ipGroupSourceIfIndex.o_bytes, 10263 OCTET_LENGTH); 10264 } else { 10265 ill_get_name(ill, 10266 ips.ipGroupSourceIfIndex.o_bytes, 10267 OCTET_LENGTH); 10268 } 10269 ips.ipGroupSourceIfIndex.o_length = 10270 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10271 10272 ips.ipGroupSourceGroup = ilm->ilm_addr; 10273 for (i = 0; i < sl->sl_numsrc; i++) { 10274 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10275 continue; 10276 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10277 ips.ipGroupSourceAddress); 10278 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10279 (char *)&ips, (int)sizeof (ips)) == 0) { 10280 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10281 " failed to allocate %u bytes\n", 10282 (uint_t)sizeof (ips))); 10283 } 10284 } 10285 } 10286 rw_exit(&ill->ill_mcast_lock); 10287 ill_refrele(ill); 10288 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10289 } 10290 rw_exit(&ipst->ips_ill_g_lock); 10291 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10292 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10293 (int)optp->level, (int)optp->name, (int)optp->len)); 10294 qreply(q, mpctl); 10295 return (mp2ctl); 10296 } 10297 10298 /* IPv6 multicast filtered sources. */ 10299 static mblk_t * 10300 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10301 { 10302 struct opthdr *optp; 10303 mblk_t *mp2ctl; 10304 ill_t *ill; 10305 ilm_t *ilm; 10306 ipv6_grpsrc_t ips6; 10307 mblk_t *mp_tail = NULL; 10308 ill_walk_context_t ctx; 10309 zoneid_t zoneid; 10310 int i; 10311 slist_t *sl; 10312 10313 /* 10314 * make a copy of the original message 10315 */ 10316 mp2ctl = copymsg(mpctl); 10317 zoneid = Q_TO_CONN(q)->conn_zoneid; 10318 10319 /* ip6GroupMember table */ 10320 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10321 optp->level = MIB2_IP6; 10322 optp->name = EXPER_IP6_GROUP_SOURCES; 10323 10324 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10325 ill = ILL_START_WALK_V6(&ctx, ipst); 10326 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10327 /* Make sure the ill isn't going away. */ 10328 if (!ill_check_and_refhold(ill)) 10329 continue; 10330 rw_exit(&ipst->ips_ill_g_lock); 10331 /* 10332 * Normally we don't have any members on under IPMP interfaces. 10333 * We report them as a debugging aid. 10334 */ 10335 rw_enter(&ill->ill_mcast_lock, RW_READER); 10336 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10337 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10338 sl = ilm->ilm_filter; 10339 if (ilm->ilm_zoneid != zoneid && 10340 ilm->ilm_zoneid != ALL_ZONES) 10341 continue; 10342 if (SLIST_IS_EMPTY(sl)) 10343 continue; 10344 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10345 for (i = 0; i < sl->sl_numsrc; i++) { 10346 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10347 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10348 (char *)&ips6, (int)sizeof (ips6))) { 10349 ip1dbg(("ip_snmp_get_mib2_ip6_" 10350 "group_src: failed to allocate " 10351 "%u bytes\n", 10352 (uint_t)sizeof (ips6))); 10353 } 10354 } 10355 } 10356 rw_exit(&ill->ill_mcast_lock); 10357 ill_refrele(ill); 10358 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10359 } 10360 rw_exit(&ipst->ips_ill_g_lock); 10361 10362 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10363 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10364 (int)optp->level, (int)optp->name, (int)optp->len)); 10365 qreply(q, mpctl); 10366 return (mp2ctl); 10367 } 10368 10369 /* Multicast routing virtual interface table. */ 10370 static mblk_t * 10371 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10372 { 10373 struct opthdr *optp; 10374 mblk_t *mp2ctl; 10375 10376 /* 10377 * make a copy of the original message 10378 */ 10379 mp2ctl = copymsg(mpctl); 10380 10381 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10382 optp->level = EXPER_DVMRP; 10383 optp->name = EXPER_DVMRP_VIF; 10384 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10385 ip0dbg(("ip_mroute_vif: failed\n")); 10386 } 10387 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10388 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10389 (int)optp->level, (int)optp->name, (int)optp->len)); 10390 qreply(q, mpctl); 10391 return (mp2ctl); 10392 } 10393 10394 /* Multicast routing table. */ 10395 static mblk_t * 10396 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10397 { 10398 struct opthdr *optp; 10399 mblk_t *mp2ctl; 10400 10401 /* 10402 * make a copy of the original message 10403 */ 10404 mp2ctl = copymsg(mpctl); 10405 10406 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10407 optp->level = EXPER_DVMRP; 10408 optp->name = EXPER_DVMRP_MRT; 10409 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10410 ip0dbg(("ip_mroute_mrt: failed\n")); 10411 } 10412 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10413 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10414 (int)optp->level, (int)optp->name, (int)optp->len)); 10415 qreply(q, mpctl); 10416 return (mp2ctl); 10417 } 10418 10419 /* 10420 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10421 * in one IRE walk. 10422 */ 10423 static mblk_t * 10424 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10425 ip_stack_t *ipst) 10426 { 10427 struct opthdr *optp; 10428 mblk_t *mp2ctl; /* Returned */ 10429 mblk_t *mp3ctl; /* nettomedia */ 10430 mblk_t *mp4ctl; /* routeattrs */ 10431 iproutedata_t ird; 10432 zoneid_t zoneid; 10433 10434 /* 10435 * make copies of the original message 10436 * - mp2ctl is returned unchanged to the caller for his use 10437 * - mpctl is sent upstream as ipRouteEntryTable 10438 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10439 * - mp4ctl is sent upstream as ipRouteAttributeTable 10440 */ 10441 mp2ctl = copymsg(mpctl); 10442 mp3ctl = copymsg(mpctl); 10443 mp4ctl = copymsg(mpctl); 10444 if (mp3ctl == NULL || mp4ctl == NULL) { 10445 freemsg(mp4ctl); 10446 freemsg(mp3ctl); 10447 freemsg(mp2ctl); 10448 freemsg(mpctl); 10449 return (NULL); 10450 } 10451 10452 bzero(&ird, sizeof (ird)); 10453 10454 ird.ird_route.lp_head = mpctl->b_cont; 10455 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10456 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10457 /* 10458 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10459 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10460 * intended a temporary solution until a proper MIB API is provided 10461 * that provides complete filtering/caller-opt-in. 10462 */ 10463 if (level == EXPER_IP_AND_ALL_IRES) 10464 ird.ird_flags |= IRD_REPORT_ALL; 10465 10466 zoneid = Q_TO_CONN(q)->conn_zoneid; 10467 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10468 10469 /* ipRouteEntryTable in mpctl */ 10470 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10471 optp->level = MIB2_IP; 10472 optp->name = MIB2_IP_ROUTE; 10473 optp->len = msgdsize(ird.ird_route.lp_head); 10474 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10475 (int)optp->level, (int)optp->name, (int)optp->len)); 10476 qreply(q, mpctl); 10477 10478 /* ipNetToMediaEntryTable in mp3ctl */ 10479 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10480 10481 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10482 optp->level = MIB2_IP; 10483 optp->name = MIB2_IP_MEDIA; 10484 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10485 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10486 (int)optp->level, (int)optp->name, (int)optp->len)); 10487 qreply(q, mp3ctl); 10488 10489 /* ipRouteAttributeTable in mp4ctl */ 10490 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10491 optp->level = MIB2_IP; 10492 optp->name = EXPER_IP_RTATTR; 10493 optp->len = msgdsize(ird.ird_attrs.lp_head); 10494 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10495 (int)optp->level, (int)optp->name, (int)optp->len)); 10496 if (optp->len == 0) 10497 freemsg(mp4ctl); 10498 else 10499 qreply(q, mp4ctl); 10500 10501 return (mp2ctl); 10502 } 10503 10504 /* 10505 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10506 * ipv6NetToMediaEntryTable in an NDP walk. 10507 */ 10508 static mblk_t * 10509 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10510 ip_stack_t *ipst) 10511 { 10512 struct opthdr *optp; 10513 mblk_t *mp2ctl; /* Returned */ 10514 mblk_t *mp3ctl; /* nettomedia */ 10515 mblk_t *mp4ctl; /* routeattrs */ 10516 iproutedata_t ird; 10517 zoneid_t zoneid; 10518 10519 /* 10520 * make copies of the original message 10521 * - mp2ctl is returned unchanged to the caller for his use 10522 * - mpctl is sent upstream as ipv6RouteEntryTable 10523 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10524 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10525 */ 10526 mp2ctl = copymsg(mpctl); 10527 mp3ctl = copymsg(mpctl); 10528 mp4ctl = copymsg(mpctl); 10529 if (mp3ctl == NULL || mp4ctl == NULL) { 10530 freemsg(mp4ctl); 10531 freemsg(mp3ctl); 10532 freemsg(mp2ctl); 10533 freemsg(mpctl); 10534 return (NULL); 10535 } 10536 10537 bzero(&ird, sizeof (ird)); 10538 10539 ird.ird_route.lp_head = mpctl->b_cont; 10540 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10541 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10542 /* 10543 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10544 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10545 * intended a temporary solution until a proper MIB API is provided 10546 * that provides complete filtering/caller-opt-in. 10547 */ 10548 if (level == EXPER_IP_AND_ALL_IRES) 10549 ird.ird_flags |= IRD_REPORT_ALL; 10550 10551 zoneid = Q_TO_CONN(q)->conn_zoneid; 10552 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10553 10554 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10555 optp->level = MIB2_IP6; 10556 optp->name = MIB2_IP6_ROUTE; 10557 optp->len = msgdsize(ird.ird_route.lp_head); 10558 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10559 (int)optp->level, (int)optp->name, (int)optp->len)); 10560 qreply(q, mpctl); 10561 10562 /* ipv6NetToMediaEntryTable in mp3ctl */ 10563 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10564 10565 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10566 optp->level = MIB2_IP6; 10567 optp->name = MIB2_IP6_MEDIA; 10568 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10569 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10570 (int)optp->level, (int)optp->name, (int)optp->len)); 10571 qreply(q, mp3ctl); 10572 10573 /* ipv6RouteAttributeTable in mp4ctl */ 10574 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10575 optp->level = MIB2_IP6; 10576 optp->name = EXPER_IP_RTATTR; 10577 optp->len = msgdsize(ird.ird_attrs.lp_head); 10578 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10579 (int)optp->level, (int)optp->name, (int)optp->len)); 10580 if (optp->len == 0) 10581 freemsg(mp4ctl); 10582 else 10583 qreply(q, mp4ctl); 10584 10585 return (mp2ctl); 10586 } 10587 10588 /* 10589 * IPv6 mib: One per ill 10590 */ 10591 static mblk_t * 10592 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10593 { 10594 struct opthdr *optp; 10595 mblk_t *mp2ctl; 10596 ill_t *ill; 10597 ill_walk_context_t ctx; 10598 mblk_t *mp_tail = NULL; 10599 10600 /* 10601 * Make a copy of the original message 10602 */ 10603 mp2ctl = copymsg(mpctl); 10604 10605 /* fixed length IPv6 structure ... */ 10606 10607 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10608 optp->level = MIB2_IP6; 10609 optp->name = 0; 10610 /* Include "unknown interface" ip6_mib */ 10611 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10612 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10613 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10614 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10615 ipst->ips_ipv6_forwarding ? 1 : 2); 10616 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10617 ipst->ips_ipv6_def_hops); 10618 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10619 sizeof (mib2_ipIfStatsEntry_t)); 10620 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10621 sizeof (mib2_ipv6AddrEntry_t)); 10622 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10623 sizeof (mib2_ipv6RouteEntry_t)); 10624 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10625 sizeof (mib2_ipv6NetToMediaEntry_t)); 10626 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10627 sizeof (ipv6_member_t)); 10628 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10629 sizeof (ipv6_grpsrc_t)); 10630 10631 /* 10632 * Synchronize 64- and 32-bit counters 10633 */ 10634 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10635 ipIfStatsHCInReceives); 10636 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10637 ipIfStatsHCInDelivers); 10638 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10639 ipIfStatsHCOutRequests); 10640 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10641 ipIfStatsHCOutForwDatagrams); 10642 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10643 ipIfStatsHCOutMcastPkts); 10644 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10645 ipIfStatsHCInMcastPkts); 10646 10647 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10648 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10649 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10650 (uint_t)sizeof (ipst->ips_ip6_mib))); 10651 } 10652 10653 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10654 ill = ILL_START_WALK_V6(&ctx, ipst); 10655 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10656 ill->ill_ip_mib->ipIfStatsIfIndex = 10657 ill->ill_phyint->phyint_ifindex; 10658 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10659 ipst->ips_ipv6_forwarding ? 1 : 2); 10660 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10661 ill->ill_max_hops); 10662 10663 /* 10664 * Synchronize 64- and 32-bit counters 10665 */ 10666 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10667 ipIfStatsHCInReceives); 10668 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10669 ipIfStatsHCInDelivers); 10670 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10671 ipIfStatsHCOutRequests); 10672 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10673 ipIfStatsHCOutForwDatagrams); 10674 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10675 ipIfStatsHCOutMcastPkts); 10676 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10677 ipIfStatsHCInMcastPkts); 10678 10679 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10680 (char *)ill->ill_ip_mib, 10681 (int)sizeof (*ill->ill_ip_mib))) { 10682 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10683 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10684 } 10685 } 10686 rw_exit(&ipst->ips_ill_g_lock); 10687 10688 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10689 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10690 (int)optp->level, (int)optp->name, (int)optp->len)); 10691 qreply(q, mpctl); 10692 return (mp2ctl); 10693 } 10694 10695 /* 10696 * ICMPv6 mib: One per ill 10697 */ 10698 static mblk_t * 10699 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10700 { 10701 struct opthdr *optp; 10702 mblk_t *mp2ctl; 10703 ill_t *ill; 10704 ill_walk_context_t ctx; 10705 mblk_t *mp_tail = NULL; 10706 /* 10707 * Make a copy of the original message 10708 */ 10709 mp2ctl = copymsg(mpctl); 10710 10711 /* fixed length ICMPv6 structure ... */ 10712 10713 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10714 optp->level = MIB2_ICMP6; 10715 optp->name = 0; 10716 /* Include "unknown interface" icmp6_mib */ 10717 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10718 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10719 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10720 sizeof (mib2_ipv6IfIcmpEntry_t); 10721 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10722 (char *)&ipst->ips_icmp6_mib, 10723 (int)sizeof (ipst->ips_icmp6_mib))) { 10724 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10725 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10726 } 10727 10728 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10729 ill = ILL_START_WALK_V6(&ctx, ipst); 10730 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10731 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10732 ill->ill_phyint->phyint_ifindex; 10733 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10734 (char *)ill->ill_icmp6_mib, 10735 (int)sizeof (*ill->ill_icmp6_mib))) { 10736 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10737 "%u bytes\n", 10738 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10739 } 10740 } 10741 rw_exit(&ipst->ips_ill_g_lock); 10742 10743 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10744 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10745 (int)optp->level, (int)optp->name, (int)optp->len)); 10746 qreply(q, mpctl); 10747 return (mp2ctl); 10748 } 10749 10750 /* 10751 * ire_walk routine to create both ipRouteEntryTable and 10752 * ipRouteAttributeTable in one IRE walk 10753 */ 10754 static void 10755 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10756 { 10757 ill_t *ill; 10758 mib2_ipRouteEntry_t *re; 10759 mib2_ipAttributeEntry_t iaes; 10760 tsol_ire_gw_secattr_t *attrp; 10761 tsol_gc_t *gc = NULL; 10762 tsol_gcgrp_t *gcgrp = NULL; 10763 ip_stack_t *ipst = ire->ire_ipst; 10764 10765 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10766 10767 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10768 if (ire->ire_testhidden) 10769 return; 10770 if (ire->ire_type & IRE_IF_CLONE) 10771 return; 10772 } 10773 10774 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10775 return; 10776 10777 if ((attrp = ire->ire_gw_secattr) != NULL) { 10778 mutex_enter(&attrp->igsa_lock); 10779 if ((gc = attrp->igsa_gc) != NULL) { 10780 gcgrp = gc->gc_grp; 10781 ASSERT(gcgrp != NULL); 10782 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10783 } 10784 mutex_exit(&attrp->igsa_lock); 10785 } 10786 /* 10787 * Return all IRE types for route table... let caller pick and choose 10788 */ 10789 re->ipRouteDest = ire->ire_addr; 10790 ill = ire->ire_ill; 10791 re->ipRouteIfIndex.o_length = 0; 10792 if (ill != NULL) { 10793 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10794 re->ipRouteIfIndex.o_length = 10795 mi_strlen(re->ipRouteIfIndex.o_bytes); 10796 } 10797 re->ipRouteMetric1 = -1; 10798 re->ipRouteMetric2 = -1; 10799 re->ipRouteMetric3 = -1; 10800 re->ipRouteMetric4 = -1; 10801 10802 re->ipRouteNextHop = ire->ire_gateway_addr; 10803 /* indirect(4), direct(3), or invalid(2) */ 10804 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10805 re->ipRouteType = 2; 10806 else if (ire->ire_type & IRE_ONLINK) 10807 re->ipRouteType = 3; 10808 else 10809 re->ipRouteType = 4; 10810 10811 re->ipRouteProto = -1; 10812 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10813 re->ipRouteMask = ire->ire_mask; 10814 re->ipRouteMetric5 = -1; 10815 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10816 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10817 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10818 10819 re->ipRouteInfo.re_frag_flag = 0; 10820 re->ipRouteInfo.re_rtt = 0; 10821 re->ipRouteInfo.re_src_addr = 0; 10822 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10823 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10824 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10825 re->ipRouteInfo.re_flags = ire->ire_flags; 10826 10827 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10828 if (ire->ire_type & IRE_INTERFACE) { 10829 ire_t *child; 10830 10831 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10832 child = ire->ire_dep_children; 10833 while (child != NULL) { 10834 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10835 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10836 child = child->ire_dep_sib_next; 10837 } 10838 rw_exit(&ipst->ips_ire_dep_lock); 10839 } 10840 10841 if (ire->ire_flags & RTF_DYNAMIC) { 10842 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10843 } else { 10844 re->ipRouteInfo.re_ire_type = ire->ire_type; 10845 } 10846 10847 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10848 (char *)re, (int)sizeof (*re))) { 10849 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10850 (uint_t)sizeof (*re))); 10851 } 10852 10853 if (gc != NULL) { 10854 iaes.iae_routeidx = ird->ird_idx; 10855 iaes.iae_doi = gc->gc_db->gcdb_doi; 10856 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10857 10858 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10859 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10860 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10861 "bytes\n", (uint_t)sizeof (iaes))); 10862 } 10863 } 10864 10865 /* bump route index for next pass */ 10866 ird->ird_idx++; 10867 10868 kmem_free(re, sizeof (*re)); 10869 if (gcgrp != NULL) 10870 rw_exit(&gcgrp->gcgrp_rwlock); 10871 } 10872 10873 /* 10874 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10875 */ 10876 static void 10877 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10878 { 10879 ill_t *ill; 10880 mib2_ipv6RouteEntry_t *re; 10881 mib2_ipAttributeEntry_t iaes; 10882 tsol_ire_gw_secattr_t *attrp; 10883 tsol_gc_t *gc = NULL; 10884 tsol_gcgrp_t *gcgrp = NULL; 10885 ip_stack_t *ipst = ire->ire_ipst; 10886 10887 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10888 10889 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10890 if (ire->ire_testhidden) 10891 return; 10892 if (ire->ire_type & IRE_IF_CLONE) 10893 return; 10894 } 10895 10896 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10897 return; 10898 10899 if ((attrp = ire->ire_gw_secattr) != NULL) { 10900 mutex_enter(&attrp->igsa_lock); 10901 if ((gc = attrp->igsa_gc) != NULL) { 10902 gcgrp = gc->gc_grp; 10903 ASSERT(gcgrp != NULL); 10904 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10905 } 10906 mutex_exit(&attrp->igsa_lock); 10907 } 10908 /* 10909 * Return all IRE types for route table... let caller pick and choose 10910 */ 10911 re->ipv6RouteDest = ire->ire_addr_v6; 10912 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10913 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10914 re->ipv6RouteIfIndex.o_length = 0; 10915 ill = ire->ire_ill; 10916 if (ill != NULL) { 10917 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10918 re->ipv6RouteIfIndex.o_length = 10919 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10920 } 10921 10922 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10923 10924 mutex_enter(&ire->ire_lock); 10925 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10926 mutex_exit(&ire->ire_lock); 10927 10928 /* remote(4), local(3), or discard(2) */ 10929 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10930 re->ipv6RouteType = 2; 10931 else if (ire->ire_type & IRE_ONLINK) 10932 re->ipv6RouteType = 3; 10933 else 10934 re->ipv6RouteType = 4; 10935 10936 re->ipv6RouteProtocol = -1; 10937 re->ipv6RoutePolicy = 0; 10938 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 10939 re->ipv6RouteNextHopRDI = 0; 10940 re->ipv6RouteWeight = 0; 10941 re->ipv6RouteMetric = 0; 10942 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10943 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 10944 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10945 10946 re->ipv6RouteInfo.re_frag_flag = 0; 10947 re->ipv6RouteInfo.re_rtt = 0; 10948 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 10949 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10950 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10951 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 10952 re->ipv6RouteInfo.re_flags = ire->ire_flags; 10953 10954 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10955 if (ire->ire_type & IRE_INTERFACE) { 10956 ire_t *child; 10957 10958 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10959 child = ire->ire_dep_children; 10960 while (child != NULL) { 10961 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 10962 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10963 child = child->ire_dep_sib_next; 10964 } 10965 rw_exit(&ipst->ips_ire_dep_lock); 10966 } 10967 if (ire->ire_flags & RTF_DYNAMIC) { 10968 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10969 } else { 10970 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 10971 } 10972 10973 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10974 (char *)re, (int)sizeof (*re))) { 10975 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 10976 (uint_t)sizeof (*re))); 10977 } 10978 10979 if (gc != NULL) { 10980 iaes.iae_routeidx = ird->ird_idx; 10981 iaes.iae_doi = gc->gc_db->gcdb_doi; 10982 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10983 10984 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10985 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10986 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 10987 "bytes\n", (uint_t)sizeof (iaes))); 10988 } 10989 } 10990 10991 /* bump route index for next pass */ 10992 ird->ird_idx++; 10993 10994 kmem_free(re, sizeof (*re)); 10995 if (gcgrp != NULL) 10996 rw_exit(&gcgrp->gcgrp_rwlock); 10997 } 10998 10999 /* 11000 * ncec_walk routine to create ipv6NetToMediaEntryTable 11001 */ 11002 static int 11003 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11004 { 11005 ill_t *ill; 11006 mib2_ipv6NetToMediaEntry_t ntme; 11007 11008 ill = ncec->ncec_ill; 11009 /* skip arpce entries, and loopback ncec entries */ 11010 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11011 return (0); 11012 /* 11013 * Neighbor cache entry attached to IRE with on-link 11014 * destination. 11015 * We report all IPMP groups on ncec_ill which is normally the upper. 11016 */ 11017 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11018 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11019 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11020 if (ncec->ncec_lladdr != NULL) { 11021 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11022 ntme.ipv6NetToMediaPhysAddress.o_length); 11023 } 11024 /* 11025 * Note: Returns ND_* states. Should be: 11026 * reachable(1), stale(2), delay(3), probe(4), 11027 * invalid(5), unknown(6) 11028 */ 11029 ntme.ipv6NetToMediaState = ncec->ncec_state; 11030 ntme.ipv6NetToMediaLastUpdated = 0; 11031 11032 /* other(1), dynamic(2), static(3), local(4) */ 11033 if (NCE_MYADDR(ncec)) { 11034 ntme.ipv6NetToMediaType = 4; 11035 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11036 ntme.ipv6NetToMediaType = 1; /* proxy */ 11037 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11038 ntme.ipv6NetToMediaType = 3; 11039 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11040 ntme.ipv6NetToMediaType = 1; 11041 } else { 11042 ntme.ipv6NetToMediaType = 2; 11043 } 11044 11045 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11046 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11047 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11048 (uint_t)sizeof (ntme))); 11049 } 11050 return (0); 11051 } 11052 11053 int 11054 nce2ace(ncec_t *ncec) 11055 { 11056 int flags = 0; 11057 11058 if (NCE_ISREACHABLE(ncec)) 11059 flags |= ACE_F_RESOLVED; 11060 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11061 flags |= ACE_F_AUTHORITY; 11062 if (ncec->ncec_flags & NCE_F_PUBLISH) 11063 flags |= ACE_F_PUBLISH; 11064 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11065 flags |= ACE_F_PERMANENT; 11066 if (NCE_MYADDR(ncec)) 11067 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11068 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11069 flags |= ACE_F_UNVERIFIED; 11070 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11071 flags |= ACE_F_AUTHORITY; 11072 if (ncec->ncec_flags & NCE_F_DELAYED) 11073 flags |= ACE_F_DELAYED; 11074 return (flags); 11075 } 11076 11077 /* 11078 * ncec_walk routine to create ipNetToMediaEntryTable 11079 */ 11080 static int 11081 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11082 { 11083 ill_t *ill; 11084 mib2_ipNetToMediaEntry_t ntme; 11085 const char *name = "unknown"; 11086 ipaddr_t ncec_addr; 11087 11088 ill = ncec->ncec_ill; 11089 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11090 ill->ill_net_type == IRE_LOOPBACK) 11091 return (0); 11092 11093 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11094 name = ill->ill_name; 11095 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11096 if (NCE_MYADDR(ncec)) { 11097 ntme.ipNetToMediaType = 4; 11098 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11099 ntme.ipNetToMediaType = 1; 11100 } else { 11101 ntme.ipNetToMediaType = 3; 11102 } 11103 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11104 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11105 ntme.ipNetToMediaIfIndex.o_length); 11106 11107 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11108 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11109 11110 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11111 ncec_addr = INADDR_BROADCAST; 11112 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11113 sizeof (ncec_addr)); 11114 /* 11115 * map all the flags to the ACE counterpart. 11116 */ 11117 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11118 11119 ntme.ipNetToMediaPhysAddress.o_length = 11120 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11121 11122 if (!NCE_ISREACHABLE(ncec)) 11123 ntme.ipNetToMediaPhysAddress.o_length = 0; 11124 else { 11125 if (ncec->ncec_lladdr != NULL) { 11126 bcopy(ncec->ncec_lladdr, 11127 ntme.ipNetToMediaPhysAddress.o_bytes, 11128 ntme.ipNetToMediaPhysAddress.o_length); 11129 } 11130 } 11131 11132 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11133 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11134 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11135 (uint_t)sizeof (ntme))); 11136 } 11137 return (0); 11138 } 11139 11140 /* 11141 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11142 */ 11143 /* ARGSUSED */ 11144 int 11145 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11146 { 11147 switch (level) { 11148 case MIB2_IP: 11149 case MIB2_ICMP: 11150 switch (name) { 11151 default: 11152 break; 11153 } 11154 return (1); 11155 default: 11156 return (1); 11157 } 11158 } 11159 11160 /* 11161 * When there exists both a 64- and 32-bit counter of a particular type 11162 * (i.e., InReceives), only the 64-bit counters are added. 11163 */ 11164 void 11165 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11166 { 11167 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11168 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11169 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11170 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11171 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11172 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11173 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11174 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11175 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11176 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11177 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11178 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11179 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11180 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11181 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11182 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11183 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11184 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11185 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11186 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11187 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11188 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11189 o2->ipIfStatsInWrongIPVersion); 11190 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11191 o2->ipIfStatsInWrongIPVersion); 11192 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11193 o2->ipIfStatsOutSwitchIPVersion); 11194 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11195 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11196 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11197 o2->ipIfStatsHCInForwDatagrams); 11198 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11199 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11200 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11201 o2->ipIfStatsHCOutForwDatagrams); 11202 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11203 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11204 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11205 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11206 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11207 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11208 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11209 o2->ipIfStatsHCOutMcastOctets); 11210 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11211 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11212 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11213 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11214 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11215 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11216 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11217 } 11218 11219 void 11220 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11221 { 11222 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11223 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11224 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11225 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11226 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11227 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11228 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11229 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11230 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11231 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11232 o2->ipv6IfIcmpInRouterSolicits); 11233 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11234 o2->ipv6IfIcmpInRouterAdvertisements); 11235 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11236 o2->ipv6IfIcmpInNeighborSolicits); 11237 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11238 o2->ipv6IfIcmpInNeighborAdvertisements); 11239 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11240 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11241 o2->ipv6IfIcmpInGroupMembQueries); 11242 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11243 o2->ipv6IfIcmpInGroupMembResponses); 11244 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11245 o2->ipv6IfIcmpInGroupMembReductions); 11246 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11247 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11248 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11249 o2->ipv6IfIcmpOutDestUnreachs); 11250 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11251 o2->ipv6IfIcmpOutAdminProhibs); 11252 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11253 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11254 o2->ipv6IfIcmpOutParmProblems); 11255 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11256 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11257 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11258 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11259 o2->ipv6IfIcmpOutRouterSolicits); 11260 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11261 o2->ipv6IfIcmpOutRouterAdvertisements); 11262 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11263 o2->ipv6IfIcmpOutNeighborSolicits); 11264 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11265 o2->ipv6IfIcmpOutNeighborAdvertisements); 11266 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11267 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11268 o2->ipv6IfIcmpOutGroupMembQueries); 11269 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11270 o2->ipv6IfIcmpOutGroupMembResponses); 11271 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11272 o2->ipv6IfIcmpOutGroupMembReductions); 11273 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11274 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11275 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11276 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11277 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11278 o2->ipv6IfIcmpInBadNeighborSolicitations); 11279 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11280 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11281 o2->ipv6IfIcmpInGroupMembTotal); 11282 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11283 o2->ipv6IfIcmpInGroupMembBadQueries); 11284 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11285 o2->ipv6IfIcmpInGroupMembBadReports); 11286 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11287 o2->ipv6IfIcmpInGroupMembOurReports); 11288 } 11289 11290 /* 11291 * Called before the options are updated to check if this packet will 11292 * be source routed from here. 11293 * This routine assumes that the options are well formed i.e. that they 11294 * have already been checked. 11295 */ 11296 boolean_t 11297 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11298 { 11299 ipoptp_t opts; 11300 uchar_t *opt; 11301 uint8_t optval; 11302 uint8_t optlen; 11303 ipaddr_t dst; 11304 11305 if (IS_SIMPLE_IPH(ipha)) { 11306 ip2dbg(("not source routed\n")); 11307 return (B_FALSE); 11308 } 11309 dst = ipha->ipha_dst; 11310 for (optval = ipoptp_first(&opts, ipha); 11311 optval != IPOPT_EOL; 11312 optval = ipoptp_next(&opts)) { 11313 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11314 opt = opts.ipoptp_cur; 11315 optlen = opts.ipoptp_len; 11316 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11317 optval, optlen)); 11318 switch (optval) { 11319 uint32_t off; 11320 case IPOPT_SSRR: 11321 case IPOPT_LSRR: 11322 /* 11323 * If dst is one of our addresses and there are some 11324 * entries left in the source route return (true). 11325 */ 11326 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11327 ip2dbg(("ip_source_routed: not next" 11328 " source route 0x%x\n", 11329 ntohl(dst))); 11330 return (B_FALSE); 11331 } 11332 off = opt[IPOPT_OFFSET]; 11333 off--; 11334 if (optlen < IP_ADDR_LEN || 11335 off > optlen - IP_ADDR_LEN) { 11336 /* End of source route */ 11337 ip1dbg(("ip_source_routed: end of SR\n")); 11338 return (B_FALSE); 11339 } 11340 return (B_TRUE); 11341 } 11342 } 11343 ip2dbg(("not source routed\n")); 11344 return (B_FALSE); 11345 } 11346 11347 /* 11348 * ip_unbind is called by the transports to remove a conn from 11349 * the fanout table. 11350 */ 11351 void 11352 ip_unbind(conn_t *connp) 11353 { 11354 11355 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11356 11357 if (is_system_labeled() && connp->conn_anon_port) { 11358 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11359 connp->conn_mlp_type, connp->conn_proto, 11360 ntohs(connp->conn_lport), B_FALSE); 11361 connp->conn_anon_port = 0; 11362 } 11363 connp->conn_mlp_type = mlptSingle; 11364 11365 ipcl_hash_remove(connp); 11366 } 11367 11368 /* 11369 * Used for deciding the MSS size for the upper layer. Thus 11370 * we need to check the outbound policy values in the conn. 11371 */ 11372 int 11373 conn_ipsec_length(conn_t *connp) 11374 { 11375 ipsec_latch_t *ipl; 11376 11377 ipl = connp->conn_latch; 11378 if (ipl == NULL) 11379 return (0); 11380 11381 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11382 return (0); 11383 11384 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11385 } 11386 11387 /* 11388 * Returns an estimate of the IPsec headers size. This is used if 11389 * we don't want to call into IPsec to get the exact size. 11390 */ 11391 int 11392 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11393 { 11394 ipsec_action_t *a; 11395 11396 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11397 return (0); 11398 11399 a = ixa->ixa_ipsec_action; 11400 if (a == NULL) { 11401 ASSERT(ixa->ixa_ipsec_policy != NULL); 11402 a = ixa->ixa_ipsec_policy->ipsp_act; 11403 } 11404 ASSERT(a != NULL); 11405 11406 return (a->ipa_ovhd); 11407 } 11408 11409 /* 11410 * If there are any source route options, return the true final 11411 * destination. Otherwise, return the destination. 