1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 * Copyright 2021 Joyent, Inc. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #include <sys/zone.h> 40 #define _SUN_TPI_VERSION 2 41 #include <sys/tihdr.h> 42 #include <sys/xti_inet.h> 43 #include <sys/ddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/cmn_err.h> 46 #include <sys/debug.h> 47 #include <sys/kobj.h> 48 #include <sys/modctl.h> 49 #include <sys/atomic.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/taskq.h> 53 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/kmem.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/vtrace.h> 60 #include <sys/isa_defs.h> 61 #include <sys/mac.h> 62 #include <net/if.h> 63 #include <net/if_arp.h> 64 #include <net/route.h> 65 #include <sys/sockio.h> 66 #include <netinet/in.h> 67 #include <net/if_dl.h> 68 69 #include <inet/common.h> 70 #include <inet/mi.h> 71 #include <inet/mib2.h> 72 #include <inet/nd.h> 73 #include <inet/arp.h> 74 #include <inet/snmpcom.h> 75 #include <inet/optcom.h> 76 #include <inet/kstatcom.h> 77 78 #include <netinet/igmp_var.h> 79 #include <netinet/ip6.h> 80 #include <netinet/icmp6.h> 81 #include <netinet/sctp.h> 82 83 #include <inet/ip.h> 84 #include <inet/ip_impl.h> 85 #include <inet/ip6.h> 86 #include <inet/ip6_asp.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <inet/ip_multi.h> 90 #include <inet/ip_if.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_rts.h> 94 #include <inet/ip_ndp.h> 95 #include <inet/ip_listutils.h> 96 #include <netinet/igmp.h> 97 #include <netinet/ip_mroute.h> 98 #include <inet/ipp_common.h> 99 #include <inet/cc.h> 100 101 #include <net/pfkeyv2.h> 102 #include <inet/sadb.h> 103 #include <inet/ipsec_impl.h> 104 #include <inet/iptun/iptun_impl.h> 105 #include <inet/ipdrop.h> 106 #include <inet/ip_netinfo.h> 107 #include <inet/ilb_ip.h> 108 109 #include <sys/ethernet.h> 110 #include <net/if_types.h> 111 #include <sys/cpuvar.h> 112 113 #include <ipp/ipp.h> 114 #include <ipp/ipp_impl.h> 115 #include <ipp/ipgpc/ipgpc.h> 116 117 #include <sys/pattr.h> 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <sys/squeue_impl.h> 129 #include <inet/ip_arp.h> 130 131 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 132 133 /* 134 * Values for squeue switch: 135 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 136 * IP_SQUEUE_ENTER: SQ_PROCESS 137 * IP_SQUEUE_FILL: SQ_FILL 138 */ 139 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 140 141 int ip_squeue_flag; 142 143 /* 144 * Setable in /etc/system 145 */ 146 int ip_poll_normal_ms = 100; 147 int ip_poll_normal_ticks = 0; 148 int ip_modclose_ackwait_ms = 3000; 149 150 /* 151 * It would be nice to have these present only in DEBUG systems, but the 152 * current design of the global symbol checking logic requires them to be 153 * unconditionally present. 154 */ 155 uint_t ip_thread_data; /* TSD key for debug support */ 156 krwlock_t ip_thread_rwlock; 157 list_t ip_thread_list; 158 159 /* 160 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 161 */ 162 163 struct listptr_s { 164 mblk_t *lp_head; /* pointer to the head of the list */ 165 mblk_t *lp_tail; /* pointer to the tail of the list */ 166 }; 167 168 typedef struct listptr_s listptr_t; 169 170 /* 171 * This is used by ip_snmp_get_mib2_ip_route_media and 172 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 173 */ 174 typedef struct iproutedata_s { 175 uint_t ird_idx; 176 uint_t ird_flags; /* see below */ 177 listptr_t ird_route; /* ipRouteEntryTable */ 178 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 179 listptr_t ird_attrs; /* ipRouteAttributeTable */ 180 } iproutedata_t; 181 182 /* Include ire_testhidden and IRE_IF_CLONE routes */ 183 #define IRD_REPORT_ALL 0x01 184 185 /* 186 * Cluster specific hooks. These should be NULL when booted as a non-cluster 187 */ 188 189 /* 190 * Hook functions to enable cluster networking 191 * On non-clustered systems these vectors must always be NULL. 192 * 193 * Hook function to Check ip specified ip address is a shared ip address 194 * in the cluster 195 * 196 */ 197 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 198 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 199 200 /* 201 * Hook function to generate cluster wide ip fragment identifier 202 */ 203 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 204 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 205 void *args) = NULL; 206 207 /* 208 * Hook function to generate cluster wide SPI. 209 */ 210 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 211 void *) = NULL; 212 213 /* 214 * Hook function to verify if the SPI is already utlized. 215 */ 216 217 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 218 219 /* 220 * Hook function to delete the SPI from the cluster wide repository. 221 */ 222 223 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 224 225 /* 226 * Hook function to inform the cluster when packet received on an IDLE SA 227 */ 228 229 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 230 in6_addr_t, in6_addr_t, void *) = NULL; 231 232 /* 233 * Synchronization notes: 234 * 235 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 236 * MT level protection given by STREAMS. IP uses a combination of its own 237 * internal serialization mechanism and standard Solaris locking techniques. 238 * The internal serialization is per phyint. This is used to serialize 239 * plumbing operations, IPMP operations, most set ioctls, etc. 240 * 241 * Plumbing is a long sequence of operations involving message 242 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 243 * involved in plumbing operations. A natural model is to serialize these 244 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 245 * parallel without any interference. But various set ioctls on hme0 are best 246 * serialized, along with IPMP operations and processing of DLPI control 247 * messages received from drivers on a per phyint basis. This serialization is 248 * provided by the ipsq_t and primitives operating on this. Details can 249 * be found in ip_if.c above the core primitives operating on ipsq_t. 250 * 251 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 252 * Simiarly lookup of an ire by a thread also returns a refheld ire. 253 * In addition ipif's and ill's referenced by the ire are also indirectly 254 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 255 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 256 * address of an ipif has to go through the ipsq_t. This ensures that only 257 * one such exclusive operation proceeds at any time on the ipif. It then 258 * waits for all refcnts 259 * associated with this ipif to come down to zero. The address is changed 260 * only after the ipif has been quiesced. Then the ipif is brought up again. 261 * More details are described above the comment in ip_sioctl_flags. 262 * 263 * Packet processing is based mostly on IREs and are fully multi-threaded 264 * using standard Solaris MT techniques. 265 * 266 * There are explicit locks in IP to handle: 267 * - The ip_g_head list maintained by mi_open_link() and friends. 268 * 269 * - The reassembly data structures (one lock per hash bucket) 270 * 271 * - conn_lock is meant to protect conn_t fields. The fields actually 272 * protected by conn_lock are documented in the conn_t definition. 273 * 274 * - ire_lock to protect some of the fields of the ire, IRE tables 275 * (one lock per hash bucket). Refer to ip_ire.c for details. 276 * 277 * - ndp_g_lock and ncec_lock for protecting NCEs. 278 * 279 * - ill_lock protects fields of the ill and ipif. Details in ip.h 280 * 281 * - ill_g_lock: This is a global reader/writer lock. Protects the following 282 * * The AVL tree based global multi list of all ills. 283 * * The linked list of all ipifs of an ill 284 * * The <ipsq-xop> mapping 285 * * <ill-phyint> association 286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 287 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 288 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 289 * writer for the actual duration of the insertion/deletion/change. 290 * 291 * - ill_lock: This is a per ill mutex. 292 * It protects some members of the ill_t struct; see ip.h for details. 293 * It also protects the <ill-phyint> assoc. 294 * It also protects the list of ipifs hanging off the ill. 295 * 296 * - ipsq_lock: This is a per ipsq_t mutex lock. 297 * This protects some members of the ipsq_t struct; see ip.h for details. 298 * It also protects the <ipsq-ipxop> mapping 299 * 300 * - ipx_lock: This is a per ipxop_t mutex lock. 301 * This protects some members of the ipxop_t struct; see ip.h for details. 302 * 303 * - phyint_lock: This is a per phyint mutex lock. Protects just the 304 * phyint_flags 305 * 306 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 307 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 308 * uniqueness check also done atomically. 309 * 310 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 311 * group list linked by ill_usesrc_grp_next. It also protects the 312 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 313 * group is being added or deleted. This lock is taken as a reader when 314 * walking the list/group(eg: to get the number of members in a usesrc group). 315 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 316 * field is changing state i.e from NULL to non-NULL or vice-versa. For 317 * example, it is not necessary to take this lock in the initial portion 318 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 319 * operations are executed exclusively and that ensures that the "usesrc 320 * group state" cannot change. The "usesrc group state" change can happen 321 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 322 * 323 * Changing <ill-phyint>, <ipsq-xop> assocications: 324 * 325 * To change the <ill-phyint> association, the ill_g_lock must be held 326 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 327 * must be held. 328 * 329 * To change the <ipsq-xop> association, the ill_g_lock must be held as 330 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 331 * This is only done when ills are added or removed from IPMP groups. 332 * 333 * To add or delete an ipif from the list of ipifs hanging off the ill, 334 * ill_g_lock (writer) and ill_lock must be held and the thread must be 335 * a writer on the associated ipsq. 336 * 337 * To add or delete an ill to the system, the ill_g_lock must be held as 338 * writer and the thread must be a writer on the associated ipsq. 339 * 340 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 341 * must be a writer on the associated ipsq. 342 * 343 * Lock hierarchy 344 * 345 * Some lock hierarchy scenarios are listed below. 346 * 347 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 354 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 355 * arl_lock -> ill_lock 356 * ips_ire_dep_lock -> irb_lock 357 * 358 * When more than 1 ill lock is needed to be held, all ill lock addresses 359 * are sorted on address and locked starting from highest addressed lock 360 * downward. 361 * 362 * Multicast scenarios 363 * ips_ill_g_lock -> ill_mcast_lock 364 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 369 * 370 * IPsec scenarios 371 * 372 * ipsa_lock -> ill_g_lock -> ill_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 417 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 418 * 419 * IPsec notes : 420 * 421 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 422 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 423 * ip_xmit_attr_t has the 424 * information used by the IPsec code for applying the right level of 425 * protection. The information initialized by IP in the ip_xmit_attr_t 426 * is determined by the per-socket policy or global policy in the system. 427 * For inbound datagrams, the ip_recv_attr_t 428 * starts out with nothing in it. It gets filled 429 * with the right information if it goes through the AH/ESP code, which 430 * happens if the incoming packet is secure. The information initialized 431 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 432 * the policy requirements needed by per-socket policy or global policy 433 * is met or not. 434 * 435 * For fully connected sockets i.e dst, src [addr, port] is known, 436 * conn_policy_cached is set indicating that policy has been cached. 437 * conn_in_enforce_policy may or may not be set depending on whether 438 * there is a global policy match or per-socket policy match. 439 * Policy inheriting happpens in ip_policy_set once the destination is known. 440 * Once the right policy is set on the conn_t, policy cannot change for 441 * this socket. This makes life simpler for TCP (UDP ?) where 442 * re-transmissions go out with the same policy. For symmetry, policy 443 * is cached for fully connected UDP sockets also. Thus if policy is cached, 444 * it also implies that policy is latched i.e policy cannot change 445 * on these sockets. As we have the right policy on the conn, we don't 446 * have to lookup global policy for every outbound and inbound datagram 447 * and thus serving as an optimization. Note that a global policy change 448 * does not affect fully connected sockets if they have policy. If fully 449 * connected sockets did not have any policy associated with it, global 450 * policy change may affect them. 451 * 452 * IP Flow control notes: 453 * --------------------- 454 * Non-TCP streams are flow controlled by IP. The way this is accomplished 455 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 456 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 457 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 458 * functions. 459 * 460 * Per Tx ring udp flow control: 461 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 462 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 463 * 464 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 465 * To achieve best performance, outgoing traffic need to be fanned out among 466 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 467 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 468 * the address of connp as fanout hint to mac_tx(). Under flow controlled 469 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 470 * cookie points to a specific Tx ring that is blocked. The cookie is used to 471 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 472 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 473 * connp's. The drain list is not a single list but a configurable number of 474 * lists. 475 * 476 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 477 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 478 * which is equal to 128. This array in turn contains a pointer to idl_t[], 479 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 480 * list will point to the list of connp's that are flow controlled. 481 * 482 * --------------- ------- ------- ------- 483 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 484 * | --------------- ------- ------- ------- 485 * | --------------- ------- ------- ------- 486 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 487 * ---------------- | --------------- ------- ------- ------- 488 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 489 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 490 * | --------------- ------- ------- ------- 491 * . . . . . 492 * | --------------- ------- ------- ------- 493 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 494 * --------------- ------- ------- ------- 495 * --------------- ------- ------- ------- 496 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 497 * | --------------- ------- ------- ------- 498 * | --------------- ------- ------- ------- 499 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 500 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 501 * ---------------- | . . . . 502 * | --------------- ------- ------- ------- 503 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 504 * --------------- ------- ------- ------- 505 * ..... 506 * ---------------- 507 * |idl_tx_list[n]|-> ... 508 * ---------------- 509 * 510 * When mac_tx() returns a cookie, the cookie is hashed into an index into 511 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 512 * to insert the conn onto. conn_drain_insert() asserts flow control for the 513 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 514 * Further, conn_blocked is set to indicate that the conn is blocked. 515 * 516 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 517 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 518 * is again hashed to locate the appropriate idl_tx_list, which is then 519 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 520 * the drain list and calls conn_drain_remove() to clear flow control (via 521 * calling su_txq_full() or clearing QFULL), and remove the conn from the 522 * drain list. 523 * 524 * Note that the drain list is not a single list but a (configurable) array of 525 * lists (8 elements by default). Synchronization between drain insertion and 526 * flow control wakeup is handled by using idl_txl->txl_lock, and only 527 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 528 * 529 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 530 * On the send side, if the packet cannot be sent down to the driver by IP 531 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 532 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 533 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 534 * control has been relieved, the blocked conns in the 0'th drain list are 535 * drained as in the non-STREAMS case. 536 * 537 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 538 * is done when the conn is inserted into the drain list (conn_drain_insert()) 539 * and cleared when the conn is removed from the it (conn_drain_remove()). 540 * 541 * IPQOS notes: 542 * 543 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 544 * and IPQoS modules. IPPF includes hooks in IP at different control points 545 * (callout positions) which direct packets to IPQoS modules for policy 546 * processing. Policies, if present, are global. 547 * 548 * The callout positions are located in the following paths: 549 * o local_in (packets destined for this host) 550 * o local_out (packets orginating from this host ) 551 * o fwd_in (packets forwarded by this m/c - inbound) 552 * o fwd_out (packets forwarded by this m/c - outbound) 553 * Hooks at these callout points can be enabled/disabled using the ndd variable 554 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 555 * By default all the callout positions are enabled. 556 * 557 * Outbound (local_out) 558 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 559 * 560 * Inbound (local_in) 561 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 562 * 563 * Forwarding (in and out) 564 * Hooks are placed in ire_recv_forward_v4/v6. 565 * 566 * IP Policy Framework processing (IPPF processing) 567 * Policy processing for a packet is initiated by ip_process, which ascertains 568 * that the classifier (ipgpc) is loaded and configured, failing which the 569 * packet resumes normal processing in IP. If the clasifier is present, the 570 * packet is acted upon by one or more IPQoS modules (action instances), per 571 * filters configured in ipgpc and resumes normal IP processing thereafter. 572 * An action instance can drop a packet in course of its processing. 573 * 574 * Zones notes: 575 * 576 * The partitioning rules for networking are as follows: 577 * 1) Packets coming from a zone must have a source address belonging to that 578 * zone. 579 * 2) Packets coming from a zone can only be sent on a physical interface on 580 * which the zone has an IP address. 581 * 3) Between two zones on the same machine, packet delivery is only allowed if 582 * there's a matching route for the destination and zone in the forwarding 583 * table. 584 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 585 * different zones can bind to the same port with the wildcard address 586 * (INADDR_ANY). 587 * 588 * The granularity of interface partitioning is at the logical interface level. 589 * Therefore, every zone has its own IP addresses, and incoming packets can be 590 * attributed to a zone unambiguously. A logical interface is placed into a zone 591 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 592 * structure. Rule (1) is implemented by modifying the source address selection 593 * algorithm so that the list of eligible addresses is filtered based on the 594 * sending process zone. 595 * 596 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 597 * across all zones, depending on their type. Here is the break-up: 598 * 599 * IRE type Shared/exclusive 600 * -------- ---------------- 601 * IRE_BROADCAST Exclusive 602 * IRE_DEFAULT (default routes) Shared (*) 603 * IRE_LOCAL Exclusive (x) 604 * IRE_LOOPBACK Exclusive 605 * IRE_PREFIX (net routes) Shared (*) 606 * IRE_IF_NORESOLVER (interface routes) Exclusive 607 * IRE_IF_RESOLVER (interface routes) Exclusive 608 * IRE_IF_CLONE (interface routes) Exclusive 609 * IRE_HOST (host routes) Shared (*) 610 * 611 * (*) A zone can only use a default or off-subnet route if the gateway is 612 * directly reachable from the zone, that is, if the gateway's address matches 613 * one of the zone's logical interfaces. 614 * 615 * (x) IRE_LOCAL are handled a bit differently. 616 * When ip_restrict_interzone_loopback is set (the default), 617 * ire_route_recursive restricts loopback using an IRE_LOCAL 618 * between zone to the case when L2 would have conceptually looped the packet 619 * back, i.e. the loopback which is required since neither Ethernet drivers 620 * nor Ethernet hardware loops them back. This is the case when the normal 621 * routes (ignoring IREs with different zoneids) would send out the packet on 622 * the same ill as the ill with which is IRE_LOCAL is associated. 623 * 624 * Multiple zones can share a common broadcast address; typically all zones 625 * share the 255.255.255.255 address. Incoming as well as locally originated 626 * broadcast packets must be dispatched to all the zones on the broadcast 627 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 628 * since some zones may not be on the 10.16.72/24 network. To handle this, each 629 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 630 * sent to every zone that has an IRE_BROADCAST entry for the destination 631 * address on the input ill, see ip_input_broadcast(). 632 * 633 * Applications in different zones can join the same multicast group address. 634 * The same logic applies for multicast as for broadcast. ip_input_multicast 635 * dispatches packets to all zones that have members on the physical interface. 636 */ 637 638 /* 639 * Squeue Fanout flags: 640 * 0: No fanout. 641 * 1: Fanout across all squeues 642 */ 643 boolean_t ip_squeue_fanout = 0; 644 645 /* 646 * Maximum dups allowed per packet. 647 */ 648 uint_t ip_max_frag_dups = 10; 649 650 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 651 cred_t *credp, boolean_t isv6); 652 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 653 654 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 655 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 656 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 657 ip_recv_attr_t *); 658 static void icmp_options_update(ipha_t *); 659 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 660 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 661 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 662 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 663 ip_recv_attr_t *); 664 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 665 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 666 ip_recv_attr_t *); 667 668 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 669 char *ip_dot_addr(ipaddr_t, char *); 670 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 671 static char *ip_dot_saddr(uchar_t *, char *); 672 static int ip_lrput(queue_t *, mblk_t *); 673 ipaddr_t ip_net_mask(ipaddr_t); 674 char *ip_nv_lookup(nv_t *, int); 675 int ip_rput(queue_t *, mblk_t *); 676 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 677 void *dummy_arg); 678 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 680 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 682 ip_stack_t *, boolean_t); 683 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 684 boolean_t); 685 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 692 ip_stack_t *ipst, boolean_t); 693 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 708 ip_stack_t *ipst); 709 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 710 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 711 static void ip_snmp_get2_v4_media(ncec_t *, void *); 712 static void ip_snmp_get2_v6_media(ncec_t *, void *); 713 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 714 715 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 716 mblk_t *); 717 718 static void conn_drain_init(ip_stack_t *); 719 static void conn_drain_fini(ip_stack_t *); 720 static void conn_drain(conn_t *connp, boolean_t closing); 721 722 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 723 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 724 725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 726 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 727 static void ip_stack_fini(netstackid_t stackid, void *arg); 728 729 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 730 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 731 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 732 const in6_addr_t *); 733 734 static int ip_squeue_switch(int); 735 736 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 737 static void ip_kstat_fini(netstackid_t, kstat_t *); 738 static int ip_kstat_update(kstat_t *kp, int rw); 739 static void *icmp_kstat_init(netstackid_t); 740 static void icmp_kstat_fini(netstackid_t, kstat_t *); 741 static int icmp_kstat_update(kstat_t *kp, int rw); 742 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 743 static void ip_kstat2_fini(netstackid_t, kstat_t *); 744 745 static void ipobs_init(ip_stack_t *); 746 static void ipobs_fini(ip_stack_t *); 747 748 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 749 750 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 751 752 static long ip_rput_pullups; 753 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 754 755 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 756 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 757 758 int ip_debug; 759 760 /* 761 * Multirouting/CGTP stuff 762 */ 763 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 764 765 /* 766 * IP tunables related declarations. Definitions are in ip_tunables.c 767 */ 768 extern mod_prop_info_t ip_propinfo_tbl[]; 769 extern int ip_propinfo_count; 770 771 /* 772 * Table of IP ioctls encoding the various properties of the ioctl and 773 * indexed based on the last byte of the ioctl command. Occasionally there 774 * is a clash, and there is more than 1 ioctl with the same last byte. 775 * In such a case 1 ioctl is encoded in the ndx table and the remaining 776 * ioctls are encoded in the misc table. An entry in the ndx table is 777 * retrieved by indexing on the last byte of the ioctl command and comparing 778 * the ioctl command with the value in the ndx table. In the event of a 779 * mismatch the misc table is then searched sequentially for the desired 780 * ioctl command. 781 * 782 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 783 */ 784 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 785 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 795 796 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocaddrt, NULL }, 798 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 799 MISC_CMD, ip_siocdelrt, NULL }, 800 801 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 802 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 803 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 804 IF_CMD, ip_sioctl_get_addr, NULL }, 805 806 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 807 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 808 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 809 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 810 811 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 812 IPI_PRIV | IPI_WR, 813 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 814 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 815 IPI_MODOK | IPI_GET_CMD, 816 IF_CMD, ip_sioctl_get_flags, NULL }, 817 818 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 820 821 /* copyin size cannot be coded for SIOCGIFCONF */ 822 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 823 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 824 825 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 826 IF_CMD, ip_sioctl_mtu, NULL }, 827 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 828 IF_CMD, ip_sioctl_get_mtu, NULL }, 829 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 831 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 832 IF_CMD, ip_sioctl_brdaddr, NULL }, 833 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 835 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 836 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 837 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 838 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 839 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 840 IF_CMD, ip_sioctl_metric, NULL }, 841 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 842 843 /* See 166-168 below for extended SIOC*XARP ioctls */ 844 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 849 ARP_CMD, ip_sioctl_arp, NULL }, 850 851 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 873 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 874 MISC_CMD, if_unitsel, if_unitsel_restart }, 875 876 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 895 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 896 IPI_PRIV | IPI_WR | IPI_MODOK, 897 IF_CMD, ip_sioctl_sifname, NULL }, 898 899 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 912 913 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 914 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 915 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 916 IF_CMD, ip_sioctl_get_muxid, NULL }, 917 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 919 920 /* Both if and lif variants share same func */ 921 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 922 IF_CMD, ip_sioctl_get_lifindex, NULL }, 923 /* Both if and lif variants share same func */ 924 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 925 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 926 927 /* copyin size cannot be coded for SIOCGIFCONF */ 928 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 929 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 930 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 948 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 949 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 950 ip_sioctl_removeif_restart }, 951 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 952 IPI_GET_CMD | IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_addif, NULL }, 954 #define SIOCLIFADDR_NDX 112 955 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 956 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 957 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 959 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 960 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 961 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 962 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 963 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 964 IPI_PRIV | IPI_WR, 965 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 966 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 967 IPI_GET_CMD | IPI_MODOK, 968 LIF_CMD, ip_sioctl_get_flags, NULL }, 969 970 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 973 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 974 ip_sioctl_get_lifconf, NULL }, 975 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 976 LIF_CMD, ip_sioctl_mtu, NULL }, 977 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 978 LIF_CMD, ip_sioctl_get_mtu, NULL }, 979 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 981 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 982 LIF_CMD, ip_sioctl_brdaddr, NULL }, 983 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 985 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 986 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 987 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 988 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 989 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 990 LIF_CMD, ip_sioctl_metric, NULL }, 991 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 992 IPI_PRIV | IPI_WR | IPI_MODOK, 993 LIF_CMD, ip_sioctl_slifname, 994 ip_sioctl_slifname_restart }, 995 996 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 997 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 998 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1000 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1002 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1003 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1004 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1005 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1006 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1007 LIF_CMD, ip_sioctl_token, NULL }, 1008 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1010 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1011 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1012 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1013 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1014 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1015 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1016 1017 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1018 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1019 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1020 LIF_CMD, ip_siocdelndp_v6, NULL }, 1021 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1022 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1023 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1024 LIF_CMD, ip_siocsetndp_v6, NULL }, 1025 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1027 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1028 MISC_CMD, ip_sioctl_tonlink, NULL }, 1029 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1030 MISC_CMD, ip_sioctl_tmysite, NULL }, 1031 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 1034 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1035 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 1042 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1043 LIF_CMD, ip_sioctl_get_binding, NULL }, 1044 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1045 IPI_PRIV | IPI_WR, 1046 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1047 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1048 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1049 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1050 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1051 1052 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1053 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* These are handled in ip_sioctl_copyin_setup itself */ 1060 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1063 MISC_CMD, NULL, NULL }, 1064 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1065 1066 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1067 ip_sioctl_get_lifconf, NULL }, 1068 1069 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1074 XARP_CMD, ip_sioctl_arp, NULL }, 1075 1076 /* SIOCPOPSOCKFS is not handled by IP */ 1077 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1078 1079 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1080 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1081 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1082 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1083 ip_sioctl_slifzone_restart }, 1084 /* 172-174 are SCTP ioctls and not handled by IP */ 1085 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1089 IPI_GET_CMD, LIF_CMD, 1090 ip_sioctl_get_lifusesrc, 0 }, 1091 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1092 IPI_PRIV | IPI_WR, 1093 LIF_CMD, ip_sioctl_slifusesrc, 1094 NULL }, 1095 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1096 ip_sioctl_get_lifsrcof, NULL }, 1097 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1104 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1105 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* SIOCSENABLESDP is handled by SDP */ 1107 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1108 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1109 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1110 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1111 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1112 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1113 ip_sioctl_ilb_cmd, NULL }, 1114 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1115 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1116 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1117 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1118 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1119 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1120 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1121 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1122 }; 1123 1124 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1125 1126 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1127 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { ND_GET, 0, 0, 0, NULL, NULL }, 1132 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1133 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1134 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl}, 1138 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1139 MISC_CMD, mrt_ioctl} 1140 }; 1141 1142 int ip_misc_ioctl_count = 1143 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1144 1145 int conn_drain_nthreads; /* Number of drainers reqd. */ 1146 /* Settable in /etc/system */ 1147 /* Defined in ip_ire.c */ 1148 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1149 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1150 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1151 1152 static nv_t ire_nv_arr[] = { 1153 { IRE_BROADCAST, "BROADCAST" }, 1154 { IRE_LOCAL, "LOCAL" }, 1155 { IRE_LOOPBACK, "LOOPBACK" }, 1156 { IRE_DEFAULT, "DEFAULT" }, 1157 { IRE_PREFIX, "PREFIX" }, 1158 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1159 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1160 { IRE_IF_CLONE, "IF_CLONE" }, 1161 { IRE_HOST, "HOST" }, 1162 { IRE_MULTICAST, "MULTICAST" }, 1163 { IRE_NOROUTE, "NOROUTE" }, 1164 { 0 } 1165 }; 1166 1167 nv_t *ire_nv_tbl = ire_nv_arr; 1168 1169 /* Simple ICMP IP Header Template */ 1170 static ipha_t icmp_ipha = { 1171 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1172 }; 1173 1174 struct module_info ip_mod_info = { 1175 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1176 IP_MOD_LOWAT 1177 }; 1178 1179 /* 1180 * Duplicate static symbols within a module confuses mdb; so we avoid the 1181 * problem by making the symbols here distinct from those in udp.c. 1182 */ 1183 1184 /* 1185 * Entry points for IP as a device and as a module. 1186 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1187 */ 1188 static struct qinit iprinitv4 = { 1189 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1190 }; 1191 1192 struct qinit iprinitv6 = { 1193 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1194 }; 1195 1196 static struct qinit ipwinit = { 1197 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1198 }; 1199 1200 static struct qinit iplrinit = { 1201 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1202 }; 1203 1204 static struct qinit iplwinit = { 1205 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1206 }; 1207 1208 /* For AF_INET aka /dev/ip */ 1209 struct streamtab ipinfov4 = { 1210 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1211 }; 1212 1213 /* For AF_INET6 aka /dev/ip6 */ 1214 struct streamtab ipinfov6 = { 1215 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1216 }; 1217 1218 #ifdef DEBUG 1219 boolean_t skip_sctp_cksum = B_FALSE; 1220 #endif 1221 1222 /* 1223 * Generate an ICMP fragmentation needed message. 1224 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1225 * constructed by the caller. 1226 */ 1227 void 1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1229 { 1230 icmph_t icmph; 1231 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1232 1233 mp = icmp_pkt_err_ok(mp, ira); 1234 if (mp == NULL) 1235 return; 1236 1237 bzero(&icmph, sizeof (icmph_t)); 1238 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1239 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1240 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1243 1244 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1245 } 1246 1247 /* 1248 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1249 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1250 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1251 * Likewise, if the ICMP error is misformed (too short, etc), then it 1252 * returns NULL. The caller uses this to determine whether or not to send 1253 * to raw sockets. 1254 * 1255 * All error messages are passed to the matching transport stream. 1256 * 1257 * The following cases are handled by icmp_inbound: 1258 * 1) It needs to send a reply back and possibly delivering it 1259 * to the "interested" upper clients. 1260 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1261 * 3) It needs to change some values in IP only. 1262 * 4) It needs to change some values in IP and upper layers e.g TCP 1263 * by delivering an error to the upper layers. 1264 * 1265 * We handle the above three cases in the context of IPsec in the 1266 * following way : 1267 * 1268 * 1) Send the reply back in the same way as the request came in. 1269 * If it came in encrypted, it goes out encrypted. If it came in 1270 * clear, it goes out in clear. Thus, this will prevent chosen 1271 * plain text attack. 1272 * 2) The client may or may not expect things to come in secure. 1273 * If it comes in secure, the policy constraints are checked 1274 * before delivering it to the upper layers. If it comes in 1275 * clear, ipsec_inbound_accept_clear will decide whether to 1276 * accept this in clear or not. In both the cases, if the returned 1277 * message (IP header + 8 bytes) that caused the icmp message has 1278 * AH/ESP headers, it is sent up to AH/ESP for validation before 1279 * sending up. If there are only 8 bytes of returned message, then 1280 * upper client will not be notified. 1281 * 3) Check with global policy to see whether it matches the constaints. 1282 * But this will be done only if icmp_accept_messages_in_clear is 1283 * zero. 1284 * 4) If we need to change both in IP and ULP, then the decision taken 1285 * while affecting the values in IP and while delivering up to TCP 1286 * should be the same. 1287 * 1288 * There are two cases. 1289 * 1290 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1291 * failed), we will not deliver it to the ULP, even though they 1292 * are *willing* to accept in *clear*. This is fine as our global 1293 * disposition to icmp messages asks us reject the datagram. 1294 * 1295 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1296 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1297 * to deliver it to ULP (policy failed), it can lead to 1298 * consistency problems. The cases known at this time are 1299 * ICMP_DESTINATION_UNREACHABLE messages with following code 1300 * values : 1301 * 1302 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1303 * and Upper layer rejects. Then the communication will 1304 * come to a stop. This is solved by making similar decisions 1305 * at both levels. Currently, when we are unable to deliver 1306 * to the Upper Layer (due to policy failures) while IP has 1307 * adjusted dce_pmtu, the next outbound datagram would 1308 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1309 * will be with the right level of protection. Thus the right 1310 * value will be communicated even if we are not able to 1311 * communicate when we get from the wire initially. But this 1312 * assumes there would be at least one outbound datagram after 1313 * IP has adjusted its dce_pmtu value. To make things 1314 * simpler, we accept in clear after the validation of 1315 * AH/ESP headers. 1316 * 1317 * - Other ICMP ERRORS : We may not be able to deliver it to the 1318 * upper layer depending on the level of protection the upper 1319 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1320 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1321 * should be accepted in clear when the Upper layer expects secure. 1322 * Thus the communication may get aborted by some bad ICMP 1323 * packets. 1324 */ 1325 mblk_t * 1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1327 { 1328 icmph_t *icmph; 1329 ipha_t *ipha; /* Outer header */ 1330 int ip_hdr_length; /* Outer header length */ 1331 boolean_t interested; 1332 ipif_t *ipif; 1333 uint32_t ts; 1334 uint32_t *tsp; 1335 timestruc_t now; 1336 ill_t *ill = ira->ira_ill; 1337 ip_stack_t *ipst = ill->ill_ipst; 1338 zoneid_t zoneid = ira->ira_zoneid; 1339 int len_needed; 1340 mblk_t *mp_ret = NULL; 1341 1342 ipha = (ipha_t *)mp->b_rptr; 1343 1344 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1345 1346 ip_hdr_length = ira->ira_ip_hdr_length; 1347 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1348 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1350 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1351 freemsg(mp); 1352 return (NULL); 1353 } 1354 /* Last chance to get real. */ 1355 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1356 if (ipha == NULL) { 1357 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1358 freemsg(mp); 1359 return (NULL); 1360 } 1361 } 1362 1363 /* The IP header will always be a multiple of four bytes */ 1364 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1365 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1366 icmph->icmph_code)); 1367 1368 /* 1369 * We will set "interested" to "true" if we should pass a copy to 1370 * the transport or if we handle the packet locally. 1371 */ 1372 interested = B_FALSE; 1373 switch (icmph->icmph_type) { 1374 case ICMP_ECHO_REPLY: 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1376 break; 1377 case ICMP_DEST_UNREACHABLE: 1378 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1380 interested = B_TRUE; /* Pass up to transport */ 1381 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1382 break; 1383 case ICMP_SOURCE_QUENCH: 1384 interested = B_TRUE; /* Pass up to transport */ 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1386 break; 1387 case ICMP_REDIRECT: 1388 if (!ipst->ips_ip_ignore_redirect) 1389 interested = B_TRUE; 1390 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1391 break; 1392 case ICMP_ECHO_REQUEST: 1393 /* 1394 * Whether to respond to echo requests that come in as IP 1395 * broadcasts or as IP multicast is subject to debate 1396 * (what isn't?). We aim to please, you pick it. 1397 * Default is do it. 1398 */ 1399 if (ira->ira_flags & IRAF_MULTICAST) { 1400 /* multicast: respond based on tunable */ 1401 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1402 } else if (ira->ira_flags & IRAF_BROADCAST) { 1403 /* broadcast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1405 } else { 1406 /* unicast: always respond */ 1407 interested = B_TRUE; 1408 } 1409 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1410 if (!interested) { 1411 /* We never pass these to RAW sockets */ 1412 freemsg(mp); 1413 return (NULL); 1414 } 1415 1416 /* Check db_ref to make sure we can modify the packet. */ 1417 if (mp->b_datap->db_ref > 1) { 1418 mblk_t *mp1; 1419 1420 mp1 = copymsg(mp); 1421 freemsg(mp); 1422 if (!mp1) { 1423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1424 return (NULL); 1425 } 1426 mp = mp1; 1427 ipha = (ipha_t *)mp->b_rptr; 1428 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1429 } 1430 icmph->icmph_type = ICMP_ECHO_REPLY; 1431 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1432 icmp_send_reply_v4(mp, ipha, icmph, ira); 1433 return (NULL); 1434 1435 case ICMP_ROUTER_ADVERTISEMENT: 1436 case ICMP_ROUTER_SOLICITATION: 1437 break; 1438 case ICMP_TIME_EXCEEDED: 1439 interested = B_TRUE; /* Pass up to transport */ 1440 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1441 break; 1442 case ICMP_PARAM_PROBLEM: 1443 interested = B_TRUE; /* Pass up to transport */ 1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1445 break; 1446 case ICMP_TIME_STAMP_REQUEST: 1447 /* Response to Time Stamp Requests is local policy. */ 1448 if (ipst->ips_ip_g_resp_to_timestamp) { 1449 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1450 interested = 1451 ipst->ips_ip_g_resp_to_timestamp_bcast; 1452 else 1453 interested = B_TRUE; 1454 } 1455 if (!interested) { 1456 /* We never pass these to RAW sockets */ 1457 freemsg(mp); 1458 return (NULL); 1459 } 1460 1461 /* Make sure we have enough of the packet */ 1462 len_needed = ip_hdr_length + ICMPH_SIZE + 1463 3 * sizeof (uint32_t); 1464 1465 if (mp->b_wptr - mp->b_rptr < len_needed) { 1466 ipha = ip_pullup(mp, len_needed, ira); 1467 if (ipha == NULL) { 1468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1469 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1470 mp, ill); 1471 freemsg(mp); 1472 return (NULL); 1473 } 1474 /* Refresh following the pullup. */ 1475 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1476 } 1477 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1478 /* Check db_ref to make sure we can modify the packet. */ 1479 if (mp->b_datap->db_ref > 1) { 1480 mblk_t *mp1; 1481 1482 mp1 = copymsg(mp); 1483 freemsg(mp); 1484 if (!mp1) { 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1486 return (NULL); 1487 } 1488 mp = mp1; 1489 ipha = (ipha_t *)mp->b_rptr; 1490 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1491 } 1492 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1493 tsp = (uint32_t *)&icmph[1]; 1494 tsp++; /* Skip past 'originate time' */ 1495 /* Compute # of milliseconds since midnight */ 1496 gethrestime(&now); 1497 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1498 NSEC2MSEC(now.tv_nsec); 1499 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1500 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1502 icmp_send_reply_v4(mp, ipha, icmph, ira); 1503 return (NULL); 1504 1505 case ICMP_TIME_STAMP_REPLY: 1506 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1507 break; 1508 case ICMP_INFO_REQUEST: 1509 /* Per RFC 1122 3.2.2.7, ignore this. */ 1510 case ICMP_INFO_REPLY: 1511 break; 1512 case ICMP_ADDRESS_MASK_REQUEST: 1513 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1514 interested = 1515 ipst->ips_ip_respond_to_address_mask_broadcast; 1516 } else { 1517 interested = B_TRUE; 1518 } 1519 if (!interested) { 1520 /* We never pass these to RAW sockets */ 1521 freemsg(mp); 1522 return (NULL); 1523 } 1524 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1525 if (mp->b_wptr - mp->b_rptr < len_needed) { 1526 ipha = ip_pullup(mp, len_needed, ira); 1527 if (ipha == NULL) { 1528 BUMP_MIB(ill->ill_ip_mib, 1529 ipIfStatsInTruncatedPkts); 1530 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1531 ill); 1532 freemsg(mp); 1533 return (NULL); 1534 } 1535 /* Refresh following the pullup. */ 1536 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1537 } 1538 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1539 /* Check db_ref to make sure we can modify the packet. */ 1540 if (mp->b_datap->db_ref > 1) { 1541 mblk_t *mp1; 1542 1543 mp1 = copymsg(mp); 1544 freemsg(mp); 1545 if (!mp1) { 1546 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1547 return (NULL); 1548 } 1549 mp = mp1; 1550 ipha = (ipha_t *)mp->b_rptr; 1551 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1552 } 1553 /* 1554 * Need the ipif with the mask be the same as the source 1555 * address of the mask reply. For unicast we have a specific 1556 * ipif. For multicast/broadcast we only handle onlink 1557 * senders, and use the source address to pick an ipif. 1558 */ 1559 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1560 if (ipif == NULL) { 1561 /* Broadcast or multicast */ 1562 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1563 if (ipif == NULL) { 1564 freemsg(mp); 1565 return (NULL); 1566 } 1567 } 1568 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1569 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1570 ipif_refrele(ipif); 1571 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1572 icmp_send_reply_v4(mp, ipha, icmph, ira); 1573 return (NULL); 1574 1575 case ICMP_ADDRESS_MASK_REPLY: 1576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1577 break; 1578 default: 1579 interested = B_TRUE; /* Pass up to transport */ 1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1581 break; 1582 } 1583 /* 1584 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1585 * if there isn't one. 1586 */ 1587 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1588 /* If there is an ICMP client and we want one too, copy it. */ 1589 1590 if (!interested) { 1591 /* Caller will deliver to RAW sockets */ 1592 return (mp); 1593 } 1594 mp_ret = copymsg(mp); 1595 if (mp_ret == NULL) { 1596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1597 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1598 } 1599 } else if (!interested) { 1600 /* Neither we nor raw sockets are interested. Drop packet now */ 1601 freemsg(mp); 1602 return (NULL); 1603 } 1604 1605 /* 1606 * ICMP error or redirect packet. Make sure we have enough of 1607 * the header and that db_ref == 1 since we might end up modifying 1608 * the packet. 1609 */ 1610 if (mp->b_cont != NULL) { 1611 if (ip_pullup(mp, -1, ira) == NULL) { 1612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1613 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1614 mp, ill); 1615 freemsg(mp); 1616 return (mp_ret); 1617 } 1618 } 1619 1620 if (mp->b_datap->db_ref > 1) { 1621 mblk_t *mp1; 1622 1623 mp1 = copymsg(mp); 1624 if (mp1 == NULL) { 1625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1626 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1627 freemsg(mp); 1628 return (mp_ret); 1629 } 1630 freemsg(mp); 1631 mp = mp1; 1632 } 1633 1634 /* 1635 * In case mp has changed, verify the message before any further 1636 * processes. 1637 */ 1638 ipha = (ipha_t *)mp->b_rptr; 1639 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1640 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1641 freemsg(mp); 1642 return (mp_ret); 1643 } 1644 1645 switch (icmph->icmph_type) { 1646 case ICMP_REDIRECT: 1647 icmp_redirect_v4(mp, ipha, icmph, ira); 1648 break; 1649 case ICMP_DEST_UNREACHABLE: 1650 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1651 /* Update DCE and adjust MTU is icmp header if needed */ 1652 icmp_inbound_too_big_v4(icmph, ira); 1653 } 1654 /* FALLTHROUGH */ 1655 default: 1656 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1657 break; 1658 } 1659 return (mp_ret); 1660 } 1661 1662 /* 1663 * Send an ICMP echo, timestamp or address mask reply. 1664 * The caller has already updated the payload part of the packet. 1665 * We handle the ICMP checksum, IP source address selection and feed 1666 * the packet into ip_output_simple. 1667 */ 1668 static void 1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1670 ip_recv_attr_t *ira) 1671 { 1672 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1673 ill_t *ill = ira->ira_ill; 1674 ip_stack_t *ipst = ill->ill_ipst; 1675 ip_xmit_attr_t ixas; 1676 1677 /* Send out an ICMP packet */ 1678 icmph->icmph_checksum = 0; 1679 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1680 /* Reset time to live. */ 1681 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1682 { 1683 /* Swap source and destination addresses */ 1684 ipaddr_t tmp; 1685 1686 tmp = ipha->ipha_src; 1687 ipha->ipha_src = ipha->ipha_dst; 1688 ipha->ipha_dst = tmp; 1689 } 1690 ipha->ipha_ident = 0; 1691 if (!IS_SIMPLE_IPH(ipha)) 1692 icmp_options_update(ipha); 1693 1694 bzero(&ixas, sizeof (ixas)); 1695 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1696 ixas.ixa_zoneid = ira->ira_zoneid; 1697 ixas.ixa_cred = kcred; 1698 ixas.ixa_cpid = NOPID; 1699 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1700 ixas.ixa_ifindex = 0; 1701 ixas.ixa_ipst = ipst; 1702 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1703 1704 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1705 /* 1706 * This packet should go out the same way as it 1707 * came in i.e in clear, independent of the IPsec policy 1708 * for transmitting packets. 1709 */ 1710 ixas.ixa_flags |= IXAF_NO_IPSEC; 1711 } else { 1712 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1714 /* Note: mp already consumed and ip_drop_packet done */ 1715 return; 1716 } 1717 } 1718 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1719 /* 1720 * Not one or our addresses (IRE_LOCALs), thus we let 1721 * ip_output_simple pick the source. 1722 */ 1723 ipha->ipha_src = INADDR_ANY; 1724 ixas.ixa_flags |= IXAF_SET_SOURCE; 1725 } 1726 /* Should we send with DF and use dce_pmtu? */ 1727 if (ipst->ips_ipv4_icmp_return_pmtu) { 1728 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1729 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1730 } 1731 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1733 1734 (void) ip_output_simple(mp, &ixas); 1735 ixa_cleanup(&ixas); 1736 } 1737 1738 /* 1739 * Verify the ICMP messages for either for ICMP error or redirect packet. 1740 * The caller should have fully pulled up the message. If it's a redirect 1741 * packet, only basic checks on IP header will be done; otherwise, verify 1742 * the packet by looking at the included ULP header. 1743 * 1744 * Called before icmp_inbound_error_fanout_v4 is called. 1745 */ 1746 static boolean_t 1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1748 { 1749 ill_t *ill = ira->ira_ill; 1750 int hdr_length; 1751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1752 conn_t *connp; 1753 ipha_t *ipha; /* Inner IP header */ 1754 1755 ipha = (ipha_t *)&icmph[1]; 1756 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1757 goto truncated; 1758 1759 hdr_length = IPH_HDR_LENGTH(ipha); 1760 1761 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1762 goto discard_pkt; 1763 1764 if (hdr_length < sizeof (ipha_t)) 1765 goto truncated; 1766 1767 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1768 goto truncated; 1769 1770 /* 1771 * Stop here for ICMP_REDIRECT. 1772 */ 1773 if (icmph->icmph_type == ICMP_REDIRECT) 1774 return (B_TRUE); 1775 1776 /* 1777 * ICMP errors only. 1778 */ 1779 switch (ipha->ipha_protocol) { 1780 case IPPROTO_UDP: 1781 /* 1782 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1783 * transport header. 1784 */ 1785 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1786 mp->b_wptr) 1787 goto truncated; 1788 break; 1789 case IPPROTO_TCP: { 1790 tcpha_t *tcpha; 1791 1792 /* 1793 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1794 * transport header. 1795 */ 1796 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1797 mp->b_wptr) 1798 goto truncated; 1799 1800 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1801 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1802 ipst); 1803 if (connp == NULL) 1804 goto discard_pkt; 1805 1806 if ((connp->conn_verifyicmp != NULL) && 1807 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1808 CONN_DEC_REF(connp); 1809 goto discard_pkt; 1810 } 1811 CONN_DEC_REF(connp); 1812 break; 1813 } 1814 case IPPROTO_SCTP: 1815 /* 1816 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1817 * transport header. 