1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/suntpi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/kobj.h> 45 #include <sys/modctl.h> 46 #include <sys/atomic.h> 47 #include <sys/policy.h> 48 #include <sys/priv.h> 49 #include <sys/taskq.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <sys/mac.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <inet/iptun/iptun_impl.h> 101 #include <inet/ipdrop.h> 102 #include <inet/ip_netinfo.h> 103 #include <inet/ilb_ip.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/pattr.h> 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 #include <inet/rawip_impl.h> 119 #include <inet/rts_impl.h> 120 121 #include <sys/tsol/label.h> 122 #include <sys/tsol/tnet.h> 123 124 #include <sys/squeue_impl.h> 125 #include <inet/ip_arp.h> 126 127 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 139 /* 140 * Setable in /etc/system 141 */ 142 int ip_poll_normal_ms = 100; 143 int ip_poll_normal_ticks = 0; 144 int ip_modclose_ackwait_ms = 3000; 145 146 /* 147 * It would be nice to have these present only in DEBUG systems, but the 148 * current design of the global symbol checking logic requires them to be 149 * unconditionally present. 150 */ 151 uint_t ip_thread_data; /* TSD key for debug support */ 152 krwlock_t ip_thread_rwlock; 153 list_t ip_thread_list; 154 155 /* 156 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 157 */ 158 159 struct listptr_s { 160 mblk_t *lp_head; /* pointer to the head of the list */ 161 mblk_t *lp_tail; /* pointer to the tail of the list */ 162 }; 163 164 typedef struct listptr_s listptr_t; 165 166 /* 167 * This is used by ip_snmp_get_mib2_ip_route_media and 168 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 169 */ 170 typedef struct iproutedata_s { 171 uint_t ird_idx; 172 uint_t ird_flags; /* see below */ 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* Include ire_testhidden and IRE_IF_CLONE routes */ 179 #define IRD_REPORT_ALL 0x01 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, IPMP operations, most set ioctls, etc. 236 * 237 * Plumbing is a long sequence of operations involving message 238 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 239 * involved in plumbing operations. A natural model is to serialize these 240 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 241 * parallel without any interference. But various set ioctls on hme0 are best 242 * serialized, along with IPMP operations and processing of DLPI control 243 * messages received from drivers on a per phyint basis. This serialization is 244 * provided by the ipsq_t and primitives operating on this. Details can 245 * be found in ip_if.c above the core primitives operating on ipsq_t. 246 * 247 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 248 * Simiarly lookup of an ire by a thread also returns a refheld ire. 249 * In addition ipif's and ill's referenced by the ire are also indirectly 250 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 251 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 252 * address of an ipif has to go through the ipsq_t. This ensures that only 253 * one such exclusive operation proceeds at any time on the ipif. It then 254 * waits for all refcnts 255 * associated with this ipif to come down to zero. The address is changed 256 * only after the ipif has been quiesced. Then the ipif is brought up again. 257 * More details are described above the comment in ip_sioctl_flags. 258 * 259 * Packet processing is based mostly on IREs and are fully multi-threaded 260 * using standard Solaris MT techniques. 261 * 262 * There are explicit locks in IP to handle: 263 * - The ip_g_head list maintained by mi_open_link() and friends. 264 * 265 * - The reassembly data structures (one lock per hash bucket) 266 * 267 * - conn_lock is meant to protect conn_t fields. The fields actually 268 * protected by conn_lock are documented in the conn_t definition. 269 * 270 * - ire_lock to protect some of the fields of the ire, IRE tables 271 * (one lock per hash bucket). Refer to ip_ire.c for details. 272 * 273 * - ndp_g_lock and ncec_lock for protecting NCEs. 274 * 275 * - ill_lock protects fields of the ill and ipif. Details in ip.h 276 * 277 * - ill_g_lock: This is a global reader/writer lock. Protects the following 278 * * The AVL tree based global multi list of all ills. 279 * * The linked list of all ipifs of an ill 280 * * The <ipsq-xop> mapping 281 * * <ill-phyint> association 282 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 283 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 284 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 285 * writer for the actual duration of the insertion/deletion/change. 286 * 287 * - ill_lock: This is a per ill mutex. 288 * It protects some members of the ill_t struct; see ip.h for details. 289 * It also protects the <ill-phyint> assoc. 290 * It also protects the list of ipifs hanging off the ill. 291 * 292 * - ipsq_lock: This is a per ipsq_t mutex lock. 293 * This protects some members of the ipsq_t struct; see ip.h for details. 294 * It also protects the <ipsq-ipxop> mapping 295 * 296 * - ipx_lock: This is a per ipxop_t mutex lock. 297 * This protects some members of the ipxop_t struct; see ip.h for details. 298 * 299 * - phyint_lock: This is a per phyint mutex lock. Protects just the 300 * phyint_flags 301 * 302 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 303 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 304 * uniqueness check also done atomically. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 315 * operations are executed exclusively and that ensures that the "usesrc 316 * group state" cannot change. The "usesrc group state" change can happen 317 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ipsq-xop> assocications: 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ipsq-xop> association, the ill_g_lock must be held as 326 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 327 * This is only done when ills are added or removed from IPMP groups. 328 * 329 * To add or delete an ipif from the list of ipifs hanging off the ill, 330 * ill_g_lock (writer) and ill_lock must be held and the thread must be 331 * a writer on the associated ipsq. 332 * 333 * To add or delete an ill to the system, the ill_g_lock must be held as 334 * writer and the thread must be a writer on the associated ipsq. 335 * 336 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 337 * must be a writer on the associated ipsq. 338 * 339 * Lock hierarchy 340 * 341 * Some lock hierarchy scenarios are listed below. 342 * 343 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 344 * ill_g_lock -> ill_lock(s) -> phyint_lock 345 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 346 * ill_g_lock -> ip_addr_avail_lock 347 * conn_lock -> irb_lock -> ill_lock -> ire_lock 348 * ill_g_lock -> ip_g_nd_lock 349 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 351 * arl_lock -> ill_lock 352 * ips_ire_dep_lock -> irb_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * Multicast scenarios 359 * ips_ill_g_lock -> ill_mcast_lock 360 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 365 * 366 * IPsec scenarios 367 * 368 * ipsa_lock -> ill_g_lock -> ill_lock 369 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 370 * 371 * Trusted Solaris scenarios 372 * 373 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 374 * igsa_lock -> gcdb_lock 375 * gcgrp_rwlock -> ire_lock 376 * gcgrp_rwlock -> gcdb_lock 377 * 378 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 379 * 380 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 381 * sq_lock -> conn_lock -> QLOCK(q) 382 * ill_lock -> ft_lock -> fe_lock 383 * 384 * Routing/forwarding table locking notes: 385 * 386 * Lock acquisition order: Radix tree lock, irb_lock. 387 * Requirements: 388 * i. Walker must not hold any locks during the walker callback. 389 * ii Walker must not see a truncated tree during the walk because of any node 390 * deletion. 391 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 392 * in many places in the code to walk the irb list. Thus even if all the 393 * ires in a bucket have been deleted, we still can't free the radix node 394 * until the ires have actually been inactive'd (freed). 395 * 396 * Tree traversal - Need to hold the global tree lock in read mode. 397 * Before dropping the global tree lock, need to either increment the ire_refcnt 398 * to ensure that the radix node can't be deleted. 399 * 400 * Tree add - Need to hold the global tree lock in write mode to add a 401 * radix node. To prevent the node from being deleted, increment the 402 * irb_refcnt, after the node is added to the tree. The ire itself is 403 * added later while holding the irb_lock, but not the tree lock. 404 * 405 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 406 * All associated ires must be inactive (i.e. freed), and irb_refcnt 407 * must be zero. 408 * 409 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 410 * global tree lock (read mode) for traversal. 411 * 412 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 413 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 414 * 415 * IPsec notes : 416 * 417 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 418 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 419 * ip_xmit_attr_t has the 420 * information used by the IPsec code for applying the right level of 421 * protection. The information initialized by IP in the ip_xmit_attr_t 422 * is determined by the per-socket policy or global policy in the system. 423 * For inbound datagrams, the ip_recv_attr_t 424 * starts out with nothing in it. It gets filled 425 * with the right information if it goes through the AH/ESP code, which 426 * happens if the incoming packet is secure. The information initialized 427 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 428 * the policy requirements needed by per-socket policy or global policy 429 * is met or not. 430 * 431 * For fully connected sockets i.e dst, src [addr, port] is known, 432 * conn_policy_cached is set indicating that policy has been cached. 433 * conn_in_enforce_policy may or may not be set depending on whether 434 * there is a global policy match or per-socket policy match. 435 * Policy inheriting happpens in ip_policy_set once the destination is known. 436 * Once the right policy is set on the conn_t, policy cannot change for 437 * this socket. This makes life simpler for TCP (UDP ?) where 438 * re-transmissions go out with the same policy. For symmetry, policy 439 * is cached for fully connected UDP sockets also. Thus if policy is cached, 440 * it also implies that policy is latched i.e policy cannot change 441 * on these sockets. As we have the right policy on the conn, we don't 442 * have to lookup global policy for every outbound and inbound datagram 443 * and thus serving as an optimization. Note that a global policy change 444 * does not affect fully connected sockets if they have policy. If fully 445 * connected sockets did not have any policy associated with it, global 446 * policy change may affect them. 447 * 448 * IP Flow control notes: 449 * --------------------- 450 * Non-TCP streams are flow controlled by IP. The way this is accomplished 451 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 452 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 453 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 454 * functions. 455 * 456 * Per Tx ring udp flow control: 457 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 458 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 459 * 460 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 461 * To achieve best performance, outgoing traffic need to be fanned out among 462 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 463 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 464 * the address of connp as fanout hint to mac_tx(). Under flow controlled 465 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 466 * cookie points to a specific Tx ring that is blocked. The cookie is used to 467 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 468 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 469 * connp's. The drain list is not a single list but a configurable number of 470 * lists. 471 * 472 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 473 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 474 * which is equal to 128. This array in turn contains a pointer to idl_t[], 475 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 476 * list will point to the list of connp's that are flow controlled. 477 * 478 * --------------- ------- ------- ------- 479 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 480 * | --------------- ------- ------- ------- 481 * | --------------- ------- ------- ------- 482 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 483 * ---------------- | --------------- ------- ------- ------- 484 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 485 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 486 * | --------------- ------- ------- ------- 487 * . . . . . 488 * | --------------- ------- ------- ------- 489 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 490 * --------------- ------- ------- ------- 491 * --------------- ------- ------- ------- 492 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 493 * | --------------- ------- ------- ------- 494 * | --------------- ------- ------- ------- 495 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 496 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 497 * ---------------- | . . . . 498 * | --------------- ------- ------- ------- 499 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 500 * --------------- ------- ------- ------- 501 * ..... 502 * ---------------- 503 * |idl_tx_list[n]|-> ... 504 * ---------------- 505 * 506 * When mac_tx() returns a cookie, the cookie is hashed into an index into 507 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 508 * to insert the conn onto. conn_drain_insert() asserts flow control for the 509 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 510 * Further, conn_blocked is set to indicate that the conn is blocked. 511 * 512 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 513 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 514 * is again hashed to locate the appropriate idl_tx_list, which is then 515 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 516 * the drain list and calls conn_drain_remove() to clear flow control (via 517 * calling su_txq_full() or clearing QFULL), and remove the conn from the 518 * drain list. 519 * 520 * Note that the drain list is not a single list but a (configurable) array of 521 * lists (8 elements by default). Synchronization between drain insertion and 522 * flow control wakeup is handled by using idl_txl->txl_lock, and only 523 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 524 * 525 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 526 * On the send side, if the packet cannot be sent down to the driver by IP 527 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 528 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 529 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 530 * control has been relieved, the blocked conns in the 0'th drain list are 531 * drained as in the non-STREAMS case. 532 * 533 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 534 * is done when the conn is inserted into the drain list (conn_drain_insert()) 535 * and cleared when the conn is removed from the it (conn_drain_remove()). 536 * 537 * IPQOS notes: 538 * 539 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 540 * and IPQoS modules. IPPF includes hooks in IP at different control points 541 * (callout positions) which direct packets to IPQoS modules for policy 542 * processing. Policies, if present, are global. 543 * 544 * The callout positions are located in the following paths: 545 * o local_in (packets destined for this host) 546 * o local_out (packets orginating from this host ) 547 * o fwd_in (packets forwarded by this m/c - inbound) 548 * o fwd_out (packets forwarded by this m/c - outbound) 549 * Hooks at these callout points can be enabled/disabled using the ndd variable 550 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 551 * By default all the callout positions are enabled. 552 * 553 * Outbound (local_out) 554 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 555 * 556 * Inbound (local_in) 557 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 558 * 559 * Forwarding (in and out) 560 * Hooks are placed in ire_recv_forward_v4/v6. 561 * 562 * IP Policy Framework processing (IPPF processing) 563 * Policy processing for a packet is initiated by ip_process, which ascertains 564 * that the classifier (ipgpc) is loaded and configured, failing which the 565 * packet resumes normal processing in IP. If the clasifier is present, the 566 * packet is acted upon by one or more IPQoS modules (action instances), per 567 * filters configured in ipgpc and resumes normal IP processing thereafter. 568 * An action instance can drop a packet in course of its processing. 569 * 570 * Zones notes: 571 * 572 * The partitioning rules for networking are as follows: 573 * 1) Packets coming from a zone must have a source address belonging to that 574 * zone. 575 * 2) Packets coming from a zone can only be sent on a physical interface on 576 * which the zone has an IP address. 577 * 3) Between two zones on the same machine, packet delivery is only allowed if 578 * there's a matching route for the destination and zone in the forwarding 579 * table. 580 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 581 * different zones can bind to the same port with the wildcard address 582 * (INADDR_ANY). 583 * 584 * The granularity of interface partitioning is at the logical interface level. 585 * Therefore, every zone has its own IP addresses, and incoming packets can be 586 * attributed to a zone unambiguously. A logical interface is placed into a zone 587 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 588 * structure. Rule (1) is implemented by modifying the source address selection 589 * algorithm so that the list of eligible addresses is filtered based on the 590 * sending process zone. 591 * 592 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 593 * across all zones, depending on their type. Here is the break-up: 594 * 595 * IRE type Shared/exclusive 596 * -------- ---------------- 597 * IRE_BROADCAST Exclusive 598 * IRE_DEFAULT (default routes) Shared (*) 599 * IRE_LOCAL Exclusive (x) 600 * IRE_LOOPBACK Exclusive 601 * IRE_PREFIX (net routes) Shared (*) 602 * IRE_IF_NORESOLVER (interface routes) Exclusive 603 * IRE_IF_RESOLVER (interface routes) Exclusive 604 * IRE_IF_CLONE (interface routes) Exclusive 605 * IRE_HOST (host routes) Shared (*) 606 * 607 * (*) A zone can only use a default or off-subnet route if the gateway is 608 * directly reachable from the zone, that is, if the gateway's address matches 609 * one of the zone's logical interfaces. 610 * 611 * (x) IRE_LOCAL are handled a bit differently. 612 * When ip_restrict_interzone_loopback is set (the default), 613 * ire_route_recursive restricts loopback using an IRE_LOCAL 614 * between zone to the case when L2 would have conceptually looped the packet 615 * back, i.e. the loopback which is required since neither Ethernet drivers 616 * nor Ethernet hardware loops them back. This is the case when the normal 617 * routes (ignoring IREs with different zoneids) would send out the packet on 618 * the same ill as the ill with which is IRE_LOCAL is associated. 619 * 620 * Multiple zones can share a common broadcast address; typically all zones 621 * share the 255.255.255.255 address. Incoming as well as locally originated 622 * broadcast packets must be dispatched to all the zones on the broadcast 623 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 624 * since some zones may not be on the 10.16.72/24 network. To handle this, each 625 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 626 * sent to every zone that has an IRE_BROADCAST entry for the destination 627 * address on the input ill, see ip_input_broadcast(). 628 * 629 * Applications in different zones can join the same multicast group address. 630 * The same logic applies for multicast as for broadcast. ip_input_multicast 631 * dispatches packets to all zones that have members on the physical interface. 632 */ 633 634 /* 635 * Squeue Fanout flags: 636 * 0: No fanout. 637 * 1: Fanout across all squeues 638 */ 639 boolean_t ip_squeue_fanout = 0; 640 641 /* 642 * Maximum dups allowed per packet. 643 */ 644 uint_t ip_max_frag_dups = 10; 645 646 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 647 cred_t *credp, boolean_t isv6); 648 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 649 650 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 652 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 653 ip_recv_attr_t *); 654 static void icmp_options_update(ipha_t *); 655 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 656 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 657 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 658 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 659 ip_recv_attr_t *); 660 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 661 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 662 ip_recv_attr_t *); 663 664 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 665 char *ip_dot_addr(ipaddr_t, char *); 666 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 667 int ip_close(queue_t *, int); 668 static char *ip_dot_saddr(uchar_t *, char *); 669 static void ip_lrput(queue_t *, mblk_t *); 670 ipaddr_t ip_net_mask(ipaddr_t); 671 char *ip_nv_lookup(nv_t *, int); 672 void ip_rput(queue_t *, mblk_t *); 673 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 674 void *dummy_arg); 675 int ip_snmp_get(queue_t *, mblk_t *, int); 676 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 677 mib2_ipIfStatsEntry_t *, ip_stack_t *); 678 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 679 ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 681 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 706 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 707 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 708 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 709 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 710 711 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 712 mblk_t *); 713 714 static void conn_drain_init(ip_stack_t *); 715 static void conn_drain_fini(ip_stack_t *); 716 static void conn_drain(conn_t *connp, boolean_t closing); 717 718 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 719 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 720 721 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 722 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 723 static void ip_stack_fini(netstackid_t stackid, void *arg); 724 725 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 726 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 727 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 728 const in6_addr_t *); 729 730 static int ip_squeue_switch(int); 731 732 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 733 static void ip_kstat_fini(netstackid_t, kstat_t *); 734 static int ip_kstat_update(kstat_t *kp, int rw); 735 static void *icmp_kstat_init(netstackid_t); 736 static void icmp_kstat_fini(netstackid_t, kstat_t *); 737 static int icmp_kstat_update(kstat_t *kp, int rw); 738 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 739 static void ip_kstat2_fini(netstackid_t, kstat_t *); 740 741 static void ipobs_init(ip_stack_t *); 742 static void ipobs_fini(ip_stack_t *); 743 744 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 745 746 static long ip_rput_pullups; 747 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 748 749 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 750 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 751 752 int ip_debug; 753 754 /* 755 * Multirouting/CGTP stuff 756 */ 757 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 758 759 /* 760 * IP tunables related declarations. Definitions are in ip_tunables.c 761 */ 762 extern mod_prop_info_t ip_propinfo_tbl[]; 763 extern int ip_propinfo_count; 764 765 /* 766 * Table of IP ioctls encoding the various properties of the ioctl and 767 * indexed based on the last byte of the ioctl command. Occasionally there 768 * is a clash, and there is more than 1 ioctl with the same last byte. 769 * In such a case 1 ioctl is encoded in the ndx table and the remaining 770 * ioctls are encoded in the misc table. An entry in the ndx table is 771 * retrieved by indexing on the last byte of the ioctl command and comparing 772 * the ioctl command with the value in the ndx table. In the event of a 773 * mismatch the misc table is then searched sequentially for the desired 774 * ioctl command. 775 * 776 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 777 */ 778 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 779 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 780 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 781 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 790 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 791 MISC_CMD, ip_siocaddrt, NULL }, 792 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 793 MISC_CMD, ip_siocdelrt, NULL }, 794 795 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 796 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 797 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 798 IF_CMD, ip_sioctl_get_addr, NULL }, 799 800 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 801 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 802 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 803 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 804 805 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 806 IPI_PRIV | IPI_WR, 807 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 808 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 809 IPI_MODOK | IPI_GET_CMD, 810 IF_CMD, ip_sioctl_get_flags, NULL }, 811 812 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 813 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 814 815 /* copyin size cannot be coded for SIOCGIFCONF */ 816 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 817 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 818 819 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 820 IF_CMD, ip_sioctl_mtu, NULL }, 821 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 822 IF_CMD, ip_sioctl_get_mtu, NULL }, 823 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 824 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 825 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 826 IF_CMD, ip_sioctl_brdaddr, NULL }, 827 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 829 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 830 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 831 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 833 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 834 IF_CMD, ip_sioctl_metric, NULL }, 835 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 836 837 /* See 166-168 below for extended SIOC*XARP ioctls */ 838 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 839 ARP_CMD, ip_sioctl_arp, NULL }, 840 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 841 ARP_CMD, ip_sioctl_arp, NULL }, 842 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 845 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 846 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 847 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 867 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 868 MISC_CMD, if_unitsel, if_unitsel_restart }, 869 870 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 889 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 890 IPI_PRIV | IPI_WR | IPI_MODOK, 891 IF_CMD, ip_sioctl_sifname, NULL }, 892 893 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 907 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 908 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 909 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 910 IF_CMD, ip_sioctl_get_muxid, NULL }, 911 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 912 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 913 914 /* Both if and lif variants share same func */ 915 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 916 IF_CMD, ip_sioctl_get_lifindex, NULL }, 917 /* Both if and lif variants share same func */ 918 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 919 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 920 921 /* copyin size cannot be coded for SIOCGIFCONF */ 922 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 923 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 924 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 925 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 926 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 942 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 943 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 944 ip_sioctl_removeif_restart }, 945 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 946 IPI_GET_CMD | IPI_PRIV | IPI_WR, 947 LIF_CMD, ip_sioctl_addif, NULL }, 948 #define SIOCLIFADDR_NDX 112 949 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 950 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 951 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 952 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 953 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 955 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 957 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 958 IPI_PRIV | IPI_WR, 959 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 960 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 961 IPI_GET_CMD | IPI_MODOK, 962 LIF_CMD, ip_sioctl_get_flags, NULL }, 963 964 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 966 967 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 968 ip_sioctl_get_lifconf, NULL }, 969 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 970 LIF_CMD, ip_sioctl_mtu, NULL }, 971 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 972 LIF_CMD, ip_sioctl_get_mtu, NULL }, 973 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 974 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 975 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 976 LIF_CMD, ip_sioctl_brdaddr, NULL }, 977 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 979 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 980 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 981 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 983 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 984 LIF_CMD, ip_sioctl_metric, NULL }, 985 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 986 IPI_PRIV | IPI_WR | IPI_MODOK, 987 LIF_CMD, ip_sioctl_slifname, 988 ip_sioctl_slifname_restart }, 989 990 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 991 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 992 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 993 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 994 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 995 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 996 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 998 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1000 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1001 LIF_CMD, ip_sioctl_token, NULL }, 1002 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1003 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1004 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1005 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1006 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1008 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1009 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1010 1011 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1012 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1013 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1014 LIF_CMD, ip_siocdelndp_v6, NULL }, 1015 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1016 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1017 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1018 LIF_CMD, ip_siocsetndp_v6, NULL }, 1019 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1020 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1021 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1022 MISC_CMD, ip_sioctl_tonlink, NULL }, 1023 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1024 MISC_CMD, ip_sioctl_tmysite, NULL }, 1025 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1028 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1029 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1030 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1032 1033 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1036 LIF_CMD, ip_sioctl_get_binding, NULL }, 1037 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1038 IPI_PRIV | IPI_WR, 1039 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1040 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1041 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1042 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1043 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1044 1045 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1046 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 1050 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 1052 /* These are handled in ip_sioctl_copyin_setup itself */ 1053 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1054 MISC_CMD, NULL, NULL }, 1055 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1056 MISC_CMD, NULL, NULL }, 1057 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1058 1059 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1060 ip_sioctl_get_lifconf, NULL }, 1061 1062 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1063 XARP_CMD, ip_sioctl_arp, NULL }, 1064 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1065 XARP_CMD, ip_sioctl_arp, NULL }, 1066 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1067 XARP_CMD, ip_sioctl_arp, NULL }, 1068 1069 /* SIOCPOPSOCKFS is not handled by IP */ 1070 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1071 1072 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1073 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1074 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1075 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1076 ip_sioctl_slifzone_restart }, 1077 /* 172-174 are SCTP ioctls and not handled by IP */ 1078 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1082 IPI_GET_CMD, LIF_CMD, 1083 ip_sioctl_get_lifusesrc, 0 }, 1084 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1085 IPI_PRIV | IPI_WR, 1086 LIF_CMD, ip_sioctl_slifusesrc, 1087 NULL }, 1088 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1089 ip_sioctl_get_lifsrcof, NULL }, 1090 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1091 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1092 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1093 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1094 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1095 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1096 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* SIOCSENABLESDP is handled by SDP */ 1100 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1101 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1102 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1103 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1104 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1105 ip_sioctl_ilb_cmd, NULL }, 1106 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1107 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1108 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1109 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1110 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1111 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart } 1112 }; 1113 1114 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1115 1116 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1117 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1118 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1119 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1120 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1121 { ND_GET, 0, 0, 0, NULL, NULL }, 1122 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1123 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1124 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1125 MISC_CMD, mrt_ioctl}, 1126 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1127 MISC_CMD, mrt_ioctl}, 1128 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1129 MISC_CMD, mrt_ioctl} 1130 }; 1131 1132 int ip_misc_ioctl_count = 1133 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1134 1135 int conn_drain_nthreads; /* Number of drainers reqd. */ 1136 /* Settable in /etc/system */ 1137 /* Defined in ip_ire.c */ 1138 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1139 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1140 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1141 1142 static nv_t ire_nv_arr[] = { 1143 { IRE_BROADCAST, "BROADCAST" }, 1144 { IRE_LOCAL, "LOCAL" }, 1145 { IRE_LOOPBACK, "LOOPBACK" }, 1146 { IRE_DEFAULT, "DEFAULT" }, 1147 { IRE_PREFIX, "PREFIX" }, 1148 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1149 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1150 { IRE_IF_CLONE, "IF_CLONE" }, 1151 { IRE_HOST, "HOST" }, 1152 { IRE_MULTICAST, "MULTICAST" }, 1153 { IRE_NOROUTE, "NOROUTE" }, 1154 { 0 } 1155 }; 1156 1157 nv_t *ire_nv_tbl = ire_nv_arr; 1158 1159 /* Simple ICMP IP Header Template */ 1160 static ipha_t icmp_ipha = { 1161 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1162 }; 1163 1164 struct module_info ip_mod_info = { 1165 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1166 IP_MOD_LOWAT 1167 }; 1168 1169 /* 1170 * Duplicate static symbols within a module confuses mdb; so we avoid the 1171 * problem by making the symbols here distinct from those in udp.c. 1172 */ 1173 1174 /* 1175 * Entry points for IP as a device and as a module. 1176 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1177 */ 1178 static struct qinit iprinitv4 = { 1179 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1180 &ip_mod_info 1181 }; 1182 1183 struct qinit iprinitv6 = { 1184 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1185 &ip_mod_info 1186 }; 1187 1188 static struct qinit ipwinit = { 1189 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1190 &ip_mod_info 1191 }; 1192 1193 static struct qinit iplrinit = { 1194 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1195 &ip_mod_info 1196 }; 1197 1198 static struct qinit iplwinit = { 1199 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1200 &ip_mod_info 1201 }; 1202 1203 /* For AF_INET aka /dev/ip */ 1204 struct streamtab ipinfov4 = { 1205 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1206 }; 1207 1208 /* For AF_INET6 aka /dev/ip6 */ 1209 struct streamtab ipinfov6 = { 1210 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1211 }; 1212 1213 #ifdef DEBUG 1214 boolean_t skip_sctp_cksum = B_FALSE; 1215 #endif 1216 1217 /* 1218 * Generate an ICMP fragmentation needed message. 1219 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1220 * constructed by the caller. 1221 */ 1222 void 1223 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1224 { 1225 icmph_t icmph; 1226 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1227 1228 mp = icmp_pkt_err_ok(mp, ira); 1229 if (mp == NULL) 1230 return; 1231 1232 bzero(&icmph, sizeof (icmph_t)); 1233 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1234 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1235 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1237 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1238 1239 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1240 } 1241 1242 /* 1243 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1244 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1245 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1246 * Likewise, if the ICMP error is misformed (too short, etc), then it 1247 * returns NULL. The caller uses this to determine whether or not to send 1248 * to raw sockets. 1249 * 1250 * All error messages are passed to the matching transport stream. 1251 * 1252 * The following cases are handled by icmp_inbound: 1253 * 1) It needs to send a reply back and possibly delivering it 1254 * to the "interested" upper clients. 1255 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1256 * 3) It needs to change some values in IP only. 1257 * 4) It needs to change some values in IP and upper layers e.g TCP 1258 * by delivering an error to the upper layers. 1259 * 1260 * We handle the above three cases in the context of IPsec in the 1261 * following way : 1262 * 1263 * 1) Send the reply back in the same way as the request came in. 1264 * If it came in encrypted, it goes out encrypted. If it came in 1265 * clear, it goes out in clear. Thus, this will prevent chosen 1266 * plain text attack. 1267 * 2) The client may or may not expect things to come in secure. 1268 * If it comes in secure, the policy constraints are checked 1269 * before delivering it to the upper layers. If it comes in 1270 * clear, ipsec_inbound_accept_clear will decide whether to 1271 * accept this in clear or not. In both the cases, if the returned 1272 * message (IP header + 8 bytes) that caused the icmp message has 1273 * AH/ESP headers, it is sent up to AH/ESP for validation before 1274 * sending up. If there are only 8 bytes of returned message, then 1275 * upper client will not be notified. 1276 * 3) Check with global policy to see whether it matches the constaints. 1277 * But this will be done only if icmp_accept_messages_in_clear is 1278 * zero. 1279 * 4) If we need to change both in IP and ULP, then the decision taken 1280 * while affecting the values in IP and while delivering up to TCP 1281 * should be the same. 1282 * 1283 * There are two cases. 1284 * 1285 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1286 * failed), we will not deliver it to the ULP, even though they 1287 * are *willing* to accept in *clear*. This is fine as our global 1288 * disposition to icmp messages asks us reject the datagram. 1289 * 1290 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1291 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1292 * to deliver it to ULP (policy failed), it can lead to 1293 * consistency problems. The cases known at this time are 1294 * ICMP_DESTINATION_UNREACHABLE messages with following code 1295 * values : 1296 * 1297 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1298 * and Upper layer rejects. Then the communication will 1299 * come to a stop. This is solved by making similar decisions 1300 * at both levels. Currently, when we are unable to deliver 1301 * to the Upper Layer (due to policy failures) while IP has 1302 * adjusted dce_pmtu, the next outbound datagram would 1303 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1304 * will be with the right level of protection. Thus the right 1305 * value will be communicated even if we are not able to 1306 * communicate when we get from the wire initially. But this 1307 * assumes there would be at least one outbound datagram after 1308 * IP has adjusted its dce_pmtu value. To make things 1309 * simpler, we accept in clear after the validation of 1310 * AH/ESP headers. 1311 * 1312 * - Other ICMP ERRORS : We may not be able to deliver it to the 1313 * upper layer depending on the level of protection the upper 1314 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1315 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1316 * should be accepted in clear when the Upper layer expects secure. 1317 * Thus the communication may get aborted by some bad ICMP 1318 * packets. 1319 */ 1320 mblk_t * 1321 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1322 { 1323 icmph_t *icmph; 1324 ipha_t *ipha; /* Outer header */ 1325 int ip_hdr_length; /* Outer header length */ 1326 boolean_t interested; 1327 ipif_t *ipif; 1328 uint32_t ts; 1329 uint32_t *tsp; 1330 timestruc_t now; 1331 ill_t *ill = ira->ira_ill; 1332 ip_stack_t *ipst = ill->ill_ipst; 1333 zoneid_t zoneid = ira->ira_zoneid; 1334 int len_needed; 1335 mblk_t *mp_ret = NULL; 1336 1337 ipha = (ipha_t *)mp->b_rptr; 1338 1339 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1340 1341 ip_hdr_length = ira->ira_ip_hdr_length; 1342 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1343 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1344 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1345 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1346 freemsg(mp); 1347 return (NULL); 1348 } 1349 /* Last chance to get real. */ 1350 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1351 if (ipha == NULL) { 1352 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1353 freemsg(mp); 1354 return (NULL); 1355 } 1356 } 1357 1358 /* The IP header will always be a multiple of four bytes */ 1359 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1360 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1361 icmph->icmph_code)); 1362 1363 /* 1364 * We will set "interested" to "true" if we should pass a copy to 1365 * the transport or if we handle the packet locally. 1366 */ 1367 interested = B_FALSE; 1368 switch (icmph->icmph_type) { 1369 case ICMP_ECHO_REPLY: 1370 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1371 break; 1372 case ICMP_DEST_UNREACHABLE: 1373 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1374 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1375 interested = B_TRUE; /* Pass up to transport */ 1376 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1377 break; 1378 case ICMP_SOURCE_QUENCH: 1379 interested = B_TRUE; /* Pass up to transport */ 1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1381 break; 1382 case ICMP_REDIRECT: 1383 if (!ipst->ips_ip_ignore_redirect) 1384 interested = B_TRUE; 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1386 break; 1387 case ICMP_ECHO_REQUEST: 1388 /* 1389 * Whether to respond to echo requests that come in as IP 1390 * broadcasts or as IP multicast is subject to debate 1391 * (what isn't?). We aim to please, you pick it. 1392 * Default is do it. 1393 */ 1394 if (ira->ira_flags & IRAF_MULTICAST) { 1395 /* multicast: respond based on tunable */ 1396 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1397 } else if (ira->ira_flags & IRAF_BROADCAST) { 1398 /* broadcast: respond based on tunable */ 1399 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1400 } else { 1401 /* unicast: always respond */ 1402 interested = B_TRUE; 1403 } 1404 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1405 if (!interested) { 1406 /* We never pass these to RAW sockets */ 1407 freemsg(mp); 1408 return (NULL); 1409 } 1410 1411 /* Check db_ref to make sure we can modify the packet. */ 1412 if (mp->b_datap->db_ref > 1) { 1413 mblk_t *mp1; 1414 1415 mp1 = copymsg(mp); 1416 freemsg(mp); 1417 if (!mp1) { 1418 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1419 return (NULL); 1420 } 1421 mp = mp1; 1422 ipha = (ipha_t *)mp->b_rptr; 1423 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1424 } 1425 icmph->icmph_type = ICMP_ECHO_REPLY; 1426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1427 icmp_send_reply_v4(mp, ipha, icmph, ira); 1428 return (NULL); 1429 1430 case ICMP_ROUTER_ADVERTISEMENT: 1431 case ICMP_ROUTER_SOLICITATION: 1432 break; 1433 case ICMP_TIME_EXCEEDED: 1434 interested = B_TRUE; /* Pass up to transport */ 1435 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1436 break; 1437 case ICMP_PARAM_PROBLEM: 1438 interested = B_TRUE; /* Pass up to transport */ 1439 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1440 break; 1441 case ICMP_TIME_STAMP_REQUEST: 1442 /* Response to Time Stamp Requests is local policy. */ 1443 if (ipst->ips_ip_g_resp_to_timestamp) { 1444 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1445 interested = 1446 ipst->ips_ip_g_resp_to_timestamp_bcast; 1447 else 1448 interested = B_TRUE; 1449 } 1450 if (!interested) { 1451 /* We never pass these to RAW sockets */ 1452 freemsg(mp); 1453 return (NULL); 1454 } 1455 1456 /* Make sure we have enough of the packet */ 1457 len_needed = ip_hdr_length + ICMPH_SIZE + 1458 3 * sizeof (uint32_t); 1459 1460 if (mp->b_wptr - mp->b_rptr < len_needed) { 1461 ipha = ip_pullup(mp, len_needed, ira); 1462 if (ipha == NULL) { 1463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1464 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1465 mp, ill); 1466 freemsg(mp); 1467 return (NULL); 1468 } 1469 /* Refresh following the pullup. */ 1470 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1471 } 1472 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1473 /* Check db_ref to make sure we can modify the packet. */ 1474 if (mp->b_datap->db_ref > 1) { 1475 mblk_t *mp1; 1476 1477 mp1 = copymsg(mp); 1478 freemsg(mp); 1479 if (!mp1) { 1480 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1481 return (NULL); 1482 } 1483 mp = mp1; 1484 ipha = (ipha_t *)mp->b_rptr; 1485 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1486 } 1487 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1488 tsp = (uint32_t *)&icmph[1]; 1489 tsp++; /* Skip past 'originate time' */ 1490 /* Compute # of milliseconds since midnight */ 1491 gethrestime(&now); 1492 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1493 now.tv_nsec / (NANOSEC / MILLISEC); 1494 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1495 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1496 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1497 icmp_send_reply_v4(mp, ipha, icmph, ira); 1498 return (NULL); 1499 1500 case ICMP_TIME_STAMP_REPLY: 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1502 break; 1503 case ICMP_INFO_REQUEST: 1504 /* Per RFC 1122 3.2.2.7, ignore this. */ 1505 case ICMP_INFO_REPLY: 1506 break; 1507 case ICMP_ADDRESS_MASK_REQUEST: 1508 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1509 interested = 1510 ipst->ips_ip_respond_to_address_mask_broadcast; 1511 } else { 1512 interested = B_TRUE; 1513 } 1514 if (!interested) { 1515 /* We never pass these to RAW sockets */ 1516 freemsg(mp); 1517 return (NULL); 1518 } 1519 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1520 if (mp->b_wptr - mp->b_rptr < len_needed) { 1521 ipha = ip_pullup(mp, len_needed, ira); 1522 if (ipha == NULL) { 1523 BUMP_MIB(ill->ill_ip_mib, 1524 ipIfStatsInTruncatedPkts); 1525 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1526 ill); 1527 freemsg(mp); 1528 return (NULL); 1529 } 1530 /* Refresh following the pullup. */ 1531 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1532 } 1533 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1534 /* Check db_ref to make sure we can modify the packet. */ 1535 if (mp->b_datap->db_ref > 1) { 1536 mblk_t *mp1; 1537 1538 mp1 = copymsg(mp); 1539 freemsg(mp); 1540 if (!mp1) { 1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1542 return (NULL); 1543 } 1544 mp = mp1; 1545 ipha = (ipha_t *)mp->b_rptr; 1546 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1547 } 1548 /* 1549 * Need the ipif with the mask be the same as the source 1550 * address of the mask reply. For unicast we have a specific 1551 * ipif. For multicast/broadcast we only handle onlink 1552 * senders, and use the source address to pick an ipif. 1553 */ 1554 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1555 if (ipif == NULL) { 1556 /* Broadcast or multicast */ 1557 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1558 if (ipif == NULL) { 1559 freemsg(mp); 1560 return (NULL); 1561 } 1562 } 1563 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1564 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1565 ipif_refrele(ipif); 1566 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1567 icmp_send_reply_v4(mp, ipha, icmph, ira); 1568 return (NULL); 1569 1570 case ICMP_ADDRESS_MASK_REPLY: 1571 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1572 break; 1573 default: 1574 interested = B_TRUE; /* Pass up to transport */ 1575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1576 break; 1577 } 1578 /* 1579 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1580 * if there isn't one. 1581 */ 1582 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1583 /* If there is an ICMP client and we want one too, copy it. */ 1584 1585 if (!interested) { 1586 /* Caller will deliver to RAW sockets */ 1587 return (mp); 1588 } 1589 mp_ret = copymsg(mp); 1590 if (mp_ret == NULL) { 1591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1592 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1593 } 1594 } else if (!interested) { 1595 /* Neither we nor raw sockets are interested. Drop packet now */ 1596 freemsg(mp); 1597 return (NULL); 1598 } 1599 1600 /* 1601 * ICMP error or redirect packet. Make sure we have enough of 1602 * the header and that db_ref == 1 since we might end up modifying 1603 * the packet. 1604 */ 1605 if (mp->b_cont != NULL) { 1606 if (ip_pullup(mp, -1, ira) == NULL) { 1607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1608 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1609 mp, ill); 1610 freemsg(mp); 1611 return (mp_ret); 1612 } 1613 } 1614 1615 if (mp->b_datap->db_ref > 1) { 1616 mblk_t *mp1; 1617 1618 mp1 = copymsg(mp); 1619 if (mp1 == NULL) { 1620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1621 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1622 freemsg(mp); 1623 return (mp_ret); 1624 } 1625 freemsg(mp); 1626 mp = mp1; 1627 } 1628 1629 /* 1630 * In case mp has changed, verify the message before any further 1631 * processes. 1632 */ 1633 ipha = (ipha_t *)mp->b_rptr; 1634 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1635 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1636 freemsg(mp); 1637 return (mp_ret); 1638 } 1639 1640 switch (icmph->icmph_type) { 1641 case ICMP_REDIRECT: 1642 icmp_redirect_v4(mp, ipha, icmph, ira); 1643 break; 1644 case ICMP_DEST_UNREACHABLE: 1645 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1646 /* Update DCE and adjust MTU is icmp header if needed */ 1647 icmp_inbound_too_big_v4(icmph, ira); 1648 } 1649 /* FALLTHRU */ 1650 default: 1651 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1652 break; 1653 } 1654 return (mp_ret); 1655 } 1656 1657 /* 1658 * Send an ICMP echo, timestamp or address mask reply. 1659 * The caller has already updated the payload part of the packet. 1660 * We handle the ICMP checksum, IP source address selection and feed 1661 * the packet into ip_output_simple. 1662 */ 1663 static void 1664 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1665 ip_recv_attr_t *ira) 1666 { 1667 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1668 ill_t *ill = ira->ira_ill; 1669 ip_stack_t *ipst = ill->ill_ipst; 1670 ip_xmit_attr_t ixas; 1671 1672 /* Send out an ICMP packet */ 1673 icmph->icmph_checksum = 0; 1674 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1675 /* Reset time to live. */ 1676 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1677 { 1678 /* Swap source and destination addresses */ 1679 ipaddr_t tmp; 1680 1681 tmp = ipha->ipha_src; 1682 ipha->ipha_src = ipha->ipha_dst; 1683 ipha->ipha_dst = tmp; 1684 } 1685 ipha->ipha_ident = 0; 1686 if (!IS_SIMPLE_IPH(ipha)) 1687 icmp_options_update(ipha); 1688 1689 bzero(&ixas, sizeof (ixas)); 1690 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1691 ixas.ixa_zoneid = ira->ira_zoneid; 1692 ixas.ixa_cred = kcred; 1693 ixas.ixa_cpid = NOPID; 1694 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1695 ixas.ixa_ifindex = 0; 1696 ixas.ixa_ipst = ipst; 1697 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1698 1699 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1700 /* 1701 * This packet should go out the same way as it 1702 * came in i.e in clear, independent of the IPsec policy 1703 * for transmitting packets. 1704 */ 1705 ixas.ixa_flags |= IXAF_NO_IPSEC; 1706 } else { 1707 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1709 /* Note: mp already consumed and ip_drop_packet done */ 1710 return; 1711 } 1712 } 1713 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1714 /* 1715 * Not one or our addresses (IRE_LOCALs), thus we let 1716 * ip_output_simple pick the source. 1717 */ 1718 ipha->ipha_src = INADDR_ANY; 1719 ixas.ixa_flags |= IXAF_SET_SOURCE; 1720 } 1721 /* Should we send with DF and use dce_pmtu? */ 1722 if (ipst->ips_ipv4_icmp_return_pmtu) { 1723 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1724 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1725 } 1726 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1728 1729 (void) ip_output_simple(mp, &ixas); 1730 ixa_cleanup(&ixas); 1731 } 1732 1733 /* 1734 * Verify the ICMP messages for either for ICMP error or redirect packet. 1735 * The caller should have fully pulled up the message. If it's a redirect 1736 * packet, only basic checks on IP header will be done; otherwise, verify 1737 * the packet by looking at the included ULP header. 1738 * 1739 * Called before icmp_inbound_error_fanout_v4 is called. 1740 */ 1741 static boolean_t 1742 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1743 { 1744 ill_t *ill = ira->ira_ill; 1745 int hdr_length; 1746 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1747 conn_t *connp; 1748 ipha_t *ipha; /* Inner IP header */ 1749 1750 ipha = (ipha_t *)&icmph[1]; 1751 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1752 goto truncated; 1753 1754 hdr_length = IPH_HDR_LENGTH(ipha); 1755 1756 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1757 goto discard_pkt; 1758 1759 if (hdr_length < sizeof (ipha_t)) 1760 goto truncated; 1761 1762 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1763 goto truncated; 1764 1765 /* 1766 * Stop here for ICMP_REDIRECT. 1767 */ 1768 if (icmph->icmph_type == ICMP_REDIRECT) 1769 return (B_TRUE); 1770 1771 /* 1772 * ICMP errors only. 1773 */ 1774 switch (ipha->ipha_protocol) { 1775 case IPPROTO_UDP: 1776 /* 1777 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1778 * transport header. 1779 */ 1780 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1781 mp->b_wptr) 1782 goto truncated; 1783 break; 1784 case IPPROTO_TCP: { 1785 tcpha_t *tcpha; 1786 1787 /* 1788 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1789 * transport header. 1790 */ 1791 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1792 mp->b_wptr) 1793 goto truncated; 1794 1795 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1796 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1797 ipst); 1798 if (connp == NULL) 1799 goto discard_pkt; 1800 1801 if ((connp->conn_verifyicmp != NULL) && 1802 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1803 CONN_DEC_REF(connp); 1804 goto discard_pkt; 1805 } 1806 CONN_DEC_REF(connp); 1807 break; 1808 } 1809 case IPPROTO_SCTP: 1810 /* 1811 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1812 * transport header. 