11412 */ 11413 ipaddr_t 11414 ip_get_dst(ipha_t *ipha) 11415 { 11416 ipoptp_t opts; 11417 uchar_t *opt; 11418 uint8_t optval; 11419 uint8_t optlen; 11420 ipaddr_t dst; 11421 uint32_t off; 11422 11423 dst = ipha->ipha_dst; 11424 11425 if (IS_SIMPLE_IPH(ipha)) 11426 return (dst); 11427 11428 for (optval = ipoptp_first(&opts, ipha); 11429 optval != IPOPT_EOL; 11430 optval = ipoptp_next(&opts)) { 11431 opt = opts.ipoptp_cur; 11432 optlen = opts.ipoptp_len; 11433 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11434 switch (optval) { 11435 case IPOPT_SSRR: 11436 case IPOPT_LSRR: 11437 off = opt[IPOPT_OFFSET]; 11438 /* 11439 * If one of the conditions is true, it means 11440 * end of options and dst already has the right 11441 * value. 11442 */ 11443 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11444 off = optlen - IP_ADDR_LEN; 11445 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11446 } 11447 return (dst); 11448 default: 11449 break; 11450 } 11451 } 11452 11453 return (dst); 11454 } 11455 11456 /* 11457 * Outbound IP fragmentation routine. 11458 * Assumes the caller has checked whether or not fragmentation should 11459 * be allowed. Here we copy the DF bit from the header to all the generated 11460 * fragments. 11461 */ 11462 int 11463 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11464 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11465 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11466 { 11467 int i1; 11468 int hdr_len; 11469 mblk_t *hdr_mp; 11470 ipha_t *ipha; 11471 int ip_data_end; 11472 int len; 11473 mblk_t *mp = mp_orig; 11474 int offset; 11475 ill_t *ill = nce->nce_ill; 11476 ip_stack_t *ipst = ill->ill_ipst; 11477 mblk_t *carve_mp; 11478 uint32_t frag_flag; 11479 uint_t priority = mp->b_band; 11480 int error = 0; 11481 11482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11483 11484 if (pkt_len != msgdsize(mp)) { 11485 ip0dbg(("Packet length mismatch: %d, %ld\n", 11486 pkt_len, msgdsize(mp))); 11487 freemsg(mp); 11488 return (EINVAL); 11489 } 11490 11491 if (max_frag == 0) { 11492 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11493 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11494 ip_drop_output("FragFails: zero max_frag", mp, ill); 11495 freemsg(mp); 11496 return (EINVAL); 11497 } 11498 11499 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11500 ipha = (ipha_t *)mp->b_rptr; 11501 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11502 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11503 11504 /* 11505 * Establish the starting offset. May not be zero if we are fragging 11506 * a fragment that is being forwarded. 11507 */ 11508 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11509 11510 /* TODO why is this test needed? */ 11511 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11512 /* TODO: notify ulp somehow */ 11513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11514 ip_drop_output("FragFails: bad starting offset", mp, ill); 11515 freemsg(mp); 11516 return (EINVAL); 11517 } 11518 11519 hdr_len = IPH_HDR_LENGTH(ipha); 11520 ipha->ipha_hdr_checksum = 0; 11521 11522 /* 11523 * Establish the number of bytes maximum per frag, after putting 11524 * in the header. 11525 */ 11526 len = (max_frag - hdr_len) & ~7; 11527 11528 /* Get a copy of the header for the trailing frags */ 11529 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11530 mp); 11531 if (hdr_mp == NULL) { 11532 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11533 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11534 freemsg(mp); 11535 return (ENOBUFS); 11536 } 11537 11538 /* Store the starting offset, with the MoreFrags flag. */ 11539 i1 = offset | IPH_MF | frag_flag; 11540 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11541 11542 /* Establish the ending byte offset, based on the starting offset. */ 11543 offset <<= 3; 11544 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11545 11546 /* Store the length of the first fragment in the IP header. */ 11547 i1 = len + hdr_len; 11548 ASSERT(i1 <= IP_MAXPACKET); 11549 ipha->ipha_length = htons((uint16_t)i1); 11550 11551 /* 11552 * Compute the IP header checksum for the first frag. We have to 11553 * watch out that we stop at the end of the header. 11554 */ 11555 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11556 11557 /* 11558 * Now carve off the first frag. Note that this will include the 11559 * original IP header. 11560 */ 11561 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11563 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11564 freeb(hdr_mp); 11565 freemsg(mp_orig); 11566 return (ENOBUFS); 11567 } 11568 11569 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11570 11571 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11572 ixa_cookie); 11573 if (error != 0 && error != EWOULDBLOCK) { 11574 /* No point in sending the other fragments */ 11575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11576 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11577 freeb(hdr_mp); 11578 freemsg(mp_orig); 11579 return (error); 11580 } 11581 11582 /* No need to redo state machine in loop */ 11583 ixaflags &= ~IXAF_REACH_CONF; 11584 11585 /* Advance the offset to the second frag starting point. */ 11586 offset += len; 11587 /* 11588 * Update hdr_len from the copied header - there might be less options 11589 * in the later fragments. 11590 */ 11591 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11592 /* Loop until done. */ 11593 for (;;) { 11594 uint16_t offset_and_flags; 11595 uint16_t ip_len; 11596 11597 if (ip_data_end - offset > len) { 11598 /* 11599 * Carve off the appropriate amount from the original 11600 * datagram. 11601 */ 11602 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11603 mp = NULL; 11604 break; 11605 } 11606 /* 11607 * More frags after this one. Get another copy 11608 * of the header. 11609 */ 11610 if (carve_mp->b_datap->db_ref == 1 && 11611 hdr_mp->b_wptr - hdr_mp->b_rptr < 11612 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11613 /* Inline IP header */ 11614 carve_mp->b_rptr -= hdr_mp->b_wptr - 11615 hdr_mp->b_rptr; 11616 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11617 hdr_mp->b_wptr - hdr_mp->b_rptr); 11618 mp = carve_mp; 11619 } else { 11620 if (!(mp = copyb(hdr_mp))) { 11621 freemsg(carve_mp); 11622 break; 11623 } 11624 /* Get priority marking, if any. */ 11625 mp->b_band = priority; 11626 mp->b_cont = carve_mp; 11627 } 11628 ipha = (ipha_t *)mp->b_rptr; 11629 offset_and_flags = IPH_MF; 11630 } else { 11631 /* 11632 * Last frag. Consume the header. Set len to 11633 * the length of this last piece. 11634 */ 11635 len = ip_data_end - offset; 11636 11637 /* 11638 * Carve off the appropriate amount from the original 11639 * datagram. 11640 */ 11641 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11642 mp = NULL; 11643 break; 11644 } 11645 if (carve_mp->b_datap->db_ref == 1 && 11646 hdr_mp->b_wptr - hdr_mp->b_rptr < 11647 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11648 /* Inline IP header */ 11649 carve_mp->b_rptr -= hdr_mp->b_wptr - 11650 hdr_mp->b_rptr; 11651 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11652 hdr_mp->b_wptr - hdr_mp->b_rptr); 11653 mp = carve_mp; 11654 freeb(hdr_mp); 11655 hdr_mp = mp; 11656 } else { 11657 mp = hdr_mp; 11658 /* Get priority marking, if any. */ 11659 mp->b_band = priority; 11660 mp->b_cont = carve_mp; 11661 } 11662 ipha = (ipha_t *)mp->b_rptr; 11663 /* A frag of a frag might have IPH_MF non-zero */ 11664 offset_and_flags = 11665 ntohs(ipha->ipha_fragment_offset_and_flags) & 11666 IPH_MF; 11667 } 11668 offset_and_flags |= (uint16_t)(offset >> 3); 11669 offset_and_flags |= (uint16_t)frag_flag; 11670 /* Store the offset and flags in the IP header. */ 11671 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11672 11673 /* Store the length in the IP header. */ 11674 ip_len = (uint16_t)(len + hdr_len); 11675 ipha->ipha_length = htons(ip_len); 11676 11677 /* 11678 * Set the IP header checksum. Note that mp is just 11679 * the header, so this is easy to pass to ip_csum. 11680 */ 11681 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11682 11683 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11684 11685 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11686 nolzid, ixa_cookie); 11687 /* All done if we just consumed the hdr_mp. */ 11688 if (mp == hdr_mp) { 11689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11690 return (error); 11691 } 11692 if (error != 0 && error != EWOULDBLOCK) { 11693 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11694 mblk_t *, hdr_mp); 11695 /* No point in sending the other fragments */ 11696 break; 11697 } 11698 11699 /* Otherwise, advance and loop. */ 11700 offset += len; 11701 } 11702 /* Clean up following allocation failure. */ 11703 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11704 ip_drop_output("FragFails: loop ended", NULL, ill); 11705 if (mp != hdr_mp) 11706 freeb(hdr_mp); 11707 if (mp != mp_orig) 11708 freemsg(mp_orig); 11709 return (error); 11710 } 11711 11712 /* 11713 * Copy the header plus those options which have the copy bit set 11714 */ 11715 static mblk_t * 11716 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11717 mblk_t *src) 11718 { 11719 mblk_t *mp; 11720 uchar_t *up; 11721 11722 /* 11723 * Quick check if we need to look for options without the copy bit 11724 * set 11725 */ 11726 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11727 if (!mp) 11728 return (mp); 11729 mp->b_rptr += ipst->ips_ip_wroff_extra; 11730 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11731 bcopy(rptr, mp->b_rptr, hdr_len); 11732 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11733 return (mp); 11734 } 11735 up = mp->b_rptr; 11736 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11737 up += IP_SIMPLE_HDR_LENGTH; 11738 rptr += IP_SIMPLE_HDR_LENGTH; 11739 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11740 while (hdr_len > 0) { 11741 uint32_t optval; 11742 uint32_t optlen; 11743 11744 optval = *rptr; 11745 if (optval == IPOPT_EOL) 11746 break; 11747 if (optval == IPOPT_NOP) 11748 optlen = 1; 11749 else 11750 optlen = rptr[1]; 11751 if (optval & IPOPT_COPY) { 11752 bcopy(rptr, up, optlen); 11753 up += optlen; 11754 } 11755 rptr += optlen; 11756 hdr_len -= optlen; 11757 } 11758 /* 11759 * Make sure that we drop an even number of words by filling 11760 * with EOL to the next word boundary. 11761 */ 11762 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11763 hdr_len & 0x3; hdr_len++) 11764 *up++ = IPOPT_EOL; 11765 mp->b_wptr = up; 11766 /* Update header length */ 11767 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11768 return (mp); 11769 } 11770 11771 /* 11772 * Update any source route, record route, or timestamp options when 11773 * sending a packet back to ourselves. 11774 * Check that we are at end of strict source route. 11775 * The options have been sanity checked by ip_output_options(). 11776 */ 11777 void 11778 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11779 { 11780 ipoptp_t opts; 11781 uchar_t *opt; 11782 uint8_t optval; 11783 uint8_t optlen; 11784 ipaddr_t dst; 11785 uint32_t ts; 11786 timestruc_t now; 11787 11788 for (optval = ipoptp_first(&opts, ipha); 11789 optval != IPOPT_EOL; 11790 optval = ipoptp_next(&opts)) { 11791 opt = opts.ipoptp_cur; 11792 optlen = opts.ipoptp_len; 11793 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11794 switch (optval) { 11795 uint32_t off; 11796 case IPOPT_SSRR: 11797 case IPOPT_LSRR: 11798 off = opt[IPOPT_OFFSET]; 11799 off--; 11800 if (optlen < IP_ADDR_LEN || 11801 off > optlen - IP_ADDR_LEN) { 11802 /* End of source route */ 11803 break; 11804 } 11805 /* 11806 * This will only happen if two consecutive entries 11807 * in the source route contains our address or if 11808 * it is a packet with a loose source route which 11809 * reaches us before consuming the whole source route 11810 */ 11811 11812 if (optval == IPOPT_SSRR) { 11813 return; 11814 } 11815 /* 11816 * Hack: instead of dropping the packet truncate the 11817 * source route to what has been used by filling the 11818 * rest with IPOPT_NOP. 11819 */ 11820 opt[IPOPT_OLEN] = (uint8_t)off; 11821 while (off < optlen) { 11822 opt[off++] = IPOPT_NOP; 11823 } 11824 break; 11825 case IPOPT_RR: 11826 off = opt[IPOPT_OFFSET]; 11827 off--; 11828 if (optlen < IP_ADDR_LEN || 11829 off > optlen - IP_ADDR_LEN) { 11830 /* No more room - ignore */ 11831 ip1dbg(( 11832 "ip_output_local_options: end of RR\n")); 11833 break; 11834 } 11835 dst = htonl(INADDR_LOOPBACK); 11836 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11837 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11838 break; 11839 case IPOPT_TS: 11840 /* Insert timestamp if there is romm */ 11841 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11842 case IPOPT_TS_TSONLY: 11843 off = IPOPT_TS_TIMELEN; 11844 break; 11845 case IPOPT_TS_PRESPEC: 11846 case IPOPT_TS_PRESPEC_RFC791: 11847 /* Verify that the address matched */ 11848 off = opt[IPOPT_OFFSET] - 1; 11849 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11850 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11851 /* Not for us */ 11852 break; 11853 } 11854 /* FALLTHRU */ 11855 case IPOPT_TS_TSANDADDR: 11856 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11857 break; 11858 default: 11859 /* 11860 * ip_*put_options should have already 11861 * dropped this packet. 11862 */ 11863 cmn_err(CE_PANIC, "ip_output_local_options: " 11864 "unknown IT - bug in ip_output_options?\n"); 11865 return; /* Keep "lint" happy */ 11866 } 11867 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11868 /* Increase overflow counter */ 11869 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11870 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11871 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11872 (off << 4); 11873 break; 11874 } 11875 off = opt[IPOPT_OFFSET] - 1; 11876 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11877 case IPOPT_TS_PRESPEC: 11878 case IPOPT_TS_PRESPEC_RFC791: 11879 case IPOPT_TS_TSANDADDR: 11880 dst = htonl(INADDR_LOOPBACK); 11881 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11882 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11883 /* FALLTHRU */ 11884 case IPOPT_TS_TSONLY: 11885 off = opt[IPOPT_OFFSET] - 1; 11886 /* Compute # of milliseconds since midnight */ 11887 gethrestime(&now); 11888 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11889 now.tv_nsec / (NANOSEC / MILLISEC); 11890 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11891 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11892 break; 11893 } 11894 break; 11895 } 11896 } 11897 } 11898 11899 /* 11900 * Prepend an M_DATA fastpath header, and if none present prepend a 11901 * DL_UNITDATA_REQ. Frees the mblk on failure. 11902 * 11903 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11904 * If there is a change to them, the nce will be deleted (condemned) and 11905 * a new nce_t will be created when packets are sent. Thus we need no locks 11906 * to access those fields. 11907 * 11908 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11909 * we place b_band in dl_priority.dl_max. 11910 */ 11911 static mblk_t * 11912 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11913 { 11914 uint_t hlen; 11915 mblk_t *mp1; 11916 uint_t priority; 11917 uchar_t *rptr; 11918 11919 rptr = mp->b_rptr; 11920 11921 ASSERT(DB_TYPE(mp) == M_DATA); 11922 priority = mp->b_band; 11923 11924 ASSERT(nce != NULL); 11925 if ((mp1 = nce->nce_fp_mp) != NULL) { 11926 hlen = MBLKL(mp1); 11927 /* 11928 * Check if we have enough room to prepend fastpath 11929 * header 11930 */ 11931 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11932 rptr -= hlen; 11933 bcopy(mp1->b_rptr, rptr, hlen); 11934 /* 11935 * Set the b_rptr to the start of the link layer 11936 * header 11937 */ 11938 mp->b_rptr = rptr; 11939 return (mp); 11940 } 11941 mp1 = copyb(mp1); 11942 if (mp1 == NULL) { 11943 ill_t *ill = nce->nce_ill; 11944 11945 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11946 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11947 freemsg(mp); 11948 return (NULL); 11949 } 11950 mp1->b_band = priority; 11951 mp1->b_cont = mp; 11952 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 11953 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 11954 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 11955 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 11956 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 11957 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 11958 /* 11959 * XXX disable ICK_VALID and compute checksum 11960 * here; can happen if nce_fp_mp changes and 11961 * it can't be copied now due to insufficient 11962 * space. (unlikely, fp mp can change, but it 11963 * does not increase in length) 11964 */ 11965 return (mp1); 11966 } 11967 mp1 = copyb(nce->nce_dlur_mp); 11968 11969 if (mp1 == NULL) { 11970 ill_t *ill = nce->nce_ill; 11971 11972 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11973 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11974 freemsg(mp); 11975 return (NULL); 11976 } 11977 mp1->b_cont = mp; 11978 if (priority != 0) { 11979 mp1->b_band = priority; 11980 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 11981 priority; 11982 } 11983 return (mp1); 11984 #undef rptr 11985 } 11986 11987 /* 11988 * Finish the outbound IPsec processing. This function is called from 11989 * ipsec_out_process() if the IPsec packet was processed 11990 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 11991 * asynchronously. 11992 * 11993 * This is common to IPv4 and IPv6. 