1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 707 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 708 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 709 710 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 711 mblk_t *); 712 713 static void conn_drain_init(ip_stack_t *); 714 static void conn_drain_fini(ip_stack_t *); 715 static void conn_drain(conn_t *connp, boolean_t closing); 716 717 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 718 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 725 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 726 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 727 const in6_addr_t *); 728 729 static int ip_squeue_switch(int); 730 731 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 732 static void ip_kstat_fini(netstackid_t, kstat_t *); 733 static int ip_kstat_update(kstat_t *kp, int rw); 734 static void *icmp_kstat_init(netstackid_t); 735 static void icmp_kstat_fini(netstackid_t, kstat_t *); 736 static int icmp_kstat_update(kstat_t *kp, int rw); 737 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 738 static void ip_kstat2_fini(netstackid_t, kstat_t *); 739 740 static void ipobs_init(ip_stack_t *); 741 static void ipobs_fini(ip_stack_t *); 742 743 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 744 745 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 746 747 static long ip_rput_pullups; 748 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 749 750 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 751 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 752 753 int ip_debug; 754 755 /* 756 * Multirouting/CGTP stuff 757 */ 758 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 759 760 /* 761 * IP tunables related declarations. Definitions are in ip_tunables.c 762 */ 763 extern mod_prop_info_t ip_propinfo_tbl[]; 764 extern int ip_propinfo_count; 765 766 /* 767 * Table of IP ioctls encoding the various properties of the ioctl and 768 * indexed based on the last byte of the ioctl command. Occasionally there 769 * is a clash, and there is more than 1 ioctl with the same last byte. 770 * In such a case 1 ioctl is encoded in the ndx table and the remaining 771 * ioctls are encoded in the misc table. An entry in the ndx table is 772 * retrieved by indexing on the last byte of the ioctl command and comparing 773 * the ioctl command with the value in the ndx table. In the event of a 774 * mismatch the misc table is then searched sequentially for the desired 775 * ioctl command. 776 * 777 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 778 */ 779 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 780 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 781 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 791 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 792 MISC_CMD, ip_siocaddrt, NULL }, 793 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 794 MISC_CMD, ip_siocdelrt, NULL }, 795 796 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 797 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 798 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 799 IF_CMD, ip_sioctl_get_addr, NULL }, 800 801 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 802 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 803 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 804 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 805 806 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 807 IPI_PRIV | IPI_WR, 808 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 809 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 810 IPI_MODOK | IPI_GET_CMD, 811 IF_CMD, ip_sioctl_get_flags, NULL }, 812 813 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 814 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 815 816 /* copyin size cannot be coded for SIOCGIFCONF */ 817 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 818 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 819 820 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 821 IF_CMD, ip_sioctl_mtu, NULL }, 822 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 823 IF_CMD, ip_sioctl_get_mtu, NULL }, 824 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 825 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 826 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 827 IF_CMD, ip_sioctl_brdaddr, NULL }, 828 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 829 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 830 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 831 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 832 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 833 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 834 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 835 IF_CMD, ip_sioctl_metric, NULL }, 836 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 837 838 /* See 166-168 below for extended SIOC*XARP ioctls */ 839 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 840 ARP_CMD, ip_sioctl_arp, NULL }, 841 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 842 ARP_CMD, ip_sioctl_arp, NULL }, 843 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 844 ARP_CMD, ip_sioctl_arp, NULL }, 845 846 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 847 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 868 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 869 MISC_CMD, if_unitsel, if_unitsel_restart }, 870 871 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 890 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 891 IPI_PRIV | IPI_WR | IPI_MODOK, 892 IF_CMD, ip_sioctl_sifname, NULL }, 893 894 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 908 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 909 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 910 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 911 IF_CMD, ip_sioctl_get_muxid, NULL }, 912 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 913 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 914 915 /* Both if and lif variants share same func */ 916 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 917 IF_CMD, ip_sioctl_get_lifindex, NULL }, 918 /* Both if and lif variants share same func */ 919 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 920 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 921 922 /* copyin size cannot be coded for SIOCGIFCONF */ 923 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 924 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 925 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 926 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 943 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 944 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 945 ip_sioctl_removeif_restart }, 946 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 947 IPI_GET_CMD | IPI_PRIV | IPI_WR, 948 LIF_CMD, ip_sioctl_addif, NULL }, 949 #define SIOCLIFADDR_NDX 112 950 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 951 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 952 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 953 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 954 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 955 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 956 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 957 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 958 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 959 IPI_PRIV | IPI_WR, 960 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 961 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 962 IPI_GET_CMD | IPI_MODOK, 963 LIF_CMD, ip_sioctl_get_flags, NULL }, 964 965 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 966 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 967 968 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 969 ip_sioctl_get_lifconf, NULL }, 970 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 971 LIF_CMD, ip_sioctl_mtu, NULL }, 972 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 973 LIF_CMD, ip_sioctl_get_mtu, NULL }, 974 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 975 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 976 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 977 LIF_CMD, ip_sioctl_brdaddr, NULL }, 978 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 979 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 980 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 981 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 982 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 983 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 984 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 985 LIF_CMD, ip_sioctl_metric, NULL }, 986 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 987 IPI_PRIV | IPI_WR | IPI_MODOK, 988 LIF_CMD, ip_sioctl_slifname, 989 ip_sioctl_slifname_restart }, 990 991 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 992 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 993 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 994 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 995 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 996 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 997 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 998 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 999 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1000 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1001 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1002 LIF_CMD, ip_sioctl_token, NULL }, 1003 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1004 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1005 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1006 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1007 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1008 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1009 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1010 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1011 1012 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1013 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1014 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1015 LIF_CMD, ip_siocdelndp_v6, NULL }, 1016 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1017 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1018 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1019 LIF_CMD, ip_siocsetndp_v6, NULL }, 1020 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1021 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1022 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1023 MISC_CMD, ip_sioctl_tonlink, NULL }, 1024 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1025 MISC_CMD, ip_sioctl_tmysite, NULL }, 1026 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1029 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1030 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1032 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1033 1034 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1037 LIF_CMD, ip_sioctl_get_binding, NULL }, 1038 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1039 IPI_PRIV | IPI_WR, 1040 