1818 */ 1819 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1820 mp->b_wptr) 1821 goto truncated; 1822 break; 1823 case IPPROTO_ESP: 1824 case IPPROTO_AH: 1825 break; 1826 case IPPROTO_ENCAP: 1827 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1828 mp->b_wptr) 1829 goto truncated; 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 return (B_TRUE); 1836 1837 discard_pkt: 1838 /* Bogus ICMP error. */ 1839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1840 return (B_FALSE); 1841 1842 truncated: 1843 /* We pulled up everthing already. Must be truncated */ 1844 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1845 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1846 return (B_FALSE); 1847 } 1848 1849 /* Table from RFC 1191 */ 1850 static int icmp_frag_size_table[] = 1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1852 1853 /* 1854 * Process received ICMP Packet too big. 1855 * Just handles the DCE create/update, including using the above table of 1856 * PMTU guesses. The caller is responsible for validating the packet before 1857 * passing it in and also to fanout the ICMP error to any matching transport 1858 * conns. Assumes the message has been fully pulled up and verified. 1859 * 1860 * Before getting here, the caller has called icmp_inbound_verify_v4() 1861 * that should have verified with ULP to prevent undoing the changes we're 1862 * going to make to DCE. For example, TCP might have verified that the packet 1863 * which generated error is in the send window. 1864 * 1865 * In some cases modified this MTU in the ICMP header packet; the caller 1866 * should pass to the matching ULP after this returns. 1867 */ 1868 static void 1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1870 { 1871 dce_t *dce; 1872 int old_mtu; 1873 int mtu, orig_mtu; 1874 ipaddr_t dst; 1875 boolean_t disable_pmtud; 1876 ill_t *ill = ira->ira_ill; 1877 ip_stack_t *ipst = ill->ill_ipst; 1878 uint_t hdr_length; 1879 ipha_t *ipha; 1880 1881 /* Caller already pulled up everything. */ 1882 ipha = (ipha_t *)&icmph[1]; 1883 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1884 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1885 ASSERT(ill != NULL); 1886 1887 hdr_length = IPH_HDR_LENGTH(ipha); 1888 1889 /* 1890 * We handle path MTU for source routed packets since the DCE 1891 * is looked up using the final destination. 1892 */ 1893 dst = ip_get_dst(ipha); 1894 1895 dce = dce_lookup_and_add_v4(dst, ipst); 1896 if (dce == NULL) { 1897 /* Couldn't add a unique one - ENOMEM */ 1898 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1899 ntohl(dst))); 1900 return; 1901 } 1902 1903 /* Check for MTU discovery advice as described in RFC 1191 */ 1904 mtu = ntohs(icmph->icmph_du_mtu); 1905 orig_mtu = mtu; 1906 disable_pmtud = B_FALSE; 1907 1908 mutex_enter(&dce->dce_lock); 1909 if (dce->dce_flags & DCEF_PMTU) 1910 old_mtu = dce->dce_pmtu; 1911 else 1912 old_mtu = ill->ill_mtu; 1913 1914 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1915 uint32_t length; 1916 int i; 1917 1918 /* 1919 * Use the table from RFC 1191 to figure out 1920 * the next "plateau" based on the length in 1921 * the original IP packet. 1922 */ 1923 length = ntohs(ipha->ipha_length); 1924 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1925 uint32_t, length); 1926 if (old_mtu <= length && 1927 old_mtu >= length - hdr_length) { 1928 /* 1929 * Handle broken BSD 4.2 systems that 1930 * return the wrong ipha_length in ICMP 1931 * errors. 1932 */ 1933 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1934 length, old_mtu)); 1935 length -= hdr_length; 1936 } 1937 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1938 if (length > icmp_frag_size_table[i]) 1939 break; 1940 } 1941 if (i == A_CNT(icmp_frag_size_table)) { 1942 /* Smaller than IP_MIN_MTU! */ 1943 ip1dbg(("Too big for packet size %d\n", 1944 length)); 1945 disable_pmtud = B_TRUE; 1946 mtu = ipst->ips_ip_pmtu_min; 1947 } else { 1948 mtu = icmp_frag_size_table[i]; 1949 ip1dbg(("Calculated mtu %d, packet size %d, " 1950 "before %d\n", mtu, length, old_mtu)); 1951 if (mtu < ipst->ips_ip_pmtu_min) { 1952 mtu = ipst->ips_ip_pmtu_min; 1953 disable_pmtud = B_TRUE; 1954 } 1955 } 1956 } 1957 if (disable_pmtud) 1958 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1959 else 1960 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1961 1962 dce->dce_pmtu = MIN(old_mtu, mtu); 1963 /* Prepare to send the new max frag size for the ULP. */ 1964 icmph->icmph_du_zero = 0; 1965 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1966 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1967 dce, int, orig_mtu, int, mtu); 1968 1969 /* We now have a PMTU for sure */ 1970 dce->dce_flags |= DCEF_PMTU; 1971 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1972 mutex_exit(&dce->dce_lock); 1973 /* 1974 * After dropping the lock the new value is visible to everyone. 1975 * Then we bump the generation number so any cached values reinspect 1976 * the dce_t. 1977 */ 1978 dce_increment_generation(dce); 1979 dce_refrele(dce); 1980 } 1981 1982 /* 1983 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1984 * calls this function. 1985 */ 1986 static mblk_t * 1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1988 { 1989 int length; 1990 1991 ASSERT(mp->b_datap->db_type == M_DATA); 1992 1993 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1994 ASSERT(mp->b_cont == NULL); 1995 1996 /* 1997 * The length that we want to overlay is the inner header 1998 * and what follows it. 1999 */ 2000 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2001 2002 /* 2003 * Overlay the inner header and whatever follows it over the 2004 * outer header. 2005 */ 2006 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2007 2008 /* Adjust for what we removed */ 2009 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2010 return (mp); 2011 } 2012 2013 /* 2014 * Try to pass the ICMP message upstream in case the ULP cares. 2015 * 2016 * If the packet that caused the ICMP error is secure, we send 2017 * it to AH/ESP to make sure that the attached packet has a 2018 * valid association. ipha in the code below points to the 2019 * IP header of the packet that caused the error. 2020 * 2021 * For IPsec cases, we let the next-layer-up (which has access to 2022 * cached policy on the conn_t, or can query the SPD directly) 2023 * subtract out any IPsec overhead if they must. We therefore make no 2024 * adjustments here for IPsec overhead. 2025 * 2026 * IFN could have been generated locally or by some router. 2027 * 2028 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2029 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2030 * This happens because IP adjusted its value of MTU on an 2031 * earlier IFN message and could not tell the upper layer, 2032 * the new adjusted value of MTU e.g. Packet was encrypted 2033 * or there was not enough information to fanout to upper 2034 * layers. Thus on the next outbound datagram, ire_send_wire 2035 * generates the IFN, where IPsec processing has *not* been 2036 * done. 2037 * 2038 * Note that we retain ixa_fragsize across IPsec thus once 2039 * we have picking ixa_fragsize and entered ipsec_out_process we do 2040 * no change the fragsize even if the path MTU changes before 2041 * we reach ip_output_post_ipsec. 2042 * 2043 * In the local case, IRAF_LOOPBACK will be set indicating 2044 * that IFN was generated locally. 2045 * 2046 * ROUTER : IFN could be secure or non-secure. 2047 * 2048 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2049 * packet in error has AH/ESP headers to validate the AH/ESP 2050 * headers. AH/ESP will verify whether there is a valid SA or 2051 * not and send it back. We will fanout again if we have more 2052 * data in the packet. 2053 * 2054 * If the packet in error does not have AH/ESP, we handle it 2055 * like any other case. 2056 * 2057 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2058 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2059 * valid SA or not and send it back. We will fanout again if 2060 * we have more data in the packet. 2061 * 2062 * If the packet in error does not have AH/ESP, we handle it 2063 * like any other case. 2064 * 2065 * The caller must have called icmp_inbound_verify_v4. 2066 */ 2067 static void 2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2069 { 2070 uint16_t *up; /* Pointer to ports in ULP header */ 2071 uint32_t ports; /* reversed ports for fanout */ 2072 ipha_t ripha; /* With reversed addresses */ 2073 ipha_t *ipha; /* Inner IP header */ 2074 uint_t hdr_length; /* Inner IP header length */ 2075 tcpha_t *tcpha; 2076 conn_t *connp; 2077 ill_t *ill = ira->ira_ill; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2080 ill_t *rill = ira->ira_rill; 2081 2082 /* Caller already pulled up everything. */ 2083 ipha = (ipha_t *)&icmph[1]; 2084 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2085 ASSERT(mp->b_cont == NULL); 2086 2087 hdr_length = IPH_HDR_LENGTH(ipha); 2088 ira->ira_protocol = ipha->ipha_protocol; 2089 2090 /* 2091 * We need a separate IP header with the source and destination 2092 * addresses reversed to do fanout/classification because the ipha in 2093 * the ICMP error is in the form we sent it out. 2094 */ 2095 ripha.ipha_src = ipha->ipha_dst; 2096 ripha.ipha_dst = ipha->ipha_src; 2097 ripha.ipha_protocol = ipha->ipha_protocol; 2098 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2099 2100 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2101 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2102 ntohl(ipha->ipha_dst), 2103 icmph->icmph_type, icmph->icmph_code)); 2104 2105 switch (ipha->ipha_protocol) { 2106 case IPPROTO_UDP: 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 2109 /* Attempt to find a client stream based on port. */ 2110 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2111 ntohs(up[0]), ntohs(up[1]))); 2112 2113 /* Note that we send error to all matches. */ 2114 ira->ira_flags |= IRAF_ICMP_ERROR; 2115 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2116 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2117 return; 2118 2119 case IPPROTO_TCP: 2120 /* 2121 * Find a TCP client stream for this packet. 2122 * Note that we do a reverse lookup since the header is 2123 * in the form we sent it out. 2124 */ 2125 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2126 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2127 ipst); 2128 if (connp == NULL) 2129 goto discard_pkt; 2130 2131 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2132 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2133 mp = ipsec_check_inbound_policy(mp, connp, 2134 ipha, NULL, ira); 2135 if (mp == NULL) { 2136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2137 /* Note that mp is NULL */ 2138 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2139 CONN_DEC_REF(connp); 2140 return; 2141 } 2142 } 2143 2144 ira->ira_flags |= IRAF_ICMP_ERROR; 2145 ira->ira_ill = ira->ira_rill = NULL; 2146 if (IPCL_IS_TCP(connp)) { 2147 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2148 connp->conn_recvicmp, connp, ira, SQ_FILL, 2149 SQTAG_TCP_INPUT_ICMP_ERR); 2150 } else { 2151 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2152 (connp->conn_recv)(connp, mp, NULL, ira); 2153 CONN_DEC_REF(connp); 2154 } 2155 ira->ira_ill = ill; 2156 ira->ira_rill = rill; 2157 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2158 return; 2159 2160 case IPPROTO_SCTP: 2161 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2162 /* Find a SCTP client stream for this packet. */ 2163 ((uint16_t *)&ports)[0] = up[1]; 2164 ((uint16_t *)&ports)[1] = up[0]; 2165 2166 ira->ira_flags |= IRAF_ICMP_ERROR; 2167 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2168 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2169 return; 2170 2171 case IPPROTO_ESP: 2172 case IPPROTO_AH: 2173 if (!ipsec_loaded(ipss)) { 2174 ip_proto_not_sup(mp, ira); 2175 return; 2176 } 2177 2178 if (ipha->ipha_protocol == IPPROTO_ESP) 2179 mp = ipsecesp_icmp_error(mp, ira); 2180 else 2181 mp = ipsecah_icmp_error(mp, ira); 2182 if (mp == NULL) 2183 return; 2184 2185 /* Just in case ipsec didn't preserve the NULL b_cont */ 2186 if (mp->b_cont != NULL) { 2187 if (!pullupmsg(mp, -1)) 2188 goto discard_pkt; 2189 } 2190 2191 /* 2192 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2193 * correct, but we don't use them any more here. 2194 * 2195 * If succesful, the mp has been modified to not include 2196 * the ESP/AH header so we can fanout to the ULP's icmp 2197 * error handler. 2198 */ 2199 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2200 goto truncated; 2201 2202 /* Verify the modified message before any further processes. */ 2203 ipha = (ipha_t *)mp->b_rptr; 2204 hdr_length = IPH_HDR_LENGTH(ipha); 2205 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2206 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2207 freemsg(mp); 2208 return; 2209 } 2210 2211 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2212 return; 2213 2214 case IPPROTO_ENCAP: { 2215 /* Look for self-encapsulated packets that caused an error */ 2216 ipha_t *in_ipha; 2217 2218 /* 2219 * Caller has verified that length has to be 2220 * at least the size of IP header. 2221 */ 2222 ASSERT(hdr_length >= sizeof (ipha_t)); 2223 /* 2224 * Check the sanity of the inner IP header like 2225 * we did for the outer header. 2226 */ 2227 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2228 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2229 goto discard_pkt; 2230 } 2231 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2232 goto discard_pkt; 2233 } 2234 /* Check for Self-encapsulated tunnels */ 2235 if (in_ipha->ipha_src == ipha->ipha_src && 2236 in_ipha->ipha_dst == ipha->ipha_dst) { 2237 2238 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2239 in_ipha); 2240 if (mp == NULL) 2241 goto discard_pkt; 2242 2243 /* 2244 * Just in case self_encap didn't preserve the NULL 2245 * b_cont 2246 */ 2247 if (mp->b_cont != NULL) { 2248 if (!pullupmsg(mp, -1)) 2249 goto discard_pkt; 2250 } 2251 /* 2252 * Note that ira_pktlen and ira_ip_hdr_length are no 2253 * longer correct, but we don't use them any more here. 2254 */ 2255 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2256 goto truncated; 2257 2258 /* 2259 * Verify the modified message before any further 2260 * processes. 2261 */ 2262 ipha = (ipha_t *)mp->b_rptr; 2263 hdr_length = IPH_HDR_LENGTH(ipha); 2264 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2265 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2266 freemsg(mp); 2267 return; 2268 } 2269 2270 /* 2271 * The packet in error is self-encapsualted. 2272 * And we are finding it further encapsulated 2273 * which we could not have possibly generated. 2274 */ 2275 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2276 goto discard_pkt; 2277 } 2278 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2279 return; 2280 } 2281 /* No self-encapsulated */ 2282 } 2283 /* FALLTHROUGH */ 2284 case IPPROTO_IPV6: 2285 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2286 &ripha.ipha_dst, ipst)) != NULL) { 2287 ira->ira_flags |= IRAF_ICMP_ERROR; 2288 connp->conn_recvicmp(connp, mp, NULL, ira); 2289 CONN_DEC_REF(connp); 2290 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2291 return; 2292 } 2293 /* 2294 * No IP tunnel is interested, fallthrough and see 2295 * if a raw socket will want it. 2296 */ 2297 /* FALLTHROUGH */ 2298 default: 2299 ira->ira_flags |= IRAF_ICMP_ERROR; 2300 ip_fanout_proto_v4(mp, &ripha, ira); 2301 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2302 return; 2303 } 2304 /* NOTREACHED */ 2305 discard_pkt: 2306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2307 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2308 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2309 freemsg(mp); 2310 return; 2311 2312 truncated: 2313 /* We pulled up everthing already. Must be truncated */ 2314 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2315 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2316 freemsg(mp); 2317 } 2318 2319 /* 2320 * Common IP options parser. 2321 * 2322 * Setup routine: fill in *optp with options-parsing state, then 2323 * tail-call ipoptp_next to return the first option. 2324 */ 2325 uint8_t 2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2327 { 2328 uint32_t totallen; /* total length of all options */ 2329 2330 totallen = ipha->ipha_version_and_hdr_length - 2331 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2332 totallen <<= 2; 2333 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2334 optp->ipoptp_end = optp->ipoptp_next + totallen; 2335 optp->ipoptp_flags = 0; 2336 return (ipoptp_next(optp)); 2337 } 2338 2339 /* Like above but without an ipha_t */ 2340 uint8_t 2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2342 { 2343 optp->ipoptp_next = opt; 2344 optp->ipoptp_end = optp->ipoptp_next + totallen; 2345 optp->ipoptp_flags = 0; 2346 return (ipoptp_next(optp)); 2347 } 2348 2349 /* 2350 * Common IP options parser: extract next option. 2351 */ 2352 uint8_t 2353 ipoptp_next(ipoptp_t *optp) 2354 { 2355 uint8_t *end = optp->ipoptp_end; 2356 uint8_t *cur = optp->ipoptp_next; 2357 uint8_t opt, len, pointer; 2358 2359 /* 2360 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2361 * has been corrupted. 2362 */ 2363 ASSERT(cur <= end); 2364 2365 if (cur == end) 2366 return (IPOPT_EOL); 2367 2368 opt = cur[IPOPT_OPTVAL]; 2369 2370 /* 2371 * Skip any NOP options. 2372 */ 2373 while (opt == IPOPT_NOP) { 2374 cur++; 2375 if (cur == end) 2376 return (IPOPT_EOL); 2377 opt = cur[IPOPT_OPTVAL]; 2378 } 2379 2380 if (opt == IPOPT_EOL) 2381 return (IPOPT_EOL); 2382 2383 /* 2384 * Option requiring a length. 2385 */ 2386 if ((cur + 1) >= end) { 2387 optp->ipoptp_flags |= IPOPTP_ERROR; 2388 return (IPOPT_EOL); 2389 } 2390 len = cur[IPOPT_OLEN]; 2391 if (len < 2) { 2392 optp->ipoptp_flags |= IPOPTP_ERROR; 2393 return (IPOPT_EOL); 2394 } 2395 optp->ipoptp_cur = cur; 2396 optp->ipoptp_len = len; 2397 optp->ipoptp_next = cur + len; 2398 if (cur + len > end) { 2399 optp->ipoptp_flags |= IPOPTP_ERROR; 2400 return (IPOPT_EOL); 2401 } 2402 2403 /* 2404 * For the options which require a pointer field, make sure 2405 * its there, and make sure it points to either something 2406 * inside this option, or the end of the option. 2407 */ 2408 pointer = IPOPT_EOL; 2409 switch (opt) { 2410 case IPOPT_RR: 2411 case IPOPT_TS: 2412 case IPOPT_LSRR: 2413 case IPOPT_SSRR: 2414 if (len <= IPOPT_OFFSET) { 2415 optp->ipoptp_flags |= IPOPTP_ERROR; 2416 return (opt); 2417 } 2418 pointer = cur[IPOPT_OFFSET]; 2419 if (pointer - 1 > len) { 2420 optp->ipoptp_flags |= IPOPTP_ERROR; 2421 return (opt); 2422 } 2423 break; 2424 } 2425 2426 /* 2427 * Sanity check the pointer field based on the type of the 2428 * option. 2429 */ 2430 switch (opt) { 2431 case IPOPT_RR: 2432 case IPOPT_SSRR: 2433 case IPOPT_LSRR: 2434 if (pointer < IPOPT_MINOFF_SR) 2435 optp->ipoptp_flags |= IPOPTP_ERROR; 2436 break; 2437 case IPOPT_TS: 2438 if (pointer < IPOPT_MINOFF_IT) 2439 optp->ipoptp_flags |= IPOPTP_ERROR; 2440 /* 2441 * Note that the Internet Timestamp option also 2442 * contains two four bit fields (the Overflow field, 2443 * and the Flag field), which follow the pointer 2444 * field. We don't need to check that these fields 2445 * fall within the length of the option because this 2446 * was implicitely done above. We've checked that the 2447 * pointer value is at least IPOPT_MINOFF_IT, and that 2448 * it falls within the option. Since IPOPT_MINOFF_IT > 2449 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2450 */ 2451 ASSERT(len > IPOPT_POS_OV_FLG); 2452 break; 2453 } 2454 2455 return (opt); 2456 } 2457 2458 /* 2459 * Use the outgoing IP header to create an IP_OPTIONS option the way 2460 * it was passed down from the application. 2461 * 2462 * This is compatible with BSD in that it returns 2463 * the reverse source route with the final destination 2464 * as the last entry. The first 4 bytes of the option 2465 * will contain the final destination. 2466 */ 2467 int 2468 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2469 { 2470 ipoptp_t opts; 2471 uchar_t *opt; 2472 uint8_t optval; 2473 uint8_t optlen; 2474 uint32_t len = 0; 2475 uchar_t *buf1 = buf; 2476 uint32_t totallen; 2477 ipaddr_t dst; 2478 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2479 2480 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2481 return (0); 2482 2483 totallen = ipp->ipp_ipv4_options_len; 2484 if (totallen & 0x3) 2485 return (0); 2486 2487 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2488 len += IP_ADDR_LEN; 2489 bzero(buf1, IP_ADDR_LEN); 2490 2491 dst = connp->conn_faddr_v4; 2492 2493 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2494 optval != IPOPT_EOL; 2495 optval = ipoptp_next(&opts)) { 2496 int off; 2497 2498 opt = opts.ipoptp_cur; 2499 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2500 break; 2501 } 2502 optlen = opts.ipoptp_len; 2503 2504 switch (optval) { 2505 case IPOPT_SSRR: 2506 case IPOPT_LSRR: 2507 2508 /* 2509 * Insert destination as the first entry in the source 2510 * route and move down the entries on step. 2511 * The last entry gets placed at buf1. 2512 */ 2513 buf[IPOPT_OPTVAL] = optval; 2514 buf[IPOPT_OLEN] = optlen; 2515 buf[IPOPT_OFFSET] = optlen; 2516 2517 off = optlen - IP_ADDR_LEN; 2518 if (off < 0) { 2519 /* No entries in source route */ 2520 break; 2521 } 2522 /* Last entry in source route if not already set */ 2523 if (dst == INADDR_ANY) 2524 bcopy(opt + off, buf1, IP_ADDR_LEN); 2525 off -= IP_ADDR_LEN; 2526 2527 while (off > 0) { 2528 bcopy(opt + off, 2529 buf + off + IP_ADDR_LEN, 2530 IP_ADDR_LEN); 2531 off -= IP_ADDR_LEN; 2532 } 2533 /* ipha_dst into first slot */ 2534 bcopy(&dst, buf + off + IP_ADDR_LEN, 2535 IP_ADDR_LEN); 2536 buf += optlen; 2537 len += optlen; 2538 break; 2539 2540 default: 2541 bcopy(opt, buf, optlen); 2542 buf += optlen; 2543 len += optlen; 2544 break; 2545 } 2546 } 2547 done: 2548 /* Pad the resulting options */ 2549 while (len & 0x3) { 2550 *buf++ = IPOPT_EOL; 2551 len++; 2552 } 2553 return (len); 2554 } 2555 2556 /* 2557 * Update any record route or timestamp options to include this host. 2558 * Reverse any source route option. 2559 * This routine assumes that the options are well formed i.e. that they 2560 * have already been checked. 2561 */ 2562 static void 2563 icmp_options_update(ipha_t *ipha) 2564 { 2565 ipoptp_t opts; 2566 uchar_t *opt; 2567 uint8_t optval; 2568 ipaddr_t src; /* Our local address */ 2569 ipaddr_t dst; 2570 2571 ip2dbg(("icmp_options_update\n")); 2572 src = ipha->ipha_src; 2573 dst = ipha->ipha_dst; 2574 2575 for (optval = ipoptp_first(&opts, ipha); 2576 optval != IPOPT_EOL; 2577 optval = ipoptp_next(&opts)) { 2578 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2579 opt = opts.ipoptp_cur; 2580 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2581 optval, opts.ipoptp_len)); 2582 switch (optval) { 2583 int off1, off2; 2584 case IPOPT_SSRR: 2585 case IPOPT_LSRR: 2586 /* 2587 * Reverse the source route. The first entry 2588 * should be the next to last one in the current 2589 * source route (the last entry is our address). 2590 * The last entry should be the final destination. 2591 */ 2592 off1 = IPOPT_MINOFF_SR - 1; 2593 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2594 if (off2 < 0) { 2595 /* No entries in source route */ 2596 ip1dbg(( 2597 "icmp_options_update: bad src route\n")); 2598 break; 2599 } 2600 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2601 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2602 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2603 off2 -= IP_ADDR_LEN; 2604 2605 while (off1 < off2) { 2606 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2607 bcopy((char *)opt + off2, (char *)opt + off1, 2608 IP_ADDR_LEN); 2609 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2610 off1 += IP_ADDR_LEN; 2611 off2 -= IP_ADDR_LEN; 2612 } 2613 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2614 break; 2615 } 2616 } 2617 } 2618 2619 /* 2620 * Process received ICMP Redirect messages. 2621 * Assumes the caller has verified that the headers are in the pulled up mblk. 2622 * Consumes mp. 2623 */ 2624 static void 2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2626 { 2627 ire_t *ire, *nire; 2628 ire_t *prev_ire; 2629 ipaddr_t src, dst, gateway; 2630 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2631 ipha_t *inner_ipha; /* Inner IP header */ 2632 2633 /* Caller already pulled up everything. */ 2634 inner_ipha = (ipha_t *)&icmph[1]; 2635 src = ipha->ipha_src; 2636 dst = inner_ipha->ipha_dst; 2637 gateway = icmph->icmph_rd_gateway; 2638 /* Make sure the new gateway is reachable somehow. */ 2639 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2640 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2641 /* 2642 * Make sure we had a route for the dest in question and that 2643 * that route was pointing to the old gateway (the source of the 2644 * redirect packet.) 2645 * We do longest match and then compare ire_gateway_addr below. 2646 */ 2647 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2648 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2649 /* 2650 * Check that 2651 * the redirect was not from ourselves 2652 * the new gateway and the old gateway are directly reachable 2653 */ 2654 if (prev_ire == NULL || ire == NULL || 2655 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2656 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2657 !(ire->ire_type & IRE_IF_ALL) || 2658 prev_ire->ire_gateway_addr != src) { 2659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2660 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2661 freemsg(mp); 2662 if (ire != NULL) 2663 ire_refrele(ire); 2664 if (prev_ire != NULL) 2665 ire_refrele(prev_ire); 2666 return; 2667 } 2668 2669 ire_refrele(prev_ire); 2670 ire_refrele(ire); 2671 2672 /* 2673 * TODO: more precise handling for cases 0, 2, 3, the latter two 2674 * require TOS routing 2675 */ 2676 switch (icmph->icmph_code) { 2677 case 0: 2678 case 1: 2679 /* TODO: TOS specificity for cases 2 and 3 */ 2680 case 2: 2681 case 3: 2682 break; 2683 default: 2684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2685 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2686 freemsg(mp); 2687 return; 2688 } 2689 /* 2690 * Create a Route Association. This will allow us to remember that 2691 * someone we believe told us to use the particular gateway. 2692 */ 2693 ire = ire_create( 2694 (uchar_t *)&dst, /* dest addr */ 2695 (uchar_t *)&ip_g_all_ones, /* mask */ 2696 (uchar_t *)&gateway, /* gateway addr */ 2697 IRE_HOST, 2698 NULL, /* ill */ 2699 ALL_ZONES, 2700 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2701 NULL, /* tsol_gc_t */ 2702 ipst); 2703 2704 if (ire == NULL) { 2705 freemsg(mp); 2706 return; 2707 } 2708 nire = ire_add(ire); 2709 /* Check if it was a duplicate entry */ 2710 if (nire != NULL && nire != ire) { 2711 ASSERT(nire->ire_identical_ref > 1); 2712 ire_delete(nire); 2713 ire_refrele(nire); 2714 nire = NULL; 2715 } 2716 ire = nire; 2717 if (ire != NULL) { 2718 ire_refrele(ire); /* Held in ire_add */ 2719 2720 /* tell routing sockets that we received a redirect */ 2721 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2722 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2723 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2724 } 2725 2726 /* 2727 * Delete any existing IRE_HOST type redirect ires for this destination. 2728 * This together with the added IRE has the effect of 2729 * modifying an existing redirect. 2730 */ 2731 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2732 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2733 if (prev_ire != NULL) { 2734 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2735 ire_delete(prev_ire); 2736 ire_refrele(prev_ire); 2737 } 2738 2739 freemsg(mp); 2740 } 2741 2742 /* 2743 * Generate an ICMP parameter problem message. 2744 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2745 * constructed by the caller. 2746 */ 2747 static void 2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2749 { 2750 icmph_t icmph; 2751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2752 2753 mp = icmp_pkt_err_ok(mp, ira); 2754 if (mp == NULL) 2755 return; 2756 2757 bzero(&icmph, sizeof (icmph_t)); 2758 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2759 icmph.icmph_pp_ptr = ptr; 2760 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2761 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2762 } 2763 2764 /* 2765 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2766 * the ICMP header pointed to by "stuff". (May be called as writer.) 2767 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2768 * an icmp error packet can be sent. 2769 * Assigns an appropriate source address to the packet. If ipha_dst is 2770 * one of our addresses use it for source. Otherwise let ip_output_simple 2771 * pick the source address. 2772 */ 2773 static void 2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2775 { 2776 ipaddr_t dst; 2777 icmph_t *icmph; 2778 ipha_t *ipha; 2779 uint_t len_needed; 2780 size_t msg_len; 2781 mblk_t *mp1; 2782 ipaddr_t src; 2783 ire_t *ire; 2784 ip_xmit_attr_t ixas; 2785 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2786 2787 ipha = (ipha_t *)mp->b_rptr; 2788 2789 bzero(&ixas, sizeof (ixas)); 2790 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2791 ixas.ixa_zoneid = ira->ira_zoneid; 2792 ixas.ixa_ifindex = 0; 2793 ixas.ixa_ipst = ipst; 2794 ixas.ixa_cred = kcred; 2795 ixas.ixa_cpid = NOPID; 2796 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2797 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2798 2799 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2800 /* 2801 * Apply IPsec based on how IPsec was applied to 2802 * the packet that had the error. 2803 * 2804 * If it was an outbound packet that caused the ICMP 2805 * error, then the caller will have setup the IRA 2806 * appropriately. 2807 */ 2808 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2809 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2810 /* Note: mp already consumed and ip_drop_packet done */ 2811 return; 2812 } 2813 } else { 2814 /* 2815 * This is in clear. The icmp message we are building 2816 * here should go out in clear, independent of our policy. 2817 */ 2818 ixas.ixa_flags |= IXAF_NO_IPSEC; 2819 } 2820 2821 /* Remember our eventual destination */ 2822 dst = ipha->ipha_src; 2823 2824 /* 2825 * If the packet was for one of our unicast addresses, make 2826 * sure we respond with that as the source. Otherwise 2827 * have ip_output_simple pick the source address. 2828 */ 2829 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2830 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2831 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2832 if (ire != NULL) { 2833 ire_refrele(ire); 2834 src = ipha->ipha_dst; 2835 } else { 2836 src = INADDR_ANY; 2837 ixas.ixa_flags |= IXAF_SET_SOURCE; 2838 } 2839 2840 /* 2841 * Check if we can send back more then 8 bytes in addition to 2842 * the IP header. We try to send 64 bytes of data and the internal 2843 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2844 */ 2845 len_needed = IPH_HDR_LENGTH(ipha); 2846 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2847 ipha->ipha_protocol == IPPROTO_IPV6) { 2848 /* 2849 * NOTE: It is posssible that the inner packet is poorly 2850 * formed (e.g. IP version is corrupt, or v6 extension headers 2851 * got cut off). The receiver of the ICMP message should see 2852 * what we saw. In the absence of a sane inner-packet (which 2853 * protocol types IPPPROTO_ENCAP and IPPROTO_IPV6 indicate 2854 * would be an IP header), we should send the size of what is 2855 * normally expected to be there (either sizeof (ipha_t) or 2856 * sizeof (ip6_t). It may be useful for diagnostic purposes. 2857 * 2858 * ALSO NOTE: "inner_ip6h" is the inner packet header, v4 or v6. 2859 */ 2860 ip6_t *inner_ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2861 2862 if (!pullupmsg(mp, -1)) { 2863 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2864 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2865 freemsg(mp); 2866 return; 2867 } 2868 ipha = (ipha_t *)mp->b_rptr; 2869 2870 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2871 /* 2872 * Check the inner IP version here to guard against 2873 * bogons. 2874 */ 2875 if (IPH_HDR_VERSION(inner_ip6h) == IPV4_VERSION) { 2876 len_needed += 2877 IPH_HDR_LENGTH(((uchar_t *)inner_ip6h)); 2878 } else { 2879 len_needed = sizeof (ipha_t); 2880 } 2881 } else { 2882 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2883 /* function called next-line checks inner IP version */ 2884 len_needed += ip_hdr_length_v6(mp, inner_ip6h); 2885 } 2886 } 2887 len_needed += ipst->ips_ip_icmp_return; 2888 msg_len = msgdsize(mp); 2889 if (msg_len > len_needed) { 2890 (void) adjmsg(mp, len_needed - msg_len); 2891 msg_len = len_needed; 2892 } 2893 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2894 if (mp1 == NULL) { 2895 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2896 freemsg(mp); 2897 return; 2898 } 2899 mp1->b_cont = mp; 2900 mp = mp1; 2901 2902 /* 2903 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2904 * node generates be accepted in peace by all on-host destinations. 2905 * If we do NOT assume that all on-host destinations trust 2906 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2907 * (Look for IXAF_TRUSTED_ICMP). 2908 */ 2909 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2910 2911 ipha = (ipha_t *)mp->b_rptr; 2912 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2913 *ipha = icmp_ipha; 2914 ipha->ipha_src = src; 2915 ipha->ipha_dst = dst; 2916 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2917 msg_len += sizeof (icmp_ipha) + len; 2918 if (msg_len > IP_MAXPACKET) { 2919 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2920 msg_len = IP_MAXPACKET; 2921 } 2922 ipha->ipha_length = htons((uint16_t)msg_len); 2923 icmph = (icmph_t *)&ipha[1]; 2924 bcopy(stuff, icmph, len); 2925 icmph->icmph_checksum = 0; 2926 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2927 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2928 2929 (void) ip_output_simple(mp, &ixas); 2930 ixa_cleanup(&ixas); 2931 } 2932 2933 /* 2934 * Determine if an ICMP error packet can be sent given the rate limit. 2935 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2936 * in milliseconds) and a burst size. Burst size number of packets can 2937 * be sent arbitrarely closely spaced. 2938 * The state is tracked using two variables to implement an approximate 2939 * token bucket filter: 2940 * icmp_pkt_err_last - lbolt value when the last burst started 2941 * icmp_pkt_err_sent - number of packets sent in current burst 2942 */ 2943 boolean_t 2944 icmp_err_rate_limit(ip_stack_t *ipst) 2945 { 2946 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2947 uint_t refilled; /* Number of packets refilled in tbf since last */ 2948 /* Guard against changes by loading into local variable */ 2949 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2950 2951 if (err_interval == 0) 2952 return (B_FALSE); 2953 2954 if (ipst->ips_icmp_pkt_err_last > now) { 2955 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2956 ipst->ips_icmp_pkt_err_last = 0; 2957 ipst->ips_icmp_pkt_err_sent = 0; 2958 } 2959 /* 2960 * If we are in a burst update the token bucket filter. 2961 * Update the "last" time to be close to "now" but make sure 2962 * we don't loose precision. 2963 */ 2964 if (ipst->ips_icmp_pkt_err_sent != 0) { 2965 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2966 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2967 ipst->ips_icmp_pkt_err_sent = 0; 2968 } else { 2969 ipst->ips_icmp_pkt_err_sent -= refilled; 2970 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2971 } 2972 } 2973 if (ipst->ips_icmp_pkt_err_sent == 0) { 2974 /* Start of new burst */ 2975 ipst->ips_icmp_pkt_err_last = now; 2976 } 2977 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2978 ipst->ips_icmp_pkt_err_sent++; 2979 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2980 ipst->ips_icmp_pkt_err_sent)); 2981 return (B_FALSE); 2982 } 2983 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2984 return (B_TRUE); 2985 } 2986 2987 /* 2988 * Check if it is ok to send an IPv4 ICMP error packet in 2989 * response to the IPv4 packet in mp. 2990 * Free the message and return null if no 2991 * ICMP error packet should be sent. 2992 */ 2993 static mblk_t * 2994 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2995 { 2996 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2997 icmph_t *icmph; 2998 ipha_t *ipha; 2999 uint_t len_needed; 3000 3001 if (!mp) 3002 return (NULL); 3003 ipha = (ipha_t *)mp->b_rptr; 3004 if (ip_csum_hdr(ipha)) { 3005 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3006 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3007 freemsg(mp); 3008 return (NULL); 3009 } 3010 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3011 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3012 CLASSD(ipha->ipha_dst) || 3013 CLASSD(ipha->ipha_src) || 3014 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3015 /* Note: only errors to the fragment with offset 0 */ 3016 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3017 freemsg(mp); 3018 return (NULL); 3019 } 3020 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3021 /* 3022 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3023 * errors in response to any ICMP errors. 3024 */ 3025 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3026 if (mp->b_wptr - mp->b_rptr < len_needed) { 3027 if (!pullupmsg(mp, len_needed)) { 3028 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3029 freemsg(mp); 3030 return (NULL); 3031 } 3032 ipha = (ipha_t *)mp->b_rptr; 3033 } 3034 icmph = (icmph_t *) 3035 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3036 switch (icmph->icmph_type) { 3037 case ICMP_DEST_UNREACHABLE: 3038 case ICMP_SOURCE_QUENCH: 3039 case ICMP_TIME_EXCEEDED: 3040 case ICMP_PARAM_PROBLEM: 3041 case ICMP_REDIRECT: 3042 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3043 freemsg(mp); 3044 return (NULL); 3045 default: 3046 break; 3047 } 3048 } 3049 /* 3050 * If this is a labeled system, then check to see if we're allowed to 3051 * send a response to this particular sender. If not, then just drop. 3052 */ 3053 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3054 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3055 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3056 freemsg(mp); 3057 return (NULL); 3058 } 3059 if (icmp_err_rate_limit(ipst)) { 3060 /* 3061 * Only send ICMP error packets every so often. 3062 * This should be done on a per port/source basis, 3063 * but for now this will suffice. 3064 */ 3065 freemsg(mp); 3066 return (NULL); 3067 } 3068 return (mp); 3069 } 3070 3071 /* 3072 * Called when a packet was sent out the same link that it arrived on. 3073 * Check if it is ok to send a redirect and then send it. 3074 */ 3075 void 3076 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3077 ip_recv_attr_t *ira) 3078 { 3079 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3080 ipaddr_t src, nhop; 3081 mblk_t *mp1; 3082 ire_t *nhop_ire; 3083 3084 /* 3085 * Check the source address to see if it originated 3086 * on the same logical subnet it is going back out on. 3087 * If so, we should be able to send it a redirect. 3088 * Avoid sending a redirect if the destination 3089 * is directly connected (i.e., we matched an IRE_ONLINK), 3090 * or if the packet was source routed out this interface. 3091 * 3092 * We avoid sending a redirect if the 3093 * destination is directly connected 3094 * because it is possible that multiple 3095 * IP subnets may have been configured on 3096 * the link, and the source may not 3097 * be on the same subnet as ip destination, 3098 * even though they are on the same 3099 * physical link. 3100 */ 3101 if ((ire->ire_type & IRE_ONLINK) || 3102 ip_source_routed(ipha, ipst)) 3103 return; 3104 3105 nhop_ire = ire_nexthop(ire); 3106 if (nhop_ire == NULL) 3107 return; 3108 3109 nhop = nhop_ire->ire_addr; 3110 3111 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3112 ire_t *ire2; 3113 3114 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3115 mutex_enter(&nhop_ire->ire_lock); 3116 ire2 = nhop_ire->ire_dep_parent; 3117 if (ire2 != NULL) 3118 ire_refhold(ire2); 3119 mutex_exit(&nhop_ire->ire_lock); 3120 ire_refrele(nhop_ire); 3121 nhop_ire = ire2; 3122 } 3123 if (nhop_ire == NULL) 3124 return; 3125 3126 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3127 3128 src = ipha->ipha_src; 3129 3130 /* 3131 * We look at the interface ire for the nexthop, 3132 * to see if ipha_src is in the same subnet 3133 * as the nexthop. 3134 */ 3135 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3136 /* 3137 * The source is directly connected. 3138 */ 3139 mp1 = copymsg(mp); 3140 if (mp1 != NULL) { 3141 icmp_send_redirect(mp1, nhop, ira); 3142 } 3143 } 3144 ire_refrele(nhop_ire); 3145 } 3146 3147 /* 3148 * Generate an ICMP redirect message. 3149 */ 3150 static void 3151 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3152 { 3153 icmph_t icmph; 3154 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3155 3156 mp = icmp_pkt_err_ok(mp, ira); 3157 if (mp == NULL) 3158 return; 3159 3160 bzero(&icmph, sizeof (icmph_t)); 3161 icmph.icmph_type = ICMP_REDIRECT; 3162 icmph.icmph_code = 1; 3163 icmph.icmph_rd_gateway = gateway; 3164 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3165 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3166 } 3167 3168 /* 3169 * Generate an ICMP time exceeded message. 3170 */ 3171 void 3172 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3173 { 3174 icmph_t icmph; 3175 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3176 3177 mp = icmp_pkt_err_ok(mp, ira); 3178 if (mp == NULL) 3179 return; 3180 3181 bzero(&icmph, sizeof (icmph_t)); 3182 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3183 icmph.icmph_code = code; 3184 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3185 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3186 } 3187 3188 /* 3189 * Generate an ICMP unreachable message. 3190 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3191 * constructed by the caller. 3192 */ 3193 void 3194 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3195 { 3196 icmph_t icmph; 3197 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3198 3199 mp = icmp_pkt_err_ok(mp, ira); 3200 if (mp == NULL) 3201 return; 3202 3203 bzero(&icmph, sizeof (icmph_t)); 3204 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3205 icmph.icmph_code = code; 3206 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3207 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3208 } 3209 3210 /* 3211 * Latch in the IPsec state for a stream based the policy in the listener 3212 * and the actions in the ip_recv_attr_t. 3213 * Called directly from TCP and SCTP. 3214 */ 3215 boolean_t 3216 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3217 { 3218 ASSERT(lconnp->conn_policy != NULL); 3219 ASSERT(connp->conn_policy == NULL); 3220 3221 IPPH_REFHOLD(lconnp->conn_policy); 3222 connp->conn_policy = lconnp->conn_policy; 3223 3224 if (ira->ira_ipsec_action != NULL) { 3225 if (connp->conn_latch == NULL) { 3226 connp->conn_latch = iplatch_create(); 3227 if (connp->conn_latch == NULL) 3228 return (B_FALSE); 3229 } 3230 ipsec_latch_inbound(connp, ira); 3231 } 3232 return (B_TRUE); 3233 } 3234 3235 /* 3236 * Verify whether or not the IP address is a valid local address. 3237 * Could be a unicast, including one for a down interface. 3238 * If allow_mcbc then a multicast or broadcast address is also 3239 * acceptable. 3240 * 3241 * In the case of a broadcast/multicast address, however, the 3242 * upper protocol is expected to reset the src address 3243 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3244 * no packets are emitted with broadcast/multicast address as 3245 * source address (that violates hosts requirements RFC 1122) 3246 * The addresses valid for bind are: 3247 * (1) - INADDR_ANY (0) 3248 * (2) - IP address of an UP interface 3249 * (3) - IP address of a DOWN interface 3250 * (4) - valid local IP broadcast addresses. In this case 3251 * the conn will only receive packets destined to 3252 * the specified broadcast address. 3253 * (5) - a multicast address. In this case 3254 * the conn will only receive packets destined to 3255 * the specified multicast address. Note: the 3256 * application still has to issue an 3257 * IP_ADD_MEMBERSHIP socket option. 3258 * 3259 * In all the above cases, the bound address must be valid in the current zone. 3260 * When the address is loopback, multicast or broadcast, there might be many 3261 * matching IREs so bind has to look up based on the zone. 3262 */ 3263 ip_laddr_t 3264 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3265 ip_stack_t *ipst, boolean_t allow_mcbc) 3266 { 3267 ire_t *src_ire; 3268 3269 ASSERT(src_addr != INADDR_ANY); 3270 3271 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3272 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3273 3274 /* 3275 * If an address other than in6addr_any is requested, 3276 * we verify that it is a valid address for bind 3277 * Note: Following code is in if-else-if form for 3278 * readability compared to a condition check. 3279 */ 3280 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3281 /* 3282 * (2) Bind to address of local UP interface 3283 */ 3284 ire_refrele(src_ire); 3285 return (IPVL_UNICAST_UP); 3286 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3287 /* 3288 * (4) Bind to broadcast address 3289 */ 3290 ire_refrele(src_ire); 3291 if (allow_mcbc) 3292 return (IPVL_BCAST); 3293 else 3294 return (IPVL_BAD); 3295 } else if (CLASSD(src_addr)) { 3296 /* (5) bind to multicast address. */ 3297 if (src_ire != NULL) 3298 ire_refrele(src_ire); 3299 3300 if (allow_mcbc) 3301 return (IPVL_MCAST); 3302 else 3303 return (IPVL_BAD); 3304 } else { 3305 ipif_t *ipif; 3306 3307 /* 3308 * (3) Bind to address of local DOWN interface? 3309 * (ipif_lookup_addr() looks up all interfaces 3310 * but we do not get here for UP interfaces 3311 * - case (2) above) 3312 */ 3313 if (src_ire != NULL) 3314 ire_refrele(src_ire); 3315 3316 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3317 if (ipif == NULL) 3318 return (IPVL_BAD); 3319 3320 /* Not a useful source? */ 3321 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3322 ipif_refrele(ipif); 3323 return (IPVL_BAD); 3324 } 3325 ipif_refrele(ipif); 3326 return (IPVL_UNICAST_DOWN); 3327 } 3328 } 3329 3330 /* 3331 * Insert in the bind fanout for IPv4 and IPv6. 3332 * The caller should already have used ip_laddr_verify_v*() before calling 3333 * this. 3334 */ 3335 int 3336 ip_laddr_fanout_insert(conn_t *connp) 3337 { 3338 int error; 3339 3340 /* 3341 * Allow setting new policies. For example, disconnects result 3342 * in us being called. As we would have set conn_policy_cached 3343 * to B_TRUE before, we should set it to B_FALSE, so that policy 3344 * can change after the disconnect. 3345 */ 3346 connp->conn_policy_cached = B_FALSE; 3347 3348 error = ipcl_bind_insert(connp); 3349 if (error != 0) { 3350 if (connp->conn_anon_port) { 3351 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3352 connp->conn_mlp_type, connp->conn_proto, 3353 ntohs(connp->conn_lport), B_FALSE); 3354 } 3355 connp->conn_mlp_type = mlptSingle; 3356 } 3357 return (error); 3358 } 3359 3360 /* 3361 * Verify that both the source and destination addresses are valid. If 3362 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3363 * i.e. have no route to it. Protocols like TCP want to verify destination 3364 * reachability, while tunnels do not. 3365 * 3366 * Determine the route, the interface, and (optionally) the source address 3367 * to use to reach a given destination. 3368 * Note that we allow connect to broadcast and multicast addresses when 3369 * IPDF_ALLOW_MCBC is set. 3370 * first_hop and dst_addr are normally the same, but if source routing 3371 * they will differ; in that case the first_hop is what we'll use for the 3372 * routing lookup but the dce and label checks will be done on dst_addr, 3373 * 3374 * If uinfo is set, then we fill in the best available information 3375 * we have for the destination. This is based on (in priority order) any 3376 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3377 * ill_mtu/ill_mc_mtu. 3378 * 3379 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3380 * always do the label check on dst_addr. 3381 */ 3382 int 3383 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3384 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3385 { 3386 ire_t *ire = NULL; 3387 int error = 0; 3388 ipaddr_t setsrc; /* RTF_SETSRC */ 3389 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3390 ip_stack_t *ipst = ixa->ixa_ipst; 3391 dce_t *dce; 3392 uint_t pmtu; 3393 uint_t generation; 3394 nce_t *nce; 3395 ill_t *ill = NULL; 3396 boolean_t multirt = B_FALSE; 3397 3398 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3399 3400 /* 3401 * We never send to zero; the ULPs map it to the loopback address. 3402 * We can't allow it since we use zero to mean unitialized in some 3403 * places. 3404 */ 3405 ASSERT(dst_addr != INADDR_ANY); 3406 3407 if (is_system_labeled()) { 3408 ts_label_t *tsl = NULL; 3409 3410 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3411 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3412 if (error != 0) 3413 return (error); 3414 if (tsl != NULL) { 3415 /* Update the label */ 3416 ip_xmit_attr_replace_tsl(ixa, tsl); 3417 } 3418 } 3419 3420 setsrc = INADDR_ANY; 3421 /* 3422 * Select a route; For IPMP interfaces, we would only select 3423 * a "hidden" route (i.e., going through a specific under_ill) 3424 * if ixa_ifindex has been specified. 3425 */ 3426 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3427 &generation, &setsrc, &error, &multirt); 3428 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3429 if (error != 0) 3430 goto bad_addr; 3431 3432 /* 3433 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3434 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3435 * Otherwise the destination needn't be reachable. 3436 * 3437 * If we match on a reject or black hole, then we've got a 3438 * local failure. May as well fail out the connect() attempt, 3439 * since it's never going to succeed. 3440 */ 3441 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3442 /* 3443 * If we're verifying destination reachability, we always want 3444 * to complain here. 3445 * 3446 * If we're not verifying destination reachability but the 3447 * destination has a route, we still want to fail on the 3448 * temporary address and broadcast address tests. 3449 * 3450 * In both cases do we let the code continue so some reasonable 3451 * information is returned to the caller. That enables the 3452 * caller to use (and even cache) the IRE. conn_ip_ouput will 3453 * use the generation mismatch path to check for the unreachable 3454 * case thereby avoiding any specific check in the main path. 3455 */ 3456 ASSERT(generation == IRE_GENERATION_VERIFY); 3457 if (flags & IPDF_VERIFY_DST) { 3458 /* 3459 * Set errno but continue to set up ixa_ire to be 3460 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3461 * That allows callers to use ip_output to get an 3462 * ICMP error back. 3463 */ 3464 if (!(ire->ire_type & IRE_HOST)) 3465 error = ENETUNREACH; 3466 else 3467 error = EHOSTUNREACH; 3468 } 3469 } 3470 3471 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3472 !(flags & IPDF_ALLOW_MCBC)) { 3473 ire_refrele(ire); 3474 ire = ire_reject(ipst, B_FALSE); 3475 generation = IRE_GENERATION_VERIFY; 3476 error = ENETUNREACH; 3477 } 3478 3479 /* Cache things */ 3480 if (ixa->ixa_ire != NULL) 3481 ire_refrele_notr(ixa->ixa_ire); 3482 #ifdef DEBUG 3483 ire_refhold_notr(ire); 3484 ire_refrele(ire); 3485 #endif 3486 ixa->ixa_ire = ire; 3487 ixa->ixa_ire_generation = generation; 3488 3489 /* 3490 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3491 * since some callers will send a packet to conn_ip_output() even if 3492 * there's an error. 3493 */ 3494 if (flags & IPDF_UNIQUE_DCE) { 3495 /* Fallback to the default dce if allocation fails */ 3496 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3497 if (dce != NULL) 3498 generation = dce->dce_generation; 3499 else 3500 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3501 } else { 3502 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3503 } 3504 ASSERT(dce != NULL); 3505 if (ixa->ixa_dce != NULL) 3506 dce_refrele_notr(ixa->ixa_dce); 3507 #ifdef DEBUG 3508 dce_refhold_notr(dce); 3509 dce_refrele(dce); 3510 #endif 3511 ixa->ixa_dce = dce; 3512 ixa->ixa_dce_generation = generation; 3513 3514 /* 3515 * For multicast with multirt we have a flag passed back from 3516 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3517 * possible multicast address. 3518 * We also need a flag for multicast since we can't check 3519 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3520 */ 3521 if (multirt) { 3522 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3523 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3524 } else { 3525 ixa->ixa_postfragfn = ire->ire_postfragfn; 3526 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3527 } 3528 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3529 /* Get an nce to cache. */ 3530 nce = ire_to_nce(ire, firsthop, NULL); 3531 if (nce == NULL) { 3532 /* Allocation failure? */ 3533 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3534 } else { 3535 if (ixa->ixa_nce != NULL) 3536 nce_refrele(ixa->ixa_nce); 3537 ixa->ixa_nce = nce; 3538 } 3539 } 3540 3541 /* 3542 * If the source address is a loopback address, the 3543 * destination had best be local or multicast. 3544 * If we are sending to an IRE_LOCAL using a loopback source then 3545 * it had better be the same zoneid. 3546 */ 3547 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3548 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3549 ire = NULL; /* Stored in ixa_ire */ 3550 error = EADDRNOTAVAIL; 3551 goto bad_addr; 3552 } 3553 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3554 ire = NULL; /* Stored in ixa_ire */ 3555 error = EADDRNOTAVAIL; 3556 goto bad_addr; 3557 } 3558 } 3559 if (ire->ire_type & IRE_BROADCAST) { 3560 /* 3561 * If the ULP didn't have a specified source, then we 3562 * make sure we reselect the source when sending 3563 * broadcasts out different interfaces. 3564 */ 3565 if (flags & IPDF_SELECT_SRC) 3566 ixa->ixa_flags |= IXAF_SET_SOURCE; 3567 else 3568 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3569 } 3570 3571 /* 3572 * Does the caller want us to pick a source address? 3573 */ 3574 if (flags & IPDF_SELECT_SRC) { 3575 ipaddr_t src_addr; 3576 3577 /* 3578 * We use use ire_nexthop_ill to avoid the under ipmp 3579 * interface for source address selection. Note that for ipmp 3580 * probe packets, ixa_ifindex would have been specified, and 3581 * the ip_select_route() invocation would have picked an ire 3582 * will ire_ill pointing at an under interface. 3583 */ 3584 ill = ire_nexthop_ill(ire); 3585 3586 /* If unreachable we have no ill but need some source */ 3587 if (ill == NULL) { 3588 src_addr = htonl(INADDR_LOOPBACK); 3589 /* Make sure we look for a better source address */ 3590 generation = SRC_GENERATION_VERIFY; 3591 } else { 3592 error = ip_select_source_v4(ill, setsrc, dst_addr, 3593 ixa->ixa_multicast_ifaddr, zoneid, 3594 ipst, &src_addr, &generation, NULL); 3595 if (error != 0) { 3596 ire = NULL; /* Stored in ixa_ire */ 3597 goto bad_addr; 3598 } 3599 } 3600 3601 /* 3602 * We allow the source address to to down. 3603 * However, we check that we don't use the loopback address 3604 * as a source when sending out on the wire. 3605 */ 3606 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3607 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3608 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3609 ire = NULL; /* Stored in ixa_ire */ 3610 error = EADDRNOTAVAIL; 3611 goto bad_addr; 3612 } 3613 3614 *src_addrp = src_addr; 3615 ixa->ixa_src_generation = generation; 3616 } 3617 3618 /* 3619 * Make sure we don't leave an unreachable ixa_nce in place 3620 * since ip_select_route is used when we unplumb i.e., remove 3621 * references on ixa_ire, ixa_nce, and ixa_dce. 3622 */ 3623 nce = ixa->ixa_nce; 3624 if (nce != NULL && nce->nce_is_condemned) { 3625 nce_refrele(nce); 3626 ixa->ixa_nce = NULL; 3627 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3628 } 3629 3630 /* 3631 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3632 * However, we can't do it for IPv4 multicast or broadcast. 3633 */ 3634 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3635 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3636 3637 /* 3638 * Set initial value for fragmentation limit. Either conn_ip_output 3639 * or ULP might updates it when there are routing changes. 3640 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3641 */ 3642 pmtu = ip_get_pmtu(ixa); 3643 ixa->ixa_fragsize = pmtu; 3644 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3645 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3646 ixa->ixa_pmtu = pmtu; 3647 3648 /* 3649 * Extract information useful for some transports. 3650 * First we look for DCE metrics. Then we take what we have in 3651 * the metrics in the route, where the offlink is used if we have 3652 * one. 3653 */ 3654 if (uinfo != NULL) { 3655 bzero(uinfo, sizeof (*uinfo)); 3656 3657 if (dce->dce_flags & DCEF_UINFO) 3658 *uinfo = dce->dce_uinfo; 3659 3660 rts_merge_metrics(uinfo, &ire->ire_metrics); 3661 3662 /* Allow ire_metrics to decrease the path MTU from above */ 3663 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3664 uinfo->iulp_mtu = pmtu; 3665 3666 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3667 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3668 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3669 } 3670 3671 if (ill != NULL) 3672 ill_refrele(ill); 3673 3674 return (error); 3675 3676 bad_addr: 3677 if (ire != NULL) 3678 ire_refrele(ire); 3679 3680 if (ill != NULL) 3681 ill_refrele(ill); 3682 3683 /* 3684 * Make sure we don't leave an unreachable ixa_nce in place 3685 * since ip_select_route is used when we unplumb i.e., remove 3686 * references on ixa_ire, ixa_nce, and ixa_dce. 3687 */ 3688 nce = ixa->ixa_nce; 3689 if (nce != NULL && nce->nce_is_condemned) { 3690 nce_refrele(nce); 3691 ixa->ixa_nce = NULL; 3692 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3693 } 3694 3695 return (error); 3696 } 3697 3698 3699 /* 3700 * Get the base MTU for the case when path MTU discovery is not used. 3701 * Takes the MTU of the IRE into account. 3702 */ 3703 uint_t 3704 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3705 { 3706 uint_t mtu; 3707 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3708 3709 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3710 mtu = ill->ill_mc_mtu; 3711 else 3712 mtu = ill->ill_mtu; 3713 3714 if (iremtu != 0 && iremtu < mtu) 3715 mtu = iremtu; 3716 3717 return (mtu); 3718 } 3719 3720 /* 3721 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3722 * Assumes that ixa_ire, dce, and nce have already been set up. 3723 * 3724 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3725 * We avoid path MTU discovery if it is disabled with ndd. 3726 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3727 * 3728 * NOTE: We also used to turn it off for source routed packets. That 3729 * is no longer required since the dce is per final destination. 3730 */ 3731 uint_t 3732 ip_get_pmtu(ip_xmit_attr_t *ixa) 3733 { 3734 ip_stack_t *ipst = ixa->ixa_ipst; 3735 dce_t *dce; 3736 nce_t *nce; 3737 ire_t *ire; 3738 uint_t pmtu; 3739 3740 ire = ixa->ixa_ire; 3741 dce = ixa->ixa_dce; 3742 nce = ixa->ixa_nce; 3743 3744 /* 3745 * If path MTU discovery has been turned off by ndd, then we ignore 3746 * any dce_pmtu and for IPv4 we will not set DF. 3747 */ 3748 if (!ipst->ips_ip_path_mtu_discovery) 3749 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3750 3751 pmtu = IP_MAXPACKET; 3752 /* 3753 * Decide whether whether IPv4 sets DF 3754 * For IPv6 "no DF" means to use the 1280 mtu 3755 */ 3756 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3757 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3758 } else { 3759 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3760 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3761 pmtu = IPV6_MIN_MTU; 3762 } 3763 3764 /* Check if the PMTU is to old before we use it */ 3765 if ((dce->dce_flags & DCEF_PMTU) && 3766 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3767 ipst->ips_ip_pathmtu_interval) { 3768 /* 3769 * Older than 20 minutes. Drop the path MTU information. 