11994 */ 11995 int 11996 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 11997 { 11998 iaflags_t ixaflags = ixa->ixa_flags; 11999 uint_t pktlen; 12000 12001 12002 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12003 if (ixaflags & IXAF_IS_IPV4) { 12004 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12005 12006 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12007 pktlen = ntohs(ipha->ipha_length); 12008 } else { 12009 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12010 12011 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12012 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12013 } 12014 12015 /* 12016 * We release any hard reference on the SAs here to make 12017 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12018 * on the SAs. 12019 * If in the future we want the hard latching of the SAs in the 12020 * ip_xmit_attr_t then we should remove this. 12021 */ 12022 if (ixa->ixa_ipsec_esp_sa != NULL) { 12023 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12024 ixa->ixa_ipsec_esp_sa = NULL; 12025 } 12026 if (ixa->ixa_ipsec_ah_sa != NULL) { 12027 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12028 ixa->ixa_ipsec_ah_sa = NULL; 12029 } 12030 12031 /* Do we need to fragment? */ 12032 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12033 pktlen > ixa->ixa_fragsize) { 12034 if (ixaflags & IXAF_IS_IPV4) { 12035 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12036 /* 12037 * We check for the DF case in ipsec_out_process 12038 * hence this only handles the non-DF case. 12039 */ 12040 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12041 pktlen, ixa->ixa_fragsize, 12042 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12043 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12044 &ixa->ixa_cookie)); 12045 } else { 12046 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12047 if (mp == NULL) { 12048 /* MIB and ip_drop_output already done */ 12049 return (ENOMEM); 12050 } 12051 pktlen += sizeof (ip6_frag_t); 12052 if (pktlen > ixa->ixa_fragsize) { 12053 return (ip_fragment_v6(mp, ixa->ixa_nce, 12054 ixa->ixa_flags, pktlen, 12055 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12056 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12057 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12058 } 12059 } 12060 } 12061 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12062 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12063 ixa->ixa_no_loop_zoneid, NULL)); 12064 } 12065 12066 /* 12067 * Finish the inbound IPsec processing. This function is called from 12068 * ipsec_out_process() if the IPsec packet was processed 12069 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12070 * asynchronously. 12071 * 12072 * This is common to IPv4 and IPv6. 12073 */ 12074 void 12075 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12076 { 12077 iaflags_t iraflags = ira->ira_flags; 12078 12079 /* Length might have changed */ 12080 if (iraflags & IRAF_IS_IPV4) { 12081 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12082 12083 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12084 ira->ira_pktlen = ntohs(ipha->ipha_length); 12085 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12086 ira->ira_protocol = ipha->ipha_protocol; 12087 12088 ip_fanout_v4(mp, ipha, ira); 12089 } else { 12090 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12091 uint8_t *nexthdrp; 12092 12093 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12094 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12095 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12096 &nexthdrp)) { 12097 /* Malformed packet */ 12098 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12099 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12100 freemsg(mp); 12101 return; 12102 } 12103 ira->ira_protocol = *nexthdrp; 12104 ip_fanout_v6(mp, ip6h, ira); 12105 } 12106 } 12107 12108 /* 12109 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12110 * 12111 * If this function returns B_TRUE, the requested SA's have been filled 12112 * into the ixa_ipsec_*_sa pointers. 12113 * 12114 * If the function returns B_FALSE, the packet has been "consumed", most 12115 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12116 * 12117 * The SA references created by the protocol-specific "select" 12118 * function will be released in ip_output_post_ipsec. 12119 */ 12120 static boolean_t 12121 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12122 { 12123 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12124 ipsec_policy_t *pp; 12125 ipsec_action_t *ap; 12126 12127 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12128 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12129 (ixa->ixa_ipsec_action != NULL)); 12130 12131 ap = ixa->ixa_ipsec_action; 12132 if (ap == NULL) { 12133 pp = ixa->ixa_ipsec_policy; 12134 ASSERT(pp != NULL); 12135 ap = pp->ipsp_act; 12136 ASSERT(ap != NULL); 12137 } 12138 12139 /* 12140 * We have an action. now, let's select SA's. 12141 * A side effect of setting ixa_ipsec_*_sa is that it will 12142 * be cached in the conn_t. 12143 */ 12144 if (ap->ipa_want_esp) { 12145 if (ixa->ixa_ipsec_esp_sa == NULL) { 12146 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12147 IPPROTO_ESP); 12148 } 12149 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12150 } 12151 12152 if (ap->ipa_want_ah) { 12153 if (ixa->ixa_ipsec_ah_sa == NULL) { 12154 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12155 IPPROTO_AH); 12156 } 12157 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12158 /* 12159 * The ESP and AH processing order needs to be preserved 12160 * when both protocols are required (ESP should be applied 12161 * before AH for an outbound packet). Force an ESP ACQUIRE 12162 * when both ESP and AH are required, and an AH ACQUIRE 12163 * is needed. 12164 */ 12165 if (ap->ipa_want_esp && need_ah_acquire) 12166 need_esp_acquire = B_TRUE; 12167 } 12168 12169 /* 12170 * Send an ACQUIRE (extended, regular, or both) if we need one. 12171 * Release SAs that got referenced, but will not be used until we 12172 * acquire _all_ of the SAs we need. 12173 */ 12174 if (need_ah_acquire || need_esp_acquire) { 12175 if (ixa->ixa_ipsec_ah_sa != NULL) { 12176 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12177 ixa->ixa_ipsec_ah_sa = NULL; 12178 } 12179 if (ixa->ixa_ipsec_esp_sa != NULL) { 12180 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12181 ixa->ixa_ipsec_esp_sa = NULL; 12182 } 12183 12184 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12185 return (B_FALSE); 12186 } 12187 12188 return (B_TRUE); 12189 } 12190 12191 /* 12192 * Handle IPsec output processing. 12193 * This function is only entered once for a given packet. 12194 * We try to do things synchronously, but if we need to have user-level 12195 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12196 * will be completed 12197 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12198 * - when asynchronous ESP is done it will do AH 12199 * 12200 * In all cases we come back in ip_output_post_ipsec() to fragment and 12201 * send out the packet. 12202 */ 12203 int 12204 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12205 { 12206 ill_t *ill = ixa->ixa_nce->nce_ill; 12207 ip_stack_t *ipst = ixa->ixa_ipst; 12208 ipsec_stack_t *ipss; 12209 ipsec_policy_t *pp; 12210 ipsec_action_t *ap; 12211 12212 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12213 12214 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12215 (ixa->ixa_ipsec_action != NULL)); 12216 12217 ipss = ipst->ips_netstack->netstack_ipsec; 12218 if (!ipsec_loaded(ipss)) { 12219 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12220 ip_drop_packet(mp, B_TRUE, ill, 12221 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12222 &ipss->ipsec_dropper); 12223 return (ENOTSUP); 12224 } 12225 12226 ap = ixa->ixa_ipsec_action; 12227 if (ap == NULL) { 12228 pp = ixa->ixa_ipsec_policy; 12229 ASSERT(pp != NULL); 12230 ap = pp->ipsp_act; 12231 ASSERT(ap != NULL); 12232 } 12233 12234 /* Handle explicit drop action and bypass. */ 12235 switch (ap->ipa_act.ipa_type) { 12236 case IPSEC_ACT_DISCARD: 12237 case IPSEC_ACT_REJECT: 12238 ip_drop_packet(mp, B_FALSE, ill, 12239 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12240 return (EHOSTUNREACH); /* IPsec policy failure */ 12241 case IPSEC_ACT_BYPASS: 12242 return (ip_output_post_ipsec(mp, ixa)); 12243 } 12244 12245 /* 12246 * The order of processing is first insert a IP header if needed. 12247 * Then insert the ESP header and then the AH header. 12248 */ 12249 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12250 /* 12251 * First get the outer IP header before sending 12252 * it to ESP. 12253 */ 12254 ipha_t *oipha, *iipha; 12255 mblk_t *outer_mp, *inner_mp; 12256 12257 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12258 (void) mi_strlog(ill->ill_rq, 0, 12259 SL_ERROR|SL_TRACE|SL_CONSOLE, 12260 "ipsec_out_process: " 12261 "Self-Encapsulation failed: Out of memory\n"); 12262 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12263 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12264 freemsg(mp); 12265 return (ENOBUFS); 12266 } 12267 inner_mp = mp; 12268 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12269 oipha = (ipha_t *)outer_mp->b_rptr; 12270 iipha = (ipha_t *)inner_mp->b_rptr; 12271 *oipha = *iipha; 12272 outer_mp->b_wptr += sizeof (ipha_t); 12273 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12274 sizeof (ipha_t)); 12275 oipha->ipha_protocol = IPPROTO_ENCAP; 12276 oipha->ipha_version_and_hdr_length = 12277 IP_SIMPLE_HDR_VERSION; 12278 oipha->ipha_hdr_checksum = 0; 12279 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12280 outer_mp->b_cont = inner_mp; 12281 mp = outer_mp; 12282 12283 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12284 } 12285 12286 /* If we need to wait for a SA then we can't return any errno */ 12287 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12288 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12289 !ipsec_out_select_sa(mp, ixa)) 12290 return (0); 12291 12292 /* 12293 * By now, we know what SA's to use. Toss over to ESP & AH 12294 * to do the heavy lifting. 12295 */ 12296 if (ap->ipa_want_esp) { 12297 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12298 12299 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12300 if (mp == NULL) { 12301 /* 12302 * Either it failed or is pending. In the former case 12303 * ipIfStatsInDiscards was increased. 12304 */ 12305 return (0); 12306 } 12307 } 12308 12309 if (ap->ipa_want_ah) { 12310 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12311 12312 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12313 if (mp == NULL) { 12314 /* 12315 * Either it failed or is pending. In the former case 12316 * ipIfStatsInDiscards was increased. 12317 */ 12318 return (0); 12319 } 12320 } 12321 /* 12322 * We are done with IPsec processing. Send it over 12323 * the wire. 12324 */ 12325 return (ip_output_post_ipsec(mp, ixa)); 12326 } 12327 12328 /* 12329 * ioctls that go through a down/up sequence may need to wait for the down 12330 * to complete. This involves waiting for the ire and ipif refcnts to go down 12331 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12332 */ 12333 /* ARGSUSED */ 12334 void 12335 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12336 { 12337 struct iocblk *iocp; 12338 mblk_t *mp1; 12339 ip_ioctl_cmd_t *ipip; 12340 int err; 12341 sin_t *sin; 12342 struct lifreq *lifr; 12343 struct ifreq *ifr; 12344 12345 iocp = (struct iocblk *)mp->b_rptr; 12346 ASSERT(ipsq != NULL); 12347 /* Existence of mp1 verified in ip_wput_nondata */ 12348 mp1 = mp->b_cont->b_cont; 12349 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12350 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12351 /* 12352 * Special case where ipx_current_ipif is not set: 12353 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12354 * We are here as were not able to complete the operation in 12355 * ipif_set_values because we could not become exclusive on 12356 * the new ipsq. 12357 */ 12358 ill_t *ill = q->q_ptr; 12359 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12360 } 12361 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12362 12363 if (ipip->ipi_cmd_type == IF_CMD) { 12364 /* This a old style SIOC[GS]IF* command */ 12365 ifr = (struct ifreq *)mp1->b_rptr; 12366 sin = (sin_t *)&ifr->ifr_addr; 12367 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12368 /* This a new style SIOC[GS]LIF* command */ 12369 lifr = (struct lifreq *)mp1->b_rptr; 12370 sin = (sin_t *)&lifr->lifr_addr; 12371 } else { 12372 sin = NULL; 12373 } 12374 12375 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12376 q, mp, ipip, mp1->b_rptr); 12377 12378 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12379 int, ipip->ipi_cmd, 12380 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12381 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12382 12383 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12384 } 12385 12386 /* 12387 * ioctl processing 12388 * 12389 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12390 * the ioctl command in the ioctl tables, determines the copyin data size 12391 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12392 * 12393 * ioctl processing then continues when the M_IOCDATA makes its way down to 12394 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12395 * associated 'conn' is refheld till the end of the ioctl and the general 12396 * ioctl processing function ip_process_ioctl() is called to extract the 12397 * arguments and process the ioctl. To simplify extraction, ioctl commands 12398 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12399 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12400 * is used to extract the ioctl's arguments. 12401 * 12402 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12403 * so goes thru the serialization primitive ipsq_try_enter. Then the 12404 * appropriate function to handle the ioctl is called based on the entry in 12405 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12406 * which also refreleases the 'conn' that was refheld at the start of the 12407 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12408 * 12409 * Many exclusive ioctls go thru an internal down up sequence as part of 12410 * the operation. For example an attempt to change the IP address of an 12411 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12412 * does all the cleanup such as deleting all ires that use this address. 12413 * Then we need to wait till all references to the interface go away. 12414 */ 12415 void 12416 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12417 { 12418 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12419 ip_ioctl_cmd_t *ipip = arg; 12420 ip_extract_func_t *extract_funcp; 12421 cmd_info_t ci; 12422 int err; 12423 boolean_t entered_ipsq = B_FALSE; 12424 12425 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12426 12427 if (ipip == NULL) 12428 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12429 12430 /* 12431 * SIOCLIFADDIF needs to go thru a special path since the 12432 * ill may not exist yet. This happens in the case of lo0 12433 * which is created using this ioctl. 12434 */ 12435 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12436 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12437 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12438 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12439 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12440 return; 12441 } 12442 12443 ci.ci_ipif = NULL; 12444 switch (ipip->ipi_cmd_type) { 12445 case MISC_CMD: 12446 case MSFILT_CMD: 12447 /* 12448 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12449 */ 12450 if (ipip->ipi_cmd == IF_UNITSEL) { 12451 /* ioctl comes down the ill */ 12452 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12453 ipif_refhold(ci.ci_ipif); 12454 } 12455 err = 0; 12456 ci.ci_sin = NULL; 12457 ci.ci_sin6 = NULL; 12458 ci.ci_lifr = NULL; 12459 extract_funcp = NULL; 12460 break; 12461 12462 case IF_CMD: 12463 case LIF_CMD: 12464 extract_funcp = ip_extract_lifreq; 12465 break; 12466 12467 case ARP_CMD: 12468 case XARP_CMD: 12469 extract_funcp = ip_extract_arpreq; 12470 break; 12471 12472 default: 12473 ASSERT(0); 12474 } 12475 12476 if (extract_funcp != NULL) { 12477 err = (*extract_funcp)(q, mp, ipip, &ci); 12478 if (err != 0) { 12479 DTRACE_PROBE4(ipif__ioctl, 12480 char *, "ip_process_ioctl finish err", 12481 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12482 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12483 return; 12484 } 12485 12486 /* 12487 * All of the extraction functions return a refheld ipif. 12488 */ 12489 ASSERT(ci.ci_ipif != NULL); 12490 } 12491 12492 if (!(ipip->ipi_flags & IPI_WR)) { 12493 /* 12494 * A return value of EINPROGRESS means the ioctl is 12495 * either queued and waiting for some reason or has 12496 * already completed. 12497 */ 12498 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12499 ci.ci_lifr); 12500 if (ci.ci_ipif != NULL) { 12501 DTRACE_PROBE4(ipif__ioctl, 12502 char *, "ip_process_ioctl finish RD", 12503 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12504 ipif_t *, ci.ci_ipif); 12505 ipif_refrele(ci.ci_ipif); 12506 } else { 12507 DTRACE_PROBE4(ipif__ioctl, 12508 char *, "ip_process_ioctl finish RD", 12509 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12510 } 12511 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12512 return; 12513 } 12514 12515 ASSERT(ci.ci_ipif != NULL); 12516 12517 /* 12518 * If ipsq is non-NULL, we are already being called exclusively 12519 */ 12520 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12521 if (ipsq == NULL) { 12522 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12523 NEW_OP, B_TRUE); 12524 if (ipsq == NULL) { 12525 ipif_refrele(ci.ci_ipif); 12526 return; 12527 } 12528 entered_ipsq = B_TRUE; 12529 } 12530 /* 12531 * Release the ipif so that ipif_down and friends that wait for 12532 * references to go away are not misled about the current ipif_refcnt 12533 * values. We are writer so we can access the ipif even after releasing 12534 * the ipif. 12535 */ 12536 ipif_refrele(ci.ci_ipif); 12537 12538 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12539 12540 /* 12541 * A return value of EINPROGRESS means the ioctl is 12542 * either queued and waiting for some reason or has 12543 * already completed. 12544 */ 12545 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12546 12547 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12548 int, ipip->ipi_cmd, 12549 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12550 ipif_t *, ci.ci_ipif); 12551 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12552 12553 if (entered_ipsq) 12554 ipsq_exit(ipsq); 12555 } 12556 12557 /* 12558 * Complete the ioctl. Typically ioctls use the mi package and need to 12559 * do mi_copyout/mi_copy_done. 12560 */ 12561 void 12562 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12563 { 12564 conn_t *connp = NULL; 12565 12566 if (err == EINPROGRESS) 12567 return; 12568 12569 if (CONN_Q(q)) { 12570 connp = Q_TO_CONN(q); 12571 ASSERT(connp->conn_ref >= 2); 12572 } 12573 12574 switch (mode) { 12575 case COPYOUT: 12576 if (err == 0) 12577 mi_copyout(q, mp); 12578 else 12579 mi_copy_done(q, mp, err); 12580 break; 12581 12582 case NO_COPYOUT: 12583 mi_copy_done(q, mp, err); 12584 break; 12585 12586 default: 12587 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12588 break; 12589 } 12590 12591 /* 12592 * The conn refhold and ioctlref placed on the conn at the start of the 12593 * ioctl are released here. 12594 */ 12595 if (connp != NULL) { 12596 CONN_DEC_IOCTLREF(connp); 12597 CONN_OPER_PENDING_DONE(connp); 12598 } 12599 12600 if (ipsq != NULL) 12601 ipsq_current_finish(ipsq); 12602 } 12603 12604 /* Handles all non data messages */ 12605 void 12606 ip_wput_nondata(queue_t *q, mblk_t *mp) 12607 { 12608 mblk_t *mp1; 12609 struct iocblk *iocp; 12610 ip_ioctl_cmd_t *ipip; 12611 conn_t *connp; 12612 cred_t *cr; 12613 char *proto_str; 12614 12615 if (CONN_Q(q)) 12616 connp = Q_TO_CONN(q); 12617 else 12618 connp = NULL; 12619 12620 switch (DB_TYPE(mp)) { 12621 case M_IOCTL: 12622 /* 12623 * IOCTL processing begins in ip_sioctl_copyin_setup which 12624 * will arrange to copy in associated control structures. 12625 */ 12626 ip_sioctl_copyin_setup(q, mp); 12627 return; 12628 case M_IOCDATA: 12629 /* 12630 * Ensure that this is associated with one of our trans- 12631 * parent ioctls. If it's not ours, discard it if we're 12632 * running as a driver, or pass it on if we're a module. 