1813 */ 1814 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1815 mp->b_wptr) 1816 goto truncated; 1817 break; 1818 case IPPROTO_ESP: 1819 case IPPROTO_AH: 1820 break; 1821 case IPPROTO_ENCAP: 1822 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1823 mp->b_wptr) 1824 goto truncated; 1825 break; 1826 default: 1827 break; 1828 } 1829 1830 return (B_TRUE); 1831 1832 discard_pkt: 1833 /* Bogus ICMP error. */ 1834 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1835 return (B_FALSE); 1836 1837 truncated: 1838 /* We pulled up everthing already. Must be truncated */ 1839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1840 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1841 return (B_FALSE); 1842 } 1843 1844 /* Table from RFC 1191 */ 1845 static int icmp_frag_size_table[] = 1846 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1847 1848 /* 1849 * Process received ICMP Packet too big. 1850 * Just handles the DCE create/update, including using the above table of 1851 * PMTU guesses. The caller is responsible for validating the packet before 1852 * passing it in and also to fanout the ICMP error to any matching transport 1853 * conns. Assumes the message has been fully pulled up and verified. 1854 * 1855 * Before getting here, the caller has called icmp_inbound_verify_v4() 1856 * that should have verified with ULP to prevent undoing the changes we're 1857 * going to make to DCE. For example, TCP might have verified that the packet 1858 * which generated error is in the send window. 1859 * 1860 * In some cases modified this MTU in the ICMP header packet; the caller 1861 * should pass to the matching ULP after this returns. 1862 */ 1863 static void 1864 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1865 { 1866 dce_t *dce; 1867 int old_mtu; 1868 int mtu, orig_mtu; 1869 ipaddr_t dst; 1870 boolean_t disable_pmtud; 1871 ill_t *ill = ira->ira_ill; 1872 ip_stack_t *ipst = ill->ill_ipst; 1873 uint_t hdr_length; 1874 ipha_t *ipha; 1875 1876 /* Caller already pulled up everything. */ 1877 ipha = (ipha_t *)&icmph[1]; 1878 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1879 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1880 ASSERT(ill != NULL); 1881 1882 hdr_length = IPH_HDR_LENGTH(ipha); 1883 1884 /* 1885 * We handle path MTU for source routed packets since the DCE 1886 * is looked up using the final destination. 1887 */ 1888 dst = ip_get_dst(ipha); 1889 1890 dce = dce_lookup_and_add_v4(dst, ipst); 1891 if (dce == NULL) { 1892 /* Couldn't add a unique one - ENOMEM */ 1893 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1894 ntohl(dst))); 1895 return; 1896 } 1897 1898 /* Check for MTU discovery advice as described in RFC 1191 */ 1899 mtu = ntohs(icmph->icmph_du_mtu); 1900 orig_mtu = mtu; 1901 disable_pmtud = B_FALSE; 1902 1903 mutex_enter(&dce->dce_lock); 1904 if (dce->dce_flags & DCEF_PMTU) 1905 old_mtu = dce->dce_pmtu; 1906 else 1907 old_mtu = ill->ill_mtu; 1908 1909 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1910 uint32_t length; 1911 int i; 1912 1913 /* 1914 * Use the table from RFC 1191 to figure out 1915 * the next "plateau" based on the length in 1916 * the original IP packet. 1917 */ 1918 length = ntohs(ipha->ipha_length); 1919 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1920 uint32_t, length); 1921 if (old_mtu <= length && 1922 old_mtu >= length - hdr_length) { 1923 /* 1924 * Handle broken BSD 4.2 systems that 1925 * return the wrong ipha_length in ICMP 1926 * errors. 1927 */ 1928 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1929 length, old_mtu)); 1930 length -= hdr_length; 1931 } 1932 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1933 if (length > icmp_frag_size_table[i]) 1934 break; 1935 } 1936 if (i == A_CNT(icmp_frag_size_table)) { 1937 /* Smaller than IP_MIN_MTU! */ 1938 ip1dbg(("Too big for packet size %d\n", 1939 length)); 1940 disable_pmtud = B_TRUE; 1941 mtu = ipst->ips_ip_pmtu_min; 1942 } else { 1943 mtu = icmp_frag_size_table[i]; 1944 ip1dbg(("Calculated mtu %d, packet size %d, " 1945 "before %d\n", mtu, length, old_mtu)); 1946 if (mtu < ipst->ips_ip_pmtu_min) { 1947 mtu = ipst->ips_ip_pmtu_min; 1948 disable_pmtud = B_TRUE; 1949 } 1950 } 1951 } 1952 if (disable_pmtud) 1953 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1954 else 1955 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1956 1957 dce->dce_pmtu = MIN(old_mtu, mtu); 1958 /* Prepare to send the new max frag size for the ULP. */ 1959 icmph->icmph_du_zero = 0; 1960 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1961 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1962 dce, int, orig_mtu, int, mtu); 1963 1964 /* We now have a PMTU for sure */ 1965 dce->dce_flags |= DCEF_PMTU; 1966 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1967 mutex_exit(&dce->dce_lock); 1968 /* 1969 * After dropping the lock the new value is visible to everyone. 1970 * Then we bump the generation number so any cached values reinspect 1971 * the dce_t. 1972 */ 1973 dce_increment_generation(dce); 1974 dce_refrele(dce); 1975 } 1976 1977 /* 1978 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1979 * calls this function. 1980 */ 1981 static mblk_t * 1982 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1983 { 1984 int length; 1985 1986 ASSERT(mp->b_datap->db_type == M_DATA); 1987 1988 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1989 ASSERT(mp->b_cont == NULL); 1990 1991 /* 1992 * The length that we want to overlay is the inner header 1993 * and what follows it. 1994 */ 1995 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1996 1997 /* 1998 * Overlay the inner header and whatever follows it over the 1999 * outer header. 2000 */ 2001 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2002 2003 /* Adjust for what we removed */ 2004 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2005 return (mp); 2006 } 2007 2008 /* 2009 * Try to pass the ICMP message upstream in case the ULP cares. 2010 * 2011 * If the packet that caused the ICMP error is secure, we send 2012 * it to AH/ESP to make sure that the attached packet has a 2013 * valid association. ipha in the code below points to the 2014 * IP header of the packet that caused the error. 2015 * 2016 * For IPsec cases, we let the next-layer-up (which has access to 2017 * cached policy on the conn_t, or can query the SPD directly) 2018 * subtract out any IPsec overhead if they must. We therefore make no 2019 * adjustments here for IPsec overhead. 2020 * 2021 * IFN could have been generated locally or by some router. 2022 * 2023 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2024 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2025 * This happens because IP adjusted its value of MTU on an 2026 * earlier IFN message and could not tell the upper layer, 2027 * the new adjusted value of MTU e.g. Packet was encrypted 2028 * or there was not enough information to fanout to upper 2029 * layers. Thus on the next outbound datagram, ire_send_wire 2030 * generates the IFN, where IPsec processing has *not* been 2031 * done. 2032 * 2033 * Note that we retain ixa_fragsize across IPsec thus once 2034 * we have picking ixa_fragsize and entered ipsec_out_process we do 2035 * no change the fragsize even if the path MTU changes before 2036 * we reach ip_output_post_ipsec. 2037 * 2038 * In the local case, IRAF_LOOPBACK will be set indicating 2039 * that IFN was generated locally. 2040 * 2041 * ROUTER : IFN could be secure or non-secure. 2042 * 2043 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2044 * packet in error has AH/ESP headers to validate the AH/ESP 2045 * headers. AH/ESP will verify whether there is a valid SA or 2046 * not and send it back. We will fanout again if we have more 2047 * data in the packet. 2048 * 2049 * If the packet in error does not have AH/ESP, we handle it 2050 * like any other case. 2051 * 2052 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2053 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2054 * valid SA or not and send it back. We will fanout again if 2055 * we have more data in the packet. 2056 * 2057 * If the packet in error does not have AH/ESP, we handle it 2058 * like any other case. 2059 * 2060 * The caller must have called icmp_inbound_verify_v4. 2061 */ 2062 static void 2063 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2064 { 2065 uint16_t *up; /* Pointer to ports in ULP header */ 2066 uint32_t ports; /* reversed ports for fanout */ 2067 ipha_t ripha; /* With reversed addresses */ 2068 ipha_t *ipha; /* Inner IP header */ 2069 uint_t hdr_length; /* Inner IP header length */ 2070 tcpha_t *tcpha; 2071 conn_t *connp; 2072 ill_t *ill = ira->ira_ill; 2073 ip_stack_t *ipst = ill->ill_ipst; 2074 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2075 ill_t *rill = ira->ira_rill; 2076 2077 /* Caller already pulled up everything. */ 2078 ipha = (ipha_t *)&icmph[1]; 2079 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2080 ASSERT(mp->b_cont == NULL); 2081 2082 hdr_length = IPH_HDR_LENGTH(ipha); 2083 ira->ira_protocol = ipha->ipha_protocol; 2084 2085 /* 2086 * We need a separate IP header with the source and destination 2087 * addresses reversed to do fanout/classification because the ipha in 2088 * the ICMP error is in the form we sent it out. 2089 */ 2090 ripha.ipha_src = ipha->ipha_dst; 2091 ripha.ipha_dst = ipha->ipha_src; 2092 ripha.ipha_protocol = ipha->ipha_protocol; 2093 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2094 2095 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2096 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2097 ntohl(ipha->ipha_dst), 2098 icmph->icmph_type, icmph->icmph_code)); 2099 2100 switch (ipha->ipha_protocol) { 2101 case IPPROTO_UDP: 2102 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2103 2104 /* Attempt to find a client stream based on port. */ 2105 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2106 ntohs(up[0]), ntohs(up[1]))); 2107 2108 /* Note that we send error to all matches. */ 2109 ira->ira_flags |= IRAF_ICMP_ERROR; 2110 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2111 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2112 return; 2113 2114 case IPPROTO_TCP: 2115 /* 2116 * Find a TCP client stream for this packet. 2117 * Note that we do a reverse lookup since the header is 2118 * in the form we sent it out. 2119 */ 2120 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2121 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2122 ipst); 2123 if (connp == NULL) 2124 goto discard_pkt; 2125 2126 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2127 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2128 mp = ipsec_check_inbound_policy(mp, connp, 2129 ipha, NULL, ira); 2130 if (mp == NULL) { 2131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2132 /* Note that mp is NULL */ 2133 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2134 CONN_DEC_REF(connp); 2135 return; 2136 } 2137 } 2138 2139 ira->ira_flags |= IRAF_ICMP_ERROR; 2140 ira->ira_ill = ira->ira_rill = NULL; 2141 if (IPCL_IS_TCP(connp)) { 2142 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2143 connp->conn_recvicmp, connp, ira, SQ_FILL, 2144 SQTAG_TCP_INPUT_ICMP_ERR); 2145 } else { 2146 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2147 (connp->conn_recv)(connp, mp, NULL, ira); 2148 CONN_DEC_REF(connp); 2149 } 2150 ira->ira_ill = ill; 2151 ira->ira_rill = rill; 2152 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2153 return; 2154 2155 case IPPROTO_SCTP: 2156 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2157 /* Find a SCTP client stream for this packet. */ 2158 ((uint16_t *)&ports)[0] = up[1]; 2159 ((uint16_t *)&ports)[1] = up[0]; 2160 2161 ira->ira_flags |= IRAF_ICMP_ERROR; 2162 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2163 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2164 return; 2165 2166 case IPPROTO_ESP: 2167 case IPPROTO_AH: 2168 if (!ipsec_loaded(ipss)) { 2169 ip_proto_not_sup(mp, ira); 2170 return; 2171 } 2172 2173 if (ipha->ipha_protocol == IPPROTO_ESP) 2174 mp = ipsecesp_icmp_error(mp, ira); 2175 else 2176 mp = ipsecah_icmp_error(mp, ira); 2177 if (mp == NULL) 2178 return; 2179 2180 /* Just in case ipsec didn't preserve the NULL b_cont */ 2181 if (mp->b_cont != NULL) { 2182 if (!pullupmsg(mp, -1)) 2183 goto discard_pkt; 2184 } 2185 2186 /* 2187 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2188 * correct, but we don't use them any more here. 2189 * 2190 * If succesful, the mp has been modified to not include 2191 * the ESP/AH header so we can fanout to the ULP's icmp 2192 * error handler. 2193 */ 2194 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2195 goto truncated; 2196 2197 /* Verify the modified message before any further processes. */ 2198 ipha = (ipha_t *)mp->b_rptr; 2199 hdr_length = IPH_HDR_LENGTH(ipha); 2200 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2201 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2202 freemsg(mp); 2203 return; 2204 } 2205 2206 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2207 return; 2208 2209 case IPPROTO_ENCAP: { 2210 /* Look for self-encapsulated packets that caused an error */ 2211 ipha_t *in_ipha; 2212 2213 /* 2214 * Caller has verified that length has to be 2215 * at least the size of IP header. 2216 */ 2217 ASSERT(hdr_length >= sizeof (ipha_t)); 2218 /* 2219 * Check the sanity of the inner IP header like 2220 * we did for the outer header. 2221 */ 2222 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2223 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2224 goto discard_pkt; 2225 } 2226 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2227 goto discard_pkt; 2228 } 2229 /* Check for Self-encapsulated tunnels */ 2230 if (in_ipha->ipha_src == ipha->ipha_src && 2231 in_ipha->ipha_dst == ipha->ipha_dst) { 2232 2233 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2234 in_ipha); 2235 if (mp == NULL) 2236 goto discard_pkt; 2237 2238 /* 2239 * Just in case self_encap didn't preserve the NULL 2240 * b_cont 2241 */ 2242 if (mp->b_cont != NULL) { 2243 if (!pullupmsg(mp, -1)) 2244 goto discard_pkt; 2245 } 2246 /* 2247 * Note that ira_pktlen and ira_ip_hdr_length are no 2248 * longer correct, but we don't use them any more here. 2249 */ 2250 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2251 goto truncated; 2252 2253 /* 2254 * Verify the modified message before any further 2255 * processes. 2256 */ 2257 ipha = (ipha_t *)mp->b_rptr; 2258 hdr_length = IPH_HDR_LENGTH(ipha); 2259 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2260 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2261 freemsg(mp); 2262 return; 2263 } 2264 2265 /* 2266 * The packet in error is self-encapsualted. 2267 * And we are finding it further encapsulated 2268 * which we could not have possibly generated. 2269 */ 2270 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2271 goto discard_pkt; 2272 } 2273 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2274 return; 2275 } 2276 /* No self-encapsulated */ 2277 /* FALLTHRU */ 2278 } 2279 case IPPROTO_IPV6: 2280 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2281 &ripha.ipha_dst, ipst)) != NULL) { 2282 ira->ira_flags |= IRAF_ICMP_ERROR; 2283 connp->conn_recvicmp(connp, mp, NULL, ira); 2284 CONN_DEC_REF(connp); 2285 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2286 return; 2287 } 2288 /* 2289 * No IP tunnel is interested, fallthrough and see 2290 * if a raw socket will want it. 2291 */ 2292 /* FALLTHRU */ 2293 default: 2294 ira->ira_flags |= IRAF_ICMP_ERROR; 2295 ip_fanout_proto_v4(mp, &ripha, ira); 2296 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2297 return; 2298 } 2299 /* NOTREACHED */ 2300 discard_pkt: 2301 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2302 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2303 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2304 freemsg(mp); 2305 return; 2306 2307 truncated: 2308 /* We pulled up everthing already. Must be truncated */ 2309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2310 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2311 freemsg(mp); 2312 } 2313 2314 /* 2315 * Common IP options parser. 2316 * 2317 * Setup routine: fill in *optp with options-parsing state, then 2318 * tail-call ipoptp_next to return the first option. 2319 */ 2320 uint8_t 2321 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2322 { 2323 uint32_t totallen; /* total length of all options */ 2324 2325 totallen = ipha->ipha_version_and_hdr_length - 2326 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2327 totallen <<= 2; 2328 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2329 optp->ipoptp_end = optp->ipoptp_next + totallen; 2330 optp->ipoptp_flags = 0; 2331 return (ipoptp_next(optp)); 2332 } 2333 2334 /* Like above but without an ipha_t */ 2335 uint8_t 2336 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2337 { 2338 optp->ipoptp_next = opt; 2339 optp->ipoptp_end = optp->ipoptp_next + totallen; 2340 optp->ipoptp_flags = 0; 2341 return (ipoptp_next(optp)); 2342 } 2343 2344 /* 2345 * Common IP options parser: extract next option. 2346 */ 2347 uint8_t 2348 ipoptp_next(ipoptp_t *optp) 2349 { 2350 uint8_t *end = optp->ipoptp_end; 2351 uint8_t *cur = optp->ipoptp_next; 2352 uint8_t opt, len, pointer; 2353 2354 /* 2355 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2356 * has been corrupted. 2357 */ 2358 ASSERT(cur <= end); 2359 2360 if (cur == end) 2361 return (IPOPT_EOL); 2362 2363 opt = cur[IPOPT_OPTVAL]; 2364 2365 /* 2366 * Skip any NOP options. 2367 */ 2368 while (opt == IPOPT_NOP) { 2369 cur++; 2370 if (cur == end) 2371 return (IPOPT_EOL); 2372 opt = cur[IPOPT_OPTVAL]; 2373 } 2374 2375 if (opt == IPOPT_EOL) 2376 return (IPOPT_EOL); 2377 2378 /* 2379 * Option requiring a length. 2380 */ 2381 if ((cur + 1) >= end) { 2382 optp->ipoptp_flags |= IPOPTP_ERROR; 2383 return (IPOPT_EOL); 2384 } 2385 len = cur[IPOPT_OLEN]; 2386 if (len < 2) { 2387 optp->ipoptp_flags |= IPOPTP_ERROR; 2388 return (IPOPT_EOL); 2389 } 2390 optp->ipoptp_cur = cur; 2391 optp->ipoptp_len = len; 2392 optp->ipoptp_next = cur + len; 2393 if (cur + len > end) { 2394 optp->ipoptp_flags |= IPOPTP_ERROR; 2395 return (IPOPT_EOL); 2396 } 2397 2398 /* 2399 * For the options which require a pointer field, make sure 2400 * its there, and make sure it points to either something 2401 * inside this option, or the end of the option. 2402 */ 2403 switch (opt) { 2404 case IPOPT_RR: 2405 case IPOPT_TS: 2406 case IPOPT_LSRR: 2407 case IPOPT_SSRR: 2408 if (len <= IPOPT_OFFSET) { 2409 optp->ipoptp_flags |= IPOPTP_ERROR; 2410 return (opt); 2411 } 2412 pointer = cur[IPOPT_OFFSET]; 2413 if (pointer - 1 > len) { 2414 optp->ipoptp_flags |= IPOPTP_ERROR; 2415 return (opt); 2416 } 2417 break; 2418 } 2419 2420 /* 2421 * Sanity check the pointer field based on the type of the 2422 * option. 2423 */ 2424 switch (opt) { 2425 case IPOPT_RR: 2426 case IPOPT_SSRR: 2427 case IPOPT_LSRR: 2428 if (pointer < IPOPT_MINOFF_SR) 2429 optp->ipoptp_flags |= IPOPTP_ERROR; 2430 break; 2431 case IPOPT_TS: 2432 if (pointer < IPOPT_MINOFF_IT) 2433 optp->ipoptp_flags |= IPOPTP_ERROR; 2434 /* 2435 * Note that the Internet Timestamp option also 2436 * contains two four bit fields (the Overflow field, 2437 * and the Flag field), which follow the pointer 2438 * field. We don't need to check that these fields 2439 * fall within the length of the option because this 2440 * was implicitely done above. We've checked that the 2441 * pointer value is at least IPOPT_MINOFF_IT, and that 2442 * it falls within the option. Since IPOPT_MINOFF_IT > 2443 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2444 */ 2445 ASSERT(len > IPOPT_POS_OV_FLG); 2446 break; 2447 } 2448 2449 return (opt); 2450 } 2451 2452 /* 2453 * Use the outgoing IP header to create an IP_OPTIONS option the way 2454 * it was passed down from the application. 2455 * 2456 * This is compatible with BSD in that it returns 2457 * the reverse source route with the final destination 2458 * as the last entry. The first 4 bytes of the option 2459 * will contain the final destination. 2460 */ 2461 int 2462 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2463 { 2464 ipoptp_t opts; 2465 uchar_t *opt; 2466 uint8_t optval; 2467 uint8_t optlen; 2468 uint32_t len = 0; 2469 uchar_t *buf1 = buf; 2470 uint32_t totallen; 2471 ipaddr_t dst; 2472 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2473 2474 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2475 return (0); 2476 2477 totallen = ipp->ipp_ipv4_options_len; 2478 if (totallen & 0x3) 2479 return (0); 2480 2481 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2482 len += IP_ADDR_LEN; 2483 bzero(buf1, IP_ADDR_LEN); 2484 2485 dst = connp->conn_faddr_v4; 2486 2487 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2488 optval != IPOPT_EOL; 2489 optval = ipoptp_next(&opts)) { 2490 int off; 2491 2492 opt = opts.ipoptp_cur; 2493 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2494 break; 2495 } 2496 optlen = opts.ipoptp_len; 2497 2498 switch (optval) { 2499 case IPOPT_SSRR: 2500 case IPOPT_LSRR: 2501 2502 /* 2503 * Insert destination as the first entry in the source 2504 * route and move down the entries on step. 2505 * The last entry gets placed at buf1. 2506 */ 2507 buf[IPOPT_OPTVAL] = optval; 2508 buf[IPOPT_OLEN] = optlen; 2509 buf[IPOPT_OFFSET] = optlen; 2510 2511 off = optlen - IP_ADDR_LEN; 2512 if (off < 0) { 2513 /* No entries in source route */ 2514 break; 2515 } 2516 /* Last entry in source route if not already set */ 2517 if (dst == INADDR_ANY) 2518 bcopy(opt + off, buf1, IP_ADDR_LEN); 2519 off -= IP_ADDR_LEN; 2520 2521 while (off > 0) { 2522 bcopy(opt + off, 2523 buf + off + IP_ADDR_LEN, 2524 IP_ADDR_LEN); 2525 off -= IP_ADDR_LEN; 2526 } 2527 /* ipha_dst into first slot */ 2528 bcopy(&dst, buf + off + IP_ADDR_LEN, 2529 IP_ADDR_LEN); 2530 buf += optlen; 2531 len += optlen; 2532 break; 2533 2534 default: 2535 bcopy(opt, buf, optlen); 2536 buf += optlen; 2537 len += optlen; 2538 break; 2539 } 2540 } 2541 done: 2542 /* Pad the resulting options */ 2543 while (len & 0x3) { 2544 *buf++ = IPOPT_EOL; 2545 len++; 2546 } 2547 return (len); 2548 } 2549 2550 /* 2551 * Update any record route or timestamp options to include this host. 2552 * Reverse any source route option. 2553 * This routine assumes that the options are well formed i.e. that they 2554 * have already been checked. 2555 */ 2556 static void 2557 icmp_options_update(ipha_t *ipha) 2558 { 2559 ipoptp_t opts; 2560 uchar_t *opt; 2561 uint8_t optval; 2562 ipaddr_t src; /* Our local address */ 2563 ipaddr_t dst; 2564 2565 ip2dbg(("icmp_options_update\n")); 2566 src = ipha->ipha_src; 2567 dst = ipha->ipha_dst; 2568 2569 for (optval = ipoptp_first(&opts, ipha); 2570 optval != IPOPT_EOL; 2571 optval = ipoptp_next(&opts)) { 2572 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2573 opt = opts.ipoptp_cur; 2574 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2575 optval, opts.ipoptp_len)); 2576 switch (optval) { 2577 int off1, off2; 2578 case IPOPT_SSRR: 2579 case IPOPT_LSRR: 2580 /* 2581 * Reverse the source route. The first entry 2582 * should be the next to last one in the current 2583 * source route (the last entry is our address). 2584 * The last entry should be the final destination. 2585 */ 2586 off1 = IPOPT_MINOFF_SR - 1; 2587 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2588 if (off2 < 0) { 2589 /* No entries in source route */ 2590 ip1dbg(( 2591 "icmp_options_update: bad src route\n")); 2592 break; 2593 } 2594 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2595 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2596 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2597 off2 -= IP_ADDR_LEN; 2598 2599 while (off1 < off2) { 2600 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2601 bcopy((char *)opt + off2, (char *)opt + off1, 2602 IP_ADDR_LEN); 2603 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2604 off1 += IP_ADDR_LEN; 2605 off2 -= IP_ADDR_LEN; 2606 } 2607 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2608 break; 2609 } 2610 } 2611 } 2612 2613 /* 2614 * Process received ICMP Redirect messages. 2615 * Assumes the caller has verified that the headers are in the pulled up mblk. 2616 * Consumes mp. 2617 */ 2618 static void 2619 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2620 { 2621 ire_t *ire, *nire; 2622 ire_t *prev_ire; 2623 ipaddr_t src, dst, gateway; 2624 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2625 ipha_t *inner_ipha; /* Inner IP header */ 2626 2627 /* Caller already pulled up everything. */ 2628 inner_ipha = (ipha_t *)&icmph[1]; 2629 src = ipha->ipha_src; 2630 dst = inner_ipha->ipha_dst; 2631 gateway = icmph->icmph_rd_gateway; 2632 /* Make sure the new gateway is reachable somehow. */ 2633 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2634 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2635 /* 2636 * Make sure we had a route for the dest in question and that 2637 * that route was pointing to the old gateway (the source of the 2638 * redirect packet.) 2639 * We do longest match and then compare ire_gateway_addr below. 2640 */ 2641 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2642 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2643 /* 2644 * Check that 2645 * the redirect was not from ourselves 2646 * the new gateway and the old gateway are directly reachable 2647 */ 2648 if (prev_ire == NULL || ire == NULL || 2649 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2650 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2651 !(ire->ire_type & IRE_IF_ALL) || 2652 prev_ire->ire_gateway_addr != src) { 2653 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2654 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2655 freemsg(mp); 2656 if (ire != NULL) 2657 ire_refrele(ire); 2658 if (prev_ire != NULL) 2659 ire_refrele(prev_ire); 2660 return; 2661 } 2662 2663 ire_refrele(prev_ire); 2664 ire_refrele(ire); 2665 2666 /* 2667 * TODO: more precise handling for cases 0, 2, 3, the latter two 2668 * require TOS routing 2669 */ 2670 switch (icmph->icmph_code) { 2671 case 0: 2672 case 1: 2673 /* TODO: TOS specificity for cases 2 and 3 */ 2674 case 2: 2675 case 3: 2676 break; 2677 default: 2678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2679 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2680 freemsg(mp); 2681 return; 2682 } 2683 /* 2684 * Create a Route Association. This will allow us to remember that 2685 * someone we believe told us to use the particular gateway. 2686 */ 2687 ire = ire_create( 2688 (uchar_t *)&dst, /* dest addr */ 2689 (uchar_t *)&ip_g_all_ones, /* mask */ 2690 (uchar_t *)&gateway, /* gateway addr */ 2691 IRE_HOST, 2692 NULL, /* ill */ 2693 ALL_ZONES, 2694 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2695 NULL, /* tsol_gc_t */ 2696 ipst); 2697 2698 if (ire == NULL) { 2699 freemsg(mp); 2700 return; 2701 } 2702 nire = ire_add(ire); 2703 /* Check if it was a duplicate entry */ 2704 if (nire != NULL && nire != ire) { 2705 ASSERT(nire->ire_identical_ref > 1); 2706 ire_delete(nire); 2707 ire_refrele(nire); 2708 nire = NULL; 2709 } 2710 ire = nire; 2711 if (ire != NULL) { 2712 ire_refrele(ire); /* Held in ire_add */ 2713 2714 /* tell routing sockets that we received a redirect */ 2715 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2716 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2717 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2718 } 2719 2720 /* 2721 * Delete any existing IRE_HOST type redirect ires for this destination. 2722 * This together with the added IRE has the effect of 2723 * modifying an existing redirect. 2724 */ 2725 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2726 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2727 if (prev_ire != NULL) { 2728 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2729 ire_delete(prev_ire); 2730 ire_refrele(prev_ire); 2731 } 2732 2733 freemsg(mp); 2734 } 2735 2736 /* 2737 * Generate an ICMP parameter problem message. 2738 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2739 * constructed by the caller. 2740 */ 2741 static void 2742 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2743 { 2744 icmph_t icmph; 2745 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2746 2747 mp = icmp_pkt_err_ok(mp, ira); 2748 if (mp == NULL) 2749 return; 2750 2751 bzero(&icmph, sizeof (icmph_t)); 2752 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2753 icmph.icmph_pp_ptr = ptr; 2754 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2755 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2756 } 2757 2758 /* 2759 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2760 * the ICMP header pointed to by "stuff". (May be called as writer.) 2761 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2762 * an icmp error packet can be sent. 2763 * Assigns an appropriate source address to the packet. If ipha_dst is 2764 * one of our addresses use it for source. Otherwise let ip_output_simple 2765 * pick the source address. 2766 */ 2767 static void 2768 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2769 { 2770 ipaddr_t dst; 2771 icmph_t *icmph; 2772 ipha_t *ipha; 2773 uint_t len_needed; 2774 size_t msg_len; 2775 mblk_t *mp1; 2776 ipaddr_t src; 2777 ire_t *ire; 2778 ip_xmit_attr_t ixas; 2779 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2780 2781 ipha = (ipha_t *)mp->b_rptr; 2782 2783 bzero(&ixas, sizeof (ixas)); 2784 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2785 ixas.ixa_zoneid = ira->ira_zoneid; 2786 ixas.ixa_ifindex = 0; 2787 ixas.ixa_ipst = ipst; 2788 ixas.ixa_cred = kcred; 2789 ixas.ixa_cpid = NOPID; 2790 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2791 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2792 2793 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2794 /* 2795 * Apply IPsec based on how IPsec was applied to 2796 * the packet that had the error. 2797 * 2798 * If it was an outbound packet that caused the ICMP 2799 * error, then the caller will have setup the IRA 2800 * appropriately. 2801 */ 2802 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2803 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2804 /* Note: mp already consumed and ip_drop_packet done */ 2805 return; 2806 } 2807 } else { 2808 /* 2809 * This is in clear. The icmp message we are building 2810 * here should go out in clear, independent of our policy. 2811 */ 2812 ixas.ixa_flags |= IXAF_NO_IPSEC; 2813 } 2814 2815 /* Remember our eventual destination */ 2816 dst = ipha->ipha_src; 2817 2818 /* 2819 * If the packet was for one of our unicast addresses, make 2820 * sure we respond with that as the source. Otherwise 2821 * have ip_output_simple pick the source address. 2822 */ 2823 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2824 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2825 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2826 if (ire != NULL) { 2827 ire_refrele(ire); 2828 src = ipha->ipha_dst; 2829 } else { 2830 src = INADDR_ANY; 2831 ixas.ixa_flags |= IXAF_SET_SOURCE; 2832 } 2833 2834 /* 2835 * Check if we can send back more then 8 bytes in addition to 2836 * the IP header. We try to send 64 bytes of data and the internal 2837 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2838 */ 2839 len_needed = IPH_HDR_LENGTH(ipha); 2840 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2841 ipha->ipha_protocol == IPPROTO_IPV6) { 2842 if (!pullupmsg(mp, -1)) { 2843 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2844 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2845 freemsg(mp); 2846 return; 2847 } 2848 ipha = (ipha_t *)mp->b_rptr; 2849 2850 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2851 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2852 len_needed)); 2853 } else { 2854 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2855 2856 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2857 len_needed += ip_hdr_length_v6(mp, ip6h); 2858 } 2859 } 2860 len_needed += ipst->ips_ip_icmp_return; 2861 msg_len = msgdsize(mp); 2862 if (msg_len > len_needed) { 2863 (void) adjmsg(mp, len_needed - msg_len); 2864 msg_len = len_needed; 2865 } 2866 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2867 if (mp1 == NULL) { 2868 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2869 freemsg(mp); 2870 return; 2871 } 2872 mp1->b_cont = mp; 2873 mp = mp1; 2874 2875 /* 2876 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2877 * node generates be accepted in peace by all on-host destinations. 2878 * If we do NOT assume that all on-host destinations trust 2879 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2880 * (Look for IXAF_TRUSTED_ICMP). 2881 */ 2882 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2883 2884 ipha = (ipha_t *)mp->b_rptr; 2885 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2886 *ipha = icmp_ipha; 2887 ipha->ipha_src = src; 2888 ipha->ipha_dst = dst; 2889 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2890 msg_len += sizeof (icmp_ipha) + len; 2891 if (msg_len > IP_MAXPACKET) { 2892 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2893 msg_len = IP_MAXPACKET; 2894 } 2895 ipha->ipha_length = htons((uint16_t)msg_len); 2896 icmph = (icmph_t *)&ipha[1]; 2897 bcopy(stuff, icmph, len); 2898 icmph->icmph_checksum = 0; 2899 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2900 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2901 2902 (void) ip_output_simple(mp, &ixas); 2903 ixa_cleanup(&ixas); 2904 } 2905 2906 /* 2907 * Determine if an ICMP error packet can be sent given the rate limit. 2908 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2909 * in milliseconds) and a burst size. Burst size number of packets can 2910 * be sent arbitrarely closely spaced. 2911 * The state is tracked using two variables to implement an approximate 2912 * token bucket filter: 2913 * icmp_pkt_err_last - lbolt value when the last burst started 2914 * icmp_pkt_err_sent - number of packets sent in current burst 2915 */ 2916 boolean_t 2917 icmp_err_rate_limit(ip_stack_t *ipst) 2918 { 2919 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2920 uint_t refilled; /* Number of packets refilled in tbf since last */ 2921 /* Guard against changes by loading into local variable */ 2922 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2923 2924 if (err_interval == 0) 2925 return (B_FALSE); 2926 2927 if (ipst->ips_icmp_pkt_err_last > now) { 2928 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2929 ipst->ips_icmp_pkt_err_last = 0; 2930 ipst->ips_icmp_pkt_err_sent = 0; 2931 } 2932 /* 2933 * If we are in a burst update the token bucket filter. 2934 * Update the "last" time to be close to "now" but make sure 2935 * we don't loose precision. 2936 */ 2937 if (ipst->ips_icmp_pkt_err_sent != 0) { 2938 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2939 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2940 ipst->ips_icmp_pkt_err_sent = 0; 2941 } else { 2942 ipst->ips_icmp_pkt_err_sent -= refilled; 2943 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2944 } 2945 } 2946 if (ipst->ips_icmp_pkt_err_sent == 0) { 2947 /* Start of new burst */ 2948 ipst->ips_icmp_pkt_err_last = now; 2949 } 2950 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2951 ipst->ips_icmp_pkt_err_sent++; 2952 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2953 ipst->ips_icmp_pkt_err_sent)); 2954 return (B_FALSE); 2955 } 2956 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2957 return (B_TRUE); 2958 } 2959 2960 /* 2961 * Check if it is ok to send an IPv4 ICMP error packet in 2962 * response to the IPv4 packet in mp. 2963 * Free the message and return null if no 2964 * ICMP error packet should be sent. 2965 */ 2966 static mblk_t * 2967 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2968 { 2969 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2970 icmph_t *icmph; 2971 ipha_t *ipha; 2972 uint_t len_needed; 2973 2974 if (!mp) 2975 return (NULL); 2976 ipha = (ipha_t *)mp->b_rptr; 2977 if (ip_csum_hdr(ipha)) { 2978 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2979 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2980 freemsg(mp); 2981 return (NULL); 2982 } 2983 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2984 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2985 CLASSD(ipha->ipha_dst) || 2986 CLASSD(ipha->ipha_src) || 2987 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2988 /* Note: only errors to the fragment with offset 0 */ 2989 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2990 freemsg(mp); 2991 return (NULL); 2992 } 2993 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2994 /* 2995 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2996 * errors in response to any ICMP errors. 2997 */ 2998 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 2999 if (mp->b_wptr - mp->b_rptr < len_needed) { 3000 if (!pullupmsg(mp, len_needed)) { 3001 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3002 freemsg(mp); 3003 return (NULL); 3004 } 3005 ipha = (ipha_t *)mp->b_rptr; 3006 } 3007 icmph = (icmph_t *) 3008 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3009 switch (icmph->icmph_type) { 3010 case ICMP_DEST_UNREACHABLE: 3011 case ICMP_SOURCE_QUENCH: 3012 case ICMP_TIME_EXCEEDED: 3013 case ICMP_PARAM_PROBLEM: 3014 case ICMP_REDIRECT: 3015 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3016 freemsg(mp); 3017 return (NULL); 3018 default: 3019 break; 3020 } 3021 } 3022 /* 3023 * If this is a labeled system, then check to see if we're allowed to 3024 * send a response to this particular sender. If not, then just drop. 3025 */ 3026 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3027 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3028 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3029 freemsg(mp); 3030 return (NULL); 3031 } 3032 if (icmp_err_rate_limit(ipst)) { 3033 /* 3034 * Only send ICMP error packets every so often. 3035 * This should be done on a per port/source basis, 3036 * but for now this will suffice. 3037 */ 3038 freemsg(mp); 3039 return (NULL); 3040 } 3041 return (mp); 3042 } 3043 3044 /* 3045 * Called when a packet was sent out the same link that it arrived on. 3046 * Check if it is ok to send a redirect and then send it. 3047 */ 3048 void 3049 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3050 ip_recv_attr_t *ira) 3051 { 3052 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3053 ipaddr_t src, nhop; 3054 mblk_t *mp1; 3055 ire_t *nhop_ire; 3056 3057 /* 3058 * Check the source address to see if it originated 3059 * on the same logical subnet it is going back out on. 3060 * If so, we should be able to send it a redirect. 3061 * Avoid sending a redirect if the destination 3062 * is directly connected (i.e., we matched an IRE_ONLINK), 3063 * or if the packet was source routed out this interface. 3064 * 3065 * We avoid sending a redirect if the 3066 * destination is directly connected 3067 * because it is possible that multiple 3068 * IP subnets may have been configured on 3069 * the link, and the source may not 3070 * be on the same subnet as ip destination, 3071 * even though they are on the same 3072 * physical link. 3073 */ 3074 if ((ire->ire_type & IRE_ONLINK) || 3075 ip_source_routed(ipha, ipst)) 3076 return; 3077 3078 nhop_ire = ire_nexthop(ire); 3079 if (nhop_ire == NULL) 3080 return; 3081 3082 nhop = nhop_ire->ire_addr; 3083 3084 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3085 ire_t *ire2; 3086 3087 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3088 mutex_enter(&nhop_ire->ire_lock); 3089 ire2 = nhop_ire->ire_dep_parent; 3090 if (ire2 != NULL) 3091 ire_refhold(ire2); 3092 mutex_exit(&nhop_ire->ire_lock); 3093 ire_refrele(nhop_ire); 3094 nhop_ire = ire2; 3095 } 3096 if (nhop_ire == NULL) 3097 return; 3098 3099 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3100 3101 src = ipha->ipha_src; 3102 3103 /* 3104 * We look at the interface ire for the nexthop, 3105 * to see if ipha_src is in the same subnet 3106 * as the nexthop. 3107 */ 3108 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3109 /* 3110 * The source is directly connected. 3111 */ 3112 mp1 = copymsg(mp); 3113 if (mp1 != NULL) { 3114 icmp_send_redirect(mp1, nhop, ira); 3115 } 3116 } 3117 ire_refrele(nhop_ire); 3118 } 3119 3120 /* 3121 * Generate an ICMP redirect message. 3122 */ 3123 static void 3124 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3125 { 3126 icmph_t icmph; 3127 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3128 3129 mp = icmp_pkt_err_ok(mp, ira); 3130 if (mp == NULL) 3131 return; 3132 3133 bzero(&icmph, sizeof (icmph_t)); 3134 icmph.icmph_type = ICMP_REDIRECT; 3135 icmph.icmph_code = 1; 3136 icmph.icmph_rd_gateway = gateway; 3137 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3138 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3139 } 3140 3141 /* 3142 * Generate an ICMP time exceeded message. 3143 */ 3144 void 3145 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3146 { 3147 icmph_t icmph; 3148 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3149 3150 mp = icmp_pkt_err_ok(mp, ira); 3151 if (mp == NULL) 3152 return; 3153 3154 bzero(&icmph, sizeof (icmph_t)); 3155 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3156 icmph.icmph_code = code; 3157 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3158 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3159 } 3160 3161 /* 3162 * Generate an ICMP unreachable message. 3163 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3164 * constructed by the caller. 3165 */ 3166 void 3167 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3168 { 3169 icmph_t icmph; 3170 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3171 3172 mp = icmp_pkt_err_ok(mp, ira); 3173 if (mp == NULL) 3174 return; 3175 3176 bzero(&icmph, sizeof (icmph_t)); 3177 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3178 icmph.icmph_code = code; 3179 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3180 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3181 } 3182 3183 /* 3184 * Latch in the IPsec state for a stream based the policy in the listener 3185 * and the actions in the ip_recv_attr_t. 3186 * Called directly from TCP and SCTP. 3187 */ 3188 boolean_t 3189 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3190 { 3191 ASSERT(lconnp->conn_policy != NULL); 3192 ASSERT(connp->conn_policy == NULL); 3193 3194 IPPH_REFHOLD(lconnp->conn_policy); 3195 connp->conn_policy = lconnp->conn_policy; 3196 3197 if (ira->ira_ipsec_action != NULL) { 3198 if (connp->conn_latch == NULL) { 3199 connp->conn_latch = iplatch_create(); 3200 if (connp->conn_latch == NULL) 3201 return (B_FALSE); 3202 } 3203 ipsec_latch_inbound(connp, ira); 3204 } 3205 return (B_TRUE); 3206 } 3207 3208 /* 3209 * Verify whether or not the IP address is a valid local address. 3210 * Could be a unicast, including one for a down interface. 3211 * If allow_mcbc then a multicast or broadcast address is also 3212 * acceptable. 3213 * 3214 * In the case of a broadcast/multicast address, however, the 3215 * upper protocol is expected to reset the src address 3216 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3217 * no packets are emitted with broadcast/multicast address as 3218 * source address (that violates hosts requirements RFC 1122) 3219 * The addresses valid for bind are: 3220 * (1) - INADDR_ANY (0) 3221 * (2) - IP address of an UP interface 3222 * (3) - IP address of a DOWN interface 3223 * (4) - valid local IP broadcast addresses. In this case 3224 * the conn will only receive packets destined to 3225 * the specified broadcast address. 3226 * (5) - a multicast address. In this case 3227 * the conn will only receive packets destined to 3228 * the specified multicast address. Note: the 3229 * application still has to issue an 3230 * IP_ADD_MEMBERSHIP socket option. 3231 * 3232 * In all the above cases, the bound address must be valid in the current zone. 3233 * When the address is loopback, multicast or broadcast, there might be many 3234 * matching IREs so bind has to look up based on the zone. 3235 */ 3236 ip_laddr_t 3237 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3238 ip_stack_t *ipst, boolean_t allow_mcbc) 3239 { 3240 ire_t *src_ire; 3241 3242 ASSERT(src_addr != INADDR_ANY); 3243 3244 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3245 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3246 3247 /* 3248 * If an address other than in6addr_any is requested, 3249 * we verify that it is a valid address for bind 3250 * Note: Following code is in if-else-if form for 3251 * readability compared to a condition check. 3252 */ 3253 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3254 /* 3255 * (2) Bind to address of local UP interface 3256 */ 3257 ire_refrele(src_ire); 3258 return (IPVL_UNICAST_UP); 3259 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3260 /* 3261 * (4) Bind to broadcast address 3262 */ 3263 ire_refrele(src_ire); 3264 if (allow_mcbc) 3265 return (IPVL_BCAST); 3266 else 3267 return (IPVL_BAD); 3268 } else if (CLASSD(src_addr)) { 3269 /* (5) bind to multicast address. */ 3270 if (src_ire != NULL) 3271 ire_refrele(src_ire); 3272 3273 if (allow_mcbc) 3274 return (IPVL_MCAST); 3275 else 3276 return (IPVL_BAD); 3277 } else { 3278 ipif_t *ipif; 3279 3280 /* 3281 * (3) Bind to address of local DOWN interface? 3282 * (ipif_lookup_addr() looks up all interfaces 3283 * but we do not get here for UP interfaces 3284 * - case (2) above) 3285 */ 3286 if (src_ire != NULL) 3287 ire_refrele(src_ire); 3288 3289 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3290 if (ipif == NULL) 3291 return (IPVL_BAD); 3292 3293 /* Not a useful source? */ 3294 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3295 ipif_refrele(ipif); 3296 return (IPVL_BAD); 3297 } 3298 ipif_refrele(ipif); 3299 return (IPVL_UNICAST_DOWN); 3300 } 3301 } 3302 3303 /* 3304 * Insert in the bind fanout for IPv4 and IPv6. 3305 * The caller should already have used ip_laddr_verify_v*() before calling 3306 * this. 3307 */ 3308 int 3309 ip_laddr_fanout_insert(conn_t *connp) 3310 { 3311 int error; 3312 3313 /* 3314 * Allow setting new policies. For example, disconnects result 3315 * in us being called. As we would have set conn_policy_cached 3316 * to B_TRUE before, we should set it to B_FALSE, so that policy 3317 * can change after the disconnect. 3318 */ 3319 connp->conn_policy_cached = B_FALSE; 3320 3321 error = ipcl_bind_insert(connp); 3322 if (error != 0) { 3323 if (connp->conn_anon_port) { 3324 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3325 connp->conn_mlp_type, connp->conn_proto, 3326 ntohs(connp->conn_lport), B_FALSE); 3327 } 3328 connp->conn_mlp_type = mlptSingle; 3329 } 3330 return (error); 3331 } 3332 3333 /* 3334 * Verify that both the source and destination addresses are valid. If 3335 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3336 * i.e. have no route to it. Protocols like TCP want to verify destination 3337 * reachability, while tunnels do not. 3338 * 3339 * Determine the route, the interface, and (optionally) the source address 3340 * to use to reach a given destination. 3341 * Note that we allow connect to broadcast and multicast addresses when 3342 * IPDF_ALLOW_MCBC is set. 3343 * first_hop and dst_addr are normally the same, but if source routing 3344 * they will differ; in that case the first_hop is what we'll use for the 3345 * routing lookup but the dce and label checks will be done on dst_addr, 3346 * 3347 * If uinfo is set, then we fill in the best available information 3348 * we have for the destination. This is based on (in priority order) any 3349 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3350 * ill_mtu. 3351 * 3352 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3353 * always do the label check on dst_addr. 3354 */ 3355 int 3356 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3357 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3358 { 3359 ire_t *ire = NULL; 3360 int error = 0; 3361 ipaddr_t setsrc; /* RTF_SETSRC */ 3362 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3363 ip_stack_t *ipst = ixa->ixa_ipst; 3364 dce_t *dce; 3365 uint_t pmtu; 3366 uint_t generation; 3367 nce_t *nce; 3368 ill_t *ill = NULL; 3369 boolean_t multirt = B_FALSE; 3370 3371 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3372 3373 /* 3374 * We never send to zero; the ULPs map it to the loopback address. 3375 * We can't allow it since we use zero to mean unitialized in some 3376 * places. 3377 */ 3378 ASSERT(dst_addr != INADDR_ANY); 3379 3380 if (is_system_labeled()) { 3381 ts_label_t *tsl = NULL; 3382 3383 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3384 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3385 if (error != 0) 3386 return (error); 3387 if (tsl != NULL) { 3388 /* Update the label */ 3389 ip_xmit_attr_replace_tsl(ixa, tsl); 3390 } 3391 } 3392 3393 setsrc = INADDR_ANY; 3394 /* 3395 * Select a route; For IPMP interfaces, we would only select 3396 * a "hidden" route (i.e., going through a specific under_ill) 3397 * if ixa_ifindex has been specified. 3398 */ 3399 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3400 &generation, &setsrc, &error, &multirt); 3401 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3402 if (error != 0) 3403 goto bad_addr; 3404 3405 /* 3406 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3407 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3408 * Otherwise the destination needn't be reachable. 3409 * 3410 * If we match on a reject or black hole, then we've got a 3411 * local failure. May as well fail out the connect() attempt, 3412 * since it's never going to succeed. 3413 */ 3414 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3415 /* 3416 * If we're verifying destination reachability, we always want 3417 * to complain here. 3418 * 3419 * If we're not verifying destination reachability but the 3420 * destination has a route, we still want to fail on the 3421 * temporary address and broadcast address tests. 3422 * 3423 * In both cases do we let the code continue so some reasonable 3424 * information is returned to the caller. That enables the 3425 * caller to use (and even cache) the IRE. conn_ip_ouput will 3426 * use the generation mismatch path to check for the unreachable 3427 * case thereby avoiding any specific check in the main path. 3428 */ 3429 ASSERT(generation == IRE_GENERATION_VERIFY); 3430 if (flags & IPDF_VERIFY_DST) { 3431 /* 3432 * Set errno but continue to set up ixa_ire to be 3433 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3434 * That allows callers to use ip_output to get an 3435 * ICMP error back. 3436 */ 3437 if (!(ire->ire_type & IRE_HOST)) 3438 error = ENETUNREACH; 3439 else 3440 error = EHOSTUNREACH; 3441 } 3442 } 3443 3444 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3445 !(flags & IPDF_ALLOW_MCBC)) { 3446 ire_refrele(ire); 3447 ire = ire_reject(ipst, B_FALSE); 3448 generation = IRE_GENERATION_VERIFY; 3449 error = ENETUNREACH; 3450 } 3451 3452 /* Cache things */ 3453 if (ixa->ixa_ire != NULL) 3454 ire_refrele_notr(ixa->ixa_ire); 3455 #ifdef DEBUG 3456 ire_refhold_notr(ire); 3457 ire_refrele(ire); 3458 #endif 3459 ixa->ixa_ire = ire; 3460 ixa->ixa_ire_generation = generation; 3461 3462 /* 3463 * For multicast with multirt we have a flag passed back from 3464 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3465 * possible multicast address. 3466 * We also need a flag for multicast since we can't check 3467 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3468 */ 3469 if (multirt) { 3470 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3471 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3472 } else { 3473 ixa->ixa_postfragfn = ire->ire_postfragfn; 3474 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3475 } 3476 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3477 /* Get an nce to cache. */ 3478 nce = ire_to_nce(ire, firsthop, NULL); 3479 if (nce == NULL) { 3480 /* Allocation failure? */ 3481 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3482 } else { 3483 if (ixa->ixa_nce != NULL) 3484 nce_refrele(ixa->ixa_nce); 3485 ixa->ixa_nce = nce; 3486 } 3487 } 3488 3489 /* 3490 * If the source address is a loopback address, the 3491 * destination had best be local or multicast. 3492 * If we are sending to an IRE_LOCAL using a loopback source then 3493 * it had better be the same zoneid. 3494 */ 3495 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3496 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3497 ire = NULL; /* Stored in ixa_ire */ 3498 error = EADDRNOTAVAIL; 3499 goto bad_addr; 3500 } 3501 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3502 ire = NULL; /* Stored in ixa_ire */ 3503 error = EADDRNOTAVAIL; 3504 goto bad_addr; 3505 } 3506 } 3507 if (ire->ire_type & IRE_BROADCAST) { 3508 /* 3509 * If the ULP didn't have a specified source, then we 3510 * make sure we reselect the source when sending 3511 * broadcasts out different interfaces. 3512 */ 3513 if (flags & IPDF_SELECT_SRC) 3514 ixa->ixa_flags |= IXAF_SET_SOURCE; 3515 else 3516 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3517 } 3518 3519 /* 3520 * Does the caller want us to pick a source address? 3521 */ 3522 if (flags & IPDF_SELECT_SRC) { 3523 ipaddr_t src_addr; 3524 3525 /* 3526 * We use use ire_nexthop_ill to avoid the under ipmp 3527 * interface for source address selection. Note that for ipmp 3528 * probe packets, ixa_ifindex would have been specified, and 3529 * the ip_select_route() invocation would have picked an ire 3530 * will ire_ill pointing at an under interface. 3531 */ 3532 ill = ire_nexthop_ill(ire); 3533 3534 /* If unreachable we have no ill but need some source */ 3535 if (ill == NULL) { 3536 src_addr = htonl(INADDR_LOOPBACK); 3537 /* Make sure we look for a better source address */ 3538 generation = SRC_GENERATION_VERIFY; 3539 } else { 3540 error = ip_select_source_v4(ill, setsrc, dst_addr, 3541 ixa->ixa_multicast_ifaddr, zoneid, 3542 ipst, &src_addr, &generation, NULL); 3543 if (error != 0) { 3544 ire = NULL; /* Stored in ixa_ire */ 3545 goto bad_addr; 3546 } 3547 } 3548 3549 /* 3550 * We allow the source address to to down. 3551 * However, we check that we don't use the loopback address 3552 * as a source when sending out on the wire. 3553 */ 3554 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3555 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3556 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3557 ire = NULL; /* Stored in ixa_ire */ 3558 error = EADDRNOTAVAIL; 3559 goto bad_addr; 3560 } 3561 3562 *src_addrp = src_addr; 3563 ixa->ixa_src_generation = generation; 3564 } 3565 3566 if (flags & IPDF_UNIQUE_DCE) { 3567 /* Fallback to the default dce if allocation fails */ 3568 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3569 if (dce != NULL) 3570 generation = dce->dce_generation; 3571 else 3572 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3573 } else { 3574 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3575 } 3576 ASSERT(dce != NULL); 3577 if (ixa->ixa_dce != NULL) 3578 dce_refrele_notr(ixa->ixa_dce); 3579 #ifdef DEBUG 3580 dce_refhold_notr(dce); 3581 dce_refrele(dce); 3582 #endif 3583 ixa->ixa_dce = dce; 3584 ixa->ixa_dce_generation = generation; 3585 3586 /* 3587 * Make sure we don't leave an unreachable ixa_nce in place 3588 * since ip_select_route is used when we unplumb i.e., remove 3589 * references on ixa_ire, ixa_nce, and ixa_dce. 3590 */ 3591 nce = ixa->ixa_nce; 3592 if (nce != NULL && nce->nce_is_condemned) { 3593 nce_refrele(nce); 3594 ixa->ixa_nce = NULL; 3595 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3596 } 3597 3598 /* 3599 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3600 * However, we can't do it for IPv4 multicast or broadcast. 3601 */ 3602 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3603 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3604 3605 /* 3606 * Set initial value for fragmentation limit. Either conn_ip_output 3607 * or ULP might updates it when there are routing changes. 3608 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3609 */ 3610 pmtu = ip_get_pmtu(ixa); 3611 ixa->ixa_fragsize = pmtu; 3612 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3613 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3614 ixa->ixa_pmtu = pmtu; 3615 3616 /* 3617 * Extract information useful for some transports. 3618 * First we look for DCE metrics. Then we take what we have in 3619 * the metrics in the route, where the offlink is used if we have 3620 * one. 3621 */ 3622 if (uinfo != NULL) { 3623 bzero(uinfo, sizeof (*uinfo)); 3624 3625 if (dce->dce_flags & DCEF_UINFO) 3626 *uinfo = dce->dce_uinfo; 3627 3628 rts_merge_metrics(uinfo, &ire->ire_metrics); 3629 3630 /* Allow ire_metrics to decrease the path MTU from above */ 3631 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3632 uinfo->iulp_mtu = pmtu; 3633 3634 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3635 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3636 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3637 } 3638 3639 if (ill != NULL) 3640 ill_refrele(ill); 3641 3642 return (error); 3643 3644 bad_addr: 3645 if (ire != NULL) 3646 ire_refrele(ire); 3647 3648 if (ill != NULL) 3649 ill_refrele(ill); 3650 3651 /* 3652 * Make sure we don't leave an unreachable ixa_nce in place 3653 * since ip_select_route is used when we unplumb i.e., remove 3654 * references on ixa_ire, ixa_nce, and ixa_dce. 3655 */ 3656 nce = ixa->ixa_nce; 3657 if (nce != NULL && nce->nce_is_condemned) { 3658 nce_refrele(nce); 3659 ixa->ixa_nce = NULL; 3660 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3661 } 3662 3663 return (error); 3664 } 3665 3666 3667 /* 3668 * Get the base MTU for the case when path MTU discovery is not used. 3669 * Takes the MTU of the IRE into account. 3670 */ 3671 uint_t 3672 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3673 { 3674 uint_t mtu = ill->ill_mtu; 3675 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3676 3677 if (iremtu != 0 && iremtu < mtu) 3678 mtu = iremtu; 3679 3680 return (mtu); 3681 } 3682 3683 /* 3684 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3685 * Assumes that ixa_ire, dce, and nce have already been set up. 3686 * 3687 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3688 * We avoid path MTU discovery if it is disabled with ndd. 3689 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3690 * 3691 * NOTE: We also used to turn it off for source routed packets. That 3692 * is no longer required since the dce is per final destination. 3693 */ 3694 uint_t 3695 ip_get_pmtu(ip_xmit_attr_t *ixa) 3696 { 3697 ip_stack_t *ipst = ixa->ixa_ipst; 3698 dce_t *dce; 3699 nce_t *nce; 3700 ire_t *ire; 3701 uint_t pmtu; 3702 3703 ire = ixa->ixa_ire; 3704 dce = ixa->ixa_dce; 3705 nce = ixa->ixa_nce; 3706 3707 /* 3708 * If path MTU discovery has been turned off by ndd, then we ignore 3709 * any dce_pmtu and for IPv4 we will not set DF. 3710 */ 3711 if (!ipst->ips_ip_path_mtu_discovery) 3712 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3713 3714 pmtu = IP_MAXPACKET; 3715 /* 3716 * Decide whether whether IPv4 sets DF 3717 * For IPv6 "no DF" means to use the 1280 mtu 3718 */ 3719 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3720 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3721 } else { 3722 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3723 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3724 pmtu = IPV6_MIN_MTU; 3725 } 3726 3727 /* Check if the PMTU is to old before we use it */ 3728 if ((dce->dce_flags & DCEF_PMTU) && 3729 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3730 ipst->ips_ip_pathmtu_interval) { 3731 /* 3732 * Older than 20 minutes. Drop the path MTU information. 