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1041 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1042 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1043 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1044 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1045 1046 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1047 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 1051 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 1053 /* These are handled in ip_sioctl_copyin_setup itself */ 1054 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1055 MISC_CMD, NULL, NULL }, 1056 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1057 MISC_CMD, NULL, NULL }, 1058 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1059 1060 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1061 ip_sioctl_get_lifconf, NULL }, 1062 1063 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1064 XARP_CMD, ip_sioctl_arp, NULL }, 1065 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1066 XARP_CMD, ip_sioctl_arp, NULL }, 1067 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 1070 /* SIOCPOPSOCKFS is not handled by IP */ 1071 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1072 1073 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1074 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1075 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1076 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1077 ip_sioctl_slifzone_restart }, 1078 /* 172-174 are SCTP ioctls and not handled by IP */ 1079 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1083 IPI_GET_CMD, LIF_CMD, 1084 ip_sioctl_get_lifusesrc, 0 }, 1085 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1086 IPI_PRIV | IPI_WR, 1087 LIF_CMD, ip_sioctl_slifusesrc, 1088 NULL }, 1089 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1090 ip_sioctl_get_lifsrcof, NULL }, 1091 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1092 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1093 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1094 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1095 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* SIOCSENABLESDP is handled by SDP */ 1101 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1102 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1103 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1104 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1105 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1106 ip_sioctl_ilb_cmd, NULL }, 1107 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1108 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1109 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1110 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1111 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1112 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart } 1113 }; 1114 1115 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1116 1117 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1118 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1119 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1120 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1121 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1122 { ND_GET, 0, 0, 0, NULL, NULL }, 1123 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1124 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1125 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1126 MISC_CMD, mrt_ioctl}, 1127 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1128 MISC_CMD, mrt_ioctl}, 1129 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1130 MISC_CMD, mrt_ioctl} 1131 }; 1132 1133 int ip_misc_ioctl_count = 1134 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1135 1136 int conn_drain_nthreads; /* Number of drainers reqd. */ 1137 /* Settable in /etc/system */ 1138 /* Defined in ip_ire.c */ 1139 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1140 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1141 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1142 1143 static nv_t ire_nv_arr[] = { 1144 { IRE_BROADCAST, "BROADCAST" }, 1145 { IRE_LOCAL, "LOCAL" }, 1146 { IRE_LOOPBACK, "LOOPBACK" }, 1147 { IRE_DEFAULT, "DEFAULT" }, 1148 { IRE_PREFIX, "PREFIX" }, 1149 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1150 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1151 { IRE_IF_CLONE, "IF_CLONE" }, 1152 { IRE_HOST, "HOST" }, 1153 { IRE_MULTICAST, "MULTICAST" }, 1154 { IRE_NOROUTE, "NOROUTE" }, 1155 { 0 } 1156 }; 1157 1158 nv_t *ire_nv_tbl = ire_nv_arr; 1159 1160 /* Simple ICMP IP Header Template */ 1161 static ipha_t icmp_ipha = { 1162 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1163 }; 1164 1165 struct module_info ip_mod_info = { 1166 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1167 IP_MOD_LOWAT 1168 }; 1169 1170 /* 1171 * Duplicate static symbols within a module confuses mdb; so we avoid the 1172 * problem by making the symbols here distinct from those in udp.c. 1173 */ 1174 1175 /* 1176 * Entry points for IP as a device and as a module. 