12633 */ 12634 iocp = (struct iocblk *)mp->b_rptr; 12635 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12636 if (ipip == NULL) { 12637 if (q->q_next == NULL) { 12638 goto nak; 12639 } else { 12640 putnext(q, mp); 12641 } 12642 return; 12643 } 12644 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12645 /* 12646 * The ioctl is one we recognise, but is not consumed 12647 * by IP as a module and we are a module, so we drop 12648 */ 12649 goto nak; 12650 } 12651 12652 /* IOCTL continuation following copyin or copyout. */ 12653 if (mi_copy_state(q, mp, NULL) == -1) { 12654 /* 12655 * The copy operation failed. mi_copy_state already 12656 * cleaned up, so we're out of here. 12657 */ 12658 return; 12659 } 12660 /* 12661 * If we just completed a copy in, we become writer and 12662 * continue processing in ip_sioctl_copyin_done. If it 12663 * was a copy out, we call mi_copyout again. If there is 12664 * nothing more to copy out, it will complete the IOCTL. 12665 */ 12666 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12667 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12668 mi_copy_done(q, mp, EPROTO); 12669 return; 12670 } 12671 /* 12672 * Check for cases that need more copying. A return 12673 * value of 0 means a second copyin has been started, 12674 * so we return; a return value of 1 means no more 12675 * copying is needed, so we continue. 12676 */ 12677 if (ipip->ipi_cmd_type == MSFILT_CMD && 12678 MI_COPY_COUNT(mp) == 1) { 12679 if (ip_copyin_msfilter(q, mp) == 0) 12680 return; 12681 } 12682 /* 12683 * Refhold the conn, till the ioctl completes. This is 12684 * needed in case the ioctl ends up in the pending mp 12685 * list. Every mp in the ipx_pending_mp list must have 12686 * a refhold on the conn to resume processing. The 12687 * refhold is released when the ioctl completes 12688 * (whether normally or abnormally). An ioctlref is also 12689 * placed on the conn to prevent TCP from removing the 12690 * queue needed to send the ioctl reply back. 12691 * In all cases ip_ioctl_finish is called to finish 12692 * the ioctl and release the refholds. 12693 */ 12694 if (connp != NULL) { 12695 /* This is not a reentry */ 12696 CONN_INC_REF(connp); 12697 CONN_INC_IOCTLREF(connp); 12698 } else { 12699 if (!(ipip->ipi_flags & IPI_MODOK)) { 12700 mi_copy_done(q, mp, EINVAL); 12701 return; 12702 } 12703 } 12704 12705 ip_process_ioctl(NULL, q, mp, ipip); 12706 12707 } else { 12708 mi_copyout(q, mp); 12709 } 12710 return; 12711 12712 case M_IOCNAK: 12713 /* 12714 * The only way we could get here is if a resolver didn't like 12715 * an IOCTL we sent it. This shouldn't happen. 12716 */ 12717 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12718 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12719 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12720 freemsg(mp); 12721 return; 12722 case M_IOCACK: 12723 /* /dev/ip shouldn't see this */ 12724 goto nak; 12725 case M_FLUSH: 12726 if (*mp->b_rptr & FLUSHW) 12727 flushq(q, FLUSHALL); 12728 if (q->q_next) { 12729 putnext(q, mp); 12730 return; 12731 } 12732 if (*mp->b_rptr & FLUSHR) { 12733 *mp->b_rptr &= ~FLUSHW; 12734 qreply(q, mp); 12735 return; 12736 } 12737 freemsg(mp); 12738 return; 12739 case M_CTL: 12740 break; 12741 case M_PROTO: 12742 case M_PCPROTO: 12743 /* 12744 * The only PROTO messages we expect are SNMP-related. 12745 */ 12746 switch (((union T_primitives *)mp->b_rptr)->type) { 12747 case T_SVR4_OPTMGMT_REQ: 12748 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12749 "flags %x\n", 12750 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12751 12752 if (connp == NULL) { 12753 proto_str = "T_SVR4_OPTMGMT_REQ"; 12754 goto protonak; 12755 } 12756 12757 /* 12758 * All Solaris components should pass a db_credp 12759 * for this TPI message, hence we ASSERT. 12760 * But in case there is some other M_PROTO that looks 12761 * like a TPI message sent by some other kernel 12762 * component, we check and return an error. 12763 */ 12764 cr = msg_getcred(mp, NULL); 12765 ASSERT(cr != NULL); 12766 if (cr == NULL) { 12767 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12768 if (mp != NULL) 12769 qreply(q, mp); 12770 return; 12771 } 12772 12773 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12774 proto_str = "Bad SNMPCOM request?"; 12775 goto protonak; 12776 } 12777 return; 12778 default: 12779 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12780 (int)*(uint_t *)mp->b_rptr)); 12781 freemsg(mp); 12782 return; 12783 } 12784 default: 12785 break; 12786 } 12787 if (q->q_next) { 12788 putnext(q, mp); 12789 } else 12790 freemsg(mp); 12791 return; 12792 12793 nak: 12794 iocp->ioc_error = EINVAL; 12795 mp->b_datap->db_type = M_IOCNAK; 12796 iocp->ioc_count = 0; 12797 qreply(q, mp); 12798 return; 12799 12800 protonak: 12801 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12802 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12803 qreply(q, mp); 12804 } 12805 12806 /* 12807 * Process IP options in an outbound packet. Verify that the nexthop in a 12808 * strict source route is onlink. 12809 * Returns non-zero if something fails in which case an ICMP error has been 12810 * sent and mp freed. 12811 * 12812 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12813 */ 12814 int 12815 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12816 { 12817 ipoptp_t opts; 12818 uchar_t *opt; 12819 uint8_t optval; 12820 uint8_t optlen; 12821 ipaddr_t dst; 12822 intptr_t code = 0; 12823 ire_t *ire; 12824 ip_stack_t *ipst = ixa->ixa_ipst; 12825 ip_recv_attr_t iras; 12826 12827 ip2dbg(("ip_output_options\n")); 12828 12829 dst = ipha->ipha_dst; 12830 for (optval = ipoptp_first(&opts, ipha); 12831 optval != IPOPT_EOL; 12832 optval = ipoptp_next(&opts)) { 12833 opt = opts.ipoptp_cur; 12834 optlen = opts.ipoptp_len; 12835 ip2dbg(("ip_output_options: opt %d, len %d\n", 12836 optval, optlen)); 12837 switch (optval) { 12838 uint32_t off; 12839 case IPOPT_SSRR: 12840 case IPOPT_LSRR: 12841 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12842 ip1dbg(( 12843 "ip_output_options: bad option offset\n")); 12844 code = (char *)&opt[IPOPT_OLEN] - 12845 (char *)ipha; 12846 goto param_prob; 12847 } 12848 off = opt[IPOPT_OFFSET]; 12849 ip1dbg(("ip_output_options: next hop 0x%x\n", 12850 ntohl(dst))); 12851 /* 12852 * For strict: verify that dst is directly 12853 * reachable. 12854 */ 12855 if (optval == IPOPT_SSRR) { 12856 ire = ire_ftable_lookup_v4(dst, 0, 0, 12857 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 12858 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12859 NULL); 12860 if (ire == NULL) { 12861 ip1dbg(("ip_output_options: SSRR not" 12862 " directly reachable: 0x%x\n", 12863 ntohl(dst))); 12864 goto bad_src_route; 12865 } 12866 ire_refrele(ire); 12867 } 12868 break; 12869 case IPOPT_RR: 12870 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12871 ip1dbg(( 12872 "ip_output_options: bad option offset\n")); 12873 code = (char *)&opt[IPOPT_OLEN] - 12874 (char *)ipha; 12875 goto param_prob; 12876 } 12877 break; 12878 case IPOPT_TS: 12879 /* 12880 * Verify that length >=5 and that there is either 12881 * room for another timestamp or that the overflow 12882 * counter is not maxed out. 12883 */ 12884 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12885 if (optlen < IPOPT_MINLEN_IT) { 12886 goto param_prob; 12887 } 12888 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12889 ip1dbg(( 12890 "ip_output_options: bad option offset\n")); 12891 code = (char *)&opt[IPOPT_OFFSET] - 12892 (char *)ipha; 12893 goto param_prob; 12894 } 12895 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12896 case IPOPT_TS_TSONLY: 12897 off = IPOPT_TS_TIMELEN; 12898 break; 12899 case IPOPT_TS_TSANDADDR: 12900 case IPOPT_TS_PRESPEC: 12901 case IPOPT_TS_PRESPEC_RFC791: 12902 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12903 break; 12904 default: 12905 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12906 (char *)ipha; 12907 goto param_prob; 12908 } 12909 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12910 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12911 /* 12912 * No room and the overflow counter is 15 12913 * already. 12914 */ 12915 goto param_prob; 12916 } 12917 break; 12918 } 12919 } 12920 12921 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12922 return (0); 12923 12924 ip1dbg(("ip_output_options: error processing IP options.")); 12925 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12926 12927 param_prob: 12928 bzero(&iras, sizeof (iras)); 12929 iras.ira_ill = iras.ira_rill = ill; 12930 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12931 iras.ira_rifindex = iras.ira_ruifindex; 12932 iras.ira_flags = IRAF_IS_IPV4; 12933 12934 ip_drop_output("ip_output_options", mp, ill); 12935 icmp_param_problem(mp, (uint8_t)code, &iras); 12936 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12937 return (-1); 12938 12939 bad_src_route: 12940 bzero(&iras, sizeof (iras)); 12941 iras.ira_ill = iras.ira_rill = ill; 12942 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12943 iras.ira_rifindex = iras.ira_ruifindex; 12944 iras.ira_flags = IRAF_IS_IPV4; 12945 12946 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 12947 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 12948 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12949 return (-1); 12950 } 12951 12952 /* 12953 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 12954 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 12955 * thru /etc/system. 12956 */ 12957 #define CONN_MAXDRAINCNT 64 12958 12959 static void 12960 conn_drain_init(ip_stack_t *ipst) 12961 { 12962 int i, j; 12963 idl_tx_list_t *itl_tx; 12964 12965 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 12966 12967 if ((ipst->ips_conn_drain_list_cnt == 0) || 12968 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 12969 /* 12970 * Default value of the number of drainers is the 12971 * number of cpus, subject to maximum of 8 drainers. 12972 */ 12973 if (boot_max_ncpus != -1) 12974 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 12975 else 12976 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 12977 } 12978 12979 ipst->ips_idl_tx_list = 12980 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 12981 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12982 itl_tx = &ipst->ips_idl_tx_list[i]; 12983 itl_tx->txl_drain_list = 12984 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 12985 sizeof (idl_t), KM_SLEEP); 12986 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 12987 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 12988 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 12989 MUTEX_DEFAULT, NULL); 12990 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 12991 } 12992 } 12993 } 12994 12995 static void 12996 conn_drain_fini(ip_stack_t *ipst) 12997 { 12998 int i; 12999 idl_tx_list_t *itl_tx; 13000 13001 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13002 itl_tx = &ipst->ips_idl_tx_list[i]; 13003 kmem_free(itl_tx->txl_drain_list, 13004 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13005 } 13006 kmem_free(ipst->ips_idl_tx_list, 13007 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13008 ipst->ips_idl_tx_list = NULL; 13009 } 13010 13011 /* 13012 * Flow control has blocked us from proceeding. Insert the given conn in one 13013 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13014 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13015 * will call conn_walk_drain(). See the flow control notes at the top of this 13016 * file for more details. 13017 */ 13018 void 13019 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13020 { 13021 idl_t *idl = tx_list->txl_drain_list; 13022 uint_t index; 13023 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13024 13025 mutex_enter(&connp->conn_lock); 13026 if (connp->conn_state_flags & CONN_CLOSING) { 13027 /* 13028 * The conn is closing as a result of which CONN_CLOSING 13029 * is set. Return. 13030 */ 13031 mutex_exit(&connp->conn_lock); 13032 return; 13033 } else if (connp->conn_idl == NULL) { 13034 /* 13035 * Assign the next drain list round robin. We dont' use 13036 * a lock, and thus it may not be strictly round robin. 13037 * Atomicity of load/stores is enough to make sure that 13038 * conn_drain_list_index is always within bounds. 13039 */ 13040 index = tx_list->txl_drain_index; 13041 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13042 connp->conn_idl = &tx_list->txl_drain_list[index]; 13043 index++; 13044 if (index == ipst->ips_conn_drain_list_cnt) 13045 index = 0; 13046 tx_list->txl_drain_index = index; 13047 } else { 13048 ASSERT(connp->conn_idl->idl_itl == tx_list); 13049 } 13050 mutex_exit(&connp->conn_lock); 13051 13052 idl = connp->conn_idl; 13053 mutex_enter(&idl->idl_lock); 13054 if ((connp->conn_drain_prev != NULL) || 13055 (connp->conn_state_flags & CONN_CLOSING)) { 13056 /* 13057 * The conn is either already in the drain list or closing. 13058 * (We needed to check for CONN_CLOSING again since close can 13059 * sneak in between dropping conn_lock and acquiring idl_lock.) 13060 */ 13061 mutex_exit(&idl->idl_lock); 13062 return; 13063 } 13064 13065 /* 13066 * The conn is not in the drain list. Insert it at the 13067 * tail of the drain list. The drain list is circular 13068 * and doubly linked. idl_conn points to the 1st element 13069 * in the list. 13070 */ 13071 if (idl->idl_conn == NULL) { 13072 idl->idl_conn = connp; 13073 connp->conn_drain_next = connp; 13074 connp->conn_drain_prev = connp; 13075 } else { 13076 conn_t *head = idl->idl_conn; 13077 13078 connp->conn_drain_next = head; 13079 connp->conn_drain_prev = head->conn_drain_prev; 13080 head->conn_drain_prev->conn_drain_next = connp; 13081 head->conn_drain_prev = connp; 13082 } 13083 /* 13084 * For non streams based sockets assert flow control. 13085 */ 13086 conn_setqfull(connp, NULL); 13087 mutex_exit(&idl->idl_lock); 13088 } 13089 13090 static void 13091 conn_drain_remove(conn_t *connp) 13092 { 13093 idl_t *idl = connp->conn_idl; 13094 13095 if (idl != NULL) { 13096 /* 13097 * Remove ourself from the drain list. 13098 */ 13099 if (connp->conn_drain_next == connp) { 13100 /* Singleton in the list */ 13101 ASSERT(connp->conn_drain_prev == connp); 13102 idl->idl_conn = NULL; 13103 } else { 13104 connp->conn_drain_prev->conn_drain_next = 13105 connp->conn_drain_next; 13106 connp->conn_drain_next->conn_drain_prev = 13107 connp->conn_drain_prev; 13108 if (idl->idl_conn == connp) 13109 idl->idl_conn = connp->conn_drain_next; 13110 } 13111 13112 /* 13113 * NOTE: because conn_idl is associated with a specific drain 13114 * list which in turn is tied to the index the TX ring 13115 * (txl_cookie) hashes to, and because the TX ring can change 13116 * over the lifetime of the conn_t, we must clear conn_idl so 13117 * a subsequent conn_drain_insert() will set conn_idl again 13118 * based on the latest txl_cookie. 13119 */ 13120 connp->conn_idl = NULL; 13121 } 13122 connp->conn_drain_next = NULL; 13123 connp->conn_drain_prev = NULL; 13124 13125 conn_clrqfull(connp, NULL); 13126 /* 13127 * For streams based sockets open up flow control. 13128 */ 13129 if (!IPCL_IS_NONSTR(connp)) 13130 enableok(connp->conn_wq); 13131 } 13132 13133 /* 13134 * This conn is closing, and we are called from ip_close. OR 13135 * this conn is draining because flow-control on the ill has been relieved. 13136 * 13137 * We must also need to remove conn's on this idl from the list, and also 13138 * inform the sockfs upcalls about the change in flow-control. 13139 */ 13140 static void 13141 conn_drain(conn_t *connp, boolean_t closing) 13142 { 13143 idl_t *idl; 13144 conn_t *next_connp; 13145 13146 /* 13147 * connp->conn_idl is stable at this point, and no lock is needed 13148 * to check it. If we are called from ip_close, close has already 13149 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13150 * called us only because conn_idl is non-null. If we are called thru 13151 * service, conn_idl could be null, but it cannot change because 13152 * service is single-threaded per queue, and there cannot be another 13153 * instance of service trying to call conn_drain_insert on this conn 13154 * now. 13155 */ 13156 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13157 13158 /* 13159 * If the conn doesn't exist or is not on a drain list, bail. 13160 */ 13161 if (connp == NULL || connp->conn_idl == NULL || 13162 connp->conn_drain_prev == NULL) { 13163 return; 13164 } 13165 13166 idl = connp->conn_idl; 13167 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13168 13169 if (!closing) { 13170 next_connp = connp->conn_drain_next; 13171 while (next_connp != connp) { 13172 conn_t *delconnp = next_connp; 13173 13174 next_connp = next_connp->conn_drain_next; 13175 conn_drain_remove(delconnp); 13176 } 13177 ASSERT(connp->conn_drain_next == idl->idl_conn); 13178 } 13179 conn_drain_remove(connp); 13180 } 13181 13182 /* 13183 * Write service routine. Shared perimeter entry point. 13184 * The device queue's messages has fallen below the low water mark and STREAMS 13185 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13186 * each waiting conn. 13187 */ 13188 void 13189 ip_wsrv(queue_t *q) 13190 { 13191 ill_t *ill; 13192 13193 ill = (ill_t *)q->q_ptr; 13194 if (ill->ill_state_flags == 0) { 13195 ip_stack_t *ipst = ill->ill_ipst; 13196 13197 /* 13198 * The device flow control has opened up. 13199 * Walk through conn drain lists and qenable the 13200 * first conn in each list. This makes sense only 13201 * if the stream is fully plumbed and setup. 13202 * Hence the ill_state_flags check above. 13203 */ 13204 ip1dbg(("ip_wsrv: walking\n")); 13205 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13206 enableok(ill->ill_wq); 13207 } 13208 } 13209 13210 /* 13211 * Callback to disable flow control in IP. 13212 * 13213 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13214 * is enabled. 13215 * 13216 * When MAC_TX() is not able to send any more packets, dld sets its queue 13217 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13218 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13219 * function and wakes up corresponding mac worker threads, which in turn 13220 * calls this callback function, and disables flow control. 13221 */ 13222 void 13223 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13224 { 13225 ill_t *ill = (ill_t *)arg; 13226 ip_stack_t *ipst = ill->ill_ipst; 13227 idl_tx_list_t *idl_txl; 13228 13229 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13230 mutex_enter(&idl_txl->txl_lock); 13231 /* add code to to set a flag to indicate idl_txl is enabled */ 13232 conn_walk_drain(ipst, idl_txl); 13233 mutex_exit(&idl_txl->txl_lock); 13234 } 13235 13236 /* 13237 * Flow control has been relieved and STREAMS has backenabled us; drain 13238 * all the conn lists on `tx_list'. 13239 */ 13240 static void 13241 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13242 { 13243 int i; 13244 idl_t *idl; 13245 13246 IP_STAT(ipst, ip_conn_walk_drain); 13247 13248 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13249 idl = &tx_list->txl_drain_list[i]; 13250 mutex_enter(&idl->idl_lock); 13251 conn_drain(idl->idl_conn, B_FALSE); 13252 mutex_exit(&idl->idl_lock); 13253 } 13254 } 13255 13256 /* 13257 * Determine if the ill and multicast aspects of that packets 13258 * "matches" the conn. 13259 */ 13260 boolean_t 13261 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13262 { 13263 ill_t *ill = ira->ira_rill; 13264 zoneid_t zoneid = ira->ira_zoneid; 13265 uint_t in_ifindex; 13266 ipaddr_t dst, src; 13267 13268 dst = ipha->ipha_dst; 13269 src = ipha->ipha_src; 13270 13271 /* 13272 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13273 * unicast, broadcast and multicast reception to 13274 * conn_incoming_ifindex. 