3733 */ 3734 mutex_enter(&dce->dce_lock); 3735 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3736 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3737 mutex_exit(&dce->dce_lock); 3738 dce_increment_generation(dce); 3739 } 3740 3741 /* The metrics on the route can lower the path MTU */ 3742 if (ire->ire_metrics.iulp_mtu != 0 && 3743 ire->ire_metrics.iulp_mtu < pmtu) 3744 pmtu = ire->ire_metrics.iulp_mtu; 3745 3746 /* 3747 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3748 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3749 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3750 */ 3751 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3752 if (dce->dce_flags & DCEF_PMTU) { 3753 if (dce->dce_pmtu < pmtu) 3754 pmtu = dce->dce_pmtu; 3755 3756 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3757 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3758 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3759 } else { 3760 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3761 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3762 } 3763 } else { 3764 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3765 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3766 } 3767 } 3768 3769 /* 3770 * If we have an IRE_LOCAL we use the loopback mtu instead of 3771 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3772 * mtu as IRE_LOOPBACK. 3773 */ 3774 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3775 uint_t loopback_mtu; 3776 3777 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3778 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3779 3780 if (loopback_mtu < pmtu) 3781 pmtu = loopback_mtu; 3782 } else if (nce != NULL) { 3783 /* 3784 * Make sure we don't exceed the interface MTU. 3785 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3786 * an ill. We'd use the above IP_MAXPACKET in that case just 3787 * to tell the transport something larger than zero. 3788 */ 3789 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3790 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3791 if (nce->nce_common->ncec_ill != nce->nce_ill && 3792 nce->nce_ill->ill_mtu < pmtu) { 3793 /* 3794 * for interfaces in an IPMP group, the mtu of 3795 * the nce_ill (under_ill) could be different 3796 * from the mtu of the ncec_ill, so we take the 3797 * min of the two. 3798 */ 3799 pmtu = nce->nce_ill->ill_mtu; 3800 } 3801 } 3802 3803 /* 3804 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3805 * Only applies to IPv6. 3806 */ 3807 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3808 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3809 switch (ixa->ixa_use_min_mtu) { 3810 case IPV6_USE_MIN_MTU_MULTICAST: 3811 if (ire->ire_type & IRE_MULTICAST) 3812 pmtu = IPV6_MIN_MTU; 3813 break; 3814 case IPV6_USE_MIN_MTU_ALWAYS: 3815 pmtu = IPV6_MIN_MTU; 3816 break; 3817 case IPV6_USE_MIN_MTU_NEVER: 3818 break; 3819 } 3820 } else { 3821 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3822 if (ire->ire_type & IRE_MULTICAST) 3823 pmtu = IPV6_MIN_MTU; 3824 } 3825 } 3826 3827 /* 3828 * After receiving an ICMPv6 "packet too big" message with a 3829 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3830 * will insert a 8-byte fragment header in every packet. We compensate 3831 * for those cases by returning a smaller path MTU to the ULP. 3832 * 3833 * In the case of CGTP then ip_output will add a fragment header. 3834 * Make sure there is room for it by telling a smaller number 3835 * to the transport. 3836 * 3837 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3838 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3839 * which is the size of the packets it can send. 3840 */ 3841 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3842 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3843 (ire->ire_flags & RTF_MULTIRT) || 3844 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3845 pmtu -= sizeof (ip6_frag_t); 3846 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3847 } 3848 } 3849 3850 return (pmtu); 3851 } 3852 3853 /* 3854 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3855 * the final piece where we don't. Return a pointer to the first mblk in the 3856 * result, and update the pointer to the next mblk to chew on. If anything 3857 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3858 * NULL pointer. 3859 */ 3860 mblk_t * 3861 ip_carve_mp(mblk_t **mpp, ssize_t len) 3862 { 3863 mblk_t *mp0; 3864 mblk_t *mp1; 3865 mblk_t *mp2; 3866 3867 if (!len || !mpp || !(mp0 = *mpp)) 3868 return (NULL); 3869 /* If we aren't going to consume the first mblk, we need a dup. */ 3870 if (mp0->b_wptr - mp0->b_rptr > len) { 3871 mp1 = dupb(mp0); 3872 if (mp1) { 3873 /* Partition the data between the two mblks. */ 3874 mp1->b_wptr = mp1->b_rptr + len; 3875 mp0->b_rptr = mp1->b_wptr; 3876 /* 3877 * after adjustments if mblk not consumed is now 3878 * unaligned, try to align it. If this fails free 3879 * all messages and let upper layer recover. 3880 */ 3881 if (!OK_32PTR(mp0->b_rptr)) { 3882 if (!pullupmsg(mp0, -1)) { 3883 freemsg(mp0); 3884 freemsg(mp1); 3885 *mpp = NULL; 3886 return (NULL); 3887 } 3888 } 3889 } 3890 return (mp1); 3891 } 3892 /* Eat through as many mblks as we need to get len bytes. */ 3893 len -= mp0->b_wptr - mp0->b_rptr; 3894 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3895 if (mp2->b_wptr - mp2->b_rptr > len) { 3896 /* 3897 * We won't consume the entire last mblk. Like 3898 * above, dup and partition it. 3899 */ 3900 mp1->b_cont = dupb(mp2); 3901 mp1 = mp1->b_cont; 3902 if (!mp1) { 3903 /* 3904 * Trouble. Rather than go to a lot of 3905 * trouble to clean up, we free the messages. 3906 * This won't be any worse than losing it on 3907 * the wire. 3908 */ 3909 freemsg(mp0); 3910 freemsg(mp2); 3911 *mpp = NULL; 3912 return (NULL); 3913 } 3914 mp1->b_wptr = mp1->b_rptr + len; 3915 mp2->b_rptr = mp1->b_wptr; 3916 /* 3917 * after adjustments if mblk not consumed is now 3918 * unaligned, try to align it. If this fails free 3919 * all messages and let upper layer recover. 3920 */ 3921 if (!OK_32PTR(mp2->b_rptr)) { 3922 if (!pullupmsg(mp2, -1)) { 3923 freemsg(mp0); 3924 freemsg(mp2); 3925 *mpp = NULL; 3926 return (NULL); 3927 } 3928 } 3929 *mpp = mp2; 3930 return (mp0); 3931 } 3932 /* Decrement len by the amount we just got. */ 3933 len -= mp2->b_wptr - mp2->b_rptr; 3934 } 3935 /* 3936 * len should be reduced to zero now. If not our caller has 3937 * screwed up. 3938 */ 3939 if (len) { 3940 /* Shouldn't happen! */ 3941 freemsg(mp0); 3942 *mpp = NULL; 3943 return (NULL); 3944 } 3945 /* 3946 * We consumed up to exactly the end of an mblk. Detach the part 3947 * we are returning from the rest of the chain. 3948 */ 3949 mp1->b_cont = NULL; 3950 *mpp = mp2; 3951 return (mp0); 3952 } 3953 3954 /* The ill stream is being unplumbed. Called from ip_close */ 3955 int 3956 ip_modclose(ill_t *ill) 3957 { 3958 boolean_t success; 3959 ipsq_t *ipsq; 3960 ipif_t *ipif; 3961 queue_t *q = ill->ill_rq; 3962 ip_stack_t *ipst = ill->ill_ipst; 3963 int i; 3964 arl_ill_common_t *ai = ill->ill_common; 3965 3966 /* 3967 * The punlink prior to this may have initiated a capability 3968 * negotiation. But ipsq_enter will block until that finishes or 3969 * times out. 3970 */ 3971 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3972 3973 /* 3974 * Open/close/push/pop is guaranteed to be single threaded 3975 * per stream by STREAMS. FS guarantees that all references 3976 * from top are gone before close is called. So there can't 3977 * be another close thread that has set CONDEMNED on this ill. 3978 * and cause ipsq_enter to return failure. 3979 */ 3980 ASSERT(success); 3981 ipsq = ill->ill_phyint->phyint_ipsq; 3982 3983 /* 3984 * Mark it condemned. No new reference will be made to this ill. 3985 * Lookup functions will return an error. Threads that try to 3986 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3987 * that the refcnt will drop down to zero. 3988 */ 3989 mutex_enter(&ill->ill_lock); 3990 ill->ill_state_flags |= ILL_CONDEMNED; 3991 for (ipif = ill->ill_ipif; ipif != NULL; 3992 ipif = ipif->ipif_next) { 3993 ipif->ipif_state_flags |= IPIF_CONDEMNED; 3994 } 3995 /* 3996 * Wake up anybody waiting to enter the ipsq. ipsq_enter 3997 * returns error if ILL_CONDEMNED is set 3998 */ 3999 cv_broadcast(&ill->ill_cv); 4000 mutex_exit(&ill->ill_lock); 4001 4002 /* 4003 * Send all the deferred DLPI messages downstream which came in 4004 * during the small window right before ipsq_enter(). We do this 4005 * without waiting for the ACKs because all the ACKs for M_PROTO 4006 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4007 */ 4008 ill_dlpi_send_deferred(ill); 4009 4010 /* 4011 * Shut down fragmentation reassembly. 4012 * ill_frag_timer won't start a timer again. 4013 * Now cancel any existing timer 4014 */ 4015 (void) untimeout(ill->ill_frag_timer_id); 4016 (void) ill_frag_timeout(ill, 0); 4017 4018 /* 4019 * Call ill_delete to bring down the ipifs, ilms and ill on 4020 * this ill. Then wait for the refcnts to drop to zero. 4021 * ill_is_freeable checks whether the ill is really quiescent. 4022 * Then make sure that threads that are waiting to enter the 4023 * ipsq have seen the error returned by ipsq_enter and have 4024 * gone away. Then we call ill_delete_tail which does the 4025 * DL_UNBIND_REQ with the driver and then qprocsoff. 4026 */ 4027 ill_delete(ill); 4028 mutex_enter(&ill->ill_lock); 4029 while (!ill_is_freeable(ill)) 4030 cv_wait(&ill->ill_cv, &ill->ill_lock); 4031 4032 while (ill->ill_waiters) 4033 cv_wait(&ill->ill_cv, &ill->ill_lock); 4034 4035 mutex_exit(&ill->ill_lock); 4036 4037 /* 4038 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4039 * it held until the end of the function since the cleanup 4040 * below needs to be able to use the ip_stack_t. 4041 */ 4042 netstack_hold(ipst->ips_netstack); 4043 4044 /* qprocsoff is done via ill_delete_tail */ 4045 ill_delete_tail(ill); 4046 /* 4047 * synchronously wait for arp stream to unbind. After this, we 4048 * cannot get any data packets up from the driver. 4049 */ 4050 arp_unbind_complete(ill); 4051 ASSERT(ill->ill_ipst == NULL); 4052 4053 /* 4054 * Walk through all conns and qenable those that have queued data. 4055 * Close synchronization needs this to 4056 * be done to ensure that all upper layers blocked 4057 * due to flow control to the closing device 4058 * get unblocked. 4059 */ 4060 ip1dbg(("ip_wsrv: walking\n")); 4061 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4062 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4063 } 4064 4065 /* 4066 * ai can be null if this is an IPv6 ill, or if the IPv4 4067 * stream is being torn down before ARP was plumbed (e.g., 4068 * /sbin/ifconfig plumbing a stream twice, and encountering 4069 * an error 4070 */ 4071 if (ai != NULL) { 4072 ASSERT(!ill->ill_isv6); 4073 mutex_enter(&ai->ai_lock); 4074 ai->ai_ill = NULL; 4075 if (ai->ai_arl == NULL) { 4076 mutex_destroy(&ai->ai_lock); 4077 kmem_free(ai, sizeof (*ai)); 4078 } else { 4079 cv_signal(&ai->ai_ill_unplumb_done); 4080 mutex_exit(&ai->ai_lock); 4081 } 4082 } 4083 4084 mutex_enter(&ipst->ips_ip_mi_lock); 4085 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4086 mutex_exit(&ipst->ips_ip_mi_lock); 4087 4088 /* 4089 * credp could be null if the open didn't succeed and ip_modopen 4090 * itself calls ip_close. 4091 */ 4092 if (ill->ill_credp != NULL) 4093 crfree(ill->ill_credp); 4094 4095 mutex_destroy(&ill->ill_saved_ire_lock); 4096 mutex_destroy(&ill->ill_lock); 4097 rw_destroy(&ill->ill_mcast_lock); 4098 mutex_destroy(&ill->ill_mcast_serializer); 4099 list_destroy(&ill->ill_nce); 4100 4101 /* 4102 * Now we are done with the module close pieces that 4103 * need the netstack_t. 4104 */ 4105 netstack_rele(ipst->ips_netstack); 4106 4107 mi_close_free((IDP)ill); 4108 q->q_ptr = WR(q)->q_ptr = NULL; 4109 4110 ipsq_exit(ipsq); 4111 4112 return (0); 4113 } 4114 4115 /* 4116 * This is called as part of close() for IP, UDP, ICMP, and RTS 4117 * in order to quiesce the conn. 4118 */ 4119 void 4120 ip_quiesce_conn(conn_t *connp) 4121 { 4122 boolean_t drain_cleanup_reqd = B_FALSE; 4123 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4124 boolean_t ilg_cleanup_reqd = B_FALSE; 4125 ip_stack_t *ipst; 4126 4127 ASSERT(!IPCL_IS_TCP(connp)); 4128 ipst = connp->conn_netstack->netstack_ip; 4129 4130 /* 4131 * Mark the conn as closing, and this conn must not be 4132 * inserted in future into any list. Eg. conn_drain_insert(), 4133 * won't insert this conn into the conn_drain_list. 4134 * 4135 * conn_idl, and conn_ilg cannot get set henceforth. 4136 */ 4137 mutex_enter(&connp->conn_lock); 4138 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4139 connp->conn_state_flags |= CONN_CLOSING; 4140 if (connp->conn_idl != NULL) 4141 drain_cleanup_reqd = B_TRUE; 4142 if (connp->conn_oper_pending_ill != NULL) 4143 conn_ioctl_cleanup_reqd = B_TRUE; 4144 if (connp->conn_dhcpinit_ill != NULL) { 4145 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4146 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4147 ill_set_inputfn(connp->conn_dhcpinit_ill); 4148 connp->conn_dhcpinit_ill = NULL; 4149 } 4150 if (connp->conn_ilg != NULL) 4151 ilg_cleanup_reqd = B_TRUE; 4152 mutex_exit(&connp->conn_lock); 4153 4154 if (conn_ioctl_cleanup_reqd) 4155 conn_ioctl_cleanup(connp); 4156 4157 if (is_system_labeled() && connp->conn_anon_port) { 4158 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4159 connp->conn_mlp_type, connp->conn_proto, 4160 ntohs(connp->conn_lport), B_FALSE); 4161 connp->conn_anon_port = 0; 4162 } 4163 connp->conn_mlp_type = mlptSingle; 4164 4165 /* 4166 * Remove this conn from any fanout list it is on. 4167 * and then wait for any threads currently operating 4168 * on this endpoint to finish 4169 */ 4170 ipcl_hash_remove(connp); 4171 4172 /* 4173 * Remove this conn from the drain list, and do 4174 * any other cleanup that may be required. 4175 * (Only non-tcp conns may have a non-null conn_idl. 4176 * TCP conns are never flow controlled, and 4177 * conn_idl will be null) 4178 */ 4179 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4180 mutex_enter(&connp->conn_idl->idl_lock); 4181 conn_drain(connp, B_TRUE); 4182 mutex_exit(&connp->conn_idl->idl_lock); 4183 } 4184 4185 if (connp == ipst->ips_ip_g_mrouter) 4186 (void) ip_mrouter_done(ipst); 4187 4188 if (ilg_cleanup_reqd) 4189 ilg_delete_all(connp); 4190 4191 /* 4192 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4193 * callers from write side can't be there now because close 4194 * is in progress. The only other caller is ipcl_walk 4195 * which checks for the condemned flag. 4196 */ 4197 mutex_enter(&connp->conn_lock); 4198 connp->conn_state_flags |= CONN_CONDEMNED; 4199 while (connp->conn_ref != 1) 4200 cv_wait(&connp->conn_cv, &connp->conn_lock); 4201 connp->conn_state_flags |= CONN_QUIESCED; 4202 mutex_exit(&connp->conn_lock); 4203 } 4204 4205 /* ARGSUSED */ 4206 int 4207 ip_close(queue_t *q, int flags) 4208 { 4209 conn_t *connp; 4210 4211 /* 4212 * Call the appropriate delete routine depending on whether this is 4213 * a module or device. 4214 */ 4215 if (WR(q)->q_next != NULL) { 4216 /* This is a module close */ 4217 return (ip_modclose((ill_t *)q->q_ptr)); 4218 } 4219 4220 connp = q->q_ptr; 4221 ip_quiesce_conn(connp); 4222 4223 qprocsoff(q); 4224 4225 /* 4226 * Now we are truly single threaded on this stream, and can 4227 * delete the things hanging off the connp, and finally the connp. 4228 * We removed this connp from the fanout list, it cannot be 4229 * accessed thru the fanouts, and we already waited for the 4230 * conn_ref to drop to 0. We are already in close, so 4231 * there cannot be any other thread from the top. qprocsoff 4232 * has completed, and service has completed or won't run in 4233 * future. 4234 */ 4235 ASSERT(connp->conn_ref == 1); 4236 4237 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4238 4239 connp->conn_ref--; 4240 ipcl_conn_destroy(connp); 4241 4242 q->q_ptr = WR(q)->q_ptr = NULL; 4243 return (0); 4244 } 4245 4246 /* 4247 * Wapper around putnext() so that ip_rts_request can merely use 4248 * conn_recv. 4249 */ 4250 /*ARGSUSED2*/ 4251 static void 4252 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4253 { 4254 conn_t *connp = (conn_t *)arg1; 4255 4256 putnext(connp->conn_rq, mp); 4257 } 4258 4259 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4260 /* ARGSUSED */ 4261 static void 4262 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4263 { 4264 freemsg(mp); 4265 } 4266 4267 /* 4268 * Called when the module is about to be unloaded 4269 */ 4270 void 4271 ip_ddi_destroy(void) 4272 { 4273 tnet_fini(); 4274 4275 icmp_ddi_g_destroy(); 4276 rts_ddi_g_destroy(); 4277 udp_ddi_g_destroy(); 4278 sctp_ddi_g_destroy(); 4279 tcp_ddi_g_destroy(); 4280 ilb_ddi_g_destroy(); 4281 dce_g_destroy(); 4282 ipsec_policy_g_destroy(); 4283 ipcl_g_destroy(); 4284 ip_net_g_destroy(); 4285 ip_ire_g_fini(); 4286 inet_minor_destroy(ip_minor_arena_sa); 4287 #if defined(_LP64) 4288 inet_minor_destroy(ip_minor_arena_la); 4289 #endif 4290 4291 #ifdef DEBUG 4292 list_destroy(&ip_thread_list); 4293 rw_destroy(&ip_thread_rwlock); 4294 tsd_destroy(&ip_thread_data); 4295 #endif 4296 4297 netstack_unregister(NS_IP); 4298 } 4299 4300 /* 4301 * First step in cleanup. 4302 */ 4303 /* ARGSUSED */ 4304 static void 4305 ip_stack_shutdown(netstackid_t stackid, void *arg) 4306 { 4307 ip_stack_t *ipst = (ip_stack_t *)arg; 4308 4309 #ifdef NS_DEBUG 4310 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4311 #endif 4312 4313 /* 4314 * Perform cleanup for special interfaces (loopback and IPMP). 4315 */ 4316 ip_interface_cleanup(ipst); 4317 4318 /* 4319 * The *_hook_shutdown()s start the process of notifying any 4320 * consumers that things are going away.... nothing is destroyed. 4321 */ 4322 ipv4_hook_shutdown(ipst); 4323 ipv6_hook_shutdown(ipst); 4324 arp_hook_shutdown(ipst); 4325 4326 mutex_enter(&ipst->ips_capab_taskq_lock); 4327 ipst->ips_capab_taskq_quit = B_TRUE; 4328 cv_signal(&ipst->ips_capab_taskq_cv); 4329 mutex_exit(&ipst->ips_capab_taskq_lock); 4330 } 4331 4332 /* 4333 * Free the IP stack instance. 4334 */ 4335 static void 4336 ip_stack_fini(netstackid_t stackid, void *arg) 4337 { 4338 ip_stack_t *ipst = (ip_stack_t *)arg; 4339 int ret; 4340 4341 #ifdef NS_DEBUG 4342 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4343 #endif 4344 /* 4345 * At this point, all of the notifications that the events and 4346 * protocols are going away have been run, meaning that we can 4347 * now set about starting to clean things up. 4348 */ 4349 ipobs_fini(ipst); 4350 ipv4_hook_destroy(ipst); 4351 ipv6_hook_destroy(ipst); 4352 arp_hook_destroy(ipst); 4353 ip_net_destroy(ipst); 4354 4355 mutex_destroy(&ipst->ips_capab_taskq_lock); 4356 cv_destroy(&ipst->ips_capab_taskq_cv); 4357 4358 ipmp_destroy(ipst); 4359 rw_destroy(&ipst->ips_srcid_lock); 4360 4361 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4362 ipst->ips_ip_mibkp = NULL; 4363 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4364 ipst->ips_icmp_mibkp = NULL; 4365 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4366 ipst->ips_ip_kstat = NULL; 4367 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4368 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4369 ipst->ips_ip6_kstat = NULL; 4370 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4371 4372 kmem_free(ipst->ips_propinfo_tbl, 4373 ip_propinfo_count * sizeof (mod_prop_info_t)); 4374 ipst->ips_propinfo_tbl = NULL; 4375 4376 dce_stack_destroy(ipst); 4377 ip_mrouter_stack_destroy(ipst); 4378 4379 mutex_destroy(&ipst->ips_ip_mi_lock); 4380 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4381 4382 ret = untimeout(ipst->ips_igmp_timeout_id); 4383 if (ret == -1) { 4384 ASSERT(ipst->ips_igmp_timeout_id == 0); 4385 } else { 4386 ASSERT(ipst->ips_igmp_timeout_id != 0); 4387 ipst->ips_igmp_timeout_id = 0; 4388 } 4389 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4390 if (ret == -1) { 4391 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4392 } else { 4393 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4394 ipst->ips_igmp_slowtimeout_id = 0; 4395 } 4396 ret = untimeout(ipst->ips_mld_timeout_id); 4397 if (ret == -1) { 4398 ASSERT(ipst->ips_mld_timeout_id == 0); 4399 } else { 4400 ASSERT(ipst->ips_mld_timeout_id != 0); 4401 ipst->ips_mld_timeout_id = 0; 4402 } 4403 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4404 if (ret == -1) { 4405 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4406 } else { 4407 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4408 ipst->ips_mld_slowtimeout_id = 0; 4409 } 4410 4411 mutex_destroy(&ipst->ips_igmp_timer_lock); 4412 mutex_destroy(&ipst->ips_mld_timer_lock); 4413 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4414 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4415 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4416 rw_destroy(&ipst->ips_ill_g_lock); 4417 4418 ip_ire_fini(ipst); 4419 ip6_asp_free(ipst); 4420 conn_drain_fini(ipst); 4421 ipcl_destroy(ipst); 4422 4423 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4424 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4425 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4426 ipst->ips_ndp4 = NULL; 4427 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4428 ipst->ips_ndp6 = NULL; 4429 4430 if (ipst->ips_loopback_ksp != NULL) { 4431 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4432 ipst->ips_loopback_ksp = NULL; 4433 } 4434 4435 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4436 ipst->ips_phyint_g_list = NULL; 4437 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4438 ipst->ips_ill_g_heads = NULL; 4439 4440 ldi_ident_release(ipst->ips_ldi_ident); 4441 kmem_free(ipst, sizeof (*ipst)); 4442 } 4443 4444 /* 4445 * This function is called from the TSD destructor, and is used to debug 4446 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4447 * details. 4448 */ 4449 static void 4450 ip_thread_exit(void *phash) 4451 { 4452 th_hash_t *thh = phash; 4453 4454 rw_enter(&ip_thread_rwlock, RW_WRITER); 4455 list_remove(&ip_thread_list, thh); 4456 rw_exit(&ip_thread_rwlock); 4457 mod_hash_destroy_hash(thh->thh_hash); 4458 kmem_free(thh, sizeof (*thh)); 4459 } 4460 4461 /* 4462 * Called when the IP kernel module is loaded into the kernel 4463 */ 4464 void 4465 ip_ddi_init(void) 4466 { 4467 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4468 4469 /* 4470 * For IP and TCP the minor numbers should start from 2 since we have 4 4471 * initial devices: ip, ip6, tcp, tcp6. 4472 */ 4473 /* 4474 * If this is a 64-bit kernel, then create two separate arenas - 4475 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4476 * other for socket apps in the range 2^^18 through 2^^32-1. 4477 */ 4478 ip_minor_arena_la = NULL; 4479 ip_minor_arena_sa = NULL; 4480 #if defined(_LP64) 4481 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4482 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4483 cmn_err(CE_PANIC, 4484 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4485 } 4486 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4487 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4488 cmn_err(CE_PANIC, 4489 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4490 } 4491 #else 4492 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4493 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4494 cmn_err(CE_PANIC, 4495 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4496 } 4497 #endif 4498 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4499 4500 ipcl_g_init(); 4501 ip_ire_g_init(); 4502 ip_net_g_init(); 4503 4504 #ifdef DEBUG 4505 tsd_create(&ip_thread_data, ip_thread_exit); 4506 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4507 list_create(&ip_thread_list, sizeof (th_hash_t), 4508 offsetof(th_hash_t, thh_link)); 4509 #endif 4510 ipsec_policy_g_init(); 4511 tcp_ddi_g_init(); 4512 sctp_ddi_g_init(); 4513 dce_g_init(); 4514 4515 /* 4516 * We want to be informed each time a stack is created or 4517 * destroyed in the kernel, so we can maintain the 4518 * set of udp_stack_t's. 4519 */ 4520 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4521 ip_stack_fini); 4522 4523 tnet_init(); 4524 4525 udp_ddi_g_init(); 4526 rts_ddi_g_init(); 4527 icmp_ddi_g_init(); 4528 ilb_ddi_g_init(); 4529 } 4530 4531 /* 4532 * Initialize the IP stack instance. 4533 */ 4534 static void * 4535 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4536 { 4537 ip_stack_t *ipst; 4538 size_t arrsz; 4539 major_t major; 4540 4541 #ifdef NS_DEBUG 4542 printf("ip_stack_init(stack %d)\n", stackid); 4543 #endif 4544 4545 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4546 ipst->ips_netstack = ns; 4547 4548 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4549 KM_SLEEP); 4550 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4551 KM_SLEEP); 4552 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4553 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4554 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4555 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4556 4557 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4558 ipst->ips_igmp_deferred_next = INFINITY; 4559 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4560 ipst->ips_mld_deferred_next = INFINITY; 4561 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4562 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4563 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4564 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4565 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4566 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4567 4568 ipcl_init(ipst); 4569 ip_ire_init(ipst); 4570 ip6_asp_init(ipst); 4571 ipif_init(ipst); 4572 conn_drain_init(ipst); 4573 ip_mrouter_stack_init(ipst); 4574 dce_stack_init(ipst); 4575 4576 ipst->ips_ip_multirt_log_interval = 1000; 4577 4578 ipst->ips_ill_index = 1; 4579 4580 ipst->ips_saved_ip_forwarding = -1; 4581 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4582 4583 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4584 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4585 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4586 4587 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4588 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4589 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4590 ipst->ips_ip6_kstat = 4591 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4592 4593 ipst->ips_ip_src_id = 1; 4594 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4595 4596 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4597 4598 ip_net_init(ipst, ns); 4599 ipv4_hook_init(ipst); 4600 ipv6_hook_init(ipst); 4601 arp_hook_init(ipst); 4602 ipmp_init(ipst); 4603 ipobs_init(ipst); 4604 4605 /* 4606 * Create the taskq dispatcher thread and initialize related stuff. 4607 */ 4608 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4609 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4610 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4611 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4612 4613 major = mod_name_to_major(INET_NAME); 4614 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4615 return (ipst); 4616 } 4617 4618 /* 4619 * Allocate and initialize a DLPI template of the specified length. (May be 4620 * called as writer.) 4621 */ 4622 mblk_t * 4623 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4624 { 4625 mblk_t *mp; 4626 4627 mp = allocb(len, BPRI_MED); 4628 if (!mp) 4629 return (NULL); 4630 4631 /* 4632 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4633 * of which we don't seem to use) are sent with M_PCPROTO, and 4634 * that other DLPI are M_PROTO. 4635 */ 4636 if (prim == DL_INFO_REQ) { 4637 mp->b_datap->db_type = M_PCPROTO; 4638 } else { 4639 mp->b_datap->db_type = M_PROTO; 4640 } 4641 4642 mp->b_wptr = mp->b_rptr + len; 4643 bzero(mp->b_rptr, len); 4644 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4645 return (mp); 4646 } 4647 4648 /* 4649 * Allocate and initialize a DLPI notification. (May be called as writer.) 4650 */ 4651 mblk_t * 4652 ip_dlnotify_alloc(uint_t notification, uint_t data) 4653 { 4654 dl_notify_ind_t *notifyp; 4655 mblk_t *mp; 4656 4657 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4658 return (NULL); 4659 4660 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4661 notifyp->dl_notification = notification; 4662 notifyp->dl_data = data; 4663 return (mp); 4664 } 4665 4666 /* 4667 * Debug formatting routine. Returns a character string representation of the 4668 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4669 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4670 * 4671 * Once the ndd table-printing interfaces are removed, this can be changed to 4672 * standard dotted-decimal form. 4673 */ 4674 char * 4675 ip_dot_addr(ipaddr_t addr, char *buf) 4676 { 4677 uint8_t *ap = (uint8_t *)&addr; 4678 4679 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4680 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4681 return (buf); 4682 } 4683 4684 /* 4685 * Write the given MAC address as a printable string in the usual colon- 4686 * separated format. 4687 */ 4688 const char * 4689 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4690 { 4691 char *bp; 4692 4693 if (alen == 0 || buflen < 4) 4694 return ("?"); 4695 bp = buf; 4696 for (;;) { 4697 /* 4698 * If there are more MAC address bytes available, but we won't 4699 * have any room to print them, then add "..." to the string 4700 * instead. See below for the 'magic number' explanation. 4701 */ 4702 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4703 (void) strcpy(bp, "..."); 4704 break; 4705 } 4706 (void) sprintf(bp, "%02x", *addr++); 4707 bp += 2; 4708 if (--alen == 0) 4709 break; 4710 *bp++ = ':'; 4711 buflen -= 3; 4712 /* 4713 * At this point, based on the first 'if' statement above, 4714 * either alen == 1 and buflen >= 3, or alen > 1 and 4715 * buflen >= 4. The first case leaves room for the final "xx" 4716 * number and trailing NUL byte. The second leaves room for at 4717 * least "...". Thus the apparently 'magic' numbers chosen for 4718 * that statement. 4719 */ 4720 } 4721 return (buf); 4722 } 4723 4724 /* 4725 * Called when it is conceptually a ULP that would sent the packet 4726 * e.g., port unreachable and protocol unreachable. Check that the packet 4727 * would have passed the IPsec global policy before sending the error. 4728 * 4729 * Send an ICMP error after patching up the packet appropriately. 4730 * Uses ip_drop_input and bumps the appropriate MIB. 4731 */ 4732 void 4733 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4734 ip_recv_attr_t *ira) 4735 { 4736 ipha_t *ipha; 4737 boolean_t secure; 4738 ill_t *ill = ira->ira_ill; 4739 ip_stack_t *ipst = ill->ill_ipst; 4740 netstack_t *ns = ipst->ips_netstack; 4741 ipsec_stack_t *ipss = ns->netstack_ipsec; 4742 4743 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4744 4745 /* 4746 * We are generating an icmp error for some inbound packet. 4747 * Called from all ip_fanout_(udp, tcp, proto) functions. 4748 * Before we generate an error, check with global policy 4749 * to see whether this is allowed to enter the system. As 4750 * there is no "conn", we are checking with global policy. 4751 */ 4752 ipha = (ipha_t *)mp->b_rptr; 4753 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4754 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4755 if (mp == NULL) 4756 return; 4757 } 4758 4759 /* We never send errors for protocols that we do implement */ 4760 if (ira->ira_protocol == IPPROTO_ICMP || 4761 ira->ira_protocol == IPPROTO_IGMP) { 4762 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4763 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4764 freemsg(mp); 4765 return; 4766 } 4767 /* 4768 * Have to correct checksum since 4769 * the packet might have been 4770 * fragmented and the reassembly code in ip_rput 4771 * does not restore the IP checksum. 4772 */ 4773 ipha->ipha_hdr_checksum = 0; 4774 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4775 4776 switch (icmp_type) { 4777 case ICMP_DEST_UNREACHABLE: 4778 switch (icmp_code) { 4779 case ICMP_PROTOCOL_UNREACHABLE: 4780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4781 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4782 break; 4783 case ICMP_PORT_UNREACHABLE: 4784 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4785 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4786 break; 4787 } 4788 4789 icmp_unreachable(mp, icmp_code, ira); 4790 break; 4791 default: 4792 #ifdef DEBUG 4793 panic("ip_fanout_send_icmp_v4: wrong type"); 4794 /*NOTREACHED*/ 4795 #else 4796 freemsg(mp); 4797 break; 4798 #endif 4799 } 4800 } 4801 4802 /* 4803 * Used to send an ICMP error message when a packet is received for 4804 * a protocol that is not supported. The mblk passed as argument 4805 * is consumed by this function. 4806 */ 4807 void 4808 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4809 { 4810 ipha_t *ipha; 4811 4812 ipha = (ipha_t *)mp->b_rptr; 4813 if (ira->ira_flags & IRAF_IS_IPV4) { 4814 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4815 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4816 ICMP_PROTOCOL_UNREACHABLE, ira); 4817 } else { 4818 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4819 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4820 ICMP6_PARAMPROB_NEXTHEADER, ira); 4821 } 4822 } 4823 4824 /* 4825 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4826 * Handles IPv4 and IPv6. 4827 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4828 * Caller is responsible for dropping references to the conn. 4829 */ 4830 void 4831 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4832 ip_recv_attr_t *ira) 4833 { 4834 ill_t *ill = ira->ira_ill; 4835 ip_stack_t *ipst = ill->ill_ipst; 4836 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4837 boolean_t secure; 4838 uint_t protocol = ira->ira_protocol; 4839 iaflags_t iraflags = ira->ira_flags; 4840 queue_t *rq; 4841 4842 secure = iraflags & IRAF_IPSEC_SECURE; 4843 4844 rq = connp->conn_rq; 4845 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4846 switch (protocol) { 4847 case IPPROTO_ICMPV6: 4848 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4849 break; 4850 case IPPROTO_ICMP: 4851 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4852 break; 4853 default: 4854 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4855 break; 4856 } 4857 freemsg(mp); 4858 return; 4859 } 4860 4861 ASSERT(!(IPCL_IS_IPTUN(connp))); 4862 4863 if (((iraflags & IRAF_IS_IPV4) ? 4864 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4865 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4866 secure) { 4867 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4868 ip6h, ira); 4869 if (mp == NULL) { 4870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4871 /* Note that mp is NULL */ 4872 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4873 return; 4874 } 4875 } 4876 4877 if (iraflags & IRAF_ICMP_ERROR) { 4878 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4879 } else { 4880 ill_t *rill = ira->ira_rill; 4881 4882 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4883 ira->ira_ill = ira->ira_rill = NULL; 4884 /* Send it upstream */ 4885 (connp->conn_recv)(connp, mp, NULL, ira); 4886 ira->ira_ill = ill; 4887 ira->ira_rill = rill; 4888 } 4889 } 4890 4891 /* 4892 * Handle protocols with which IP is less intimate. There 4893 * can be more than one stream bound to a particular 4894 * protocol. When this is the case, normally each one gets a copy 4895 * of any incoming packets. 4896 * 4897 * IPsec NOTE : 4898 * 4899 * Don't allow a secure packet going up a non-secure connection. 4900 * We don't allow this because 4901 * 4902 * 1) Reply might go out in clear which will be dropped at 4903 * the sending side. 4904 * 2) If the reply goes out in clear it will give the 4905 * adversary enough information for getting the key in 4906 * most of the cases. 4907 * 4908 * Moreover getting a secure packet when we expect clear 4909 * implies that SA's were added without checking for 4910 * policy on both ends. This should not happen once ISAKMP 4911 * is used to negotiate SAs as SAs will be added only after 4912 * verifying the policy. 4913 * 4914 * Zones notes: 4915 * Earlier in ip_input on a system with multiple shared-IP zones we 4916 * duplicate the multicast and broadcast packets and send them up 4917 * with each explicit zoneid that exists on that ill. 4918 * This means that here we can match the zoneid with SO_ALLZONES being special. 4919 */ 4920 void 4921 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4922 { 4923 mblk_t *mp1; 4924 ipaddr_t laddr; 4925 conn_t *connp, *first_connp, *next_connp; 4926 connf_t *connfp; 4927 ill_t *ill = ira->ira_ill; 4928 ip_stack_t *ipst = ill->ill_ipst; 4929 4930 laddr = ipha->ipha_dst; 4931 4932 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4933 mutex_enter(&connfp->connf_lock); 4934 connp = connfp->connf_head; 4935 for (connp = connfp->connf_head; connp != NULL; 4936 connp = connp->conn_next) { 4937 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4938 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4939 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4940 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4941 break; 4942 } 4943 } 4944 4945 if (connp == NULL) { 4946 /* 4947 * No one bound to these addresses. Is 4948 * there a client that wants all 4949 * unclaimed datagrams? 4950 */ 4951 mutex_exit(&connfp->connf_lock); 4952 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4953 ICMP_PROTOCOL_UNREACHABLE, ira); 4954 return; 4955 } 4956 4957 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4958 4959 CONN_INC_REF(connp); 4960 first_connp = connp; 4961 connp = connp->conn_next; 4962 4963 for (;;) { 4964 while (connp != NULL) { 4965 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4966 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4967 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4968 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4969 ira, connp))) 4970 break; 4971 connp = connp->conn_next; 4972 } 4973 4974 if (connp == NULL) { 4975 /* No more interested clients */ 4976 connp = first_connp; 4977 break; 4978 } 4979 if (((mp1 = dupmsg(mp)) == NULL) && 4980 ((mp1 = copymsg(mp)) == NULL)) { 4981 /* Memory allocation failed */ 4982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4983 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4984 connp = first_connp; 4985 break; 4986 } 4987 4988 CONN_INC_REF(connp); 4989 mutex_exit(&connfp->connf_lock); 4990 4991 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 4992 ira); 4993 4994 mutex_enter(&connfp->connf_lock); 4995 /* Follow the next pointer before releasing the conn. */ 4996 next_connp = connp->conn_next; 4997 CONN_DEC_REF(connp); 4998 connp = next_connp; 4999 } 5000 5001 /* Last one. Send it upstream. */ 5002 mutex_exit(&connfp->connf_lock); 5003 5004 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5005 5006 CONN_DEC_REF(connp); 5007 } 5008 5009 /* 5010 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5011 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5012 * is not consumed. 5013 * 5014 * One of three things can happen, all of which affect the passed-in mblk: 5015 * 5016 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5017 * 5018 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5019 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5020 * 5021 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5022 */ 5023 mblk_t * 5024 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5025 { 5026 int shift, plen, iph_len; 5027 ipha_t *ipha; 5028 udpha_t *udpha; 5029 uint32_t *spi; 5030 uint32_t esp_ports; 5031 uint8_t *orptr; 5032 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5033 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5034 5035 ipha = (ipha_t *)mp->b_rptr; 5036 iph_len = ira->ira_ip_hdr_length; 5037 plen = ira->ira_pktlen; 5038 5039 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5040 /* 5041 * Most likely a keepalive for the benefit of an intervening 5042 * NAT. These aren't for us, per se, so drop it. 5043 * 5044 * RFC 3947/8 doesn't say for sure what to do for 2-3 5045 * byte packets (keepalives are 1-byte), but we'll drop them 5046 * also. 5047 */ 5048 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5049 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5050 return (NULL); 5051 } 5052 5053 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5054 /* might as well pull it all up - it might be ESP. */ 5055 if (!pullupmsg(mp, -1)) { 5056 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5057 DROPPER(ipss, ipds_esp_nomem), 5058 &ipss->ipsec_dropper); 5059 return (NULL); 5060 } 5061 5062 ipha = (ipha_t *)mp->b_rptr; 5063 } 5064 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5065 if (*spi == 0) { 5066 /* UDP packet - remove 0-spi. */ 5067 shift = sizeof (uint32_t); 5068 } else { 5069 /* ESP-in-UDP packet - reduce to ESP. */ 5070 ipha->ipha_protocol = IPPROTO_ESP; 5071 shift = sizeof (udpha_t); 5072 } 5073 5074 /* Fix IP header */ 5075 ira->ira_pktlen = (plen - shift); 5076 ipha->ipha_length = htons(ira->ira_pktlen); 5077 ipha->ipha_hdr_checksum = 0; 5078 5079 orptr = mp->b_rptr; 5080 mp->b_rptr += shift; 5081 5082 udpha = (udpha_t *)(orptr + iph_len); 5083 if (*spi == 0) { 5084 ASSERT((uint8_t *)ipha == orptr); 5085 udpha->uha_length = htons(plen - shift - iph_len); 5086 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5087 esp_ports = 0; 5088 } else { 5089 esp_ports = *((uint32_t *)udpha); 5090 ASSERT(esp_ports != 0); 5091 } 5092 ovbcopy(orptr, orptr + shift, iph_len); 5093 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5094 ipha = (ipha_t *)(orptr + shift); 5095 5096 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5097 ira->ira_esp_udp_ports = esp_ports; 5098 ip_fanout_v4(mp, ipha, ira); 5099 return (NULL); 5100 } 5101 return (mp); 5102 } 5103 5104 /* 5105 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5106 * Handles IPv4 and IPv6. 5107 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5108 * Caller is responsible for dropping references to the conn. 5109 */ 5110 void 5111 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5112 ip_recv_attr_t *ira) 5113 { 5114 ill_t *ill = ira->ira_ill; 5115 ip_stack_t *ipst = ill->ill_ipst; 5116 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5117 boolean_t secure; 5118 iaflags_t iraflags = ira->ira_flags; 5119 5120 secure = iraflags & IRAF_IPSEC_SECURE; 5121 5122 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5123 !canputnext(connp->conn_rq)) { 5124 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5125 freemsg(mp); 5126 return; 5127 } 5128 5129 if (((iraflags & IRAF_IS_IPV4) ? 5130 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5131 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5132 secure) { 5133 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5134 ip6h, ira); 5135 if (mp == NULL) { 5136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5137 /* Note that mp is NULL */ 5138 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5139 return; 5140 } 5141 } 5142 5143 /* 5144 * Since this code is not used for UDP unicast we don't need a NAT_T 5145 * check. Only ip_fanout_v4 has that check. 5146 */ 5147 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5148 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5149 } else { 5150 ill_t *rill = ira->ira_rill; 5151 5152 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5153 ira->ira_ill = ira->ira_rill = NULL; 5154 /* Send it upstream */ 5155 (connp->conn_recv)(connp, mp, NULL, ira); 5156 ira->ira_ill = ill; 5157 ira->ira_rill = rill; 5158 } 5159 } 5160 5161 /* 5162 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5163 * (Unicast fanout is handled in ip_input_v4.) 5164 * 5165 * If SO_REUSEADDR is set all multicast and broadcast packets 5166 * will be delivered to all conns bound to the same port. 5167 * 5168 * If there is at least one matching AF_INET receiver, then we will 5169 * ignore any AF_INET6 receivers. 5170 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5171 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5172 * packets. 5173 * 5174 * Zones notes: 5175 * Earlier in ip_input on a system with multiple shared-IP zones we 5176 * duplicate the multicast and broadcast packets and send them up 5177 * with each explicit zoneid that exists on that ill. 5178 * This means that here we can match the zoneid with SO_ALLZONES being special. 5179 */ 5180 void 5181 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5182 ip_recv_attr_t *ira) 5183 { 5184 ipaddr_t laddr; 5185 in6_addr_t v6faddr; 5186 conn_t *connp; 5187 connf_t *connfp; 5188 ipaddr_t faddr; 5189 ill_t *ill = ira->ira_ill; 5190 ip_stack_t *ipst = ill->ill_ipst; 5191 5192 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5193 5194 laddr = ipha->ipha_dst; 5195 faddr = ipha->ipha_src; 5196 5197 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5198 mutex_enter(&connfp->connf_lock); 5199 connp = connfp->connf_head; 5200 5201 /* 5202 * If SO_REUSEADDR has been set on the first we send the 5203 * packet to all clients that have joined the group and 5204 * match the port. 5205 */ 5206 while (connp != NULL) { 5207 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5208 conn_wantpacket(connp, ira, ipha) && 5209 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5210 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5211 break; 5212 connp = connp->conn_next; 5213 } 5214 5215 if (connp == NULL) 5216 goto notfound; 5217 5218 CONN_INC_REF(connp); 5219 5220 if (connp->conn_reuseaddr) { 5221 conn_t *first_connp = connp; 5222 conn_t *next_connp; 5223 mblk_t *mp1; 5224 5225 connp = connp->conn_next; 5226 for (;;) { 5227 while (connp != NULL) { 5228 if (IPCL_UDP_MATCH(connp, lport, laddr, 5229 fport, faddr) && 5230 conn_wantpacket(connp, ira, ipha) && 5231 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5232 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5233 ira, connp))) 5234 break; 5235 connp = connp->conn_next; 5236 } 5237 if (connp == NULL) { 5238 /* No more interested clients */ 5239 connp = first_connp; 5240 break; 5241 } 5242 if (((mp1 = dupmsg(mp)) == NULL) && 5243 ((mp1 = copymsg(mp)) == NULL)) { 5244 /* Memory allocation failed */ 5245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5246 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5247 connp = first_connp; 5248 break; 5249 } 5250 CONN_INC_REF(connp); 5251 mutex_exit(&connfp->connf_lock); 5252 5253 IP_STAT(ipst, ip_udp_fanmb); 5254 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5255 NULL, ira); 5256 mutex_enter(&connfp->connf_lock); 5257 /* Follow the next pointer before releasing the conn */ 5258 next_connp = connp->conn_next; 5259 CONN_DEC_REF(connp); 5260 connp = next_connp; 5261 } 5262 } 5263 5264 /* Last one. Send it upstream. */ 5265 mutex_exit(&connfp->connf_lock); 5266 IP_STAT(ipst, ip_udp_fanmb); 5267 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5268 CONN_DEC_REF(connp); 5269 return; 5270 5271 notfound: 5272 mutex_exit(&connfp->connf_lock); 5273 /* 5274 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5275 * have already been matched above, since they live in the IPv4 5276 * fanout tables. This implies we only need to 5277 * check for IPv6 in6addr_any endpoints here. 5278 * Thus we compare using ipv6_all_zeros instead of the destination 5279 * address, except for the multicast group membership lookup which 5280 * uses the IPv4 destination. 5281 */ 5282 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5283 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5284 mutex_enter(&connfp->connf_lock); 5285 connp = connfp->connf_head; 5286 /* 5287 * IPv4 multicast packet being delivered to an AF_INET6 5288 * in6addr_any endpoint. 5289 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5290 * and not conn_wantpacket_v6() since any multicast membership is 5291 * for an IPv4-mapped multicast address. 5292 */ 5293 while (connp != NULL) { 5294 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5295 fport, v6faddr) && 5296 conn_wantpacket(connp, ira, ipha) && 5297 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5298 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5299 break; 5300 connp = connp->conn_next; 5301 } 5302 5303 if (connp == NULL) { 5304 /* 5305 * No one bound to this port. Is 5306 * there a client that wants all 5307 * unclaimed datagrams? 5308 */ 5309 mutex_exit(&connfp->connf_lock); 5310 5311 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5312 NULL) { 5313 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5314 ip_fanout_proto_v4(mp, ipha, ira); 5315 } else { 5316 /* 5317 * We used to attempt to send an icmp error here, but 5318 * since this is known to be a multicast packet 5319 * and we don't send icmp errors in response to 5320 * multicast, just drop the packet and give up sooner. 5321 */ 5322 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5323 freemsg(mp); 5324 } 5325 return; 5326 } 5327 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5328 5329 /* 5330 * If SO_REUSEADDR has been set on the first we send the 5331 * packet to all clients that have joined the group and 5332 * match the port. 5333 */ 5334 if (connp->conn_reuseaddr) { 5335 conn_t *first_connp = connp; 5336 conn_t *next_connp; 5337 mblk_t *mp1; 5338 5339 CONN_INC_REF(connp); 5340 connp = connp->conn_next; 5341 for (;;) { 5342 while (connp != NULL) { 5343 if (IPCL_UDP_MATCH_V6(connp, lport, 5344 ipv6_all_zeros, fport, v6faddr) && 5345 conn_wantpacket(connp, ira, ipha) && 5346 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5347 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5348 ira, connp))) 5349 break; 5350 connp = connp->conn_next; 5351 } 5352 if (connp == NULL) { 5353 /* No more interested clients */ 5354 connp = first_connp; 5355 break; 5356 } 5357 if (((mp1 = dupmsg(mp)) == NULL) && 5358 ((mp1 = copymsg(mp)) == NULL)) { 5359 /* Memory allocation failed */ 5360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5361 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5362 connp = first_connp; 5363 break; 5364 } 5365 CONN_INC_REF(connp); 5366 mutex_exit(&connfp->connf_lock); 5367 5368 IP_STAT(ipst, ip_udp_fanmb); 5369 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5370 NULL, ira); 5371 mutex_enter(&connfp->connf_lock); 5372 /* Follow the next pointer before releasing the conn */ 5373 next_connp = connp->conn_next; 5374 CONN_DEC_REF(connp); 5375 connp = next_connp; 5376 } 5377 } 5378 5379 /* Last one. Send it upstream. */ 5380 mutex_exit(&connfp->connf_lock); 5381 IP_STAT(ipst, ip_udp_fanmb); 5382 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5383 CONN_DEC_REF(connp); 5384 } 5385 5386 /* 5387 * Split an incoming packet's IPv4 options into the label and the other options. 5388 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5389 * clearing out any leftover label or options. 5390 * Otherwise it just makes ipp point into the packet. 5391 * 5392 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5393 */ 5394 int 5395 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5396 { 5397 uchar_t *opt; 5398 uint32_t totallen; 5399 uint32_t optval; 5400 uint32_t optlen; 5401 5402 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5403 ipp->ipp_hoplimit = ipha->ipha_ttl; 5404 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5405 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5406 5407 /* 5408 * Get length (in 4 byte octets) of IP header options. 5409 */ 5410 totallen = ipha->ipha_version_and_hdr_length - 5411 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5412 5413 if (totallen == 0) { 5414 if (!allocate) 5415 return (0); 5416 5417 /* Clear out anything from a previous packet */ 5418 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5419 kmem_free(ipp->ipp_ipv4_options, 5420 ipp->ipp_ipv4_options_len); 5421 ipp->ipp_ipv4_options = NULL; 5422 ipp->ipp_ipv4_options_len = 0; 5423 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5424 } 5425 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5426 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5427 ipp->ipp_label_v4 = NULL; 5428 ipp->ipp_label_len_v4 = 0; 5429 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5430 } 5431 return (0); 5432 } 5433 5434 totallen <<= 2; 5435 opt = (uchar_t *)&ipha[1]; 5436 if (!is_system_labeled()) { 5437 5438 copyall: 5439 if (!allocate) { 5440 if (totallen != 0) { 5441 ipp->ipp_ipv4_options = opt; 5442 ipp->ipp_ipv4_options_len = totallen; 5443 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5444 } 5445 return (0); 5446 } 5447 /* Just copy all of options */ 5448 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5449 if (totallen == ipp->ipp_ipv4_options_len) { 5450 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5451 return (0); 5452 } 5453 kmem_free(ipp->ipp_ipv4_options, 5454 ipp->ipp_ipv4_options_len); 5455 ipp->ipp_ipv4_options = NULL; 5456 ipp->ipp_ipv4_options_len = 0; 5457 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5458 } 5459 if (totallen == 0) 5460 return (0); 5461 5462 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5463 if (ipp->ipp_ipv4_options == NULL) 5464 return (ENOMEM); 5465 ipp->ipp_ipv4_options_len = totallen; 5466 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5467 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5468 return (0); 5469 } 5470 5471 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5472 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5473 ipp->ipp_label_v4 = NULL; 5474 ipp->ipp_label_len_v4 = 0; 5475 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5476 } 5477 5478 /* 5479 * Search for CIPSO option. 5480 * We assume CIPSO is first in options if it is present. 5481 * If it isn't, then ipp_opt_ipv4_options will not include the options 5482 * prior to the CIPSO option. 5483 */ 5484 while (totallen != 0) { 5485 switch (optval = opt[IPOPT_OPTVAL]) { 5486 case IPOPT_EOL: 5487 return (0); 5488 case IPOPT_NOP: 5489 optlen = 1; 5490 break; 5491 default: 5492 if (totallen <= IPOPT_OLEN) 5493 return (EINVAL); 5494 optlen = opt[IPOPT_OLEN]; 5495 if (optlen < 2) 5496 return (EINVAL); 5497 } 5498 if (optlen > totallen) 5499 return (EINVAL); 5500 5501 switch (optval) { 5502 case IPOPT_COMSEC: 5503 if (!allocate) { 5504 ipp->ipp_label_v4 = opt; 5505 ipp->ipp_label_len_v4 = optlen; 5506 ipp->ipp_fields |= IPPF_LABEL_V4; 5507 } else { 5508 ipp->ipp_label_v4 = kmem_alloc(optlen, 5509 KM_NOSLEEP); 5510 if (ipp->ipp_label_v4 == NULL) 5511 return (ENOMEM); 5512 ipp->ipp_label_len_v4 = optlen; 5513 ipp->ipp_fields |= IPPF_LABEL_V4; 5514 bcopy(opt, ipp->ipp_label_v4, optlen); 5515 } 5516 totallen -= optlen; 5517 opt += optlen; 5518 5519 /* Skip padding bytes until we get to a multiple of 4 */ 5520 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5521 totallen--; 5522 opt++; 5523 } 5524 /* Remaining as ipp_ipv4_options */ 5525 goto copyall; 5526 } 5527 totallen -= optlen; 5528 opt += optlen; 5529 } 5530 /* No CIPSO found; return everything as ipp_ipv4_options */ 5531 totallen = ipha->ipha_version_and_hdr_length - 5532 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5533 totallen <<= 2; 5534 opt = (uchar_t *)&ipha[1]; 5535 goto copyall; 5536 } 5537 5538 /* 5539 * Efficient versions of lookup for an IRE when we only 5540 * match the address. 5541 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5542 * Does not handle multicast addresses. 5543 */ 5544 uint_t 5545 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5546 { 5547 ire_t *ire; 5548 uint_t result; 5549 5550 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5551 ASSERT(ire != NULL); 5552 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5553 result = IRE_NOROUTE; 5554 else 5555 result = ire->ire_type; 5556 ire_refrele(ire); 5557 return (result); 5558 } 5559 5560 /* 5561 * Efficient versions of lookup for an IRE when we only 5562 * match the address. 5563 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5564 * Does not handle multicast addresses. 5565 */ 5566 uint_t 5567 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5568 { 5569 ire_t *ire; 5570 uint_t result; 5571 5572 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5573 ASSERT(ire != NULL); 5574 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5575 result = IRE_NOROUTE; 5576 else 5577 result = ire->ire_type; 5578 ire_refrele(ire); 5579 return (result); 5580 } 5581 5582 /* 5583 * Nobody should be sending 5584 * packets up this stream 5585 */ 5586 static void 5587 ip_lrput(queue_t *q, mblk_t *mp) 5588 { 5589 switch (mp->b_datap->db_type) { 5590 case M_FLUSH: 5591 /* Turn around */ 5592 if (*mp->b_rptr & FLUSHW) { 5593 *mp->b_rptr &= ~FLUSHR; 5594 qreply(q, mp); 5595 return; 5596 } 5597 break; 5598 } 5599 freemsg(mp); 5600 } 5601 5602 /* Nobody should be sending packets down this stream */ 5603 /* ARGSUSED */ 5604 void 5605 ip_lwput(queue_t *q, mblk_t *mp) 5606 { 5607 freemsg(mp); 5608 } 5609 5610 /* 5611 * Move the first hop in any source route to ipha_dst and remove that part of 5612 * the source route. Called by other protocols. Errors in option formatting 5613 * are ignored - will be handled by ip_output_options. Return the final 5614 * destination (either ipha_dst or the last entry in a source route.) 5615 */ 5616 ipaddr_t 5617 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5618 { 5619 ipoptp_t opts; 5620 uchar_t *opt; 5621 uint8_t optval; 5622 uint8_t optlen; 5623 ipaddr_t dst; 5624 int i; 5625 ip_stack_t *ipst = ns->netstack_ip; 5626 5627 ip2dbg(("ip_massage_options\n")); 5628 dst = ipha->ipha_dst; 5629 for (optval = ipoptp_first(&opts, ipha); 5630 optval != IPOPT_EOL; 5631 optval = ipoptp_next(&opts)) { 5632 opt = opts.ipoptp_cur; 5633 switch (optval) { 5634 uint8_t off; 5635 case IPOPT_SSRR: 5636 case IPOPT_LSRR: 5637 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5638 ip1dbg(("ip_massage_options: bad src route\n")); 5639 break; 5640 } 5641 optlen = opts.ipoptp_len; 5642 off = opt[IPOPT_OFFSET]; 5643 off--; 5644 redo_srr: 5645 if (optlen < IP_ADDR_LEN || 5646 off > optlen - IP_ADDR_LEN) { 5647 /* End of source route */ 5648 ip1dbg(("ip_massage_options: end of SR\n")); 5649 break; 5650 } 5651 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5652 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5653 ntohl(dst))); 5654 /* 5655 * Check if our address is present more than 5656 * once as consecutive hops in source route. 5657 * XXX verify per-interface ip_forwarding 5658 * for source route? 5659 */ 5660 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5661 off += IP_ADDR_LEN; 5662 goto redo_srr; 5663 } 5664 if (dst == htonl(INADDR_LOOPBACK)) { 5665 ip1dbg(("ip_massage_options: loopback addr in " 5666 "source route!\n")); 5667 break; 5668 } 5669 /* 5670 * Update ipha_dst to be the first hop and remove the 5671 * first hop from the source route (by overwriting 5672 * part of the option with NOP options). 5673 */ 5674 ipha->ipha_dst = dst; 5675 /* Put the last entry in dst */ 5676 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5677 3; 5678 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5679 5680 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5681 ntohl(dst))); 5682 /* Move down and overwrite */ 5683 opt[IP_ADDR_LEN] = opt[0]; 5684 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5685 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5686 for (i = 0; i < IP_ADDR_LEN; i++) 5687 opt[i] = IPOPT_NOP; 5688 break; 5689 } 5690 } 5691 return (dst); 5692 } 5693 5694 /* 5695 * Return the network mask 5696 * associated with the specified address. 