1177 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1178 */ 1179 static struct qinit iprinitv4 = { 1180 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1181 &ip_mod_info 1182 }; 1183 1184 struct qinit iprinitv6 = { 1185 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1186 &ip_mod_info 1187 }; 1188 1189 static struct qinit ipwinit = { 1190 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1191 &ip_mod_info 1192 }; 1193 1194 static struct qinit iplrinit = { 1195 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1196 &ip_mod_info 1197 }; 1198 1199 static struct qinit iplwinit = { 1200 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1201 &ip_mod_info 1202 }; 1203 1204 /* For AF_INET aka /dev/ip */ 1205 struct streamtab ipinfov4 = { 1206 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1207 }; 1208 1209 /* For AF_INET6 aka /dev/ip6 */ 1210 struct streamtab ipinfov6 = { 1211 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1212 }; 1213 1214 #ifdef DEBUG 1215 boolean_t skip_sctp_cksum = B_FALSE; 1216 #endif 1217 1218 /* 1219 * Generate an ICMP fragmentation needed message. 1220 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1221 * constructed by the caller. 1222 */ 1223 void 1224 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1225 { 1226 icmph_t icmph; 1227 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1228 1229 mp = icmp_pkt_err_ok(mp, ira); 1230 if (mp == NULL) 1231 return; 1232 1233 bzero(&icmph, sizeof (icmph_t)); 1234 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1235 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1236 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1237 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1238 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1239 1240 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1241 } 1242 1243 /* 1244 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1245 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1246 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1247 * Likewise, if the ICMP error is misformed (too short, etc), then it 1248 * returns NULL. The caller uses this to determine whether or not to send 1249 * to raw sockets. 1250 * 1251 * All error messages are passed to the matching transport stream. 1252 * 1253 * The following cases are handled by icmp_inbound: 1254 * 1) It needs to send a reply back and possibly delivering it 1255 * to the "interested" upper clients. 1256 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1257 * 3) It needs to change some values in IP only. 1258 * 4) It needs to change some values in IP and upper layers e.g TCP 1259 * by delivering an error to the upper layers. 1260 * 1261 * We handle the above three cases in the context of IPsec in the 1262 * following way : 1263 * 1264 * 1) Send the reply back in the same way as the request came in. 1265 * If it came in encrypted, it goes out encrypted. If it came in 1266 * clear, it goes out in clear. Thus, this will prevent chosen 1267 * plain text attack. 1268 * 2) The client may or may not expect things to come in secure. 1269 * If it comes in secure, the policy constraints are checked 1270 * before delivering it to the upper layers. If it comes in 1271 * clear, ipsec_inbound_accept_clear will decide whether to 1272 * accept this in clear or not. In both the cases, if the returned 1273 * message (IP header + 8 bytes) that caused the icmp message has 1274 * AH/ESP headers, it is sent up to AH/ESP for validation before 1275 * sending up. If there are only 8 bytes of returned message, then 1276 * upper client will not be notified. 1277 * 3) Check with global policy to see whether it matches the constaints. 1278 * But this will be done only if icmp_accept_messages_in_clear is 1279 * zero. 1280 * 4) If we need to change both in IP and ULP, then the decision taken 1281 * while affecting the values in IP and while delivering up to TCP 1282 * should be the same. 1283 * 1284 * There are two cases. 1285 * 1286 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1287 * failed), we will not deliver it to the ULP, even though they 1288 * are *willing* to accept in *clear*. This is fine as our global 1289 * disposition to icmp messages asks us reject the datagram. 1290 * 1291 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1292 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1293 * to deliver it to ULP (policy failed), it can lead to 1294 * consistency problems. The cases known at this time are 1295 * ICMP_DESTINATION_UNREACHABLE messages with following code 1296 * values : 1297 * 1298 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1299 * and Upper layer rejects. Then the communication will 1300 * come to a stop. This is solved by making similar decisions 1301 * at both levels. Currently, when we are unable to deliver 1302 * to the Upper Layer (due to policy failures) while IP has 1303 * adjusted dce_pmtu, the next outbound datagram would 1304 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1305 * will be with the right level of protection. Thus the right 1306 * value will be communicated even if we are not able to 1307 * communicate when we get from the wire initially. But this 1308 * assumes there would be at least one outbound datagram after 1309 * IP has adjusted its dce_pmtu value. To make things 1310 * simpler, we accept in clear after the validation of 1311 * AH/ESP headers. 1312 * 1313 * - Other ICMP ERRORS : We may not be able to deliver it to the 1314 * upper layer depending on the level of protection the upper 1315 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1316 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1317 * should be accepted in clear when the Upper layer expects secure. 1318 * Thus the communication may get aborted by some bad ICMP 1319 * packets. 