1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 #include <inet/rawip_impl.h> 119 #include <inet/rts_impl.h> 120 121 #include <sys/tsol/label.h> 122 #include <sys/tsol/tnet.h> 123 124 #include <rpc/pmap_prot.h> 125 #include <sys/squeue_impl.h> 126 #include <inet/ip_arp.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_g_nd_lock: This is a global reader/writer lock. 302 * Any call to nd_load to load a new parameter to the ND table must hold the 303 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 304 * as reader. 305 * 306 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 307 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 308 * uniqueness check also done atomically. 309 * 310 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 311 * group list linked by ill_usesrc_grp_next. It also protects the 312 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 313 * group is being added or deleted. This lock is taken as a reader when 314 * walking the list/group(eg: to get the number of members in a usesrc group). 315 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 316 * field is changing state i.e from NULL to non-NULL or vice-versa. For 317 * example, it is not necessary to take this lock in the initial portion 318 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 319 * operations are executed exclusively and that ensures that the "usesrc 320 * group state" cannot change. The "usesrc group state" change can happen 321 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 322 * 323 * Changing <ill-phyint>, <ipsq-xop> assocications: 324 * 325 * To change the <ill-phyint> association, the ill_g_lock must be held 326 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 327 * must be held. 328 * 329 * To change the <ipsq-xop> association, the ill_g_lock must be held as 330 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 331 * This is only done when ills are added or removed from IPMP groups. 332 * 333 * To add or delete an ipif from the list of ipifs hanging off the ill, 334 * ill_g_lock (writer) and ill_lock must be held and the thread must be 335 * a writer on the associated ipsq. 336 * 337 * To add or delete an ill to the system, the ill_g_lock must be held as 338 * writer and the thread must be a writer on the associated ipsq. 339 * 340 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 341 * must be a writer on the associated ipsq. 342 * 343 * Lock hierarchy 344 * 345 * Some lock hierarchy scenarios are listed below. 346 * 347 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 354 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 355 * arl_lock -> ill_lock 356 * ips_ire_dep_lock -> irb_lock 357 * 358 * When more than 1 ill lock is needed to be held, all ill lock addresses 359 * are sorted on address and locked starting from highest addressed lock 360 * downward. 361 * 362 * Multicast scenarios 363 * ips_ill_g_lock -> ill_mcast_lock 364 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 369 * 370 * IPsec scenarios 371 * 372 * ipsa_lock -> ill_g_lock -> ill_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 417 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 418 * 419 * IPsec notes : 420 * 421 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 422 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 423 * ip_xmit_attr_t has the 424 * information used by the IPsec code for applying the right level of 425 * protection. The information initialized by IP in the ip_xmit_attr_t 426 * is determined by the per-socket policy or global policy in the system. 427 * For inbound datagrams, the ip_recv_attr_t 428 * starts out with nothing in it. It gets filled 429 * with the right information if it goes through the AH/ESP code, which 430 * happens if the incoming packet is secure. The information initialized 431 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 432 * the policy requirements needed by per-socket policy or global policy 433 * is met or not. 434 * 435 * For fully connected sockets i.e dst, src [addr, port] is known, 436 * conn_policy_cached is set indicating that policy has been cached. 437 * conn_in_enforce_policy may or may not be set depending on whether 438 * there is a global policy match or per-socket policy match. 439 * Policy inheriting happpens in ip_policy_set once the destination is known. 440 * Once the right policy is set on the conn_t, policy cannot change for 441 * this socket. This makes life simpler for TCP (UDP ?) where 442 * re-transmissions go out with the same policy. For symmetry, policy 443 * is cached for fully connected UDP sockets also. Thus if policy is cached, 444 * it also implies that policy is latched i.e policy cannot change 445 * on these sockets. As we have the right policy on the conn, we don't 446 * have to lookup global policy for every outbound and inbound datagram 447 * and thus serving as an optimization. Note that a global policy change 448 * does not affect fully connected sockets if they have policy. If fully 449 * connected sockets did not have any policy associated with it, global 450 * policy change may affect them. 451 * 452 * IP Flow control notes: 453 * --------------------- 454 * Non-TCP streams are flow controlled by IP. The way this is accomplished 455 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 456 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 457 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 458 * functions. 459 * 460 * Per Tx ring udp flow control: 461 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 462 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 463 * 464 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 465 * To achieve best performance, outgoing traffic need to be fanned out among 466 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 467 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 468 * the address of connp as fanout hint to mac_tx(). Under flow controlled 469 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 470 * cookie points to a specific Tx ring that is blocked. The cookie is used to 471 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 472 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 473 * connp's. The drain list is not a single list but a configurable number of 474 * lists. 475 * 476 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 477 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 478 * which is equal to 128. This array in turn contains a pointer to idl_t[], 479 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 480 * list will point to the list of connp's that are flow controlled. 481 * 482 * --------------- ------- ------- ------- 483 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 484 * | --------------- ------- ------- ------- 485 * | --------------- ------- ------- ------- 486 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 487 * ---------------- | --------------- ------- ------- ------- 488 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 489 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 490 * | --------------- ------- ------- ------- 491 * . . . . . 492 * | --------------- ------- ------- ------- 493 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 494 * --------------- ------- ------- ------- 495 * --------------- ------- ------- ------- 496 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 497 * | --------------- ------- ------- ------- 498 * | --------------- ------- ------- ------- 499 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 500 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 501 * ---------------- | . . . . 502 * | --------------- ------- ------- ------- 503 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 504 * --------------- ------- ------- ------- 505 * ..... 506 * ---------------- 507 * |idl_tx_list[n]|-> ... 508 * ---------------- 509 * 510 * When mac_tx() returns a cookie, the cookie is used to hash into a 511 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 512 * called passing idl_tx_list. The connp gets inserted in a drain list 513 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 514 * the sockets (non stream based) and sets QFULL condition on the conn_wq 515 * of streams sockets, or the su_txqfull for non-streams sockets. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each conn in the drain list and calls conn_idl_remove 524 * for the conn to clear the qfull condition for the conn, as well as to 525 * remove the conn from the idl list. In addition, streams based sockets 526 * will have the conn_wq enabled, causing ip_wsrv to run for the 527 * conn. ip_wsrv drains the queued messages, and removes the conn from the 528 * drain list, if all messages were drained. It also notifies the 529 * conn_upcalls for the conn to signal that flow-control has opened up. 530 * 531 * In reality the drain list is not a single list, but a configurable number 532 * of lists. conn_walk_drain() in the IP module, notifies the conn_upcalls for 533 * each conn in the list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * from the protocol layer when conn_ip_output returns EWOULDBLOCK. 536 * (as opposed to from ip_wsrv context for STREAMS 537 * case -- see below). The synchronization between drain insertion and flow 538 * control wakeup is handled by using idl_txl->txl_lock. 539 * 540 * Flow control using STREAMS: 541 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 542 * is used. On the send side, if the packet cannot be sent down to the 543 * driver by IP, because of a canput failure, ip_xmit drops the packet 544 * and returns EWOULDBLOCK to the caller, who may then invoke 545 * ixa_check_drain_insert to insert the conn on the 0'th drain list. 546 * When ip_wsrv runs on the ill_wq because flow control has been relieved, the 547 * blocked conns in the * 0'th drain list is drained as with the 548 * non-STREAMS case. 549 * 550 * In both the STREAMS and non-STREAMS case, the sockfs upcall to set 551 * qfull is done when the conn is inserted into the drain list 552 * (conn_drain_insert()) and cleared when the conn is removed from the drain 553 * list (conn_idl_remove()). 554 * 555 * IPQOS notes: 556 * 557 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 558 * and IPQoS modules. IPPF includes hooks in IP at different control points 559 * (callout positions) which direct packets to IPQoS modules for policy 560 * processing. Policies, if present, are global. 561 * 562 * The callout positions are located in the following paths: 563 * o local_in (packets destined for this host) 564 * o local_out (packets orginating from this host ) 565 * o fwd_in (packets forwarded by this m/c - inbound) 566 * o fwd_out (packets forwarded by this m/c - outbound) 567 * Hooks at these callout points can be enabled/disabled using the ndd variable 568 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 569 * By default all the callout positions are enabled. 570 * 571 * Outbound (local_out) 572 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 573 * 574 * Inbound (local_in) 575 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 576 * 577 * Forwarding (in and out) 578 * Hooks are placed in ire_recv_forward_v4/v6. 579 * 580 * IP Policy Framework processing (IPPF processing) 581 * Policy processing for a packet is initiated by ip_process, which ascertains 582 * that the classifier (ipgpc) is loaded and configured, failing which the 583 * packet resumes normal processing in IP. If the clasifier is present, the 584 * packet is acted upon by one or more IPQoS modules (action instances), per 585 * filters configured in ipgpc and resumes normal IP processing thereafter. 586 * An action instance can drop a packet in course of its processing. 587 * 588 * Zones notes: 589 * 590 * The partitioning rules for networking are as follows: 591 * 1) Packets coming from a zone must have a source address belonging to that 592 * zone. 593 * 2) Packets coming from a zone can only be sent on a physical interface on 594 * which the zone has an IP address. 595 * 3) Between two zones on the same machine, packet delivery is only allowed if 596 * there's a matching route for the destination and zone in the forwarding 597 * table. 598 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 599 * different zones can bind to the same port with the wildcard address 600 * (INADDR_ANY). 601 * 602 * The granularity of interface partitioning is at the logical interface level. 603 * Therefore, every zone has its own IP addresses, and incoming packets can be 604 * attributed to a zone unambiguously. A logical interface is placed into a zone 605 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 606 * structure. Rule (1) is implemented by modifying the source address selection 607 * algorithm so that the list of eligible addresses is filtered based on the 608 * sending process zone. 609 * 610 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 611 * across all zones, depending on their type. Here is the break-up: 612 * 613 * IRE type Shared/exclusive 614 * -------- ---------------- 615 * IRE_BROADCAST Exclusive 616 * IRE_DEFAULT (default routes) Shared (*) 617 * IRE_LOCAL Exclusive (x) 618 * IRE_LOOPBACK Exclusive 619 * IRE_PREFIX (net routes) Shared (*) 620 * IRE_IF_NORESOLVER (interface routes) Exclusive 621 * IRE_IF_RESOLVER (interface routes) Exclusive 622 * IRE_IF_CLONE (interface routes) Exclusive 623 * IRE_HOST (host routes) Shared (*) 624 * 625 * (*) A zone can only use a default or off-subnet route if the gateway is 626 * directly reachable from the zone, that is, if the gateway's address matches 627 * one of the zone's logical interfaces. 628 * 629 * (x) IRE_LOCAL are handled a bit differently. 630 * When ip_restrict_interzone_loopback is set (the default), 631 * ire_route_recursive restricts loopback using an IRE_LOCAL 632 * between zone to the case when L2 would have conceptually looped the packet 633 * back, i.e. the loopback which is required since neither Ethernet drivers 634 * nor Ethernet hardware loops them back. This is the case when the normal 635 * routes (ignoring IREs with different zoneids) would send out the packet on 636 * the same ill as the ill with which is IRE_LOCAL is associated. 637 * 638 * Multiple zones can share a common broadcast address; typically all zones 639 * share the 255.255.255.255 address. Incoming as well as locally originated 640 * broadcast packets must be dispatched to all the zones on the broadcast 641 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 642 * since some zones may not be on the 10.16.72/24 network. To handle this, each 643 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 644 * sent to every zone that has an IRE_BROADCAST entry for the destination 645 * address on the input ill, see ip_input_broadcast(). 646 * 647 * Applications in different zones can join the same multicast group address. 648 * The same logic applies for multicast as for broadcast. ip_input_multicast 649 * dispatches packets to all zones that have members on the physical interface. 650 */ 651 652 /* 653 * Squeue Fanout flags: 654 * 0: No fanout. 655 * 1: Fanout across all squeues 656 */ 657 boolean_t ip_squeue_fanout = 0; 658 659 /* 660 * Maximum dups allowed per packet. 661 */ 662 uint_t ip_max_frag_dups = 10; 663 664 /* RFC 1122 Conformance */ 665 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 666 667 #define ILL_MAX_NAMELEN LIFNAMSIZ 668 669 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 670 cred_t *credp, boolean_t isv6); 671 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 672 673 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 674 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 675 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 676 ip_recv_attr_t *); 677 static void icmp_options_update(ipha_t *); 678 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 679 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 680 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 681 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 682 ip_recv_attr_t *); 683 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 684 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 685 ip_recv_attr_t *); 686 687 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 688 char *ip_dot_addr(ipaddr_t, char *); 689 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 690 int ip_close(queue_t *, int); 691 static char *ip_dot_saddr(uchar_t *, char *); 692 static void ip_lrput(queue_t *, mblk_t *); 693 ipaddr_t ip_net_mask(ipaddr_t); 694 char *ip_nv_lookup(nv_t *, int); 695 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 696 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 697 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 698 ipndp_t *, size_t); 699 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 700 void ip_rput(queue_t *, mblk_t *); 701 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 702 void *dummy_arg); 703 int ip_snmp_get(queue_t *, mblk_t *, int); 704 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 705 mib2_ipIfStatsEntry_t *, ip_stack_t *); 706 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 707 ip_stack_t *); 708 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 709 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 711 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 713 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 714 ip_stack_t *ipst); 715 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 716 ip_stack_t *ipst); 717 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 718 ip_stack_t *ipst); 719 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 720 ip_stack_t *ipst); 721 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 722 ip_stack_t *ipst); 723 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 724 ip_stack_t *ipst); 725 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 726 ip_stack_t *ipst); 727 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 728 ip_stack_t *ipst); 729 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 730 ip_stack_t *ipst); 731 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 732 ip_stack_t *ipst); 733 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 734 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 735 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 736 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 737 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 738 739 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 740 mblk_t *); 741 742 static void conn_drain_init(ip_stack_t *); 743 static void conn_drain_fini(ip_stack_t *); 744 static void conn_drain_tail(conn_t *connp, boolean_t closing); 745 746 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 747 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 748 749 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 750 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 751 static void ip_stack_fini(netstackid_t stackid, void *arg); 752 753 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 754 755 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 756 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 757 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 758 const in6_addr_t *); 759 760 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 761 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 762 caddr_t, cred_t *); 763 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 764 caddr_t cp, cred_t *cr); 765 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 766 cred_t *); 767 static int ip_squeue_switch(int); 768 769 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 770 static void ip_kstat_fini(netstackid_t, kstat_t *); 771 static int ip_kstat_update(kstat_t *kp, int rw); 772 static void *icmp_kstat_init(netstackid_t); 773 static void icmp_kstat_fini(netstackid_t, kstat_t *); 774 static int icmp_kstat_update(kstat_t *kp, int rw); 775 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 776 static void ip_kstat2_fini(netstackid_t, kstat_t *); 777 778 static void ipobs_init(ip_stack_t *); 779 static void ipobs_fini(ip_stack_t *); 780 781 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 782 783 /* How long, in seconds, we allow frags to hang around. */ 784 #define IP_FRAG_TIMEOUT 15 785 #define IPV6_FRAG_TIMEOUT 60 786 787 static long ip_rput_pullups; 788 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 789 790 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 791 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 792 793 int ip_debug; 794 795 /* 796 * Multirouting/CGTP stuff 797 */ 798 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 799 800 /* 801 * Named Dispatch Parameter Table. 802 * All of these are alterable, within the min/max values given, at run time. 803 */ 804 static ipparam_t lcl_param_arr[] = { 805 /* min max value name */ 806 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 807 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 808 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 809 { 0, 1, 0, "ip_respond_to_timestamp"}, 810 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 811 { 0, 1, 1, "ip_send_redirects"}, 812 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 813 { 0, 10, 0, "ip_mrtdebug"}, 814 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 815 { 1, 8, 3, "ip_nce_reclaim_fraction" }, 816 { 1, 8, 3, "ip_dce_reclaim_fraction" }, 817 { 1, 255, 255, "ip_def_ttl" }, 818 { 0, 1, 0, "ip_forward_src_routed"}, 819 { 0, 256, 32, "ip_wroff_extra" }, 820 { 2, 999999999, 60*20, "ip_pathmtu_interval" }, /* In seconds */ 821 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 822 { 0, 1, 1, "ip_path_mtu_discovery" }, 823 { 68, 65535, 576, "ip_pmtu_min" }, 824 { 0, 1, 0, "ip_ignore_redirect" }, 825 { 0, 1, 0, "ip_arp_icmp_error" }, 826 { 1, 254, 1, "ip_broadcast_ttl" }, 827 { 0, 99999, 100, "ip_icmp_err_interval" }, 828 { 1, 99999, 10, "ip_icmp_err_burst" }, 829 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 830 { 0, 1, 0, "ip_strict_dst_multihoming" }, 831 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 832 { 0, 1, 0, "ipsec_override_persocket_policy" }, 833 { 0, 1, 1, "icmp_accept_clear_messages" }, 834 { 0, 1, 1, "igmp_accept_clear_messages" }, 835 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 836 "ip_ndp_delay_first_probe_time"}, 837 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 838 "ip_ndp_max_unicast_solicit"}, 839 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 840 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 841 { 0, 1, 0, "ip6_forward_src_routed"}, 842 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 843 { 0, 1, 1, "ip6_send_redirects"}, 844 { 0, 1, 0, "ip6_ignore_redirect" }, 845 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 846 847 { 0, 2, 2, "ip_src_check" }, 848 849 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 850 851 { 0, 1, 1, "pim_accept_clear_messages" }, 852 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 853 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 854 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 855 { 0, 15, 0, "ip_policy_mask" }, 856 { 0, 2, 2, "ip_ecmp_behavior" }, 857 { 0, 255, 1, "ip_multirt_ttl" }, 858 { 0, 3600, 60, "ip_ire_badcnt_lifetime" }, /* In seconds */ 859 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 860 { 0, 1000, 1, "ip_max_temp_defend" }, 861 /* 862 * when a conflict of an active address is detected, 863 * defend up to ip_max_defend times, within any 864 * ip_defend_interval span. 865 */ 866 { 0, 1000, 3, "ip_max_defend" }, 867 { 0, 999999, 30, "ip_defend_interval" }, 868 { 0, 3600000, 300000, "ip_dup_recovery" }, 869 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 870 { 0, 1, 1, "ip_lso_outbound" }, 871 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 872 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 873 #ifdef DEBUG 874 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 875 #else 876 { 0, 0, 0, "" }, 877 #endif 878 /* delay before sending first probe: */ 879 { 0, 20000, 1000, "arp_probe_delay" }, 880 { 0, 20000, 100, "arp_fastprobe_delay" }, 881 /* interval at which DAD probes are sent: */ 882 { 10, 20000, 1500, "arp_probe_interval" }, 883 { 10, 20000, 150, "arp_fastprobe_interval" }, 884 /* setting probe count to 0 will disable ARP probing for DAD. */ 885 { 0, 20, 3, "arp_probe_count" }, 886 { 0, 20, 3, "arp_fastprobe_count" }, 887 888 { 0, 3600000, 15000, "ipv4_dad_announce_interval"}, 889 { 0, 3600000, 15000, "ipv6_dad_announce_interval"}, 890 /* 891 * Rate limiting parameters for DAD defense used in 892 * ill_defend_rate_limit(): 893 * defend_rate : pkts/hour permitted 894 * defend_interval : time that can elapse before we send out a 895 * DAD defense. 896 * defend_period: denominator for defend_rate (in seconds). 897 */ 898 { 0, 3600000, 300000, "arp_defend_interval"}, 899 { 0, 20000, 100, "arp_defend_rate"}, 900 { 0, 3600000, 300000, "ndp_defend_interval"}, 901 { 0, 20000, 100, "ndp_defend_rate"}, 902 { 5, 86400, 3600, "arp_defend_period"}, 903 { 5, 86400, 3600, "ndp_defend_period"}, 904 { 0, 1, 1, "ipv4_icmp_return_pmtu" }, 905 { 0, 1, 1, "ipv6_icmp_return_pmtu" }, 906 /* 907 * publish count/interval values used to announce local addresses 908 * for IPv4, IPv6. 909 */ 910 { 1, 20, 5, "ip_arp_publish_count" }, 911 { 1000, 20000, 2000, "ip_arp_publish_interval" }, 912 }; 913 914 /* 915 * Extended NDP table 916 * The addresses for the first two are filled in to be ips_ip_g_forward 917 * and ips_ipv6_forward at init time. 918 */ 919 static ipndp_t lcl_ndp_arr[] = { 920 /* getf setf data name */ 921 #define IPNDP_IP_FORWARDING_OFFSET 0 922 { ip_param_generic_get, ip_forward_set, NULL, 923 "ip_forwarding" }, 924 #define IPNDP_IP6_FORWARDING_OFFSET 1 925 { ip_param_generic_get, ip_forward_set, NULL, 926 "ip6_forwarding" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 4 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 935 "ip_debug" }, 936 }; 937 938 /* 939 * Table of IP ioctls encoding the various properties of the ioctl and 940 * indexed based on the last byte of the ioctl command. Occasionally there 941 * is a clash, and there is more than 1 ioctl with the same last byte. 942 * In such a case 1 ioctl is encoded in the ndx table and the remaining 943 * ioctls are encoded in the misc table. An entry in the ndx table is 944 * retrieved by indexing on the last byte of the ioctl command and comparing 945 * the ioctl command with the value in the ndx table. In the event of a 946 * mismatch the misc table is then searched sequentially for the desired 947 * ioctl command. 948 * 949 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 950 */ 951 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 952 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 963 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 964 MISC_CMD, ip_siocaddrt, NULL }, 965 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 966 MISC_CMD, ip_siocdelrt, NULL }, 967 968 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 969 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 970 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 971 IF_CMD, ip_sioctl_get_addr, NULL }, 972 973 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 974 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 975 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 976 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 977 978 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 979 IPI_PRIV | IPI_WR, 980 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 981 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 982 IPI_MODOK | IPI_GET_CMD, 983 IF_CMD, ip_sioctl_get_flags, NULL }, 984 985 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 986 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 987 988 /* copyin size cannot be coded for SIOCGIFCONF */ 989 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 990 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 991 992 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 993 IF_CMD, ip_sioctl_mtu, NULL }, 994 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 995 IF_CMD, ip_sioctl_get_mtu, NULL }, 996 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 997 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 998 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_brdaddr, NULL }, 1000 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1001 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1002 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1003 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1004 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1005 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1006 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1007 IF_CMD, ip_sioctl_metric, NULL }, 1008 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1009 1010 /* See 166-168 below for extended SIOC*XARP ioctls */ 1011 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 1018 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1041 MISC_CMD, if_unitsel, if_unitsel_restart }, 1042 1043 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1063 IPI_PRIV | IPI_WR | IPI_MODOK, 1064 IF_CMD, ip_sioctl_sifname, NULL }, 1065 1066 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1081 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1082 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1083 IF_CMD, ip_sioctl_get_muxid, NULL }, 1084 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1085 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1086 1087 /* Both if and lif variants share same func */ 1088 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1089 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1090 /* Both if and lif variants share same func */ 1091 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1093 1094 /* copyin size cannot be coded for SIOCGIFCONF */ 1095 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1096 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1097 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 1115 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1116 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1117 ip_sioctl_removeif_restart }, 1118 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1119 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1120 LIF_CMD, ip_sioctl_addif, NULL }, 1121 #define SIOCLIFADDR_NDX 112 1122 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1123 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1124 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1125 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1126 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1127 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1128 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1129 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1130 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1131 IPI_PRIV | IPI_WR, 1132 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1133 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1134 IPI_GET_CMD | IPI_MODOK, 1135 LIF_CMD, ip_sioctl_get_flags, NULL }, 1136 1137 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 1140 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1141 ip_sioctl_get_lifconf, NULL }, 1142 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1143 LIF_CMD, ip_sioctl_mtu, NULL }, 1144 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1145 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1146 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1147 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1148 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1149 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1150 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1151 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1152 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1153 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1154 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1155 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1156 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_metric, NULL }, 1158 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1159 IPI_PRIV | IPI_WR | IPI_MODOK, 1160 LIF_CMD, ip_sioctl_slifname, 1161 ip_sioctl_slifname_restart }, 1162 1163 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1164 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1165 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1166 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1167 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1168 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1169 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1170 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1171 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1172 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1173 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1174 LIF_CMD, ip_sioctl_token, NULL }, 1175 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1176 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1177 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1178 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1179 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1180 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1181 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1182 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1183 1184 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1185 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1186 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1187 LIF_CMD, ip_siocdelndp_v6, NULL }, 1188 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1189 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1190 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1191 LIF_CMD, ip_siocsetndp_v6, NULL }, 1192 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1193 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1194 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1195 MISC_CMD, ip_sioctl_tonlink, NULL }, 1196 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1197 MISC_CMD, ip_sioctl_tmysite, NULL }, 1198 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1201 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1202 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1203 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1204 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1205 1206 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 1208 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1209 LIF_CMD, ip_sioctl_get_binding, NULL }, 1210 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1211 IPI_PRIV | IPI_WR, 1212 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1213 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1214 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1215 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1216 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1217 1218 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1219 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1220 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1221 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1222 1223 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 1225 /* These are handled in ip_sioctl_copyin_setup itself */ 1226 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1227 MISC_CMD, NULL, NULL }, 1228 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1229 MISC_CMD, NULL, NULL }, 1230 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1231 1232 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1233 ip_sioctl_get_lifconf, NULL }, 1234 1235 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1236 XARP_CMD, ip_sioctl_arp, NULL }, 1237 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1238 XARP_CMD, ip_sioctl_arp, NULL }, 1239 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1240 XARP_CMD, ip_sioctl_arp, NULL }, 1241 1242 /* SIOCPOPSOCKFS is not handled by IP */ 1243 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1244 1245 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1246 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1247 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1248 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1249 ip_sioctl_slifzone_restart }, 1250 /* 172-174 are SCTP ioctls and not handled by IP */ 1251 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1253 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1254 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1255 IPI_GET_CMD, LIF_CMD, 1256 ip_sioctl_get_lifusesrc, 0 }, 1257 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1258 IPI_PRIV | IPI_WR, 1259 LIF_CMD, ip_sioctl_slifusesrc, 1260 NULL }, 1261 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1262 ip_sioctl_get_lifsrcof, NULL }, 1263 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1264 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1265 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1266 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1267 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1268 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1269 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1270 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1271 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 /* SIOCSENABLESDP is handled by SDP */ 1273 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1274 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1275 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1276 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1277 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1278 ip_sioctl_ilb_cmd, NULL }, 1279 }; 1280 1281 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1282 1283 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1284 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1285 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1286 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1287 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1288 { ND_GET, 0, 0, 0, NULL, NULL }, 1289 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1290 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1291 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1292 MISC_CMD, mrt_ioctl}, 1293 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1294 MISC_CMD, mrt_ioctl}, 1295 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1296 MISC_CMD, mrt_ioctl} 1297 }; 1298 1299 int ip_misc_ioctl_count = 1300 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1301 1302 int conn_drain_nthreads; /* Number of drainers reqd. */ 1303 /* Settable in /etc/system */ 1304 /* Defined in ip_ire.c */ 1305 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1306 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1307 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1308 1309 static nv_t ire_nv_arr[] = { 1310 { IRE_BROADCAST, "BROADCAST" }, 1311 { IRE_LOCAL, "LOCAL" }, 1312 { IRE_LOOPBACK, "LOOPBACK" }, 1313 { IRE_DEFAULT, "DEFAULT" }, 1314 { IRE_PREFIX, "PREFIX" }, 1315 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1316 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1317 { IRE_IF_CLONE, "IF_CLONE" }, 1318 { IRE_HOST, "HOST" }, 1319 { IRE_MULTICAST, "MULTICAST" }, 1320 { IRE_NOROUTE, "NOROUTE" }, 1321 { 0 } 1322 }; 1323 1324 nv_t *ire_nv_tbl = ire_nv_arr; 1325 1326 /* Simple ICMP IP Header Template */ 1327 static ipha_t icmp_ipha = { 1328 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1329 }; 1330 1331 struct module_info ip_mod_info = { 1332 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1333 IP_MOD_LOWAT 1334 }; 1335 1336 /* 1337 * Duplicate static symbols within a module confuses mdb; so we avoid the 1338 * problem by making the symbols here distinct from those in udp.c. 1339 */ 1340 1341 /* 1342 * Entry points for IP as a device and as a module. 1343 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1344 */ 1345 static struct qinit iprinitv4 = { 1346 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1347 &ip_mod_info 1348 }; 1349 1350 struct qinit iprinitv6 = { 1351 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1352 &ip_mod_info 1353 }; 1354 1355 static struct qinit ipwinit = { 1356 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1357 &ip_mod_info 1358 }; 1359 1360 static struct qinit iplrinit = { 1361 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1362 &ip_mod_info 1363 }; 1364 1365 static struct qinit iplwinit = { 1366 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1367 &ip_mod_info 1368 }; 1369 1370 /* For AF_INET aka /dev/ip */ 1371 struct streamtab ipinfov4 = { 1372 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1373 }; 1374 1375 /* For AF_INET6 aka /dev/ip6 */ 1376 struct streamtab ipinfov6 = { 1377 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1378 }; 1379 1380 #ifdef DEBUG 1381 boolean_t skip_sctp_cksum = B_FALSE; 1382 #endif 1383 1384 /* 1385 * Generate an ICMP fragmentation needed message. 1386 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1387 * constructed by the caller. 1388 */ 1389 void 1390 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1391 { 1392 icmph_t icmph; 1393 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1394 1395 mp = icmp_pkt_err_ok(mp, ira); 1396 if (mp == NULL) 1397 return; 1398 1399 bzero(&icmph, sizeof (icmph_t)); 1400 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1401 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1402 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1403 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1404 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1405 1406 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1407 } 1408 1409 /* 1410 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1411 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1412 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1413 * Likewise, if the ICMP error is misformed (too short, etc), then it 1414 * returns NULL. The caller uses this to determine whether or not to send 1415 * to raw sockets. 1416 * 1417 * All error messages are passed to the matching transport stream. 1418 * 1419 * The following cases are handled by icmp_inbound: 1420 * 1) It needs to send a reply back and possibly delivering it 1421 * to the "interested" upper clients. 1422 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1423 * 3) It needs to change some values in IP only. 1424 * 4) It needs to change some values in IP and upper layers e.g TCP 1425 * by delivering an error to the upper layers. 1426 * 1427 * We handle the above three cases in the context of IPsec in the 1428 * following way : 1429 * 1430 * 1) Send the reply back in the same way as the request came in. 1431 * If it came in encrypted, it goes out encrypted. If it came in 1432 * clear, it goes out in clear. Thus, this will prevent chosen 1433 * plain text attack. 1434 * 2) The client may or may not expect things to come in secure. 1435 * If it comes in secure, the policy constraints are checked 1436 * before delivering it to the upper layers. If it comes in 1437 * clear, ipsec_inbound_accept_clear will decide whether to 1438 * accept this in clear or not. In both the cases, if the returned 1439 * message (IP header + 8 bytes) that caused the icmp message has 1440 * AH/ESP headers, it is sent up to AH/ESP for validation before 1441 * sending up. If there are only 8 bytes of returned message, then 1442 * upper client will not be notified. 1443 * 3) Check with global policy to see whether it matches the constaints. 1444 * But this will be done only if icmp_accept_messages_in_clear is 1445 * zero. 1446 * 4) If we need to change both in IP and ULP, then the decision taken 1447 * while affecting the values in IP and while delivering up to TCP 1448 * should be the same. 1449 * 1450 * There are two cases. 1451 * 1452 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1453 * failed), we will not deliver it to the ULP, even though they 1454 * are *willing* to accept in *clear*. This is fine as our global 1455 * disposition to icmp messages asks us reject the datagram. 1456 * 1457 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1458 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1459 * to deliver it to ULP (policy failed), it can lead to 1460 * consistency problems. The cases known at this time are 1461 * ICMP_DESTINATION_UNREACHABLE messages with following code 1462 * values : 1463 * 1464 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1465 * and Upper layer rejects. Then the communication will 1466 * come to a stop. This is solved by making similar decisions 1467 * at both levels. Currently, when we are unable to deliver 1468 * to the Upper Layer (due to policy failures) while IP has 1469 * adjusted dce_pmtu, the next outbound datagram would 1470 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1471 * will be with the right level of protection. Thus the right 1472 * value will be communicated even if we are not able to 1473 * communicate when we get from the wire initially. But this 1474 * assumes there would be at least one outbound datagram after 1475 * IP has adjusted its dce_pmtu value. To make things 1476 * simpler, we accept in clear after the validation of 1477 * AH/ESP headers. 1478 * 1479 * - Other ICMP ERRORS : We may not be able to deliver it to the 1480 * upper layer depending on the level of protection the upper 1481 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1482 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1483 * should be accepted in clear when the Upper layer expects secure. 1484 * Thus the communication may get aborted by some bad ICMP 1485 * packets. 1486 */ 1487 mblk_t * 1488 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1489 { 1490 icmph_t *icmph; 1491 ipha_t *ipha; /* Outer header */ 1492 int ip_hdr_length; /* Outer header length */ 1493 boolean_t interested; 1494 ipif_t *ipif; 1495 uint32_t ts; 1496 uint32_t *tsp; 1497 timestruc_t now; 1498 ill_t *ill = ira->ira_ill; 1499 ip_stack_t *ipst = ill->ill_ipst; 1500 zoneid_t zoneid = ira->ira_zoneid; 1501 int len_needed; 1502 mblk_t *mp_ret = NULL; 1503 1504 ipha = (ipha_t *)mp->b_rptr; 1505 1506 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1507 1508 ip_hdr_length = ira->ira_ip_hdr_length; 1509 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1510 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1511 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1512 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1513 freemsg(mp); 1514 return (NULL); 1515 } 1516 /* Last chance to get real. */ 1517 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1518 if (ipha == NULL) { 1519 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1520 freemsg(mp); 1521 return (NULL); 1522 } 1523 } 1524 1525 /* The IP header will always be a multiple of four bytes */ 1526 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1527 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1528 icmph->icmph_code)); 1529 1530 /* 1531 * We will set "interested" to "true" if we should pass a copy to 1532 * the transport or if we handle the packet locally. 1533 */ 1534 interested = B_FALSE; 1535 switch (icmph->icmph_type) { 1536 case ICMP_ECHO_REPLY: 1537 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1538 break; 1539 case ICMP_DEST_UNREACHABLE: 1540 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1542 interested = B_TRUE; /* Pass up to transport */ 1543 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1544 break; 1545 case ICMP_SOURCE_QUENCH: 1546 interested = B_TRUE; /* Pass up to transport */ 1547 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1548 break; 1549 case ICMP_REDIRECT: 1550 if (!ipst->ips_ip_ignore_redirect) 1551 interested = B_TRUE; 1552 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1553 break; 1554 case ICMP_ECHO_REQUEST: 1555 /* 1556 * Whether to respond to echo requests that come in as IP 1557 * broadcasts or as IP multicast is subject to debate 1558 * (what isn't?). We aim to please, you pick it. 1559 * Default is do it. 1560 */ 1561 if (ira->ira_flags & IRAF_MULTICAST) { 1562 /* multicast: respond based on tunable */ 1563 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1564 } else if (ira->ira_flags & IRAF_BROADCAST) { 1565 /* broadcast: respond based on tunable */ 1566 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1567 } else { 1568 /* unicast: always respond */ 1569 interested = B_TRUE; 1570 } 1571 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1572 if (!interested) { 1573 /* We never pass these to RAW sockets */ 1574 freemsg(mp); 1575 return (NULL); 1576 } 1577 1578 /* Check db_ref to make sure we can modify the packet. */ 1579 if (mp->b_datap->db_ref > 1) { 1580 mblk_t *mp1; 1581 1582 mp1 = copymsg(mp); 1583 freemsg(mp); 1584 if (!mp1) { 1585 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1586 return (NULL); 1587 } 1588 mp = mp1; 1589 ipha = (ipha_t *)mp->b_rptr; 1590 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1591 } 1592 icmph->icmph_type = ICMP_ECHO_REPLY; 1593 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1594 icmp_send_reply_v4(mp, ipha, icmph, ira); 1595 return (NULL); 1596 1597 case ICMP_ROUTER_ADVERTISEMENT: 1598 case ICMP_ROUTER_SOLICITATION: 1599 break; 1600 case ICMP_TIME_EXCEEDED: 1601 interested = B_TRUE; /* Pass up to transport */ 1602 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1603 break; 1604 case ICMP_PARAM_PROBLEM: 1605 interested = B_TRUE; /* Pass up to transport */ 1606 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1607 break; 1608 case ICMP_TIME_STAMP_REQUEST: 1609 /* Response to Time Stamp Requests is local policy. */ 1610 if (ipst->ips_ip_g_resp_to_timestamp) { 1611 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1612 interested = 1613 ipst->ips_ip_g_resp_to_timestamp_bcast; 1614 else 1615 interested = B_TRUE; 1616 } 1617 if (!interested) { 1618 /* We never pass these to RAW sockets */ 1619 freemsg(mp); 1620 return (NULL); 1621 } 1622 1623 /* Make sure we have enough of the packet */ 1624 len_needed = ip_hdr_length + ICMPH_SIZE + 1625 3 * sizeof (uint32_t); 1626 1627 if (mp->b_wptr - mp->b_rptr < len_needed) { 1628 ipha = ip_pullup(mp, len_needed, ira); 1629 if (ipha == NULL) { 1630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1631 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1632 mp, ill); 1633 freemsg(mp); 1634 return (NULL); 1635 } 1636 /* Refresh following the pullup. */ 1637 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1638 } 1639 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1640 /* Check db_ref to make sure we can modify the packet. */ 1641 if (mp->b_datap->db_ref > 1) { 1642 mblk_t *mp1; 1643 1644 mp1 = copymsg(mp); 1645 freemsg(mp); 1646 if (!mp1) { 1647 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1648 return (NULL); 1649 } 1650 mp = mp1; 1651 ipha = (ipha_t *)mp->b_rptr; 1652 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1653 } 1654 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1655 tsp = (uint32_t *)&icmph[1]; 1656 tsp++; /* Skip past 'originate time' */ 1657 /* Compute # of milliseconds since midnight */ 1658 gethrestime(&now); 1659 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1660 now.tv_nsec / (NANOSEC / MILLISEC); 1661 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1662 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1663 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1664 icmp_send_reply_v4(mp, ipha, icmph, ira); 1665 return (NULL); 1666 1667 case ICMP_TIME_STAMP_REPLY: 1668 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1669 break; 1670 case ICMP_INFO_REQUEST: 1671 /* Per RFC 1122 3.2.2.7, ignore this. */ 1672 case ICMP_INFO_REPLY: 1673 break; 1674 case ICMP_ADDRESS_MASK_REQUEST: 1675 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1676 interested = 1677 ipst->ips_ip_respond_to_address_mask_broadcast; 1678 } else { 1679 interested = B_TRUE; 1680 } 1681 if (!interested) { 1682 /* We never pass these to RAW sockets */ 1683 freemsg(mp); 1684 return (NULL); 1685 } 1686 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1687 if (mp->b_wptr - mp->b_rptr < len_needed) { 1688 ipha = ip_pullup(mp, len_needed, ira); 1689 if (ipha == NULL) { 1690 BUMP_MIB(ill->ill_ip_mib, 1691 ipIfStatsInTruncatedPkts); 1692 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1693 ill); 1694 freemsg(mp); 1695 return (NULL); 1696 } 1697 /* Refresh following the pullup. */ 1698 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1699 } 1700 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1701 /* Check db_ref to make sure we can modify the packet. */ 1702 if (mp->b_datap->db_ref > 1) { 1703 mblk_t *mp1; 1704 1705 mp1 = copymsg(mp); 1706 freemsg(mp); 1707 if (!mp1) { 1708 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1709 return (NULL); 1710 } 1711 mp = mp1; 1712 ipha = (ipha_t *)mp->b_rptr; 1713 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1714 } 1715 /* 1716 * Need the ipif with the mask be the same as the source 1717 * address of the mask reply. For unicast we have a specific 1718 * ipif. For multicast/broadcast we only handle onlink 1719 * senders, and use the source address to pick an ipif. 1720 */ 1721 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1722 if (ipif == NULL) { 1723 /* Broadcast or multicast */ 1724 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1725 if (ipif == NULL) { 1726 freemsg(mp); 1727 return (NULL); 1728 } 1729 } 1730 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1731 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1732 ipif_refrele(ipif); 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1734 icmp_send_reply_v4(mp, ipha, icmph, ira); 1735 return (NULL); 1736 1737 case ICMP_ADDRESS_MASK_REPLY: 1738 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1739 break; 1740 default: 1741 interested = B_TRUE; /* Pass up to transport */ 1742 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1743 break; 1744 } 1745 /* 1746 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1747 * if there isn't one. 1748 */ 1749 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1750 /* If there is an ICMP client and we want one too, copy it. */ 1751 1752 if (!interested) { 1753 /* Caller will deliver to RAW sockets */ 1754 return (mp); 1755 } 1756 mp_ret = copymsg(mp); 1757 if (mp_ret == NULL) { 1758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1759 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1760 } 1761 } else if (!interested) { 1762 /* Neither we nor raw sockets are interested. Drop packet now */ 1763 freemsg(mp); 1764 return (NULL); 1765 } 1766 1767 /* 1768 * ICMP error or redirect packet. Make sure we have enough of 1769 * the header and that db_ref == 1 since we might end up modifying 1770 * the packet. 1771 */ 1772 if (mp->b_cont != NULL) { 1773 if (ip_pullup(mp, -1, ira) == NULL) { 1774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1775 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1776 mp, ill); 1777 freemsg(mp); 1778 return (mp_ret); 1779 } 1780 } 1781 1782 if (mp->b_datap->db_ref > 1) { 1783 mblk_t *mp1; 1784 1785 mp1 = copymsg(mp); 1786 if (mp1 == NULL) { 1787 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1788 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1789 freemsg(mp); 1790 return (mp_ret); 1791 } 1792 freemsg(mp); 1793 mp = mp1; 1794 } 1795 1796 /* 1797 * In case mp has changed, verify the message before any further 1798 * processes. 1799 */ 1800 ipha = (ipha_t *)mp->b_rptr; 1801 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1802 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1803 freemsg(mp); 1804 return (mp_ret); 1805 } 1806 1807 switch (icmph->icmph_type) { 1808 case ICMP_REDIRECT: 1809 icmp_redirect_v4(mp, ipha, icmph, ira); 1810 break; 1811 case ICMP_DEST_UNREACHABLE: 1812 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1813 /* Update DCE and adjust MTU is icmp header if needed */ 1814 icmp_inbound_too_big_v4(icmph, ira); 1815 } 1816 /* FALLTHRU */ 1817 default: 1818 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1819 break; 1820 } 1821 return (mp_ret); 1822 } 1823 1824 /* 1825 * Send an ICMP echo, timestamp or address mask reply. 1826 * The caller has already updated the payload part of the packet. 1827 * We handle the ICMP checksum, IP source address selection and feed 1828 * the packet into ip_output_simple. 1829 */ 1830 static void 1831 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1832 ip_recv_attr_t *ira) 1833 { 1834 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1835 ill_t *ill = ira->ira_ill; 1836 ip_stack_t *ipst = ill->ill_ipst; 1837 ip_xmit_attr_t ixas; 1838 1839 /* Send out an ICMP packet */ 1840 icmph->icmph_checksum = 0; 1841 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1842 /* Reset time to live. */ 1843 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1844 { 1845 /* Swap source and destination addresses */ 1846 ipaddr_t tmp; 1847 1848 tmp = ipha->ipha_src; 1849 ipha->ipha_src = ipha->ipha_dst; 1850 ipha->ipha_dst = tmp; 1851 } 1852 ipha->ipha_ident = 0; 1853 if (!IS_SIMPLE_IPH(ipha)) 1854 icmp_options_update(ipha); 1855 1856 bzero(&ixas, sizeof (ixas)); 1857 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1858 ixas.ixa_zoneid = ira->ira_zoneid; 1859 ixas.ixa_cred = kcred; 1860 ixas.ixa_cpid = NOPID; 1861 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1862 ixas.ixa_ifindex = 0; 1863 ixas.ixa_ipst = ipst; 1864 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1865 1866 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1867 /* 1868 * This packet should go out the same way as it 1869 * came in i.e in clear, independent of the IPsec policy 1870 * for transmitting packets. 1871 */ 1872 ixas.ixa_flags |= IXAF_NO_IPSEC; 1873 } else { 1874 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1876 /* Note: mp already consumed and ip_drop_packet done */ 1877 return; 1878 } 1879 } 1880 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1881 /* 1882 * Not one or our addresses (IRE_LOCALs), thus we let 1883 * ip_output_simple pick the source. 1884 */ 1885 ipha->ipha_src = INADDR_ANY; 1886 ixas.ixa_flags |= IXAF_SET_SOURCE; 1887 } 1888 /* Should we send with DF and use dce_pmtu? */ 1889 if (ipst->ips_ipv4_icmp_return_pmtu) { 1890 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1891 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1892 } 1893 1894 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1895 1896 (void) ip_output_simple(mp, &ixas); 1897 ixa_cleanup(&ixas); 1898 } 1899 1900 /* 1901 * Verify the ICMP messages for either for ICMP error or redirect packet. 1902 * The caller should have fully pulled up the message. If it's a redirect 1903 * packet, only basic checks on IP header will be done; otherwise, verify 1904 * the packet by looking at the included ULP header. 1905 * 1906 * Called before icmp_inbound_error_fanout_v4 is called. 1907 */ 1908 static boolean_t 1909 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1910 { 1911 ill_t *ill = ira->ira_ill; 1912 int hdr_length; 1913 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1914 conn_t *connp; 1915 ipha_t *ipha; /* Inner IP header */ 1916 1917 ipha = (ipha_t *)&icmph[1]; 1918 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1919 goto truncated; 1920 1921 hdr_length = IPH_HDR_LENGTH(ipha); 1922 1923 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1924 goto discard_pkt; 1925 1926 if (hdr_length < sizeof (ipha_t)) 1927 goto truncated; 1928 1929 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1930 goto truncated; 1931 1932 /* 1933 * Stop here for ICMP_REDIRECT. 1934 */ 1935 if (icmph->icmph_type == ICMP_REDIRECT) 1936 return (B_TRUE); 1937 1938 /* 1939 * ICMP errors only. 1940 */ 1941 switch (ipha->ipha_protocol) { 1942 case IPPROTO_UDP: 1943 /* 1944 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1945 * transport header. 1946 */ 1947 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1948 mp->b_wptr) 1949 goto truncated; 1950 break; 1951 case IPPROTO_TCP: { 1952 tcpha_t *tcpha; 1953 1954 /* 1955 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1956 * transport header. 