5697 */ 5698 ipaddr_t 5699 ip_net_mask(ipaddr_t addr) 5700 { 5701 uchar_t *up = (uchar_t *)&addr; 5702 ipaddr_t mask = 0; 5703 uchar_t *maskp = (uchar_t *)&mask; 5704 5705 #if defined(__i386) || defined(__amd64) 5706 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5707 #endif 5708 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5709 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5710 #endif 5711 if (CLASSD(addr)) { 5712 maskp[0] = 0xF0; 5713 return (mask); 5714 } 5715 5716 /* We assume Class E default netmask to be 32 */ 5717 if (CLASSE(addr)) 5718 return (0xffffffffU); 5719 5720 if (addr == 0) 5721 return (0); 5722 maskp[0] = 0xFF; 5723 if ((up[0] & 0x80) == 0) 5724 return (mask); 5725 5726 maskp[1] = 0xFF; 5727 if ((up[0] & 0xC0) == 0x80) 5728 return (mask); 5729 5730 maskp[2] = 0xFF; 5731 if ((up[0] & 0xE0) == 0xC0) 5732 return (mask); 5733 5734 /* Otherwise return no mask */ 5735 return ((ipaddr_t)0); 5736 } 5737 5738 /* Name/Value Table Lookup Routine */ 5739 char * 5740 ip_nv_lookup(nv_t *nv, int value) 5741 { 5742 if (!nv) 5743 return (NULL); 5744 for (; nv->nv_name; nv++) { 5745 if (nv->nv_value == value) 5746 return (nv->nv_name); 5747 } 5748 return ("unknown"); 5749 } 5750 5751 static int 5752 ip_wait_for_info_ack(ill_t *ill) 5753 { 5754 int err; 5755 5756 mutex_enter(&ill->ill_lock); 5757 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5758 /* 5759 * Return value of 0 indicates a pending signal. 5760 */ 5761 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5762 if (err == 0) { 5763 mutex_exit(&ill->ill_lock); 5764 return (EINTR); 5765 } 5766 } 5767 mutex_exit(&ill->ill_lock); 5768 /* 5769 * ip_rput_other could have set an error in ill_error on 5770 * receipt of M_ERROR. 5771 */ 5772 return (ill->ill_error); 5773 } 5774 5775 /* 5776 * This is a module open, i.e. this is a control stream for access 5777 * to a DLPI device. We allocate an ill_t as the instance data in 5778 * this case. 5779 */ 5780 static int 5781 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5782 { 5783 ill_t *ill; 5784 int err; 5785 zoneid_t zoneid; 5786 netstack_t *ns; 5787 ip_stack_t *ipst; 5788 5789 /* 5790 * Prevent unprivileged processes from pushing IP so that 5791 * they can't send raw IP. 5792 */ 5793 if (secpolicy_net_rawaccess(credp) != 0) 5794 return (EPERM); 5795 5796 ns = netstack_find_by_cred(credp); 5797 ASSERT(ns != NULL); 5798 ipst = ns->netstack_ip; 5799 ASSERT(ipst != NULL); 5800 5801 /* 5802 * For exclusive stacks we set the zoneid to zero 5803 * to make IP operate as if in the global zone. 5804 */ 5805 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5806 zoneid = GLOBAL_ZONEID; 5807 else 5808 zoneid = crgetzoneid(credp); 5809 5810 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5811 q->q_ptr = WR(q)->q_ptr = ill; 5812 ill->ill_ipst = ipst; 5813 ill->ill_zoneid = zoneid; 5814 5815 /* 5816 * ill_init initializes the ill fields and then sends down 5817 * down a DL_INFO_REQ after calling qprocson. 5818 */ 5819 err = ill_init(q, ill); 5820 5821 if (err != 0) { 5822 mi_free(ill); 5823 netstack_rele(ipst->ips_netstack); 5824 q->q_ptr = NULL; 5825 WR(q)->q_ptr = NULL; 5826 return (err); 5827 } 5828 5829 /* 5830 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5831 * 5832 * ill_init initializes the ipsq marking this thread as 5833 * writer 5834 */ 5835 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5836 err = ip_wait_for_info_ack(ill); 5837 if (err == 0) 5838 ill->ill_credp = credp; 5839 else 5840 goto fail; 5841 5842 crhold(credp); 5843 5844 mutex_enter(&ipst->ips_ip_mi_lock); 5845 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5846 sflag, credp); 5847 mutex_exit(&ipst->ips_ip_mi_lock); 5848 fail: 5849 if (err) { 5850 (void) ip_close(q, 0); 5851 return (err); 5852 } 5853 return (0); 5854 } 5855 5856 /* For /dev/ip aka AF_INET open */ 5857 int 5858 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5859 { 5860 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5861 } 5862 5863 /* For /dev/ip6 aka AF_INET6 open */ 5864 int 5865 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5866 { 5867 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5868 } 5869 5870 /* IP open routine. */ 5871 int 5872 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5873 boolean_t isv6) 5874 { 5875 conn_t *connp; 5876 major_t maj; 5877 zoneid_t zoneid; 5878 netstack_t *ns; 5879 ip_stack_t *ipst; 5880 5881 /* Allow reopen. */ 5882 if (q->q_ptr != NULL) 5883 return (0); 5884 5885 if (sflag & MODOPEN) { 5886 /* This is a module open */ 5887 return (ip_modopen(q, devp, flag, sflag, credp)); 5888 } 5889 5890 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5891 /* 5892 * Non streams based socket looking for a stream 5893 * to access IP 5894 */ 5895 return (ip_helper_stream_setup(q, devp, flag, sflag, 5896 credp, isv6)); 5897 } 5898 5899 ns = netstack_find_by_cred(credp); 5900 ASSERT(ns != NULL); 5901 ipst = ns->netstack_ip; 5902 ASSERT(ipst != NULL); 5903 5904 /* 5905 * For exclusive stacks we set the zoneid to zero 5906 * to make IP operate as if in the global zone. 5907 */ 5908 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5909 zoneid = GLOBAL_ZONEID; 5910 else 5911 zoneid = crgetzoneid(credp); 5912 5913 /* 5914 * We are opening as a device. This is an IP client stream, and we 5915 * allocate an conn_t as the instance data. 5916 */ 5917 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5918 5919 /* 5920 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5921 * done by netstack_find_by_cred() 5922 */ 5923 netstack_rele(ipst->ips_netstack); 5924 5925 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5926 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5927 connp->conn_ixa->ixa_zoneid = zoneid; 5928 connp->conn_zoneid = zoneid; 5929 5930 connp->conn_rq = q; 5931 q->q_ptr = WR(q)->q_ptr = connp; 5932 5933 /* Minor tells us which /dev entry was opened */ 5934 if (isv6) { 5935 connp->conn_family = AF_INET6; 5936 connp->conn_ipversion = IPV6_VERSION; 5937 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5938 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5939 } else { 5940 connp->conn_family = AF_INET; 5941 connp->conn_ipversion = IPV4_VERSION; 5942 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5943 } 5944 5945 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5946 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5947 connp->conn_minor_arena = ip_minor_arena_la; 5948 } else { 5949 /* 5950 * Either minor numbers in the large arena were exhausted 5951 * or a non socket application is doing the open. 5952 * Try to allocate from the small arena. 5953 */ 5954 if ((connp->conn_dev = 5955 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5956 /* CONN_DEC_REF takes care of netstack_rele() */ 5957 q->q_ptr = WR(q)->q_ptr = NULL; 5958 CONN_DEC_REF(connp); 5959 return (EBUSY); 5960 } 5961 connp->conn_minor_arena = ip_minor_arena_sa; 5962 } 5963 5964 maj = getemajor(*devp); 5965 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5966 5967 /* 5968 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5969 */ 5970 connp->conn_cred = credp; 5971 connp->conn_cpid = curproc->p_pid; 5972 /* Cache things in ixa without an extra refhold */ 5973 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5974 connp->conn_ixa->ixa_cred = connp->conn_cred; 5975 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5976 if (is_system_labeled()) 5977 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5978 5979 /* 5980 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 5981 */ 5982 connp->conn_recv = ip_conn_input; 5983 connp->conn_recvicmp = ip_conn_input_icmp; 5984 5985 crhold(connp->conn_cred); 5986 5987 /* 5988 * If the caller has the process-wide flag set, then default to MAC 5989 * exempt mode. This allows read-down to unlabeled hosts. 5990 */ 5991 if (getpflags(NET_MAC_AWARE, credp) != 0) 5992 connp->conn_mac_mode = CONN_MAC_AWARE; 5993 5994 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 5995 5996 connp->conn_rq = q; 5997 connp->conn_wq = WR(q); 5998 5999 /* Non-zero default values */ 6000 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6001 6002 /* 6003 * Make the conn globally visible to walkers 6004 */ 6005 ASSERT(connp->conn_ref == 1); 6006 mutex_enter(&connp->conn_lock); 6007 connp->conn_state_flags &= ~CONN_INCIPIENT; 6008 mutex_exit(&connp->conn_lock); 6009 6010 qprocson(q); 6011 6012 return (0); 6013 } 6014 6015 /* 6016 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6017 * all of them are copied to the conn_t. If the req is "zero", the policy is 6018 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6019 * fields. 6020 * We keep only the latest setting of the policy and thus policy setting 6021 * is not incremental/cumulative. 6022 * 6023 * Requests to set policies with multiple alternative actions will 6024 * go through a different API. 6025 */ 6026 int 6027 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6028 { 6029 uint_t ah_req = 0; 6030 uint_t esp_req = 0; 6031 uint_t se_req = 0; 6032 ipsec_act_t *actp = NULL; 6033 uint_t nact; 6034 ipsec_policy_head_t *ph; 6035 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6036 int error = 0; 6037 netstack_t *ns = connp->conn_netstack; 6038 ip_stack_t *ipst = ns->netstack_ip; 6039 ipsec_stack_t *ipss = ns->netstack_ipsec; 6040 6041 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6042 6043 /* 6044 * The IP_SEC_OPT option does not allow variable length parameters, 6045 * hence a request cannot be NULL. 6046 */ 6047 if (req == NULL) 6048 return (EINVAL); 6049 6050 ah_req = req->ipsr_ah_req; 6051 esp_req = req->ipsr_esp_req; 6052 se_req = req->ipsr_self_encap_req; 6053 6054 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6055 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6056 return (EINVAL); 6057 6058 /* 6059 * Are we dealing with a request to reset the policy (i.e. 6060 * zero requests). 6061 */ 6062 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6063 (esp_req & REQ_MASK) == 0 && 6064 (se_req & REQ_MASK) == 0); 6065 6066 if (!is_pol_reset) { 6067 /* 6068 * If we couldn't load IPsec, fail with "protocol 6069 * not supported". 6070 * IPsec may not have been loaded for a request with zero 6071 * policies, so we don't fail in this case. 6072 */ 6073 mutex_enter(&ipss->ipsec_loader_lock); 6074 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6075 mutex_exit(&ipss->ipsec_loader_lock); 6076 return (EPROTONOSUPPORT); 6077 } 6078 mutex_exit(&ipss->ipsec_loader_lock); 6079 6080 /* 6081 * Test for valid requests. Invalid algorithms 6082 * need to be tested by IPsec code because new 6083 * algorithms can be added dynamically. 6084 */ 6085 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6086 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6087 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6088 return (EINVAL); 6089 } 6090 6091 /* 6092 * Only privileged users can issue these 6093 * requests. 6094 */ 6095 if (((ah_req & IPSEC_PREF_NEVER) || 6096 (esp_req & IPSEC_PREF_NEVER) || 6097 (se_req & IPSEC_PREF_NEVER)) && 6098 secpolicy_ip_config(cr, B_FALSE) != 0) { 6099 return (EPERM); 6100 } 6101 6102 /* 6103 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6104 * are mutually exclusive. 6105 */ 6106 if (((ah_req & REQ_MASK) == REQ_MASK) || 6107 ((esp_req & REQ_MASK) == REQ_MASK) || 6108 ((se_req & REQ_MASK) == REQ_MASK)) { 6109 /* Both of them are set */ 6110 return (EINVAL); 6111 } 6112 } 6113 6114 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6115 6116 /* 6117 * If we have already cached policies in conn_connect(), don't 6118 * let them change now. We cache policies for connections 6119 * whose src,dst [addr, port] is known. 6120 */ 6121 if (connp->conn_policy_cached) { 6122 return (EINVAL); 6123 } 6124 6125 /* 6126 * We have a zero policies, reset the connection policy if already 6127 * set. This will cause the connection to inherit the 6128 * global policy, if any. 6129 */ 6130 if (is_pol_reset) { 6131 if (connp->conn_policy != NULL) { 6132 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6133 connp->conn_policy = NULL; 6134 } 6135 connp->conn_in_enforce_policy = B_FALSE; 6136 connp->conn_out_enforce_policy = B_FALSE; 6137 return (0); 6138 } 6139 6140 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6141 ipst->ips_netstack); 6142 if (ph == NULL) 6143 goto enomem; 6144 6145 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6146 if (actp == NULL) 6147 goto enomem; 6148 6149 /* 6150 * Always insert IPv4 policy entries, since they can also apply to 6151 * ipv6 sockets being used in ipv4-compat mode. 6152 */ 6153 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6154 IPSEC_TYPE_INBOUND, ns)) 6155 goto enomem; 6156 is_pol_inserted = B_TRUE; 6157 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6158 IPSEC_TYPE_OUTBOUND, ns)) 6159 goto enomem; 6160 6161 /* 6162 * We're looking at a v6 socket, also insert the v6-specific 6163 * entries. 6164 */ 6165 if (connp->conn_family == AF_INET6) { 6166 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6167 IPSEC_TYPE_INBOUND, ns)) 6168 goto enomem; 6169 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6170 IPSEC_TYPE_OUTBOUND, ns)) 6171 goto enomem; 6172 } 6173 6174 ipsec_actvec_free(actp, nact); 6175 6176 /* 6177 * If the requests need security, set enforce_policy. 6178 * If the requests are IPSEC_PREF_NEVER, one should 6179 * still set conn_out_enforce_policy so that ip_set_destination 6180 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6181 * for connections that we don't cache policy in at connect time, 6182 * if global policy matches in ip_output_attach_policy, we 6183 * don't wrongly inherit global policy. Similarly, we need 6184 * to set conn_in_enforce_policy also so that we don't verify 6185 * policy wrongly. 6186 */ 6187 if ((ah_req & REQ_MASK) != 0 || 6188 (esp_req & REQ_MASK) != 0 || 6189 (se_req & REQ_MASK) != 0) { 6190 connp->conn_in_enforce_policy = B_TRUE; 6191 connp->conn_out_enforce_policy = B_TRUE; 6192 } 6193 6194 return (error); 6195 #undef REQ_MASK 6196 6197 /* 6198 * Common memory-allocation-failure exit path. 6199 */ 6200 enomem: 6201 if (actp != NULL) 6202 ipsec_actvec_free(actp, nact); 6203 if (is_pol_inserted) 6204 ipsec_polhead_flush(ph, ns); 6205 return (ENOMEM); 6206 } 6207 6208 /* 6209 * Set socket options for joining and leaving multicast groups. 6210 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6211 * The caller has already check that the option name is consistent with 6212 * the address family of the socket. 6213 */ 6214 int 6215 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6216 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6217 { 6218 int *i1 = (int *)invalp; 6219 int error = 0; 6220 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6221 struct ip_mreq *v4_mreqp; 6222 struct ipv6_mreq *v6_mreqp; 6223 struct group_req *greqp; 6224 ire_t *ire; 6225 boolean_t done = B_FALSE; 6226 ipaddr_t ifaddr; 6227 in6_addr_t v6group; 6228 uint_t ifindex; 6229 boolean_t mcast_opt = B_TRUE; 6230 mcast_record_t fmode; 6231 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6232 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6233 6234 switch (name) { 6235 case IP_ADD_MEMBERSHIP: 6236 case IPV6_JOIN_GROUP: 6237 mcast_opt = B_FALSE; 6238 /* FALLTHRU */ 6239 case MCAST_JOIN_GROUP: 6240 fmode = MODE_IS_EXCLUDE; 6241 optfn = ip_opt_add_group; 6242 break; 6243 6244 case IP_DROP_MEMBERSHIP: 6245 case IPV6_LEAVE_GROUP: 6246 mcast_opt = B_FALSE; 6247 /* FALLTHRU */ 6248 case MCAST_LEAVE_GROUP: 6249 fmode = MODE_IS_INCLUDE; 6250 optfn = ip_opt_delete_group; 6251 break; 6252 default: 6253 ASSERT(0); 6254 } 6255 6256 if (mcast_opt) { 6257 struct sockaddr_in *sin; 6258 struct sockaddr_in6 *sin6; 6259 6260 greqp = (struct group_req *)i1; 6261 if (greqp->gr_group.ss_family == AF_INET) { 6262 sin = (struct sockaddr_in *)&(greqp->gr_group); 6263 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6264 } else { 6265 if (!inet6) 6266 return (EINVAL); /* Not on INET socket */ 6267 6268 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6269 v6group = sin6->sin6_addr; 6270 } 6271 ifaddr = INADDR_ANY; 6272 ifindex = greqp->gr_interface; 6273 } else if (inet6) { 6274 v6_mreqp = (struct ipv6_mreq *)i1; 6275 v6group = v6_mreqp->ipv6mr_multiaddr; 6276 ifaddr = INADDR_ANY; 6277 ifindex = v6_mreqp->ipv6mr_interface; 6278 } else { 6279 v4_mreqp = (struct ip_mreq *)i1; 6280 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6281 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6282 ifindex = 0; 6283 } 6284 6285 /* 6286 * In the multirouting case, we need to replicate 6287 * the request on all interfaces that will take part 6288 * in replication. We do so because multirouting is 6289 * reflective, thus we will probably receive multi- 6290 * casts on those interfaces. 6291 * The ip_multirt_apply_membership() succeeds if 6292 * the operation succeeds on at least one interface. 6293 */ 6294 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6295 ipaddr_t group; 6296 6297 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6298 6299 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6300 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6301 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6302 } else { 6303 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6304 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6305 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6306 } 6307 if (ire != NULL) { 6308 if (ire->ire_flags & RTF_MULTIRT) { 6309 error = ip_multirt_apply_membership(optfn, ire, connp, 6310 checkonly, &v6group, fmode, &ipv6_all_zeros); 6311 done = B_TRUE; 6312 } 6313 ire_refrele(ire); 6314 } 6315 6316 if (!done) { 6317 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6318 fmode, &ipv6_all_zeros); 6319 } 6320 return (error); 6321 } 6322 6323 /* 6324 * Set socket options for joining and leaving multicast groups 6325 * for specific sources. 6326 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6327 * The caller has already check that the option name is consistent with 6328 * the address family of the socket. 6329 */ 6330 int 6331 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6332 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6333 { 6334 int *i1 = (int *)invalp; 6335 int error = 0; 6336 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6337 struct ip_mreq_source *imreqp; 6338 struct group_source_req *gsreqp; 6339 in6_addr_t v6group, v6src; 6340 uint32_t ifindex; 6341 ipaddr_t ifaddr; 6342 boolean_t mcast_opt = B_TRUE; 6343 mcast_record_t fmode; 6344 ire_t *ire; 6345 boolean_t done = B_FALSE; 6346 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6347 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6348 6349 switch (name) { 6350 case IP_BLOCK_SOURCE: 6351 mcast_opt = B_FALSE; 6352 /* FALLTHRU */ 6353 case MCAST_BLOCK_SOURCE: 6354 fmode = MODE_IS_EXCLUDE; 6355 optfn = ip_opt_add_group; 6356 break; 6357 6358 case IP_UNBLOCK_SOURCE: 6359 mcast_opt = B_FALSE; 6360 /* FALLTHRU */ 6361 case MCAST_UNBLOCK_SOURCE: 6362 fmode = MODE_IS_EXCLUDE; 6363 optfn = ip_opt_delete_group; 6364 break; 6365 6366 case IP_ADD_SOURCE_MEMBERSHIP: 6367 mcast_opt = B_FALSE; 6368 /* FALLTHRU */ 6369 case MCAST_JOIN_SOURCE_GROUP: 6370 fmode = MODE_IS_INCLUDE; 6371 optfn = ip_opt_add_group; 6372 break; 6373 6374 case IP_DROP_SOURCE_MEMBERSHIP: 6375 mcast_opt = B_FALSE; 6376 /* FALLTHRU */ 6377 case MCAST_LEAVE_SOURCE_GROUP: 6378 fmode = MODE_IS_INCLUDE; 6379 optfn = ip_opt_delete_group; 6380 break; 6381 default: 6382 ASSERT(0); 6383 } 6384 6385 if (mcast_opt) { 6386 gsreqp = (struct group_source_req *)i1; 6387 ifindex = gsreqp->gsr_interface; 6388 if (gsreqp->gsr_group.ss_family == AF_INET) { 6389 struct sockaddr_in *s; 6390 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6391 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6392 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6393 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6394 } else { 6395 struct sockaddr_in6 *s6; 6396 6397 if (!inet6) 6398 return (EINVAL); /* Not on INET socket */ 6399 6400 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6401 v6group = s6->sin6_addr; 6402 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6403 v6src = s6->sin6_addr; 6404 } 6405 ifaddr = INADDR_ANY; 6406 } else { 6407 imreqp = (struct ip_mreq_source *)i1; 6408 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6409 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6410 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6411 ifindex = 0; 6412 } 6413 6414 /* 6415 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6416 */ 6417 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6418 v6src = ipv6_all_zeros; 6419 6420 /* 6421 * In the multirouting case, we need to replicate 6422 * the request as noted in the mcast cases above. 6423 */ 6424 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6425 ipaddr_t group; 6426 6427 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6428 6429 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6430 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6431 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6432 } else { 6433 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6434 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6435 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6436 } 6437 if (ire != NULL) { 6438 if (ire->ire_flags & RTF_MULTIRT) { 6439 error = ip_multirt_apply_membership(optfn, ire, connp, 6440 checkonly, &v6group, fmode, &v6src); 6441 done = B_TRUE; 6442 } 6443 ire_refrele(ire); 6444 } 6445 if (!done) { 6446 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6447 fmode, &v6src); 6448 } 6449 return (error); 6450 } 6451 6452 /* 6453 * Given a destination address and a pointer to where to put the information 6454 * this routine fills in the mtuinfo. 6455 * The socket must be connected. 6456 * For sctp conn_faddr is the primary address. 6457 */ 6458 int 6459 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6460 { 6461 uint32_t pmtu = IP_MAXPACKET; 6462 uint_t scopeid; 6463 6464 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6465 return (-1); 6466 6467 /* In case we never sent or called ip_set_destination_v4/v6 */ 6468 if (ixa->ixa_ire != NULL) 6469 pmtu = ip_get_pmtu(ixa); 6470 6471 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6472 scopeid = ixa->ixa_scopeid; 6473 else 6474 scopeid = 0; 6475 6476 bzero(mtuinfo, sizeof (*mtuinfo)); 6477 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6478 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6479 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6480 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6481 mtuinfo->ip6m_mtu = pmtu; 6482 6483 return (sizeof (struct ip6_mtuinfo)); 6484 } 6485 6486 /* 6487 * When the src multihoming is changed from weak to [strong, preferred] 6488 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6489 * and identify routes that were created by user-applications in the 6490 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6491 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6492 * is selected by finding an interface route for the gateway. 6493 */ 6494 /* ARGSUSED */ 6495 void 6496 ip_ire_rebind_walker(ire_t *ire, void *notused) 6497 { 6498 if (!ire->ire_unbound || ire->ire_ill != NULL) 6499 return; 6500 ire_rebind(ire); 6501 ire_delete(ire); 6502 } 6503 6504 /* 6505 * When the src multihoming is changed from [strong, preferred] to weak, 6506 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6507 * set any entries that were created by user-applications in the unbound state 6508 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6509 */ 6510 /* ARGSUSED */ 6511 void 6512 ip_ire_unbind_walker(ire_t *ire, void *notused) 6513 { 6514 ire_t *new_ire; 6515 6516 if (!ire->ire_unbound || ire->ire_ill == NULL) 6517 return; 6518 if (ire->ire_ipversion == IPV6_VERSION) { 6519 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6520 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6521 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6522 } else { 6523 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6524 (uchar_t *)&ire->ire_mask, 6525 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6526 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6527 } 6528 if (new_ire == NULL) 6529 return; 6530 new_ire->ire_unbound = B_TRUE; 6531 /* 6532 * The bound ire must first be deleted so that we don't return 6533 * the existing one on the attempt to add the unbound new_ire. 6534 */ 6535 ire_delete(ire); 6536 new_ire = ire_add(new_ire); 6537 if (new_ire != NULL) 6538 ire_refrele(new_ire); 6539 } 6540 6541 /* 6542 * When the settings of ip*_strict_src_multihoming tunables are changed, 6543 * all cached routes need to be recomputed. This recomputation needs to be 6544 * done when going from weaker to stronger modes so that the cached ire 6545 * for the connection does not violate the current ip*_strict_src_multihoming 6546 * setting. It also needs to be done when going from stronger to weaker modes, 6547 * so that we fall back to matching on the longest-matching-route (as opposed 6548 * to a shorter match that may have been selected in the strong mode 6549 * to satisfy src_multihoming settings). 6550 * 6551 * The cached ixa_ire entires for all conn_t entries are marked as 6552 * "verify" so that they will be recomputed for the next packet. 6553 */ 6554 void 6555 conn_ire_revalidate(conn_t *connp, void *arg) 6556 { 6557 boolean_t isv6 = (boolean_t)arg; 6558 6559 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6560 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6561 return; 6562 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6563 } 6564 6565 /* 6566 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6567 * When an ipf is passed here for the first time, if 6568 * we already have in-order fragments on the queue, we convert from the fast- 6569 * path reassembly scheme to the hard-case scheme. From then on, additional 6570 * fragments are reassembled here. We keep track of the start and end offsets 6571 * of each piece, and the number of holes in the chain. When the hole count 6572 * goes to zero, we are done! 6573 * 6574 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6575 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6576 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6577 * after the call to ip_reassemble(). 6578 */ 6579 int 6580 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6581 size_t msg_len) 6582 { 6583 uint_t end; 6584 mblk_t *next_mp; 6585 mblk_t *mp1; 6586 uint_t offset; 6587 boolean_t incr_dups = B_TRUE; 6588 boolean_t offset_zero_seen = B_FALSE; 6589 boolean_t pkt_boundary_checked = B_FALSE; 6590 6591 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6592 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6593 6594 /* Add in byte count */ 6595 ipf->ipf_count += msg_len; 6596 if (ipf->ipf_end) { 6597 /* 6598 * We were part way through in-order reassembly, but now there 6599 * is a hole. We walk through messages already queued, and 6600 * mark them for hard case reassembly. We know that up till 6601 * now they were in order starting from offset zero. 6602 */ 6603 offset = 0; 6604 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6605 IP_REASS_SET_START(mp1, offset); 6606 if (offset == 0) { 6607 ASSERT(ipf->ipf_nf_hdr_len != 0); 6608 offset = -ipf->ipf_nf_hdr_len; 6609 } 6610 offset += mp1->b_wptr - mp1->b_rptr; 6611 IP_REASS_SET_END(mp1, offset); 6612 } 6613 /* One hole at the end. */ 6614 ipf->ipf_hole_cnt = 1; 6615 /* Brand it as a hard case, forever. */ 6616 ipf->ipf_end = 0; 6617 } 6618 /* Walk through all the new pieces. */ 6619 do { 6620 end = start + (mp->b_wptr - mp->b_rptr); 6621 /* 6622 * If start is 0, decrease 'end' only for the first mblk of 6623 * the fragment. Otherwise 'end' can get wrong value in the 6624 * second pass of the loop if first mblk is exactly the 6625 * size of ipf_nf_hdr_len. 6626 */ 6627 if (start == 0 && !offset_zero_seen) { 6628 /* First segment */ 6629 ASSERT(ipf->ipf_nf_hdr_len != 0); 6630 end -= ipf->ipf_nf_hdr_len; 6631 offset_zero_seen = B_TRUE; 6632 } 6633 next_mp = mp->b_cont; 6634 /* 6635 * We are checking to see if there is any interesing data 6636 * to process. If there isn't and the mblk isn't the 6637 * one which carries the unfragmentable header then we 6638 * drop it. It's possible to have just the unfragmentable 6639 * header come through without any data. That needs to be 6640 * saved. 6641 * 6642 * If the assert at the top of this function holds then the 6643 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6644 * is infrequently traveled enough that the test is left in 6645 * to protect against future code changes which break that 6646 * invariant. 6647 */ 6648 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6649 /* Empty. Blast it. */ 6650 IP_REASS_SET_START(mp, 0); 6651 IP_REASS_SET_END(mp, 0); 6652 /* 6653 * If the ipf points to the mblk we are about to free, 6654 * update ipf to point to the next mblk (or NULL 6655 * if none). 6656 */ 6657 if (ipf->ipf_mp->b_cont == mp) 6658 ipf->ipf_mp->b_cont = next_mp; 6659 freeb(mp); 6660 continue; 6661 } 6662 mp->b_cont = NULL; 6663 IP_REASS_SET_START(mp, start); 6664 IP_REASS_SET_END(mp, end); 6665 if (!ipf->ipf_tail_mp) { 6666 ipf->ipf_tail_mp = mp; 6667 ipf->ipf_mp->b_cont = mp; 6668 if (start == 0 || !more) { 6669 ipf->ipf_hole_cnt = 1; 6670 /* 6671 * if the first fragment comes in more than one 6672 * mblk, this loop will be executed for each 6673 * mblk. Need to adjust hole count so exiting 6674 * this routine will leave hole count at 1. 6675 */ 6676 if (next_mp) 6677 ipf->ipf_hole_cnt++; 6678 } else 6679 ipf->ipf_hole_cnt = 2; 6680 continue; 6681 } else if (ipf->ipf_last_frag_seen && !more && 6682 !pkt_boundary_checked) { 6683 /* 6684 * We check datagram boundary only if this fragment 6685 * claims to be the last fragment and we have seen a 6686 * last fragment in the past too. We do this only 6687 * once for a given fragment. 6688 * 6689 * start cannot be 0 here as fragments with start=0 6690 * and MF=0 gets handled as a complete packet. These 6691 * fragments should not reach here. 6692 */ 6693 6694 if (start + msgdsize(mp) != 6695 IP_REASS_END(ipf->ipf_tail_mp)) { 6696 /* 6697 * We have two fragments both of which claim 6698 * to be the last fragment but gives conflicting 6699 * information about the whole datagram size. 6700 * Something fishy is going on. Drop the 6701 * fragment and free up the reassembly list. 6702 */ 6703 return (IP_REASS_FAILED); 6704 } 6705 6706 /* 6707 * We shouldn't come to this code block again for this 6708 * particular fragment. 6709 */ 6710 pkt_boundary_checked = B_TRUE; 6711 } 6712 6713 /* New stuff at or beyond tail? */ 6714 offset = IP_REASS_END(ipf->ipf_tail_mp); 6715 if (start >= offset) { 6716 if (ipf->ipf_last_frag_seen) { 6717 /* current fragment is beyond last fragment */ 6718 return (IP_REASS_FAILED); 6719 } 6720 /* Link it on end. */ 6721 ipf->ipf_tail_mp->b_cont = mp; 6722 ipf->ipf_tail_mp = mp; 6723 if (more) { 6724 if (start != offset) 6725 ipf->ipf_hole_cnt++; 6726 } else if (start == offset && next_mp == NULL) 6727 ipf->ipf_hole_cnt--; 6728 continue; 6729 } 6730 mp1 = ipf->ipf_mp->b_cont; 6731 offset = IP_REASS_START(mp1); 6732 /* New stuff at the front? */ 6733 if (start < offset) { 6734 if (start == 0) { 6735 if (end >= offset) { 6736 /* Nailed the hole at the begining. */ 6737 ipf->ipf_hole_cnt--; 6738 } 6739 } else if (end < offset) { 6740 /* 6741 * A hole, stuff, and a hole where there used 6742 * to be just a hole. 6743 */ 6744 ipf->ipf_hole_cnt++; 6745 } 6746 mp->b_cont = mp1; 6747 /* Check for overlap. */ 6748 while (end > offset) { 6749 if (end < IP_REASS_END(mp1)) { 6750 mp->b_wptr -= end - offset; 6751 IP_REASS_SET_END(mp, offset); 6752 BUMP_MIB(ill->ill_ip_mib, 6753 ipIfStatsReasmPartDups); 6754 break; 6755 } 6756 /* Did we cover another hole? */ 6757 if ((mp1->b_cont && 6758 IP_REASS_END(mp1) != 6759 IP_REASS_START(mp1->b_cont) && 6760 end >= IP_REASS_START(mp1->b_cont)) || 6761 (!ipf->ipf_last_frag_seen && !more)) { 6762 ipf->ipf_hole_cnt--; 6763 } 6764 /* Clip out mp1. */ 6765 if ((mp->b_cont = mp1->b_cont) == NULL) { 6766 /* 6767 * After clipping out mp1, this guy 6768 * is now hanging off the end. 6769 */ 6770 ipf->ipf_tail_mp = mp; 6771 } 6772 IP_REASS_SET_START(mp1, 0); 6773 IP_REASS_SET_END(mp1, 0); 6774 /* Subtract byte count */ 6775 ipf->ipf_count -= mp1->b_datap->db_lim - 6776 mp1->b_datap->db_base; 6777 freeb(mp1); 6778 BUMP_MIB(ill->ill_ip_mib, 6779 ipIfStatsReasmPartDups); 6780 mp1 = mp->b_cont; 6781 if (!mp1) 6782 break; 6783 offset = IP_REASS_START(mp1); 6784 } 6785 ipf->ipf_mp->b_cont = mp; 6786 continue; 6787 } 6788 /* 6789 * The new piece starts somewhere between the start of the head 6790 * and before the end of the tail. 6791 */ 6792 for (; mp1; mp1 = mp1->b_cont) { 6793 offset = IP_REASS_END(mp1); 6794 if (start < offset) { 6795 if (end <= offset) { 6796 /* Nothing new. */ 6797 IP_REASS_SET_START(mp, 0); 6798 IP_REASS_SET_END(mp, 0); 6799 /* Subtract byte count */ 6800 ipf->ipf_count -= mp->b_datap->db_lim - 6801 mp->b_datap->db_base; 6802 if (incr_dups) { 6803 ipf->ipf_num_dups++; 6804 incr_dups = B_FALSE; 6805 } 6806 freeb(mp); 6807 BUMP_MIB(ill->ill_ip_mib, 6808 ipIfStatsReasmDuplicates); 6809 break; 6810 } 6811 /* 6812 * Trim redundant stuff off beginning of new 6813 * piece. 6814 */ 6815 IP_REASS_SET_START(mp, offset); 6816 mp->b_rptr += offset - start; 6817 BUMP_MIB(ill->ill_ip_mib, 6818 ipIfStatsReasmPartDups); 6819 start = offset; 6820 if (!mp1->b_cont) { 6821 /* 6822 * After trimming, this guy is now 6823 * hanging off the end. 6824 */ 6825 mp1->b_cont = mp; 6826 ipf->ipf_tail_mp = mp; 6827 if (!more) { 6828 ipf->ipf_hole_cnt--; 6829 } 6830 break; 6831 } 6832 } 6833 if (start >= IP_REASS_START(mp1->b_cont)) 6834 continue; 6835 /* Fill a hole */ 6836 if (start > offset) 6837 ipf->ipf_hole_cnt++; 6838 mp->b_cont = mp1->b_cont; 6839 mp1->b_cont = mp; 6840 mp1 = mp->b_cont; 6841 offset = IP_REASS_START(mp1); 6842 if (end >= offset) { 6843 ipf->ipf_hole_cnt--; 6844 /* Check for overlap. */ 6845 while (end > offset) { 6846 if (end < IP_REASS_END(mp1)) { 6847 mp->b_wptr -= end - offset; 6848 IP_REASS_SET_END(mp, offset); 6849 /* 6850 * TODO we might bump 6851 * this up twice if there is 6852 * overlap at both ends. 6853 */ 6854 BUMP_MIB(ill->ill_ip_mib, 6855 ipIfStatsReasmPartDups); 6856 break; 6857 } 6858 /* Did we cover another hole? */ 6859 if ((mp1->b_cont && 6860 IP_REASS_END(mp1) 6861 != IP_REASS_START(mp1->b_cont) && 6862 end >= 6863 IP_REASS_START(mp1->b_cont)) || 6864 (!ipf->ipf_last_frag_seen && 6865 !more)) { 6866 ipf->ipf_hole_cnt--; 6867 } 6868 /* Clip out mp1. */ 6869 if ((mp->b_cont = mp1->b_cont) == 6870 NULL) { 6871 /* 6872 * After clipping out mp1, 6873 * this guy is now hanging 6874 * off the end. 6875 */ 6876 ipf->ipf_tail_mp = mp; 6877 } 6878 IP_REASS_SET_START(mp1, 0); 6879 IP_REASS_SET_END(mp1, 0); 6880 /* Subtract byte count */ 6881 ipf->ipf_count -= 6882 mp1->b_datap->db_lim - 6883 mp1->b_datap->db_base; 6884 freeb(mp1); 6885 BUMP_MIB(ill->ill_ip_mib, 6886 ipIfStatsReasmPartDups); 6887 mp1 = mp->b_cont; 6888 if (!mp1) 6889 break; 6890 offset = IP_REASS_START(mp1); 6891 } 6892 } 6893 break; 6894 } 6895 } while (start = end, mp = next_mp); 6896 6897 /* Fragment just processed could be the last one. Remember this fact */ 6898 if (!more) 6899 ipf->ipf_last_frag_seen = B_TRUE; 6900 6901 /* Still got holes? */ 6902 if (ipf->ipf_hole_cnt) 6903 return (IP_REASS_PARTIAL); 6904 /* Clean up overloaded fields to avoid upstream disasters. */ 6905 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6906 IP_REASS_SET_START(mp1, 0); 6907 IP_REASS_SET_END(mp1, 0); 6908 } 6909 return (IP_REASS_COMPLETE); 6910 } 6911 6912 /* 6913 * Fragmentation reassembly. Each ILL has a hash table for 6914 * queuing packets undergoing reassembly for all IPIFs 6915 * associated with the ILL. The hash is based on the packet 6916 * IP ident field. The ILL frag hash table was allocated 6917 * as a timer block at the time the ILL was created. Whenever 6918 * there is anything on the reassembly queue, the timer will 6919 * be running. Returns the reassembled packet if reassembly completes. 6920 */ 6921 mblk_t * 6922 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6923 { 6924 uint32_t frag_offset_flags; 6925 mblk_t *t_mp; 6926 ipaddr_t dst; 6927 uint8_t proto = ipha->ipha_protocol; 6928 uint32_t sum_val; 6929 uint16_t sum_flags; 6930 ipf_t *ipf; 6931 ipf_t **ipfp; 6932 ipfb_t *ipfb; 6933 uint16_t ident; 6934 uint32_t offset; 6935 ipaddr_t src; 6936 uint_t hdr_length; 6937 uint32_t end; 6938 mblk_t *mp1; 6939 mblk_t *tail_mp; 6940 size_t count; 6941 size_t msg_len; 6942 uint8_t ecn_info = 0; 6943 uint32_t packet_size; 6944 boolean_t pruned = B_FALSE; 6945 ill_t *ill = ira->ira_ill; 6946 ip_stack_t *ipst = ill->ill_ipst; 6947 6948 /* 6949 * Drop the fragmented as early as possible, if 6950 * we don't have resource(s) to re-assemble. 6951 */ 6952 if (ipst->ips_ip_reass_queue_bytes == 0) { 6953 freemsg(mp); 6954 return (NULL); 6955 } 6956 6957 /* Check for fragmentation offset; return if there's none */ 6958 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6959 (IPH_MF | IPH_OFFSET)) == 0) 6960 return (mp); 6961 6962 /* 6963 * We utilize hardware computed checksum info only for UDP since 6964 * IP fragmentation is a normal occurrence for the protocol. In 6965 * addition, checksum offload support for IP fragments carrying 6966 * UDP payload is commonly implemented across network adapters. 6967 */ 6968 ASSERT(ira->ira_rill != NULL); 6969 if (proto == IPPROTO_UDP && dohwcksum && 6970 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6971 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6972 mblk_t *mp1 = mp->b_cont; 6973 int32_t len; 6974 6975 /* Record checksum information from the packet */ 6976 sum_val = (uint32_t)DB_CKSUM16(mp); 6977 sum_flags = DB_CKSUMFLAGS(mp); 6978 6979 /* IP payload offset from beginning of mblk */ 6980 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 6981 6982 if ((sum_flags & HCK_PARTIALCKSUM) && 6983 (mp1 == NULL || mp1->b_cont == NULL) && 6984 offset >= DB_CKSUMSTART(mp) && 6985 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 6986 uint32_t adj; 6987 /* 6988 * Partial checksum has been calculated by hardware 6989 * and attached to the packet; in addition, any 6990 * prepended extraneous data is even byte aligned. 6991 * If any such data exists, we adjust the checksum; 6992 * this would also handle any postpended data. 6993 */ 6994 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 6995 mp, mp1, len, adj); 6996 6997 /* One's complement subtract extraneous checksum */ 6998 if (adj >= sum_val) 6999 sum_val = ~(adj - sum_val) & 0xFFFF; 7000 else 7001 sum_val -= adj; 7002 } 7003 } else { 7004 sum_val = 0; 7005 sum_flags = 0; 7006 } 7007 7008 /* Clear hardware checksumming flag */ 7009 DB_CKSUMFLAGS(mp) = 0; 7010 7011 ident = ipha->ipha_ident; 7012 offset = (frag_offset_flags << 3) & 0xFFFF; 7013 src = ipha->ipha_src; 7014 dst = ipha->ipha_dst; 7015 hdr_length = IPH_HDR_LENGTH(ipha); 7016 end = ntohs(ipha->ipha_length) - hdr_length; 7017 7018 /* If end == 0 then we have a packet with no data, so just free it */ 7019 if (end == 0) { 7020 freemsg(mp); 7021 return (NULL); 7022 } 7023 7024 /* Record the ECN field info. */ 7025 ecn_info = (ipha->ipha_type_of_service & 0x3); 7026 if (offset != 0) { 7027 /* 7028 * If this isn't the first piece, strip the header, and 7029 * add the offset to the end value. 7030 */ 7031 mp->b_rptr += hdr_length; 7032 end += offset; 7033 } 7034 7035 /* Handle vnic loopback of fragments */ 7036 if (mp->b_datap->db_ref > 2) 7037 msg_len = 0; 7038 else 7039 msg_len = MBLKSIZE(mp); 7040 7041 tail_mp = mp; 7042 while (tail_mp->b_cont != NULL) { 7043 tail_mp = tail_mp->b_cont; 7044 if (tail_mp->b_datap->db_ref <= 2) 7045 msg_len += MBLKSIZE(tail_mp); 7046 } 7047 7048 /* If the reassembly list for this ILL will get too big, prune it */ 7049 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7050 ipst->ips_ip_reass_queue_bytes) { 7051 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7052 uint_t, ill->ill_frag_count, 7053 uint_t, ipst->ips_ip_reass_queue_bytes); 7054 ill_frag_prune(ill, 7055 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7056 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7057 pruned = B_TRUE; 7058 } 7059 7060 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7061 mutex_enter(&ipfb->ipfb_lock); 7062 7063 ipfp = &ipfb->ipfb_ipf; 7064 /* Try to find an existing fragment queue for this packet. */ 7065 for (;;) { 7066 ipf = ipfp[0]; 7067 if (ipf != NULL) { 7068 /* 7069 * It has to match on ident and src/dst address. 7070 */ 7071 if (ipf->ipf_ident == ident && 7072 ipf->ipf_src == src && 7073 ipf->ipf_dst == dst && 7074 ipf->ipf_protocol == proto) { 7075 /* 7076 * If we have received too many 7077 * duplicate fragments for this packet 7078 * free it. 7079 */ 7080 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7081 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7082 freemsg(mp); 7083 mutex_exit(&ipfb->ipfb_lock); 7084 return (NULL); 7085 } 7086 /* Found it. */ 7087 break; 7088 } 7089 ipfp = &ipf->ipf_hash_next; 7090 continue; 7091 } 7092 7093 /* 7094 * If we pruned the list, do we want to store this new 7095 * fragment?. We apply an optimization here based on the 7096 * fact that most fragments will be received in order. 7097 * So if the offset of this incoming fragment is zero, 7098 * it is the first fragment of a new packet. We will 7099 * keep it. Otherwise drop the fragment, as we have 7100 * probably pruned the packet already (since the 7101 * packet cannot be found). 7102 */ 7103 if (pruned && offset != 0) { 7104 mutex_exit(&ipfb->ipfb_lock); 7105 freemsg(mp); 7106 return (NULL); 7107 } 7108 7109 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7110 /* 7111 * Too many fragmented packets in this hash 7112 * bucket. Free the oldest. 7113 */ 7114 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7115 } 7116 7117 /* New guy. Allocate a frag message. */ 7118 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7119 if (mp1 == NULL) { 7120 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7121 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7122 freemsg(mp); 7123 reass_done: 7124 mutex_exit(&ipfb->ipfb_lock); 7125 return (NULL); 7126 } 7127 7128 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7129 mp1->b_cont = mp; 7130 7131 /* Initialize the fragment header. */ 7132 ipf = (ipf_t *)mp1->b_rptr; 7133 ipf->ipf_mp = mp1; 7134 ipf->ipf_ptphn = ipfp; 7135 ipfp[0] = ipf; 7136 ipf->ipf_hash_next = NULL; 7137 ipf->ipf_ident = ident; 7138 ipf->ipf_protocol = proto; 7139 ipf->ipf_src = src; 7140 ipf->ipf_dst = dst; 7141 ipf->ipf_nf_hdr_len = 0; 7142 /* Record reassembly start time. */ 7143 ipf->ipf_timestamp = gethrestime_sec(); 7144 /* Record ipf generation and account for frag header */ 7145 ipf->ipf_gen = ill->ill_ipf_gen++; 7146 ipf->ipf_count = MBLKSIZE(mp1); 7147 ipf->ipf_last_frag_seen = B_FALSE; 7148 ipf->ipf_ecn = ecn_info; 7149 ipf->ipf_num_dups = 0; 7150 ipfb->ipfb_frag_pkts++; 7151 ipf->ipf_checksum = 0; 7152 ipf->ipf_checksum_flags = 0; 7153 7154 /* Store checksum value in fragment header */ 7155 if (sum_flags != 0) { 7156 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7157 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7158 ipf->ipf_checksum = sum_val; 7159 ipf->ipf_checksum_flags = sum_flags; 7160 } 7161 7162 /* 7163 * We handle reassembly two ways. In the easy case, 7164 * where all the fragments show up in order, we do 7165 * minimal bookkeeping, and just clip new pieces on 7166 * the end. If we ever see a hole, then we go off 7167 * to ip_reassemble which has to mark the pieces and 7168 * keep track of the number of holes, etc. Obviously, 7169 * the point of having both mechanisms is so we can 7170 * handle the easy case as efficiently as possible. 7171 */ 7172 if (offset == 0) { 7173 /* Easy case, in-order reassembly so far. */ 7174 ipf->ipf_count += msg_len; 7175 ipf->ipf_tail_mp = tail_mp; 7176 /* 7177 * Keep track of next expected offset in 7178 * ipf_end. 7179 */ 7180 ipf->ipf_end = end; 7181 ipf->ipf_nf_hdr_len = hdr_length; 7182 } else { 7183 /* Hard case, hole at the beginning. */ 7184 ipf->ipf_tail_mp = NULL; 7185 /* 7186 * ipf_end == 0 means that we have given up 7187 * on easy reassembly. 7188 */ 7189 ipf->ipf_end = 0; 7190 7191 /* Forget checksum offload from now on */ 7192 ipf->ipf_checksum_flags = 0; 7193 7194 /* 7195 * ipf_hole_cnt is set by ip_reassemble. 7196 * ipf_count is updated by ip_reassemble. 7197 * No need to check for return value here 7198 * as we don't expect reassembly to complete 7199 * or fail for the first fragment itself. 7200 */ 7201 (void) ip_reassemble(mp, ipf, 7202 (frag_offset_flags & IPH_OFFSET) << 3, 7203 (frag_offset_flags & IPH_MF), ill, msg_len); 7204 } 7205 /* Update per ipfb and ill byte counts */ 7206 ipfb->ipfb_count += ipf->ipf_count; 7207 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7208 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7209 /* If the frag timer wasn't already going, start it. */ 7210 mutex_enter(&ill->ill_lock); 7211 ill_frag_timer_start(ill); 7212 mutex_exit(&ill->ill_lock); 7213 goto reass_done; 7214 } 7215 7216 /* 7217 * If the packet's flag has changed (it could be coming up 7218 * from an interface different than the previous, therefore 7219 * possibly different checksum capability), then forget about 7220 * any stored checksum states. Otherwise add the value to 7221 * the existing one stored in the fragment header. 7222 */ 7223 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7224 sum_val += ipf->ipf_checksum; 7225 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7226 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7227 ipf->ipf_checksum = sum_val; 7228 } else if (ipf->ipf_checksum_flags != 0) { 7229 /* Forget checksum offload from now on */ 7230 ipf->ipf_checksum_flags = 0; 7231 } 7232 7233 /* 7234 * We have a new piece of a datagram which is already being 7235 * reassembled. Update the ECN info if all IP fragments 7236 * are ECN capable. If there is one which is not, clear 7237 * all the info. If there is at least one which has CE 7238 * code point, IP needs to report that up to transport. 7239 */ 7240 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7241 if (ecn_info == IPH_ECN_CE) 7242 ipf->ipf_ecn = IPH_ECN_CE; 7243 } else { 7244 ipf->ipf_ecn = IPH_ECN_NECT; 7245 } 7246 if (offset && ipf->ipf_end == offset) { 7247 /* The new fragment fits at the end */ 7248 ipf->ipf_tail_mp->b_cont = mp; 7249 /* Update the byte count */ 7250 ipf->ipf_count += msg_len; 7251 /* Update per ipfb and ill byte counts */ 7252 ipfb->ipfb_count += msg_len; 7253 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7254 atomic_add_32(&ill->ill_frag_count, msg_len); 7255 if (frag_offset_flags & IPH_MF) { 7256 /* More to come. */ 7257 ipf->ipf_end = end; 7258 ipf->ipf_tail_mp = tail_mp; 7259 goto reass_done; 7260 } 7261 } else { 7262 /* Go do the hard cases. */ 7263 int ret; 7264 7265 if (offset == 0) 7266 ipf->ipf_nf_hdr_len = hdr_length; 7267 7268 /* Save current byte count */ 7269 count = ipf->ipf_count; 7270 ret = ip_reassemble(mp, ipf, 7271 (frag_offset_flags & IPH_OFFSET) << 3, 7272 (frag_offset_flags & IPH_MF), ill, msg_len); 7273 /* Count of bytes added and subtracted (freeb()ed) */ 7274 count = ipf->ipf_count - count; 7275 if (count) { 7276 /* Update per ipfb and ill byte counts */ 7277 ipfb->ipfb_count += count; 7278 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7279 atomic_add_32(&ill->ill_frag_count, count); 7280 } 7281 if (ret == IP_REASS_PARTIAL) { 7282 goto reass_done; 7283 } else if (ret == IP_REASS_FAILED) { 7284 /* Reassembly failed. Free up all resources */ 7285 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7286 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7287 IP_REASS_SET_START(t_mp, 0); 7288 IP_REASS_SET_END(t_mp, 0); 7289 } 7290 freemsg(mp); 7291 goto reass_done; 7292 } 7293 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7294 } 7295 /* 7296 * We have completed reassembly. Unhook the frag header from 7297 * the reassembly list. 7298 * 7299 * Before we free the frag header, record the ECN info 7300 * to report back to the transport. 7301 */ 7302 ecn_info = ipf->ipf_ecn; 7303 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7304 ipfp = ipf->ipf_ptphn; 7305 7306 /* We need to supply these to caller */ 7307 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7308 sum_val = ipf->ipf_checksum; 7309 else 7310 sum_val = 0; 7311 7312 mp1 = ipf->ipf_mp; 7313 count = ipf->ipf_count; 7314 ipf = ipf->ipf_hash_next; 7315 if (ipf != NULL) 7316 ipf->ipf_ptphn = ipfp; 7317 ipfp[0] = ipf; 7318 atomic_add_32(&ill->ill_frag_count, -count); 7319 ASSERT(ipfb->ipfb_count >= count); 7320 ipfb->ipfb_count -= count; 7321 ipfb->ipfb_frag_pkts--; 7322 mutex_exit(&ipfb->ipfb_lock); 7323 /* Ditch the frag header. */ 7324 mp = mp1->b_cont; 7325 7326 freeb(mp1); 7327 7328 /* Restore original IP length in header. */ 7329 packet_size = (uint32_t)msgdsize(mp); 7330 if (packet_size > IP_MAXPACKET) { 7331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7332 ip_drop_input("Reassembled packet too large", mp, ill); 7333 freemsg(mp); 7334 return (NULL); 7335 } 7336 7337 if (DB_REF(mp) > 1) { 7338 mblk_t *mp2 = copymsg(mp); 7339 7340 if (mp2 == NULL) { 7341 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7342 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7343 freemsg(mp); 7344 return (NULL); 7345 } 7346 freemsg(mp); 7347 mp = mp2; 7348 } 7349 ipha = (ipha_t *)mp->b_rptr; 7350 7351 ipha->ipha_length = htons((uint16_t)packet_size); 7352 /* We're now complete, zip the frag state */ 7353 ipha->ipha_fragment_offset_and_flags = 0; 7354 /* Record the ECN info. */ 7355 ipha->ipha_type_of_service &= 0xFC; 7356 ipha->ipha_type_of_service |= ecn_info; 7357 7358 /* Update the receive attributes */ 7359 ira->ira_pktlen = packet_size; 7360 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7361 7362 /* Reassembly is successful; set checksum information in packet */ 7363 DB_CKSUM16(mp) = (uint16_t)sum_val; 7364 DB_CKSUMFLAGS(mp) = sum_flags; 7365 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7366 7367 return (mp); 7368 } 7369 7370 /* 7371 * Pullup function that should be used for IP input in order to 7372 * ensure we do not loose the L2 source address; we need the l2 source 7373 * address for IP_RECVSLLA and for ndp_input. 7374 * 7375 * We return either NULL or b_rptr. 7376 */ 7377 void * 7378 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7379 { 7380 ill_t *ill = ira->ira_ill; 7381 7382 if (ip_rput_pullups++ == 0) { 7383 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7384 "ip_pullup: %s forced us to " 7385 " pullup pkt, hdr len %ld, hdr addr %p", 7386 ill->ill_name, len, (void *)mp->b_rptr); 7387 } 7388 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7389 ip_setl2src(mp, ira, ira->ira_rill); 7390 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7391 if (!pullupmsg(mp, len)) 7392 return (NULL); 7393 else 7394 return (mp->b_rptr); 7395 } 7396 7397 /* 7398 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7399 * When called from the ULP ira_rill will be NULL hence the caller has to 7400 * pass in the ill. 7401 */ 7402 /* ARGSUSED */ 7403 void 7404 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7405 { 7406 const uchar_t *addr; 7407 int alen; 7408 7409 if (ira->ira_flags & IRAF_L2SRC_SET) 7410 return; 7411 7412 ASSERT(ill != NULL); 7413 alen = ill->ill_phys_addr_length; 7414 ASSERT(alen <= sizeof (ira->ira_l2src)); 7415 if (ira->ira_mhip != NULL && 7416 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7417 bcopy(addr, ira->ira_l2src, alen); 7418 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7419 (addr = ill->ill_phys_addr) != NULL) { 7420 bcopy(addr, ira->ira_l2src, alen); 7421 } else { 7422 bzero(ira->ira_l2src, alen); 7423 } 7424 ira->ira_flags |= IRAF_L2SRC_SET; 7425 } 7426 7427 /* 7428 * check ip header length and align it. 7429 */ 7430 mblk_t * 7431 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7432 { 7433 ill_t *ill = ira->ira_ill; 7434 ssize_t len; 7435 7436 len = MBLKL(mp); 7437 7438 if (!OK_32PTR(mp->b_rptr)) 7439 IP_STAT(ill->ill_ipst, ip_notaligned); 7440 else 7441 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7442 7443 /* Guard against bogus device drivers */ 7444 if (len < 0) { 7445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7446 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7447 freemsg(mp); 7448 return (NULL); 7449 } 7450 7451 if (len == 0) { 7452 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7453 mblk_t *mp1 = mp->b_cont; 7454 7455 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7456 ip_setl2src(mp, ira, ira->ira_rill); 7457 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7458 7459 freeb(mp); 7460 mp = mp1; 7461 if (mp == NULL) 7462 return (NULL); 7463 7464 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7465 return (mp); 7466 } 7467 if (ip_pullup(mp, min_size, ira) == NULL) { 7468 if (msgdsize(mp) < min_size) { 7469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7470 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7471 } else { 7472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7473 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7474 } 7475 freemsg(mp); 7476 return (NULL); 7477 } 7478 return (mp); 7479 } 7480 7481 /* 7482 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7483 */ 7484 mblk_t * 7485 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7486 uint_t min_size, ip_recv_attr_t *ira) 7487 { 7488 ill_t *ill = ira->ira_ill; 7489 7490 /* 7491 * Make sure we have data length consistent 7492 * with the IP header. 7493 */ 7494 if (mp->b_cont == NULL) { 7495 /* pkt_len is based on ipha_len, not the mblk length */ 7496 if (pkt_len < min_size) { 7497 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7498 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7499 freemsg(mp); 7500 return (NULL); 7501 } 7502 if (len < 0) { 7503 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7504 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7505 freemsg(mp); 7506 return (NULL); 7507 } 7508 /* Drop any pad */ 7509 mp->b_wptr = rptr + pkt_len; 7510 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7511 ASSERT(pkt_len >= min_size); 7512 if (pkt_len < min_size) { 7513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7514 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7515 freemsg(mp); 7516 return (NULL); 7517 } 7518 if (len < 0) { 7519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7520 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7521 freemsg(mp); 7522 return (NULL); 7523 } 7524 /* Drop any pad */ 7525 (void) adjmsg(mp, -len); 7526 /* 7527 * adjmsg may have freed an mblk from the chain, hence 7528 * invalidate any hw checksum here. This will force IP to 7529 * calculate the checksum in sw, but only for this packet. 7530 */ 7531 DB_CKSUMFLAGS(mp) = 0; 7532 IP_STAT(ill->ill_ipst, ip_multimblk); 7533 } 7534 return (mp); 7535 } 7536 7537 /* 7538 * Check that the IPv4 opt_len is consistent with the packet and pullup 7539 * the options. 7540 */ 7541 mblk_t * 7542 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7543 ip_recv_attr_t *ira) 7544 { 7545 ill_t *ill = ira->ira_ill; 7546 ssize_t len; 7547 7548 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7549 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7550 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7552 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7553 freemsg(mp); 7554 return (NULL); 7555 } 7556 7557 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7558 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7559 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7560 freemsg(mp); 7561 return (NULL); 7562 } 7563 /* 7564 * Recompute complete header length and make sure we 7565 * have access to all of it. 7566 */ 7567 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7568 if (len > (mp->b_wptr - mp->b_rptr)) { 7569 if (len > pkt_len) { 7570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7571 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7572 freemsg(mp); 7573 return (NULL); 7574 } 7575 if (ip_pullup(mp, len, ira) == NULL) { 7576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7577 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7578 freemsg(mp); 7579 return (NULL); 7580 } 7581 } 7582 return (mp); 7583 } 7584 7585 /* 7586 * Returns a new ire, or the same ire, or NULL. 7587 * If a different IRE is returned, then it is held; the caller 7588 * needs to release it. 7589 * In no case is there any hold/release on the ire argument. 7590 */ 7591 ire_t * 7592 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7593 { 7594 ire_t *new_ire; 7595 ill_t *ire_ill; 7596 uint_t ifindex; 7597 ip_stack_t *ipst = ill->ill_ipst; 7598 boolean_t strict_check = B_FALSE; 7599 7600 /* 7601 * IPMP common case: if IRE and ILL are in the same group, there's no 7602 * issue (e.g. packet received on an underlying interface matched an 7603 * IRE_LOCAL on its associated group interface). 7604 */ 7605 ASSERT(ire->ire_ill != NULL); 7606 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7607 return (ire); 7608 7609 /* 7610 * Do another ire lookup here, using the ingress ill, to see if the 7611 * interface is in a usesrc group. 7612 * As long as the ills belong to the same group, we don't consider 7613 * them to be arriving on the wrong interface. Thus, if the switch 7614 * is doing inbound load spreading, we won't drop packets when the 7615 * ip*_strict_dst_multihoming switch is on. 7616 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7617 * where the local address may not be unique. In this case we were 7618 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7619 * actually returned. The new lookup, which is more specific, should 7620 * only find the IRE_LOCAL associated with the ingress ill if one 7621 * exists. 7622 */ 7623 if (ire->ire_ipversion == IPV4_VERSION) { 7624 if (ipst->ips_ip_strict_dst_multihoming) 7625 strict_check = B_TRUE; 7626 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7627 IRE_LOCAL, ill, ALL_ZONES, NULL, 7628 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7629 } else { 7630 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7631 if (ipst->ips_ipv6_strict_dst_multihoming) 7632 strict_check = B_TRUE; 7633 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7634 IRE_LOCAL, ill, ALL_ZONES, NULL, 7635 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7636 } 7637 /* 7638 * If the same ire that was returned in ip_input() is found then this 7639 * is an indication that usesrc groups are in use. The packet 7640 * arrived on a different ill in the group than the one associated with 7641 * the destination address. If a different ire was found then the same 7642 * IP address must be hosted on multiple ills. This is possible with 7643 * unnumbered point2point interfaces. We switch to use this new ire in 7644 * order to have accurate interface statistics. 