3770 */ 3771 mutex_enter(&dce->dce_lock); 3772 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3773 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3774 mutex_exit(&dce->dce_lock); 3775 dce_increment_generation(dce); 3776 } 3777 3778 /* The metrics on the route can lower the path MTU */ 3779 if (ire->ire_metrics.iulp_mtu != 0 && 3780 ire->ire_metrics.iulp_mtu < pmtu) 3781 pmtu = ire->ire_metrics.iulp_mtu; 3782 3783 /* 3784 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3785 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3786 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3787 */ 3788 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3789 if (dce->dce_flags & DCEF_PMTU) { 3790 if (dce->dce_pmtu < pmtu) 3791 pmtu = dce->dce_pmtu; 3792 3793 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3794 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3795 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3796 } else { 3797 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3798 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3799 } 3800 } else { 3801 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3802 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3803 } 3804 } 3805 3806 /* 3807 * If we have an IRE_LOCAL we use the loopback mtu instead of 3808 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3809 * mtu as IRE_LOOPBACK. 3810 */ 3811 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3812 uint_t loopback_mtu; 3813 3814 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3815 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3816 3817 if (loopback_mtu < pmtu) 3818 pmtu = loopback_mtu; 3819 } else if (nce != NULL) { 3820 /* 3821 * Make sure we don't exceed the interface MTU. 3822 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3823 * an ill. We'd use the above IP_MAXPACKET in that case just 3824 * to tell the transport something larger than zero. 3825 */ 3826 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3827 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3828 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3829 if (nce->nce_common->ncec_ill != nce->nce_ill && 3830 nce->nce_ill->ill_mc_mtu < pmtu) { 3831 /* 3832 * for interfaces in an IPMP group, the mtu of 3833 * the nce_ill (under_ill) could be different 3834 * from the mtu of the ncec_ill, so we take the 3835 * min of the two. 3836 */ 3837 pmtu = nce->nce_ill->ill_mc_mtu; 3838 } 3839 } else { 3840 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3841 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3842 if (nce->nce_common->ncec_ill != nce->nce_ill && 3843 nce->nce_ill->ill_mtu < pmtu) { 3844 /* 3845 * for interfaces in an IPMP group, the mtu of 3846 * the nce_ill (under_ill) could be different 3847 * from the mtu of the ncec_ill, so we take the 3848 * min of the two. 3849 */ 3850 pmtu = nce->nce_ill->ill_mtu; 3851 } 3852 } 3853 } 3854 3855 /* 3856 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3857 * Only applies to IPv6. 3858 */ 3859 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3860 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3861 switch (ixa->ixa_use_min_mtu) { 3862 case IPV6_USE_MIN_MTU_MULTICAST: 3863 if (ire->ire_type & IRE_MULTICAST) 3864 pmtu = IPV6_MIN_MTU; 3865 break; 3866 case IPV6_USE_MIN_MTU_ALWAYS: 3867 pmtu = IPV6_MIN_MTU; 3868 break; 3869 case IPV6_USE_MIN_MTU_NEVER: 3870 break; 3871 } 3872 } else { 3873 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3874 if (ire->ire_type & IRE_MULTICAST) 3875 pmtu = IPV6_MIN_MTU; 3876 } 3877 } 3878 3879 /* 3880 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3881 * fragment header in every packet. We compensate for those cases by 3882 * returning a smaller path MTU to the ULP. 3883 * 3884 * In the case of CGTP then ip_output will add a fragment header. 3885 * Make sure there is room for it by telling a smaller number 3886 * to the transport. 3887 * 3888 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3889 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3890 * which is the size of the packets it can send. 3891 */ 3892 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3893 if ((ire->ire_flags & RTF_MULTIRT) || 3894 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3895 pmtu -= sizeof (ip6_frag_t); 3896 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3897 } 3898 } 3899 3900 return (pmtu); 3901 } 3902 3903 /* 3904 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3905 * the final piece where we don't. Return a pointer to the first mblk in the 3906 * result, and update the pointer to the next mblk to chew on. If anything 3907 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3908 * NULL pointer. 3909 */ 3910 mblk_t * 3911 ip_carve_mp(mblk_t **mpp, ssize_t len) 3912 { 3913 mblk_t *mp0; 3914 mblk_t *mp1; 3915 mblk_t *mp2; 3916 3917 if (!len || !mpp || !(mp0 = *mpp)) 3918 return (NULL); 3919 /* If we aren't going to consume the first mblk, we need a dup. */ 3920 if (mp0->b_wptr - mp0->b_rptr > len) { 3921 mp1 = dupb(mp0); 3922 if (mp1) { 3923 /* Partition the data between the two mblks. */ 3924 mp1->b_wptr = mp1->b_rptr + len; 3925 mp0->b_rptr = mp1->b_wptr; 3926 /* 3927 * after adjustments if mblk not consumed is now 3928 * unaligned, try to align it. If this fails free 3929 * all messages and let upper layer recover. 3930 */ 3931 if (!OK_32PTR(mp0->b_rptr)) { 3932 if (!pullupmsg(mp0, -1)) { 3933 freemsg(mp0); 3934 freemsg(mp1); 3935 *mpp = NULL; 3936 return (NULL); 3937 } 3938 } 3939 } 3940 return (mp1); 3941 } 3942 /* Eat through as many mblks as we need to get len bytes. */ 3943 len -= mp0->b_wptr - mp0->b_rptr; 3944 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3945 if (mp2->b_wptr - mp2->b_rptr > len) { 3946 /* 3947 * We won't consume the entire last mblk. Like 3948 * above, dup and partition it. 3949 */ 3950 mp1->b_cont = dupb(mp2); 3951 mp1 = mp1->b_cont; 3952 if (!mp1) { 3953 /* 3954 * Trouble. Rather than go to a lot of 3955 * trouble to clean up, we free the messages. 3956 * This won't be any worse than losing it on 3957 * the wire. 3958 */ 3959 freemsg(mp0); 3960 freemsg(mp2); 3961 *mpp = NULL; 3962 return (NULL); 3963 } 3964 mp1->b_wptr = mp1->b_rptr + len; 3965 mp2->b_rptr = mp1->b_wptr; 3966 /* 3967 * after adjustments if mblk not consumed is now 3968 * unaligned, try to align it. If this fails free 3969 * all messages and let upper layer recover. 3970 */ 3971 if (!OK_32PTR(mp2->b_rptr)) { 3972 if (!pullupmsg(mp2, -1)) { 3973 freemsg(mp0); 3974 freemsg(mp2); 3975 *mpp = NULL; 3976 return (NULL); 3977 } 3978 } 3979 *mpp = mp2; 3980 return (mp0); 3981 } 3982 /* Decrement len by the amount we just got. */ 3983 len -= mp2->b_wptr - mp2->b_rptr; 3984 } 3985 /* 3986 * len should be reduced to zero now. If not our caller has 3987 * screwed up. 3988 */ 3989 if (len) { 3990 /* Shouldn't happen! */ 3991 freemsg(mp0); 3992 *mpp = NULL; 3993 return (NULL); 3994 } 3995 /* 3996 * We consumed up to exactly the end of an mblk. Detach the part 3997 * we are returning from the rest of the chain. 3998 */ 3999 mp1->b_cont = NULL; 4000 *mpp = mp2; 4001 return (mp0); 4002 } 4003 4004 /* The ill stream is being unplumbed. Called from ip_close */ 4005 int 4006 ip_modclose(ill_t *ill) 4007 { 4008 boolean_t success; 4009 ipsq_t *ipsq; 4010 ipif_t *ipif; 4011 queue_t *q = ill->ill_rq; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 int i; 4014 arl_ill_common_t *ai = ill->ill_common; 4015 4016 /* 4017 * The punlink prior to this may have initiated a capability 4018 * negotiation. But ipsq_enter will block until that finishes or 4019 * times out. 4020 */ 4021 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4022 4023 /* 4024 * Open/close/push/pop is guaranteed to be single threaded 4025 * per stream by STREAMS. FS guarantees that all references 4026 * from top are gone before close is called. So there can't 4027 * be another close thread that has set CONDEMNED on this ill. 4028 * and cause ipsq_enter to return failure. 4029 */ 4030 ASSERT(success); 4031 ipsq = ill->ill_phyint->phyint_ipsq; 4032 4033 /* 4034 * Mark it condemned. No new reference will be made to this ill. 4035 * Lookup functions will return an error. Threads that try to 4036 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4037 * that the refcnt will drop down to zero. 4038 */ 4039 mutex_enter(&ill->ill_lock); 4040 ill->ill_state_flags |= ILL_CONDEMNED; 4041 for (ipif = ill->ill_ipif; ipif != NULL; 4042 ipif = ipif->ipif_next) { 4043 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4044 } 4045 /* 4046 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4047 * returns error if ILL_CONDEMNED is set 4048 */ 4049 cv_broadcast(&ill->ill_cv); 4050 mutex_exit(&ill->ill_lock); 4051 4052 /* 4053 * Send all the deferred DLPI messages downstream which came in 4054 * during the small window right before ipsq_enter(). We do this 4055 * without waiting for the ACKs because all the ACKs for M_PROTO 4056 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4057 */ 4058 ill_dlpi_send_deferred(ill); 4059 4060 /* 4061 * Shut down fragmentation reassembly. 4062 * ill_frag_timer won't start a timer again. 4063 * Now cancel any existing timer 4064 */ 4065 (void) untimeout(ill->ill_frag_timer_id); 4066 (void) ill_frag_timeout(ill, 0); 4067 4068 /* 4069 * Call ill_delete to bring down the ipifs, ilms and ill on 4070 * this ill. Then wait for the refcnts to drop to zero. 4071 * ill_is_freeable checks whether the ill is really quiescent. 4072 * Then make sure that threads that are waiting to enter the 4073 * ipsq have seen the error returned by ipsq_enter and have 4074 * gone away. Then we call ill_delete_tail which does the 4075 * DL_UNBIND_REQ with the driver and then qprocsoff. 4076 */ 4077 ill_delete(ill); 4078 mutex_enter(&ill->ill_lock); 4079 while (!ill_is_freeable(ill)) 4080 cv_wait(&ill->ill_cv, &ill->ill_lock); 4081 4082 while (ill->ill_waiters) 4083 cv_wait(&ill->ill_cv, &ill->ill_lock); 4084 4085 mutex_exit(&ill->ill_lock); 4086 4087 /* 4088 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4089 * it held until the end of the function since the cleanup 4090 * below needs to be able to use the ip_stack_t. 4091 */ 4092 netstack_hold(ipst->ips_netstack); 4093 4094 /* qprocsoff is done via ill_delete_tail */ 4095 ill_delete_tail(ill); 4096 /* 4097 * synchronously wait for arp stream to unbind. After this, we 4098 * cannot get any data packets up from the driver. 4099 */ 4100 arp_unbind_complete(ill); 4101 ASSERT(ill->ill_ipst == NULL); 4102 4103 /* 4104 * Walk through all conns and qenable those that have queued data. 4105 * Close synchronization needs this to 4106 * be done to ensure that all upper layers blocked 4107 * due to flow control to the closing device 4108 * get unblocked. 4109 */ 4110 ip1dbg(("ip_wsrv: walking\n")); 4111 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4112 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4113 } 4114 4115 /* 4116 * ai can be null if this is an IPv6 ill, or if the IPv4 4117 * stream is being torn down before ARP was plumbed (e.g., 4118 * /sbin/ifconfig plumbing a stream twice, and encountering 4119 * an error 4120 */ 4121 if (ai != NULL) { 4122 ASSERT(!ill->ill_isv6); 4123 mutex_enter(&ai->ai_lock); 4124 ai->ai_ill = NULL; 4125 if (ai->ai_arl == NULL) { 4126 mutex_destroy(&ai->ai_lock); 4127 kmem_free(ai, sizeof (*ai)); 4128 } else { 4129 cv_signal(&ai->ai_ill_unplumb_done); 4130 mutex_exit(&ai->ai_lock); 4131 } 4132 } 4133 4134 mutex_enter(&ipst->ips_ip_mi_lock); 4135 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4136 mutex_exit(&ipst->ips_ip_mi_lock); 4137 4138 /* 4139 * credp could be null if the open didn't succeed and ip_modopen 4140 * itself calls ip_close. 4141 */ 4142 if (ill->ill_credp != NULL) 4143 crfree(ill->ill_credp); 4144 4145 mutex_destroy(&ill->ill_saved_ire_lock); 4146 mutex_destroy(&ill->ill_lock); 4147 rw_destroy(&ill->ill_mcast_lock); 4148 mutex_destroy(&ill->ill_mcast_serializer); 4149 list_destroy(&ill->ill_nce); 4150 4151 /* 4152 * Now we are done with the module close pieces that 4153 * need the netstack_t. 4154 */ 4155 netstack_rele(ipst->ips_netstack); 4156 4157 mi_close_free((IDP)ill); 4158 q->q_ptr = WR(q)->q_ptr = NULL; 4159 4160 ipsq_exit(ipsq); 4161 4162 return (0); 4163 } 4164 4165 /* 4166 * This is called as part of close() for IP, UDP, ICMP, and RTS 4167 * in order to quiesce the conn. 4168 */ 4169 void 4170 ip_quiesce_conn(conn_t *connp) 4171 { 4172 boolean_t drain_cleanup_reqd = B_FALSE; 4173 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4174 boolean_t ilg_cleanup_reqd = B_FALSE; 4175 ip_stack_t *ipst; 4176 4177 ASSERT(!IPCL_IS_TCP(connp)); 4178 ipst = connp->conn_netstack->netstack_ip; 4179 4180 /* 4181 * Mark the conn as closing, and this conn must not be 4182 * inserted in future into any list. Eg. conn_drain_insert(), 4183 * won't insert this conn into the conn_drain_list. 4184 * 4185 * conn_idl, and conn_ilg cannot get set henceforth. 4186 */ 4187 mutex_enter(&connp->conn_lock); 4188 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4189 connp->conn_state_flags |= CONN_CLOSING; 4190 if (connp->conn_idl != NULL) 4191 drain_cleanup_reqd = B_TRUE; 4192 if (connp->conn_oper_pending_ill != NULL) 4193 conn_ioctl_cleanup_reqd = B_TRUE; 4194 if (connp->conn_dhcpinit_ill != NULL) { 4195 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4196 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4197 ill_set_inputfn(connp->conn_dhcpinit_ill); 4198 connp->conn_dhcpinit_ill = NULL; 4199 } 4200 if (connp->conn_ilg != NULL) 4201 ilg_cleanup_reqd = B_TRUE; 4202 mutex_exit(&connp->conn_lock); 4203 4204 if (conn_ioctl_cleanup_reqd) 4205 conn_ioctl_cleanup(connp); 4206 4207 if (is_system_labeled() && connp->conn_anon_port) { 4208 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4209 connp->conn_mlp_type, connp->conn_proto, 4210 ntohs(connp->conn_lport), B_FALSE); 4211 connp->conn_anon_port = 0; 4212 } 4213 connp->conn_mlp_type = mlptSingle; 4214 4215 /* 4216 * Remove this conn from any fanout list it is on. 4217 * and then wait for any threads currently operating 4218 * on this endpoint to finish 4219 */ 4220 ipcl_hash_remove(connp); 4221 4222 /* 4223 * Remove this conn from the drain list, and do any other cleanup that 4224 * may be required. (TCP conns are never flow controlled, and 4225 * conn_idl will be NULL.) 4226 */ 4227 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4228 idl_t *idl = connp->conn_idl; 4229 4230 mutex_enter(&idl->idl_lock); 4231 conn_drain(connp, B_TRUE); 4232 mutex_exit(&idl->idl_lock); 4233 } 4234 4235 if (connp == ipst->ips_ip_g_mrouter) 4236 (void) ip_mrouter_done(ipst); 4237 4238 if (ilg_cleanup_reqd) 4239 ilg_delete_all(connp); 4240 4241 /* 4242 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4243 * callers from write side can't be there now because close 4244 * is in progress. The only other caller is ipcl_walk 4245 * which checks for the condemned flag. 4246 */ 4247 mutex_enter(&connp->conn_lock); 4248 connp->conn_state_flags |= CONN_CONDEMNED; 4249 while (connp->conn_ref != 1) 4250 cv_wait(&connp->conn_cv, &connp->conn_lock); 4251 connp->conn_state_flags |= CONN_QUIESCED; 4252 mutex_exit(&connp->conn_lock); 4253 } 4254 4255 /* ARGSUSED */ 4256 int 4257 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4258 { 4259 conn_t *connp; 4260 4261 /* 4262 * Call the appropriate delete routine depending on whether this is 4263 * a module or device. 4264 */ 4265 if (WR(q)->q_next != NULL) { 4266 /* This is a module close */ 4267 return (ip_modclose((ill_t *)q->q_ptr)); 4268 } 4269 4270 connp = q->q_ptr; 4271 ip_quiesce_conn(connp); 4272 4273 qprocsoff(q); 4274 4275 /* 4276 * Now we are truly single threaded on this stream, and can 4277 * delete the things hanging off the connp, and finally the connp. 4278 * We removed this connp from the fanout list, it cannot be 4279 * accessed thru the fanouts, and we already waited for the 4280 * conn_ref to drop to 0. We are already in close, so 4281 * there cannot be any other thread from the top. qprocsoff 4282 * has completed, and service has completed or won't run in 4283 * future. 4284 */ 4285 ASSERT(connp->conn_ref == 1); 4286 4287 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4288 4289 connp->conn_ref--; 4290 ipcl_conn_destroy(connp); 4291 4292 q->q_ptr = WR(q)->q_ptr = NULL; 4293 return (0); 4294 } 4295 4296 /* 4297 * Wapper around putnext() so that ip_rts_request can merely use 4298 * conn_recv. 4299 */ 4300 /*ARGSUSED2*/ 4301 static void 4302 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4303 { 4304 conn_t *connp = (conn_t *)arg1; 4305 4306 putnext(connp->conn_rq, mp); 4307 } 4308 4309 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4310 /* ARGSUSED */ 4311 static void 4312 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4313 { 4314 freemsg(mp); 4315 } 4316 4317 /* 4318 * Called when the module is about to be unloaded 4319 */ 4320 void 4321 ip_ddi_destroy(void) 4322 { 4323 /* This needs to be called before destroying any transports. */ 4324 mutex_enter(&cpu_lock); 4325 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4326 mutex_exit(&cpu_lock); 4327 4328 tnet_fini(); 4329 4330 icmp_ddi_g_destroy(); 4331 rts_ddi_g_destroy(); 4332 udp_ddi_g_destroy(); 4333 sctp_ddi_g_destroy(); 4334 tcp_ddi_g_destroy(); 4335 ilb_ddi_g_destroy(); 4336 dce_g_destroy(); 4337 ipsec_policy_g_destroy(); 4338 ipcl_g_destroy(); 4339 ip_net_g_destroy(); 4340 ip_ire_g_fini(); 4341 inet_minor_destroy(ip_minor_arena_sa); 4342 #if defined(_LP64) 4343 inet_minor_destroy(ip_minor_arena_la); 4344 #endif 4345 4346 #ifdef DEBUG 4347 list_destroy(&ip_thread_list); 4348 rw_destroy(&ip_thread_rwlock); 4349 tsd_destroy(&ip_thread_data); 4350 #endif 4351 4352 netstack_unregister(NS_IP); 4353 } 4354 4355 /* 4356 * First step in cleanup. 4357 */ 4358 /* ARGSUSED */ 4359 static void 4360 ip_stack_shutdown(netstackid_t stackid, void *arg) 4361 { 4362 ip_stack_t *ipst = (ip_stack_t *)arg; 4363 kt_did_t ktid; 4364 4365 #ifdef NS_DEBUG 4366 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4367 #endif 4368 4369 /* 4370 * Perform cleanup for special interfaces (loopback and IPMP). 4371 */ 4372 ip_interface_cleanup(ipst); 4373 4374 /* 4375 * The *_hook_shutdown()s start the process of notifying any 4376 * consumers that things are going away.... nothing is destroyed. 4377 */ 4378 ipv4_hook_shutdown(ipst); 4379 ipv6_hook_shutdown(ipst); 4380 arp_hook_shutdown(ipst); 4381 4382 mutex_enter(&ipst->ips_capab_taskq_lock); 4383 ktid = ipst->ips_capab_taskq_thread->t_did; 4384 ipst->ips_capab_taskq_quit = B_TRUE; 4385 cv_signal(&ipst->ips_capab_taskq_cv); 4386 mutex_exit(&ipst->ips_capab_taskq_lock); 4387 4388 /* 4389 * In rare occurrences, particularly on virtual hardware where CPUs can 4390 * be de-scheduled, the thread that we just signaled will not run until 4391 * after we have gotten through parts of ip_stack_fini. If that happens 4392 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4393 * from cv_wait which no longer exists. 4394 */ 4395 thread_join(ktid); 4396 } 4397 4398 /* 4399 * Free the IP stack instance. 4400 */ 4401 static void 4402 ip_stack_fini(netstackid_t stackid, void *arg) 4403 { 4404 ip_stack_t *ipst = (ip_stack_t *)arg; 4405 int ret; 4406 4407 #ifdef NS_DEBUG 4408 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4409 #endif 4410 /* 4411 * At this point, all of the notifications that the events and 4412 * protocols are going away have been run, meaning that we can 4413 * now set about starting to clean things up. 4414 */ 4415 ipobs_fini(ipst); 4416 ipv4_hook_destroy(ipst); 4417 ipv6_hook_destroy(ipst); 4418 arp_hook_destroy(ipst); 4419 ip_net_destroy(ipst); 4420 4421 ipmp_destroy(ipst); 4422 4423 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4424 ipst->ips_ip_mibkp = NULL; 4425 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4426 ipst->ips_icmp_mibkp = NULL; 4427 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4428 ipst->ips_ip_kstat = NULL; 4429 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4430 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4431 ipst->ips_ip6_kstat = NULL; 4432 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4433 4434 kmem_free(ipst->ips_propinfo_tbl, 4435 ip_propinfo_count * sizeof (mod_prop_info_t)); 4436 ipst->ips_propinfo_tbl = NULL; 4437 4438 dce_stack_destroy(ipst); 4439 ip_mrouter_stack_destroy(ipst); 4440 4441 /* 4442 * Quiesce all of our timers. Note we set the quiesce flags before we 4443 * call untimeout. The slowtimers may actually kick off another instance 4444 * of the non-slow timers. 4445 */ 4446 mutex_enter(&ipst->ips_igmp_timer_lock); 4447 ipst->ips_igmp_timer_quiesce = B_TRUE; 4448 mutex_exit(&ipst->ips_igmp_timer_lock); 4449 4450 mutex_enter(&ipst->ips_mld_timer_lock); 4451 ipst->ips_mld_timer_quiesce = B_TRUE; 4452 mutex_exit(&ipst->ips_mld_timer_lock); 4453 4454 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4455 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4456 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4457 4458 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4459 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4460 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4461 4462 ret = untimeout(ipst->ips_igmp_timeout_id); 4463 if (ret == -1) { 4464 ASSERT(ipst->ips_igmp_timeout_id == 0); 4465 } else { 4466 ASSERT(ipst->ips_igmp_timeout_id != 0); 4467 ipst->ips_igmp_timeout_id = 0; 4468 } 4469 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4470 if (ret == -1) { 4471 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4472 } else { 4473 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4474 ipst->ips_igmp_slowtimeout_id = 0; 4475 } 4476 ret = untimeout(ipst->ips_mld_timeout_id); 4477 if (ret == -1) { 4478 ASSERT(ipst->ips_mld_timeout_id == 0); 4479 } else { 4480 ASSERT(ipst->ips_mld_timeout_id != 0); 4481 ipst->ips_mld_timeout_id = 0; 4482 } 4483 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4484 if (ret == -1) { 4485 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4486 } else { 4487 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4488 ipst->ips_mld_slowtimeout_id = 0; 4489 } 4490 4491 ip_ire_fini(ipst); 4492 ip6_asp_free(ipst); 4493 conn_drain_fini(ipst); 4494 ipcl_destroy(ipst); 4495 4496 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4497 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4498 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4499 ipst->ips_ndp4 = NULL; 4500 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4501 ipst->ips_ndp6 = NULL; 4502 4503 if (ipst->ips_loopback_ksp != NULL) { 4504 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4505 ipst->ips_loopback_ksp = NULL; 4506 } 4507 4508 mutex_destroy(&ipst->ips_capab_taskq_lock); 4509 cv_destroy(&ipst->ips_capab_taskq_cv); 4510 4511 rw_destroy(&ipst->ips_srcid_lock); 4512 4513 mutex_destroy(&ipst->ips_ip_mi_lock); 4514 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4515 4516 mutex_destroy(&ipst->ips_igmp_timer_lock); 4517 mutex_destroy(&ipst->ips_mld_timer_lock); 4518 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4519 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4520 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4521 rw_destroy(&ipst->ips_ill_g_lock); 4522 4523 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4524 ipst->ips_phyint_g_list = NULL; 4525 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4526 ipst->ips_ill_g_heads = NULL; 4527 4528 ldi_ident_release(ipst->ips_ldi_ident); 4529 kmem_free(ipst, sizeof (*ipst)); 4530 } 4531 4532 /* 4533 * This function is called from the TSD destructor, and is used to debug 4534 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4535 * details. 4536 */ 4537 static void 4538 ip_thread_exit(void *phash) 4539 { 4540 th_hash_t *thh = phash; 4541 4542 rw_enter(&ip_thread_rwlock, RW_WRITER); 4543 list_remove(&ip_thread_list, thh); 4544 rw_exit(&ip_thread_rwlock); 4545 mod_hash_destroy_hash(thh->thh_hash); 4546 kmem_free(thh, sizeof (*thh)); 4547 } 4548 4549 /* 4550 * Called when the IP kernel module is loaded into the kernel 4551 */ 4552 void 4553 ip_ddi_init(void) 4554 { 4555 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4556 4557 /* 4558 * For IP and TCP the minor numbers should start from 2 since we have 4 4559 * initial devices: ip, ip6, tcp, tcp6. 4560 */ 4561 /* 4562 * If this is a 64-bit kernel, then create two separate arenas - 4563 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4564 * other for socket apps in the range 2^^18 through 2^^32-1. 4565 */ 4566 ip_minor_arena_la = NULL; 4567 ip_minor_arena_sa = NULL; 4568 #if defined(_LP64) 4569 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4570 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4571 cmn_err(CE_PANIC, 4572 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4573 } 4574 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4575 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4576 cmn_err(CE_PANIC, 4577 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4578 } 4579 #else 4580 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4581 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4582 cmn_err(CE_PANIC, 4583 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4584 } 4585 #endif 4586 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4587 4588 ipcl_g_init(); 4589 ip_ire_g_init(); 4590 ip_net_g_init(); 4591 4592 #ifdef DEBUG 4593 tsd_create(&ip_thread_data, ip_thread_exit); 4594 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4595 list_create(&ip_thread_list, sizeof (th_hash_t), 4596 offsetof(th_hash_t, thh_link)); 4597 #endif 4598 ipsec_policy_g_init(); 4599 tcp_ddi_g_init(); 4600 sctp_ddi_g_init(); 4601 dce_g_init(); 4602 4603 /* 4604 * We want to be informed each time a stack is created or 4605 * destroyed in the kernel, so we can maintain the 4606 * set of udp_stack_t's. 4607 */ 4608 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4609 ip_stack_fini); 4610 4611 tnet_init(); 4612 4613 udp_ddi_g_init(); 4614 rts_ddi_g_init(); 4615 icmp_ddi_g_init(); 4616 ilb_ddi_g_init(); 4617 4618 /* This needs to be called after all transports are initialized. */ 4619 mutex_enter(&cpu_lock); 4620 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4621 mutex_exit(&cpu_lock); 4622 } 4623 4624 /* 4625 * Initialize the IP stack instance. 4626 */ 4627 static void * 4628 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4629 { 4630 ip_stack_t *ipst; 4631 size_t arrsz; 4632 major_t major; 4633 4634 #ifdef NS_DEBUG 4635 printf("ip_stack_init(stack %d)\n", stackid); 4636 #endif 4637 4638 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4639 ipst->ips_netstack = ns; 4640 4641 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4642 KM_SLEEP); 4643 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4644 KM_SLEEP); 4645 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4646 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4647 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4648 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4649 4650 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4651 ipst->ips_igmp_deferred_next = INFINITY; 4652 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4653 ipst->ips_mld_deferred_next = INFINITY; 4654 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4655 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4656 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4657 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4658 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4659 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4660 4661 ipcl_init(ipst); 4662 ip_ire_init(ipst); 4663 ip6_asp_init(ipst); 4664 ipif_init(ipst); 4665 conn_drain_init(ipst); 4666 ip_mrouter_stack_init(ipst); 4667 dce_stack_init(ipst); 4668 4669 ipst->ips_ip_multirt_log_interval = 1000; 4670 4671 ipst->ips_ill_index = 1; 4672 4673 ipst->ips_saved_ip_forwarding = -1; 4674 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4675 4676 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4677 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4678 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4679 4680 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4681 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4682 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4683 ipst->ips_ip6_kstat = 4684 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4685 4686 ipst->ips_ip_src_id = 1; 4687 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4688 4689 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4690 4691 ip_net_init(ipst, ns); 4692 ipv4_hook_init(ipst); 4693 ipv6_hook_init(ipst); 4694 arp_hook_init(ipst); 4695 ipmp_init(ipst); 4696 ipobs_init(ipst); 4697 4698 /* 4699 * Create the taskq dispatcher thread and initialize related stuff. 4700 */ 4701 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4702 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4703 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4704 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4705 4706 major = mod_name_to_major(INET_NAME); 4707 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4708 return (ipst); 4709 } 4710 4711 /* 4712 * Allocate and initialize a DLPI template of the specified length. (May be 4713 * called as writer.) 4714 */ 4715 mblk_t * 4716 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4717 { 4718 mblk_t *mp; 4719 4720 mp = allocb(len, BPRI_MED); 4721 if (!mp) 4722 return (NULL); 4723 4724 /* 4725 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4726 * of which we don't seem to use) are sent with M_PCPROTO, and 4727 * that other DLPI are M_PROTO. 4728 */ 4729 if (prim == DL_INFO_REQ) { 4730 mp->b_datap->db_type = M_PCPROTO; 4731 } else { 4732 mp->b_datap->db_type = M_PROTO; 4733 } 4734 4735 mp->b_wptr = mp->b_rptr + len; 4736 bzero(mp->b_rptr, len); 4737 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4738 return (mp); 4739 } 4740 4741 /* 4742 * Allocate and initialize a DLPI notification. (May be called as writer.) 4743 */ 4744 mblk_t * 4745 ip_dlnotify_alloc(uint_t notification, uint_t data) 4746 { 4747 dl_notify_ind_t *notifyp; 4748 mblk_t *mp; 4749 4750 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4751 return (NULL); 4752 4753 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4754 notifyp->dl_notification = notification; 4755 notifyp->dl_data = data; 4756 return (mp); 4757 } 4758 4759 mblk_t * 4760 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4761 { 4762 dl_notify_ind_t *notifyp; 4763 mblk_t *mp; 4764 4765 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4766 return (NULL); 4767 4768 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4769 notifyp->dl_notification = notification; 4770 notifyp->dl_data1 = data1; 4771 notifyp->dl_data2 = data2; 4772 return (mp); 4773 } 4774 4775 /* 4776 * Debug formatting routine. Returns a character string representation of the 4777 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4778 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4779 * 4780 * Once the ndd table-printing interfaces are removed, this can be changed to 4781 * standard dotted-decimal form. 4782 */ 4783 char * 4784 ip_dot_addr(ipaddr_t addr, char *buf) 4785 { 4786 uint8_t *ap = (uint8_t *)&addr; 4787 4788 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4789 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4790 return (buf); 4791 } 4792 4793 /* 4794 * Write the given MAC address as a printable string in the usual colon- 4795 * separated format. 4796 */ 4797 const char * 4798 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4799 { 4800 char *bp; 4801 4802 if (alen == 0 || buflen < 4) 4803 return ("?"); 4804 bp = buf; 4805 for (;;) { 4806 /* 4807 * If there are more MAC address bytes available, but we won't 4808 * have any room to print them, then add "..." to the string 4809 * instead. See below for the 'magic number' explanation. 4810 */ 4811 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4812 (void) strcpy(bp, "..."); 4813 break; 4814 } 4815 (void) sprintf(bp, "%02x", *addr++); 4816 bp += 2; 4817 if (--alen == 0) 4818 break; 4819 *bp++ = ':'; 4820 buflen -= 3; 4821 /* 4822 * At this point, based on the first 'if' statement above, 4823 * either alen == 1 and buflen >= 3, or alen > 1 and 4824 * buflen >= 4. The first case leaves room for the final "xx" 4825 * number and trailing NUL byte. The second leaves room for at 4826 * least "...". Thus the apparently 'magic' numbers chosen for 4827 * that statement. 4828 */ 4829 } 4830 return (buf); 4831 } 4832 4833 /* 4834 * Called when it is conceptually a ULP that would sent the packet 4835 * e.g., port unreachable and protocol unreachable. Check that the packet 4836 * would have passed the IPsec global policy before sending the error. 4837 * 4838 * Send an ICMP error after patching up the packet appropriately. 4839 * Uses ip_drop_input and bumps the appropriate MIB. 4840 */ 4841 void 4842 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4843 ip_recv_attr_t *ira) 4844 { 4845 ipha_t *ipha; 4846 boolean_t secure; 4847 ill_t *ill = ira->ira_ill; 4848 ip_stack_t *ipst = ill->ill_ipst; 4849 netstack_t *ns = ipst->ips_netstack; 4850 ipsec_stack_t *ipss = ns->netstack_ipsec; 4851 4852 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4853 4854 /* 4855 * We are generating an icmp error for some inbound packet. 4856 * Called from all ip_fanout_(udp, tcp, proto) functions. 4857 * Before we generate an error, check with global policy 4858 * to see whether this is allowed to enter the system. As 4859 * there is no "conn", we are checking with global policy. 4860 */ 4861 ipha = (ipha_t *)mp->b_rptr; 4862 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4863 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4864 if (mp == NULL) 4865 return; 4866 } 4867 4868 /* We never send errors for protocols that we do implement */ 4869 if (ira->ira_protocol == IPPROTO_ICMP || 4870 ira->ira_protocol == IPPROTO_IGMP) { 4871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4872 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4873 freemsg(mp); 4874 return; 4875 } 4876 /* 4877 * Have to correct checksum since 4878 * the packet might have been 4879 * fragmented and the reassembly code in ip_rput 4880 * does not restore the IP checksum. 4881 */ 4882 ipha->ipha_hdr_checksum = 0; 4883 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4884 4885 switch (icmp_type) { 4886 case ICMP_DEST_UNREACHABLE: 4887 switch (icmp_code) { 4888 case ICMP_PROTOCOL_UNREACHABLE: 4889 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4890 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4891 break; 4892 case ICMP_PORT_UNREACHABLE: 4893 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4894 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4895 break; 4896 } 4897 4898 icmp_unreachable(mp, icmp_code, ira); 4899 break; 4900 default: 4901 #ifdef DEBUG 4902 panic("ip_fanout_send_icmp_v4: wrong type"); 4903 /*NOTREACHED*/ 4904 #else 4905 freemsg(mp); 4906 break; 4907 #endif 4908 } 4909 } 4910 4911 /* 4912 * Used to send an ICMP error message when a packet is received for 4913 * a protocol that is not supported. The mblk passed as argument 4914 * is consumed by this function. 4915 */ 4916 void 4917 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4918 { 4919 ipha_t *ipha; 4920 4921 ipha = (ipha_t *)mp->b_rptr; 4922 if (ira->ira_flags & IRAF_IS_IPV4) { 4923 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4924 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4925 ICMP_PROTOCOL_UNREACHABLE, ira); 4926 } else { 4927 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4928 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4929 ICMP6_PARAMPROB_NEXTHEADER, ira); 4930 } 4931 } 4932 4933 /* 4934 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4935 * Handles IPv4 and IPv6. 4936 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4937 * Caller is responsible for dropping references to the conn. 4938 */ 4939 void 4940 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4941 ip_recv_attr_t *ira) 4942 { 4943 ill_t *ill = ira->ira_ill; 4944 ip_stack_t *ipst = ill->ill_ipst; 4945 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4946 boolean_t secure; 4947 uint_t protocol = ira->ira_protocol; 4948 iaflags_t iraflags = ira->ira_flags; 4949 queue_t *rq; 4950 4951 secure = iraflags & IRAF_IPSEC_SECURE; 4952 4953 rq = connp->conn_rq; 4954 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4955 switch (protocol) { 4956 case IPPROTO_ICMPV6: 4957 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4958 break; 4959 case IPPROTO_ICMP: 4960 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4961 break; 4962 default: 4963 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4964 break; 4965 } 4966 freemsg(mp); 4967 return; 4968 } 4969 4970 ASSERT(!(IPCL_IS_IPTUN(connp))); 4971 4972 if (((iraflags & IRAF_IS_IPV4) ? 4973 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4974 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4975 secure) { 4976 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4977 ip6h, ira); 4978 if (mp == NULL) { 4979 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4980 /* Note that mp is NULL */ 4981 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4982 return; 4983 } 4984 } 4985 4986 if (iraflags & IRAF_ICMP_ERROR) { 4987 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4988 } else { 4989 ill_t *rill = ira->ira_rill; 4990 4991 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4992 ira->ira_ill = ira->ira_rill = NULL; 4993 /* Send it upstream */ 4994 (connp->conn_recv)(connp, mp, NULL, ira); 4995 ira->ira_ill = ill; 4996 ira->ira_rill = rill; 4997 } 4998 } 4999 5000 /* 5001 * Handle protocols with which IP is less intimate. There 5002 * can be more than one stream bound to a particular 5003 * protocol. When this is the case, normally each one gets a copy 5004 * of any incoming packets. 5005 * 5006 * IPsec NOTE : 5007 * 5008 * Don't allow a secure packet going up a non-secure connection. 5009 * We don't allow this because 5010 * 5011 * 1) Reply might go out in clear which will be dropped at 5012 * the sending side. 5013 * 2) If the reply goes out in clear it will give the 5014 * adversary enough information for getting the key in 5015 * most of the cases. 5016 * 5017 * Moreover getting a secure packet when we expect clear 5018 * implies that SA's were added without checking for 5019 * policy on both ends. This should not happen once ISAKMP 5020 * is used to negotiate SAs as SAs will be added only after 5021 * verifying the policy. 5022 * 5023 * Zones notes: 5024 * Earlier in ip_input on a system with multiple shared-IP zones we 5025 * duplicate the multicast and broadcast packets and send them up 5026 * with each explicit zoneid that exists on that ill. 5027 * This means that here we can match the zoneid with SO_ALLZONES being special. 5028 */ 5029 void 5030 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5031 { 5032 mblk_t *mp1; 5033 ipaddr_t laddr; 5034 conn_t *connp, *first_connp, *next_connp; 5035 connf_t *connfp; 5036 ill_t *ill = ira->ira_ill; 5037 ip_stack_t *ipst = ill->ill_ipst; 5038 5039 laddr = ipha->ipha_dst; 5040 5041 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5042 mutex_enter(&connfp->connf_lock); 5043 connp = connfp->connf_head; 5044 for (connp = connfp->connf_head; connp != NULL; 5045 connp = connp->conn_next) { 5046 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5047 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5048 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5049 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5050 break; 5051 } 5052 } 5053 5054 if (connp == NULL) { 5055 /* 5056 * No one bound to these addresses. Is 5057 * there a client that wants all 5058 * unclaimed datagrams? 5059 */ 5060 mutex_exit(&connfp->connf_lock); 5061 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5062 ICMP_PROTOCOL_UNREACHABLE, ira); 5063 return; 5064 } 5065 5066 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5067 5068 CONN_INC_REF(connp); 5069 first_connp = connp; 5070 connp = connp->conn_next; 5071 5072 for (;;) { 5073 while (connp != NULL) { 5074 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5075 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5076 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5077 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5078 ira, connp))) 5079 break; 5080 connp = connp->conn_next; 5081 } 5082 5083 if (connp == NULL) { 5084 /* No more interested clients */ 5085 connp = first_connp; 5086 break; 5087 } 5088 if (((mp1 = dupmsg(mp)) == NULL) && 5089 ((mp1 = copymsg(mp)) == NULL)) { 5090 /* Memory allocation failed */ 5091 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5092 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5093 connp = first_connp; 5094 break; 5095 } 5096 5097 CONN_INC_REF(connp); 5098 mutex_exit(&connfp->connf_lock); 5099 5100 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5101 ira); 5102 5103 mutex_enter(&connfp->connf_lock); 5104 /* Follow the next pointer before releasing the conn. */ 5105 next_connp = connp->conn_next; 5106 CONN_DEC_REF(connp); 5107 connp = next_connp; 5108 } 5109 5110 /* Last one. Send it upstream. */ 5111 mutex_exit(&connfp->connf_lock); 5112 5113 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5114 5115 CONN_DEC_REF(connp); 5116 } 5117 5118 /* 5119 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5120 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5121 * is not consumed. 5122 * 5123 * One of three things can happen, all of which affect the passed-in mblk: 5124 * 5125 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5126 * 5127 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5128 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5129 * 5130 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5131 */ 5132 mblk_t * 5133 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5134 { 5135 int shift, plen, iph_len; 5136 ipha_t *ipha; 5137 udpha_t *udpha; 5138 uint32_t *spi; 5139 uint32_t esp_ports; 5140 uint8_t *orptr; 5141 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5142 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5143 5144 ipha = (ipha_t *)mp->b_rptr; 5145 iph_len = ira->ira_ip_hdr_length; 5146 plen = ira->ira_pktlen; 5147 5148 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5149 /* 5150 * Most likely a keepalive for the benefit of an intervening 5151 * NAT. These aren't for us, per se, so drop it. 5152 * 5153 * RFC 3947/8 doesn't say for sure what to do for 2-3 5154 * byte packets (keepalives are 1-byte), but we'll drop them 5155 * also. 5156 */ 5157 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5158 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5159 return (NULL); 5160 } 5161 5162 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5163 /* might as well pull it all up - it might be ESP. */ 5164 if (!pullupmsg(mp, -1)) { 5165 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5166 DROPPER(ipss, ipds_esp_nomem), 5167 &ipss->ipsec_dropper); 5168 return (NULL); 5169 } 5170 5171 ipha = (ipha_t *)mp->b_rptr; 5172 } 5173 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5174 if (*spi == 0) { 5175 /* UDP packet - remove 0-spi. */ 5176 shift = sizeof (uint32_t); 5177 } else { 5178 /* ESP-in-UDP packet - reduce to ESP. */ 5179 ipha->ipha_protocol = IPPROTO_ESP; 5180 shift = sizeof (udpha_t); 5181 } 5182 5183 /* Fix IP header */ 5184 ira->ira_pktlen = (plen - shift); 5185 ipha->ipha_length = htons(ira->ira_pktlen); 5186 ipha->ipha_hdr_checksum = 0; 5187 5188 orptr = mp->b_rptr; 5189 mp->b_rptr += shift; 5190 5191 udpha = (udpha_t *)(orptr + iph_len); 5192 if (*spi == 0) { 5193 ASSERT((uint8_t *)ipha == orptr); 5194 udpha->uha_length = htons(plen - shift - iph_len); 5195 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5196 esp_ports = 0; 5197 } else { 5198 esp_ports = *((uint32_t *)udpha); 5199 ASSERT(esp_ports != 0); 5200 } 5201 ovbcopy(orptr, orptr + shift, iph_len); 5202 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5203 ipha = (ipha_t *)(orptr + shift); 5204 5205 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5206 ira->ira_esp_udp_ports = esp_ports; 5207 ip_fanout_v4(mp, ipha, ira); 5208 return (NULL); 5209 } 5210 return (mp); 5211 } 5212 5213 /* 5214 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5215 * Handles IPv4 and IPv6. 5216 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5217 * Caller is responsible for dropping references to the conn. 5218 */ 5219 void 5220 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5221 ip_recv_attr_t *ira) 5222 { 5223 ill_t *ill = ira->ira_ill; 5224 ip_stack_t *ipst = ill->ill_ipst; 5225 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5226 boolean_t secure; 5227 iaflags_t iraflags = ira->ira_flags; 5228 5229 secure = iraflags & IRAF_IPSEC_SECURE; 5230 5231 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5232 !canputnext(connp->conn_rq)) { 5233 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5234 freemsg(mp); 5235 return; 5236 } 5237 5238 if (((iraflags & IRAF_IS_IPV4) ? 5239 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5240 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5241 secure) { 5242 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5243 ip6h, ira); 5244 if (mp == NULL) { 5245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5246 /* Note that mp is NULL */ 5247 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5248 return; 5249 } 5250 } 5251 5252 /* 5253 * Since this code is not used for UDP unicast we don't need a NAT_T 5254 * check. Only ip_fanout_v4 has that check. 5255 */ 5256 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5257 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5258 } else { 5259 ill_t *rill = ira->ira_rill; 5260 5261 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5262 ira->ira_ill = ira->ira_rill = NULL; 5263 /* Send it upstream */ 5264 (connp->conn_recv)(connp, mp, NULL, ira); 5265 ira->ira_ill = ill; 5266 ira->ira_rill = rill; 5267 } 5268 } 5269 5270 /* 5271 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5272 * (Unicast fanout is handled in ip_input_v4.) 5273 * 5274 * If SO_REUSEADDR is set all multicast and broadcast packets 5275 * will be delivered to all conns bound to the same port. 5276 * 5277 * If there is at least one matching AF_INET receiver, then we will 5278 * ignore any AF_INET6 receivers. 5279 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5280 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5281 * packets. 5282 * 5283 * Zones notes: 5284 * Earlier in ip_input on a system with multiple shared-IP zones we 5285 * duplicate the multicast and broadcast packets and send them up 5286 * with each explicit zoneid that exists on that ill. 5287 * This means that here we can match the zoneid with SO_ALLZONES being special. 5288 */ 5289 void 5290 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5291 ip_recv_attr_t *ira) 5292 { 5293 ipaddr_t laddr; 5294 in6_addr_t v6faddr; 5295 conn_t *connp; 5296 connf_t *connfp; 5297 ipaddr_t faddr; 5298 ill_t *ill = ira->ira_ill; 5299 ip_stack_t *ipst = ill->ill_ipst; 5300 5301 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5302 5303 laddr = ipha->ipha_dst; 5304 faddr = ipha->ipha_src; 5305 5306 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5307 mutex_enter(&connfp->connf_lock); 5308 connp = connfp->connf_head; 5309 5310 /* 5311 * If SO_REUSEADDR has been set on the first we send the 5312 * packet to all clients that have joined the group and 5313 * match the port. 5314 */ 5315 while (connp != NULL) { 5316 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5317 conn_wantpacket(connp, ira, ipha) && 5318 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5319 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5320 break; 5321 connp = connp->conn_next; 5322 } 5323 5324 if (connp == NULL) 5325 goto notfound; 5326 5327 CONN_INC_REF(connp); 5328 5329 if (connp->conn_reuseaddr) { 5330 conn_t *first_connp = connp; 5331 conn_t *next_connp; 5332 mblk_t *mp1; 5333 5334 connp = connp->conn_next; 5335 for (;;) { 5336 while (connp != NULL) { 5337 if (IPCL_UDP_MATCH(connp, lport, laddr, 5338 fport, faddr) && 5339 conn_wantpacket(connp, ira, ipha) && 5340 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5341 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5342 ira, connp))) 5343 break; 5344 connp = connp->conn_next; 5345 } 5346 if (connp == NULL) { 5347 /* No more interested clients */ 5348 connp = first_connp; 5349 break; 5350 } 5351 if (((mp1 = dupmsg(mp)) == NULL) && 5352 ((mp1 = copymsg(mp)) == NULL)) { 5353 /* Memory allocation failed */ 5354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5355 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5356 connp = first_connp; 5357 break; 5358 } 5359 CONN_INC_REF(connp); 5360 mutex_exit(&connfp->connf_lock); 5361 5362 IP_STAT(ipst, ip_udp_fanmb); 5363 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5364 NULL, ira); 5365 mutex_enter(&connfp->connf_lock); 5366 /* Follow the next pointer before releasing the conn */ 5367 next_connp = connp->conn_next; 5368 CONN_DEC_REF(connp); 5369 connp = next_connp; 5370 } 5371 } 5372 5373 /* Last one. Send it upstream. */ 5374 mutex_exit(&connfp->connf_lock); 5375 IP_STAT(ipst, ip_udp_fanmb); 5376 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5377 CONN_DEC_REF(connp); 5378 return; 5379 5380 notfound: 5381 mutex_exit(&connfp->connf_lock); 5382 /* 5383 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5384 * have already been matched above, since they live in the IPv4 5385 * fanout tables. This implies we only need to 5386 * check for IPv6 in6addr_any endpoints here. 5387 * Thus we compare using ipv6_all_zeros instead of the destination 5388 * address, except for the multicast group membership lookup which 5389 * uses the IPv4 destination. 5390 */ 5391 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5392 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5393 mutex_enter(&connfp->connf_lock); 5394 connp = connfp->connf_head; 5395 /* 5396 * IPv4 multicast packet being delivered to an AF_INET6 5397 * in6addr_any endpoint. 5398 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5399 * and not conn_wantpacket_v6() since any multicast membership is 5400 * for an IPv4-mapped multicast address. 5401 */ 5402 while (connp != NULL) { 5403 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5404 fport, v6faddr) && 5405 conn_wantpacket(connp, ira, ipha) && 5406 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5407 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5408 break; 5409 connp = connp->conn_next; 5410 } 5411 5412 if (connp == NULL) { 5413 /* 5414 * No one bound to this port. Is 5415 * there a client that wants all 5416 * unclaimed datagrams? 5417 */ 5418 mutex_exit(&connfp->connf_lock); 5419 5420 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5421 NULL) { 5422 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5423 ip_fanout_proto_v4(mp, ipha, ira); 5424 } else { 5425 /* 5426 * We used to attempt to send an icmp error here, but 5427 * since this is known to be a multicast packet 5428 * and we don't send icmp errors in response to 5429 * multicast, just drop the packet and give up sooner. 5430 */ 5431 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5432 freemsg(mp); 5433 } 5434 return; 5435 } 5436 CONN_INC_REF(connp); 5437 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5438 5439 /* 5440 * If SO_REUSEADDR has been set on the first we send the 5441 * packet to all clients that have joined the group and 5442 * match the port. 5443 */ 5444 if (connp->conn_reuseaddr) { 5445 conn_t *first_connp = connp; 5446 conn_t *next_connp; 5447 mblk_t *mp1; 5448 5449 connp = connp->conn_next; 5450 for (;;) { 5451 while (connp != NULL) { 5452 if (IPCL_UDP_MATCH_V6(connp, lport, 5453 ipv6_all_zeros, fport, v6faddr) && 5454 conn_wantpacket(connp, ira, ipha) && 5455 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5456 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5457 ira, connp))) 5458 break; 5459 connp = connp->conn_next; 5460 } 5461 if (connp == NULL) { 5462 /* No more interested clients */ 5463 connp = first_connp; 5464 break; 5465 } 5466 if (((mp1 = dupmsg(mp)) == NULL) && 5467 ((mp1 = copymsg(mp)) == NULL)) { 5468 /* Memory allocation failed */ 5469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5470 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5471 connp = first_connp; 5472 break; 5473 } 5474 CONN_INC_REF(connp); 5475 mutex_exit(&connfp->connf_lock); 5476 5477 IP_STAT(ipst, ip_udp_fanmb); 5478 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5479 NULL, ira); 5480 mutex_enter(&connfp->connf_lock); 5481 /* Follow the next pointer before releasing the conn */ 5482 next_connp = connp->conn_next; 5483 CONN_DEC_REF(connp); 5484 connp = next_connp; 5485 } 5486 } 5487 5488 /* Last one. Send it upstream. */ 5489 mutex_exit(&connfp->connf_lock); 5490 IP_STAT(ipst, ip_udp_fanmb); 5491 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5492 CONN_DEC_REF(connp); 5493 } 5494 5495 /* 5496 * Split an incoming packet's IPv4 options into the label and the other options. 5497 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5498 * clearing out any leftover label or options. 5499 * Otherwise it just makes ipp point into the packet. 5500 * 5501 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5502 */ 5503 int 5504 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5505 { 5506 uchar_t *opt; 5507 uint32_t totallen; 5508 uint32_t optval; 5509 uint32_t optlen; 5510 5511 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5512 ipp->ipp_hoplimit = ipha->ipha_ttl; 5513 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5514 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5515 5516 /* 5517 * Get length (in 4 byte octets) of IP header options. 5518 */ 5519 totallen = ipha->ipha_version_and_hdr_length - 5520 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5521 5522 if (totallen == 0) { 5523 if (!allocate) 5524 return (0); 5525 5526 /* Clear out anything from a previous packet */ 5527 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5528 kmem_free(ipp->ipp_ipv4_options, 5529 ipp->ipp_ipv4_options_len); 5530 ipp->ipp_ipv4_options = NULL; 5531 ipp->ipp_ipv4_options_len = 0; 5532 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5533 } 5534 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5535 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5536 ipp->ipp_label_v4 = NULL; 5537 ipp->ipp_label_len_v4 = 0; 5538 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5539 } 5540 return (0); 5541 } 5542 5543 totallen <<= 2; 5544 opt = (uchar_t *)&ipha[1]; 5545 if (!is_system_labeled()) { 5546 5547 copyall: 5548 if (!allocate) { 5549 if (totallen != 0) { 5550 ipp->ipp_ipv4_options = opt; 5551 ipp->ipp_ipv4_options_len = totallen; 5552 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5553 } 5554 return (0); 5555 } 5556 /* Just copy all of options */ 5557 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5558 if (totallen == ipp->ipp_ipv4_options_len) { 5559 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5560 return (0); 5561 } 5562 kmem_free(ipp->ipp_ipv4_options, 5563 ipp->ipp_ipv4_options_len); 5564 ipp->ipp_ipv4_options = NULL; 5565 ipp->ipp_ipv4_options_len = 0; 5566 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5567 } 5568 if (totallen == 0) 5569 return (0); 5570 5571 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5572 if (ipp->ipp_ipv4_options == NULL) 5573 return (ENOMEM); 5574 ipp->ipp_ipv4_options_len = totallen; 5575 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5576 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5577 return (0); 5578 } 5579 5580 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5581 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5582 ipp->ipp_label_v4 = NULL; 5583 ipp->ipp_label_len_v4 = 0; 5584 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5585 } 5586 5587 /* 5588 * Search for CIPSO option. 5589 * We assume CIPSO is first in options if it is present. 5590 * If it isn't, then ipp_opt_ipv4_options will not include the options 5591 * prior to the CIPSO option. 5592 */ 5593 while (totallen != 0) { 5594 switch (optval = opt[IPOPT_OPTVAL]) { 5595 case IPOPT_EOL: 5596 return (0); 5597 case IPOPT_NOP: 5598 optlen = 1; 5599 break; 5600 default: 5601 if (totallen <= IPOPT_OLEN) 5602 return (EINVAL); 5603 optlen = opt[IPOPT_OLEN]; 5604 if (optlen < 2) 5605 return (EINVAL); 5606 } 5607 if (optlen > totallen) 5608 return (EINVAL); 5609 5610 switch (optval) { 5611 case IPOPT_COMSEC: 5612 if (!allocate) { 5613 ipp->ipp_label_v4 = opt; 5614 ipp->ipp_label_len_v4 = optlen; 5615 ipp->ipp_fields |= IPPF_LABEL_V4; 5616 } else { 5617 ipp->ipp_label_v4 = kmem_alloc(optlen, 5618 KM_NOSLEEP); 5619 if (ipp->ipp_label_v4 == NULL) 5620 return (ENOMEM); 5621 ipp->ipp_label_len_v4 = optlen; 5622 ipp->ipp_fields |= IPPF_LABEL_V4; 5623 bcopy(opt, ipp->ipp_label_v4, optlen); 5624 } 5625 totallen -= optlen; 5626 opt += optlen; 5627 5628 /* Skip padding bytes until we get to a multiple of 4 */ 5629 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5630 totallen--; 5631 opt++; 5632 } 5633 /* Remaining as ipp_ipv4_options */ 5634 goto copyall; 5635 } 5636 totallen -= optlen; 5637 opt += optlen; 5638 } 5639 /* No CIPSO found; return everything as ipp_ipv4_options */ 5640 totallen = ipha->ipha_version_and_hdr_length - 5641 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5642 totallen <<= 2; 5643 opt = (uchar_t *)&ipha[1]; 5644 goto copyall; 5645 } 5646 5647 /* 5648 * Efficient versions of lookup for an IRE when we only 5649 * match the address. 5650 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5651 * Does not handle multicast addresses. 5652 */ 5653 uint_t 5654 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5655 { 5656 ire_t *ire; 5657 uint_t result; 5658 5659 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5660 ASSERT(ire != NULL); 5661 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5662 result = IRE_NOROUTE; 5663 else 5664 result = ire->ire_type; 5665 ire_refrele(ire); 5666 return (result); 5667 } 5668 5669 /* 5670 * Efficient versions of lookup for an IRE when we only 5671 * match the address. 5672 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5673 * Does not handle multicast addresses. 5674 */ 5675 uint_t 5676 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5677 { 5678 ire_t *ire; 5679 uint_t result; 5680 5681 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5682 ASSERT(ire != NULL); 5683 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5684 result = IRE_NOROUTE; 5685 else 5686 result = ire->ire_type; 5687 ire_refrele(ire); 5688 return (result); 5689 } 5690 5691 /* 5692 * Nobody should be sending 5693 * packets up this stream 5694 */ 5695 static int 5696 ip_lrput(queue_t *q, mblk_t *mp) 5697 { 5698 switch (mp->b_datap->db_type) { 5699 case M_FLUSH: 5700 /* Turn around */ 5701 if (*mp->b_rptr & FLUSHW) { 5702 *mp->b_rptr &= ~FLUSHR; 5703 qreply(q, mp); 5704 return (0); 5705 } 5706 break; 5707 } 5708 freemsg(mp); 5709 return (0); 5710 } 5711 5712 /* Nobody should be sending packets down this stream */ 5713 /* ARGSUSED */ 5714 int 5715 ip_lwput(queue_t *q, mblk_t *mp) 5716 { 5717 freemsg(mp); 5718 return (0); 5719 } 5720 5721 /* 5722 * Move the first hop in any source route to ipha_dst and remove that part of 5723 * the source route. Called by other protocols. Errors in option formatting 5724 * are ignored - will be handled by ip_output_options. Return the final 5725 * destination (either ipha_dst or the last entry in a source route.) 5726 */ 5727 ipaddr_t 5728 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5729 { 5730 ipoptp_t opts; 5731 uchar_t *opt; 5732 uint8_t optval; 5733 uint8_t optlen; 5734 ipaddr_t dst; 5735 int i; 5736 ip_stack_t *ipst = ns->netstack_ip; 5737 5738 ip2dbg(("ip_massage_options\n")); 5739 dst = ipha->ipha_dst; 5740 for (optval = ipoptp_first(&opts, ipha); 5741 optval != IPOPT_EOL; 5742 optval = ipoptp_next(&opts)) { 5743 opt = opts.ipoptp_cur; 5744 switch (optval) { 5745 uint8_t off; 5746 case IPOPT_SSRR: 5747 case IPOPT_LSRR: 5748 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5749 ip1dbg(("ip_massage_options: bad src route\n")); 5750 break; 5751 } 5752 optlen = opts.ipoptp_len; 5753 off = opt[IPOPT_OFFSET]; 5754 off--; 5755 redo_srr: 5756 if (optlen < IP_ADDR_LEN || 5757 off > optlen - IP_ADDR_LEN) { 5758 /* End of source route */ 5759 ip1dbg(("ip_massage_options: end of SR\n")); 5760 break; 5761 } 5762 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5763 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5764 ntohl(dst))); 5765 /* 5766 * Check if our address is present more than 5767 * once as consecutive hops in source route. 