1957 */ 1958 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1959 mp->b_wptr) 1960 goto truncated; 1961 1962 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1963 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1964 ipst); 1965 if (connp == NULL) 1966 goto discard_pkt; 1967 1968 if ((connp->conn_verifyicmp != NULL) && 1969 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1970 CONN_DEC_REF(connp); 1971 goto discard_pkt; 1972 } 1973 CONN_DEC_REF(connp); 1974 break; 1975 } 1976 case IPPROTO_SCTP: 1977 /* 1978 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1979 * transport header. 1980 */ 1981 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1982 mp->b_wptr) 1983 goto truncated; 1984 break; 1985 case IPPROTO_ESP: 1986 case IPPROTO_AH: 1987 break; 1988 case IPPROTO_ENCAP: 1989 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1990 mp->b_wptr) 1991 goto truncated; 1992 break; 1993 default: 1994 break; 1995 } 1996 1997 return (B_TRUE); 1998 1999 discard_pkt: 2000 /* Bogus ICMP error. */ 2001 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2002 return (B_FALSE); 2003 2004 truncated: 2005 /* We pulled up everthing already. Must be truncated */ 2006 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2007 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2008 return (B_FALSE); 2009 } 2010 2011 /* Table from RFC 1191 */ 2012 static int icmp_frag_size_table[] = 2013 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2014 2015 /* 2016 * Process received ICMP Packet too big. 2017 * Just handles the DCE create/update, including using the above table of 2018 * PMTU guesses. The caller is responsible for validating the packet before 2019 * passing it in and also to fanout the ICMP error to any matching transport 2020 * conns. Assumes the message has been fully pulled up and verified. 2021 * 2022 * Before getting here, the caller has called icmp_inbound_verify_v4() 2023 * that should have verified with ULP to prevent undoing the changes we're 2024 * going to make to DCE. For example, TCP might have verified that the packet 2025 * which generated error is in the send window. 2026 * 2027 * In some cases modified this MTU in the ICMP header packet; the caller 2028 * should pass to the matching ULP after this returns. 2029 */ 2030 static void 2031 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 2032 { 2033 dce_t *dce; 2034 int old_mtu; 2035 int mtu, orig_mtu; 2036 ipaddr_t dst; 2037 boolean_t disable_pmtud; 2038 ill_t *ill = ira->ira_ill; 2039 ip_stack_t *ipst = ill->ill_ipst; 2040 uint_t hdr_length; 2041 ipha_t *ipha; 2042 2043 /* Caller already pulled up everything. */ 2044 ipha = (ipha_t *)&icmph[1]; 2045 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2046 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2047 ASSERT(ill != NULL); 2048 2049 hdr_length = IPH_HDR_LENGTH(ipha); 2050 2051 /* 2052 * We handle path MTU for source routed packets since the DCE 2053 * is looked up using the final destination. 2054 */ 2055 dst = ip_get_dst(ipha); 2056 2057 dce = dce_lookup_and_add_v4(dst, ipst); 2058 if (dce == NULL) { 2059 /* Couldn't add a unique one - ENOMEM */ 2060 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 2061 ntohl(dst))); 2062 return; 2063 } 2064 2065 /* Check for MTU discovery advice as described in RFC 1191 */ 2066 mtu = ntohs(icmph->icmph_du_mtu); 2067 orig_mtu = mtu; 2068 disable_pmtud = B_FALSE; 2069 2070 mutex_enter(&dce->dce_lock); 2071 if (dce->dce_flags & DCEF_PMTU) 2072 old_mtu = dce->dce_pmtu; 2073 else 2074 old_mtu = ill->ill_mtu; 2075 2076 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2077 uint32_t length; 2078 int i; 2079 2080 /* 2081 * Use the table from RFC 1191 to figure out 2082 * the next "plateau" based on the length in 2083 * the original IP packet. 2084 */ 2085 length = ntohs(ipha->ipha_length); 2086 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 2087 uint32_t, length); 2088 if (old_mtu <= length && 2089 old_mtu >= length - hdr_length) { 2090 /* 2091 * Handle broken BSD 4.2 systems that 2092 * return the wrong ipha_length in ICMP 2093 * errors. 2094 */ 2095 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 2096 length, old_mtu)); 2097 length -= hdr_length; 2098 } 2099 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2100 if (length > icmp_frag_size_table[i]) 2101 break; 2102 } 2103 if (i == A_CNT(icmp_frag_size_table)) { 2104 /* Smaller than IP_MIN_MTU! */ 2105 ip1dbg(("Too big for packet size %d\n", 2106 length)); 2107 disable_pmtud = B_TRUE; 2108 mtu = ipst->ips_ip_pmtu_min; 2109 } else { 2110 mtu = icmp_frag_size_table[i]; 2111 ip1dbg(("Calculated mtu %d, packet size %d, " 2112 "before %d\n", mtu, length, old_mtu)); 2113 if (mtu < ipst->ips_ip_pmtu_min) { 2114 mtu = ipst->ips_ip_pmtu_min; 2115 disable_pmtud = B_TRUE; 2116 } 2117 } 2118 } 2119 if (disable_pmtud) 2120 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 2121 else 2122 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 2123 2124 dce->dce_pmtu = MIN(old_mtu, mtu); 2125 /* Prepare to send the new max frag size for the ULP. */ 2126 icmph->icmph_du_zero = 0; 2127 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 2128 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 2129 dce, int, orig_mtu, int, mtu); 2130 2131 /* We now have a PMTU for sure */ 2132 dce->dce_flags |= DCEF_PMTU; 2133 dce->dce_last_change_time = TICK_TO_SEC(lbolt64); 2134 mutex_exit(&dce->dce_lock); 2135 /* 2136 * After dropping the lock the new value is visible to everyone. 2137 * Then we bump the generation number so any cached values reinspect 2138 * the dce_t. 2139 */ 2140 dce_increment_generation(dce); 2141 dce_refrele(dce); 2142 } 2143 2144 /* 2145 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 2146 * calls this function. 2147 */ 2148 static mblk_t * 2149 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 2150 { 2151 int length; 2152 2153 ASSERT(mp->b_datap->db_type == M_DATA); 2154 2155 /* icmp_inbound_v4 has already pulled up the whole error packet */ 2156 ASSERT(mp->b_cont == NULL); 2157 2158 /* 2159 * The length that we want to overlay is the inner header 2160 * and what follows it. 2161 */ 2162 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2163 2164 /* 2165 * Overlay the inner header and whatever follows it over the 2166 * outer header. 2167 */ 2168 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2169 2170 /* Adjust for what we removed */ 2171 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2172 return (mp); 2173 } 2174 2175 /* 2176 * Try to pass the ICMP message upstream in case the ULP cares. 2177 * 2178 * If the packet that caused the ICMP error is secure, we send 2179 * it to AH/ESP to make sure that the attached packet has a 2180 * valid association. ipha in the code below points to the 2181 * IP header of the packet that caused the error. 2182 * 2183 * For IPsec cases, we let the next-layer-up (which has access to 2184 * cached policy on the conn_t, or can query the SPD directly) 2185 * subtract out any IPsec overhead if they must. We therefore make no 2186 * adjustments here for IPsec overhead. 2187 * 2188 * IFN could have been generated locally or by some router. 2189 * 2190 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2191 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2192 * This happens because IP adjusted its value of MTU on an 2193 * earlier IFN message and could not tell the upper layer, 2194 * the new adjusted value of MTU e.g. Packet was encrypted 2195 * or there was not enough information to fanout to upper 2196 * layers. Thus on the next outbound datagram, ire_send_wire 2197 * generates the IFN, where IPsec processing has *not* been 2198 * done. 2199 * 2200 * Note that we retain ixa_fragsize across IPsec thus once 2201 * we have picking ixa_fragsize and entered ipsec_out_process we do 2202 * no change the fragsize even if the path MTU changes before 2203 * we reach ip_output_post_ipsec. 2204 * 2205 * In the local case, IRAF_LOOPBACK will be set indicating 2206 * that IFN was generated locally. 2207 * 2208 * ROUTER : IFN could be secure or non-secure. 2209 * 2210 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2211 * packet in error has AH/ESP headers to validate the AH/ESP 2212 * headers. AH/ESP will verify whether there is a valid SA or 2213 * not and send it back. We will fanout again if we have more 2214 * data in the packet. 2215 * 2216 * If the packet in error does not have AH/ESP, we handle it 2217 * like any other case. 2218 * 2219 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2220 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2221 * valid SA or not and send it back. We will fanout again if 2222 * we have more data in the packet. 2223 * 2224 * If the packet in error does not have AH/ESP, we handle it 2225 * like any other case. 2226 * 2227 * The caller must have called icmp_inbound_verify_v4. 2228 */ 2229 static void 2230 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2231 { 2232 uint16_t *up; /* Pointer to ports in ULP header */ 2233 uint32_t ports; /* reversed ports for fanout */ 2234 ipha_t ripha; /* With reversed addresses */ 2235 ipha_t *ipha; /* Inner IP header */ 2236 uint_t hdr_length; /* Inner IP header length */ 2237 tcpha_t *tcpha; 2238 conn_t *connp; 2239 ill_t *ill = ira->ira_ill; 2240 ip_stack_t *ipst = ill->ill_ipst; 2241 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2242 ill_t *rill = ira->ira_rill; 2243 2244 /* Caller already pulled up everything. */ 2245 ipha = (ipha_t *)&icmph[1]; 2246 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2247 ASSERT(mp->b_cont == NULL); 2248 2249 hdr_length = IPH_HDR_LENGTH(ipha); 2250 ira->ira_protocol = ipha->ipha_protocol; 2251 2252 /* 2253 * We need a separate IP header with the source and destination 2254 * addresses reversed to do fanout/classification because the ipha in 2255 * the ICMP error is in the form we sent it out. 2256 */ 2257 ripha.ipha_src = ipha->ipha_dst; 2258 ripha.ipha_dst = ipha->ipha_src; 2259 ripha.ipha_protocol = ipha->ipha_protocol; 2260 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2261 2262 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2263 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2264 ntohl(ipha->ipha_dst), 2265 icmph->icmph_type, icmph->icmph_code)); 2266 2267 switch (ipha->ipha_protocol) { 2268 case IPPROTO_UDP: 2269 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2270 2271 /* Attempt to find a client stream based on port. */ 2272 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2273 ntohs(up[0]), ntohs(up[1]))); 2274 2275 /* Note that we send error to all matches. */ 2276 ira->ira_flags |= IRAF_ICMP_ERROR; 2277 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2278 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2279 return; 2280 2281 case IPPROTO_TCP: 2282 /* 2283 * Find a TCP client stream for this packet. 2284 * Note that we do a reverse lookup since the header is 2285 * in the form we sent it out. 2286 */ 2287 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2288 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2289 ipst); 2290 if (connp == NULL) 2291 goto discard_pkt; 2292 2293 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2294 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2295 mp = ipsec_check_inbound_policy(mp, connp, 2296 ipha, NULL, ira); 2297 if (mp == NULL) { 2298 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2299 /* Note that mp is NULL */ 2300 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2301 CONN_DEC_REF(connp); 2302 return; 2303 } 2304 } 2305 2306 ira->ira_flags |= IRAF_ICMP_ERROR; 2307 ira->ira_ill = ira->ira_rill = NULL; 2308 if (IPCL_IS_TCP(connp)) { 2309 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2310 connp->conn_recvicmp, connp, ira, SQ_FILL, 2311 SQTAG_TCP_INPUT_ICMP_ERR); 2312 } else { 2313 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2314 (connp->conn_recv)(connp, mp, NULL, ira); 2315 CONN_DEC_REF(connp); 2316 } 2317 ira->ira_ill = ill; 2318 ira->ira_rill = rill; 2319 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2320 return; 2321 2322 case IPPROTO_SCTP: 2323 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2324 /* Find a SCTP client stream for this packet. */ 2325 ((uint16_t *)&ports)[0] = up[1]; 2326 ((uint16_t *)&ports)[1] = up[0]; 2327 2328 ira->ira_flags |= IRAF_ICMP_ERROR; 2329 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2330 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2331 return; 2332 2333 case IPPROTO_ESP: 2334 case IPPROTO_AH: 2335 if (!ipsec_loaded(ipss)) { 2336 ip_proto_not_sup(mp, ira); 2337 return; 2338 } 2339 2340 if (ipha->ipha_protocol == IPPROTO_ESP) 2341 mp = ipsecesp_icmp_error(mp, ira); 2342 else 2343 mp = ipsecah_icmp_error(mp, ira); 2344 if (mp == NULL) 2345 return; 2346 2347 /* Just in case ipsec didn't preserve the NULL b_cont */ 2348 if (mp->b_cont != NULL) { 2349 if (!pullupmsg(mp, -1)) 2350 goto discard_pkt; 2351 } 2352 2353 /* 2354 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2355 * correct, but we don't use them any more here. 2356 * 2357 * If succesful, the mp has been modified to not include 2358 * the ESP/AH header so we can fanout to the ULP's icmp 2359 * error handler. 2360 */ 2361 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2362 goto truncated; 2363 2364 /* Verify the modified message before any further processes. */ 2365 ipha = (ipha_t *)mp->b_rptr; 2366 hdr_length = IPH_HDR_LENGTH(ipha); 2367 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2368 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2369 freemsg(mp); 2370 return; 2371 } 2372 2373 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2374 return; 2375 2376 case IPPROTO_ENCAP: { 2377 /* Look for self-encapsulated packets that caused an error */ 2378 ipha_t *in_ipha; 2379 2380 /* 2381 * Caller has verified that length has to be 2382 * at least the size of IP header. 2383 */ 2384 ASSERT(hdr_length >= sizeof (ipha_t)); 2385 /* 2386 * Check the sanity of the inner IP header like 2387 * we did for the outer header. 2388 */ 2389 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2390 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2391 goto discard_pkt; 2392 } 2393 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2394 goto discard_pkt; 2395 } 2396 /* Check for Self-encapsulated tunnels */ 2397 if (in_ipha->ipha_src == ipha->ipha_src && 2398 in_ipha->ipha_dst == ipha->ipha_dst) { 2399 2400 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2401 in_ipha); 2402 if (mp == NULL) 2403 goto discard_pkt; 2404 2405 /* 2406 * Just in case self_encap didn't preserve the NULL 2407 * b_cont 2408 */ 2409 if (mp->b_cont != NULL) { 2410 if (!pullupmsg(mp, -1)) 2411 goto discard_pkt; 2412 } 2413 /* 2414 * Note that ira_pktlen and ira_ip_hdr_length are no 2415 * longer correct, but we don't use them any more here. 2416 */ 2417 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2418 goto truncated; 2419 2420 /* 2421 * Verify the modified message before any further 2422 * processes. 2423 */ 2424 ipha = (ipha_t *)mp->b_rptr; 2425 hdr_length = IPH_HDR_LENGTH(ipha); 2426 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2427 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2428 freemsg(mp); 2429 return; 2430 } 2431 2432 /* 2433 * The packet in error is self-encapsualted. 2434 * And we are finding it further encapsulated 2435 * which we could not have possibly generated. 2436 */ 2437 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2438 goto discard_pkt; 2439 } 2440 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2441 return; 2442 } 2443 /* No self-encapsulated */ 2444 /* FALLTHRU */ 2445 } 2446 case IPPROTO_IPV6: 2447 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2448 &ripha.ipha_dst, ipst)) != NULL) { 2449 ira->ira_flags |= IRAF_ICMP_ERROR; 2450 connp->conn_recvicmp(connp, mp, NULL, ira); 2451 CONN_DEC_REF(connp); 2452 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2453 return; 2454 } 2455 /* 2456 * No IP tunnel is interested, fallthrough and see 2457 * if a raw socket will want it. 2458 */ 2459 /* FALLTHRU */ 2460 default: 2461 ira->ira_flags |= IRAF_ICMP_ERROR; 2462 ip_fanout_proto_v4(mp, &ripha, ira); 2463 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2464 return; 2465 } 2466 /* NOTREACHED */ 2467 discard_pkt: 2468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2469 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2470 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2471 freemsg(mp); 2472 return; 2473 2474 truncated: 2475 /* We pulled up everthing already. Must be truncated */ 2476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2477 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2478 freemsg(mp); 2479 } 2480 2481 /* 2482 * Common IP options parser. 2483 * 2484 * Setup routine: fill in *optp with options-parsing state, then 2485 * tail-call ipoptp_next to return the first option. 2486 */ 2487 uint8_t 2488 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2489 { 2490 uint32_t totallen; /* total length of all options */ 2491 2492 totallen = ipha->ipha_version_and_hdr_length - 2493 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2494 totallen <<= 2; 2495 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2496 optp->ipoptp_end = optp->ipoptp_next + totallen; 2497 optp->ipoptp_flags = 0; 2498 return (ipoptp_next(optp)); 2499 } 2500 2501 /* Like above but without an ipha_t */ 2502 uint8_t 2503 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2504 { 2505 optp->ipoptp_next = opt; 2506 optp->ipoptp_end = optp->ipoptp_next + totallen; 2507 optp->ipoptp_flags = 0; 2508 return (ipoptp_next(optp)); 2509 } 2510 2511 /* 2512 * Common IP options parser: extract next option. 2513 */ 2514 uint8_t 2515 ipoptp_next(ipoptp_t *optp) 2516 { 2517 uint8_t *end = optp->ipoptp_end; 2518 uint8_t *cur = optp->ipoptp_next; 2519 uint8_t opt, len, pointer; 2520 2521 /* 2522 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2523 * has been corrupted. 2524 */ 2525 ASSERT(cur <= end); 2526 2527 if (cur == end) 2528 return (IPOPT_EOL); 2529 2530 opt = cur[IPOPT_OPTVAL]; 2531 2532 /* 2533 * Skip any NOP options. 2534 */ 2535 while (opt == IPOPT_NOP) { 2536 cur++; 2537 if (cur == end) 2538 return (IPOPT_EOL); 2539 opt = cur[IPOPT_OPTVAL]; 2540 } 2541 2542 if (opt == IPOPT_EOL) 2543 return (IPOPT_EOL); 2544 2545 /* 2546 * Option requiring a length. 2547 */ 2548 if ((cur + 1) >= end) { 2549 optp->ipoptp_flags |= IPOPTP_ERROR; 2550 return (IPOPT_EOL); 2551 } 2552 len = cur[IPOPT_OLEN]; 2553 if (len < 2) { 2554 optp->ipoptp_flags |= IPOPTP_ERROR; 2555 return (IPOPT_EOL); 2556 } 2557 optp->ipoptp_cur = cur; 2558 optp->ipoptp_len = len; 2559 optp->ipoptp_next = cur + len; 2560 if (cur + len > end) { 2561 optp->ipoptp_flags |= IPOPTP_ERROR; 2562 return (IPOPT_EOL); 2563 } 2564 2565 /* 2566 * For the options which require a pointer field, make sure 2567 * its there, and make sure it points to either something 2568 * inside this option, or the end of the option. 2569 */ 2570 switch (opt) { 2571 case IPOPT_RR: 2572 case IPOPT_TS: 2573 case IPOPT_LSRR: 2574 case IPOPT_SSRR: 2575 if (len <= IPOPT_OFFSET) { 2576 optp->ipoptp_flags |= IPOPTP_ERROR; 2577 return (opt); 2578 } 2579 pointer = cur[IPOPT_OFFSET]; 2580 if (pointer - 1 > len) { 2581 optp->ipoptp_flags |= IPOPTP_ERROR; 2582 return (opt); 2583 } 2584 break; 2585 } 2586 2587 /* 2588 * Sanity check the pointer field based on the type of the 2589 * option. 2590 */ 2591 switch (opt) { 2592 case IPOPT_RR: 2593 case IPOPT_SSRR: 2594 case IPOPT_LSRR: 2595 if (pointer < IPOPT_MINOFF_SR) 2596 optp->ipoptp_flags |= IPOPTP_ERROR; 2597 break; 2598 case IPOPT_TS: 2599 if (pointer < IPOPT_MINOFF_IT) 2600 optp->ipoptp_flags |= IPOPTP_ERROR; 2601 /* 2602 * Note that the Internet Timestamp option also 2603 * contains two four bit fields (the Overflow field, 2604 * and the Flag field), which follow the pointer 2605 * field. We don't need to check that these fields 2606 * fall within the length of the option because this 2607 * was implicitely done above. We've checked that the 2608 * pointer value is at least IPOPT_MINOFF_IT, and that 2609 * it falls within the option. Since IPOPT_MINOFF_IT > 2610 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2611 */ 2612 ASSERT(len > IPOPT_POS_OV_FLG); 2613 break; 2614 } 2615 2616 return (opt); 2617 } 2618 2619 /* 2620 * Use the outgoing IP header to create an IP_OPTIONS option the way 2621 * it was passed down from the application. 2622 * 2623 * This is compatible with BSD in that it returns 2624 * the reverse source route with the final destination 2625 * as the last entry. The first 4 bytes of the option 2626 * will contain the final destination. 2627 */ 2628 int 2629 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2630 { 2631 ipoptp_t opts; 2632 uchar_t *opt; 2633 uint8_t optval; 2634 uint8_t optlen; 2635 uint32_t len = 0; 2636 uchar_t *buf1 = buf; 2637 uint32_t totallen; 2638 ipaddr_t dst; 2639 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2640 2641 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2642 return (0); 2643 2644 totallen = ipp->ipp_ipv4_options_len; 2645 if (totallen & 0x3) 2646 return (0); 2647 2648 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2649 len += IP_ADDR_LEN; 2650 bzero(buf1, IP_ADDR_LEN); 2651 2652 dst = connp->conn_faddr_v4; 2653 2654 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2655 optval != IPOPT_EOL; 2656 optval = ipoptp_next(&opts)) { 2657 int off; 2658 2659 opt = opts.ipoptp_cur; 2660 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2661 break; 2662 } 2663 optlen = opts.ipoptp_len; 2664 2665 switch (optval) { 2666 case IPOPT_SSRR: 2667 case IPOPT_LSRR: 2668 2669 /* 2670 * Insert destination as the first entry in the source 2671 * route and move down the entries on step. 2672 * The last entry gets placed at buf1. 2673 */ 2674 buf[IPOPT_OPTVAL] = optval; 2675 buf[IPOPT_OLEN] = optlen; 2676 buf[IPOPT_OFFSET] = optlen; 2677 2678 off = optlen - IP_ADDR_LEN; 2679 if (off < 0) { 2680 /* No entries in source route */ 2681 break; 2682 } 2683 /* Last entry in source route if not already set */ 2684 if (dst == INADDR_ANY) 2685 bcopy(opt + off, buf1, IP_ADDR_LEN); 2686 off -= IP_ADDR_LEN; 2687 2688 while (off > 0) { 2689 bcopy(opt + off, 2690 buf + off + IP_ADDR_LEN, 2691 IP_ADDR_LEN); 2692 off -= IP_ADDR_LEN; 2693 } 2694 /* ipha_dst into first slot */ 2695 bcopy(&dst, buf + off + IP_ADDR_LEN, 2696 IP_ADDR_LEN); 2697 buf += optlen; 2698 len += optlen; 2699 break; 2700 2701 default: 2702 bcopy(opt, buf, optlen); 2703 buf += optlen; 2704 len += optlen; 2705 break; 2706 } 2707 } 2708 done: 2709 /* Pad the resulting options */ 2710 while (len & 0x3) { 2711 *buf++ = IPOPT_EOL; 2712 len++; 2713 } 2714 return (len); 2715 } 2716 2717 /* 2718 * Update any record route or timestamp options to include this host. 2719 * Reverse any source route option. 2720 * This routine assumes that the options are well formed i.e. that they 2721 * have already been checked. 2722 */ 2723 static void 2724 icmp_options_update(ipha_t *ipha) 2725 { 2726 ipoptp_t opts; 2727 uchar_t *opt; 2728 uint8_t optval; 2729 ipaddr_t src; /* Our local address */ 2730 ipaddr_t dst; 2731 2732 ip2dbg(("icmp_options_update\n")); 2733 src = ipha->ipha_src; 2734 dst = ipha->ipha_dst; 2735 2736 for (optval = ipoptp_first(&opts, ipha); 2737 optval != IPOPT_EOL; 2738 optval = ipoptp_next(&opts)) { 2739 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2740 opt = opts.ipoptp_cur; 2741 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2742 optval, opts.ipoptp_len)); 2743 switch (optval) { 2744 int off1, off2; 2745 case IPOPT_SSRR: 2746 case IPOPT_LSRR: 2747 /* 2748 * Reverse the source route. The first entry 2749 * should be the next to last one in the current 2750 * source route (the last entry is our address). 2751 * The last entry should be the final destination. 2752 */ 2753 off1 = IPOPT_MINOFF_SR - 1; 2754 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2755 if (off2 < 0) { 2756 /* No entries in source route */ 2757 ip1dbg(( 2758 "icmp_options_update: bad src route\n")); 2759 break; 2760 } 2761 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2762 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2763 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2764 off2 -= IP_ADDR_LEN; 2765 2766 while (off1 < off2) { 2767 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2768 bcopy((char *)opt + off2, (char *)opt + off1, 2769 IP_ADDR_LEN); 2770 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2771 off1 += IP_ADDR_LEN; 2772 off2 -= IP_ADDR_LEN; 2773 } 2774 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2775 break; 2776 } 2777 } 2778 } 2779 2780 /* 2781 * Process received ICMP Redirect messages. 2782 * Assumes the caller has verified that the headers are in the pulled up mblk. 2783 * Consumes mp. 2784 */ 2785 static void 2786 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2787 { 2788 ire_t *ire, *nire; 2789 ire_t *prev_ire; 2790 ipaddr_t src, dst, gateway; 2791 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2792 ipha_t *inner_ipha; /* Inner IP header */ 2793 2794 /* Caller already pulled up everything. */ 2795 inner_ipha = (ipha_t *)&icmph[1]; 2796 src = ipha->ipha_src; 2797 dst = inner_ipha->ipha_dst; 2798 gateway = icmph->icmph_rd_gateway; 2799 /* Make sure the new gateway is reachable somehow. */ 2800 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2801 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2802 /* 2803 * Make sure we had a route for the dest in question and that 2804 * that route was pointing to the old gateway (the source of the 2805 * redirect packet.) 2806 * Note: this merely says that there is some IRE which matches that 2807 * gateway; not that the longest match matches that gateway. 2808 */ 2809 prev_ire = ire_ftable_lookup_v4(dst, 0, src, 0, NULL, ALL_ZONES, 2810 NULL, MATCH_IRE_GW, 0, ipst, NULL); 2811 /* 2812 * Check that 2813 * the redirect was not from ourselves 2814 * the new gateway and the old gateway are directly reachable 2815 */ 2816 if (prev_ire == NULL || ire == NULL || 2817 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2818 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2819 !(ire->ire_type & IRE_IF_ALL)) { 2820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2821 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2822 freemsg(mp); 2823 if (ire != NULL) 2824 ire_refrele(ire); 2825 if (prev_ire != NULL) 2826 ire_refrele(prev_ire); 2827 return; 2828 } 2829 2830 ire_refrele(prev_ire); 2831 ire_refrele(ire); 2832 2833 /* 2834 * TODO: more precise handling for cases 0, 2, 3, the latter two 2835 * require TOS routing 2836 */ 2837 switch (icmph->icmph_code) { 2838 case 0: 2839 case 1: 2840 /* TODO: TOS specificity for cases 2 and 3 */ 2841 case 2: 2842 case 3: 2843 break; 2844 default: 2845 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2846 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2847 freemsg(mp); 2848 return; 2849 } 2850 /* 2851 * Create a Route Association. This will allow us to remember that 2852 * someone we believe told us to use the particular gateway. 2853 */ 2854 ire = ire_create( 2855 (uchar_t *)&dst, /* dest addr */ 2856 (uchar_t *)&ip_g_all_ones, /* mask */ 2857 (uchar_t *)&gateway, /* gateway addr */ 2858 IRE_HOST, 2859 NULL, /* ill */ 2860 ALL_ZONES, 2861 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2862 NULL, /* tsol_gc_t */ 2863 ipst); 2864 2865 if (ire == NULL) { 2866 freemsg(mp); 2867 return; 2868 } 2869 nire = ire_add(ire); 2870 /* Check if it was a duplicate entry */ 2871 if (nire != NULL && nire != ire) { 2872 ASSERT(nire->ire_identical_ref > 1); 2873 ire_delete(nire); 2874 ire_refrele(nire); 2875 nire = NULL; 2876 } 2877 ire = nire; 2878 if (ire != NULL) { 2879 ire_refrele(ire); /* Held in ire_add */ 2880 2881 /* tell routing sockets that we received a redirect */ 2882 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2883 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2884 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2885 } 2886 2887 /* 2888 * Delete any existing IRE_HOST type redirect ires for this destination. 2889 * This together with the added IRE has the effect of 2890 * modifying an existing redirect. 2891 */ 2892 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2893 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2894 if (prev_ire != NULL) { 2895 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2896 ire_delete(prev_ire); 2897 ire_refrele(prev_ire); 2898 } 2899 2900 freemsg(mp); 2901 } 2902 2903 /* 2904 * Generate an ICMP parameter problem message. 2905 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2906 * constructed by the caller. 2907 */ 2908 static void 2909 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2910 { 2911 icmph_t icmph; 2912 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2913 2914 mp = icmp_pkt_err_ok(mp, ira); 2915 if (mp == NULL) 2916 return; 2917 2918 bzero(&icmph, sizeof (icmph_t)); 2919 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2920 icmph.icmph_pp_ptr = ptr; 2921 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2922 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2923 } 2924 2925 /* 2926 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2927 * the ICMP header pointed to by "stuff". (May be called as writer.) 2928 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2929 * an icmp error packet can be sent. 2930 * Assigns an appropriate source address to the packet. If ipha_dst is 2931 * one of our addresses use it for source. Otherwise let ip_output_simple 2932 * pick the source address. 2933 */ 2934 static void 2935 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2936 { 2937 ipaddr_t dst; 2938 icmph_t *icmph; 2939 ipha_t *ipha; 2940 uint_t len_needed; 2941 size_t msg_len; 2942 mblk_t *mp1; 2943 ipaddr_t src; 2944 ire_t *ire; 2945 ip_xmit_attr_t ixas; 2946 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2947 2948 ipha = (ipha_t *)mp->b_rptr; 2949 2950 bzero(&ixas, sizeof (ixas)); 2951 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2952 ixas.ixa_zoneid = ira->ira_zoneid; 2953 ixas.ixa_ifindex = 0; 2954 ixas.ixa_ipst = ipst; 2955 ixas.ixa_cred = kcred; 2956 ixas.ixa_cpid = NOPID; 2957 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2958 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2959 2960 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2961 /* 2962 * Apply IPsec based on how IPsec was applied to 2963 * the packet that had the error. 2964 * 2965 * If it was an outbound packet that caused the ICMP 2966 * error, then the caller will have setup the IRA 2967 * appropriately. 2968 */ 2969 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2970 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2971 /* Note: mp already consumed and ip_drop_packet done */ 2972 return; 2973 } 2974 } else { 2975 /* 2976 * This is in clear. The icmp message we are building 2977 * here should go out in clear, independent of our policy. 2978 */ 2979 ixas.ixa_flags |= IXAF_NO_IPSEC; 2980 } 2981 2982 /* Remember our eventual destination */ 2983 dst = ipha->ipha_src; 2984 2985 /* 2986 * If the packet was for one of our unicast addresses, make 2987 * sure we respond with that as the source. Otherwise 2988 * have ip_output_simple pick the source address. 2989 */ 2990 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2991 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2992 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2993 if (ire != NULL) { 2994 ire_refrele(ire); 2995 src = ipha->ipha_dst; 2996 } else { 2997 src = INADDR_ANY; 2998 ixas.ixa_flags |= IXAF_SET_SOURCE; 2999 } 3000 3001 /* 3002 * Check if we can send back more then 8 bytes in addition to 3003 * the IP header. We try to send 64 bytes of data and the internal 3004 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3005 */ 3006 len_needed = IPH_HDR_LENGTH(ipha); 3007 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3008 ipha->ipha_protocol == IPPROTO_IPV6) { 3009 if (!pullupmsg(mp, -1)) { 3010 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3011 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 3012 freemsg(mp); 3013 return; 3014 } 3015 ipha = (ipha_t *)mp->b_rptr; 3016 3017 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3018 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3019 len_needed)); 3020 } else { 3021 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3022 3023 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3024 len_needed += ip_hdr_length_v6(mp, ip6h); 3025 } 3026 } 3027 len_needed += ipst->ips_ip_icmp_return; 3028 msg_len = msgdsize(mp); 3029 if (msg_len > len_needed) { 3030 (void) adjmsg(mp, len_needed - msg_len); 3031 msg_len = len_needed; 3032 } 3033 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 3034 if (mp1 == NULL) { 3035 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3036 freemsg(mp); 3037 return; 3038 } 3039 mp1->b_cont = mp; 3040 mp = mp1; 3041 3042 /* 3043 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 3044 * node generates be accepted in peace by all on-host destinations. 3045 * If we do NOT assume that all on-host destinations trust 3046 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3047 * (Look for IXAF_TRUSTED_ICMP). 3048 */ 3049 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 3050 3051 ipha = (ipha_t *)mp->b_rptr; 3052 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3053 *ipha = icmp_ipha; 3054 ipha->ipha_src = src; 3055 ipha->ipha_dst = dst; 3056 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3057 msg_len += sizeof (icmp_ipha) + len; 3058 if (msg_len > IP_MAXPACKET) { 3059 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3060 msg_len = IP_MAXPACKET; 3061 } 3062 ipha->ipha_length = htons((uint16_t)msg_len); 3063 icmph = (icmph_t *)&ipha[1]; 3064 bcopy(stuff, icmph, len); 3065 icmph->icmph_checksum = 0; 3066 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3067 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3068 3069 (void) ip_output_simple(mp, &ixas); 3070 ixa_cleanup(&ixas); 3071 } 3072 3073 /* 3074 * Determine if an ICMP error packet can be sent given the rate limit. 3075 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3076 * in milliseconds) and a burst size. Burst size number of packets can 3077 * be sent arbitrarely closely spaced. 3078 * The state is tracked using two variables to implement an approximate 3079 * token bucket filter: 3080 * icmp_pkt_err_last - lbolt value when the last burst started 3081 * icmp_pkt_err_sent - number of packets sent in current burst 3082 */ 3083 boolean_t 3084 icmp_err_rate_limit(ip_stack_t *ipst) 3085 { 3086 clock_t now = TICK_TO_MSEC(lbolt); 3087 uint_t refilled; /* Number of packets refilled in tbf since last */ 3088 /* Guard against changes by loading into local variable */ 3089 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3090 3091 if (err_interval == 0) 3092 return (B_FALSE); 3093 3094 if (ipst->ips_icmp_pkt_err_last > now) { 3095 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3096 ipst->ips_icmp_pkt_err_last = 0; 3097 ipst->ips_icmp_pkt_err_sent = 0; 3098 } 3099 /* 3100 * If we are in a burst update the token bucket filter. 3101 * Update the "last" time to be close to "now" but make sure 3102 * we don't loose precision. 3103 */ 3104 if (ipst->ips_icmp_pkt_err_sent != 0) { 3105 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3106 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3107 ipst->ips_icmp_pkt_err_sent = 0; 3108 } else { 3109 ipst->ips_icmp_pkt_err_sent -= refilled; 3110 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3111 } 3112 } 3113 if (ipst->ips_icmp_pkt_err_sent == 0) { 3114 /* Start of new burst */ 3115 ipst->ips_icmp_pkt_err_last = now; 3116 } 3117 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3118 ipst->ips_icmp_pkt_err_sent++; 3119 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3120 ipst->ips_icmp_pkt_err_sent)); 3121 return (B_FALSE); 3122 } 3123 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3124 return (B_TRUE); 3125 } 3126 3127 /* 3128 * Check if it is ok to send an IPv4 ICMP error packet in 3129 * response to the IPv4 packet in mp. 3130 * Free the message and return null if no 3131 * ICMP error packet should be sent. 3132 */ 3133 static mblk_t * 3134 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 3135 { 3136 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3137 icmph_t *icmph; 3138 ipha_t *ipha; 3139 uint_t len_needed; 3140 3141 if (!mp) 3142 return (NULL); 3143 ipha = (ipha_t *)mp->b_rptr; 3144 if (ip_csum_hdr(ipha)) { 3145 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3146 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3147 freemsg(mp); 3148 return (NULL); 3149 } 3150 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3151 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3152 CLASSD(ipha->ipha_dst) || 3153 CLASSD(ipha->ipha_src) || 3154 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3155 /* Note: only errors to the fragment with offset 0 */ 3156 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3157 freemsg(mp); 3158 return (NULL); 3159 } 3160 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3161 /* 3162 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3163 * errors in response to any ICMP errors. 3164 */ 3165 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3166 if (mp->b_wptr - mp->b_rptr < len_needed) { 3167 if (!pullupmsg(mp, len_needed)) { 3168 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3169 freemsg(mp); 3170 return (NULL); 3171 } 3172 ipha = (ipha_t *)mp->b_rptr; 3173 } 3174 icmph = (icmph_t *) 3175 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3176 switch (icmph->icmph_type) { 3177 case ICMP_DEST_UNREACHABLE: 3178 case ICMP_SOURCE_QUENCH: 3179 case ICMP_TIME_EXCEEDED: 3180 case ICMP_PARAM_PROBLEM: 3181 case ICMP_REDIRECT: 3182 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3183 freemsg(mp); 3184 return (NULL); 3185 default: 3186 break; 3187 } 3188 } 3189 /* 3190 * If this is a labeled system, then check to see if we're allowed to 3191 * send a response to this particular sender. If not, then just drop. 3192 */ 3193 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3194 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3195 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3196 freemsg(mp); 3197 return (NULL); 3198 } 3199 if (icmp_err_rate_limit(ipst)) { 3200 /* 3201 * Only send ICMP error packets every so often. 3202 * This should be done on a per port/source basis, 3203 * but for now this will suffice. 3204 */ 3205 freemsg(mp); 3206 return (NULL); 3207 } 3208 return (mp); 3209 } 3210 3211 /* 3212 * Called when a packet was sent out the same link that it arrived on. 3213 * Check if it is ok to send a redirect and then send it. 3214 */ 3215 void 3216 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3217 ip_recv_attr_t *ira) 3218 { 3219 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3220 ipaddr_t src, nhop; 3221 mblk_t *mp1; 3222 ire_t *nhop_ire; 3223 3224 /* 3225 * Check the source address to see if it originated 3226 * on the same logical subnet it is going back out on. 3227 * If so, we should be able to send it a redirect. 3228 * Avoid sending a redirect if the destination 3229 * is directly connected (i.e., we matched an IRE_ONLINK), 3230 * or if the packet was source routed out this interface. 3231 * 3232 * We avoid sending a redirect if the 3233 * destination is directly connected 3234 * because it is possible that multiple 3235 * IP subnets may have been configured on 3236 * the link, and the source may not 3237 * be on the same subnet as ip destination, 3238 * even though they are on the same 3239 * physical link. 3240 */ 3241 if ((ire->ire_type & IRE_ONLINK) || 3242 ip_source_routed(ipha, ipst)) 3243 return; 3244 3245 nhop_ire = ire_nexthop(ire); 3246 if (nhop_ire == NULL) 3247 return; 3248 3249 nhop = nhop_ire->ire_addr; 3250 3251 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3252 ire_t *ire2; 3253 3254 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3255 mutex_enter(&nhop_ire->ire_lock); 3256 ire2 = nhop_ire->ire_dep_parent; 3257 if (ire2 != NULL) 3258 ire_refhold(ire2); 3259 mutex_exit(&nhop_ire->ire_lock); 3260 ire_refrele(nhop_ire); 3261 nhop_ire = ire2; 3262 } 3263 if (nhop_ire == NULL) 3264 return; 3265 3266 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3267 3268 src = ipha->ipha_src; 3269 3270 /* 3271 * We look at the interface ire for the nexthop, 3272 * to see if ipha_src is in the same subnet 3273 * as the nexthop. 3274 */ 3275 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3276 /* 3277 * The source is directly connected. 3278 */ 3279 mp1 = copymsg(mp); 3280 if (mp1 != NULL) { 3281 icmp_send_redirect(mp1, nhop, ira); 3282 } 3283 } 3284 ire_refrele(nhop_ire); 3285 } 3286 3287 /* 3288 * Generate an ICMP redirect message. 3289 */ 3290 static void 3291 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3292 { 3293 icmph_t icmph; 3294 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3295 3296 mp = icmp_pkt_err_ok(mp, ira); 3297 if (mp == NULL) 3298 return; 3299 3300 bzero(&icmph, sizeof (icmph_t)); 3301 icmph.icmph_type = ICMP_REDIRECT; 3302 icmph.icmph_code = 1; 3303 icmph.icmph_rd_gateway = gateway; 3304 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3305 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3306 } 3307 3308 /* 3309 * Generate an ICMP time exceeded message. 3310 */ 3311 void 3312 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3313 { 3314 icmph_t icmph; 3315 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3316 3317 mp = icmp_pkt_err_ok(mp, ira); 3318 if (mp == NULL) 3319 return; 3320 3321 bzero(&icmph, sizeof (icmph_t)); 3322 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3323 icmph.icmph_code = code; 3324 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3325 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3326 } 3327 3328 /* 3329 * Generate an ICMP unreachable message. 3330 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3331 * constructed by the caller. 3332 */ 3333 void 3334 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3335 { 3336 icmph_t icmph; 3337 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3338 3339 mp = icmp_pkt_err_ok(mp, ira); 3340 if (mp == NULL) 3341 return; 3342 3343 bzero(&icmph, sizeof (icmph_t)); 3344 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3345 icmph.icmph_code = code; 3346 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3347 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3348 } 3349 3350 /* 3351 * Latch in the IPsec state for a stream based the policy in the listener 3352 * and the actions in the ip_recv_attr_t. 3353 * Called directly from TCP and SCTP. 3354 */ 3355 boolean_t 3356 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3357 { 3358 ASSERT(lconnp->conn_policy != NULL); 3359 ASSERT(connp->conn_policy == NULL); 3360 3361 IPPH_REFHOLD(lconnp->conn_policy); 3362 connp->conn_policy = lconnp->conn_policy; 3363 3364 if (ira->ira_ipsec_action != NULL) { 3365 if (connp->conn_latch == NULL) { 3366 connp->conn_latch = iplatch_create(); 3367 if (connp->conn_latch == NULL) 3368 return (B_FALSE); 3369 } 3370 ipsec_latch_inbound(connp, ira); 3371 } 3372 return (B_TRUE); 3373 } 3374 3375 /* 3376 * Verify whether or not the IP address is a valid local address. 3377 * Could be a unicast, including one for a down interface. 3378 * If allow_mcbc then a multicast or broadcast address is also 3379 * acceptable. 3380 * 3381 * In the case of a broadcast/multicast address, however, the 3382 * upper protocol is expected to reset the src address 3383 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3384 * no packets are emitted with broadcast/multicast address as 3385 * source address (that violates hosts requirements RFC 1122) 3386 * The addresses valid for bind are: 3387 * (1) - INADDR_ANY (0) 3388 * (2) - IP address of an UP interface 3389 * (3) - IP address of a DOWN interface 3390 * (4) - valid local IP broadcast addresses. In this case 3391 * the conn will only receive packets destined to 3392 * the specified broadcast address. 3393 * (5) - a multicast address. In this case 3394 * the conn will only receive packets destined to 3395 * the specified multicast address. Note: the 3396 * application still has to issue an 3397 * IP_ADD_MEMBERSHIP socket option. 3398 * 3399 * In all the above cases, the bound address must be valid in the current zone. 3400 * When the address is loopback, multicast or broadcast, there might be many 3401 * matching IREs so bind has to look up based on the zone. 3402 */ 3403 ip_laddr_t 3404 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3405 ip_stack_t *ipst, boolean_t allow_mcbc) 3406 { 3407 ire_t *src_ire; 3408 3409 ASSERT(src_addr != INADDR_ANY); 3410 3411 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3412 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3413 3414 /* 3415 * If an address other than in6addr_any is requested, 3416 * we verify that it is a valid address for bind 3417 * Note: Following code is in if-else-if form for 3418 * readability compared to a condition check. 3419 */ 3420 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3421 /* 3422 * (2) Bind to address of local UP interface 3423 */ 3424 ire_refrele(src_ire); 3425 return (IPVL_UNICAST_UP); 3426 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3427 /* 3428 * (4) Bind to broadcast address 3429 */ 3430 ire_refrele(src_ire); 3431 if (allow_mcbc) 3432 return (IPVL_BCAST); 3433 else 3434 return (IPVL_BAD); 3435 } else if (CLASSD(src_addr)) { 3436 /* (5) bind to multicast address. */ 3437 if (src_ire != NULL) 3438 ire_refrele(src_ire); 3439 3440 if (allow_mcbc) 3441 return (IPVL_MCAST); 3442 else 3443 return (IPVL_BAD); 3444 } else { 3445 ipif_t *ipif; 3446 3447 /* 3448 * (3) Bind to address of local DOWN interface? 3449 * (ipif_lookup_addr() looks up all interfaces 3450 * but we do not get here for UP interfaces 3451 * - case (2) above) 3452 */ 3453 if (src_ire != NULL) 3454 ire_refrele(src_ire); 3455 3456 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3457 if (ipif == NULL) 3458 return (IPVL_BAD); 3459 3460 /* Not a useful source? */ 3461 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3462 ipif_refrele(ipif); 3463 return (IPVL_BAD); 3464 } 3465 ipif_refrele(ipif); 3466 return (IPVL_UNICAST_DOWN); 3467 } 3468 } 3469 3470 /* 3471 * Insert in the bind fanout for IPv4 and IPv6. 3472 * The caller should already have used ip_laddr_verify_v*() before calling 3473 * this. 3474 */ 3475 int 3476 ip_laddr_fanout_insert(conn_t *connp) 3477 { 3478 int error; 3479 3480 /* 3481 * Allow setting new policies. For example, disconnects result 3482 * in us being called. As we would have set conn_policy_cached 3483 * to B_TRUE before, we should set it to B_FALSE, so that policy 3484 * can change after the disconnect. 3485 */ 3486 connp->conn_policy_cached = B_FALSE; 3487 3488 error = ipcl_bind_insert(connp); 3489 if (error != 0) { 3490 if (connp->conn_anon_port) { 3491 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3492 connp->conn_mlp_type, connp->conn_proto, 3493 ntohs(connp->conn_lport), B_FALSE); 3494 } 3495 connp->conn_mlp_type = mlptSingle; 3496 } 3497 return (error); 3498 } 3499 3500 /* 3501 * Verify that both the source and destination addresses are valid. If 3502 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3503 * i.e. have no route to it. Protocols like TCP want to verify destination 3504 * reachability, while tunnels do not. 3505 * 3506 * Determine the route, the interface, and (optionally) the source address 3507 * to use to reach a given destination. 3508 * Note that we allow connect to broadcast and multicast addresses when 3509 * IPDF_ALLOW_MCBC is set. 3510 * first_hop and dst_addr are normally the same, but if source routing 3511 * they will differ; in that case the first_hop is what we'll use for the 3512 * routing lookup but the dce and label checks will be done on dst_addr, 3513 * 3514 * If uinfo is set, then we fill in the best available information 3515 * we have for the destination. This is based on (in priority order) any 3516 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3517 * ill_mtu. 3518 * 3519 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3520 * always do the label check on dst_addr. 3521 */ 3522 int 3523 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3524 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3525 { 3526 ire_t *ire = NULL; 3527 int error = 0; 3528 ipaddr_t setsrc; /* RTF_SETSRC */ 3529 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3530 ip_stack_t *ipst = ixa->ixa_ipst; 3531 dce_t *dce; 3532 uint_t pmtu; 3533 uint_t generation; 3534 nce_t *nce; 3535 ill_t *ill = NULL; 3536 boolean_t multirt = B_FALSE; 3537 3538 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3539 3540 /* 3541 * We never send to zero; the ULPs map it to the loopback address. 3542 * We can't allow it since we use zero to mean unitialized in some 3543 * places. 3544 */ 3545 ASSERT(dst_addr != INADDR_ANY); 3546 3547 if (is_system_labeled()) { 3548 ts_label_t *tsl = NULL; 3549 3550 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3551 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3552 if (error != 0) 3553 return (error); 3554 if (tsl != NULL) { 3555 /* Update the label */ 3556 ip_xmit_attr_replace_tsl(ixa, tsl); 3557 } 3558 } 3559 3560 setsrc = INADDR_ANY; 3561 /* 3562 * Select a route; For IPMP interfaces, we would only select 3563 * a "hidden" route (i.e., going through a specific under_ill) 3564 * if ixa_ifindex has been specified. 3565 */ 3566 ire = ip_select_route_v4(firsthop, ixa, &generation, &setsrc, &error, 3567 &multirt); 3568 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3569 if (error != 0) 3570 goto bad_addr; 3571 3572 /* 3573 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3574 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3575 * Otherwise the destination needn't be reachable. 3576 * 3577 * If we match on a reject or black hole, then we've got a 3578 * local failure. May as well fail out the connect() attempt, 3579 * since it's never going to succeed. 3580 */ 3581 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3582 /* 3583 * If we're verifying destination reachability, we always want 3584 * to complain here. 3585 * 3586 * If we're not verifying destination reachability but the 3587 * destination has a route, we still want to fail on the 3588 * temporary address and broadcast address tests. 3589 * 3590 * In both cases do we let the code continue so some reasonable 3591 * information is returned to the caller. That enables the 3592 * caller to use (and even cache) the IRE. conn_ip_ouput will 3593 * use the generation mismatch path to check for the unreachable 3594 * case thereby avoiding any specific check in the main path. 3595 */ 3596 ASSERT(generation == IRE_GENERATION_VERIFY); 3597 if (flags & IPDF_VERIFY_DST) { 3598 /* 3599 * Set errno but continue to set up ixa_ire to be 3600 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3601 * That allows callers to use ip_output to get an 3602 * ICMP error back. 3603 */ 3604 if (!(ire->ire_type & IRE_HOST)) 3605 error = ENETUNREACH; 3606 else 3607 error = EHOSTUNREACH; 3608 } 3609 } 3610 3611 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3612 !(flags & IPDF_ALLOW_MCBC)) { 3613 ire_refrele(ire); 3614 ire = ire_reject(ipst, B_FALSE); 3615 generation = IRE_GENERATION_VERIFY; 3616 error = ENETUNREACH; 3617 } 3618 3619 /* Cache things */ 3620 if (ixa->ixa_ire != NULL) 3621 ire_refrele_notr(ixa->ixa_ire); 3622 #ifdef DEBUG 3623 ire_refhold_notr(ire); 3624 ire_refrele(ire); 3625 #endif 3626 ixa->ixa_ire = ire; 3627 ixa->ixa_ire_generation = generation; 3628 3629 /* 3630 * For multicast with multirt we have a flag passed back from 3631 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3632 * possible multicast address. 3633 * We also need a flag for multicast since we can't check 3634 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3635 */ 3636 if (multirt) { 3637 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3638 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3639 } else { 3640 ixa->ixa_postfragfn = ire->ire_postfragfn; 3641 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3642 } 3643 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3644 /* Get an nce to cache. */ 3645 nce = ire_to_nce(ire, firsthop, NULL); 3646 if (nce == NULL) { 3647 /* Allocation failure? */ 3648 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3649 } else { 3650 if (ixa->ixa_nce != NULL) 3651 nce_refrele(ixa->ixa_nce); 3652 ixa->ixa_nce = nce; 3653 } 3654 } 3655 3656 /* 3657 * We use use ire_nexthop_ill to avoid the under ipmp 3658 * interface for source address selection. Note that for ipmp 3659 * probe packets, ixa_ifindex would have been specified, and 3660 * the ip_select_route() invocation would have picked an ire 3661 * will ire_ill pointing at an under interface. 3662 */ 3663 ill = ire_nexthop_ill(ire); 3664 3665 /* 3666 * If the source address is a loopback address, the 3667 * destination had best be local or multicast. 3668 * If we are sending to an IRE_LOCAL using a loopback source then 3669 * it had better be the same zoneid. 3670 */ 3671 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3672 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3673 ire = NULL; /* Stored in ixa_ire */ 3674 error = EADDRNOTAVAIL; 3675 goto bad_addr; 3676 } 3677 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3678 ire = NULL; /* Stored in ixa_ire */ 3679 error = EADDRNOTAVAIL; 3680 goto bad_addr; 3681 } 3682 } 3683 if (ire->ire_type & IRE_BROADCAST) { 3684 /* 3685 * If the ULP didn't have a specified source, then we 3686 * make sure we reselect the source when sending 3687 * broadcasts out different interfaces. 3688 */ 3689 if (flags & IPDF_SELECT_SRC) 3690 ixa->ixa_flags |= IXAF_SET_SOURCE; 3691 else 3692 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3693 } 3694 3695 /* 3696 * Does the caller want us to pick a source address? 3697 */ 3698 if (flags & IPDF_SELECT_SRC) { 3699 ipaddr_t src_addr; 3700 3701 /* If unreachable we have no ill but need some source */ 3702 if (ill == NULL) { 3703 src_addr = htonl(INADDR_LOOPBACK); 3704 /* Make sure we look for a better source address */ 3705 generation = SRC_GENERATION_VERIFY; 3706 } else { 3707 error = ip_select_source_v4(ill, setsrc, dst_addr, 3708 ixa->ixa_multicast_ifaddr, zoneid, 3709 ipst, &src_addr, &generation, NULL); 3710 if (error != 0) { 3711 ire = NULL; /* Stored in ixa_ire */ 3712 goto bad_addr; 3713 } 3714 } 3715 3716 /* 3717 * We allow the source address to to down. 3718 * However, we check that we don't use the loopback address 3719 * as a source when sending out on the wire. 3720 */ 3721 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3722 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3723 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3724 ire = NULL; /* Stored in ixa_ire */ 3725 error = EADDRNOTAVAIL; 3726 goto bad_addr; 3727 } 3728 3729 *src_addrp = src_addr; 3730 ixa->ixa_src_generation = generation; 3731 } 3732 3733 if (flags & IPDF_UNIQUE_DCE) { 3734 /* Fallback to the default dce if allocation fails */ 3735 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3736 if (dce != NULL) 3737 generation = dce->dce_generation; 3738 else 3739 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3740 } else { 3741 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3742 } 3743 ASSERT(dce != NULL); 3744 if (ixa->ixa_dce != NULL) 3745 dce_refrele_notr(ixa->ixa_dce); 3746 #ifdef DEBUG 3747 dce_refhold_notr(dce); 3748 dce_refrele(dce); 3749 #endif 3750 ixa->ixa_dce = dce; 3751 ixa->ixa_dce_generation = generation; 3752 3753 /* 3754 * Make sure we don't leave an unreachable ixa_nce in place 3755 * since ip_select_route is used when we unplumb i.e., remove 3756 * references on ixa_ire, ixa_nce, and ixa_dce. 3757 */ 3758 nce = ixa->ixa_nce; 3759 if (nce != NULL && nce->nce_is_condemned) { 3760 nce_refrele(nce); 3761 ixa->ixa_nce = NULL; 3762 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3763 } 3764 3765 /* 3766 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3767 * However, we can't do it for IPv4 multicast or broadcast. 3768 */ 3769 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3770 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3771 3772 /* 3773 * Set initial value for fragmentation limit. Either conn_ip_output 3774 * or ULP might updates it when there are routing changes. 3775 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3776 */ 3777 pmtu = ip_get_pmtu(ixa); 3778 ixa->ixa_fragsize = pmtu; 3779 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3780 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3781 ixa->ixa_pmtu = pmtu; 3782 3783 /* 3784 * Extract information useful for some transports. 3785 * First we look for DCE metrics. Then we take what we have in 3786 * the metrics in the route, where the offlink is used if we have 3787 * one. 3788 */ 3789 if (uinfo != NULL) { 3790 bzero(uinfo, sizeof (*uinfo)); 3791 3792 if (dce->dce_flags & DCEF_UINFO) 3793 *uinfo = dce->dce_uinfo; 3794 3795 rts_merge_metrics(uinfo, &ire->ire_metrics); 3796 3797 /* Allow ire_metrics to decrease the path MTU from above */ 3798 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3799 uinfo->iulp_mtu = pmtu; 3800 3801 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3802 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3803 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3804 } 3805 3806 if (ill != NULL) 3807 ill_refrele(ill); 3808 3809 return (error); 3810 3811 bad_addr: 3812 if (ire != NULL) 3813 ire_refrele(ire); 3814 3815 if (ill != NULL) 3816 ill_refrele(ill); 3817 3818 /* 3819 * Make sure we don't leave an unreachable ixa_nce in place 3820 * since ip_select_route is used when we unplumb i.e., remove 3821 * references on ixa_ire, ixa_nce, and ixa_dce. 3822 */ 3823 nce = ixa->ixa_nce; 3824 if (nce != NULL && nce->nce_is_condemned) { 3825 nce_refrele(nce); 3826 ixa->ixa_nce = NULL; 3827 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3828 } 3829 3830 return (error); 3831 } 3832 3833 3834 /* 3835 * Get the base MTU for the case when path MTU discovery is not used. 3836 * Takes the MTU of the IRE into account. 3837 */ 3838 uint_t 3839 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3840 { 3841 uint_t mtu = ill->ill_mtu; 3842 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3843 3844 if (iremtu != 0 && iremtu < mtu) 3845 mtu = iremtu; 3846 3847 return (mtu); 3848 } 3849 3850 /* 3851 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3852 * Assumes that ixa_ire, dce, and nce have already been set up. 3853 * 3854 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3855 * We avoid path MTU discovery if it is disabled with ndd. 3856 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3857 * 3858 * NOTE: We also used to turn it off for source routed packets. That 3859 * is no longer required since the dce is per final destination. 3860 */ 3861 uint_t 3862 ip_get_pmtu(ip_xmit_attr_t *ixa) 3863 { 3864 ip_stack_t *ipst = ixa->ixa_ipst; 3865 dce_t *dce; 3866 nce_t *nce; 3867 ire_t *ire; 3868 uint_t pmtu; 3869 3870 ire = ixa->ixa_ire; 3871 dce = ixa->ixa_dce; 3872 nce = ixa->ixa_nce; 3873 3874 /* 3875 * If path MTU discovery has been turned off by ndd, then we ignore 3876 * any dce_pmtu and for IPv4 we will not set DF. 3877 */ 3878 if (!ipst->ips_ip_path_mtu_discovery) 3879 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3880 3881 pmtu = IP_MAXPACKET; 3882 /* 3883 * Decide whether whether IPv4 sets DF 3884 * For IPv6 "no DF" means to use the 1280 mtu 3885 */ 3886 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3887 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3888 } else { 3889 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3890 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3891 pmtu = IPV6_MIN_MTU; 3892 } 3893 3894 /* Check if the PMTU is to old before we use it */ 3895 if ((dce->dce_flags & DCEF_PMTU) && 3896 TICK_TO_SEC(lbolt64) - dce->dce_last_change_time > 3897 ipst->ips_ip_pathmtu_interval) { 3898 /* 3899 * Older than 20 minutes. Drop the path MTU information. 