7645 */ 7646 if (new_ire != NULL) { 7647 /* Note: held in one case but not the other? Caller handles */ 7648 if (new_ire != ire) 7649 return (new_ire); 7650 /* Unchanged */ 7651 ire_refrele(new_ire); 7652 return (ire); 7653 } 7654 7655 /* 7656 * Chase pointers once and store locally. 7657 */ 7658 ASSERT(ire->ire_ill != NULL); 7659 ire_ill = ire->ire_ill; 7660 ifindex = ill->ill_usesrc_ifindex; 7661 7662 /* 7663 * Check if it's a legal address on the 'usesrc' interface. 7664 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7665 * can just check phyint_ifindex. 7666 */ 7667 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7668 return (ire); 7669 } 7670 7671 /* 7672 * If the ip*_strict_dst_multihoming switch is on then we can 7673 * only accept this packet if the interface is marked as routing. 7674 */ 7675 if (!(strict_check)) 7676 return (ire); 7677 7678 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7679 return (ire); 7680 } 7681 return (NULL); 7682 } 7683 7684 /* 7685 * This function is used to construct a mac_header_info_s from a 7686 * DL_UNITDATA_IND message. 7687 * The address fields in the mhi structure points into the message, 7688 * thus the caller can't use those fields after freeing the message. 7689 * 7690 * We determine whether the packet received is a non-unicast packet 7691 * and in doing so, determine whether or not it is broadcast vs multicast. 7692 * For it to be a broadcast packet, we must have the appropriate mblk_t 7693 * hanging off the ill_t. If this is either not present or doesn't match 7694 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7695 * to be multicast. Thus NICs that have no broadcast address (or no 7696 * capability for one, such as point to point links) cannot return as 7697 * the packet being broadcast. 7698 */ 7699 void 7700 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7701 { 7702 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7703 mblk_t *bmp; 7704 uint_t extra_offset; 7705 7706 bzero(mhip, sizeof (struct mac_header_info_s)); 7707 7708 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7709 7710 if (ill->ill_sap_length < 0) 7711 extra_offset = 0; 7712 else 7713 extra_offset = ill->ill_sap_length; 7714 7715 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7716 extra_offset; 7717 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7718 extra_offset; 7719 7720 if (!ind->dl_group_address) 7721 return; 7722 7723 /* Multicast or broadcast */ 7724 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7725 7726 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7727 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7728 (bmp = ill->ill_bcast_mp) != NULL) { 7729 dl_unitdata_req_t *dlur; 7730 uint8_t *bphys_addr; 7731 7732 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7733 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7734 extra_offset; 7735 7736 if (bcmp(mhip->mhi_daddr, bphys_addr, 7737 ind->dl_dest_addr_length) == 0) 7738 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7739 } 7740 } 7741 7742 /* 7743 * This function is used to construct a mac_header_info_s from a 7744 * M_DATA fastpath message from a DLPI driver. 7745 * The address fields in the mhi structure points into the message, 7746 * thus the caller can't use those fields after freeing the message. 7747 * 7748 * We determine whether the packet received is a non-unicast packet 7749 * and in doing so, determine whether or not it is broadcast vs multicast. 7750 * For it to be a broadcast packet, we must have the appropriate mblk_t 7751 * hanging off the ill_t. If this is either not present or doesn't match 7752 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7753 * to be multicast. Thus NICs that have no broadcast address (or no 7754 * capability for one, such as point to point links) cannot return as 7755 * the packet being broadcast. 7756 */ 7757 void 7758 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7759 { 7760 mblk_t *bmp; 7761 struct ether_header *pether; 7762 7763 bzero(mhip, sizeof (struct mac_header_info_s)); 7764 7765 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7766 7767 pether = (struct ether_header *)((char *)mp->b_rptr 7768 - sizeof (struct ether_header)); 7769 7770 /* 7771 * Make sure the interface is an ethernet type, since we don't 7772 * know the header format for anything but Ethernet. Also make 7773 * sure we are pointing correctly above db_base. 7774 */ 7775 if (ill->ill_type != IFT_ETHER) 7776 return; 7777 7778 retry: 7779 if ((uchar_t *)pether < mp->b_datap->db_base) 7780 return; 7781 7782 /* Is there a VLAN tag? */ 7783 if (ill->ill_isv6) { 7784 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7785 pether = (struct ether_header *)((char *)pether - 4); 7786 goto retry; 7787 } 7788 } else { 7789 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7790 pether = (struct ether_header *)((char *)pether - 4); 7791 goto retry; 7792 } 7793 } 7794 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7795 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7796 7797 if (!(mhip->mhi_daddr[0] & 0x01)) 7798 return; 7799 7800 /* Multicast or broadcast */ 7801 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7802 7803 if ((bmp = ill->ill_bcast_mp) != NULL) { 7804 dl_unitdata_req_t *dlur; 7805 uint8_t *bphys_addr; 7806 uint_t addrlen; 7807 7808 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7809 addrlen = dlur->dl_dest_addr_length; 7810 if (ill->ill_sap_length < 0) { 7811 bphys_addr = (uchar_t *)dlur + 7812 dlur->dl_dest_addr_offset; 7813 addrlen += ill->ill_sap_length; 7814 } else { 7815 bphys_addr = (uchar_t *)dlur + 7816 dlur->dl_dest_addr_offset + 7817 ill->ill_sap_length; 7818 addrlen -= ill->ill_sap_length; 7819 } 7820 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7821 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7822 } 7823 } 7824 7825 /* 7826 * Handle anything but M_DATA messages 7827 * We see the DL_UNITDATA_IND which are part 7828 * of the data path, and also the other messages from the driver. 7829 */ 7830 void 7831 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7832 { 7833 mblk_t *first_mp; 7834 struct iocblk *iocp; 7835 struct mac_header_info_s mhi; 7836 7837 switch (DB_TYPE(mp)) { 7838 case M_PROTO: 7839 case M_PCPROTO: { 7840 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7841 DL_UNITDATA_IND) { 7842 /* Go handle anything other than data elsewhere. */ 7843 ip_rput_dlpi(ill, mp); 7844 return; 7845 } 7846 7847 first_mp = mp; 7848 mp = first_mp->b_cont; 7849 first_mp->b_cont = NULL; 7850 7851 if (mp == NULL) { 7852 freeb(first_mp); 7853 return; 7854 } 7855 ip_dlur_to_mhi(ill, first_mp, &mhi); 7856 if (ill->ill_isv6) 7857 ip_input_v6(ill, NULL, mp, &mhi); 7858 else 7859 ip_input(ill, NULL, mp, &mhi); 7860 7861 /* Ditch the DLPI header. */ 7862 freeb(first_mp); 7863 return; 7864 } 7865 case M_IOCACK: 7866 iocp = (struct iocblk *)mp->b_rptr; 7867 switch (iocp->ioc_cmd) { 7868 case DL_IOC_HDR_INFO: 7869 ill_fastpath_ack(ill, mp); 7870 return; 7871 default: 7872 putnext(ill->ill_rq, mp); 7873 return; 7874 } 7875 /* FALLTHRU */ 7876 case M_ERROR: 7877 case M_HANGUP: 7878 mutex_enter(&ill->ill_lock); 7879 if (ill->ill_state_flags & ILL_CONDEMNED) { 7880 mutex_exit(&ill->ill_lock); 7881 freemsg(mp); 7882 return; 7883 } 7884 ill_refhold_locked(ill); 7885 mutex_exit(&ill->ill_lock); 7886 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7887 B_FALSE); 7888 return; 7889 case M_CTL: 7890 putnext(ill->ill_rq, mp); 7891 return; 7892 case M_IOCNAK: 7893 ip1dbg(("got iocnak ")); 7894 iocp = (struct iocblk *)mp->b_rptr; 7895 switch (iocp->ioc_cmd) { 7896 case DL_IOC_HDR_INFO: 7897 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7898 return; 7899 default: 7900 break; 7901 } 7902 /* FALLTHRU */ 7903 default: 7904 putnext(ill->ill_rq, mp); 7905 return; 7906 } 7907 } 7908 7909 /* Read side put procedure. Packets coming from the wire arrive here. */ 7910 void 7911 ip_rput(queue_t *q, mblk_t *mp) 7912 { 7913 ill_t *ill; 7914 union DL_primitives *dl; 7915 7916 ill = (ill_t *)q->q_ptr; 7917 7918 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7919 /* 7920 * If things are opening or closing, only accept high-priority 7921 * DLPI messages. (On open ill->ill_ipif has not yet been 7922 * created; on close, things hanging off the ill may have been 7923 * freed already.) 7924 */ 7925 dl = (union DL_primitives *)mp->b_rptr; 7926 if (DB_TYPE(mp) != M_PCPROTO || 7927 dl->dl_primitive == DL_UNITDATA_IND) { 7928 inet_freemsg(mp); 7929 return; 7930 } 7931 } 7932 if (DB_TYPE(mp) == M_DATA) { 7933 struct mac_header_info_s mhi; 7934 7935 ip_mdata_to_mhi(ill, mp, &mhi); 7936 ip_input(ill, NULL, mp, &mhi); 7937 } else { 7938 ip_rput_notdata(ill, mp); 7939 } 7940 } 7941 7942 /* 7943 * Move the information to a copy. 7944 */ 7945 mblk_t * 7946 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7947 { 7948 mblk_t *mp1; 7949 ill_t *ill = ira->ira_ill; 7950 ip_stack_t *ipst = ill->ill_ipst; 7951 7952 IP_STAT(ipst, ip_db_ref); 7953 7954 /* Make sure we have ira_l2src before we loose the original mblk */ 7955 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7956 ip_setl2src(mp, ira, ira->ira_rill); 7957 7958 mp1 = copymsg(mp); 7959 if (mp1 == NULL) { 7960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7961 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7962 freemsg(mp); 7963 return (NULL); 7964 } 7965 /* preserve the hardware checksum flags and data, if present */ 7966 if (DB_CKSUMFLAGS(mp) != 0) { 7967 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7968 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7969 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7970 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7971 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7972 } 7973 freemsg(mp); 7974 return (mp1); 7975 } 7976 7977 static void 7978 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 7979 t_uscalar_t err) 7980 { 7981 if (dl_err == DL_SYSERR) { 7982 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7983 "%s: %s failed: DL_SYSERR (errno %u)\n", 7984 ill->ill_name, dl_primstr(prim), err); 7985 return; 7986 } 7987 7988 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7989 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 7990 dl_errstr(dl_err)); 7991 } 7992 7993 /* 7994 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 7995 * than DL_UNITDATA_IND messages. If we need to process this message 7996 * exclusively, we call qwriter_ip, in which case we also need to call 7997 * ill_refhold before that, since qwriter_ip does an ill_refrele. 7998 */ 7999 void 8000 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8001 { 8002 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8003 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8004 queue_t *q = ill->ill_rq; 8005 t_uscalar_t prim = dloa->dl_primitive; 8006 t_uscalar_t reqprim = DL_PRIM_INVAL; 8007 8008 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8009 char *, dl_primstr(prim), ill_t *, ill); 8010 ip1dbg(("ip_rput_dlpi")); 8011 8012 /* 8013 * If we received an ACK but didn't send a request for it, then it 8014 * can't be part of any pending operation; discard up-front. 8015 */ 8016 switch (prim) { 8017 case DL_ERROR_ACK: 8018 reqprim = dlea->dl_error_primitive; 8019 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8020 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8021 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8022 dlea->dl_unix_errno)); 8023 break; 8024 case DL_OK_ACK: 8025 reqprim = dloa->dl_correct_primitive; 8026 break; 8027 case DL_INFO_ACK: 8028 reqprim = DL_INFO_REQ; 8029 break; 8030 case DL_BIND_ACK: 8031 reqprim = DL_BIND_REQ; 8032 break; 8033 case DL_PHYS_ADDR_ACK: 8034 reqprim = DL_PHYS_ADDR_REQ; 8035 break; 8036 case DL_NOTIFY_ACK: 8037 reqprim = DL_NOTIFY_REQ; 8038 break; 8039 case DL_CAPABILITY_ACK: 8040 reqprim = DL_CAPABILITY_REQ; 8041 break; 8042 } 8043 8044 if (prim != DL_NOTIFY_IND) { 8045 if (reqprim == DL_PRIM_INVAL || 8046 !ill_dlpi_pending(ill, reqprim)) { 8047 /* Not a DLPI message we support or expected */ 8048 freemsg(mp); 8049 return; 8050 } 8051 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8052 dl_primstr(reqprim))); 8053 } 8054 8055 switch (reqprim) { 8056 case DL_UNBIND_REQ: 8057 /* 8058 * NOTE: we mark the unbind as complete even if we got a 8059 * DL_ERROR_ACK, since there's not much else we can do. 8060 */ 8061 mutex_enter(&ill->ill_lock); 8062 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8063 cv_signal(&ill->ill_cv); 8064 mutex_exit(&ill->ill_lock); 8065 break; 8066 8067 case DL_ENABMULTI_REQ: 8068 if (prim == DL_OK_ACK) { 8069 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8070 ill->ill_dlpi_multicast_state = IDS_OK; 8071 } 8072 break; 8073 } 8074 8075 /* 8076 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8077 * need to become writer to continue to process it. Because an 8078 * exclusive operation doesn't complete until replies to all queued 8079 * DLPI messages have been received, we know we're in the middle of an 8080 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8081 * 8082 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8083 * Since this is on the ill stream we unconditionally bump up the 8084 * refcount without doing ILL_CAN_LOOKUP(). 8085 */ 8086 ill_refhold(ill); 8087 if (prim == DL_NOTIFY_IND) 8088 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8089 else 8090 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8091 } 8092 8093 /* 8094 * Handling of DLPI messages that require exclusive access to the ipsq. 8095 * 8096 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8097 * happen here. (along with mi_copy_done) 8098 */ 8099 /* ARGSUSED */ 8100 static void 8101 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8102 { 8103 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8104 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8105 int err = 0; 8106 ill_t *ill = (ill_t *)q->q_ptr; 8107 ipif_t *ipif = NULL; 8108 mblk_t *mp1 = NULL; 8109 conn_t *connp = NULL; 8110 t_uscalar_t paddrreq; 8111 mblk_t *mp_hw; 8112 boolean_t success; 8113 boolean_t ioctl_aborted = B_FALSE; 8114 boolean_t log = B_TRUE; 8115 8116 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8117 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8118 8119 ip1dbg(("ip_rput_dlpi_writer ..")); 8120 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8121 ASSERT(IAM_WRITER_ILL(ill)); 8122 8123 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8124 /* 8125 * The current ioctl could have been aborted by the user and a new 8126 * ioctl to bring up another ill could have started. We could still 8127 * get a response from the driver later. 8128 */ 8129 if (ipif != NULL && ipif->ipif_ill != ill) 8130 ioctl_aborted = B_TRUE; 8131 8132 switch (dloa->dl_primitive) { 8133 case DL_ERROR_ACK: 8134 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8135 dl_primstr(dlea->dl_error_primitive))); 8136 8137 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8138 char *, dl_primstr(dlea->dl_error_primitive), 8139 ill_t *, ill); 8140 8141 switch (dlea->dl_error_primitive) { 8142 case DL_DISABMULTI_REQ: 8143 ill_dlpi_done(ill, dlea->dl_error_primitive); 8144 break; 8145 case DL_PROMISCON_REQ: 8146 case DL_PROMISCOFF_REQ: 8147 case DL_UNBIND_REQ: 8148 case DL_ATTACH_REQ: 8149 case DL_INFO_REQ: 8150 ill_dlpi_done(ill, dlea->dl_error_primitive); 8151 break; 8152 case DL_NOTIFY_REQ: 8153 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8154 log = B_FALSE; 8155 break; 8156 case DL_PHYS_ADDR_REQ: 8157 /* 8158 * For IPv6 only, there are two additional 8159 * phys_addr_req's sent to the driver to get the 8160 * IPv6 token and lla. This allows IP to acquire 8161 * the hardware address format for a given interface 8162 * without having built in knowledge of the hardware 8163 * address. ill_phys_addr_pend keeps track of the last 8164 * DL_PAR sent so we know which response we are 8165 * dealing with. ill_dlpi_done will update 8166 * ill_phys_addr_pend when it sends the next req. 8167 * We don't complete the IOCTL until all three DL_PARs 8168 * have been attempted, so set *_len to 0 and break. 8169 */ 8170 paddrreq = ill->ill_phys_addr_pend; 8171 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8172 if (paddrreq == DL_IPV6_TOKEN) { 8173 ill->ill_token_length = 0; 8174 log = B_FALSE; 8175 break; 8176 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8177 ill->ill_nd_lla_len = 0; 8178 log = B_FALSE; 8179 break; 8180 } 8181 /* 8182 * Something went wrong with the DL_PHYS_ADDR_REQ. 8183 * We presumably have an IOCTL hanging out waiting 8184 * for completion. Find it and complete the IOCTL 8185 * with the error noted. 8186 * However, ill_dl_phys was called on an ill queue 8187 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8188 * set. But the ioctl is known to be pending on ill_wq. 8189 */ 8190 if (!ill->ill_ifname_pending) 8191 break; 8192 ill->ill_ifname_pending = 0; 8193 if (!ioctl_aborted) 8194 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8195 if (mp1 != NULL) { 8196 /* 8197 * This operation (SIOCSLIFNAME) must have 8198 * happened on the ill. Assert there is no conn 8199 */ 8200 ASSERT(connp == NULL); 8201 q = ill->ill_wq; 8202 } 8203 break; 8204 case DL_BIND_REQ: 8205 ill_dlpi_done(ill, DL_BIND_REQ); 8206 if (ill->ill_ifname_pending) 8207 break; 8208 /* 8209 * Something went wrong with the bind. We presumably 8210 * have an IOCTL hanging out waiting for completion. 8211 * Find it, take down the interface that was coming 8212 * up, and complete the IOCTL with the error noted. 8213 */ 8214 if (!ioctl_aborted) 8215 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8216 if (mp1 != NULL) { 8217 /* 8218 * This might be a result of a DL_NOTE_REPLUMB 8219 * notification. In that case, connp is NULL. 8220 */ 8221 if (connp != NULL) 8222 q = CONNP_TO_WQ(connp); 8223 8224 (void) ipif_down(ipif, NULL, NULL); 8225 /* error is set below the switch */ 8226 } 8227 break; 8228 case DL_ENABMULTI_REQ: 8229 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8230 8231 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8232 ill->ill_dlpi_multicast_state = IDS_FAILED; 8233 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8234 8235 printf("ip: joining multicasts failed (%d)" 8236 " on %s - will use link layer " 8237 "broadcasts for multicast\n", 8238 dlea->dl_errno, ill->ill_name); 8239 8240 /* 8241 * Set up for multi_bcast; We are the 8242 * writer, so ok to access ill->ill_ipif 8243 * without any lock. 8244 */ 8245 mutex_enter(&ill->ill_phyint->phyint_lock); 8246 ill->ill_phyint->phyint_flags |= 8247 PHYI_MULTI_BCAST; 8248 mutex_exit(&ill->ill_phyint->phyint_lock); 8249 8250 } 8251 freemsg(mp); /* Don't want to pass this up */ 8252 return; 8253 case DL_CAPABILITY_REQ: 8254 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8255 "DL_CAPABILITY REQ\n")); 8256 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8257 ill->ill_dlpi_capab_state = IDCS_FAILED; 8258 ill_capability_done(ill); 8259 freemsg(mp); 8260 return; 8261 } 8262 /* 8263 * Note the error for IOCTL completion (mp1 is set when 8264 * ready to complete ioctl). If ill_ifname_pending_err is 8265 * set, an error occured during plumbing (ill_ifname_pending), 8266 * so we want to report that error. 8267 * 8268 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8269 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8270 * expected to get errack'd if the driver doesn't support 8271 * these flags (e.g. ethernet). log will be set to B_FALSE 8272 * if these error conditions are encountered. 8273 */ 8274 if (mp1 != NULL) { 8275 if (ill->ill_ifname_pending_err != 0) { 8276 err = ill->ill_ifname_pending_err; 8277 ill->ill_ifname_pending_err = 0; 8278 } else { 8279 err = dlea->dl_unix_errno ? 8280 dlea->dl_unix_errno : ENXIO; 8281 } 8282 /* 8283 * If we're plumbing an interface and an error hasn't already 8284 * been saved, set ill_ifname_pending_err to the error passed 8285 * up. Ignore the error if log is B_FALSE (see comment above). 8286 */ 8287 } else if (log && ill->ill_ifname_pending && 8288 ill->ill_ifname_pending_err == 0) { 8289 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8290 dlea->dl_unix_errno : ENXIO; 8291 } 8292 8293 if (log) 8294 ip_dlpi_error(ill, dlea->dl_error_primitive, 8295 dlea->dl_errno, dlea->dl_unix_errno); 8296 break; 8297 case DL_CAPABILITY_ACK: 8298 ill_capability_ack(ill, mp); 8299 /* 8300 * The message has been handed off to ill_capability_ack 8301 * and must not be freed below 8302 */ 8303 mp = NULL; 8304 break; 8305 8306 case DL_INFO_ACK: 8307 /* Call a routine to handle this one. */ 8308 ill_dlpi_done(ill, DL_INFO_REQ); 8309 ip_ll_subnet_defaults(ill, mp); 8310 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8311 return; 8312 case DL_BIND_ACK: 8313 /* 8314 * We should have an IOCTL waiting on this unless 8315 * sent by ill_dl_phys, in which case just return 8316 */ 8317 ill_dlpi_done(ill, DL_BIND_REQ); 8318 if (ill->ill_ifname_pending) { 8319 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8320 ill_t *, ill, mblk_t *, mp); 8321 break; 8322 } 8323 if (!ioctl_aborted) 8324 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8325 if (mp1 == NULL) { 8326 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8327 break; 8328 } 8329 /* 8330 * mp1 was added by ill_dl_up(). if that is a result of 8331 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8332 */ 8333 if (connp != NULL) 8334 q = CONNP_TO_WQ(connp); 8335 /* 8336 * We are exclusive. So nothing can change even after 8337 * we get the pending mp. 8338 */ 8339 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8340 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8341 8342 mutex_enter(&ill->ill_lock); 8343 ill->ill_dl_up = 1; 8344 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8345 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8346 mutex_exit(&ill->ill_lock); 8347 8348 /* 8349 * Now bring up the resolver; when that is complete, we'll 8350 * create IREs. Note that we intentionally mirror what 8351 * ipif_up() would have done, because we got here by way of 8352 * ill_dl_up(), which stopped ipif_up()'s processing. 8353 */ 8354 if (ill->ill_isv6) { 8355 /* 8356 * v6 interfaces. 8357 * Unlike ARP which has to do another bind 8358 * and attach, once we get here we are 8359 * done with NDP 8360 */ 8361 (void) ipif_resolver_up(ipif, Res_act_initial); 8362 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8363 err = ipif_up_done_v6(ipif); 8364 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8365 /* 8366 * ARP and other v4 external resolvers. 8367 * Leave the pending mblk intact so that 8368 * the ioctl completes in ip_rput(). 8369 */ 8370 if (connp != NULL) 8371 mutex_enter(&connp->conn_lock); 8372 mutex_enter(&ill->ill_lock); 8373 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8374 mutex_exit(&ill->ill_lock); 8375 if (connp != NULL) 8376 mutex_exit(&connp->conn_lock); 8377 if (success) { 8378 err = ipif_resolver_up(ipif, Res_act_initial); 8379 if (err == EINPROGRESS) { 8380 freemsg(mp); 8381 return; 8382 } 8383 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8384 } else { 8385 /* The conn has started closing */ 8386 err = EINTR; 8387 } 8388 } else { 8389 /* 8390 * This one is complete. Reply to pending ioctl. 8391 */ 8392 (void) ipif_resolver_up(ipif, Res_act_initial); 8393 err = ipif_up_done(ipif); 8394 } 8395 8396 if ((err == 0) && (ill->ill_up_ipifs)) { 8397 err = ill_up_ipifs(ill, q, mp1); 8398 if (err == EINPROGRESS) { 8399 freemsg(mp); 8400 return; 8401 } 8402 } 8403 8404 /* 8405 * If we have a moved ipif to bring up, and everything has 8406 * succeeded to this point, bring it up on the IPMP ill. 8407 * Otherwise, leave it down -- the admin can try to bring it 8408 * up by hand if need be. 8409 */ 8410 if (ill->ill_move_ipif != NULL) { 8411 if (err != 0) { 8412 ill->ill_move_ipif = NULL; 8413 } else { 8414 ipif = ill->ill_move_ipif; 8415 ill->ill_move_ipif = NULL; 8416 err = ipif_up(ipif, q, mp1); 8417 if (err == EINPROGRESS) { 8418 freemsg(mp); 8419 return; 8420 } 8421 } 8422 } 8423 break; 8424 8425 case DL_NOTIFY_IND: { 8426 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8427 uint_t orig_mtu; 8428 8429 switch (notify->dl_notification) { 8430 case DL_NOTE_PHYS_ADDR: 8431 err = ill_set_phys_addr(ill, mp); 8432 break; 8433 8434 case DL_NOTE_REPLUMB: 8435 /* 8436 * Directly return after calling ill_replumb(). 8437 * Note that we should not free mp as it is reused 8438 * in the ill_replumb() function. 8439 */ 8440 err = ill_replumb(ill, mp); 8441 return; 8442 8443 case DL_NOTE_FASTPATH_FLUSH: 8444 nce_flush(ill, B_FALSE); 8445 break; 8446 8447 case DL_NOTE_SDU_SIZE: 8448 /* 8449 * The dce and fragmentation code can cope with 8450 * this changing while packets are being sent. 8451 * When packets are sent ip_output will discover 8452 * a change. 8453 * 8454 * Change the MTU size of the interface. 8455 */ 8456 mutex_enter(&ill->ill_lock); 8457 ill->ill_current_frag = (uint_t)notify->dl_data; 8458 if (ill->ill_current_frag > ill->ill_max_frag) 8459 ill->ill_max_frag = ill->ill_current_frag; 8460 8461 orig_mtu = ill->ill_mtu; 8462 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8463 ill->ill_mtu = ill->ill_current_frag; 8464 8465 /* 8466 * If ill_user_mtu was set (via 8467 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8468 */ 8469 if (ill->ill_user_mtu != 0 && 8470 ill->ill_user_mtu < ill->ill_mtu) 8471 ill->ill_mtu = ill->ill_user_mtu; 8472 8473 if (ill->ill_isv6) { 8474 if (ill->ill_mtu < IPV6_MIN_MTU) 8475 ill->ill_mtu = IPV6_MIN_MTU; 8476 } else { 8477 if (ill->ill_mtu < IP_MIN_MTU) 8478 ill->ill_mtu = IP_MIN_MTU; 8479 } 8480 } 8481 mutex_exit(&ill->ill_lock); 8482 /* 8483 * Make sure all dce_generation checks find out 8484 * that ill_mtu has changed. 8485 */ 8486 if (orig_mtu != ill->ill_mtu) { 8487 dce_increment_all_generations(ill->ill_isv6, 8488 ill->ill_ipst); 8489 } 8490 8491 /* 8492 * Refresh IPMP meta-interface MTU if necessary. 8493 */ 8494 if (IS_UNDER_IPMP(ill)) 8495 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8496 break; 8497 8498 case DL_NOTE_LINK_UP: 8499 case DL_NOTE_LINK_DOWN: { 8500 /* 8501 * We are writer. ill / phyint / ipsq assocs stable. 8502 * The RUNNING flag reflects the state of the link. 8503 */ 8504 phyint_t *phyint = ill->ill_phyint; 8505 uint64_t new_phyint_flags; 8506 boolean_t changed = B_FALSE; 8507 boolean_t went_up; 8508 8509 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8510 mutex_enter(&phyint->phyint_lock); 8511 8512 new_phyint_flags = went_up ? 8513 phyint->phyint_flags | PHYI_RUNNING : 8514 phyint->phyint_flags & ~PHYI_RUNNING; 8515 8516 if (IS_IPMP(ill)) { 8517 new_phyint_flags = went_up ? 8518 new_phyint_flags & ~PHYI_FAILED : 8519 new_phyint_flags | PHYI_FAILED; 8520 } 8521 8522 if (new_phyint_flags != phyint->phyint_flags) { 8523 phyint->phyint_flags = new_phyint_flags; 8524 changed = B_TRUE; 8525 } 8526 mutex_exit(&phyint->phyint_lock); 8527 /* 8528 * ill_restart_dad handles the DAD restart and routing 8529 * socket notification logic. 8530 */ 8531 if (changed) { 8532 ill_restart_dad(phyint->phyint_illv4, went_up); 8533 ill_restart_dad(phyint->phyint_illv6, went_up); 8534 } 8535 break; 8536 } 8537 case DL_NOTE_PROMISC_ON_PHYS: { 8538 phyint_t *phyint = ill->ill_phyint; 8539 8540 mutex_enter(&phyint->phyint_lock); 8541 phyint->phyint_flags |= PHYI_PROMISC; 8542 mutex_exit(&phyint->phyint_lock); 8543 break; 8544 } 8545 case DL_NOTE_PROMISC_OFF_PHYS: { 8546 phyint_t *phyint = ill->ill_phyint; 8547 8548 mutex_enter(&phyint->phyint_lock); 8549 phyint->phyint_flags &= ~PHYI_PROMISC; 8550 mutex_exit(&phyint->phyint_lock); 8551 break; 8552 } 8553 case DL_NOTE_CAPAB_RENEG: 8554 /* 8555 * Something changed on the driver side. 8556 * It wants us to renegotiate the capabilities 8557 * on this ill. One possible cause is the aggregation 8558 * interface under us where a port got added or 8559 * went away. 8560 * 8561 * If the capability negotiation is already done 8562 * or is in progress, reset the capabilities and 8563 * mark the ill's ill_capab_reneg to be B_TRUE, 8564 * so that when the ack comes back, we can start 8565 * the renegotiation process. 8566 * 8567 * Note that if ill_capab_reneg is already B_TRUE 8568 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8569 * the capability resetting request has been sent 8570 * and the renegotiation has not been started yet; 8571 * nothing needs to be done in this case. 8572 */ 8573 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8574 ill_capability_reset(ill, B_TRUE); 8575 ipsq_current_finish(ipsq); 8576 break; 8577 default: 8578 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8579 "type 0x%x for DL_NOTIFY_IND\n", 8580 notify->dl_notification)); 8581 break; 8582 } 8583 8584 /* 8585 * As this is an asynchronous operation, we 8586 * should not call ill_dlpi_done 8587 */ 8588 break; 8589 } 8590 case DL_NOTIFY_ACK: { 8591 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8592 8593 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8594 ill->ill_note_link = 1; 8595 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8596 break; 8597 } 8598 case DL_PHYS_ADDR_ACK: { 8599 /* 8600 * As part of plumbing the interface via SIOCSLIFNAME, 8601 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8602 * whose answers we receive here. As each answer is received, 8603 * we call ill_dlpi_done() to dispatch the next request as 8604 * we're processing the current one. Once all answers have 8605 * been received, we use ipsq_pending_mp_get() to dequeue the 8606 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8607 * is invoked from an ill queue, conn_oper_pending_ill is not 8608 * available, but we know the ioctl is pending on ill_wq.) 8609 */ 8610 uint_t paddrlen, paddroff; 8611 uint8_t *addr; 8612 8613 paddrreq = ill->ill_phys_addr_pend; 8614 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8615 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8616 addr = mp->b_rptr + paddroff; 8617 8618 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8619 if (paddrreq == DL_IPV6_TOKEN) { 8620 /* 8621 * bcopy to low-order bits of ill_token 8622 * 8623 * XXX Temporary hack - currently, all known tokens 8624 * are 64 bits, so I'll cheat for the moment. 8625 */ 8626 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8627 ill->ill_token_length = paddrlen; 8628 break; 8629 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8630 ASSERT(ill->ill_nd_lla_mp == NULL); 8631 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8632 mp = NULL; 8633 break; 8634 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8635 ASSERT(ill->ill_dest_addr_mp == NULL); 8636 ill->ill_dest_addr_mp = mp; 8637 ill->ill_dest_addr = addr; 8638 mp = NULL; 8639 if (ill->ill_isv6) { 8640 ill_setdesttoken(ill); 8641 ipif_setdestlinklocal(ill->ill_ipif); 8642 } 8643 break; 8644 } 8645 8646 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8647 ASSERT(ill->ill_phys_addr_mp == NULL); 8648 if (!ill->ill_ifname_pending) 8649 break; 8650 ill->ill_ifname_pending = 0; 8651 if (!ioctl_aborted) 8652 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8653 if (mp1 != NULL) { 8654 ASSERT(connp == NULL); 8655 q = ill->ill_wq; 8656 } 8657 /* 8658 * If any error acks received during the plumbing sequence, 8659 * ill_ifname_pending_err will be set. Break out and send up 8660 * the error to the pending ioctl. 8661 */ 8662 if (ill->ill_ifname_pending_err != 0) { 8663 err = ill->ill_ifname_pending_err; 8664 ill->ill_ifname_pending_err = 0; 8665 break; 8666 } 8667 8668 ill->ill_phys_addr_mp = mp; 8669 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8670 mp = NULL; 8671 8672 /* 8673 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8674 * provider doesn't support physical addresses. We check both 8675 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8676 * not have physical addresses, but historically adversises a 8677 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8678 * its DL_PHYS_ADDR_ACK. 8679 */ 8680 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8681 ill->ill_phys_addr = NULL; 8682 } else if (paddrlen != ill->ill_phys_addr_length) { 8683 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8684 paddrlen, ill->ill_phys_addr_length)); 8685 err = EINVAL; 8686 break; 8687 } 8688 8689 if (ill->ill_nd_lla_mp == NULL) { 8690 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8691 err = ENOMEM; 8692 break; 8693 } 8694 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8695 } 8696 8697 if (ill->ill_isv6) { 8698 ill_setdefaulttoken(ill); 8699 ipif_setlinklocal(ill->ill_ipif); 8700 } 8701 break; 8702 } 8703 case DL_OK_ACK: 8704 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8705 dl_primstr((int)dloa->dl_correct_primitive), 8706 dloa->dl_correct_primitive)); 8707 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8708 char *, dl_primstr(dloa->dl_correct_primitive), 8709 ill_t *, ill); 8710 8711 switch (dloa->dl_correct_primitive) { 8712 case DL_ENABMULTI_REQ: 8713 case DL_DISABMULTI_REQ: 8714 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8715 break; 8716 case DL_PROMISCON_REQ: 8717 case DL_PROMISCOFF_REQ: 8718 case DL_UNBIND_REQ: 8719 case DL_ATTACH_REQ: 8720 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8721 break; 8722 } 8723 break; 8724 default: 8725 break; 8726 } 8727 8728 freemsg(mp); 8729 if (mp1 == NULL) 8730 return; 8731 8732 /* 8733 * The operation must complete without EINPROGRESS since 8734 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8735 * the operation will be stuck forever inside the IPSQ. 8736 */ 8737 ASSERT(err != EINPROGRESS); 8738 8739 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8740 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8741 ipif_t *, NULL); 8742 8743 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8744 case 0: 8745 ipsq_current_finish(ipsq); 8746 break; 8747 8748 case SIOCSLIFNAME: 8749 case IF_UNITSEL: { 8750 ill_t *ill_other = ILL_OTHER(ill); 8751 8752 /* 8753 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8754 * ill has a peer which is in an IPMP group, then place ill 8755 * into the same group. One catch: although ifconfig plumbs 8756 * the appropriate IPMP meta-interface prior to plumbing this 8757 * ill, it is possible for multiple ifconfig applications to 8758 * race (or for another application to adjust plumbing), in 8759 * which case the IPMP meta-interface we need will be missing. 8760 * If so, kick the phyint out of the group. 8761 */ 8762 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8763 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8764 ipmp_illgrp_t *illg; 8765 8766 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8767 if (illg == NULL) 8768 ipmp_phyint_leave_grp(ill->ill_phyint); 8769 else 8770 ipmp_ill_join_illgrp(ill, illg); 8771 } 8772 8773 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8774 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8775 else 8776 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8777 break; 8778 } 8779 case SIOCLIFADDIF: 8780 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8781 break; 8782 8783 default: 8784 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8785 break; 8786 } 8787 } 8788 8789 /* 8790 * ip_rput_other is called by ip_rput to handle messages modifying the global 8791 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8792 */ 8793 /* ARGSUSED */ 8794 void 8795 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8796 { 8797 ill_t *ill = q->q_ptr; 8798 struct iocblk *iocp; 8799 8800 ip1dbg(("ip_rput_other ")); 8801 if (ipsq != NULL) { 8802 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8803 ASSERT(ipsq->ipsq_xop == 8804 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8805 } 8806 8807 switch (mp->b_datap->db_type) { 8808 case M_ERROR: 8809 case M_HANGUP: 8810 /* 8811 * The device has a problem. We force the ILL down. It can 8812 * be brought up again manually using SIOCSIFFLAGS (via 8813 * ifconfig or equivalent). 8814 */ 8815 ASSERT(ipsq != NULL); 8816 if (mp->b_rptr < mp->b_wptr) 8817 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8818 if (ill->ill_error == 0) 8819 ill->ill_error = ENXIO; 8820 if (!ill_down_start(q, mp)) 8821 return; 8822 ipif_all_down_tail(ipsq, q, mp, NULL); 8823 break; 8824 case M_IOCNAK: { 8825 iocp = (struct iocblk *)mp->b_rptr; 8826 8827 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8828 /* 8829 * If this was the first attempt, turn off the fastpath 8830 * probing. 8831 */ 8832 mutex_enter(&ill->ill_lock); 8833 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8834 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8835 mutex_exit(&ill->ill_lock); 8836 /* 8837 * don't flush the nce_t entries: we use them 8838 * as an index to the ncec itself. 8839 */ 8840 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8841 ill->ill_name)); 8842 } else { 8843 mutex_exit(&ill->ill_lock); 8844 } 8845 freemsg(mp); 8846 break; 8847 } 8848 default: 8849 ASSERT(0); 8850 break; 8851 } 8852 } 8853 8854 /* 8855 * Update any source route, record route or timestamp options 8856 * When it fails it has consumed the message and BUMPed the MIB. 8857 */ 8858 boolean_t 8859 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8860 ip_recv_attr_t *ira) 8861 { 8862 ipoptp_t opts; 8863 uchar_t *opt; 8864 uint8_t optval; 8865 uint8_t optlen; 8866 ipaddr_t dst; 8867 ipaddr_t ifaddr; 8868 uint32_t ts; 8869 timestruc_t now; 8870 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8871 8872 ip2dbg(("ip_forward_options\n")); 8873 dst = ipha->ipha_dst; 8874 for (optval = ipoptp_first(&opts, ipha); 8875 optval != IPOPT_EOL; 8876 optval = ipoptp_next(&opts)) { 8877 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8878 opt = opts.ipoptp_cur; 8879 optlen = opts.ipoptp_len; 8880 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8881 optval, opts.ipoptp_len)); 8882 switch (optval) { 8883 uint32_t off; 8884 case IPOPT_SSRR: 8885 case IPOPT_LSRR: 8886 /* Check if adminstratively disabled */ 8887 if (!ipst->ips_ip_forward_src_routed) { 8888 BUMP_MIB(dst_ill->ill_ip_mib, 8889 ipIfStatsForwProhibits); 8890 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8891 mp, dst_ill); 8892 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8893 ira); 8894 return (B_FALSE); 8895 } 8896 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8897 /* 8898 * Must be partial since ip_input_options 8899 * checked for strict. 8900 */ 8901 break; 8902 } 8903 off = opt[IPOPT_OFFSET]; 8904 off--; 8905 redo_srr: 8906 if (optlen < IP_ADDR_LEN || 8907 off > optlen - IP_ADDR_LEN) { 8908 /* End of source route */ 8909 ip1dbg(( 8910 "ip_forward_options: end of SR\n")); 8911 break; 8912 } 8913 /* Pick a reasonable address on the outbound if */ 8914 ASSERT(dst_ill != NULL); 8915 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8916 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8917 NULL) != 0) { 8918 /* No source! Shouldn't happen */ 8919 ifaddr = INADDR_ANY; 8920 } 8921 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8922 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8923 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8924 ntohl(dst))); 8925 8926 /* 8927 * Check if our address is present more than 8928 * once as consecutive hops in source route. 8929 */ 8930 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8931 off += IP_ADDR_LEN; 8932 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8933 goto redo_srr; 8934 } 8935 ipha->ipha_dst = dst; 8936 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8937 break; 8938 case IPOPT_RR: 8939 off = opt[IPOPT_OFFSET]; 8940 off--; 8941 if (optlen < IP_ADDR_LEN || 8942 off > optlen - IP_ADDR_LEN) { 8943 /* No more room - ignore */ 8944 ip1dbg(( 8945 "ip_forward_options: end of RR\n")); 8946 break; 8947 } 8948 /* Pick a reasonable address on the outbound if */ 8949 ASSERT(dst_ill != NULL); 8950 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8951 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8952 NULL) != 0) { 8953 /* No source! Shouldn't happen */ 8954 ifaddr = INADDR_ANY; 8955 } 8956 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8957 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8958 break; 8959 case IPOPT_TS: 8960 /* Insert timestamp if there is room */ 8961 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8962 case IPOPT_TS_TSONLY: 8963 off = IPOPT_TS_TIMELEN; 8964 break; 8965 case IPOPT_TS_PRESPEC: 8966 case IPOPT_TS_PRESPEC_RFC791: 8967 /* Verify that the address matched */ 8968 off = opt[IPOPT_OFFSET] - 1; 8969 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8970 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8971 /* Not for us */ 8972 break; 8973 } 8974 /* FALLTHRU */ 8975 case IPOPT_TS_TSANDADDR: 8976 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 8977 break; 8978 default: 8979 /* 8980 * ip_*put_options should have already 8981 * dropped this packet. 8982 */ 8983 cmn_err(CE_PANIC, "ip_forward_options: " 8984 "unknown IT - bug in ip_input_options?\n"); 8985 return (B_TRUE); /* Keep "lint" happy */ 8986 } 8987 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 8988 /* Increase overflow counter */ 8989 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 8990 opt[IPOPT_POS_OV_FLG] = 8991 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 8992 (off << 4)); 8993 break; 8994 } 8995 off = opt[IPOPT_OFFSET] - 1; 8996 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8997 case IPOPT_TS_PRESPEC: 8998 case IPOPT_TS_PRESPEC_RFC791: 8999 case IPOPT_TS_TSANDADDR: 9000 /* Pick a reasonable addr on the outbound if */ 9001 ASSERT(dst_ill != NULL); 9002 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9003 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9004 NULL, NULL) != 0) { 9005 /* No source! Shouldn't happen */ 9006 ifaddr = INADDR_ANY; 9007 } 9008 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9009 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9010 /* FALLTHRU */ 9011 case IPOPT_TS_TSONLY: 9012 off = opt[IPOPT_OFFSET] - 1; 9013 /* Compute # of milliseconds since midnight */ 9014 gethrestime(&now); 9015 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9016 now.tv_nsec / (NANOSEC / MILLISEC); 9017 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9018 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9019 break; 9020 } 9021 break; 9022 } 9023 } 9024 return (B_TRUE); 9025 } 9026 9027 /* 9028 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9029 * returns 'true' if there are still fragments left on the queue, in 9030 * which case we restart the timer. 9031 */ 9032 void 9033 ill_frag_timer(void *arg) 9034 { 9035 ill_t *ill = (ill_t *)arg; 9036 boolean_t frag_pending; 9037 ip_stack_t *ipst = ill->ill_ipst; 9038 time_t timeout; 9039 9040 mutex_enter(&ill->ill_lock); 9041 ASSERT(!ill->ill_fragtimer_executing); 9042 if (ill->ill_state_flags & ILL_CONDEMNED) { 9043 ill->ill_frag_timer_id = 0; 9044 mutex_exit(&ill->ill_lock); 9045 return; 9046 } 9047 ill->ill_fragtimer_executing = 1; 9048 mutex_exit(&ill->ill_lock); 9049 9050 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9051 ipst->ips_ip_reassembly_timeout); 9052 9053 frag_pending = ill_frag_timeout(ill, timeout); 9054 9055 /* 9056 * Restart the timer, if we have fragments pending or if someone 9057 * wanted us to be scheduled again. 9058 */ 9059 mutex_enter(&ill->ill_lock); 9060 ill->ill_fragtimer_executing = 0; 9061 ill->ill_frag_timer_id = 0; 9062 if (frag_pending || ill->ill_fragtimer_needrestart) 9063 ill_frag_timer_start(ill); 9064 mutex_exit(&ill->ill_lock); 9065 } 9066 9067 void 9068 ill_frag_timer_start(ill_t *ill) 9069 { 9070 ip_stack_t *ipst = ill->ill_ipst; 9071 clock_t timeo_ms; 9072 9073 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9074 9075 /* If the ill is closing or opening don't proceed */ 9076 if (ill->ill_state_flags & ILL_CONDEMNED) 9077 return; 9078 9079 if (ill->ill_fragtimer_executing) { 9080 /* 9081 * ill_frag_timer is currently executing. Just record the 9082 * the fact that we want the timer to be restarted. 9083 * ill_frag_timer will post a timeout before it returns, 9084 * ensuring it will be called again. 9085 */ 9086 ill->ill_fragtimer_needrestart = 1; 9087 return; 9088 } 9089 9090 if (ill->ill_frag_timer_id == 0) { 9091 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9092 ipst->ips_ip_reassembly_timeout) * SECONDS; 9093 9094 /* 9095 * The timer is neither running nor is the timeout handler 9096 * executing. Post a timeout so that ill_frag_timer will be 9097 * called 9098 */ 9099 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9100 MSEC_TO_TICK(timeo_ms >> 1)); 9101 ill->ill_fragtimer_needrestart = 0; 9102 } 9103 } 9104 9105 /* 9106 * Update any source route, record route or timestamp options. 9107 * Check that we are at end of strict source route. 9108 * The options have already been checked for sanity in ip_input_options(). 9109 */ 9110 boolean_t 9111 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9112 { 9113 ipoptp_t opts; 9114 uchar_t *opt; 9115 uint8_t optval; 9116 uint8_t optlen; 9117 ipaddr_t dst; 9118 ipaddr_t ifaddr; 9119 uint32_t ts; 9120 timestruc_t now; 9121 ill_t *ill = ira->ira_ill; 9122 ip_stack_t *ipst = ill->ill_ipst; 9123 9124 ip2dbg(("ip_input_local_options\n")); 9125 9126 for (optval = ipoptp_first(&opts, ipha); 9127 optval != IPOPT_EOL; 9128 optval = ipoptp_next(&opts)) { 9129 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9130 opt = opts.ipoptp_cur; 9131 optlen = opts.ipoptp_len; 9132 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9133 optval, optlen)); 9134 switch (optval) { 9135 uint32_t off; 9136 case IPOPT_SSRR: 9137 case IPOPT_LSRR: 9138 off = opt[IPOPT_OFFSET]; 9139 off--; 9140 if (optlen < IP_ADDR_LEN || 9141 off > optlen - IP_ADDR_LEN) { 9142 /* End of source route */ 9143 ip1dbg(("ip_input_local_options: end of SR\n")); 9144 break; 9145 } 9146 /* 9147 * This will only happen if two consecutive entries 9148 * in the source route contains our address or if 9149 * it is a packet with a loose source route which 9150 * reaches us before consuming the whole source route 9151 */ 9152 ip1dbg(("ip_input_local_options: not end of SR\n")); 9153 if (optval == IPOPT_SSRR) { 9154 goto bad_src_route; 9155 } 9156 /* 9157 * Hack: instead of dropping the packet truncate the 9158 * source route to what has been used by filling the 9159 * rest with IPOPT_NOP. 9160 */ 9161 opt[IPOPT_OLEN] = (uint8_t)off; 9162 while (off < optlen) { 9163 opt[off++] = IPOPT_NOP; 9164 } 9165 break; 9166 case IPOPT_RR: 9167 off = opt[IPOPT_OFFSET]; 9168 off--; 9169 if (optlen < IP_ADDR_LEN || 9170 off > optlen - IP_ADDR_LEN) { 9171 /* No more room - ignore */ 9172 ip1dbg(( 9173 "ip_input_local_options: end of RR\n")); 9174 break; 9175 } 9176 /* Pick a reasonable address on the outbound if */ 9177 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9178 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9179 NULL) != 0) { 9180 /* No source! Shouldn't happen */ 9181 ifaddr = INADDR_ANY; 9182 } 9183 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9184 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9185 break; 9186 case IPOPT_TS: 9187 /* Insert timestamp if there is romm */ 9188 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9189 case IPOPT_TS_TSONLY: 9190 off = IPOPT_TS_TIMELEN; 9191 break; 9192 case IPOPT_TS_PRESPEC: 9193 case IPOPT_TS_PRESPEC_RFC791: 9194 /* Verify that the address matched */ 9195 off = opt[IPOPT_OFFSET] - 1; 9196 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9197 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9198 /* Not for us */ 9199 break; 9200 } 9201 /* FALLTHRU */ 9202 case IPOPT_TS_TSANDADDR: 9203 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9204 break; 9205 default: 9206 /* 9207 * ip_*put_options should have already 9208 * dropped this packet. 9209 */ 9210 cmn_err(CE_PANIC, "ip_input_local_options: " 9211 "unknown IT - bug in ip_input_options?\n"); 9212 return (B_TRUE); /* Keep "lint" happy */ 9213 } 9214 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9215 /* Increase overflow counter */ 9216 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9217 opt[IPOPT_POS_OV_FLG] = 9218 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9219 (off << 4)); 9220 break; 9221 } 9222 off = opt[IPOPT_OFFSET] - 1; 9223 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9224 case IPOPT_TS_PRESPEC: 9225 case IPOPT_TS_PRESPEC_RFC791: 9226 case IPOPT_TS_TSANDADDR: 9227 /* Pick a reasonable addr on the outbound if */ 9228 if (ip_select_source_v4(ill, INADDR_ANY, 9229 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9230 &ifaddr, NULL, NULL) != 0) { 9231 /* No source! Shouldn't happen */ 9232 ifaddr = INADDR_ANY; 9233 } 9234 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9235 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9236 /* FALLTHRU */ 9237 case IPOPT_TS_TSONLY: 9238 off = opt[IPOPT_OFFSET] - 1; 9239 /* Compute # of milliseconds since midnight */ 9240 gethrestime(&now); 9241 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9242 now.tv_nsec / (NANOSEC / MILLISEC); 9243 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9244 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9245 break; 9246 } 9247 break; 9248 } 9249 } 9250 return (B_TRUE); 9251 9252 bad_src_route: 9253 /* make sure we clear any indication of a hardware checksum */ 9254 DB_CKSUMFLAGS(mp) = 0; 9255 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9256 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9257 return (B_FALSE); 9258 9259 } 9260 9261 /* 9262 * Process IP options in an inbound packet. Always returns the nexthop. 9263 * Normally this is the passed in nexthop, but if there is an option 9264 * that effects the nexthop (such as a source route) that will be returned. 9265 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9266 * and mp freed. 9267 */ 9268 ipaddr_t 9269 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9270 ip_recv_attr_t *ira, int *errorp) 9271 { 9272 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9273 ipoptp_t opts; 9274 uchar_t *opt; 9275 uint8_t optval; 9276 uint8_t optlen; 9277 intptr_t code = 0; 9278 ire_t *ire; 9279 9280 ip2dbg(("ip_input_options\n")); 9281 *errorp = 0; 9282 for (optval = ipoptp_first(&opts, ipha); 9283 optval != IPOPT_EOL; 9284 optval = ipoptp_next(&opts)) { 9285 opt = opts.ipoptp_cur; 9286 optlen = opts.ipoptp_len; 9287 ip2dbg(("ip_input_options: opt %d, len %d\n", 9288 optval, optlen)); 9289 /* 9290 * Note: we need to verify the checksum before we 9291 * modify anything thus this routine only extracts the next 9292 * hop dst from any source route. 9293 */ 9294 switch (optval) { 9295 uint32_t off; 9296 case IPOPT_SSRR: 9297 case IPOPT_LSRR: 9298 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9299 if (optval == IPOPT_SSRR) { 9300 ip1dbg(("ip_input_options: not next" 9301 " strict source route 0x%x\n", 9302 ntohl(dst))); 9303 code = (char *)&ipha->ipha_dst - 9304 (char *)ipha; 9305 goto param_prob; /* RouterReq's */ 9306 } 9307 ip2dbg(("ip_input_options: " 9308 "not next source route 0x%x\n", 9309 ntohl(dst))); 9310 break; 9311 } 9312 9313 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9314 ip1dbg(( 9315 "ip_input_options: bad option offset\n")); 9316 code = (char *)&opt[IPOPT_OLEN] - 9317 (char *)ipha; 9318 goto param_prob; 9319 } 9320 off = opt[IPOPT_OFFSET]; 9321 off--; 9322 redo_srr: 9323 if (optlen < IP_ADDR_LEN || 9324 off > optlen - IP_ADDR_LEN) { 9325 /* End of source route */ 9326 ip1dbg(("ip_input_options: end of SR\n")); 9327 break; 9328 } 9329 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9330 ip1dbg(("ip_input_options: next hop 0x%x\n", 9331 ntohl(dst))); 9332 9333 /* 9334 * Check if our address is present more than 9335 * once as consecutive hops in source route. 9336 * XXX verify per-interface ip_forwarding 9337 * for source route? 9338 */ 9339 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9340 off += IP_ADDR_LEN; 9341 goto redo_srr; 9342 } 9343 9344 if (dst == htonl(INADDR_LOOPBACK)) { 9345 ip1dbg(("ip_input_options: loopback addr in " 9346 "source route!\n")); 9347 goto bad_src_route; 9348 } 9349 /* 9350 * For strict: verify that dst is directly 9351 * reachable. 9352 */ 9353 if (optval == IPOPT_SSRR) { 9354 ire = ire_ftable_lookup_v4(dst, 0, 0, 9355 IRE_IF_ALL, NULL, ALL_ZONES, 9356 ira->ira_tsl, 9357 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9358 NULL); 9359 if (ire == NULL) { 9360 ip1dbg(("ip_input_options: SSRR not " 9361 "directly reachable: 0x%x\n", 9362 ntohl(dst))); 9363 goto bad_src_route; 9364 } 9365 ire_refrele(ire); 9366 } 9367 /* 9368 * Defer update of the offset and the record route 9369 * until the packet is forwarded. 9370 */ 9371 break; 9372 case IPOPT_RR: 9373 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9374 ip1dbg(( 9375 "ip_input_options: bad option offset\n")); 9376 code = (char *)&opt[IPOPT_OLEN] - 9377 (char *)ipha; 9378 goto param_prob; 9379 } 9380 break; 9381 case IPOPT_TS: 9382 /* 9383 * Verify that length >= 5 and that there is either 9384 * room for another timestamp or that the overflow 9385 * counter is not maxed out. 9386 */ 9387 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9388 if (optlen < IPOPT_MINLEN_IT) { 9389 goto param_prob; 9390 } 9391 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9392 ip1dbg(( 9393 "ip_input_options: bad option offset\n")); 9394 code = (char *)&opt[IPOPT_OFFSET] - 9395 (char *)ipha; 9396 goto param_prob; 9397 } 9398 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9399 case IPOPT_TS_TSONLY: 9400 off = IPOPT_TS_TIMELEN; 9401 break; 9402 case IPOPT_TS_TSANDADDR: 9403 case IPOPT_TS_PRESPEC: 9404 case IPOPT_TS_PRESPEC_RFC791: 9405 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9406 break; 9407 default: 9408 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9409 (char *)ipha; 9410 goto param_prob; 9411 } 9412 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9413 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9414 /* 9415 * No room and the overflow counter is 15 9416 * already. 9417 */ 9418 goto param_prob; 9419 } 9420 break; 9421 } 9422 } 9423 9424 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9425 return (dst); 9426 } 9427 9428 ip1dbg(("ip_input_options: error processing IP options.")); 9429 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9430 9431 param_prob: 9432 /* make sure we clear any indication of a hardware checksum */ 9433 DB_CKSUMFLAGS(mp) = 0; 9434 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9435 icmp_param_problem(mp, (uint8_t)code, ira); 9436 *errorp = -1; 9437 return (dst); 9438 9439 bad_src_route: 9440 /* make sure we clear any indication of a hardware checksum */ 9441 DB_CKSUMFLAGS(mp) = 0; 9442 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9443 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9444 *errorp = -1; 9445 return (dst); 9446 } 9447 9448 /* 9449 * IP & ICMP info in >=14 msg's ... 9450 * - ip fixed part (mib2_ip_t) 9451 * - icmp fixed part (mib2_icmp_t) 9452 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9453 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9454 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9455 * - ipRouteAttributeTable (ip 102) labeled routes 9456 * - ip multicast membership (ip_member_t) 9457 * - ip multicast source filtering (ip_grpsrc_t) 9458 * - igmp fixed part (struct igmpstat) 9459 * - multicast routing stats (struct mrtstat) 9460 * - multicast routing vifs (array of struct vifctl) 9461 * - multicast routing routes (array of struct mfcctl) 9462 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9463 * One per ill plus one generic 9464 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9465 * One per ill plus one generic 9466 * - ipv6RouteEntry all IPv6 IREs 9467 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9468 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9469 * - ipv6AddrEntry all IPv6 ipifs 9470 * - ipv6 multicast membership (ipv6_member_t) 9471 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9472 * 9473 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9474 * already filled in by the caller. 9475 * Return value of 0 indicates that no messages were sent and caller 9476 * should free mpctl. 9477 */ 9478 int 9479 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9480 { 9481 ip_stack_t *ipst; 9482 sctp_stack_t *sctps; 9483 9484 if (q->q_next != NULL) { 9485 ipst = ILLQ_TO_IPST(q); 9486 } else { 9487 ipst = CONNQ_TO_IPST(q); 9488 } 9489 ASSERT(ipst != NULL); 9490 sctps = ipst->ips_netstack->netstack_sctp; 9491 9492 if (mpctl == NULL || mpctl->b_cont == NULL) { 9493 return (0); 9494 } 9495 9496 /* 9497 * For the purposes of the (broken) packet shell use 9498 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9499 * to make TCP and UDP appear first in the list of mib items. 9500 * TBD: We could expand this and use it in netstat so that 9501 * the kernel doesn't have to produce large tables (connections, 9502 * routes, etc) when netstat only wants the statistics or a particular 9503 * table. 