5768 * XXX verify per-interface ip_forwarding 5769 * for source route? 5770 */ 5771 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5772 off += IP_ADDR_LEN; 5773 goto redo_srr; 5774 } 5775 if (dst == htonl(INADDR_LOOPBACK)) { 5776 ip1dbg(("ip_massage_options: loopback addr in " 5777 "source route!\n")); 5778 break; 5779 } 5780 /* 5781 * Update ipha_dst to be the first hop and remove the 5782 * first hop from the source route (by overwriting 5783 * part of the option with NOP options). 5784 */ 5785 ipha->ipha_dst = dst; 5786 /* Put the last entry in dst */ 5787 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5788 3; 5789 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5790 5791 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5792 ntohl(dst))); 5793 /* Move down and overwrite */ 5794 opt[IP_ADDR_LEN] = opt[0]; 5795 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5796 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5797 for (i = 0; i < IP_ADDR_LEN; i++) 5798 opt[i] = IPOPT_NOP; 5799 break; 5800 } 5801 } 5802 return (dst); 5803 } 5804 5805 /* 5806 * Return the network mask 5807 * associated with the specified address. 5808 */ 5809 ipaddr_t 5810 ip_net_mask(ipaddr_t addr) 5811 { 5812 uchar_t *up = (uchar_t *)&addr; 5813 ipaddr_t mask = 0; 5814 uchar_t *maskp = (uchar_t *)&mask; 5815 5816 #if defined(__x86) 5817 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5818 #endif 5819 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5820 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5821 #endif 5822 if (CLASSD(addr)) { 5823 maskp[0] = 0xF0; 5824 return (mask); 5825 } 5826 5827 /* We assume Class E default netmask to be 32 */ 5828 if (CLASSE(addr)) 5829 return (0xffffffffU); 5830 5831 if (addr == 0) 5832 return (0); 5833 maskp[0] = 0xFF; 5834 if ((up[0] & 0x80) == 0) 5835 return (mask); 5836 5837 maskp[1] = 0xFF; 5838 if ((up[0] & 0xC0) == 0x80) 5839 return (mask); 5840 5841 maskp[2] = 0xFF; 5842 if ((up[0] & 0xE0) == 0xC0) 5843 return (mask); 5844 5845 /* Otherwise return no mask */ 5846 return ((ipaddr_t)0); 5847 } 5848 5849 /* Name/Value Table Lookup Routine */ 5850 char * 5851 ip_nv_lookup(nv_t *nv, int value) 5852 { 5853 if (!nv) 5854 return (NULL); 5855 for (; nv->nv_name; nv++) { 5856 if (nv->nv_value == value) 5857 return (nv->nv_name); 5858 } 5859 return ("unknown"); 5860 } 5861 5862 static int 5863 ip_wait_for_info_ack(ill_t *ill) 5864 { 5865 int err; 5866 5867 mutex_enter(&ill->ill_lock); 5868 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5869 /* 5870 * Return value of 0 indicates a pending signal. 5871 */ 5872 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5873 if (err == 0) { 5874 mutex_exit(&ill->ill_lock); 5875 return (EINTR); 5876 } 5877 } 5878 mutex_exit(&ill->ill_lock); 5879 /* 5880 * ip_rput_other could have set an error in ill_error on 5881 * receipt of M_ERROR. 5882 */ 5883 return (ill->ill_error); 5884 } 5885 5886 /* 5887 * This is a module open, i.e. this is a control stream for access 5888 * to a DLPI device. We allocate an ill_t as the instance data in 5889 * this case. 5890 */ 5891 static int 5892 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5893 { 5894 ill_t *ill; 5895 int err; 5896 zoneid_t zoneid; 5897 netstack_t *ns; 5898 ip_stack_t *ipst; 5899 5900 /* 5901 * Prevent unprivileged processes from pushing IP so that 5902 * they can't send raw IP. 5903 */ 5904 if (secpolicy_net_rawaccess(credp) != 0) 5905 return (EPERM); 5906 5907 ns = netstack_find_by_cred(credp); 5908 ASSERT(ns != NULL); 5909 ipst = ns->netstack_ip; 5910 ASSERT(ipst != NULL); 5911 5912 /* 5913 * For exclusive stacks we set the zoneid to zero 5914 * to make IP operate as if in the global zone. 5915 */ 5916 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5917 zoneid = GLOBAL_ZONEID; 5918 else 5919 zoneid = crgetzoneid(credp); 5920 5921 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5922 q->q_ptr = WR(q)->q_ptr = ill; 5923 ill->ill_ipst = ipst; 5924 ill->ill_zoneid = zoneid; 5925 5926 /* 5927 * ill_init initializes the ill fields and then sends down 5928 * down a DL_INFO_REQ after calling qprocson. 5929 */ 5930 err = ill_init(q, ill); 5931 5932 if (err != 0) { 5933 mi_free(ill); 5934 netstack_rele(ipst->ips_netstack); 5935 q->q_ptr = NULL; 5936 WR(q)->q_ptr = NULL; 5937 return (err); 5938 } 5939 5940 /* 5941 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5942 * 5943 * ill_init initializes the ipsq marking this thread as 5944 * writer 5945 */ 5946 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5947 err = ip_wait_for_info_ack(ill); 5948 if (err == 0) 5949 ill->ill_credp = credp; 5950 else 5951 goto fail; 5952 5953 crhold(credp); 5954 5955 mutex_enter(&ipst->ips_ip_mi_lock); 5956 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5957 sflag, credp); 5958 mutex_exit(&ipst->ips_ip_mi_lock); 5959 fail: 5960 if (err) { 5961 (void) ip_close(q, 0, credp); 5962 return (err); 5963 } 5964 return (0); 5965 } 5966 5967 /* For /dev/ip aka AF_INET open */ 5968 int 5969 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5970 { 5971 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5972 } 5973 5974 /* For /dev/ip6 aka AF_INET6 open */ 5975 int 5976 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5977 { 5978 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5979 } 5980 5981 /* IP open routine. */ 5982 int 5983 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5984 boolean_t isv6) 5985 { 5986 conn_t *connp; 5987 major_t maj; 5988 zoneid_t zoneid; 5989 netstack_t *ns; 5990 ip_stack_t *ipst; 5991 5992 /* Allow reopen. */ 5993 if (q->q_ptr != NULL) 5994 return (0); 5995 5996 if (sflag & MODOPEN) { 5997 /* This is a module open */ 5998 return (ip_modopen(q, devp, flag, sflag, credp)); 5999 } 6000 6001 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 6002 /* 6003 * Non streams based socket looking for a stream 6004 * to access IP 6005 */ 6006 return (ip_helper_stream_setup(q, devp, flag, sflag, 6007 credp, isv6)); 6008 } 6009 6010 ns = netstack_find_by_cred(credp); 6011 ASSERT(ns != NULL); 6012 ipst = ns->netstack_ip; 6013 ASSERT(ipst != NULL); 6014 6015 /* 6016 * For exclusive stacks we set the zoneid to zero 6017 * to make IP operate as if in the global zone. 6018 */ 6019 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6020 zoneid = GLOBAL_ZONEID; 6021 else 6022 zoneid = crgetzoneid(credp); 6023 6024 /* 6025 * We are opening as a device. This is an IP client stream, and we 6026 * allocate an conn_t as the instance data. 6027 */ 6028 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6029 6030 /* 6031 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6032 * done by netstack_find_by_cred() 6033 */ 6034 netstack_rele(ipst->ips_netstack); 6035 6036 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6037 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6038 connp->conn_ixa->ixa_zoneid = zoneid; 6039 connp->conn_zoneid = zoneid; 6040 6041 connp->conn_rq = q; 6042 q->q_ptr = WR(q)->q_ptr = connp; 6043 6044 /* Minor tells us which /dev entry was opened */ 6045 if (isv6) { 6046 connp->conn_family = AF_INET6; 6047 connp->conn_ipversion = IPV6_VERSION; 6048 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6049 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6050 } else { 6051 connp->conn_family = AF_INET; 6052 connp->conn_ipversion = IPV4_VERSION; 6053 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6054 } 6055 6056 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6057 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6058 connp->conn_minor_arena = ip_minor_arena_la; 6059 } else { 6060 /* 6061 * Either minor numbers in the large arena were exhausted 6062 * or a non socket application is doing the open. 6063 * Try to allocate from the small arena. 6064 */ 6065 if ((connp->conn_dev = 6066 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6067 /* CONN_DEC_REF takes care of netstack_rele() */ 6068 q->q_ptr = WR(q)->q_ptr = NULL; 6069 CONN_DEC_REF(connp); 6070 return (EBUSY); 6071 } 6072 connp->conn_minor_arena = ip_minor_arena_sa; 6073 } 6074 6075 maj = getemajor(*devp); 6076 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6077 6078 /* 6079 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6080 */ 6081 connp->conn_cred = credp; 6082 connp->conn_cpid = curproc->p_pid; 6083 /* Cache things in ixa without an extra refhold */ 6084 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6085 connp->conn_ixa->ixa_cred = connp->conn_cred; 6086 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6087 if (is_system_labeled()) 6088 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6089 6090 /* 6091 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6092 */ 6093 connp->conn_recv = ip_conn_input; 6094 connp->conn_recvicmp = ip_conn_input_icmp; 6095 6096 crhold(connp->conn_cred); 6097 6098 /* 6099 * If the caller has the process-wide flag set, then default to MAC 6100 * exempt mode. This allows read-down to unlabeled hosts. 6101 */ 6102 if (getpflags(NET_MAC_AWARE, credp) != 0) 6103 connp->conn_mac_mode = CONN_MAC_AWARE; 6104 6105 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6106 6107 connp->conn_rq = q; 6108 connp->conn_wq = WR(q); 6109 6110 /* Non-zero default values */ 6111 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6112 6113 /* 6114 * Make the conn globally visible to walkers 6115 */ 6116 ASSERT(connp->conn_ref == 1); 6117 mutex_enter(&connp->conn_lock); 6118 connp->conn_state_flags &= ~CONN_INCIPIENT; 6119 mutex_exit(&connp->conn_lock); 6120 6121 qprocson(q); 6122 6123 return (0); 6124 } 6125 6126 /* 6127 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6128 * all of them are copied to the conn_t. If the req is "zero", the policy is 6129 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6130 * fields. 6131 * We keep only the latest setting of the policy and thus policy setting 6132 * is not incremental/cumulative. 6133 * 6134 * Requests to set policies with multiple alternative actions will 6135 * go through a different API. 6136 */ 6137 int 6138 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6139 { 6140 uint_t ah_req = 0; 6141 uint_t esp_req = 0; 6142 uint_t se_req = 0; 6143 ipsec_act_t *actp = NULL; 6144 uint_t nact; 6145 ipsec_policy_head_t *ph; 6146 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6147 int error = 0; 6148 netstack_t *ns = connp->conn_netstack; 6149 ip_stack_t *ipst = ns->netstack_ip; 6150 ipsec_stack_t *ipss = ns->netstack_ipsec; 6151 6152 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6153 6154 /* 6155 * The IP_SEC_OPT option does not allow variable length parameters, 6156 * hence a request cannot be NULL. 6157 */ 6158 if (req == NULL) 6159 return (EINVAL); 6160 6161 ah_req = req->ipsr_ah_req; 6162 esp_req = req->ipsr_esp_req; 6163 se_req = req->ipsr_self_encap_req; 6164 6165 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6166 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6167 return (EINVAL); 6168 6169 /* 6170 * Are we dealing with a request to reset the policy (i.e. 6171 * zero requests). 6172 */ 6173 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6174 (esp_req & REQ_MASK) == 0 && 6175 (se_req & REQ_MASK) == 0); 6176 6177 if (!is_pol_reset) { 6178 /* 6179 * If we couldn't load IPsec, fail with "protocol 6180 * not supported". 6181 * IPsec may not have been loaded for a request with zero 6182 * policies, so we don't fail in this case. 6183 */ 6184 mutex_enter(&ipss->ipsec_loader_lock); 6185 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6186 mutex_exit(&ipss->ipsec_loader_lock); 6187 return (EPROTONOSUPPORT); 6188 } 6189 mutex_exit(&ipss->ipsec_loader_lock); 6190 6191 /* 6192 * Test for valid requests. Invalid algorithms 6193 * need to be tested by IPsec code because new 6194 * algorithms can be added dynamically. 6195 */ 6196 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6197 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6198 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6199 return (EINVAL); 6200 } 6201 6202 /* 6203 * Only privileged users can issue these 6204 * requests. 6205 */ 6206 if (((ah_req & IPSEC_PREF_NEVER) || 6207 (esp_req & IPSEC_PREF_NEVER) || 6208 (se_req & IPSEC_PREF_NEVER)) && 6209 secpolicy_ip_config(cr, B_FALSE) != 0) { 6210 return (EPERM); 6211 } 6212 6213 /* 6214 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6215 * are mutually exclusive. 6216 */ 6217 if (((ah_req & REQ_MASK) == REQ_MASK) || 6218 ((esp_req & REQ_MASK) == REQ_MASK) || 6219 ((se_req & REQ_MASK) == REQ_MASK)) { 6220 /* Both of them are set */ 6221 return (EINVAL); 6222 } 6223 } 6224 6225 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6226 6227 /* 6228 * If we have already cached policies in conn_connect(), don't 6229 * let them change now. We cache policies for connections 6230 * whose src,dst [addr, port] is known. 6231 */ 6232 if (connp->conn_policy_cached) { 6233 return (EINVAL); 6234 } 6235 6236 /* 6237 * We have a zero policies, reset the connection policy if already 6238 * set. This will cause the connection to inherit the 6239 * global policy, if any. 6240 */ 6241 if (is_pol_reset) { 6242 if (connp->conn_policy != NULL) { 6243 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6244 connp->conn_policy = NULL; 6245 } 6246 connp->conn_in_enforce_policy = B_FALSE; 6247 connp->conn_out_enforce_policy = B_FALSE; 6248 return (0); 6249 } 6250 6251 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6252 ipst->ips_netstack); 6253 if (ph == NULL) 6254 goto enomem; 6255 6256 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6257 if (actp == NULL) 6258 goto enomem; 6259 6260 /* 6261 * Always insert IPv4 policy entries, since they can also apply to 6262 * ipv6 sockets being used in ipv4-compat mode. 6263 */ 6264 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6265 IPSEC_TYPE_INBOUND, ns)) 6266 goto enomem; 6267 is_pol_inserted = B_TRUE; 6268 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6269 IPSEC_TYPE_OUTBOUND, ns)) 6270 goto enomem; 6271 6272 /* 6273 * We're looking at a v6 socket, also insert the v6-specific 6274 * entries. 6275 */ 6276 if (connp->conn_family == AF_INET6) { 6277 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6278 IPSEC_TYPE_INBOUND, ns)) 6279 goto enomem; 6280 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6281 IPSEC_TYPE_OUTBOUND, ns)) 6282 goto enomem; 6283 } 6284 6285 ipsec_actvec_free(actp, nact); 6286 6287 /* 6288 * If the requests need security, set enforce_policy. 6289 * If the requests are IPSEC_PREF_NEVER, one should 6290 * still set conn_out_enforce_policy so that ip_set_destination 6291 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6292 * for connections that we don't cache policy in at connect time, 6293 * if global policy matches in ip_output_attach_policy, we 6294 * don't wrongly inherit global policy. Similarly, we need 6295 * to set conn_in_enforce_policy also so that we don't verify 6296 * policy wrongly. 6297 */ 6298 if ((ah_req & REQ_MASK) != 0 || 6299 (esp_req & REQ_MASK) != 0 || 6300 (se_req & REQ_MASK) != 0) { 6301 connp->conn_in_enforce_policy = B_TRUE; 6302 connp->conn_out_enforce_policy = B_TRUE; 6303 } 6304 6305 return (error); 6306 #undef REQ_MASK 6307 6308 /* 6309 * Common memory-allocation-failure exit path. 6310 */ 6311 enomem: 6312 if (actp != NULL) 6313 ipsec_actvec_free(actp, nact); 6314 if (is_pol_inserted) 6315 ipsec_polhead_flush(ph, ns); 6316 return (ENOMEM); 6317 } 6318 6319 /* 6320 * Set socket options for joining and leaving multicast groups. 6321 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6322 * The caller has already check that the option name is consistent with 6323 * the address family of the socket. 6324 */ 6325 int 6326 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6327 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6328 { 6329 int *i1 = (int *)invalp; 6330 int error = 0; 6331 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6332 struct ip_mreq *v4_mreqp; 6333 struct ipv6_mreq *v6_mreqp; 6334 struct group_req *greqp; 6335 ire_t *ire; 6336 boolean_t done = B_FALSE; 6337 ipaddr_t ifaddr; 6338 in6_addr_t v6group; 6339 uint_t ifindex; 6340 boolean_t mcast_opt = B_TRUE; 6341 mcast_record_t fmode; 6342 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6343 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6344 6345 switch (name) { 6346 case IP_ADD_MEMBERSHIP: 6347 case IPV6_JOIN_GROUP: 6348 mcast_opt = B_FALSE; 6349 /* FALLTHROUGH */ 6350 case MCAST_JOIN_GROUP: 6351 fmode = MODE_IS_EXCLUDE; 6352 optfn = ip_opt_add_group; 6353 break; 6354 6355 case IP_DROP_MEMBERSHIP: 6356 case IPV6_LEAVE_GROUP: 6357 mcast_opt = B_FALSE; 6358 /* FALLTHROUGH */ 6359 case MCAST_LEAVE_GROUP: 6360 fmode = MODE_IS_INCLUDE; 6361 optfn = ip_opt_delete_group; 6362 break; 6363 default: 6364 /* Should not be reached. */ 6365 fmode = MODE_IS_INCLUDE; 6366 optfn = NULL; 6367 ASSERT(0); 6368 } 6369 6370 if (mcast_opt) { 6371 struct sockaddr_in *sin; 6372 struct sockaddr_in6 *sin6; 6373 6374 greqp = (struct group_req *)i1; 6375 if (greqp->gr_group.ss_family == AF_INET) { 6376 sin = (struct sockaddr_in *)&(greqp->gr_group); 6377 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6378 } else { 6379 if (!inet6) 6380 return (EINVAL); /* Not on INET socket */ 6381 6382 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6383 v6group = sin6->sin6_addr; 6384 } 6385 ifaddr = INADDR_ANY; 6386 ifindex = greqp->gr_interface; 6387 } else if (inet6) { 6388 v6_mreqp = (struct ipv6_mreq *)i1; 6389 v6group = v6_mreqp->ipv6mr_multiaddr; 6390 ifaddr = INADDR_ANY; 6391 ifindex = v6_mreqp->ipv6mr_interface; 6392 } else { 6393 v4_mreqp = (struct ip_mreq *)i1; 6394 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6395 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6396 ifindex = 0; 6397 } 6398 6399 /* 6400 * In the multirouting case, we need to replicate 6401 * the request on all interfaces that will take part 6402 * in replication. We do so because multirouting is 6403 * reflective, thus we will probably receive multi- 6404 * casts on those interfaces. 6405 * The ip_multirt_apply_membership() succeeds if 6406 * the operation succeeds on at least one interface. 6407 */ 6408 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6409 ipaddr_t group; 6410 6411 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6412 6413 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6414 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6415 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6416 } else { 6417 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6418 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6419 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6420 } 6421 if (ire != NULL) { 6422 if (ire->ire_flags & RTF_MULTIRT) { 6423 error = ip_multirt_apply_membership(optfn, ire, connp, 6424 checkonly, &v6group, fmode, &ipv6_all_zeros); 6425 done = B_TRUE; 6426 } 6427 ire_refrele(ire); 6428 } 6429 6430 if (!done) { 6431 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6432 fmode, &ipv6_all_zeros); 6433 } 6434 return (error); 6435 } 6436 6437 /* 6438 * Set socket options for joining and leaving multicast groups 6439 * for specific sources. 6440 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6441 * The caller has already check that the option name is consistent with 6442 * the address family of the socket. 6443 */ 6444 int 6445 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6446 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6447 { 6448 int *i1 = (int *)invalp; 6449 int error = 0; 6450 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6451 struct ip_mreq_source *imreqp; 6452 struct group_source_req *gsreqp; 6453 in6_addr_t v6group, v6src; 6454 uint32_t ifindex; 6455 ipaddr_t ifaddr; 6456 boolean_t mcast_opt = B_TRUE; 6457 mcast_record_t fmode; 6458 ire_t *ire; 6459 boolean_t done = B_FALSE; 6460 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6461 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6462 6463 switch (name) { 6464 case IP_BLOCK_SOURCE: 6465 mcast_opt = B_FALSE; 6466 /* FALLTHROUGH */ 6467 case MCAST_BLOCK_SOURCE: 6468 fmode = MODE_IS_EXCLUDE; 6469 optfn = ip_opt_add_group; 6470 break; 6471 6472 case IP_UNBLOCK_SOURCE: 6473 mcast_opt = B_FALSE; 6474 /* FALLTHROUGH */ 6475 case MCAST_UNBLOCK_SOURCE: 6476 fmode = MODE_IS_EXCLUDE; 6477 optfn = ip_opt_delete_group; 6478 break; 6479 6480 case IP_ADD_SOURCE_MEMBERSHIP: 6481 mcast_opt = B_FALSE; 6482 /* FALLTHROUGH */ 6483 case MCAST_JOIN_SOURCE_GROUP: 6484 fmode = MODE_IS_INCLUDE; 6485 optfn = ip_opt_add_group; 6486 break; 6487 6488 case IP_DROP_SOURCE_MEMBERSHIP: 6489 mcast_opt = B_FALSE; 6490 /* FALLTHROUGH */ 6491 case MCAST_LEAVE_SOURCE_GROUP: 6492 fmode = MODE_IS_INCLUDE; 6493 optfn = ip_opt_delete_group; 6494 break; 6495 default: 6496 /* Should not be reached. */ 6497 optfn = NULL; 6498 fmode = 0; 6499 ASSERT(0); 6500 } 6501 6502 if (mcast_opt) { 6503 gsreqp = (struct group_source_req *)i1; 6504 ifindex = gsreqp->gsr_interface; 6505 if (gsreqp->gsr_group.ss_family == AF_INET) { 6506 struct sockaddr_in *s; 6507 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6508 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6509 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6510 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6511 } else { 6512 struct sockaddr_in6 *s6; 6513 6514 if (!inet6) 6515 return (EINVAL); /* Not on INET socket */ 6516 6517 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6518 v6group = s6->sin6_addr; 6519 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6520 v6src = s6->sin6_addr; 6521 } 6522 ifaddr = INADDR_ANY; 6523 } else { 6524 imreqp = (struct ip_mreq_source *)i1; 6525 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6526 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6527 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6528 ifindex = 0; 6529 } 6530 6531 /* 6532 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6533 */ 6534 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6535 v6src = ipv6_all_zeros; 6536 6537 /* 6538 * In the multirouting case, we need to replicate 6539 * the request as noted in the mcast cases above. 6540 */ 6541 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6542 ipaddr_t group; 6543 6544 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6545 6546 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6547 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6548 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6549 } else { 6550 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6551 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6552 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6553 } 6554 if (ire != NULL) { 6555 if (ire->ire_flags & RTF_MULTIRT) { 6556 error = ip_multirt_apply_membership(optfn, ire, connp, 6557 checkonly, &v6group, fmode, &v6src); 6558 done = B_TRUE; 6559 } 6560 ire_refrele(ire); 6561 } 6562 if (!done) { 6563 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6564 fmode, &v6src); 6565 } 6566 return (error); 6567 } 6568 6569 /* 6570 * Given a destination address and a pointer to where to put the information 6571 * this routine fills in the mtuinfo. 6572 * The socket must be connected. 6573 * For sctp conn_faddr is the primary address. 6574 */ 6575 int 6576 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6577 { 6578 uint32_t pmtu = IP_MAXPACKET; 6579 uint_t scopeid; 6580 6581 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6582 return (-1); 6583 6584 /* In case we never sent or called ip_set_destination_v4/v6 */ 6585 if (ixa->ixa_ire != NULL) 6586 pmtu = ip_get_pmtu(ixa); 6587 6588 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6589 scopeid = ixa->ixa_scopeid; 6590 else 6591 scopeid = 0; 6592 6593 bzero(mtuinfo, sizeof (*mtuinfo)); 6594 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6595 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6596 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6597 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6598 mtuinfo->ip6m_mtu = pmtu; 6599 6600 return (sizeof (struct ip6_mtuinfo)); 6601 } 6602 6603 /* 6604 * When the src multihoming is changed from weak to [strong, preferred] 6605 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6606 * and identify routes that were created by user-applications in the 6607 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6608 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6609 * is selected by finding an interface route for the gateway. 6610 */ 6611 /* ARGSUSED */ 6612 void 6613 ip_ire_rebind_walker(ire_t *ire, void *notused) 6614 { 6615 if (!ire->ire_unbound || ire->ire_ill != NULL) 6616 return; 6617 ire_rebind(ire); 6618 ire_delete(ire); 6619 } 6620 6621 /* 6622 * When the src multihoming is changed from [strong, preferred] to weak, 6623 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6624 * set any entries that were created by user-applications in the unbound state 6625 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6626 */ 6627 /* ARGSUSED */ 6628 void 6629 ip_ire_unbind_walker(ire_t *ire, void *notused) 6630 { 6631 ire_t *new_ire; 6632 6633 if (!ire->ire_unbound || ire->ire_ill == NULL) 6634 return; 6635 if (ire->ire_ipversion == IPV6_VERSION) { 6636 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6637 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6638 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6639 } else { 6640 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6641 (uchar_t *)&ire->ire_mask, 6642 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6643 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6644 } 6645 if (new_ire == NULL) 6646 return; 6647 new_ire->ire_unbound = B_TRUE; 6648 /* 6649 * The bound ire must first be deleted so that we don't return 6650 * the existing one on the attempt to add the unbound new_ire. 6651 */ 6652 ire_delete(ire); 6653 new_ire = ire_add(new_ire); 6654 if (new_ire != NULL) 6655 ire_refrele(new_ire); 6656 } 6657 6658 /* 6659 * When the settings of ip*_strict_src_multihoming tunables are changed, 6660 * all cached routes need to be recomputed. This recomputation needs to be 6661 * done when going from weaker to stronger modes so that the cached ire 6662 * for the connection does not violate the current ip*_strict_src_multihoming 6663 * setting. It also needs to be done when going from stronger to weaker modes, 6664 * so that we fall back to matching on the longest-matching-route (as opposed 6665 * to a shorter match that may have been selected in the strong mode 6666 * to satisfy src_multihoming settings). 6667 * 6668 * The cached ixa_ire entires for all conn_t entries are marked as 6669 * "verify" so that they will be recomputed for the next packet. 6670 */ 6671 void 6672 conn_ire_revalidate(conn_t *connp, void *arg) 6673 { 6674 boolean_t isv6 = (boolean_t)arg; 6675 6676 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6677 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6678 return; 6679 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6680 } 6681 6682 /* 6683 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6684 * When an ipf is passed here for the first time, if 6685 * we already have in-order fragments on the queue, we convert from the fast- 6686 * path reassembly scheme to the hard-case scheme. From then on, additional 6687 * fragments are reassembled here. We keep track of the start and end offsets 6688 * of each piece, and the number of holes in the chain. When the hole count 6689 * goes to zero, we are done! 6690 * 6691 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6692 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6693 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6694 * after the call to ip_reassemble(). 6695 */ 6696 int 6697 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6698 size_t msg_len) 6699 { 6700 uint_t end; 6701 mblk_t *next_mp; 6702 mblk_t *mp1; 6703 uint_t offset; 6704 boolean_t incr_dups = B_TRUE; 6705 boolean_t offset_zero_seen = B_FALSE; 6706 boolean_t pkt_boundary_checked = B_FALSE; 6707 6708 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6709 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6710 6711 /* Add in byte count */ 6712 ipf->ipf_count += msg_len; 6713 if (ipf->ipf_end) { 6714 /* 6715 * We were part way through in-order reassembly, but now there 6716 * is a hole. We walk through messages already queued, and 6717 * mark them for hard case reassembly. We know that up till 6718 * now they were in order starting from offset zero. 6719 */ 6720 offset = 0; 6721 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6722 IP_REASS_SET_START(mp1, offset); 6723 if (offset == 0) { 6724 ASSERT(ipf->ipf_nf_hdr_len != 0); 6725 offset = -ipf->ipf_nf_hdr_len; 6726 } 6727 offset += mp1->b_wptr - mp1->b_rptr; 6728 IP_REASS_SET_END(mp1, offset); 6729 } 6730 /* One hole at the end. */ 6731 ipf->ipf_hole_cnt = 1; 6732 /* Brand it as a hard case, forever. */ 6733 ipf->ipf_end = 0; 6734 } 6735 /* Walk through all the new pieces. */ 6736 do { 6737 end = start + (mp->b_wptr - mp->b_rptr); 6738 /* 6739 * If start is 0, decrease 'end' only for the first mblk of 6740 * the fragment. Otherwise 'end' can get wrong value in the 6741 * second pass of the loop if first mblk is exactly the 6742 * size of ipf_nf_hdr_len. 6743 */ 6744 if (start == 0 && !offset_zero_seen) { 6745 /* First segment */ 6746 ASSERT(ipf->ipf_nf_hdr_len != 0); 6747 end -= ipf->ipf_nf_hdr_len; 6748 offset_zero_seen = B_TRUE; 6749 } 6750 next_mp = mp->b_cont; 6751 /* 6752 * We are checking to see if there is any interesing data 6753 * to process. If there isn't and the mblk isn't the 6754 * one which carries the unfragmentable header then we 6755 * drop it. It's possible to have just the unfragmentable 6756 * header come through without any data. That needs to be 6757 * saved. 6758 * 6759 * If the assert at the top of this function holds then the 6760 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6761 * is infrequently traveled enough that the test is left in 6762 * to protect against future code changes which break that 6763 * invariant. 6764 */ 6765 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6766 /* Empty. Blast it. */ 6767 IP_REASS_SET_START(mp, 0); 6768 IP_REASS_SET_END(mp, 0); 6769 /* 6770 * If the ipf points to the mblk we are about to free, 6771 * update ipf to point to the next mblk (or NULL 6772 * if none). 6773 */ 6774 if (ipf->ipf_mp->b_cont == mp) 6775 ipf->ipf_mp->b_cont = next_mp; 6776 freeb(mp); 6777 continue; 6778 } 6779 mp->b_cont = NULL; 6780 IP_REASS_SET_START(mp, start); 6781 IP_REASS_SET_END(mp, end); 6782 if (!ipf->ipf_tail_mp) { 6783 ipf->ipf_tail_mp = mp; 6784 ipf->ipf_mp->b_cont = mp; 6785 if (start == 0 || !more) { 6786 ipf->ipf_hole_cnt = 1; 6787 /* 6788 * if the first fragment comes in more than one 6789 * mblk, this loop will be executed for each 6790 * mblk. Need to adjust hole count so exiting 6791 * this routine will leave hole count at 1. 6792 */ 6793 if (next_mp) 6794 ipf->ipf_hole_cnt++; 6795 } else 6796 ipf->ipf_hole_cnt = 2; 6797 continue; 6798 } else if (ipf->ipf_last_frag_seen && !more && 6799 !pkt_boundary_checked) { 6800 /* 6801 * We check datagram boundary only if this fragment 6802 * claims to be the last fragment and we have seen a 6803 * last fragment in the past too. We do this only 6804 * once for a given fragment. 6805 * 6806 * start cannot be 0 here as fragments with start=0 6807 * and MF=0 gets handled as a complete packet. These 6808 * fragments should not reach here. 6809 */ 6810 6811 if (start + msgdsize(mp) != 6812 IP_REASS_END(ipf->ipf_tail_mp)) { 6813 /* 6814 * We have two fragments both of which claim 6815 * to be the last fragment but gives conflicting 6816 * information about the whole datagram size. 6817 * Something fishy is going on. Drop the 6818 * fragment and free up the reassembly list. 6819 */ 6820 return (IP_REASS_FAILED); 6821 } 6822 6823 /* 6824 * We shouldn't come to this code block again for this 6825 * particular fragment. 6826 */ 6827 pkt_boundary_checked = B_TRUE; 6828 } 6829 6830 /* New stuff at or beyond tail? */ 6831 offset = IP_REASS_END(ipf->ipf_tail_mp); 6832 if (start >= offset) { 6833 if (ipf->ipf_last_frag_seen) { 6834 /* current fragment is beyond last fragment */ 6835 return (IP_REASS_FAILED); 6836 } 6837 /* Link it on end. */ 6838 ipf->ipf_tail_mp->b_cont = mp; 6839 ipf->ipf_tail_mp = mp; 6840 if (more) { 6841 if (start != offset) 6842 ipf->ipf_hole_cnt++; 6843 } else if (start == offset && next_mp == NULL) 6844 ipf->ipf_hole_cnt--; 6845 continue; 6846 } 6847 mp1 = ipf->ipf_mp->b_cont; 6848 offset = IP_REASS_START(mp1); 6849 /* New stuff at the front? */ 6850 if (start < offset) { 6851 if (start == 0) { 6852 if (end >= offset) { 6853 /* Nailed the hole at the begining. */ 6854 ipf->ipf_hole_cnt--; 6855 } 6856 } else if (end < offset) { 6857 /* 6858 * A hole, stuff, and a hole where there used 6859 * to be just a hole. 6860 */ 6861 ipf->ipf_hole_cnt++; 6862 } 6863 mp->b_cont = mp1; 6864 /* Check for overlap. */ 6865 while (end > offset) { 6866 if (end < IP_REASS_END(mp1)) { 6867 mp->b_wptr -= end - offset; 6868 IP_REASS_SET_END(mp, offset); 6869 BUMP_MIB(ill->ill_ip_mib, 6870 ipIfStatsReasmPartDups); 6871 break; 6872 } 6873 /* Did we cover another hole? */ 6874 if ((mp1->b_cont && 6875 IP_REASS_END(mp1) != 6876 IP_REASS_START(mp1->b_cont) && 6877 end >= IP_REASS_START(mp1->b_cont)) || 6878 (!ipf->ipf_last_frag_seen && !more)) { 6879 ipf->ipf_hole_cnt--; 6880 } 6881 /* Clip out mp1. */ 6882 if ((mp->b_cont = mp1->b_cont) == NULL) { 6883 /* 6884 * After clipping out mp1, this guy 6885 * is now hanging off the end. 6886 */ 6887 ipf->ipf_tail_mp = mp; 6888 } 6889 IP_REASS_SET_START(mp1, 0); 6890 IP_REASS_SET_END(mp1, 0); 6891 /* Subtract byte count */ 6892 ipf->ipf_count -= mp1->b_datap->db_lim - 6893 mp1->b_datap->db_base; 6894 freeb(mp1); 6895 BUMP_MIB(ill->ill_ip_mib, 6896 ipIfStatsReasmPartDups); 6897 mp1 = mp->b_cont; 6898 if (!mp1) 6899 break; 6900 offset = IP_REASS_START(mp1); 6901 } 6902 ipf->ipf_mp->b_cont = mp; 6903 continue; 6904 } 6905 /* 6906 * The new piece starts somewhere between the start of the head 6907 * and before the end of the tail. 6908 */ 6909 for (; mp1; mp1 = mp1->b_cont) { 6910 offset = IP_REASS_END(mp1); 6911 if (start < offset) { 6912 if (end <= offset) { 6913 /* Nothing new. */ 6914 IP_REASS_SET_START(mp, 0); 6915 IP_REASS_SET_END(mp, 0); 6916 /* Subtract byte count */ 6917 ipf->ipf_count -= mp->b_datap->db_lim - 6918 mp->b_datap->db_base; 6919 if (incr_dups) { 6920 ipf->ipf_num_dups++; 6921 incr_dups = B_FALSE; 6922 } 6923 freeb(mp); 6924 BUMP_MIB(ill->ill_ip_mib, 6925 ipIfStatsReasmDuplicates); 6926 break; 6927 } 6928 /* 6929 * Trim redundant stuff off beginning of new 6930 * piece. 6931 */ 6932 IP_REASS_SET_START(mp, offset); 6933 mp->b_rptr += offset - start; 6934 BUMP_MIB(ill->ill_ip_mib, 6935 ipIfStatsReasmPartDups); 6936 start = offset; 6937 if (!mp1->b_cont) { 6938 /* 6939 * After trimming, this guy is now 6940 * hanging off the end. 6941 */ 6942 mp1->b_cont = mp; 6943 ipf->ipf_tail_mp = mp; 6944 if (!more) { 6945 ipf->ipf_hole_cnt--; 6946 } 6947 break; 6948 } 6949 } 6950 if (start >= IP_REASS_START(mp1->b_cont)) 6951 continue; 6952 /* Fill a hole */ 6953 if (start > offset) 6954 ipf->ipf_hole_cnt++; 6955 mp->b_cont = mp1->b_cont; 6956 mp1->b_cont = mp; 6957 mp1 = mp->b_cont; 6958 offset = IP_REASS_START(mp1); 6959 if (end >= offset) { 6960 ipf->ipf_hole_cnt--; 6961 /* Check for overlap. */ 6962 while (end > offset) { 6963 if (end < IP_REASS_END(mp1)) { 6964 mp->b_wptr -= end - offset; 6965 IP_REASS_SET_END(mp, offset); 6966 /* 6967 * TODO we might bump 6968 * this up twice if there is 6969 * overlap at both ends. 6970 */ 6971 BUMP_MIB(ill->ill_ip_mib, 6972 ipIfStatsReasmPartDups); 6973 break; 6974 } 6975 /* Did we cover another hole? */ 6976 if ((mp1->b_cont && 6977 IP_REASS_END(mp1) 6978 != IP_REASS_START(mp1->b_cont) && 6979 end >= 6980 IP_REASS_START(mp1->b_cont)) || 6981 (!ipf->ipf_last_frag_seen && 6982 !more)) { 6983 ipf->ipf_hole_cnt--; 6984 } 6985 /* Clip out mp1. */ 6986 if ((mp->b_cont = mp1->b_cont) == 6987 NULL) { 6988 /* 6989 * After clipping out mp1, 6990 * this guy is now hanging 6991 * off the end. 6992 */ 6993 ipf->ipf_tail_mp = mp; 6994 } 6995 IP_REASS_SET_START(mp1, 0); 6996 IP_REASS_SET_END(mp1, 0); 6997 /* Subtract byte count */ 6998 ipf->ipf_count -= 6999 mp1->b_datap->db_lim - 7000 mp1->b_datap->db_base; 7001 freeb(mp1); 7002 BUMP_MIB(ill->ill_ip_mib, 7003 ipIfStatsReasmPartDups); 7004 mp1 = mp->b_cont; 7005 if (!mp1) 7006 break; 7007 offset = IP_REASS_START(mp1); 7008 } 7009 } 7010 break; 7011 } 7012 } while (start = end, mp = next_mp); 7013 7014 /* Fragment just processed could be the last one. Remember this fact */ 7015 if (!more) 7016 ipf->ipf_last_frag_seen = B_TRUE; 7017 7018 /* Still got holes? */ 7019 if (ipf->ipf_hole_cnt) 7020 return (IP_REASS_PARTIAL); 7021 /* Clean up overloaded fields to avoid upstream disasters. */ 7022 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7023 IP_REASS_SET_START(mp1, 0); 7024 IP_REASS_SET_END(mp1, 0); 7025 } 7026 return (IP_REASS_COMPLETE); 7027 } 7028 7029 /* 7030 * Fragmentation reassembly. Each ILL has a hash table for 7031 * queuing packets undergoing reassembly for all IPIFs 7032 * associated with the ILL. The hash is based on the packet 7033 * IP ident field. The ILL frag hash table was allocated 7034 * as a timer block at the time the ILL was created. Whenever 7035 * there is anything on the reassembly queue, the timer will 7036 * be running. Returns the reassembled packet if reassembly completes. 7037 */ 7038 mblk_t * 7039 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7040 { 7041 uint32_t frag_offset_flags; 7042 mblk_t *t_mp; 7043 ipaddr_t dst; 7044 uint8_t proto = ipha->ipha_protocol; 7045 uint32_t sum_val; 7046 uint16_t sum_flags; 7047 ipf_t *ipf; 7048 ipf_t **ipfp; 7049 ipfb_t *ipfb; 7050 uint16_t ident; 7051 uint32_t offset; 7052 ipaddr_t src; 7053 uint_t hdr_length; 7054 uint32_t end; 7055 mblk_t *mp1; 7056 mblk_t *tail_mp; 7057 size_t count; 7058 size_t msg_len; 7059 uint8_t ecn_info = 0; 7060 uint32_t packet_size; 7061 boolean_t pruned = B_FALSE; 7062 ill_t *ill = ira->ira_ill; 7063 ip_stack_t *ipst = ill->ill_ipst; 7064 7065 /* 7066 * Drop the fragmented as early as possible, if 7067 * we don't have resource(s) to re-assemble. 7068 */ 7069 if (ipst->ips_ip_reass_queue_bytes == 0) { 7070 freemsg(mp); 7071 return (NULL); 7072 } 7073 7074 /* Check for fragmentation offset; return if there's none */ 7075 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7076 (IPH_MF | IPH_OFFSET)) == 0) 7077 return (mp); 7078 7079 /* 7080 * We utilize hardware computed checksum info only for UDP since 7081 * IP fragmentation is a normal occurrence for the protocol. In 7082 * addition, checksum offload support for IP fragments carrying 7083 * UDP payload is commonly implemented across network adapters. 7084 */ 7085 ASSERT(ira->ira_rill != NULL); 7086 if (proto == IPPROTO_UDP && dohwcksum && 7087 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7088 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7089 mblk_t *mp1 = mp->b_cont; 7090 int32_t len; 7091 7092 /* Record checksum information from the packet */ 7093 sum_val = (uint32_t)DB_CKSUM16(mp); 7094 sum_flags = DB_CKSUMFLAGS(mp); 7095 7096 /* IP payload offset from beginning of mblk */ 7097 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7098 7099 if ((sum_flags & HCK_PARTIALCKSUM) && 7100 (mp1 == NULL || mp1->b_cont == NULL) && 7101 offset >= DB_CKSUMSTART(mp) && 7102 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7103 uint32_t adj; 7104 /* 7105 * Partial checksum has been calculated by hardware 7106 * and attached to the packet; in addition, any 7107 * prepended extraneous data is even byte aligned. 7108 * If any such data exists, we adjust the checksum; 7109 * this would also handle any postpended data. 7110 */ 7111 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7112 mp, mp1, len, adj); 7113 7114 /* One's complement subtract extraneous checksum */ 7115 if (adj >= sum_val) 7116 sum_val = ~(adj - sum_val) & 0xFFFF; 7117 else 7118 sum_val -= adj; 7119 } 7120 } else { 7121 sum_val = 0; 7122 sum_flags = 0; 7123 } 7124 7125 /* Clear hardware checksumming flag */ 7126 DB_CKSUMFLAGS(mp) = 0; 7127 7128 ident = ipha->ipha_ident; 7129 offset = (frag_offset_flags << 3) & 0xFFFF; 7130 src = ipha->ipha_src; 7131 dst = ipha->ipha_dst; 7132 hdr_length = IPH_HDR_LENGTH(ipha); 7133 end = ntohs(ipha->ipha_length) - hdr_length; 7134 7135 /* If end == 0 then we have a packet with no data, so just free it */ 7136 if (end == 0) { 7137 freemsg(mp); 7138 return (NULL); 7139 } 7140 7141 /* Record the ECN field info. */ 7142 ecn_info = (ipha->ipha_type_of_service & 0x3); 7143 if (offset != 0) { 7144 /* 7145 * If this isn't the first piece, strip the header, and 7146 * add the offset to the end value. 7147 */ 7148 mp->b_rptr += hdr_length; 7149 end += offset; 7150 } 7151 7152 /* Handle vnic loopback of fragments */ 7153 if (mp->b_datap->db_ref > 2) 7154 msg_len = 0; 7155 else 7156 msg_len = MBLKSIZE(mp); 7157 7158 tail_mp = mp; 7159 while (tail_mp->b_cont != NULL) { 7160 tail_mp = tail_mp->b_cont; 7161 if (tail_mp->b_datap->db_ref <= 2) 7162 msg_len += MBLKSIZE(tail_mp); 7163 } 7164 7165 /* If the reassembly list for this ILL will get too big, prune it */ 7166 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7167 ipst->ips_ip_reass_queue_bytes) { 7168 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7169 uint_t, ill->ill_frag_count, 7170 uint_t, ipst->ips_ip_reass_queue_bytes); 7171 ill_frag_prune(ill, 7172 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7173 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7174 pruned = B_TRUE; 7175 } 7176 7177 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7178 mutex_enter(&ipfb->ipfb_lock); 7179 7180 ipfp = &ipfb->ipfb_ipf; 7181 /* Try to find an existing fragment queue for this packet. */ 7182 for (;;) { 7183 ipf = ipfp[0]; 7184 if (ipf != NULL) { 7185 /* 7186 * It has to match on ident and src/dst address. 7187 */ 7188 if (ipf->ipf_ident == ident && 7189 ipf->ipf_src == src && 7190 ipf->ipf_dst == dst && 7191 ipf->ipf_protocol == proto) { 7192 /* 7193 * If we have received too many 7194 * duplicate fragments for this packet 7195 * free it. 7196 */ 7197 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7198 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7199 freemsg(mp); 7200 mutex_exit(&ipfb->ipfb_lock); 7201 return (NULL); 7202 } 7203 /* Found it. */ 7204 break; 7205 } 7206 ipfp = &ipf->ipf_hash_next; 7207 continue; 7208 } 7209 7210 /* 7211 * If we pruned the list, do we want to store this new 7212 * fragment?. We apply an optimization here based on the 7213 * fact that most fragments will be received in order. 7214 * So if the offset of this incoming fragment is zero, 7215 * it is the first fragment of a new packet. We will 7216 * keep it. Otherwise drop the fragment, as we have 7217 * probably pruned the packet already (since the 7218 * packet cannot be found). 7219 */ 7220 if (pruned && offset != 0) { 7221 mutex_exit(&ipfb->ipfb_lock); 7222 freemsg(mp); 7223 return (NULL); 7224 } 7225 7226 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7227 /* 7228 * Too many fragmented packets in this hash 7229 * bucket. Free the oldest. 7230 */ 7231 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7232 } 7233 7234 /* New guy. Allocate a frag message. */ 7235 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7236 if (mp1 == NULL) { 7237 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7238 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7239 freemsg(mp); 7240 reass_done: 7241 mutex_exit(&ipfb->ipfb_lock); 7242 return (NULL); 7243 } 7244 7245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7246 mp1->b_cont = mp; 7247 7248 /* Initialize the fragment header. */ 7249 ipf = (ipf_t *)mp1->b_rptr; 7250 ipf->ipf_mp = mp1; 7251 ipf->ipf_ptphn = ipfp; 7252 ipfp[0] = ipf; 7253 ipf->ipf_hash_next = NULL; 7254 ipf->ipf_ident = ident; 7255 ipf->ipf_protocol = proto; 7256 ipf->ipf_src = src; 7257 ipf->ipf_dst = dst; 7258 ipf->ipf_nf_hdr_len = 0; 7259 /* Record reassembly start time. */ 7260 ipf->ipf_timestamp = gethrestime_sec(); 7261 /* Record ipf generation and account for frag header */ 7262 ipf->ipf_gen = ill->ill_ipf_gen++; 7263 ipf->ipf_count = MBLKSIZE(mp1); 7264 ipf->ipf_last_frag_seen = B_FALSE; 7265 ipf->ipf_ecn = ecn_info; 7266 ipf->ipf_num_dups = 0; 7267 ipfb->ipfb_frag_pkts++; 7268 ipf->ipf_checksum = 0; 7269 ipf->ipf_checksum_flags = 0; 7270 7271 /* Store checksum value in fragment header */ 7272 if (sum_flags != 0) { 7273 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7274 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7275 ipf->ipf_checksum = sum_val; 7276 ipf->ipf_checksum_flags = sum_flags; 7277 } 7278 7279 /* 7280 * We handle reassembly two ways. In the easy case, 7281 * where all the fragments show up in order, we do 7282 * minimal bookkeeping, and just clip new pieces on 7283 * the end. If we ever see a hole, then we go off 7284 * to ip_reassemble which has to mark the pieces and 7285 * keep track of the number of holes, etc. Obviously, 7286 * the point of having both mechanisms is so we can 7287 * handle the easy case as efficiently as possible. 7288 */ 7289 if (offset == 0) { 7290 /* Easy case, in-order reassembly so far. */ 7291 ipf->ipf_count += msg_len; 7292 ipf->ipf_tail_mp = tail_mp; 7293 /* 7294 * Keep track of next expected offset in 7295 * ipf_end. 7296 */ 7297 ipf->ipf_end = end; 7298 ipf->ipf_nf_hdr_len = hdr_length; 7299 } else { 7300 /* Hard case, hole at the beginning. */ 7301 ipf->ipf_tail_mp = NULL; 7302 /* 7303 * ipf_end == 0 means that we have given up 7304 * on easy reassembly. 7305 */ 7306 ipf->ipf_end = 0; 7307 7308 /* Forget checksum offload from now on */ 7309 ipf->ipf_checksum_flags = 0; 7310 7311 /* 7312 * ipf_hole_cnt is set by ip_reassemble. 7313 * ipf_count is updated by ip_reassemble. 7314 * No need to check for return value here 7315 * as we don't expect reassembly to complete 7316 * or fail for the first fragment itself. 7317 */ 7318 (void) ip_reassemble(mp, ipf, 7319 (frag_offset_flags & IPH_OFFSET) << 3, 7320 (frag_offset_flags & IPH_MF), ill, msg_len); 7321 } 7322 /* Update per ipfb and ill byte counts */ 7323 ipfb->ipfb_count += ipf->ipf_count; 7324 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7325 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7326 /* If the frag timer wasn't already going, start it. */ 7327 mutex_enter(&ill->ill_lock); 7328 ill_frag_timer_start(ill); 7329 mutex_exit(&ill->ill_lock); 7330 goto reass_done; 7331 } 7332 7333 /* 7334 * If the packet's flag has changed (it could be coming up 7335 * from an interface different than the previous, therefore 7336 * possibly different checksum capability), then forget about 7337 * any stored checksum states. Otherwise add the value to 7338 * the existing one stored in the fragment header. 7339 */ 7340 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7341 sum_val += ipf->ipf_checksum; 7342 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7343 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7344 ipf->ipf_checksum = sum_val; 7345 } else if (ipf->ipf_checksum_flags != 0) { 7346 /* Forget checksum offload from now on */ 7347 ipf->ipf_checksum_flags = 0; 7348 } 7349 7350 /* 7351 * We have a new piece of a datagram which is already being 7352 * reassembled. Update the ECN info if all IP fragments 7353 * are ECN capable. If there is one which is not, clear 7354 * all the info. If there is at least one which has CE 7355 * code point, IP needs to report that up to transport. 7356 */ 7357 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7358 if (ecn_info == IPH_ECN_CE) 7359 ipf->ipf_ecn = IPH_ECN_CE; 7360 } else { 7361 ipf->ipf_ecn = IPH_ECN_NECT; 7362 } 7363 if (offset && ipf->ipf_end == offset) { 7364 /* The new fragment fits at the end */ 7365 ipf->ipf_tail_mp->b_cont = mp; 7366 /* Update the byte count */ 7367 ipf->ipf_count += msg_len; 7368 /* Update per ipfb and ill byte counts */ 7369 ipfb->ipfb_count += msg_len; 7370 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7371 atomic_add_32(&ill->ill_frag_count, msg_len); 7372 if (frag_offset_flags & IPH_MF) { 7373 /* More to come. */ 7374 ipf->ipf_end = end; 7375 ipf->ipf_tail_mp = tail_mp; 7376 goto reass_done; 7377 } 7378 } else { 7379 /* Go do the hard cases. */ 7380 int ret; 7381 7382 if (offset == 0) 7383 ipf->ipf_nf_hdr_len = hdr_length; 7384 7385 /* Save current byte count */ 7386 count = ipf->ipf_count; 7387 ret = ip_reassemble(mp, ipf, 7388 (frag_offset_flags & IPH_OFFSET) << 3, 7389 (frag_offset_flags & IPH_MF), ill, msg_len); 7390 /* Count of bytes added and subtracted (freeb()ed) */ 7391 count = ipf->ipf_count - count; 7392 if (count) { 7393 /* Update per ipfb and ill byte counts */ 7394 ipfb->ipfb_count += count; 7395 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7396 atomic_add_32(&ill->ill_frag_count, count); 7397 } 7398 if (ret == IP_REASS_PARTIAL) { 7399 goto reass_done; 7400 } else if (ret == IP_REASS_FAILED) { 7401 /* Reassembly failed. Free up all resources */ 7402 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7403 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7404 IP_REASS_SET_START(t_mp, 0); 7405 IP_REASS_SET_END(t_mp, 0); 7406 } 7407 freemsg(mp); 7408 goto reass_done; 7409 } 7410 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7411 } 7412 /* 7413 * We have completed reassembly. Unhook the frag header from 7414 * the reassembly list. 7415 * 7416 * Before we free the frag header, record the ECN info 7417 * to report back to the transport. 7418 */ 7419 ecn_info = ipf->ipf_ecn; 7420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7421 ipfp = ipf->ipf_ptphn; 7422 7423 /* We need to supply these to caller */ 7424 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7425 sum_val = ipf->ipf_checksum; 7426 else 7427 sum_val = 0; 7428 7429 mp1 = ipf->ipf_mp; 7430 count = ipf->ipf_count; 7431 ipf = ipf->ipf_hash_next; 7432 if (ipf != NULL) 7433 ipf->ipf_ptphn = ipfp; 7434 ipfp[0] = ipf; 7435 atomic_add_32(&ill->ill_frag_count, -count); 7436 ASSERT(ipfb->ipfb_count >= count); 7437 ipfb->ipfb_count -= count; 7438 ipfb->ipfb_frag_pkts--; 7439 mutex_exit(&ipfb->ipfb_lock); 7440 /* Ditch the frag header. */ 7441 mp = mp1->b_cont; 7442 7443 freeb(mp1); 7444 7445 /* Restore original IP length in header. */ 7446 packet_size = (uint32_t)msgdsize(mp); 7447 if (packet_size > IP_MAXPACKET) { 7448 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7449 ip_drop_input("Reassembled packet too large", mp, ill); 7450 freemsg(mp); 7451 return (NULL); 7452 } 7453 7454 if (DB_REF(mp) > 1) { 7455 mblk_t *mp2 = copymsg(mp); 7456 7457 if (mp2 == NULL) { 7458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7459 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7460 freemsg(mp); 7461 return (NULL); 7462 } 7463 freemsg(mp); 7464 mp = mp2; 7465 } 7466 ipha = (ipha_t *)mp->b_rptr; 7467 7468 ipha->ipha_length = htons((uint16_t)packet_size); 7469 /* We're now complete, zip the frag state */ 7470 ipha->ipha_fragment_offset_and_flags = 0; 7471 /* Record the ECN info. */ 7472 ipha->ipha_type_of_service &= 0xFC; 7473 ipha->ipha_type_of_service |= ecn_info; 7474 7475 /* Update the receive attributes */ 7476 ira->ira_pktlen = packet_size; 7477 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7478 7479 /* Reassembly is successful; set checksum information in packet */ 7480 DB_CKSUM16(mp) = (uint16_t)sum_val; 7481 DB_CKSUMFLAGS(mp) = sum_flags; 7482 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7483 7484 return (mp); 7485 } 7486 7487 /* 7488 * Pullup function that should be used for IP input in order to 7489 * ensure we do not loose the L2 source address; we need the l2 source 7490 * address for IP_RECVSLLA and for ndp_input. 7491 * 7492 * We return either NULL or b_rptr. 7493 */ 7494 void * 7495 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7496 { 7497 ill_t *ill = ira->ira_ill; 7498 7499 if (ip_rput_pullups++ == 0) { 7500 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7501 "ip_pullup: %s forced us to " 7502 " pullup pkt, hdr len %ld, hdr addr %p", 7503 ill->ill_name, len, (void *)mp->b_rptr); 7504 } 7505 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7506 ip_setl2src(mp, ira, ira->ira_rill); 7507 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7508 if (!pullupmsg(mp, len)) 7509 return (NULL); 7510 else 7511 return (mp->b_rptr); 7512 } 7513 7514 /* 7515 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7516 * When called from the ULP ira_rill will be NULL hence the caller has to 7517 * pass in the ill. 7518 */ 7519 /* ARGSUSED */ 7520 void 7521 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7522 { 7523 const uchar_t *addr; 7524 int alen; 7525 7526 if (ira->ira_flags & IRAF_L2SRC_SET) 7527 return; 7528 7529 ASSERT(ill != NULL); 7530 alen = ill->ill_phys_addr_length; 7531 ASSERT(alen <= sizeof (ira->ira_l2src)); 7532 if (ira->ira_mhip != NULL && 7533 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7534 bcopy(addr, ira->ira_l2src, alen); 7535 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7536 (addr = ill->ill_phys_addr) != NULL) { 7537 bcopy(addr, ira->ira_l2src, alen); 7538 } else { 7539 bzero(ira->ira_l2src, alen); 7540 } 7541 ira->ira_flags |= IRAF_L2SRC_SET; 7542 } 7543 7544 /* 7545 * check ip header length and align it. 7546 */ 7547 mblk_t * 7548 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7549 { 7550 ill_t *ill = ira->ira_ill; 7551 ssize_t len; 7552 7553 len = MBLKL(mp); 7554 7555 if (!OK_32PTR(mp->b_rptr)) 7556 IP_STAT(ill->ill_ipst, ip_notaligned); 7557 else 7558 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7559 7560 /* Guard against bogus device drivers */ 7561 if (len < 0) { 7562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7563 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7564 freemsg(mp); 7565 return (NULL); 7566 } 7567 7568 if (len == 0) { 7569 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7570 mblk_t *mp1 = mp->b_cont; 7571 7572 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7573 ip_setl2src(mp, ira, ira->ira_rill); 7574 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7575 7576 freeb(mp); 7577 mp = mp1; 7578 if (mp == NULL) 7579 return (NULL); 7580 7581 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7582 return (mp); 7583 } 7584 if (ip_pullup(mp, min_size, ira) == NULL) { 7585 if (msgdsize(mp) < min_size) { 7586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7587 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7588 } else { 7589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7590 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7591 } 7592 freemsg(mp); 7593 return (NULL); 7594 } 7595 return (mp); 7596 } 7597 7598 /* 7599 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7600 */ 7601 mblk_t * 7602 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7603 uint_t min_size, ip_recv_attr_t *ira) 7604 { 7605 ill_t *ill = ira->ira_ill; 7606 7607 /* 7608 * Make sure we have data length consistent 7609 * with the IP header. 7610 */ 7611 if (mp->b_cont == NULL) { 7612 /* pkt_len is based on ipha_len, not the mblk length */ 7613 if (pkt_len < min_size) { 7614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7615 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7616 freemsg(mp); 7617 return (NULL); 7618 } 7619 if (len < 0) { 7620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7621 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7622 freemsg(mp); 7623 return (NULL); 7624 } 7625 /* Drop any pad */ 7626 mp->b_wptr = rptr + pkt_len; 7627 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7628 ASSERT(pkt_len >= min_size); 7629 if (pkt_len < min_size) { 7630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7631 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7632 freemsg(mp); 7633 return (NULL); 7634 } 7635 if (len < 0) { 7636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7637 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7638 freemsg(mp); 7639 return (NULL); 7640 } 7641 /* Drop any pad */ 7642 (void) adjmsg(mp, -len); 7643 /* 7644 * adjmsg may have freed an mblk from the chain, hence 7645 * invalidate any hw checksum here. This will force IP to 7646 * calculate the checksum in sw, but only for this packet. 7647 */ 7648 DB_CKSUMFLAGS(mp) = 0; 7649 IP_STAT(ill->ill_ipst, ip_multimblk); 7650 } 7651 return (mp); 7652 } 7653 7654 /* 7655 * Check that the IPv4 opt_len is consistent with the packet and pullup 7656 * the options. 7657 */ 7658 mblk_t * 7659 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7660 ip_recv_attr_t *ira) 7661 { 7662 ill_t *ill = ira->ira_ill; 7663 ssize_t len; 7664 7665 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7666 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7669 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7670 freemsg(mp); 7671 return (NULL); 7672 } 7673 7674 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7675 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7676 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7677 freemsg(mp); 7678 return (NULL); 7679 } 7680 /* 7681 * Recompute complete header length and make sure we 7682 * have access to all of it. 7683 */ 7684 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7685 if (len > (mp->b_wptr - mp->b_rptr)) { 7686 if (len > pkt_len) { 7687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7688 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7689 freemsg(mp); 7690 return (NULL); 7691 } 7692 if (ip_pullup(mp, len, ira) == NULL) { 7693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7694 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7695 freemsg(mp); 7696 return (NULL); 7697 } 7698 } 7699 return (mp); 7700 } 7701 7702 /* 7703 * Returns a new ire, or the same ire, or NULL. 7704 * If a different IRE is returned, then it is held; the caller 7705 * needs to release it. 7706 * In no case is there any hold/release on the ire argument. 7707 */ 7708 ire_t * 7709 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7710 { 7711 ire_t *new_ire; 7712 ill_t *ire_ill; 7713 uint_t ifindex; 7714 ip_stack_t *ipst = ill->ill_ipst; 7715 boolean_t strict_check = B_FALSE; 7716 7717 /* 7718 * IPMP common case: if IRE and ILL are in the same group, there's no 7719 * issue (e.g. packet received on an underlying interface matched an 7720 * IRE_LOCAL on its associated group interface). 7721 */ 7722 ASSERT(ire->ire_ill != NULL); 7723 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7724 return (ire); 7725 7726 /* 7727 * Do another ire lookup here, using the ingress ill, to see if the 7728 * interface is in a usesrc group. 7729 * As long as the ills belong to the same group, we don't consider 7730 * them to be arriving on the wrong interface. Thus, if the switch 7731 * is doing inbound load spreading, we won't drop packets when the 7732 * ip*_strict_dst_multihoming switch is on. 7733 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7734 * where the local address may not be unique. In this case we were 7735 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7736 * actually returned. The new lookup, which is more specific, should 7737 * only find the IRE_LOCAL associated with the ingress ill if one 7738 * exists. 7739 */ 7740 if (ire->ire_ipversion == IPV4_VERSION) { 7741 if (ipst->ips_ip_strict_dst_multihoming) 7742 strict_check = B_TRUE; 7743 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7744 IRE_LOCAL, ill, ALL_ZONES, NULL, 7745 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7746 } else { 7747 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7748 if (ipst->ips_ipv6_strict_dst_multihoming) 7749 strict_check = B_TRUE; 7750 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7751 IRE_LOCAL, ill, ALL_ZONES, NULL, 7752 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7753 } 7754 /* 7755 * If the same ire that was returned in ip_input() is found then this 7756 * is an indication that usesrc groups are in use. The packet 7757 * arrived on a different ill in the group than the one associated with 7758 * the destination address. If a different ire was found then the same 7759 * IP address must be hosted on multiple ills. This is possible with 7760 * unnumbered point2point interfaces. We switch to use this new ire in 7761 * order to have accurate interface statistics. 