3900 */ 3901 mutex_enter(&dce->dce_lock); 3902 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3903 dce->dce_last_change_time = TICK_TO_SEC(lbolt64); 3904 mutex_exit(&dce->dce_lock); 3905 dce_increment_generation(dce); 3906 } 3907 3908 /* The metrics on the route can lower the path MTU */ 3909 if (ire->ire_metrics.iulp_mtu != 0 && 3910 ire->ire_metrics.iulp_mtu < pmtu) 3911 pmtu = ire->ire_metrics.iulp_mtu; 3912 3913 /* 3914 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3915 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3916 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3917 */ 3918 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3919 if (dce->dce_flags & DCEF_PMTU) { 3920 if (dce->dce_pmtu < pmtu) 3921 pmtu = dce->dce_pmtu; 3922 3923 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3924 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3925 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3926 } else { 3927 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3928 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3929 } 3930 } else { 3931 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3932 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3933 } 3934 } 3935 3936 /* 3937 * If we have an IRE_LOCAL we use the loopback mtu instead of 3938 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3939 * mtu as IRE_LOOPBACK. 3940 */ 3941 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3942 uint_t loopback_mtu; 3943 3944 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3945 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3946 3947 if (loopback_mtu < pmtu) 3948 pmtu = loopback_mtu; 3949 } else if (nce != NULL) { 3950 /* 3951 * Make sure we don't exceed the interface MTU. 3952 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3953 * an ill. We'd use the above IP_MAXPACKET in that case just 3954 * to tell the transport something larger than zero. 3955 */ 3956 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3957 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3958 if (nce->nce_common->ncec_ill != nce->nce_ill && 3959 nce->nce_ill->ill_mtu < pmtu) { 3960 /* 3961 * for interfaces in an IPMP group, the mtu of 3962 * the nce_ill (under_ill) could be different 3963 * from the mtu of the ncec_ill, so we take the 3964 * min of the two. 3965 */ 3966 pmtu = nce->nce_ill->ill_mtu; 3967 } 3968 } 3969 3970 /* 3971 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3972 * Only applies to IPv6. 3973 */ 3974 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3975 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3976 switch (ixa->ixa_use_min_mtu) { 3977 case IPV6_USE_MIN_MTU_MULTICAST: 3978 if (ire->ire_type & IRE_MULTICAST) 3979 pmtu = IPV6_MIN_MTU; 3980 break; 3981 case IPV6_USE_MIN_MTU_ALWAYS: 3982 pmtu = IPV6_MIN_MTU; 3983 break; 3984 case IPV6_USE_MIN_MTU_NEVER: 3985 break; 3986 } 3987 } else { 3988 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3989 if (ire->ire_type & IRE_MULTICAST) 3990 pmtu = IPV6_MIN_MTU; 3991 } 3992 } 3993 3994 /* 3995 * After receiving an ICMPv6 "packet too big" message with a 3996 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3997 * will insert a 8-byte fragment header in every packet. We compensate 3998 * for those cases by returning a smaller path MTU to the ULP. 3999 * 4000 * In the case of CGTP then ip_output will add a fragment header. 4001 * Make sure there is room for it by telling a smaller number 4002 * to the transport. 4003 * 4004 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 4005 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 4006 * which is the size of the packets it can send. 4007 */ 4008 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 4009 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 4010 (ire->ire_flags & RTF_MULTIRT) || 4011 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 4012 pmtu -= sizeof (ip6_frag_t); 4013 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 4014 } 4015 } 4016 4017 return (pmtu); 4018 } 4019 4020 /* 4021 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4022 * the final piece where we don't. Return a pointer to the first mblk in the 4023 * result, and update the pointer to the next mblk to chew on. If anything 4024 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4025 * NULL pointer. 4026 */ 4027 mblk_t * 4028 ip_carve_mp(mblk_t **mpp, ssize_t len) 4029 { 4030 mblk_t *mp0; 4031 mblk_t *mp1; 4032 mblk_t *mp2; 4033 4034 if (!len || !mpp || !(mp0 = *mpp)) 4035 return (NULL); 4036 /* If we aren't going to consume the first mblk, we need a dup. */ 4037 if (mp0->b_wptr - mp0->b_rptr > len) { 4038 mp1 = dupb(mp0); 4039 if (mp1) { 4040 /* Partition the data between the two mblks. */ 4041 mp1->b_wptr = mp1->b_rptr + len; 4042 mp0->b_rptr = mp1->b_wptr; 4043 /* 4044 * after adjustments if mblk not consumed is now 4045 * unaligned, try to align it. If this fails free 4046 * all messages and let upper layer recover. 4047 */ 4048 if (!OK_32PTR(mp0->b_rptr)) { 4049 if (!pullupmsg(mp0, -1)) { 4050 freemsg(mp0); 4051 freemsg(mp1); 4052 *mpp = NULL; 4053 return (NULL); 4054 } 4055 } 4056 } 4057 return (mp1); 4058 } 4059 /* Eat through as many mblks as we need to get len bytes. */ 4060 len -= mp0->b_wptr - mp0->b_rptr; 4061 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4062 if (mp2->b_wptr - mp2->b_rptr > len) { 4063 /* 4064 * We won't consume the entire last mblk. Like 4065 * above, dup and partition it. 4066 */ 4067 mp1->b_cont = dupb(mp2); 4068 mp1 = mp1->b_cont; 4069 if (!mp1) { 4070 /* 4071 * Trouble. Rather than go to a lot of 4072 * trouble to clean up, we free the messages. 4073 * This won't be any worse than losing it on 4074 * the wire. 4075 */ 4076 freemsg(mp0); 4077 freemsg(mp2); 4078 *mpp = NULL; 4079 return (NULL); 4080 } 4081 mp1->b_wptr = mp1->b_rptr + len; 4082 mp2->b_rptr = mp1->b_wptr; 4083 /* 4084 * after adjustments if mblk not consumed is now 4085 * unaligned, try to align it. If this fails free 4086 * all messages and let upper layer recover. 4087 */ 4088 if (!OK_32PTR(mp2->b_rptr)) { 4089 if (!pullupmsg(mp2, -1)) { 4090 freemsg(mp0); 4091 freemsg(mp2); 4092 *mpp = NULL; 4093 return (NULL); 4094 } 4095 } 4096 *mpp = mp2; 4097 return (mp0); 4098 } 4099 /* Decrement len by the amount we just got. */ 4100 len -= mp2->b_wptr - mp2->b_rptr; 4101 } 4102 /* 4103 * len should be reduced to zero now. If not our caller has 4104 * screwed up. 4105 */ 4106 if (len) { 4107 /* Shouldn't happen! */ 4108 freemsg(mp0); 4109 *mpp = NULL; 4110 return (NULL); 4111 } 4112 /* 4113 * We consumed up to exactly the end of an mblk. Detach the part 4114 * we are returning from the rest of the chain. 4115 */ 4116 mp1->b_cont = NULL; 4117 *mpp = mp2; 4118 return (mp0); 4119 } 4120 4121 /* The ill stream is being unplumbed. Called from ip_close */ 4122 int 4123 ip_modclose(ill_t *ill) 4124 { 4125 boolean_t success; 4126 ipsq_t *ipsq; 4127 ipif_t *ipif; 4128 queue_t *q = ill->ill_rq; 4129 ip_stack_t *ipst = ill->ill_ipst; 4130 int i; 4131 arl_ill_common_t *ai = ill->ill_common; 4132 4133 /* 4134 * The punlink prior to this may have initiated a capability 4135 * negotiation. But ipsq_enter will block until that finishes or 4136 * times out. 4137 */ 4138 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4139 4140 /* 4141 * Open/close/push/pop is guaranteed to be single threaded 4142 * per stream by STREAMS. FS guarantees that all references 4143 * from top are gone before close is called. So there can't 4144 * be another close thread that has set CONDEMNED on this ill. 4145 * and cause ipsq_enter to return failure. 4146 */ 4147 ASSERT(success); 4148 ipsq = ill->ill_phyint->phyint_ipsq; 4149 4150 /* 4151 * Mark it condemned. No new reference will be made to this ill. 4152 * Lookup functions will return an error. Threads that try to 4153 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4154 * that the refcnt will drop down to zero. 4155 */ 4156 mutex_enter(&ill->ill_lock); 4157 ill->ill_state_flags |= ILL_CONDEMNED; 4158 for (ipif = ill->ill_ipif; ipif != NULL; 4159 ipif = ipif->ipif_next) { 4160 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4161 } 4162 /* 4163 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4164 * returns error if ILL_CONDEMNED is set 4165 */ 4166 cv_broadcast(&ill->ill_cv); 4167 mutex_exit(&ill->ill_lock); 4168 4169 /* 4170 * Send all the deferred DLPI messages downstream which came in 4171 * during the small window right before ipsq_enter(). We do this 4172 * without waiting for the ACKs because all the ACKs for M_PROTO 4173 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4174 */ 4175 ill_dlpi_send_deferred(ill); 4176 4177 /* 4178 * Shut down fragmentation reassembly. 4179 * ill_frag_timer won't start a timer again. 4180 * Now cancel any existing timer 4181 */ 4182 (void) untimeout(ill->ill_frag_timer_id); 4183 (void) ill_frag_timeout(ill, 0); 4184 4185 /* 4186 * Call ill_delete to bring down the ipifs, ilms and ill on 4187 * this ill. Then wait for the refcnts to drop to zero. 4188 * ill_is_freeable checks whether the ill is really quiescent. 4189 * Then make sure that threads that are waiting to enter the 4190 * ipsq have seen the error returned by ipsq_enter and have 4191 * gone away. Then we call ill_delete_tail which does the 4192 * DL_UNBIND_REQ with the driver and then qprocsoff. 4193 */ 4194 ill_delete(ill); 4195 mutex_enter(&ill->ill_lock); 4196 while (!ill_is_freeable(ill)) 4197 cv_wait(&ill->ill_cv, &ill->ill_lock); 4198 4199 while (ill->ill_waiters) 4200 cv_wait(&ill->ill_cv, &ill->ill_lock); 4201 4202 mutex_exit(&ill->ill_lock); 4203 4204 /* 4205 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4206 * it held until the end of the function since the cleanup 4207 * below needs to be able to use the ip_stack_t. 4208 */ 4209 netstack_hold(ipst->ips_netstack); 4210 4211 /* qprocsoff is done via ill_delete_tail */ 4212 ill_delete_tail(ill); 4213 /* 4214 * synchronously wait for arp stream to unbind. After this, we 4215 * cannot get any data packets up from the driver. 4216 */ 4217 arp_unbind_complete(ill); 4218 ASSERT(ill->ill_ipst == NULL); 4219 4220 /* 4221 * Walk through all conns and qenable those that have queued data. 4222 * Close synchronization needs this to 4223 * be done to ensure that all upper layers blocked 4224 * due to flow control to the closing device 4225 * get unblocked. 4226 */ 4227 ip1dbg(("ip_wsrv: walking\n")); 4228 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4229 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4230 } 4231 4232 /* 4233 * ai can be null if this is an IPv6 ill, or if the IPv4 4234 * stream is being torn down before ARP was plumbed (e.g., 4235 * /sbin/ifconfig plumbing a stream twice, and encountering 4236 * an error 4237 */ 4238 if (ai != NULL) { 4239 ASSERT(!ill->ill_isv6); 4240 mutex_enter(&ai->ai_lock); 4241 ai->ai_ill = NULL; 4242 if (ai->ai_arl == NULL) { 4243 mutex_destroy(&ai->ai_lock); 4244 kmem_free(ai, sizeof (*ai)); 4245 } else { 4246 cv_signal(&ai->ai_ill_unplumb_done); 4247 mutex_exit(&ai->ai_lock); 4248 } 4249 } 4250 4251 mutex_enter(&ipst->ips_ip_mi_lock); 4252 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4253 mutex_exit(&ipst->ips_ip_mi_lock); 4254 4255 /* 4256 * credp could be null if the open didn't succeed and ip_modopen 4257 * itself calls ip_close. 4258 */ 4259 if (ill->ill_credp != NULL) 4260 crfree(ill->ill_credp); 4261 4262 mutex_destroy(&ill->ill_saved_ire_lock); 4263 mutex_destroy(&ill->ill_lock); 4264 rw_destroy(&ill->ill_mcast_lock); 4265 mutex_destroy(&ill->ill_mcast_serializer); 4266 list_destroy(&ill->ill_nce); 4267 4268 /* 4269 * Now we are done with the module close pieces that 4270 * need the netstack_t. 4271 */ 4272 netstack_rele(ipst->ips_netstack); 4273 4274 mi_close_free((IDP)ill); 4275 q->q_ptr = WR(q)->q_ptr = NULL; 4276 4277 ipsq_exit(ipsq); 4278 4279 return (0); 4280 } 4281 4282 /* 4283 * This is called as part of close() for IP, UDP, ICMP, and RTS 4284 * in order to quiesce the conn. 4285 */ 4286 void 4287 ip_quiesce_conn(conn_t *connp) 4288 { 4289 boolean_t drain_cleanup_reqd = B_FALSE; 4290 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4291 boolean_t ilg_cleanup_reqd = B_FALSE; 4292 ip_stack_t *ipst; 4293 4294 ASSERT(!IPCL_IS_TCP(connp)); 4295 ipst = connp->conn_netstack->netstack_ip; 4296 4297 /* 4298 * Mark the conn as closing, and this conn must not be 4299 * inserted in future into any list. Eg. conn_drain_insert(), 4300 * won't insert this conn into the conn_drain_list. 4301 * 4302 * conn_idl, and conn_ilg cannot get set henceforth. 4303 */ 4304 mutex_enter(&connp->conn_lock); 4305 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4306 connp->conn_state_flags |= CONN_CLOSING; 4307 if (connp->conn_idl != NULL) 4308 drain_cleanup_reqd = B_TRUE; 4309 if (connp->conn_oper_pending_ill != NULL) 4310 conn_ioctl_cleanup_reqd = B_TRUE; 4311 if (connp->conn_dhcpinit_ill != NULL) { 4312 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4313 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4314 ill_set_inputfn(connp->conn_dhcpinit_ill); 4315 connp->conn_dhcpinit_ill = NULL; 4316 } 4317 if (connp->conn_ilg != NULL) 4318 ilg_cleanup_reqd = B_TRUE; 4319 mutex_exit(&connp->conn_lock); 4320 4321 if (conn_ioctl_cleanup_reqd) 4322 conn_ioctl_cleanup(connp); 4323 4324 if (is_system_labeled() && connp->conn_anon_port) { 4325 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4326 connp->conn_mlp_type, connp->conn_proto, 4327 ntohs(connp->conn_lport), B_FALSE); 4328 connp->conn_anon_port = 0; 4329 } 4330 connp->conn_mlp_type = mlptSingle; 4331 4332 /* 4333 * Remove this conn from any fanout list it is on. 4334 * and then wait for any threads currently operating 4335 * on this endpoint to finish 4336 */ 4337 ipcl_hash_remove(connp); 4338 4339 /* 4340 * Remove this conn from the drain list, and do 4341 * any other cleanup that may be required. 4342 * (Only non-tcp conns may have a non-null conn_idl. 4343 * TCP conns are never flow controlled, and 4344 * conn_idl will be null) 4345 */ 4346 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4347 mutex_enter(&connp->conn_idl->idl_lock); 4348 conn_drain_tail(connp, B_TRUE); 4349 mutex_exit(&connp->conn_idl->idl_lock); 4350 } 4351 4352 if (connp == ipst->ips_ip_g_mrouter) 4353 (void) ip_mrouter_done(ipst); 4354 4355 if (ilg_cleanup_reqd) 4356 ilg_delete_all(connp); 4357 4358 /* 4359 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4360 * callers from write side can't be there now because close 4361 * is in progress. The only other caller is ipcl_walk 4362 * which checks for the condemned flag. 4363 */ 4364 mutex_enter(&connp->conn_lock); 4365 connp->conn_state_flags |= CONN_CONDEMNED; 4366 while (connp->conn_ref != 1) 4367 cv_wait(&connp->conn_cv, &connp->conn_lock); 4368 connp->conn_state_flags |= CONN_QUIESCED; 4369 mutex_exit(&connp->conn_lock); 4370 } 4371 4372 /* ARGSUSED */ 4373 int 4374 ip_close(queue_t *q, int flags) 4375 { 4376 conn_t *connp; 4377 4378 /* 4379 * Call the appropriate delete routine depending on whether this is 4380 * a module or device. 4381 */ 4382 if (WR(q)->q_next != NULL) { 4383 /* This is a module close */ 4384 return (ip_modclose((ill_t *)q->q_ptr)); 4385 } 4386 4387 connp = q->q_ptr; 4388 ip_quiesce_conn(connp); 4389 4390 qprocsoff(q); 4391 4392 /* 4393 * Now we are truly single threaded on this stream, and can 4394 * delete the things hanging off the connp, and finally the connp. 4395 * We removed this connp from the fanout list, it cannot be 4396 * accessed thru the fanouts, and we already waited for the 4397 * conn_ref to drop to 0. We are already in close, so 4398 * there cannot be any other thread from the top. qprocsoff 4399 * has completed, and service has completed or won't run in 4400 * future. 4401 */ 4402 ASSERT(connp->conn_ref == 1); 4403 4404 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4405 4406 connp->conn_ref--; 4407 ipcl_conn_destroy(connp); 4408 4409 q->q_ptr = WR(q)->q_ptr = NULL; 4410 return (0); 4411 } 4412 4413 /* 4414 * Wapper around putnext() so that ip_rts_request can merely use 4415 * conn_recv. 4416 */ 4417 /*ARGSUSED2*/ 4418 static void 4419 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4420 { 4421 conn_t *connp = (conn_t *)arg1; 4422 4423 putnext(connp->conn_rq, mp); 4424 } 4425 4426 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4427 /* ARGSUSED */ 4428 static void 4429 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4430 { 4431 freemsg(mp); 4432 } 4433 4434 /* 4435 * Called when the module is about to be unloaded 4436 */ 4437 void 4438 ip_ddi_destroy(void) 4439 { 4440 tnet_fini(); 4441 4442 icmp_ddi_g_destroy(); 4443 rts_ddi_g_destroy(); 4444 udp_ddi_g_destroy(); 4445 sctp_ddi_g_destroy(); 4446 tcp_ddi_g_destroy(); 4447 ilb_ddi_g_destroy(); 4448 dce_g_destroy(); 4449 ipsec_policy_g_destroy(); 4450 ipcl_g_destroy(); 4451 ip_net_g_destroy(); 4452 ip_ire_g_fini(); 4453 inet_minor_destroy(ip_minor_arena_sa); 4454 #if defined(_LP64) 4455 inet_minor_destroy(ip_minor_arena_la); 4456 #endif 4457 4458 #ifdef DEBUG 4459 list_destroy(&ip_thread_list); 4460 rw_destroy(&ip_thread_rwlock); 4461 tsd_destroy(&ip_thread_data); 4462 #endif 4463 4464 netstack_unregister(NS_IP); 4465 } 4466 4467 /* 4468 * First step in cleanup. 4469 */ 4470 /* ARGSUSED */ 4471 static void 4472 ip_stack_shutdown(netstackid_t stackid, void *arg) 4473 { 4474 ip_stack_t *ipst = (ip_stack_t *)arg; 4475 4476 #ifdef NS_DEBUG 4477 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4478 #endif 4479 4480 /* 4481 * Perform cleanup for special interfaces (loopback and IPMP). 4482 */ 4483 ip_interface_cleanup(ipst); 4484 4485 /* 4486 * The *_hook_shutdown()s start the process of notifying any 4487 * consumers that things are going away.... nothing is destroyed. 4488 */ 4489 ipv4_hook_shutdown(ipst); 4490 ipv6_hook_shutdown(ipst); 4491 arp_hook_shutdown(ipst); 4492 4493 mutex_enter(&ipst->ips_capab_taskq_lock); 4494 ipst->ips_capab_taskq_quit = B_TRUE; 4495 cv_signal(&ipst->ips_capab_taskq_cv); 4496 mutex_exit(&ipst->ips_capab_taskq_lock); 4497 } 4498 4499 /* 4500 * Free the IP stack instance. 4501 */ 4502 static void 4503 ip_stack_fini(netstackid_t stackid, void *arg) 4504 { 4505 ip_stack_t *ipst = (ip_stack_t *)arg; 4506 int ret; 4507 4508 #ifdef NS_DEBUG 4509 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4510 #endif 4511 /* 4512 * At this point, all of the notifications that the events and 4513 * protocols are going away have been run, meaning that we can 4514 * now set about starting to clean things up. 4515 */ 4516 ipobs_fini(ipst); 4517 ipv4_hook_destroy(ipst); 4518 ipv6_hook_destroy(ipst); 4519 arp_hook_destroy(ipst); 4520 ip_net_destroy(ipst); 4521 4522 mutex_destroy(&ipst->ips_capab_taskq_lock); 4523 cv_destroy(&ipst->ips_capab_taskq_cv); 4524 4525 ipmp_destroy(ipst); 4526 rw_destroy(&ipst->ips_srcid_lock); 4527 4528 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4529 ipst->ips_ip_mibkp = NULL; 4530 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4531 ipst->ips_icmp_mibkp = NULL; 4532 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4533 ipst->ips_ip_kstat = NULL; 4534 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4535 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4536 ipst->ips_ip6_kstat = NULL; 4537 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4538 4539 nd_free(&ipst->ips_ip_g_nd); 4540 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 4541 ipst->ips_param_arr = NULL; 4542 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 4543 ipst->ips_ndp_arr = NULL; 4544 4545 dce_stack_destroy(ipst); 4546 ip_mrouter_stack_destroy(ipst); 4547 4548 mutex_destroy(&ipst->ips_ip_mi_lock); 4549 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4550 rw_destroy(&ipst->ips_ip_g_nd_lock); 4551 4552 ret = untimeout(ipst->ips_igmp_timeout_id); 4553 if (ret == -1) { 4554 ASSERT(ipst->ips_igmp_timeout_id == 0); 4555 } else { 4556 ASSERT(ipst->ips_igmp_timeout_id != 0); 4557 ipst->ips_igmp_timeout_id = 0; 4558 } 4559 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4560 if (ret == -1) { 4561 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4562 } else { 4563 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4564 ipst->ips_igmp_slowtimeout_id = 0; 4565 } 4566 ret = untimeout(ipst->ips_mld_timeout_id); 4567 if (ret == -1) { 4568 ASSERT(ipst->ips_mld_timeout_id == 0); 4569 } else { 4570 ASSERT(ipst->ips_mld_timeout_id != 0); 4571 ipst->ips_mld_timeout_id = 0; 4572 } 4573 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4574 if (ret == -1) { 4575 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4576 } else { 4577 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4578 ipst->ips_mld_slowtimeout_id = 0; 4579 } 4580 4581 mutex_destroy(&ipst->ips_igmp_timer_lock); 4582 mutex_destroy(&ipst->ips_mld_timer_lock); 4583 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4584 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4585 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4586 rw_destroy(&ipst->ips_ill_g_lock); 4587 4588 ip_ire_fini(ipst); 4589 ip6_asp_free(ipst); 4590 conn_drain_fini(ipst); 4591 ipcl_destroy(ipst); 4592 4593 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4594 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4595 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4596 ipst->ips_ndp4 = NULL; 4597 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4598 ipst->ips_ndp6 = NULL; 4599 4600 if (ipst->ips_loopback_ksp != NULL) { 4601 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4602 ipst->ips_loopback_ksp = NULL; 4603 } 4604 4605 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4606 ipst->ips_phyint_g_list = NULL; 4607 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4608 ipst->ips_ill_g_heads = NULL; 4609 4610 ldi_ident_release(ipst->ips_ldi_ident); 4611 kmem_free(ipst, sizeof (*ipst)); 4612 } 4613 4614 /* 4615 * This function is called from the TSD destructor, and is used to debug 4616 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4617 * details. 4618 */ 4619 static void 4620 ip_thread_exit(void *phash) 4621 { 4622 th_hash_t *thh = phash; 4623 4624 rw_enter(&ip_thread_rwlock, RW_WRITER); 4625 list_remove(&ip_thread_list, thh); 4626 rw_exit(&ip_thread_rwlock); 4627 mod_hash_destroy_hash(thh->thh_hash); 4628 kmem_free(thh, sizeof (*thh)); 4629 } 4630 4631 /* 4632 * Called when the IP kernel module is loaded into the kernel 4633 */ 4634 void 4635 ip_ddi_init(void) 4636 { 4637 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4638 4639 /* 4640 * For IP and TCP the minor numbers should start from 2 since we have 4 4641 * initial devices: ip, ip6, tcp, tcp6. 4642 */ 4643 /* 4644 * If this is a 64-bit kernel, then create two separate arenas - 4645 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4646 * other for socket apps in the range 2^^18 through 2^^32-1. 4647 */ 4648 ip_minor_arena_la = NULL; 4649 ip_minor_arena_sa = NULL; 4650 #if defined(_LP64) 4651 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4652 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4653 cmn_err(CE_PANIC, 4654 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4655 } 4656 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4657 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4658 cmn_err(CE_PANIC, 4659 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4660 } 4661 #else 4662 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4663 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4664 cmn_err(CE_PANIC, 4665 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4666 } 4667 #endif 4668 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4669 4670 ipcl_g_init(); 4671 ip_ire_g_init(); 4672 ip_net_g_init(); 4673 4674 #ifdef DEBUG 4675 tsd_create(&ip_thread_data, ip_thread_exit); 4676 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4677 list_create(&ip_thread_list, sizeof (th_hash_t), 4678 offsetof(th_hash_t, thh_link)); 4679 #endif 4680 ipsec_policy_g_init(); 4681 tcp_ddi_g_init(); 4682 sctp_ddi_g_init(); 4683 dce_g_init(); 4684 4685 /* 4686 * We want to be informed each time a stack is created or 4687 * destroyed in the kernel, so we can maintain the 4688 * set of udp_stack_t's. 4689 */ 4690 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4691 ip_stack_fini); 4692 4693 tnet_init(); 4694 4695 udp_ddi_g_init(); 4696 rts_ddi_g_init(); 4697 icmp_ddi_g_init(); 4698 ilb_ddi_g_init(); 4699 } 4700 4701 /* 4702 * Initialize the IP stack instance. 4703 */ 4704 static void * 4705 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4706 { 4707 ip_stack_t *ipst; 4708 ipparam_t *pa; 4709 ipndp_t *na; 4710 major_t major; 4711 4712 #ifdef NS_DEBUG 4713 printf("ip_stack_init(stack %d)\n", stackid); 4714 #endif 4715 4716 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4717 ipst->ips_netstack = ns; 4718 4719 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4720 KM_SLEEP); 4721 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4722 KM_SLEEP); 4723 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4724 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4725 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4726 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4727 4728 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4729 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4730 ipst->ips_igmp_deferred_next = INFINITY; 4731 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4732 ipst->ips_mld_deferred_next = INFINITY; 4733 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4734 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4735 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4736 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4737 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4738 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4739 4740 ipcl_init(ipst); 4741 ip_ire_init(ipst); 4742 ip6_asp_init(ipst); 4743 ipif_init(ipst); 4744 conn_drain_init(ipst); 4745 ip_mrouter_stack_init(ipst); 4746 dce_stack_init(ipst); 4747 4748 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 4749 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 4750 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 4751 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 4752 4753 ipst->ips_ip_multirt_log_interval = 1000; 4754 4755 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 4756 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 4757 ipst->ips_ill_index = 1; 4758 4759 ipst->ips_saved_ip_g_forward = -1; 4760 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4761 4762 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 4763 ipst->ips_param_arr = pa; 4764 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 4765 4766 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 4767 ipst->ips_ndp_arr = na; 4768 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 4769 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 4770 (caddr_t)&ipst->ips_ip_g_forward; 4771 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 4772 (caddr_t)&ipst->ips_ipv6_forward; 4773 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 4774 "ip_cgtp_filter") == 0); 4775 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 4776 (caddr_t)&ipst->ips_ip_cgtp_filter; 4777 4778 (void) ip_param_register(&ipst->ips_ip_g_nd, 4779 ipst->ips_param_arr, A_CNT(lcl_param_arr), 4780 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 4781 4782 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4783 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4784 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4785 ipst->ips_ip6_kstat = 4786 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4787 4788 ipst->ips_ip_src_id = 1; 4789 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4790 4791 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4792 4793 ip_net_init(ipst, ns); 4794 ipv4_hook_init(ipst); 4795 ipv6_hook_init(ipst); 4796 arp_hook_init(ipst); 4797 ipmp_init(ipst); 4798 ipobs_init(ipst); 4799 4800 /* 4801 * Create the taskq dispatcher thread and initialize related stuff. 4802 */ 4803 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4804 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4805 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4806 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4807 4808 major = mod_name_to_major(INET_NAME); 4809 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4810 return (ipst); 4811 } 4812 4813 /* 4814 * Allocate and initialize a DLPI template of the specified length. (May be 4815 * called as writer.) 4816 */ 4817 mblk_t * 4818 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4819 { 4820 mblk_t *mp; 4821 4822 mp = allocb(len, BPRI_MED); 4823 if (!mp) 4824 return (NULL); 4825 4826 /* 4827 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4828 * of which we don't seem to use) are sent with M_PCPROTO, and 4829 * that other DLPI are M_PROTO. 4830 */ 4831 if (prim == DL_INFO_REQ) { 4832 mp->b_datap->db_type = M_PCPROTO; 4833 } else { 4834 mp->b_datap->db_type = M_PROTO; 4835 } 4836 4837 mp->b_wptr = mp->b_rptr + len; 4838 bzero(mp->b_rptr, len); 4839 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4840 return (mp); 4841 } 4842 4843 /* 4844 * Allocate and initialize a DLPI notification. (May be called as writer.) 4845 */ 4846 mblk_t * 4847 ip_dlnotify_alloc(uint_t notification, uint_t data) 4848 { 4849 dl_notify_ind_t *notifyp; 4850 mblk_t *mp; 4851 4852 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4853 return (NULL); 4854 4855 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4856 notifyp->dl_notification = notification; 4857 notifyp->dl_data = data; 4858 return (mp); 4859 } 4860 4861 /* 4862 * Debug formatting routine. Returns a character string representation of the 4863 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4864 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4865 * 4866 * Once the ndd table-printing interfaces are removed, this can be changed to 4867 * standard dotted-decimal form. 4868 */ 4869 char * 4870 ip_dot_addr(ipaddr_t addr, char *buf) 4871 { 4872 uint8_t *ap = (uint8_t *)&addr; 4873 4874 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4875 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4876 return (buf); 4877 } 4878 4879 /* 4880 * Write the given MAC address as a printable string in the usual colon- 4881 * separated format. 4882 */ 4883 const char * 4884 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4885 { 4886 char *bp; 4887 4888 if (alen == 0 || buflen < 4) 4889 return ("?"); 4890 bp = buf; 4891 for (;;) { 4892 /* 4893 * If there are more MAC address bytes available, but we won't 4894 * have any room to print them, then add "..." to the string 4895 * instead. See below for the 'magic number' explanation. 4896 */ 4897 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4898 (void) strcpy(bp, "..."); 4899 break; 4900 } 4901 (void) sprintf(bp, "%02x", *addr++); 4902 bp += 2; 4903 if (--alen == 0) 4904 break; 4905 *bp++ = ':'; 4906 buflen -= 3; 4907 /* 4908 * At this point, based on the first 'if' statement above, 4909 * either alen == 1 and buflen >= 3, or alen > 1 and 4910 * buflen >= 4. The first case leaves room for the final "xx" 4911 * number and trailing NUL byte. The second leaves room for at 4912 * least "...". Thus the apparently 'magic' numbers chosen for 4913 * that statement. 4914 */ 4915 } 4916 return (buf); 4917 } 4918 4919 /* 4920 * Called when it is conceptually a ULP that would sent the packet 4921 * e.g., port unreachable and protocol unreachable. Check that the packet 4922 * would have passed the IPsec global policy before sending the error. 4923 * 4924 * Send an ICMP error after patching up the packet appropriately. 4925 * Uses ip_drop_input and bumps the appropriate MIB. 4926 */ 4927 void 4928 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4929 ip_recv_attr_t *ira) 4930 { 4931 ipha_t *ipha; 4932 boolean_t secure; 4933 ill_t *ill = ira->ira_ill; 4934 ip_stack_t *ipst = ill->ill_ipst; 4935 netstack_t *ns = ipst->ips_netstack; 4936 ipsec_stack_t *ipss = ns->netstack_ipsec; 4937 4938 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4939 4940 /* 4941 * We are generating an icmp error for some inbound packet. 4942 * Called from all ip_fanout_(udp, tcp, proto) functions. 4943 * Before we generate an error, check with global policy 4944 * to see whether this is allowed to enter the system. As 4945 * there is no "conn", we are checking with global policy. 4946 */ 4947 ipha = (ipha_t *)mp->b_rptr; 4948 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4949 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4950 if (mp == NULL) 4951 return; 4952 } 4953 4954 /* We never send errors for protocols that we do implement */ 4955 if (ira->ira_protocol == IPPROTO_ICMP || 4956 ira->ira_protocol == IPPROTO_IGMP) { 4957 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4958 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4959 freemsg(mp); 4960 return; 4961 } 4962 /* 4963 * Have to correct checksum since 4964 * the packet might have been 4965 * fragmented and the reassembly code in ip_rput 4966 * does not restore the IP checksum. 4967 */ 4968 ipha->ipha_hdr_checksum = 0; 4969 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4970 4971 switch (icmp_type) { 4972 case ICMP_DEST_UNREACHABLE: 4973 switch (icmp_code) { 4974 case ICMP_PROTOCOL_UNREACHABLE: 4975 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4976 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4977 break; 4978 case ICMP_PORT_UNREACHABLE: 4979 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4980 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4981 break; 4982 } 4983 4984 icmp_unreachable(mp, icmp_code, ira); 4985 break; 4986 default: 4987 #ifdef DEBUG 4988 panic("ip_fanout_send_icmp_v4: wrong type"); 4989 /*NOTREACHED*/ 4990 #else 4991 freemsg(mp); 4992 break; 4993 #endif 4994 } 4995 } 4996 4997 /* 4998 * Used to send an ICMP error message when a packet is received for 4999 * a protocol that is not supported. The mblk passed as argument 5000 * is consumed by this function. 5001 */ 5002 void 5003 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 5004 { 5005 ipha_t *ipha; 5006 5007 ipha = (ipha_t *)mp->b_rptr; 5008 if (ira->ira_flags & IRAF_IS_IPV4) { 5009 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 5010 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5011 ICMP_PROTOCOL_UNREACHABLE, ira); 5012 } else { 5013 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 5014 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 5015 ICMP6_PARAMPROB_NEXTHEADER, ira); 5016 } 5017 } 5018 5019 /* 5020 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 5021 * Handles IPv4 and IPv6. 5022 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5023 * Caller is responsible for dropping references to the conn. 5024 */ 5025 void 5026 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5027 ip_recv_attr_t *ira) 5028 { 5029 ill_t *ill = ira->ira_ill; 5030 ip_stack_t *ipst = ill->ill_ipst; 5031 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5032 boolean_t secure; 5033 uint_t protocol = ira->ira_protocol; 5034 iaflags_t iraflags = ira->ira_flags; 5035 queue_t *rq; 5036 5037 secure = iraflags & IRAF_IPSEC_SECURE; 5038 5039 rq = connp->conn_rq; 5040 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 5041 switch (protocol) { 5042 case IPPROTO_ICMPV6: 5043 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 5044 break; 5045 case IPPROTO_ICMP: 5046 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 5047 break; 5048 default: 5049 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 5050 break; 5051 } 5052 freemsg(mp); 5053 return; 5054 } 5055 5056 ASSERT(!(IPCL_IS_IPTUN(connp))); 5057 5058 if (((iraflags & IRAF_IS_IPV4) ? 5059 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5060 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5061 secure) { 5062 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5063 ip6h, ira); 5064 if (mp == NULL) { 5065 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5066 /* Note that mp is NULL */ 5067 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5068 return; 5069 } 5070 } 5071 5072 if (iraflags & IRAF_ICMP_ERROR) { 5073 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5074 } else { 5075 ill_t *rill = ira->ira_rill; 5076 5077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5078 ira->ira_ill = ira->ira_rill = NULL; 5079 /* Send it upstream */ 5080 (connp->conn_recv)(connp, mp, NULL, ira); 5081 ira->ira_ill = ill; 5082 ira->ira_rill = rill; 5083 } 5084 } 5085 5086 /* 5087 * Handle protocols with which IP is less intimate. There 5088 * can be more than one stream bound to a particular 5089 * protocol. When this is the case, normally each one gets a copy 5090 * of any incoming packets. 5091 * 5092 * IPsec NOTE : 5093 * 5094 * Don't allow a secure packet going up a non-secure connection. 5095 * We don't allow this because 5096 * 5097 * 1) Reply might go out in clear which will be dropped at 5098 * the sending side. 5099 * 2) If the reply goes out in clear it will give the 5100 * adversary enough information for getting the key in 5101 * most of the cases. 5102 * 5103 * Moreover getting a secure packet when we expect clear 5104 * implies that SA's were added without checking for 5105 * policy on both ends. This should not happen once ISAKMP 5106 * is used to negotiate SAs as SAs will be added only after 5107 * verifying the policy. 5108 * 5109 * Zones notes: 5110 * Earlier in ip_input on a system with multiple shared-IP zones we 5111 * duplicate the multicast and broadcast packets and send them up 5112 * with each explicit zoneid that exists on that ill. 5113 * This means that here we can match the zoneid with SO_ALLZONES being special. 5114 */ 5115 void 5116 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5117 { 5118 mblk_t *mp1; 5119 ipaddr_t laddr; 5120 conn_t *connp, *first_connp, *next_connp; 5121 connf_t *connfp; 5122 ill_t *ill = ira->ira_ill; 5123 ip_stack_t *ipst = ill->ill_ipst; 5124 5125 laddr = ipha->ipha_dst; 5126 5127 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5128 mutex_enter(&connfp->connf_lock); 5129 connp = connfp->connf_head; 5130 for (connp = connfp->connf_head; connp != NULL; 5131 connp = connp->conn_next) { 5132 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5133 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5134 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5135 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5136 break; 5137 } 5138 } 5139 5140 if (connp == NULL) { 5141 /* 5142 * No one bound to these addresses. Is 5143 * there a client that wants all 5144 * unclaimed datagrams? 5145 */ 5146 mutex_exit(&connfp->connf_lock); 5147 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5148 ICMP_PROTOCOL_UNREACHABLE, ira); 5149 return; 5150 } 5151 5152 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5153 5154 CONN_INC_REF(connp); 5155 first_connp = connp; 5156 connp = connp->conn_next; 5157 5158 for (;;) { 5159 while (connp != NULL) { 5160 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5161 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5162 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5163 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5164 ira, connp))) 5165 break; 5166 connp = connp->conn_next; 5167 } 5168 5169 if (connp == NULL) { 5170 /* No more interested clients */ 5171 connp = first_connp; 5172 break; 5173 } 5174 if (((mp1 = dupmsg(mp)) == NULL) && 5175 ((mp1 = copymsg(mp)) == NULL)) { 5176 /* Memory allocation failed */ 5177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5178 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5179 connp = first_connp; 5180 break; 5181 } 5182 5183 CONN_INC_REF(connp); 5184 mutex_exit(&connfp->connf_lock); 5185 5186 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5187 ira); 5188 5189 mutex_enter(&connfp->connf_lock); 5190 /* Follow the next pointer before releasing the conn. */ 5191 next_connp = connp->conn_next; 5192 CONN_DEC_REF(connp); 5193 connp = next_connp; 5194 } 5195 5196 /* Last one. Send it upstream. */ 5197 mutex_exit(&connfp->connf_lock); 5198 5199 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5200 5201 CONN_DEC_REF(connp); 5202 } 5203 5204 /* 5205 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5206 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5207 * is not consumed. 5208 * 5209 * One of three things can happen, all of which affect the passed-in mblk: 5210 * 5211 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5212 * 5213 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5214 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5215 * 5216 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5217 */ 5218 mblk_t * 5219 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5220 { 5221 int shift, plen, iph_len; 5222 ipha_t *ipha; 5223 udpha_t *udpha; 5224 uint32_t *spi; 5225 uint32_t esp_ports; 5226 uint8_t *orptr; 5227 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5228 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5229 5230 ipha = (ipha_t *)mp->b_rptr; 5231 iph_len = ira->ira_ip_hdr_length; 5232 plen = ira->ira_pktlen; 5233 5234 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5235 /* 5236 * Most likely a keepalive for the benefit of an intervening 5237 * NAT. These aren't for us, per se, so drop it. 5238 * 5239 * RFC 3947/8 doesn't say for sure what to do for 2-3 5240 * byte packets (keepalives are 1-byte), but we'll drop them 5241 * also. 5242 */ 5243 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5244 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5245 return (NULL); 5246 } 5247 5248 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5249 /* might as well pull it all up - it might be ESP. */ 5250 if (!pullupmsg(mp, -1)) { 5251 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5252 DROPPER(ipss, ipds_esp_nomem), 5253 &ipss->ipsec_dropper); 5254 return (NULL); 5255 } 5256 5257 ipha = (ipha_t *)mp->b_rptr; 5258 } 5259 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5260 if (*spi == 0) { 5261 /* UDP packet - remove 0-spi. */ 5262 shift = sizeof (uint32_t); 5263 } else { 5264 /* ESP-in-UDP packet - reduce to ESP. */ 5265 ipha->ipha_protocol = IPPROTO_ESP; 5266 shift = sizeof (udpha_t); 5267 } 5268 5269 /* Fix IP header */ 5270 ira->ira_pktlen = (plen - shift); 5271 ipha->ipha_length = htons(ira->ira_pktlen); 5272 ipha->ipha_hdr_checksum = 0; 5273 5274 orptr = mp->b_rptr; 5275 mp->b_rptr += shift; 5276 5277 udpha = (udpha_t *)(orptr + iph_len); 5278 if (*spi == 0) { 5279 ASSERT((uint8_t *)ipha == orptr); 5280 udpha->uha_length = htons(plen - shift - iph_len); 5281 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5282 esp_ports = 0; 5283 } else { 5284 esp_ports = *((uint32_t *)udpha); 5285 ASSERT(esp_ports != 0); 5286 } 5287 ovbcopy(orptr, orptr + shift, iph_len); 5288 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5289 ipha = (ipha_t *)(orptr + shift); 5290 5291 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5292 ira->ira_esp_udp_ports = esp_ports; 5293 ip_fanout_v4(mp, ipha, ira); 5294 return (NULL); 5295 } 5296 return (mp); 5297 } 5298 5299 /* 5300 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5301 * Handles IPv4 and IPv6. 5302 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5303 * Caller is responsible for dropping references to the conn. 5304 */ 5305 void 5306 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5307 ip_recv_attr_t *ira) 5308 { 5309 ill_t *ill = ira->ira_ill; 5310 ip_stack_t *ipst = ill->ill_ipst; 5311 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5312 boolean_t secure; 5313 iaflags_t iraflags = ira->ira_flags; 5314 5315 secure = iraflags & IRAF_IPSEC_SECURE; 5316 5317 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5318 !canputnext(connp->conn_rq)) { 5319 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5320 freemsg(mp); 5321 return; 5322 } 5323 5324 if (((iraflags & IRAF_IS_IPV4) ? 5325 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5326 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5327 secure) { 5328 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5329 ip6h, ira); 5330 if (mp == NULL) { 5331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5332 /* Note that mp is NULL */ 5333 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5334 return; 5335 } 5336 } 5337 5338 /* 5339 * Since this code is not used for UDP unicast we don't need a NAT_T 5340 * check. Only ip_fanout_v4 has that check. 5341 */ 5342 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5343 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5344 } else { 5345 ill_t *rill = ira->ira_rill; 5346 5347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5348 ira->ira_ill = ira->ira_rill = NULL; 5349 /* Send it upstream */ 5350 (connp->conn_recv)(connp, mp, NULL, ira); 5351 ira->ira_ill = ill; 5352 ira->ira_rill = rill; 5353 } 5354 } 5355 5356 /* 5357 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5358 * (Unicast fanout is handled in ip_input_v4.) 5359 * 5360 * If SO_REUSEADDR is set all multicast and broadcast packets 5361 * will be delivered to all conns bound to the same port. 5362 * 5363 * If there is at least one matching AF_INET receiver, then we will 5364 * ignore any AF_INET6 receivers. 5365 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5366 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5367 * packets. 5368 * 5369 * Zones notes: 5370 * Earlier in ip_input on a system with multiple shared-IP zones we 5371 * duplicate the multicast and broadcast packets and send them up 5372 * with each explicit zoneid that exists on that ill. 5373 * This means that here we can match the zoneid with SO_ALLZONES being special. 5374 */ 5375 void 5376 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5377 ip_recv_attr_t *ira) 5378 { 5379 ipaddr_t laddr; 5380 in6_addr_t v6faddr; 5381 conn_t *connp; 5382 connf_t *connfp; 5383 ipaddr_t faddr; 5384 ill_t *ill = ira->ira_ill; 5385 ip_stack_t *ipst = ill->ill_ipst; 5386 5387 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5388 5389 laddr = ipha->ipha_dst; 5390 faddr = ipha->ipha_src; 5391 5392 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5393 mutex_enter(&connfp->connf_lock); 5394 connp = connfp->connf_head; 5395 5396 /* 5397 * If SO_REUSEADDR has been set on the first we send the 5398 * packet to all clients that have joined the group and 5399 * match the port. 5400 */ 5401 while (connp != NULL) { 5402 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5403 conn_wantpacket(connp, ira, ipha) && 5404 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5405 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5406 break; 5407 connp = connp->conn_next; 5408 } 5409 5410 if (connp == NULL) 5411 goto notfound; 5412 5413 CONN_INC_REF(connp); 5414 5415 if (connp->conn_reuseaddr) { 5416 conn_t *first_connp = connp; 5417 conn_t *next_connp; 5418 mblk_t *mp1; 5419 5420 connp = connp->conn_next; 5421 for (;;) { 5422 while (connp != NULL) { 5423 if (IPCL_UDP_MATCH(connp, lport, laddr, 5424 fport, faddr) && 5425 conn_wantpacket(connp, ira, ipha) && 5426 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5427 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5428 ira, connp))) 5429 break; 5430 connp = connp->conn_next; 5431 } 5432 if (connp == NULL) { 5433 /* No more interested clients */ 5434 connp = first_connp; 5435 break; 5436 } 5437 if (((mp1 = dupmsg(mp)) == NULL) && 5438 ((mp1 = copymsg(mp)) == NULL)) { 5439 /* Memory allocation failed */ 5440 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5441 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5442 connp = first_connp; 5443 break; 5444 } 5445 CONN_INC_REF(connp); 5446 mutex_exit(&connfp->connf_lock); 5447 5448 IP_STAT(ipst, ip_udp_fanmb); 5449 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5450 NULL, ira); 5451 mutex_enter(&connfp->connf_lock); 5452 /* Follow the next pointer before releasing the conn */ 5453 next_connp = connp->conn_next; 5454 CONN_DEC_REF(connp); 5455 connp = next_connp; 5456 } 5457 } 5458 5459 /* Last one. Send it upstream. */ 5460 mutex_exit(&connfp->connf_lock); 5461 IP_STAT(ipst, ip_udp_fanmb); 5462 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5463 CONN_DEC_REF(connp); 5464 return; 5465 5466 notfound: 5467 mutex_exit(&connfp->connf_lock); 5468 /* 5469 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5470 * have already been matched above, since they live in the IPv4 5471 * fanout tables. This implies we only need to 5472 * check for IPv6 in6addr_any endpoints here. 5473 * Thus we compare using ipv6_all_zeros instead of the destination 5474 * address, except for the multicast group membership lookup which 5475 * uses the IPv4 destination. 5476 */ 5477 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5478 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5479 mutex_enter(&connfp->connf_lock); 5480 connp = connfp->connf_head; 5481 /* 5482 * IPv4 multicast packet being delivered to an AF_INET6 5483 * in6addr_any endpoint. 5484 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5485 * and not conn_wantpacket_v6() since any multicast membership is 5486 * for an IPv4-mapped multicast address. 5487 */ 5488 while (connp != NULL) { 5489 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5490 fport, v6faddr) && 5491 conn_wantpacket(connp, ira, ipha) && 5492 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5493 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5494 break; 5495 connp = connp->conn_next; 5496 } 5497 5498 if (connp == NULL) { 5499 /* 5500 * No one bound to this port. Is 5501 * there a client that wants all 5502 * unclaimed datagrams? 5503 */ 5504 mutex_exit(&connfp->connf_lock); 5505 5506 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5507 NULL) { 5508 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5509 ip_fanout_proto_v4(mp, ipha, ira); 5510 } else { 5511 /* 5512 * We used to attempt to send an icmp error here, but 5513 * since this is known to be a multicast packet 5514 * and we don't send icmp errors in response to 5515 * multicast, just drop the packet and give up sooner. 5516 */ 5517 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5518 freemsg(mp); 5519 } 5520 return; 5521 } 5522 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5523 5524 /* 5525 * If SO_REUSEADDR has been set on the first we send the 5526 * packet to all clients that have joined the group and 5527 * match the port. 5528 */ 5529 if (connp->conn_reuseaddr) { 5530 conn_t *first_connp = connp; 5531 conn_t *next_connp; 5532 mblk_t *mp1; 5533 5534 CONN_INC_REF(connp); 5535 connp = connp->conn_next; 5536 for (;;) { 5537 while (connp != NULL) { 5538 if (IPCL_UDP_MATCH_V6(connp, lport, 5539 ipv6_all_zeros, fport, v6faddr) && 5540 conn_wantpacket(connp, ira, ipha) && 5541 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5542 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5543 ira, connp))) 5544 break; 5545 connp = connp->conn_next; 5546 } 5547 if (connp == NULL) { 5548 /* No more interested clients */ 5549 connp = first_connp; 5550 break; 5551 } 5552 if (((mp1 = dupmsg(mp)) == NULL) && 5553 ((mp1 = copymsg(mp)) == NULL)) { 5554 /* Memory allocation failed */ 5555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5556 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5557 connp = first_connp; 5558 break; 5559 } 5560 CONN_INC_REF(connp); 5561 mutex_exit(&connfp->connf_lock); 5562 5563 IP_STAT(ipst, ip_udp_fanmb); 5564 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5565 NULL, ira); 5566 mutex_enter(&connfp->connf_lock); 5567 /* Follow the next pointer before releasing the conn */ 5568 next_connp = connp->conn_next; 5569 CONN_DEC_REF(connp); 5570 connp = next_connp; 5571 } 5572 } 5573 5574 /* Last one. Send it upstream. */ 5575 mutex_exit(&connfp->connf_lock); 5576 IP_STAT(ipst, ip_udp_fanmb); 5577 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5578 CONN_DEC_REF(connp); 5579 } 5580 5581 /* 5582 * Split an incoming packet's IPv4 options into the label and the other options. 5583 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5584 * clearing out any leftover label or options. 5585 * Otherwise it just makes ipp point into the packet. 5586 * 5587 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5588 */ 5589 int 5590 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5591 { 5592 uchar_t *opt; 5593 uint32_t totallen; 5594 uint32_t optval; 5595 uint32_t optlen; 5596 5597 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5598 ipp->ipp_hoplimit = ipha->ipha_ttl; 5599 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5600 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5601 5602 /* 5603 * Get length (in 4 byte octets) of IP header options. 5604 */ 5605 totallen = ipha->ipha_version_and_hdr_length - 5606 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5607 5608 if (totallen == 0) { 5609 if (!allocate) 5610 return (0); 5611 5612 /* Clear out anything from a previous packet */ 5613 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5614 kmem_free(ipp->ipp_ipv4_options, 5615 ipp->ipp_ipv4_options_len); 5616 ipp->ipp_ipv4_options = NULL; 5617 ipp->ipp_ipv4_options_len = 0; 5618 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5619 } 5620 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5621 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5622 ipp->ipp_label_v4 = NULL; 5623 ipp->ipp_label_len_v4 = 0; 5624 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5625 } 5626 return (0); 5627 } 5628 5629 totallen <<= 2; 5630 opt = (uchar_t *)&ipha[1]; 5631 if (!is_system_labeled()) { 5632 5633 copyall: 5634 if (!allocate) { 5635 if (totallen != 0) { 5636 ipp->ipp_ipv4_options = opt; 5637 ipp->ipp_ipv4_options_len = totallen; 5638 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5639 } 5640 return (0); 5641 } 5642 /* Just copy all of options */ 5643 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5644 if (totallen == ipp->ipp_ipv4_options_len) { 5645 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5646 return (0); 5647 } 5648 kmem_free(ipp->ipp_ipv4_options, 5649 ipp->ipp_ipv4_options_len); 5650 ipp->ipp_ipv4_options = NULL; 5651 ipp->ipp_ipv4_options_len = 0; 5652 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5653 } 5654 if (totallen == 0) 5655 return (0); 5656 5657 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5658 if (ipp->ipp_ipv4_options == NULL) 5659 return (ENOMEM); 5660 ipp->ipp_ipv4_options_len = totallen; 5661 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5662 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5663 return (0); 5664 } 5665 5666 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5667 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5668 ipp->ipp_label_v4 = NULL; 5669 ipp->ipp_label_len_v4 = 0; 5670 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5671 } 5672 5673 /* 5674 * Search for CIPSO option. 5675 * We assume CIPSO is first in options if it is present. 5676 * If it isn't, then ipp_opt_ipv4_options will not include the options 5677 * prior to the CIPSO option. 5678 */ 5679 while (totallen != 0) { 5680 switch (optval = opt[IPOPT_OPTVAL]) { 5681 case IPOPT_EOL: 5682 return (0); 5683 case IPOPT_NOP: 5684 optlen = 1; 5685 break; 5686 default: 5687 if (totallen <= IPOPT_OLEN) 5688 return (EINVAL); 5689 optlen = opt[IPOPT_OLEN]; 5690 if (optlen < 2) 5691 return (EINVAL); 5692 } 5693 if (optlen > totallen) 5694 return (EINVAL); 5695 5696 switch (optval) { 5697 case IPOPT_COMSEC: 5698 if (!allocate) { 5699 ipp->ipp_label_v4 = opt; 5700 ipp->ipp_label_len_v4 = optlen; 5701 ipp->ipp_fields |= IPPF_LABEL_V4; 5702 } else { 5703 ipp->ipp_label_v4 = kmem_alloc(optlen, 5704 KM_NOSLEEP); 5705 if (ipp->ipp_label_v4 == NULL) 5706 return (ENOMEM); 5707 ipp->ipp_label_len_v4 = optlen; 5708 ipp->ipp_fields |= IPPF_LABEL_V4; 5709 bcopy(opt, ipp->ipp_label_v4, optlen); 5710 } 5711 totallen -= optlen; 5712 opt += optlen; 5713 5714 /* Skip padding bytes until we get to a multiple of 4 */ 5715 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5716 totallen--; 5717 opt++; 5718 } 5719 /* Remaining as ipp_ipv4_options */ 5720 goto copyall; 5721 } 5722 totallen -= optlen; 5723 opt += optlen; 5724 } 5725 /* No CIPSO found; return everything as ipp_ipv4_options */ 5726 totallen = ipha->ipha_version_and_hdr_length - 5727 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5728 totallen <<= 2; 5729 opt = (uchar_t *)&ipha[1]; 5730 goto copyall; 5731 } 5732 5733 /* 5734 * Efficient versions of lookup for an IRE when we only 5735 * match the address. 5736 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5737 * Does not handle multicast addresses. 5738 */ 5739 uint_t 5740 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5741 { 5742 ire_t *ire; 5743 uint_t result; 5744 5745 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5746 ASSERT(ire != NULL); 5747 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5748 result = IRE_NOROUTE; 5749 else 5750 result = ire->ire_type; 5751 ire_refrele(ire); 5752 return (result); 5753 } 5754 5755 /* 5756 * Efficient versions of lookup for an IRE when we only 5757 * match the address. 5758 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5759 * Does not handle multicast addresses. 5760 */ 5761 uint_t 5762 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5763 { 5764 ire_t *ire; 5765 uint_t result; 5766 5767 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5768 ASSERT(ire != NULL); 5769 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5770 result = IRE_NOROUTE; 5771 else 5772 result = ire->ire_type; 5773 ire_refrele(ire); 5774 return (result); 5775 } 5776 5777 /* 5778 * Nobody should be sending 5779 * packets up this stream 5780 */ 5781 static void 5782 ip_lrput(queue_t *q, mblk_t *mp) 5783 { 5784 switch (mp->b_datap->db_type) { 5785 case M_FLUSH: 5786 /* Turn around */ 5787 if (*mp->b_rptr & FLUSHW) { 5788 *mp->b_rptr &= ~FLUSHR; 5789 qreply(q, mp); 5790 return; 5791 } 5792 break; 5793 } 5794 freemsg(mp); 5795 } 5796 5797 /* Nobody should be sending packets down this stream */ 5798 /* ARGSUSED */ 5799 void 5800 ip_lwput(queue_t *q, mblk_t *mp) 5801 { 5802 freemsg(mp); 5803 } 5804 5805 /* 5806 * Move the first hop in any source route to ipha_dst and remove that part of 5807 * the source route. Called by other protocols. Errors in option formatting 5808 * are ignored - will be handled by ip_output_options. Return the final 5809 * destination (either ipha_dst or the last entry in a source route.) 5810 */ 5811 ipaddr_t 5812 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5813 { 5814 ipoptp_t opts; 5815 uchar_t *opt; 5816 uint8_t optval; 5817 uint8_t optlen; 5818 ipaddr_t dst; 5819 int i; 5820 ip_stack_t *ipst = ns->netstack_ip; 5821 5822 ip2dbg(("ip_massage_options\n")); 5823 dst = ipha->ipha_dst; 5824 for (optval = ipoptp_first(&opts, ipha); 5825 optval != IPOPT_EOL; 5826 optval = ipoptp_next(&opts)) { 5827 opt = opts.ipoptp_cur; 5828 switch (optval) { 5829 uint8_t off; 5830 case IPOPT_SSRR: 5831 case IPOPT_LSRR: 5832 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5833 ip1dbg(("ip_massage_options: bad src route\n")); 5834 break; 5835 } 5836 optlen = opts.ipoptp_len; 5837 off = opt[IPOPT_OFFSET]; 5838 off--; 5839 redo_srr: 5840 if (optlen < IP_ADDR_LEN || 5841 off > optlen - IP_ADDR_LEN) { 5842 /* End of source route */ 5843 ip1dbg(("ip_massage_options: end of SR\n")); 5844 break; 5845 } 5846 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5847 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5848 ntohl(dst))); 5849 /* 5850 * Check if our address is present more than 5851 * once as consecutive hops in source route. 5852 * XXX verify per-interface ip_forwarding 5853 * for source route? 5854 */ 5855 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5856 off += IP_ADDR_LEN; 5857 goto redo_srr; 5858 } 5859 if (dst == htonl(INADDR_LOOPBACK)) { 5860 ip1dbg(("ip_massage_options: loopback addr in " 5861 "source route!\n")); 5862 break; 5863 } 5864 /* 5865 * Update ipha_dst to be the first hop and remove the 5866 * first hop from the source route (by overwriting 5867 * part of the option with NOP options). 