1320 */ 1321 mblk_t * 1322 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1323 { 1324 icmph_t *icmph; 1325 ipha_t *ipha; /* Outer header */ 1326 int ip_hdr_length; /* Outer header length */ 1327 boolean_t interested; 1328 ipif_t *ipif; 1329 uint32_t ts; 1330 uint32_t *tsp; 1331 timestruc_t now; 1332 ill_t *ill = ira->ira_ill; 1333 ip_stack_t *ipst = ill->ill_ipst; 1334 zoneid_t zoneid = ira->ira_zoneid; 1335 int len_needed; 1336 mblk_t *mp_ret = NULL; 1337 1338 ipha = (ipha_t *)mp->b_rptr; 1339 1340 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1341 1342 ip_hdr_length = ira->ira_ip_hdr_length; 1343 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1344 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1345 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1346 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1347 freemsg(mp); 1348 return (NULL); 1349 } 1350 /* Last chance to get real. */ 1351 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1352 if (ipha == NULL) { 1353 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1354 freemsg(mp); 1355 return (NULL); 1356 } 1357 } 1358 1359 /* The IP header will always be a multiple of four bytes */ 1360 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1361 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1362 icmph->icmph_code)); 1363 1364 /* 1365 * We will set "interested" to "true" if we should pass a copy to 1366 * the transport or if we handle the packet locally. 1367 */ 1368 interested = B_FALSE; 1369 switch (icmph->icmph_type) { 1370 case ICMP_ECHO_REPLY: 1371 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1372 break; 1373 case ICMP_DEST_UNREACHABLE: 1374 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1376 interested = B_TRUE; /* Pass up to transport */ 1377 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1378 break; 1379 case ICMP_SOURCE_QUENCH: 1380 interested = B_TRUE; /* Pass up to transport */ 1381 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1382 break; 1383 case ICMP_REDIRECT: 1384 if (!ipst->ips_ip_ignore_redirect) 1385 interested = B_TRUE; 1386 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1387 break; 1388 case ICMP_ECHO_REQUEST: 1389 /* 1390 * Whether to respond to echo requests that come in as IP 1391 * broadcasts or as IP multicast is subject to debate 1392 * (what isn't?). We aim to please, you pick it. 1393 * Default is do it. 1394 */ 1395 if (ira->ira_flags & IRAF_MULTICAST) { 1396 /* multicast: respond based on tunable */ 1397 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1398 } else if (ira->ira_flags & IRAF_BROADCAST) { 1399 /* broadcast: respond based on tunable */ 1400 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1401 } else { 1402 /* unicast: always respond */ 1403 interested = B_TRUE; 1404 } 1405 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1406 if (!interested) { 1407 /* We never pass these to RAW sockets */ 1408 freemsg(mp); 1409 return (NULL); 1410 } 1411 1412 /* Check db_ref to make sure we can modify the packet. */ 1413 if (mp->b_datap->db_ref > 1) { 1414 mblk_t *mp1; 1415 1416 mp1 = copymsg(mp); 1417 freemsg(mp); 1418 if (!mp1) { 1419 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1420 return (NULL); 1421 } 1422 mp = mp1; 1423 ipha = (ipha_t *)mp->b_rptr; 1424 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1425 } 1426 icmph->icmph_type = ICMP_ECHO_REPLY; 1427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1428 icmp_send_reply_v4(mp, ipha, icmph, ira); 1429 return (NULL); 1430 1431 case ICMP_ROUTER_ADVERTISEMENT: 1432 case ICMP_ROUTER_SOLICITATION: 1433 break; 1434 case ICMP_TIME_EXCEEDED: 1435 interested = B_TRUE; /* Pass up to transport */ 1436 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1437 break; 1438 case ICMP_PARAM_PROBLEM: 1439 interested = B_TRUE; /* Pass up to transport */ 1440 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1441 break; 1442 case ICMP_TIME_STAMP_REQUEST: 1443 /* Response to Time Stamp Requests is local policy. */ 1444 if (ipst->ips_ip_g_resp_to_timestamp) { 1445 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1446 interested = 1447 ipst->ips_ip_g_resp_to_timestamp_bcast; 1448 else 1449 interested = B_TRUE; 1450 } 1451 if (!interested) { 1452 /* We never pass these to RAW sockets */ 1453 freemsg(mp); 1454 return (NULL); 1455 } 1456 1457 /* Make sure we have enough of the packet */ 1458 len_needed = ip_hdr_length + ICMPH_SIZE + 1459 3 * sizeof (uint32_t); 1460 1461 if (mp->b_wptr - mp->b_rptr < len_needed) { 1462 ipha = ip_pullup(mp, len_needed, ira); 1463 if (ipha == NULL) { 1464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1465 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1466 mp, ill); 1467 freemsg(mp); 1468 return (NULL); 1469 } 1470 /* Refresh following the pullup. */ 1471 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1472 } 1473 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1474 /* Check db_ref to make sure we can modify the packet. */ 1475 if (mp->b_datap->db_ref > 1) { 1476 mblk_t *mp1; 1477 1478 mp1 = copymsg(mp); 1479 freemsg(mp); 1480 if (!mp1) { 1481 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1482 return (NULL); 1483 } 1484 mp = mp1; 1485 ipha = (ipha_t *)mp->b_rptr; 1486 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1487 } 1488 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1489 tsp = (uint32_t *)&icmph[1]; 1490 tsp++; /* Skip past 'originate time' */ 1491 /* Compute # of milliseconds since midnight */ 1492 gethrestime(&now); 1493 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1494 now.tv_nsec / (NANOSEC / MILLISEC); 1495 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1496 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1497 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1498 icmp_send_reply_v4(mp, ipha, icmph, ira); 1499 return (NULL); 1500 1501 case ICMP_TIME_STAMP_REPLY: 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1503 break; 1504 case ICMP_INFO_REQUEST: 