7762 */ 7763 if (new_ire != NULL) { 7764 /* Note: held in one case but not the other? Caller handles */ 7765 if (new_ire != ire) 7766 return (new_ire); 7767 /* Unchanged */ 7768 ire_refrele(new_ire); 7769 return (ire); 7770 } 7771 7772 /* 7773 * Chase pointers once and store locally. 7774 */ 7775 ASSERT(ire->ire_ill != NULL); 7776 ire_ill = ire->ire_ill; 7777 ifindex = ill->ill_usesrc_ifindex; 7778 7779 /* 7780 * Check if it's a legal address on the 'usesrc' interface. 7781 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7782 * can just check phyint_ifindex. 7783 */ 7784 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7785 return (ire); 7786 } 7787 7788 /* 7789 * If the ip*_strict_dst_multihoming switch is on then we can 7790 * only accept this packet if the interface is marked as routing. 7791 */ 7792 if (!(strict_check)) 7793 return (ire); 7794 7795 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7796 return (ire); 7797 } 7798 return (NULL); 7799 } 7800 7801 /* 7802 * This function is used to construct a mac_header_info_s from a 7803 * DL_UNITDATA_IND message. 7804 * The address fields in the mhi structure points into the message, 7805 * thus the caller can't use those fields after freeing the message. 7806 * 7807 * We determine whether the packet received is a non-unicast packet 7808 * and in doing so, determine whether or not it is broadcast vs multicast. 7809 * For it to be a broadcast packet, we must have the appropriate mblk_t 7810 * hanging off the ill_t. If this is either not present or doesn't match 7811 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7812 * to be multicast. Thus NICs that have no broadcast address (or no 7813 * capability for one, such as point to point links) cannot return as 7814 * the packet being broadcast. 7815 */ 7816 void 7817 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7818 { 7819 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7820 mblk_t *bmp; 7821 uint_t extra_offset; 7822 7823 bzero(mhip, sizeof (struct mac_header_info_s)); 7824 7825 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7826 7827 if (ill->ill_sap_length < 0) 7828 extra_offset = 0; 7829 else 7830 extra_offset = ill->ill_sap_length; 7831 7832 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7833 extra_offset; 7834 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7835 extra_offset; 7836 7837 if (!ind->dl_group_address) 7838 return; 7839 7840 /* Multicast or broadcast */ 7841 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7842 7843 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7844 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7845 (bmp = ill->ill_bcast_mp) != NULL) { 7846 dl_unitdata_req_t *dlur; 7847 uint8_t *bphys_addr; 7848 7849 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7850 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7851 extra_offset; 7852 7853 if (bcmp(mhip->mhi_daddr, bphys_addr, 7854 ind->dl_dest_addr_length) == 0) 7855 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7856 } 7857 } 7858 7859 /* 7860 * This function is used to construct a mac_header_info_s from a 7861 * M_DATA fastpath message from a DLPI driver. 7862 * The address fields in the mhi structure points into the message, 7863 * thus the caller can't use those fields after freeing the message. 7864 * 7865 * We determine whether the packet received is a non-unicast packet 7866 * and in doing so, determine whether or not it is broadcast vs multicast. 7867 * For it to be a broadcast packet, we must have the appropriate mblk_t 7868 * hanging off the ill_t. If this is either not present or doesn't match 7869 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7870 * to be multicast. Thus NICs that have no broadcast address (or no 7871 * capability for one, such as point to point links) cannot return as 7872 * the packet being broadcast. 7873 */ 7874 void 7875 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7876 { 7877 mblk_t *bmp; 7878 struct ether_header *pether; 7879 7880 bzero(mhip, sizeof (struct mac_header_info_s)); 7881 7882 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7883 7884 pether = (struct ether_header *)((char *)mp->b_rptr 7885 - sizeof (struct ether_header)); 7886 7887 /* 7888 * Make sure the interface is an ethernet type, since we don't 7889 * know the header format for anything but Ethernet. Also make 7890 * sure we are pointing correctly above db_base. 7891 */ 7892 if (ill->ill_type != IFT_ETHER) 7893 return; 7894 7895 retry: 7896 if ((uchar_t *)pether < mp->b_datap->db_base) 7897 return; 7898 7899 /* Is there a VLAN tag? */ 7900 if (ill->ill_isv6) { 7901 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7902 pether = (struct ether_header *)((char *)pether - 4); 7903 goto retry; 7904 } 7905 } else { 7906 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7907 pether = (struct ether_header *)((char *)pether - 4); 7908 goto retry; 7909 } 7910 } 7911 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7912 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7913 7914 if (!(mhip->mhi_daddr[0] & 0x01)) 7915 return; 7916 7917 /* Multicast or broadcast */ 7918 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7919 7920 if ((bmp = ill->ill_bcast_mp) != NULL) { 7921 dl_unitdata_req_t *dlur; 7922 uint8_t *bphys_addr; 7923 uint_t addrlen; 7924 7925 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7926 addrlen = dlur->dl_dest_addr_length; 7927 if (ill->ill_sap_length < 0) { 7928 bphys_addr = (uchar_t *)dlur + 7929 dlur->dl_dest_addr_offset; 7930 addrlen += ill->ill_sap_length; 7931 } else { 7932 bphys_addr = (uchar_t *)dlur + 7933 dlur->dl_dest_addr_offset + 7934 ill->ill_sap_length; 7935 addrlen -= ill->ill_sap_length; 7936 } 7937 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7938 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7939 } 7940 } 7941 7942 /* 7943 * Handle anything but M_DATA messages 7944 * We see the DL_UNITDATA_IND which are part 7945 * of the data path, and also the other messages from the driver. 7946 */ 7947 void 7948 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7949 { 7950 mblk_t *first_mp; 7951 struct iocblk *iocp; 7952 struct mac_header_info_s mhi; 7953 7954 switch (DB_TYPE(mp)) { 7955 case M_PROTO: 7956 case M_PCPROTO: { 7957 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7958 DL_UNITDATA_IND) { 7959 /* Go handle anything other than data elsewhere. */ 7960 ip_rput_dlpi(ill, mp); 7961 return; 7962 } 7963 7964 first_mp = mp; 7965 mp = first_mp->b_cont; 7966 first_mp->b_cont = NULL; 7967 7968 if (mp == NULL) { 7969 freeb(first_mp); 7970 return; 7971 } 7972 ip_dlur_to_mhi(ill, first_mp, &mhi); 7973 if (ill->ill_isv6) 7974 ip_input_v6(ill, NULL, mp, &mhi); 7975 else 7976 ip_input(ill, NULL, mp, &mhi); 7977 7978 /* Ditch the DLPI header. */ 7979 freeb(first_mp); 7980 return; 7981 } 7982 case M_IOCACK: 7983 iocp = (struct iocblk *)mp->b_rptr; 7984 switch (iocp->ioc_cmd) { 7985 case DL_IOC_HDR_INFO: 7986 ill_fastpath_ack(ill, mp); 7987 return; 7988 default: 7989 putnext(ill->ill_rq, mp); 7990 return; 7991 } 7992 /* FALLTHROUGH */ 7993 case M_ERROR: 7994 case M_HANGUP: 7995 mutex_enter(&ill->ill_lock); 7996 if (ill->ill_state_flags & ILL_CONDEMNED) { 7997 mutex_exit(&ill->ill_lock); 7998 freemsg(mp); 7999 return; 8000 } 8001 ill_refhold_locked(ill); 8002 mutex_exit(&ill->ill_lock); 8003 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 8004 B_FALSE); 8005 return; 8006 case M_CTL: 8007 putnext(ill->ill_rq, mp); 8008 return; 8009 case M_IOCNAK: 8010 ip1dbg(("got iocnak ")); 8011 iocp = (struct iocblk *)mp->b_rptr; 8012 switch (iocp->ioc_cmd) { 8013 case DL_IOC_HDR_INFO: 8014 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 8015 return; 8016 default: 8017 break; 8018 } 8019 /* FALLTHROUGH */ 8020 default: 8021 putnext(ill->ill_rq, mp); 8022 return; 8023 } 8024 } 8025 8026 /* Read side put procedure. Packets coming from the wire arrive here. */ 8027 int 8028 ip_rput(queue_t *q, mblk_t *mp) 8029 { 8030 ill_t *ill; 8031 union DL_primitives *dl; 8032 8033 ill = (ill_t *)q->q_ptr; 8034 8035 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8036 /* 8037 * If things are opening or closing, only accept high-priority 8038 * DLPI messages. (On open ill->ill_ipif has not yet been 8039 * created; on close, things hanging off the ill may have been 8040 * freed already.) 8041 */ 8042 dl = (union DL_primitives *)mp->b_rptr; 8043 if (DB_TYPE(mp) != M_PCPROTO || 8044 dl->dl_primitive == DL_UNITDATA_IND) { 8045 inet_freemsg(mp); 8046 return (0); 8047 } 8048 } 8049 if (DB_TYPE(mp) == M_DATA) { 8050 struct mac_header_info_s mhi; 8051 8052 ip_mdata_to_mhi(ill, mp, &mhi); 8053 ip_input(ill, NULL, mp, &mhi); 8054 } else { 8055 ip_rput_notdata(ill, mp); 8056 } 8057 return (0); 8058 } 8059 8060 /* 8061 * Move the information to a copy. 8062 */ 8063 mblk_t * 8064 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8065 { 8066 mblk_t *mp1; 8067 ill_t *ill = ira->ira_ill; 8068 ip_stack_t *ipst = ill->ill_ipst; 8069 8070 IP_STAT(ipst, ip_db_ref); 8071 8072 /* Make sure we have ira_l2src before we loose the original mblk */ 8073 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8074 ip_setl2src(mp, ira, ira->ira_rill); 8075 8076 mp1 = copymsg(mp); 8077 if (mp1 == NULL) { 8078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8079 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8080 freemsg(mp); 8081 return (NULL); 8082 } 8083 /* preserve the hardware checksum flags and data, if present */ 8084 if (DB_CKSUMFLAGS(mp) != 0) { 8085 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8086 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8087 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8088 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8089 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8090 } 8091 freemsg(mp); 8092 return (mp1); 8093 } 8094 8095 static void 8096 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8097 t_uscalar_t err) 8098 { 8099 if (dl_err == DL_SYSERR) { 8100 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8101 "%s: %s failed: DL_SYSERR (errno %u)\n", 8102 ill->ill_name, dl_primstr(prim), err); 8103 return; 8104 } 8105 8106 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8107 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8108 dl_errstr(dl_err)); 8109 } 8110 8111 /* 8112 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8113 * than DL_UNITDATA_IND messages. If we need to process this message 8114 * exclusively, we call qwriter_ip, in which case we also need to call 8115 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8116 */ 8117 void 8118 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8119 { 8120 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8121 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8122 queue_t *q = ill->ill_rq; 8123 t_uscalar_t prim = dloa->dl_primitive; 8124 t_uscalar_t reqprim = DL_PRIM_INVAL; 8125 8126 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8127 char *, dl_primstr(prim), ill_t *, ill); 8128 ip1dbg(("ip_rput_dlpi")); 8129 8130 /* 8131 * If we received an ACK but didn't send a request for it, then it 8132 * can't be part of any pending operation; discard up-front. 8133 */ 8134 switch (prim) { 8135 case DL_ERROR_ACK: 8136 reqprim = dlea->dl_error_primitive; 8137 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8138 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8139 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8140 dlea->dl_unix_errno)); 8141 break; 8142 case DL_OK_ACK: 8143 reqprim = dloa->dl_correct_primitive; 8144 break; 8145 case DL_INFO_ACK: 8146 reqprim = DL_INFO_REQ; 8147 break; 8148 case DL_BIND_ACK: 8149 reqprim = DL_BIND_REQ; 8150 break; 8151 case DL_PHYS_ADDR_ACK: 8152 reqprim = DL_PHYS_ADDR_REQ; 8153 break; 8154 case DL_NOTIFY_ACK: 8155 reqprim = DL_NOTIFY_REQ; 8156 break; 8157 case DL_CAPABILITY_ACK: 8158 reqprim = DL_CAPABILITY_REQ; 8159 break; 8160 } 8161 8162 if (prim != DL_NOTIFY_IND) { 8163 if (reqprim == DL_PRIM_INVAL || 8164 !ill_dlpi_pending(ill, reqprim)) { 8165 /* Not a DLPI message we support or expected */ 8166 freemsg(mp); 8167 return; 8168 } 8169 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8170 dl_primstr(reqprim))); 8171 } 8172 8173 switch (reqprim) { 8174 case DL_UNBIND_REQ: 8175 /* 8176 * NOTE: we mark the unbind as complete even if we got a 8177 * DL_ERROR_ACK, since there's not much else we can do. 8178 */ 8179 mutex_enter(&ill->ill_lock); 8180 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8181 cv_signal(&ill->ill_cv); 8182 mutex_exit(&ill->ill_lock); 8183 break; 8184 8185 case DL_ENABMULTI_REQ: 8186 if (prim == DL_OK_ACK) { 8187 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8188 ill->ill_dlpi_multicast_state = IDS_OK; 8189 } 8190 break; 8191 } 8192 8193 /* 8194 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8195 * need to become writer to continue to process it. Because an 8196 * exclusive operation doesn't complete until replies to all queued 8197 * DLPI messages have been received, we know we're in the middle of an 8198 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8199 * 8200 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8201 * Since this is on the ill stream we unconditionally bump up the 8202 * refcount without doing ILL_CAN_LOOKUP(). 8203 */ 8204 ill_refhold(ill); 8205 if (prim == DL_NOTIFY_IND) 8206 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8207 else 8208 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8209 } 8210 8211 /* 8212 * Handling of DLPI messages that require exclusive access to the ipsq. 8213 * 8214 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8215 * happen here. (along with mi_copy_done) 8216 */ 8217 /* ARGSUSED */ 8218 static void 8219 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8220 { 8221 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8222 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8223 int err = 0; 8224 ill_t *ill = (ill_t *)q->q_ptr; 8225 ipif_t *ipif = NULL; 8226 mblk_t *mp1 = NULL; 8227 conn_t *connp = NULL; 8228 t_uscalar_t paddrreq; 8229 mblk_t *mp_hw; 8230 boolean_t success; 8231 boolean_t ioctl_aborted = B_FALSE; 8232 boolean_t log = B_TRUE; 8233 8234 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8235 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8236 8237 ip1dbg(("ip_rput_dlpi_writer ..")); 8238 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8239 ASSERT(IAM_WRITER_ILL(ill)); 8240 8241 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8242 /* 8243 * The current ioctl could have been aborted by the user and a new 8244 * ioctl to bring up another ill could have started. We could still 8245 * get a response from the driver later. 8246 */ 8247 if (ipif != NULL && ipif->ipif_ill != ill) 8248 ioctl_aborted = B_TRUE; 8249 8250 switch (dloa->dl_primitive) { 8251 case DL_ERROR_ACK: 8252 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8253 dl_primstr(dlea->dl_error_primitive))); 8254 8255 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8256 char *, dl_primstr(dlea->dl_error_primitive), 8257 ill_t *, ill); 8258 8259 switch (dlea->dl_error_primitive) { 8260 case DL_DISABMULTI_REQ: 8261 ill_dlpi_done(ill, dlea->dl_error_primitive); 8262 break; 8263 case DL_PROMISCON_REQ: 8264 case DL_PROMISCOFF_REQ: 8265 case DL_UNBIND_REQ: 8266 case DL_ATTACH_REQ: 8267 case DL_INFO_REQ: 8268 ill_dlpi_done(ill, dlea->dl_error_primitive); 8269 break; 8270 case DL_NOTIFY_REQ: 8271 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8272 log = B_FALSE; 8273 break; 8274 case DL_PHYS_ADDR_REQ: 8275 /* 8276 * For IPv6 only, there are two additional 8277 * phys_addr_req's sent to the driver to get the 8278 * IPv6 token and lla. This allows IP to acquire 8279 * the hardware address format for a given interface 8280 * without having built in knowledge of the hardware 8281 * address. ill_phys_addr_pend keeps track of the last 8282 * DL_PAR sent so we know which response we are 8283 * dealing with. ill_dlpi_done will update 8284 * ill_phys_addr_pend when it sends the next req. 8285 * We don't complete the IOCTL until all three DL_PARs 8286 * have been attempted, so set *_len to 0 and break. 8287 */ 8288 paddrreq = ill->ill_phys_addr_pend; 8289 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8290 if (paddrreq == DL_IPV6_TOKEN) { 8291 ill->ill_token_length = 0; 8292 log = B_FALSE; 8293 break; 8294 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8295 ill->ill_nd_lla_len = 0; 8296 log = B_FALSE; 8297 break; 8298 } 8299 /* 8300 * Something went wrong with the DL_PHYS_ADDR_REQ. 8301 * We presumably have an IOCTL hanging out waiting 8302 * for completion. Find it and complete the IOCTL 8303 * with the error noted. 8304 * However, ill_dl_phys was called on an ill queue 8305 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8306 * set. But the ioctl is known to be pending on ill_wq. 8307 */ 8308 if (!ill->ill_ifname_pending) 8309 break; 8310 ill->ill_ifname_pending = 0; 8311 if (!ioctl_aborted) 8312 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8313 if (mp1 != NULL) { 8314 /* 8315 * This operation (SIOCSLIFNAME) must have 8316 * happened on the ill. Assert there is no conn 8317 */ 8318 ASSERT(connp == NULL); 8319 q = ill->ill_wq; 8320 } 8321 break; 8322 case DL_BIND_REQ: 8323 ill_dlpi_done(ill, DL_BIND_REQ); 8324 if (ill->ill_ifname_pending) 8325 break; 8326 mutex_enter(&ill->ill_lock); 8327 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8328 mutex_exit(&ill->ill_lock); 8329 /* 8330 * Something went wrong with the bind. We presumably 8331 * have an IOCTL hanging out waiting for completion. 8332 * Find it, take down the interface that was coming 8333 * up, and complete the IOCTL with the error noted. 8334 */ 8335 if (!ioctl_aborted) 8336 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8337 if (mp1 != NULL) { 8338 /* 8339 * This might be a result of a DL_NOTE_REPLUMB 8340 * notification. In that case, connp is NULL. 8341 */ 8342 if (connp != NULL) 8343 q = CONNP_TO_WQ(connp); 8344 8345 (void) ipif_down(ipif, NULL, NULL); 8346 /* error is set below the switch */ 8347 } 8348 break; 8349 case DL_ENABMULTI_REQ: 8350 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8351 8352 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8353 ill->ill_dlpi_multicast_state = IDS_FAILED; 8354 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8355 8356 printf("ip: joining multicasts failed (%d)" 8357 " on %s - will use link layer " 8358 "broadcasts for multicast\n", 8359 dlea->dl_errno, ill->ill_name); 8360 8361 /* 8362 * Set up for multi_bcast; We are the 8363 * writer, so ok to access ill->ill_ipif 8364 * without any lock. 8365 */ 8366 mutex_enter(&ill->ill_phyint->phyint_lock); 8367 ill->ill_phyint->phyint_flags |= 8368 PHYI_MULTI_BCAST; 8369 mutex_exit(&ill->ill_phyint->phyint_lock); 8370 8371 } 8372 freemsg(mp); /* Don't want to pass this up */ 8373 return; 8374 case DL_CAPABILITY_REQ: 8375 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8376 "DL_CAPABILITY REQ\n")); 8377 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8378 ill->ill_dlpi_capab_state = IDCS_FAILED; 8379 ill_capability_done(ill); 8380 freemsg(mp); 8381 return; 8382 } 8383 /* 8384 * Note the error for IOCTL completion (mp1 is set when 8385 * ready to complete ioctl). If ill_ifname_pending_err is 8386 * set, an error occured during plumbing (ill_ifname_pending), 8387 * so we want to report that error. 8388 * 8389 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8390 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8391 * expected to get errack'd if the driver doesn't support 8392 * these flags (e.g. ethernet). log will be set to B_FALSE 8393 * if these error conditions are encountered. 8394 */ 8395 if (mp1 != NULL) { 8396 if (ill->ill_ifname_pending_err != 0) { 8397 err = ill->ill_ifname_pending_err; 8398 ill->ill_ifname_pending_err = 0; 8399 } else { 8400 err = dlea->dl_unix_errno ? 8401 dlea->dl_unix_errno : ENXIO; 8402 } 8403 /* 8404 * If we're plumbing an interface and an error hasn't already 8405 * been saved, set ill_ifname_pending_err to the error passed 8406 * up. Ignore the error if log is B_FALSE (see comment above). 8407 */ 8408 } else if (log && ill->ill_ifname_pending && 8409 ill->ill_ifname_pending_err == 0) { 8410 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8411 dlea->dl_unix_errno : ENXIO; 8412 } 8413 8414 if (log) 8415 ip_dlpi_error(ill, dlea->dl_error_primitive, 8416 dlea->dl_errno, dlea->dl_unix_errno); 8417 break; 8418 case DL_CAPABILITY_ACK: 8419 ill_capability_ack(ill, mp); 8420 /* 8421 * The message has been handed off to ill_capability_ack 8422 * and must not be freed below 8423 */ 8424 mp = NULL; 8425 break; 8426 8427 case DL_INFO_ACK: 8428 /* Call a routine to handle this one. */ 8429 ill_dlpi_done(ill, DL_INFO_REQ); 8430 ip_ll_subnet_defaults(ill, mp); 8431 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8432 return; 8433 case DL_BIND_ACK: 8434 /* 8435 * We should have an IOCTL waiting on this unless 8436 * sent by ill_dl_phys, in which case just return 8437 */ 8438 ill_dlpi_done(ill, DL_BIND_REQ); 8439 8440 if (ill->ill_ifname_pending) { 8441 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8442 ill_t *, ill, mblk_t *, mp); 8443 break; 8444 } 8445 mutex_enter(&ill->ill_lock); 8446 ill->ill_dl_up = 1; 8447 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8448 mutex_exit(&ill->ill_lock); 8449 8450 if (!ioctl_aborted) 8451 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8452 if (mp1 == NULL) { 8453 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8454 break; 8455 } 8456 /* 8457 * mp1 was added by ill_dl_up(). if that is a result of 8458 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8459 */ 8460 if (connp != NULL) 8461 q = CONNP_TO_WQ(connp); 8462 /* 8463 * We are exclusive. So nothing can change even after 8464 * we get the pending mp. 8465 */ 8466 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8467 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8468 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8469 8470 /* 8471 * Now bring up the resolver; when that is complete, we'll 8472 * create IREs. Note that we intentionally mirror what 8473 * ipif_up() would have done, because we got here by way of 8474 * ill_dl_up(), which stopped ipif_up()'s processing. 8475 */ 8476 if (ill->ill_isv6) { 8477 /* 8478 * v6 interfaces. 8479 * Unlike ARP which has to do another bind 8480 * and attach, once we get here we are 8481 * done with NDP 8482 */ 8483 (void) ipif_resolver_up(ipif, Res_act_initial); 8484 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8485 err = ipif_up_done_v6(ipif); 8486 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8487 /* 8488 * ARP and other v4 external resolvers. 8489 * Leave the pending mblk intact so that 8490 * the ioctl completes in ip_rput(). 8491 */ 8492 if (connp != NULL) 8493 mutex_enter(&connp->conn_lock); 8494 mutex_enter(&ill->ill_lock); 8495 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8496 mutex_exit(&ill->ill_lock); 8497 if (connp != NULL) 8498 mutex_exit(&connp->conn_lock); 8499 if (success) { 8500 err = ipif_resolver_up(ipif, Res_act_initial); 8501 if (err == EINPROGRESS) { 8502 freemsg(mp); 8503 return; 8504 } 8505 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8506 } else { 8507 /* The conn has started closing */ 8508 err = EINTR; 8509 } 8510 } else { 8511 /* 8512 * This one is complete. Reply to pending ioctl. 8513 */ 8514 (void) ipif_resolver_up(ipif, Res_act_initial); 8515 err = ipif_up_done(ipif); 8516 } 8517 8518 if ((err == 0) && (ill->ill_up_ipifs)) { 8519 err = ill_up_ipifs(ill, q, mp1); 8520 if (err == EINPROGRESS) { 8521 freemsg(mp); 8522 return; 8523 } 8524 } 8525 8526 /* 8527 * If we have a moved ipif to bring up, and everything has 8528 * succeeded to this point, bring it up on the IPMP ill. 8529 * Otherwise, leave it down -- the admin can try to bring it 8530 * up by hand if need be. 8531 */ 8532 if (ill->ill_move_ipif != NULL) { 8533 if (err != 0) { 8534 ill->ill_move_ipif = NULL; 8535 } else { 8536 ipif = ill->ill_move_ipif; 8537 ill->ill_move_ipif = NULL; 8538 err = ipif_up(ipif, q, mp1); 8539 if (err == EINPROGRESS) { 8540 freemsg(mp); 8541 return; 8542 } 8543 } 8544 } 8545 break; 8546 8547 case DL_NOTIFY_IND: { 8548 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8549 uint_t orig_mtu, orig_mc_mtu; 8550 8551 switch (notify->dl_notification) { 8552 case DL_NOTE_PHYS_ADDR: 8553 err = ill_set_phys_addr(ill, mp); 8554 break; 8555 8556 case DL_NOTE_REPLUMB: 8557 /* 8558 * Directly return after calling ill_replumb(). 8559 * Note that we should not free mp as it is reused 8560 * in the ill_replumb() function. 8561 */ 8562 err = ill_replumb(ill, mp); 8563 return; 8564 8565 case DL_NOTE_FASTPATH_FLUSH: 8566 nce_flush(ill, B_FALSE); 8567 break; 8568 8569 case DL_NOTE_SDU_SIZE: 8570 case DL_NOTE_SDU_SIZE2: 8571 /* 8572 * The dce and fragmentation code can cope with 8573 * this changing while packets are being sent. 8574 * When packets are sent ip_output will discover 8575 * a change. 8576 * 8577 * Change the MTU size of the interface. 8578 */ 8579 mutex_enter(&ill->ill_lock); 8580 orig_mtu = ill->ill_mtu; 8581 orig_mc_mtu = ill->ill_mc_mtu; 8582 switch (notify->dl_notification) { 8583 case DL_NOTE_SDU_SIZE: 8584 ill->ill_current_frag = 8585 (uint_t)notify->dl_data; 8586 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8587 break; 8588 case DL_NOTE_SDU_SIZE2: 8589 ill->ill_current_frag = 8590 (uint_t)notify->dl_data1; 8591 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8592 break; 8593 } 8594 if (ill->ill_current_frag > ill->ill_max_frag) 8595 ill->ill_max_frag = ill->ill_current_frag; 8596 8597 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8598 ill->ill_mtu = ill->ill_current_frag; 8599 8600 /* 8601 * If ill_user_mtu was set (via 8602 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8603 */ 8604 if (ill->ill_user_mtu != 0 && 8605 ill->ill_user_mtu < ill->ill_mtu) 8606 ill->ill_mtu = ill->ill_user_mtu; 8607 8608 if (ill->ill_user_mtu != 0 && 8609 ill->ill_user_mtu < ill->ill_mc_mtu) 8610 ill->ill_mc_mtu = ill->ill_user_mtu; 8611 8612 if (ill->ill_isv6) { 8613 if (ill->ill_mtu < IPV6_MIN_MTU) 8614 ill->ill_mtu = IPV6_MIN_MTU; 8615 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8616 ill->ill_mc_mtu = IPV6_MIN_MTU; 8617 } else { 8618 if (ill->ill_mtu < IP_MIN_MTU) 8619 ill->ill_mtu = IP_MIN_MTU; 8620 if (ill->ill_mc_mtu < IP_MIN_MTU) 8621 ill->ill_mc_mtu = IP_MIN_MTU; 8622 } 8623 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8624 ill->ill_mc_mtu = ill->ill_mtu; 8625 } 8626 8627 mutex_exit(&ill->ill_lock); 8628 /* 8629 * Make sure all dce_generation checks find out 8630 * that ill_mtu/ill_mc_mtu has changed. 8631 */ 8632 if (orig_mtu != ill->ill_mtu || 8633 orig_mc_mtu != ill->ill_mc_mtu) { 8634 dce_increment_all_generations(ill->ill_isv6, 8635 ill->ill_ipst); 8636 } 8637 8638 /* 8639 * Refresh IPMP meta-interface MTU if necessary. 8640 */ 8641 if (IS_UNDER_IPMP(ill)) 8642 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8643 break; 8644 8645 case DL_NOTE_LINK_UP: 8646 case DL_NOTE_LINK_DOWN: { 8647 /* 8648 * We are writer. ill / phyint / ipsq assocs stable. 8649 * The RUNNING flag reflects the state of the link. 8650 */ 8651 phyint_t *phyint = ill->ill_phyint; 8652 uint64_t new_phyint_flags; 8653 boolean_t changed = B_FALSE; 8654 boolean_t went_up; 8655 8656 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8657 mutex_enter(&phyint->phyint_lock); 8658 8659 new_phyint_flags = went_up ? 8660 phyint->phyint_flags | PHYI_RUNNING : 8661 phyint->phyint_flags & ~PHYI_RUNNING; 8662 8663 if (IS_IPMP(ill)) { 8664 new_phyint_flags = went_up ? 8665 new_phyint_flags & ~PHYI_FAILED : 8666 new_phyint_flags | PHYI_FAILED; 8667 } 8668 8669 if (new_phyint_flags != phyint->phyint_flags) { 8670 phyint->phyint_flags = new_phyint_flags; 8671 changed = B_TRUE; 8672 } 8673 mutex_exit(&phyint->phyint_lock); 8674 /* 8675 * ill_restart_dad handles the DAD restart and routing 8676 * socket notification logic. 8677 */ 8678 if (changed) { 8679 ill_restart_dad(phyint->phyint_illv4, went_up); 8680 ill_restart_dad(phyint->phyint_illv6, went_up); 8681 } 8682 break; 8683 } 8684 case DL_NOTE_PROMISC_ON_PHYS: { 8685 phyint_t *phyint = ill->ill_phyint; 8686 8687 mutex_enter(&phyint->phyint_lock); 8688 phyint->phyint_flags |= PHYI_PROMISC; 8689 mutex_exit(&phyint->phyint_lock); 8690 break; 8691 } 8692 case DL_NOTE_PROMISC_OFF_PHYS: { 8693 phyint_t *phyint = ill->ill_phyint; 8694 8695 mutex_enter(&phyint->phyint_lock); 8696 phyint->phyint_flags &= ~PHYI_PROMISC; 8697 mutex_exit(&phyint->phyint_lock); 8698 break; 8699 } 8700 case DL_NOTE_CAPAB_RENEG: 8701 /* 8702 * Something changed on the driver side. 8703 * It wants us to renegotiate the capabilities 8704 * on this ill. One possible cause is the aggregation 8705 * interface under us where a port got added or 8706 * went away. 8707 * 8708 * If the capability negotiation is already done 8709 * or is in progress, reset the capabilities and 8710 * mark the ill's ill_capab_reneg to be B_TRUE, 8711 * so that when the ack comes back, we can start 8712 * the renegotiation process. 8713 * 8714 * Note that if ill_capab_reneg is already B_TRUE 8715 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8716 * the capability resetting request has been sent 8717 * and the renegotiation has not been started yet; 8718 * nothing needs to be done in this case. 8719 */ 8720 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8721 ill_capability_reset(ill, B_TRUE); 8722 ipsq_current_finish(ipsq); 8723 break; 8724 8725 case DL_NOTE_ALLOWED_IPS: 8726 ill_set_allowed_ips(ill, mp); 8727 break; 8728 default: 8729 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8730 "type 0x%x for DL_NOTIFY_IND\n", 8731 notify->dl_notification)); 8732 break; 8733 } 8734 8735 /* 8736 * As this is an asynchronous operation, we 8737 * should not call ill_dlpi_done 8738 */ 8739 break; 8740 } 8741 case DL_NOTIFY_ACK: { 8742 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8743 8744 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8745 ill->ill_note_link = 1; 8746 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8747 break; 8748 } 8749 case DL_PHYS_ADDR_ACK: { 8750 /* 8751 * As part of plumbing the interface via SIOCSLIFNAME, 8752 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8753 * whose answers we receive here. As each answer is received, 8754 * we call ill_dlpi_done() to dispatch the next request as 8755 * we're processing the current one. Once all answers have 8756 * been received, we use ipsq_pending_mp_get() to dequeue the 8757 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8758 * is invoked from an ill queue, conn_oper_pending_ill is not 8759 * available, but we know the ioctl is pending on ill_wq.) 8760 */ 8761 uint_t paddrlen, paddroff; 8762 uint8_t *addr; 8763 8764 paddrreq = ill->ill_phys_addr_pend; 8765 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8766 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8767 addr = mp->b_rptr + paddroff; 8768 8769 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8770 if (paddrreq == DL_IPV6_TOKEN) { 8771 /* 8772 * bcopy to low-order bits of ill_token 8773 * 8774 * XXX Temporary hack - currently, all known tokens 8775 * are 64 bits, so I'll cheat for the moment. 8776 */ 8777 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8778 ill->ill_token_length = paddrlen; 8779 break; 8780 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8781 ASSERT(ill->ill_nd_lla_mp == NULL); 8782 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8783 mp = NULL; 8784 break; 8785 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8786 ASSERT(ill->ill_dest_addr_mp == NULL); 8787 ill->ill_dest_addr_mp = mp; 8788 ill->ill_dest_addr = addr; 8789 mp = NULL; 8790 if (ill->ill_isv6) { 8791 ill_setdesttoken(ill); 8792 ipif_setdestlinklocal(ill->ill_ipif); 8793 } 8794 break; 8795 } 8796 8797 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8798 ASSERT(ill->ill_phys_addr_mp == NULL); 8799 if (!ill->ill_ifname_pending) 8800 break; 8801 ill->ill_ifname_pending = 0; 8802 if (!ioctl_aborted) 8803 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8804 if (mp1 != NULL) { 8805 ASSERT(connp == NULL); 8806 q = ill->ill_wq; 8807 } 8808 /* 8809 * If any error acks received during the plumbing sequence, 8810 * ill_ifname_pending_err will be set. Break out and send up 8811 * the error to the pending ioctl. 8812 */ 8813 if (ill->ill_ifname_pending_err != 0) { 8814 err = ill->ill_ifname_pending_err; 8815 ill->ill_ifname_pending_err = 0; 8816 break; 8817 } 8818 8819 ill->ill_phys_addr_mp = mp; 8820 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8821 mp = NULL; 8822 8823 /* 8824 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8825 * provider doesn't support physical addresses. We check both 8826 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8827 * not have physical addresses, but historically adversises a 8828 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8829 * its DL_PHYS_ADDR_ACK. 8830 */ 8831 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8832 ill->ill_phys_addr = NULL; 8833 } else if (paddrlen != ill->ill_phys_addr_length) { 8834 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8835 paddrlen, ill->ill_phys_addr_length)); 8836 err = EINVAL; 8837 break; 8838 } 8839 8840 if (ill->ill_nd_lla_mp == NULL) { 8841 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8842 err = ENOMEM; 8843 break; 8844 } 8845 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8846 } 8847 8848 if (ill->ill_isv6) { 8849 ill_setdefaulttoken(ill); 8850 ipif_setlinklocal(ill->ill_ipif); 8851 } 8852 break; 8853 } 8854 case DL_OK_ACK: 8855 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8856 dl_primstr((int)dloa->dl_correct_primitive), 8857 dloa->dl_correct_primitive)); 8858 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8859 char *, dl_primstr(dloa->dl_correct_primitive), 8860 ill_t *, ill); 8861 8862 switch (dloa->dl_correct_primitive) { 8863 case DL_ENABMULTI_REQ: 8864 case DL_DISABMULTI_REQ: 8865 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8866 break; 8867 case DL_PROMISCON_REQ: 8868 case DL_PROMISCOFF_REQ: 8869 case DL_UNBIND_REQ: 8870 case DL_ATTACH_REQ: 8871 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8872 break; 8873 } 8874 break; 8875 default: 8876 break; 8877 } 8878 8879 freemsg(mp); 8880 if (mp1 == NULL) 8881 return; 8882 8883 /* 8884 * The operation must complete without EINPROGRESS since 8885 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8886 * the operation will be stuck forever inside the IPSQ. 8887 */ 8888 ASSERT(err != EINPROGRESS); 8889 8890 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8891 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8892 ipif_t *, NULL); 8893 8894 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8895 case 0: 8896 ipsq_current_finish(ipsq); 8897 break; 8898 8899 case SIOCSLIFNAME: 8900 case IF_UNITSEL: { 8901 ill_t *ill_other = ILL_OTHER(ill); 8902 8903 /* 8904 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8905 * ill has a peer which is in an IPMP group, then place ill 8906 * into the same group. One catch: although ifconfig plumbs 8907 * the appropriate IPMP meta-interface prior to plumbing this 8908 * ill, it is possible for multiple ifconfig applications to 8909 * race (or for another application to adjust plumbing), in 8910 * which case the IPMP meta-interface we need will be missing. 8911 * If so, kick the phyint out of the group. 8912 */ 8913 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8914 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8915 ipmp_illgrp_t *illg; 8916 8917 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8918 if (illg == NULL) 8919 ipmp_phyint_leave_grp(ill->ill_phyint); 8920 else 8921 ipmp_ill_join_illgrp(ill, illg); 8922 } 8923 8924 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8925 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8926 else 8927 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8928 break; 8929 } 8930 case SIOCLIFADDIF: 8931 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8932 break; 8933 8934 default: 8935 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8936 break; 8937 } 8938 } 8939 8940 /* 8941 * ip_rput_other is called by ip_rput to handle messages modifying the global 8942 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8943 */ 8944 /* ARGSUSED */ 8945 void 8946 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8947 { 8948 ill_t *ill = q->q_ptr; 8949 struct iocblk *iocp; 8950 8951 ip1dbg(("ip_rput_other ")); 8952 if (ipsq != NULL) { 8953 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8954 ASSERT(ipsq->ipsq_xop == 8955 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8956 } 8957 8958 switch (mp->b_datap->db_type) { 8959 case M_ERROR: 8960 case M_HANGUP: 8961 /* 8962 * The device has a problem. We force the ILL down. It can 8963 * be brought up again manually using SIOCSIFFLAGS (via 8964 * ifconfig or equivalent). 8965 */ 8966 ASSERT(ipsq != NULL); 8967 if (mp->b_rptr < mp->b_wptr) 8968 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8969 if (ill->ill_error == 0) 8970 ill->ill_error = ENXIO; 8971 if (!ill_down_start(q, mp)) 8972 return; 8973 ipif_all_down_tail(ipsq, q, mp, NULL); 8974 break; 8975 case M_IOCNAK: { 8976 iocp = (struct iocblk *)mp->b_rptr; 8977 8978 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8979 /* 8980 * If this was the first attempt, turn off the fastpath 8981 * probing. 8982 */ 8983 mutex_enter(&ill->ill_lock); 8984 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8985 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8986 mutex_exit(&ill->ill_lock); 8987 /* 8988 * don't flush the nce_t entries: we use them 8989 * as an index to the ncec itself. 8990 */ 8991 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8992 ill->ill_name)); 8993 } else { 8994 mutex_exit(&ill->ill_lock); 8995 } 8996 freemsg(mp); 8997 break; 8998 } 8999 default: 9000 ASSERT(0); 9001 break; 9002 } 9003 } 9004 9005 /* 9006 * Update any source route, record route or timestamp options 9007 * When it fails it has consumed the message and BUMPed the MIB. 9008 */ 9009 boolean_t 9010 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 9011 ip_recv_attr_t *ira) 9012 { 9013 ipoptp_t opts; 9014 uchar_t *opt; 9015 uint8_t optval; 9016 uint8_t optlen; 9017 ipaddr_t dst; 9018 ipaddr_t ifaddr; 9019 uint32_t ts; 9020 timestruc_t now; 9021 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9022 9023 ip2dbg(("ip_forward_options\n")); 9024 dst = ipha->ipha_dst; 9025 opt = NULL; 9026 9027 for (optval = ipoptp_first(&opts, ipha); 9028 optval != IPOPT_EOL; 9029 optval = ipoptp_next(&opts)) { 9030 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9031 opt = opts.ipoptp_cur; 9032 optlen = opts.ipoptp_len; 9033 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9034 optval, opts.ipoptp_len)); 9035 switch (optval) { 9036 uint32_t off; 9037 case IPOPT_SSRR: 9038 case IPOPT_LSRR: 9039 /* Check if adminstratively disabled */ 9040 if (!ipst->ips_ip_forward_src_routed) { 9041 BUMP_MIB(dst_ill->ill_ip_mib, 9042 ipIfStatsForwProhibits); 9043 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9044 mp, dst_ill); 9045 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9046 ira); 9047 return (B_FALSE); 9048 } 9049 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9050 /* 9051 * Must be partial since ip_input_options 9052 * checked for strict. 9053 */ 9054 break; 9055 } 9056 off = opt[IPOPT_OFFSET]; 9057 off--; 9058 redo_srr: 9059 if (optlen < IP_ADDR_LEN || 9060 off > optlen - IP_ADDR_LEN) { 9061 /* End of source route */ 9062 ip1dbg(( 9063 "ip_forward_options: end of SR\n")); 9064 break; 9065 } 9066 /* Pick a reasonable address on the outbound if */ 9067 ASSERT(dst_ill != NULL); 9068 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9069 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9070 NULL) != 0) { 9071 /* No source! Shouldn't happen */ 9072 ifaddr = INADDR_ANY; 9073 } 9074 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9075 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9076 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9077 ntohl(dst))); 9078 9079 /* 9080 * Check if our address is present more than 9081 * once as consecutive hops in source route. 9082 */ 9083 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9084 off += IP_ADDR_LEN; 9085 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9086 goto redo_srr; 9087 } 9088 ipha->ipha_dst = dst; 9089 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9090 break; 9091 case IPOPT_RR: 9092 off = opt[IPOPT_OFFSET]; 9093 off--; 9094 if (optlen < IP_ADDR_LEN || 9095 off > optlen - IP_ADDR_LEN) { 9096 /* No more room - ignore */ 9097 ip1dbg(( 9098 "ip_forward_options: end of RR\n")); 9099 break; 9100 } 9101 /* Pick a reasonable address on the outbound if */ 9102 ASSERT(dst_ill != NULL); 9103 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9104 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9105 NULL) != 0) { 9106 /* No source! Shouldn't happen */ 9107 ifaddr = INADDR_ANY; 9108 } 9109 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9110 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9111 break; 9112 case IPOPT_TS: 9113 off = 0; 9114 /* Insert timestamp if there is room */ 9115 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9116 case IPOPT_TS_TSONLY: 9117 off = IPOPT_TS_TIMELEN; 9118 break; 9119 case IPOPT_TS_PRESPEC: 9120 case IPOPT_TS_PRESPEC_RFC791: 9121 /* Verify that the address matched */ 9122 off = opt[IPOPT_OFFSET] - 1; 9123 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9124 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9125 /* Not for us */ 9126 break; 9127 } 9128 /* FALLTHROUGH */ 9129 case IPOPT_TS_TSANDADDR: 9130 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9131 break; 9132 default: 9133 /* 9134 * ip_*put_options should have already 9135 * dropped this packet. 9136 */ 9137 cmn_err(CE_PANIC, "ip_forward_options: " 9138 "unknown IT - bug in ip_input_options?\n"); 9139 } 9140 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9141 /* Increase overflow counter */ 9142 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9143 opt[IPOPT_POS_OV_FLG] = 9144 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9145 (off << 4)); 9146 break; 9147 } 9148 off = opt[IPOPT_OFFSET] - 1; 9149 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9150 case IPOPT_TS_PRESPEC: 9151 case IPOPT_TS_PRESPEC_RFC791: 9152 case IPOPT_TS_TSANDADDR: 9153 /* Pick a reasonable addr on the outbound if */ 9154 ASSERT(dst_ill != NULL); 9155 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9156 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9157 NULL, NULL) != 0) { 9158 /* No source! Shouldn't happen */ 9159 ifaddr = INADDR_ANY; 9160 } 9161 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9162 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9163 /* FALLTHROUGH */ 9164 case IPOPT_TS_TSONLY: 9165 off = opt[IPOPT_OFFSET] - 1; 9166 /* Compute # of milliseconds since midnight */ 9167 gethrestime(&now); 9168 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9169 NSEC2MSEC(now.tv_nsec); 9170 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9171 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9172 break; 9173 } 9174 break; 9175 } 9176 } 9177 return (B_TRUE); 9178 } 9179 9180 /* 9181 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9182 * returns 'true' if there are still fragments left on the queue, in 9183 * which case we restart the timer. 9184 */ 9185 void 9186 ill_frag_timer(void *arg) 9187 { 9188 ill_t *ill = (ill_t *)arg; 9189 boolean_t frag_pending; 9190 ip_stack_t *ipst = ill->ill_ipst; 9191 time_t timeout; 9192 9193 mutex_enter(&ill->ill_lock); 9194 ASSERT(!ill->ill_fragtimer_executing); 9195 if (ill->ill_state_flags & ILL_CONDEMNED) { 9196 ill->ill_frag_timer_id = 0; 9197 mutex_exit(&ill->ill_lock); 9198 return; 9199 } 9200 ill->ill_fragtimer_executing = 1; 9201 mutex_exit(&ill->ill_lock); 9202 9203 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9204 ipst->ips_ip_reassembly_timeout); 9205 9206 frag_pending = ill_frag_timeout(ill, timeout); 9207 9208 /* 9209 * Restart the timer, if we have fragments pending or if someone 9210 * wanted us to be scheduled again. 9211 */ 9212 mutex_enter(&ill->ill_lock); 9213 ill->ill_fragtimer_executing = 0; 9214 ill->ill_frag_timer_id = 0; 9215 if (frag_pending || ill->ill_fragtimer_needrestart) 9216 ill_frag_timer_start(ill); 9217 mutex_exit(&ill->ill_lock); 9218 } 9219 9220 void 9221 ill_frag_timer_start(ill_t *ill) 9222 { 9223 ip_stack_t *ipst = ill->ill_ipst; 9224 clock_t timeo_ms; 9225 9226 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9227 9228 /* If the ill is closing or opening don't proceed */ 9229 if (ill->ill_state_flags & ILL_CONDEMNED) 9230 return; 9231 9232 if (ill->ill_fragtimer_executing) { 9233 /* 9234 * ill_frag_timer is currently executing. Just record the 9235 * the fact that we want the timer to be restarted. 9236 * ill_frag_timer will post a timeout before it returns, 9237 * ensuring it will be called again. 9238 */ 9239 ill->ill_fragtimer_needrestart = 1; 9240 return; 9241 } 9242 9243 if (ill->ill_frag_timer_id == 0) { 9244 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9245 ipst->ips_ip_reassembly_timeout) * SECONDS; 9246 9247 /* 9248 * The timer is neither running nor is the timeout handler 9249 * executing. Post a timeout so that ill_frag_timer will be 9250 * called 9251 */ 9252 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9253 MSEC_TO_TICK(timeo_ms >> 1)); 9254 ill->ill_fragtimer_needrestart = 0; 9255 } 9256 } 9257 9258 /* 9259 * Update any source route, record route or timestamp options. 9260 * Check that we are at end of strict source route. 9261 * The options have already been checked for sanity in ip_input_options(). 9262 */ 9263 boolean_t 9264 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9265 { 9266 ipoptp_t opts; 9267 uchar_t *opt; 9268 uint8_t optval; 9269 uint8_t optlen; 9270 ipaddr_t dst; 9271 ipaddr_t ifaddr; 9272 uint32_t ts; 9273 timestruc_t now; 9274 ill_t *ill = ira->ira_ill; 9275 ip_stack_t *ipst = ill->ill_ipst; 9276 9277 ip2dbg(("ip_input_local_options\n")); 9278 opt = NULL; 9279 9280 for (optval = ipoptp_first(&opts, ipha); 9281 optval != IPOPT_EOL; 9282 optval = ipoptp_next(&opts)) { 9283 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9284 opt = opts.ipoptp_cur; 9285 optlen = opts.ipoptp_len; 9286 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9287 optval, optlen)); 9288 switch (optval) { 9289 uint32_t off; 9290 case IPOPT_SSRR: 9291 case IPOPT_LSRR: 9292 off = opt[IPOPT_OFFSET]; 9293 off--; 9294 if (optlen < IP_ADDR_LEN || 9295 off > optlen - IP_ADDR_LEN) { 9296 /* End of source route */ 9297 ip1dbg(("ip_input_local_options: end of SR\n")); 9298 break; 9299 } 9300 /* 9301 * This will only happen if two consecutive entries 9302 * in the source route contains our address or if 9303 * it is a packet with a loose source route which 9304 * reaches us before consuming the whole source route 9305 */ 9306 ip1dbg(("ip_input_local_options: not end of SR\n")); 9307 if (optval == IPOPT_SSRR) { 9308 goto bad_src_route; 9309 } 9310 /* 9311 * Hack: instead of dropping the packet truncate the 9312 * source route to what has been used by filling the 9313 * rest with IPOPT_NOP. 9314 */ 9315 opt[IPOPT_OLEN] = (uint8_t)off; 9316 while (off < optlen) { 9317 opt[off++] = IPOPT_NOP; 9318 } 9319 break; 9320 case IPOPT_RR: 9321 off = opt[IPOPT_OFFSET]; 9322 off--; 9323 if (optlen < IP_ADDR_LEN || 9324 off > optlen - IP_ADDR_LEN) { 9325 /* No more room - ignore */ 9326 ip1dbg(( 9327 "ip_input_local_options: end of RR\n")); 9328 break; 9329 } 9330 /* Pick a reasonable address on the outbound if */ 9331 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9332 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9333 NULL) != 0) { 9334 /* No source! Shouldn't happen */ 9335 ifaddr = INADDR_ANY; 9336 } 9337 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9338 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9339 break; 9340 case IPOPT_TS: 9341 off = 0; 9342 /* Insert timestamp if there is romm */ 9343 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9344 case IPOPT_TS_TSONLY: 9345 off = IPOPT_TS_TIMELEN; 9346 break; 9347 case IPOPT_TS_PRESPEC: 9348 case IPOPT_TS_PRESPEC_RFC791: 9349 /* Verify that the address matched */ 9350 off = opt[IPOPT_OFFSET] - 1; 9351 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9352 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9353 /* Not for us */ 9354 break; 9355 } 9356 /* FALLTHROUGH */ 9357 case IPOPT_TS_TSANDADDR: 9358 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9359 break; 9360 default: 9361 /* 9362 * ip_*put_options should have already 9363 * dropped this packet. 9364 */ 9365 cmn_err(CE_PANIC, "ip_input_local_options: " 9366 "unknown IT - bug in ip_input_options?\n"); 9367 } 9368 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9369 /* Increase overflow counter */ 9370 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9371 opt[IPOPT_POS_OV_FLG] = 9372 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9373 (off << 4)); 9374 break; 9375 } 9376 off = opt[IPOPT_OFFSET] - 1; 9377 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9378 case IPOPT_TS_PRESPEC: 9379 case IPOPT_TS_PRESPEC_RFC791: 9380 case IPOPT_TS_TSANDADDR: 9381 /* Pick a reasonable addr on the outbound if */ 9382 if (ip_select_source_v4(ill, INADDR_ANY, 9383 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9384 &ifaddr, NULL, NULL) != 0) { 9385 /* No source! Shouldn't happen */ 9386 ifaddr = INADDR_ANY; 9387 } 9388 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9389 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9390 /* FALLTHROUGH */ 9391 case IPOPT_TS_TSONLY: 9392 off = opt[IPOPT_OFFSET] - 1; 9393 /* Compute # of milliseconds since midnight */ 9394 gethrestime(&now); 9395 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9396 NSEC2MSEC(now.tv_nsec); 9397 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9398 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9399 break; 9400 } 9401 break; 9402 } 9403 } 9404 return (B_TRUE); 9405 9406 bad_src_route: 9407 /* make sure we clear any indication of a hardware checksum */ 9408 DB_CKSUMFLAGS(mp) = 0; 9409 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9410 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9411 return (B_FALSE); 9412 9413 } 9414 9415 /* 9416 * Process IP options in an inbound packet. Always returns the nexthop. 9417 * Normally this is the passed in nexthop, but if there is an option 9418 * that effects the nexthop (such as a source route) that will be returned. 9419 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9420 * and mp freed. 9421 */ 9422 ipaddr_t 9423 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9424 ip_recv_attr_t *ira, int *errorp) 9425 { 9426 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9427 ipoptp_t opts; 9428 uchar_t *opt; 9429 uint8_t optval; 9430 uint8_t optlen; 9431 intptr_t code = 0; 9432 ire_t *ire; 9433 9434 ip2dbg(("ip_input_options\n")); 9435 opt = NULL; 9436 *errorp = 0; 9437 for (optval = ipoptp_first(&opts, ipha); 9438 optval != IPOPT_EOL; 9439 optval = ipoptp_next(&opts)) { 9440 opt = opts.ipoptp_cur; 9441 optlen = opts.ipoptp_len; 9442 ip2dbg(("ip_input_options: opt %d, len %d\n", 9443 optval, optlen)); 9444 /* 9445 * Note: we need to verify the checksum before we 9446 * modify anything thus this routine only extracts the next 9447 * hop dst from any source route. 9448 */ 9449 switch (optval) { 9450 uint32_t off; 9451 case IPOPT_SSRR: 9452 case IPOPT_LSRR: 9453 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9454 if (optval == IPOPT_SSRR) { 9455 ip1dbg(("ip_input_options: not next" 9456 " strict source route 0x%x\n", 9457 ntohl(dst))); 9458 code = (char *)&ipha->ipha_dst - 9459 (char *)ipha; 9460 goto param_prob; /* RouterReq's */ 9461 } 9462 ip2dbg(("ip_input_options: " 9463 "not next source route 0x%x\n", 9464 ntohl(dst))); 9465 break; 9466 } 9467 9468 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9469 ip1dbg(( 9470 "ip_input_options: bad option offset\n")); 9471 code = (char *)&opt[IPOPT_OLEN] - 9472 (char *)ipha; 9473 goto param_prob; 9474 } 9475 off = opt[IPOPT_OFFSET]; 9476 off--; 9477 redo_srr: 9478 if (optlen < IP_ADDR_LEN || 9479 off > optlen - IP_ADDR_LEN) { 9480 /* End of source route */ 9481 ip1dbg(("ip_input_options: end of SR\n")); 9482 break; 9483 } 9484 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9485 ip1dbg(("ip_input_options: next hop 0x%x\n", 9486 ntohl(dst))); 9487 9488 /* 9489 * Check if our address is present more than 9490 * once as consecutive hops in source route. 9491 * XXX verify per-interface ip_forwarding 9492 * for source route? 9493 */ 9494 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9495 off += IP_ADDR_LEN; 9496 goto redo_srr; 9497 } 9498 9499 if (dst == htonl(INADDR_LOOPBACK)) { 9500 ip1dbg(("ip_input_options: loopback addr in " 9501 "source route!\n")); 9502 goto bad_src_route; 9503 } 9504 /* 9505 * For strict: verify that dst is directly 9506 * reachable. 9507 */ 9508 if (optval == IPOPT_SSRR) { 9509 ire = ire_ftable_lookup_v4(dst, 0, 0, 9510 IRE_INTERFACE, NULL, ALL_ZONES, 9511 ira->ira_tsl, 9512 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9513 NULL); 9514 if (ire == NULL) { 9515 ip1dbg(("ip_input_options: SSRR not " 9516 "directly reachable: 0x%x\n", 9517 ntohl(dst))); 9518 goto bad_src_route; 9519 } 9520 ire_refrele(ire); 9521 } 9522 /* 9523 * Defer update of the offset and the record route 9524 * until the packet is forwarded. 9525 */ 9526 break; 9527 case IPOPT_RR: 9528 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9529 ip1dbg(( 9530 "ip_input_options: bad option offset\n")); 9531 code = (char *)&opt[IPOPT_OLEN] - 9532 (char *)ipha; 9533 goto param_prob; 9534 } 9535 break; 9536 case IPOPT_TS: 9537 /* 9538 * Verify that length >= 5 and that there is either 9539 * room for another timestamp or that the overflow 9540 * counter is not maxed out. 9541 */ 9542 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9543 if (optlen < IPOPT_MINLEN_IT) { 9544 goto param_prob; 9545 } 9546 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9547 ip1dbg(( 9548 "ip_input_options: bad option offset\n")); 9549 code = (char *)&opt[IPOPT_OFFSET] - 9550 (char *)ipha; 9551 goto param_prob; 9552 } 9553 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9554 case IPOPT_TS_TSONLY: 9555 off = IPOPT_TS_TIMELEN; 9556 break; 9557 case IPOPT_TS_TSANDADDR: 9558 case IPOPT_TS_PRESPEC: 9559 case IPOPT_TS_PRESPEC_RFC791: 9560 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9561 break; 9562 default: 9563 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9564 (char *)ipha; 9565 goto param_prob; 9566 } 9567 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9568 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9569 /* 9570 * No room and the overflow counter is 15 9571 * already. 9572 */ 9573 goto param_prob; 9574 } 9575 break; 9576 } 9577 } 9578 9579 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9580 return (dst); 9581 } 9582 9583 ip1dbg(("ip_input_options: error processing IP options.")); 9584 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9585 9586 param_prob: 9587 /* make sure we clear any indication of a hardware checksum */ 9588 DB_CKSUMFLAGS(mp) = 0; 9589 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9590 icmp_param_problem(mp, (uint8_t)code, ira); 9591 *errorp = -1; 9592 return (dst); 9593 9594 bad_src_route: 9595 /* make sure we clear any indication of a hardware checksum */ 9596 DB_CKSUMFLAGS(mp) = 0; 9597 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9598 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9599 *errorp = -1; 9600 return (dst); 9601 } 9602 9603 /* 9604 * IP & ICMP info in >=14 msg's ... 9605 * - ip fixed part (mib2_ip_t) 9606 * - icmp fixed part (mib2_icmp_t) 9607 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9608 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9609 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9610 * - ipRouteAttributeTable (ip 102) labeled routes 9611 * - ip multicast membership (ip_member_t) 9612 * - ip multicast source filtering (ip_grpsrc_t) 9613 * - igmp fixed part (struct igmpstat) 9614 * - multicast routing stats (struct mrtstat) 9615 * - multicast routing vifs (array of struct vifctl) 9616 * - multicast routing routes (array of struct mfcctl) 9617 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9618 * One per ill plus one generic 9619 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9620 * One per ill plus one generic 9621 * - ipv6RouteEntry all IPv6 IREs 9622 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9623 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9624 * - ipv6AddrEntry all IPv6 ipifs 9625 * - ipv6 multicast membership (ipv6_member_t) 9626 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9627 * 9628 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9629 * already filled in by the caller. 9630 * If legacy_req is true then MIB structures needs to be truncated to their 9631 * legacy sizes before being returned. 9632 * Return value of 0 indicates that no messages were sent and caller 9633 * should free mpctl. 9634 */ 9635 int 9636 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9637 { 9638 ip_stack_t *ipst; 9639 sctp_stack_t *sctps; 9640 9641 if (q->q_next != NULL) { 9642 ipst = ILLQ_TO_IPST(q); 9643 } else { 9644 ipst = CONNQ_TO_IPST(q); 9645 } 9646 ASSERT(ipst != NULL); 9647 sctps = ipst->ips_netstack->netstack_sctp; 9648 9649 if (mpctl == NULL || mpctl->b_cont == NULL) { 9650 return (0); 9651 } 9652 9653 /* 9654 * For the purposes of the (broken) packet shell use 9655 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9656 * to make TCP and UDP appear first in the list of mib items. 9657 * TBD: We could expand this and use it in netstat so that 9658 * the kernel doesn't have to produce large tables (connections, 9659 * routes, etc) when netstat only wants the statistics or a particular 9660 * table. 