13275 * conn_wantpacket is called for unicast, broadcast and 13276 * multicast packets. 13277 */ 13278 in_ifindex = connp->conn_incoming_ifindex; 13279 13280 /* mpathd can bind to the under IPMP interface, which we allow */ 13281 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13282 if (!IS_UNDER_IPMP(ill)) 13283 return (B_FALSE); 13284 13285 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13286 return (B_FALSE); 13287 } 13288 13289 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13290 return (B_FALSE); 13291 13292 if (!(ira->ira_flags & IRAF_MULTICAST)) 13293 return (B_TRUE); 13294 13295 if (connp->conn_multi_router) { 13296 /* multicast packet and multicast router socket: send up */ 13297 return (B_TRUE); 13298 } 13299 13300 if (ipha->ipha_protocol == IPPROTO_PIM || 13301 ipha->ipha_protocol == IPPROTO_RSVP) 13302 return (B_TRUE); 13303 13304 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13305 } 13306 13307 void 13308 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13309 { 13310 if (IPCL_IS_NONSTR(connp)) { 13311 (*connp->conn_upcalls->su_txq_full) 13312 (connp->conn_upper_handle, B_TRUE); 13313 if (flow_stopped != NULL) 13314 *flow_stopped = B_TRUE; 13315 } else { 13316 queue_t *q = connp->conn_wq; 13317 13318 ASSERT(q != NULL); 13319 if (!(q->q_flag & QFULL)) { 13320 mutex_enter(QLOCK(q)); 13321 if (!(q->q_flag & QFULL)) { 13322 /* still need to set QFULL */ 13323 q->q_flag |= QFULL; 13324 /* set flow_stopped to true under QLOCK */ 13325 if (flow_stopped != NULL) 13326 *flow_stopped = B_TRUE; 13327 mutex_exit(QLOCK(q)); 13328 } else { 13329 /* flow_stopped is left unchanged */ 13330 mutex_exit(QLOCK(q)); 13331 } 13332 } 13333 } 13334 } 13335 13336 void 13337 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13338 { 13339 if (IPCL_IS_NONSTR(connp)) { 13340 (*connp->conn_upcalls->su_txq_full) 13341 (connp->conn_upper_handle, B_FALSE); 13342 if (flow_stopped != NULL) 13343 *flow_stopped = B_FALSE; 13344 } else { 13345 queue_t *q = connp->conn_wq; 13346 13347 ASSERT(q != NULL); 13348 if (q->q_flag & QFULL) { 13349 mutex_enter(QLOCK(q)); 13350 if (q->q_flag & QFULL) { 13351 q->q_flag &= ~QFULL; 13352 /* set flow_stopped to false under QLOCK */ 13353 if (flow_stopped != NULL) 13354 *flow_stopped = B_FALSE; 13355 mutex_exit(QLOCK(q)); 13356 if (q->q_flag & QWANTW) 13357 qbackenable(q, 0); 13358 } else { 13359 /* flow_stopped is left unchanged */ 13360 mutex_exit(QLOCK(q)); 13361 } 13362 } 13363 } 13364 13365 mutex_enter(&connp->conn_lock); 13366 connp->conn_blocked = B_FALSE; 13367 mutex_exit(&connp->conn_lock); 13368 } 13369 13370 /* 13371 * Return the length in bytes of the IPv4 headers (base header, label, and 13372 * other IP options) that will be needed based on the 13373 * ip_pkt_t structure passed by the caller. 13374 * 13375 * The returned length does not include the length of the upper level 13376 * protocol (ULP) header. 13377 * The caller needs to check that the length doesn't exceed the max for IPv4. 13378 */ 13379 int 13380 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13381 { 13382 int len; 13383 13384 len = IP_SIMPLE_HDR_LENGTH; 13385 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13386 ASSERT(ipp->ipp_label_len_v4 != 0); 13387 /* We need to round up here */ 13388 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13389 } 13390 13391 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13392 ASSERT(ipp->ipp_ipv4_options_len != 0); 13393 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13394 len += ipp->ipp_ipv4_options_len; 13395 } 13396 return (len); 13397 } 13398 13399 /* 13400 * All-purpose routine to build an IPv4 header with options based 13401 * on the abstract ip_pkt_t. 13402 * 13403 * The caller has to set the source and destination address as well as 13404 * ipha_length. The caller has to massage any source route and compensate 13405 * for the ULP pseudo-header checksum due to the source route. 13406 */ 13407 void 13408 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13409 uint8_t protocol) 13410 { 13411 ipha_t *ipha = (ipha_t *)buf; 13412 uint8_t *cp; 13413 13414 /* Initialize IPv4 header */ 13415 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13416 ipha->ipha_length = 0; /* Caller will set later */ 13417 ipha->ipha_ident = 0; 13418 ipha->ipha_fragment_offset_and_flags = 0; 13419 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13420 ipha->ipha_protocol = protocol; 13421 ipha->ipha_hdr_checksum = 0; 13422 13423 if ((ipp->ipp_fields & IPPF_ADDR) && 13424 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13425 ipha->ipha_src = ipp->ipp_addr_v4; 13426 13427 cp = (uint8_t *)&ipha[1]; 13428 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13429 ASSERT(ipp->ipp_label_len_v4 != 0); 13430 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13431 cp += ipp->ipp_label_len_v4; 13432 /* We need to round up here */ 13433 while ((uintptr_t)cp & 0x3) { 13434 *cp++ = IPOPT_NOP; 13435 } 13436 } 13437 13438 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13439 ASSERT(ipp->ipp_ipv4_options_len != 0); 13440 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13441 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13442 cp += ipp->ipp_ipv4_options_len; 13443 } 13444 ipha->ipha_version_and_hdr_length = 13445 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13446 13447 ASSERT((int)(cp - buf) == buf_len); 13448 } 13449 13450 /* Allocate the private structure */ 13451 static int 13452 ip_priv_alloc(void **bufp) 13453 { 13454 void *buf; 13455 13456 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13457 return (ENOMEM); 13458 13459 *bufp = buf; 13460 return (0); 13461 } 13462 13463 /* Function to delete the private structure */ 13464 void 13465 ip_priv_free(void *buf) 13466 { 13467 ASSERT(buf != NULL); 13468 kmem_free(buf, sizeof (ip_priv_t)); 13469 } 13470 13471 /* 13472 * The entry point for IPPF processing. 13473 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13474 * routine just returns. 13475 * 13476 * When called, ip_process generates an ipp_packet_t structure 13477 * which holds the state information for this packet and invokes the 13478 * the classifier (via ipp_packet_process). The classification, depending on 13479 * configured filters, results in a list of actions for this packet. Invoking 13480 * an action may cause the packet to be dropped, in which case we return NULL. 13481 * proc indicates the callout position for 13482 * this packet and ill is the interface this packet arrived on or will leave 13483 * on (inbound and outbound resp.). 13484 * 13485 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13486 * on the ill corrsponding to the destination IP address. 13487 */ 13488 mblk_t * 13489 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13490 { 13491 ip_priv_t *priv; 13492 ipp_action_id_t aid; 13493 int rc = 0; 13494 ipp_packet_t *pp; 13495 13496 /* If the classifier is not loaded, return */ 13497 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13498 return (mp); 13499 } 13500 13501 ASSERT(mp != NULL); 13502 13503 /* Allocate the packet structure */ 13504 rc = ipp_packet_alloc(&pp, "ip", aid); 13505 if (rc != 0) 13506 goto drop; 13507 13508 /* Allocate the private structure */ 13509 rc = ip_priv_alloc((void **)&priv); 13510 if (rc != 0) { 13511 ipp_packet_free(pp); 13512 goto drop; 13513 } 13514 priv->proc = proc; 13515 priv->ill_index = ill_get_upper_ifindex(rill); 13516 13517 ipp_packet_set_private(pp, priv, ip_priv_free); 13518 ipp_packet_set_data(pp, mp); 13519 13520 /* Invoke the classifier */ 13521 rc = ipp_packet_process(&pp); 13522 if (pp != NULL) { 13523 mp = ipp_packet_get_data(pp); 13524 ipp_packet_free(pp); 13525 if (rc != 0) 13526 goto drop; 13527 return (mp); 13528 } else { 13529 /* No mp to trace in ip_drop_input/ip_drop_output */ 13530 mp = NULL; 13531 } 13532 drop: 13533 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13535 ip_drop_input("ip_process", mp, ill); 13536 } else { 13537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13538 ip_drop_output("ip_process", mp, ill); 13539 } 13540 freemsg(mp); 13541 return (NULL); 13542 } 13543 13544 /* 13545 * Propagate a multicast group membership operation (add/drop) on 13546 * all the interfaces crossed by the related multirt routes. 13547 * The call is considered successful if the operation succeeds 13548 * on at least one interface. 13549 * 13550 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13551 * multicast addresses with the ire argument being the first one. 13552 * We walk the bucket to find all the of those. 13553 * 13554 * Common to IPv4 and IPv6. 13555 */ 13556 static int 13557 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13558 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13559 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13560 mcast_record_t fmode, const in6_addr_t *v6src) 13561 { 13562 ire_t *ire_gw; 13563 irb_t *irb; 13564 int ifindex; 13565 int error = 0; 13566 int result; 13567 ip_stack_t *ipst = ire->ire_ipst; 13568 ipaddr_t group; 13569 boolean_t isv6; 13570 int match_flags; 13571 13572 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13573 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13574 isv6 = B_FALSE; 13575 } else { 13576 isv6 = B_TRUE; 13577 } 13578 13579 irb = ire->ire_bucket; 13580 ASSERT(irb != NULL); 13581 13582 result = 0; 13583 irb_refhold(irb); 13584 for (; ire != NULL; ire = ire->ire_next) { 13585 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13586 continue; 13587 13588 /* We handle -ifp routes by matching on the ill if set */ 13589 match_flags = MATCH_IRE_TYPE; 13590 if (ire->ire_ill != NULL) 13591 match_flags |= MATCH_IRE_ILL; 13592 13593 if (isv6) { 13594 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13595 continue; 13596 13597 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13598 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13599 match_flags, 0, ipst, NULL); 13600 } else { 13601 if (ire->ire_addr != group) 13602 continue; 13603 13604 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13605 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13606 match_flags, 0, ipst, NULL); 13607 } 13608 /* No interface route exists for the gateway; skip this ire. */ 13609 if (ire_gw == NULL) 13610 continue; 13611 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13612 ire_refrele(ire_gw); 13613 continue; 13614 } 13615 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13616 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13617 13618 /* 13619 * The operation is considered a success if 13620 * it succeeds at least once on any one interface. 13621 */ 13622 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13623 fmode, v6src); 13624 if (error == 0) 13625 result = CGTP_MCAST_SUCCESS; 13626 13627 ire_refrele(ire_gw); 13628 } 13629 irb_refrele(irb); 13630 /* 13631 * Consider the call as successful if we succeeded on at least 13632 * one interface. Otherwise, return the last encountered error. 13633 */ 13634 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13635 } 13636 13637 /* 13638 * Return the expected CGTP hooks version number. 13639 */ 13640 int 13641 ip_cgtp_filter_supported(void) 13642 { 13643 return (ip_cgtp_filter_rev); 13644 } 13645 13646 /* 13647 * CGTP hooks can be registered by invoking this function. 13648 * Checks that the version number matches. 13649 */ 13650 int 13651 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13652 { 13653 netstack_t *ns; 13654 ip_stack_t *ipst; 13655 13656 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13657 return (ENOTSUP); 13658 13659 ns = netstack_find_by_stackid(stackid); 13660 if (ns == NULL) 13661 return (EINVAL); 13662 ipst = ns->netstack_ip; 13663 ASSERT(ipst != NULL); 13664 13665 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13666 netstack_rele(ns); 13667 return (EALREADY); 13668 } 13669 13670 ipst->ips_ip_cgtp_filter_ops = ops; 13671 13672 ill_set_inputfn_all(ipst); 13673 13674 netstack_rele(ns); 13675 return (0); 13676 } 13677 13678 /* 13679 * CGTP hooks can be unregistered by invoking this function. 13680 * Returns ENXIO if there was no registration. 13681 * Returns EBUSY if the ndd variable has not been turned off. 13682 */ 13683 int 13684 ip_cgtp_filter_unregister(netstackid_t stackid) 13685 { 13686 netstack_t *ns; 13687 ip_stack_t *ipst; 13688 13689 ns = netstack_find_by_stackid(stackid); 13690 if (ns == NULL) 13691 return (EINVAL); 13692 ipst = ns->netstack_ip; 13693 ASSERT(ipst != NULL); 13694 13695 if (ipst->ips_ip_cgtp_filter) { 13696 netstack_rele(ns); 13697 return (EBUSY); 13698 } 13699 13700 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13701 netstack_rele(ns); 13702 return (ENXIO); 13703 } 13704 ipst->ips_ip_cgtp_filter_ops = NULL; 13705 13706 ill_set_inputfn_all(ipst); 13707 13708 netstack_rele(ns); 13709 return (0); 13710 } 13711 13712 /* 13713 * Check whether there is a CGTP filter registration. 13714 * Returns non-zero if there is a registration, otherwise returns zero. 13715 * Note: returns zero if bad stackid. 13716 */ 13717 int 13718 ip_cgtp_filter_is_registered(netstackid_t stackid) 13719 { 13720 netstack_t *ns; 13721 ip_stack_t *ipst; 13722 int ret; 13723 13724 ns = netstack_find_by_stackid(stackid); 13725 if (ns == NULL) 13726 return (0); 13727 ipst = ns->netstack_ip; 13728 ASSERT(ipst != NULL); 13729 13730 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13731 ret = 1; 13732 else 13733 ret = 0; 13734 13735 netstack_rele(ns); 13736 return (ret); 13737 } 13738 13739 static int 13740 ip_squeue_switch(int val) 13741 { 13742 int rval; 13743 13744 switch (val) { 13745 case IP_SQUEUE_ENTER_NODRAIN: 13746 rval = SQ_NODRAIN; 13747 break; 13748 case IP_SQUEUE_ENTER: 13749 rval = SQ_PROCESS; 13750 break; 13751 case IP_SQUEUE_FILL: 13752 default: 13753 rval = SQ_FILL; 13754 break; 13755 } 13756 return (rval); 13757 } 13758 13759 static void * 13760 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13761 { 13762 kstat_t *ksp; 13763 13764 ip_stat_t template = { 13765 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13766 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13767 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13768 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13769 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13770 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13771 { "ip_opt", KSTAT_DATA_UINT64 }, 13772 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13773 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13774 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13775 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13776 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13777 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13778 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13779 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13780 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13781 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13782 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13783 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13784 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13785 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13786 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13787 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13788 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13789 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13790 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13791 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13792 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13793 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13794 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13795 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13796 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13797 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13798 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13799 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13800 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13801 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13802 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13803 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13804 }; 13805 13806 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13807 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13808 KSTAT_FLAG_VIRTUAL, stackid); 13809 13810 if (ksp == NULL) 13811 return (NULL); 13812 13813 bcopy(&template, ip_statisticsp, sizeof (template)); 13814 ksp->ks_data = (void *)ip_statisticsp; 13815 ksp->ks_private = (void *)(uintptr_t)stackid; 13816 13817 kstat_install(ksp); 13818 return (ksp); 13819 } 13820 13821 static void 13822 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13823 { 13824 if (ksp != NULL) { 13825 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13826 kstat_delete_netstack(ksp, stackid); 13827 } 13828 } 13829 13830 static void * 13831 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13832 { 13833 kstat_t *ksp; 13834 13835 ip_named_kstat_t template = { 13836 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13837 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13838 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13839 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13840 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13841 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13842 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13843 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13844 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13845 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13846 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13847 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13848 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13849 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13850 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13851 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13852 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13853 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13854 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13855 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13856 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13857 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13858 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13859 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13860 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13861 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13862 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13863 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13864 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13865 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13866 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13867 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13868 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13869 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13870 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13871 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13872 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13873 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13874 }; 13875 13876 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13877 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13878 if (ksp == NULL || ksp->ks_data == NULL) 13879 return (NULL); 13880 13881 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13882 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13883 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13884 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13885 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13886 13887 template.netToMediaEntrySize.value.i32 = 13888 sizeof (mib2_ipNetToMediaEntry_t); 13889 13890 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13891 13892 bcopy(&template, ksp->ks_data, sizeof (template)); 13893 ksp->ks_update = ip_kstat_update; 13894 ksp->ks_private = (void *)(uintptr_t)stackid; 13895 13896 kstat_install(ksp); 13897 return (ksp); 13898 } 13899 13900 static void 13901 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13902 { 13903 if (ksp != NULL) { 13904 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13905 kstat_delete_netstack(ksp, stackid); 13906 } 13907 } 13908 13909 static int 13910 ip_kstat_update(kstat_t *kp, int rw) 13911 { 13912 ip_named_kstat_t *ipkp; 13913 mib2_ipIfStatsEntry_t ipmib; 13914 ill_walk_context_t ctx; 13915 ill_t *ill; 13916 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13917 netstack_t *ns; 13918 ip_stack_t *ipst; 13919 13920 if (kp == NULL || kp->ks_data == NULL) 13921 return (EIO); 13922 13923 if (rw == KSTAT_WRITE) 13924 return (EACCES); 13925 13926 ns = netstack_find_by_stackid(stackid); 13927 if (ns == NULL) 13928 return (-1); 13929 ipst = ns->netstack_ip; 13930 if (ipst == NULL) { 13931 netstack_rele(ns); 13932 return (-1); 13933 } 13934 ipkp = (ip_named_kstat_t *)kp->ks_data; 13935 13936 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 13937 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13938 ill = ILL_START_WALK_V4(&ctx, ipst); 13939 for (; ill != NULL; ill = ill_next(&ctx, ill)) 13940 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 13941 rw_exit(&ipst->ips_ill_g_lock); 13942 13943 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 13944 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 13945 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 13946 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 13947 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 13948 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 13949 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 13950 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 13951 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 13952 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 13953 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 13954 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 13955 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13956 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 13957 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 13958 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 13959 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 13960 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 13961 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 13962 13963 ipkp->routingDiscards.value.ui32 = 0; 13964 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 13965 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 13966 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 13967 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 13968 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 13969 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 13970 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 13971 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 13972 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 13973 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 13974 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 13975 13976 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 13977 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 13978 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 13979 13980 netstack_rele(ns); 13981 13982 return (0); 13983 } 13984 13985 static void * 13986 icmp_kstat_init(netstackid_t stackid) 13987 { 13988 kstat_t *ksp; 13989 13990 icmp_named_kstat_t template = { 13991 { "inMsgs", KSTAT_DATA_UINT32 }, 13992 { "inErrors", KSTAT_DATA_UINT32 }, 13993 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 13994 { "inTimeExcds", KSTAT_DATA_UINT32 }, 13995 { "inParmProbs", KSTAT_DATA_UINT32 }, 13996 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 13997 { "inRedirects", KSTAT_DATA_UINT32 }, 13998 { "inEchos", KSTAT_DATA_UINT32 }, 13999 { "inEchoReps", KSTAT_DATA_UINT32 }, 14000 { "inTimestamps", KSTAT_DATA_UINT32 }, 14001 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14002 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14003 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14004 { "outMsgs", KSTAT_DATA_UINT32 }, 14005 { "outErrors", KSTAT_DATA_UINT32 }, 14006 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14007 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14008 { "outParmProbs", KSTAT_DATA_UINT32 }, 14009 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14010 { "outRedirects", KSTAT_DATA_UINT32 }, 14011 { "outEchos", KSTAT_DATA_UINT32 }, 14012 { "outEchoReps", KSTAT_DATA_UINT32 }, 14013 { "outTimestamps", KSTAT_DATA_UINT32 }, 14014 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14015 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14016 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14017 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14018 { "inUnknowns", KSTAT_DATA_UINT32 }, 14019 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14020 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14021 { "outDrops", KSTAT_DATA_UINT32 }, 14022 { "inOverFlows", KSTAT_DATA_UINT32 }, 14023 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14024 }; 14025 14026 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14027 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14028 if (ksp == NULL || ksp->ks_data == NULL) 14029 return (NULL); 14030 14031 bcopy(&template, ksp->ks_data, sizeof (template)); 14032 14033 ksp->ks_update = icmp_kstat_update; 14034 ksp->ks_private = (void *)(uintptr_t)stackid; 14035 14036 kstat_install(ksp); 14037 return (ksp); 14038 } 14039 14040 static void 14041 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14042 { 14043 if (ksp != NULL) { 14044 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14045 kstat_delete_netstack(ksp, stackid); 14046 } 14047 } 14048 14049 static int 14050 icmp_kstat_update(kstat_t *kp, int rw) 14051 { 14052 icmp_named_kstat_t *icmpkp; 14053 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14054 netstack_t *ns; 14055 ip_stack_t *ipst; 14056 14057 if ((kp == NULL) || (kp->ks_data == NULL)) 14058 return (EIO); 14059 14060 if (rw == KSTAT_WRITE) 14061 return (EACCES); 14062 14063 ns = netstack_find_by_stackid(stackid); 14064 if (ns == NULL) 14065 return (-1); 14066 ipst = ns->netstack_ip; 14067 if (ipst == NULL) { 14068 netstack_rele(ns); 14069 return (-1); 14070 } 14071 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14072 14073 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14074 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14075 icmpkp->inDestUnreachs.value.ui32 = 14076 ipst->ips_icmp_mib.icmpInDestUnreachs; 14077 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14078 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14079 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14080 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14081 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14082 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14083 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14084 icmpkp->inTimestampReps.value.ui32 = 14085 ipst->ips_icmp_mib.icmpInTimestampReps; 14086 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14087 icmpkp->inAddrMaskReps.value.ui32 = 14088 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14089 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14090 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14091 icmpkp->outDestUnreachs.value.ui32 = 14092 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14093 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14094 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14095 icmpkp->outSrcQuenchs.value.ui32 = 14096 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14097 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14098 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14099 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14100 icmpkp->outTimestamps.value.ui32 = 14101 ipst->ips_icmp_mib.icmpOutTimestamps; 14102 icmpkp->outTimestampReps.value.ui32 = 14103 ipst->ips_icmp_mib.icmpOutTimestampReps; 14104 icmpkp->outAddrMasks.value.ui32 = 14105 ipst->ips_icmp_mib.icmpOutAddrMasks; 14106 icmpkp->outAddrMaskReps.value.ui32 = 14107 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14108 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14109 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14110 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14111 icmpkp->outFragNeeded.value.ui32 = 14112 ipst->ips_icmp_mib.icmpOutFragNeeded; 14113 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14114 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14115 icmpkp->inBadRedirects.value.ui32 = 14116 ipst->ips_icmp_mib.icmpInBadRedirects; 14117 14118 netstack_rele(ns); 14119 return (0); 14120 } 14121 14122 /* 14123 * This is the fanout function for raw socket opened for SCTP. Note 14124 * that it is called after SCTP checks that there is no socket which 14125 * wants a packet. Then before SCTP handles this out of the blue packet, 14126 * this function is called to see if there is any raw socket for SCTP. 14127 * If there is and it is bound to the correct address, the packet will 14128 * be sent to that socket. Note that only one raw socket can be bound to 14129 * a port. This is assured in ipcl_sctp_hash_insert(); 14130 */ 14131 void 14132 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14133 ip_recv_attr_t *ira) 14134 { 14135 conn_t *connp; 14136 queue_t *rq; 14137 boolean_t secure; 14138 ill_t *ill = ira->ira_ill; 14139 ip_stack_t *ipst = ill->ill_ipst; 14140 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14141 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14142 iaflags_t iraflags = ira->ira_flags; 14143 ill_t *rill = ira->ira_rill; 14144 14145 secure = iraflags & IRAF_IPSEC_SECURE; 14146 14147 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14148 ira, ipst); 14149 if (connp == NULL) { 14150 /* 14151 * Although raw sctp is not summed, OOB chunks must be. 14152 * Drop the packet here if the sctp checksum failed. 14153 */ 14154 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14155 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14156 freemsg(mp); 14157 return; 14158 } 14159 ira->ira_ill = ira->ira_rill = NULL; 14160 sctp_ootb_input(mp, ira, ipst); 14161 ira->ira_ill = ill; 14162 ira->ira_rill = rill; 14163 return; 14164 } 14165 rq = connp->conn_rq; 14166 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14167 CONN_DEC_REF(connp); 14168 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14169 freemsg(mp); 14170 return; 14171 } 14172 if (((iraflags & IRAF_IS_IPV4) ? 14173 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14174 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14175 secure) { 14176 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14177 ip6h, ira); 14178 if (mp == NULL) { 14179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14180 /* Note that mp is NULL */ 14181 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14182 CONN_DEC_REF(connp); 14183 return; 14184 } 14185 } 14186 14187 if (iraflags & IRAF_ICMP_ERROR) { 14188 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14189 } else { 14190 ill_t *rill = ira->ira_rill; 14191 14192 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14193 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14194 ira->ira_ill = ira->ira_rill = NULL; 14195 (connp->conn_recv)(connp, mp, NULL, ira); 14196 ira->ira_ill = ill; 14197 ira->ira_rill = rill; 14198 } 14199 CONN_DEC_REF(connp); 14200 } 14201 14202 /* 14203 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14204 * header before the ip payload. 14205 */ 14206 static void 14207 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14208 { 14209 int len = (mp->b_wptr - mp->b_rptr); 14210 mblk_t *ip_mp; 14211 14212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14213 if (is_fp_mp || len != fp_mp_len) { 14214 if (len > fp_mp_len) { 14215 /* 14216 * fastpath header and ip header in the first mblk 14217 */ 14218 mp->b_rptr += fp_mp_len; 14219 } else { 14220 /* 14221 * ip_xmit_attach_llhdr had to prepend an mblk to 14222 * attach the fastpath header before ip header. 14223 */ 14224 ip_mp = mp->b_cont; 14225 freeb(mp); 14226 mp = ip_mp; 14227 mp->b_rptr += (fp_mp_len - len); 14228 } 14229 } else { 14230 ip_mp = mp->b_cont; 14231 freeb(mp); 14232 mp = ip_mp; 14233 } 14234 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14235 freemsg(mp); 14236 } 14237 14238 /* 14239 * Normal post fragmentation function. 14240 * 14241 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14242 * using the same state machine. 14243 * 14244 * We return an error on failure. In particular we return EWOULDBLOCK 14245 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14246 * (currently by canputnext failure resulting in backenabling from GLD.) 14247 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14248 * indication that they can flow control until ip_wsrv() tells then to restart. 14249 * 14250 * If the nce passed by caller is incomplete, this function 14251 * queues the packet and if necessary, sends ARP request and bails. 14252 * If the Neighbor Cache passed is fully resolved, we simply prepend 14253 * the link-layer header to the packet, do ipsec hw acceleration 14254 * work if necessary, and send the packet out on the wire. 14255 */ 14256 /* ARGSUSED6 */ 14257 int 14258 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14259 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14260 { 14261 queue_t *wq; 14262 ill_t *ill = nce->nce_ill; 14263 ip_stack_t *ipst = ill->ill_ipst; 14264 uint64_t delta; 14265 boolean_t isv6 = ill->ill_isv6; 14266 boolean_t fp_mp; 14267 ncec_t *ncec = nce->nce_common; 14268 int64_t now = LBOLT_FASTPATH64; 14269 boolean_t is_probe; 14270 14271 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14272 14273 ASSERT(mp != NULL); 14274 ASSERT(mp->b_datap->db_type == M_DATA); 14275 ASSERT(pkt_len == msgdsize(mp)); 14276 14277 /* 14278 * If we have already been here and are coming back after ARP/ND. 14279 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14280 * in that case since they have seen the packet when it came here 14281 * the first time. 14282 */ 14283 if (ixaflags & IXAF_NO_TRACE) 14284 goto sendit; 14285 14286 if (ixaflags & IXAF_IS_IPV4) { 14287 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14288 14289 ASSERT(!isv6); 14290 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14291 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14292 !(ixaflags & IXAF_NO_PFHOOK)) { 14293 int error; 14294 14295 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14296 ipst->ips_ipv4firewall_physical_out, 14297 NULL, ill, ipha, mp, mp, 0, ipst, error); 14298 DTRACE_PROBE1(ip4__physical__out__end, 14299 mblk_t *, mp); 14300 if (mp == NULL) 14301 return (error); 14302 14303 /* The length could have changed */ 14304 pkt_len = msgdsize(mp); 14305 } 14306 if (ipst->ips_ip4_observe.he_interested) { 14307 /* 14308 * Note that for TX the zoneid is the sending 14309 * zone, whether or not MLP is in play. 14310 * Since the szone argument is the IP zoneid (i.e., 14311 * zero for exclusive-IP zones) and ipobs wants 14312 * the system zoneid, we map it here. 14313 */ 14314 szone = IP_REAL_ZONEID(szone, ipst); 14315 14316 /* 14317 * On the outbound path the destination zone will be 14318 * unknown as we're sending this packet out on the 14319 * wire. 14320 */ 14321 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14322 ill, ipst); 14323 } 14324 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14325 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14326 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14327 } else { 14328 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14329 14330 ASSERT(isv6); 14331 ASSERT(pkt_len == 14332 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14333 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14334 !(ixaflags & IXAF_NO_PFHOOK)) { 14335 int error; 14336 14337 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14338 ipst->ips_ipv6firewall_physical_out, 14339 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14340 DTRACE_PROBE1(ip6__physical__out__end, 14341 mblk_t *, mp); 14342 if (mp == NULL) 14343 return (error); 14344 14345 /* The length could have changed */ 14346 pkt_len = msgdsize(mp); 14347 } 14348 if (ipst->ips_ip6_observe.he_interested) { 14349 /* See above */ 14350 szone = IP_REAL_ZONEID(szone, ipst); 14351 14352 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14353 ill, ipst); 14354 } 14355 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14356 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14357 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14358 } 14359 14360 sendit: 14361 /* 14362 * We check the state without a lock because the state can never 14363 * move "backwards" to initial or incomplete. 14364 */ 14365 switch (ncec->ncec_state) { 14366 case ND_REACHABLE: 14367 case ND_STALE: 14368 case ND_DELAY: 14369 case ND_PROBE: 14370 mp = ip_xmit_attach_llhdr(mp, nce); 14371 if (mp == NULL) { 14372 /* 14373 * ip_xmit_attach_llhdr has increased 14374 * ipIfStatsOutDiscards and called ip_drop_output() 14375 */ 14376 return (ENOBUFS); 14377 } 14378 /* 14379 * check if nce_fastpath completed and we tagged on a 14380 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14381 */ 14382 fp_mp = (mp->b_datap->db_type == M_DATA); 14383 14384 if (fp_mp && 14385 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14386 ill_dld_direct_t *idd; 14387 14388 idd = &ill->ill_dld_capab->idc_direct; 14389 /* 14390 * Send the packet directly to DLD, where it 14391 * may be queued depending on the availability 14392 * of transmit resources at the media layer. 14393 * Return value should be taken into 14394 * account and flow control the TCP. 14395 */ 14396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14397 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14398 pkt_len); 14399 14400 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14401 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14402 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14403 } else { 14404 uintptr_t cookie; 14405 14406 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14407 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14408 if (ixacookie != NULL) 14409 *ixacookie = cookie; 14410 return (EWOULDBLOCK); 14411 } 14412 } 14413 } else { 14414 wq = ill->ill_wq; 14415 14416 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14417 !canputnext(wq)) { 14418 if (ixacookie != NULL) 14419 *ixacookie = 0; 14420 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14421 nce->nce_fp_mp != NULL ? 