1505 /* Per RFC 1122 3.2.2.7, ignore this. */ 1506 case ICMP_INFO_REPLY: 1507 break; 1508 case ICMP_ADDRESS_MASK_REQUEST: 1509 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1510 interested = 1511 ipst->ips_ip_respond_to_address_mask_broadcast; 1512 } else { 1513 interested = B_TRUE; 1514 } 1515 if (!interested) { 1516 /* We never pass these to RAW sockets */ 1517 freemsg(mp); 1518 return (NULL); 1519 } 1520 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1521 if (mp->b_wptr - mp->b_rptr < len_needed) { 1522 ipha = ip_pullup(mp, len_needed, ira); 1523 if (ipha == NULL) { 1524 BUMP_MIB(ill->ill_ip_mib, 1525 ipIfStatsInTruncatedPkts); 1526 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1527 ill); 1528 freemsg(mp); 1529 return (NULL); 1530 } 1531 /* Refresh following the pullup. */ 1532 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1533 } 1534 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1535 /* Check db_ref to make sure we can modify the packet. */ 1536 if (mp->b_datap->db_ref > 1) { 1537 mblk_t *mp1; 1538 1539 mp1 = copymsg(mp); 1540 freemsg(mp); 1541 if (!mp1) { 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1543 return (NULL); 1544 } 1545 mp = mp1; 1546 ipha = (ipha_t *)mp->b_rptr; 1547 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1548 } 1549 /* 1550 * Need the ipif with the mask be the same as the source 1551 * address of the mask reply. For unicast we have a specific 1552 * ipif. For multicast/broadcast we only handle onlink 1553 * senders, and use the source address to pick an ipif. 1554 */ 1555 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1556 if (ipif == NULL) { 1557 /* Broadcast or multicast */ 1558 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1559 if (ipif == NULL) { 1560 freemsg(mp); 1561 return (NULL); 1562 } 1563 } 1564 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1565 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1566 ipif_refrele(ipif); 1567 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1568 icmp_send_reply_v4(mp, ipha, icmph, ira); 1569 return (NULL); 1570 1571 case ICMP_ADDRESS_MASK_REPLY: 1572 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1573 break; 1574 default: 1575 interested = B_TRUE; /* Pass up to transport */ 1576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1577 break; 1578 } 1579 /* 1580 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1581 * if there isn't one. 1582 */ 1583 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1584 /* If there is an ICMP client and we want one too, copy it. */ 1585 1586 if (!interested) { 1587 /* Caller will deliver to RAW sockets */ 1588 return (mp); 1589 } 1590 mp_ret = copymsg(mp); 1591 if (mp_ret == NULL) { 1592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1593 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1594 } 1595 } else if (!interested) { 1596 /* Neither we nor raw sockets are interested. Drop packet now */ 1597 freemsg(mp); 1598 return (NULL); 1599 } 1600 1601 /* 1602 * ICMP error or redirect packet. Make sure we have enough of 1603 * the header and that db_ref == 1 since we might end up modifying 1604 * the packet. 1605 */ 1606 if (mp->b_cont != NULL) { 1607 if (ip_pullup(mp, -1, ira) == NULL) { 1608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1609 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1610 mp, ill); 1611 freemsg(mp); 1612 return (mp_ret); 1613 } 1614 } 1615 1616 if (mp->b_datap->db_ref > 1) { 1617 mblk_t *mp1; 1618 1619 mp1 = copymsg(mp); 1620 if (mp1 == NULL) { 1621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1622 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1623 freemsg(mp); 1624 return (mp_ret); 1625 } 1626 freemsg(mp); 1627 mp = mp1; 1628 } 1629 1630 /* 1631 * In case mp has changed, verify the message before any further 1632 * processes. 1633 */ 1634 ipha = (ipha_t *)mp->b_rptr; 1635 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1636 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1637 freemsg(mp); 1638 return (mp_ret); 1639 } 1640 1641 switch (icmph->icmph_type) { 1642 case ICMP_REDIRECT: 1643 icmp_redirect_v4(mp, ipha, icmph, ira); 1644 break; 1645 case ICMP_DEST_UNREACHABLE: 1646 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1647 /* Update DCE and adjust MTU is icmp header if needed */ 1648 icmp_inbound_too_big_v4(icmph, ira); 1649 } 1650 /* FALLTHRU */ 1651 default: 1652 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1653 break; 1654 } 1655 return (mp_ret); 1656 } 1657 1658 /* 1659 * Send an ICMP echo, timestamp or address mask reply. 1660 * The caller has already updated the payload part of the packet. 1661 * We handle the ICMP checksum, IP source address selection and feed 1662 * the packet into ip_output_simple. 1663 */ 1664 static void 1665 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1666 ip_recv_attr_t *ira) 1667 { 1668 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1669 ill_t *ill = ira->ira_ill; 1670 ip_stack_t *ipst = ill->ill_ipst; 1671 ip_xmit_attr_t ixas; 1672 1673 /* Send out an ICMP packet */ 1674 icmph->icmph_checksum = 0; 1675 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1676 /* Reset time to live. */ 1677 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1678 { 1679 /* Swap source and destination addresses */ 1680 ipaddr_t tmp; 1681 1682 tmp = ipha->ipha_src; 1683 ipha->ipha_src = ipha->ipha_dst; 1684 ipha->ipha_dst = tmp; 1685 } 1686 ipha->ipha_ident = 0; 1687 if (!IS_SIMPLE_IPH(ipha)) 1688 icmp_options_update(ipha); 1689 1690 bzero(&ixas, sizeof (ixas)); 1691 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1692 ixas.ixa_zoneid = ira->ira_zoneid; 1693 ixas.ixa_cred = kcred; 1694 ixas.ixa_cpid = NOPID; 1695 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1696 ixas.ixa_ifindex = 0; 1697 ixas.ixa_ipst = ipst; 1698 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1699 1700 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1701 /* 1702 * This packet should go out the same way as it 1703 * came in i.e in clear, independent of the IPsec policy 1704 * for transmitting packets. 