9504 */ 9505 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9506 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9507 return (1); 9508 } 9509 } 9510 9511 if (level != MIB2_TCP) { 9512 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9513 return (1); 9514 } 9515 } 9516 9517 if (level != MIB2_UDP) { 9518 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9519 return (1); 9520 } 9521 } 9522 9523 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9524 ipst)) == NULL) { 9525 return (1); 9526 } 9527 9528 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9529 return (1); 9530 } 9531 9532 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9533 return (1); 9534 } 9535 9536 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9537 return (1); 9538 } 9539 9540 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9541 return (1); 9542 } 9543 9544 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9545 return (1); 9546 } 9547 9548 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9549 return (1); 9550 } 9551 9552 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9553 return (1); 9554 } 9555 9556 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9557 return (1); 9558 } 9559 9560 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9561 return (1); 9562 } 9563 9564 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9565 return (1); 9566 } 9567 9568 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9569 return (1); 9570 } 9571 9572 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9573 return (1); 9574 } 9575 9576 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9577 return (1); 9578 } 9579 9580 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9581 if (mpctl == NULL) 9582 return (1); 9583 9584 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9585 if (mpctl == NULL) 9586 return (1); 9587 9588 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9589 return (1); 9590 } 9591 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9592 return (1); 9593 } 9594 freemsg(mpctl); 9595 return (1); 9596 } 9597 9598 /* Get global (legacy) IPv4 statistics */ 9599 static mblk_t * 9600 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9601 ip_stack_t *ipst) 9602 { 9603 mib2_ip_t old_ip_mib; 9604 struct opthdr *optp; 9605 mblk_t *mp2ctl; 9606 9607 /* 9608 * make a copy of the original message 9609 */ 9610 mp2ctl = copymsg(mpctl); 9611 9612 /* fixed length IP structure... */ 9613 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9614 optp->level = MIB2_IP; 9615 optp->name = 0; 9616 SET_MIB(old_ip_mib.ipForwarding, 9617 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9618 SET_MIB(old_ip_mib.ipDefaultTTL, 9619 (uint32_t)ipst->ips_ip_def_ttl); 9620 SET_MIB(old_ip_mib.ipReasmTimeout, 9621 ipst->ips_ip_reassembly_timeout); 9622 SET_MIB(old_ip_mib.ipAddrEntrySize, 9623 sizeof (mib2_ipAddrEntry_t)); 9624 SET_MIB(old_ip_mib.ipRouteEntrySize, 9625 sizeof (mib2_ipRouteEntry_t)); 9626 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9627 sizeof (mib2_ipNetToMediaEntry_t)); 9628 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9629 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9630 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9631 sizeof (mib2_ipAttributeEntry_t)); 9632 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9633 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9634 9635 /* 9636 * Grab the statistics from the new IP MIB 9637 */ 9638 SET_MIB(old_ip_mib.ipInReceives, 9639 (uint32_t)ipmib->ipIfStatsHCInReceives); 9640 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9641 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9642 SET_MIB(old_ip_mib.ipForwDatagrams, 9643 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9644 SET_MIB(old_ip_mib.ipInUnknownProtos, 9645 ipmib->ipIfStatsInUnknownProtos); 9646 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9647 SET_MIB(old_ip_mib.ipInDelivers, 9648 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9649 SET_MIB(old_ip_mib.ipOutRequests, 9650 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9651 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9652 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9653 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9654 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9655 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9656 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9657 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9658 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9659 9660 /* ipRoutingDiscards is not being used */ 9661 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9662 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9663 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9664 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9665 SET_MIB(old_ip_mib.ipReasmDuplicates, 9666 ipmib->ipIfStatsReasmDuplicates); 9667 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9668 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9669 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9670 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9671 SET_MIB(old_ip_mib.rawipInOverflows, 9672 ipmib->rawipIfStatsInOverflows); 9673 9674 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9675 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9676 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9677 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9678 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9679 ipmib->ipIfStatsOutSwitchIPVersion); 9680 9681 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9682 (int)sizeof (old_ip_mib))) { 9683 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9684 (uint_t)sizeof (old_ip_mib))); 9685 } 9686 9687 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9688 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9689 (int)optp->level, (int)optp->name, (int)optp->len)); 9690 qreply(q, mpctl); 9691 return (mp2ctl); 9692 } 9693 9694 /* Per interface IPv4 statistics */ 9695 static mblk_t * 9696 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9697 { 9698 struct opthdr *optp; 9699 mblk_t *mp2ctl; 9700 ill_t *ill; 9701 ill_walk_context_t ctx; 9702 mblk_t *mp_tail = NULL; 9703 mib2_ipIfStatsEntry_t global_ip_mib; 9704 9705 /* 9706 * Make a copy of the original message 9707 */ 9708 mp2ctl = copymsg(mpctl); 9709 9710 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9711 optp->level = MIB2_IP; 9712 optp->name = MIB2_IP_TRAFFIC_STATS; 9713 /* Include "unknown interface" ip_mib */ 9714 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9715 ipst->ips_ip_mib.ipIfStatsIfIndex = 9716 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9717 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9718 (ipst->ips_ip_forwarding ? 1 : 2)); 9719 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9720 (uint32_t)ipst->ips_ip_def_ttl); 9721 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9722 sizeof (mib2_ipIfStatsEntry_t)); 9723 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9724 sizeof (mib2_ipAddrEntry_t)); 9725 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9726 sizeof (mib2_ipRouteEntry_t)); 9727 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9728 sizeof (mib2_ipNetToMediaEntry_t)); 9729 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9730 sizeof (ip_member_t)); 9731 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9732 sizeof (ip_grpsrc_t)); 9733 9734 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9735 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9736 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9737 "failed to allocate %u bytes\n", 9738 (uint_t)sizeof (ipst->ips_ip_mib))); 9739 } 9740 9741 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9742 9743 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9744 ill = ILL_START_WALK_V4(&ctx, ipst); 9745 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9746 ill->ill_ip_mib->ipIfStatsIfIndex = 9747 ill->ill_phyint->phyint_ifindex; 9748 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9749 (ipst->ips_ip_forwarding ? 1 : 2)); 9750 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9751 (uint32_t)ipst->ips_ip_def_ttl); 9752 9753 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9754 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9755 (char *)ill->ill_ip_mib, 9756 (int)sizeof (*ill->ill_ip_mib))) { 9757 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9758 "failed to allocate %u bytes\n", 9759 (uint_t)sizeof (*ill->ill_ip_mib))); 9760 } 9761 } 9762 rw_exit(&ipst->ips_ill_g_lock); 9763 9764 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9765 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9766 "level %d, name %d, len %d\n", 9767 (int)optp->level, (int)optp->name, (int)optp->len)); 9768 qreply(q, mpctl); 9769 9770 if (mp2ctl == NULL) 9771 return (NULL); 9772 9773 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 9774 } 9775 9776 /* Global IPv4 ICMP statistics */ 9777 static mblk_t * 9778 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9779 { 9780 struct opthdr *optp; 9781 mblk_t *mp2ctl; 9782 9783 /* 9784 * Make a copy of the original message 9785 */ 9786 mp2ctl = copymsg(mpctl); 9787 9788 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9789 optp->level = MIB2_ICMP; 9790 optp->name = 0; 9791 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9792 (int)sizeof (ipst->ips_icmp_mib))) { 9793 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9794 (uint_t)sizeof (ipst->ips_icmp_mib))); 9795 } 9796 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9797 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9798 (int)optp->level, (int)optp->name, (int)optp->len)); 9799 qreply(q, mpctl); 9800 return (mp2ctl); 9801 } 9802 9803 /* Global IPv4 IGMP statistics */ 9804 static mblk_t * 9805 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9806 { 9807 struct opthdr *optp; 9808 mblk_t *mp2ctl; 9809 9810 /* 9811 * make a copy of the original message 9812 */ 9813 mp2ctl = copymsg(mpctl); 9814 9815 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9816 optp->level = EXPER_IGMP; 9817 optp->name = 0; 9818 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9819 (int)sizeof (ipst->ips_igmpstat))) { 9820 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9821 (uint_t)sizeof (ipst->ips_igmpstat))); 9822 } 9823 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9824 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9825 (int)optp->level, (int)optp->name, (int)optp->len)); 9826 qreply(q, mpctl); 9827 return (mp2ctl); 9828 } 9829 9830 /* Global IPv4 Multicast Routing statistics */ 9831 static mblk_t * 9832 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9833 { 9834 struct opthdr *optp; 9835 mblk_t *mp2ctl; 9836 9837 /* 9838 * make a copy of the original message 9839 */ 9840 mp2ctl = copymsg(mpctl); 9841 9842 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9843 optp->level = EXPER_DVMRP; 9844 optp->name = 0; 9845 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9846 ip0dbg(("ip_mroute_stats: failed\n")); 9847 } 9848 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9849 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9850 (int)optp->level, (int)optp->name, (int)optp->len)); 9851 qreply(q, mpctl); 9852 return (mp2ctl); 9853 } 9854 9855 /* IPv4 address information */ 9856 static mblk_t * 9857 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9858 { 9859 struct opthdr *optp; 9860 mblk_t *mp2ctl; 9861 mblk_t *mp_tail = NULL; 9862 ill_t *ill; 9863 ipif_t *ipif; 9864 uint_t bitval; 9865 mib2_ipAddrEntry_t mae; 9866 zoneid_t zoneid; 9867 ill_walk_context_t ctx; 9868 9869 /* 9870 * make a copy of the original message 9871 */ 9872 mp2ctl = copymsg(mpctl); 9873 9874 /* ipAddrEntryTable */ 9875 9876 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9877 optp->level = MIB2_IP; 9878 optp->name = MIB2_IP_ADDR; 9879 zoneid = Q_TO_CONN(q)->conn_zoneid; 9880 9881 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9882 ill = ILL_START_WALK_V4(&ctx, ipst); 9883 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9884 for (ipif = ill->ill_ipif; ipif != NULL; 9885 ipif = ipif->ipif_next) { 9886 if (ipif->ipif_zoneid != zoneid && 9887 ipif->ipif_zoneid != ALL_ZONES) 9888 continue; 9889 /* Sum of count from dead IRE_LO* and our current */ 9890 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9891 if (ipif->ipif_ire_local != NULL) { 9892 mae.ipAdEntInfo.ae_ibcnt += 9893 ipif->ipif_ire_local->ire_ib_pkt_count; 9894 } 9895 mae.ipAdEntInfo.ae_obcnt = 0; 9896 mae.ipAdEntInfo.ae_focnt = 0; 9897 9898 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9899 OCTET_LENGTH); 9900 mae.ipAdEntIfIndex.o_length = 9901 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9902 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9903 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9904 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9905 mae.ipAdEntInfo.ae_subnet_len = 9906 ip_mask_to_plen(ipif->ipif_net_mask); 9907 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9908 for (bitval = 1; 9909 bitval && 9910 !(bitval & ipif->ipif_brd_addr); 9911 bitval <<= 1) 9912 noop; 9913 mae.ipAdEntBcastAddr = bitval; 9914 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9915 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9916 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9917 mae.ipAdEntInfo.ae_broadcast_addr = 9918 ipif->ipif_brd_addr; 9919 mae.ipAdEntInfo.ae_pp_dst_addr = 9920 ipif->ipif_pp_dst_addr; 9921 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9922 ill->ill_flags | ill->ill_phyint->phyint_flags; 9923 mae.ipAdEntRetransmitTime = 9924 ill->ill_reachable_retrans_time; 9925 9926 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9927 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 9928 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9929 "allocate %u bytes\n", 9930 (uint_t)sizeof (mib2_ipAddrEntry_t))); 9931 } 9932 } 9933 } 9934 rw_exit(&ipst->ips_ill_g_lock); 9935 9936 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9937 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9938 (int)optp->level, (int)optp->name, (int)optp->len)); 9939 qreply(q, mpctl); 9940 return (mp2ctl); 9941 } 9942 9943 /* IPv6 address information */ 9944 static mblk_t * 9945 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9946 { 9947 struct opthdr *optp; 9948 mblk_t *mp2ctl; 9949 mblk_t *mp_tail = NULL; 9950 ill_t *ill; 9951 ipif_t *ipif; 9952 mib2_ipv6AddrEntry_t mae6; 9953 zoneid_t zoneid; 9954 ill_walk_context_t ctx; 9955 9956 /* 9957 * make a copy of the original message 9958 */ 9959 mp2ctl = copymsg(mpctl); 9960 9961 /* ipv6AddrEntryTable */ 9962 9963 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9964 optp->level = MIB2_IP6; 9965 optp->name = MIB2_IP6_ADDR; 9966 zoneid = Q_TO_CONN(q)->conn_zoneid; 9967 9968 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9969 ill = ILL_START_WALK_V6(&ctx, ipst); 9970 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9971 for (ipif = ill->ill_ipif; ipif != NULL; 9972 ipif = ipif->ipif_next) { 9973 if (ipif->ipif_zoneid != zoneid && 9974 ipif->ipif_zoneid != ALL_ZONES) 9975 continue; 9976 /* Sum of count from dead IRE_LO* and our current */ 9977 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9978 if (ipif->ipif_ire_local != NULL) { 9979 mae6.ipv6AddrInfo.ae_ibcnt += 9980 ipif->ipif_ire_local->ire_ib_pkt_count; 9981 } 9982 mae6.ipv6AddrInfo.ae_obcnt = 0; 9983 mae6.ipv6AddrInfo.ae_focnt = 0; 9984 9985 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 9986 OCTET_LENGTH); 9987 mae6.ipv6AddrIfIndex.o_length = 9988 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 9989 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 9990 mae6.ipv6AddrPfxLength = 9991 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9992 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 9993 mae6.ipv6AddrInfo.ae_subnet_len = 9994 mae6.ipv6AddrPfxLength; 9995 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 9996 9997 /* Type: stateless(1), stateful(2), unknown(3) */ 9998 if (ipif->ipif_flags & IPIF_ADDRCONF) 9999 mae6.ipv6AddrType = 1; 10000 else 10001 mae6.ipv6AddrType = 2; 10002 /* Anycast: true(1), false(2) */ 10003 if (ipif->ipif_flags & IPIF_ANYCAST) 10004 mae6.ipv6AddrAnycastFlag = 1; 10005 else 10006 mae6.ipv6AddrAnycastFlag = 2; 10007 10008 /* 10009 * Address status: preferred(1), deprecated(2), 10010 * invalid(3), inaccessible(4), unknown(5) 10011 */ 10012 if (ipif->ipif_flags & IPIF_NOLOCAL) 10013 mae6.ipv6AddrStatus = 3; 10014 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10015 mae6.ipv6AddrStatus = 2; 10016 else 10017 mae6.ipv6AddrStatus = 1; 10018 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10019 mae6.ipv6AddrInfo.ae_metric = 10020 ipif->ipif_ill->ill_metric; 10021 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10022 ipif->ipif_v6pp_dst_addr; 10023 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10024 ill->ill_flags | ill->ill_phyint->phyint_flags; 10025 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10026 mae6.ipv6AddrIdentifier = ill->ill_token; 10027 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10028 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10029 mae6.ipv6AddrRetransmitTime = 10030 ill->ill_reachable_retrans_time; 10031 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10032 (char *)&mae6, 10033 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10034 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10035 "allocate %u bytes\n", 10036 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10037 } 10038 } 10039 } 10040 rw_exit(&ipst->ips_ill_g_lock); 10041 10042 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10043 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10044 (int)optp->level, (int)optp->name, (int)optp->len)); 10045 qreply(q, mpctl); 10046 return (mp2ctl); 10047 } 10048 10049 /* IPv4 multicast group membership. */ 10050 static mblk_t * 10051 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10052 { 10053 struct opthdr *optp; 10054 mblk_t *mp2ctl; 10055 ill_t *ill; 10056 ipif_t *ipif; 10057 ilm_t *ilm; 10058 ip_member_t ipm; 10059 mblk_t *mp_tail = NULL; 10060 ill_walk_context_t ctx; 10061 zoneid_t zoneid; 10062 10063 /* 10064 * make a copy of the original message 10065 */ 10066 mp2ctl = copymsg(mpctl); 10067 zoneid = Q_TO_CONN(q)->conn_zoneid; 10068 10069 /* ipGroupMember table */ 10070 optp = (struct opthdr *)&mpctl->b_rptr[ 10071 sizeof (struct T_optmgmt_ack)]; 10072 optp->level = MIB2_IP; 10073 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10074 10075 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10076 ill = ILL_START_WALK_V4(&ctx, ipst); 10077 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10078 /* Make sure the ill isn't going away. */ 10079 if (!ill_check_and_refhold(ill)) 10080 continue; 10081 rw_exit(&ipst->ips_ill_g_lock); 10082 rw_enter(&ill->ill_mcast_lock, RW_READER); 10083 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10084 if (ilm->ilm_zoneid != zoneid && 10085 ilm->ilm_zoneid != ALL_ZONES) 10086 continue; 10087 10088 /* Is there an ipif for ilm_ifaddr? */ 10089 for (ipif = ill->ill_ipif; ipif != NULL; 10090 ipif = ipif->ipif_next) { 10091 if (!IPIF_IS_CONDEMNED(ipif) && 10092 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10093 ilm->ilm_ifaddr != INADDR_ANY) 10094 break; 10095 } 10096 if (ipif != NULL) { 10097 ipif_get_name(ipif, 10098 ipm.ipGroupMemberIfIndex.o_bytes, 10099 OCTET_LENGTH); 10100 } else { 10101 ill_get_name(ill, 10102 ipm.ipGroupMemberIfIndex.o_bytes, 10103 OCTET_LENGTH); 10104 } 10105 ipm.ipGroupMemberIfIndex.o_length = 10106 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10107 10108 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10109 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10110 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10111 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10112 (char *)&ipm, (int)sizeof (ipm))) { 10113 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10114 "failed to allocate %u bytes\n", 10115 (uint_t)sizeof (ipm))); 10116 } 10117 } 10118 rw_exit(&ill->ill_mcast_lock); 10119 ill_refrele(ill); 10120 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10121 } 10122 rw_exit(&ipst->ips_ill_g_lock); 10123 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10124 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10125 (int)optp->level, (int)optp->name, (int)optp->len)); 10126 qreply(q, mpctl); 10127 return (mp2ctl); 10128 } 10129 10130 /* IPv6 multicast group membership. */ 10131 static mblk_t * 10132 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10133 { 10134 struct opthdr *optp; 10135 mblk_t *mp2ctl; 10136 ill_t *ill; 10137 ilm_t *ilm; 10138 ipv6_member_t ipm6; 10139 mblk_t *mp_tail = NULL; 10140 ill_walk_context_t ctx; 10141 zoneid_t zoneid; 10142 10143 /* 10144 * make a copy of the original message 10145 */ 10146 mp2ctl = copymsg(mpctl); 10147 zoneid = Q_TO_CONN(q)->conn_zoneid; 10148 10149 /* ip6GroupMember table */ 10150 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10151 optp->level = MIB2_IP6; 10152 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10153 10154 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10155 ill = ILL_START_WALK_V6(&ctx, ipst); 10156 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10157 /* Make sure the ill isn't going away. */ 10158 if (!ill_check_and_refhold(ill)) 10159 continue; 10160 rw_exit(&ipst->ips_ill_g_lock); 10161 /* 10162 * Normally we don't have any members on under IPMP interfaces. 10163 * We report them as a debugging aid. 10164 */ 10165 rw_enter(&ill->ill_mcast_lock, RW_READER); 10166 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10167 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10168 if (ilm->ilm_zoneid != zoneid && 10169 ilm->ilm_zoneid != ALL_ZONES) 10170 continue; /* not this zone */ 10171 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10172 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10173 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10174 if (!snmp_append_data2(mpctl->b_cont, 10175 &mp_tail, 10176 (char *)&ipm6, (int)sizeof (ipm6))) { 10177 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10178 "failed to allocate %u bytes\n", 10179 (uint_t)sizeof (ipm6))); 10180 } 10181 } 10182 rw_exit(&ill->ill_mcast_lock); 10183 ill_refrele(ill); 10184 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10185 } 10186 rw_exit(&ipst->ips_ill_g_lock); 10187 10188 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10189 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10190 (int)optp->level, (int)optp->name, (int)optp->len)); 10191 qreply(q, mpctl); 10192 return (mp2ctl); 10193 } 10194 10195 /* IP multicast filtered sources */ 10196 static mblk_t * 10197 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10198 { 10199 struct opthdr *optp; 10200 mblk_t *mp2ctl; 10201 ill_t *ill; 10202 ipif_t *ipif; 10203 ilm_t *ilm; 10204 ip_grpsrc_t ips; 10205 mblk_t *mp_tail = NULL; 10206 ill_walk_context_t ctx; 10207 zoneid_t zoneid; 10208 int i; 10209 slist_t *sl; 10210 10211 /* 10212 * make a copy of the original message 10213 */ 10214 mp2ctl = copymsg(mpctl); 10215 zoneid = Q_TO_CONN(q)->conn_zoneid; 10216 10217 /* ipGroupSource table */ 10218 optp = (struct opthdr *)&mpctl->b_rptr[ 10219 sizeof (struct T_optmgmt_ack)]; 10220 optp->level = MIB2_IP; 10221 optp->name = EXPER_IP_GROUP_SOURCES; 10222 10223 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10224 ill = ILL_START_WALK_V4(&ctx, ipst); 10225 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10226 /* Make sure the ill isn't going away. */ 10227 if (!ill_check_and_refhold(ill)) 10228 continue; 10229 rw_exit(&ipst->ips_ill_g_lock); 10230 rw_enter(&ill->ill_mcast_lock, RW_READER); 10231 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10232 sl = ilm->ilm_filter; 10233 if (ilm->ilm_zoneid != zoneid && 10234 ilm->ilm_zoneid != ALL_ZONES) 10235 continue; 10236 if (SLIST_IS_EMPTY(sl)) 10237 continue; 10238 10239 /* Is there an ipif for ilm_ifaddr? */ 10240 for (ipif = ill->ill_ipif; ipif != NULL; 10241 ipif = ipif->ipif_next) { 10242 if (!IPIF_IS_CONDEMNED(ipif) && 10243 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10244 ilm->ilm_ifaddr != INADDR_ANY) 10245 break; 10246 } 10247 if (ipif != NULL) { 10248 ipif_get_name(ipif, 10249 ips.ipGroupSourceIfIndex.o_bytes, 10250 OCTET_LENGTH); 10251 } else { 10252 ill_get_name(ill, 10253 ips.ipGroupSourceIfIndex.o_bytes, 10254 OCTET_LENGTH); 10255 } 10256 ips.ipGroupSourceIfIndex.o_length = 10257 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10258 10259 ips.ipGroupSourceGroup = ilm->ilm_addr; 10260 for (i = 0; i < sl->sl_numsrc; i++) { 10261 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10262 continue; 10263 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10264 ips.ipGroupSourceAddress); 10265 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10266 (char *)&ips, (int)sizeof (ips)) == 0) { 10267 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10268 " failed to allocate %u bytes\n", 10269 (uint_t)sizeof (ips))); 10270 } 10271 } 10272 } 10273 rw_exit(&ill->ill_mcast_lock); 10274 ill_refrele(ill); 10275 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10276 } 10277 rw_exit(&ipst->ips_ill_g_lock); 10278 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10279 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10280 (int)optp->level, (int)optp->name, (int)optp->len)); 10281 qreply(q, mpctl); 10282 return (mp2ctl); 10283 } 10284 10285 /* IPv6 multicast filtered sources. */ 10286 static mblk_t * 10287 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10288 { 10289 struct opthdr *optp; 10290 mblk_t *mp2ctl; 10291 ill_t *ill; 10292 ilm_t *ilm; 10293 ipv6_grpsrc_t ips6; 10294 mblk_t *mp_tail = NULL; 10295 ill_walk_context_t ctx; 10296 zoneid_t zoneid; 10297 int i; 10298 slist_t *sl; 10299 10300 /* 10301 * make a copy of the original message 10302 */ 10303 mp2ctl = copymsg(mpctl); 10304 zoneid = Q_TO_CONN(q)->conn_zoneid; 10305 10306 /* ip6GroupMember table */ 10307 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10308 optp->level = MIB2_IP6; 10309 optp->name = EXPER_IP6_GROUP_SOURCES; 10310 10311 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10312 ill = ILL_START_WALK_V6(&ctx, ipst); 10313 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10314 /* Make sure the ill isn't going away. */ 10315 if (!ill_check_and_refhold(ill)) 10316 continue; 10317 rw_exit(&ipst->ips_ill_g_lock); 10318 /* 10319 * Normally we don't have any members on under IPMP interfaces. 10320 * We report them as a debugging aid. 10321 */ 10322 rw_enter(&ill->ill_mcast_lock, RW_READER); 10323 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10324 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10325 sl = ilm->ilm_filter; 10326 if (ilm->ilm_zoneid != zoneid && 10327 ilm->ilm_zoneid != ALL_ZONES) 10328 continue; 10329 if (SLIST_IS_EMPTY(sl)) 10330 continue; 10331 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10332 for (i = 0; i < sl->sl_numsrc; i++) { 10333 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10334 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10335 (char *)&ips6, (int)sizeof (ips6))) { 10336 ip1dbg(("ip_snmp_get_mib2_ip6_" 10337 "group_src: failed to allocate " 10338 "%u bytes\n", 10339 (uint_t)sizeof (ips6))); 10340 } 10341 } 10342 } 10343 rw_exit(&ill->ill_mcast_lock); 10344 ill_refrele(ill); 10345 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10346 } 10347 rw_exit(&ipst->ips_ill_g_lock); 10348 10349 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10350 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10351 (int)optp->level, (int)optp->name, (int)optp->len)); 10352 qreply(q, mpctl); 10353 return (mp2ctl); 10354 } 10355 10356 /* Multicast routing virtual interface table. */ 10357 static mblk_t * 10358 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10359 { 10360 struct opthdr *optp; 10361 mblk_t *mp2ctl; 10362 10363 /* 10364 * make a copy of the original message 10365 */ 10366 mp2ctl = copymsg(mpctl); 10367 10368 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10369 optp->level = EXPER_DVMRP; 10370 optp->name = EXPER_DVMRP_VIF; 10371 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10372 ip0dbg(("ip_mroute_vif: failed\n")); 10373 } 10374 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10375 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10376 (int)optp->level, (int)optp->name, (int)optp->len)); 10377 qreply(q, mpctl); 10378 return (mp2ctl); 10379 } 10380 10381 /* Multicast routing table. */ 10382 static mblk_t * 10383 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10384 { 10385 struct opthdr *optp; 10386 mblk_t *mp2ctl; 10387 10388 /* 10389 * make a copy of the original message 10390 */ 10391 mp2ctl = copymsg(mpctl); 10392 10393 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10394 optp->level = EXPER_DVMRP; 10395 optp->name = EXPER_DVMRP_MRT; 10396 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10397 ip0dbg(("ip_mroute_mrt: failed\n")); 10398 } 10399 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10400 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10401 (int)optp->level, (int)optp->name, (int)optp->len)); 10402 qreply(q, mpctl); 10403 return (mp2ctl); 10404 } 10405 10406 /* 10407 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10408 * in one IRE walk. 10409 */ 10410 static mblk_t * 10411 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10412 ip_stack_t *ipst) 10413 { 10414 struct opthdr *optp; 10415 mblk_t *mp2ctl; /* Returned */ 10416 mblk_t *mp3ctl; /* nettomedia */ 10417 mblk_t *mp4ctl; /* routeattrs */ 10418 iproutedata_t ird; 10419 zoneid_t zoneid; 10420 10421 /* 10422 * make copies of the original message 10423 * - mp2ctl is returned unchanged to the caller for his use 10424 * - mpctl is sent upstream as ipRouteEntryTable 10425 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10426 * - mp4ctl is sent upstream as ipRouteAttributeTable 10427 */ 10428 mp2ctl = copymsg(mpctl); 10429 mp3ctl = copymsg(mpctl); 10430 mp4ctl = copymsg(mpctl); 10431 if (mp3ctl == NULL || mp4ctl == NULL) { 10432 freemsg(mp4ctl); 10433 freemsg(mp3ctl); 10434 freemsg(mp2ctl); 10435 freemsg(mpctl); 10436 return (NULL); 10437 } 10438 10439 bzero(&ird, sizeof (ird)); 10440 10441 ird.ird_route.lp_head = mpctl->b_cont; 10442 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10443 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10444 /* 10445 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10446 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10447 * intended a temporary solution until a proper MIB API is provided 10448 * that provides complete filtering/caller-opt-in. 10449 */ 10450 if (level == EXPER_IP_AND_ALL_IRES) 10451 ird.ird_flags |= IRD_REPORT_ALL; 10452 10453 zoneid = Q_TO_CONN(q)->conn_zoneid; 10454 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10455 10456 /* ipRouteEntryTable in mpctl */ 10457 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10458 optp->level = MIB2_IP; 10459 optp->name = MIB2_IP_ROUTE; 10460 optp->len = msgdsize(ird.ird_route.lp_head); 10461 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10462 (int)optp->level, (int)optp->name, (int)optp->len)); 10463 qreply(q, mpctl); 10464 10465 /* ipNetToMediaEntryTable in mp3ctl */ 10466 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10467 10468 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10469 optp->level = MIB2_IP; 10470 optp->name = MIB2_IP_MEDIA; 10471 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10472 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10473 (int)optp->level, (int)optp->name, (int)optp->len)); 10474 qreply(q, mp3ctl); 10475 10476 /* ipRouteAttributeTable in mp4ctl */ 10477 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10478 optp->level = MIB2_IP; 10479 optp->name = EXPER_IP_RTATTR; 10480 optp->len = msgdsize(ird.ird_attrs.lp_head); 10481 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10482 (int)optp->level, (int)optp->name, (int)optp->len)); 10483 if (optp->len == 0) 10484 freemsg(mp4ctl); 10485 else 10486 qreply(q, mp4ctl); 10487 10488 return (mp2ctl); 10489 } 10490 10491 /* 10492 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10493 * ipv6NetToMediaEntryTable in an NDP walk. 10494 */ 10495 static mblk_t * 10496 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10497 ip_stack_t *ipst) 10498 { 10499 struct opthdr *optp; 10500 mblk_t *mp2ctl; /* Returned */ 10501 mblk_t *mp3ctl; /* nettomedia */ 10502 mblk_t *mp4ctl; /* routeattrs */ 10503 iproutedata_t ird; 10504 zoneid_t zoneid; 10505 10506 /* 10507 * make copies of the original message 10508 * - mp2ctl is returned unchanged to the caller for his use 10509 * - mpctl is sent upstream as ipv6RouteEntryTable 10510 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10511 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10512 */ 10513 mp2ctl = copymsg(mpctl); 10514 mp3ctl = copymsg(mpctl); 10515 mp4ctl = copymsg(mpctl); 10516 if (mp3ctl == NULL || mp4ctl == NULL) { 10517 freemsg(mp4ctl); 10518 freemsg(mp3ctl); 10519 freemsg(mp2ctl); 10520 freemsg(mpctl); 10521 return (NULL); 10522 } 10523 10524 bzero(&ird, sizeof (ird)); 10525 10526 ird.ird_route.lp_head = mpctl->b_cont; 10527 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10528 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10529 /* 10530 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10531 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10532 * intended a temporary solution until a proper MIB API is provided 10533 * that provides complete filtering/caller-opt-in. 10534 */ 10535 if (level == EXPER_IP_AND_ALL_IRES) 10536 ird.ird_flags |= IRD_REPORT_ALL; 10537 10538 zoneid = Q_TO_CONN(q)->conn_zoneid; 10539 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10540 10541 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10542 optp->level = MIB2_IP6; 10543 optp->name = MIB2_IP6_ROUTE; 10544 optp->len = msgdsize(ird.ird_route.lp_head); 10545 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10546 (int)optp->level, (int)optp->name, (int)optp->len)); 10547 qreply(q, mpctl); 10548 10549 /* ipv6NetToMediaEntryTable in mp3ctl */ 10550 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10551 10552 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10553 optp->level = MIB2_IP6; 10554 optp->name = MIB2_IP6_MEDIA; 10555 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10556 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10557 (int)optp->level, (int)optp->name, (int)optp->len)); 10558 qreply(q, mp3ctl); 10559 10560 /* ipv6RouteAttributeTable in mp4ctl */ 10561 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10562 optp->level = MIB2_IP6; 10563 optp->name = EXPER_IP_RTATTR; 10564 optp->len = msgdsize(ird.ird_attrs.lp_head); 10565 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10566 (int)optp->level, (int)optp->name, (int)optp->len)); 10567 if (optp->len == 0) 10568 freemsg(mp4ctl); 10569 else 10570 qreply(q, mp4ctl); 10571 10572 return (mp2ctl); 10573 } 10574 10575 /* 10576 * IPv6 mib: One per ill 10577 */ 10578 static mblk_t * 10579 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10580 { 10581 struct opthdr *optp; 10582 mblk_t *mp2ctl; 10583 ill_t *ill; 10584 ill_walk_context_t ctx; 10585 mblk_t *mp_tail = NULL; 10586 10587 /* 10588 * Make a copy of the original message 10589 */ 10590 mp2ctl = copymsg(mpctl); 10591 10592 /* fixed length IPv6 structure ... */ 10593 10594 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10595 optp->level = MIB2_IP6; 10596 optp->name = 0; 10597 /* Include "unknown interface" ip6_mib */ 10598 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10599 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10600 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10601 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10602 ipst->ips_ipv6_forwarding ? 1 : 2); 10603 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10604 ipst->ips_ipv6_def_hops); 10605 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10606 sizeof (mib2_ipIfStatsEntry_t)); 10607 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10608 sizeof (mib2_ipv6AddrEntry_t)); 10609 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10610 sizeof (mib2_ipv6RouteEntry_t)); 10611 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10612 sizeof (mib2_ipv6NetToMediaEntry_t)); 10613 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10614 sizeof (ipv6_member_t)); 10615 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10616 sizeof (ipv6_grpsrc_t)); 10617 10618 /* 10619 * Synchronize 64- and 32-bit counters 10620 */ 10621 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10622 ipIfStatsHCInReceives); 10623 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10624 ipIfStatsHCInDelivers); 10625 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10626 ipIfStatsHCOutRequests); 10627 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10628 ipIfStatsHCOutForwDatagrams); 10629 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10630 ipIfStatsHCOutMcastPkts); 10631 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10632 ipIfStatsHCInMcastPkts); 10633 10634 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10635 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10636 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10637 (uint_t)sizeof (ipst->ips_ip6_mib))); 10638 } 10639 10640 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10641 ill = ILL_START_WALK_V6(&ctx, ipst); 10642 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10643 ill->ill_ip_mib->ipIfStatsIfIndex = 10644 ill->ill_phyint->phyint_ifindex; 10645 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10646 ipst->ips_ipv6_forwarding ? 1 : 2); 10647 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10648 ill->ill_max_hops); 10649 10650 /* 10651 * Synchronize 64- and 32-bit counters 10652 */ 10653 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10654 ipIfStatsHCInReceives); 10655 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10656 ipIfStatsHCInDelivers); 10657 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10658 ipIfStatsHCOutRequests); 10659 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10660 ipIfStatsHCOutForwDatagrams); 10661 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10662 ipIfStatsHCOutMcastPkts); 10663 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10664 ipIfStatsHCInMcastPkts); 10665 10666 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10667 (char *)ill->ill_ip_mib, 10668 (int)sizeof (*ill->ill_ip_mib))) { 10669 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10670 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10671 } 10672 } 10673 rw_exit(&ipst->ips_ill_g_lock); 10674 10675 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10676 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10677 (int)optp->level, (int)optp->name, (int)optp->len)); 10678 qreply(q, mpctl); 10679 return (mp2ctl); 10680 } 10681 10682 /* 10683 * ICMPv6 mib: One per ill 10684 */ 10685 static mblk_t * 10686 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10687 { 10688 struct opthdr *optp; 10689 mblk_t *mp2ctl; 10690 ill_t *ill; 10691 ill_walk_context_t ctx; 10692 mblk_t *mp_tail = NULL; 10693 /* 10694 * Make a copy of the original message 10695 */ 10696 mp2ctl = copymsg(mpctl); 10697 10698 /* fixed length ICMPv6 structure ... */ 10699 10700 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10701 optp->level = MIB2_ICMP6; 10702 optp->name = 0; 10703 /* Include "unknown interface" icmp6_mib */ 10704 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10705 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10706 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10707 sizeof (mib2_ipv6IfIcmpEntry_t); 10708 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10709 (char *)&ipst->ips_icmp6_mib, 10710 (int)sizeof (ipst->ips_icmp6_mib))) { 10711 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10712 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10713 } 10714 10715 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10716 ill = ILL_START_WALK_V6(&ctx, ipst); 10717 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10718 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10719 ill->ill_phyint->phyint_ifindex; 10720 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10721 (char *)ill->ill_icmp6_mib, 10722 (int)sizeof (*ill->ill_icmp6_mib))) { 10723 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10724 "%u bytes\n", 10725 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10726 } 10727 } 10728 rw_exit(&ipst->ips_ill_g_lock); 10729 10730 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10731 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10732 (int)optp->level, (int)optp->name, (int)optp->len)); 10733 qreply(q, mpctl); 10734 return (mp2ctl); 10735 } 10736 10737 /* 10738 * ire_walk routine to create both ipRouteEntryTable and 10739 * ipRouteAttributeTable in one IRE walk 10740 */ 10741 static void 10742 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10743 { 10744 ill_t *ill; 10745 mib2_ipRouteEntry_t *re; 10746 mib2_ipAttributeEntry_t iaes; 10747 tsol_ire_gw_secattr_t *attrp; 10748 tsol_gc_t *gc = NULL; 10749 tsol_gcgrp_t *gcgrp = NULL; 10750 ip_stack_t *ipst = ire->ire_ipst; 10751 10752 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10753 10754 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10755 if (ire->ire_testhidden) 10756 return; 10757 if (ire->ire_type & IRE_IF_CLONE) 10758 return; 10759 } 10760 10761 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10762 return; 10763 10764 if ((attrp = ire->ire_gw_secattr) != NULL) { 10765 mutex_enter(&attrp->igsa_lock); 10766 if ((gc = attrp->igsa_gc) != NULL) { 10767 gcgrp = gc->gc_grp; 10768 ASSERT(gcgrp != NULL); 10769 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10770 } 10771 mutex_exit(&attrp->igsa_lock); 10772 } 10773 /* 10774 * Return all IRE types for route table... let caller pick and choose 10775 */ 10776 re->ipRouteDest = ire->ire_addr; 10777 ill = ire->ire_ill; 10778 re->ipRouteIfIndex.o_length = 0; 10779 if (ill != NULL) { 10780 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10781 re->ipRouteIfIndex.o_length = 10782 mi_strlen(re->ipRouteIfIndex.o_bytes); 10783 } 10784 re->ipRouteMetric1 = -1; 10785 re->ipRouteMetric2 = -1; 10786 re->ipRouteMetric3 = -1; 10787 re->ipRouteMetric4 = -1; 10788 10789 re->ipRouteNextHop = ire->ire_gateway_addr; 10790 /* indirect(4), direct(3), or invalid(2) */ 10791 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10792 re->ipRouteType = 2; 10793 else if (ire->ire_type & IRE_ONLINK) 10794 re->ipRouteType = 3; 10795 else 10796 re->ipRouteType = 4; 10797 10798 re->ipRouteProto = -1; 10799 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10800 re->ipRouteMask = ire->ire_mask; 10801 re->ipRouteMetric5 = -1; 10802 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10803 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10804 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10805 10806 re->ipRouteInfo.re_frag_flag = 0; 10807 re->ipRouteInfo.re_rtt = 0; 10808 re->ipRouteInfo.re_src_addr = 0; 10809 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10810 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10811 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10812 re->ipRouteInfo.re_flags = ire->ire_flags; 10813 10814 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10815 if (ire->ire_type & IRE_INTERFACE) { 10816 ire_t *child; 10817 10818 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10819 child = ire->ire_dep_children; 10820 while (child != NULL) { 10821 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10822 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10823 child = child->ire_dep_sib_next; 10824 } 10825 rw_exit(&ipst->ips_ire_dep_lock); 10826 } 10827 10828 if (ire->ire_flags & RTF_DYNAMIC) { 10829 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10830 } else { 10831 re->ipRouteInfo.re_ire_type = ire->ire_type; 10832 } 10833 10834 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10835 (char *)re, (int)sizeof (*re))) { 10836 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10837 (uint_t)sizeof (*re))); 10838 } 10839 10840 if (gc != NULL) { 10841 iaes.iae_routeidx = ird->ird_idx; 10842 iaes.iae_doi = gc->gc_db->gcdb_doi; 10843 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10844 10845 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10846 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10847 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10848 "bytes\n", (uint_t)sizeof (iaes))); 10849 } 10850 } 10851 10852 /* bump route index for next pass */ 10853 ird->ird_idx++; 10854 10855 kmem_free(re, sizeof (*re)); 10856 if (gcgrp != NULL) 10857 rw_exit(&gcgrp->gcgrp_rwlock); 10858 } 10859 10860 /* 10861 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10862 */ 10863 static void 10864 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10865 { 10866 ill_t *ill; 10867 mib2_ipv6RouteEntry_t *re; 10868 mib2_ipAttributeEntry_t iaes; 10869 tsol_ire_gw_secattr_t *attrp; 10870 tsol_gc_t *gc = NULL; 10871 tsol_gcgrp_t *gcgrp = NULL; 10872 ip_stack_t *ipst = ire->ire_ipst; 10873 10874 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10875 10876 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10877 if (ire->ire_testhidden) 10878 return; 10879 if (ire->ire_type & IRE_IF_CLONE) 10880 return; 10881 } 10882 10883 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10884 return; 10885 10886 if ((attrp = ire->ire_gw_secattr) != NULL) { 10887 mutex_enter(&attrp->igsa_lock); 10888 if ((gc = attrp->igsa_gc) != NULL) { 10889 gcgrp = gc->gc_grp; 10890 ASSERT(gcgrp != NULL); 10891 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10892 } 10893 mutex_exit(&attrp->igsa_lock); 10894 } 10895 /* 10896 * Return all IRE types for route table... let caller pick and choose 10897 */ 10898 re->ipv6RouteDest = ire->ire_addr_v6; 10899 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10900 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10901 re->ipv6RouteIfIndex.o_length = 0; 10902 ill = ire->ire_ill; 10903 if (ill != NULL) { 10904 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10905 re->ipv6RouteIfIndex.o_length = 10906 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10907 } 10908 10909 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10910 10911 mutex_enter(&ire->ire_lock); 10912 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10913 mutex_exit(&ire->ire_lock); 10914 10915 /* remote(4), local(3), or discard(2) */ 10916 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10917 re->ipv6RouteType = 2; 10918 else if (ire->ire_type & IRE_ONLINK) 10919 re->ipv6RouteType = 3; 10920 else 10921 re->ipv6RouteType = 4; 10922 10923 re->ipv6RouteProtocol = -1; 10924 re->ipv6RoutePolicy = 0; 10925 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 10926 re->ipv6RouteNextHopRDI = 0; 10927 re->ipv6RouteWeight = 0; 10928 re->ipv6RouteMetric = 0; 10929 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10930 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 10931 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10932 10933 re->ipv6RouteInfo.re_frag_flag = 0; 10934 re->ipv6RouteInfo.re_rtt = 0; 10935 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 10936 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10937 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10938 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 10939 re->ipv6RouteInfo.re_flags = ire->ire_flags; 10940 10941 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10942 if (ire->ire_type & IRE_INTERFACE) { 10943 ire_t *child; 10944 10945 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10946 child = ire->ire_dep_children; 10947 while (child != NULL) { 10948 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 10949 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10950 child = child->ire_dep_sib_next; 10951 } 10952 rw_exit(&ipst->ips_ire_dep_lock); 10953 } 10954 if (ire->ire_flags & RTF_DYNAMIC) { 10955 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10956 } else { 10957 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 10958 } 10959 10960 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10961 (char *)re, (int)sizeof (*re))) { 10962 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 10963 (uint_t)sizeof (*re))); 10964 } 10965 10966 if (gc != NULL) { 10967 iaes.iae_routeidx = ird->ird_idx; 10968 iaes.iae_doi = gc->gc_db->gcdb_doi; 10969 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10970 10971 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10972 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10973 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 10974 "bytes\n", (uint_t)sizeof (iaes))); 10975 } 10976 } 10977 10978 /* bump route index for next pass */ 10979 ird->ird_idx++; 10980 10981 kmem_free(re, sizeof (*re)); 10982 if (gcgrp != NULL) 10983 rw_exit(&gcgrp->gcgrp_rwlock); 10984 } 10985 10986 /* 10987 * ncec_walk routine to create ipv6NetToMediaEntryTable 10988 */ 10989 static int 10990 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 10991 { 10992 ill_t *ill; 10993 mib2_ipv6NetToMediaEntry_t ntme; 10994 10995 ill = ncec->ncec_ill; 10996 /* skip arpce entries, and loopback ncec entries */ 10997 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 10998 return (0); 10999 /* 11000 * Neighbor cache entry attached to IRE with on-link 11001 * destination. 11002 * We report all IPMP groups on ncec_ill which is normally the upper. 11003 */ 11004 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11005 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11006 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11007 if (ncec->ncec_lladdr != NULL) { 11008 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11009 ntme.ipv6NetToMediaPhysAddress.o_length); 11010 } 11011 /* 11012 * Note: Returns ND_* states. Should be: 11013 * reachable(1), stale(2), delay(3), probe(4), 11014 * invalid(5), unknown(6) 11015 */ 11016 ntme.ipv6NetToMediaState = ncec->ncec_state; 11017 ntme.ipv6NetToMediaLastUpdated = 0; 11018 11019 /* other(1), dynamic(2), static(3), local(4) */ 11020 if (NCE_MYADDR(ncec)) { 11021 ntme.ipv6NetToMediaType = 4; 11022 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11023 ntme.ipv6NetToMediaType = 1; /* proxy */ 11024 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11025 ntme.ipv6NetToMediaType = 3; 11026 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11027 ntme.ipv6NetToMediaType = 1; 11028 } else { 11029 ntme.ipv6NetToMediaType = 2; 11030 } 11031 11032 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11033 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11034 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11035 (uint_t)sizeof (ntme))); 11036 } 11037 return (0); 11038 } 11039 11040 int 11041 nce2ace(ncec_t *ncec) 11042 { 11043 int flags = 0; 11044 11045 if (NCE_ISREACHABLE(ncec)) 11046 flags |= ACE_F_RESOLVED; 11047 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11048 flags |= ACE_F_AUTHORITY; 11049 if (ncec->ncec_flags & NCE_F_PUBLISH) 11050 flags |= ACE_F_PUBLISH; 11051 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11052 flags |= ACE_F_PERMANENT; 11053 if (NCE_MYADDR(ncec)) 11054 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11055 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11056 flags |= ACE_F_UNVERIFIED; 11057 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11058 flags |= ACE_F_AUTHORITY; 11059 if (ncec->ncec_flags & NCE_F_DELAYED) 11060 flags |= ACE_F_DELAYED; 11061 return (flags); 11062 } 11063 11064 /* 11065 * ncec_walk routine to create ipNetToMediaEntryTable 11066 */ 11067 static int 11068 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11069 { 11070 ill_t *ill; 11071 mib2_ipNetToMediaEntry_t ntme; 11072 const char *name = "unknown"; 11073 ipaddr_t ncec_addr; 11074 11075 ill = ncec->ncec_ill; 11076 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11077 ill->ill_net_type == IRE_LOOPBACK) 11078 return (0); 11079 11080 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11081 name = ill->ill_name; 11082 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11083 if (NCE_MYADDR(ncec)) { 11084 ntme.ipNetToMediaType = 4; 11085 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11086 ntme.ipNetToMediaType = 1; 11087 } else { 11088 ntme.ipNetToMediaType = 3; 11089 } 11090 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11091 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11092 ntme.ipNetToMediaIfIndex.o_length); 11093 11094 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11095 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11096 11097 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11098 ncec_addr = INADDR_BROADCAST; 11099 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11100 sizeof (ncec_addr)); 11101 /* 11102 * map all the flags to the ACE counterpart. 11103 */ 11104 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11105 11106 ntme.ipNetToMediaPhysAddress.o_length = 11107 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11108 11109 if (!NCE_ISREACHABLE(ncec)) 11110 ntme.ipNetToMediaPhysAddress.o_length = 0; 11111 else { 11112 if (ncec->ncec_lladdr != NULL) { 11113 bcopy(ncec->ncec_lladdr, 11114 ntme.ipNetToMediaPhysAddress.o_bytes, 11115 ntme.ipNetToMediaPhysAddress.o_length); 11116 } 11117 } 11118 11119 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11120 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11121 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11122 (uint_t)sizeof (ntme))); 11123 } 11124 return (0); 11125 } 11126 11127 /* 11128 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11129 */ 11130 /* ARGSUSED */ 11131 int 11132 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11133 { 11134 switch (level) { 11135 case MIB2_IP: 11136 case MIB2_ICMP: 11137 switch (name) { 11138 default: 11139 break; 11140 } 11141 return (1); 11142 default: 11143 return (1); 11144 } 11145 } 11146 11147 /* 11148 * When there exists both a 64- and 32-bit counter of a particular type 11149 * (i.e., InReceives), only the 64-bit counters are added. 11150 */ 11151 void 11152 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11153 { 11154 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11155 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11156 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11157 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11158 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11159 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11160 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11161 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11162 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11163 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11164 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11165 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11166 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11167 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11168 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11169 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11170 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11171 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11172 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11173 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11174 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11175 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11176 o2->ipIfStatsInWrongIPVersion); 11177 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11178 o2->ipIfStatsInWrongIPVersion); 11179 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11180 o2->ipIfStatsOutSwitchIPVersion); 11181 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11182 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11183 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11184 o2->ipIfStatsHCInForwDatagrams); 11185 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11186 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11187 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11188 o2->ipIfStatsHCOutForwDatagrams); 11189 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11190 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11191 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11192 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11193 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11194 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11195 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11196 o2->ipIfStatsHCOutMcastOctets); 11197 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11198 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11199 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11200 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11201 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11202 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11203 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11204 } 11205 11206 void 11207 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11208 { 11209 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11210 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11211 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11212 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11213 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11214 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11215 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11216 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11217 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11218 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11219 o2->ipv6IfIcmpInRouterSolicits); 11220 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11221 o2->ipv6IfIcmpInRouterAdvertisements); 11222 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11223 o2->ipv6IfIcmpInNeighborSolicits); 11224 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11225 o2->ipv6IfIcmpInNeighborAdvertisements); 11226 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11227 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11228 o2->ipv6IfIcmpInGroupMembQueries); 11229 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11230 o2->ipv6IfIcmpInGroupMembResponses); 11231 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11232 o2->ipv6IfIcmpInGroupMembReductions); 11233 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11234 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11235 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11236 o2->ipv6IfIcmpOutDestUnreachs); 11237 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11238 o2->ipv6IfIcmpOutAdminProhibs); 11239 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11240 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11241 o2->ipv6IfIcmpOutParmProblems); 11242 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11243 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11244 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11245 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11246 o2->ipv6IfIcmpOutRouterSolicits); 11247 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11248 o2->ipv6IfIcmpOutRouterAdvertisements); 11249 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11250 o2->ipv6IfIcmpOutNeighborSolicits); 11251 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11252 o2->ipv6IfIcmpOutNeighborAdvertisements); 11253 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11254 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11255 o2->ipv6IfIcmpOutGroupMembQueries); 11256 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11257 o2->ipv6IfIcmpOutGroupMembResponses); 11258 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11259 o2->ipv6IfIcmpOutGroupMembReductions); 11260 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11261 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11262 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11263 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11264 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11265 o2->ipv6IfIcmpInBadNeighborSolicitations); 11266 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11267 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11268 o2->ipv6IfIcmpInGroupMembTotal); 11269 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11270 o2->ipv6IfIcmpInGroupMembBadQueries); 11271 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11272 o2->ipv6IfIcmpInGroupMembBadReports); 11273 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11274 o2->ipv6IfIcmpInGroupMembOurReports); 11275 } 11276 11277 /* 11278 * Called before the options are updated to check if this packet will 11279 * be source routed from here. 11280 * This routine assumes that the options are well formed i.e. that they 11281 * have already been checked. 11282 */ 11283 boolean_t 11284 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11285 { 11286 ipoptp_t opts; 11287 uchar_t *opt; 11288 uint8_t optval; 11289 uint8_t optlen; 11290 ipaddr_t dst; 11291 11292 if (IS_SIMPLE_IPH(ipha)) { 11293 ip2dbg(("not source routed\n")); 11294 return (B_FALSE); 11295 } 11296 dst = ipha->ipha_dst; 11297 for (optval = ipoptp_first(&opts, ipha); 11298 optval != IPOPT_EOL; 11299 optval = ipoptp_next(&opts)) { 11300 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11301 opt = opts.ipoptp_cur; 11302 optlen = opts.ipoptp_len; 11303 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11304 optval, optlen)); 11305 switch (optval) { 11306 uint32_t off; 11307 case IPOPT_SSRR: 11308 case IPOPT_LSRR: 11309 /* 11310 * If dst is one of our addresses and there are some 11311 * entries left in the source route return (true). 