5868 */ 5869 ipha->ipha_dst = dst; 5870 /* Put the last entry in dst */ 5871 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5872 3; 5873 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5874 5875 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5876 ntohl(dst))); 5877 /* Move down and overwrite */ 5878 opt[IP_ADDR_LEN] = opt[0]; 5879 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5880 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5881 for (i = 0; i < IP_ADDR_LEN; i++) 5882 opt[i] = IPOPT_NOP; 5883 break; 5884 } 5885 } 5886 return (dst); 5887 } 5888 5889 /* 5890 * Return the network mask 5891 * associated with the specified address. 5892 */ 5893 ipaddr_t 5894 ip_net_mask(ipaddr_t addr) 5895 { 5896 uchar_t *up = (uchar_t *)&addr; 5897 ipaddr_t mask = 0; 5898 uchar_t *maskp = (uchar_t *)&mask; 5899 5900 #if defined(__i386) || defined(__amd64) 5901 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5902 #endif 5903 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5904 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5905 #endif 5906 if (CLASSD(addr)) { 5907 maskp[0] = 0xF0; 5908 return (mask); 5909 } 5910 5911 /* We assume Class E default netmask to be 32 */ 5912 if (CLASSE(addr)) 5913 return (0xffffffffU); 5914 5915 if (addr == 0) 5916 return (0); 5917 maskp[0] = 0xFF; 5918 if ((up[0] & 0x80) == 0) 5919 return (mask); 5920 5921 maskp[1] = 0xFF; 5922 if ((up[0] & 0xC0) == 0x80) 5923 return (mask); 5924 5925 maskp[2] = 0xFF; 5926 if ((up[0] & 0xE0) == 0xC0) 5927 return (mask); 5928 5929 /* Otherwise return no mask */ 5930 return ((ipaddr_t)0); 5931 } 5932 5933 /* Name/Value Table Lookup Routine */ 5934 char * 5935 ip_nv_lookup(nv_t *nv, int value) 5936 { 5937 if (!nv) 5938 return (NULL); 5939 for (; nv->nv_name; nv++) { 5940 if (nv->nv_value == value) 5941 return (nv->nv_name); 5942 } 5943 return ("unknown"); 5944 } 5945 5946 static int 5947 ip_wait_for_info_ack(ill_t *ill) 5948 { 5949 int err; 5950 5951 mutex_enter(&ill->ill_lock); 5952 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5953 /* 5954 * Return value of 0 indicates a pending signal. 5955 */ 5956 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5957 if (err == 0) { 5958 mutex_exit(&ill->ill_lock); 5959 return (EINTR); 5960 } 5961 } 5962 mutex_exit(&ill->ill_lock); 5963 /* 5964 * ip_rput_other could have set an error in ill_error on 5965 * receipt of M_ERROR. 5966 */ 5967 return (ill->ill_error); 5968 } 5969 5970 /* 5971 * This is a module open, i.e. this is a control stream for access 5972 * to a DLPI device. We allocate an ill_t as the instance data in 5973 * this case. 5974 */ 5975 static int 5976 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5977 { 5978 ill_t *ill; 5979 int err; 5980 zoneid_t zoneid; 5981 netstack_t *ns; 5982 ip_stack_t *ipst; 5983 5984 /* 5985 * Prevent unprivileged processes from pushing IP so that 5986 * they can't send raw IP. 5987 */ 5988 if (secpolicy_net_rawaccess(credp) != 0) 5989 return (EPERM); 5990 5991 ns = netstack_find_by_cred(credp); 5992 ASSERT(ns != NULL); 5993 ipst = ns->netstack_ip; 5994 ASSERT(ipst != NULL); 5995 5996 /* 5997 * For exclusive stacks we set the zoneid to zero 5998 * to make IP operate as if in the global zone. 5999 */ 6000 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6001 zoneid = GLOBAL_ZONEID; 6002 else 6003 zoneid = crgetzoneid(credp); 6004 6005 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 6006 q->q_ptr = WR(q)->q_ptr = ill; 6007 ill->ill_ipst = ipst; 6008 ill->ill_zoneid = zoneid; 6009 6010 /* 6011 * ill_init initializes the ill fields and then sends down 6012 * down a DL_INFO_REQ after calling qprocson. 6013 */ 6014 err = ill_init(q, ill); 6015 6016 if (err != 0) { 6017 mi_free(ill); 6018 netstack_rele(ipst->ips_netstack); 6019 q->q_ptr = NULL; 6020 WR(q)->q_ptr = NULL; 6021 return (err); 6022 } 6023 6024 /* 6025 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 6026 * 6027 * ill_init initializes the ipsq marking this thread as 6028 * writer 6029 */ 6030 ipsq_exit(ill->ill_phyint->phyint_ipsq); 6031 err = ip_wait_for_info_ack(ill); 6032 if (err == 0) 6033 ill->ill_credp = credp; 6034 else 6035 goto fail; 6036 6037 crhold(credp); 6038 6039 mutex_enter(&ipst->ips_ip_mi_lock); 6040 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 6041 sflag, credp); 6042 mutex_exit(&ipst->ips_ip_mi_lock); 6043 fail: 6044 if (err) { 6045 (void) ip_close(q, 0); 6046 return (err); 6047 } 6048 return (0); 6049 } 6050 6051 /* For /dev/ip aka AF_INET open */ 6052 int 6053 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6054 { 6055 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 6056 } 6057 6058 /* For /dev/ip6 aka AF_INET6 open */ 6059 int 6060 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6061 { 6062 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 6063 } 6064 6065 /* IP open routine. */ 6066 int 6067 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 6068 boolean_t isv6) 6069 { 6070 conn_t *connp; 6071 major_t maj; 6072 zoneid_t zoneid; 6073 netstack_t *ns; 6074 ip_stack_t *ipst; 6075 6076 /* Allow reopen. */ 6077 if (q->q_ptr != NULL) 6078 return (0); 6079 6080 if (sflag & MODOPEN) { 6081 /* This is a module open */ 6082 return (ip_modopen(q, devp, flag, sflag, credp)); 6083 } 6084 6085 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 6086 /* 6087 * Non streams based socket looking for a stream 6088 * to access IP 6089 */ 6090 return (ip_helper_stream_setup(q, devp, flag, sflag, 6091 credp, isv6)); 6092 } 6093 6094 ns = netstack_find_by_cred(credp); 6095 ASSERT(ns != NULL); 6096 ipst = ns->netstack_ip; 6097 ASSERT(ipst != NULL); 6098 6099 /* 6100 * For exclusive stacks we set the zoneid to zero 6101 * to make IP operate as if in the global zone. 6102 */ 6103 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6104 zoneid = GLOBAL_ZONEID; 6105 else 6106 zoneid = crgetzoneid(credp); 6107 6108 /* 6109 * We are opening as a device. This is an IP client stream, and we 6110 * allocate an conn_t as the instance data. 6111 */ 6112 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6113 6114 /* 6115 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6116 * done by netstack_find_by_cred() 6117 */ 6118 netstack_rele(ipst->ips_netstack); 6119 6120 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6121 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6122 connp->conn_ixa->ixa_zoneid = zoneid; 6123 connp->conn_zoneid = zoneid; 6124 6125 connp->conn_rq = q; 6126 q->q_ptr = WR(q)->q_ptr = connp; 6127 6128 /* Minor tells us which /dev entry was opened */ 6129 if (isv6) { 6130 connp->conn_family = AF_INET6; 6131 connp->conn_ipversion = IPV6_VERSION; 6132 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6133 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6134 } else { 6135 connp->conn_family = AF_INET; 6136 connp->conn_ipversion = IPV4_VERSION; 6137 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6138 } 6139 6140 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6141 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6142 connp->conn_minor_arena = ip_minor_arena_la; 6143 } else { 6144 /* 6145 * Either minor numbers in the large arena were exhausted 6146 * or a non socket application is doing the open. 6147 * Try to allocate from the small arena. 6148 */ 6149 if ((connp->conn_dev = 6150 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6151 /* CONN_DEC_REF takes care of netstack_rele() */ 6152 q->q_ptr = WR(q)->q_ptr = NULL; 6153 CONN_DEC_REF(connp); 6154 return (EBUSY); 6155 } 6156 connp->conn_minor_arena = ip_minor_arena_sa; 6157 } 6158 6159 maj = getemajor(*devp); 6160 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6161 6162 /* 6163 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6164 */ 6165 connp->conn_cred = credp; 6166 /* Cache things in ixa without an extra refhold */ 6167 connp->conn_ixa->ixa_cred = connp->conn_cred; 6168 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6169 if (is_system_labeled()) 6170 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6171 6172 /* 6173 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6174 */ 6175 connp->conn_recv = ip_conn_input; 6176 connp->conn_recvicmp = ip_conn_input_icmp; 6177 6178 crhold(connp->conn_cred); 6179 6180 /* 6181 * If the caller has the process-wide flag set, then default to MAC 6182 * exempt mode. This allows read-down to unlabeled hosts. 6183 */ 6184 if (getpflags(NET_MAC_AWARE, credp) != 0) 6185 connp->conn_mac_mode = CONN_MAC_AWARE; 6186 6187 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6188 6189 connp->conn_rq = q; 6190 connp->conn_wq = WR(q); 6191 6192 /* Non-zero default values */ 6193 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6194 6195 /* 6196 * Make the conn globally visible to walkers 6197 */ 6198 ASSERT(connp->conn_ref == 1); 6199 mutex_enter(&connp->conn_lock); 6200 connp->conn_state_flags &= ~CONN_INCIPIENT; 6201 mutex_exit(&connp->conn_lock); 6202 6203 qprocson(q); 6204 6205 return (0); 6206 } 6207 6208 /* 6209 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6210 * all of them are copied to the conn_t. If the req is "zero", the policy is 6211 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6212 * fields. 6213 * We keep only the latest setting of the policy and thus policy setting 6214 * is not incremental/cumulative. 6215 * 6216 * Requests to set policies with multiple alternative actions will 6217 * go through a different API. 6218 */ 6219 int 6220 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6221 { 6222 uint_t ah_req = 0; 6223 uint_t esp_req = 0; 6224 uint_t se_req = 0; 6225 ipsec_act_t *actp = NULL; 6226 uint_t nact; 6227 ipsec_policy_head_t *ph; 6228 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6229 int error = 0; 6230 netstack_t *ns = connp->conn_netstack; 6231 ip_stack_t *ipst = ns->netstack_ip; 6232 ipsec_stack_t *ipss = ns->netstack_ipsec; 6233 6234 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6235 6236 /* 6237 * The IP_SEC_OPT option does not allow variable length parameters, 6238 * hence a request cannot be NULL. 6239 */ 6240 if (req == NULL) 6241 return (EINVAL); 6242 6243 ah_req = req->ipsr_ah_req; 6244 esp_req = req->ipsr_esp_req; 6245 se_req = req->ipsr_self_encap_req; 6246 6247 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6248 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6249 return (EINVAL); 6250 6251 /* 6252 * Are we dealing with a request to reset the policy (i.e. 6253 * zero requests). 6254 */ 6255 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6256 (esp_req & REQ_MASK) == 0 && 6257 (se_req & REQ_MASK) == 0); 6258 6259 if (!is_pol_reset) { 6260 /* 6261 * If we couldn't load IPsec, fail with "protocol 6262 * not supported". 6263 * IPsec may not have been loaded for a request with zero 6264 * policies, so we don't fail in this case. 6265 */ 6266 mutex_enter(&ipss->ipsec_loader_lock); 6267 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6268 mutex_exit(&ipss->ipsec_loader_lock); 6269 return (EPROTONOSUPPORT); 6270 } 6271 mutex_exit(&ipss->ipsec_loader_lock); 6272 6273 /* 6274 * Test for valid requests. Invalid algorithms 6275 * need to be tested by IPsec code because new 6276 * algorithms can be added dynamically. 6277 */ 6278 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6279 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6280 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6281 return (EINVAL); 6282 } 6283 6284 /* 6285 * Only privileged users can issue these 6286 * requests. 6287 */ 6288 if (((ah_req & IPSEC_PREF_NEVER) || 6289 (esp_req & IPSEC_PREF_NEVER) || 6290 (se_req & IPSEC_PREF_NEVER)) && 6291 secpolicy_ip_config(cr, B_FALSE) != 0) { 6292 return (EPERM); 6293 } 6294 6295 /* 6296 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6297 * are mutually exclusive. 6298 */ 6299 if (((ah_req & REQ_MASK) == REQ_MASK) || 6300 ((esp_req & REQ_MASK) == REQ_MASK) || 6301 ((se_req & REQ_MASK) == REQ_MASK)) { 6302 /* Both of them are set */ 6303 return (EINVAL); 6304 } 6305 } 6306 6307 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6308 6309 /* 6310 * If we have already cached policies in conn_connect(), don't 6311 * let them change now. We cache policies for connections 6312 * whose src,dst [addr, port] is known. 6313 */ 6314 if (connp->conn_policy_cached) { 6315 return (EINVAL); 6316 } 6317 6318 /* 6319 * We have a zero policies, reset the connection policy if already 6320 * set. This will cause the connection to inherit the 6321 * global policy, if any. 6322 */ 6323 if (is_pol_reset) { 6324 if (connp->conn_policy != NULL) { 6325 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6326 connp->conn_policy = NULL; 6327 } 6328 connp->conn_in_enforce_policy = B_FALSE; 6329 connp->conn_out_enforce_policy = B_FALSE; 6330 return (0); 6331 } 6332 6333 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6334 ipst->ips_netstack); 6335 if (ph == NULL) 6336 goto enomem; 6337 6338 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6339 if (actp == NULL) 6340 goto enomem; 6341 6342 /* 6343 * Always insert IPv4 policy entries, since they can also apply to 6344 * ipv6 sockets being used in ipv4-compat mode. 6345 */ 6346 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6347 IPSEC_TYPE_INBOUND, ns)) 6348 goto enomem; 6349 is_pol_inserted = B_TRUE; 6350 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6351 IPSEC_TYPE_OUTBOUND, ns)) 6352 goto enomem; 6353 6354 /* 6355 * We're looking at a v6 socket, also insert the v6-specific 6356 * entries. 6357 */ 6358 if (connp->conn_family == AF_INET6) { 6359 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6360 IPSEC_TYPE_INBOUND, ns)) 6361 goto enomem; 6362 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6363 IPSEC_TYPE_OUTBOUND, ns)) 6364 goto enomem; 6365 } 6366 6367 ipsec_actvec_free(actp, nact); 6368 6369 /* 6370 * If the requests need security, set enforce_policy. 6371 * If the requests are IPSEC_PREF_NEVER, one should 6372 * still set conn_out_enforce_policy so that ip_set_destination 6373 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6374 * for connections that we don't cache policy in at connect time, 6375 * if global policy matches in ip_output_attach_policy, we 6376 * don't wrongly inherit global policy. Similarly, we need 6377 * to set conn_in_enforce_policy also so that we don't verify 6378 * policy wrongly. 6379 */ 6380 if ((ah_req & REQ_MASK) != 0 || 6381 (esp_req & REQ_MASK) != 0 || 6382 (se_req & REQ_MASK) != 0) { 6383 connp->conn_in_enforce_policy = B_TRUE; 6384 connp->conn_out_enforce_policy = B_TRUE; 6385 } 6386 6387 return (error); 6388 #undef REQ_MASK 6389 6390 /* 6391 * Common memory-allocation-failure exit path. 6392 */ 6393 enomem: 6394 if (actp != NULL) 6395 ipsec_actvec_free(actp, nact); 6396 if (is_pol_inserted) 6397 ipsec_polhead_flush(ph, ns); 6398 return (ENOMEM); 6399 } 6400 6401 /* 6402 * Set socket options for joining and leaving multicast groups. 6403 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6404 * The caller has already check that the option name is consistent with 6405 * the address family of the socket. 6406 */ 6407 int 6408 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6409 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6410 { 6411 int *i1 = (int *)invalp; 6412 int error = 0; 6413 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6414 struct ip_mreq *v4_mreqp; 6415 struct ipv6_mreq *v6_mreqp; 6416 struct group_req *greqp; 6417 ire_t *ire; 6418 boolean_t done = B_FALSE; 6419 ipaddr_t ifaddr; 6420 in6_addr_t v6group; 6421 uint_t ifindex; 6422 boolean_t mcast_opt = B_TRUE; 6423 mcast_record_t fmode; 6424 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6425 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6426 6427 switch (name) { 6428 case IP_ADD_MEMBERSHIP: 6429 case IPV6_JOIN_GROUP: 6430 mcast_opt = B_FALSE; 6431 /* FALLTHRU */ 6432 case MCAST_JOIN_GROUP: 6433 fmode = MODE_IS_EXCLUDE; 6434 optfn = ip_opt_add_group; 6435 break; 6436 6437 case IP_DROP_MEMBERSHIP: 6438 case IPV6_LEAVE_GROUP: 6439 mcast_opt = B_FALSE; 6440 /* FALLTHRU */ 6441 case MCAST_LEAVE_GROUP: 6442 fmode = MODE_IS_INCLUDE; 6443 optfn = ip_opt_delete_group; 6444 break; 6445 default: 6446 ASSERT(0); 6447 } 6448 6449 if (mcast_opt) { 6450 struct sockaddr_in *sin; 6451 struct sockaddr_in6 *sin6; 6452 6453 greqp = (struct group_req *)i1; 6454 if (greqp->gr_group.ss_family == AF_INET) { 6455 sin = (struct sockaddr_in *)&(greqp->gr_group); 6456 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6457 } else { 6458 if (!inet6) 6459 return (EINVAL); /* Not on INET socket */ 6460 6461 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6462 v6group = sin6->sin6_addr; 6463 } 6464 ifaddr = INADDR_ANY; 6465 ifindex = greqp->gr_interface; 6466 } else if (inet6) { 6467 v6_mreqp = (struct ipv6_mreq *)i1; 6468 v6group = v6_mreqp->ipv6mr_multiaddr; 6469 ifaddr = INADDR_ANY; 6470 ifindex = v6_mreqp->ipv6mr_interface; 6471 } else { 6472 v4_mreqp = (struct ip_mreq *)i1; 6473 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6474 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6475 ifindex = 0; 6476 } 6477 6478 /* 6479 * In the multirouting case, we need to replicate 6480 * the request on all interfaces that will take part 6481 * in replication. We do so because multirouting is 6482 * reflective, thus we will probably receive multi- 6483 * casts on those interfaces. 6484 * The ip_multirt_apply_membership() succeeds if 6485 * the operation succeeds on at least one interface. 6486 */ 6487 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6488 ipaddr_t group; 6489 6490 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6491 6492 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6493 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6494 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6495 } else { 6496 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6497 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6498 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6499 } 6500 if (ire != NULL) { 6501 if (ire->ire_flags & RTF_MULTIRT) { 6502 error = ip_multirt_apply_membership(optfn, ire, connp, 6503 checkonly, &v6group, fmode, &ipv6_all_zeros); 6504 done = B_TRUE; 6505 } 6506 ire_refrele(ire); 6507 } 6508 6509 if (!done) { 6510 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6511 fmode, &ipv6_all_zeros); 6512 } 6513 return (error); 6514 } 6515 6516 /* 6517 * Set socket options for joining and leaving multicast groups 6518 * for specific sources. 6519 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6520 * The caller has already check that the option name is consistent with 6521 * the address family of the socket. 6522 */ 6523 int 6524 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6525 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6526 { 6527 int *i1 = (int *)invalp; 6528 int error = 0; 6529 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6530 struct ip_mreq_source *imreqp; 6531 struct group_source_req *gsreqp; 6532 in6_addr_t v6group, v6src; 6533 uint32_t ifindex; 6534 ipaddr_t ifaddr; 6535 boolean_t mcast_opt = B_TRUE; 6536 mcast_record_t fmode; 6537 ire_t *ire; 6538 boolean_t done = B_FALSE; 6539 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6540 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6541 6542 switch (name) { 6543 case IP_BLOCK_SOURCE: 6544 mcast_opt = B_FALSE; 6545 /* FALLTHRU */ 6546 case MCAST_BLOCK_SOURCE: 6547 fmode = MODE_IS_EXCLUDE; 6548 optfn = ip_opt_add_group; 6549 break; 6550 6551 case IP_UNBLOCK_SOURCE: 6552 mcast_opt = B_FALSE; 6553 /* FALLTHRU */ 6554 case MCAST_UNBLOCK_SOURCE: 6555 fmode = MODE_IS_EXCLUDE; 6556 optfn = ip_opt_delete_group; 6557 break; 6558 6559 case IP_ADD_SOURCE_MEMBERSHIP: 6560 mcast_opt = B_FALSE; 6561 /* FALLTHRU */ 6562 case MCAST_JOIN_SOURCE_GROUP: 6563 fmode = MODE_IS_INCLUDE; 6564 optfn = ip_opt_add_group; 6565 break; 6566 6567 case IP_DROP_SOURCE_MEMBERSHIP: 6568 mcast_opt = B_FALSE; 6569 /* FALLTHRU */ 6570 case MCAST_LEAVE_SOURCE_GROUP: 6571 fmode = MODE_IS_INCLUDE; 6572 optfn = ip_opt_delete_group; 6573 break; 6574 default: 6575 ASSERT(0); 6576 } 6577 6578 if (mcast_opt) { 6579 gsreqp = (struct group_source_req *)i1; 6580 ifindex = gsreqp->gsr_interface; 6581 if (gsreqp->gsr_group.ss_family == AF_INET) { 6582 struct sockaddr_in *s; 6583 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6584 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6585 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6586 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6587 } else { 6588 struct sockaddr_in6 *s6; 6589 6590 if (!inet6) 6591 return (EINVAL); /* Not on INET socket */ 6592 6593 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6594 v6group = s6->sin6_addr; 6595 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6596 v6src = s6->sin6_addr; 6597 } 6598 ifaddr = INADDR_ANY; 6599 } else { 6600 imreqp = (struct ip_mreq_source *)i1; 6601 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6602 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6603 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6604 ifindex = 0; 6605 } 6606 6607 /* 6608 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6609 */ 6610 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6611 v6src = ipv6_all_zeros; 6612 6613 /* 6614 * In the multirouting case, we need to replicate 6615 * the request as noted in the mcast cases above. 6616 */ 6617 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6618 ipaddr_t group; 6619 6620 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6621 6622 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6623 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6624 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6625 } else { 6626 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6627 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6628 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6629 } 6630 if (ire != NULL) { 6631 if (ire->ire_flags & RTF_MULTIRT) { 6632 error = ip_multirt_apply_membership(optfn, ire, connp, 6633 checkonly, &v6group, fmode, &v6src); 6634 done = B_TRUE; 6635 } 6636 ire_refrele(ire); 6637 } 6638 if (!done) { 6639 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6640 fmode, &v6src); 6641 } 6642 return (error); 6643 } 6644 6645 /* 6646 * Given a destination address and a pointer to where to put the information 6647 * this routine fills in the mtuinfo. 6648 * The socket must be connected. 6649 * For sctp conn_faddr is the primary address. 6650 */ 6651 int 6652 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6653 { 6654 uint32_t pmtu = IP_MAXPACKET; 6655 uint_t scopeid; 6656 6657 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6658 return (-1); 6659 6660 /* In case we never sent or called ip_set_destination_v4/v6 */ 6661 if (ixa->ixa_ire != NULL) 6662 pmtu = ip_get_pmtu(ixa); 6663 6664 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6665 scopeid = ixa->ixa_scopeid; 6666 else 6667 scopeid = 0; 6668 6669 bzero(mtuinfo, sizeof (*mtuinfo)); 6670 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6671 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6672 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6673 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6674 mtuinfo->ip6m_mtu = pmtu; 6675 6676 return (sizeof (struct ip6_mtuinfo)); 6677 } 6678 6679 /* Named Dispatch routine to get a current value out of our parameter table. */ 6680 /* ARGSUSED */ 6681 static int 6682 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 6683 { 6684 ipparam_t *ippa = (ipparam_t *)cp; 6685 6686 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 6687 return (0); 6688 } 6689 6690 /* ARGSUSED */ 6691 static int 6692 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 6693 { 6694 6695 (void) mi_mpprintf(mp, "%d", *(int *)cp); 6696 return (0); 6697 } 6698 6699 /* 6700 * Set ip{,6}_forwarding values. This means walking through all of the 6701 * ill's and toggling their forwarding values. 6702 */ 6703 /* ARGSUSED */ 6704 static int 6705 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 6706 { 6707 long new_value; 6708 int *forwarding_value = (int *)cp; 6709 ill_t *ill; 6710 boolean_t isv6; 6711 ill_walk_context_t ctx; 6712 ip_stack_t *ipst = CONNQ_TO_IPST(q); 6713 6714 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 6715 6716 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6717 new_value < 0 || new_value > 1) { 6718 return (EINVAL); 6719 } 6720 6721 *forwarding_value = new_value; 6722 6723 /* 6724 * Regardless of the current value of ip_forwarding, set all per-ill 6725 * values of ip_forwarding to the value being set. 6726 * 6727 * Bring all the ill's up to date with the new global value. 6728 */ 6729 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6730 6731 if (isv6) 6732 ill = ILL_START_WALK_V6(&ctx, ipst); 6733 else 6734 ill = ILL_START_WALK_V4(&ctx, ipst); 6735 6736 for (; ill != NULL; ill = ill_next(&ctx, ill)) 6737 (void) ill_forward_set(ill, new_value != 0); 6738 6739 rw_exit(&ipst->ips_ill_g_lock); 6740 return (0); 6741 } 6742 6743 /* 6744 * Walk through the param array specified registering each element with the 6745 * Named Dispatch handler. This is called only during init. So it is ok 6746 * not to acquire any locks 6747 */ 6748 static boolean_t 6749 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 6750 ipndp_t *ipnd, size_t ipnd_cnt) 6751 { 6752 for (; ippa_cnt-- > 0; ippa++) { 6753 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 6754 if (!nd_load(ndp, ippa->ip_param_name, 6755 ip_param_get, ip_param_set, (caddr_t)ippa)) { 6756 nd_free(ndp); 6757 return (B_FALSE); 6758 } 6759 } 6760 } 6761 6762 for (; ipnd_cnt-- > 0; ipnd++) { 6763 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 6764 if (!nd_load(ndp, ipnd->ip_ndp_name, 6765 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 6766 ipnd->ip_ndp_data)) { 6767 nd_free(ndp); 6768 return (B_FALSE); 6769 } 6770 } 6771 } 6772 6773 return (B_TRUE); 6774 } 6775 6776 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 6777 /* ARGSUSED */ 6778 static int 6779 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 6780 { 6781 long new_value; 6782 ipparam_t *ippa = (ipparam_t *)cp; 6783 6784 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6785 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 6786 return (EINVAL); 6787 } 6788 ippa->ip_param_value = new_value; 6789 return (0); 6790 } 6791 6792 /* 6793 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6794 * When an ipf is passed here for the first time, if 6795 * we already have in-order fragments on the queue, we convert from the fast- 6796 * path reassembly scheme to the hard-case scheme. From then on, additional 6797 * fragments are reassembled here. We keep track of the start and end offsets 6798 * of each piece, and the number of holes in the chain. When the hole count 6799 * goes to zero, we are done! 6800 * 6801 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6802 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6803 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6804 * after the call to ip_reassemble(). 6805 */ 6806 int 6807 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6808 size_t msg_len) 6809 { 6810 uint_t end; 6811 mblk_t *next_mp; 6812 mblk_t *mp1; 6813 uint_t offset; 6814 boolean_t incr_dups = B_TRUE; 6815 boolean_t offset_zero_seen = B_FALSE; 6816 boolean_t pkt_boundary_checked = B_FALSE; 6817 6818 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6819 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6820 6821 /* Add in byte count */ 6822 ipf->ipf_count += msg_len; 6823 if (ipf->ipf_end) { 6824 /* 6825 * We were part way through in-order reassembly, but now there 6826 * is a hole. We walk through messages already queued, and 6827 * mark them for hard case reassembly. We know that up till 6828 * now they were in order starting from offset zero. 6829 */ 6830 offset = 0; 6831 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6832 IP_REASS_SET_START(mp1, offset); 6833 if (offset == 0) { 6834 ASSERT(ipf->ipf_nf_hdr_len != 0); 6835 offset = -ipf->ipf_nf_hdr_len; 6836 } 6837 offset += mp1->b_wptr - mp1->b_rptr; 6838 IP_REASS_SET_END(mp1, offset); 6839 } 6840 /* One hole at the end. */ 6841 ipf->ipf_hole_cnt = 1; 6842 /* Brand it as a hard case, forever. */ 6843 ipf->ipf_end = 0; 6844 } 6845 /* Walk through all the new pieces. */ 6846 do { 6847 end = start + (mp->b_wptr - mp->b_rptr); 6848 /* 6849 * If start is 0, decrease 'end' only for the first mblk of 6850 * the fragment. Otherwise 'end' can get wrong value in the 6851 * second pass of the loop if first mblk is exactly the 6852 * size of ipf_nf_hdr_len. 6853 */ 6854 if (start == 0 && !offset_zero_seen) { 6855 /* First segment */ 6856 ASSERT(ipf->ipf_nf_hdr_len != 0); 6857 end -= ipf->ipf_nf_hdr_len; 6858 offset_zero_seen = B_TRUE; 6859 } 6860 next_mp = mp->b_cont; 6861 /* 6862 * We are checking to see if there is any interesing data 6863 * to process. If there isn't and the mblk isn't the 6864 * one which carries the unfragmentable header then we 6865 * drop it. It's possible to have just the unfragmentable 6866 * header come through without any data. That needs to be 6867 * saved. 6868 * 6869 * If the assert at the top of this function holds then the 6870 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6871 * is infrequently traveled enough that the test is left in 6872 * to protect against future code changes which break that 6873 * invariant. 6874 */ 6875 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6876 /* Empty. Blast it. */ 6877 IP_REASS_SET_START(mp, 0); 6878 IP_REASS_SET_END(mp, 0); 6879 /* 6880 * If the ipf points to the mblk we are about to free, 6881 * update ipf to point to the next mblk (or NULL 6882 * if none). 6883 */ 6884 if (ipf->ipf_mp->b_cont == mp) 6885 ipf->ipf_mp->b_cont = next_mp; 6886 freeb(mp); 6887 continue; 6888 } 6889 mp->b_cont = NULL; 6890 IP_REASS_SET_START(mp, start); 6891 IP_REASS_SET_END(mp, end); 6892 if (!ipf->ipf_tail_mp) { 6893 ipf->ipf_tail_mp = mp; 6894 ipf->ipf_mp->b_cont = mp; 6895 if (start == 0 || !more) { 6896 ipf->ipf_hole_cnt = 1; 6897 /* 6898 * if the first fragment comes in more than one 6899 * mblk, this loop will be executed for each 6900 * mblk. Need to adjust hole count so exiting 6901 * this routine will leave hole count at 1. 6902 */ 6903 if (next_mp) 6904 ipf->ipf_hole_cnt++; 6905 } else 6906 ipf->ipf_hole_cnt = 2; 6907 continue; 6908 } else if (ipf->ipf_last_frag_seen && !more && 6909 !pkt_boundary_checked) { 6910 /* 6911 * We check datagram boundary only if this fragment 6912 * claims to be the last fragment and we have seen a 6913 * last fragment in the past too. We do this only 6914 * once for a given fragment. 6915 * 6916 * start cannot be 0 here as fragments with start=0 6917 * and MF=0 gets handled as a complete packet. These 6918 * fragments should not reach here. 6919 */ 6920 6921 if (start + msgdsize(mp) != 6922 IP_REASS_END(ipf->ipf_tail_mp)) { 6923 /* 6924 * We have two fragments both of which claim 6925 * to be the last fragment but gives conflicting 6926 * information about the whole datagram size. 6927 * Something fishy is going on. Drop the 6928 * fragment and free up the reassembly list. 6929 */ 6930 return (IP_REASS_FAILED); 6931 } 6932 6933 /* 6934 * We shouldn't come to this code block again for this 6935 * particular fragment. 6936 */ 6937 pkt_boundary_checked = B_TRUE; 6938 } 6939 6940 /* New stuff at or beyond tail? */ 6941 offset = IP_REASS_END(ipf->ipf_tail_mp); 6942 if (start >= offset) { 6943 if (ipf->ipf_last_frag_seen) { 6944 /* current fragment is beyond last fragment */ 6945 return (IP_REASS_FAILED); 6946 } 6947 /* Link it on end. */ 6948 ipf->ipf_tail_mp->b_cont = mp; 6949 ipf->ipf_tail_mp = mp; 6950 if (more) { 6951 if (start != offset) 6952 ipf->ipf_hole_cnt++; 6953 } else if (start == offset && next_mp == NULL) 6954 ipf->ipf_hole_cnt--; 6955 continue; 6956 } 6957 mp1 = ipf->ipf_mp->b_cont; 6958 offset = IP_REASS_START(mp1); 6959 /* New stuff at the front? */ 6960 if (start < offset) { 6961 if (start == 0) { 6962 if (end >= offset) { 6963 /* Nailed the hole at the begining. */ 6964 ipf->ipf_hole_cnt--; 6965 } 6966 } else if (end < offset) { 6967 /* 6968 * A hole, stuff, and a hole where there used 6969 * to be just a hole. 6970 */ 6971 ipf->ipf_hole_cnt++; 6972 } 6973 mp->b_cont = mp1; 6974 /* Check for overlap. */ 6975 while (end > offset) { 6976 if (end < IP_REASS_END(mp1)) { 6977 mp->b_wptr -= end - offset; 6978 IP_REASS_SET_END(mp, offset); 6979 BUMP_MIB(ill->ill_ip_mib, 6980 ipIfStatsReasmPartDups); 6981 break; 6982 } 6983 /* Did we cover another hole? */ 6984 if ((mp1->b_cont && 6985 IP_REASS_END(mp1) != 6986 IP_REASS_START(mp1->b_cont) && 6987 end >= IP_REASS_START(mp1->b_cont)) || 6988 (!ipf->ipf_last_frag_seen && !more)) { 6989 ipf->ipf_hole_cnt--; 6990 } 6991 /* Clip out mp1. */ 6992 if ((mp->b_cont = mp1->b_cont) == NULL) { 6993 /* 6994 * After clipping out mp1, this guy 6995 * is now hanging off the end. 6996 */ 6997 ipf->ipf_tail_mp = mp; 6998 } 6999 IP_REASS_SET_START(mp1, 0); 7000 IP_REASS_SET_END(mp1, 0); 7001 /* Subtract byte count */ 7002 ipf->ipf_count -= mp1->b_datap->db_lim - 7003 mp1->b_datap->db_base; 7004 freeb(mp1); 7005 BUMP_MIB(ill->ill_ip_mib, 7006 ipIfStatsReasmPartDups); 7007 mp1 = mp->b_cont; 7008 if (!mp1) 7009 break; 7010 offset = IP_REASS_START(mp1); 7011 } 7012 ipf->ipf_mp->b_cont = mp; 7013 continue; 7014 } 7015 /* 7016 * The new piece starts somewhere between the start of the head 7017 * and before the end of the tail. 7018 */ 7019 for (; mp1; mp1 = mp1->b_cont) { 7020 offset = IP_REASS_END(mp1); 7021 if (start < offset) { 7022 if (end <= offset) { 7023 /* Nothing new. */ 7024 IP_REASS_SET_START(mp, 0); 7025 IP_REASS_SET_END(mp, 0); 7026 /* Subtract byte count */ 7027 ipf->ipf_count -= mp->b_datap->db_lim - 7028 mp->b_datap->db_base; 7029 if (incr_dups) { 7030 ipf->ipf_num_dups++; 7031 incr_dups = B_FALSE; 7032 } 7033 freeb(mp); 7034 BUMP_MIB(ill->ill_ip_mib, 7035 ipIfStatsReasmDuplicates); 7036 break; 7037 } 7038 /* 7039 * Trim redundant stuff off beginning of new 7040 * piece. 7041 */ 7042 IP_REASS_SET_START(mp, offset); 7043 mp->b_rptr += offset - start; 7044 BUMP_MIB(ill->ill_ip_mib, 7045 ipIfStatsReasmPartDups); 7046 start = offset; 7047 if (!mp1->b_cont) { 7048 /* 7049 * After trimming, this guy is now 7050 * hanging off the end. 7051 */ 7052 mp1->b_cont = mp; 7053 ipf->ipf_tail_mp = mp; 7054 if (!more) { 7055 ipf->ipf_hole_cnt--; 7056 } 7057 break; 7058 } 7059 } 7060 if (start >= IP_REASS_START(mp1->b_cont)) 7061 continue; 7062 /* Fill a hole */ 7063 if (start > offset) 7064 ipf->ipf_hole_cnt++; 7065 mp->b_cont = mp1->b_cont; 7066 mp1->b_cont = mp; 7067 mp1 = mp->b_cont; 7068 offset = IP_REASS_START(mp1); 7069 if (end >= offset) { 7070 ipf->ipf_hole_cnt--; 7071 /* Check for overlap. */ 7072 while (end > offset) { 7073 if (end < IP_REASS_END(mp1)) { 7074 mp->b_wptr -= end - offset; 7075 IP_REASS_SET_END(mp, offset); 7076 /* 7077 * TODO we might bump 7078 * this up twice if there is 7079 * overlap at both ends. 7080 */ 7081 BUMP_MIB(ill->ill_ip_mib, 7082 ipIfStatsReasmPartDups); 7083 break; 7084 } 7085 /* Did we cover another hole? */ 7086 if ((mp1->b_cont && 7087 IP_REASS_END(mp1) 7088 != IP_REASS_START(mp1->b_cont) && 7089 end >= 7090 IP_REASS_START(mp1->b_cont)) || 7091 (!ipf->ipf_last_frag_seen && 7092 !more)) { 7093 ipf->ipf_hole_cnt--; 7094 } 7095 /* Clip out mp1. */ 7096 if ((mp->b_cont = mp1->b_cont) == 7097 NULL) { 7098 /* 7099 * After clipping out mp1, 7100 * this guy is now hanging 7101 * off the end. 7102 */ 7103 ipf->ipf_tail_mp = mp; 7104 } 7105 IP_REASS_SET_START(mp1, 0); 7106 IP_REASS_SET_END(mp1, 0); 7107 /* Subtract byte count */ 7108 ipf->ipf_count -= 7109 mp1->b_datap->db_lim - 7110 mp1->b_datap->db_base; 7111 freeb(mp1); 7112 BUMP_MIB(ill->ill_ip_mib, 7113 ipIfStatsReasmPartDups); 7114 mp1 = mp->b_cont; 7115 if (!mp1) 7116 break; 7117 offset = IP_REASS_START(mp1); 7118 } 7119 } 7120 break; 7121 } 7122 } while (start = end, mp = next_mp); 7123 7124 /* Fragment just processed could be the last one. Remember this fact */ 7125 if (!more) 7126 ipf->ipf_last_frag_seen = B_TRUE; 7127 7128 /* Still got holes? */ 7129 if (ipf->ipf_hole_cnt) 7130 return (IP_REASS_PARTIAL); 7131 /* Clean up overloaded fields to avoid upstream disasters. */ 7132 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7133 IP_REASS_SET_START(mp1, 0); 7134 IP_REASS_SET_END(mp1, 0); 7135 } 7136 return (IP_REASS_COMPLETE); 7137 } 7138 7139 /* 7140 * Fragmentation reassembly. Each ILL has a hash table for 7141 * queuing packets undergoing reassembly for all IPIFs 7142 * associated with the ILL. The hash is based on the packet 7143 * IP ident field. The ILL frag hash table was allocated 7144 * as a timer block at the time the ILL was created. Whenever 7145 * there is anything on the reassembly queue, the timer will 7146 * be running. Returns the reassembled packet if reassembly completes. 7147 */ 7148 mblk_t * 7149 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7150 { 7151 uint32_t frag_offset_flags; 7152 mblk_t *t_mp; 7153 ipaddr_t dst; 7154 uint8_t proto = ipha->ipha_protocol; 7155 uint32_t sum_val; 7156 uint16_t sum_flags; 7157 ipf_t *ipf; 7158 ipf_t **ipfp; 7159 ipfb_t *ipfb; 7160 uint16_t ident; 7161 uint32_t offset; 7162 ipaddr_t src; 7163 uint_t hdr_length; 7164 uint32_t end; 7165 mblk_t *mp1; 7166 mblk_t *tail_mp; 7167 size_t count; 7168 size_t msg_len; 7169 uint8_t ecn_info = 0; 7170 uint32_t packet_size; 7171 boolean_t pruned = B_FALSE; 7172 ill_t *ill = ira->ira_ill; 7173 ip_stack_t *ipst = ill->ill_ipst; 7174 7175 /* 7176 * Drop the fragmented as early as possible, if 7177 * we don't have resource(s) to re-assemble. 7178 */ 7179 if (ipst->ips_ip_reass_queue_bytes == 0) { 7180 freemsg(mp); 7181 return (NULL); 7182 } 7183 7184 /* Check for fragmentation offset; return if there's none */ 7185 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7186 (IPH_MF | IPH_OFFSET)) == 0) 7187 return (mp); 7188 7189 /* 7190 * We utilize hardware computed checksum info only for UDP since 7191 * IP fragmentation is a normal occurrence for the protocol. In 7192 * addition, checksum offload support for IP fragments carrying 7193 * UDP payload is commonly implemented across network adapters. 7194 */ 7195 ASSERT(ira->ira_rill != NULL); 7196 if (proto == IPPROTO_UDP && dohwcksum && 7197 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7198 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7199 mblk_t *mp1 = mp->b_cont; 7200 int32_t len; 7201 7202 /* Record checksum information from the packet */ 7203 sum_val = (uint32_t)DB_CKSUM16(mp); 7204 sum_flags = DB_CKSUMFLAGS(mp); 7205 7206 /* IP payload offset from beginning of mblk */ 7207 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7208 7209 if ((sum_flags & HCK_PARTIALCKSUM) && 7210 (mp1 == NULL || mp1->b_cont == NULL) && 7211 offset >= DB_CKSUMSTART(mp) && 7212 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7213 uint32_t adj; 7214 /* 7215 * Partial checksum has been calculated by hardware 7216 * and attached to the packet; in addition, any 7217 * prepended extraneous data is even byte aligned. 7218 * If any such data exists, we adjust the checksum; 7219 * this would also handle any postpended data. 7220 */ 7221 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7222 mp, mp1, len, adj); 7223 7224 /* One's complement subtract extraneous checksum */ 7225 if (adj >= sum_val) 7226 sum_val = ~(adj - sum_val) & 0xFFFF; 7227 else 7228 sum_val -= adj; 7229 } 7230 } else { 7231 sum_val = 0; 7232 sum_flags = 0; 7233 } 7234 7235 /* Clear hardware checksumming flag */ 7236 DB_CKSUMFLAGS(mp) = 0; 7237 7238 ident = ipha->ipha_ident; 7239 offset = (frag_offset_flags << 3) & 0xFFFF; 7240 src = ipha->ipha_src; 7241 dst = ipha->ipha_dst; 7242 hdr_length = IPH_HDR_LENGTH(ipha); 7243 end = ntohs(ipha->ipha_length) - hdr_length; 7244 7245 /* If end == 0 then we have a packet with no data, so just free it */ 7246 if (end == 0) { 7247 freemsg(mp); 7248 return (NULL); 7249 } 7250 7251 /* Record the ECN field info. */ 7252 ecn_info = (ipha->ipha_type_of_service & 0x3); 7253 if (offset != 0) { 7254 /* 7255 * If this isn't the first piece, strip the header, and 7256 * add the offset to the end value. 7257 */ 7258 mp->b_rptr += hdr_length; 7259 end += offset; 7260 } 7261 7262 /* Handle vnic loopback of fragments */ 7263 if (mp->b_datap->db_ref > 2) 7264 msg_len = 0; 7265 else 7266 msg_len = MBLKSIZE(mp); 7267 7268 tail_mp = mp; 7269 while (tail_mp->b_cont != NULL) { 7270 tail_mp = tail_mp->b_cont; 7271 if (tail_mp->b_datap->db_ref <= 2) 7272 msg_len += MBLKSIZE(tail_mp); 7273 } 7274 7275 /* If the reassembly list for this ILL will get too big, prune it */ 7276 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7277 ipst->ips_ip_reass_queue_bytes) { 7278 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7279 uint_t, ill->ill_frag_count, 7280 uint_t, ipst->ips_ip_reass_queue_bytes); 7281 ill_frag_prune(ill, 7282 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7283 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7284 pruned = B_TRUE; 7285 } 7286 7287 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7288 mutex_enter(&ipfb->ipfb_lock); 7289 7290 ipfp = &ipfb->ipfb_ipf; 7291 /* Try to find an existing fragment queue for this packet. */ 7292 for (;;) { 7293 ipf = ipfp[0]; 7294 if (ipf != NULL) { 7295 /* 7296 * It has to match on ident and src/dst address. 7297 */ 7298 if (ipf->ipf_ident == ident && 7299 ipf->ipf_src == src && 7300 ipf->ipf_dst == dst && 7301 ipf->ipf_protocol == proto) { 7302 /* 7303 * If we have received too many 7304 * duplicate fragments for this packet 7305 * free it. 7306 */ 7307 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7308 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7309 freemsg(mp); 7310 mutex_exit(&ipfb->ipfb_lock); 7311 return (NULL); 7312 } 7313 /* Found it. */ 7314 break; 7315 } 7316 ipfp = &ipf->ipf_hash_next; 7317 continue; 7318 } 7319 7320 /* 7321 * If we pruned the list, do we want to store this new 7322 * fragment?. We apply an optimization here based on the 7323 * fact that most fragments will be received in order. 7324 * So if the offset of this incoming fragment is zero, 7325 * it is the first fragment of a new packet. We will 7326 * keep it. Otherwise drop the fragment, as we have 7327 * probably pruned the packet already (since the 7328 * packet cannot be found). 7329 */ 7330 if (pruned && offset != 0) { 7331 mutex_exit(&ipfb->ipfb_lock); 7332 freemsg(mp); 7333 return (NULL); 7334 } 7335 7336 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7337 /* 7338 * Too many fragmented packets in this hash 7339 * bucket. Free the oldest. 7340 */ 7341 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7342 } 7343 7344 /* New guy. Allocate a frag message. */ 7345 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7346 if (mp1 == NULL) { 7347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7348 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7349 freemsg(mp); 7350 reass_done: 7351 mutex_exit(&ipfb->ipfb_lock); 7352 return (NULL); 7353 } 7354 7355 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7356 mp1->b_cont = mp; 7357 7358 /* Initialize the fragment header. */ 7359 ipf = (ipf_t *)mp1->b_rptr; 7360 ipf->ipf_mp = mp1; 7361 ipf->ipf_ptphn = ipfp; 7362 ipfp[0] = ipf; 7363 ipf->ipf_hash_next = NULL; 7364 ipf->ipf_ident = ident; 7365 ipf->ipf_protocol = proto; 7366 ipf->ipf_src = src; 7367 ipf->ipf_dst = dst; 7368 ipf->ipf_nf_hdr_len = 0; 7369 /* Record reassembly start time. */ 7370 ipf->ipf_timestamp = gethrestime_sec(); 7371 /* Record ipf generation and account for frag header */ 7372 ipf->ipf_gen = ill->ill_ipf_gen++; 7373 ipf->ipf_count = MBLKSIZE(mp1); 7374 ipf->ipf_last_frag_seen = B_FALSE; 7375 ipf->ipf_ecn = ecn_info; 7376 ipf->ipf_num_dups = 0; 7377 ipfb->ipfb_frag_pkts++; 7378 ipf->ipf_checksum = 0; 7379 ipf->ipf_checksum_flags = 0; 7380 7381 /* Store checksum value in fragment header */ 7382 if (sum_flags != 0) { 7383 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7384 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7385 ipf->ipf_checksum = sum_val; 7386 ipf->ipf_checksum_flags = sum_flags; 7387 } 7388 7389 /* 7390 * We handle reassembly two ways. In the easy case, 7391 * where all the fragments show up in order, we do 7392 * minimal bookkeeping, and just clip new pieces on 7393 * the end. If we ever see a hole, then we go off 7394 * to ip_reassemble which has to mark the pieces and 7395 * keep track of the number of holes, etc. Obviously, 7396 * the point of having both mechanisms is so we can 7397 * handle the easy case as efficiently as possible. 7398 */ 7399 if (offset == 0) { 7400 /* Easy case, in-order reassembly so far. */ 7401 ipf->ipf_count += msg_len; 7402 ipf->ipf_tail_mp = tail_mp; 7403 /* 7404 * Keep track of next expected offset in 7405 * ipf_end. 7406 */ 7407 ipf->ipf_end = end; 7408 ipf->ipf_nf_hdr_len = hdr_length; 7409 } else { 7410 /* Hard case, hole at the beginning. */ 7411 ipf->ipf_tail_mp = NULL; 7412 /* 7413 * ipf_end == 0 means that we have given up 7414 * on easy reassembly. 7415 */ 7416 ipf->ipf_end = 0; 7417 7418 /* Forget checksum offload from now on */ 7419 ipf->ipf_checksum_flags = 0; 7420 7421 /* 7422 * ipf_hole_cnt is set by ip_reassemble. 7423 * ipf_count is updated by ip_reassemble. 7424 * No need to check for return value here 7425 * as we don't expect reassembly to complete 7426 * or fail for the first fragment itself. 7427 */ 7428 (void) ip_reassemble(mp, ipf, 7429 (frag_offset_flags & IPH_OFFSET) << 3, 7430 (frag_offset_flags & IPH_MF), ill, msg_len); 7431 } 7432 /* Update per ipfb and ill byte counts */ 7433 ipfb->ipfb_count += ipf->ipf_count; 7434 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7435 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7436 /* If the frag timer wasn't already going, start it. */ 7437 mutex_enter(&ill->ill_lock); 7438 ill_frag_timer_start(ill); 7439 mutex_exit(&ill->ill_lock); 7440 goto reass_done; 7441 } 7442 7443 /* 7444 * If the packet's flag has changed (it could be coming up 7445 * from an interface different than the previous, therefore 7446 * possibly different checksum capability), then forget about 7447 * any stored checksum states. Otherwise add the value to 7448 * the existing one stored in the fragment header. 7449 */ 7450 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7451 sum_val += ipf->ipf_checksum; 7452 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7453 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7454 ipf->ipf_checksum = sum_val; 7455 } else if (ipf->ipf_checksum_flags != 0) { 7456 /* Forget checksum offload from now on */ 7457 ipf->ipf_checksum_flags = 0; 7458 } 7459 7460 /* 7461 * We have a new piece of a datagram which is already being 7462 * reassembled. Update the ECN info if all IP fragments 7463 * are ECN capable. If there is one which is not, clear 7464 * all the info. If there is at least one which has CE 7465 * code point, IP needs to report that up to transport. 7466 */ 7467 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7468 if (ecn_info == IPH_ECN_CE) 7469 ipf->ipf_ecn = IPH_ECN_CE; 7470 } else { 7471 ipf->ipf_ecn = IPH_ECN_NECT; 7472 } 7473 if (offset && ipf->ipf_end == offset) { 7474 /* The new fragment fits at the end */ 7475 ipf->ipf_tail_mp->b_cont = mp; 7476 /* Update the byte count */ 7477 ipf->ipf_count += msg_len; 7478 /* Update per ipfb and ill byte counts */ 7479 ipfb->ipfb_count += msg_len; 7480 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7481 atomic_add_32(&ill->ill_frag_count, msg_len); 7482 if (frag_offset_flags & IPH_MF) { 7483 /* More to come. */ 7484 ipf->ipf_end = end; 7485 ipf->ipf_tail_mp = tail_mp; 7486 goto reass_done; 7487 } 7488 } else { 7489 /* Go do the hard cases. */ 7490 int ret; 7491 7492 if (offset == 0) 7493 ipf->ipf_nf_hdr_len = hdr_length; 7494 7495 /* Save current byte count */ 7496 count = ipf->ipf_count; 7497 ret = ip_reassemble(mp, ipf, 7498 (frag_offset_flags & IPH_OFFSET) << 3, 7499 (frag_offset_flags & IPH_MF), ill, msg_len); 7500 /* Count of bytes added and subtracted (freeb()ed) */ 7501 count = ipf->ipf_count - count; 7502 if (count) { 7503 /* Update per ipfb and ill byte counts */ 7504 ipfb->ipfb_count += count; 7505 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7506 atomic_add_32(&ill->ill_frag_count, count); 7507 } 7508 if (ret == IP_REASS_PARTIAL) { 7509 goto reass_done; 7510 } else if (ret == IP_REASS_FAILED) { 7511 /* Reassembly failed. Free up all resources */ 7512 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7513 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7514 IP_REASS_SET_START(t_mp, 0); 7515 IP_REASS_SET_END(t_mp, 0); 7516 } 7517 freemsg(mp); 7518 goto reass_done; 7519 } 7520 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7521 } 7522 /* 7523 * We have completed reassembly. Unhook the frag header from 7524 * the reassembly list. 7525 * 7526 * Before we free the frag header, record the ECN info 7527 * to report back to the transport. 7528 */ 7529 ecn_info = ipf->ipf_ecn; 7530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7531 ipfp = ipf->ipf_ptphn; 7532 7533 /* We need to supply these to caller */ 7534 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7535 sum_val = ipf->ipf_checksum; 7536 else 7537 sum_val = 0; 7538 7539 mp1 = ipf->ipf_mp; 7540 count = ipf->ipf_count; 7541 ipf = ipf->ipf_hash_next; 7542 if (ipf != NULL) 7543 ipf->ipf_ptphn = ipfp; 7544 ipfp[0] = ipf; 7545 atomic_add_32(&ill->ill_frag_count, -count); 7546 ASSERT(ipfb->ipfb_count >= count); 7547 ipfb->ipfb_count -= count; 7548 ipfb->ipfb_frag_pkts--; 7549 mutex_exit(&ipfb->ipfb_lock); 7550 /* Ditch the frag header. */ 7551 mp = mp1->b_cont; 7552 7553 freeb(mp1); 7554 7555 /* Restore original IP length in header. */ 7556 packet_size = (uint32_t)msgdsize(mp); 7557 if (packet_size > IP_MAXPACKET) { 7558 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7559 ip_drop_input("Reassembled packet too large", mp, ill); 7560 freemsg(mp); 7561 return (NULL); 7562 } 7563 7564 if (DB_REF(mp) > 1) { 7565 mblk_t *mp2 = copymsg(mp); 7566 7567 if (mp2 == NULL) { 7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7569 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7570 freemsg(mp); 7571 return (NULL); 7572 } 7573 freemsg(mp); 7574 mp = mp2; 7575 } 7576 ipha = (ipha_t *)mp->b_rptr; 7577 7578 ipha->ipha_length = htons((uint16_t)packet_size); 7579 /* We're now complete, zip the frag state */ 7580 ipha->ipha_fragment_offset_and_flags = 0; 7581 /* Record the ECN info. */ 7582 ipha->ipha_type_of_service &= 0xFC; 7583 ipha->ipha_type_of_service |= ecn_info; 7584 7585 /* Update the receive attributes */ 7586 ira->ira_pktlen = packet_size; 7587 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7588 7589 /* Reassembly is successful; set checksum information in packet */ 7590 DB_CKSUM16(mp) = (uint16_t)sum_val; 7591 DB_CKSUMFLAGS(mp) = sum_flags; 7592 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7593 7594 return (mp); 7595 } 7596 7597 /* 7598 * Pullup function that should be used for IP input in order to 7599 * ensure we do not loose the L2 source address; we need the l2 source 7600 * address for IP_RECVSLLA and for ndp_input. 7601 * 7602 * We return either NULL or b_rptr. 7603 */ 7604 void * 7605 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7606 { 7607 ill_t *ill = ira->ira_ill; 7608 7609 if (ip_rput_pullups++ == 0) { 7610 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7611 "ip_pullup: %s forced us to " 7612 " pullup pkt, hdr len %ld, hdr addr %p", 7613 ill->ill_name, len, (void *)mp->b_rptr); 7614 } 7615 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7616 ip_setl2src(mp, ira, ira->ira_rill); 7617 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7618 if (!pullupmsg(mp, len)) 7619 return (NULL); 7620 else 7621 return (mp->b_rptr); 7622 } 7623 7624 /* 7625 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7626 * When called from the ULP ira_rill will be NULL hence the caller has to 7627 * pass in the ill. 7628 */ 7629 /* ARGSUSED */ 7630 void 7631 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7632 { 7633 const uchar_t *addr; 7634 int alen; 7635 7636 if (ira->ira_flags & IRAF_L2SRC_SET) 7637 return; 7638 7639 ASSERT(ill != NULL); 7640 alen = ill->ill_phys_addr_length; 7641 ASSERT(alen <= sizeof (ira->ira_l2src)); 7642 if (ira->ira_mhip != NULL && 7643 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7644 bcopy(addr, ira->ira_l2src, alen); 7645 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7646 (addr = ill->ill_phys_addr) != NULL) { 7647 bcopy(addr, ira->ira_l2src, alen); 7648 } else { 7649 bzero(ira->ira_l2src, alen); 7650 } 7651 ira->ira_flags |= IRAF_L2SRC_SET; 7652 } 7653 7654 /* 7655 * check ip header length and align it. 7656 */ 7657 mblk_t * 7658 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7659 { 7660 ill_t *ill = ira->ira_ill; 7661 ssize_t len; 7662 7663 len = MBLKL(mp); 7664 7665 if (!OK_32PTR(mp->b_rptr)) 7666 IP_STAT(ill->ill_ipst, ip_notaligned); 7667 else 7668 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7669 7670 /* Guard against bogus device drivers */ 7671 if (len < 0) { 7672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7673 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7674 freemsg(mp); 7675 return (NULL); 7676 } 7677 7678 if (len == 0) { 7679 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7680 mblk_t *mp1 = mp->b_cont; 7681 7682 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7683 ip_setl2src(mp, ira, ira->ira_rill); 7684 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7685 7686 freeb(mp); 7687 mp = mp1; 7688 if (mp == NULL) 7689 return (NULL); 7690 7691 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7692 return (mp); 7693 } 7694 if (ip_pullup(mp, min_size, ira) == NULL) { 7695 if (msgdsize(mp) < min_size) { 7696 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7697 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7698 } else { 7699 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7700 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7701 } 7702 freemsg(mp); 7703 return (NULL); 7704 } 7705 return (mp); 7706 } 7707 7708 /* 7709 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7710 */ 7711 mblk_t * 7712 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7713 uint_t min_size, ip_recv_attr_t *ira) 7714 { 7715 ill_t *ill = ira->ira_ill; 7716 7717 /* 7718 * Make sure we have data length consistent 7719 * with the IP header. 7720 */ 7721 if (mp->b_cont == NULL) { 7722 /* pkt_len is based on ipha_len, not the mblk length */ 7723 if (pkt_len < min_size) { 7724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7725 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7726 freemsg(mp); 7727 return (NULL); 7728 } 7729 if (len < 0) { 7730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7731 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7732 freemsg(mp); 7733 return (NULL); 7734 } 7735 /* Drop any pad */ 7736 mp->b_wptr = rptr + pkt_len; 7737 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7738 ASSERT(pkt_len >= min_size); 7739 if (pkt_len < min_size) { 7740 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7741 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7742 freemsg(mp); 7743 return (NULL); 7744 } 7745 if (len < 0) { 7746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7747 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7748 freemsg(mp); 7749 return (NULL); 7750 } 7751 /* Drop any pad */ 7752 (void) adjmsg(mp, -len); 7753 /* 7754 * adjmsg may have freed an mblk from the chain, hence 7755 * invalidate any hw checksum here. This will force IP to 7756 * calculate the checksum in sw, but only for this packet. 7757 */ 7758 DB_CKSUMFLAGS(mp) = 0; 7759 IP_STAT(ill->ill_ipst, ip_multimblk); 7760 } 7761 return (mp); 7762 } 7763 7764 /* 7765 * Check that the IPv4 opt_len is consistent with the packet and pullup 7766 * the options. 7767 */ 7768 mblk_t * 7769 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7770 ip_recv_attr_t *ira) 7771 { 7772 ill_t *ill = ira->ira_ill; 7773 ssize_t len; 7774 7775 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7776 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7777 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7778 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7779 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7780 freemsg(mp); 7781 return (NULL); 7782 } 7783 7784 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7786 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7787 freemsg(mp); 7788 return (NULL); 7789 } 7790 /* 7791 * Recompute complete header length and make sure we 7792 * have access to all of it. 7793 */ 7794 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7795 if (len > (mp->b_wptr - mp->b_rptr)) { 7796 if (len > pkt_len) { 7797 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7798 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7799 freemsg(mp); 7800 return (NULL); 7801 } 7802 if (ip_pullup(mp, len, ira) == NULL) { 7803 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7804 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7805 freemsg(mp); 7806 return (NULL); 7807 } 7808 } 7809 return (mp); 7810 } 7811 7812 /* 7813 * Returns a new ire, or the same ire, or NULL. 7814 * If a different IRE is returned, then it is held; the caller 7815 * needs to release it. 7816 * In no case is there any hold/release on the ire argument. 7817 */ 7818 ire_t * 7819 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7820 { 7821 ire_t *new_ire; 7822 ill_t *ire_ill; 7823 uint_t ifindex; 7824 ip_stack_t *ipst = ill->ill_ipst; 7825 boolean_t strict_check = B_FALSE; 7826 7827 /* 7828 * IPMP common case: if IRE and ILL are in the same group, there's no 7829 * issue (e.g. packet received on an underlying interface matched an 7830 * IRE_LOCAL on its associated group interface). 7831 */ 7832 ASSERT(ire->ire_ill != NULL); 7833 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7834 return (ire); 7835 7836 /* 7837 * Do another ire lookup here, using the ingress ill, to see if the 7838 * interface is in a usesrc group. 7839 * As long as the ills belong to the same group, we don't consider 7840 * them to be arriving on the wrong interface. Thus, if the switch 7841 * is doing inbound load spreading, we won't drop packets when the 7842 * ip*_strict_dst_multihoming switch is on. 7843 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7844 * where the local address may not be unique. In this case we were 7845 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7846 * actually returned. The new lookup, which is more specific, should 7847 * only find the IRE_LOCAL associated with the ingress ill if one 7848 * exists. 7849 */ 7850 if (ire->ire_ipversion == IPV4_VERSION) { 7851 if (ipst->ips_ip_strict_dst_multihoming) 7852 strict_check = B_TRUE; 7853 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7854 IRE_LOCAL, ill, ALL_ZONES, NULL, 7855 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7856 } else { 7857 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7858 if (ipst->ips_ipv6_strict_dst_multihoming) 7859 strict_check = B_TRUE; 7860 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7861 IRE_LOCAL, ill, ALL_ZONES, NULL, 7862 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7863 } 7864 /* 7865 * If the same ire that was returned in ip_input() is found then this 7866 * is an indication that usesrc groups are in use. The packet 7867 * arrived on a different ill in the group than the one associated with 7868 * the destination address. If a different ire was found then the same 7869 * IP address must be hosted on multiple ills. This is possible with 7870 * unnumbered point2point interfaces. We switch to use this new ire in 7871 * order to have accurate interface statistics. 7872 */ 7873 if (new_ire != NULL) { 7874 /* Note: held in one case but not the other? Caller handles */ 7875 if (new_ire != ire) 7876 return (new_ire); 7877 /* Unchanged */ 7878 ire_refrele(new_ire); 7879 return (ire); 7880 } 7881 7882 /* 7883 * Chase pointers once and store locally. 