1705 */ 1706 ixas.ixa_flags |= IXAF_NO_IPSEC; 1707 } else { 1708 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1709 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1710 /* Note: mp already consumed and ip_drop_packet done */ 1711 return; 1712 } 1713 } 1714 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1715 /* 1716 * Not one or our addresses (IRE_LOCALs), thus we let 1717 * ip_output_simple pick the source. 1718 */ 1719 ipha->ipha_src = INADDR_ANY; 1720 ixas.ixa_flags |= IXAF_SET_SOURCE; 1721 } 1722 /* Should we send with DF and use dce_pmtu? */ 1723 if (ipst->ips_ipv4_icmp_return_pmtu) { 1724 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1725 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1726 } 1727 1728 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1729 1730 (void) ip_output_simple(mp, &ixas); 1731 ixa_cleanup(&ixas); 1732 } 1733 1734 /* 1735 * Verify the ICMP messages for either for ICMP error or redirect packet. 1736 * The caller should have fully pulled up the message. If it's a redirect 1737 * packet, only basic checks on IP header will be done; otherwise, verify 1738 * the packet by looking at the included ULP header. 1739 * 1740 * Called before icmp_inbound_error_fanout_v4 is called. 1741 */ 1742 static boolean_t 1743 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1744 { 1745 ill_t *ill = ira->ira_ill; 1746 int hdr_length; 1747 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1748 conn_t *connp; 1749 ipha_t *ipha; /* Inner IP header */ 1750 1751 ipha = (ipha_t *)&icmph[1]; 1752 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1753 goto truncated; 1754 1755 hdr_length = IPH_HDR_LENGTH(ipha); 1756 1757 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1758 goto discard_pkt; 1759 1760 if (hdr_length < sizeof (ipha_t)) 1761 goto truncated; 1762 1763 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1764 goto truncated; 1765 1766 /* 1767 * Stop here for ICMP_REDIRECT. 1768 */ 1769 if (icmph->icmph_type == ICMP_REDIRECT) 1770 return (B_TRUE); 1771 1772 /* 1773 * ICMP errors only. 1774 */ 1775 switch (ipha->ipha_protocol) { 1776 case IPPROTO_UDP: 1777 /* 1778 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1779 * transport header. 1780 */ 1781 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1782 mp->b_wptr) 1783 goto truncated; 1784 break; 1785 case IPPROTO_TCP: { 1786 tcpha_t *tcpha; 1787 1788 /* 1789 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1790 * transport header. 1791 */ 1792 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1793 mp->b_wptr) 1794 goto truncated; 1795 1796 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1797 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1798 ipst); 1799 if (connp == NULL) 1800 goto discard_pkt; 1801 1802 if ((connp->conn_verifyicmp != NULL) && 1803 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1804 CONN_DEC_REF(connp); 1805 goto discard_pkt; 1806 } 1807 CONN_DEC_REF(connp); 1808 break; 1809 } 1810 case IPPROTO_SCTP: 1811 /* 1812 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1813 * transport header. 1814 */ 1815 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1816 mp->b_wptr) 1817 goto truncated; 1818 break; 1819 case IPPROTO_ESP: 1820 case IPPROTO_AH: 1821 break; 1822 case IPPROTO_ENCAP: 1823 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1824 mp->b_wptr) 1825 goto truncated; 1826 break; 1827 default: 1828 break; 1829 } 1830 1831 return (B_TRUE); 1832 1833 discard_pkt: 1834 /* Bogus ICMP error. */ 1835 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1836 return (B_FALSE); 1837 1838 truncated: 1839 /* We pulled up everthing already. Must be truncated */ 1840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1841 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1842 return (B_FALSE); 1843 } 1844 1845 /* Table from RFC 1191 */ 1846 static int icmp_frag_size_table[] = 1847 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1848 1849 /* 1850 * Process received ICMP Packet too big. 1851 * Just handles the DCE create/update, including using the above table of 1852 * PMTU guesses. The caller is responsible for validating the packet before 1853 * passing it in and also to fanout the ICMP error to any matching transport 1854 * conns. Assumes the message has been fully pulled up and verified. 1855 * 1856 * Before getting here, the caller has called icmp_inbound_verify_v4() 1857 * that should have verified with ULP to prevent undoing the changes we're 1858 * going to make to DCE. For example, TCP might have verified that the packet 1859 * which generated error is in the send window. 1860 * 1861 * In some cases modified this MTU in the ICMP header packet; the caller 1862 * should pass to the matching ULP after this returns. 1863 */ 1864 static void 1865 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1866 { 1867 dce_t *dce; 1868 int old_mtu; 1869 int mtu, orig_mtu; 1870 ipaddr_t dst; 1871 boolean_t disable_pmtud; 1872 ill_t *ill = ira->ira_ill; 1873 ip_stack_t *ipst = ill->ill_ipst; 1874 uint_t hdr_length; 1875 ipha_t *ipha; 1876 1877 /* Caller already pulled up everything. */ 1878 ipha = (ipha_t *)&icmph[1]; 1879 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1880 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1881 ASSERT(ill != NULL); 1882 1883 hdr_length = IPH_HDR_LENGTH(ipha); 1884 1885 /* 1886 * We handle path MTU for source routed packets since the DCE 1887 * is looked up using the final destination. 