9661 */ 9662 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9663 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9664 return (1); 9665 } 9666 } 9667 9668 if (level != MIB2_TCP) { 9669 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9670 return (1); 9671 } 9672 if (level == MIB2_UDP) { 9673 goto done; 9674 } 9675 } 9676 9677 if (level != MIB2_UDP) { 9678 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9679 return (1); 9680 } 9681 if (level == MIB2_TCP) { 9682 goto done; 9683 } 9684 } 9685 9686 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9687 ipst, legacy_req)) == NULL) { 9688 return (1); 9689 } 9690 9691 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9692 legacy_req)) == NULL) { 9693 return (1); 9694 } 9695 9696 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9697 return (1); 9698 } 9699 9700 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9701 return (1); 9702 } 9703 9704 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9705 return (1); 9706 } 9707 9708 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9709 return (1); 9710 } 9711 9712 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9713 legacy_req)) == NULL) { 9714 return (1); 9715 } 9716 9717 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9718 legacy_req)) == NULL) { 9719 return (1); 9720 } 9721 9722 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9723 return (1); 9724 } 9725 9726 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9727 return (1); 9728 } 9729 9730 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9731 return (1); 9732 } 9733 9734 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9735 return (1); 9736 } 9737 9738 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9739 return (1); 9740 } 9741 9742 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9743 return (1); 9744 } 9745 9746 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9747 if (mpctl == NULL) 9748 return (1); 9749 9750 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9751 if (mpctl == NULL) 9752 return (1); 9753 9754 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9755 return (1); 9756 } 9757 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9758 return (1); 9759 } 9760 done: 9761 freemsg(mpctl); 9762 return (1); 9763 } 9764 9765 /* Get global (legacy) IPv4 statistics */ 9766 static mblk_t * 9767 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9768 ip_stack_t *ipst, boolean_t legacy_req) 9769 { 9770 mib2_ip_t old_ip_mib; 9771 struct opthdr *optp; 9772 mblk_t *mp2ctl; 9773 mib2_ipAddrEntry_t mae; 9774 9775 /* 9776 * make a copy of the original message 9777 */ 9778 mp2ctl = copymsg(mpctl); 9779 9780 /* fixed length IP structure... */ 9781 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9782 optp->level = MIB2_IP; 9783 optp->name = 0; 9784 SET_MIB(old_ip_mib.ipForwarding, 9785 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9786 SET_MIB(old_ip_mib.ipDefaultTTL, 9787 (uint32_t)ipst->ips_ip_def_ttl); 9788 SET_MIB(old_ip_mib.ipReasmTimeout, 9789 ipst->ips_ip_reassembly_timeout); 9790 SET_MIB(old_ip_mib.ipAddrEntrySize, 9791 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9792 sizeof (mib2_ipAddrEntry_t)); 9793 SET_MIB(old_ip_mib.ipRouteEntrySize, 9794 sizeof (mib2_ipRouteEntry_t)); 9795 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9796 sizeof (mib2_ipNetToMediaEntry_t)); 9797 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9798 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9799 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9800 sizeof (mib2_ipAttributeEntry_t)); 9801 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9802 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9803 9804 /* 9805 * Grab the statistics from the new IP MIB 9806 */ 9807 SET_MIB(old_ip_mib.ipInReceives, 9808 (uint32_t)ipmib->ipIfStatsHCInReceives); 9809 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9810 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9811 SET_MIB(old_ip_mib.ipForwDatagrams, 9812 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9813 SET_MIB(old_ip_mib.ipInUnknownProtos, 9814 ipmib->ipIfStatsInUnknownProtos); 9815 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9816 SET_MIB(old_ip_mib.ipInDelivers, 9817 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9818 SET_MIB(old_ip_mib.ipOutRequests, 9819 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9820 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9821 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9822 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9823 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9824 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9825 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9826 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9827 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9828 9829 /* ipRoutingDiscards is not being used */ 9830 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9831 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9832 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9833 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9834 SET_MIB(old_ip_mib.ipReasmDuplicates, 9835 ipmib->ipIfStatsReasmDuplicates); 9836 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9837 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9838 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9839 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9840 SET_MIB(old_ip_mib.rawipInOverflows, 9841 ipmib->rawipIfStatsInOverflows); 9842 9843 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9844 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9845 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9846 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9847 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9848 ipmib->ipIfStatsOutSwitchIPVersion); 9849 9850 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9851 (int)sizeof (old_ip_mib))) { 9852 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9853 (uint_t)sizeof (old_ip_mib))); 9854 } 9855 9856 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9857 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9858 (int)optp->level, (int)optp->name, (int)optp->len)); 9859 qreply(q, mpctl); 9860 return (mp2ctl); 9861 } 9862 9863 /* Per interface IPv4 statistics */ 9864 static mblk_t * 9865 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9866 boolean_t legacy_req) 9867 { 9868 struct opthdr *optp; 9869 mblk_t *mp2ctl; 9870 ill_t *ill; 9871 ill_walk_context_t ctx; 9872 mblk_t *mp_tail = NULL; 9873 mib2_ipIfStatsEntry_t global_ip_mib; 9874 mib2_ipAddrEntry_t mae; 9875 9876 /* 9877 * Make a copy of the original message 9878 */ 9879 mp2ctl = copymsg(mpctl); 9880 9881 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9882 optp->level = MIB2_IP; 9883 optp->name = MIB2_IP_TRAFFIC_STATS; 9884 /* Include "unknown interface" ip_mib */ 9885 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9886 ipst->ips_ip_mib.ipIfStatsIfIndex = 9887 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9888 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9889 (ipst->ips_ip_forwarding ? 1 : 2)); 9890 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9891 (uint32_t)ipst->ips_ip_def_ttl); 9892 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9893 sizeof (mib2_ipIfStatsEntry_t)); 9894 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9895 sizeof (mib2_ipAddrEntry_t)); 9896 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9897 sizeof (mib2_ipRouteEntry_t)); 9898 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9899 sizeof (mib2_ipNetToMediaEntry_t)); 9900 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9901 sizeof (ip_member_t)); 9902 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9903 sizeof (ip_grpsrc_t)); 9904 9905 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9906 9907 if (legacy_req) { 9908 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9909 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9910 } 9911 9912 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9913 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9914 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9915 "failed to allocate %u bytes\n", 9916 (uint_t)sizeof (global_ip_mib))); 9917 } 9918 9919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9920 ill = ILL_START_WALK_V4(&ctx, ipst); 9921 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9922 ill->ill_ip_mib->ipIfStatsIfIndex = 9923 ill->ill_phyint->phyint_ifindex; 9924 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9925 (ipst->ips_ip_forwarding ? 1 : 2)); 9926 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9927 (uint32_t)ipst->ips_ip_def_ttl); 9928 9929 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9930 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9931 (char *)ill->ill_ip_mib, 9932 (int)sizeof (*ill->ill_ip_mib))) { 9933 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9934 "failed to allocate %u bytes\n", 9935 (uint_t)sizeof (*ill->ill_ip_mib))); 9936 } 9937 } 9938 rw_exit(&ipst->ips_ill_g_lock); 9939 9940 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9941 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9942 "level %d, name %d, len %d\n", 9943 (int)optp->level, (int)optp->name, (int)optp->len)); 9944 qreply(q, mpctl); 9945 9946 if (mp2ctl == NULL) 9947 return (NULL); 9948 9949 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9950 legacy_req)); 9951 } 9952 9953 /* Global IPv4 ICMP statistics */ 9954 static mblk_t * 9955 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9956 { 9957 struct opthdr *optp; 9958 mblk_t *mp2ctl; 9959 9960 /* 9961 * Make a copy of the original message 9962 */ 9963 mp2ctl = copymsg(mpctl); 9964 9965 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9966 optp->level = MIB2_ICMP; 9967 optp->name = 0; 9968 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9969 (int)sizeof (ipst->ips_icmp_mib))) { 9970 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9971 (uint_t)sizeof (ipst->ips_icmp_mib))); 9972 } 9973 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9974 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9975 (int)optp->level, (int)optp->name, (int)optp->len)); 9976 qreply(q, mpctl); 9977 return (mp2ctl); 9978 } 9979 9980 /* Global IPv4 IGMP statistics */ 9981 static mblk_t * 9982 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9983 { 9984 struct opthdr *optp; 9985 mblk_t *mp2ctl; 9986 9987 /* 9988 * make a copy of the original message 9989 */ 9990 mp2ctl = copymsg(mpctl); 9991 9992 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9993 optp->level = EXPER_IGMP; 9994 optp->name = 0; 9995 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9996 (int)sizeof (ipst->ips_igmpstat))) { 9997 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9998 (uint_t)sizeof (ipst->ips_igmpstat))); 9999 } 10000 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10001 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 10002 (int)optp->level, (int)optp->name, (int)optp->len)); 10003 qreply(q, mpctl); 10004 return (mp2ctl); 10005 } 10006 10007 /* Global IPv4 Multicast Routing statistics */ 10008 static mblk_t * 10009 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10010 { 10011 struct opthdr *optp; 10012 mblk_t *mp2ctl; 10013 10014 /* 10015 * make a copy of the original message 10016 */ 10017 mp2ctl = copymsg(mpctl); 10018 10019 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10020 optp->level = EXPER_DVMRP; 10021 optp->name = 0; 10022 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10023 ip0dbg(("ip_mroute_stats: failed\n")); 10024 } 10025 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10026 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10027 (int)optp->level, (int)optp->name, (int)optp->len)); 10028 qreply(q, mpctl); 10029 return (mp2ctl); 10030 } 10031 10032 /* IPv4 address information */ 10033 static mblk_t * 10034 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10035 boolean_t legacy_req) 10036 { 10037 struct opthdr *optp; 10038 mblk_t *mp2ctl; 10039 mblk_t *mp_tail = NULL; 10040 ill_t *ill; 10041 ipif_t *ipif; 10042 uint_t bitval; 10043 mib2_ipAddrEntry_t mae; 10044 size_t mae_size; 10045 zoneid_t zoneid; 10046 ill_walk_context_t ctx; 10047 10048 /* 10049 * make a copy of the original message 10050 */ 10051 mp2ctl = copymsg(mpctl); 10052 10053 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10054 sizeof (mib2_ipAddrEntry_t); 10055 10056 /* ipAddrEntryTable */ 10057 10058 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10059 optp->level = MIB2_IP; 10060 optp->name = MIB2_IP_ADDR; 10061 zoneid = Q_TO_CONN(q)->conn_zoneid; 10062 10063 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10064 ill = ILL_START_WALK_V4(&ctx, ipst); 10065 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10066 for (ipif = ill->ill_ipif; ipif != NULL; 10067 ipif = ipif->ipif_next) { 10068 if (ipif->ipif_zoneid != zoneid && 10069 ipif->ipif_zoneid != ALL_ZONES) 10070 continue; 10071 /* Sum of count from dead IRE_LO* and our current */ 10072 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10073 if (ipif->ipif_ire_local != NULL) { 10074 mae.ipAdEntInfo.ae_ibcnt += 10075 ipif->ipif_ire_local->ire_ib_pkt_count; 10076 } 10077 mae.ipAdEntInfo.ae_obcnt = 0; 10078 mae.ipAdEntInfo.ae_focnt = 0; 10079 10080 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10081 OCTET_LENGTH); 10082 mae.ipAdEntIfIndex.o_length = 10083 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10084 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10085 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10086 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10087 mae.ipAdEntInfo.ae_subnet_len = 10088 ip_mask_to_plen(ipif->ipif_net_mask); 10089 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10090 for (bitval = 1; 10091 bitval && 10092 !(bitval & ipif->ipif_brd_addr); 10093 bitval <<= 1) 10094 noop; 10095 mae.ipAdEntBcastAddr = bitval; 10096 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10097 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10098 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10099 mae.ipAdEntInfo.ae_broadcast_addr = 10100 ipif->ipif_brd_addr; 10101 mae.ipAdEntInfo.ae_pp_dst_addr = 10102 ipif->ipif_pp_dst_addr; 10103 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10104 ill->ill_flags | ill->ill_phyint->phyint_flags; 10105 mae.ipAdEntRetransmitTime = 10106 ill->ill_reachable_retrans_time; 10107 10108 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10109 (char *)&mae, (int)mae_size)) { 10110 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10111 "allocate %u bytes\n", (uint_t)mae_size)); 10112 } 10113 } 10114 } 10115 rw_exit(&ipst->ips_ill_g_lock); 10116 10117 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10118 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10119 (int)optp->level, (int)optp->name, (int)optp->len)); 10120 qreply(q, mpctl); 10121 return (mp2ctl); 10122 } 10123 10124 /* IPv6 address information */ 10125 static mblk_t * 10126 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10127 boolean_t legacy_req) 10128 { 10129 struct opthdr *optp; 10130 mblk_t *mp2ctl; 10131 mblk_t *mp_tail = NULL; 10132 ill_t *ill; 10133 ipif_t *ipif; 10134 mib2_ipv6AddrEntry_t mae6; 10135 size_t mae6_size; 10136 zoneid_t zoneid; 10137 ill_walk_context_t ctx; 10138 10139 /* 10140 * make a copy of the original message 10141 */ 10142 mp2ctl = copymsg(mpctl); 10143 10144 mae6_size = (legacy_req) ? 10145 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10146 sizeof (mib2_ipv6AddrEntry_t); 10147 10148 /* ipv6AddrEntryTable */ 10149 10150 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10151 optp->level = MIB2_IP6; 10152 optp->name = MIB2_IP6_ADDR; 10153 zoneid = Q_TO_CONN(q)->conn_zoneid; 10154 10155 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10156 ill = ILL_START_WALK_V6(&ctx, ipst); 10157 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10158 for (ipif = ill->ill_ipif; ipif != NULL; 10159 ipif = ipif->ipif_next) { 10160 if (ipif->ipif_zoneid != zoneid && 10161 ipif->ipif_zoneid != ALL_ZONES) 10162 continue; 10163 /* Sum of count from dead IRE_LO* and our current */ 10164 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10165 if (ipif->ipif_ire_local != NULL) { 10166 mae6.ipv6AddrInfo.ae_ibcnt += 10167 ipif->ipif_ire_local->ire_ib_pkt_count; 10168 } 10169 mae6.ipv6AddrInfo.ae_obcnt = 0; 10170 mae6.ipv6AddrInfo.ae_focnt = 0; 10171 10172 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10173 OCTET_LENGTH); 10174 mae6.ipv6AddrIfIndex.o_length = 10175 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10176 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10177 mae6.ipv6AddrPfxLength = 10178 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10179 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10180 mae6.ipv6AddrInfo.ae_subnet_len = 10181 mae6.ipv6AddrPfxLength; 10182 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10183 10184 /* Type: stateless(1), stateful(2), unknown(3) */ 10185 if (ipif->ipif_flags & IPIF_ADDRCONF) 10186 mae6.ipv6AddrType = 1; 10187 else 10188 mae6.ipv6AddrType = 2; 10189 /* Anycast: true(1), false(2) */ 10190 if (ipif->ipif_flags & IPIF_ANYCAST) 10191 mae6.ipv6AddrAnycastFlag = 1; 10192 else 10193 mae6.ipv6AddrAnycastFlag = 2; 10194 10195 /* 10196 * Address status: preferred(1), deprecated(2), 10197 * invalid(3), inaccessible(4), unknown(5) 10198 */ 10199 if (ipif->ipif_flags & IPIF_NOLOCAL) 10200 mae6.ipv6AddrStatus = 3; 10201 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10202 mae6.ipv6AddrStatus = 2; 10203 else 10204 mae6.ipv6AddrStatus = 1; 10205 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10206 mae6.ipv6AddrInfo.ae_metric = 10207 ipif->ipif_ill->ill_metric; 10208 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10209 ipif->ipif_v6pp_dst_addr; 10210 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10211 ill->ill_flags | ill->ill_phyint->phyint_flags; 10212 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10213 mae6.ipv6AddrIdentifier = ill->ill_token; 10214 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10215 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10216 mae6.ipv6AddrRetransmitTime = 10217 ill->ill_reachable_retrans_time; 10218 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10219 (char *)&mae6, (int)mae6_size)) { 10220 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10221 "allocate %u bytes\n", 10222 (uint_t)mae6_size)); 10223 } 10224 } 10225 } 10226 rw_exit(&ipst->ips_ill_g_lock); 10227 10228 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10229 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10230 (int)optp->level, (int)optp->name, (int)optp->len)); 10231 qreply(q, mpctl); 10232 return (mp2ctl); 10233 } 10234 10235 /* IPv4 multicast group membership. */ 10236 static mblk_t * 10237 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10238 { 10239 struct opthdr *optp; 10240 mblk_t *mp2ctl; 10241 ill_t *ill; 10242 ipif_t *ipif; 10243 ilm_t *ilm; 10244 ip_member_t ipm; 10245 mblk_t *mp_tail = NULL; 10246 ill_walk_context_t ctx; 10247 zoneid_t zoneid; 10248 10249 /* 10250 * make a copy of the original message 10251 */ 10252 mp2ctl = copymsg(mpctl); 10253 zoneid = Q_TO_CONN(q)->conn_zoneid; 10254 10255 /* ipGroupMember table */ 10256 optp = (struct opthdr *)&mpctl->b_rptr[ 10257 sizeof (struct T_optmgmt_ack)]; 10258 optp->level = MIB2_IP; 10259 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10260 10261 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10262 ill = ILL_START_WALK_V4(&ctx, ipst); 10263 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10264 /* Make sure the ill isn't going away. */ 10265 if (!ill_check_and_refhold(ill)) 10266 continue; 10267 rw_exit(&ipst->ips_ill_g_lock); 10268 rw_enter(&ill->ill_mcast_lock, RW_READER); 10269 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10270 if (ilm->ilm_zoneid != zoneid && 10271 ilm->ilm_zoneid != ALL_ZONES) 10272 continue; 10273 10274 /* Is there an ipif for ilm_ifaddr? */ 10275 for (ipif = ill->ill_ipif; ipif != NULL; 10276 ipif = ipif->ipif_next) { 10277 if (!IPIF_IS_CONDEMNED(ipif) && 10278 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10279 ilm->ilm_ifaddr != INADDR_ANY) 10280 break; 10281 } 10282 if (ipif != NULL) { 10283 ipif_get_name(ipif, 10284 ipm.ipGroupMemberIfIndex.o_bytes, 10285 OCTET_LENGTH); 10286 } else { 10287 ill_get_name(ill, 10288 ipm.ipGroupMemberIfIndex.o_bytes, 10289 OCTET_LENGTH); 10290 } 10291 ipm.ipGroupMemberIfIndex.o_length = 10292 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10293 10294 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10295 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10296 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10297 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10298 (char *)&ipm, (int)sizeof (ipm))) { 10299 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10300 "failed to allocate %u bytes\n", 10301 (uint_t)sizeof (ipm))); 10302 } 10303 } 10304 rw_exit(&ill->ill_mcast_lock); 10305 ill_refrele(ill); 10306 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10307 } 10308 rw_exit(&ipst->ips_ill_g_lock); 10309 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10310 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10311 (int)optp->level, (int)optp->name, (int)optp->len)); 10312 qreply(q, mpctl); 10313 return (mp2ctl); 10314 } 10315 10316 /* IPv6 multicast group membership. */ 10317 static mblk_t * 10318 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10319 { 10320 struct opthdr *optp; 10321 mblk_t *mp2ctl; 10322 ill_t *ill; 10323 ilm_t *ilm; 10324 ipv6_member_t ipm6; 10325 mblk_t *mp_tail = NULL; 10326 ill_walk_context_t ctx; 10327 zoneid_t zoneid; 10328 10329 /* 10330 * make a copy of the original message 10331 */ 10332 mp2ctl = copymsg(mpctl); 10333 zoneid = Q_TO_CONN(q)->conn_zoneid; 10334 10335 /* ip6GroupMember table */ 10336 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10337 optp->level = MIB2_IP6; 10338 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10339 10340 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10341 ill = ILL_START_WALK_V6(&ctx, ipst); 10342 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10343 /* Make sure the ill isn't going away. */ 10344 if (!ill_check_and_refhold(ill)) 10345 continue; 10346 rw_exit(&ipst->ips_ill_g_lock); 10347 /* 10348 * Normally we don't have any members on under IPMP interfaces. 10349 * We report them as a debugging aid. 10350 */ 10351 rw_enter(&ill->ill_mcast_lock, RW_READER); 10352 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10353 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10354 if (ilm->ilm_zoneid != zoneid && 10355 ilm->ilm_zoneid != ALL_ZONES) 10356 continue; /* not this zone */ 10357 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10358 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10359 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10360 if (!snmp_append_data2(mpctl->b_cont, 10361 &mp_tail, 10362 (char *)&ipm6, (int)sizeof (ipm6))) { 10363 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10364 "failed to allocate %u bytes\n", 10365 (uint_t)sizeof (ipm6))); 10366 } 10367 } 10368 rw_exit(&ill->ill_mcast_lock); 10369 ill_refrele(ill); 10370 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10371 } 10372 rw_exit(&ipst->ips_ill_g_lock); 10373 10374 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10375 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10376 (int)optp->level, (int)optp->name, (int)optp->len)); 10377 qreply(q, mpctl); 10378 return (mp2ctl); 10379 } 10380 10381 /* IP multicast filtered sources */ 10382 static mblk_t * 10383 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10384 { 10385 struct opthdr *optp; 10386 mblk_t *mp2ctl; 10387 ill_t *ill; 10388 ipif_t *ipif; 10389 ilm_t *ilm; 10390 ip_grpsrc_t ips; 10391 mblk_t *mp_tail = NULL; 10392 ill_walk_context_t ctx; 10393 zoneid_t zoneid; 10394 int i; 10395 slist_t *sl; 10396 10397 /* 10398 * make a copy of the original message 10399 */ 10400 mp2ctl = copymsg(mpctl); 10401 zoneid = Q_TO_CONN(q)->conn_zoneid; 10402 10403 /* ipGroupSource table */ 10404 optp = (struct opthdr *)&mpctl->b_rptr[ 10405 sizeof (struct T_optmgmt_ack)]; 10406 optp->level = MIB2_IP; 10407 optp->name = EXPER_IP_GROUP_SOURCES; 10408 10409 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10410 ill = ILL_START_WALK_V4(&ctx, ipst); 10411 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10412 /* Make sure the ill isn't going away. */ 10413 if (!ill_check_and_refhold(ill)) 10414 continue; 10415 rw_exit(&ipst->ips_ill_g_lock); 10416 rw_enter(&ill->ill_mcast_lock, RW_READER); 10417 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10418 sl = ilm->ilm_filter; 10419 if (ilm->ilm_zoneid != zoneid && 10420 ilm->ilm_zoneid != ALL_ZONES) 10421 continue; 10422 if (SLIST_IS_EMPTY(sl)) 10423 continue; 10424 10425 /* Is there an ipif for ilm_ifaddr? */ 10426 for (ipif = ill->ill_ipif; ipif != NULL; 10427 ipif = ipif->ipif_next) { 10428 if (!IPIF_IS_CONDEMNED(ipif) && 10429 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10430 ilm->ilm_ifaddr != INADDR_ANY) 10431 break; 10432 } 10433 if (ipif != NULL) { 10434 ipif_get_name(ipif, 10435 ips.ipGroupSourceIfIndex.o_bytes, 10436 OCTET_LENGTH); 10437 } else { 10438 ill_get_name(ill, 10439 ips.ipGroupSourceIfIndex.o_bytes, 10440 OCTET_LENGTH); 10441 } 10442 ips.ipGroupSourceIfIndex.o_length = 10443 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10444 10445 ips.ipGroupSourceGroup = ilm->ilm_addr; 10446 for (i = 0; i < sl->sl_numsrc; i++) { 10447 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10448 continue; 10449 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10450 ips.ipGroupSourceAddress); 10451 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10452 (char *)&ips, (int)sizeof (ips)) == 0) { 10453 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10454 " failed to allocate %u bytes\n", 10455 (uint_t)sizeof (ips))); 10456 } 10457 } 10458 } 10459 rw_exit(&ill->ill_mcast_lock); 10460 ill_refrele(ill); 10461 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10462 } 10463 rw_exit(&ipst->ips_ill_g_lock); 10464 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10465 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10466 (int)optp->level, (int)optp->name, (int)optp->len)); 10467 qreply(q, mpctl); 10468 return (mp2ctl); 10469 } 10470 10471 /* IPv6 multicast filtered sources. */ 10472 static mblk_t * 10473 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10474 { 10475 struct opthdr *optp; 10476 mblk_t *mp2ctl; 10477 ill_t *ill; 10478 ilm_t *ilm; 10479 ipv6_grpsrc_t ips6; 10480 mblk_t *mp_tail = NULL; 10481 ill_walk_context_t ctx; 10482 zoneid_t zoneid; 10483 int i; 10484 slist_t *sl; 10485 10486 /* 10487 * make a copy of the original message 10488 */ 10489 mp2ctl = copymsg(mpctl); 10490 zoneid = Q_TO_CONN(q)->conn_zoneid; 10491 10492 /* ip6GroupMember table */ 10493 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10494 optp->level = MIB2_IP6; 10495 optp->name = EXPER_IP6_GROUP_SOURCES; 10496 10497 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10498 ill = ILL_START_WALK_V6(&ctx, ipst); 10499 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10500 /* Make sure the ill isn't going away. */ 10501 if (!ill_check_and_refhold(ill)) 10502 continue; 10503 rw_exit(&ipst->ips_ill_g_lock); 10504 /* 10505 * Normally we don't have any members on under IPMP interfaces. 10506 * We report them as a debugging aid. 10507 */ 10508 rw_enter(&ill->ill_mcast_lock, RW_READER); 10509 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10510 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10511 sl = ilm->ilm_filter; 10512 if (ilm->ilm_zoneid != zoneid && 10513 ilm->ilm_zoneid != ALL_ZONES) 10514 continue; 10515 if (SLIST_IS_EMPTY(sl)) 10516 continue; 10517 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10518 for (i = 0; i < sl->sl_numsrc; i++) { 10519 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10520 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10521 (char *)&ips6, (int)sizeof (ips6))) { 10522 ip1dbg(("ip_snmp_get_mib2_ip6_" 10523 "group_src: failed to allocate " 10524 "%u bytes\n", 10525 (uint_t)sizeof (ips6))); 10526 } 10527 } 10528 } 10529 rw_exit(&ill->ill_mcast_lock); 10530 ill_refrele(ill); 10531 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10532 } 10533 rw_exit(&ipst->ips_ill_g_lock); 10534 10535 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10536 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10537 (int)optp->level, (int)optp->name, (int)optp->len)); 10538 qreply(q, mpctl); 10539 return (mp2ctl); 10540 } 10541 10542 /* Multicast routing virtual interface table. */ 10543 static mblk_t * 10544 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10545 { 10546 struct opthdr *optp; 10547 mblk_t *mp2ctl; 10548 10549 /* 10550 * make a copy of the original message 10551 */ 10552 mp2ctl = copymsg(mpctl); 10553 10554 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10555 optp->level = EXPER_DVMRP; 10556 optp->name = EXPER_DVMRP_VIF; 10557 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10558 ip0dbg(("ip_mroute_vif: failed\n")); 10559 } 10560 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10561 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10562 (int)optp->level, (int)optp->name, (int)optp->len)); 10563 qreply(q, mpctl); 10564 return (mp2ctl); 10565 } 10566 10567 /* Multicast routing table. */ 10568 static mblk_t * 10569 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10570 { 10571 struct opthdr *optp; 10572 mblk_t *mp2ctl; 10573 10574 /* 10575 * make a copy of the original message 10576 */ 10577 mp2ctl = copymsg(mpctl); 10578 10579 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10580 optp->level = EXPER_DVMRP; 10581 optp->name = EXPER_DVMRP_MRT; 10582 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10583 ip0dbg(("ip_mroute_mrt: failed\n")); 10584 } 10585 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10586 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10587 (int)optp->level, (int)optp->name, (int)optp->len)); 10588 qreply(q, mpctl); 10589 return (mp2ctl); 10590 } 10591 10592 /* 10593 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10594 * in one IRE walk. 10595 */ 10596 static mblk_t * 10597 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10598 ip_stack_t *ipst) 10599 { 10600 struct opthdr *optp; 10601 mblk_t *mp2ctl; /* Returned */ 10602 mblk_t *mp3ctl; /* nettomedia */ 10603 mblk_t *mp4ctl; /* routeattrs */ 10604 iproutedata_t ird; 10605 zoneid_t zoneid; 10606 10607 /* 10608 * make copies of the original message 10609 * - mp2ctl is returned unchanged to the caller for its use 10610 * - mpctl is sent upstream as ipRouteEntryTable 10611 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10612 * - mp4ctl is sent upstream as ipRouteAttributeTable 10613 */ 10614 mp2ctl = copymsg(mpctl); 10615 mp3ctl = copymsg(mpctl); 10616 mp4ctl = copymsg(mpctl); 10617 if (mp3ctl == NULL || mp4ctl == NULL) { 10618 freemsg(mp4ctl); 10619 freemsg(mp3ctl); 10620 freemsg(mp2ctl); 10621 freemsg(mpctl); 10622 return (NULL); 10623 } 10624 10625 bzero(&ird, sizeof (ird)); 10626 10627 ird.ird_route.lp_head = mpctl->b_cont; 10628 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10629 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10630 /* 10631 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10632 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10633 * intended a temporary solution until a proper MIB API is provided 10634 * that provides complete filtering/caller-opt-in. 10635 */ 10636 if (level == EXPER_IP_AND_ALL_IRES) 10637 ird.ird_flags |= IRD_REPORT_ALL; 10638 10639 zoneid = Q_TO_CONN(q)->conn_zoneid; 10640 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10641 10642 /* ipRouteEntryTable in mpctl */ 10643 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10644 optp->level = MIB2_IP; 10645 optp->name = MIB2_IP_ROUTE; 10646 optp->len = msgdsize(ird.ird_route.lp_head); 10647 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10648 (int)optp->level, (int)optp->name, (int)optp->len)); 10649 qreply(q, mpctl); 10650 10651 /* ipNetToMediaEntryTable in mp3ctl */ 10652 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10653 10654 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10655 optp->level = MIB2_IP; 10656 optp->name = MIB2_IP_MEDIA; 10657 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10658 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10659 (int)optp->level, (int)optp->name, (int)optp->len)); 10660 qreply(q, mp3ctl); 10661 10662 /* ipRouteAttributeTable in mp4ctl */ 10663 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10664 optp->level = MIB2_IP; 10665 optp->name = EXPER_IP_RTATTR; 10666 optp->len = msgdsize(ird.ird_attrs.lp_head); 10667 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10668 (int)optp->level, (int)optp->name, (int)optp->len)); 10669 if (optp->len == 0) 10670 freemsg(mp4ctl); 10671 else 10672 qreply(q, mp4ctl); 10673 10674 return (mp2ctl); 10675 } 10676 10677 /* 10678 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10679 * ipv6NetToMediaEntryTable in an NDP walk. 10680 */ 10681 static mblk_t * 10682 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10683 ip_stack_t *ipst) 10684 { 10685 struct opthdr *optp; 10686 mblk_t *mp2ctl; /* Returned */ 10687 mblk_t *mp3ctl; /* nettomedia */ 10688 mblk_t *mp4ctl; /* routeattrs */ 10689 iproutedata_t ird; 10690 zoneid_t zoneid; 10691 10692 /* 10693 * make copies of the original message 10694 * - mp2ctl is returned unchanged to the caller for its use 10695 * - mpctl is sent upstream as ipv6RouteEntryTable 10696 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10697 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10698 */ 10699 mp2ctl = copymsg(mpctl); 10700 mp3ctl = copymsg(mpctl); 10701 mp4ctl = copymsg(mpctl); 10702 if (mp3ctl == NULL || mp4ctl == NULL) { 10703 freemsg(mp4ctl); 10704 freemsg(mp3ctl); 10705 freemsg(mp2ctl); 10706 freemsg(mpctl); 10707 return (NULL); 10708 } 10709 10710 bzero(&ird, sizeof (ird)); 10711 10712 ird.ird_route.lp_head = mpctl->b_cont; 10713 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10714 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10715 /* 10716 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10717 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10718 * intended a temporary solution until a proper MIB API is provided 10719 * that provides complete filtering/caller-opt-in. 10720 */ 10721 if (level == EXPER_IP_AND_ALL_IRES) 10722 ird.ird_flags |= IRD_REPORT_ALL; 10723 10724 zoneid = Q_TO_CONN(q)->conn_zoneid; 10725 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10726 10727 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10728 optp->level = MIB2_IP6; 10729 optp->name = MIB2_IP6_ROUTE; 10730 optp->len = msgdsize(ird.ird_route.lp_head); 10731 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10732 (int)optp->level, (int)optp->name, (int)optp->len)); 10733 qreply(q, mpctl); 10734 10735 /* ipv6NetToMediaEntryTable in mp3ctl */ 10736 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10737 10738 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10739 optp->level = MIB2_IP6; 10740 optp->name = MIB2_IP6_MEDIA; 10741 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10742 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10743 (int)optp->level, (int)optp->name, (int)optp->len)); 10744 qreply(q, mp3ctl); 10745 10746 /* ipv6RouteAttributeTable in mp4ctl */ 10747 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10748 optp->level = MIB2_IP6; 10749 optp->name = EXPER_IP_RTATTR; 10750 optp->len = msgdsize(ird.ird_attrs.lp_head); 10751 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10752 (int)optp->level, (int)optp->name, (int)optp->len)); 10753 if (optp->len == 0) 10754 freemsg(mp4ctl); 10755 else 10756 qreply(q, mp4ctl); 10757 10758 return (mp2ctl); 10759 } 10760 10761 /* 10762 * IPv6 mib: One per ill 10763 */ 10764 static mblk_t * 10765 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10766 boolean_t legacy_req) 10767 { 10768 struct opthdr *optp; 10769 mblk_t *mp2ctl; 10770 ill_t *ill; 10771 ill_walk_context_t ctx; 10772 mblk_t *mp_tail = NULL; 10773 mib2_ipv6AddrEntry_t mae6; 10774 mib2_ipIfStatsEntry_t *ise; 10775 size_t ise_size, iae_size; 10776 10777 /* 10778 * Make a copy of the original message 10779 */ 10780 mp2ctl = copymsg(mpctl); 10781 10782 /* fixed length IPv6 structure ... */ 10783 10784 if (legacy_req) { 10785 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10786 mib2_ipIfStatsEntry_t); 10787 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10788 } else { 10789 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10790 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10791 } 10792 10793 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10794 optp->level = MIB2_IP6; 10795 optp->name = 0; 10796 /* Include "unknown interface" ip6_mib */ 10797 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10798 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10799 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10800 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10801 ipst->ips_ipv6_forwarding ? 1 : 2); 10802 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10803 ipst->ips_ipv6_def_hops); 10804 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10805 sizeof (mib2_ipIfStatsEntry_t)); 10806 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10807 sizeof (mib2_ipv6AddrEntry_t)); 10808 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10809 sizeof (mib2_ipv6RouteEntry_t)); 10810 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10811 sizeof (mib2_ipv6NetToMediaEntry_t)); 10812 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10813 sizeof (ipv6_member_t)); 10814 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10815 sizeof (ipv6_grpsrc_t)); 10816 10817 /* 10818 * Synchronize 64- and 32-bit counters 10819 */ 10820 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10821 ipIfStatsHCInReceives); 10822 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10823 ipIfStatsHCInDelivers); 10824 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10825 ipIfStatsHCOutRequests); 10826 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10827 ipIfStatsHCOutForwDatagrams); 10828 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10829 ipIfStatsHCOutMcastPkts); 10830 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10831 ipIfStatsHCInMcastPkts); 10832 10833 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10834 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10835 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10836 (uint_t)ise_size)); 10837 } else if (legacy_req) { 10838 /* Adjust the EntrySize fields for legacy requests. */ 10839 ise = 10840 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10841 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10842 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10843 } 10844 10845 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10846 ill = ILL_START_WALK_V6(&ctx, ipst); 10847 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10848 ill->ill_ip_mib->ipIfStatsIfIndex = 10849 ill->ill_phyint->phyint_ifindex; 10850 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10851 ipst->ips_ipv6_forwarding ? 1 : 2); 10852 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10853 ill->ill_max_hops); 10854 10855 /* 10856 * Synchronize 64- and 32-bit counters 10857 */ 10858 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10859 ipIfStatsHCInReceives); 10860 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10861 ipIfStatsHCInDelivers); 10862 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10863 ipIfStatsHCOutRequests); 10864 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10865 ipIfStatsHCOutForwDatagrams); 10866 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10867 ipIfStatsHCOutMcastPkts); 10868 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10869 ipIfStatsHCInMcastPkts); 10870 10871 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10872 (char *)ill->ill_ip_mib, (int)ise_size)) { 10873 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10874 "%u bytes\n", (uint_t)ise_size)); 10875 } else if (legacy_req) { 10876 /* Adjust the EntrySize fields for legacy requests. */ 10877 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10878 (int)ise_size); 10879 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10880 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10881 } 10882 } 10883 rw_exit(&ipst->ips_ill_g_lock); 10884 10885 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10886 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10887 (int)optp->level, (int)optp->name, (int)optp->len)); 10888 qreply(q, mpctl); 10889 return (mp2ctl); 10890 } 10891 10892 /* 10893 * ICMPv6 mib: One per ill 10894 */ 10895 static mblk_t * 10896 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10897 { 10898 struct opthdr *optp; 10899 mblk_t *mp2ctl; 10900 ill_t *ill; 10901 ill_walk_context_t ctx; 10902 mblk_t *mp_tail = NULL; 10903 /* 10904 * Make a copy of the original message 10905 */ 10906 mp2ctl = copymsg(mpctl); 10907 10908 /* fixed length ICMPv6 structure ... */ 10909 10910 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10911 optp->level = MIB2_ICMP6; 10912 optp->name = 0; 10913 /* Include "unknown interface" icmp6_mib */ 10914 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10915 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10916 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10917 sizeof (mib2_ipv6IfIcmpEntry_t); 10918 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10919 (char *)&ipst->ips_icmp6_mib, 10920 (int)sizeof (ipst->ips_icmp6_mib))) { 10921 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10922 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10923 } 10924 10925 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10926 ill = ILL_START_WALK_V6(&ctx, ipst); 10927 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10928 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10929 ill->ill_phyint->phyint_ifindex; 10930 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10931 (char *)ill->ill_icmp6_mib, 10932 (int)sizeof (*ill->ill_icmp6_mib))) { 10933 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10934 "%u bytes\n", 10935 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10936 } 10937 } 10938 rw_exit(&ipst->ips_ill_g_lock); 10939 10940 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10941 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10942 (int)optp->level, (int)optp->name, (int)optp->len)); 10943 qreply(q, mpctl); 10944 return (mp2ctl); 10945 } 10946 10947 /* 10948 * ire_walk routine to create both ipRouteEntryTable and 10949 * ipRouteAttributeTable in one IRE walk 10950 */ 10951 static void 10952 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10953 { 10954 ill_t *ill; 10955 mib2_ipRouteEntry_t *re; 10956 mib2_ipAttributeEntry_t iaes; 10957 tsol_ire_gw_secattr_t *attrp; 10958 tsol_gc_t *gc = NULL; 10959 tsol_gcgrp_t *gcgrp = NULL; 10960 ip_stack_t *ipst = ire->ire_ipst; 10961 10962 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10963 10964 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10965 if (ire->ire_testhidden) 10966 return; 10967 if (ire->ire_type & IRE_IF_CLONE) 10968 return; 10969 } 10970 10971 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10972 return; 10973 10974 if ((attrp = ire->ire_gw_secattr) != NULL) { 10975 mutex_enter(&attrp->igsa_lock); 10976 if ((gc = attrp->igsa_gc) != NULL) { 10977 gcgrp = gc->gc_grp; 10978 ASSERT(gcgrp != NULL); 10979 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10980 } 10981 mutex_exit(&attrp->igsa_lock); 10982 } 10983 /* 10984 * Return all IRE types for route table... let caller pick and choose 10985 */ 10986 re->ipRouteDest = ire->ire_addr; 10987 ill = ire->ire_ill; 10988 re->ipRouteIfIndex.o_length = 0; 10989 if (ill != NULL) { 10990 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10991 re->ipRouteIfIndex.o_length = 10992 mi_strlen(re->ipRouteIfIndex.o_bytes); 10993 } 10994 re->ipRouteMetric1 = -1; 10995 re->ipRouteMetric2 = -1; 10996 re->ipRouteMetric3 = -1; 10997 re->ipRouteMetric4 = -1; 10998 10999 re->ipRouteNextHop = ire->ire_gateway_addr; 11000 /* indirect(4), direct(3), or invalid(2) */ 11001 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11002 re->ipRouteType = 2; 11003 else if (ire->ire_type & IRE_ONLINK) 11004 re->ipRouteType = 3; 11005 else 11006 re->ipRouteType = 4; 11007 11008 re->ipRouteProto = -1; 11009 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 11010 re->ipRouteMask = ire->ire_mask; 11011 re->ipRouteMetric5 = -1; 11012 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11013 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 11014 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11015 11016 re->ipRouteInfo.re_frag_flag = 0; 11017 re->ipRouteInfo.re_rtt = 0; 11018 re->ipRouteInfo.re_src_addr = 0; 11019 re->ipRouteInfo.re_ref = ire->ire_refcnt; 11020 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11021 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11022 re->ipRouteInfo.re_flags = ire->ire_flags; 11023 11024 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11025 if (ire->ire_type & IRE_INTERFACE) { 11026 ire_t *child; 11027 11028 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11029 child = ire->ire_dep_children; 11030 while (child != NULL) { 11031 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11032 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11033 child = child->ire_dep_sib_next; 11034 } 11035 rw_exit(&ipst->ips_ire_dep_lock); 11036 } 11037 11038 if (ire->ire_flags & RTF_DYNAMIC) { 11039 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11040 } else { 11041 re->ipRouteInfo.re_ire_type = ire->ire_type; 11042 } 11043 11044 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11045 (char *)re, (int)sizeof (*re))) { 11046 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11047 (uint_t)sizeof (*re))); 11048 } 11049 11050 if (gc != NULL) { 11051 iaes.iae_routeidx = ird->ird_idx; 11052 iaes.iae_doi = gc->gc_db->gcdb_doi; 11053 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11054 11055 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11056 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11057 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11058 "bytes\n", (uint_t)sizeof (iaes))); 11059 } 11060 } 11061 11062 /* bump route index for next pass */ 11063 ird->ird_idx++; 11064 11065 kmem_free(re, sizeof (*re)); 11066 if (gcgrp != NULL) 11067 rw_exit(&gcgrp->gcgrp_rwlock); 11068 } 11069 11070 /* 11071 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11072 */ 11073 static void 11074 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11075 { 11076 ill_t *ill; 11077 mib2_ipv6RouteEntry_t *re; 11078 mib2_ipAttributeEntry_t iaes; 11079 tsol_ire_gw_secattr_t *attrp; 11080 tsol_gc_t *gc = NULL; 11081 tsol_gcgrp_t *gcgrp = NULL; 11082 ip_stack_t *ipst = ire->ire_ipst; 11083 11084 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11085 11086 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11087 if (ire->ire_testhidden) 11088 return; 11089 if (ire->ire_type & IRE_IF_CLONE) 11090 return; 11091 } 11092 11093 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11094 return; 11095 11096 if ((attrp = ire->ire_gw_secattr) != NULL) { 11097 mutex_enter(&attrp->igsa_lock); 11098 if ((gc = attrp->igsa_gc) != NULL) { 11099 gcgrp = gc->gc_grp; 11100 ASSERT(gcgrp != NULL); 11101 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11102 } 11103 mutex_exit(&attrp->igsa_lock); 11104 } 11105 /* 11106 * Return all IRE types for route table... let caller pick and choose 11107 */ 11108 re->ipv6RouteDest = ire->ire_addr_v6; 11109 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11110 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11111 re->ipv6RouteIfIndex.o_length = 0; 11112 ill = ire->ire_ill; 11113 if (ill != NULL) { 11114 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11115 re->ipv6RouteIfIndex.o_length = 11116 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11117 } 11118 11119 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11120 11121 mutex_enter(&ire->ire_lock); 11122 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11123 mutex_exit(&ire->ire_lock); 11124 11125 /* remote(4), local(3), or discard(2) */ 11126 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11127 re->ipv6RouteType = 2; 11128 else if (ire->ire_type & IRE_ONLINK) 11129 re->ipv6RouteType = 3; 11130 else 11131 re->ipv6RouteType = 4; 11132 11133 re->ipv6RouteProtocol = -1; 11134 re->ipv6RoutePolicy = 0; 11135 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11136 re->ipv6RouteNextHopRDI = 0; 11137 re->ipv6RouteWeight = 0; 11138 re->ipv6RouteMetric = 0; 11139 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11140 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11141 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11142 11143 re->ipv6RouteInfo.re_frag_flag = 0; 11144 re->ipv6RouteInfo.re_rtt = 0; 11145 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11146 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11147 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11148 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11149 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11150 11151 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11152 if (ire->ire_type & IRE_INTERFACE) { 11153 ire_t *child; 11154 11155 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11156 child = ire->ire_dep_children; 11157 while (child != NULL) { 11158 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11159 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11160 child = child->ire_dep_sib_next; 11161 } 11162 rw_exit(&ipst->ips_ire_dep_lock); 11163 } 11164 if (ire->ire_flags & RTF_DYNAMIC) { 11165 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11166 } else { 11167 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11168 } 11169 11170 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11171 (char *)re, (int)sizeof (*re))) { 11172 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11173 (uint_t)sizeof (*re))); 11174 } 11175 11176 if (gc != NULL) { 11177 iaes.iae_routeidx = ird->ird_idx; 11178 iaes.iae_doi = gc->gc_db->gcdb_doi; 11179 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11180 11181 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11182 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11183 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11184 "bytes\n", (uint_t)sizeof (iaes))); 11185 } 11186 } 11187 11188 /* bump route index for next pass */ 11189 ird->ird_idx++; 11190 11191 kmem_free(re, sizeof (*re)); 11192 if (gcgrp != NULL) 11193 rw_exit(&gcgrp->gcgrp_rwlock); 11194 } 11195 11196 /* 11197 * ncec_walk routine to create ipv6NetToMediaEntryTable 11198 */ 11199 static void 11200 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11201 { 11202 iproutedata_t *ird = ptr; 11203 ill_t *ill; 11204 mib2_ipv6NetToMediaEntry_t ntme; 11205 11206 ill = ncec->ncec_ill; 11207 /* skip arpce entries, and loopback ncec entries */ 11208 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11209 return; 11210 /* 11211 * Neighbor cache entry attached to IRE with on-link 11212 * destination. 11213 * We report all IPMP groups on ncec_ill which is normally the upper. 11214 */ 11215 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11216 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11217 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11218 if (ncec->ncec_lladdr != NULL) { 11219 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11220 ntme.ipv6NetToMediaPhysAddress.o_length); 11221 } 11222 /* 11223 * Note: Returns ND_* states. Should be: 11224 * reachable(1), stale(2), delay(3), probe(4), 11225 * invalid(5), unknown(6) 11226 */ 11227 ntme.ipv6NetToMediaState = ncec->ncec_state; 11228 ntme.ipv6NetToMediaLastUpdated = 0; 11229 11230 /* other(1), dynamic(2), static(3), local(4) */ 11231 if (NCE_MYADDR(ncec)) { 11232 ntme.ipv6NetToMediaType = 4; 11233 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11234 ntme.ipv6NetToMediaType = 1; /* proxy */ 11235 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11236 ntme.ipv6NetToMediaType = 3; 11237 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11238 ntme.ipv6NetToMediaType = 1; 11239 } else { 11240 ntme.ipv6NetToMediaType = 2; 11241 } 11242 11243 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11244 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11245 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11246 (uint_t)sizeof (ntme))); 11247 } 11248 } 11249 11250 int 11251 nce2ace(ncec_t *ncec) 11252 { 11253 int flags = 0; 11254 11255 if (NCE_ISREACHABLE(ncec)) 11256 flags |= ACE_F_RESOLVED; 11257 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11258 flags |= ACE_F_AUTHORITY; 11259 if (ncec->ncec_flags & NCE_F_PUBLISH) 11260 flags |= ACE_F_PUBLISH; 11261 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11262 flags |= ACE_F_PERMANENT; 11263 if (NCE_MYADDR(ncec)) 11264 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11265 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11266 flags |= ACE_F_UNVERIFIED; 11267 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11268 flags |= ACE_F_AUTHORITY; 11269 if (ncec->ncec_flags & NCE_F_DELAYED) 11270 flags |= ACE_F_DELAYED; 11271 return (flags); 11272 } 11273 11274 /* 11275 * ncec_walk routine to create ipNetToMediaEntryTable 11276 */ 11277 static void 11278 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11279 { 11280 iproutedata_t *ird = ptr; 11281 ill_t *ill; 11282 mib2_ipNetToMediaEntry_t ntme; 11283 const char *name = "unknown"; 11284 ipaddr_t ncec_addr; 11285 11286 ill = ncec->ncec_ill; 11287 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11288 ill->ill_net_type == IRE_LOOPBACK) 11289 return; 11290 11291 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11292 name = ill->ill_name; 11293 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11294 if (NCE_MYADDR(ncec)) { 11295 ntme.ipNetToMediaType = 4; 11296 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11297 ntme.ipNetToMediaType = 1; 11298 } else { 11299 ntme.ipNetToMediaType = 3; 11300 } 11301 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11302 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11303 ntme.ipNetToMediaIfIndex.o_length); 11304 11305 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11306 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11307 11308 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11309 ncec_addr = INADDR_BROADCAST; 11310 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11311 sizeof (ncec_addr)); 11312 /* 11313 * map all the flags to the ACE counterpart. 11314 */ 11315 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11316 11317 ntme.ipNetToMediaPhysAddress.o_length = 11318 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11319 11320 if (!NCE_ISREACHABLE(ncec)) 11321 ntme.ipNetToMediaPhysAddress.o_length = 0; 11322 else { 11323 if (ncec->ncec_lladdr != NULL) { 11324 bcopy(ncec->ncec_lladdr, 11325 ntme.ipNetToMediaPhysAddress.o_bytes, 11326 ntme.ipNetToMediaPhysAddress.o_length); 11327 } 11328 } 11329 11330 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11331 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11332 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11333 (uint_t)sizeof (ntme))); 11334 } 11335 } 11336 11337 /* 11338 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11339 */ 11340 /* ARGSUSED */ 11341 int 11342 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11343 { 11344 switch (level) { 11345 case MIB2_IP: 11346 case MIB2_ICMP: 11347 switch (name) { 11348 default: 11349 break; 11350 } 11351 return (1); 11352 default: 11353 return (1); 11354 } 11355 } 11356 11357 /* 11358 * When there exists both a 64- and 32-bit counter of a particular type 11359 * (i.e., InReceives), only the 64-bit counters are added. 11360 */ 11361 void 11362 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11363 { 11364 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11365 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11366 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11367 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11368 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11369 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11370 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11371 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11372 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11373 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11374 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11375 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11376 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11377 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11378 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11379 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11380 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11381 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11382 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11383 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11384 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11385 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11386 o2->ipIfStatsInWrongIPVersion); 11387 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11388 o2->ipIfStatsInWrongIPVersion); 11389 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11390 o2->ipIfStatsOutSwitchIPVersion); 11391 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11392 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11393 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11394 o2->ipIfStatsHCInForwDatagrams); 11395 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11396 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11397 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11398 o2->ipIfStatsHCOutForwDatagrams); 11399 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11400 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11401 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11402 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11403 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11404 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11405 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11406 o2->ipIfStatsHCOutMcastOctets); 11407 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11408 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11409 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11410 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11411 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11412 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11413 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11414 } 11415 11416 void 11417 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11418 { 11419 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11420 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11421 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11422 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11423 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11424 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11425 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11426 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11427 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11428 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11429 o2->ipv6IfIcmpInRouterSolicits); 11430 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11431 o2->ipv6IfIcmpInRouterAdvertisements); 11432 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11433 o2->ipv6IfIcmpInNeighborSolicits); 11434 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11435 o2->ipv6IfIcmpInNeighborAdvertisements); 11436 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11437 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11438 o2->ipv6IfIcmpInGroupMembQueries); 11439 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11440 o2->ipv6IfIcmpInGroupMembResponses); 11441 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11442 o2->ipv6IfIcmpInGroupMembReductions); 11443 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11444 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11445 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11446 o2->ipv6IfIcmpOutDestUnreachs); 11447 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11448 o2->ipv6IfIcmpOutAdminProhibs); 11449 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11450 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11451 o2->ipv6IfIcmpOutParmProblems); 11452 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11453 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11454 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11455 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11456 o2->ipv6IfIcmpOutRouterSolicits); 11457 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11458 o2->ipv6IfIcmpOutRouterAdvertisements); 11459 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11460 o2->ipv6IfIcmpOutNeighborSolicits); 11461 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11462 o2->ipv6IfIcmpOutNeighborAdvertisements); 11463 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11464 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11465 o2->ipv6IfIcmpOutGroupMembQueries); 11466 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11467 o2->ipv6IfIcmpOutGroupMembResponses); 11468 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11469 o2->ipv6IfIcmpOutGroupMembReductions); 11470 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11471 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11472 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11473 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11474 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11475 o2->ipv6IfIcmpInBadNeighborSolicitations); 11476 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11477 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11478 o2->ipv6IfIcmpInGroupMembTotal); 11479 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11480 o2->ipv6IfIcmpInGroupMembBadQueries); 11481 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11482 o2->ipv6IfIcmpInGroupMembBadReports); 11483 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11484 o2->ipv6IfIcmpInGroupMembOurReports); 11485 } 11486 11487 /* 11488 * Called before the options are updated to check if this packet will 11489 * be source routed from here. 11490 * This routine assumes that the options are well formed i.e. that they 11491 * have already been checked. 