7884 */ 7885 ASSERT(ire->ire_ill != NULL); 7886 ire_ill = ire->ire_ill; 7887 ifindex = ill->ill_usesrc_ifindex; 7888 7889 /* 7890 * Check if it's a legal address on the 'usesrc' interface. 7891 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7892 * can just check phyint_ifindex. 7893 */ 7894 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7895 return (ire); 7896 } 7897 7898 /* 7899 * If the ip*_strict_dst_multihoming switch is on then we can 7900 * only accept this packet if the interface is marked as routing. 7901 */ 7902 if (!(strict_check)) 7903 return (ire); 7904 7905 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7906 return (ire); 7907 } 7908 return (NULL); 7909 } 7910 7911 /* 7912 * This function is used to construct a mac_header_info_s from a 7913 * DL_UNITDATA_IND message. 7914 * The address fields in the mhi structure points into the message, 7915 * thus the caller can't use those fields after freeing the message. 7916 * 7917 * We determine whether the packet received is a non-unicast packet 7918 * and in doing so, determine whether or not it is broadcast vs multicast. 7919 * For it to be a broadcast packet, we must have the appropriate mblk_t 7920 * hanging off the ill_t. If this is either not present or doesn't match 7921 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7922 * to be multicast. Thus NICs that have no broadcast address (or no 7923 * capability for one, such as point to point links) cannot return as 7924 * the packet being broadcast. 7925 */ 7926 void 7927 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7928 { 7929 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7930 mblk_t *bmp; 7931 uint_t extra_offset; 7932 7933 bzero(mhip, sizeof (struct mac_header_info_s)); 7934 7935 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7936 7937 if (ill->ill_sap_length < 0) 7938 extra_offset = 0; 7939 else 7940 extra_offset = ill->ill_sap_length; 7941 7942 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7943 extra_offset; 7944 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7945 extra_offset; 7946 7947 if (!ind->dl_group_address) 7948 return; 7949 7950 /* Multicast or broadcast */ 7951 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7952 7953 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7954 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7955 (bmp = ill->ill_bcast_mp) != NULL) { 7956 dl_unitdata_req_t *dlur; 7957 uint8_t *bphys_addr; 7958 7959 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7960 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7961 extra_offset; 7962 7963 if (bcmp(mhip->mhi_daddr, bphys_addr, 7964 ind->dl_dest_addr_length) == 0) 7965 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7966 } 7967 } 7968 7969 /* 7970 * This function is used to construct a mac_header_info_s from a 7971 * M_DATA fastpath message from a DLPI driver. 7972 * The address fields in the mhi structure points into the message, 7973 * thus the caller can't use those fields after freeing the message. 7974 * 7975 * We determine whether the packet received is a non-unicast packet 7976 * and in doing so, determine whether or not it is broadcast vs multicast. 7977 * For it to be a broadcast packet, we must have the appropriate mblk_t 7978 * hanging off the ill_t. If this is either not present or doesn't match 7979 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7980 * to be multicast. Thus NICs that have no broadcast address (or no 7981 * capability for one, such as point to point links) cannot return as 7982 * the packet being broadcast. 7983 */ 7984 void 7985 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7986 { 7987 mblk_t *bmp; 7988 struct ether_header *pether; 7989 7990 bzero(mhip, sizeof (struct mac_header_info_s)); 7991 7992 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7993 7994 pether = (struct ether_header *)((char *)mp->b_rptr 7995 - sizeof (struct ether_header)); 7996 7997 /* 7998 * Make sure the interface is an ethernet type, since we don't 7999 * know the header format for anything but Ethernet. Also make 8000 * sure we are pointing correctly above db_base. 8001 */ 8002 if (ill->ill_type != IFT_ETHER) 8003 return; 8004 8005 retry: 8006 if ((uchar_t *)pether < mp->b_datap->db_base) 8007 return; 8008 8009 /* Is there a VLAN tag? */ 8010 if (ill->ill_isv6) { 8011 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 8012 pether = (struct ether_header *)((char *)pether - 4); 8013 goto retry; 8014 } 8015 } else { 8016 if (pether->ether_type != htons(ETHERTYPE_IP)) { 8017 pether = (struct ether_header *)((char *)pether - 4); 8018 goto retry; 8019 } 8020 } 8021 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 8022 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 8023 8024 if (!(mhip->mhi_daddr[0] & 0x01)) 8025 return; 8026 8027 /* Multicast or broadcast */ 8028 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 8029 8030 if ((bmp = ill->ill_bcast_mp) != NULL) { 8031 dl_unitdata_req_t *dlur; 8032 uint8_t *bphys_addr; 8033 uint_t addrlen; 8034 8035 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 8036 addrlen = dlur->dl_dest_addr_length; 8037 if (ill->ill_sap_length < 0) { 8038 bphys_addr = (uchar_t *)dlur + 8039 dlur->dl_dest_addr_offset; 8040 addrlen += ill->ill_sap_length; 8041 } else { 8042 bphys_addr = (uchar_t *)dlur + 8043 dlur->dl_dest_addr_offset + 8044 ill->ill_sap_length; 8045 addrlen -= ill->ill_sap_length; 8046 } 8047 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 8048 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 8049 } 8050 } 8051 8052 /* 8053 * Handle anything but M_DATA messages 8054 * We see the DL_UNITDATA_IND which are part 8055 * of the data path, and also the other messages from the driver. 8056 */ 8057 void 8058 ip_rput_notdata(ill_t *ill, mblk_t *mp) 8059 { 8060 mblk_t *first_mp; 8061 struct iocblk *iocp; 8062 struct mac_header_info_s mhi; 8063 8064 switch (DB_TYPE(mp)) { 8065 case M_PROTO: 8066 case M_PCPROTO: { 8067 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 8068 DL_UNITDATA_IND) { 8069 /* Go handle anything other than data elsewhere. */ 8070 ip_rput_dlpi(ill, mp); 8071 return; 8072 } 8073 8074 first_mp = mp; 8075 mp = first_mp->b_cont; 8076 first_mp->b_cont = NULL; 8077 8078 if (mp == NULL) { 8079 freeb(first_mp); 8080 return; 8081 } 8082 ip_dlur_to_mhi(ill, first_mp, &mhi); 8083 if (ill->ill_isv6) 8084 ip_input_v6(ill, NULL, mp, &mhi); 8085 else 8086 ip_input(ill, NULL, mp, &mhi); 8087 8088 /* Ditch the DLPI header. */ 8089 freeb(first_mp); 8090 return; 8091 } 8092 case M_IOCACK: 8093 iocp = (struct iocblk *)mp->b_rptr; 8094 switch (iocp->ioc_cmd) { 8095 case DL_IOC_HDR_INFO: 8096 ill_fastpath_ack(ill, mp); 8097 return; 8098 default: 8099 putnext(ill->ill_rq, mp); 8100 return; 8101 } 8102 /* FALLTHRU */ 8103 case M_ERROR: 8104 case M_HANGUP: 8105 mutex_enter(&ill->ill_lock); 8106 if (ill->ill_state_flags & ILL_CONDEMNED) { 8107 mutex_exit(&ill->ill_lock); 8108 freemsg(mp); 8109 return; 8110 } 8111 ill_refhold_locked(ill); 8112 mutex_exit(&ill->ill_lock); 8113 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 8114 B_FALSE); 8115 return; 8116 case M_CTL: 8117 putnext(ill->ill_rq, mp); 8118 return; 8119 case M_IOCNAK: 8120 ip1dbg(("got iocnak ")); 8121 iocp = (struct iocblk *)mp->b_rptr; 8122 switch (iocp->ioc_cmd) { 8123 case DL_IOC_HDR_INFO: 8124 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 8125 return; 8126 default: 8127 break; 8128 } 8129 /* FALLTHRU */ 8130 default: 8131 putnext(ill->ill_rq, mp); 8132 return; 8133 } 8134 } 8135 8136 /* Read side put procedure. Packets coming from the wire arrive here. */ 8137 void 8138 ip_rput(queue_t *q, mblk_t *mp) 8139 { 8140 ill_t *ill; 8141 union DL_primitives *dl; 8142 8143 ill = (ill_t *)q->q_ptr; 8144 8145 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8146 /* 8147 * If things are opening or closing, only accept high-priority 8148 * DLPI messages. (On open ill->ill_ipif has not yet been 8149 * created; on close, things hanging off the ill may have been 8150 * freed already.) 8151 */ 8152 dl = (union DL_primitives *)mp->b_rptr; 8153 if (DB_TYPE(mp) != M_PCPROTO || 8154 dl->dl_primitive == DL_UNITDATA_IND) { 8155 inet_freemsg(mp); 8156 return; 8157 } 8158 } 8159 if (DB_TYPE(mp) == M_DATA) { 8160 struct mac_header_info_s mhi; 8161 8162 ip_mdata_to_mhi(ill, mp, &mhi); 8163 ip_input(ill, NULL, mp, &mhi); 8164 } else { 8165 ip_rput_notdata(ill, mp); 8166 } 8167 } 8168 8169 /* 8170 * Move the information to a copy. 8171 */ 8172 mblk_t * 8173 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8174 { 8175 mblk_t *mp1; 8176 ill_t *ill = ira->ira_ill; 8177 ip_stack_t *ipst = ill->ill_ipst; 8178 8179 IP_STAT(ipst, ip_db_ref); 8180 8181 /* Make sure we have ira_l2src before we loose the original mblk */ 8182 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8183 ip_setl2src(mp, ira, ira->ira_rill); 8184 8185 mp1 = copymsg(mp); 8186 if (mp1 == NULL) { 8187 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8188 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8189 freemsg(mp); 8190 return (NULL); 8191 } 8192 /* preserve the hardware checksum flags and data, if present */ 8193 if (DB_CKSUMFLAGS(mp) != 0) { 8194 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8195 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8196 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8197 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8198 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8199 } 8200 freemsg(mp); 8201 return (mp1); 8202 } 8203 8204 static void 8205 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8206 t_uscalar_t err) 8207 { 8208 if (dl_err == DL_SYSERR) { 8209 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8210 "%s: %s failed: DL_SYSERR (errno %u)\n", 8211 ill->ill_name, dl_primstr(prim), err); 8212 return; 8213 } 8214 8215 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8216 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8217 dl_errstr(dl_err)); 8218 } 8219 8220 /* 8221 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8222 * than DL_UNITDATA_IND messages. If we need to process this message 8223 * exclusively, we call qwriter_ip, in which case we also need to call 8224 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8225 */ 8226 void 8227 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8228 { 8229 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8230 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8231 queue_t *q = ill->ill_rq; 8232 t_uscalar_t prim = dloa->dl_primitive; 8233 t_uscalar_t reqprim = DL_PRIM_INVAL; 8234 8235 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8236 char *, dl_primstr(prim), ill_t *, ill); 8237 ip1dbg(("ip_rput_dlpi")); 8238 8239 /* 8240 * If we received an ACK but didn't send a request for it, then it 8241 * can't be part of any pending operation; discard up-front. 8242 */ 8243 switch (prim) { 8244 case DL_ERROR_ACK: 8245 reqprim = dlea->dl_error_primitive; 8246 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8247 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8248 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8249 dlea->dl_unix_errno)); 8250 break; 8251 case DL_OK_ACK: 8252 reqprim = dloa->dl_correct_primitive; 8253 break; 8254 case DL_INFO_ACK: 8255 reqprim = DL_INFO_REQ; 8256 break; 8257 case DL_BIND_ACK: 8258 reqprim = DL_BIND_REQ; 8259 break; 8260 case DL_PHYS_ADDR_ACK: 8261 reqprim = DL_PHYS_ADDR_REQ; 8262 break; 8263 case DL_NOTIFY_ACK: 8264 reqprim = DL_NOTIFY_REQ; 8265 break; 8266 case DL_CAPABILITY_ACK: 8267 reqprim = DL_CAPABILITY_REQ; 8268 break; 8269 } 8270 8271 if (prim != DL_NOTIFY_IND) { 8272 if (reqprim == DL_PRIM_INVAL || 8273 !ill_dlpi_pending(ill, reqprim)) { 8274 /* Not a DLPI message we support or expected */ 8275 freemsg(mp); 8276 return; 8277 } 8278 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8279 dl_primstr(reqprim))); 8280 } 8281 8282 switch (reqprim) { 8283 case DL_UNBIND_REQ: 8284 /* 8285 * NOTE: we mark the unbind as complete even if we got a 8286 * DL_ERROR_ACK, since there's not much else we can do. 8287 */ 8288 mutex_enter(&ill->ill_lock); 8289 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8290 cv_signal(&ill->ill_cv); 8291 mutex_exit(&ill->ill_lock); 8292 break; 8293 8294 case DL_ENABMULTI_REQ: 8295 if (prim == DL_OK_ACK) { 8296 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8297 ill->ill_dlpi_multicast_state = IDS_OK; 8298 } 8299 break; 8300 } 8301 8302 /* 8303 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8304 * need to become writer to continue to process it. Because an 8305 * exclusive operation doesn't complete until replies to all queued 8306 * DLPI messages have been received, we know we're in the middle of an 8307 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8308 * 8309 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8310 * Since this is on the ill stream we unconditionally bump up the 8311 * refcount without doing ILL_CAN_LOOKUP(). 8312 */ 8313 ill_refhold(ill); 8314 if (prim == DL_NOTIFY_IND) 8315 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8316 else 8317 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8318 } 8319 8320 /* 8321 * Handling of DLPI messages that require exclusive access to the ipsq. 8322 * 8323 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8324 * happen here. (along with mi_copy_done) 8325 */ 8326 /* ARGSUSED */ 8327 static void 8328 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8329 { 8330 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8331 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8332 int err = 0; 8333 ill_t *ill = (ill_t *)q->q_ptr; 8334 ipif_t *ipif = NULL; 8335 mblk_t *mp1 = NULL; 8336 conn_t *connp = NULL; 8337 t_uscalar_t paddrreq; 8338 mblk_t *mp_hw; 8339 boolean_t success; 8340 boolean_t ioctl_aborted = B_FALSE; 8341 boolean_t log = B_TRUE; 8342 8343 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8344 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8345 8346 ip1dbg(("ip_rput_dlpi_writer ..")); 8347 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8348 ASSERT(IAM_WRITER_ILL(ill)); 8349 8350 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8351 /* 8352 * The current ioctl could have been aborted by the user and a new 8353 * ioctl to bring up another ill could have started. We could still 8354 * get a response from the driver later. 8355 */ 8356 if (ipif != NULL && ipif->ipif_ill != ill) 8357 ioctl_aborted = B_TRUE; 8358 8359 switch (dloa->dl_primitive) { 8360 case DL_ERROR_ACK: 8361 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8362 dl_primstr(dlea->dl_error_primitive))); 8363 8364 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8365 char *, dl_primstr(dlea->dl_error_primitive), 8366 ill_t *, ill); 8367 8368 switch (dlea->dl_error_primitive) { 8369 case DL_DISABMULTI_REQ: 8370 ill_dlpi_done(ill, dlea->dl_error_primitive); 8371 break; 8372 case DL_PROMISCON_REQ: 8373 case DL_PROMISCOFF_REQ: 8374 case DL_UNBIND_REQ: 8375 case DL_ATTACH_REQ: 8376 case DL_INFO_REQ: 8377 ill_dlpi_done(ill, dlea->dl_error_primitive); 8378 break; 8379 case DL_NOTIFY_REQ: 8380 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8381 log = B_FALSE; 8382 break; 8383 case DL_PHYS_ADDR_REQ: 8384 /* 8385 * For IPv6 only, there are two additional 8386 * phys_addr_req's sent to the driver to get the 8387 * IPv6 token and lla. This allows IP to acquire 8388 * the hardware address format for a given interface 8389 * without having built in knowledge of the hardware 8390 * address. ill_phys_addr_pend keeps track of the last 8391 * DL_PAR sent so we know which response we are 8392 * dealing with. ill_dlpi_done will update 8393 * ill_phys_addr_pend when it sends the next req. 8394 * We don't complete the IOCTL until all three DL_PARs 8395 * have been attempted, so set *_len to 0 and break. 8396 */ 8397 paddrreq = ill->ill_phys_addr_pend; 8398 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8399 if (paddrreq == DL_IPV6_TOKEN) { 8400 ill->ill_token_length = 0; 8401 log = B_FALSE; 8402 break; 8403 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8404 ill->ill_nd_lla_len = 0; 8405 log = B_FALSE; 8406 break; 8407 } 8408 /* 8409 * Something went wrong with the DL_PHYS_ADDR_REQ. 8410 * We presumably have an IOCTL hanging out waiting 8411 * for completion. Find it and complete the IOCTL 8412 * with the error noted. 8413 * However, ill_dl_phys was called on an ill queue 8414 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8415 * set. But the ioctl is known to be pending on ill_wq. 8416 */ 8417 if (!ill->ill_ifname_pending) 8418 break; 8419 ill->ill_ifname_pending = 0; 8420 if (!ioctl_aborted) 8421 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8422 if (mp1 != NULL) { 8423 /* 8424 * This operation (SIOCSLIFNAME) must have 8425 * happened on the ill. Assert there is no conn 8426 */ 8427 ASSERT(connp == NULL); 8428 q = ill->ill_wq; 8429 } 8430 break; 8431 case DL_BIND_REQ: 8432 ill_dlpi_done(ill, DL_BIND_REQ); 8433 if (ill->ill_ifname_pending) 8434 break; 8435 /* 8436 * Something went wrong with the bind. We presumably 8437 * have an IOCTL hanging out waiting for completion. 8438 * Find it, take down the interface that was coming 8439 * up, and complete the IOCTL with the error noted. 8440 */ 8441 if (!ioctl_aborted) 8442 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8443 if (mp1 != NULL) { 8444 /* 8445 * This might be a result of a DL_NOTE_REPLUMB 8446 * notification. In that case, connp is NULL. 8447 */ 8448 if (connp != NULL) 8449 q = CONNP_TO_WQ(connp); 8450 8451 (void) ipif_down(ipif, NULL, NULL); 8452 /* error is set below the switch */ 8453 } 8454 break; 8455 case DL_ENABMULTI_REQ: 8456 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8457 8458 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8459 ill->ill_dlpi_multicast_state = IDS_FAILED; 8460 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8461 8462 printf("ip: joining multicasts failed (%d)" 8463 " on %s - will use link layer " 8464 "broadcasts for multicast\n", 8465 dlea->dl_errno, ill->ill_name); 8466 8467 /* 8468 * Set up for multi_bcast; We are the 8469 * writer, so ok to access ill->ill_ipif 8470 * without any lock. 8471 */ 8472 mutex_enter(&ill->ill_phyint->phyint_lock); 8473 ill->ill_phyint->phyint_flags |= 8474 PHYI_MULTI_BCAST; 8475 mutex_exit(&ill->ill_phyint->phyint_lock); 8476 8477 } 8478 freemsg(mp); /* Don't want to pass this up */ 8479 return; 8480 case DL_CAPABILITY_REQ: 8481 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8482 "DL_CAPABILITY REQ\n")); 8483 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8484 ill->ill_dlpi_capab_state = IDCS_FAILED; 8485 ill_capability_done(ill); 8486 freemsg(mp); 8487 return; 8488 } 8489 /* 8490 * Note the error for IOCTL completion (mp1 is set when 8491 * ready to complete ioctl). If ill_ifname_pending_err is 8492 * set, an error occured during plumbing (ill_ifname_pending), 8493 * so we want to report that error. 8494 * 8495 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8496 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8497 * expected to get errack'd if the driver doesn't support 8498 * these flags (e.g. ethernet). log will be set to B_FALSE 8499 * if these error conditions are encountered. 8500 */ 8501 if (mp1 != NULL) { 8502 if (ill->ill_ifname_pending_err != 0) { 8503 err = ill->ill_ifname_pending_err; 8504 ill->ill_ifname_pending_err = 0; 8505 } else { 8506 err = dlea->dl_unix_errno ? 8507 dlea->dl_unix_errno : ENXIO; 8508 } 8509 /* 8510 * If we're plumbing an interface and an error hasn't already 8511 * been saved, set ill_ifname_pending_err to the error passed 8512 * up. Ignore the error if log is B_FALSE (see comment above). 8513 */ 8514 } else if (log && ill->ill_ifname_pending && 8515 ill->ill_ifname_pending_err == 0) { 8516 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8517 dlea->dl_unix_errno : ENXIO; 8518 } 8519 8520 if (log) 8521 ip_dlpi_error(ill, dlea->dl_error_primitive, 8522 dlea->dl_errno, dlea->dl_unix_errno); 8523 break; 8524 case DL_CAPABILITY_ACK: 8525 ill_capability_ack(ill, mp); 8526 /* 8527 * The message has been handed off to ill_capability_ack 8528 * and must not be freed below 8529 */ 8530 mp = NULL; 8531 break; 8532 8533 case DL_INFO_ACK: 8534 /* Call a routine to handle this one. */ 8535 ill_dlpi_done(ill, DL_INFO_REQ); 8536 ip_ll_subnet_defaults(ill, mp); 8537 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8538 return; 8539 case DL_BIND_ACK: 8540 /* 8541 * We should have an IOCTL waiting on this unless 8542 * sent by ill_dl_phys, in which case just return 8543 */ 8544 ill_dlpi_done(ill, DL_BIND_REQ); 8545 if (ill->ill_ifname_pending) { 8546 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8547 ill_t *, ill, mblk_t *, mp); 8548 break; 8549 } 8550 if (!ioctl_aborted) 8551 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8552 if (mp1 == NULL) { 8553 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8554 break; 8555 } 8556 /* 8557 * mp1 was added by ill_dl_up(). if that is a result of 8558 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8559 */ 8560 if (connp != NULL) 8561 q = CONNP_TO_WQ(connp); 8562 /* 8563 * We are exclusive. So nothing can change even after 8564 * we get the pending mp. 8565 */ 8566 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8567 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8568 8569 mutex_enter(&ill->ill_lock); 8570 ill->ill_dl_up = 1; 8571 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8572 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8573 mutex_exit(&ill->ill_lock); 8574 8575 /* 8576 * Now bring up the resolver; when that is complete, we'll 8577 * create IREs. Note that we intentionally mirror what 8578 * ipif_up() would have done, because we got here by way of 8579 * ill_dl_up(), which stopped ipif_up()'s processing. 8580 */ 8581 if (ill->ill_isv6) { 8582 /* 8583 * v6 interfaces. 8584 * Unlike ARP which has to do another bind 8585 * and attach, once we get here we are 8586 * done with NDP 8587 */ 8588 (void) ipif_resolver_up(ipif, Res_act_initial); 8589 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8590 err = ipif_up_done_v6(ipif); 8591 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8592 /* 8593 * ARP and other v4 external resolvers. 8594 * Leave the pending mblk intact so that 8595 * the ioctl completes in ip_rput(). 8596 */ 8597 if (connp != NULL) 8598 mutex_enter(&connp->conn_lock); 8599 mutex_enter(&ill->ill_lock); 8600 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8601 mutex_exit(&ill->ill_lock); 8602 if (connp != NULL) 8603 mutex_exit(&connp->conn_lock); 8604 if (success) { 8605 err = ipif_resolver_up(ipif, Res_act_initial); 8606 if (err == EINPROGRESS) { 8607 freemsg(mp); 8608 return; 8609 } 8610 ASSERT(arp_no_defense || err != 0); 8611 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8612 } else { 8613 /* The conn has started closing */ 8614 err = EINTR; 8615 } 8616 } else { 8617 /* 8618 * This one is complete. Reply to pending ioctl. 8619 */ 8620 (void) ipif_resolver_up(ipif, Res_act_initial); 8621 err = ipif_up_done(ipif); 8622 } 8623 8624 if ((err == 0) && (ill->ill_up_ipifs)) { 8625 err = ill_up_ipifs(ill, q, mp1); 8626 if (err == EINPROGRESS) { 8627 freemsg(mp); 8628 return; 8629 } 8630 } 8631 8632 /* 8633 * If we have a moved ipif to bring up, and everything has 8634 * succeeded to this point, bring it up on the IPMP ill. 8635 * Otherwise, leave it down -- the admin can try to bring it 8636 * up by hand if need be. 8637 */ 8638 if (ill->ill_move_ipif != NULL) { 8639 if (err != 0) { 8640 ill->ill_move_ipif = NULL; 8641 } else { 8642 ipif = ill->ill_move_ipif; 8643 ill->ill_move_ipif = NULL; 8644 err = ipif_up(ipif, q, mp1); 8645 if (err == EINPROGRESS) { 8646 freemsg(mp); 8647 return; 8648 } 8649 } 8650 } 8651 break; 8652 8653 case DL_NOTIFY_IND: { 8654 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8655 uint_t orig_mtu; 8656 8657 switch (notify->dl_notification) { 8658 case DL_NOTE_PHYS_ADDR: 8659 err = ill_set_phys_addr(ill, mp); 8660 break; 8661 8662 case DL_NOTE_REPLUMB: 8663 /* 8664 * Directly return after calling ill_replumb(). 8665 * Note that we should not free mp as it is reused 8666 * in the ill_replumb() function. 8667 */ 8668 err = ill_replumb(ill, mp); 8669 return; 8670 8671 case DL_NOTE_FASTPATH_FLUSH: 8672 nce_flush(ill, B_FALSE); 8673 break; 8674 8675 case DL_NOTE_SDU_SIZE: 8676 /* 8677 * The dce and fragmentation code can cope with 8678 * this changing while packets are being sent. 8679 * When packets are sent ip_output will discover 8680 * a change. 8681 * 8682 * Change the MTU size of the interface. 8683 */ 8684 mutex_enter(&ill->ill_lock); 8685 ill->ill_current_frag = (uint_t)notify->dl_data; 8686 if (ill->ill_current_frag > ill->ill_max_frag) 8687 ill->ill_max_frag = ill->ill_current_frag; 8688 8689 orig_mtu = ill->ill_mtu; 8690 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8691 ill->ill_mtu = ill->ill_current_frag; 8692 8693 /* 8694 * If ill_user_mtu was set (via 8695 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8696 */ 8697 if (ill->ill_user_mtu != 0 && 8698 ill->ill_user_mtu < ill->ill_mtu) 8699 ill->ill_mtu = ill->ill_user_mtu; 8700 8701 if (ill->ill_isv6) { 8702 if (ill->ill_mtu < IPV6_MIN_MTU) 8703 ill->ill_mtu = IPV6_MIN_MTU; 8704 } else { 8705 if (ill->ill_mtu < IP_MIN_MTU) 8706 ill->ill_mtu = IP_MIN_MTU; 8707 } 8708 } 8709 mutex_exit(&ill->ill_lock); 8710 /* 8711 * Make sure all dce_generation checks find out 8712 * that ill_mtu has changed. 8713 */ 8714 if (orig_mtu != ill->ill_mtu) { 8715 dce_increment_all_generations(ill->ill_isv6, 8716 ill->ill_ipst); 8717 } 8718 8719 /* 8720 * Refresh IPMP meta-interface MTU if necessary. 8721 */ 8722 if (IS_UNDER_IPMP(ill)) 8723 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8724 break; 8725 8726 case DL_NOTE_LINK_UP: 8727 case DL_NOTE_LINK_DOWN: { 8728 /* 8729 * We are writer. ill / phyint / ipsq assocs stable. 8730 * The RUNNING flag reflects the state of the link. 8731 */ 8732 phyint_t *phyint = ill->ill_phyint; 8733 uint64_t new_phyint_flags; 8734 boolean_t changed = B_FALSE; 8735 boolean_t went_up; 8736 8737 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8738 mutex_enter(&phyint->phyint_lock); 8739 8740 new_phyint_flags = went_up ? 8741 phyint->phyint_flags | PHYI_RUNNING : 8742 phyint->phyint_flags & ~PHYI_RUNNING; 8743 8744 if (IS_IPMP(ill)) { 8745 new_phyint_flags = went_up ? 8746 new_phyint_flags & ~PHYI_FAILED : 8747 new_phyint_flags | PHYI_FAILED; 8748 } 8749 8750 if (new_phyint_flags != phyint->phyint_flags) { 8751 phyint->phyint_flags = new_phyint_flags; 8752 changed = B_TRUE; 8753 } 8754 mutex_exit(&phyint->phyint_lock); 8755 /* 8756 * ill_restart_dad handles the DAD restart and routing 8757 * socket notification logic. 8758 */ 8759 if (changed) { 8760 ill_restart_dad(phyint->phyint_illv4, went_up); 8761 ill_restart_dad(phyint->phyint_illv6, went_up); 8762 } 8763 break; 8764 } 8765 case DL_NOTE_PROMISC_ON_PHYS: { 8766 phyint_t *phyint = ill->ill_phyint; 8767 8768 mutex_enter(&phyint->phyint_lock); 8769 phyint->phyint_flags |= PHYI_PROMISC; 8770 mutex_exit(&phyint->phyint_lock); 8771 break; 8772 } 8773 case DL_NOTE_PROMISC_OFF_PHYS: { 8774 phyint_t *phyint = ill->ill_phyint; 8775 8776 mutex_enter(&phyint->phyint_lock); 8777 phyint->phyint_flags &= ~PHYI_PROMISC; 8778 mutex_exit(&phyint->phyint_lock); 8779 break; 8780 } 8781 case DL_NOTE_CAPAB_RENEG: 8782 /* 8783 * Something changed on the driver side. 8784 * It wants us to renegotiate the capabilities 8785 * on this ill. One possible cause is the aggregation 8786 * interface under us where a port got added or 8787 * went away. 8788 * 8789 * If the capability negotiation is already done 8790 * or is in progress, reset the capabilities and 8791 * mark the ill's ill_capab_reneg to be B_TRUE, 8792 * so that when the ack comes back, we can start 8793 * the renegotiation process. 8794 * 8795 * Note that if ill_capab_reneg is already B_TRUE 8796 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8797 * the capability resetting request has been sent 8798 * and the renegotiation has not been started yet; 8799 * nothing needs to be done in this case. 8800 */ 8801 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8802 ill_capability_reset(ill, B_TRUE); 8803 ipsq_current_finish(ipsq); 8804 break; 8805 default: 8806 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8807 "type 0x%x for DL_NOTIFY_IND\n", 8808 notify->dl_notification)); 8809 break; 8810 } 8811 8812 /* 8813 * As this is an asynchronous operation, we 8814 * should not call ill_dlpi_done 8815 */ 8816 break; 8817 } 8818 case DL_NOTIFY_ACK: { 8819 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8820 8821 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8822 ill->ill_note_link = 1; 8823 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8824 break; 8825 } 8826 case DL_PHYS_ADDR_ACK: { 8827 /* 8828 * As part of plumbing the interface via SIOCSLIFNAME, 8829 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8830 * whose answers we receive here. As each answer is received, 8831 * we call ill_dlpi_done() to dispatch the next request as 8832 * we're processing the current one. Once all answers have 8833 * been received, we use ipsq_pending_mp_get() to dequeue the 8834 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8835 * is invoked from an ill queue, conn_oper_pending_ill is not 8836 * available, but we know the ioctl is pending on ill_wq.) 8837 */ 8838 uint_t paddrlen, paddroff; 8839 uint8_t *addr; 8840 8841 paddrreq = ill->ill_phys_addr_pend; 8842 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8843 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8844 addr = mp->b_rptr + paddroff; 8845 8846 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8847 if (paddrreq == DL_IPV6_TOKEN) { 8848 /* 8849 * bcopy to low-order bits of ill_token 8850 * 8851 * XXX Temporary hack - currently, all known tokens 8852 * are 64 bits, so I'll cheat for the moment. 8853 */ 8854 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8855 ill->ill_token_length = paddrlen; 8856 break; 8857 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8858 ASSERT(ill->ill_nd_lla_mp == NULL); 8859 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8860 mp = NULL; 8861 break; 8862 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8863 ASSERT(ill->ill_dest_addr_mp == NULL); 8864 ill->ill_dest_addr_mp = mp; 8865 ill->ill_dest_addr = addr; 8866 mp = NULL; 8867 if (ill->ill_isv6) { 8868 ill_setdesttoken(ill); 8869 ipif_setdestlinklocal(ill->ill_ipif); 8870 } 8871 break; 8872 } 8873 8874 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8875 ASSERT(ill->ill_phys_addr_mp == NULL); 8876 if (!ill->ill_ifname_pending) 8877 break; 8878 ill->ill_ifname_pending = 0; 8879 if (!ioctl_aborted) 8880 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8881 if (mp1 != NULL) { 8882 ASSERT(connp == NULL); 8883 q = ill->ill_wq; 8884 } 8885 /* 8886 * If any error acks received during the plumbing sequence, 8887 * ill_ifname_pending_err will be set. Break out and send up 8888 * the error to the pending ioctl. 8889 */ 8890 if (ill->ill_ifname_pending_err != 0) { 8891 err = ill->ill_ifname_pending_err; 8892 ill->ill_ifname_pending_err = 0; 8893 break; 8894 } 8895 8896 ill->ill_phys_addr_mp = mp; 8897 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8898 mp = NULL; 8899 8900 /* 8901 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8902 * provider doesn't support physical addresses. We check both 8903 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8904 * not have physical addresses, but historically adversises a 8905 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8906 * its DL_PHYS_ADDR_ACK. 8907 */ 8908 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8909 ill->ill_phys_addr = NULL; 8910 } else if (paddrlen != ill->ill_phys_addr_length) { 8911 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8912 paddrlen, ill->ill_phys_addr_length)); 8913 err = EINVAL; 8914 break; 8915 } 8916 8917 if (ill->ill_nd_lla_mp == NULL) { 8918 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8919 err = ENOMEM; 8920 break; 8921 } 8922 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8923 } 8924 8925 if (ill->ill_isv6) { 8926 ill_setdefaulttoken(ill); 8927 ipif_setlinklocal(ill->ill_ipif); 8928 } 8929 break; 8930 } 8931 case DL_OK_ACK: 8932 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8933 dl_primstr((int)dloa->dl_correct_primitive), 8934 dloa->dl_correct_primitive)); 8935 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8936 char *, dl_primstr(dloa->dl_correct_primitive), 8937 ill_t *, ill); 8938 8939 switch (dloa->dl_correct_primitive) { 8940 case DL_ENABMULTI_REQ: 8941 case DL_DISABMULTI_REQ: 8942 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8943 break; 8944 case DL_PROMISCON_REQ: 8945 case DL_PROMISCOFF_REQ: 8946 case DL_UNBIND_REQ: 8947 case DL_ATTACH_REQ: 8948 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8949 break; 8950 } 8951 break; 8952 default: 8953 break; 8954 } 8955 8956 freemsg(mp); 8957 if (mp1 == NULL) 8958 return; 8959 8960 /* 8961 * The operation must complete without EINPROGRESS since 8962 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8963 * the operation will be stuck forever inside the IPSQ. 8964 */ 8965 ASSERT(err != EINPROGRESS); 8966 8967 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8968 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8969 ipif_t *, NULL); 8970 8971 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8972 case 0: 8973 ipsq_current_finish(ipsq); 8974 break; 8975 8976 case SIOCSLIFNAME: 8977 case IF_UNITSEL: { 8978 ill_t *ill_other = ILL_OTHER(ill); 8979 8980 /* 8981 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8982 * ill has a peer which is in an IPMP group, then place ill 8983 * into the same group. One catch: although ifconfig plumbs 8984 * the appropriate IPMP meta-interface prior to plumbing this 8985 * ill, it is possible for multiple ifconfig applications to 8986 * race (or for another application to adjust plumbing), in 8987 * which case the IPMP meta-interface we need will be missing. 8988 * If so, kick the phyint out of the group. 8989 */ 8990 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8991 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8992 ipmp_illgrp_t *illg; 8993 8994 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8995 if (illg == NULL) 8996 ipmp_phyint_leave_grp(ill->ill_phyint); 8997 else 8998 ipmp_ill_join_illgrp(ill, illg); 8999 } 9000 9001 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 9002 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 9003 else 9004 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 9005 break; 9006 } 9007 case SIOCLIFADDIF: 9008 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 9009 break; 9010 9011 default: 9012 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 9013 break; 9014 } 9015 } 9016 9017 /* 9018 * ip_rput_other is called by ip_rput to handle messages modifying the global 9019 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 9020 */ 9021 /* ARGSUSED */ 9022 void 9023 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9024 { 9025 ill_t *ill = q->q_ptr; 9026 struct iocblk *iocp; 9027 9028 ip1dbg(("ip_rput_other ")); 9029 if (ipsq != NULL) { 9030 ASSERT(IAM_WRITER_IPSQ(ipsq)); 9031 ASSERT(ipsq->ipsq_xop == 9032 ill->ill_phyint->phyint_ipsq->ipsq_xop); 9033 } 9034 9035 switch (mp->b_datap->db_type) { 9036 case M_ERROR: 9037 case M_HANGUP: 9038 /* 9039 * The device has a problem. We force the ILL down. It can 9040 * be brought up again manually using SIOCSIFFLAGS (via 9041 * ifconfig or equivalent). 9042 */ 9043 ASSERT(ipsq != NULL); 9044 if (mp->b_rptr < mp->b_wptr) 9045 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 9046 if (ill->ill_error == 0) 9047 ill->ill_error = ENXIO; 9048 if (!ill_down_start(q, mp)) 9049 return; 9050 ipif_all_down_tail(ipsq, q, mp, NULL); 9051 break; 9052 case M_IOCNAK: { 9053 iocp = (struct iocblk *)mp->b_rptr; 9054 9055 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 9056 /* 9057 * If this was the first attempt, turn off the fastpath 9058 * probing. 9059 */ 9060 mutex_enter(&ill->ill_lock); 9061 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 9062 ill->ill_dlpi_fastpath_state = IDS_FAILED; 9063 mutex_exit(&ill->ill_lock); 9064 /* 9065 * don't flush the nce_t entries: we use them 9066 * as an index to the ncec itself. 9067 */ 9068 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 9069 ill->ill_name)); 9070 } else { 9071 mutex_exit(&ill->ill_lock); 9072 } 9073 freemsg(mp); 9074 break; 9075 } 9076 default: 9077 ASSERT(0); 9078 break; 9079 } 9080 } 9081 9082 /* 9083 * Update any source route, record route or timestamp options 9084 * When it fails it has consumed the message and BUMPed the MIB. 9085 */ 9086 boolean_t 9087 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 9088 ip_recv_attr_t *ira) 9089 { 9090 ipoptp_t opts; 9091 uchar_t *opt; 9092 uint8_t optval; 9093 uint8_t optlen; 9094 ipaddr_t dst; 9095 ipaddr_t ifaddr; 9096 uint32_t ts; 9097 timestruc_t now; 9098 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9099 9100 ip2dbg(("ip_forward_options\n")); 9101 dst = ipha->ipha_dst; 9102 for (optval = ipoptp_first(&opts, ipha); 9103 optval != IPOPT_EOL; 9104 optval = ipoptp_next(&opts)) { 9105 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9106 opt = opts.ipoptp_cur; 9107 optlen = opts.ipoptp_len; 9108 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9109 optval, opts.ipoptp_len)); 9110 switch (optval) { 9111 uint32_t off; 9112 case IPOPT_SSRR: 9113 case IPOPT_LSRR: 9114 /* Check if adminstratively disabled */ 9115 if (!ipst->ips_ip_forward_src_routed) { 9116 BUMP_MIB(dst_ill->ill_ip_mib, 9117 ipIfStatsForwProhibits); 9118 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9119 mp, dst_ill); 9120 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9121 ira); 9122 return (B_FALSE); 9123 } 9124 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9125 /* 9126 * Must be partial since ip_input_options 9127 * checked for strict. 9128 */ 9129 break; 9130 } 9131 off = opt[IPOPT_OFFSET]; 9132 off--; 9133 redo_srr: 9134 if (optlen < IP_ADDR_LEN || 9135 off > optlen - IP_ADDR_LEN) { 9136 /* End of source route */ 9137 ip1dbg(( 9138 "ip_forward_options: end of SR\n")); 9139 break; 9140 } 9141 /* Pick a reasonable address on the outbound if */ 9142 ASSERT(dst_ill != NULL); 9143 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9144 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9145 NULL) != 0) { 9146 /* No source! Shouldn't happen */ 9147 ifaddr = INADDR_ANY; 9148 } 9149 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9150 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9151 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9152 ntohl(dst))); 9153 9154 /* 9155 * Check if our address is present more than 9156 * once as consecutive hops in source route. 9157 */ 9158 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9159 off += IP_ADDR_LEN; 9160 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9161 goto redo_srr; 9162 } 9163 ipha->ipha_dst = dst; 9164 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9165 break; 9166 case IPOPT_RR: 9167 off = opt[IPOPT_OFFSET]; 9168 off--; 9169 if (optlen < IP_ADDR_LEN || 9170 off > optlen - IP_ADDR_LEN) { 9171 /* No more room - ignore */ 9172 ip1dbg(( 9173 "ip_forward_options: end of RR\n")); 9174 break; 9175 } 9176 /* Pick a reasonable address on the outbound if */ 9177 ASSERT(dst_ill != NULL); 9178 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9179 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9180 NULL) != 0) { 9181 /* No source! Shouldn't happen */ 9182 ifaddr = INADDR_ANY; 9183 } 9184 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9185 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9186 break; 9187 case IPOPT_TS: 9188 /* Insert timestamp if there is room */ 9189 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9190 case IPOPT_TS_TSONLY: 9191 off = IPOPT_TS_TIMELEN; 9192 break; 9193 case IPOPT_TS_PRESPEC: 9194 case IPOPT_TS_PRESPEC_RFC791: 9195 /* Verify that the address matched */ 9196 off = opt[IPOPT_OFFSET] - 1; 9197 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9198 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9199 /* Not for us */ 9200 break; 9201 } 9202 /* FALLTHRU */ 9203 case IPOPT_TS_TSANDADDR: 9204 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9205 break; 9206 default: 9207 /* 9208 * ip_*put_options should have already 9209 * dropped this packet. 9210 */ 9211 cmn_err(CE_PANIC, "ip_forward_options: " 9212 "unknown IT - bug in ip_input_options?\n"); 9213 return (B_TRUE); /* Keep "lint" happy */ 9214 } 9215 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9216 /* Increase overflow counter */ 9217 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9218 opt[IPOPT_POS_OV_FLG] = 9219 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9220 (off << 4)); 9221 break; 9222 } 9223 off = opt[IPOPT_OFFSET] - 1; 9224 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9225 case IPOPT_TS_PRESPEC: 9226 case IPOPT_TS_PRESPEC_RFC791: 9227 case IPOPT_TS_TSANDADDR: 9228 /* Pick a reasonable addr on the outbound if */ 9229 ASSERT(dst_ill != NULL); 9230 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9231 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9232 NULL, NULL) != 0) { 9233 /* No source! Shouldn't happen */ 9234 ifaddr = INADDR_ANY; 9235 } 9236 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9237 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9238 /* FALLTHRU */ 9239 case IPOPT_TS_TSONLY: 9240 off = opt[IPOPT_OFFSET] - 1; 9241 /* Compute # of milliseconds since midnight */ 9242 gethrestime(&now); 9243 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9244 now.tv_nsec / (NANOSEC / MILLISEC); 9245 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9246 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9247 break; 9248 } 9249 break; 9250 } 9251 } 9252 return (B_TRUE); 9253 } 9254 9255 /* 9256 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9257 * returns 'true' if there are still fragments left on the queue, in 9258 * which case we restart the timer. 9259 */ 9260 void 9261 ill_frag_timer(void *arg) 9262 { 9263 ill_t *ill = (ill_t *)arg; 9264 boolean_t frag_pending; 9265 ip_stack_t *ipst = ill->ill_ipst; 9266 time_t timeout; 9267 9268 mutex_enter(&ill->ill_lock); 9269 ASSERT(!ill->ill_fragtimer_executing); 9270 if (ill->ill_state_flags & ILL_CONDEMNED) { 9271 ill->ill_frag_timer_id = 0; 9272 mutex_exit(&ill->ill_lock); 9273 return; 9274 } 9275 ill->ill_fragtimer_executing = 1; 9276 mutex_exit(&ill->ill_lock); 9277 9278 if (ill->ill_isv6) 9279 timeout = ipst->ips_ipv6_frag_timeout; 9280 else 9281 timeout = ipst->ips_ip_g_frag_timeout; 9282 9283 frag_pending = ill_frag_timeout(ill, timeout); 9284 9285 /* 9286 * Restart the timer, if we have fragments pending or if someone 9287 * wanted us to be scheduled again. 9288 */ 9289 mutex_enter(&ill->ill_lock); 9290 ill->ill_fragtimer_executing = 0; 9291 ill->ill_frag_timer_id = 0; 9292 if (frag_pending || ill->ill_fragtimer_needrestart) 9293 ill_frag_timer_start(ill); 9294 mutex_exit(&ill->ill_lock); 9295 } 9296 9297 void 9298 ill_frag_timer_start(ill_t *ill) 9299 { 9300 ip_stack_t *ipst = ill->ill_ipst; 9301 clock_t timeo_ms; 9302 9303 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9304 9305 /* If the ill is closing or opening don't proceed */ 9306 if (ill->ill_state_flags & ILL_CONDEMNED) 9307 return; 9308 9309 if (ill->ill_fragtimer_executing) { 9310 /* 9311 * ill_frag_timer is currently executing. Just record the 9312 * the fact that we want the timer to be restarted. 9313 * ill_frag_timer will post a timeout before it returns, 9314 * ensuring it will be called again. 9315 */ 9316 ill->ill_fragtimer_needrestart = 1; 9317 return; 9318 } 9319 9320 if (ill->ill_frag_timer_id == 0) { 9321 if (ill->ill_isv6) 9322 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 9323 else 9324 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 9325 /* 9326 * The timer is neither running nor is the timeout handler 9327 * executing. Post a timeout so that ill_frag_timer will be 9328 * called 9329 */ 9330 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9331 MSEC_TO_TICK(timeo_ms >> 1)); 9332 ill->ill_fragtimer_needrestart = 0; 9333 } 9334 } 9335 9336 /* 9337 * Update any source route, record route or timestamp options. 9338 * Check that we are at end of strict source route. 9339 * The options have already been checked for sanity in ip_input_options(). 9340 */ 9341 boolean_t 9342 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9343 { 9344 ipoptp_t opts; 9345 uchar_t *opt; 9346 uint8_t optval; 9347 uint8_t optlen; 9348 ipaddr_t dst; 9349 ipaddr_t ifaddr; 9350 uint32_t ts; 9351 timestruc_t now; 9352 ill_t *ill = ira->ira_ill; 9353 ip_stack_t *ipst = ill->ill_ipst; 9354 9355 ip2dbg(("ip_input_local_options\n")); 9356 9357 for (optval = ipoptp_first(&opts, ipha); 9358 optval != IPOPT_EOL; 9359 optval = ipoptp_next(&opts)) { 9360 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9361 opt = opts.ipoptp_cur; 9362 optlen = opts.ipoptp_len; 9363 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9364 optval, optlen)); 9365 switch (optval) { 9366 uint32_t off; 9367 case IPOPT_SSRR: 9368 case IPOPT_LSRR: 9369 off = opt[IPOPT_OFFSET]; 9370 off--; 9371 if (optlen < IP_ADDR_LEN || 9372 off > optlen - IP_ADDR_LEN) { 9373 /* End of source route */ 9374 ip1dbg(("ip_input_local_options: end of SR\n")); 9375 break; 9376 } 9377 /* 9378 * This will only happen if two consecutive entries 9379 * in the source route contains our address or if 9380 * it is a packet with a loose source route which 9381 * reaches us before consuming the whole source route 9382 */ 9383 ip1dbg(("ip_input_local_options: not end of SR\n")); 9384 if (optval == IPOPT_SSRR) { 9385 goto bad_src_route; 9386 } 9387 /* 9388 * Hack: instead of dropping the packet truncate the 9389 * source route to what has been used by filling the 9390 * rest with IPOPT_NOP. 9391 */ 9392 opt[IPOPT_OLEN] = (uint8_t)off; 9393 while (off < optlen) { 9394 opt[off++] = IPOPT_NOP; 9395 } 9396 break; 9397 case IPOPT_RR: 9398 off = opt[IPOPT_OFFSET]; 9399 off--; 9400 if (optlen < IP_ADDR_LEN || 9401 off > optlen - IP_ADDR_LEN) { 9402 /* No more room - ignore */ 9403 ip1dbg(( 9404 "ip_input_local_options: end of RR\n")); 9405 break; 9406 } 9407 /* Pick a reasonable address on the outbound if */ 9408 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9409 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9410 NULL) != 0) { 9411 /* No source! Shouldn't happen */ 9412 ifaddr = INADDR_ANY; 9413 } 9414 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9415 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9416 break; 9417 case IPOPT_TS: 9418 /* Insert timestamp if there is romm */ 9419 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9420 case IPOPT_TS_TSONLY: 9421 off = IPOPT_TS_TIMELEN; 9422 break; 9423 case IPOPT_TS_PRESPEC: 9424 case IPOPT_TS_PRESPEC_RFC791: 9425 /* Verify that the address matched */ 9426 off = opt[IPOPT_OFFSET] - 1; 9427 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9428 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9429 /* Not for us */ 9430 break; 9431 } 9432 /* FALLTHRU */ 9433 case IPOPT_TS_TSANDADDR: 9434 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9435 break; 9436 default: 9437 /* 9438 * ip_*put_options should have already 9439 * dropped this packet. 9440 */ 9441 cmn_err(CE_PANIC, "ip_input_local_options: " 9442 "unknown IT - bug in ip_input_options?\n"); 9443 return (B_TRUE); /* Keep "lint" happy */ 9444 } 9445 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9446 /* Increase overflow counter */ 9447 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9448 opt[IPOPT_POS_OV_FLG] = 9449 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9450 (off << 4)); 9451 break; 9452 } 9453 off = opt[IPOPT_OFFSET] - 1; 9454 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9455 case IPOPT_TS_PRESPEC: 9456 case IPOPT_TS_PRESPEC_RFC791: 9457 case IPOPT_TS_TSANDADDR: 9458 /* Pick a reasonable addr on the outbound if */ 9459 if (ip_select_source_v4(ill, INADDR_ANY, 9460 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9461 &ifaddr, NULL, NULL) != 0) { 9462 /* No source! Shouldn't happen */ 9463 ifaddr = INADDR_ANY; 9464 } 9465 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9466 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9467 /* FALLTHRU */ 9468 case IPOPT_TS_TSONLY: 9469 off = opt[IPOPT_OFFSET] - 1; 9470 /* Compute # of milliseconds since midnight */ 9471 gethrestime(&now); 9472 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9473 now.tv_nsec / (NANOSEC / MILLISEC); 9474 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9475 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9476 break; 9477 } 9478 break; 9479 } 9480 } 9481 return (B_TRUE); 9482 9483 bad_src_route: 9484 /* make sure we clear any indication of a hardware checksum */ 9485 DB_CKSUMFLAGS(mp) = 0; 9486 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9487 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9488 return (B_FALSE); 9489 9490 } 9491 9492 /* 9493 * Process IP options in an inbound packet. Always returns the nexthop. 9494 * Normally this is the passed in nexthop, but if there is an option 9495 * that effects the nexthop (such as a source route) that will be returned. 9496 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9497 * and mp freed. 9498 */ 9499 ipaddr_t 9500 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9501 ip_recv_attr_t *ira, int *errorp) 9502 { 9503 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9504 ipoptp_t opts; 9505 uchar_t *opt; 9506 uint8_t optval; 9507 uint8_t optlen; 9508 intptr_t code = 0; 9509 ire_t *ire; 9510 9511 ip2dbg(("ip_input_options\n")); 9512 *errorp = 0; 9513 for (optval = ipoptp_first(&opts, ipha); 9514 optval != IPOPT_EOL; 9515 optval = ipoptp_next(&opts)) { 9516 opt = opts.ipoptp_cur; 9517 optlen = opts.ipoptp_len; 9518 ip2dbg(("ip_input_options: opt %d, len %d\n", 9519 optval, optlen)); 9520 /* 9521 * Note: we need to verify the checksum before we 9522 * modify anything thus this routine only extracts the next 9523 * hop dst from any source route. 9524 */ 9525 switch (optval) { 9526 uint32_t off; 9527 case IPOPT_SSRR: 9528 case IPOPT_LSRR: 9529 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9530 if (optval == IPOPT_SSRR) { 9531 ip1dbg(("ip_input_options: not next" 9532 " strict source route 0x%x\n", 9533 ntohl(dst))); 9534 code = (char *)&ipha->ipha_dst - 9535 (char *)ipha; 9536 goto param_prob; /* RouterReq's */ 9537 } 9538 ip2dbg(("ip_input_options: " 9539 "not next source route 0x%x\n", 9540 ntohl(dst))); 9541 break; 9542 } 9543 9544 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9545 ip1dbg(( 9546 "ip_input_options: bad option offset\n")); 9547 code = (char *)&opt[IPOPT_OLEN] - 9548 (char *)ipha; 9549 goto param_prob; 9550 } 9551 off = opt[IPOPT_OFFSET]; 9552 off--; 9553 redo_srr: 9554 if (optlen < IP_ADDR_LEN || 9555 off > optlen - IP_ADDR_LEN) { 9556 /* End of source route */ 9557 ip1dbg(("ip_input_options: end of SR\n")); 9558 break; 9559 } 9560 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9561 ip1dbg(("ip_input_options: next hop 0x%x\n", 9562 ntohl(dst))); 9563 9564 /* 9565 * Check if our address is present more than 9566 * once as consecutive hops in source route. 9567 * XXX verify per-interface ip_forwarding 9568 * for source route? 9569 */ 9570 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9571 off += IP_ADDR_LEN; 9572 goto redo_srr; 9573 } 9574 9575 if (dst == htonl(INADDR_LOOPBACK)) { 9576 ip1dbg(("ip_input_options: loopback addr in " 9577 "source route!\n")); 9578 goto bad_src_route; 9579 } 9580 /* 9581 * For strict: verify that dst is directly 9582 * reachable. 9583 */ 9584 if (optval == IPOPT_SSRR) { 9585 ire = ire_ftable_lookup_v4(dst, 0, 0, 9586 IRE_IF_ALL, NULL, ALL_ZONES, 9587 ira->ira_tsl, 9588 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9589 NULL); 9590 if (ire == NULL) { 9591 ip1dbg(("ip_input_options: SSRR not " 9592 "directly reachable: 0x%x\n", 9593 ntohl(dst))); 9594 goto bad_src_route; 9595 } 9596 ire_refrele(ire); 9597 } 9598 /* 9599 * Defer update of the offset and the record route 9600 * until the packet is forwarded. 9601 */ 9602 break; 9603 case IPOPT_RR: 9604 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9605 ip1dbg(( 9606 "ip_input_options: bad option offset\n")); 9607 code = (char *)&opt[IPOPT_OLEN] - 9608 (char *)ipha; 9609 goto param_prob; 9610 } 9611 break; 9612 case IPOPT_TS: 9613 /* 9614 * Verify that length >= 5 and that there is either 9615 * room for another timestamp or that the overflow 9616 * counter is not maxed out. 9617 */ 9618 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9619 if (optlen < IPOPT_MINLEN_IT) { 9620 goto param_prob; 9621 } 9622 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9623 ip1dbg(( 9624 "ip_input_options: bad option offset\n")); 9625 code = (char *)&opt[IPOPT_OFFSET] - 9626 (char *)ipha; 9627 goto param_prob; 9628 } 9629 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9630 case IPOPT_TS_TSONLY: 9631 off = IPOPT_TS_TIMELEN; 9632 break; 9633 case IPOPT_TS_TSANDADDR: 9634 case IPOPT_TS_PRESPEC: 9635 case IPOPT_TS_PRESPEC_RFC791: 9636 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9637 break; 9638 default: 9639 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9640 (char *)ipha; 9641 goto param_prob; 9642 } 9643 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9644 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9645 /* 9646 * No room and the overflow counter is 15 9647 * already. 9648 */ 9649 goto param_prob; 9650 } 9651 break; 9652 } 9653 } 9654 9655 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9656 return (dst); 9657 } 9658 9659 ip1dbg(("ip_input_options: error processing IP options.")); 9660 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9661 9662 param_prob: 9663 /* make sure we clear any indication of a hardware checksum */ 9664 DB_CKSUMFLAGS(mp) = 0; 9665 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9666 icmp_param_problem(mp, (uint8_t)code, ira); 9667 *errorp = -1; 9668 return (dst); 9669 9670 bad_src_route: 9671 /* make sure we clear any indication of a hardware checksum */ 9672 DB_CKSUMFLAGS(mp) = 0; 9673 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9674 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9675 *errorp = -1; 9676 return (dst); 9677 } 9678 9679 /* 9680 * IP & ICMP info in >=14 msg's ... 9681 * - ip fixed part (mib2_ip_t) 9682 * - icmp fixed part (mib2_icmp_t) 9683 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9684 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9685 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9686 * - ipRouteAttributeTable (ip 102) labeled routes 9687 * - ip multicast membership (ip_member_t) 9688 * - ip multicast source filtering (ip_grpsrc_t) 9689 * - igmp fixed part (struct igmpstat) 9690 * - multicast routing stats (struct mrtstat) 9691 * - multicast routing vifs (array of struct vifctl) 9692 * - multicast routing routes (array of struct mfcctl) 9693 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9694 * One per ill plus one generic 9695 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9696 * One per ill plus one generic 9697 * - ipv6RouteEntry all IPv6 IREs 9698 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9699 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9700 * - ipv6AddrEntry all IPv6 ipifs 9701 * - ipv6 multicast membership (ipv6_member_t) 9702 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9703 * 9704 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9705 * already filled in by the caller. 9706 * Return value of 0 indicates that no messages were sent and caller 9707 * should free mpctl. 9708 */ 9709 int 9710 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9711 { 9712 ip_stack_t *ipst; 9713 sctp_stack_t *sctps; 9714 9715 if (q->q_next != NULL) { 9716 ipst = ILLQ_TO_IPST(q); 9717 } else { 9718 ipst = CONNQ_TO_IPST(q); 9719 } 9720 ASSERT(ipst != NULL); 9721 sctps = ipst->ips_netstack->netstack_sctp; 9722 9723 if (mpctl == NULL || mpctl->b_cont == NULL) { 9724 return (0); 9725 } 9726 9727 /* 9728 * For the purposes of the (broken) packet shell use 9729 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9730 * to make TCP and UDP appear first in the list of mib items. 9731 * TBD: We could expand this and use it in netstat so that 9732 * the kernel doesn't have to produce large tables (connections, 9733 * routes, etc) when netstat only wants the statistics or a particular 9734 * table. 9735 */ 9736 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9737 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9738 return (1); 9739 } 9740 } 9741 9742 if (level != MIB2_TCP) { 9743 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9744 return (1); 9745 } 9746 } 9747 9748 if (level != MIB2_UDP) { 9749 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9750 return (1); 9751 } 9752 } 9753 9754 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9755 ipst)) == NULL) { 9756 return (1); 9757 } 9758 9759 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9760 return (1); 9761 } 9762 9763 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9764 return (1); 9765 } 9766 9767 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9768 return (1); 9769 } 9770 9771 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9772 return (1); 9773 } 9774 9775 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9776 return (1); 9777 } 9778 9779 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9780 return (1); 9781 } 9782 9783 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9784 return (1); 9785 } 9786 9787 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9788 return (1); 9789 } 9790 9791 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9792 return (1); 9793 } 9794 9795 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9796 return (1); 9797 } 9798 9799 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9800 return (1); 9801 } 9802 9803 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9804 return (1); 9805 } 9806 9807 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9808 return (1); 9809 } 9810 9811 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9812 if (mpctl == NULL) 9813 return (1); 9814 9815 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9816 if (mpctl == NULL) 9817 return (1); 9818 9819 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9820 return (1); 9821 } 9822 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9823 return (1); 9824 } 9825 freemsg(mpctl); 9826 return (1); 9827 } 9828 9829 /* Get global (legacy) IPv4 statistics */ 9830 static mblk_t * 9831 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9832 ip_stack_t *ipst) 9833 { 9834 mib2_ip_t old_ip_mib; 9835 struct opthdr *optp; 9836 mblk_t *mp2ctl; 9837 9838 /* 9839 * make a copy of the original message 9840 */ 9841 mp2ctl = copymsg(mpctl); 9842 9843 /* fixed length IP structure... */ 9844 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9845 optp->level = MIB2_IP; 9846 optp->name = 0; 9847 SET_MIB(old_ip_mib.ipForwarding, 9848 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9849 SET_MIB(old_ip_mib.ipDefaultTTL, 9850 (uint32_t)ipst->ips_ip_def_ttl); 9851 SET_MIB(old_ip_mib.ipReasmTimeout, 9852 ipst->ips_ip_g_frag_timeout); 9853 SET_MIB(old_ip_mib.ipAddrEntrySize, 9854 sizeof (mib2_ipAddrEntry_t)); 9855 SET_MIB(old_ip_mib.ipRouteEntrySize, 9856 sizeof (mib2_ipRouteEntry_t)); 9857 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9858 sizeof (mib2_ipNetToMediaEntry_t)); 9859 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9860 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9861 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9862 sizeof (mib2_ipAttributeEntry_t)); 9863 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9864 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9865 9866 /* 9867 * Grab the statistics from the new IP MIB 9868 */ 9869 SET_MIB(old_ip_mib.ipInReceives, 9870 (uint32_t)ipmib->ipIfStatsHCInReceives); 9871 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9872 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9873 SET_MIB(old_ip_mib.ipForwDatagrams, 9874 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9875 SET_MIB(old_ip_mib.ipInUnknownProtos, 9876 ipmib->ipIfStatsInUnknownProtos); 9877 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9878 SET_MIB(old_ip_mib.ipInDelivers, 9879 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9880 SET_MIB(old_ip_mib.ipOutRequests, 9881 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9882 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9883 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9884 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9885 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9886 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9887 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9888 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9889 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9890 9891 /* ipRoutingDiscards is not being used */ 9892 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9893 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9894 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9895 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9896 SET_MIB(old_ip_mib.ipReasmDuplicates, 9897 ipmib->ipIfStatsReasmDuplicates); 9898 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9899 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9900 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9901 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9902 SET_MIB(old_ip_mib.rawipInOverflows, 9903 ipmib->rawipIfStatsInOverflows); 9904 9905 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9906 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9907 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9908 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9909 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9910 ipmib->ipIfStatsOutSwitchIPVersion); 9911 9912 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9913 (int)sizeof (old_ip_mib))) { 9914 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9915 (uint_t)sizeof (old_ip_mib))); 9916 } 9917 9918 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9919 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9920 (int)optp->level, (int)optp->name, (int)optp->len)); 9921 qreply(q, mpctl); 9922 return (mp2ctl); 9923 } 9924 9925 /* Per interface IPv4 statistics */ 9926 static mblk_t * 9927 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9928 { 9929 struct opthdr *optp; 9930 mblk_t *mp2ctl; 9931 ill_t *ill; 9932 ill_walk_context_t ctx; 9933 mblk_t *mp_tail = NULL; 9934 mib2_ipIfStatsEntry_t global_ip_mib; 9935 9936 /* 9937 * Make a copy of the original message 9938 */ 9939 mp2ctl = copymsg(mpctl); 9940 9941 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9942 optp->level = MIB2_IP; 9943 optp->name = MIB2_IP_TRAFFIC_STATS; 9944 /* Include "unknown interface" ip_mib */ 9945 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9946 ipst->ips_ip_mib.ipIfStatsIfIndex = 9947 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9948 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9949 (ipst->ips_ip_g_forward ? 