14422 MBLKL(nce->nce_fp_mp) : 0); 14423 return (EWOULDBLOCK); 14424 } 14425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14426 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14427 pkt_len); 14428 putnext(wq, mp); 14429 } 14430 14431 /* 14432 * The rest of this function implements Neighbor Unreachability 14433 * detection. Determine if the ncec is eligible for NUD. 14434 */ 14435 if (ncec->ncec_flags & NCE_F_NONUD) 14436 return (0); 14437 14438 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14439 14440 /* 14441 * Check for upper layer advice 14442 */ 14443 if (ixaflags & IXAF_REACH_CONF) { 14444 timeout_id_t tid; 14445 14446 /* 14447 * It should be o.k. to check the state without 14448 * a lock here, at most we lose an advice. 14449 */ 14450 ncec->ncec_last = TICK_TO_MSEC(now); 14451 if (ncec->ncec_state != ND_REACHABLE) { 14452 mutex_enter(&ncec->ncec_lock); 14453 ncec->ncec_state = ND_REACHABLE; 14454 tid = ncec->ncec_timeout_id; 14455 ncec->ncec_timeout_id = 0; 14456 mutex_exit(&ncec->ncec_lock); 14457 (void) untimeout(tid); 14458 if (ip_debug > 2) { 14459 /* ip1dbg */ 14460 pr_addr_dbg("ip_xmit: state" 14461 " for %s changed to" 14462 " REACHABLE\n", AF_INET6, 14463 &ncec->ncec_addr); 14464 } 14465 } 14466 return (0); 14467 } 14468 14469 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14470 ip1dbg(("ip_xmit: delta = %" PRId64 14471 " ill_reachable_time = %d \n", delta, 14472 ill->ill_reachable_time)); 14473 if (delta > (uint64_t)ill->ill_reachable_time) { 14474 mutex_enter(&ncec->ncec_lock); 14475 switch (ncec->ncec_state) { 14476 case ND_REACHABLE: 14477 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14478 /* FALLTHROUGH */ 14479 case ND_STALE: 14480 /* 14481 * ND_REACHABLE is identical to 14482 * ND_STALE in this specific case. If 14483 * reachable time has expired for this 14484 * neighbor (delta is greater than 14485 * reachable time), conceptually, the 14486 * neighbor cache is no longer in 14487 * REACHABLE state, but already in 14488 * STALE state. So the correct 14489 * transition here is to ND_DELAY. 14490 */ 14491 ncec->ncec_state = ND_DELAY; 14492 mutex_exit(&ncec->ncec_lock); 14493 nce_restart_timer(ncec, 14494 ipst->ips_delay_first_probe_time); 14495 if (ip_debug > 3) { 14496 /* ip2dbg */ 14497 pr_addr_dbg("ip_xmit: state" 14498 " for %s changed to" 14499 " DELAY\n", AF_INET6, 14500 &ncec->ncec_addr); 14501 } 14502 break; 14503 case ND_DELAY: 14504 case ND_PROBE: 14505 mutex_exit(&ncec->ncec_lock); 14506 /* Timers have already started */ 14507 break; 14508 case ND_UNREACHABLE: 14509 /* 14510 * nce_timer has detected that this ncec 14511 * is unreachable and initiated deleting 14512 * this ncec. 14513 * This is a harmless race where we found the 14514 * ncec before it was deleted and have 14515 * just sent out a packet using this 14516 * unreachable ncec. 14517 */ 14518 mutex_exit(&ncec->ncec_lock); 14519 break; 14520 default: 14521 ASSERT(0); 14522 mutex_exit(&ncec->ncec_lock); 14523 } 14524 } 14525 return (0); 14526 14527 case ND_INCOMPLETE: 14528 /* 14529 * the state could have changed since we didn't hold the lock. 14530 * Re-verify state under lock. 14531 */ 14532 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14533 mutex_enter(&ncec->ncec_lock); 14534 if (NCE_ISREACHABLE(ncec)) { 14535 mutex_exit(&ncec->ncec_lock); 14536 goto sendit; 14537 } 14538 /* queue the packet */ 14539 nce_queue_mp(ncec, mp, is_probe); 14540 mutex_exit(&ncec->ncec_lock); 14541 DTRACE_PROBE2(ip__xmit__incomplete, 14542 (ncec_t *), ncec, (mblk_t *), mp); 14543 return (0); 14544 14545 case ND_INITIAL: 14546 /* 14547 * State could have changed since we didn't hold the lock, so 14548 * re-verify state. 14549 */ 14550 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14551 mutex_enter(&ncec->ncec_lock); 14552 if (NCE_ISREACHABLE(ncec)) { 14553 mutex_exit(&ncec->ncec_lock); 14554 goto sendit; 14555 } 14556 nce_queue_mp(ncec, mp, is_probe); 14557 if (ncec->ncec_state == ND_INITIAL) { 14558 ncec->ncec_state = ND_INCOMPLETE; 14559 mutex_exit(&ncec->ncec_lock); 14560 /* 14561 * figure out the source we want to use 14562 * and resolve it. 14563 */ 14564 ip_ndp_resolve(ncec); 14565 } else { 14566 mutex_exit(&ncec->ncec_lock); 14567 } 14568 return (0); 14569 14570 case ND_UNREACHABLE: 14571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14572 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14573 mp, ill); 14574 freemsg(mp); 14575 return (0); 14576 14577 default: 14578 ASSERT(0); 14579 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14580 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14581 mp, ill); 14582 freemsg(mp); 14583 return (ENETUNREACH); 14584 } 14585 } 14586 14587 /* 14588 * Return B_TRUE if the buffers differ in length or content. 14589 * This is used for comparing extension header buffers. 14590 * Note that an extension header would be declared different 14591 * even if all that changed was the next header value in that header i.e. 14592 * what really changed is the next extension header. 14593 */ 14594 boolean_t 14595 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14596 uint_t blen) 14597 { 14598 if (!b_valid) 14599 blen = 0; 14600 14601 if (alen != blen) 14602 return (B_TRUE); 14603 if (alen == 0) 14604 return (B_FALSE); /* Both zero length */ 14605 return (bcmp(abuf, bbuf, alen)); 14606 } 14607 14608 /* 14609 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14610 * Return B_FALSE if memory allocation fails - don't change any state! 14611 */ 14612 boolean_t 14613 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14614 const void *src, uint_t srclen) 14615 { 14616 void *dst; 14617 14618 if (!src_valid) 14619 srclen = 0; 14620 14621 ASSERT(*dstlenp == 0); 14622 if (src != NULL && srclen != 0) { 14623 dst = mi_alloc(srclen, BPRI_MED); 14624 if (dst == NULL) 14625 return (B_FALSE); 14626 } else { 14627 dst = NULL; 14628 } 14629 if (*dstp != NULL) 14630 mi_free(*dstp); 14631 *dstp = dst; 14632 *dstlenp = dst == NULL ? 0 : srclen; 14633 return (B_TRUE); 14634 } 14635 14636 /* 14637 * Replace what is in *dst, *dstlen with the source. 14638 * Assumes ip_allocbuf has already been called. 14639 */ 14640 void 14641 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14642 const void *src, uint_t srclen) 14643 { 14644 if (!src_valid) 14645 srclen = 0; 14646 14647 ASSERT(*dstlenp == srclen); 14648 if (src != NULL && srclen != 0) 14649 bcopy(src, *dstp, srclen); 14650 } 14651 14652 /* 14653 * Free the storage pointed to by the members of an ip_pkt_t. 14654 */ 14655 void 14656 ip_pkt_free(ip_pkt_t *ipp) 14657 { 14658 uint_t fields = ipp->ipp_fields; 14659 14660 if (fields & IPPF_HOPOPTS) { 14661 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14662 ipp->ipp_hopopts = NULL; 14663 ipp->ipp_hopoptslen = 0; 14664 } 14665 if (fields & IPPF_RTHDRDSTOPTS) { 14666 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14667 ipp->ipp_rthdrdstopts = NULL; 14668 ipp->ipp_rthdrdstoptslen = 0; 14669 } 14670 if (fields & IPPF_DSTOPTS) { 14671 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14672 ipp->ipp_dstopts = NULL; 14673 ipp->ipp_dstoptslen = 0; 14674 } 14675 if (fields & IPPF_RTHDR) { 14676 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14677 ipp->ipp_rthdr = NULL; 14678 ipp->ipp_rthdrlen = 0; 14679 } 14680 if (fields & IPPF_IPV4_OPTIONS) { 14681 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14682 ipp->ipp_ipv4_options = NULL; 14683 ipp->ipp_ipv4_options_len = 0; 14684 } 14685 if (fields & IPPF_LABEL_V4) { 14686 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14687 ipp->ipp_label_v4 = NULL; 14688 ipp->ipp_label_len_v4 = 0; 14689 } 14690 if (fields & IPPF_LABEL_V6) { 14691 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14692 ipp->ipp_label_v6 = NULL; 14693 ipp->ipp_label_len_v6 = 0; 14694 } 14695 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14696 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14697 } 14698 14699 /* 14700 * Copy from src to dst and allocate as needed. 14701 * Returns zero or ENOMEM. 14702 * 14703 * The caller must initialize dst to zero. 14704 */ 14705 int 14706 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14707 { 14708 uint_t fields = src->ipp_fields; 14709 14710 /* Start with fields that don't require memory allocation */ 14711 dst->ipp_fields = fields & 14712 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14713 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14714 14715 dst->ipp_addr = src->ipp_addr; 14716 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14717 dst->ipp_hoplimit = src->ipp_hoplimit; 14718 dst->ipp_tclass = src->ipp_tclass; 14719 dst->ipp_type_of_service = src->ipp_type_of_service; 14720 14721 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14722 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14723 return (0); 14724 14725 if (fields & IPPF_HOPOPTS) { 14726 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14727 if (dst->ipp_hopopts == NULL) { 14728 ip_pkt_free(dst); 14729 return (ENOMEM); 14730 } 14731 dst->ipp_fields |= IPPF_HOPOPTS; 14732 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14733 src->ipp_hopoptslen); 14734 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14735 } 14736 if (fields & IPPF_RTHDRDSTOPTS) { 14737 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14738 kmflag); 14739 if (dst->ipp_rthdrdstopts == NULL) { 14740 ip_pkt_free(dst); 14741 return (ENOMEM); 14742 } 14743 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14744 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14745 src->ipp_rthdrdstoptslen); 14746 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14747 } 14748 if (fields & IPPF_DSTOPTS) { 14749 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14750 if (dst->ipp_dstopts == NULL) { 14751 ip_pkt_free(dst); 14752 return (ENOMEM); 14753 } 14754 dst->ipp_fields |= IPPF_DSTOPTS; 14755 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14756 src->ipp_dstoptslen); 14757 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14758 } 14759 if (fields & IPPF_RTHDR) { 14760 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14761 if (dst->ipp_rthdr == NULL) { 14762 ip_pkt_free(dst); 14763 return (ENOMEM); 14764 } 14765 dst->ipp_fields |= IPPF_RTHDR; 14766 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14767 src->ipp_rthdrlen); 14768 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14769 } 14770 if (fields & IPPF_IPV4_OPTIONS) { 14771 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14772 kmflag); 14773 if (dst->ipp_ipv4_options == NULL) { 14774 ip_pkt_free(dst); 14775 return (ENOMEM); 14776 } 14777 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14778 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14779 src->ipp_ipv4_options_len); 14780 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14781 } 14782 if (fields & IPPF_LABEL_V4) { 14783 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14784 if (dst->ipp_label_v4 == NULL) { 14785 ip_pkt_free(dst); 14786 return (ENOMEM); 14787 } 14788 dst->ipp_fields |= IPPF_LABEL_V4; 14789 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14790 src->ipp_label_len_v4); 14791 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14792 } 14793 if (fields & IPPF_LABEL_V6) { 14794 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14795 if (dst->ipp_label_v6 == NULL) { 14796 ip_pkt_free(dst); 14797 return (ENOMEM); 14798 } 14799 dst->ipp_fields |= IPPF_LABEL_V6; 14800 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14801 src->ipp_label_len_v6); 14802 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14803 } 14804 if (fields & IPPF_FRAGHDR) { 14805 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14806 if (dst->ipp_fraghdr == NULL) { 14807 ip_pkt_free(dst); 14808 return (ENOMEM); 14809 } 14810 dst->ipp_fields |= IPPF_FRAGHDR; 14811 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14812 src->ipp_fraghdrlen); 14813 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14814 } 14815 return (0); 14816 } 14817 14818 /* 14819 * Returns INADDR_ANY if no source route 14820 */ 14821 ipaddr_t 14822 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14823 { 14824 ipaddr_t nexthop = INADDR_ANY; 14825 ipoptp_t opts; 14826 uchar_t *opt; 14827 uint8_t optval; 14828 uint8_t optlen; 14829 uint32_t totallen; 14830 14831 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14832 return (INADDR_ANY); 14833 14834 totallen = ipp->ipp_ipv4_options_len; 14835 if (totallen & 0x3) 14836 return (INADDR_ANY); 14837 14838 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14839 optval != IPOPT_EOL; 14840 optval = ipoptp_next(&opts)) { 14841 opt = opts.ipoptp_cur; 14842 switch (optval) { 14843 uint8_t off; 14844 case IPOPT_SSRR: 14845 case IPOPT_LSRR: 14846 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14847 break; 14848 } 14849 optlen = opts.ipoptp_len; 14850 off = opt[IPOPT_OFFSET]; 14851 off--; 14852 if (optlen < IP_ADDR_LEN || 14853 off > optlen - IP_ADDR_LEN) { 14854 /* End of source route */ 14855 break; 14856 } 14857 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14858 if (nexthop == htonl(INADDR_LOOPBACK)) { 14859 /* Ignore */ 14860 nexthop = INADDR_ANY; 14861 break; 14862 } 14863 break; 14864 } 14865 } 14866 return (nexthop); 14867 } 14868 14869 /* 14870 * Reverse a source route. 14871 */ 14872 void 14873 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14874 { 14875 ipaddr_t tmp; 14876 ipoptp_t opts; 14877 uchar_t *opt; 14878 uint8_t optval; 14879 uint32_t totallen; 14880 14881 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14882 return; 14883 14884 totallen = ipp->ipp_ipv4_options_len; 14885 if (totallen & 0x3) 14886 return; 14887 14888 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14889 optval != IPOPT_EOL; 14890 optval = ipoptp_next(&opts)) { 14891 uint8_t off1, off2; 14892 14893 opt = opts.ipoptp_cur; 14894 switch (optval) { 14895 case IPOPT_SSRR: 14896 case IPOPT_LSRR: 14897 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14898 break; 14899 } 14900 off1 = IPOPT_MINOFF_SR - 1; 14901 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14902 while (off2 > off1) { 14903 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14904 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14905 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14906 off2 -= IP_ADDR_LEN; 14907 off1 += IP_ADDR_LEN; 14908 } 14909 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14910 break; 14911 } 14912 } 14913 } 14914 14915 /* 14916 * Returns NULL if no routing header 14917 */ 14918 in6_addr_t * 14919 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14920 { 14921 in6_addr_t *nexthop = NULL; 14922 ip6_rthdr0_t *rthdr; 14923 14924 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14925 return (NULL); 14926 14927 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14928 if (rthdr->ip6r0_segleft == 0) 14929 return (NULL); 14930 14931 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14932 return (nexthop); 14933 } 14934 14935 zoneid_t 14936 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 14937 zoneid_t lookup_zoneid) 14938 { 14939 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14940 ire_t *ire; 14941 int ire_flags = MATCH_IRE_TYPE; 14942 zoneid_t zoneid = ALL_ZONES; 14943 14944 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14945 return (ALL_ZONES); 14946 14947 if (lookup_zoneid != ALL_ZONES) 14948 ire_flags |= MATCH_IRE_ZONEONLY; 14949 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14950 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14951 if (ire != NULL) { 14952 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14953 ire_refrele(ire); 14954 } 14955 return (zoneid); 14956 } 14957 14958 zoneid_t 14959 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 14960 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 14961 { 14962 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14963 ire_t *ire; 14964 int ire_flags = MATCH_IRE_TYPE; 14965 zoneid_t zoneid = ALL_ZONES; 14966 14967 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14968 return (ALL_ZONES); 14969 14970 if (IN6_IS_ADDR_LINKLOCAL(addr)) 14971 ire_flags |= MATCH_IRE_ILL; 14972 14973 if (lookup_zoneid != ALL_ZONES) 14974 ire_flags |= MATCH_IRE_ZONEONLY; 14975 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14976 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14977 if (ire != NULL) { 14978 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14979 ire_refrele(ire); 14980 } 14981 return (zoneid); 14982 } 14983 14984 /* 14985 * IP obserability hook support functions. 14986 */ 14987 static void 14988 ipobs_init(ip_stack_t *ipst) 14989 { 14990 netid_t id; 14991 14992 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 14993 14994 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 14995 VERIFY(ipst->ips_ip4_observe_pr != NULL); 14996 14997 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 14998 VERIFY(ipst->ips_ip6_observe_pr != NULL); 14999 } 15000 15001 static void 15002 ipobs_fini(ip_stack_t *ipst) 15003 { 15004 15005 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15006 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15007 } 15008 15009 /* 15010 * hook_pkt_observe_t is composed in network byte order so that the 15011 * entire mblk_t chain handed into hook_run can be used as-is. 15012 * The caveat is that use of the fields, such as the zone fields, 15013 * requires conversion into host byte order first. 15014 */ 15015 void 15016 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15017 const ill_t *ill, ip_stack_t *ipst) 15018 { 15019 hook_pkt_observe_t *hdr; 15020 uint64_t grifindex; 15021 mblk_t *imp; 15022 15023 imp = allocb(sizeof (*hdr), BPRI_HI); 15024 if (imp == NULL) 15025 return; 15026 15027 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15028 /* 15029 * b_wptr is set to make the apparent size of the data in the mblk_t 15030 * to exclude the pointers at the end of hook_pkt_observer_t. 15031 */ 15032 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15033 imp->b_cont = mp; 15034 15035 ASSERT(DB_TYPE(mp) == M_DATA); 15036 15037 if (IS_UNDER_IPMP(ill)) 15038 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15039 else 15040 grifindex = 0; 15041 15042 hdr->hpo_version = 1; 15043 hdr->hpo_htype = htons(htype); 15044 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15045 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15046 hdr->hpo_grifindex = htonl(grifindex); 15047 hdr->hpo_zsrc = htonl(zsrc); 15048 hdr->hpo_zdst = htonl(zdst); 15049 hdr->hpo_pkt = imp; 15050 hdr->hpo_ctx = ipst->ips_netstack; 15051 15052 if (ill->ill_isv6) { 15053 hdr->hpo_family = AF_INET6; 15054 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15055 ipst->ips_ipv6observing, (hook_data_t)hdr); 15056 } else { 15057 hdr->hpo_family = AF_INET; 15058 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15059 ipst->ips_ipv4observing, (hook_data_t)hdr); 15060 } 15061 15062 imp->b_cont = NULL; 15063 freemsg(imp); 15064 } 15065 15066 /* 15067 * Utility routine that checks if `v4srcp' is a valid address on underlying 15068 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15069 * associated with `v4srcp' on success. NOTE: if this is not called from 15070 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15071 * group during or after this lookup. 15072 */ 15073 boolean_t 15074 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15075 { 15076 ipif_t *ipif; 15077 15078 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15079 if (ipif != NULL) { 15080 if (ipifp != NULL) 15081 *ipifp = ipif; 15082 else 15083 ipif_refrele(ipif); 15084 return (B_TRUE); 15085 } 15086 15087 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15088 *v4srcp)); 15089 return (B_FALSE); 15090 } 15091