11492 */ 11493 boolean_t 11494 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11495 { 11496 ipoptp_t opts; 11497 uchar_t *opt; 11498 uint8_t optval; 11499 uint8_t optlen; 11500 ipaddr_t dst; 11501 11502 if (IS_SIMPLE_IPH(ipha)) { 11503 ip2dbg(("not source routed\n")); 11504 return (B_FALSE); 11505 } 11506 dst = ipha->ipha_dst; 11507 for (optval = ipoptp_first(&opts, ipha); 11508 optval != IPOPT_EOL; 11509 optval = ipoptp_next(&opts)) { 11510 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11511 opt = opts.ipoptp_cur; 11512 optlen = opts.ipoptp_len; 11513 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11514 optval, optlen)); 11515 switch (optval) { 11516 uint32_t off; 11517 case IPOPT_SSRR: 11518 case IPOPT_LSRR: 11519 /* 11520 * If dst is one of our addresses and there are some 11521 * entries left in the source route return (true). 11522 */ 11523 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11524 ip2dbg(("ip_source_routed: not next" 11525 " source route 0x%x\n", 11526 ntohl(dst))); 11527 return (B_FALSE); 11528 } 11529 off = opt[IPOPT_OFFSET]; 11530 off--; 11531 if (optlen < IP_ADDR_LEN || 11532 off > optlen - IP_ADDR_LEN) { 11533 /* End of source route */ 11534 ip1dbg(("ip_source_routed: end of SR\n")); 11535 return (B_FALSE); 11536 } 11537 return (B_TRUE); 11538 } 11539 } 11540 ip2dbg(("not source routed\n")); 11541 return (B_FALSE); 11542 } 11543 11544 /* 11545 * ip_unbind is called by the transports to remove a conn from 11546 * the fanout table. 11547 */ 11548 void 11549 ip_unbind(conn_t *connp) 11550 { 11551 11552 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11553 11554 if (is_system_labeled() && connp->conn_anon_port) { 11555 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11556 connp->conn_mlp_type, connp->conn_proto, 11557 ntohs(connp->conn_lport), B_FALSE); 11558 connp->conn_anon_port = 0; 11559 } 11560 connp->conn_mlp_type = mlptSingle; 11561 11562 ipcl_hash_remove(connp); 11563 } 11564 11565 /* 11566 * Used for deciding the MSS size for the upper layer. Thus 11567 * we need to check the outbound policy values in the conn. 11568 */ 11569 int 11570 conn_ipsec_length(conn_t *connp) 11571 { 11572 ipsec_latch_t *ipl; 11573 11574 ipl = connp->conn_latch; 11575 if (ipl == NULL) 11576 return (0); 11577 11578 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11579 return (0); 11580 11581 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11582 } 11583 11584 /* 11585 * Returns an estimate of the IPsec headers size. This is used if 11586 * we don't want to call into IPsec to get the exact size. 11587 */ 11588 int 11589 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11590 { 11591 ipsec_action_t *a; 11592 11593 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11594 return (0); 11595 11596 a = ixa->ixa_ipsec_action; 11597 if (a == NULL) { 11598 ASSERT(ixa->ixa_ipsec_policy != NULL); 11599 a = ixa->ixa_ipsec_policy->ipsp_act; 11600 } 11601 ASSERT(a != NULL); 11602 11603 return (a->ipa_ovhd); 11604 } 11605 11606 /* 11607 * If there are any source route options, return the true final 11608 * destination. Otherwise, return the destination. 11609 */ 11610 ipaddr_t 11611 ip_get_dst(ipha_t *ipha) 11612 { 11613 ipoptp_t opts; 11614 uchar_t *opt; 11615 uint8_t optval; 11616 uint8_t optlen; 11617 ipaddr_t dst; 11618 uint32_t off; 11619 11620 dst = ipha->ipha_dst; 11621 11622 if (IS_SIMPLE_IPH(ipha)) 11623 return (dst); 11624 11625 for (optval = ipoptp_first(&opts, ipha); 11626 optval != IPOPT_EOL; 11627 optval = ipoptp_next(&opts)) { 11628 opt = opts.ipoptp_cur; 11629 optlen = opts.ipoptp_len; 11630 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11631 switch (optval) { 11632 case IPOPT_SSRR: 11633 case IPOPT_LSRR: 11634 off = opt[IPOPT_OFFSET]; 11635 /* 11636 * If one of the conditions is true, it means 11637 * end of options and dst already has the right 11638 * value. 11639 */ 11640 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11641 off = optlen - IP_ADDR_LEN; 11642 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11643 } 11644 return (dst); 11645 default: 11646 break; 11647 } 11648 } 11649 11650 return (dst); 11651 } 11652 11653 /* 11654 * Outbound IP fragmentation routine. 11655 * Assumes the caller has checked whether or not fragmentation should 11656 * be allowed. Here we copy the DF bit from the header to all the generated 11657 * fragments. 11658 */ 11659 int 11660 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11661 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11662 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11663 { 11664 int i1; 11665 int hdr_len; 11666 mblk_t *hdr_mp; 11667 ipha_t *ipha; 11668 int ip_data_end; 11669 int len; 11670 mblk_t *mp = mp_orig; 11671 int offset; 11672 ill_t *ill = nce->nce_ill; 11673 ip_stack_t *ipst = ill->ill_ipst; 11674 mblk_t *carve_mp; 11675 uint32_t frag_flag; 11676 uint_t priority = mp->b_band; 11677 int error = 0; 11678 11679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11680 11681 if (pkt_len != msgdsize(mp)) { 11682 ip0dbg(("Packet length mismatch: %d, %ld\n", 11683 pkt_len, msgdsize(mp))); 11684 freemsg(mp); 11685 return (EINVAL); 11686 } 11687 11688 if (max_frag == 0) { 11689 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11691 ip_drop_output("FragFails: zero max_frag", mp, ill); 11692 freemsg(mp); 11693 return (EINVAL); 11694 } 11695 11696 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11697 ipha = (ipha_t *)mp->b_rptr; 11698 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11699 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11700 11701 /* 11702 * Establish the starting offset. May not be zero if we are fragging 11703 * a fragment that is being forwarded. 11704 */ 11705 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11706 11707 /* TODO why is this test needed? */ 11708 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11709 /* TODO: notify ulp somehow */ 11710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11711 ip_drop_output("FragFails: bad starting offset", mp, ill); 11712 freemsg(mp); 11713 return (EINVAL); 11714 } 11715 11716 hdr_len = IPH_HDR_LENGTH(ipha); 11717 ipha->ipha_hdr_checksum = 0; 11718 11719 /* 11720 * Establish the number of bytes maximum per frag, after putting 11721 * in the header. 11722 */ 11723 len = (max_frag - hdr_len) & ~7; 11724 11725 /* Get a copy of the header for the trailing frags */ 11726 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11727 mp); 11728 if (hdr_mp == NULL) { 11729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11730 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11731 freemsg(mp); 11732 return (ENOBUFS); 11733 } 11734 11735 /* Store the starting offset, with the MoreFrags flag. */ 11736 i1 = offset | IPH_MF | frag_flag; 11737 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11738 11739 /* Establish the ending byte offset, based on the starting offset. */ 11740 offset <<= 3; 11741 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11742 11743 /* Store the length of the first fragment in the IP header. */ 11744 i1 = len + hdr_len; 11745 ASSERT(i1 <= IP_MAXPACKET); 11746 ipha->ipha_length = htons((uint16_t)i1); 11747 11748 /* 11749 * Compute the IP header checksum for the first frag. We have to 11750 * watch out that we stop at the end of the header. 11751 */ 11752 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11753 11754 /* 11755 * Now carve off the first frag. Note that this will include the 11756 * original IP header. 11757 */ 11758 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11759 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11760 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11761 freeb(hdr_mp); 11762 freemsg(mp_orig); 11763 return (ENOBUFS); 11764 } 11765 11766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11767 11768 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11769 ixa_cookie); 11770 if (error != 0 && error != EWOULDBLOCK) { 11771 /* No point in sending the other fragments */ 11772 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11773 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11774 freeb(hdr_mp); 11775 freemsg(mp_orig); 11776 return (error); 11777 } 11778 11779 /* No need to redo state machine in loop */ 11780 ixaflags &= ~IXAF_REACH_CONF; 11781 11782 /* Advance the offset to the second frag starting point. */ 11783 offset += len; 11784 /* 11785 * Update hdr_len from the copied header - there might be less options 11786 * in the later fragments. 11787 */ 11788 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11789 /* Loop until done. */ 11790 for (;;) { 11791 uint16_t offset_and_flags; 11792 uint16_t ip_len; 11793 11794 if (ip_data_end - offset > len) { 11795 /* 11796 * Carve off the appropriate amount from the original 11797 * datagram. 11798 */ 11799 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11800 mp = NULL; 11801 break; 11802 } 11803 /* 11804 * More frags after this one. Get another copy 11805 * of the header. 11806 */ 11807 if (carve_mp->b_datap->db_ref == 1 && 11808 hdr_mp->b_wptr - hdr_mp->b_rptr < 11809 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11810 /* Inline IP header */ 11811 carve_mp->b_rptr -= hdr_mp->b_wptr - 11812 hdr_mp->b_rptr; 11813 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11814 hdr_mp->b_wptr - hdr_mp->b_rptr); 11815 mp = carve_mp; 11816 } else { 11817 if (!(mp = copyb(hdr_mp))) { 11818 freemsg(carve_mp); 11819 break; 11820 } 11821 /* Get priority marking, if any. */ 11822 mp->b_band = priority; 11823 mp->b_cont = carve_mp; 11824 } 11825 ipha = (ipha_t *)mp->b_rptr; 11826 offset_and_flags = IPH_MF; 11827 } else { 11828 /* 11829 * Last frag. Consume the header. Set len to 11830 * the length of this last piece. 11831 */ 11832 len = ip_data_end - offset; 11833 11834 /* 11835 * Carve off the appropriate amount from the original 11836 * datagram. 11837 */ 11838 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11839 mp = NULL; 11840 break; 11841 } 11842 if (carve_mp->b_datap->db_ref == 1 && 11843 hdr_mp->b_wptr - hdr_mp->b_rptr < 11844 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11845 /* Inline IP header */ 11846 carve_mp->b_rptr -= hdr_mp->b_wptr - 11847 hdr_mp->b_rptr; 11848 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11849 hdr_mp->b_wptr - hdr_mp->b_rptr); 11850 mp = carve_mp; 11851 freeb(hdr_mp); 11852 hdr_mp = mp; 11853 } else { 11854 mp = hdr_mp; 11855 /* Get priority marking, if any. */ 11856 mp->b_band = priority; 11857 mp->b_cont = carve_mp; 11858 } 11859 ipha = (ipha_t *)mp->b_rptr; 11860 /* A frag of a frag might have IPH_MF non-zero */ 11861 offset_and_flags = 11862 ntohs(ipha->ipha_fragment_offset_and_flags) & 11863 IPH_MF; 11864 } 11865 offset_and_flags |= (uint16_t)(offset >> 3); 11866 offset_and_flags |= (uint16_t)frag_flag; 11867 /* Store the offset and flags in the IP header. */ 11868 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11869 11870 /* Store the length in the IP header. */ 11871 ip_len = (uint16_t)(len + hdr_len); 11872 ipha->ipha_length = htons(ip_len); 11873 11874 /* 11875 * Set the IP header checksum. Note that mp is just 11876 * the header, so this is easy to pass to ip_csum. 11877 */ 11878 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11879 11880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11881 11882 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11883 nolzid, ixa_cookie); 11884 /* All done if we just consumed the hdr_mp. */ 11885 if (mp == hdr_mp) { 11886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11887 return (error); 11888 } 11889 if (error != 0 && error != EWOULDBLOCK) { 11890 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11891 mblk_t *, hdr_mp); 11892 /* No point in sending the other fragments */ 11893 break; 11894 } 11895 11896 /* Otherwise, advance and loop. */ 11897 offset += len; 11898 } 11899 /* Clean up following allocation failure. */ 11900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11901 ip_drop_output("FragFails: loop ended", NULL, ill); 11902 if (mp != hdr_mp) 11903 freeb(hdr_mp); 11904 if (mp != mp_orig) 11905 freemsg(mp_orig); 11906 return (error); 11907 } 11908 11909 /* 11910 * Copy the header plus those options which have the copy bit set 11911 */ 11912 static mblk_t * 11913 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11914 mblk_t *src) 11915 { 11916 mblk_t *mp; 11917 uchar_t *up; 11918 11919 /* 11920 * Quick check if we need to look for options without the copy bit 11921 * set 11922 */ 11923 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11924 if (!mp) 11925 return (mp); 11926 mp->b_rptr += ipst->ips_ip_wroff_extra; 11927 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11928 bcopy(rptr, mp->b_rptr, hdr_len); 11929 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11930 return (mp); 11931 } 11932 up = mp->b_rptr; 11933 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11934 up += IP_SIMPLE_HDR_LENGTH; 11935 rptr += IP_SIMPLE_HDR_LENGTH; 11936 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11937 while (hdr_len > 0) { 11938 uint32_t optval; 11939 uint32_t optlen; 11940 11941 optval = *rptr; 11942 if (optval == IPOPT_EOL) 11943 break; 11944 if (optval == IPOPT_NOP) 11945 optlen = 1; 11946 else 11947 optlen = rptr[1]; 11948 if (optval & IPOPT_COPY) { 11949 bcopy(rptr, up, optlen); 11950 up += optlen; 11951 } 11952 rptr += optlen; 11953 hdr_len -= optlen; 11954 } 11955 /* 11956 * Make sure that we drop an even number of words by filling 11957 * with EOL to the next word boundary. 11958 */ 11959 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11960 hdr_len & 0x3; hdr_len++) 11961 *up++ = IPOPT_EOL; 11962 mp->b_wptr = up; 11963 /* Update header length */ 11964 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11965 return (mp); 11966 } 11967 11968 /* 11969 * Update any source route, record route, or timestamp options when 11970 * sending a packet back to ourselves. 11971 * Check that we are at end of strict source route. 11972 * The options have been sanity checked by ip_output_options(). 11973 */ 11974 void 11975 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11976 { 11977 ipoptp_t opts; 11978 uchar_t *opt; 11979 uint8_t optval; 11980 uint8_t optlen; 11981 ipaddr_t dst; 11982 uint32_t ts; 11983 timestruc_t now; 11984 uint32_t off = 0; 11985 11986 for (optval = ipoptp_first(&opts, ipha); 11987 optval != IPOPT_EOL; 11988 optval = ipoptp_next(&opts)) { 11989 opt = opts.ipoptp_cur; 11990 optlen = opts.ipoptp_len; 11991 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11992 switch (optval) { 11993 case IPOPT_SSRR: 11994 case IPOPT_LSRR: 11995 off = opt[IPOPT_OFFSET]; 11996 off--; 11997 if (optlen < IP_ADDR_LEN || 11998 off > optlen - IP_ADDR_LEN) { 11999 /* End of source route */ 12000 break; 12001 } 12002 /* 12003 * This will only happen if two consecutive entries 12004 * in the source route contains our address or if 12005 * it is a packet with a loose source route which 12006 * reaches us before consuming the whole source route 12007 */ 12008 12009 if (optval == IPOPT_SSRR) { 12010 return; 12011 } 12012 /* 12013 * Hack: instead of dropping the packet truncate the 12014 * source route to what has been used by filling the 12015 * rest with IPOPT_NOP. 12016 */ 12017 opt[IPOPT_OLEN] = (uint8_t)off; 12018 while (off < optlen) { 12019 opt[off++] = IPOPT_NOP; 12020 } 12021 break; 12022 case IPOPT_RR: 12023 off = opt[IPOPT_OFFSET]; 12024 off--; 12025 if (optlen < IP_ADDR_LEN || 12026 off > optlen - IP_ADDR_LEN) { 12027 /* No more room - ignore */ 12028 ip1dbg(( 12029 "ip_output_local_options: end of RR\n")); 12030 break; 12031 } 12032 dst = htonl(INADDR_LOOPBACK); 12033 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12034 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12035 break; 12036 case IPOPT_TS: 12037 /* Insert timestamp if there is romm */ 12038 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12039 case IPOPT_TS_TSONLY: 12040 off = IPOPT_TS_TIMELEN; 12041 break; 12042 case IPOPT_TS_PRESPEC: 12043 case IPOPT_TS_PRESPEC_RFC791: 12044 /* Verify that the address matched */ 12045 off = opt[IPOPT_OFFSET] - 1; 12046 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12047 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12048 /* Not for us */ 12049 break; 12050 } 12051 /* FALLTHROUGH */ 12052 case IPOPT_TS_TSANDADDR: 12053 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12054 break; 12055 default: 12056 /* 12057 * ip_*put_options should have already 12058 * dropped this packet. 12059 */ 12060 cmn_err(CE_PANIC, "ip_output_local_options: " 12061 "unknown IT - bug in ip_output_options?\n"); 12062 } 12063 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12064 /* Increase overflow counter */ 12065 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12066 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12067 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12068 (off << 4); 12069 break; 12070 } 12071 off = opt[IPOPT_OFFSET] - 1; 12072 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12073 case IPOPT_TS_PRESPEC: 12074 case IPOPT_TS_PRESPEC_RFC791: 12075 case IPOPT_TS_TSANDADDR: 12076 dst = htonl(INADDR_LOOPBACK); 12077 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12078 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12079 /* FALLTHROUGH */ 12080 case IPOPT_TS_TSONLY: 12081 off = opt[IPOPT_OFFSET] - 1; 12082 /* Compute # of milliseconds since midnight */ 12083 gethrestime(&now); 12084 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12085 NSEC2MSEC(now.tv_nsec); 12086 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12087 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12088 break; 12089 } 12090 break; 12091 } 12092 } 12093 } 12094 12095 /* 12096 * Prepend an M_DATA fastpath header, and if none present prepend a 12097 * DL_UNITDATA_REQ. Frees the mblk on failure. 12098 * 12099 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12100 * If there is a change to them, the nce will be deleted (condemned) and 12101 * a new nce_t will be created when packets are sent. Thus we need no locks 12102 * to access those fields. 12103 * 12104 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12105 * we place b_band in dl_priority.dl_max. 12106 */ 12107 static mblk_t * 12108 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12109 { 12110 uint_t hlen; 12111 mblk_t *mp1; 12112 uint_t priority; 12113 uchar_t *rptr; 12114 12115 rptr = mp->b_rptr; 12116 12117 ASSERT(DB_TYPE(mp) == M_DATA); 12118 priority = mp->b_band; 12119 12120 ASSERT(nce != NULL); 12121 if ((mp1 = nce->nce_fp_mp) != NULL) { 12122 hlen = MBLKL(mp1); 12123 /* 12124 * Check if we have enough room to prepend fastpath 12125 * header 12126 */ 12127 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12128 rptr -= hlen; 12129 bcopy(mp1->b_rptr, rptr, hlen); 12130 /* 12131 * Set the b_rptr to the start of the link layer 12132 * header 12133 */ 12134 mp->b_rptr = rptr; 12135 return (mp); 12136 } 12137 mp1 = copyb(mp1); 12138 if (mp1 == NULL) { 12139 ill_t *ill = nce->nce_ill; 12140 12141 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12142 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12143 freemsg(mp); 12144 return (NULL); 12145 } 12146 mp1->b_band = priority; 12147 mp1->b_cont = mp; 12148 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12149 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12150 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12151 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12152 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12153 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12154 /* 12155 * XXX disable ICK_VALID and compute checksum 12156 * here; can happen if nce_fp_mp changes and 12157 * it can't be copied now due to insufficient 12158 * space. (unlikely, fp mp can change, but it 12159 * does not increase in length) 12160 */ 12161 return (mp1); 12162 } 12163 mp1 = copyb(nce->nce_dlur_mp); 12164 12165 if (mp1 == NULL) { 12166 ill_t *ill = nce->nce_ill; 12167 12168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12169 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12170 freemsg(mp); 12171 return (NULL); 12172 } 12173 mp1->b_cont = mp; 12174 if (priority != 0) { 12175 mp1->b_band = priority; 12176 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12177 priority; 12178 } 12179 return (mp1); 12180 } 12181 12182 /* 12183 * Finish the outbound IPsec processing. This function is called from 12184 * ipsec_out_process() if the IPsec packet was processed 12185 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12186 * asynchronously. 12187 * 12188 * This is common to IPv4 and IPv6. 12189 */ 12190 int 12191 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12192 { 12193 iaflags_t ixaflags = ixa->ixa_flags; 12194 uint_t pktlen; 12195 12196 12197 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12198 if (ixaflags & IXAF_IS_IPV4) { 12199 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12200 12201 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12202 pktlen = ntohs(ipha->ipha_length); 12203 } else { 12204 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12205 12206 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12207 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12208 } 12209 12210 /* 12211 * We release any hard reference on the SAs here to make 12212 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12213 * on the SAs. 12214 * If in the future we want the hard latching of the SAs in the 12215 * ip_xmit_attr_t then we should remove this. 12216 */ 12217 if (ixa->ixa_ipsec_esp_sa != NULL) { 12218 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12219 ixa->ixa_ipsec_esp_sa = NULL; 12220 } 12221 if (ixa->ixa_ipsec_ah_sa != NULL) { 12222 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12223 ixa->ixa_ipsec_ah_sa = NULL; 12224 } 12225 12226 /* Do we need to fragment? */ 12227 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12228 pktlen > ixa->ixa_fragsize) { 12229 if (ixaflags & IXAF_IS_IPV4) { 12230 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12231 /* 12232 * We check for the DF case in ipsec_out_process 12233 * hence this only handles the non-DF case. 12234 */ 12235 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12236 pktlen, ixa->ixa_fragsize, 12237 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12238 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12239 &ixa->ixa_cookie)); 12240 } else { 12241 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12242 if (mp == NULL) { 12243 /* MIB and ip_drop_output already done */ 12244 return (ENOMEM); 12245 } 12246 pktlen += sizeof (ip6_frag_t); 12247 if (pktlen > ixa->ixa_fragsize) { 12248 return (ip_fragment_v6(mp, ixa->ixa_nce, 12249 ixa->ixa_flags, pktlen, 12250 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12251 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12252 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12253 } 12254 } 12255 } 12256 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12257 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12258 ixa->ixa_no_loop_zoneid, NULL)); 12259 } 12260 12261 /* 12262 * Finish the inbound IPsec processing. This function is called from 12263 * ipsec_out_process() if the IPsec packet was processed 12264 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12265 * asynchronously. 12266 * 12267 * This is common to IPv4 and IPv6. 12268 */ 12269 void 12270 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12271 { 12272 iaflags_t iraflags = ira->ira_flags; 12273 12274 /* Length might have changed */ 12275 if (iraflags & IRAF_IS_IPV4) { 12276 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12277 12278 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12279 ira->ira_pktlen = ntohs(ipha->ipha_length); 12280 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12281 ira->ira_protocol = ipha->ipha_protocol; 12282 12283 ip_fanout_v4(mp, ipha, ira); 12284 } else { 12285 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12286 uint8_t *nexthdrp; 12287 12288 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12289 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12290 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12291 &nexthdrp)) { 12292 /* Malformed packet */ 12293 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12294 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12295 freemsg(mp); 12296 return; 12297 } 12298 ira->ira_protocol = *nexthdrp; 12299 ip_fanout_v6(mp, ip6h, ira); 12300 } 12301 } 12302 12303 /* 12304 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12305 * 12306 * If this function returns B_TRUE, the requested SA's have been filled 12307 * into the ixa_ipsec_*_sa pointers. 12308 * 12309 * If the function returns B_FALSE, the packet has been "consumed", most 12310 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12311 * 12312 * The SA references created by the protocol-specific "select" 12313 * function will be released in ip_output_post_ipsec. 12314 */ 12315 static boolean_t 12316 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12317 { 12318 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12319 ipsec_policy_t *pp; 12320 ipsec_action_t *ap; 12321 12322 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12323 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12324 (ixa->ixa_ipsec_action != NULL)); 12325 12326 ap = ixa->ixa_ipsec_action; 12327 if (ap == NULL) { 12328 pp = ixa->ixa_ipsec_policy; 12329 ASSERT(pp != NULL); 12330 ap = pp->ipsp_act; 12331 ASSERT(ap != NULL); 12332 } 12333 12334 /* 12335 * We have an action. now, let's select SA's. 12336 * A side effect of setting ixa_ipsec_*_sa is that it will 12337 * be cached in the conn_t. 12338 */ 12339 if (ap->ipa_want_esp) { 12340 if (ixa->ixa_ipsec_esp_sa == NULL) { 12341 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12342 IPPROTO_ESP); 12343 } 12344 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12345 } 12346 12347 if (ap->ipa_want_ah) { 12348 if (ixa->ixa_ipsec_ah_sa == NULL) { 12349 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12350 IPPROTO_AH); 12351 } 12352 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12353 /* 12354 * The ESP and AH processing order needs to be preserved 12355 * when both protocols are required (ESP should be applied 12356 * before AH for an outbound packet). Force an ESP ACQUIRE 12357 * when both ESP and AH are required, and an AH ACQUIRE 12358 * is needed. 12359 */ 12360 if (ap->ipa_want_esp && need_ah_acquire) 12361 need_esp_acquire = B_TRUE; 12362 } 12363 12364 /* 12365 * Send an ACQUIRE (extended, regular, or both) if we need one. 12366 * Release SAs that got referenced, but will not be used until we 12367 * acquire _all_ of the SAs we need. 12368 */ 12369 if (need_ah_acquire || need_esp_acquire) { 12370 if (ixa->ixa_ipsec_ah_sa != NULL) { 12371 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12372 ixa->ixa_ipsec_ah_sa = NULL; 12373 } 12374 if (ixa->ixa_ipsec_esp_sa != NULL) { 12375 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12376 ixa->ixa_ipsec_esp_sa = NULL; 12377 } 12378 12379 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12380 return (B_FALSE); 12381 } 12382 12383 return (B_TRUE); 12384 } 12385 12386 /* 12387 * Handle IPsec output processing. 12388 * This function is only entered once for a given packet. 12389 * We try to do things synchronously, but if we need to have user-level 12390 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12391 * will be completed 12392 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12393 * - when asynchronous ESP is done it will do AH 12394 * 12395 * In all cases we come back in ip_output_post_ipsec() to fragment and 12396 * send out the packet. 12397 */ 12398 int 12399 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12400 { 12401 ill_t *ill = ixa->ixa_nce->nce_ill; 12402 ip_stack_t *ipst = ixa->ixa_ipst; 12403 ipsec_stack_t *ipss; 12404 ipsec_policy_t *pp; 12405 ipsec_action_t *ap; 12406 12407 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12408 12409 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12410 (ixa->ixa_ipsec_action != NULL)); 12411 12412 ipss = ipst->ips_netstack->netstack_ipsec; 12413 if (!ipsec_loaded(ipss)) { 12414 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12415 ip_drop_packet(mp, B_TRUE, ill, 12416 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12417 &ipss->ipsec_dropper); 12418 return (ENOTSUP); 12419 } 12420 12421 ap = ixa->ixa_ipsec_action; 12422 if (ap == NULL) { 12423 pp = ixa->ixa_ipsec_policy; 12424 ASSERT(pp != NULL); 12425 ap = pp->ipsp_act; 12426 ASSERT(ap != NULL); 12427 } 12428 12429 /* Handle explicit drop action and bypass. */ 12430 switch (ap->ipa_act.ipa_type) { 12431 case IPSEC_ACT_DISCARD: 12432 case IPSEC_ACT_REJECT: 12433 ip_drop_packet(mp, B_FALSE, ill, 12434 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12435 return (EHOSTUNREACH); /* IPsec policy failure */ 12436 case IPSEC_ACT_BYPASS: 12437 return (ip_output_post_ipsec(mp, ixa)); 12438 } 12439 12440 /* 12441 * The order of processing is first insert a IP header if needed. 12442 * Then insert the ESP header and then the AH header. 12443 */ 12444 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12445 /* 12446 * First get the outer IP header before sending 12447 * it to ESP. 12448 */ 12449 ipha_t *oipha, *iipha; 12450 mblk_t *outer_mp, *inner_mp; 12451 12452 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12453 (void) mi_strlog(ill->ill_rq, 0, 12454 SL_ERROR|SL_TRACE|SL_CONSOLE, 12455 "ipsec_out_process: " 12456 "Self-Encapsulation failed: Out of memory\n"); 12457 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12458 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12459 freemsg(mp); 12460 return (ENOBUFS); 12461 } 12462 inner_mp = mp; 12463 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12464 oipha = (ipha_t *)outer_mp->b_rptr; 12465 iipha = (ipha_t *)inner_mp->b_rptr; 12466 *oipha = *iipha; 12467 outer_mp->b_wptr += sizeof (ipha_t); 12468 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12469 sizeof (ipha_t)); 12470 oipha->ipha_protocol = IPPROTO_ENCAP; 12471 oipha->ipha_version_and_hdr_length = 12472 IP_SIMPLE_HDR_VERSION; 12473 oipha->ipha_hdr_checksum = 0; 12474 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12475 outer_mp->b_cont = inner_mp; 12476 mp = outer_mp; 12477 12478 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12479 } 12480 12481 /* If we need to wait for a SA then we can't return any errno */ 12482 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12483 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12484 !ipsec_out_select_sa(mp, ixa)) 12485 return (0); 12486 12487 /* 12488 * By now, we know what SA's to use. Toss over to ESP & AH 12489 * to do the heavy lifting. 12490 */ 12491 if (ap->ipa_want_esp) { 12492 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12493 12494 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12495 if (mp == NULL) { 12496 /* 12497 * Either it failed or is pending. In the former case 12498 * ipIfStatsInDiscards was increased. 12499 */ 12500 return (0); 12501 } 12502 } 12503 12504 if (ap->ipa_want_ah) { 12505 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12506 12507 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12508 if (mp == NULL) { 12509 /* 12510 * Either it failed or is pending. In the former case 12511 * ipIfStatsInDiscards was increased. 12512 */ 12513 return (0); 12514 } 12515 } 12516 /* 12517 * We are done with IPsec processing. Send it over 12518 * the wire. 12519 */ 12520 return (ip_output_post_ipsec(mp, ixa)); 12521 } 12522 12523 /* 12524 * ioctls that go through a down/up sequence may need to wait for the down 12525 * to complete. This involves waiting for the ire and ipif refcnts to go down 12526 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12527 */ 12528 /* ARGSUSED */ 12529 void 12530 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12531 { 12532 struct iocblk *iocp; 12533 mblk_t *mp1; 12534 ip_ioctl_cmd_t *ipip; 12535 int err; 12536 sin_t *sin; 12537 struct lifreq *lifr; 12538 struct ifreq *ifr; 12539 12540 iocp = (struct iocblk *)mp->b_rptr; 12541 ASSERT(ipsq != NULL); 12542 /* Existence of mp1 verified in ip_wput_nondata */ 12543 mp1 = mp->b_cont->b_cont; 12544 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12545 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12546 /* 12547 * Special case where ipx_current_ipif is not set: 12548 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12549 * We are here as were not able to complete the operation in 12550 * ipif_set_values because we could not become exclusive on 12551 * the new ipsq. 12552 */ 12553 ill_t *ill = q->q_ptr; 12554 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12555 } 12556 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12557 12558 if (ipip->ipi_cmd_type == IF_CMD) { 12559 /* This a old style SIOC[GS]IF* command */ 12560 ifr = (struct ifreq *)mp1->b_rptr; 12561 sin = (sin_t *)&ifr->ifr_addr; 12562 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12563 /* This a new style SIOC[GS]LIF* command */ 12564 lifr = (struct lifreq *)mp1->b_rptr; 12565 sin = (sin_t *)&lifr->lifr_addr; 12566 } else { 12567 sin = NULL; 12568 } 12569 12570 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12571 q, mp, ipip, mp1->b_rptr); 12572 12573 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12574 int, ipip->ipi_cmd, 12575 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12576 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12577 12578 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12579 } 12580 12581 /* 12582 * ioctl processing 12583 * 12584 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12585 * the ioctl command in the ioctl tables, determines the copyin data size 12586 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12587 * 12588 * ioctl processing then continues when the M_IOCDATA makes its way down to 12589 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12590 * associated 'conn' is refheld till the end of the ioctl and the general 12591 * ioctl processing function ip_process_ioctl() is called to extract the 12592 * arguments and process the ioctl. To simplify extraction, ioctl commands 12593 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12594 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12595 * is used to extract the ioctl's arguments. 12596 * 12597 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12598 * so goes thru the serialization primitive ipsq_try_enter. Then the 12599 * appropriate function to handle the ioctl is called based on the entry in 12600 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12601 * which also refreleases the 'conn' that was refheld at the start of the 12602 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12603 * 12604 * Many exclusive ioctls go thru an internal down up sequence as part of 12605 * the operation. For example an attempt to change the IP address of an 12606 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12607 * does all the cleanup such as deleting all ires that use this address. 12608 * Then we need to wait till all references to the interface go away. 12609 */ 12610 void 12611 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12612 { 12613 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12614 ip_ioctl_cmd_t *ipip = arg; 12615 ip_extract_func_t *extract_funcp; 12616 cmd_info_t ci; 12617 int err; 12618 boolean_t entered_ipsq = B_FALSE; 12619 12620 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12621 12622 if (ipip == NULL) 12623 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12624 12625 /* 12626 * SIOCLIFADDIF needs to go thru a special path since the 12627 * ill may not exist yet. This happens in the case of lo0 12628 * which is created using this ioctl. 12629 */ 12630 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12631 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12632 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12633 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12634 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12635 return; 12636 } 12637 12638 ci.ci_ipif = NULL; 12639 extract_funcp = NULL; 12640 switch (ipip->ipi_cmd_type) { 12641 case MISC_CMD: 12642 case MSFILT_CMD: 12643 /* 12644 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12645 */ 12646 if (ipip->ipi_cmd == IF_UNITSEL) { 12647 /* ioctl comes down the ill */ 12648 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12649 ipif_refhold(ci.ci_ipif); 12650 } 12651 err = 0; 12652 ci.ci_sin = NULL; 12653 ci.ci_sin6 = NULL; 12654 ci.ci_lifr = NULL; 12655 extract_funcp = NULL; 12656 break; 12657 12658 case IF_CMD: 12659 case LIF_CMD: 12660 extract_funcp = ip_extract_lifreq; 12661 break; 12662 12663 case ARP_CMD: 12664 case XARP_CMD: 12665 extract_funcp = ip_extract_arpreq; 12666 break; 12667 12668 default: 12669 ASSERT(0); 12670 } 12671 12672 if (extract_funcp != NULL) { 12673 err = (*extract_funcp)(q, mp, ipip, &ci); 12674 if (err != 0) { 12675 DTRACE_PROBE4(ipif__ioctl, 12676 char *, "ip_process_ioctl finish err", 12677 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12678 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12679 return; 12680 } 12681 12682 /* 12683 * All of the extraction functions return a refheld ipif. 12684 */ 12685 ASSERT(ci.ci_ipif != NULL); 12686 } 12687 12688 if (!(ipip->ipi_flags & IPI_WR)) { 12689 /* 12690 * A return value of EINPROGRESS means the ioctl is 12691 * either queued and waiting for some reason or has 12692 * already completed. 12693 */ 12694 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12695 ci.ci_lifr); 12696 if (ci.ci_ipif != NULL) { 12697 DTRACE_PROBE4(ipif__ioctl, 12698 char *, "ip_process_ioctl finish RD", 12699 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12700 ipif_t *, ci.ci_ipif); 12701 ipif_refrele(ci.ci_ipif); 12702 } else { 12703 DTRACE_PROBE4(ipif__ioctl, 12704 char *, "ip_process_ioctl finish RD", 12705 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12706 } 12707 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12708 return; 12709 } 12710 12711 ASSERT(ci.ci_ipif != NULL); 12712 12713 /* 12714 * If ipsq is non-NULL, we are already being called exclusively 12715 */ 12716 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12717 if (ipsq == NULL) { 12718 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12719 NEW_OP, B_TRUE); 12720 if (ipsq == NULL) { 12721 ipif_refrele(ci.ci_ipif); 12722 return; 12723 } 12724 entered_ipsq = B_TRUE; 12725 } 12726 /* 12727 * Release the ipif so that ipif_down and friends that wait for 12728 * references to go away are not misled about the current ipif_refcnt 12729 * values. We are writer so we can access the ipif even after releasing 12730 * the ipif. 12731 */ 12732 ipif_refrele(ci.ci_ipif); 12733 12734 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12735 12736 /* 12737 * A return value of EINPROGRESS means the ioctl is 12738 * either queued and waiting for some reason or has 12739 * already completed. 12740 */ 12741 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12742 12743 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12744 int, ipip->ipi_cmd, 12745 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12746 ipif_t *, ci.ci_ipif); 12747 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12748 12749 if (entered_ipsq) 12750 ipsq_exit(ipsq); 12751 } 12752 12753 /* 12754 * Complete the ioctl. Typically ioctls use the mi package and need to 12755 * do mi_copyout/mi_copy_done. 12756 */ 12757 void 12758 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12759 { 12760 conn_t *connp = NULL; 12761 12762 if (err == EINPROGRESS) 12763 return; 12764 12765 if (CONN_Q(q)) { 12766 connp = Q_TO_CONN(q); 12767 ASSERT(connp->conn_ref >= 2); 12768 } 12769 12770 switch (mode) { 12771 case COPYOUT: 12772 if (err == 0) 12773 mi_copyout(q, mp); 12774 else 12775 mi_copy_done(q, mp, err); 12776 break; 12777 12778 case NO_COPYOUT: 12779 mi_copy_done(q, mp, err); 12780 break; 12781 12782 default: 12783 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12784 break; 12785 } 12786 12787 /* 12788 * The conn refhold and ioctlref placed on the conn at the start of the 12789 * ioctl are released here. 12790 */ 12791 if (connp != NULL) { 12792 CONN_DEC_IOCTLREF(connp); 12793 CONN_OPER_PENDING_DONE(connp); 12794 } 12795 12796 if (ipsq != NULL) 12797 ipsq_current_finish(ipsq); 12798 } 12799 12800 /* Handles all non data messages */ 12801 int 12802 ip_wput_nondata(queue_t *q, mblk_t *mp) 12803 { 12804 mblk_t *mp1; 12805 struct iocblk *iocp; 12806 ip_ioctl_cmd_t *ipip; 12807 conn_t *connp; 12808 cred_t *cr; 12809 char *proto_str; 12810 12811 if (CONN_Q(q)) 12812 connp = Q_TO_CONN(q); 12813 else 12814 connp = NULL; 12815 12816 iocp = NULL; 12817 switch (DB_TYPE(mp)) { 12818 case M_IOCTL: 12819 /* 12820 * IOCTL processing begins in ip_sioctl_copyin_setup which 12821 * will arrange to copy in associated control structures. 12822 */ 12823 ip_sioctl_copyin_setup(q, mp); 12824 return (0); 12825 case M_IOCDATA: 12826 /* 12827 * Ensure that this is associated with one of our trans- 12828 * parent ioctls. If it's not ours, discard it if we're 12829 * running as a driver, or pass it on if we're a module. 12830 */ 12831 iocp = (struct iocblk *)mp->b_rptr; 12832 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12833 if (ipip == NULL) { 12834 if (q->q_next == NULL) { 12835 goto nak; 12836 } else { 12837 putnext(q, mp); 12838 } 12839 return (0); 12840 } 12841 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12842 /* 12843 * The ioctl is one we recognise, but is not consumed 12844 * by IP as a module and we are a module, so we drop 12845 */ 12846 goto nak; 12847 } 12848 12849 /* IOCTL continuation following copyin or copyout. */ 12850 if (mi_copy_state(q, mp, NULL) == -1) { 12851 /* 12852 * The copy operation failed. mi_copy_state already 12853 * cleaned up, so we're out of here. 12854 */ 12855 return (0); 12856 } 12857 /* 12858 * If we just completed a copy in, we become writer and 12859 * continue processing in ip_sioctl_copyin_done. If it 12860 * was a copy out, we call mi_copyout again. If there is 12861 * nothing more to copy out, it will complete the IOCTL. 12862 */ 12863 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12864 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12865 mi_copy_done(q, mp, EPROTO); 12866 return (0); 12867 } 12868 /* 12869 * Check for cases that need more copying. A return 12870 * value of 0 means a second copyin has been started, 12871 * so we return; a return value of 1 means no more 12872 * copying is needed, so we continue. 12873 */ 12874 if (ipip->ipi_cmd_type == MSFILT_CMD && 12875 MI_COPY_COUNT(mp) == 1) { 12876 if (ip_copyin_msfilter(q, mp) == 0) 12877 return (0); 12878 } 12879 /* 12880 * Refhold the conn, till the ioctl completes. This is 12881 * needed in case the ioctl ends up in the pending mp 12882 * list. Every mp in the ipx_pending_mp list must have 12883 * a refhold on the conn to resume processing. The 12884 * refhold is released when the ioctl completes 12885 * (whether normally or abnormally). An ioctlref is also 12886 * placed on the conn to prevent TCP from removing the 12887 * queue needed to send the ioctl reply back. 12888 * In all cases ip_ioctl_finish is called to finish 12889 * the ioctl and release the refholds. 12890 */ 12891 if (connp != NULL) { 12892 /* This is not a reentry */ 12893 CONN_INC_REF(connp); 12894 CONN_INC_IOCTLREF(connp); 12895 } else { 12896 if (!(ipip->ipi_flags & IPI_MODOK)) { 12897 mi_copy_done(q, mp, EINVAL); 12898 return (0); 12899 } 12900 } 12901 12902 ip_process_ioctl(NULL, q, mp, ipip); 12903 12904 } else { 12905 mi_copyout(q, mp); 12906 } 12907 return (0); 12908 12909 case M_IOCNAK: 12910 /* 12911 * The only way we could get here is if a resolver didn't like 12912 * an IOCTL we sent it. This shouldn't happen. 12913 */ 12914 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12915 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12916 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12917 freemsg(mp); 12918 return (0); 12919 case M_IOCACK: 12920 /* /dev/ip shouldn't see this */ 12921 goto nak; 12922 case M_FLUSH: 12923 if (*mp->b_rptr & FLUSHW) 12924 flushq(q, FLUSHALL); 12925 if (q->q_next) { 12926 putnext(q, mp); 12927 return (0); 12928 } 12929 if (*mp->b_rptr & FLUSHR) { 12930 *mp->b_rptr &= ~FLUSHW; 12931 qreply(q, mp); 12932 return (0); 12933 } 12934 freemsg(mp); 12935 return (0); 12936 case M_CTL: 12937 break; 12938 case M_PROTO: 12939 case M_PCPROTO: 12940 /* 12941 * The only PROTO messages we expect are SNMP-related. 12942 */ 12943 switch (((union T_primitives *)mp->b_rptr)->type) { 12944 case T_SVR4_OPTMGMT_REQ: 12945 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12946 "flags %x\n", 12947 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12948 12949 if (connp == NULL) { 12950 proto_str = "T_SVR4_OPTMGMT_REQ"; 12951 goto protonak; 12952 } 12953 12954 /* 12955 * All Solaris components should pass a db_credp 12956 * for this TPI message, hence we ASSERT. 12957 * But in case there is some other M_PROTO that looks 12958 * like a TPI message sent by some other kernel 12959 * component, we check and return an error. 12960 */ 12961 cr = msg_getcred(mp, NULL); 12962 ASSERT(cr != NULL); 12963 if (cr == NULL) { 12964 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12965 if (mp != NULL) 12966 qreply(q, mp); 12967 return (0); 12968 } 12969 12970 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12971 proto_str = "Bad SNMPCOM request?"; 12972 goto protonak; 12973 } 12974 return (0); 12975 default: 12976 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12977 (int)*(uint_t *)mp->b_rptr)); 12978 freemsg(mp); 12979 return (0); 12980 } 12981 default: 12982 break; 12983 } 12984 if (q->q_next) { 12985 putnext(q, mp); 12986 } else 12987 freemsg(mp); 12988 return (0); 12989 12990 nak: 12991 iocp->ioc_error = EINVAL; 12992 mp->b_datap->db_type = M_IOCNAK; 12993 iocp->ioc_count = 0; 12994 qreply(q, mp); 12995 return (0); 12996 12997 protonak: 12998 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12999 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 13000 qreply(q, mp); 13001 return (0); 13002 } 13003 13004 /* 13005 * Process IP options in an outbound packet. Verify that the nexthop in a 13006 * strict source route is onlink. 13007 * Returns non-zero if something fails in which case an ICMP error has been 13008 * sent and mp freed. 13009 * 13010 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 13011 */ 13012 int 13013 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 13014 { 13015 ipoptp_t opts; 13016 uchar_t *opt; 13017 uint8_t optval; 13018 uint8_t optlen; 13019 ipaddr_t dst; 13020 intptr_t code = 0; 13021 ire_t *ire; 13022 ip_stack_t *ipst = ixa->ixa_ipst; 13023 ip_recv_attr_t iras; 13024 13025 ip2dbg(("ip_output_options\n")); 13026 13027 opt = NULL; 13028 dst = ipha->ipha_dst; 13029 for (optval = ipoptp_first(&opts, ipha); 13030 optval != IPOPT_EOL; 13031 optval = ipoptp_next(&opts)) { 13032 opt = opts.ipoptp_cur; 13033 optlen = opts.ipoptp_len; 13034 ip2dbg(("ip_output_options: opt %d, len %d\n", 13035 optval, optlen)); 13036 switch (optval) { 13037 uint32_t off; 13038 case IPOPT_SSRR: 13039 case IPOPT_LSRR: 13040 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13041 ip1dbg(( 13042 "ip_output_options: bad option offset\n")); 13043 code = (char *)&opt[IPOPT_OLEN] - 13044 (char *)ipha; 13045 goto param_prob; 13046 } 13047 off = opt[IPOPT_OFFSET]; 13048 ip1dbg(("ip_output_options: next hop 0x%x\n", 13049 ntohl(dst))); 13050 /* 13051 * For strict: verify that dst is directly 13052 * reachable. 13053 */ 13054 if (optval == IPOPT_SSRR) { 13055 ire = ire_ftable_lookup_v4(dst, 0, 0, 13056 IRE_INTERFACE, NULL, ALL_ZONES, 13057 ixa->ixa_tsl, 13058 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13059 NULL); 13060 if (ire == NULL) { 13061 ip1dbg(("ip_output_options: SSRR not" 13062 " directly reachable: 0x%x\n", 13063 ntohl(dst))); 13064 goto bad_src_route; 13065 } 13066 ire_refrele(ire); 13067 } 13068 break; 13069 case IPOPT_RR: 13070 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13071 ip1dbg(( 13072 "ip_output_options: bad option offset\n")); 13073 code = (char *)&opt[IPOPT_OLEN] - 13074 (char *)ipha; 13075 goto param_prob; 13076 } 13077 break; 13078 case IPOPT_TS: 13079 /* 13080 * Verify that length >=5 and that there is either 13081 * room for another timestamp or that the overflow 13082 * counter is not maxed out. 13083 */ 13084 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13085 if (optlen < IPOPT_MINLEN_IT) { 13086 goto param_prob; 13087 } 13088 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13089 ip1dbg(( 13090 "ip_output_options: bad option offset\n")); 13091 code = (char *)&opt[IPOPT_OFFSET] - 13092 (char *)ipha; 13093 goto param_prob; 13094 } 13095 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13096 case IPOPT_TS_TSONLY: 13097 off = IPOPT_TS_TIMELEN; 13098 break; 13099 case IPOPT_TS_TSANDADDR: 13100 case IPOPT_TS_PRESPEC: 13101 case IPOPT_TS_PRESPEC_RFC791: 13102 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13103 break; 13104 default: 13105 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13106 (char *)ipha; 13107 goto param_prob; 13108 } 13109 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13110 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13111 /* 13112 * No room and the overflow counter is 15 13113 * already. 13114 */ 13115 goto param_prob; 13116 } 13117 break; 13118 } 13119 } 13120 13121 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13122 return (0); 13123 13124 ip1dbg(("ip_output_options: error processing IP options.")); 13125 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13126 13127 param_prob: 13128 bzero(&iras, sizeof (iras)); 13129 iras.ira_ill = iras.ira_rill = ill; 13130 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13131 iras.ira_rifindex = iras.ira_ruifindex; 13132 iras.ira_flags = IRAF_IS_IPV4; 13133 13134 ip_drop_output("ip_output_options", mp, ill); 13135 icmp_param_problem(mp, (uint8_t)code, &iras); 13136 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13137 return (-1); 13138 13139 bad_src_route: 13140 bzero(&iras, sizeof (iras)); 13141 iras.ira_ill = iras.ira_rill = ill; 13142 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13143 iras.ira_rifindex = iras.ira_ruifindex; 13144 iras.ira_flags = IRAF_IS_IPV4; 13145 13146 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13147 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13148 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13149 return (-1); 13150 } 13151 13152 /* 13153 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13154 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13155 * thru /etc/system. 13156 */ 13157 #define CONN_MAXDRAINCNT 64 13158 13159 static void 13160 conn_drain_init(ip_stack_t *ipst) 13161 { 13162 int i, j; 13163 idl_tx_list_t *itl_tx; 13164 13165 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13166 13167 if ((ipst->ips_conn_drain_list_cnt == 0) || 13168 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13169 /* 13170 * Default value of the number of drainers is the 13171 * number of cpus, subject to maximum of 8 drainers. 13172 */ 13173 if (boot_max_ncpus != -1) 13174 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13175 else 13176 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13177 } 13178 13179 ipst->ips_idl_tx_list = 13180 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13181 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13182 itl_tx = &ipst->ips_idl_tx_list[i]; 13183 itl_tx->txl_drain_list = 13184 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13185 sizeof (idl_t), KM_SLEEP); 13186 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13187 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13188 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13189 MUTEX_DEFAULT, NULL); 13190 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13191 } 13192 } 13193 } 13194 13195 static void 13196 conn_drain_fini(ip_stack_t *ipst) 13197 { 13198 int i; 13199 idl_tx_list_t *itl_tx; 13200 13201 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13202 itl_tx = &ipst->ips_idl_tx_list[i]; 13203 kmem_free(itl_tx->txl_drain_list, 13204 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13205 } 13206 kmem_free(ipst->ips_idl_tx_list, 13207 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13208 ipst->ips_idl_tx_list = NULL; 13209 } 13210 13211 /* 13212 * Flow control has blocked us from proceeding. Insert the given conn in one 13213 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13214 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13215 * will call conn_walk_drain(). See the flow control notes at the top of this 13216 * file for more details. 13217 */ 13218 void 13219 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13220 { 13221 idl_t *idl = tx_list->txl_drain_list; 13222 uint_t index; 13223 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13224 13225 mutex_enter(&connp->conn_lock); 13226 if (connp->conn_state_flags & CONN_CLOSING) { 13227 /* 13228 * The conn is closing as a result of which CONN_CLOSING 13229 * is set. Return. 13230 */ 13231 mutex_exit(&connp->conn_lock); 13232 return; 13233 } else if (connp->conn_idl == NULL) { 13234 /* 13235 * Assign the next drain list round robin. We dont' use 13236 * a lock, and thus it may not be strictly round robin. 13237 * Atomicity of load/stores is enough to make sure that 13238 * conn_drain_list_index is always within bounds. 13239 */ 13240 index = tx_list->txl_drain_index; 13241 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13242 connp->conn_idl = &tx_list->txl_drain_list[index]; 13243 index++; 13244 if (index == ipst->ips_conn_drain_list_cnt) 13245 index = 0; 13246 tx_list->txl_drain_index = index; 13247 } else { 13248 ASSERT(connp->conn_idl->idl_itl == tx_list); 13249 } 13250 mutex_exit(&connp->conn_lock); 13251 13252 idl = connp->conn_idl; 13253 mutex_enter(&idl->idl_lock); 13254 if ((connp->conn_drain_prev != NULL) || 13255 (connp->conn_state_flags & CONN_CLOSING)) { 13256 /* 13257 * The conn is either already in the drain list or closing. 13258 * (We needed to check for CONN_CLOSING again since close can 13259 * sneak in between dropping conn_lock and acquiring idl_lock.) 13260 */ 13261 mutex_exit(&idl->idl_lock); 13262 return; 13263 } 13264 13265 /* 13266 * The conn is not in the drain list. Insert it at the 13267 * tail of the drain list. The drain list is circular 13268 * and doubly linked. idl_conn points to the 1st element 13269 * in the list. 13270 */ 13271 if (idl->idl_conn == NULL) { 13272 idl->idl_conn = connp; 13273 connp->conn_drain_next = connp; 13274 connp->conn_drain_prev = connp; 13275 } else { 13276 conn_t *head = idl->idl_conn; 13277 13278 connp->conn_drain_next = head; 13279 connp->conn_drain_prev = head->conn_drain_prev; 13280 head->conn_drain_prev->conn_drain_next = connp; 13281 head->conn_drain_prev = connp; 13282 } 13283 /* 13284 * For non streams based sockets assert flow control. 13285 */ 13286 conn_setqfull(connp, NULL); 13287 mutex_exit(&idl->idl_lock); 13288 } 13289 13290 static void 13291 conn_drain_remove(conn_t *connp) 13292 { 13293 idl_t *idl = connp->conn_idl; 13294 13295 if (idl != NULL) { 13296 /* 13297 * Remove ourself from the drain list. 13298 */ 13299 if (connp->conn_drain_next == connp) { 13300 /* Singleton in the list */ 13301 ASSERT(connp->conn_drain_prev == connp); 13302 idl->idl_conn = NULL; 13303 } else { 13304 connp->conn_drain_prev->conn_drain_next = 13305 connp->conn_drain_next; 13306 connp->conn_drain_next->conn_drain_prev = 13307 connp->conn_drain_prev; 13308 if (idl->idl_conn == connp) 13309 idl->idl_conn = connp->conn_drain_next; 13310 } 13311 13312 /* 13313 * NOTE: because conn_idl is associated with a specific drain 13314 * list which in turn is tied to the index the TX ring 13315 * (txl_cookie) hashes to, and because the TX ring can change 13316 * over the lifetime of the conn_t, we must clear conn_idl so 13317 * a subsequent conn_drain_insert() will set conn_idl again 13318 * based on the latest txl_cookie. 13319 */ 13320 connp->conn_idl = NULL; 13321 } 13322 connp->conn_drain_next = NULL; 13323 connp->conn_drain_prev = NULL; 13324 13325 conn_clrqfull(connp, NULL); 13326 /* 13327 * For streams based sockets open up flow control. 13328 */ 13329 if (!IPCL_IS_NONSTR(connp)) 13330 enableok(connp->conn_wq); 13331 } 13332 13333 /* 13334 * This conn is closing, and we are called from ip_close. OR 13335 * this conn is draining because flow-control on the ill has been relieved. 13336 * 13337 * We must also need to remove conn's on this idl from the list, and also 13338 * inform the sockfs upcalls about the change in flow-control. 13339 */ 13340 static void 13341 conn_drain(conn_t *connp, boolean_t closing) 13342 { 13343 idl_t *idl; 13344 conn_t *next_connp; 13345 13346 /* 13347 * connp->conn_idl is stable at this point, and no lock is needed 13348 * to check it. If we are called from ip_close, close has already 13349 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13350 * called us only because conn_idl is non-null. If we are called thru 13351 * service, conn_idl could be null, but it cannot change because 13352 * service is single-threaded per queue, and there cannot be another 13353 * instance of service trying to call conn_drain_insert on this conn 13354 * now. 13355 */ 13356 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13357 13358 /* 13359 * If the conn doesn't exist or is not on a drain list, bail. 13360 */ 13361 if (connp == NULL || connp->conn_idl == NULL || 13362 connp->conn_drain_prev == NULL) { 13363 return; 13364 } 13365 13366 idl = connp->conn_idl; 13367 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13368 13369 if (!closing) { 13370 next_connp = connp->conn_drain_next; 13371 while (next_connp != connp) { 13372 conn_t *delconnp = next_connp; 13373 13374 next_connp = next_connp->conn_drain_next; 13375 conn_drain_remove(delconnp); 13376 } 13377 ASSERT(connp->conn_drain_next == idl->idl_conn); 13378 } 13379 conn_drain_remove(connp); 13380 } 13381 13382 /* 13383 * Write service routine. Shared perimeter entry point. 13384 * The device queue's messages has fallen below the low water mark and STREAMS 13385 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13386 * each waiting conn. 13387 */ 13388 int 13389 ip_wsrv(queue_t *q) 13390 { 13391 ill_t *ill; 13392 13393 ill = (ill_t *)q->q_ptr; 13394 if (ill->ill_state_flags == 0) { 13395 ip_stack_t *ipst = ill->ill_ipst; 13396 13397 /* 13398 * The device flow control has opened up. 13399 * Walk through conn drain lists and qenable the 13400 * first conn in each list. This makes sense only 13401 * if the stream is fully plumbed and setup. 13402 * Hence the ill_state_flags check above. 13403 */ 13404 ip1dbg(("ip_wsrv: walking\n")); 13405 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13406 enableok(ill->ill_wq); 13407 } 13408 return (0); 13409 } 13410 13411 /* 13412 * Callback to disable flow control in IP. 13413 * 13414 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13415 * is enabled. 13416 * 13417 * When MAC_TX() is not able to send any more packets, dld sets its queue 13418 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13419 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13420 * function and wakes up corresponding mac worker threads, which in turn 13421 * calls this callback function, and disables flow control. 13422 */ 13423 void 13424 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13425 { 13426 ill_t *ill = (ill_t *)arg; 13427 ip_stack_t *ipst = ill->ill_ipst; 13428 idl_tx_list_t *idl_txl; 13429 13430 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13431 mutex_enter(&idl_txl->txl_lock); 13432 /* add code to to set a flag to indicate idl_txl is enabled */ 13433 conn_walk_drain(ipst, idl_txl); 13434 mutex_exit(&idl_txl->txl_lock); 13435 } 13436 13437 /* 13438 * Flow control has been relieved and STREAMS has backenabled us; drain 13439 * all the conn lists on `tx_list'. 