1 : 2)); 9950 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9951 (uint32_t)ipst->ips_ip_def_ttl); 9952 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9953 sizeof (mib2_ipIfStatsEntry_t)); 9954 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9955 sizeof (mib2_ipAddrEntry_t)); 9956 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9957 sizeof (mib2_ipRouteEntry_t)); 9958 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9959 sizeof (mib2_ipNetToMediaEntry_t)); 9960 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9961 sizeof (ip_member_t)); 9962 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9963 sizeof (ip_grpsrc_t)); 9964 9965 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9966 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9967 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9968 "failed to allocate %u bytes\n", 9969 (uint_t)sizeof (ipst->ips_ip_mib))); 9970 } 9971 9972 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9973 9974 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9975 ill = ILL_START_WALK_V4(&ctx, ipst); 9976 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9977 ill->ill_ip_mib->ipIfStatsIfIndex = 9978 ill->ill_phyint->phyint_ifindex; 9979 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9980 (ipst->ips_ip_g_forward ? 1 : 2)); 9981 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9982 (uint32_t)ipst->ips_ip_def_ttl); 9983 9984 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9985 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9986 (char *)ill->ill_ip_mib, 9987 (int)sizeof (*ill->ill_ip_mib))) { 9988 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9989 "failed to allocate %u bytes\n", 9990 (uint_t)sizeof (*ill->ill_ip_mib))); 9991 } 9992 } 9993 rw_exit(&ipst->ips_ill_g_lock); 9994 9995 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9996 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9997 "level %d, name %d, len %d\n", 9998 (int)optp->level, (int)optp->name, (int)optp->len)); 9999 qreply(q, mpctl); 10000 10001 if (mp2ctl == NULL) 10002 return (NULL); 10003 10004 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 10005 } 10006 10007 /* Global IPv4 ICMP statistics */ 10008 static mblk_t * 10009 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10010 { 10011 struct opthdr *optp; 10012 mblk_t *mp2ctl; 10013 10014 /* 10015 * Make a copy of the original message 10016 */ 10017 mp2ctl = copymsg(mpctl); 10018 10019 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10020 optp->level = MIB2_ICMP; 10021 optp->name = 0; 10022 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 10023 (int)sizeof (ipst->ips_icmp_mib))) { 10024 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 10025 (uint_t)sizeof (ipst->ips_icmp_mib))); 10026 } 10027 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10028 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 10029 (int)optp->level, (int)optp->name, (int)optp->len)); 10030 qreply(q, mpctl); 10031 return (mp2ctl); 10032 } 10033 10034 /* Global IPv4 IGMP statistics */ 10035 static mblk_t * 10036 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10037 { 10038 struct opthdr *optp; 10039 mblk_t *mp2ctl; 10040 10041 /* 10042 * make a copy of the original message 10043 */ 10044 mp2ctl = copymsg(mpctl); 10045 10046 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10047 optp->level = EXPER_IGMP; 10048 optp->name = 0; 10049 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 10050 (int)sizeof (ipst->ips_igmpstat))) { 10051 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 10052 (uint_t)sizeof (ipst->ips_igmpstat))); 10053 } 10054 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10055 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 10056 (int)optp->level, (int)optp->name, (int)optp->len)); 10057 qreply(q, mpctl); 10058 return (mp2ctl); 10059 } 10060 10061 /* Global IPv4 Multicast Routing statistics */ 10062 static mblk_t * 10063 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10064 { 10065 struct opthdr *optp; 10066 mblk_t *mp2ctl; 10067 10068 /* 10069 * make a copy of the original message 10070 */ 10071 mp2ctl = copymsg(mpctl); 10072 10073 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10074 optp->level = EXPER_DVMRP; 10075 optp->name = 0; 10076 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10077 ip0dbg(("ip_mroute_stats: failed\n")); 10078 } 10079 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10080 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10081 (int)optp->level, (int)optp->name, (int)optp->len)); 10082 qreply(q, mpctl); 10083 return (mp2ctl); 10084 } 10085 10086 /* IPv4 address information */ 10087 static mblk_t * 10088 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10089 { 10090 struct opthdr *optp; 10091 mblk_t *mp2ctl; 10092 mblk_t *mp_tail = NULL; 10093 ill_t *ill; 10094 ipif_t *ipif; 10095 uint_t bitval; 10096 mib2_ipAddrEntry_t mae; 10097 zoneid_t zoneid; 10098 ill_walk_context_t ctx; 10099 10100 /* 10101 * make a copy of the original message 10102 */ 10103 mp2ctl = copymsg(mpctl); 10104 10105 /* ipAddrEntryTable */ 10106 10107 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10108 optp->level = MIB2_IP; 10109 optp->name = MIB2_IP_ADDR; 10110 zoneid = Q_TO_CONN(q)->conn_zoneid; 10111 10112 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10113 ill = ILL_START_WALK_V4(&ctx, ipst); 10114 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10115 for (ipif = ill->ill_ipif; ipif != NULL; 10116 ipif = ipif->ipif_next) { 10117 if (ipif->ipif_zoneid != zoneid && 10118 ipif->ipif_zoneid != ALL_ZONES) 10119 continue; 10120 /* Sum of count from dead IRE_LO* and our current */ 10121 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10122 if (ipif->ipif_ire_local != NULL) { 10123 mae.ipAdEntInfo.ae_ibcnt += 10124 ipif->ipif_ire_local->ire_ib_pkt_count; 10125 } 10126 mae.ipAdEntInfo.ae_obcnt = 0; 10127 mae.ipAdEntInfo.ae_focnt = 0; 10128 10129 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10130 OCTET_LENGTH); 10131 mae.ipAdEntIfIndex.o_length = 10132 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10133 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10134 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10135 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10136 mae.ipAdEntInfo.ae_subnet_len = 10137 ip_mask_to_plen(ipif->ipif_net_mask); 10138 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10139 for (bitval = 1; 10140 bitval && 10141 !(bitval & ipif->ipif_brd_addr); 10142 bitval <<= 1) 10143 noop; 10144 mae.ipAdEntBcastAddr = bitval; 10145 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10146 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10147 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 10148 mae.ipAdEntInfo.ae_broadcast_addr = 10149 ipif->ipif_brd_addr; 10150 mae.ipAdEntInfo.ae_pp_dst_addr = 10151 ipif->ipif_pp_dst_addr; 10152 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10153 ill->ill_flags | ill->ill_phyint->phyint_flags; 10154 mae.ipAdEntRetransmitTime = 10155 ill->ill_reachable_retrans_time; 10156 10157 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10158 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 10159 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10160 "allocate %u bytes\n", 10161 (uint_t)sizeof (mib2_ipAddrEntry_t))); 10162 } 10163 } 10164 } 10165 rw_exit(&ipst->ips_ill_g_lock); 10166 10167 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10168 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10169 (int)optp->level, (int)optp->name, (int)optp->len)); 10170 qreply(q, mpctl); 10171 return (mp2ctl); 10172 } 10173 10174 /* IPv6 address information */ 10175 static mblk_t * 10176 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10177 { 10178 struct opthdr *optp; 10179 mblk_t *mp2ctl; 10180 mblk_t *mp_tail = NULL; 10181 ill_t *ill; 10182 ipif_t *ipif; 10183 mib2_ipv6AddrEntry_t mae6; 10184 zoneid_t zoneid; 10185 ill_walk_context_t ctx; 10186 10187 /* 10188 * make a copy of the original message 10189 */ 10190 mp2ctl = copymsg(mpctl); 10191 10192 /* ipv6AddrEntryTable */ 10193 10194 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10195 optp->level = MIB2_IP6; 10196 optp->name = MIB2_IP6_ADDR; 10197 zoneid = Q_TO_CONN(q)->conn_zoneid; 10198 10199 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10200 ill = ILL_START_WALK_V6(&ctx, ipst); 10201 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10202 for (ipif = ill->ill_ipif; ipif != NULL; 10203 ipif = ipif->ipif_next) { 10204 if (ipif->ipif_zoneid != zoneid && 10205 ipif->ipif_zoneid != ALL_ZONES) 10206 continue; 10207 /* Sum of count from dead IRE_LO* and our current */ 10208 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10209 if (ipif->ipif_ire_local != NULL) { 10210 mae6.ipv6AddrInfo.ae_ibcnt += 10211 ipif->ipif_ire_local->ire_ib_pkt_count; 10212 } 10213 mae6.ipv6AddrInfo.ae_obcnt = 0; 10214 mae6.ipv6AddrInfo.ae_focnt = 0; 10215 10216 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10217 OCTET_LENGTH); 10218 mae6.ipv6AddrIfIndex.o_length = 10219 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10220 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10221 mae6.ipv6AddrPfxLength = 10222 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10223 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10224 mae6.ipv6AddrInfo.ae_subnet_len = 10225 mae6.ipv6AddrPfxLength; 10226 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10227 10228 /* Type: stateless(1), stateful(2), unknown(3) */ 10229 if (ipif->ipif_flags & IPIF_ADDRCONF) 10230 mae6.ipv6AddrType = 1; 10231 else 10232 mae6.ipv6AddrType = 2; 10233 /* Anycast: true(1), false(2) */ 10234 if (ipif->ipif_flags & IPIF_ANYCAST) 10235 mae6.ipv6AddrAnycastFlag = 1; 10236 else 10237 mae6.ipv6AddrAnycastFlag = 2; 10238 10239 /* 10240 * Address status: preferred(1), deprecated(2), 10241 * invalid(3), inaccessible(4), unknown(5) 10242 */ 10243 if (ipif->ipif_flags & IPIF_NOLOCAL) 10244 mae6.ipv6AddrStatus = 3; 10245 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10246 mae6.ipv6AddrStatus = 2; 10247 else 10248 mae6.ipv6AddrStatus = 1; 10249 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10250 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 10251 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10252 ipif->ipif_v6pp_dst_addr; 10253 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10254 ill->ill_flags | ill->ill_phyint->phyint_flags; 10255 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10256 mae6.ipv6AddrIdentifier = ill->ill_token; 10257 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10258 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10259 mae6.ipv6AddrRetransmitTime = 10260 ill->ill_reachable_retrans_time; 10261 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10262 (char *)&mae6, 10263 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10264 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10265 "allocate %u bytes\n", 10266 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10267 } 10268 } 10269 } 10270 rw_exit(&ipst->ips_ill_g_lock); 10271 10272 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10273 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10274 (int)optp->level, (int)optp->name, (int)optp->len)); 10275 qreply(q, mpctl); 10276 return (mp2ctl); 10277 } 10278 10279 /* IPv4 multicast group membership. */ 10280 static mblk_t * 10281 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10282 { 10283 struct opthdr *optp; 10284 mblk_t *mp2ctl; 10285 ill_t *ill; 10286 ipif_t *ipif; 10287 ilm_t *ilm; 10288 ip_member_t ipm; 10289 mblk_t *mp_tail = NULL; 10290 ill_walk_context_t ctx; 10291 zoneid_t zoneid; 10292 10293 /* 10294 * make a copy of the original message 10295 */ 10296 mp2ctl = copymsg(mpctl); 10297 zoneid = Q_TO_CONN(q)->conn_zoneid; 10298 10299 /* ipGroupMember table */ 10300 optp = (struct opthdr *)&mpctl->b_rptr[ 10301 sizeof (struct T_optmgmt_ack)]; 10302 optp->level = MIB2_IP; 10303 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10304 10305 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10306 ill = ILL_START_WALK_V4(&ctx, ipst); 10307 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10308 /* Make sure the ill isn't going away. */ 10309 if (!ill_check_and_refhold(ill)) 10310 continue; 10311 rw_exit(&ipst->ips_ill_g_lock); 10312 rw_enter(&ill->ill_mcast_lock, RW_READER); 10313 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10314 if (ilm->ilm_zoneid != zoneid && 10315 ilm->ilm_zoneid != ALL_ZONES) 10316 continue; 10317 10318 /* Is there an ipif for ilm_ifaddr? */ 10319 for (ipif = ill->ill_ipif; ipif != NULL; 10320 ipif = ipif->ipif_next) { 10321 if (!IPIF_IS_CONDEMNED(ipif) && 10322 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10323 ilm->ilm_ifaddr != INADDR_ANY) 10324 break; 10325 } 10326 if (ipif != NULL) { 10327 ipif_get_name(ipif, 10328 ipm.ipGroupMemberIfIndex.o_bytes, 10329 OCTET_LENGTH); 10330 } else { 10331 ill_get_name(ill, 10332 ipm.ipGroupMemberIfIndex.o_bytes, 10333 OCTET_LENGTH); 10334 } 10335 ipm.ipGroupMemberIfIndex.o_length = 10336 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10337 10338 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10339 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10340 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10341 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10342 (char *)&ipm, (int)sizeof (ipm))) { 10343 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10344 "failed to allocate %u bytes\n", 10345 (uint_t)sizeof (ipm))); 10346 } 10347 } 10348 rw_exit(&ill->ill_mcast_lock); 10349 ill_refrele(ill); 10350 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10351 } 10352 rw_exit(&ipst->ips_ill_g_lock); 10353 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10354 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10355 (int)optp->level, (int)optp->name, (int)optp->len)); 10356 qreply(q, mpctl); 10357 return (mp2ctl); 10358 } 10359 10360 /* IPv6 multicast group membership. */ 10361 static mblk_t * 10362 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10363 { 10364 struct opthdr *optp; 10365 mblk_t *mp2ctl; 10366 ill_t *ill; 10367 ilm_t *ilm; 10368 ipv6_member_t ipm6; 10369 mblk_t *mp_tail = NULL; 10370 ill_walk_context_t ctx; 10371 zoneid_t zoneid; 10372 10373 /* 10374 * make a copy of the original message 10375 */ 10376 mp2ctl = copymsg(mpctl); 10377 zoneid = Q_TO_CONN(q)->conn_zoneid; 10378 10379 /* ip6GroupMember table */ 10380 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10381 optp->level = MIB2_IP6; 10382 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10383 10384 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10385 ill = ILL_START_WALK_V6(&ctx, ipst); 10386 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10387 /* Make sure the ill isn't going away. */ 10388 if (!ill_check_and_refhold(ill)) 10389 continue; 10390 rw_exit(&ipst->ips_ill_g_lock); 10391 /* 10392 * Normally we don't have any members on under IPMP interfaces. 10393 * We report them as a debugging aid. 10394 */ 10395 rw_enter(&ill->ill_mcast_lock, RW_READER); 10396 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10397 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10398 if (ilm->ilm_zoneid != zoneid && 10399 ilm->ilm_zoneid != ALL_ZONES) 10400 continue; /* not this zone */ 10401 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10402 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10403 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10404 if (!snmp_append_data2(mpctl->b_cont, 10405 &mp_tail, 10406 (char *)&ipm6, (int)sizeof (ipm6))) { 10407 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10408 "failed to allocate %u bytes\n", 10409 (uint_t)sizeof (ipm6))); 10410 } 10411 } 10412 rw_exit(&ill->ill_mcast_lock); 10413 ill_refrele(ill); 10414 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10415 } 10416 rw_exit(&ipst->ips_ill_g_lock); 10417 10418 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10419 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10420 (int)optp->level, (int)optp->name, (int)optp->len)); 10421 qreply(q, mpctl); 10422 return (mp2ctl); 10423 } 10424 10425 /* IP multicast filtered sources */ 10426 static mblk_t * 10427 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10428 { 10429 struct opthdr *optp; 10430 mblk_t *mp2ctl; 10431 ill_t *ill; 10432 ipif_t *ipif; 10433 ilm_t *ilm; 10434 ip_grpsrc_t ips; 10435 mblk_t *mp_tail = NULL; 10436 ill_walk_context_t ctx; 10437 zoneid_t zoneid; 10438 int i; 10439 slist_t *sl; 10440 10441 /* 10442 * make a copy of the original message 10443 */ 10444 mp2ctl = copymsg(mpctl); 10445 zoneid = Q_TO_CONN(q)->conn_zoneid; 10446 10447 /* ipGroupSource table */ 10448 optp = (struct opthdr *)&mpctl->b_rptr[ 10449 sizeof (struct T_optmgmt_ack)]; 10450 optp->level = MIB2_IP; 10451 optp->name = EXPER_IP_GROUP_SOURCES; 10452 10453 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10454 ill = ILL_START_WALK_V4(&ctx, ipst); 10455 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10456 /* Make sure the ill isn't going away. */ 10457 if (!ill_check_and_refhold(ill)) 10458 continue; 10459 rw_exit(&ipst->ips_ill_g_lock); 10460 rw_enter(&ill->ill_mcast_lock, RW_READER); 10461 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10462 sl = ilm->ilm_filter; 10463 if (ilm->ilm_zoneid != zoneid && 10464 ilm->ilm_zoneid != ALL_ZONES) 10465 continue; 10466 if (SLIST_IS_EMPTY(sl)) 10467 continue; 10468 10469 /* Is there an ipif for ilm_ifaddr? */ 10470 for (ipif = ill->ill_ipif; ipif != NULL; 10471 ipif = ipif->ipif_next) { 10472 if (!IPIF_IS_CONDEMNED(ipif) && 10473 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10474 ilm->ilm_ifaddr != INADDR_ANY) 10475 break; 10476 } 10477 if (ipif != NULL) { 10478 ipif_get_name(ipif, 10479 ips.ipGroupSourceIfIndex.o_bytes, 10480 OCTET_LENGTH); 10481 } else { 10482 ill_get_name(ill, 10483 ips.ipGroupSourceIfIndex.o_bytes, 10484 OCTET_LENGTH); 10485 } 10486 ips.ipGroupSourceIfIndex.o_length = 10487 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10488 10489 ips.ipGroupSourceGroup = ilm->ilm_addr; 10490 for (i = 0; i < sl->sl_numsrc; i++) { 10491 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10492 continue; 10493 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10494 ips.ipGroupSourceAddress); 10495 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10496 (char *)&ips, (int)sizeof (ips)) == 0) { 10497 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10498 " failed to allocate %u bytes\n", 10499 (uint_t)sizeof (ips))); 10500 } 10501 } 10502 } 10503 rw_exit(&ill->ill_mcast_lock); 10504 ill_refrele(ill); 10505 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10506 } 10507 rw_exit(&ipst->ips_ill_g_lock); 10508 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10509 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10510 (int)optp->level, (int)optp->name, (int)optp->len)); 10511 qreply(q, mpctl); 10512 return (mp2ctl); 10513 } 10514 10515 /* IPv6 multicast filtered sources. */ 10516 static mblk_t * 10517 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10518 { 10519 struct opthdr *optp; 10520 mblk_t *mp2ctl; 10521 ill_t *ill; 10522 ilm_t *ilm; 10523 ipv6_grpsrc_t ips6; 10524 mblk_t *mp_tail = NULL; 10525 ill_walk_context_t ctx; 10526 zoneid_t zoneid; 10527 int i; 10528 slist_t *sl; 10529 10530 /* 10531 * make a copy of the original message 10532 */ 10533 mp2ctl = copymsg(mpctl); 10534 zoneid = Q_TO_CONN(q)->conn_zoneid; 10535 10536 /* ip6GroupMember table */ 10537 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10538 optp->level = MIB2_IP6; 10539 optp->name = EXPER_IP6_GROUP_SOURCES; 10540 10541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10542 ill = ILL_START_WALK_V6(&ctx, ipst); 10543 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10544 /* Make sure the ill isn't going away. */ 10545 if (!ill_check_and_refhold(ill)) 10546 continue; 10547 rw_exit(&ipst->ips_ill_g_lock); 10548 /* 10549 * Normally we don't have any members on under IPMP interfaces. 10550 * We report them as a debugging aid. 10551 */ 10552 rw_enter(&ill->ill_mcast_lock, RW_READER); 10553 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10554 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10555 sl = ilm->ilm_filter; 10556 if (ilm->ilm_zoneid != zoneid && 10557 ilm->ilm_zoneid != ALL_ZONES) 10558 continue; 10559 if (SLIST_IS_EMPTY(sl)) 10560 continue; 10561 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10562 for (i = 0; i < sl->sl_numsrc; i++) { 10563 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10564 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10565 (char *)&ips6, (int)sizeof (ips6))) { 10566 ip1dbg(("ip_snmp_get_mib2_ip6_" 10567 "group_src: failed to allocate " 10568 "%u bytes\n", 10569 (uint_t)sizeof (ips6))); 10570 } 10571 } 10572 } 10573 rw_exit(&ill->ill_mcast_lock); 10574 ill_refrele(ill); 10575 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10576 } 10577 rw_exit(&ipst->ips_ill_g_lock); 10578 10579 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10580 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10581 (int)optp->level, (int)optp->name, (int)optp->len)); 10582 qreply(q, mpctl); 10583 return (mp2ctl); 10584 } 10585 10586 /* Multicast routing virtual interface table. */ 10587 static mblk_t * 10588 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10589 { 10590 struct opthdr *optp; 10591 mblk_t *mp2ctl; 10592 10593 /* 10594 * make a copy of the original message 10595 */ 10596 mp2ctl = copymsg(mpctl); 10597 10598 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10599 optp->level = EXPER_DVMRP; 10600 optp->name = EXPER_DVMRP_VIF; 10601 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10602 ip0dbg(("ip_mroute_vif: failed\n")); 10603 } 10604 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10605 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10606 (int)optp->level, (int)optp->name, (int)optp->len)); 10607 qreply(q, mpctl); 10608 return (mp2ctl); 10609 } 10610 10611 /* Multicast routing table. */ 10612 static mblk_t * 10613 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10614 { 10615 struct opthdr *optp; 10616 mblk_t *mp2ctl; 10617 10618 /* 10619 * make a copy of the original message 10620 */ 10621 mp2ctl = copymsg(mpctl); 10622 10623 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10624 optp->level = EXPER_DVMRP; 10625 optp->name = EXPER_DVMRP_MRT; 10626 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10627 ip0dbg(("ip_mroute_mrt: failed\n")); 10628 } 10629 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10630 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10631 (int)optp->level, (int)optp->name, (int)optp->len)); 10632 qreply(q, mpctl); 10633 return (mp2ctl); 10634 } 10635 10636 /* 10637 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10638 * in one IRE walk. 10639 */ 10640 static mblk_t * 10641 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10642 ip_stack_t *ipst) 10643 { 10644 struct opthdr *optp; 10645 mblk_t *mp2ctl; /* Returned */ 10646 mblk_t *mp3ctl; /* nettomedia */ 10647 mblk_t *mp4ctl; /* routeattrs */ 10648 iproutedata_t ird; 10649 zoneid_t zoneid; 10650 10651 /* 10652 * make copies of the original message 10653 * - mp2ctl is returned unchanged to the caller for his use 10654 * - mpctl is sent upstream as ipRouteEntryTable 10655 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10656 * - mp4ctl is sent upstream as ipRouteAttributeTable 10657 */ 10658 mp2ctl = copymsg(mpctl); 10659 mp3ctl = copymsg(mpctl); 10660 mp4ctl = copymsg(mpctl); 10661 if (mp3ctl == NULL || mp4ctl == NULL) { 10662 freemsg(mp4ctl); 10663 freemsg(mp3ctl); 10664 freemsg(mp2ctl); 10665 freemsg(mpctl); 10666 return (NULL); 10667 } 10668 10669 bzero(&ird, sizeof (ird)); 10670 10671 ird.ird_route.lp_head = mpctl->b_cont; 10672 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10673 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10674 /* 10675 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10676 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10677 * intended a temporary solution until a proper MIB API is provided 10678 * that provides complete filtering/caller-opt-in. 10679 */ 10680 if (level == EXPER_IP_AND_ALL_IRES) 10681 ird.ird_flags |= IRD_REPORT_ALL; 10682 10683 zoneid = Q_TO_CONN(q)->conn_zoneid; 10684 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10685 10686 /* ipRouteEntryTable in mpctl */ 10687 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10688 optp->level = MIB2_IP; 10689 optp->name = MIB2_IP_ROUTE; 10690 optp->len = msgdsize(ird.ird_route.lp_head); 10691 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10692 (int)optp->level, (int)optp->name, (int)optp->len)); 10693 qreply(q, mpctl); 10694 10695 /* ipNetToMediaEntryTable in mp3ctl */ 10696 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10697 10698 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10699 optp->level = MIB2_IP; 10700 optp->name = MIB2_IP_MEDIA; 10701 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10702 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10703 (int)optp->level, (int)optp->name, (int)optp->len)); 10704 qreply(q, mp3ctl); 10705 10706 /* ipRouteAttributeTable in mp4ctl */ 10707 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10708 optp->level = MIB2_IP; 10709 optp->name = EXPER_IP_RTATTR; 10710 optp->len = msgdsize(ird.ird_attrs.lp_head); 10711 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10712 (int)optp->level, (int)optp->name, (int)optp->len)); 10713 if (optp->len == 0) 10714 freemsg(mp4ctl); 10715 else 10716 qreply(q, mp4ctl); 10717 10718 return (mp2ctl); 10719 } 10720 10721 /* 10722 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10723 * ipv6NetToMediaEntryTable in an NDP walk. 10724 */ 10725 static mblk_t * 10726 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10727 ip_stack_t *ipst) 10728 { 10729 struct opthdr *optp; 10730 mblk_t *mp2ctl; /* Returned */ 10731 mblk_t *mp3ctl; /* nettomedia */ 10732 mblk_t *mp4ctl; /* routeattrs */ 10733 iproutedata_t ird; 10734 zoneid_t zoneid; 10735 10736 /* 10737 * make copies of the original message 10738 * - mp2ctl is returned unchanged to the caller for his use 10739 * - mpctl is sent upstream as ipv6RouteEntryTable 10740 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10741 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10742 */ 10743 mp2ctl = copymsg(mpctl); 10744 mp3ctl = copymsg(mpctl); 10745 mp4ctl = copymsg(mpctl); 10746 if (mp3ctl == NULL || mp4ctl == NULL) { 10747 freemsg(mp4ctl); 10748 freemsg(mp3ctl); 10749 freemsg(mp2ctl); 10750 freemsg(mpctl); 10751 return (NULL); 10752 } 10753 10754 bzero(&ird, sizeof (ird)); 10755 10756 ird.ird_route.lp_head = mpctl->b_cont; 10757 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10758 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10759 /* 10760 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10761 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10762 * intended a temporary solution until a proper MIB API is provided 10763 * that provides complete filtering/caller-opt-in. 10764 */ 10765 if (level == EXPER_IP_AND_ALL_IRES) 10766 ird.ird_flags |= IRD_REPORT_ALL; 10767 10768 zoneid = Q_TO_CONN(q)->conn_zoneid; 10769 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10770 10771 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10772 optp->level = MIB2_IP6; 10773 optp->name = MIB2_IP6_ROUTE; 10774 optp->len = msgdsize(ird.ird_route.lp_head); 10775 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10776 (int)optp->level, (int)optp->name, (int)optp->len)); 10777 qreply(q, mpctl); 10778 10779 /* ipv6NetToMediaEntryTable in mp3ctl */ 10780 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10781 10782 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10783 optp->level = MIB2_IP6; 10784 optp->name = MIB2_IP6_MEDIA; 10785 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10786 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10787 (int)optp->level, (int)optp->name, (int)optp->len)); 10788 qreply(q, mp3ctl); 10789 10790 /* ipv6RouteAttributeTable in mp4ctl */ 10791 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10792 optp->level = MIB2_IP6; 10793 optp->name = EXPER_IP_RTATTR; 10794 optp->len = msgdsize(ird.ird_attrs.lp_head); 10795 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10796 (int)optp->level, (int)optp->name, (int)optp->len)); 10797 if (optp->len == 0) 10798 freemsg(mp4ctl); 10799 else 10800 qreply(q, mp4ctl); 10801 10802 return (mp2ctl); 10803 } 10804 10805 /* 10806 * IPv6 mib: One per ill 10807 */ 10808 static mblk_t * 10809 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10810 { 10811 struct opthdr *optp; 10812 mblk_t *mp2ctl; 10813 ill_t *ill; 10814 ill_walk_context_t ctx; 10815 mblk_t *mp_tail = NULL; 10816 10817 /* 10818 * Make a copy of the original message 10819 */ 10820 mp2ctl = copymsg(mpctl); 10821 10822 /* fixed length IPv6 structure ... */ 10823 10824 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10825 optp->level = MIB2_IP6; 10826 optp->name = 0; 10827 /* Include "unknown interface" ip6_mib */ 10828 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10829 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10830 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10831 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10832 ipst->ips_ipv6_forward ? 1 : 2); 10833 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10834 ipst->ips_ipv6_def_hops); 10835 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10836 sizeof (mib2_ipIfStatsEntry_t)); 10837 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10838 sizeof (mib2_ipv6AddrEntry_t)); 10839 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10840 sizeof (mib2_ipv6RouteEntry_t)); 10841 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10842 sizeof (mib2_ipv6NetToMediaEntry_t)); 10843 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10844 sizeof (ipv6_member_t)); 10845 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10846 sizeof (ipv6_grpsrc_t)); 10847 10848 /* 10849 * Synchronize 64- and 32-bit counters 10850 */ 10851 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10852 ipIfStatsHCInReceives); 10853 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10854 ipIfStatsHCInDelivers); 10855 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10856 ipIfStatsHCOutRequests); 10857 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10858 ipIfStatsHCOutForwDatagrams); 10859 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10860 ipIfStatsHCOutMcastPkts); 10861 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10862 ipIfStatsHCInMcastPkts); 10863 10864 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10865 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10866 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10867 (uint_t)sizeof (ipst->ips_ip6_mib))); 10868 } 10869 10870 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10871 ill = ILL_START_WALK_V6(&ctx, ipst); 10872 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10873 ill->ill_ip_mib->ipIfStatsIfIndex = 10874 ill->ill_phyint->phyint_ifindex; 10875 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10876 ipst->ips_ipv6_forward ? 1 : 2); 10877 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10878 ill->ill_max_hops); 10879 10880 /* 10881 * Synchronize 64- and 32-bit counters 10882 */ 10883 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10884 ipIfStatsHCInReceives); 10885 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10886 ipIfStatsHCInDelivers); 10887 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10888 ipIfStatsHCOutRequests); 10889 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10890 ipIfStatsHCOutForwDatagrams); 10891 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10892 ipIfStatsHCOutMcastPkts); 10893 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10894 ipIfStatsHCInMcastPkts); 10895 10896 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10897 (char *)ill->ill_ip_mib, 10898 (int)sizeof (*ill->ill_ip_mib))) { 10899 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10900 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10901 } 10902 } 10903 rw_exit(&ipst->ips_ill_g_lock); 10904 10905 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10906 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10907 (int)optp->level, (int)optp->name, (int)optp->len)); 10908 qreply(q, mpctl); 10909 return (mp2ctl); 10910 } 10911 10912 /* 10913 * ICMPv6 mib: One per ill 10914 */ 10915 static mblk_t * 10916 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10917 { 10918 struct opthdr *optp; 10919 mblk_t *mp2ctl; 10920 ill_t *ill; 10921 ill_walk_context_t ctx; 10922 mblk_t *mp_tail = NULL; 10923 /* 10924 * Make a copy of the original message 10925 */ 10926 mp2ctl = copymsg(mpctl); 10927 10928 /* fixed length ICMPv6 structure ... */ 10929 10930 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10931 optp->level = MIB2_ICMP6; 10932 optp->name = 0; 10933 /* Include "unknown interface" icmp6_mib */ 10934 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10935 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10936 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10937 sizeof (mib2_ipv6IfIcmpEntry_t); 10938 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10939 (char *)&ipst->ips_icmp6_mib, 10940 (int)sizeof (ipst->ips_icmp6_mib))) { 10941 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10942 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10943 } 10944 10945 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10946 ill = ILL_START_WALK_V6(&ctx, ipst); 10947 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10948 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10949 ill->ill_phyint->phyint_ifindex; 10950 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10951 (char *)ill->ill_icmp6_mib, 10952 (int)sizeof (*ill->ill_icmp6_mib))) { 10953 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10954 "%u bytes\n", 10955 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10956 } 10957 } 10958 rw_exit(&ipst->ips_ill_g_lock); 10959 10960 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10961 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10962 (int)optp->level, (int)optp->name, (int)optp->len)); 10963 qreply(q, mpctl); 10964 return (mp2ctl); 10965 } 10966 10967 /* 10968 * ire_walk routine to create both ipRouteEntryTable and 10969 * ipRouteAttributeTable in one IRE walk 10970 */ 10971 static void 10972 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10973 { 10974 ill_t *ill; 10975 mib2_ipRouteEntry_t *re; 10976 mib2_ipAttributeEntry_t iaes; 10977 tsol_ire_gw_secattr_t *attrp; 10978 tsol_gc_t *gc = NULL; 10979 tsol_gcgrp_t *gcgrp = NULL; 10980 ip_stack_t *ipst = ire->ire_ipst; 10981 10982 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10983 10984 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10985 if (ire->ire_testhidden) 10986 return; 10987 if (ire->ire_type & IRE_IF_CLONE) 10988 return; 10989 } 10990 10991 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10992 return; 10993 10994 if ((attrp = ire->ire_gw_secattr) != NULL) { 10995 mutex_enter(&attrp->igsa_lock); 10996 if ((gc = attrp->igsa_gc) != NULL) { 10997 gcgrp = gc->gc_grp; 10998 ASSERT(gcgrp != NULL); 10999 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11000 } 11001 mutex_exit(&attrp->igsa_lock); 11002 } 11003 /* 11004 * Return all IRE types for route table... let caller pick and choose 11005 */ 11006 re->ipRouteDest = ire->ire_addr; 11007 ill = ire->ire_ill; 11008 re->ipRouteIfIndex.o_length = 0; 11009 if (ill != NULL) { 11010 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 11011 re->ipRouteIfIndex.o_length = 11012 mi_strlen(re->ipRouteIfIndex.o_bytes); 11013 } 11014 re->ipRouteMetric1 = -1; 11015 re->ipRouteMetric2 = -1; 11016 re->ipRouteMetric3 = -1; 11017 re->ipRouteMetric4 = -1; 11018 11019 re->ipRouteNextHop = ire->ire_gateway_addr; 11020 /* indirect(4), direct(3), or invalid(2) */ 11021 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11022 re->ipRouteType = 2; 11023 else if (ire->ire_type & IRE_ONLINK) 11024 re->ipRouteType = 3; 11025 else 11026 re->ipRouteType = 4; 11027 11028 re->ipRouteProto = -1; 11029 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 11030 re->ipRouteMask = ire->ire_mask; 11031 re->ipRouteMetric5 = -1; 11032 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11033 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 11034 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11035 11036 re->ipRouteInfo.re_frag_flag = 0; 11037 re->ipRouteInfo.re_rtt = 0; 11038 re->ipRouteInfo.re_src_addr = 0; 11039 re->ipRouteInfo.re_ref = ire->ire_refcnt; 11040 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11041 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11042 re->ipRouteInfo.re_flags = ire->ire_flags; 11043 11044 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11045 if (ire->ire_type & IRE_INTERFACE) { 11046 ire_t *child; 11047 11048 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11049 child = ire->ire_dep_children; 11050 while (child != NULL) { 11051 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11052 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11053 child = child->ire_dep_sib_next; 11054 } 11055 rw_exit(&ipst->ips_ire_dep_lock); 11056 } 11057 11058 if (ire->ire_flags & RTF_DYNAMIC) { 11059 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11060 } else { 11061 re->ipRouteInfo.re_ire_type = ire->ire_type; 11062 } 11063 11064 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11065 (char *)re, (int)sizeof (*re))) { 11066 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11067 (uint_t)sizeof (*re))); 11068 } 11069 11070 if (gc != NULL) { 11071 iaes.iae_routeidx = ird->ird_idx; 11072 iaes.iae_doi = gc->gc_db->gcdb_doi; 11073 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11074 11075 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11076 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11077 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11078 "bytes\n", (uint_t)sizeof (iaes))); 11079 } 11080 } 11081 11082 /* bump route index for next pass */ 11083 ird->ird_idx++; 11084 11085 kmem_free(re, sizeof (*re)); 11086 if (gcgrp != NULL) 11087 rw_exit(&gcgrp->gcgrp_rwlock); 11088 } 11089 11090 /* 11091 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11092 */ 11093 static void 11094 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11095 { 11096 ill_t *ill; 11097 mib2_ipv6RouteEntry_t *re; 11098 mib2_ipAttributeEntry_t iaes; 11099 tsol_ire_gw_secattr_t *attrp; 11100 tsol_gc_t *gc = NULL; 11101 tsol_gcgrp_t *gcgrp = NULL; 11102 ip_stack_t *ipst = ire->ire_ipst; 11103 11104 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11105 11106 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11107 if (ire->ire_testhidden) 11108 return; 11109 if (ire->ire_type & IRE_IF_CLONE) 11110 return; 11111 } 11112 11113 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11114 return; 11115 11116 if ((attrp = ire->ire_gw_secattr) != NULL) { 11117 mutex_enter(&attrp->igsa_lock); 11118 if ((gc = attrp->igsa_gc) != NULL) { 11119 gcgrp = gc->gc_grp; 11120 ASSERT(gcgrp != NULL); 11121 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11122 } 11123 mutex_exit(&attrp->igsa_lock); 11124 } 11125 /* 11126 * Return all IRE types for route table... let caller pick and choose 11127 */ 11128 re->ipv6RouteDest = ire->ire_addr_v6; 11129 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11130 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11131 re->ipv6RouteIfIndex.o_length = 0; 11132 ill = ire->ire_ill; 11133 if (ill != NULL) { 11134 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11135 re->ipv6RouteIfIndex.o_length = 11136 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11137 } 11138 11139 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11140 11141 mutex_enter(&ire->ire_lock); 11142 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11143 mutex_exit(&ire->ire_lock); 11144 11145 /* remote(4), local(3), or discard(2) */ 11146 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11147 re->ipv6RouteType = 2; 11148 else if (ire->ire_type & IRE_ONLINK) 11149 re->ipv6RouteType = 3; 11150 else 11151 re->ipv6RouteType = 4; 11152 11153 re->ipv6RouteProtocol = -1; 11154 re->ipv6RoutePolicy = 0; 11155 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11156 re->ipv6RouteNextHopRDI = 0; 11157 re->ipv6RouteWeight = 0; 11158 re->ipv6RouteMetric = 0; 11159 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11160 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11161 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11162 11163 re->ipv6RouteInfo.re_frag_flag = 0; 11164 re->ipv6RouteInfo.re_rtt = 0; 11165 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11166 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11167 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11168 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11169 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11170 11171 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11172 if (ire->ire_type & IRE_INTERFACE) { 11173 ire_t *child; 11174 11175 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11176 child = ire->ire_dep_children; 11177 while (child != NULL) { 11178 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11179 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11180 child = child->ire_dep_sib_next; 11181 } 11182 rw_exit(&ipst->ips_ire_dep_lock); 11183 } 11184 if (ire->ire_flags & RTF_DYNAMIC) { 11185 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11186 } else { 11187 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11188 } 11189 11190 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11191 (char *)re, (int)sizeof (*re))) { 11192 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11193 (uint_t)sizeof (*re))); 11194 } 11195 11196 if (gc != NULL) { 11197 iaes.iae_routeidx = ird->ird_idx; 11198 iaes.iae_doi = gc->gc_db->gcdb_doi; 11199 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11200 11201 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11202 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11203 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11204 "bytes\n", (uint_t)sizeof (iaes))); 11205 } 11206 } 11207 11208 /* bump route index for next pass */ 11209 ird->ird_idx++; 11210 11211 kmem_free(re, sizeof (*re)); 11212 if (gcgrp != NULL) 11213 rw_exit(&gcgrp->gcgrp_rwlock); 11214 } 11215 11216 /* 11217 * ncec_walk routine to create ipv6NetToMediaEntryTable 11218 */ 11219 static int 11220 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11221 { 11222 ill_t *ill; 11223 mib2_ipv6NetToMediaEntry_t ntme; 11224 11225 ill = ncec->ncec_ill; 11226 /* skip arpce entries, and loopback ncec entries */ 11227 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11228 return (0); 11229 /* 11230 * Neighbor cache entry attached to IRE with on-link 11231 * destination. 11232 * We report all IPMP groups on ncec_ill which is normally the upper. 11233 */ 11234 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11235 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11236 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11237 if (ncec->ncec_lladdr != NULL) { 11238 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11239 ntme.ipv6NetToMediaPhysAddress.o_length); 11240 } 11241 /* 11242 * Note: Returns ND_* states. Should be: 11243 * reachable(1), stale(2), delay(3), probe(4), 11244 * invalid(5), unknown(6) 11245 */ 11246 ntme.ipv6NetToMediaState = ncec->ncec_state; 11247 ntme.ipv6NetToMediaLastUpdated = 0; 11248 11249 /* other(1), dynamic(2), static(3), local(4) */ 11250 if (NCE_MYADDR(ncec)) { 11251 ntme.ipv6NetToMediaType = 4; 11252 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11253 ntme.ipv6NetToMediaType = 1; /* proxy */ 11254 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11255 ntme.ipv6NetToMediaType = 3; 11256 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11257 ntme.ipv6NetToMediaType = 1; 11258 } else { 11259 ntme.ipv6NetToMediaType = 2; 11260 } 11261 11262 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11263 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11264 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11265 (uint_t)sizeof (ntme))); 11266 } 11267 return (0); 11268 } 11269 11270 int 11271 nce2ace(ncec_t *ncec) 11272 { 11273 int flags = 0; 11274 11275 if (NCE_ISREACHABLE(ncec)) 11276 flags |= ACE_F_RESOLVED; 11277 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11278 flags |= ACE_F_AUTHORITY; 11279 if (ncec->ncec_flags & NCE_F_PUBLISH) 11280 flags |= ACE_F_PUBLISH; 11281 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11282 flags |= ACE_F_PERMANENT; 11283 if (NCE_MYADDR(ncec)) 11284 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11285 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11286 flags |= ACE_F_UNVERIFIED; 11287 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11288 flags |= ACE_F_AUTHORITY; 11289 if (ncec->ncec_flags & NCE_F_DELAYED) 11290 flags |= ACE_F_DELAYED; 11291 return (flags); 11292 } 11293 11294 /* 11295 * ncec_walk routine to create ipNetToMediaEntryTable 11296 */ 11297 static int 11298 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11299 { 11300 ill_t *ill; 11301 mib2_ipNetToMediaEntry_t ntme; 11302 const char *name = "unknown"; 11303 ipaddr_t ncec_addr; 11304 11305 ill = ncec->ncec_ill; 11306 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11307 ill->ill_net_type == IRE_LOOPBACK) 11308 return (0); 11309 11310 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11311 name = ill->ill_name; 11312 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11313 if (NCE_MYADDR(ncec)) { 11314 ntme.ipNetToMediaType = 4; 11315 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11316 ntme.ipNetToMediaType = 1; 11317 } else { 11318 ntme.ipNetToMediaType = 3; 11319 } 11320 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11321 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11322 ntme.ipNetToMediaIfIndex.o_length); 11323 11324 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11325 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11326 11327 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11328 ncec_addr = INADDR_BROADCAST; 11329 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11330 sizeof (ncec_addr)); 11331 /* 11332 * map all the flags to the ACE counterpart. 11333 */ 11334 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11335 11336 ntme.ipNetToMediaPhysAddress.o_length = 11337 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11338 11339 if (!NCE_ISREACHABLE(ncec)) 11340 ntme.ipNetToMediaPhysAddress.o_length = 0; 11341 else { 11342 if (ncec->ncec_lladdr != NULL) { 11343 bcopy(ncec->ncec_lladdr, 11344 ntme.ipNetToMediaPhysAddress.o_bytes, 11345 ntme.ipNetToMediaPhysAddress.o_length); 11346 } 11347 } 11348 11349 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11350 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11351 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11352 (uint_t)sizeof (ntme))); 11353 } 11354 return (0); 11355 } 11356 11357 /* 11358 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11359 */ 11360 /* ARGSUSED */ 11361 int 11362 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11363 { 11364 switch (level) { 11365 case MIB2_IP: 11366 case MIB2_ICMP: 11367 switch (name) { 11368 default: 11369 break; 11370 } 11371 return (1); 11372 default: 11373 return (1); 11374 } 11375 } 11376 11377 /* 11378 * When there exists both a 64- and 32-bit counter of a particular type 11379 * (i.e., InReceives), only the 64-bit counters are added. 11380 */ 11381 void 11382 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11383 { 11384 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11385 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11386 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11387 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11388 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11389 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11390 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11391 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11392 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11393 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11394 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11395 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11396 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11397 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11398 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11399 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11400 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11401 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11402 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11403 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11404 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11405 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11406 o2->ipIfStatsInWrongIPVersion); 11407 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11408 o2->ipIfStatsInWrongIPVersion); 11409 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11410 o2->ipIfStatsOutSwitchIPVersion); 11411 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11412 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11413 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11414 o2->ipIfStatsHCInForwDatagrams); 11415 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11416 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11417 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11418 o2->ipIfStatsHCOutForwDatagrams); 11419 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11420 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11421 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11422 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11423 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11424 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11425 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11426 o2->ipIfStatsHCOutMcastOctets); 11427 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11428 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11429 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11430 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11431 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11432 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11433 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11434 } 11435 11436 void 11437 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11438 { 11439 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11440 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11441 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11442 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11443 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11444 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11445 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11446 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11447 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11448 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11449 o2->ipv6IfIcmpInRouterSolicits); 11450 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11451 o2->ipv6IfIcmpInRouterAdvertisements); 11452 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11453 o2->ipv6IfIcmpInNeighborSolicits); 11454 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11455 o2->ipv6IfIcmpInNeighborAdvertisements); 11456 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11457 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11458 o2->ipv6IfIcmpInGroupMembQueries); 11459 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11460 o2->ipv6IfIcmpInGroupMembResponses); 11461 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11462 o2->ipv6IfIcmpInGroupMembReductions); 11463 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11464 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11465 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11466 o2->ipv6IfIcmpOutDestUnreachs); 11467 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11468 o2->ipv6IfIcmpOutAdminProhibs); 11469 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11470 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11471 o2->ipv6IfIcmpOutParmProblems); 11472 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11473 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11474 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11475 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11476 o2->ipv6IfIcmpOutRouterSolicits); 11477 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11478 o2->ipv6IfIcmpOutRouterAdvertisements); 11479 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11480 o2->ipv6IfIcmpOutNeighborSolicits); 11481 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11482 o2->ipv6IfIcmpOutNeighborAdvertisements); 11483 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11484 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11485 o2->ipv6IfIcmpOutGroupMembQueries); 11486 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11487 o2->ipv6IfIcmpOutGroupMembResponses); 11488 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11489 o2->ipv6IfIcmpOutGroupMembReductions); 11490 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11491 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11492 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11493 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11494 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11495 o2->ipv6IfIcmpInBadNeighborSolicitations); 11496 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11497 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11498 o2->ipv6IfIcmpInGroupMembTotal); 11499 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11500 o2->ipv6IfIcmpInGroupMembBadQueries); 11501 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11502 o2->ipv6IfIcmpInGroupMembBadReports); 11503 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11504 o2->ipv6IfIcmpInGroupMembOurReports); 11505 } 11506 11507 /* 11508 * Called before the options are updated to check if this packet will 11509 * be source routed from here. 11510 * This routine assumes that the options are well formed i.e. that they 11511 * have already been checked. 11512 */ 11513 boolean_t 11514 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11515 { 11516 ipoptp_t opts; 11517 uchar_t *opt; 11518 uint8_t optval; 11519 uint8_t optlen; 11520 ipaddr_t dst; 11521 11522 if (IS_SIMPLE_IPH(ipha)) { 11523 ip2dbg(("not source routed\n")); 11524 return (B_FALSE); 11525 } 11526 dst = ipha->ipha_dst; 11527 for (optval = ipoptp_first(&opts, ipha); 11528 optval != IPOPT_EOL; 11529 optval = ipoptp_next(&opts)) { 11530 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11531 opt = opts.ipoptp_cur; 11532 optlen = opts.ipoptp_len; 11533 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11534 optval, optlen)); 11535 switch (optval) { 11536 uint32_t off; 11537 case IPOPT_SSRR: 11538 case IPOPT_LSRR: 11539 /* 11540 * If dst is one of our addresses and there are some 11541 * entries left in the source route return (true). 11542 */ 11543 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11544 ip2dbg(("ip_source_routed: not next" 11545 " source route 0x%x\n", 11546 ntohl(dst))); 11547 return (B_FALSE); 11548 } 11549 off = opt[IPOPT_OFFSET]; 11550 off--; 11551 if (optlen < IP_ADDR_LEN || 11552 off > optlen - IP_ADDR_LEN) { 11553 /* End of source route */ 11554 ip1dbg(("ip_source_routed: end of SR\n")); 11555 return (B_FALSE); 11556 } 11557 return (B_TRUE); 11558 } 11559 } 11560 ip2dbg(("not source routed\n")); 11561 return (B_FALSE); 11562 } 11563 11564 /* 11565 * ip_unbind is called by the transports to remove a conn from 11566 * the fanout table. 11567 */ 11568 void 11569 ip_unbind(conn_t *connp) 11570 { 11571 11572 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11573 11574 if (is_system_labeled() && connp->conn_anon_port) { 11575 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11576 connp->conn_mlp_type, connp->conn_proto, 11577 ntohs(connp->conn_lport), B_FALSE); 11578 connp->conn_anon_port = 0; 11579 } 11580 connp->conn_mlp_type = mlptSingle; 11581 11582 ipcl_hash_remove(connp); 11583 } 11584 11585 /* 11586 * Used for deciding the MSS size for the upper layer. Thus 11587 * we need to check the outbound policy values in the conn. 11588 */ 11589 int 11590 conn_ipsec_length(conn_t *connp) 11591 { 11592 ipsec_latch_t *ipl; 11593 11594 ipl = connp->conn_latch; 11595 if (ipl == NULL) 11596 return (0); 11597 11598 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11599 return (0); 11600 11601 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11602 } 11603 11604 /* 11605 * Returns an estimate of the IPsec headers size. This is used if 11606 * we don't want to call into IPsec to get the exact size. 11607 */ 11608 int 11609 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11610 { 11611 ipsec_action_t *a; 11612 11613 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11614 return (0); 11615 11616 a = ixa->ixa_ipsec_action; 11617 if (a == NULL) { 11618 ASSERT(ixa->ixa_ipsec_policy != NULL); 11619 a = ixa->ixa_ipsec_policy->ipsp_act; 11620 } 11621 ASSERT(a != NULL); 11622 11623 return (a->ipa_ovhd); 11624 } 11625 11626 /* 11627 * If there are any source route options, return the true final 11628 * destination. Otherwise, return the destination. 