11312 */ 11313 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11314 ip2dbg(("ip_source_routed: not next" 11315 " source route 0x%x\n", 11316 ntohl(dst))); 11317 return (B_FALSE); 11318 } 11319 off = opt[IPOPT_OFFSET]; 11320 off--; 11321 if (optlen < IP_ADDR_LEN || 11322 off > optlen - IP_ADDR_LEN) { 11323 /* End of source route */ 11324 ip1dbg(("ip_source_routed: end of SR\n")); 11325 return (B_FALSE); 11326 } 11327 return (B_TRUE); 11328 } 11329 } 11330 ip2dbg(("not source routed\n")); 11331 return (B_FALSE); 11332 } 11333 11334 /* 11335 * ip_unbind is called by the transports to remove a conn from 11336 * the fanout table. 11337 */ 11338 void 11339 ip_unbind(conn_t *connp) 11340 { 11341 11342 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11343 11344 if (is_system_labeled() && connp->conn_anon_port) { 11345 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11346 connp->conn_mlp_type, connp->conn_proto, 11347 ntohs(connp->conn_lport), B_FALSE); 11348 connp->conn_anon_port = 0; 11349 } 11350 connp->conn_mlp_type = mlptSingle; 11351 11352 ipcl_hash_remove(connp); 11353 } 11354 11355 /* 11356 * Used for deciding the MSS size for the upper layer. Thus 11357 * we need to check the outbound policy values in the conn. 11358 */ 11359 int 11360 conn_ipsec_length(conn_t *connp) 11361 { 11362 ipsec_latch_t *ipl; 11363 11364 ipl = connp->conn_latch; 11365 if (ipl == NULL) 11366 return (0); 11367 11368 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11369 return (0); 11370 11371 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11372 } 11373 11374 /* 11375 * Returns an estimate of the IPsec headers size. This is used if 11376 * we don't want to call into IPsec to get the exact size. 11377 */ 11378 int 11379 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11380 { 11381 ipsec_action_t *a; 11382 11383 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11384 return (0); 11385 11386 a = ixa->ixa_ipsec_action; 11387 if (a == NULL) { 11388 ASSERT(ixa->ixa_ipsec_policy != NULL); 11389 a = ixa->ixa_ipsec_policy->ipsp_act; 11390 } 11391 ASSERT(a != NULL); 11392 11393 return (a->ipa_ovhd); 11394 } 11395 11396 /* 11397 * If there are any source route options, return the true final 11398 * destination. Otherwise, return the destination. 11399 */ 11400 ipaddr_t 11401 ip_get_dst(ipha_t *ipha) 11402 { 11403 ipoptp_t opts; 11404 uchar_t *opt; 11405 uint8_t optval; 11406 uint8_t optlen; 11407 ipaddr_t dst; 11408 uint32_t off; 11409 11410 dst = ipha->ipha_dst; 11411 11412 if (IS_SIMPLE_IPH(ipha)) 11413 return (dst); 11414 11415 for (optval = ipoptp_first(&opts, ipha); 11416 optval != IPOPT_EOL; 11417 optval = ipoptp_next(&opts)) { 11418 opt = opts.ipoptp_cur; 11419 optlen = opts.ipoptp_len; 11420 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11421 switch (optval) { 11422 case IPOPT_SSRR: 11423 case IPOPT_LSRR: 11424 off = opt[IPOPT_OFFSET]; 11425 /* 11426 * If one of the conditions is true, it means 11427 * end of options and dst already has the right 11428 * value. 11429 */ 11430 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11431 off = optlen - IP_ADDR_LEN; 11432 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11433 } 11434 return (dst); 11435 default: 11436 break; 11437 } 11438 } 11439 11440 return (dst); 11441 } 11442 11443 /* 11444 * Outbound IP fragmentation routine. 11445 * Assumes the caller has checked whether or not fragmentation should 11446 * be allowed. Here we copy the DF bit from the header to all the generated 11447 * fragments. 11448 */ 11449 int 11450 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11451 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11452 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11453 { 11454 int i1; 11455 int hdr_len; 11456 mblk_t *hdr_mp; 11457 ipha_t *ipha; 11458 int ip_data_end; 11459 int len; 11460 mblk_t *mp = mp_orig; 11461 int offset; 11462 ill_t *ill = nce->nce_ill; 11463 ip_stack_t *ipst = ill->ill_ipst; 11464 mblk_t *carve_mp; 11465 uint32_t frag_flag; 11466 uint_t priority = mp->b_band; 11467 int error = 0; 11468 11469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11470 11471 if (pkt_len != msgdsize(mp)) { 11472 ip0dbg(("Packet length mismatch: %d, %ld\n", 11473 pkt_len, msgdsize(mp))); 11474 freemsg(mp); 11475 return (EINVAL); 11476 } 11477 11478 if (max_frag == 0) { 11479 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11480 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11481 ip_drop_output("FragFails: zero max_frag", mp, ill); 11482 freemsg(mp); 11483 return (EINVAL); 11484 } 11485 11486 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11487 ipha = (ipha_t *)mp->b_rptr; 11488 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11489 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11490 11491 /* 11492 * Establish the starting offset. May not be zero if we are fragging 11493 * a fragment that is being forwarded. 11494 */ 11495 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11496 11497 /* TODO why is this test needed? */ 11498 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11499 /* TODO: notify ulp somehow */ 11500 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11501 ip_drop_output("FragFails: bad starting offset", mp, ill); 11502 freemsg(mp); 11503 return (EINVAL); 11504 } 11505 11506 hdr_len = IPH_HDR_LENGTH(ipha); 11507 ipha->ipha_hdr_checksum = 0; 11508 11509 /* 11510 * Establish the number of bytes maximum per frag, after putting 11511 * in the header. 11512 */ 11513 len = (max_frag - hdr_len) & ~7; 11514 11515 /* Get a copy of the header for the trailing frags */ 11516 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11517 mp); 11518 if (hdr_mp == NULL) { 11519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11520 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11521 freemsg(mp); 11522 return (ENOBUFS); 11523 } 11524 11525 /* Store the starting offset, with the MoreFrags flag. */ 11526 i1 = offset | IPH_MF | frag_flag; 11527 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11528 11529 /* Establish the ending byte offset, based on the starting offset. */ 11530 offset <<= 3; 11531 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11532 11533 /* Store the length of the first fragment in the IP header. */ 11534 i1 = len + hdr_len; 11535 ASSERT(i1 <= IP_MAXPACKET); 11536 ipha->ipha_length = htons((uint16_t)i1); 11537 11538 /* 11539 * Compute the IP header checksum for the first frag. We have to 11540 * watch out that we stop at the end of the header. 11541 */ 11542 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11543 11544 /* 11545 * Now carve off the first frag. Note that this will include the 11546 * original IP header. 11547 */ 11548 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11550 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11551 freeb(hdr_mp); 11552 freemsg(mp_orig); 11553 return (ENOBUFS); 11554 } 11555 11556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11557 11558 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11559 ixa_cookie); 11560 if (error != 0 && error != EWOULDBLOCK) { 11561 /* No point in sending the other fragments */ 11562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11563 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11564 freeb(hdr_mp); 11565 freemsg(mp_orig); 11566 return (error); 11567 } 11568 11569 /* No need to redo state machine in loop */ 11570 ixaflags &= ~IXAF_REACH_CONF; 11571 11572 /* Advance the offset to the second frag starting point. */ 11573 offset += len; 11574 /* 11575 * Update hdr_len from the copied header - there might be less options 11576 * in the later fragments. 11577 */ 11578 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11579 /* Loop until done. */ 11580 for (;;) { 11581 uint16_t offset_and_flags; 11582 uint16_t ip_len; 11583 11584 if (ip_data_end - offset > len) { 11585 /* 11586 * Carve off the appropriate amount from the original 11587 * datagram. 11588 */ 11589 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11590 mp = NULL; 11591 break; 11592 } 11593 /* 11594 * More frags after this one. Get another copy 11595 * of the header. 11596 */ 11597 if (carve_mp->b_datap->db_ref == 1 && 11598 hdr_mp->b_wptr - hdr_mp->b_rptr < 11599 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11600 /* Inline IP header */ 11601 carve_mp->b_rptr -= hdr_mp->b_wptr - 11602 hdr_mp->b_rptr; 11603 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11604 hdr_mp->b_wptr - hdr_mp->b_rptr); 11605 mp = carve_mp; 11606 } else { 11607 if (!(mp = copyb(hdr_mp))) { 11608 freemsg(carve_mp); 11609 break; 11610 } 11611 /* Get priority marking, if any. */ 11612 mp->b_band = priority; 11613 mp->b_cont = carve_mp; 11614 } 11615 ipha = (ipha_t *)mp->b_rptr; 11616 offset_and_flags = IPH_MF; 11617 } else { 11618 /* 11619 * Last frag. Consume the header. Set len to 11620 * the length of this last piece. 11621 */ 11622 len = ip_data_end - offset; 11623 11624 /* 11625 * Carve off the appropriate amount from the original 11626 * datagram. 11627 */ 11628 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11629 mp = NULL; 11630 break; 11631 } 11632 if (carve_mp->b_datap->db_ref == 1 && 11633 hdr_mp->b_wptr - hdr_mp->b_rptr < 11634 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11635 /* Inline IP header */ 11636 carve_mp->b_rptr -= hdr_mp->b_wptr - 11637 hdr_mp->b_rptr; 11638 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11639 hdr_mp->b_wptr - hdr_mp->b_rptr); 11640 mp = carve_mp; 11641 freeb(hdr_mp); 11642 hdr_mp = mp; 11643 } else { 11644 mp = hdr_mp; 11645 /* Get priority marking, if any. */ 11646 mp->b_band = priority; 11647 mp->b_cont = carve_mp; 11648 } 11649 ipha = (ipha_t *)mp->b_rptr; 11650 /* A frag of a frag might have IPH_MF non-zero */ 11651 offset_and_flags = 11652 ntohs(ipha->ipha_fragment_offset_and_flags) & 11653 IPH_MF; 11654 } 11655 offset_and_flags |= (uint16_t)(offset >> 3); 11656 offset_and_flags |= (uint16_t)frag_flag; 11657 /* Store the offset and flags in the IP header. */ 11658 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11659 11660 /* Store the length in the IP header. */ 11661 ip_len = (uint16_t)(len + hdr_len); 11662 ipha->ipha_length = htons(ip_len); 11663 11664 /* 11665 * Set the IP header checksum. Note that mp is just 11666 * the header, so this is easy to pass to ip_csum. 11667 */ 11668 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11669 11670 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11671 11672 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11673 nolzid, ixa_cookie); 11674 /* All done if we just consumed the hdr_mp. */ 11675 if (mp == hdr_mp) { 11676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11677 return (error); 11678 } 11679 if (error != 0 && error != EWOULDBLOCK) { 11680 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11681 mblk_t *, hdr_mp); 11682 /* No point in sending the other fragments */ 11683 break; 11684 } 11685 11686 /* Otherwise, advance and loop. */ 11687 offset += len; 11688 } 11689 /* Clean up following allocation failure. */ 11690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11691 ip_drop_output("FragFails: loop ended", NULL, ill); 11692 if (mp != hdr_mp) 11693 freeb(hdr_mp); 11694 if (mp != mp_orig) 11695 freemsg(mp_orig); 11696 return (error); 11697 } 11698 11699 /* 11700 * Copy the header plus those options which have the copy bit set 11701 */ 11702 static mblk_t * 11703 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11704 mblk_t *src) 11705 { 11706 mblk_t *mp; 11707 uchar_t *up; 11708 11709 /* 11710 * Quick check if we need to look for options without the copy bit 11711 * set 11712 */ 11713 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11714 if (!mp) 11715 return (mp); 11716 mp->b_rptr += ipst->ips_ip_wroff_extra; 11717 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11718 bcopy(rptr, mp->b_rptr, hdr_len); 11719 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11720 return (mp); 11721 } 11722 up = mp->b_rptr; 11723 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11724 up += IP_SIMPLE_HDR_LENGTH; 11725 rptr += IP_SIMPLE_HDR_LENGTH; 11726 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11727 while (hdr_len > 0) { 11728 uint32_t optval; 11729 uint32_t optlen; 11730 11731 optval = *rptr; 11732 if (optval == IPOPT_EOL) 11733 break; 11734 if (optval == IPOPT_NOP) 11735 optlen = 1; 11736 else 11737 optlen = rptr[1]; 11738 if (optval & IPOPT_COPY) { 11739 bcopy(rptr, up, optlen); 11740 up += optlen; 11741 } 11742 rptr += optlen; 11743 hdr_len -= optlen; 11744 } 11745 /* 11746 * Make sure that we drop an even number of words by filling 11747 * with EOL to the next word boundary. 11748 */ 11749 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11750 hdr_len & 0x3; hdr_len++) 11751 *up++ = IPOPT_EOL; 11752 mp->b_wptr = up; 11753 /* Update header length */ 11754 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11755 return (mp); 11756 } 11757 11758 /* 11759 * Update any source route, record route, or timestamp options when 11760 * sending a packet back to ourselves. 11761 * Check that we are at end of strict source route. 11762 * The options have been sanity checked by ip_output_options(). 11763 */ 11764 void 11765 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11766 { 11767 ipoptp_t opts; 11768 uchar_t *opt; 11769 uint8_t optval; 11770 uint8_t optlen; 11771 ipaddr_t dst; 11772 uint32_t ts; 11773 timestruc_t now; 11774 11775 for (optval = ipoptp_first(&opts, ipha); 11776 optval != IPOPT_EOL; 11777 optval = ipoptp_next(&opts)) { 11778 opt = opts.ipoptp_cur; 11779 optlen = opts.ipoptp_len; 11780 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11781 switch (optval) { 11782 uint32_t off; 11783 case IPOPT_SSRR: 11784 case IPOPT_LSRR: 11785 off = opt[IPOPT_OFFSET]; 11786 off--; 11787 if (optlen < IP_ADDR_LEN || 11788 off > optlen - IP_ADDR_LEN) { 11789 /* End of source route */ 11790 break; 11791 } 11792 /* 11793 * This will only happen if two consecutive entries 11794 * in the source route contains our address or if 11795 * it is a packet with a loose source route which 11796 * reaches us before consuming the whole source route 11797 */ 11798 11799 if (optval == IPOPT_SSRR) { 11800 return; 11801 } 11802 /* 11803 * Hack: instead of dropping the packet truncate the 11804 * source route to what has been used by filling the 11805 * rest with IPOPT_NOP. 11806 */ 11807 opt[IPOPT_OLEN] = (uint8_t)off; 11808 while (off < optlen) { 11809 opt[off++] = IPOPT_NOP; 11810 } 11811 break; 11812 case IPOPT_RR: 11813 off = opt[IPOPT_OFFSET]; 11814 off--; 11815 if (optlen < IP_ADDR_LEN || 11816 off > optlen - IP_ADDR_LEN) { 11817 /* No more room - ignore */ 11818 ip1dbg(( 11819 "ip_output_local_options: end of RR\n")); 11820 break; 11821 } 11822 dst = htonl(INADDR_LOOPBACK); 11823 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11824 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11825 break; 11826 case IPOPT_TS: 11827 /* Insert timestamp if there is romm */ 11828 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11829 case IPOPT_TS_TSONLY: 11830 off = IPOPT_TS_TIMELEN; 11831 break; 11832 case IPOPT_TS_PRESPEC: 11833 case IPOPT_TS_PRESPEC_RFC791: 11834 /* Verify that the address matched */ 11835 off = opt[IPOPT_OFFSET] - 1; 11836 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11837 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11838 /* Not for us */ 11839 break; 11840 } 11841 /* FALLTHRU */ 11842 case IPOPT_TS_TSANDADDR: 11843 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11844 break; 11845 default: 11846 /* 11847 * ip_*put_options should have already 11848 * dropped this packet. 11849 */ 11850 cmn_err(CE_PANIC, "ip_output_local_options: " 11851 "unknown IT - bug in ip_output_options?\n"); 11852 return; /* Keep "lint" happy */ 11853 } 11854 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11855 /* Increase overflow counter */ 11856 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11857 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11858 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11859 (off << 4); 11860 break; 11861 } 11862 off = opt[IPOPT_OFFSET] - 1; 11863 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11864 case IPOPT_TS_PRESPEC: 11865 case IPOPT_TS_PRESPEC_RFC791: 11866 case IPOPT_TS_TSANDADDR: 11867 dst = htonl(INADDR_LOOPBACK); 11868 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11869 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11870 /* FALLTHRU */ 11871 case IPOPT_TS_TSONLY: 11872 off = opt[IPOPT_OFFSET] - 1; 11873 /* Compute # of milliseconds since midnight */ 11874 gethrestime(&now); 11875 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11876 now.tv_nsec / (NANOSEC / MILLISEC); 11877 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11878 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11879 break; 11880 } 11881 break; 11882 } 11883 } 11884 } 11885 11886 /* 11887 * Prepend an M_DATA fastpath header, and if none present prepend a 11888 * DL_UNITDATA_REQ. Frees the mblk on failure. 11889 * 11890 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11891 * If there is a change to them, the nce will be deleted (condemned) and 11892 * a new nce_t will be created when packets are sent. Thus we need no locks 11893 * to access those fields. 11894 * 11895 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11896 * we place b_band in dl_priority.dl_max. 11897 */ 11898 static mblk_t * 11899 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11900 { 11901 uint_t hlen; 11902 mblk_t *mp1; 11903 uint_t priority; 11904 uchar_t *rptr; 11905 11906 rptr = mp->b_rptr; 11907 11908 ASSERT(DB_TYPE(mp) == M_DATA); 11909 priority = mp->b_band; 11910 11911 ASSERT(nce != NULL); 11912 if ((mp1 = nce->nce_fp_mp) != NULL) { 11913 hlen = MBLKL(mp1); 11914 /* 11915 * Check if we have enough room to prepend fastpath 11916 * header 11917 */ 11918 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11919 rptr -= hlen; 11920 bcopy(mp1->b_rptr, rptr, hlen); 11921 /* 11922 * Set the b_rptr to the start of the link layer 11923 * header 11924 */ 11925 mp->b_rptr = rptr; 11926 return (mp); 11927 } 11928 mp1 = copyb(mp1); 11929 if (mp1 == NULL) { 11930 ill_t *ill = nce->nce_ill; 11931 11932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11933 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11934 freemsg(mp); 11935 return (NULL); 11936 } 11937 mp1->b_band = priority; 11938 mp1->b_cont = mp; 11939 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 11940 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 11941 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 11942 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 11943 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 11944 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 11945 /* 11946 * XXX disable ICK_VALID and compute checksum 11947 * here; can happen if nce_fp_mp changes and 11948 * it can't be copied now due to insufficient 11949 * space. (unlikely, fp mp can change, but it 11950 * does not increase in length) 11951 */ 11952 return (mp1); 11953 } 11954 mp1 = copyb(nce->nce_dlur_mp); 11955 11956 if (mp1 == NULL) { 11957 ill_t *ill = nce->nce_ill; 11958 11959 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11960 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11961 freemsg(mp); 11962 return (NULL); 11963 } 11964 mp1->b_cont = mp; 11965 if (priority != 0) { 11966 mp1->b_band = priority; 11967 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 11968 priority; 11969 } 11970 return (mp1); 11971 #undef rptr 11972 } 11973 11974 /* 11975 * Finish the outbound IPsec processing. This function is called from 11976 * ipsec_out_process() if the IPsec packet was processed 11977 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 11978 * asynchronously. 11979 * 11980 * This is common to IPv4 and IPv6. 11981 */ 11982 int 11983 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 11984 { 11985 iaflags_t ixaflags = ixa->ixa_flags; 11986 uint_t pktlen; 11987 11988 11989 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 11990 if (ixaflags & IXAF_IS_IPV4) { 11991 ipha_t *ipha = (ipha_t *)mp->b_rptr; 11992 11993 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11994 pktlen = ntohs(ipha->ipha_length); 11995 } else { 11996 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 11997 11998 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 11999 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12000 } 12001 12002 /* 12003 * We release any hard reference on the SAs here to make 12004 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12005 * on the SAs. 12006 * If in the future we want the hard latching of the SAs in the 12007 * ip_xmit_attr_t then we should remove this. 12008 */ 12009 if (ixa->ixa_ipsec_esp_sa != NULL) { 12010 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12011 ixa->ixa_ipsec_esp_sa = NULL; 12012 } 12013 if (ixa->ixa_ipsec_ah_sa != NULL) { 12014 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12015 ixa->ixa_ipsec_ah_sa = NULL; 12016 } 12017 12018 /* Do we need to fragment? */ 12019 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12020 pktlen > ixa->ixa_fragsize) { 12021 if (ixaflags & IXAF_IS_IPV4) { 12022 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12023 /* 12024 * We check for the DF case in ipsec_out_process 12025 * hence this only handles the non-DF case. 12026 */ 12027 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12028 pktlen, ixa->ixa_fragsize, 12029 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12030 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12031 &ixa->ixa_cookie)); 12032 } else { 12033 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12034 if (mp == NULL) { 12035 /* MIB and ip_drop_output already done */ 12036 return (ENOMEM); 12037 } 12038 pktlen += sizeof (ip6_frag_t); 12039 if (pktlen > ixa->ixa_fragsize) { 12040 return (ip_fragment_v6(mp, ixa->ixa_nce, 12041 ixa->ixa_flags, pktlen, 12042 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12043 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12044 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12045 } 12046 } 12047 } 12048 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12049 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12050 ixa->ixa_no_loop_zoneid, NULL)); 12051 } 12052 12053 /* 12054 * Finish the inbound IPsec processing. This function is called from 12055 * ipsec_out_process() if the IPsec packet was processed 12056 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12057 * asynchronously. 12058 * 12059 * This is common to IPv4 and IPv6. 12060 */ 12061 void 12062 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12063 { 12064 iaflags_t iraflags = ira->ira_flags; 12065 12066 /* Length might have changed */ 12067 if (iraflags & IRAF_IS_IPV4) { 12068 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12069 12070 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12071 ira->ira_pktlen = ntohs(ipha->ipha_length); 12072 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12073 ira->ira_protocol = ipha->ipha_protocol; 12074 12075 ip_fanout_v4(mp, ipha, ira); 12076 } else { 12077 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12078 uint8_t *nexthdrp; 12079 12080 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12081 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12082 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12083 &nexthdrp)) { 12084 /* Malformed packet */ 12085 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12086 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12087 freemsg(mp); 12088 return; 12089 } 12090 ira->ira_protocol = *nexthdrp; 12091 ip_fanout_v6(mp, ip6h, ira); 12092 } 12093 } 12094 12095 /* 12096 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12097 * 12098 * If this function returns B_TRUE, the requested SA's have been filled 12099 * into the ixa_ipsec_*_sa pointers. 12100 * 12101 * If the function returns B_FALSE, the packet has been "consumed", most 12102 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12103 * 12104 * The SA references created by the protocol-specific "select" 12105 * function will be released in ip_output_post_ipsec. 12106 */ 12107 static boolean_t 12108 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12109 { 12110 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12111 ipsec_policy_t *pp; 12112 ipsec_action_t *ap; 12113 12114 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12115 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12116 (ixa->ixa_ipsec_action != NULL)); 12117 12118 ap = ixa->ixa_ipsec_action; 12119 if (ap == NULL) { 12120 pp = ixa->ixa_ipsec_policy; 12121 ASSERT(pp != NULL); 12122 ap = pp->ipsp_act; 12123 ASSERT(ap != NULL); 12124 } 12125 12126 /* 12127 * We have an action. now, let's select SA's. 12128 * A side effect of setting ixa_ipsec_*_sa is that it will 12129 * be cached in the conn_t. 12130 */ 12131 if (ap->ipa_want_esp) { 12132 if (ixa->ixa_ipsec_esp_sa == NULL) { 12133 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12134 IPPROTO_ESP); 12135 } 12136 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12137 } 12138 12139 if (ap->ipa_want_ah) { 12140 if (ixa->ixa_ipsec_ah_sa == NULL) { 12141 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12142 IPPROTO_AH); 12143 } 12144 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12145 /* 12146 * The ESP and AH processing order needs to be preserved 12147 * when both protocols are required (ESP should be applied 12148 * before AH for an outbound packet). Force an ESP ACQUIRE 12149 * when both ESP and AH are required, and an AH ACQUIRE 12150 * is needed. 12151 */ 12152 if (ap->ipa_want_esp && need_ah_acquire) 12153 need_esp_acquire = B_TRUE; 12154 } 12155 12156 /* 12157 * Send an ACQUIRE (extended, regular, or both) if we need one. 12158 * Release SAs that got referenced, but will not be used until we 12159 * acquire _all_ of the SAs we need. 12160 */ 12161 if (need_ah_acquire || need_esp_acquire) { 12162 if (ixa->ixa_ipsec_ah_sa != NULL) { 12163 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12164 ixa->ixa_ipsec_ah_sa = NULL; 12165 } 12166 if (ixa->ixa_ipsec_esp_sa != NULL) { 12167 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12168 ixa->ixa_ipsec_esp_sa = NULL; 12169 } 12170 12171 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12172 return (B_FALSE); 12173 } 12174 12175 return (B_TRUE); 12176 } 12177 12178 /* 12179 * Handle IPsec output processing. 12180 * This function is only entered once for a given packet. 12181 * We try to do things synchronously, but if we need to have user-level 12182 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12183 * will be completed 12184 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12185 * - when asynchronous ESP is done it will do AH 12186 * 12187 * In all cases we come back in ip_output_post_ipsec() to fragment and 12188 * send out the packet. 12189 */ 12190 int 12191 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12192 { 12193 ill_t *ill = ixa->ixa_nce->nce_ill; 12194 ip_stack_t *ipst = ixa->ixa_ipst; 12195 ipsec_stack_t *ipss; 12196 ipsec_policy_t *pp; 12197 ipsec_action_t *ap; 12198 12199 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12200 12201 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12202 (ixa->ixa_ipsec_action != NULL)); 12203 12204 ipss = ipst->ips_netstack->netstack_ipsec; 12205 if (!ipsec_loaded(ipss)) { 12206 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12207 ip_drop_packet(mp, B_TRUE, ill, 12208 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12209 &ipss->ipsec_dropper); 12210 return (ENOTSUP); 12211 } 12212 12213 ap = ixa->ixa_ipsec_action; 12214 if (ap == NULL) { 12215 pp = ixa->ixa_ipsec_policy; 12216 ASSERT(pp != NULL); 12217 ap = pp->ipsp_act; 12218 ASSERT(ap != NULL); 12219 } 12220 12221 /* Handle explicit drop action and bypass. */ 12222 switch (ap->ipa_act.ipa_type) { 12223 case IPSEC_ACT_DISCARD: 12224 case IPSEC_ACT_REJECT: 12225 ip_drop_packet(mp, B_FALSE, ill, 12226 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12227 return (EHOSTUNREACH); /* IPsec policy failure */ 12228 case IPSEC_ACT_BYPASS: 12229 return (ip_output_post_ipsec(mp, ixa)); 12230 } 12231 12232 /* 12233 * The order of processing is first insert a IP header if needed. 12234 * Then insert the ESP header and then the AH header. 12235 */ 12236 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12237 /* 12238 * First get the outer IP header before sending 12239 * it to ESP. 12240 */ 12241 ipha_t *oipha, *iipha; 12242 mblk_t *outer_mp, *inner_mp; 12243 12244 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12245 (void) mi_strlog(ill->ill_rq, 0, 12246 SL_ERROR|SL_TRACE|SL_CONSOLE, 12247 "ipsec_out_process: " 12248 "Self-Encapsulation failed: Out of memory\n"); 12249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12250 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12251 freemsg(mp); 12252 return (ENOBUFS); 12253 } 12254 inner_mp = mp; 12255 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12256 oipha = (ipha_t *)outer_mp->b_rptr; 12257 iipha = (ipha_t *)inner_mp->b_rptr; 12258 *oipha = *iipha; 12259 outer_mp->b_wptr += sizeof (ipha_t); 12260 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12261 sizeof (ipha_t)); 12262 oipha->ipha_protocol = IPPROTO_ENCAP; 12263 oipha->ipha_version_and_hdr_length = 12264 IP_SIMPLE_HDR_VERSION; 12265 oipha->ipha_hdr_checksum = 0; 12266 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12267 outer_mp->b_cont = inner_mp; 12268 mp = outer_mp; 12269 12270 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12271 } 12272 12273 /* If we need to wait for a SA then we can't return any errno */ 12274 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12275 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12276 !ipsec_out_select_sa(mp, ixa)) 12277 return (0); 12278 12279 /* 12280 * By now, we know what SA's to use. Toss over to ESP & AH 12281 * to do the heavy lifting. 12282 */ 12283 if (ap->ipa_want_esp) { 12284 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12285 12286 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12287 if (mp == NULL) { 12288 /* 12289 * Either it failed or is pending. In the former case 12290 * ipIfStatsInDiscards was increased. 12291 */ 12292 return (0); 12293 } 12294 } 12295 12296 if (ap->ipa_want_ah) { 12297 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12298 12299 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12300 if (mp == NULL) { 12301 /* 12302 * Either it failed or is pending. In the former case 12303 * ipIfStatsInDiscards was increased. 12304 */ 12305 return (0); 12306 } 12307 } 12308 /* 12309 * We are done with IPsec processing. Send it over 12310 * the wire. 12311 */ 12312 return (ip_output_post_ipsec(mp, ixa)); 12313 } 12314 12315 /* 12316 * ioctls that go through a down/up sequence may need to wait for the down 12317 * to complete. This involves waiting for the ire and ipif refcnts to go down 12318 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12319 */ 12320 /* ARGSUSED */ 12321 void 12322 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12323 { 12324 struct iocblk *iocp; 12325 mblk_t *mp1; 12326 ip_ioctl_cmd_t *ipip; 12327 int err; 12328 sin_t *sin; 12329 struct lifreq *lifr; 12330 struct ifreq *ifr; 12331 12332 iocp = (struct iocblk *)mp->b_rptr; 12333 ASSERT(ipsq != NULL); 12334 /* Existence of mp1 verified in ip_wput_nondata */ 12335 mp1 = mp->b_cont->b_cont; 12336 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12337 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12338 /* 12339 * Special case where ipx_current_ipif is not set: 12340 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12341 * We are here as were not able to complete the operation in 12342 * ipif_set_values because we could not become exclusive on 12343 * the new ipsq. 12344 */ 12345 ill_t *ill = q->q_ptr; 12346 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12347 } 12348 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12349 12350 if (ipip->ipi_cmd_type == IF_CMD) { 12351 /* This a old style SIOC[GS]IF* command */ 12352 ifr = (struct ifreq *)mp1->b_rptr; 12353 sin = (sin_t *)&ifr->ifr_addr; 12354 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12355 /* This a new style SIOC[GS]LIF* command */ 12356 lifr = (struct lifreq *)mp1->b_rptr; 12357 sin = (sin_t *)&lifr->lifr_addr; 12358 } else { 12359 sin = NULL; 12360 } 12361 12362 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12363 q, mp, ipip, mp1->b_rptr); 12364 12365 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12366 int, ipip->ipi_cmd, 12367 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12368 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12369 12370 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12371 } 12372 12373 /* 12374 * ioctl processing 12375 * 12376 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12377 * the ioctl command in the ioctl tables, determines the copyin data size 12378 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12379 * 12380 * ioctl processing then continues when the M_IOCDATA makes its way down to 12381 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12382 * associated 'conn' is refheld till the end of the ioctl and the general 12383 * ioctl processing function ip_process_ioctl() is called to extract the 12384 * arguments and process the ioctl. To simplify extraction, ioctl commands 12385 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12386 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12387 * is used to extract the ioctl's arguments. 12388 * 12389 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12390 * so goes thru the serialization primitive ipsq_try_enter. Then the 12391 * appropriate function to handle the ioctl is called based on the entry in 12392 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12393 * which also refreleases the 'conn' that was refheld at the start of the 12394 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12395 * 12396 * Many exclusive ioctls go thru an internal down up sequence as part of 12397 * the operation. For example an attempt to change the IP address of an 12398 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12399 * does all the cleanup such as deleting all ires that use this address. 12400 * Then we need to wait till all references to the interface go away. 12401 */ 12402 void 12403 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12404 { 12405 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12406 ip_ioctl_cmd_t *ipip = arg; 12407 ip_extract_func_t *extract_funcp; 12408 cmd_info_t ci; 12409 int err; 12410 boolean_t entered_ipsq = B_FALSE; 12411 12412 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12413 12414 if (ipip == NULL) 12415 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12416 12417 /* 12418 * SIOCLIFADDIF needs to go thru a special path since the 12419 * ill may not exist yet. This happens in the case of lo0 12420 * which is created using this ioctl. 12421 */ 12422 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12423 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12424 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12425 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12426 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12427 return; 12428 } 12429 12430 ci.ci_ipif = NULL; 12431 switch (ipip->ipi_cmd_type) { 12432 case MISC_CMD: 12433 case MSFILT_CMD: 12434 /* 12435 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12436 */ 12437 if (ipip->ipi_cmd == IF_UNITSEL) { 12438 /* ioctl comes down the ill */ 12439 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12440 ipif_refhold(ci.ci_ipif); 12441 } 12442 err = 0; 12443 ci.ci_sin = NULL; 12444 ci.ci_sin6 = NULL; 12445 ci.ci_lifr = NULL; 12446 extract_funcp = NULL; 12447 break; 12448 12449 case IF_CMD: 12450 case LIF_CMD: 12451 extract_funcp = ip_extract_lifreq; 12452 break; 12453 12454 case ARP_CMD: 12455 case XARP_CMD: 12456 extract_funcp = ip_extract_arpreq; 12457 break; 12458 12459 default: 12460 ASSERT(0); 12461 } 12462 12463 if (extract_funcp != NULL) { 12464 err = (*extract_funcp)(q, mp, ipip, &ci); 12465 if (err != 0) { 12466 DTRACE_PROBE4(ipif__ioctl, 12467 char *, "ip_process_ioctl finish err", 12468 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12469 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12470 return; 12471 } 12472 12473 /* 12474 * All of the extraction functions return a refheld ipif. 12475 */ 12476 ASSERT(ci.ci_ipif != NULL); 12477 } 12478 12479 if (!(ipip->ipi_flags & IPI_WR)) { 12480 /* 12481 * A return value of EINPROGRESS means the ioctl is 12482 * either queued and waiting for some reason or has 12483 * already completed. 12484 */ 12485 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12486 ci.ci_lifr); 12487 if (ci.ci_ipif != NULL) { 12488 DTRACE_PROBE4(ipif__ioctl, 12489 char *, "ip_process_ioctl finish RD", 12490 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12491 ipif_t *, ci.ci_ipif); 12492 ipif_refrele(ci.ci_ipif); 12493 } else { 12494 DTRACE_PROBE4(ipif__ioctl, 12495 char *, "ip_process_ioctl finish RD", 12496 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12497 } 12498 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12499 return; 12500 } 12501 12502 ASSERT(ci.ci_ipif != NULL); 12503 12504 /* 12505 * If ipsq is non-NULL, we are already being called exclusively 12506 */ 12507 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12508 if (ipsq == NULL) { 12509 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12510 NEW_OP, B_TRUE); 12511 if (ipsq == NULL) { 12512 ipif_refrele(ci.ci_ipif); 12513 return; 12514 } 12515 entered_ipsq = B_TRUE; 12516 } 12517 /* 12518 * Release the ipif so that ipif_down and friends that wait for 12519 * references to go away are not misled about the current ipif_refcnt 12520 * values. We are writer so we can access the ipif even after releasing 12521 * the ipif. 12522 */ 12523 ipif_refrele(ci.ci_ipif); 12524 12525 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12526 12527 /* 12528 * A return value of EINPROGRESS means the ioctl is 12529 * either queued and waiting for some reason or has 12530 * already completed. 12531 */ 12532 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12533 12534 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12535 int, ipip->ipi_cmd, 12536 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12537 ipif_t *, ci.ci_ipif); 12538 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12539 12540 if (entered_ipsq) 12541 ipsq_exit(ipsq); 12542 } 12543 12544 /* 12545 * Complete the ioctl. Typically ioctls use the mi package and need to 12546 * do mi_copyout/mi_copy_done. 12547 */ 12548 void 12549 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12550 { 12551 conn_t *connp = NULL; 12552 12553 if (err == EINPROGRESS) 12554 return; 12555 12556 if (CONN_Q(q)) { 12557 connp = Q_TO_CONN(q); 12558 ASSERT(connp->conn_ref >= 2); 12559 } 12560 12561 switch (mode) { 12562 case COPYOUT: 12563 if (err == 0) 12564 mi_copyout(q, mp); 12565 else 12566 mi_copy_done(q, mp, err); 12567 break; 12568 12569 case NO_COPYOUT: 12570 mi_copy_done(q, mp, err); 12571 break; 12572 12573 default: 12574 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12575 break; 12576 } 12577 12578 /* 12579 * The conn refhold and ioctlref placed on the conn at the start of the 12580 * ioctl are released here. 12581 */ 12582 if (connp != NULL) { 12583 CONN_DEC_IOCTLREF(connp); 12584 CONN_OPER_PENDING_DONE(connp); 12585 } 12586 12587 if (ipsq != NULL) 12588 ipsq_current_finish(ipsq); 12589 } 12590 12591 /* Handles all non data messages */ 12592 void 12593 ip_wput_nondata(queue_t *q, mblk_t *mp) 12594 { 12595 mblk_t *mp1; 12596 struct iocblk *iocp; 12597 ip_ioctl_cmd_t *ipip; 12598 conn_t *connp; 12599 cred_t *cr; 12600 char *proto_str; 12601 12602 if (CONN_Q(q)) 12603 connp = Q_TO_CONN(q); 12604 else 12605 connp = NULL; 12606 12607 switch (DB_TYPE(mp)) { 12608 case M_IOCTL: 12609 /* 12610 * IOCTL processing begins in ip_sioctl_copyin_setup which 12611 * will arrange to copy in associated control structures. 12612 */ 12613 ip_sioctl_copyin_setup(q, mp); 12614 return; 12615 case M_IOCDATA: 12616 /* 12617 * Ensure that this is associated with one of our trans- 12618 * parent ioctls. If it's not ours, discard it if we're 12619 * running as a driver, or pass it on if we're a module. 12620 */ 12621 iocp = (struct iocblk *)mp->b_rptr; 12622 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12623 if (ipip == NULL) { 12624 if (q->q_next == NULL) { 12625 goto nak; 12626 } else { 12627 putnext(q, mp); 12628 } 12629 return; 12630 } 12631 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12632 /* 12633 * The ioctl is one we recognise, but is not consumed 12634 * by IP as a module and we are a module, so we drop 12635 */ 12636 goto nak; 12637 } 12638 12639 /* IOCTL continuation following copyin or copyout. */ 12640 if (mi_copy_state(q, mp, NULL) == -1) { 12641 /* 12642 * The copy operation failed. mi_copy_state already 12643 * cleaned up, so we're out of here. 12644 */ 12645 return; 12646 } 12647 /* 12648 * If we just completed a copy in, we become writer and 12649 * continue processing in ip_sioctl_copyin_done. If it 12650 * was a copy out, we call mi_copyout again. If there is 12651 * nothing more to copy out, it will complete the IOCTL. 12652 */ 12653 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12654 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12655 mi_copy_done(q, mp, EPROTO); 12656 return; 12657 } 12658 /* 12659 * Check for cases that need more copying. A return 12660 * value of 0 means a second copyin has been started, 12661 * so we return; a return value of 1 means no more 12662 * copying is needed, so we continue. 12663 */ 12664 if (ipip->ipi_cmd_type == MSFILT_CMD && 12665 MI_COPY_COUNT(mp) == 1) { 12666 if (ip_copyin_msfilter(q, mp) == 0) 12667 return; 12668 } 12669 /* 12670 * Refhold the conn, till the ioctl completes. This is 12671 * needed in case the ioctl ends up in the pending mp 12672 * list. Every mp in the ipx_pending_mp list must have 12673 * a refhold on the conn to resume processing. The 12674 * refhold is released when the ioctl completes 12675 * (whether normally or abnormally). An ioctlref is also 12676 * placed on the conn to prevent TCP from removing the 12677 * queue needed to send the ioctl reply back. 12678 * In all cases ip_ioctl_finish is called to finish 12679 * the ioctl and release the refholds. 12680 */ 12681 if (connp != NULL) { 12682 /* This is not a reentry */ 12683 CONN_INC_REF(connp); 12684 CONN_INC_IOCTLREF(connp); 12685 } else { 12686 if (!(ipip->ipi_flags & IPI_MODOK)) { 12687 mi_copy_done(q, mp, EINVAL); 12688 return; 12689 } 12690 } 12691 12692 ip_process_ioctl(NULL, q, mp, ipip); 12693 12694 } else { 12695 mi_copyout(q, mp); 12696 } 12697 return; 12698 12699 case M_IOCNAK: 12700 /* 12701 * The only way we could get here is if a resolver didn't like 12702 * an IOCTL we sent it. This shouldn't happen. 12703 */ 12704 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12705 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12706 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12707 freemsg(mp); 12708 return; 12709 case M_IOCACK: 12710 /* /dev/ip shouldn't see this */ 12711 goto nak; 12712 case M_FLUSH: 12713 if (*mp->b_rptr & FLUSHW) 12714 flushq(q, FLUSHALL); 12715 if (q->q_next) { 12716 putnext(q, mp); 12717 return; 12718 } 12719 if (*mp->b_rptr & FLUSHR) { 12720 *mp->b_rptr &= ~FLUSHW; 12721 qreply(q, mp); 12722 return; 12723 } 12724 freemsg(mp); 12725 return; 12726 case M_CTL: 12727 break; 12728 case M_PROTO: 12729 case M_PCPROTO: 12730 /* 12731 * The only PROTO messages we expect are SNMP-related. 12732 */ 12733 switch (((union T_primitives *)mp->b_rptr)->type) { 12734 case T_SVR4_OPTMGMT_REQ: 12735 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12736 "flags %x\n", 12737 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12738 12739 if (connp == NULL) { 12740 proto_str = "T_SVR4_OPTMGMT_REQ"; 12741 goto protonak; 12742 } 12743 12744 /* 12745 * All Solaris components should pass a db_credp 12746 * for this TPI message, hence we ASSERT. 12747 * But in case there is some other M_PROTO that looks 12748 * like a TPI message sent by some other kernel 12749 * component, we check and return an error. 12750 */ 12751 cr = msg_getcred(mp, NULL); 12752 ASSERT(cr != NULL); 12753 if (cr == NULL) { 12754 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12755 if (mp != NULL) 12756 qreply(q, mp); 12757 return; 12758 } 12759 12760 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12761 proto_str = "Bad SNMPCOM request?"; 12762 goto protonak; 12763 } 12764 return; 12765 default: 12766 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12767 (int)*(uint_t *)mp->b_rptr)); 12768 freemsg(mp); 12769 return; 12770 } 12771 default: 12772 break; 12773 } 12774 if (q->q_next) { 12775 putnext(q, mp); 12776 } else 12777 freemsg(mp); 12778 return; 12779 12780 nak: 12781 iocp->ioc_error = EINVAL; 12782 mp->b_datap->db_type = M_IOCNAK; 12783 iocp->ioc_count = 0; 12784 qreply(q, mp); 12785 return; 12786 12787 protonak: 12788 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12789 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12790 qreply(q, mp); 12791 } 12792 12793 /* 12794 * Process IP options in an outbound packet. Verify that the nexthop in a 12795 * strict source route is onlink. 12796 * Returns non-zero if something fails in which case an ICMP error has been 12797 * sent and mp freed. 12798 * 12799 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12800 */ 12801 int 12802 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12803 { 12804 ipoptp_t opts; 12805 uchar_t *opt; 12806 uint8_t optval; 12807 uint8_t optlen; 12808 ipaddr_t dst; 12809 intptr_t code = 0; 12810 ire_t *ire; 12811 ip_stack_t *ipst = ixa->ixa_ipst; 12812 ip_recv_attr_t iras; 12813 12814 ip2dbg(("ip_output_options\n")); 12815 12816 dst = ipha->ipha_dst; 12817 for (optval = ipoptp_first(&opts, ipha); 12818 optval != IPOPT_EOL; 12819 optval = ipoptp_next(&opts)) { 12820 opt = opts.ipoptp_cur; 12821 optlen = opts.ipoptp_len; 12822 ip2dbg(("ip_output_options: opt %d, len %d\n", 12823 optval, optlen)); 12824 switch (optval) { 12825 uint32_t off; 12826 case IPOPT_SSRR: 12827 case IPOPT_LSRR: 12828 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12829 ip1dbg(( 12830 "ip_output_options: bad option offset\n")); 12831 code = (char *)&opt[IPOPT_OLEN] - 12832 (char *)ipha; 12833 goto param_prob; 12834 } 12835 off = opt[IPOPT_OFFSET]; 12836 ip1dbg(("ip_output_options: next hop 0x%x\n", 12837 ntohl(dst))); 12838 /* 12839 * For strict: verify that dst is directly 12840 * reachable. 12841 */ 12842 if (optval == IPOPT_SSRR) { 12843 ire = ire_ftable_lookup_v4(dst, 0, 0, 12844 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 12845 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12846 NULL); 12847 if (ire == NULL) { 12848 ip1dbg(("ip_output_options: SSRR not" 12849 " directly reachable: 0x%x\n", 12850 ntohl(dst))); 12851 goto bad_src_route; 12852 } 12853 ire_refrele(ire); 12854 } 12855 break; 12856 case IPOPT_RR: 12857 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12858 ip1dbg(( 12859 "ip_output_options: bad option offset\n")); 12860 code = (char *)&opt[IPOPT_OLEN] - 12861 (char *)ipha; 12862 goto param_prob; 12863 } 12864 break; 12865 case IPOPT_TS: 12866 /* 12867 * Verify that length >=5 and that there is either 12868 * room for another timestamp or that the overflow 12869 * counter is not maxed out. 12870 */ 12871 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12872 if (optlen < IPOPT_MINLEN_IT) { 12873 goto param_prob; 12874 } 12875 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12876 ip1dbg(( 12877 "ip_output_options: bad option offset\n")); 12878 code = (char *)&opt[IPOPT_OFFSET] - 12879 (char *)ipha; 12880 goto param_prob; 12881 } 12882 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12883 case IPOPT_TS_TSONLY: 12884 off = IPOPT_TS_TIMELEN; 12885 break; 12886 case IPOPT_TS_TSANDADDR: 12887 case IPOPT_TS_PRESPEC: 12888 case IPOPT_TS_PRESPEC_RFC791: 12889 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12890 break; 12891 default: 12892 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12893 (char *)ipha; 12894 goto param_prob; 12895 } 12896 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12897 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12898 /* 12899 * No room and the overflow counter is 15 12900 * already. 12901 */ 12902 goto param_prob; 12903 } 12904 break; 12905 } 12906 } 12907 12908 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12909 return (0); 12910 12911 ip1dbg(("ip_output_options: error processing IP options.")); 12912 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12913 12914 param_prob: 12915 bzero(&iras, sizeof (iras)); 12916 iras.ira_ill = iras.ira_rill = ill; 12917 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12918 iras.ira_rifindex = iras.ira_ruifindex; 12919 iras.ira_flags = IRAF_IS_IPV4; 12920 12921 ip_drop_output("ip_output_options", mp, ill); 12922 icmp_param_problem(mp, (uint8_t)code, &iras); 12923 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12924 return (-1); 12925 12926 bad_src_route: 12927 bzero(&iras, sizeof (iras)); 12928 iras.ira_ill = iras.ira_rill = ill; 12929 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12930 iras.ira_rifindex = iras.ira_ruifindex; 12931 iras.ira_flags = IRAF_IS_IPV4; 12932 12933 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 12934 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 12935 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12936 return (-1); 12937 } 12938 12939 /* 12940 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 12941 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 12942 * thru /etc/system. 12943 */ 12944 #define CONN_MAXDRAINCNT 64 12945 12946 static void 12947 conn_drain_init(ip_stack_t *ipst) 12948 { 12949 int i, j; 12950 idl_tx_list_t *itl_tx; 12951 12952 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 12953 12954 if ((ipst->ips_conn_drain_list_cnt == 0) || 12955 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 12956 /* 12957 * Default value of the number of drainers is the 12958 * number of cpus, subject to maximum of 8 drainers. 12959 */ 12960 if (boot_max_ncpus != -1) 12961 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 12962 else 12963 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 12964 } 12965 12966 ipst->ips_idl_tx_list = 12967 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 12968 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12969 itl_tx = &ipst->ips_idl_tx_list[i]; 12970 itl_tx->txl_drain_list = 12971 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 12972 sizeof (idl_t), KM_SLEEP); 12973 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 12974 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 12975 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 12976 MUTEX_DEFAULT, NULL); 12977 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 12978 } 12979 } 12980 } 12981 12982 static void 12983 conn_drain_fini(ip_stack_t *ipst) 12984 { 12985 int i; 12986 idl_tx_list_t *itl_tx; 12987 12988 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12989 itl_tx = &ipst->ips_idl_tx_list[i]; 12990 kmem_free(itl_tx->txl_drain_list, 12991 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 12992 } 12993 kmem_free(ipst->ips_idl_tx_list, 12994 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 12995 ipst->ips_idl_tx_list = NULL; 12996 } 12997 12998 /* 12999 * Flow control has blocked us from proceeding. Insert the given conn in one 13000 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13001 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13002 * will call conn_walk_drain(). See the flow control notes at the top of this 13003 * file for more details. 13004 */ 13005 void 13006 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13007 { 13008 idl_t *idl = tx_list->txl_drain_list; 13009 uint_t index; 13010 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13011 13012 mutex_enter(&connp->conn_lock); 13013 if (connp->conn_state_flags & CONN_CLOSING) { 13014 /* 13015 * The conn is closing as a result of which CONN_CLOSING 13016 * is set. Return. 13017 */ 13018 mutex_exit(&connp->conn_lock); 13019 return; 13020 } else if (connp->conn_idl == NULL) { 13021 /* 13022 * Assign the next drain list round robin. We dont' use 13023 * a lock, and thus it may not be strictly round robin. 13024 * Atomicity of load/stores is enough to make sure that 13025 * conn_drain_list_index is always within bounds. 13026 */ 13027 index = tx_list->txl_drain_index; 13028 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13029 connp->conn_idl = &tx_list->txl_drain_list[index]; 13030 index++; 13031 if (index == ipst->ips_conn_drain_list_cnt) 13032 index = 0; 13033 tx_list->txl_drain_index = index; 13034 } else { 13035 ASSERT(connp->conn_idl->idl_itl == tx_list); 13036 } 13037 mutex_exit(&connp->conn_lock); 13038 13039 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 13040 if ((connp->conn_drain_prev != NULL) || 13041 (connp->conn_state_flags & CONN_CLOSING)) { 13042 /* 13043 * The conn is already in the drain list, OR 13044 * the conn is closing. We need to check again for 13045 * the closing case again since close can happen 13046 * after we drop the conn_lock, and before we 13047 * acquire the CONN_DRAIN_LIST_LOCK. 13048 */ 13049 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13050 return; 13051 } else { 13052 idl = connp->conn_idl; 13053 } 13054 13055 /* 13056 * The conn is not in the drain list. Insert it at the 13057 * tail of the drain list. The drain list is circular 13058 * and doubly linked. idl_conn points to the 1st element 13059 * in the list. 13060 */ 13061 if (idl->idl_conn == NULL) { 13062 idl->idl_conn = connp; 13063 connp->conn_drain_next = connp; 13064 connp->conn_drain_prev = connp; 13065 } else { 13066 conn_t *head = idl->idl_conn; 13067 13068 connp->conn_drain_next = head; 13069 connp->conn_drain_prev = head->conn_drain_prev; 13070 head->conn_drain_prev->conn_drain_next = connp; 13071 head->conn_drain_prev = connp; 13072 } 13073 /* 13074 * For non streams based sockets assert flow control. 13075 */ 13076 conn_setqfull(connp, NULL); 13077 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 13078 } 13079 13080 static void 13081 conn_drain_remove(conn_t *connp) 13082 { 13083 idl_t *idl = connp->conn_idl; 13084 13085 if (idl != NULL) { 13086 /* 13087 * Remove ourself from the drain list. 13088 */ 13089 if (connp->conn_drain_next == connp) { 13090 /* Singleton in the list */ 13091 ASSERT(connp->conn_drain_prev == connp); 13092 idl->idl_conn = NULL; 13093 } else { 13094 connp->conn_drain_prev->conn_drain_next = 13095 connp->conn_drain_next; 13096 connp->conn_drain_next->conn_drain_prev = 13097 connp->conn_drain_prev; 13098 if (idl->idl_conn == connp) 13099 idl->idl_conn = connp->conn_drain_next; 13100 } 13101 13102 /* 13103 * NOTE: because conn_idl is associated with a specific drain 13104 * list which in turn is tied to the index the TX ring 13105 * (txl_cookie) hashes to, and because the TX ring can change 13106 * over the lifetime of the conn_t, we must clear conn_idl so 13107 * a subsequent conn_drain_insert() will set conn_idl again 13108 * based on the latest txl_cookie. 13109 */ 13110 connp->conn_idl = NULL; 13111 } 13112 connp->conn_drain_next = NULL; 13113 connp->conn_drain_prev = NULL; 13114 13115 conn_clrqfull(connp, NULL); 13116 /* 13117 * For streams based sockets open up flow control. 13118 */ 13119 if (!IPCL_IS_NONSTR(connp)) 13120 enableok(connp->conn_wq); 13121 } 13122 13123 /* 13124 * This conn is closing, and we are called from ip_close. OR 13125 * this conn is draining because flow-control on the ill has been relieved. 13126 * 13127 * We must also need to remove conn's on this idl from the list, and also 13128 * inform the sockfs upcalls about the change in flow-control. 13129 */ 13130 static void 13131 conn_drain(conn_t *connp, boolean_t closing) 13132 { 13133 idl_t *idl; 13134 conn_t *next_connp; 13135 13136 /* 13137 * connp->conn_idl is stable at this point, and no lock is needed 13138 * to check it. If we are called from ip_close, close has already 13139 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13140 * called us only because conn_idl is non-null. If we are called thru 13141 * service, conn_idl could be null, but it cannot change because 13142 * service is single-threaded per queue, and there cannot be another 13143 * instance of service trying to call conn_drain_insert on this conn 13144 * now. 13145 */ 13146 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13147 13148 /* 13149 * If the conn doesn't exist or is not on a drain list, bail. 13150 */ 13151 if (connp == NULL || connp->conn_idl == NULL || 13152 connp->conn_drain_prev == NULL) { 13153 return; 13154 } 13155 13156 idl = connp->conn_idl; 13157 if (!closing) { 13158 next_connp = connp->conn_drain_next; 13159 while (next_connp != connp) { 13160 conn_t *delconnp = next_connp; 13161 13162 next_connp = next_connp->conn_drain_next; 13163 conn_drain_remove(delconnp); 13164 } 13165 ASSERT(connp->conn_drain_next == idl->idl_conn); 13166 } 13167 conn_drain_remove(connp); 13168 } 13169 13170 /* 13171 * Write service routine. Shared perimeter entry point. 13172 * The device queue's messages has fallen below the low water mark and STREAMS 13173 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13174 * each waiting conn. 13175 */ 13176 void 13177 ip_wsrv(queue_t *q) 13178 { 13179 ill_t *ill; 13180 13181 ill = (ill_t *)q->q_ptr; 13182 if (ill->ill_state_flags == 0) { 13183 ip_stack_t *ipst = ill->ill_ipst; 13184 13185 /* 13186 * The device flow control has opened up. 13187 * Walk through conn drain lists and qenable the 13188 * first conn in each list. This makes sense only 13189 * if the stream is fully plumbed and setup. 13190 * Hence the ill_state_flags check above. 13191 */ 13192 ip1dbg(("ip_wsrv: walking\n")); 13193 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13194 enableok(ill->ill_wq); 13195 } 13196 } 13197 13198 /* 13199 * Callback to disable flow control in IP. 13200 * 13201 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13202 * is enabled. 13203 * 13204 * When MAC_TX() is not able to send any more packets, dld sets its queue 13205 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13206 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13207 * function and wakes up corresponding mac worker threads, which in turn 13208 * calls this callback function, and disables flow control. 13209 */ 13210 void 13211 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13212 { 13213 ill_t *ill = (ill_t *)arg; 13214 ip_stack_t *ipst = ill->ill_ipst; 13215 idl_tx_list_t *idl_txl; 13216 13217 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13218 mutex_enter(&idl_txl->txl_lock); 13219 /* add code to to set a flag to indicate idl_txl is enabled */ 13220 conn_walk_drain(ipst, idl_txl); 13221 mutex_exit(&idl_txl->txl_lock); 13222 } 13223 13224 /* 13225 * Flow control has been relieved and STREAMS has backenabled us; drain 13226 * all the conn lists on `tx_list'. 