13440 */ 13441 static void 13442 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13443 { 13444 int i; 13445 idl_t *idl; 13446 13447 IP_STAT(ipst, ip_conn_walk_drain); 13448 13449 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13450 idl = &tx_list->txl_drain_list[i]; 13451 mutex_enter(&idl->idl_lock); 13452 conn_drain(idl->idl_conn, B_FALSE); 13453 mutex_exit(&idl->idl_lock); 13454 } 13455 } 13456 13457 /* 13458 * Determine if the ill and multicast aspects of that packets 13459 * "matches" the conn. 13460 */ 13461 boolean_t 13462 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13463 { 13464 ill_t *ill = ira->ira_rill; 13465 zoneid_t zoneid = ira->ira_zoneid; 13466 uint_t in_ifindex; 13467 ipaddr_t dst, src; 13468 13469 dst = ipha->ipha_dst; 13470 src = ipha->ipha_src; 13471 13472 /* 13473 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13474 * unicast, broadcast and multicast reception to 13475 * conn_incoming_ifindex. 13476 * conn_wantpacket is called for unicast, broadcast and 13477 * multicast packets. 13478 */ 13479 in_ifindex = connp->conn_incoming_ifindex; 13480 13481 /* mpathd can bind to the under IPMP interface, which we allow */ 13482 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13483 if (!IS_UNDER_IPMP(ill)) 13484 return (B_FALSE); 13485 13486 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13487 return (B_FALSE); 13488 } 13489 13490 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13491 return (B_FALSE); 13492 13493 if (!(ira->ira_flags & IRAF_MULTICAST)) 13494 return (B_TRUE); 13495 13496 if (connp->conn_multi_router) { 13497 /* multicast packet and multicast router socket: send up */ 13498 return (B_TRUE); 13499 } 13500 13501 if (ipha->ipha_protocol == IPPROTO_PIM || 13502 ipha->ipha_protocol == IPPROTO_RSVP) 13503 return (B_TRUE); 13504 13505 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13506 } 13507 13508 void 13509 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13510 { 13511 if (IPCL_IS_NONSTR(connp)) { 13512 (*connp->conn_upcalls->su_txq_full) 13513 (connp->conn_upper_handle, B_TRUE); 13514 if (flow_stopped != NULL) 13515 *flow_stopped = B_TRUE; 13516 } else { 13517 queue_t *q = connp->conn_wq; 13518 13519 ASSERT(q != NULL); 13520 if (!(q->q_flag & QFULL)) { 13521 mutex_enter(QLOCK(q)); 13522 if (!(q->q_flag & QFULL)) { 13523 /* still need to set QFULL */ 13524 q->q_flag |= QFULL; 13525 /* set flow_stopped to true under QLOCK */ 13526 if (flow_stopped != NULL) 13527 *flow_stopped = B_TRUE; 13528 mutex_exit(QLOCK(q)); 13529 } else { 13530 /* flow_stopped is left unchanged */ 13531 mutex_exit(QLOCK(q)); 13532 } 13533 } 13534 } 13535 } 13536 13537 void 13538 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13539 { 13540 if (IPCL_IS_NONSTR(connp)) { 13541 (*connp->conn_upcalls->su_txq_full) 13542 (connp->conn_upper_handle, B_FALSE); 13543 if (flow_stopped != NULL) 13544 *flow_stopped = B_FALSE; 13545 } else { 13546 queue_t *q = connp->conn_wq; 13547 13548 ASSERT(q != NULL); 13549 if (q->q_flag & QFULL) { 13550 mutex_enter(QLOCK(q)); 13551 if (q->q_flag & QFULL) { 13552 q->q_flag &= ~QFULL; 13553 /* set flow_stopped to false under QLOCK */ 13554 if (flow_stopped != NULL) 13555 *flow_stopped = B_FALSE; 13556 mutex_exit(QLOCK(q)); 13557 if (q->q_flag & QWANTW) 13558 qbackenable(q, 0); 13559 } else { 13560 /* flow_stopped is left unchanged */ 13561 mutex_exit(QLOCK(q)); 13562 } 13563 } 13564 } 13565 13566 mutex_enter(&connp->conn_lock); 13567 connp->conn_blocked = B_FALSE; 13568 mutex_exit(&connp->conn_lock); 13569 } 13570 13571 /* 13572 * Return the length in bytes of the IPv4 headers (base header, label, and 13573 * other IP options) that will be needed based on the 13574 * ip_pkt_t structure passed by the caller. 13575 * 13576 * The returned length does not include the length of the upper level 13577 * protocol (ULP) header. 13578 * The caller needs to check that the length doesn't exceed the max for IPv4. 13579 */ 13580 int 13581 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13582 { 13583 int len; 13584 13585 len = IP_SIMPLE_HDR_LENGTH; 13586 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13587 ASSERT(ipp->ipp_label_len_v4 != 0); 13588 /* We need to round up here */ 13589 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13590 } 13591 13592 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13593 ASSERT(ipp->ipp_ipv4_options_len != 0); 13594 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13595 len += ipp->ipp_ipv4_options_len; 13596 } 13597 return (len); 13598 } 13599 13600 /* 13601 * All-purpose routine to build an IPv4 header with options based 13602 * on the abstract ip_pkt_t. 13603 * 13604 * The caller has to set the source and destination address as well as 13605 * ipha_length. The caller has to massage any source route and compensate 13606 * for the ULP pseudo-header checksum due to the source route. 13607 */ 13608 void 13609 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13610 uint8_t protocol) 13611 { 13612 ipha_t *ipha = (ipha_t *)buf; 13613 uint8_t *cp; 13614 13615 /* Initialize IPv4 header */ 13616 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13617 ipha->ipha_length = 0; /* Caller will set later */ 13618 ipha->ipha_ident = 0; 13619 ipha->ipha_fragment_offset_and_flags = 0; 13620 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13621 ipha->ipha_protocol = protocol; 13622 ipha->ipha_hdr_checksum = 0; 13623 13624 if ((ipp->ipp_fields & IPPF_ADDR) && 13625 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13626 ipha->ipha_src = ipp->ipp_addr_v4; 13627 13628 cp = (uint8_t *)&ipha[1]; 13629 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13630 ASSERT(ipp->ipp_label_len_v4 != 0); 13631 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13632 cp += ipp->ipp_label_len_v4; 13633 /* We need to round up here */ 13634 while ((uintptr_t)cp & 0x3) { 13635 *cp++ = IPOPT_NOP; 13636 } 13637 } 13638 13639 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13640 ASSERT(ipp->ipp_ipv4_options_len != 0); 13641 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13642 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13643 cp += ipp->ipp_ipv4_options_len; 13644 } 13645 ipha->ipha_version_and_hdr_length = 13646 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13647 13648 ASSERT((int)(cp - buf) == buf_len); 13649 } 13650 13651 /* Allocate the private structure */ 13652 static int 13653 ip_priv_alloc(void **bufp) 13654 { 13655 void *buf; 13656 13657 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13658 return (ENOMEM); 13659 13660 *bufp = buf; 13661 return (0); 13662 } 13663 13664 /* Function to delete the private structure */ 13665 void 13666 ip_priv_free(void *buf) 13667 { 13668 ASSERT(buf != NULL); 13669 kmem_free(buf, sizeof (ip_priv_t)); 13670 } 13671 13672 /* 13673 * The entry point for IPPF processing. 13674 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13675 * routine just returns. 13676 * 13677 * When called, ip_process generates an ipp_packet_t structure 13678 * which holds the state information for this packet and invokes the 13679 * the classifier (via ipp_packet_process). The classification, depending on 13680 * configured filters, results in a list of actions for this packet. Invoking 13681 * an action may cause the packet to be dropped, in which case we return NULL. 13682 * proc indicates the callout position for 13683 * this packet and ill is the interface this packet arrived on or will leave 13684 * on (inbound and outbound resp.). 13685 * 13686 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13687 * on the ill corrsponding to the destination IP address. 13688 */ 13689 mblk_t * 13690 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13691 { 13692 ip_priv_t *priv; 13693 ipp_action_id_t aid; 13694 int rc = 0; 13695 ipp_packet_t *pp; 13696 13697 /* If the classifier is not loaded, return */ 13698 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13699 return (mp); 13700 } 13701 13702 ASSERT(mp != NULL); 13703 13704 /* Allocate the packet structure */ 13705 rc = ipp_packet_alloc(&pp, "ip", aid); 13706 if (rc != 0) 13707 goto drop; 13708 13709 /* Allocate the private structure */ 13710 rc = ip_priv_alloc((void **)&priv); 13711 if (rc != 0) { 13712 ipp_packet_free(pp); 13713 goto drop; 13714 } 13715 priv->proc = proc; 13716 priv->ill_index = ill_get_upper_ifindex(rill); 13717 13718 ipp_packet_set_private(pp, priv, ip_priv_free); 13719 ipp_packet_set_data(pp, mp); 13720 13721 /* Invoke the classifier */ 13722 rc = ipp_packet_process(&pp); 13723 if (pp != NULL) { 13724 mp = ipp_packet_get_data(pp); 13725 ipp_packet_free(pp); 13726 if (rc != 0) 13727 goto drop; 13728 return (mp); 13729 } else { 13730 /* No mp to trace in ip_drop_input/ip_drop_output */ 13731 mp = NULL; 13732 } 13733 drop: 13734 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13736 ip_drop_input("ip_process", mp, ill); 13737 } else { 13738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13739 ip_drop_output("ip_process", mp, ill); 13740 } 13741 freemsg(mp); 13742 return (NULL); 13743 } 13744 13745 /* 13746 * Propagate a multicast group membership operation (add/drop) on 13747 * all the interfaces crossed by the related multirt routes. 13748 * The call is considered successful if the operation succeeds 13749 * on at least one interface. 13750 * 13751 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13752 * multicast addresses with the ire argument being the first one. 13753 * We walk the bucket to find all the of those. 13754 * 13755 * Common to IPv4 and IPv6. 13756 */ 13757 static int 13758 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13759 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13760 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13761 mcast_record_t fmode, const in6_addr_t *v6src) 13762 { 13763 ire_t *ire_gw; 13764 irb_t *irb; 13765 int ifindex; 13766 int error = 0; 13767 int result; 13768 ip_stack_t *ipst = ire->ire_ipst; 13769 ipaddr_t group; 13770 boolean_t isv6; 13771 int match_flags; 13772 13773 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13774 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13775 isv6 = B_FALSE; 13776 } else { 13777 isv6 = B_TRUE; 13778 } 13779 13780 irb = ire->ire_bucket; 13781 ASSERT(irb != NULL); 13782 13783 result = 0; 13784 irb_refhold(irb); 13785 for (; ire != NULL; ire = ire->ire_next) { 13786 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13787 continue; 13788 13789 /* We handle -ifp routes by matching on the ill if set */ 13790 match_flags = MATCH_IRE_TYPE; 13791 if (ire->ire_ill != NULL) 13792 match_flags |= MATCH_IRE_ILL; 13793 13794 if (isv6) { 13795 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13796 continue; 13797 13798 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13799 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13800 match_flags, 0, ipst, NULL); 13801 } else { 13802 if (ire->ire_addr != group) 13803 continue; 13804 13805 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13806 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13807 match_flags, 0, ipst, NULL); 13808 } 13809 /* No interface route exists for the gateway; skip this ire. */ 13810 if (ire_gw == NULL) 13811 continue; 13812 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13813 ire_refrele(ire_gw); 13814 continue; 13815 } 13816 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13817 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13818 13819 /* 13820 * The operation is considered a success if 13821 * it succeeds at least once on any one interface. 13822 */ 13823 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13824 fmode, v6src); 13825 if (error == 0) 13826 result = CGTP_MCAST_SUCCESS; 13827 13828 ire_refrele(ire_gw); 13829 } 13830 irb_refrele(irb); 13831 /* 13832 * Consider the call as successful if we succeeded on at least 13833 * one interface. Otherwise, return the last encountered error. 13834 */ 13835 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13836 } 13837 13838 /* 13839 * Return the expected CGTP hooks version number. 13840 */ 13841 int 13842 ip_cgtp_filter_supported(void) 13843 { 13844 return (ip_cgtp_filter_rev); 13845 } 13846 13847 /* 13848 * CGTP hooks can be registered by invoking this function. 13849 * Checks that the version number matches. 13850 */ 13851 int 13852 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13853 { 13854 netstack_t *ns; 13855 ip_stack_t *ipst; 13856 13857 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13858 return (ENOTSUP); 13859 13860 ns = netstack_find_by_stackid(stackid); 13861 if (ns == NULL) 13862 return (EINVAL); 13863 ipst = ns->netstack_ip; 13864 ASSERT(ipst != NULL); 13865 13866 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13867 netstack_rele(ns); 13868 return (EALREADY); 13869 } 13870 13871 ipst->ips_ip_cgtp_filter_ops = ops; 13872 13873 ill_set_inputfn_all(ipst); 13874 13875 netstack_rele(ns); 13876 return (0); 13877 } 13878 13879 /* 13880 * CGTP hooks can be unregistered by invoking this function. 13881 * Returns ENXIO if there was no registration. 13882 * Returns EBUSY if the ndd variable has not been turned off. 13883 */ 13884 int 13885 ip_cgtp_filter_unregister(netstackid_t stackid) 13886 { 13887 netstack_t *ns; 13888 ip_stack_t *ipst; 13889 13890 ns = netstack_find_by_stackid(stackid); 13891 if (ns == NULL) 13892 return (EINVAL); 13893 ipst = ns->netstack_ip; 13894 ASSERT(ipst != NULL); 13895 13896 if (ipst->ips_ip_cgtp_filter) { 13897 netstack_rele(ns); 13898 return (EBUSY); 13899 } 13900 13901 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13902 netstack_rele(ns); 13903 return (ENXIO); 13904 } 13905 ipst->ips_ip_cgtp_filter_ops = NULL; 13906 13907 ill_set_inputfn_all(ipst); 13908 13909 netstack_rele(ns); 13910 return (0); 13911 } 13912 13913 /* 13914 * Check whether there is a CGTP filter registration. 13915 * Returns non-zero if there is a registration, otherwise returns zero. 13916 * Note: returns zero if bad stackid. 13917 */ 13918 int 13919 ip_cgtp_filter_is_registered(netstackid_t stackid) 13920 { 13921 netstack_t *ns; 13922 ip_stack_t *ipst; 13923 int ret; 13924 13925 ns = netstack_find_by_stackid(stackid); 13926 if (ns == NULL) 13927 return (0); 13928 ipst = ns->netstack_ip; 13929 ASSERT(ipst != NULL); 13930 13931 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13932 ret = 1; 13933 else 13934 ret = 0; 13935 13936 netstack_rele(ns); 13937 return (ret); 13938 } 13939 13940 static int 13941 ip_squeue_switch(int val) 13942 { 13943 int rval; 13944 13945 switch (val) { 13946 case IP_SQUEUE_ENTER_NODRAIN: 13947 rval = SQ_NODRAIN; 13948 break; 13949 case IP_SQUEUE_ENTER: 13950 rval = SQ_PROCESS; 13951 break; 13952 case IP_SQUEUE_FILL: 13953 default: 13954 rval = SQ_FILL; 13955 break; 13956 } 13957 return (rval); 13958 } 13959 13960 static void * 13961 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13962 { 13963 kstat_t *ksp; 13964 13965 ip_stat_t template = { 13966 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13967 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13968 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13969 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13970 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13971 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13972 { "ip_opt", KSTAT_DATA_UINT64 }, 13973 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13974 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13975 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13976 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13977 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13978 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13979 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13980 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13981 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13982 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13983 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 13984 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 13985 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 13986 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13987 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13988 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13989 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13990 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13991 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13992 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13993 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13994 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13995 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13996 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13997 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13998 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13999 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 14000 { "conn_in_recvtos", KSTAT_DATA_UINT64 }, 14001 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 14002 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 14003 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 14004 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 14005 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 14006 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 14007 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 14008 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 14009 }; 14010 14011 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 14012 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 14013 KSTAT_FLAG_VIRTUAL, stackid); 14014 14015 if (ksp == NULL) 14016 return (NULL); 14017 14018 bcopy(&template, ip_statisticsp, sizeof (template)); 14019 ksp->ks_data = (void *)ip_statisticsp; 14020 ksp->ks_private = (void *)(uintptr_t)stackid; 14021 14022 kstat_install(ksp); 14023 return (ksp); 14024 } 14025 14026 static void 14027 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14028 { 14029 if (ksp != NULL) { 14030 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14031 kstat_delete_netstack(ksp, stackid); 14032 } 14033 } 14034 14035 static void * 14036 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14037 { 14038 kstat_t *ksp; 14039 14040 ip_named_kstat_t template = { 14041 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14042 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14043 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14044 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14045 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14046 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14047 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14048 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14049 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14050 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14051 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14052 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14053 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14054 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14055 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14056 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14057 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14058 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14059 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14060 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14061 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14062 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14063 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14064 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14065 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14066 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14067 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14068 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14069 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14070 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14071 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14072 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14073 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14074 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14075 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14076 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14077 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14078 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14079 }; 14080 14081 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14082 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14083 if (ksp == NULL || ksp->ks_data == NULL) 14084 return (NULL); 14085 14086 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14087 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14088 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14089 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14090 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14091 14092 template.netToMediaEntrySize.value.i32 = 14093 sizeof (mib2_ipNetToMediaEntry_t); 14094 14095 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14096 14097 bcopy(&template, ksp->ks_data, sizeof (template)); 14098 ksp->ks_update = ip_kstat_update; 14099 ksp->ks_private = (void *)(uintptr_t)stackid; 14100 14101 kstat_install(ksp); 14102 return (ksp); 14103 } 14104 14105 static void 14106 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14107 { 14108 if (ksp != NULL) { 14109 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14110 kstat_delete_netstack(ksp, stackid); 14111 } 14112 } 14113 14114 static int 14115 ip_kstat_update(kstat_t *kp, int rw) 14116 { 14117 ip_named_kstat_t *ipkp; 14118 mib2_ipIfStatsEntry_t ipmib; 14119 ill_walk_context_t ctx; 14120 ill_t *ill; 14121 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14122 netstack_t *ns; 14123 ip_stack_t *ipst; 14124 14125 if (kp->ks_data == NULL) 14126 return (EIO); 14127 14128 if (rw == KSTAT_WRITE) 14129 return (EACCES); 14130 14131 ns = netstack_find_by_stackid(stackid); 14132 if (ns == NULL) 14133 return (-1); 14134 ipst = ns->netstack_ip; 14135 if (ipst == NULL) { 14136 netstack_rele(ns); 14137 return (-1); 14138 } 14139 ipkp = (ip_named_kstat_t *)kp->ks_data; 14140 14141 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14142 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14143 ill = ILL_START_WALK_V4(&ctx, ipst); 14144 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14145 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14146 rw_exit(&ipst->ips_ill_g_lock); 14147 14148 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14149 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14150 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14151 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14152 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14153 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14154 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14155 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14156 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14157 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14158 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14159 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14160 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14161 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14162 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14163 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14164 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14165 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14166 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14167 14168 ipkp->routingDiscards.value.ui32 = 0; 14169 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14170 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14171 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14172 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14173 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14174 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14175 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14176 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14177 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14178 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14179 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14180 14181 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14182 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14183 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14184 14185 netstack_rele(ns); 14186 14187 return (0); 14188 } 14189 14190 static void * 14191 icmp_kstat_init(netstackid_t stackid) 14192 { 14193 kstat_t *ksp; 14194 14195 icmp_named_kstat_t template = { 14196 { "inMsgs", KSTAT_DATA_UINT32 }, 14197 { "inErrors", KSTAT_DATA_UINT32 }, 14198 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14199 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14200 { "inParmProbs", KSTAT_DATA_UINT32 }, 14201 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14202 { "inRedirects", KSTAT_DATA_UINT32 }, 14203 { "inEchos", KSTAT_DATA_UINT32 }, 14204 { "inEchoReps", KSTAT_DATA_UINT32 }, 14205 { "inTimestamps", KSTAT_DATA_UINT32 }, 14206 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14207 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14208 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14209 { "outMsgs", KSTAT_DATA_UINT32 }, 14210 { "outErrors", KSTAT_DATA_UINT32 }, 14211 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14212 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14213 { "outParmProbs", KSTAT_DATA_UINT32 }, 14214 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14215 { "outRedirects", KSTAT_DATA_UINT32 }, 14216 { "outEchos", KSTAT_DATA_UINT32 }, 14217 { "outEchoReps", KSTAT_DATA_UINT32 }, 14218 { "outTimestamps", KSTAT_DATA_UINT32 }, 14219 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14220 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14221 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14222 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14223 { "inUnknowns", KSTAT_DATA_UINT32 }, 14224 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14225 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14226 { "outDrops", KSTAT_DATA_UINT32 }, 14227 { "inOverFlows", KSTAT_DATA_UINT32 }, 14228 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14229 }; 14230 14231 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14232 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14233 if (ksp == NULL || ksp->ks_data == NULL) 14234 return (NULL); 14235 14236 bcopy(&template, ksp->ks_data, sizeof (template)); 14237 14238 ksp->ks_update = icmp_kstat_update; 14239 ksp->ks_private = (void *)(uintptr_t)stackid; 14240 14241 kstat_install(ksp); 14242 return (ksp); 14243 } 14244 14245 static void 14246 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14247 { 14248 if (ksp != NULL) { 14249 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14250 kstat_delete_netstack(ksp, stackid); 14251 } 14252 } 14253 14254 static int 14255 icmp_kstat_update(kstat_t *kp, int rw) 14256 { 14257 icmp_named_kstat_t *icmpkp; 14258 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14259 netstack_t *ns; 14260 ip_stack_t *ipst; 14261 14262 if (kp->ks_data == NULL) 14263 return (EIO); 14264 14265 if (rw == KSTAT_WRITE) 14266 return (EACCES); 14267 14268 ns = netstack_find_by_stackid(stackid); 14269 if (ns == NULL) 14270 return (-1); 14271 ipst = ns->netstack_ip; 14272 if (ipst == NULL) { 14273 netstack_rele(ns); 14274 return (-1); 14275 } 14276 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14277 14278 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14279 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14280 icmpkp->inDestUnreachs.value.ui32 = 14281 ipst->ips_icmp_mib.icmpInDestUnreachs; 14282 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14283 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14284 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14285 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14286 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14287 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14288 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14289 icmpkp->inTimestampReps.value.ui32 = 14290 ipst->ips_icmp_mib.icmpInTimestampReps; 14291 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14292 icmpkp->inAddrMaskReps.value.ui32 = 14293 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14294 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14295 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14296 icmpkp->outDestUnreachs.value.ui32 = 14297 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14298 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14299 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14300 icmpkp->outSrcQuenchs.value.ui32 = 14301 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14302 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14303 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14304 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14305 icmpkp->outTimestamps.value.ui32 = 14306 ipst->ips_icmp_mib.icmpOutTimestamps; 14307 icmpkp->outTimestampReps.value.ui32 = 14308 ipst->ips_icmp_mib.icmpOutTimestampReps; 14309 icmpkp->outAddrMasks.value.ui32 = 14310 ipst->ips_icmp_mib.icmpOutAddrMasks; 14311 icmpkp->outAddrMaskReps.value.ui32 = 14312 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14313 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14314 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14315 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14316 icmpkp->outFragNeeded.value.ui32 = 14317 ipst->ips_icmp_mib.icmpOutFragNeeded; 14318 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14319 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14320 icmpkp->inBadRedirects.value.ui32 = 14321 ipst->ips_icmp_mib.icmpInBadRedirects; 14322 14323 netstack_rele(ns); 14324 return (0); 14325 } 14326 14327 /* 14328 * This is the fanout function for raw socket opened for SCTP. Note 14329 * that it is called after SCTP checks that there is no socket which 14330 * wants a packet. Then before SCTP handles this out of the blue packet, 14331 * this function is called to see if there is any raw socket for SCTP. 14332 * If there is and it is bound to the correct address, the packet will 14333 * be sent to that socket. Note that only one raw socket can be bound to 14334 * a port. This is assured in ipcl_sctp_hash_insert(); 14335 */ 14336 void 14337 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14338 ip_recv_attr_t *ira) 14339 { 14340 conn_t *connp; 14341 queue_t *rq; 14342 boolean_t secure; 14343 ill_t *ill = ira->ira_ill; 14344 ip_stack_t *ipst = ill->ill_ipst; 14345 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14346 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14347 iaflags_t iraflags = ira->ira_flags; 14348 ill_t *rill = ira->ira_rill; 14349 14350 secure = iraflags & IRAF_IPSEC_SECURE; 14351 14352 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14353 ira, ipst); 14354 if (connp == NULL) { 14355 /* 14356 * Although raw sctp is not summed, OOB chunks must be. 14357 * Drop the packet here if the sctp checksum failed. 14358 */ 14359 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14360 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14361 freemsg(mp); 14362 return; 14363 } 14364 ira->ira_ill = ira->ira_rill = NULL; 14365 sctp_ootb_input(mp, ira, ipst); 14366 ira->ira_ill = ill; 14367 ira->ira_rill = rill; 14368 return; 14369 } 14370 rq = connp->conn_rq; 14371 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14372 CONN_DEC_REF(connp); 14373 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14374 freemsg(mp); 14375 return; 14376 } 14377 if (((iraflags & IRAF_IS_IPV4) ? 14378 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14379 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14380 secure) { 14381 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14382 ip6h, ira); 14383 if (mp == NULL) { 14384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14385 /* Note that mp is NULL */ 14386 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14387 CONN_DEC_REF(connp); 14388 return; 14389 } 14390 } 14391 14392 if (iraflags & IRAF_ICMP_ERROR) { 14393 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14394 } else { 14395 ill_t *rill = ira->ira_rill; 14396 14397 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14398 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14399 ira->ira_ill = ira->ira_rill = NULL; 14400 (connp->conn_recv)(connp, mp, NULL, ira); 14401 ira->ira_ill = ill; 14402 ira->ira_rill = rill; 14403 } 14404 CONN_DEC_REF(connp); 14405 } 14406 14407 /* 14408 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14409 * header before the ip payload. 14410 */ 14411 static void 14412 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14413 { 14414 int len = (mp->b_wptr - mp->b_rptr); 14415 mblk_t *ip_mp; 14416 14417 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14418 if (is_fp_mp || len != fp_mp_len) { 14419 if (len > fp_mp_len) { 14420 /* 14421 * fastpath header and ip header in the first mblk 14422 */ 14423 mp->b_rptr += fp_mp_len; 14424 } else { 14425 /* 14426 * ip_xmit_attach_llhdr had to prepend an mblk to 14427 * attach the fastpath header before ip header. 14428 */ 14429 ip_mp = mp->b_cont; 14430 freeb(mp); 14431 mp = ip_mp; 14432 mp->b_rptr += (fp_mp_len - len); 14433 } 14434 } else { 14435 ip_mp = mp->b_cont; 14436 freeb(mp); 14437 mp = ip_mp; 14438 } 14439 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14440 freemsg(mp); 14441 } 14442 14443 /* 14444 * Normal post fragmentation function. 14445 * 14446 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14447 * using the same state machine. 14448 * 14449 * We return an error on failure. In particular we return EWOULDBLOCK 14450 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14451 * (currently by canputnext failure resulting in backenabling from GLD.) 14452 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14453 * indication that they can flow control until ip_wsrv() tells then to restart. 14454 * 14455 * If the nce passed by caller is incomplete, this function 14456 * queues the packet and if necessary, sends ARP request and bails. 14457 * If the Neighbor Cache passed is fully resolved, we simply prepend 14458 * the link-layer header to the packet, do ipsec hw acceleration 14459 * work if necessary, and send the packet out on the wire. 14460 */ 14461 /* ARGSUSED6 */ 14462 int 14463 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14464 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14465 { 14466 queue_t *wq; 14467 ill_t *ill = nce->nce_ill; 14468 ip_stack_t *ipst = ill->ill_ipst; 14469 uint64_t delta; 14470 boolean_t isv6 = ill->ill_isv6; 14471 boolean_t fp_mp; 14472 ncec_t *ncec = nce->nce_common; 14473 int64_t now = LBOLT_FASTPATH64; 14474 boolean_t is_probe; 14475 14476 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14477 14478 ASSERT(mp != NULL); 14479 ASSERT(mp->b_datap->db_type == M_DATA); 14480 ASSERT(pkt_len == msgdsize(mp)); 14481 14482 /* 14483 * If we have already been here and are coming back after ARP/ND. 14484 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14485 * in that case since they have seen the packet when it came here 14486 * the first time. 14487 */ 14488 if (ixaflags & IXAF_NO_TRACE) 14489 goto sendit; 14490 14491 if (ixaflags & IXAF_IS_IPV4) { 14492 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14493 14494 ASSERT(!isv6); 14495 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14496 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14497 !(ixaflags & IXAF_NO_PFHOOK)) { 14498 int error; 14499 14500 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14501 ipst->ips_ipv4firewall_physical_out, 14502 NULL, ill, ipha, mp, mp, 0, ipst, error); 14503 DTRACE_PROBE1(ip4__physical__out__end, 14504 mblk_t *, mp); 14505 if (mp == NULL) 14506 return (error); 14507 14508 /* The length could have changed */ 14509 pkt_len = msgdsize(mp); 14510 } 14511 if (ipst->ips_ip4_observe.he_interested) { 14512 /* 14513 * Note that for TX the zoneid is the sending 14514 * zone, whether or not MLP is in play. 14515 * Since the szone argument is the IP zoneid (i.e., 14516 * zero for exclusive-IP zones) and ipobs wants 14517 * the system zoneid, we map it here. 14518 */ 14519 szone = IP_REAL_ZONEID(szone, ipst); 14520 14521 /* 14522 * On the outbound path the destination zone will be 14523 * unknown as we're sending this packet out on the 14524 * wire. 14525 */ 14526 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14527 ill, ipst); 14528 } 14529 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14530 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14531 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14532 } else { 14533 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14534 14535 ASSERT(isv6); 14536 ASSERT(pkt_len == 14537 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14538 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14539 !(ixaflags & IXAF_NO_PFHOOK)) { 14540 int error; 14541 14542 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14543 ipst->ips_ipv6firewall_physical_out, 14544 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14545 DTRACE_PROBE1(ip6__physical__out__end, 14546 mblk_t *, mp); 14547 if (mp == NULL) 14548 return (error); 14549 14550 /* The length could have changed */ 14551 pkt_len = msgdsize(mp); 14552 } 14553 if (ipst->ips_ip6_observe.he_interested) { 14554 /* See above */ 14555 szone = IP_REAL_ZONEID(szone, ipst); 14556 14557 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14558 ill, ipst); 14559 } 14560 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14561 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14562 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14563 } 14564 14565 sendit: 14566 /* 14567 * We check the state without a lock because the state can never 14568 * move "backwards" to initial or incomplete. 14569 */ 14570 switch (ncec->ncec_state) { 14571 case ND_REACHABLE: 14572 case ND_STALE: 14573 case ND_DELAY: 14574 case ND_PROBE: 14575 mp = ip_xmit_attach_llhdr(mp, nce); 14576 if (mp == NULL) { 14577 /* 14578 * ip_xmit_attach_llhdr has increased 14579 * ipIfStatsOutDiscards and called ip_drop_output() 14580 */ 14581 return (ENOBUFS); 14582 } 14583 /* 14584 * check if nce_fastpath completed and we tagged on a 14585 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14586 */ 14587 fp_mp = (mp->b_datap->db_type == M_DATA); 14588 14589 if (fp_mp && 14590 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14591 ill_dld_direct_t *idd; 14592 14593 idd = &ill->ill_dld_capab->idc_direct; 14594 /* 14595 * Send the packet directly to DLD, where it 14596 * may be queued depending on the availability 14597 * of transmit resources at the media layer. 14598 * Return value should be taken into 14599 * account and flow control the TCP. 14600 */ 14601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14602 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14603 pkt_len); 14604 14605 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14606 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14607 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14608 } else { 14609 uintptr_t cookie; 14610 14611 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14612 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14613 if (ixacookie != NULL) 14614 *ixacookie = cookie; 14615 return (EWOULDBLOCK); 14616 } 14617 } 14618 } else { 14619 wq = ill->ill_wq; 14620 14621 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14622 !canputnext(wq)) { 14623 if (ixacookie != NULL) 14624 *ixacookie = 0; 14625 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14626 nce->nce_fp_mp != NULL ? 14627 MBLKL(nce->nce_fp_mp) : 0); 14628 return (EWOULDBLOCK); 14629 } 14630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14631 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14632 pkt_len); 14633 putnext(wq, mp); 14634 } 14635 14636 /* 14637 * The rest of this function implements Neighbor Unreachability 14638 * detection. Determine if the ncec is eligible for NUD. 14639 */ 14640 if (ncec->ncec_flags & NCE_F_NONUD) 14641 return (0); 14642 14643 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14644 14645 /* 14646 * Check for upper layer advice 14647 */ 14648 if (ixaflags & IXAF_REACH_CONF) { 14649 timeout_id_t tid; 14650 14651 /* 14652 * It should be o.k. to check the state without 14653 * a lock here, at most we lose an advice. 14654 */ 14655 ncec->ncec_last = TICK_TO_MSEC(now); 14656 if (ncec->ncec_state != ND_REACHABLE) { 14657 mutex_enter(&ncec->ncec_lock); 14658 ncec->ncec_state = ND_REACHABLE; 14659 tid = ncec->ncec_timeout_id; 14660 ncec->ncec_timeout_id = 0; 14661 mutex_exit(&ncec->ncec_lock); 14662 (void) untimeout(tid); 14663 if (ip_debug > 2) { 14664 /* ip1dbg */ 14665 pr_addr_dbg("ip_xmit: state" 14666 " for %s changed to" 14667 " REACHABLE\n", AF_INET6, 14668 &ncec->ncec_addr); 14669 } 14670 } 14671 return (0); 14672 } 14673 14674 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14675 ip1dbg(("ip_xmit: delta = %" PRId64 14676 " ill_reachable_time = %d \n", delta, 14677 ill->ill_reachable_time)); 14678 if (delta > (uint64_t)ill->ill_reachable_time) { 14679 mutex_enter(&ncec->ncec_lock); 14680 switch (ncec->ncec_state) { 14681 case ND_REACHABLE: 14682 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14683 /* FALLTHROUGH */ 14684 case ND_STALE: 14685 /* 14686 * ND_REACHABLE is identical to 14687 * ND_STALE in this specific case. If 14688 * reachable time has expired for this 14689 * neighbor (delta is greater than 14690 * reachable time), conceptually, the 14691 * neighbor cache is no longer in 14692 * REACHABLE state, but already in 14693 * STALE state. So the correct 14694 * transition here is to ND_DELAY. 14695 */ 14696 ncec->ncec_state = ND_DELAY; 14697 mutex_exit(&ncec->ncec_lock); 14698 nce_restart_timer(ncec, 14699 ipst->ips_delay_first_probe_time); 14700 if (ip_debug > 3) { 14701 /* ip2dbg */ 14702 pr_addr_dbg("ip_xmit: state" 14703 " for %s changed to" 14704 " DELAY\n", AF_INET6, 14705 &ncec->ncec_addr); 14706 } 14707 break; 14708 case ND_DELAY: 14709 case ND_PROBE: 14710 mutex_exit(&ncec->ncec_lock); 14711 /* Timers have already started */ 14712 break; 14713 case ND_UNREACHABLE: 14714 /* 14715 * nce_timer has detected that this ncec 14716 * is unreachable and initiated deleting 14717 * this ncec. 14718 * This is a harmless race where we found the 14719 * ncec before it was deleted and have 14720 * just sent out a packet using this 14721 * unreachable ncec. 14722 */ 14723 mutex_exit(&ncec->ncec_lock); 14724 break; 14725 default: 14726 ASSERT(0); 14727 mutex_exit(&ncec->ncec_lock); 14728 } 14729 } 14730 return (0); 14731 14732 case ND_INCOMPLETE: 14733 /* 14734 * the state could have changed since we didn't hold the lock. 14735 * Re-verify state under lock. 14736 */ 14737 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14738 mutex_enter(&ncec->ncec_lock); 14739 if (NCE_ISREACHABLE(ncec)) { 14740 mutex_exit(&ncec->ncec_lock); 14741 goto sendit; 14742 } 14743 /* queue the packet */ 14744 nce_queue_mp(ncec, mp, is_probe); 14745 mutex_exit(&ncec->ncec_lock); 14746 DTRACE_PROBE2(ip__xmit__incomplete, 14747 (ncec_t *), ncec, (mblk_t *), mp); 14748 return (0); 14749 14750 case ND_INITIAL: 14751 /* 14752 * State could have changed since we didn't hold the lock, so 14753 * re-verify state. 14754 */ 14755 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14756 mutex_enter(&ncec->ncec_lock); 14757 if (NCE_ISREACHABLE(ncec)) { 14758 mutex_exit(&ncec->ncec_lock); 14759 goto sendit; 14760 } 14761 nce_queue_mp(ncec, mp, is_probe); 14762 if (ncec->ncec_state == ND_INITIAL) { 14763 ncec->ncec_state = ND_INCOMPLETE; 14764 mutex_exit(&ncec->ncec_lock); 14765 /* 14766 * figure out the source we want to use 14767 * and resolve it. 14768 */ 14769 ip_ndp_resolve(ncec); 14770 } else { 14771 mutex_exit(&ncec->ncec_lock); 14772 } 14773 return (0); 14774 14775 case ND_UNREACHABLE: 14776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14777 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14778 mp, ill); 14779 freemsg(mp); 14780 return (0); 14781 14782 default: 14783 ASSERT(0); 14784 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14785 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14786 mp, ill); 14787 freemsg(mp); 14788 return (ENETUNREACH); 14789 } 14790 } 14791 14792 /* 14793 * Return B_TRUE if the buffers differ in length or content. 14794 * This is used for comparing extension header buffers. 14795 * Note that an extension header would be declared different 14796 * even if all that changed was the next header value in that header i.e. 14797 * what really changed is the next extension header. 14798 */ 14799 boolean_t 14800 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14801 uint_t blen) 14802 { 14803 if (!b_valid) 14804 blen = 0; 14805 14806 if (alen != blen) 14807 return (B_TRUE); 14808 if (alen == 0) 14809 return (B_FALSE); /* Both zero length */ 14810 return (bcmp(abuf, bbuf, alen)); 14811 } 14812 14813 /* 14814 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14815 * Return B_FALSE if memory allocation fails - don't change any state! 14816 */ 14817 boolean_t 14818 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14819 const void *src, uint_t srclen) 14820 { 14821 void *dst; 14822 14823 if (!src_valid) 14824 srclen = 0; 14825 14826 ASSERT(*dstlenp == 0); 14827 if (src != NULL && srclen != 0) { 14828 dst = mi_alloc(srclen, BPRI_MED); 14829 if (dst == NULL) 14830 return (B_FALSE); 14831 } else { 14832 dst = NULL; 14833 } 14834 if (*dstp != NULL) 14835 mi_free(*dstp); 14836 *dstp = dst; 14837 *dstlenp = dst == NULL ? 0 : srclen; 14838 return (B_TRUE); 14839 } 14840 14841 /* 14842 * Replace what is in *dst, *dstlen with the source. 14843 * Assumes ip_allocbuf has already been called. 14844 */ 14845 void 14846 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14847 const void *src, uint_t srclen) 14848 { 14849 if (!src_valid) 14850 srclen = 0; 14851 14852 ASSERT(*dstlenp == srclen); 14853 if (src != NULL && srclen != 0) 14854 bcopy(src, *dstp, srclen); 14855 } 14856 14857 /* 14858 * Free the storage pointed to by the members of an ip_pkt_t. 14859 */ 14860 void 14861 ip_pkt_free(ip_pkt_t *ipp) 14862 { 14863 uint_t fields = ipp->ipp_fields; 14864 14865 if (fields & IPPF_HOPOPTS) { 14866 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14867 ipp->ipp_hopopts = NULL; 14868 ipp->ipp_hopoptslen = 0; 14869 } 14870 if (fields & IPPF_RTHDRDSTOPTS) { 14871 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14872 ipp->ipp_rthdrdstopts = NULL; 14873 ipp->ipp_rthdrdstoptslen = 0; 14874 } 14875 if (fields & IPPF_DSTOPTS) { 14876 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14877 ipp->ipp_dstopts = NULL; 14878 ipp->ipp_dstoptslen = 0; 14879 } 14880 if (fields & IPPF_RTHDR) { 14881 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14882 ipp->ipp_rthdr = NULL; 14883 ipp->ipp_rthdrlen = 0; 14884 } 14885 if (fields & IPPF_IPV4_OPTIONS) { 14886 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14887 ipp->ipp_ipv4_options = NULL; 14888 ipp->ipp_ipv4_options_len = 0; 14889 } 14890 if (fields & IPPF_LABEL_V4) { 14891 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14892 ipp->ipp_label_v4 = NULL; 14893 ipp->ipp_label_len_v4 = 0; 14894 } 14895 if (fields & IPPF_LABEL_V6) { 14896 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14897 ipp->ipp_label_v6 = NULL; 14898 ipp->ipp_label_len_v6 = 0; 14899 } 14900 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14901 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14902 } 14903 14904 /* 14905 * Copy from src to dst and allocate as needed. 14906 * Returns zero or ENOMEM. 14907 * 14908 * The caller must initialize dst to zero. 14909 */ 14910 int 14911 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14912 { 14913 uint_t fields = src->ipp_fields; 14914 14915 /* Start with fields that don't require memory allocation */ 14916 dst->ipp_fields = fields & 14917 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14918 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14919 14920 dst->ipp_addr = src->ipp_addr; 14921 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14922 dst->ipp_hoplimit = src->ipp_hoplimit; 14923 dst->ipp_tclass = src->ipp_tclass; 14924 dst->ipp_type_of_service = src->ipp_type_of_service; 14925 14926 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14927 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14928 return (0); 14929 14930 if (fields & IPPF_HOPOPTS) { 14931 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14932 if (dst->ipp_hopopts == NULL) { 14933 ip_pkt_free(dst); 14934 return (ENOMEM); 14935 } 14936 dst->ipp_fields |= IPPF_HOPOPTS; 14937 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14938 src->ipp_hopoptslen); 14939 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14940 } 14941 if (fields & IPPF_RTHDRDSTOPTS) { 14942 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14943 kmflag); 14944 if (dst->ipp_rthdrdstopts == NULL) { 14945 ip_pkt_free(dst); 14946 return (ENOMEM); 14947 } 14948 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14949 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14950 src->ipp_rthdrdstoptslen); 14951 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14952 } 14953 if (fields & IPPF_DSTOPTS) { 14954 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14955 if (dst->ipp_dstopts == NULL) { 14956 ip_pkt_free(dst); 14957 return (ENOMEM); 14958 } 14959 dst->ipp_fields |= IPPF_DSTOPTS; 14960 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14961 src->ipp_dstoptslen); 14962 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14963 } 14964 if (fields & IPPF_RTHDR) { 14965 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14966 if (dst->ipp_rthdr == NULL) { 14967 ip_pkt_free(dst); 14968 return (ENOMEM); 14969 } 14970 dst->ipp_fields |= IPPF_RTHDR; 14971 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14972 src->ipp_rthdrlen); 14973 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14974 } 14975 if (fields & IPPF_IPV4_OPTIONS) { 14976 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14977 kmflag); 14978 if (dst->ipp_ipv4_options == NULL) { 14979 ip_pkt_free(dst); 14980 return (ENOMEM); 14981 } 14982 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14983 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14984 src->ipp_ipv4_options_len); 14985 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14986 } 14987 if (fields & IPPF_LABEL_V4) { 14988 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14989 if (dst->ipp_label_v4 == NULL) { 14990 ip_pkt_free(dst); 14991 return (ENOMEM); 14992 } 14993 dst->ipp_fields |= IPPF_LABEL_V4; 14994 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14995 src->ipp_label_len_v4); 14996 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14997 } 14998 if (fields & IPPF_LABEL_V6) { 14999 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 15000 if (dst->ipp_label_v6 == NULL) { 15001 ip_pkt_free(dst); 15002 return (ENOMEM); 15003 } 15004 dst->ipp_fields |= IPPF_LABEL_V6; 15005 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 15006 src->ipp_label_len_v6); 15007 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 15008 } 15009 if (fields & IPPF_FRAGHDR) { 15010 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 15011 if (dst->ipp_fraghdr == NULL) { 15012 ip_pkt_free(dst); 15013 return (ENOMEM); 15014 } 15015 dst->ipp_fields |= IPPF_FRAGHDR; 15016 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 15017 src->ipp_fraghdrlen); 15018 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 15019 } 15020 return (0); 15021 } 15022 15023 /* 15024 * Returns INADDR_ANY if no source route 15025 */ 15026 ipaddr_t 15027 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15028 { 15029 ipaddr_t nexthop = INADDR_ANY; 15030 ipoptp_t opts; 15031 uchar_t *opt; 15032 uint8_t optval; 15033 uint8_t optlen; 15034 uint32_t totallen; 15035 15036 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15037 return (INADDR_ANY); 15038 15039 totallen = ipp->ipp_ipv4_options_len; 15040 if (totallen & 0x3) 15041 return (INADDR_ANY); 15042 15043 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15044 optval != IPOPT_EOL; 15045 optval = ipoptp_next(&opts)) { 15046 opt = opts.ipoptp_cur; 15047 switch (optval) { 15048 uint8_t off; 15049 case IPOPT_SSRR: 15050 case IPOPT_LSRR: 15051 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15052 break; 15053 } 15054 optlen = opts.ipoptp_len; 15055 off = opt[IPOPT_OFFSET]; 15056 off--; 15057 if (optlen < IP_ADDR_LEN || 15058 off > optlen - IP_ADDR_LEN) { 15059 /* End of source route */ 15060 break; 15061 } 15062 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15063 if (nexthop == htonl(INADDR_LOOPBACK)) { 15064 /* Ignore */ 15065 nexthop = INADDR_ANY; 15066 break; 15067 } 15068 break; 15069 } 15070 } 15071 return (nexthop); 15072 } 15073 15074 /* 15075 * Reverse a source route. 15076 */ 15077 void 15078 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15079 { 15080 ipaddr_t tmp; 15081 ipoptp_t opts; 15082 uchar_t *opt; 15083 uint8_t optval; 15084 uint32_t totallen; 15085 15086 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15087 return; 15088 15089 totallen = ipp->ipp_ipv4_options_len; 15090 if (totallen & 0x3) 15091 return; 15092 15093 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15094 optval != IPOPT_EOL; 15095 optval = ipoptp_next(&opts)) { 15096 uint8_t off1, off2; 15097 15098 opt = opts.ipoptp_cur; 15099 switch (optval) { 15100 case IPOPT_SSRR: 15101 case IPOPT_LSRR: 15102 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15103 break; 15104 } 15105 off1 = IPOPT_MINOFF_SR - 1; 15106 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15107 while (off2 > off1) { 15108 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15109 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15110 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15111 off2 -= IP_ADDR_LEN; 15112 off1 += IP_ADDR_LEN; 15113 } 15114 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15115 break; 15116 } 15117 } 15118 } 15119 15120 /* 15121 * Returns NULL if no routing header 15122 */ 15123 in6_addr_t * 15124 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15125 { 15126 in6_addr_t *nexthop = NULL; 15127 ip6_rthdr0_t *rthdr; 15128 15129 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15130 return (NULL); 15131 15132 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15133 if (rthdr->ip6r0_segleft == 0) 15134 return (NULL); 15135 15136 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15137 return (nexthop); 15138 } 15139 15140 zoneid_t 15141 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15142 zoneid_t lookup_zoneid) 15143 { 15144 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15145 ire_t *ire; 15146 int ire_flags = MATCH_IRE_TYPE; 15147 zoneid_t zoneid = ALL_ZONES; 15148 15149 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15150 return (ALL_ZONES); 15151 15152 if (lookup_zoneid != ALL_ZONES) 15153 ire_flags |= MATCH_IRE_ZONEONLY; 15154 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15155 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15156 if (ire != NULL) { 15157 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15158 ire_refrele(ire); 15159 } 15160 return (zoneid); 15161 } 15162 15163 zoneid_t 15164 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15165 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15166 { 15167 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15168 ire_t *ire; 15169 int ire_flags = MATCH_IRE_TYPE; 15170 zoneid_t zoneid = ALL_ZONES; 15171 15172 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15173 return (ALL_ZONES); 15174 15175 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15176 ire_flags |= MATCH_IRE_ILL; 15177 15178 if (lookup_zoneid != ALL_ZONES) 15179 ire_flags |= MATCH_IRE_ZONEONLY; 15180 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15181 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15182 if (ire != NULL) { 15183 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15184 ire_refrele(ire); 15185 } 15186 return (zoneid); 15187 } 15188 15189 /* 15190 * IP obserability hook support functions. 15191 */ 15192 static void 15193 ipobs_init(ip_stack_t *ipst) 15194 { 15195 netid_t id; 15196 15197 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15198 15199 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15200 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15201 15202 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15203 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15204 } 15205 15206 static void 15207 ipobs_fini(ip_stack_t *ipst) 15208 { 15209 15210 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15211 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15212 } 15213 15214 /* 15215 * hook_pkt_observe_t is composed in network byte order so that the 15216 * entire mblk_t chain handed into hook_run can be used as-is. 15217 * The caveat is that use of the fields, such as the zone fields, 15218 * requires conversion into host byte order first. 15219 */ 15220 void 15221 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15222 const ill_t *ill, ip_stack_t *ipst) 15223 { 15224 hook_pkt_observe_t *hdr; 15225 uint64_t grifindex; 15226 mblk_t *imp; 15227 15228 imp = allocb(sizeof (*hdr), BPRI_HI); 15229 if (imp == NULL) 15230 return; 15231 15232 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15233 /* 15234 * b_wptr is set to make the apparent size of the data in the mblk_t 15235 * to exclude the pointers at the end of hook_pkt_observer_t. 15236 */ 15237 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15238 imp->b_cont = mp; 15239 15240 ASSERT(DB_TYPE(mp) == M_DATA); 15241 15242 if (IS_UNDER_IPMP(ill)) 15243 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15244 else 15245 grifindex = 0; 15246 15247 hdr->hpo_version = 1; 15248 hdr->hpo_htype = htons(htype); 15249 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15250 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15251 hdr->hpo_grifindex = htonl(grifindex); 15252 hdr->hpo_zsrc = htonl(zsrc); 15253 hdr->hpo_zdst = htonl(zdst); 15254 hdr->hpo_pkt = imp; 15255 hdr->hpo_ctx = ipst->ips_netstack; 15256 15257 if (ill->ill_isv6) { 15258 hdr->hpo_family = AF_INET6; 15259 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15260 ipst->ips_ipv6observing, (hook_data_t)hdr); 15261 } else { 15262 hdr->hpo_family = AF_INET; 15263 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15264 ipst->ips_ipv4observing, (hook_data_t)hdr); 15265 } 15266 15267 imp->b_cont = NULL; 15268 freemsg(imp); 15269 } 15270 15271 /* 15272 * Utility routine that checks if `v4srcp' is a valid address on underlying 15273 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15274 * associated with `v4srcp' on success. NOTE: if this is not called from 15275 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15276 * group during or after this lookup. 15277 */ 15278 boolean_t 15279 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15280 { 15281 ipif_t *ipif; 15282 15283 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15284 if (ipif != NULL) { 15285 if (ipifp != NULL) 15286 *ipifp = ipif; 15287 else 15288 ipif_refrele(ipif); 15289 return (B_TRUE); 15290 } 15291 15292 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15293 *v4srcp)); 15294 return (B_FALSE); 15295 } 15296 15297 /* 15298 * Transport protocol call back function for CPU state change. 15299 */ 15300 /* ARGSUSED */ 15301 static int 15302 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15303 { 15304 processorid_t cpu_seqid; 15305 netstack_handle_t nh; 15306 netstack_t *ns; 15307 15308 ASSERT(MUTEX_HELD(&cpu_lock)); 15309 15310 switch (what) { 15311 case CPU_CONFIG: 15312 case CPU_ON: 15313 case CPU_INIT: 15314 case CPU_CPUPART_IN: 15315 cpu_seqid = cpu[id]->cpu_seqid; 15316 netstack_next_init(&nh); 15317 while ((ns = netstack_next(&nh)) != NULL) { 15318 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15319 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15320 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15321 netstack_rele(ns); 15322 } 15323 netstack_next_fini(&nh); 15324 break; 15325 case CPU_UNCONFIG: 15326 case CPU_OFF: 15327 case CPU_CPUPART_OUT: 15328 /* 15329 * Nothing to do. We don't remove the per CPU stats from 15330 * the IP stack even when the CPU goes offline. 15331 */ 15332 break; 15333 default: 15334 break; 15335 } 15336 return (0); 15337 } 15338