11629 */ 11630 ipaddr_t 11631 ip_get_dst(ipha_t *ipha) 11632 { 11633 ipoptp_t opts; 11634 uchar_t *opt; 11635 uint8_t optval; 11636 uint8_t optlen; 11637 ipaddr_t dst; 11638 uint32_t off; 11639 11640 dst = ipha->ipha_dst; 11641 11642 if (IS_SIMPLE_IPH(ipha)) 11643 return (dst); 11644 11645 for (optval = ipoptp_first(&opts, ipha); 11646 optval != IPOPT_EOL; 11647 optval = ipoptp_next(&opts)) { 11648 opt = opts.ipoptp_cur; 11649 optlen = opts.ipoptp_len; 11650 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11651 switch (optval) { 11652 case IPOPT_SSRR: 11653 case IPOPT_LSRR: 11654 off = opt[IPOPT_OFFSET]; 11655 /* 11656 * If one of the conditions is true, it means 11657 * end of options and dst already has the right 11658 * value. 11659 */ 11660 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11661 off = optlen - IP_ADDR_LEN; 11662 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11663 } 11664 return (dst); 11665 default: 11666 break; 11667 } 11668 } 11669 11670 return (dst); 11671 } 11672 11673 /* 11674 * Outbound IP fragmentation routine. 11675 * Assumes the caller has checked whether or not fragmentation should 11676 * be allowed. Here we copy the DF bit from the header to all the generated 11677 * fragments. 11678 */ 11679 int 11680 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11681 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11682 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11683 { 11684 int i1; 11685 int hdr_len; 11686 mblk_t *hdr_mp; 11687 ipha_t *ipha; 11688 int ip_data_end; 11689 int len; 11690 mblk_t *mp = mp_orig; 11691 int offset; 11692 ill_t *ill = nce->nce_ill; 11693 ip_stack_t *ipst = ill->ill_ipst; 11694 mblk_t *carve_mp; 11695 uint32_t frag_flag; 11696 uint_t priority = mp->b_band; 11697 int error = 0; 11698 11699 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11700 11701 if (pkt_len != msgdsize(mp)) { 11702 ip0dbg(("Packet length mismatch: %d, %ld\n", 11703 pkt_len, msgdsize(mp))); 11704 freemsg(mp); 11705 return (EINVAL); 11706 } 11707 11708 if (max_frag == 0) { 11709 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11711 ip_drop_output("FragFails: zero max_frag", mp, ill); 11712 freemsg(mp); 11713 return (EINVAL); 11714 } 11715 11716 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11717 ipha = (ipha_t *)mp->b_rptr; 11718 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11719 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11720 11721 /* 11722 * Establish the starting offset. May not be zero if we are fragging 11723 * a fragment that is being forwarded. 11724 */ 11725 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11726 11727 /* TODO why is this test needed? */ 11728 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11729 /* TODO: notify ulp somehow */ 11730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11731 ip_drop_output("FragFails: bad starting offset", mp, ill); 11732 freemsg(mp); 11733 return (EINVAL); 11734 } 11735 11736 hdr_len = IPH_HDR_LENGTH(ipha); 11737 ipha->ipha_hdr_checksum = 0; 11738 11739 /* 11740 * Establish the number of bytes maximum per frag, after putting 11741 * in the header. 11742 */ 11743 len = (max_frag - hdr_len) & ~7; 11744 11745 /* Get a copy of the header for the trailing frags */ 11746 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11747 mp); 11748 if (hdr_mp == NULL) { 11749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11750 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11751 freemsg(mp); 11752 return (ENOBUFS); 11753 } 11754 11755 /* Store the starting offset, with the MoreFrags flag. */ 11756 i1 = offset | IPH_MF | frag_flag; 11757 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11758 11759 /* Establish the ending byte offset, based on the starting offset. */ 11760 offset <<= 3; 11761 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11762 11763 /* Store the length of the first fragment in the IP header. */ 11764 i1 = len + hdr_len; 11765 ASSERT(i1 <= IP_MAXPACKET); 11766 ipha->ipha_length = htons((uint16_t)i1); 11767 11768 /* 11769 * Compute the IP header checksum for the first frag. We have to 11770 * watch out that we stop at the end of the header. 11771 */ 11772 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11773 11774 /* 11775 * Now carve off the first frag. Note that this will include the 11776 * original IP header. 11777 */ 11778 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11779 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11780 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11781 freeb(hdr_mp); 11782 freemsg(mp_orig); 11783 return (ENOBUFS); 11784 } 11785 11786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11787 11788 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11789 ixa_cookie); 11790 if (error != 0 && error != EWOULDBLOCK) { 11791 /* No point in sending the other fragments */ 11792 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11793 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11794 freeb(hdr_mp); 11795 freemsg(mp_orig); 11796 return (error); 11797 } 11798 11799 /* No need to redo state machine in loop */ 11800 ixaflags &= ~IXAF_REACH_CONF; 11801 11802 /* Advance the offset to the second frag starting point. */ 11803 offset += len; 11804 /* 11805 * Update hdr_len from the copied header - there might be less options 11806 * in the later fragments. 11807 */ 11808 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11809 /* Loop until done. */ 11810 for (;;) { 11811 uint16_t offset_and_flags; 11812 uint16_t ip_len; 11813 11814 if (ip_data_end - offset > len) { 11815 /* 11816 * Carve off the appropriate amount from the original 11817 * datagram. 11818 */ 11819 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11820 mp = NULL; 11821 break; 11822 } 11823 /* 11824 * More frags after this one. Get another copy 11825 * of the header. 11826 */ 11827 if (carve_mp->b_datap->db_ref == 1 && 11828 hdr_mp->b_wptr - hdr_mp->b_rptr < 11829 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11830 /* Inline IP header */ 11831 carve_mp->b_rptr -= hdr_mp->b_wptr - 11832 hdr_mp->b_rptr; 11833 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11834 hdr_mp->b_wptr - hdr_mp->b_rptr); 11835 mp = carve_mp; 11836 } else { 11837 if (!(mp = copyb(hdr_mp))) { 11838 freemsg(carve_mp); 11839 break; 11840 } 11841 /* Get priority marking, if any. */ 11842 mp->b_band = priority; 11843 mp->b_cont = carve_mp; 11844 } 11845 ipha = (ipha_t *)mp->b_rptr; 11846 offset_and_flags = IPH_MF; 11847 } else { 11848 /* 11849 * Last frag. Consume the header. Set len to 11850 * the length of this last piece. 11851 */ 11852 len = ip_data_end - offset; 11853 11854 /* 11855 * Carve off the appropriate amount from the original 11856 * datagram. 11857 */ 11858 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11859 mp = NULL; 11860 break; 11861 } 11862 if (carve_mp->b_datap->db_ref == 1 && 11863 hdr_mp->b_wptr - hdr_mp->b_rptr < 11864 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11865 /* Inline IP header */ 11866 carve_mp->b_rptr -= hdr_mp->b_wptr - 11867 hdr_mp->b_rptr; 11868 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11869 hdr_mp->b_wptr - hdr_mp->b_rptr); 11870 mp = carve_mp; 11871 freeb(hdr_mp); 11872 hdr_mp = mp; 11873 } else { 11874 mp = hdr_mp; 11875 /* Get priority marking, if any. */ 11876 mp->b_band = priority; 11877 mp->b_cont = carve_mp; 11878 } 11879 ipha = (ipha_t *)mp->b_rptr; 11880 /* A frag of a frag might have IPH_MF non-zero */ 11881 offset_and_flags = 11882 ntohs(ipha->ipha_fragment_offset_and_flags) & 11883 IPH_MF; 11884 } 11885 offset_and_flags |= (uint16_t)(offset >> 3); 11886 offset_and_flags |= (uint16_t)frag_flag; 11887 /* Store the offset and flags in the IP header. */ 11888 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11889 11890 /* Store the length in the IP header. */ 11891 ip_len = (uint16_t)(len + hdr_len); 11892 ipha->ipha_length = htons(ip_len); 11893 11894 /* 11895 * Set the IP header checksum. Note that mp is just 11896 * the header, so this is easy to pass to ip_csum. 11897 */ 11898 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11899 11900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11901 11902 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11903 nolzid, ixa_cookie); 11904 /* All done if we just consumed the hdr_mp. */ 11905 if (mp == hdr_mp) { 11906 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11907 return (error); 11908 } 11909 if (error != 0 && error != EWOULDBLOCK) { 11910 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11911 mblk_t *, hdr_mp); 11912 /* No point in sending the other fragments */ 11913 break; 11914 } 11915 11916 /* Otherwise, advance and loop. */ 11917 offset += len; 11918 } 11919 /* Clean up following allocation failure. */ 11920 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11921 ip_drop_output("FragFails: loop ended", NULL, ill); 11922 if (mp != hdr_mp) 11923 freeb(hdr_mp); 11924 if (mp != mp_orig) 11925 freemsg(mp_orig); 11926 return (error); 11927 } 11928 11929 /* 11930 * Copy the header plus those options which have the copy bit set 11931 */ 11932 static mblk_t * 11933 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11934 mblk_t *src) 11935 { 11936 mblk_t *mp; 11937 uchar_t *up; 11938 11939 /* 11940 * Quick check if we need to look for options without the copy bit 11941 * set 11942 */ 11943 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11944 if (!mp) 11945 return (mp); 11946 mp->b_rptr += ipst->ips_ip_wroff_extra; 11947 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11948 bcopy(rptr, mp->b_rptr, hdr_len); 11949 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11950 return (mp); 11951 } 11952 up = mp->b_rptr; 11953 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11954 up += IP_SIMPLE_HDR_LENGTH; 11955 rptr += IP_SIMPLE_HDR_LENGTH; 11956 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11957 while (hdr_len > 0) { 11958 uint32_t optval; 11959 uint32_t optlen; 11960 11961 optval = *rptr; 11962 if (optval == IPOPT_EOL) 11963 break; 11964 if (optval == IPOPT_NOP) 11965 optlen = 1; 11966 else 11967 optlen = rptr[1]; 11968 if (optval & IPOPT_COPY) { 11969 bcopy(rptr, up, optlen); 11970 up += optlen; 11971 } 11972 rptr += optlen; 11973 hdr_len -= optlen; 11974 } 11975 /* 11976 * Make sure that we drop an even number of words by filling 11977 * with EOL to the next word boundary. 11978 */ 11979 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11980 hdr_len & 0x3; hdr_len++) 11981 *up++ = IPOPT_EOL; 11982 mp->b_wptr = up; 11983 /* Update header length */ 11984 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11985 return (mp); 11986 } 11987 11988 /* 11989 * Update any source route, record route, or timestamp options when 11990 * sending a packet back to ourselves. 11991 * Check that we are at end of strict source route. 11992 * The options have been sanity checked by ip_output_options(). 11993 */ 11994 void 11995 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11996 { 11997 ipoptp_t opts; 11998 uchar_t *opt; 11999 uint8_t optval; 12000 uint8_t optlen; 12001 ipaddr_t dst; 12002 uint32_t ts; 12003 timestruc_t now; 12004 12005 for (optval = ipoptp_first(&opts, ipha); 12006 optval != IPOPT_EOL; 12007 optval = ipoptp_next(&opts)) { 12008 opt = opts.ipoptp_cur; 12009 optlen = opts.ipoptp_len; 12010 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 12011 switch (optval) { 12012 uint32_t off; 12013 case IPOPT_SSRR: 12014 case IPOPT_LSRR: 12015 off = opt[IPOPT_OFFSET]; 12016 off--; 12017 if (optlen < IP_ADDR_LEN || 12018 off > optlen - IP_ADDR_LEN) { 12019 /* End of source route */ 12020 break; 12021 } 12022 /* 12023 * This will only happen if two consecutive entries 12024 * in the source route contains our address or if 12025 * it is a packet with a loose source route which 12026 * reaches us before consuming the whole source route 12027 */ 12028 12029 if (optval == IPOPT_SSRR) { 12030 return; 12031 } 12032 /* 12033 * Hack: instead of dropping the packet truncate the 12034 * source route to what has been used by filling the 12035 * rest with IPOPT_NOP. 12036 */ 12037 opt[IPOPT_OLEN] = (uint8_t)off; 12038 while (off < optlen) { 12039 opt[off++] = IPOPT_NOP; 12040 } 12041 break; 12042 case IPOPT_RR: 12043 off = opt[IPOPT_OFFSET]; 12044 off--; 12045 if (optlen < IP_ADDR_LEN || 12046 off > optlen - IP_ADDR_LEN) { 12047 /* No more room - ignore */ 12048 ip1dbg(( 12049 "ip_output_local_options: end of RR\n")); 12050 break; 12051 } 12052 dst = htonl(INADDR_LOOPBACK); 12053 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12054 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12055 break; 12056 case IPOPT_TS: 12057 /* Insert timestamp if there is romm */ 12058 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12059 case IPOPT_TS_TSONLY: 12060 off = IPOPT_TS_TIMELEN; 12061 break; 12062 case IPOPT_TS_PRESPEC: 12063 case IPOPT_TS_PRESPEC_RFC791: 12064 /* Verify that the address matched */ 12065 off = opt[IPOPT_OFFSET] - 1; 12066 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12067 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12068 /* Not for us */ 12069 break; 12070 } 12071 /* FALLTHRU */ 12072 case IPOPT_TS_TSANDADDR: 12073 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12074 break; 12075 default: 12076 /* 12077 * ip_*put_options should have already 12078 * dropped this packet. 12079 */ 12080 cmn_err(CE_PANIC, "ip_output_local_options: " 12081 "unknown IT - bug in ip_output_options?\n"); 12082 return; /* Keep "lint" happy */ 12083 } 12084 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12085 /* Increase overflow counter */ 12086 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12087 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12088 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12089 (off << 4); 12090 break; 12091 } 12092 off = opt[IPOPT_OFFSET] - 1; 12093 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12094 case IPOPT_TS_PRESPEC: 12095 case IPOPT_TS_PRESPEC_RFC791: 12096 case IPOPT_TS_TSANDADDR: 12097 dst = htonl(INADDR_LOOPBACK); 12098 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12099 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12100 /* FALLTHRU */ 12101 case IPOPT_TS_TSONLY: 12102 off = opt[IPOPT_OFFSET] - 1; 12103 /* Compute # of milliseconds since midnight */ 12104 gethrestime(&now); 12105 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12106 now.tv_nsec / (NANOSEC / MILLISEC); 12107 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12108 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12109 break; 12110 } 12111 break; 12112 } 12113 } 12114 } 12115 12116 /* 12117 * Prepend an M_DATA fastpath header, and if none present prepend a 12118 * DL_UNITDATA_REQ. Frees the mblk on failure. 12119 * 12120 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12121 * If there is a change to them, the nce will be deleted (condemned) and 12122 * a new nce_t will be created when packets are sent. Thus we need no locks 12123 * to access those fields. 12124 * 12125 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12126 * we place b_band in dl_priority.dl_max. 12127 */ 12128 static mblk_t * 12129 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12130 { 12131 uint_t hlen; 12132 mblk_t *mp1; 12133 uint_t priority; 12134 uchar_t *rptr; 12135 12136 rptr = mp->b_rptr; 12137 12138 ASSERT(DB_TYPE(mp) == M_DATA); 12139 priority = mp->b_band; 12140 12141 ASSERT(nce != NULL); 12142 if ((mp1 = nce->nce_fp_mp) != NULL) { 12143 hlen = MBLKL(mp1); 12144 /* 12145 * Check if we have enough room to prepend fastpath 12146 * header 12147 */ 12148 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12149 rptr -= hlen; 12150 bcopy(mp1->b_rptr, rptr, hlen); 12151 /* 12152 * Set the b_rptr to the start of the link layer 12153 * header 12154 */ 12155 mp->b_rptr = rptr; 12156 return (mp); 12157 } 12158 mp1 = copyb(mp1); 12159 if (mp1 == NULL) { 12160 ill_t *ill = nce->nce_ill; 12161 12162 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12163 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12164 freemsg(mp); 12165 return (NULL); 12166 } 12167 mp1->b_band = priority; 12168 mp1->b_cont = mp; 12169 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12170 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12171 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12172 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12173 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12174 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12175 /* 12176 * XXX disable ICK_VALID and compute checksum 12177 * here; can happen if nce_fp_mp changes and 12178 * it can't be copied now due to insufficient 12179 * space. (unlikely, fp mp can change, but it 12180 * does not increase in length) 12181 */ 12182 return (mp1); 12183 } 12184 mp1 = copyb(nce->nce_dlur_mp); 12185 12186 if (mp1 == NULL) { 12187 ill_t *ill = nce->nce_ill; 12188 12189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12190 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12191 freemsg(mp); 12192 return (NULL); 12193 } 12194 mp1->b_cont = mp; 12195 if (priority != 0) { 12196 mp1->b_band = priority; 12197 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12198 priority; 12199 } 12200 return (mp1); 12201 #undef rptr 12202 } 12203 12204 /* 12205 * Finish the outbound IPsec processing. This function is called from 12206 * ipsec_out_process() if the IPsec packet was processed 12207 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12208 * asynchronously. 12209 * 12210 * This is common to IPv4 and IPv6. 12211 */ 12212 int 12213 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12214 { 12215 iaflags_t ixaflags = ixa->ixa_flags; 12216 uint_t pktlen; 12217 12218 12219 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12220 if (ixaflags & IXAF_IS_IPV4) { 12221 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12222 12223 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12224 pktlen = ntohs(ipha->ipha_length); 12225 } else { 12226 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12227 12228 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12229 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12230 } 12231 12232 /* 12233 * We release any hard reference on the SAs here to make 12234 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12235 * on the SAs. 12236 * If in the future we want the hard latching of the SAs in the 12237 * ip_xmit_attr_t then we should remove this. 12238 */ 12239 if (ixa->ixa_ipsec_esp_sa != NULL) { 12240 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12241 ixa->ixa_ipsec_esp_sa = NULL; 12242 } 12243 if (ixa->ixa_ipsec_ah_sa != NULL) { 12244 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12245 ixa->ixa_ipsec_ah_sa = NULL; 12246 } 12247 12248 /* Do we need to fragment? */ 12249 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12250 pktlen > ixa->ixa_fragsize) { 12251 if (ixaflags & IXAF_IS_IPV4) { 12252 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12253 /* 12254 * We check for the DF case in ipsec_out_process 12255 * hence this only handles the non-DF case. 12256 */ 12257 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12258 pktlen, ixa->ixa_fragsize, 12259 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12260 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12261 &ixa->ixa_cookie)); 12262 } else { 12263 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12264 if (mp == NULL) { 12265 /* MIB and ip_drop_output already done */ 12266 return (ENOMEM); 12267 } 12268 pktlen += sizeof (ip6_frag_t); 12269 if (pktlen > ixa->ixa_fragsize) { 12270 return (ip_fragment_v6(mp, ixa->ixa_nce, 12271 ixa->ixa_flags, pktlen, 12272 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12273 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12274 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12275 } 12276 } 12277 } 12278 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12279 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12280 ixa->ixa_no_loop_zoneid, NULL)); 12281 } 12282 12283 /* 12284 * Finish the inbound IPsec processing. This function is called from 12285 * ipsec_out_process() if the IPsec packet was processed 12286 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12287 * asynchronously. 12288 * 12289 * This is common to IPv4 and IPv6. 12290 */ 12291 void 12292 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12293 { 12294 iaflags_t iraflags = ira->ira_flags; 12295 12296 /* Length might have changed */ 12297 if (iraflags & IRAF_IS_IPV4) { 12298 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12299 12300 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12301 ira->ira_pktlen = ntohs(ipha->ipha_length); 12302 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12303 ira->ira_protocol = ipha->ipha_protocol; 12304 12305 ip_fanout_v4(mp, ipha, ira); 12306 } else { 12307 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12308 uint8_t *nexthdrp; 12309 12310 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12311 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12312 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12313 &nexthdrp)) { 12314 /* Malformed packet */ 12315 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12316 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12317 freemsg(mp); 12318 return; 12319 } 12320 ira->ira_protocol = *nexthdrp; 12321 ip_fanout_v6(mp, ip6h, ira); 12322 } 12323 } 12324 12325 /* 12326 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12327 * 12328 * If this function returns B_TRUE, the requested SA's have been filled 12329 * into the ixa_ipsec_*_sa pointers. 12330 * 12331 * If the function returns B_FALSE, the packet has been "consumed", most 12332 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12333 * 12334 * The SA references created by the protocol-specific "select" 12335 * function will be released in ip_output_post_ipsec. 12336 */ 12337 static boolean_t 12338 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12339 { 12340 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12341 ipsec_policy_t *pp; 12342 ipsec_action_t *ap; 12343 12344 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12345 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12346 (ixa->ixa_ipsec_action != NULL)); 12347 12348 ap = ixa->ixa_ipsec_action; 12349 if (ap == NULL) { 12350 pp = ixa->ixa_ipsec_policy; 12351 ASSERT(pp != NULL); 12352 ap = pp->ipsp_act; 12353 ASSERT(ap != NULL); 12354 } 12355 12356 /* 12357 * We have an action. now, let's select SA's. 12358 * A side effect of setting ixa_ipsec_*_sa is that it will 12359 * be cached in the conn_t. 12360 */ 12361 if (ap->ipa_want_esp) { 12362 if (ixa->ixa_ipsec_esp_sa == NULL) { 12363 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12364 IPPROTO_ESP); 12365 } 12366 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12367 } 12368 12369 if (ap->ipa_want_ah) { 12370 if (ixa->ixa_ipsec_ah_sa == NULL) { 12371 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12372 IPPROTO_AH); 12373 } 12374 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12375 /* 12376 * The ESP and AH processing order needs to be preserved 12377 * when both protocols are required (ESP should be applied 12378 * before AH for an outbound packet). Force an ESP ACQUIRE 12379 * when both ESP and AH are required, and an AH ACQUIRE 12380 * is needed. 12381 */ 12382 if (ap->ipa_want_esp && need_ah_acquire) 12383 need_esp_acquire = B_TRUE; 12384 } 12385 12386 /* 12387 * Send an ACQUIRE (extended, regular, or both) if we need one. 12388 * Release SAs that got referenced, but will not be used until we 12389 * acquire _all_ of the SAs we need. 12390 */ 12391 if (need_ah_acquire || need_esp_acquire) { 12392 if (ixa->ixa_ipsec_ah_sa != NULL) { 12393 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12394 ixa->ixa_ipsec_ah_sa = NULL; 12395 } 12396 if (ixa->ixa_ipsec_esp_sa != NULL) { 12397 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12398 ixa->ixa_ipsec_esp_sa = NULL; 12399 } 12400 12401 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12402 return (B_FALSE); 12403 } 12404 12405 return (B_TRUE); 12406 } 12407 12408 /* 12409 * Handle IPsec output processing. 12410 * This function is only entered once for a given packet. 12411 * We try to do things synchronously, but if we need to have user-level 12412 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12413 * will be completed 12414 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12415 * - when asynchronous ESP is done it will do AH 12416 * 12417 * In all cases we come back in ip_output_post_ipsec() to fragment and 12418 * send out the packet. 12419 */ 12420 int 12421 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12422 { 12423 ill_t *ill = ixa->ixa_nce->nce_ill; 12424 ip_stack_t *ipst = ixa->ixa_ipst; 12425 ipsec_stack_t *ipss; 12426 ipsec_policy_t *pp; 12427 ipsec_action_t *ap; 12428 12429 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12430 12431 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12432 (ixa->ixa_ipsec_action != NULL)); 12433 12434 ipss = ipst->ips_netstack->netstack_ipsec; 12435 if (!ipsec_loaded(ipss)) { 12436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12437 ip_drop_packet(mp, B_TRUE, ill, 12438 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12439 &ipss->ipsec_dropper); 12440 return (ENOTSUP); 12441 } 12442 12443 ap = ixa->ixa_ipsec_action; 12444 if (ap == NULL) { 12445 pp = ixa->ixa_ipsec_policy; 12446 ASSERT(pp != NULL); 12447 ap = pp->ipsp_act; 12448 ASSERT(ap != NULL); 12449 } 12450 12451 /* Handle explicit drop action and bypass. */ 12452 switch (ap->ipa_act.ipa_type) { 12453 case IPSEC_ACT_DISCARD: 12454 case IPSEC_ACT_REJECT: 12455 ip_drop_packet(mp, B_FALSE, ill, 12456 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12457 return (EHOSTUNREACH); /* IPsec policy failure */ 12458 case IPSEC_ACT_BYPASS: 12459 return (ip_output_post_ipsec(mp, ixa)); 12460 } 12461 12462 /* 12463 * The order of processing is first insert a IP header if needed. 12464 * Then insert the ESP header and then the AH header. 12465 */ 12466 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12467 /* 12468 * First get the outer IP header before sending 12469 * it to ESP. 12470 */ 12471 ipha_t *oipha, *iipha; 12472 mblk_t *outer_mp, *inner_mp; 12473 12474 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12475 (void) mi_strlog(ill->ill_rq, 0, 12476 SL_ERROR|SL_TRACE|SL_CONSOLE, 12477 "ipsec_out_process: " 12478 "Self-Encapsulation failed: Out of memory\n"); 12479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12480 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12481 freemsg(mp); 12482 return (ENOBUFS); 12483 } 12484 inner_mp = mp; 12485 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12486 oipha = (ipha_t *)outer_mp->b_rptr; 12487 iipha = (ipha_t *)inner_mp->b_rptr; 12488 *oipha = *iipha; 12489 outer_mp->b_wptr += sizeof (ipha_t); 12490 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12491 sizeof (ipha_t)); 12492 oipha->ipha_protocol = IPPROTO_ENCAP; 12493 oipha->ipha_version_and_hdr_length = 12494 IP_SIMPLE_HDR_VERSION; 12495 oipha->ipha_hdr_checksum = 0; 12496 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12497 outer_mp->b_cont = inner_mp; 12498 mp = outer_mp; 12499 12500 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12501 } 12502 12503 /* If we need to wait for a SA then we can't return any errno */ 12504 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12505 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12506 !ipsec_out_select_sa(mp, ixa)) 12507 return (0); 12508 12509 /* 12510 * By now, we know what SA's to use. Toss over to ESP & AH 12511 * to do the heavy lifting. 12512 */ 12513 if (ap->ipa_want_esp) { 12514 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12515 12516 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12517 if (mp == NULL) { 12518 /* 12519 * Either it failed or is pending. In the former case 12520 * ipIfStatsInDiscards was increased. 12521 */ 12522 return (0); 12523 } 12524 } 12525 12526 if (ap->ipa_want_ah) { 12527 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12528 12529 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12530 if (mp == NULL) { 12531 /* 12532 * Either it failed or is pending. In the former case 12533 * ipIfStatsInDiscards was increased. 12534 */ 12535 return (0); 12536 } 12537 } 12538 /* 12539 * We are done with IPsec processing. Send it over 12540 * the wire. 12541 */ 12542 return (ip_output_post_ipsec(mp, ixa)); 12543 } 12544 12545 /* 12546 * ioctls that go through a down/up sequence may need to wait for the down 12547 * to complete. This involves waiting for the ire and ipif refcnts to go down 12548 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12549 */ 12550 /* ARGSUSED */ 12551 void 12552 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12553 { 12554 struct iocblk *iocp; 12555 mblk_t *mp1; 12556 ip_ioctl_cmd_t *ipip; 12557 int err; 12558 sin_t *sin; 12559 struct lifreq *lifr; 12560 struct ifreq *ifr; 12561 12562 iocp = (struct iocblk *)mp->b_rptr; 12563 ASSERT(ipsq != NULL); 12564 /* Existence of mp1 verified in ip_wput_nondata */ 12565 mp1 = mp->b_cont->b_cont; 12566 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12567 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12568 /* 12569 * Special case where ipx_current_ipif is not set: 12570 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12571 * We are here as were not able to complete the operation in 12572 * ipif_set_values because we could not become exclusive on 12573 * the new ipsq. 12574 */ 12575 ill_t *ill = q->q_ptr; 12576 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12577 } 12578 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12579 12580 if (ipip->ipi_cmd_type == IF_CMD) { 12581 /* This a old style SIOC[GS]IF* command */ 12582 ifr = (struct ifreq *)mp1->b_rptr; 12583 sin = (sin_t *)&ifr->ifr_addr; 12584 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12585 /* This a new style SIOC[GS]LIF* command */ 12586 lifr = (struct lifreq *)mp1->b_rptr; 12587 sin = (sin_t *)&lifr->lifr_addr; 12588 } else { 12589 sin = NULL; 12590 } 12591 12592 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12593 q, mp, ipip, mp1->b_rptr); 12594 12595 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12596 int, ipip->ipi_cmd, 12597 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12598 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12599 12600 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12601 } 12602 12603 /* 12604 * ioctl processing 12605 * 12606 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12607 * the ioctl command in the ioctl tables, determines the copyin data size 12608 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12609 * 12610 * ioctl processing then continues when the M_IOCDATA makes its way down to 12611 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12612 * associated 'conn' is refheld till the end of the ioctl and the general 12613 * ioctl processing function ip_process_ioctl() is called to extract the 12614 * arguments and process the ioctl. To simplify extraction, ioctl commands 12615 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12616 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12617 * is used to extract the ioctl's arguments. 12618 * 12619 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12620 * so goes thru the serialization primitive ipsq_try_enter. Then the 12621 * appropriate function to handle the ioctl is called based on the entry in 12622 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12623 * which also refreleases the 'conn' that was refheld at the start of the 12624 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12625 * 12626 * Many exclusive ioctls go thru an internal down up sequence as part of 12627 * the operation. For example an attempt to change the IP address of an 12628 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12629 * does all the cleanup such as deleting all ires that use this address. 12630 * Then we need to wait till all references to the interface go away. 12631 */ 12632 void 12633 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12634 { 12635 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12636 ip_ioctl_cmd_t *ipip = arg; 12637 ip_extract_func_t *extract_funcp; 12638 cmd_info_t ci; 12639 int err; 12640 boolean_t entered_ipsq = B_FALSE; 12641 12642 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12643 12644 if (ipip == NULL) 12645 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12646 12647 /* 12648 * SIOCLIFADDIF needs to go thru a special path since the 12649 * ill may not exist yet. This happens in the case of lo0 12650 * which is created using this ioctl. 12651 */ 12652 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12653 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12654 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12655 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12656 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12657 return; 12658 } 12659 12660 ci.ci_ipif = NULL; 12661 switch (ipip->ipi_cmd_type) { 12662 case MISC_CMD: 12663 case MSFILT_CMD: 12664 /* 12665 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12666 */ 12667 if (ipip->ipi_cmd == IF_UNITSEL) { 12668 /* ioctl comes down the ill */ 12669 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12670 ipif_refhold(ci.ci_ipif); 12671 } 12672 err = 0; 12673 ci.ci_sin = NULL; 12674 ci.ci_sin6 = NULL; 12675 ci.ci_lifr = NULL; 12676 extract_funcp = NULL; 12677 break; 12678 12679 case IF_CMD: 12680 case LIF_CMD: 12681 extract_funcp = ip_extract_lifreq; 12682 break; 12683 12684 case ARP_CMD: 12685 case XARP_CMD: 12686 extract_funcp = ip_extract_arpreq; 12687 break; 12688 12689 default: 12690 ASSERT(0); 12691 } 12692 12693 if (extract_funcp != NULL) { 12694 err = (*extract_funcp)(q, mp, ipip, &ci); 12695 if (err != 0) { 12696 DTRACE_PROBE4(ipif__ioctl, 12697 char *, "ip_process_ioctl finish err", 12698 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12699 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12700 return; 12701 } 12702 12703 /* 12704 * All of the extraction functions return a refheld ipif. 12705 */ 12706 ASSERT(ci.ci_ipif != NULL); 12707 } 12708 12709 if (!(ipip->ipi_flags & IPI_WR)) { 12710 /* 12711 * A return value of EINPROGRESS means the ioctl is 12712 * either queued and waiting for some reason or has 12713 * already completed. 12714 */ 12715 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12716 ci.ci_lifr); 12717 if (ci.ci_ipif != NULL) { 12718 DTRACE_PROBE4(ipif__ioctl, 12719 char *, "ip_process_ioctl finish RD", 12720 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12721 ipif_t *, ci.ci_ipif); 12722 ipif_refrele(ci.ci_ipif); 12723 } else { 12724 DTRACE_PROBE4(ipif__ioctl, 12725 char *, "ip_process_ioctl finish RD", 12726 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12727 } 12728 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12729 return; 12730 } 12731 12732 ASSERT(ci.ci_ipif != NULL); 12733 12734 /* 12735 * If ipsq is non-NULL, we are already being called exclusively 12736 */ 12737 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12738 if (ipsq == NULL) { 12739 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12740 NEW_OP, B_TRUE); 12741 if (ipsq == NULL) { 12742 ipif_refrele(ci.ci_ipif); 12743 return; 12744 } 12745 entered_ipsq = B_TRUE; 12746 } 12747 /* 12748 * Release the ipif so that ipif_down and friends that wait for 12749 * references to go away are not misled about the current ipif_refcnt 12750 * values. We are writer so we can access the ipif even after releasing 12751 * the ipif. 12752 */ 12753 ipif_refrele(ci.ci_ipif); 12754 12755 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12756 12757 /* 12758 * A return value of EINPROGRESS means the ioctl is 12759 * either queued and waiting for some reason or has 12760 * already completed. 12761 */ 12762 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12763 12764 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12765 int, ipip->ipi_cmd, 12766 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12767 ipif_t *, ci.ci_ipif); 12768 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12769 12770 if (entered_ipsq) 12771 ipsq_exit(ipsq); 12772 } 12773 12774 /* 12775 * Complete the ioctl. Typically ioctls use the mi package and need to 12776 * do mi_copyout/mi_copy_done. 12777 */ 12778 void 12779 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12780 { 12781 conn_t *connp = NULL; 12782 12783 if (err == EINPROGRESS) 12784 return; 12785 12786 if (CONN_Q(q)) { 12787 connp = Q_TO_CONN(q); 12788 ASSERT(connp->conn_ref >= 2); 12789 } 12790 12791 switch (mode) { 12792 case COPYOUT: 12793 if (err == 0) 12794 mi_copyout(q, mp); 12795 else 12796 mi_copy_done(q, mp, err); 12797 break; 12798 12799 case NO_COPYOUT: 12800 mi_copy_done(q, mp, err); 12801 break; 12802 12803 default: 12804 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12805 break; 12806 } 12807 12808 /* 12809 * The refhold placed at the start of the ioctl is released here. 12810 */ 12811 if (connp != NULL) 12812 CONN_OPER_PENDING_DONE(connp); 12813 12814 if (ipsq != NULL) 12815 ipsq_current_finish(ipsq); 12816 } 12817 12818 /* Handles all non data messages */ 12819 void 12820 ip_wput_nondata(queue_t *q, mblk_t *mp) 12821 { 12822 mblk_t *mp1; 12823 struct iocblk *iocp; 12824 ip_ioctl_cmd_t *ipip; 12825 conn_t *connp; 12826 cred_t *cr; 12827 char *proto_str; 12828 12829 if (CONN_Q(q)) 12830 connp = Q_TO_CONN(q); 12831 else 12832 connp = NULL; 12833 12834 switch (DB_TYPE(mp)) { 12835 case M_IOCTL: 12836 /* 12837 * IOCTL processing begins in ip_sioctl_copyin_setup which 12838 * will arrange to copy in associated control structures. 12839 */ 12840 ip_sioctl_copyin_setup(q, mp); 12841 return; 12842 case M_IOCDATA: 12843 /* 12844 * Ensure that this is associated with one of our trans- 12845 * parent ioctls. If it's not ours, discard it if we're 12846 * running as a driver, or pass it on if we're a module. 12847 */ 12848 iocp = (struct iocblk *)mp->b_rptr; 12849 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12850 if (ipip == NULL) { 12851 if (q->q_next == NULL) { 12852 goto nak; 12853 } else { 12854 putnext(q, mp); 12855 } 12856 return; 12857 } 12858 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12859 /* 12860 * The ioctl is one we recognise, but is not consumed 12861 * by IP as a module and we are a module, so we drop 12862 */ 12863 goto nak; 12864 } 12865 12866 /* IOCTL continuation following copyin or copyout. */ 12867 if (mi_copy_state(q, mp, NULL) == -1) { 12868 /* 12869 * The copy operation failed. mi_copy_state already 12870 * cleaned up, so we're out of here. 12871 */ 12872 return; 12873 } 12874 /* 12875 * If we just completed a copy in, we become writer and 12876 * continue processing in ip_sioctl_copyin_done. If it 12877 * was a copy out, we call mi_copyout again. If there is 12878 * nothing more to copy out, it will complete the IOCTL. 12879 */ 12880 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12881 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12882 mi_copy_done(q, mp, EPROTO); 12883 return; 12884 } 12885 /* 12886 * Check for cases that need more copying. A return 12887 * value of 0 means a second copyin has been started, 12888 * so we return; a return value of 1 means no more 12889 * copying is needed, so we continue. 12890 */ 12891 if (ipip->ipi_cmd_type == MSFILT_CMD && 12892 MI_COPY_COUNT(mp) == 1) { 12893 if (ip_copyin_msfilter(q, mp) == 0) 12894 return; 12895 } 12896 /* 12897 * Refhold the conn, till the ioctl completes. This is 12898 * needed in case the ioctl ends up in the pending mp 12899 * list. Every mp in the ipx_pending_mp list 12900 * must have a refhold on the conn 12901 * to resume processing. The refhold is released when 12902 * the ioctl completes. (normally or abnormally) 12903 * In all cases ip_ioctl_finish is called to finish 12904 * the ioctl. 12905 */ 12906 if (connp != NULL) { 12907 /* This is not a reentry */ 12908 CONN_INC_REF(connp); 12909 } else { 12910 if (!(ipip->ipi_flags & IPI_MODOK)) { 12911 mi_copy_done(q, mp, EINVAL); 12912 return; 12913 } 12914 } 12915 12916 ip_process_ioctl(NULL, q, mp, ipip); 12917 12918 } else { 12919 mi_copyout(q, mp); 12920 } 12921 return; 12922 12923 case M_IOCNAK: 12924 /* 12925 * The only way we could get here is if a resolver didn't like 12926 * an IOCTL we sent it. This shouldn't happen. 12927 */ 12928 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12929 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12930 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12931 freemsg(mp); 12932 return; 12933 case M_IOCACK: 12934 /* /dev/ip shouldn't see this */ 12935 goto nak; 12936 case M_FLUSH: 12937 if (*mp->b_rptr & FLUSHW) 12938 flushq(q, FLUSHALL); 12939 if (q->q_next) { 12940 putnext(q, mp); 12941 return; 12942 } 12943 if (*mp->b_rptr & FLUSHR) { 12944 *mp->b_rptr &= ~FLUSHW; 12945 qreply(q, mp); 12946 return; 12947 } 12948 freemsg(mp); 12949 return; 12950 case M_CTL: 12951 break; 12952 case M_PROTO: 12953 case M_PCPROTO: 12954 /* 12955 * The only PROTO messages we expect are SNMP-related. 12956 */ 12957 switch (((union T_primitives *)mp->b_rptr)->type) { 12958 case T_SVR4_OPTMGMT_REQ: 12959 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12960 "flags %x\n", 12961 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12962 12963 if (connp == NULL) { 12964 proto_str = "T_SVR4_OPTMGMT_REQ"; 12965 goto protonak; 12966 } 12967 12968 /* 12969 * All Solaris components should pass a db_credp 12970 * for this TPI message, hence we ASSERT. 12971 * But in case there is some other M_PROTO that looks 12972 * like a TPI message sent by some other kernel 12973 * component, we check and return an error. 12974 */ 12975 cr = msg_getcred(mp, NULL); 12976 ASSERT(cr != NULL); 12977 if (cr == NULL) { 12978 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12979 if (mp != NULL) 12980 qreply(q, mp); 12981 return; 12982 } 12983 12984 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12985 proto_str = "Bad SNMPCOM request?"; 12986 goto protonak; 12987 } 12988 return; 12989 default: 12990 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12991 (int)*(uint_t *)mp->b_rptr)); 12992 freemsg(mp); 12993 return; 12994 } 12995 default: 12996 break; 12997 } 12998 if (q->q_next) { 12999 putnext(q, mp); 13000 } else 13001 freemsg(mp); 13002 return; 13003 13004 nak: 13005 iocp->ioc_error = EINVAL; 13006 mp->b_datap->db_type = M_IOCNAK; 13007 iocp->ioc_count = 0; 13008 qreply(q, mp); 13009 return; 13010 13011 protonak: 13012 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 13013 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 13014 qreply(q, mp); 13015 } 13016 13017 /* 13018 * Process IP options in an outbound packet. Verify that the nexthop in a 13019 * strict source route is onlink. 13020 * Returns non-zero if something fails in which case an ICMP error has been 13021 * sent and mp freed. 13022 * 13023 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 13024 */ 13025 int 13026 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 13027 { 13028 ipoptp_t opts; 13029 uchar_t *opt; 13030 uint8_t optval; 13031 uint8_t optlen; 13032 ipaddr_t dst; 13033 intptr_t code = 0; 13034 ire_t *ire; 13035 ip_stack_t *ipst = ixa->ixa_ipst; 13036 ip_recv_attr_t iras; 13037 13038 ip2dbg(("ip_output_options\n")); 13039 13040 dst = ipha->ipha_dst; 13041 for (optval = ipoptp_first(&opts, ipha); 13042 optval != IPOPT_EOL; 13043 optval = ipoptp_next(&opts)) { 13044 opt = opts.ipoptp_cur; 13045 optlen = opts.ipoptp_len; 13046 ip2dbg(("ip_output_options: opt %d, len %d\n", 13047 optval, optlen)); 13048 switch (optval) { 13049 uint32_t off; 13050 case IPOPT_SSRR: 13051 case IPOPT_LSRR: 13052 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13053 ip1dbg(( 13054 "ip_output_options: bad option offset\n")); 13055 code = (char *)&opt[IPOPT_OLEN] - 13056 (char *)ipha; 13057 goto param_prob; 13058 } 13059 off = opt[IPOPT_OFFSET]; 13060 ip1dbg(("ip_output_options: next hop 0x%x\n", 13061 ntohl(dst))); 13062 /* 13063 * For strict: verify that dst is directly 13064 * reachable. 13065 */ 13066 if (optval == IPOPT_SSRR) { 13067 ire = ire_ftable_lookup_v4(dst, 0, 0, 13068 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 13069 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13070 NULL); 13071 if (ire == NULL) { 13072 ip1dbg(("ip_output_options: SSRR not" 13073 " directly reachable: 0x%x\n", 13074 ntohl(dst))); 13075 goto bad_src_route; 13076 } 13077 ire_refrele(ire); 13078 } 13079 break; 13080 case IPOPT_RR: 13081 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13082 ip1dbg(( 13083 "ip_output_options: bad option offset\n")); 13084 code = (char *)&opt[IPOPT_OLEN] - 13085 (char *)ipha; 13086 goto param_prob; 13087 } 13088 break; 13089 case IPOPT_TS: 13090 /* 13091 * Verify that length >=5 and that there is either 13092 * room for another timestamp or that the overflow 13093 * counter is not maxed out. 13094 */ 13095 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13096 if (optlen < IPOPT_MINLEN_IT) { 13097 goto param_prob; 13098 } 13099 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13100 ip1dbg(( 13101 "ip_output_options: bad option offset\n")); 13102 code = (char *)&opt[IPOPT_OFFSET] - 13103 (char *)ipha; 13104 goto param_prob; 13105 } 13106 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13107 case IPOPT_TS_TSONLY: 13108 off = IPOPT_TS_TIMELEN; 13109 break; 13110 case IPOPT_TS_TSANDADDR: 13111 case IPOPT_TS_PRESPEC: 13112 case IPOPT_TS_PRESPEC_RFC791: 13113 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13114 break; 13115 default: 13116 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13117 (char *)ipha; 13118 goto param_prob; 13119 } 13120 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13121 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13122 /* 13123 * No room and the overflow counter is 15 13124 * already. 13125 */ 13126 goto param_prob; 13127 } 13128 break; 13129 } 13130 } 13131 13132 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13133 return (0); 13134 13135 ip1dbg(("ip_output_options: error processing IP options.")); 13136 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13137 13138 param_prob: 13139 bzero(&iras, sizeof (iras)); 13140 iras.ira_ill = iras.ira_rill = ill; 13141 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13142 iras.ira_rifindex = iras.ira_ruifindex; 13143 iras.ira_flags = IRAF_IS_IPV4; 13144 13145 ip_drop_output("ip_output_options", mp, ill); 13146 icmp_param_problem(mp, (uint8_t)code, &iras); 13147 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13148 return (-1); 13149 13150 bad_src_route: 13151 bzero(&iras, sizeof (iras)); 13152 iras.ira_ill = iras.ira_rill = ill; 13153 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13154 iras.ira_rifindex = iras.ira_ruifindex; 13155 iras.ira_flags = IRAF_IS_IPV4; 13156 13157 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13158 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13159 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13160 return (-1); 13161 } 13162 13163 /* 13164 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13165 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13166 * thru /etc/system. 13167 */ 13168 #define CONN_MAXDRAINCNT 64 13169 13170 static void 13171 conn_drain_init(ip_stack_t *ipst) 13172 { 13173 int i, j; 13174 idl_tx_list_t *itl_tx; 13175 13176 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13177 13178 if ((ipst->ips_conn_drain_list_cnt == 0) || 13179 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13180 /* 13181 * Default value of the number of drainers is the 13182 * number of cpus, subject to maximum of 8 drainers. 13183 */ 13184 if (boot_max_ncpus != -1) 13185 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13186 else 13187 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13188 } 13189 13190 ipst->ips_idl_tx_list = 13191 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13192 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13193 itl_tx = &ipst->ips_idl_tx_list[i]; 13194 itl_tx->txl_drain_list = 13195 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13196 sizeof (idl_t), KM_SLEEP); 13197 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13198 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13199 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13200 MUTEX_DEFAULT, NULL); 13201 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13202 } 13203 } 13204 } 13205 13206 static void 13207 conn_drain_fini(ip_stack_t *ipst) 13208 { 13209 int i; 13210 idl_tx_list_t *itl_tx; 13211 13212 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13213 itl_tx = &ipst->ips_idl_tx_list[i]; 13214 kmem_free(itl_tx->txl_drain_list, 13215 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13216 } 13217 kmem_free(ipst->ips_idl_tx_list, 13218 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13219 ipst->ips_idl_tx_list = NULL; 13220 } 13221 13222 /* 13223 * Note: For an overview of how flowcontrol is handled in IP please see the 13224 * IP Flowcontrol notes at the top of this file. 13225 * 13226 * Flow control has blocked us from proceeding. Insert the given conn in one 13227 * of the conn drain lists. These conn wq's will be qenabled later on when 13228 * STREAMS flow control does a backenable. conn_walk_drain will enable 13229 * the first conn in each of these drain lists. Each of these qenabled conns 13230 * in turn enables the next in the list, after it runs, or when it closes, 13231 * thus sustaining the drain process. 13232 */ 13233 void 13234 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13235 { 13236 idl_t *idl = tx_list->txl_drain_list; 13237 uint_t index; 13238 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13239 13240 mutex_enter(&connp->conn_lock); 13241 if (connp->conn_state_flags & CONN_CLOSING) { 13242 /* 13243 * The conn is closing as a result of which CONN_CLOSING 13244 * is set. Return. 13245 */ 13246 mutex_exit(&connp->conn_lock); 13247 return; 13248 } else if (connp->conn_idl == NULL) { 13249 /* 13250 * Assign the next drain list round robin. We dont' use 13251 * a lock, and thus it may not be strictly round robin. 13252 * Atomicity of load/stores is enough to make sure that 13253 * conn_drain_list_index is always within bounds. 13254 */ 13255 index = tx_list->txl_drain_index; 13256 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13257 connp->conn_idl = &tx_list->txl_drain_list[index]; 13258 index++; 13259 if (index == ipst->ips_conn_drain_list_cnt) 13260 index = 0; 13261 tx_list->txl_drain_index = index; 13262 } 13263 mutex_exit(&connp->conn_lock); 13264 13265 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 13266 if ((connp->conn_drain_prev != NULL) || 13267 (connp->conn_state_flags & CONN_CLOSING)) { 13268 /* 13269 * The conn is already in the drain list, OR 13270 * the conn is closing. We need to check again for 13271 * the closing case again since close can happen 13272 * after we drop the conn_lock, and before we 13273 * acquire the CONN_DRAIN_LIST_LOCK. 13274 */ 13275 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13276 return; 13277 } else { 13278 idl = connp->conn_idl; 13279 } 13280 13281 /* 13282 * The conn is not in the drain list. Insert it at the 13283 * tail of the drain list. The drain list is circular 13284 * and doubly linked. idl_conn points to the 1st element 13285 * in the list. 13286 */ 13287 if (idl->idl_conn == NULL) { 13288 idl->idl_conn = connp; 13289 connp->conn_drain_next = connp; 13290 connp->conn_drain_prev = connp; 13291 } else { 13292 conn_t *head = idl->idl_conn; 13293 13294 connp->conn_drain_next = head; 13295 connp->conn_drain_prev = head->conn_drain_prev; 13296 head->conn_drain_prev->conn_drain_next = connp; 13297 head->conn_drain_prev = connp; 13298 } 13299 /* 13300 * For non streams based sockets assert flow control. 13301 */ 13302 conn_setqfull(connp, NULL); 13303 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13304 } 13305 13306 static void 13307 conn_idl_remove(conn_t *connp) 13308 { 13309 idl_t *idl = connp->conn_idl; 13310 13311 if (idl != NULL) { 13312 /* 13313 * Remove ourself from the drain list, if we did not do 13314 * a putq, or if the conn is closing. 13315 * Note: It is possible that q->q_first is non-null. It means 13316 * that these messages landed after we did a enableok() in 13317 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 13318 * service them. 13319 */ 13320 if (connp->conn_drain_next == connp) { 13321 /* Singleton in the list */ 13322 ASSERT(connp->conn_drain_prev == connp); 13323 idl->idl_conn = NULL; 13324 } else { 13325 connp->conn_drain_prev->conn_drain_next = 13326 connp->conn_drain_next; 13327 connp->conn_drain_next->conn_drain_prev = 13328 connp->conn_drain_prev; 13329 if (idl->idl_conn == connp) 13330 idl->idl_conn = connp->conn_drain_next; 13331 } 13332 } 13333 connp->conn_drain_next = NULL; 13334 connp->conn_drain_prev = NULL; 13335 13336 conn_clrqfull(connp, NULL); 13337 /* 13338 * For streams based sockets open up flow control. 13339 */ 13340 if (!IPCL_IS_NONSTR(connp)) 13341 enableok(connp->conn_wq); 13342 } 13343 13344 /* 13345 * This conn is closing, and we are called from ip_close. OR 13346 * this conn is draining because flow-control on the ill has been relieved. 13347 * 13348 * We must also need to remove conn's on this idl from the list, and also 13349 * inform the sockfs upcalls about the change in flow-control. 13350 */ 13351 static void 13352 conn_drain_tail(conn_t *connp, boolean_t closing) 13353 { 13354 idl_t *idl; 13355 conn_t *next_connp; 13356 13357 /* 13358 * connp->conn_idl is stable at this point, and no lock is needed 13359 * to check it. If we are called from ip_close, close has already 13360 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13361 * called us only because conn_idl is non-null. If we are called thru 13362 * service, conn_idl could be null, but it cannot change because 13363 * service is single-threaded per queue, and there cannot be another 13364 * instance of service trying to call conn_drain_insert on this conn 13365 * now. 13366 */ 13367 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13368 13369 /* 13370 * If connp->conn_idl is null, the conn has not been inserted into any 13371 * drain list even once since creation of the conn. Just return. 13372 */ 13373 if (connp == NULL || connp->conn_idl == NULL) 13374 return; 13375 13376 if (connp->conn_drain_prev == NULL) { 13377 /* This conn is currently not in the drain list. */ 13378 return; 13379 } 13380 idl = connp->conn_idl; 13381 if (!closing) { 13382 /* 13383 * This conn is the current drainer. If this is the last conn 13384 * in the drain list, we need to do more checks, in the 'if' 13385 * below. Otherwwise we need to just qenable the next conn, 13386 * to sustain the draining, and is handled in the 'else' 13387 * below. 13388 */ 13389 next_connp = connp->conn_drain_next; 13390 while (next_connp != connp) { 13391 conn_t *delconnp = next_connp; 13392 13393 next_connp = next_connp->conn_drain_next; 13394 conn_idl_remove(delconnp); 13395 } 13396 ASSERT(connp->conn_drain_next == idl->idl_conn); 13397 } 13398 conn_idl_remove(connp); 13399 13400 } 13401 13402 /* 13403 * Write service routine. Shared perimeter entry point. 13404 * The device queue's messages has fallen below the low water mark and STREAMS 13405 * has backenabled the ill_wq. Send sockfs notification about flow-control onx 13406 * each waiting conn. 13407 */ 13408 void 13409 ip_wsrv(queue_t *q) 13410 { 13411 ill_t *ill; 13412 13413 ill = (ill_t *)q->q_ptr; 13414 if (ill->ill_state_flags == 0) { 13415 ip_stack_t *ipst = ill->ill_ipst; 13416 13417 /* 13418 * The device flow control has opened up. 13419 * Walk through conn drain lists and qenable the 13420 * first conn in each list. This makes sense only 13421 * if the stream is fully plumbed and setup. 13422 * Hence the ill_state_flags check above. 13423 */ 13424 ip1dbg(("ip_wsrv: walking\n")); 13425 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13426 enableok(ill->ill_wq); 13427 } 13428 } 13429 13430 /* 13431 * Callback to disable flow control in IP. 13432 * 13433 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13434 * is enabled. 13435 * 13436 * When MAC_TX() is not able to send any more packets, dld sets its queue 13437 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13438 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13439 * function and wakes up corresponding mac worker threads, which in turn 13440 * calls this callback function, and disables flow control. 13441 */ 13442 void 13443 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13444 { 13445 ill_t *ill = (ill_t *)arg; 13446 ip_stack_t *ipst = ill->ill_ipst; 13447 idl_tx_list_t *idl_txl; 13448 13449 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13450 mutex_enter(&idl_txl->txl_lock); 13451 /* add code to to set a flag to indicate idl_txl is enabled */ 13452 conn_walk_drain(ipst, idl_txl); 13453 mutex_exit(&idl_txl->txl_lock); 13454 } 13455 13456 /* 13457 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 13458 * of conns that need to be drained, check if drain is already in progress. 13459 * If so set the idl_repeat bit, indicating that the last conn in the list 13460 * needs to reinitiate the drain once again, for the list. If drain is not 13461 * in progress for the list, initiate the draining, by qenabling the 1st 13462 * conn in the list. The drain is self-sustaining, each qenabled conn will 13463 * in turn qenable the next conn, when it is done/blocked/closing. 13464 */ 13465 static void 13466 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13467 { 13468 int i; 13469 idl_t *idl; 13470 13471 IP_STAT(ipst, ip_conn_walk_drain); 13472 13473 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13474 idl = &tx_list->txl_drain_list[i]; 13475 mutex_enter(&idl->idl_lock); 13476 conn_drain_tail(idl->idl_conn, B_FALSE); 13477 mutex_exit(&idl->idl_lock); 13478 } 13479 } 13480 13481 /* 13482 * Determine if the ill and multicast aspects of that packets 13483 * "matches" the conn. 13484 */ 13485 boolean_t 13486 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13487 { 13488 ill_t *ill = ira->ira_rill; 13489 zoneid_t zoneid = ira->ira_zoneid; 13490 uint_t in_ifindex; 13491 ipaddr_t dst, src; 13492 13493 dst = ipha->ipha_dst; 13494 src = ipha->ipha_src; 13495 13496 /* 13497 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13498 * unicast, broadcast and multicast reception to 13499 * conn_incoming_ifindex. 13500 * conn_wantpacket is called for unicast, broadcast and 13501 * multicast packets. 13502 */ 13503 in_ifindex = connp->conn_incoming_ifindex; 13504 13505 /* mpathd can bind to the under IPMP interface, which we allow */ 13506 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13507 if (!IS_UNDER_IPMP(ill)) 13508 return (B_FALSE); 13509 13510 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13511 return (B_FALSE); 13512 } 13513 13514 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13515 return (B_FALSE); 13516 13517 if (!