13227 */ 13228 static void 13229 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13230 { 13231 int i; 13232 idl_t *idl; 13233 13234 IP_STAT(ipst, ip_conn_walk_drain); 13235 13236 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13237 idl = &tx_list->txl_drain_list[i]; 13238 mutex_enter(&idl->idl_lock); 13239 conn_drain(idl->idl_conn, B_FALSE); 13240 mutex_exit(&idl->idl_lock); 13241 } 13242 } 13243 13244 /* 13245 * Determine if the ill and multicast aspects of that packets 13246 * "matches" the conn. 13247 */ 13248 boolean_t 13249 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13250 { 13251 ill_t *ill = ira->ira_rill; 13252 zoneid_t zoneid = ira->ira_zoneid; 13253 uint_t in_ifindex; 13254 ipaddr_t dst, src; 13255 13256 dst = ipha->ipha_dst; 13257 src = ipha->ipha_src; 13258 13259 /* 13260 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13261 * unicast, broadcast and multicast reception to 13262 * conn_incoming_ifindex. 13263 * conn_wantpacket is called for unicast, broadcast and 13264 * multicast packets. 13265 */ 13266 in_ifindex = connp->conn_incoming_ifindex; 13267 13268 /* mpathd can bind to the under IPMP interface, which we allow */ 13269 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13270 if (!IS_UNDER_IPMP(ill)) 13271 return (B_FALSE); 13272 13273 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13274 return (B_FALSE); 13275 } 13276 13277 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13278 return (B_FALSE); 13279 13280 if (!(ira->ira_flags & IRAF_MULTICAST)) 13281 return (B_TRUE); 13282 13283 if (connp->conn_multi_router) { 13284 /* multicast packet and multicast router socket: send up */ 13285 return (B_TRUE); 13286 } 13287 13288 if (ipha->ipha_protocol == IPPROTO_PIM || 13289 ipha->ipha_protocol == IPPROTO_RSVP) 13290 return (B_TRUE); 13291 13292 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13293 } 13294 13295 void 13296 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13297 { 13298 if (IPCL_IS_NONSTR(connp)) { 13299 (*connp->conn_upcalls->su_txq_full) 13300 (connp->conn_upper_handle, B_TRUE); 13301 if (flow_stopped != NULL) 13302 *flow_stopped = B_TRUE; 13303 } else { 13304 queue_t *q = connp->conn_wq; 13305 13306 ASSERT(q != NULL); 13307 if (!(q->q_flag & QFULL)) { 13308 mutex_enter(QLOCK(q)); 13309 if (!(q->q_flag & QFULL)) { 13310 /* still need to set QFULL */ 13311 q->q_flag |= QFULL; 13312 /* set flow_stopped to true under QLOCK */ 13313 if (flow_stopped != NULL) 13314 *flow_stopped = B_TRUE; 13315 mutex_exit(QLOCK(q)); 13316 } else { 13317 /* flow_stopped is left unchanged */ 13318 mutex_exit(QLOCK(q)); 13319 } 13320 } 13321 } 13322 } 13323 13324 void 13325 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13326 { 13327 if (IPCL_IS_NONSTR(connp)) { 13328 (*connp->conn_upcalls->su_txq_full) 13329 (connp->conn_upper_handle, B_FALSE); 13330 if (flow_stopped != NULL) 13331 *flow_stopped = B_FALSE; 13332 } else { 13333 queue_t *q = connp->conn_wq; 13334 13335 ASSERT(q != NULL); 13336 if (q->q_flag & QFULL) { 13337 mutex_enter(QLOCK(q)); 13338 if (q->q_flag & QFULL) { 13339 q->q_flag &= ~QFULL; 13340 /* set flow_stopped to false under QLOCK */ 13341 if (flow_stopped != NULL) 13342 *flow_stopped = B_FALSE; 13343 mutex_exit(QLOCK(q)); 13344 if (q->q_flag & QWANTW) 13345 qbackenable(q, 0); 13346 } else { 13347 /* flow_stopped is left unchanged */ 13348 mutex_exit(QLOCK(q)); 13349 } 13350 } 13351 } 13352 13353 mutex_enter(&connp->conn_lock); 13354 connp->conn_blocked = B_FALSE; 13355 mutex_exit(&connp->conn_lock); 13356 } 13357 13358 /* 13359 * Return the length in bytes of the IPv4 headers (base header, label, and 13360 * other IP options) that will be needed based on the 13361 * ip_pkt_t structure passed by the caller. 13362 * 13363 * The returned length does not include the length of the upper level 13364 * protocol (ULP) header. 13365 * The caller needs to check that the length doesn't exceed the max for IPv4. 13366 */ 13367 int 13368 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13369 { 13370 int len; 13371 13372 len = IP_SIMPLE_HDR_LENGTH; 13373 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13374 ASSERT(ipp->ipp_label_len_v4 != 0); 13375 /* We need to round up here */ 13376 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13377 } 13378 13379 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13380 ASSERT(ipp->ipp_ipv4_options_len != 0); 13381 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13382 len += ipp->ipp_ipv4_options_len; 13383 } 13384 return (len); 13385 } 13386 13387 /* 13388 * All-purpose routine to build an IPv4 header with options based 13389 * on the abstract ip_pkt_t. 13390 * 13391 * The caller has to set the source and destination address as well as 13392 * ipha_length. The caller has to massage any source route and compensate 13393 * for the ULP pseudo-header checksum due to the source route. 13394 */ 13395 void 13396 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13397 uint8_t protocol) 13398 { 13399 ipha_t *ipha = (ipha_t *)buf; 13400 uint8_t *cp; 13401 13402 /* Initialize IPv4 header */ 13403 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13404 ipha->ipha_length = 0; /* Caller will set later */ 13405 ipha->ipha_ident = 0; 13406 ipha->ipha_fragment_offset_and_flags = 0; 13407 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13408 ipha->ipha_protocol = protocol; 13409 ipha->ipha_hdr_checksum = 0; 13410 13411 if ((ipp->ipp_fields & IPPF_ADDR) && 13412 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13413 ipha->ipha_src = ipp->ipp_addr_v4; 13414 13415 cp = (uint8_t *)&ipha[1]; 13416 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13417 ASSERT(ipp->ipp_label_len_v4 != 0); 13418 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13419 cp += ipp->ipp_label_len_v4; 13420 /* We need to round up here */ 13421 while ((uintptr_t)cp & 0x3) { 13422 *cp++ = IPOPT_NOP; 13423 } 13424 } 13425 13426 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13427 ASSERT(ipp->ipp_ipv4_options_len != 0); 13428 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13429 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13430 cp += ipp->ipp_ipv4_options_len; 13431 } 13432 ipha->ipha_version_and_hdr_length = 13433 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13434 13435 ASSERT((int)(cp - buf) == buf_len); 13436 } 13437 13438 /* Allocate the private structure */ 13439 static int 13440 ip_priv_alloc(void **bufp) 13441 { 13442 void *buf; 13443 13444 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13445 return (ENOMEM); 13446 13447 *bufp = buf; 13448 return (0); 13449 } 13450 13451 /* Function to delete the private structure */ 13452 void 13453 ip_priv_free(void *buf) 13454 { 13455 ASSERT(buf != NULL); 13456 kmem_free(buf, sizeof (ip_priv_t)); 13457 } 13458 13459 /* 13460 * The entry point for IPPF processing. 13461 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13462 * routine just returns. 13463 * 13464 * When called, ip_process generates an ipp_packet_t structure 13465 * which holds the state information for this packet and invokes the 13466 * the classifier (via ipp_packet_process). The classification, depending on 13467 * configured filters, results in a list of actions for this packet. Invoking 13468 * an action may cause the packet to be dropped, in which case we return NULL. 13469 * proc indicates the callout position for 13470 * this packet and ill is the interface this packet arrived on or will leave 13471 * on (inbound and outbound resp.). 13472 * 13473 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13474 * on the ill corrsponding to the destination IP address. 13475 */ 13476 mblk_t * 13477 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13478 { 13479 ip_priv_t *priv; 13480 ipp_action_id_t aid; 13481 int rc = 0; 13482 ipp_packet_t *pp; 13483 13484 /* If the classifier is not loaded, return */ 13485 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13486 return (mp); 13487 } 13488 13489 ASSERT(mp != NULL); 13490 13491 /* Allocate the packet structure */ 13492 rc = ipp_packet_alloc(&pp, "ip", aid); 13493 if (rc != 0) 13494 goto drop; 13495 13496 /* Allocate the private structure */ 13497 rc = ip_priv_alloc((void **)&priv); 13498 if (rc != 0) { 13499 ipp_packet_free(pp); 13500 goto drop; 13501 } 13502 priv->proc = proc; 13503 priv->ill_index = ill_get_upper_ifindex(rill); 13504 13505 ipp_packet_set_private(pp, priv, ip_priv_free); 13506 ipp_packet_set_data(pp, mp); 13507 13508 /* Invoke the classifier */ 13509 rc = ipp_packet_process(&pp); 13510 if (pp != NULL) { 13511 mp = ipp_packet_get_data(pp); 13512 ipp_packet_free(pp); 13513 if (rc != 0) 13514 goto drop; 13515 return (mp); 13516 } else { 13517 /* No mp to trace in ip_drop_input/ip_drop_output */ 13518 mp = NULL; 13519 } 13520 drop: 13521 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13522 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13523 ip_drop_input("ip_process", mp, ill); 13524 } else { 13525 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13526 ip_drop_output("ip_process", mp, ill); 13527 } 13528 freemsg(mp); 13529 return (NULL); 13530 } 13531 13532 /* 13533 * Propagate a multicast group membership operation (add/drop) on 13534 * all the interfaces crossed by the related multirt routes. 13535 * The call is considered successful if the operation succeeds 13536 * on at least one interface. 13537 * 13538 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13539 * multicast addresses with the ire argument being the first one. 13540 * We walk the bucket to find all the of those. 13541 * 13542 * Common to IPv4 and IPv6. 13543 */ 13544 static int 13545 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13546 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13547 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13548 mcast_record_t fmode, const in6_addr_t *v6src) 13549 { 13550 ire_t *ire_gw; 13551 irb_t *irb; 13552 int ifindex; 13553 int error = 0; 13554 int result; 13555 ip_stack_t *ipst = ire->ire_ipst; 13556 ipaddr_t group; 13557 boolean_t isv6; 13558 int match_flags; 13559 13560 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13561 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13562 isv6 = B_FALSE; 13563 } else { 13564 isv6 = B_TRUE; 13565 } 13566 13567 irb = ire->ire_bucket; 13568 ASSERT(irb != NULL); 13569 13570 result = 0; 13571 irb_refhold(irb); 13572 for (; ire != NULL; ire = ire->ire_next) { 13573 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13574 continue; 13575 13576 /* We handle -ifp routes by matching on the ill if set */ 13577 match_flags = MATCH_IRE_TYPE; 13578 if (ire->ire_ill != NULL) 13579 match_flags |= MATCH_IRE_ILL; 13580 13581 if (isv6) { 13582 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13583 continue; 13584 13585 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13586 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13587 match_flags, 0, ipst, NULL); 13588 } else { 13589 if (ire->ire_addr != group) 13590 continue; 13591 13592 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13593 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13594 match_flags, 0, ipst, NULL); 13595 } 13596 /* No interface route exists for the gateway; skip this ire. */ 13597 if (ire_gw == NULL) 13598 continue; 13599 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13600 ire_refrele(ire_gw); 13601 continue; 13602 } 13603 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13604 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13605 13606 /* 13607 * The operation is considered a success if 13608 * it succeeds at least once on any one interface. 13609 */ 13610 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13611 fmode, v6src); 13612 if (error == 0) 13613 result = CGTP_MCAST_SUCCESS; 13614 13615 ire_refrele(ire_gw); 13616 } 13617 irb_refrele(irb); 13618 /* 13619 * Consider the call as successful if we succeeded on at least 13620 * one interface. Otherwise, return the last encountered error. 13621 */ 13622 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13623 } 13624 13625 /* 13626 * Return the expected CGTP hooks version number. 13627 */ 13628 int 13629 ip_cgtp_filter_supported(void) 13630 { 13631 return (ip_cgtp_filter_rev); 13632 } 13633 13634 /* 13635 * CGTP hooks can be registered by invoking this function. 13636 * Checks that the version number matches. 13637 */ 13638 int 13639 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13640 { 13641 netstack_t *ns; 13642 ip_stack_t *ipst; 13643 13644 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13645 return (ENOTSUP); 13646 13647 ns = netstack_find_by_stackid(stackid); 13648 if (ns == NULL) 13649 return (EINVAL); 13650 ipst = ns->netstack_ip; 13651 ASSERT(ipst != NULL); 13652 13653 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13654 netstack_rele(ns); 13655 return (EALREADY); 13656 } 13657 13658 ipst->ips_ip_cgtp_filter_ops = ops; 13659 13660 ill_set_inputfn_all(ipst); 13661 13662 netstack_rele(ns); 13663 return (0); 13664 } 13665 13666 /* 13667 * CGTP hooks can be unregistered by invoking this function. 13668 * Returns ENXIO if there was no registration. 13669 * Returns EBUSY if the ndd variable has not been turned off. 13670 */ 13671 int 13672 ip_cgtp_filter_unregister(netstackid_t stackid) 13673 { 13674 netstack_t *ns; 13675 ip_stack_t *ipst; 13676 13677 ns = netstack_find_by_stackid(stackid); 13678 if (ns == NULL) 13679 return (EINVAL); 13680 ipst = ns->netstack_ip; 13681 ASSERT(ipst != NULL); 13682 13683 if (ipst->ips_ip_cgtp_filter) { 13684 netstack_rele(ns); 13685 return (EBUSY); 13686 } 13687 13688 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13689 netstack_rele(ns); 13690 return (ENXIO); 13691 } 13692 ipst->ips_ip_cgtp_filter_ops = NULL; 13693 13694 ill_set_inputfn_all(ipst); 13695 13696 netstack_rele(ns); 13697 return (0); 13698 } 13699 13700 /* 13701 * Check whether there is a CGTP filter registration. 13702 * Returns non-zero if there is a registration, otherwise returns zero. 13703 * Note: returns zero if bad stackid. 13704 */ 13705 int 13706 ip_cgtp_filter_is_registered(netstackid_t stackid) 13707 { 13708 netstack_t *ns; 13709 ip_stack_t *ipst; 13710 int ret; 13711 13712 ns = netstack_find_by_stackid(stackid); 13713 if (ns == NULL) 13714 return (0); 13715 ipst = ns->netstack_ip; 13716 ASSERT(ipst != NULL); 13717 13718 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13719 ret = 1; 13720 else 13721 ret = 0; 13722 13723 netstack_rele(ns); 13724 return (ret); 13725 } 13726 13727 static int 13728 ip_squeue_switch(int val) 13729 { 13730 int rval; 13731 13732 switch (val) { 13733 case IP_SQUEUE_ENTER_NODRAIN: 13734 rval = SQ_NODRAIN; 13735 break; 13736 case IP_SQUEUE_ENTER: 13737 rval = SQ_PROCESS; 13738 break; 13739 case IP_SQUEUE_FILL: 13740 default: 13741 rval = SQ_FILL; 13742 break; 13743 } 13744 return (rval); 13745 } 13746 13747 static void * 13748 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13749 { 13750 kstat_t *ksp; 13751 13752 ip_stat_t template = { 13753 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13754 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13755 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13756 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13757 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13758 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13759 { "ip_opt", KSTAT_DATA_UINT64 }, 13760 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13761 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13762 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13763 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13764 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13765 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13766 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13767 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13768 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13769 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13770 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13771 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13772 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13773 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13774 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13775 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13776 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13777 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13778 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13779 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13780 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13781 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13782 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13783 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13784 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13785 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13786 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13787 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13788 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13789 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13790 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13791 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13792 }; 13793 13794 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13795 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13796 KSTAT_FLAG_VIRTUAL, stackid); 13797 13798 if (ksp == NULL) 13799 return (NULL); 13800 13801 bcopy(&template, ip_statisticsp, sizeof (template)); 13802 ksp->ks_data = (void *)ip_statisticsp; 13803 ksp->ks_private = (void *)(uintptr_t)stackid; 13804 13805 kstat_install(ksp); 13806 return (ksp); 13807 } 13808 13809 static void 13810 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13811 { 13812 if (ksp != NULL) { 13813 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13814 kstat_delete_netstack(ksp, stackid); 13815 } 13816 } 13817 13818 static void * 13819 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13820 { 13821 kstat_t *ksp; 13822 13823 ip_named_kstat_t template = { 13824 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13825 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13826 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13827 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13828 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13829 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13830 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13831 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13832 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13833 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13834 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13835 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13836 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13837 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13838 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13839 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13840 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13841 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13842 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13843 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13844 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13845 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13846 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13847 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13848 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13849 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13850 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13851 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13852 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13853 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13854 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13855 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13856 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13857 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13858 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13859 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13860 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13861 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13862 }; 13863 13864 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13865 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13866 if (ksp == NULL || ksp->ks_data == NULL) 13867 return (NULL); 13868 13869 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13870 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13871 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13872 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13873 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13874 13875 template.netToMediaEntrySize.value.i32 = 13876 sizeof (mib2_ipNetToMediaEntry_t); 13877 13878 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13879 13880 bcopy(&template, ksp->ks_data, sizeof (template)); 13881 ksp->ks_update = ip_kstat_update; 13882 ksp->ks_private = (void *)(uintptr_t)stackid; 13883 13884 kstat_install(ksp); 13885 return (ksp); 13886 } 13887 13888 static void 13889 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13890 { 13891 if (ksp != NULL) { 13892 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13893 kstat_delete_netstack(ksp, stackid); 13894 } 13895 } 13896 13897 static int 13898 ip_kstat_update(kstat_t *kp, int rw) 13899 { 13900 ip_named_kstat_t *ipkp; 13901 mib2_ipIfStatsEntry_t ipmib; 13902 ill_walk_context_t ctx; 13903 ill_t *ill; 13904 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13905 netstack_t *ns; 13906 ip_stack_t *ipst; 13907 13908 if (kp == NULL || kp->ks_data == NULL) 13909 return (EIO); 13910 13911 if (rw == KSTAT_WRITE) 13912 return (EACCES); 13913 13914 ns = netstack_find_by_stackid(stackid); 13915 if (ns == NULL) 13916 return (-1); 13917 ipst = ns->netstack_ip; 13918 if (ipst == NULL) { 13919 netstack_rele(ns); 13920 return (-1); 13921 } 13922 ipkp = (ip_named_kstat_t *)kp->ks_data; 13923 13924 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 13925 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13926 ill = ILL_START_WALK_V4(&ctx, ipst); 13927 for (; ill != NULL; ill = ill_next(&ctx, ill)) 13928 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 13929 rw_exit(&ipst->ips_ill_g_lock); 13930 13931 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 13932 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 13933 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 13934 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 13935 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 13936 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 13937 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 13938 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 13939 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 13940 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 13941 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 13942 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 13943 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13944 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 13945 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 13946 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 13947 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 13948 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 13949 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 13950 13951 ipkp->routingDiscards.value.ui32 = 0; 13952 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 13953 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 13954 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 13955 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 13956 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 13957 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 13958 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 13959 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 13960 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 13961 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 13962 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 13963 13964 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 13965 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 13966 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 13967 13968 netstack_rele(ns); 13969 13970 return (0); 13971 } 13972 13973 static void * 13974 icmp_kstat_init(netstackid_t stackid) 13975 { 13976 kstat_t *ksp; 13977 13978 icmp_named_kstat_t template = { 13979 { "inMsgs", KSTAT_DATA_UINT32 }, 13980 { "inErrors", KSTAT_DATA_UINT32 }, 13981 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 13982 { "inTimeExcds", KSTAT_DATA_UINT32 }, 13983 { "inParmProbs", KSTAT_DATA_UINT32 }, 13984 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 13985 { "inRedirects", KSTAT_DATA_UINT32 }, 13986 { "inEchos", KSTAT_DATA_UINT32 }, 13987 { "inEchoReps", KSTAT_DATA_UINT32 }, 13988 { "inTimestamps", KSTAT_DATA_UINT32 }, 13989 { "inTimestampReps", KSTAT_DATA_UINT32 }, 13990 { "inAddrMasks", KSTAT_DATA_UINT32 }, 13991 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 13992 { "outMsgs", KSTAT_DATA_UINT32 }, 13993 { "outErrors", KSTAT_DATA_UINT32 }, 13994 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 13995 { "outTimeExcds", KSTAT_DATA_UINT32 }, 13996 { "outParmProbs", KSTAT_DATA_UINT32 }, 13997 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 13998 { "outRedirects", KSTAT_DATA_UINT32 }, 13999 { "outEchos", KSTAT_DATA_UINT32 }, 14000 { "outEchoReps", KSTAT_DATA_UINT32 }, 14001 { "outTimestamps", KSTAT_DATA_UINT32 }, 14002 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14003 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14004 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14005 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14006 { "inUnknowns", KSTAT_DATA_UINT32 }, 14007 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14008 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14009 { "outDrops", KSTAT_DATA_UINT32 }, 14010 { "inOverFlows", KSTAT_DATA_UINT32 }, 14011 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14012 }; 14013 14014 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14015 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14016 if (ksp == NULL || ksp->ks_data == NULL) 14017 return (NULL); 14018 14019 bcopy(&template, ksp->ks_data, sizeof (template)); 14020 14021 ksp->ks_update = icmp_kstat_update; 14022 ksp->ks_private = (void *)(uintptr_t)stackid; 14023 14024 kstat_install(ksp); 14025 return (ksp); 14026 } 14027 14028 static void 14029 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14030 { 14031 if (ksp != NULL) { 14032 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14033 kstat_delete_netstack(ksp, stackid); 14034 } 14035 } 14036 14037 static int 14038 icmp_kstat_update(kstat_t *kp, int rw) 14039 { 14040 icmp_named_kstat_t *icmpkp; 14041 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14042 netstack_t *ns; 14043 ip_stack_t *ipst; 14044 14045 if ((kp == NULL) || (kp->ks_data == NULL)) 14046 return (EIO); 14047 14048 if (rw == KSTAT_WRITE) 14049 return (EACCES); 14050 14051 ns = netstack_find_by_stackid(stackid); 14052 if (ns == NULL) 14053 return (-1); 14054 ipst = ns->netstack_ip; 14055 if (ipst == NULL) { 14056 netstack_rele(ns); 14057 return (-1); 14058 } 14059 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14060 14061 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14062 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14063 icmpkp->inDestUnreachs.value.ui32 = 14064 ipst->ips_icmp_mib.icmpInDestUnreachs; 14065 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14066 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14067 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14068 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14069 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14070 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14071 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14072 icmpkp->inTimestampReps.value.ui32 = 14073 ipst->ips_icmp_mib.icmpInTimestampReps; 14074 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14075 icmpkp->inAddrMaskReps.value.ui32 = 14076 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14077 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14078 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14079 icmpkp->outDestUnreachs.value.ui32 = 14080 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14081 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14082 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14083 icmpkp->outSrcQuenchs.value.ui32 = 14084 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14085 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14086 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14087 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14088 icmpkp->outTimestamps.value.ui32 = 14089 ipst->ips_icmp_mib.icmpOutTimestamps; 14090 icmpkp->outTimestampReps.value.ui32 = 14091 ipst->ips_icmp_mib.icmpOutTimestampReps; 14092 icmpkp->outAddrMasks.value.ui32 = 14093 ipst->ips_icmp_mib.icmpOutAddrMasks; 14094 icmpkp->outAddrMaskReps.value.ui32 = 14095 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14096 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14097 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14098 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14099 icmpkp->outFragNeeded.value.ui32 = 14100 ipst->ips_icmp_mib.icmpOutFragNeeded; 14101 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14102 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14103 icmpkp->inBadRedirects.value.ui32 = 14104 ipst->ips_icmp_mib.icmpInBadRedirects; 14105 14106 netstack_rele(ns); 14107 return (0); 14108 } 14109 14110 /* 14111 * This is the fanout function for raw socket opened for SCTP. Note 14112 * that it is called after SCTP checks that there is no socket which 14113 * wants a packet. Then before SCTP handles this out of the blue packet, 14114 * this function is called to see if there is any raw socket for SCTP. 14115 * If there is and it is bound to the correct address, the packet will 14116 * be sent to that socket. Note that only one raw socket can be bound to 14117 * a port. This is assured in ipcl_sctp_hash_insert(); 14118 */ 14119 void 14120 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14121 ip_recv_attr_t *ira) 14122 { 14123 conn_t *connp; 14124 queue_t *rq; 14125 boolean_t secure; 14126 ill_t *ill = ira->ira_ill; 14127 ip_stack_t *ipst = ill->ill_ipst; 14128 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14129 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14130 iaflags_t iraflags = ira->ira_flags; 14131 ill_t *rill = ira->ira_rill; 14132 14133 secure = iraflags & IRAF_IPSEC_SECURE; 14134 14135 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14136 ira, ipst); 14137 if (connp == NULL) { 14138 /* 14139 * Although raw sctp is not summed, OOB chunks must be. 14140 * Drop the packet here if the sctp checksum failed. 14141 */ 14142 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14143 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14144 freemsg(mp); 14145 return; 14146 } 14147 ira->ira_ill = ira->ira_rill = NULL; 14148 sctp_ootb_input(mp, ira, ipst); 14149 ira->ira_ill = ill; 14150 ira->ira_rill = rill; 14151 return; 14152 } 14153 rq = connp->conn_rq; 14154 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14155 CONN_DEC_REF(connp); 14156 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14157 freemsg(mp); 14158 return; 14159 } 14160 if (((iraflags & IRAF_IS_IPV4) ? 14161 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14162 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14163 secure) { 14164 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14165 ip6h, ira); 14166 if (mp == NULL) { 14167 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14168 /* Note that mp is NULL */ 14169 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14170 CONN_DEC_REF(connp); 14171 return; 14172 } 14173 } 14174 14175 if (iraflags & IRAF_ICMP_ERROR) { 14176 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14177 } else { 14178 ill_t *rill = ira->ira_rill; 14179 14180 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14181 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14182 ira->ira_ill = ira->ira_rill = NULL; 14183 (connp->conn_recv)(connp, mp, NULL, ira); 14184 ira->ira_ill = ill; 14185 ira->ira_rill = rill; 14186 } 14187 CONN_DEC_REF(connp); 14188 } 14189 14190 /* 14191 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14192 * header before the ip payload. 14193 */ 14194 static void 14195 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14196 { 14197 int len = (mp->b_wptr - mp->b_rptr); 14198 mblk_t *ip_mp; 14199 14200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14201 if (is_fp_mp || len != fp_mp_len) { 14202 if (len > fp_mp_len) { 14203 /* 14204 * fastpath header and ip header in the first mblk 14205 */ 14206 mp->b_rptr += fp_mp_len; 14207 } else { 14208 /* 14209 * ip_xmit_attach_llhdr had to prepend an mblk to 14210 * attach the fastpath header before ip header. 14211 */ 14212 ip_mp = mp->b_cont; 14213 freeb(mp); 14214 mp = ip_mp; 14215 mp->b_rptr += (fp_mp_len - len); 14216 } 14217 } else { 14218 ip_mp = mp->b_cont; 14219 freeb(mp); 14220 mp = ip_mp; 14221 } 14222 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14223 freemsg(mp); 14224 } 14225 14226 /* 14227 * Normal post fragmentation function. 14228 * 14229 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14230 * using the same state machine. 14231 * 14232 * We return an error on failure. In particular we return EWOULDBLOCK 14233 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14234 * (currently by canputnext failure resulting in backenabling from GLD.) 14235 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14236 * indication that they can flow control until ip_wsrv() tells then to restart. 14237 * 14238 * If the nce passed by caller is incomplete, this function 14239 * queues the packet and if necessary, sends ARP request and bails. 14240 * If the Neighbor Cache passed is fully resolved, we simply prepend 14241 * the link-layer header to the packet, do ipsec hw acceleration 14242 * work if necessary, and send the packet out on the wire. 14243 */ 14244 /* ARGSUSED6 */ 14245 int 14246 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14247 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14248 { 14249 queue_t *wq; 14250 ill_t *ill = nce->nce_ill; 14251 ip_stack_t *ipst = ill->ill_ipst; 14252 uint64_t delta; 14253 boolean_t isv6 = ill->ill_isv6; 14254 boolean_t fp_mp; 14255 ncec_t *ncec = nce->nce_common; 14256 int64_t now = LBOLT_FASTPATH64; 14257 boolean_t is_probe; 14258 14259 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14260 14261 ASSERT(mp != NULL); 14262 ASSERT(mp->b_datap->db_type == M_DATA); 14263 ASSERT(pkt_len == msgdsize(mp)); 14264 14265 /* 14266 * If we have already been here and are coming back after ARP/ND. 14267 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14268 * in that case since they have seen the packet when it came here 14269 * the first time. 14270 */ 14271 if (ixaflags & IXAF_NO_TRACE) 14272 goto sendit; 14273 14274 if (ixaflags & IXAF_IS_IPV4) { 14275 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14276 14277 ASSERT(!isv6); 14278 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14279 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14280 !(ixaflags & IXAF_NO_PFHOOK)) { 14281 int error; 14282 14283 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14284 ipst->ips_ipv4firewall_physical_out, 14285 NULL, ill, ipha, mp, mp, 0, ipst, error); 14286 DTRACE_PROBE1(ip4__physical__out__end, 14287 mblk_t *, mp); 14288 if (mp == NULL) 14289 return (error); 14290 14291 /* The length could have changed */ 14292 pkt_len = msgdsize(mp); 14293 } 14294 if (ipst->ips_ip4_observe.he_interested) { 14295 /* 14296 * Note that for TX the zoneid is the sending 14297 * zone, whether or not MLP is in play. 14298 * Since the szone argument is the IP zoneid (i.e., 14299 * zero for exclusive-IP zones) and ipobs wants 14300 * the system zoneid, we map it here. 14301 */ 14302 szone = IP_REAL_ZONEID(szone, ipst); 14303 14304 /* 14305 * On the outbound path the destination zone will be 14306 * unknown as we're sending this packet out on the 14307 * wire. 14308 */ 14309 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14310 ill, ipst); 14311 } 14312 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14313 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14314 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14315 } else { 14316 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14317 14318 ASSERT(isv6); 14319 ASSERT(pkt_len == 14320 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14321 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14322 !(ixaflags & IXAF_NO_PFHOOK)) { 14323 int error; 14324 14325 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14326 ipst->ips_ipv6firewall_physical_out, 14327 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14328 DTRACE_PROBE1(ip6__physical__out__end, 14329 mblk_t *, mp); 14330 if (mp == NULL) 14331 return (error); 14332 14333 /* The length could have changed */ 14334 pkt_len = msgdsize(mp); 14335 } 14336 if (ipst->ips_ip6_observe.he_interested) { 14337 /* See above */ 14338 szone = IP_REAL_ZONEID(szone, ipst); 14339 14340 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14341 ill, ipst); 14342 } 14343 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14344 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14345 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14346 } 14347 14348 sendit: 14349 /* 14350 * We check the state without a lock because the state can never 14351 * move "backwards" to initial or incomplete. 14352 */ 14353 switch (ncec->ncec_state) { 14354 case ND_REACHABLE: 14355 case ND_STALE: 14356 case ND_DELAY: 14357 case ND_PROBE: 14358 mp = ip_xmit_attach_llhdr(mp, nce); 14359 if (mp == NULL) { 14360 /* 14361 * ip_xmit_attach_llhdr has increased 14362 * ipIfStatsOutDiscards and called ip_drop_output() 14363 */ 14364 return (ENOBUFS); 14365 } 14366 /* 14367 * check if nce_fastpath completed and we tagged on a 14368 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14369 */ 14370 fp_mp = (mp->b_datap->db_type == M_DATA); 14371 14372 if (fp_mp && 14373 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14374 ill_dld_direct_t *idd; 14375 14376 idd = &ill->ill_dld_capab->idc_direct; 14377 /* 14378 * Send the packet directly to DLD, where it 14379 * may be queued depending on the availability 14380 * of transmit resources at the media layer. 14381 * Return value should be taken into 14382 * account and flow control the TCP. 14383 */ 14384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14385 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14386 pkt_len); 14387 14388 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14389 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14390 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14391 } else { 14392 uintptr_t cookie; 14393 14394 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14395 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14396 if (ixacookie != NULL) 14397 *ixacookie = cookie; 14398 return (EWOULDBLOCK); 14399 } 14400 } 14401 } else { 14402 wq = ill->ill_wq; 14403 14404 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14405 !canputnext(wq)) { 14406 if (ixacookie != NULL) 14407 *ixacookie = 0; 14408 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14409 nce->nce_fp_mp != NULL ? 14410 MBLKL(nce->nce_fp_mp) : 0); 14411 return (EWOULDBLOCK); 14412 } 14413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14414 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14415 pkt_len); 14416 putnext(wq, mp); 14417 } 14418 14419 /* 14420 * The rest of this function implements Neighbor Unreachability 14421 * detection. Determine if the ncec is eligible for NUD. 14422 */ 14423 if (ncec->ncec_flags & NCE_F_NONUD) 14424 return (0); 14425 14426 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14427 14428 /* 14429 * Check for upper layer advice 14430 */ 14431 if (ixaflags & IXAF_REACH_CONF) { 14432 timeout_id_t tid; 14433 14434 /* 14435 * It should be o.k. to check the state without 14436 * a lock here, at most we lose an advice. 14437 */ 14438 ncec->ncec_last = TICK_TO_MSEC(now); 14439 if (ncec->ncec_state != ND_REACHABLE) { 14440 mutex_enter(&ncec->ncec_lock); 14441 ncec->ncec_state = ND_REACHABLE; 14442 tid = ncec->ncec_timeout_id; 14443 ncec->ncec_timeout_id = 0; 14444 mutex_exit(&ncec->ncec_lock); 14445 (void) untimeout(tid); 14446 if (ip_debug > 2) { 14447 /* ip1dbg */ 14448 pr_addr_dbg("ip_xmit: state" 14449 " for %s changed to" 14450 " REACHABLE\n", AF_INET6, 14451 &ncec->ncec_addr); 14452 } 14453 } 14454 return (0); 14455 } 14456 14457 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14458 ip1dbg(("ip_xmit: delta = %" PRId64 14459 " ill_reachable_time = %d \n", delta, 14460 ill->ill_reachable_time)); 14461 if (delta > (uint64_t)ill->ill_reachable_time) { 14462 mutex_enter(&ncec->ncec_lock); 14463 switch (ncec->ncec_state) { 14464 case ND_REACHABLE: 14465 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14466 /* FALLTHROUGH */ 14467 case ND_STALE: 14468 /* 14469 * ND_REACHABLE is identical to 14470 * ND_STALE in this specific case. If 14471 * reachable time has expired for this 14472 * neighbor (delta is greater than 14473 * reachable time), conceptually, the 14474 * neighbor cache is no longer in 14475 * REACHABLE state, but already in 14476 * STALE state. So the correct 14477 * transition here is to ND_DELAY. 14478 */ 14479 ncec->ncec_state = ND_DELAY; 14480 mutex_exit(&ncec->ncec_lock); 14481 nce_restart_timer(ncec, 14482 ipst->ips_delay_first_probe_time); 14483 if (ip_debug > 3) { 14484 /* ip2dbg */ 14485 pr_addr_dbg("ip_xmit: state" 14486 " for %s changed to" 14487 " DELAY\n", AF_INET6, 14488 &ncec->ncec_addr); 14489 } 14490 break; 14491 case ND_DELAY: 14492 case ND_PROBE: 14493 mutex_exit(&ncec->ncec_lock); 14494 /* Timers have already started */ 14495 break; 14496 case ND_UNREACHABLE: 14497 /* 14498 * nce_timer has detected that this ncec 14499 * is unreachable and initiated deleting 14500 * this ncec. 14501 * This is a harmless race where we found the 14502 * ncec before it was deleted and have 14503 * just sent out a packet using this 14504 * unreachable ncec. 14505 */ 14506 mutex_exit(&ncec->ncec_lock); 14507 break; 14508 default: 14509 ASSERT(0); 14510 mutex_exit(&ncec->ncec_lock); 14511 } 14512 } 14513 return (0); 14514 14515 case ND_INCOMPLETE: 14516 /* 14517 * the state could have changed since we didn't hold the lock. 14518 * Re-verify state under lock. 14519 */ 14520 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14521 mutex_enter(&ncec->ncec_lock); 14522 if (NCE_ISREACHABLE(ncec)) { 14523 mutex_exit(&ncec->ncec_lock); 14524 goto sendit; 14525 } 14526 /* queue the packet */ 14527 nce_queue_mp(ncec, mp, is_probe); 14528 mutex_exit(&ncec->ncec_lock); 14529 DTRACE_PROBE2(ip__xmit__incomplete, 14530 (ncec_t *), ncec, (mblk_t *), mp); 14531 return (0); 14532 14533 case ND_INITIAL: 14534 /* 14535 * State could have changed since we didn't hold the lock, so 14536 * re-verify state. 14537 */ 14538 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14539 mutex_enter(&ncec->ncec_lock); 14540 if (NCE_ISREACHABLE(ncec)) { 14541 mutex_exit(&ncec->ncec_lock); 14542 goto sendit; 14543 } 14544 nce_queue_mp(ncec, mp, is_probe); 14545 if (ncec->ncec_state == ND_INITIAL) { 14546 ncec->ncec_state = ND_INCOMPLETE; 14547 mutex_exit(&ncec->ncec_lock); 14548 /* 14549 * figure out the source we want to use 14550 * and resolve it. 14551 */ 14552 ip_ndp_resolve(ncec); 14553 } else { 14554 mutex_exit(&ncec->ncec_lock); 14555 } 14556 return (0); 14557 14558 case ND_UNREACHABLE: 14559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14560 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14561 mp, ill); 14562 freemsg(mp); 14563 return (0); 14564 14565 default: 14566 ASSERT(0); 14567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14568 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14569 mp, ill); 14570 freemsg(mp); 14571 return (ENETUNREACH); 14572 } 14573 } 14574 14575 /* 14576 * Return B_TRUE if the buffers differ in length or content. 14577 * This is used for comparing extension header buffers. 14578 * Note that an extension header would be declared different 14579 * even if all that changed was the next header value in that header i.e. 14580 * what really changed is the next extension header. 14581 */ 14582 boolean_t 14583 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14584 uint_t blen) 14585 { 14586 if (!b_valid) 14587 blen = 0; 14588 14589 if (alen != blen) 14590 return (B_TRUE); 14591 if (alen == 0) 14592 return (B_FALSE); /* Both zero length */ 14593 return (bcmp(abuf, bbuf, alen)); 14594 } 14595 14596 /* 14597 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14598 * Return B_FALSE if memory allocation fails - don't change any state! 14599 */ 14600 boolean_t 14601 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14602 const void *src, uint_t srclen) 14603 { 14604 void *dst; 14605 14606 if (!src_valid) 14607 srclen = 0; 14608 14609 ASSERT(*dstlenp == 0); 14610 if (src != NULL && srclen != 0) { 14611 dst = mi_alloc(srclen, BPRI_MED); 14612 if (dst == NULL) 14613 return (B_FALSE); 14614 } else { 14615 dst = NULL; 14616 } 14617 if (*dstp != NULL) 14618 mi_free(*dstp); 14619 *dstp = dst; 14620 *dstlenp = dst == NULL ? 0 : srclen; 14621 return (B_TRUE); 14622 } 14623 14624 /* 14625 * Replace what is in *dst, *dstlen with the source. 14626 * Assumes ip_allocbuf has already been called. 14627 */ 14628 void 14629 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14630 const void *src, uint_t srclen) 14631 { 14632 if (!src_valid) 14633 srclen = 0; 14634 14635 ASSERT(*dstlenp == srclen); 14636 if (src != NULL && srclen != 0) 14637 bcopy(src, *dstp, srclen); 14638 } 14639 14640 /* 14641 * Free the storage pointed to by the members of an ip_pkt_t. 14642 */ 14643 void 14644 ip_pkt_free(ip_pkt_t *ipp) 14645 { 14646 uint_t fields = ipp->ipp_fields; 14647 14648 if (fields & IPPF_HOPOPTS) { 14649 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14650 ipp->ipp_hopopts = NULL; 14651 ipp->ipp_hopoptslen = 0; 14652 } 14653 if (fields & IPPF_RTHDRDSTOPTS) { 14654 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14655 ipp->ipp_rthdrdstopts = NULL; 14656 ipp->ipp_rthdrdstoptslen = 0; 14657 } 14658 if (fields & IPPF_DSTOPTS) { 14659 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14660 ipp->ipp_dstopts = NULL; 14661 ipp->ipp_dstoptslen = 0; 14662 } 14663 if (fields & IPPF_RTHDR) { 14664 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14665 ipp->ipp_rthdr = NULL; 14666 ipp->ipp_rthdrlen = 0; 14667 } 14668 if (fields & IPPF_IPV4_OPTIONS) { 14669 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14670 ipp->ipp_ipv4_options = NULL; 14671 ipp->ipp_ipv4_options_len = 0; 14672 } 14673 if (fields & IPPF_LABEL_V4) { 14674 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14675 ipp->ipp_label_v4 = NULL; 14676 ipp->ipp_label_len_v4 = 0; 14677 } 14678 if (fields & IPPF_LABEL_V6) { 14679 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14680 ipp->ipp_label_v6 = NULL; 14681 ipp->ipp_label_len_v6 = 0; 14682 } 14683 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14684 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14685 } 14686 14687 /* 14688 * Copy from src to dst and allocate as needed. 14689 * Returns zero or ENOMEM. 14690 * 14691 * The caller must initialize dst to zero. 14692 */ 14693 int 14694 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14695 { 14696 uint_t fields = src->ipp_fields; 14697 14698 /* Start with fields that don't require memory allocation */ 14699 dst->ipp_fields = fields & 14700 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14701 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14702 14703 dst->ipp_addr = src->ipp_addr; 14704 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14705 dst->ipp_hoplimit = src->ipp_hoplimit; 14706 dst->ipp_tclass = src->ipp_tclass; 14707 dst->ipp_type_of_service = src->ipp_type_of_service; 14708 14709 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14710 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14711 return (0); 14712 14713 if (fields & IPPF_HOPOPTS) { 14714 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14715 if (dst->ipp_hopopts == NULL) { 14716 ip_pkt_free(dst); 14717 return (ENOMEM); 14718 } 14719 dst->ipp_fields |= IPPF_HOPOPTS; 14720 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14721 src->ipp_hopoptslen); 14722 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14723 } 14724 if (fields & IPPF_RTHDRDSTOPTS) { 14725 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14726 kmflag); 14727 if (dst->ipp_rthdrdstopts == NULL) { 14728 ip_pkt_free(dst); 14729 return (ENOMEM); 14730 } 14731 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14732 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14733 src->ipp_rthdrdstoptslen); 14734 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14735 } 14736 if (fields & IPPF_DSTOPTS) { 14737 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14738 if (dst->ipp_dstopts == NULL) { 14739 ip_pkt_free(dst); 14740 return (ENOMEM); 14741 } 14742 dst->ipp_fields |= IPPF_DSTOPTS; 14743 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14744 src->ipp_dstoptslen); 14745 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14746 } 14747 if (fields & IPPF_RTHDR) { 14748 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14749 if (dst->ipp_rthdr == NULL) { 14750 ip_pkt_free(dst); 14751 return (ENOMEM); 14752 } 14753 dst->ipp_fields |= IPPF_RTHDR; 14754 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14755 src->ipp_rthdrlen); 14756 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14757 } 14758 if (fields & IPPF_IPV4_OPTIONS) { 14759 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14760 kmflag); 14761 if (dst->ipp_ipv4_options == NULL) { 14762 ip_pkt_free(dst); 14763 return (ENOMEM); 14764 } 14765 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14766 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14767 src->ipp_ipv4_options_len); 14768 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14769 } 14770 if (fields & IPPF_LABEL_V4) { 14771 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14772 if (dst->ipp_label_v4 == NULL) { 14773 ip_pkt_free(dst); 14774 return (ENOMEM); 14775 } 14776 dst->ipp_fields |= IPPF_LABEL_V4; 14777 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14778 src->ipp_label_len_v4); 14779 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14780 } 14781 if (fields & IPPF_LABEL_V6) { 14782 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14783 if (dst->ipp_label_v6 == NULL) { 14784 ip_pkt_free(dst); 14785 return (ENOMEM); 14786 } 14787 dst->ipp_fields |= IPPF_LABEL_V6; 14788 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14789 src->ipp_label_len_v6); 14790 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14791 } 14792 if (fields & IPPF_FRAGHDR) { 14793 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14794 if (dst->ipp_fraghdr == NULL) { 14795 ip_pkt_free(dst); 14796 return (ENOMEM); 14797 } 14798 dst->ipp_fields |= IPPF_FRAGHDR; 14799 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14800 src->ipp_fraghdrlen); 14801 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14802 } 14803 return (0); 14804 } 14805 14806 /* 14807 * Returns INADDR_ANY if no source route 14808 */ 14809 ipaddr_t 14810 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14811 { 14812 ipaddr_t nexthop = INADDR_ANY; 14813 ipoptp_t opts; 14814 uchar_t *opt; 14815 uint8_t optval; 14816 uint8_t optlen; 14817 uint32_t totallen; 14818 14819 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14820 return (INADDR_ANY); 14821 14822 totallen = ipp->ipp_ipv4_options_len; 14823 if (totallen & 0x3) 14824 return (INADDR_ANY); 14825 14826 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14827 optval != IPOPT_EOL; 14828 optval = ipoptp_next(&opts)) { 14829 opt = opts.ipoptp_cur; 14830 switch (optval) { 14831 uint8_t off; 14832 case IPOPT_SSRR: 14833 case IPOPT_LSRR: 14834 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14835 break; 14836 } 14837 optlen = opts.ipoptp_len; 14838 off = opt[IPOPT_OFFSET]; 14839 off--; 14840 if (optlen < IP_ADDR_LEN || 14841 off > optlen - IP_ADDR_LEN) { 14842 /* End of source route */ 14843 break; 14844 } 14845 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14846 if (nexthop == htonl(INADDR_LOOPBACK)) { 14847 /* Ignore */ 14848 nexthop = INADDR_ANY; 14849 break; 14850 } 14851 break; 14852 } 14853 } 14854 return (nexthop); 14855 } 14856 14857 /* 14858 * Reverse a source route. 14859 */ 14860 void 14861 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14862 { 14863 ipaddr_t tmp; 14864 ipoptp_t opts; 14865 uchar_t *opt; 14866 uint8_t optval; 14867 uint32_t totallen; 14868 14869 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14870 return; 14871 14872 totallen = ipp->ipp_ipv4_options_len; 14873 if (totallen & 0x3) 14874 return; 14875 14876 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14877 optval != IPOPT_EOL; 14878 optval = ipoptp_next(&opts)) { 14879 uint8_t off1, off2; 14880 14881 opt = opts.ipoptp_cur; 14882 switch (optval) { 14883 case IPOPT_SSRR: 14884 case IPOPT_LSRR: 14885 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14886 break; 14887 } 14888 off1 = IPOPT_MINOFF_SR - 1; 14889 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14890 while (off2 > off1) { 14891 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14892 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14893 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14894 off2 -= IP_ADDR_LEN; 14895 off1 += IP_ADDR_LEN; 14896 } 14897 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14898 break; 14899 } 14900 } 14901 } 14902 14903 /* 14904 * Returns NULL if no routing header 14905 */ 14906 in6_addr_t * 14907 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14908 { 14909 in6_addr_t *nexthop = NULL; 14910 ip6_rthdr0_t *rthdr; 14911 14912 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14913 return (NULL); 14914 14915 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14916 if (rthdr->ip6r0_segleft == 0) 14917 return (NULL); 14918 14919 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14920 return (nexthop); 14921 } 14922 14923 zoneid_t 14924 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 14925 zoneid_t lookup_zoneid) 14926 { 14927 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14928 ire_t *ire; 14929 int ire_flags = MATCH_IRE_TYPE; 14930 zoneid_t zoneid = ALL_ZONES; 14931 14932 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14933 return (ALL_ZONES); 14934 14935 if (lookup_zoneid != ALL_ZONES) 14936 ire_flags |= MATCH_IRE_ZONEONLY; 14937 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14938 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14939 if (ire != NULL) { 14940 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14941 ire_refrele(ire); 14942 } 14943 return (zoneid); 14944 } 14945 14946 zoneid_t 14947 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 14948 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 14949 { 14950 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14951 ire_t *ire; 14952 int ire_flags = MATCH_IRE_TYPE; 14953 zoneid_t zoneid = ALL_ZONES; 14954 14955 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14956 return (ALL_ZONES); 14957 14958 if (IN6_IS_ADDR_LINKLOCAL(addr)) 14959 ire_flags |= MATCH_IRE_ILL; 14960 14961 if (lookup_zoneid != ALL_ZONES) 14962 ire_flags |= MATCH_IRE_ZONEONLY; 14963 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14964 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14965 if (ire != NULL) { 14966 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14967 ire_refrele(ire); 14968 } 14969 return (zoneid); 14970 } 14971 14972 /* 14973 * IP obserability hook support functions. 14974 */ 14975 static void 14976 ipobs_init(ip_stack_t *ipst) 14977 { 14978 netid_t id; 14979 14980 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 14981 14982 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 14983 VERIFY(ipst->ips_ip4_observe_pr != NULL); 14984 14985 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 14986 VERIFY(ipst->ips_ip6_observe_pr != NULL); 14987 } 14988 14989 static void 14990 ipobs_fini(ip_stack_t *ipst) 14991 { 14992 14993 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 14994 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 14995 } 14996 14997 /* 14998 * hook_pkt_observe_t is composed in network byte order so that the 14999 * entire mblk_t chain handed into hook_run can be used as-is. 15000 * The caveat is that use of the fields, such as the zone fields, 15001 * requires conversion into host byte order first. 15002 */ 15003 void 15004 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15005 const ill_t *ill, ip_stack_t *ipst) 15006 { 15007 hook_pkt_observe_t *hdr; 15008 uint64_t grifindex; 15009 mblk_t *imp; 15010 15011 imp = allocb(sizeof (*hdr), BPRI_HI); 15012 if (imp == NULL) 15013 return; 15014 15015 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15016 /* 15017 * b_wptr is set to make the apparent size of the data in the mblk_t 15018 * to exclude the pointers at the end of hook_pkt_observer_t. 15019 */ 15020 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15021 imp->b_cont = mp; 15022 15023 ASSERT(DB_TYPE(mp) == M_DATA); 15024 15025 if (IS_UNDER_IPMP(ill)) 15026 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15027 else 15028 grifindex = 0; 15029 15030 hdr->hpo_version = 1; 15031 hdr->hpo_htype = htons(htype); 15032 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15033 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15034 hdr->hpo_grifindex = htonl(grifindex); 15035 hdr->hpo_zsrc = htonl(zsrc); 15036 hdr->hpo_zdst = htonl(zdst); 15037 hdr->hpo_pkt = imp; 15038 hdr->hpo_ctx = ipst->ips_netstack; 15039 15040 if (ill->ill_isv6) { 15041 hdr->hpo_family = AF_INET6; 15042 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15043 ipst->ips_ipv6observing, (hook_data_t)hdr); 15044 } else { 15045 hdr->hpo_family = AF_INET; 15046 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15047 ipst->ips_ipv4observing, (hook_data_t)hdr); 15048 } 15049 15050 imp->b_cont = NULL; 15051 freemsg(imp); 15052 } 15053 15054 /* 15055 * Utility routine that checks if `v4srcp' is a valid address on underlying 15056 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15057 * associated with `v4srcp' on success. NOTE: if this is not called from 15058 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15059 * group during or after this lookup. 15060 */ 15061 boolean_t 15062 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15063 { 15064 ipif_t *ipif; 15065 15066 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15067 if (ipif != NULL) { 15068 if (ipifp != NULL) 15069 *ipifp = ipif; 15070 else 15071 ipif_refrele(ipif); 15072 return (B_TRUE); 15073 } 15074 15075 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15076 *v4srcp)); 15077 return (B_FALSE); 15078 } 15079