(ira->ira_flags & IRAF_MULTICAST)) 13518 return (B_TRUE); 13519 13520 if (connp->conn_multi_router) { 13521 /* multicast packet and multicast router socket: send up */ 13522 return (B_TRUE); 13523 } 13524 13525 if (ipha->ipha_protocol == IPPROTO_PIM || 13526 ipha->ipha_protocol == IPPROTO_RSVP) 13527 return (B_TRUE); 13528 13529 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13530 } 13531 13532 void 13533 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13534 { 13535 if (IPCL_IS_NONSTR(connp)) { 13536 (*connp->conn_upcalls->su_txq_full) 13537 (connp->conn_upper_handle, B_TRUE); 13538 if (flow_stopped != NULL) 13539 *flow_stopped = B_TRUE; 13540 } else { 13541 queue_t *q = connp->conn_wq; 13542 13543 ASSERT(q != NULL); 13544 if (!(q->q_flag & QFULL)) { 13545 mutex_enter(QLOCK(q)); 13546 if (!(q->q_flag & QFULL)) { 13547 /* still need to set QFULL */ 13548 q->q_flag |= QFULL; 13549 /* set flow_stopped to true under QLOCK */ 13550 if (flow_stopped != NULL) 13551 *flow_stopped = B_TRUE; 13552 mutex_exit(QLOCK(q)); 13553 } else { 13554 /* flow_stopped is left unchanged */ 13555 mutex_exit(QLOCK(q)); 13556 } 13557 } 13558 } 13559 } 13560 13561 void 13562 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13563 { 13564 if (IPCL_IS_NONSTR(connp)) { 13565 (*connp->conn_upcalls->su_txq_full) 13566 (connp->conn_upper_handle, B_FALSE); 13567 if (flow_stopped != NULL) 13568 *flow_stopped = B_FALSE; 13569 } else { 13570 queue_t *q = connp->conn_wq; 13571 13572 ASSERT(q != NULL); 13573 if (q->q_flag & QFULL) { 13574 mutex_enter(QLOCK(q)); 13575 if (q->q_flag & QFULL) { 13576 q->q_flag &= ~QFULL; 13577 /* set flow_stopped to false under QLOCK */ 13578 if (flow_stopped != NULL) 13579 *flow_stopped = B_FALSE; 13580 mutex_exit(QLOCK(q)); 13581 if (q->q_flag & QWANTW) 13582 qbackenable(q, 0); 13583 } else { 13584 /* flow_stopped is left unchanged */ 13585 mutex_exit(QLOCK(q)); 13586 } 13587 } 13588 } 13589 connp->conn_direct_blocked = B_FALSE; 13590 } 13591 13592 /* 13593 * Return the length in bytes of the IPv4 headers (base header, label, and 13594 * other IP options) that will be needed based on the 13595 * ip_pkt_t structure passed by the caller. 13596 * 13597 * The returned length does not include the length of the upper level 13598 * protocol (ULP) header. 13599 * The caller needs to check that the length doesn't exceed the max for IPv4. 13600 */ 13601 int 13602 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13603 { 13604 int len; 13605 13606 len = IP_SIMPLE_HDR_LENGTH; 13607 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13608 ASSERT(ipp->ipp_label_len_v4 != 0); 13609 /* We need to round up here */ 13610 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13611 } 13612 13613 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13614 ASSERT(ipp->ipp_ipv4_options_len != 0); 13615 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13616 len += ipp->ipp_ipv4_options_len; 13617 } 13618 return (len); 13619 } 13620 13621 /* 13622 * All-purpose routine to build an IPv4 header with options based 13623 * on the abstract ip_pkt_t. 13624 * 13625 * The caller has to set the source and destination address as well as 13626 * ipha_length. The caller has to massage any source route and compensate 13627 * for the ULP pseudo-header checksum due to the source route. 13628 */ 13629 void 13630 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13631 uint8_t protocol) 13632 { 13633 ipha_t *ipha = (ipha_t *)buf; 13634 uint8_t *cp; 13635 13636 /* Initialize IPv4 header */ 13637 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13638 ipha->ipha_length = 0; /* Caller will set later */ 13639 ipha->ipha_ident = 0; 13640 ipha->ipha_fragment_offset_and_flags = 0; 13641 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13642 ipha->ipha_protocol = protocol; 13643 ipha->ipha_hdr_checksum = 0; 13644 13645 if ((ipp->ipp_fields & IPPF_ADDR) && 13646 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13647 ipha->ipha_src = ipp->ipp_addr_v4; 13648 13649 cp = (uint8_t *)&ipha[1]; 13650 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13651 ASSERT(ipp->ipp_label_len_v4 != 0); 13652 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13653 cp += ipp->ipp_label_len_v4; 13654 /* We need to round up here */ 13655 while ((uintptr_t)cp & 0x3) { 13656 *cp++ = IPOPT_NOP; 13657 } 13658 } 13659 13660 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13661 ASSERT(ipp->ipp_ipv4_options_len != 0); 13662 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13663 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13664 cp += ipp->ipp_ipv4_options_len; 13665 } 13666 ipha->ipha_version_and_hdr_length = 13667 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13668 13669 ASSERT((int)(cp - buf) == buf_len); 13670 } 13671 13672 /* Allocate the private structure */ 13673 static int 13674 ip_priv_alloc(void **bufp) 13675 { 13676 void *buf; 13677 13678 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13679 return (ENOMEM); 13680 13681 *bufp = buf; 13682 return (0); 13683 } 13684 13685 /* Function to delete the private structure */ 13686 void 13687 ip_priv_free(void *buf) 13688 { 13689 ASSERT(buf != NULL); 13690 kmem_free(buf, sizeof (ip_priv_t)); 13691 } 13692 13693 /* 13694 * The entry point for IPPF processing. 13695 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13696 * routine just returns. 13697 * 13698 * When called, ip_process generates an ipp_packet_t structure 13699 * which holds the state information for this packet and invokes the 13700 * the classifier (via ipp_packet_process). The classification, depending on 13701 * configured filters, results in a list of actions for this packet. Invoking 13702 * an action may cause the packet to be dropped, in which case we return NULL. 13703 * proc indicates the callout position for 13704 * this packet and ill is the interface this packet arrived on or will leave 13705 * on (inbound and outbound resp.). 13706 * 13707 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13708 * on the ill corrsponding to the destination IP address. 13709 */ 13710 mblk_t * 13711 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13712 { 13713 ip_priv_t *priv; 13714 ipp_action_id_t aid; 13715 int rc = 0; 13716 ipp_packet_t *pp; 13717 13718 /* If the classifier is not loaded, return */ 13719 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13720 return (mp); 13721 } 13722 13723 ASSERT(mp != NULL); 13724 13725 /* Allocate the packet structure */ 13726 rc = ipp_packet_alloc(&pp, "ip", aid); 13727 if (rc != 0) 13728 goto drop; 13729 13730 /* Allocate the private structure */ 13731 rc = ip_priv_alloc((void **)&priv); 13732 if (rc != 0) { 13733 ipp_packet_free(pp); 13734 goto drop; 13735 } 13736 priv->proc = proc; 13737 priv->ill_index = ill_get_upper_ifindex(rill); 13738 13739 ipp_packet_set_private(pp, priv, ip_priv_free); 13740 ipp_packet_set_data(pp, mp); 13741 13742 /* Invoke the classifier */ 13743 rc = ipp_packet_process(&pp); 13744 if (pp != NULL) { 13745 mp = ipp_packet_get_data(pp); 13746 ipp_packet_free(pp); 13747 if (rc != 0) 13748 goto drop; 13749 return (mp); 13750 } else { 13751 /* No mp to trace in ip_drop_input/ip_drop_output */ 13752 mp = NULL; 13753 } 13754 drop: 13755 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13757 ip_drop_input("ip_process", mp, ill); 13758 } else { 13759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13760 ip_drop_output("ip_process", mp, ill); 13761 } 13762 freemsg(mp); 13763 return (NULL); 13764 } 13765 13766 /* 13767 * Propagate a multicast group membership operation (add/drop) on 13768 * all the interfaces crossed by the related multirt routes. 13769 * The call is considered successful if the operation succeeds 13770 * on at least one interface. 13771 * 13772 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13773 * multicast addresses with the ire argument being the first one. 13774 * We walk the bucket to find all the of those. 13775 * 13776 * Common to IPv4 and IPv6. 13777 */ 13778 static int 13779 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13780 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13781 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13782 mcast_record_t fmode, const in6_addr_t *v6src) 13783 { 13784 ire_t *ire_gw; 13785 irb_t *irb; 13786 int ifindex; 13787 int error = 0; 13788 int result; 13789 ip_stack_t *ipst = ire->ire_ipst; 13790 ipaddr_t group; 13791 boolean_t isv6; 13792 int match_flags; 13793 13794 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13795 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13796 isv6 = B_FALSE; 13797 } else { 13798 isv6 = B_TRUE; 13799 } 13800 13801 irb = ire->ire_bucket; 13802 ASSERT(irb != NULL); 13803 13804 result = 0; 13805 irb_refhold(irb); 13806 for (; ire != NULL; ire = ire->ire_next) { 13807 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13808 continue; 13809 13810 /* We handle -ifp routes by matching on the ill if set */ 13811 match_flags = MATCH_IRE_TYPE; 13812 if (ire->ire_ill != NULL) 13813 match_flags |= MATCH_IRE_ILL; 13814 13815 if (isv6) { 13816 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13817 continue; 13818 13819 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13820 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13821 match_flags, 0, ipst, NULL); 13822 } else { 13823 if (ire->ire_addr != group) 13824 continue; 13825 13826 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13827 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13828 match_flags, 0, ipst, NULL); 13829 } 13830 /* No interface route exists for the gateway; skip this ire. */ 13831 if (ire_gw == NULL) 13832 continue; 13833 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13834 ire_refrele(ire_gw); 13835 continue; 13836 } 13837 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13838 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13839 13840 /* 13841 * The operation is considered a success if 13842 * it succeeds at least once on any one interface. 13843 */ 13844 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13845 fmode, v6src); 13846 if (error == 0) 13847 result = CGTP_MCAST_SUCCESS; 13848 13849 ire_refrele(ire_gw); 13850 } 13851 irb_refrele(irb); 13852 /* 13853 * Consider the call as successful if we succeeded on at least 13854 * one interface. Otherwise, return the last encountered error. 13855 */ 13856 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13857 } 13858 13859 /* 13860 * Get the CGTP (multirouting) filtering status. 13861 * If 0, the CGTP hooks are transparent. 13862 */ 13863 /* ARGSUSED */ 13864 static int 13865 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 13866 { 13867 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 13868 13869 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 13870 return (0); 13871 } 13872 13873 /* 13874 * Set the CGTP (multirouting) filtering status. 13875 * If the status is changed from active to transparent 13876 * or from transparent to active, forward the new status 13877 * to the filtering module (if loaded). 13878 */ 13879 /* ARGSUSED */ 13880 static int 13881 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 13882 cred_t *ioc_cr) 13883 { 13884 long new_value; 13885 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 13886 ip_stack_t *ipst = CONNQ_TO_IPST(q); 13887 13888 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 13889 return (EPERM); 13890 13891 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 13892 new_value < 0 || new_value > 1) { 13893 return (EINVAL); 13894 } 13895 13896 if ((!*ip_cgtp_filter_value) && new_value) { 13897 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 13898 ipst->ips_ip_cgtp_filter_ops == NULL ? 13899 " (module not loaded)" : ""); 13900 } 13901 if (*ip_cgtp_filter_value && (!new_value)) { 13902 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 13903 ipst->ips_ip_cgtp_filter_ops == NULL ? 13904 " (module not loaded)" : ""); 13905 } 13906 13907 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13908 int res; 13909 netstackid_t stackid; 13910 13911 stackid = ipst->ips_netstack->netstack_stackid; 13912 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 13913 new_value); 13914 if (res) 13915 return (res); 13916 } 13917 13918 *ip_cgtp_filter_value = (boolean_t)new_value; 13919 13920 ill_set_inputfn_all(ipst); 13921 return (0); 13922 } 13923 13924 /* 13925 * Return the expected CGTP hooks version number. 13926 */ 13927 int 13928 ip_cgtp_filter_supported(void) 13929 { 13930 return (ip_cgtp_filter_rev); 13931 } 13932 13933 /* 13934 * CGTP hooks can be registered by invoking this function. 13935 * Checks that the version number matches. 13936 */ 13937 int 13938 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13939 { 13940 netstack_t *ns; 13941 ip_stack_t *ipst; 13942 13943 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13944 return (ENOTSUP); 13945 13946 ns = netstack_find_by_stackid(stackid); 13947 if (ns == NULL) 13948 return (EINVAL); 13949 ipst = ns->netstack_ip; 13950 ASSERT(ipst != NULL); 13951 13952 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13953 netstack_rele(ns); 13954 return (EALREADY); 13955 } 13956 13957 ipst->ips_ip_cgtp_filter_ops = ops; 13958 13959 ill_set_inputfn_all(ipst); 13960 13961 netstack_rele(ns); 13962 return (0); 13963 } 13964 13965 /* 13966 * CGTP hooks can be unregistered by invoking this function. 13967 * Returns ENXIO if there was no registration. 13968 * Returns EBUSY if the ndd variable has not been turned off. 13969 */ 13970 int 13971 ip_cgtp_filter_unregister(netstackid_t stackid) 13972 { 13973 netstack_t *ns; 13974 ip_stack_t *ipst; 13975 13976 ns = netstack_find_by_stackid(stackid); 13977 if (ns == NULL) 13978 return (EINVAL); 13979 ipst = ns->netstack_ip; 13980 ASSERT(ipst != NULL); 13981 13982 if (ipst->ips_ip_cgtp_filter) { 13983 netstack_rele(ns); 13984 return (EBUSY); 13985 } 13986 13987 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13988 netstack_rele(ns); 13989 return (ENXIO); 13990 } 13991 ipst->ips_ip_cgtp_filter_ops = NULL; 13992 13993 ill_set_inputfn_all(ipst); 13994 13995 netstack_rele(ns); 13996 return (0); 13997 } 13998 13999 /* 14000 * Check whether there is a CGTP filter registration. 14001 * Returns non-zero if there is a registration, otherwise returns zero. 14002 * Note: returns zero if bad stackid. 14003 */ 14004 int 14005 ip_cgtp_filter_is_registered(netstackid_t stackid) 14006 { 14007 netstack_t *ns; 14008 ip_stack_t *ipst; 14009 int ret; 14010 14011 ns = netstack_find_by_stackid(stackid); 14012 if (ns == NULL) 14013 return (0); 14014 ipst = ns->netstack_ip; 14015 ASSERT(ipst != NULL); 14016 14017 if (ipst->ips_ip_cgtp_filter_ops != NULL) 14018 ret = 1; 14019 else 14020 ret = 0; 14021 14022 netstack_rele(ns); 14023 return (ret); 14024 } 14025 14026 static int 14027 ip_squeue_switch(int val) 14028 { 14029 int rval; 14030 14031 switch (val) { 14032 case IP_SQUEUE_ENTER_NODRAIN: 14033 rval = SQ_NODRAIN; 14034 break; 14035 case IP_SQUEUE_ENTER: 14036 rval = SQ_PROCESS; 14037 break; 14038 case IP_SQUEUE_FILL: 14039 default: 14040 rval = SQ_FILL; 14041 break; 14042 } 14043 return (rval); 14044 } 14045 14046 /* ARGSUSED */ 14047 static int 14048 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 14049 caddr_t addr, cred_t *cr) 14050 { 14051 int *v = (int *)addr; 14052 long new_value; 14053 14054 if (secpolicy_net_config(cr, B_FALSE) != 0) 14055 return (EPERM); 14056 14057 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 14058 return (EINVAL); 14059 14060 ip_squeue_flag = ip_squeue_switch(new_value); 14061 *v = new_value; 14062 return (0); 14063 } 14064 14065 /* 14066 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 14067 * ip_debug. 14068 */ 14069 /* ARGSUSED */ 14070 static int 14071 ip_int_set(queue_t *q, mblk_t *mp, char *value, 14072 caddr_t addr, cred_t *cr) 14073 { 14074 int *v = (int *)addr; 14075 long new_value; 14076 14077 if (secpolicy_net_config(cr, B_FALSE) != 0) 14078 return (EPERM); 14079 14080 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 14081 return (EINVAL); 14082 14083 *v = new_value; 14084 return (0); 14085 } 14086 14087 static void * 14088 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 14089 { 14090 kstat_t *ksp; 14091 14092 ip_stat_t template = { 14093 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 14094 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 14095 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 14096 { "ip_db_ref", KSTAT_DATA_UINT64 }, 14097 { "ip_notaligned", KSTAT_DATA_UINT64 }, 14098 { "ip_multimblk", KSTAT_DATA_UINT64 }, 14099 { "ip_opt", KSTAT_DATA_UINT64 }, 14100 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 14101 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 14102 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 14103 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 14104 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 14105 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 14106 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 14107 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 14108 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 14109 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14110 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 14111 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14112 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14113 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14114 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14115 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14116 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14117 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14118 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 14119 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 14120 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 14121 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 14122 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 14123 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 14124 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 14125 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 14126 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 14127 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 14128 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 14129 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 14130 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 14131 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 14132 }; 14133 14134 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 14135 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 14136 KSTAT_FLAG_VIRTUAL, stackid); 14137 14138 if (ksp == NULL) 14139 return (NULL); 14140 14141 bcopy(&template, ip_statisticsp, sizeof (template)); 14142 ksp->ks_data = (void *)ip_statisticsp; 14143 ksp->ks_private = (void *)(uintptr_t)stackid; 14144 14145 kstat_install(ksp); 14146 return (ksp); 14147 } 14148 14149 static void 14150 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14151 { 14152 if (ksp != NULL) { 14153 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14154 kstat_delete_netstack(ksp, stackid); 14155 } 14156 } 14157 14158 static void * 14159 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14160 { 14161 kstat_t *ksp; 14162 14163 ip_named_kstat_t template = { 14164 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14165 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14166 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14167 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14168 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14169 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14170 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14171 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14172 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14173 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14174 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14175 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14176 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14177 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14178 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14179 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14180 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14181 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14182 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14183 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14184 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14185 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14186 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14187 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14188 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14189 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14190 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14191 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14192 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14193 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14194 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14195 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14196 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14197 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14198 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14199 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14200 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14201 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14202 }; 14203 14204 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14205 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14206 if (ksp == NULL || ksp->ks_data == NULL) 14207 return (NULL); 14208 14209 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14210 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14211 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 14212 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14213 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14214 14215 template.netToMediaEntrySize.value.i32 = 14216 sizeof (mib2_ipNetToMediaEntry_t); 14217 14218 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14219 14220 bcopy(&template, ksp->ks_data, sizeof (template)); 14221 ksp->ks_update = ip_kstat_update; 14222 ksp->ks_private = (void *)(uintptr_t)stackid; 14223 14224 kstat_install(ksp); 14225 return (ksp); 14226 } 14227 14228 static void 14229 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14230 { 14231 if (ksp != NULL) { 14232 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14233 kstat_delete_netstack(ksp, stackid); 14234 } 14235 } 14236 14237 static int 14238 ip_kstat_update(kstat_t *kp, int rw) 14239 { 14240 ip_named_kstat_t *ipkp; 14241 mib2_ipIfStatsEntry_t ipmib; 14242 ill_walk_context_t ctx; 14243 ill_t *ill; 14244 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14245 netstack_t *ns; 14246 ip_stack_t *ipst; 14247 14248 if (kp == NULL || kp->ks_data == NULL) 14249 return (EIO); 14250 14251 if (rw == KSTAT_WRITE) 14252 return (EACCES); 14253 14254 ns = netstack_find_by_stackid(stackid); 14255 if (ns == NULL) 14256 return (-1); 14257 ipst = ns->netstack_ip; 14258 if (ipst == NULL) { 14259 netstack_rele(ns); 14260 return (-1); 14261 } 14262 ipkp = (ip_named_kstat_t *)kp->ks_data; 14263 14264 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14265 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14266 ill = ILL_START_WALK_V4(&ctx, ipst); 14267 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14268 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14269 rw_exit(&ipst->ips_ill_g_lock); 14270 14271 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14272 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14273 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14274 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14275 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14276 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14277 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14278 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14279 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14280 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14281 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14282 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14283 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 14284 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14285 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14286 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14287 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14288 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14289 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14290 14291 ipkp->routingDiscards.value.ui32 = 0; 14292 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14293 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14294 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14295 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14296 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14297 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14298 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14299 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14300 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14301 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14302 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14303 14304 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14305 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14306 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14307 14308 netstack_rele(ns); 14309 14310 return (0); 14311 } 14312 14313 static void * 14314 icmp_kstat_init(netstackid_t stackid) 14315 { 14316 kstat_t *ksp; 14317 14318 icmp_named_kstat_t template = { 14319 { "inMsgs", KSTAT_DATA_UINT32 }, 14320 { "inErrors", KSTAT_DATA_UINT32 }, 14321 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14322 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14323 { "inParmProbs", KSTAT_DATA_UINT32 }, 14324 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14325 { "inRedirects", KSTAT_DATA_UINT32 }, 14326 { "inEchos", KSTAT_DATA_UINT32 }, 14327 { "inEchoReps", KSTAT_DATA_UINT32 }, 14328 { "inTimestamps", KSTAT_DATA_UINT32 }, 14329 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14330 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14331 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14332 { "outMsgs", KSTAT_DATA_UINT32 }, 14333 { "outErrors", KSTAT_DATA_UINT32 }, 14334 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14335 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14336 { "outParmProbs", KSTAT_DATA_UINT32 }, 14337 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14338 { "outRedirects", KSTAT_DATA_UINT32 }, 14339 { "outEchos", KSTAT_DATA_UINT32 }, 14340 { "outEchoReps", KSTAT_DATA_UINT32 }, 14341 { "outTimestamps", KSTAT_DATA_UINT32 }, 14342 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14343 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14344 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14345 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14346 { "inUnknowns", KSTAT_DATA_UINT32 }, 14347 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14348 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14349 { "outDrops", KSTAT_DATA_UINT32 }, 14350 { "inOverFlows", KSTAT_DATA_UINT32 }, 14351 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14352 }; 14353 14354 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14355 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14356 if (ksp == NULL || ksp->ks_data == NULL) 14357 return (NULL); 14358 14359 bcopy(&template, ksp->ks_data, sizeof (template)); 14360 14361 ksp->ks_update = icmp_kstat_update; 14362 ksp->ks_private = (void *)(uintptr_t)stackid; 14363 14364 kstat_install(ksp); 14365 return (ksp); 14366 } 14367 14368 static void 14369 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14370 { 14371 if (ksp != NULL) { 14372 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14373 kstat_delete_netstack(ksp, stackid); 14374 } 14375 } 14376 14377 static int 14378 icmp_kstat_update(kstat_t *kp, int rw) 14379 { 14380 icmp_named_kstat_t *icmpkp; 14381 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14382 netstack_t *ns; 14383 ip_stack_t *ipst; 14384 14385 if ((kp == NULL) || (kp->ks_data == NULL)) 14386 return (EIO); 14387 14388 if (rw == KSTAT_WRITE) 14389 return (EACCES); 14390 14391 ns = netstack_find_by_stackid(stackid); 14392 if (ns == NULL) 14393 return (-1); 14394 ipst = ns->netstack_ip; 14395 if (ipst == NULL) { 14396 netstack_rele(ns); 14397 return (-1); 14398 } 14399 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14400 14401 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14402 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14403 icmpkp->inDestUnreachs.value.ui32 = 14404 ipst->ips_icmp_mib.icmpInDestUnreachs; 14405 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14406 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14407 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14408 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14409 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14410 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14411 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14412 icmpkp->inTimestampReps.value.ui32 = 14413 ipst->ips_icmp_mib.icmpInTimestampReps; 14414 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14415 icmpkp->inAddrMaskReps.value.ui32 = 14416 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14417 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14418 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14419 icmpkp->outDestUnreachs.value.ui32 = 14420 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14421 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14422 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14423 icmpkp->outSrcQuenchs.value.ui32 = 14424 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14425 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14426 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14427 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14428 icmpkp->outTimestamps.value.ui32 = 14429 ipst->ips_icmp_mib.icmpOutTimestamps; 14430 icmpkp->outTimestampReps.value.ui32 = 14431 ipst->ips_icmp_mib.icmpOutTimestampReps; 14432 icmpkp->outAddrMasks.value.ui32 = 14433 ipst->ips_icmp_mib.icmpOutAddrMasks; 14434 icmpkp->outAddrMaskReps.value.ui32 = 14435 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14436 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14437 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14438 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14439 icmpkp->outFragNeeded.value.ui32 = 14440 ipst->ips_icmp_mib.icmpOutFragNeeded; 14441 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14442 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14443 icmpkp->inBadRedirects.value.ui32 = 14444 ipst->ips_icmp_mib.icmpInBadRedirects; 14445 14446 netstack_rele(ns); 14447 return (0); 14448 } 14449 14450 /* 14451 * This is the fanout function for raw socket opened for SCTP. Note 14452 * that it is called after SCTP checks that there is no socket which 14453 * wants a packet. Then before SCTP handles this out of the blue packet, 14454 * this function is called to see if there is any raw socket for SCTP. 14455 * If there is and it is bound to the correct address, the packet will 14456 * be sent to that socket. Note that only one raw socket can be bound to 14457 * a port. This is assured in ipcl_sctp_hash_insert(); 14458 */ 14459 void 14460 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14461 ip_recv_attr_t *ira) 14462 { 14463 conn_t *connp; 14464 queue_t *rq; 14465 boolean_t secure; 14466 ill_t *ill = ira->ira_ill; 14467 ip_stack_t *ipst = ill->ill_ipst; 14468 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14469 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14470 iaflags_t iraflags = ira->ira_flags; 14471 ill_t *rill = ira->ira_rill; 14472 14473 secure = iraflags & IRAF_IPSEC_SECURE; 14474 14475 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14476 ira, ipst); 14477 if (connp == NULL) { 14478 /* 14479 * Although raw sctp is not summed, OOB chunks must be. 14480 * Drop the packet here if the sctp checksum failed. 14481 */ 14482 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14483 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14484 freemsg(mp); 14485 return; 14486 } 14487 ira->ira_ill = ira->ira_rill = NULL; 14488 sctp_ootb_input(mp, ira, ipst); 14489 ira->ira_ill = ill; 14490 ira->ira_rill = rill; 14491 return; 14492 } 14493 rq = connp->conn_rq; 14494 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14495 CONN_DEC_REF(connp); 14496 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14497 freemsg(mp); 14498 return; 14499 } 14500 if (((iraflags & IRAF_IS_IPV4) ? 14501 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14502 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14503 secure) { 14504 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14505 ip6h, ira); 14506 if (mp == NULL) { 14507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14508 /* Note that mp is NULL */ 14509 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14510 CONN_DEC_REF(connp); 14511 return; 14512 } 14513 } 14514 14515 if (iraflags & IRAF_ICMP_ERROR) { 14516 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14517 } else { 14518 ill_t *rill = ira->ira_rill; 14519 14520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14521 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14522 ira->ira_ill = ira->ira_rill = NULL; 14523 (connp->conn_recv)(connp, mp, NULL, ira); 14524 ira->ira_ill = ill; 14525 ira->ira_rill = rill; 14526 } 14527 CONN_DEC_REF(connp); 14528 } 14529 14530 /* 14531 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14532 * header before the ip payload. 14533 */ 14534 static void 14535 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14536 { 14537 int len = (mp->b_wptr - mp->b_rptr); 14538 mblk_t *ip_mp; 14539 14540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14541 if (is_fp_mp || len != fp_mp_len) { 14542 if (len > fp_mp_len) { 14543 /* 14544 * fastpath header and ip header in the first mblk 14545 */ 14546 mp->b_rptr += fp_mp_len; 14547 } else { 14548 /* 14549 * ip_xmit_attach_llhdr had to prepend an mblk to 14550 * attach the fastpath header before ip header. 14551 */ 14552 ip_mp = mp->b_cont; 14553 freeb(mp); 14554 mp = ip_mp; 14555 mp->b_rptr += (fp_mp_len - len); 14556 } 14557 } else { 14558 ip_mp = mp->b_cont; 14559 freeb(mp); 14560 mp = ip_mp; 14561 } 14562 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14563 freemsg(mp); 14564 } 14565 14566 /* 14567 * Normal post fragmentation function. 14568 * 14569 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14570 * using the same state machine. 14571 * 14572 * We return an error on failure. In particular we return EWOULDBLOCK 14573 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14574 * (currently by canputnext failure resulting in backenabling from GLD.) 14575 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14576 * indication that they can flow control until ip_wsrv() tells then to restart. 14577 * 14578 * If the nce passed by caller is incomplete, this function 14579 * queues the packet and if necessary, sends ARP request and bails. 14580 * If the Neighbor Cache passed is fully resolved, we simply prepend 14581 * the link-layer header to the packet, do ipsec hw acceleration 14582 * work if necessary, and send the packet out on the wire. 14583 */ 14584 /* ARGSUSED6 */ 14585 int 14586 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14587 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14588 { 14589 queue_t *wq; 14590 ill_t *ill = nce->nce_ill; 14591 ip_stack_t *ipst = ill->ill_ipst; 14592 uint64_t delta; 14593 boolean_t isv6 = ill->ill_isv6; 14594 boolean_t fp_mp; 14595 ncec_t *ncec = nce->nce_common; 14596 14597 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14598 14599 ASSERT(mp != NULL); 14600 ASSERT(mp->b_datap->db_type == M_DATA); 14601 ASSERT(pkt_len == msgdsize(mp)); 14602 14603 /* 14604 * If we have already been here and are coming back after ARP/ND. 14605 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14606 * in that case since they have seen the packet when it came here 14607 * the first time. 14608 */ 14609 if (ixaflags & IXAF_NO_TRACE) 14610 goto sendit; 14611 14612 if (ixaflags & IXAF_IS_IPV4) { 14613 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14614 14615 ASSERT(!isv6); 14616 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14617 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14618 !(ixaflags & IXAF_NO_PFHOOK)) { 14619 int error; 14620 14621 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14622 ipst->ips_ipv4firewall_physical_out, 14623 NULL, ill, ipha, mp, mp, 0, ipst, error); 14624 DTRACE_PROBE1(ip4__physical__out__end, 14625 mblk_t *, mp); 14626 if (mp == NULL) 14627 return (error); 14628 14629 /* The length could have changed */ 14630 pkt_len = msgdsize(mp); 14631 } 14632 if (ipst->ips_ip4_observe.he_interested) { 14633 /* 14634 * Note that for TX the zoneid is the sending 14635 * zone, whether or not MLP is in play. 14636 * Since the szone argument is the IP zoneid (i.e., 14637 * zero for exclusive-IP zones) and ipobs wants 14638 * the system zoneid, we map it here. 14639 */ 14640 szone = IP_REAL_ZONEID(szone, ipst); 14641 14642 /* 14643 * On the outbound path the destination zone will be 14644 * unknown as we're sending this packet out on the 14645 * wire. 14646 */ 14647 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14648 ill, ipst); 14649 } 14650 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14651 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14652 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14653 } else { 14654 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14655 14656 ASSERT(isv6); 14657 ASSERT(pkt_len == 14658 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14659 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14660 !(ixaflags & IXAF_NO_PFHOOK)) { 14661 int error; 14662 14663 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14664 ipst->ips_ipv6firewall_physical_out, 14665 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14666 DTRACE_PROBE1(ip6__physical__out__end, 14667 mblk_t *, mp); 14668 if (mp == NULL) 14669 return (error); 14670 14671 /* The length could have changed */ 14672 pkt_len = msgdsize(mp); 14673 } 14674 if (ipst->ips_ip6_observe.he_interested) { 14675 /* See above */ 14676 szone = IP_REAL_ZONEID(szone, ipst); 14677 14678 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14679 ill, ipst); 14680 } 14681 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14682 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14683 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14684 } 14685 14686 sendit: 14687 /* 14688 * We check the state without a lock because the state can never 14689 * move "backwards" to initial or incomplete. 14690 */ 14691 switch (ncec->ncec_state) { 14692 case ND_REACHABLE: 14693 case ND_STALE: 14694 case ND_DELAY: 14695 case ND_PROBE: 14696 mp = ip_xmit_attach_llhdr(mp, nce); 14697 if (mp == NULL) { 14698 /* 14699 * ip_xmit_attach_llhdr has increased 14700 * ipIfStatsOutDiscards and called ip_drop_output() 14701 */ 14702 return (ENOBUFS); 14703 } 14704 /* 14705 * check if nce_fastpath completed and we tagged on a 14706 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14707 */ 14708 fp_mp = (mp->b_datap->db_type == M_DATA); 14709 14710 if (fp_mp && 14711 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14712 ill_dld_direct_t *idd; 14713 14714 idd = &ill->ill_dld_capab->idc_direct; 14715 /* 14716 * Send the packet directly to DLD, where it 14717 * may be queued depending on the availability 14718 * of transmit resources at the media layer. 14719 * Return value should be taken into 14720 * account and flow control the TCP. 14721 */ 14722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14723 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14724 pkt_len); 14725 14726 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14727 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14728 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14729 } else { 14730 uintptr_t cookie; 14731 14732 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14733 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14734 if (ixacookie != NULL) 14735 *ixacookie = cookie; 14736 return (EWOULDBLOCK); 14737 } 14738 } 14739 } else { 14740 wq = ill->ill_wq; 14741 14742 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14743 !canputnext(wq)) { 14744 if (ixacookie != NULL) 14745 *ixacookie = 0; 14746 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14747 nce->nce_fp_mp != NULL ? 14748 MBLKL(nce->nce_fp_mp) : 0); 14749 return (EWOULDBLOCK); 14750 } 14751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14752 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14753 pkt_len); 14754 putnext(wq, mp); 14755 } 14756 14757 /* 14758 * The rest of this function implements Neighbor Unreachability 14759 * detection. Determine if the ncec is eligible for NUD. 14760 */ 14761 if (ncec->ncec_flags & NCE_F_NONUD) 14762 return (0); 14763 14764 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14765 14766 /* 14767 * Check for upper layer advice 14768 */ 14769 if (ixaflags & IXAF_REACH_CONF) { 14770 timeout_id_t tid; 14771 14772 /* 14773 * It should be o.k. to check the state without 14774 * a lock here, at most we lose an advice. 14775 */ 14776 ncec->ncec_last = TICK_TO_MSEC(lbolt64); 14777 if (ncec->ncec_state != ND_REACHABLE) { 14778 mutex_enter(&ncec->ncec_lock); 14779 ncec->ncec_state = ND_REACHABLE; 14780 tid = ncec->ncec_timeout_id; 14781 ncec->ncec_timeout_id = 0; 14782 mutex_exit(&ncec->ncec_lock); 14783 (void) untimeout(tid); 14784 if (ip_debug > 2) { 14785 /* ip1dbg */ 14786 pr_addr_dbg("ip_xmit: state" 14787 " for %s changed to" 14788 " REACHABLE\n", AF_INET6, 14789 &ncec->ncec_addr); 14790 } 14791 } 14792 return (0); 14793 } 14794 14795 delta = TICK_TO_MSEC(lbolt64) - ncec->ncec_last; 14796 ip1dbg(("ip_xmit: delta = %" PRId64 14797 " ill_reachable_time = %d \n", delta, 14798 ill->ill_reachable_time)); 14799 if (delta > (uint64_t)ill->ill_reachable_time) { 14800 mutex_enter(&ncec->ncec_lock); 14801 switch (ncec->ncec_state) { 14802 case ND_REACHABLE: 14803 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14804 /* FALLTHROUGH */ 14805 case ND_STALE: 14806 /* 14807 * ND_REACHABLE is identical to 14808 * ND_STALE in this specific case. If 14809 * reachable time has expired for this 14810 * neighbor (delta is greater than 14811 * reachable time), conceptually, the 14812 * neighbor cache is no longer in 14813 * REACHABLE state, but already in 14814 * STALE state. So the correct 14815 * transition here is to ND_DELAY. 14816 */ 14817 ncec->ncec_state = ND_DELAY; 14818 mutex_exit(&ncec->ncec_lock); 14819 nce_restart_timer(ncec, 14820 ipst->ips_delay_first_probe_time); 14821 if (ip_debug > 3) { 14822 /* ip2dbg */ 14823 pr_addr_dbg("ip_xmit: state" 14824 " for %s changed to" 14825 " DELAY\n", AF_INET6, 14826 &ncec->ncec_addr); 14827 } 14828 break; 14829 case ND_DELAY: 14830 case ND_PROBE: 14831 mutex_exit(&ncec->ncec_lock); 14832 /* Timers have already started */ 14833 break; 14834 case ND_UNREACHABLE: 14835 /* 14836 * nce_timer has detected that this ncec 14837 * is unreachable and initiated deleting 14838 * this ncec. 14839 * This is a harmless race where we found the 14840 * ncec before it was deleted and have 14841 * just sent out a packet using this 14842 * unreachable ncec. 14843 */ 14844 mutex_exit(&ncec->ncec_lock); 14845 break; 14846 default: 14847 ASSERT(0); 14848 mutex_exit(&ncec->ncec_lock); 14849 } 14850 } 14851 return (0); 14852 14853 case ND_INCOMPLETE: 14854 /* 14855 * the state could have changed since we didn't hold the lock. 14856 * Re-verify state under lock. 14857 */ 14858 mutex_enter(&ncec->ncec_lock); 14859 if (NCE_ISREACHABLE(ncec)) { 14860 mutex_exit(&ncec->ncec_lock); 14861 goto sendit; 14862 } 14863 /* queue the packet */ 14864 nce_queue_mp(ncec, mp, ipmp_packet_is_probe(mp, nce->nce_ill)); 14865 mutex_exit(&ncec->ncec_lock); 14866 DTRACE_PROBE2(ip__xmit__incomplete, 14867 (ncec_t *), ncec, (mblk_t *), mp); 14868 return (0); 14869 14870 case ND_INITIAL: 14871 /* 14872 * State could have changed since we didn't hold the lock, so 14873 * re-verify state. 14874 */ 14875 mutex_enter(&ncec->ncec_lock); 14876 if (NCE_ISREACHABLE(ncec)) { 14877 mutex_exit(&ncec->ncec_lock); 14878 goto sendit; 14879 } 14880 nce_queue_mp(ncec, mp, ipmp_packet_is_probe(mp, nce->nce_ill)); 14881 if (ncec->ncec_state == ND_INITIAL) { 14882 ncec->ncec_state = ND_INCOMPLETE; 14883 mutex_exit(&ncec->ncec_lock); 14884 /* 14885 * figure out the source we want to use 14886 * and resolve it. 14887 */ 14888 ip_ndp_resolve(ncec); 14889 } else { 14890 mutex_exit(&ncec->ncec_lock); 14891 } 14892 return (0); 14893 14894 case ND_UNREACHABLE: 14895 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14896 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14897 mp, ill); 14898 freemsg(mp); 14899 return (0); 14900 14901 default: 14902 ASSERT(0); 14903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14904 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14905 mp, ill); 14906 freemsg(mp); 14907 return (ENETUNREACH); 14908 } 14909 } 14910 14911 /* 14912 * Return B_TRUE if the buffers differ in length or content. 14913 * This is used for comparing extension header buffers. 14914 * Note that an extension header would be declared different 14915 * even if all that changed was the next header value in that header i.e. 14916 * what really changed is the next extension header. 14917 */ 14918 boolean_t 14919 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14920 uint_t blen) 14921 { 14922 if (!b_valid) 14923 blen = 0; 14924 14925 if (alen != blen) 14926 return (B_TRUE); 14927 if (alen == 0) 14928 return (B_FALSE); /* Both zero length */ 14929 return (bcmp(abuf, bbuf, alen)); 14930 } 14931 14932 /* 14933 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14934 * Return B_FALSE if memory allocation fails - don't change any state! 14935 */ 14936 boolean_t 14937 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14938 const void *src, uint_t srclen) 14939 { 14940 void *dst; 14941 14942 if (!src_valid) 14943 srclen = 0; 14944 14945 ASSERT(*dstlenp == 0); 14946 if (src != NULL && srclen != 0) { 14947 dst = mi_alloc(srclen, BPRI_MED); 14948 if (dst == NULL) 14949 return (B_FALSE); 14950 } else { 14951 dst = NULL; 14952 } 14953 if (*dstp != NULL) 14954 mi_free(*dstp); 14955 *dstp = dst; 14956 *dstlenp = dst == NULL ? 0 : srclen; 14957 return (B_TRUE); 14958 } 14959 14960 /* 14961 * Replace what is in *dst, *dstlen with the source. 14962 * Assumes ip_allocbuf has already been called. 14963 */ 14964 void 14965 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14966 const void *src, uint_t srclen) 14967 { 14968 if (!src_valid) 14969 srclen = 0; 14970 14971 ASSERT(*dstlenp == srclen); 14972 if (src != NULL && srclen != 0) 14973 bcopy(src, *dstp, srclen); 14974 } 14975 14976 /* 14977 * Free the storage pointed to by the members of an ip_pkt_t. 14978 */ 14979 void 14980 ip_pkt_free(ip_pkt_t *ipp) 14981 { 14982 uint_t fields = ipp->ipp_fields; 14983 14984 if (fields & IPPF_HOPOPTS) { 14985 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14986 ipp->ipp_hopopts = NULL; 14987 ipp->ipp_hopoptslen = 0; 14988 } 14989 if (fields & IPPF_RTHDRDSTOPTS) { 14990 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14991 ipp->ipp_rthdrdstopts = NULL; 14992 ipp->ipp_rthdrdstoptslen = 0; 14993 } 14994 if (fields & IPPF_DSTOPTS) { 14995 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14996 ipp->ipp_dstopts = NULL; 14997 ipp->ipp_dstoptslen = 0; 14998 } 14999 if (fields & IPPF_RTHDR) { 15000 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15001 ipp->ipp_rthdr = NULL; 15002 ipp->ipp_rthdrlen = 0; 15003 } 15004 if (fields & IPPF_IPV4_OPTIONS) { 15005 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 15006 ipp->ipp_ipv4_options = NULL; 15007 ipp->ipp_ipv4_options_len = 0; 15008 } 15009 if (fields & IPPF_LABEL_V4) { 15010 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 15011 ipp->ipp_label_v4 = NULL; 15012 ipp->ipp_label_len_v4 = 0; 15013 } 15014 if (fields & IPPF_LABEL_V6) { 15015 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 15016 ipp->ipp_label_v6 = NULL; 15017 ipp->ipp_label_len_v6 = 0; 15018 } 15019 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15020 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 15021 } 15022 15023 /* 15024 * Copy from src to dst and allocate as needed. 15025 * Returns zero or ENOMEM. 15026 * 15027 * The caller must initialize dst to zero. 15028 */ 15029 int 15030 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 15031 { 15032 uint_t fields = src->ipp_fields; 15033 15034 /* Start with fields that don't require memory allocation */ 15035 dst->ipp_fields = fields & 15036 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 15037 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 15038 15039 dst->ipp_addr = src->ipp_addr; 15040 dst->ipp_unicast_hops = src->ipp_unicast_hops; 15041 dst->ipp_hoplimit = src->ipp_hoplimit; 15042 dst->ipp_tclass = src->ipp_tclass; 15043 dst->ipp_type_of_service = src->ipp_type_of_service; 15044 15045 if (fields & IPPF_HOPOPTS) { 15046 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 15047 if (dst->ipp_hopopts == NULL) { 15048 ip_pkt_free(dst); 15049 return (ENOMEM); 15050 } 15051 dst->ipp_fields |= IPPF_HOPOPTS; 15052 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 15053 src->ipp_hopoptslen); 15054 dst->ipp_hopoptslen = src->ipp_hopoptslen; 15055 } 15056 if (fields & IPPF_RTHDRDSTOPTS) { 15057 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 15058 kmflag); 15059 if (dst->ipp_rthdrdstopts == NULL) { 15060 ip_pkt_free(dst); 15061 return (ENOMEM); 15062 } 15063 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 15064 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 15065 src->ipp_rthdrdstoptslen); 15066 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 15067 } 15068 if (fields & IPPF_DSTOPTS) { 15069 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 15070 if (dst->ipp_dstopts == NULL) { 15071 ip_pkt_free(dst); 15072 return (ENOMEM); 15073 } 15074 dst->ipp_fields |= IPPF_DSTOPTS; 15075 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 15076 src->ipp_dstoptslen); 15077 dst->ipp_dstoptslen = src->ipp_dstoptslen; 15078 } 15079 if (fields & IPPF_RTHDR) { 15080 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 15081 if (dst->ipp_rthdr == NULL) { 15082 ip_pkt_free(dst); 15083 return (ENOMEM); 15084 } 15085 dst->ipp_fields |= IPPF_RTHDR; 15086 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 15087 src->ipp_rthdrlen); 15088 dst->ipp_rthdrlen = src->ipp_rthdrlen; 15089 } 15090 if (fields & IPPF_IPV4_OPTIONS) { 15091 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 15092 kmflag); 15093 if (dst->ipp_ipv4_options == NULL) { 15094 ip_pkt_free(dst); 15095 return (ENOMEM); 15096 } 15097 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 15098 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 15099 src->ipp_ipv4_options_len); 15100 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 15101 } 15102 if (fields & IPPF_LABEL_V4) { 15103 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 15104 if (dst->ipp_label_v4 == NULL) { 15105 ip_pkt_free(dst); 15106 return (ENOMEM); 15107 } 15108 dst->ipp_fields |= IPPF_LABEL_V4; 15109 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 15110 src->ipp_label_len_v4); 15111 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 15112 } 15113 if (fields & IPPF_LABEL_V6) { 15114 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 15115 if (dst->ipp_label_v6 == NULL) { 15116 ip_pkt_free(dst); 15117 return (ENOMEM); 15118 } 15119 dst->ipp_fields |= IPPF_LABEL_V6; 15120 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 15121 src->ipp_label_len_v6); 15122 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 15123 } 15124 if (fields & IPPF_FRAGHDR) { 15125 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 15126 if (dst->ipp_fraghdr == NULL) { 15127 ip_pkt_free(dst); 15128 return (ENOMEM); 15129 } 15130 dst->ipp_fields |= IPPF_FRAGHDR; 15131 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 15132 src->ipp_fraghdrlen); 15133 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 15134 } 15135 return (0); 15136 } 15137 15138 /* 15139 * Returns INADDR_ANY if no source route 15140 */ 15141 ipaddr_t 15142 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15143 { 15144 ipaddr_t nexthop = INADDR_ANY; 15145 ipoptp_t opts; 15146 uchar_t *opt; 15147 uint8_t optval; 15148 uint8_t optlen; 15149 uint32_t totallen; 15150 15151 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15152 return (INADDR_ANY); 15153 15154 totallen = ipp->ipp_ipv4_options_len; 15155 if (totallen & 0x3) 15156 return (INADDR_ANY); 15157 15158 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15159 optval != IPOPT_EOL; 15160 optval = ipoptp_next(&opts)) { 15161 opt = opts.ipoptp_cur; 15162 switch (optval) { 15163 uint8_t off; 15164 case IPOPT_SSRR: 15165 case IPOPT_LSRR: 15166 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15167 break; 15168 } 15169 optlen = opts.ipoptp_len; 15170 off = opt[IPOPT_OFFSET]; 15171 off--; 15172 if (optlen < IP_ADDR_LEN || 15173 off > optlen - IP_ADDR_LEN) { 15174 /* End of source route */ 15175 break; 15176 } 15177 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15178 if (nexthop == htonl(INADDR_LOOPBACK)) { 15179 /* Ignore */ 15180 nexthop = INADDR_ANY; 15181 break; 15182 } 15183 break; 15184 } 15185 } 15186 return (nexthop); 15187 } 15188 15189 /* 15190 * Reverse a source route. 15191 */ 15192 void 15193 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15194 { 15195 ipaddr_t tmp; 15196 ipoptp_t opts; 15197 uchar_t *opt; 15198 uint8_t optval; 15199 uint32_t totallen; 15200 15201 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15202 return; 15203 15204 totallen = ipp->ipp_ipv4_options_len; 15205 if (totallen & 0x3) 15206 return; 15207 15208 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15209 optval != IPOPT_EOL; 15210 optval = ipoptp_next(&opts)) { 15211 uint8_t off1, off2; 15212 15213 opt = opts.ipoptp_cur; 15214 switch (optval) { 15215 case IPOPT_SSRR: 15216 case IPOPT_LSRR: 15217 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15218 break; 15219 } 15220 off1 = IPOPT_MINOFF_SR - 1; 15221 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15222 while (off2 > off1) { 15223 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15224 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15225 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15226 off2 -= IP_ADDR_LEN; 15227 off1 += IP_ADDR_LEN; 15228 } 15229 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15230 break; 15231 } 15232 } 15233 } 15234 15235 /* 15236 * Returns NULL if no routing header 15237 */ 15238 in6_addr_t * 15239 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15240 { 15241 in6_addr_t *nexthop = NULL; 15242 ip6_rthdr0_t *rthdr; 15243 15244 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15245 return (NULL); 15246 15247 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15248 if (rthdr->ip6r0_segleft == 0) 15249 return (NULL); 15250 15251 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15252 return (nexthop); 15253 } 15254 15255 zoneid_t 15256 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15257 zoneid_t lookup_zoneid) 15258 { 15259 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15260 ire_t *ire; 15261 int ire_flags = MATCH_IRE_TYPE; 15262 zoneid_t zoneid = ALL_ZONES; 15263 15264 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15265 return (ALL_ZONES); 15266 15267 if (lookup_zoneid != ALL_ZONES) 15268 ire_flags |= MATCH_IRE_ZONEONLY; 15269 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15270 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15271 if (ire != NULL) { 15272 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15273 ire_refrele(ire); 15274 } 15275 return (zoneid); 15276 } 15277 15278 zoneid_t 15279 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15280 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15281 { 15282 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15283 ire_t *ire; 15284 int ire_flags = MATCH_IRE_TYPE; 15285 zoneid_t zoneid = ALL_ZONES; 15286 15287 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15288 return (ALL_ZONES); 15289 15290 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15291 ire_flags |= MATCH_IRE_ILL; 15292 15293 if (lookup_zoneid != ALL_ZONES) 15294 ire_flags |= MATCH_IRE_ZONEONLY; 15295 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15296 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15297 if (ire != NULL) { 15298 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15299 ire_refrele(ire); 15300 } 15301 return (zoneid); 15302 } 15303 15304 /* 15305 * IP obserability hook support functions. 15306 */ 15307 static void 15308 ipobs_init(ip_stack_t *ipst) 15309 { 15310 netid_t id; 15311 15312 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15313 15314 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15315 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15316 15317 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15318 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15319 } 15320 15321 static void 15322 ipobs_fini(ip_stack_t *ipst) 15323 { 15324 15325 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15326 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15327 } 15328 15329 /* 15330 * hook_pkt_observe_t is composed in network byte order so that the 15331 * entire mblk_t chain handed into hook_run can be used as-is. 15332 * The caveat is that use of the fields, such as the zone fields, 15333 * requires conversion into host byte order first. 15334 */ 15335 void 15336 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15337 const ill_t *ill, ip_stack_t *ipst) 15338 { 15339 hook_pkt_observe_t *hdr; 15340 uint64_t grifindex; 15341 mblk_t *imp; 15342 15343 imp = allocb(sizeof (*hdr), BPRI_HI); 15344 if (imp == NULL) 15345 return; 15346 15347 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15348 /* 15349 * b_wptr is set to make the apparent size of the data in the mblk_t 15350 * to exclude the pointers at the end of hook_pkt_observer_t. 15351 */ 15352 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15353 imp->b_cont = mp; 15354 15355 ASSERT(DB_TYPE(mp) == M_DATA); 15356 15357 if (IS_UNDER_IPMP(ill)) 15358 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15359 else 15360 grifindex = 0; 15361 15362 hdr->hpo_version = 1; 15363 hdr->hpo_htype = htype; 15364 hdr->hpo_pktlen = htons((ushort_t)msgdsize(mp)); 15365 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15366 hdr->hpo_grifindex = htonl(grifindex); 15367 hdr->hpo_zsrc = htonl(zsrc); 15368 hdr->hpo_zdst = htonl(zdst); 15369 hdr->hpo_pkt = imp; 15370 hdr->hpo_ctx = ipst->ips_netstack; 15371 15372 if (ill->ill_isv6) { 15373 hdr->hpo_family = AF_INET6; 15374 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15375 ipst->ips_ipv6observing, (hook_data_t)hdr); 15376 } else { 15377 hdr->hpo_family = AF_INET; 15378 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15379 ipst->ips_ipv4observing, (hook_data_t)hdr); 15380 } 15381 15382 imp->b_cont = NULL; 15383 freemsg(imp); 15384 } 15385 15386 /* 15387 * Utility routine that checks if `v4srcp' is a valid address on underlying 15388 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15389 * associated with `v4srcp' on success. NOTE: if this is not called from 15390 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15391 * group during or after this lookup. 15392 */ 15393 boolean_t 15394 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15395 { 15396 ipif_t *ipif; 15397 15398 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15399 if (ipif != NULL) { 15400 if (ipifp != NULL) 15401 *ipifp = ipif; 15402 else 15403 ipif_refrele(ipif); 15404 return (B_TRUE); 15405 } 15406 15407 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15408 *v4srcp)); 15409 return (B_FALSE); 15410 } 15411