1888 */ 1889 dst = ip_get_dst(ipha); 1890 1891 dce = dce_lookup_and_add_v4(dst, ipst); 1892 if (dce == NULL) { 1893 /* Couldn't add a unique one - ENOMEM */ 1894 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1895 ntohl(dst))); 1896 return; 1897 } 1898 1899 /* Check for MTU discovery advice as described in RFC 1191 */ 1900 mtu = ntohs(icmph->icmph_du_mtu); 1901 orig_mtu = mtu; 1902 disable_pmtud = B_FALSE; 1903 1904 mutex_enter(&dce->dce_lock); 1905 if (dce->dce_flags & DCEF_PMTU) 1906 old_mtu = dce->dce_pmtu; 1907 else 1908 old_mtu = ill->ill_mtu; 1909 1910 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1911 uint32_t length; 1912 int i; 1913 1914 /* 1915 * Use the table from RFC 1191 to figure out 1916 * the next "plateau" based on the length in 1917 * the original IP packet. 1918 */ 1919 length = ntohs(ipha->ipha_length); 1920 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1921 uint32_t, length); 1922 if (old_mtu <= length && 1923 old_mtu >= length - hdr_length) { 1924 /* 1925 * Handle broken BSD 4.2 systems that 1926 * return the wrong ipha_length in ICMP 1927 * errors. 1928 */ 1929 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1930 length, old_mtu)); 1931 length -= hdr_length; 1932 } 1933 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1934 if (length > icmp_frag_size_table[i]) 1935 break; 1936 } 1937 if (i == A_CNT(icmp_frag_size_table)) { 1938 /* Smaller than IP_MIN_MTU! */ 1939 ip1dbg(("Too big for packet size %d\n", 1940 length)); 1941 disable_pmtud = B_TRUE; 1942 mtu = ipst->ips_ip_pmtu_min; 1943 } else { 1944 mtu = icmp_frag_size_table[i]; 1945 ip1dbg(("Calculated mtu %d, packet size %d, " 1946 "before %d\n", mtu, length, old_mtu)); 1947 if (mtu < ipst->ips_ip_pmtu_min) { 1948 mtu = ipst->ips_ip_pmtu_min; 1949 disable_pmtud = B_TRUE; 1950 } 1951 } 1952 } 1953 if (disable_pmtud) 1954 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1955 else 1956 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1957 1958 dce->dce_pmtu = MIN(old_mtu, mtu); 1959 /* Prepare to send the new max frag size for the ULP. */ 1960 icmph->icmph_du_zero = 0; 1961 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1962 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1963 dce, int, orig_mtu, int, mtu); 1964 1965 /* We now have a PMTU for sure */ 1966 dce->dce_flags |= DCEF_PMTU; 1967 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1968 mutex_exit(&dce->dce_lock); 1969 /* 1970 * After dropping the lock the new value is visible to everyone. 1971 * Then we bump the generation number so any cached values reinspect 1972 * the dce_t. 1973 */ 1974 dce_increment_generation(dce); 1975 dce_refrele(dce); 1976 } 1977 1978 /* 1979 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1980 * calls this function. 1981 */ 1982 static mblk_t * 1983 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1984 { 1985 int length; 1986 1987 ASSERT(mp->b_datap->db_type == M_DATA); 1988 1989 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1990 ASSERT(mp->b_cont == NULL); 1991 1992 /* 1993 * The length that we want to overlay is the inner header 1994 * and what follows it. 1995 */ 1996 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1997 1998 /* 1999 * Overlay the inner header and whatever follows it over the 2000 * outer header. 2001 */ 2002 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2003 2004 /* Adjust for what we removed */ 2005 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2006 return (mp); 2007 } 2008 2009 /* 2010 * Try to pass the ICMP message upstream in case the ULP cares. 2011 * 2012 * If the packet that caused the ICMP error is secure, we send 2013 * it to AH/ESP to make sure that the attached packet has a 2014 * valid association. ipha in the code below points to the 2015 * IP header of the packet that caused the error. 2016 * 2017 * For IPsec cases, we let the next-layer-up (which has access to 2018 * cached policy on the conn_t, or can query the SPD directly) 2019 * subtract out any IPsec overhead if they must. We therefore make no 2020 * adjustments here for IPsec overhead. 2021 * 2022 * IFN could have been generated locally or by some router. 2023 * 2024 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2025 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2026 * This happens because IP adjusted its value of MTU on an 2027 * earlier IFN message and could not tell the upper layer, 2028 * the new adjusted value of MTU e.g. Packet was encrypted 2029 * or there was not enough information to fanout to upper 2030 * layers. Thus on the next outbound datagram, ire_send_wire 2031 * generates the IFN, where IPsec processing has *not* been 2032 * done. 2033 * 2034 * Note that we retain ixa_fragsize across IPsec thus once 2035 * we have picking ixa_fragsize and entered ipsec_out_process we do 2036 * no change the fragsize even if the path MTU changes before 2037 * we reach ip_output_post_ipsec. 2038 * 2039 * In the local case, IRAF_LOOPBACK will be set indicating 2040 * that IFN was generated locally. 2041 * 2042 * ROUTER : IFN could be secure or non-secure. 2043 * 2044 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2045 * packet in error has AH/ESP headers to validate the AH/ESP 2046 * headers. AH/ESP will verify whether there is a valid SA or 2047 * not and send it back. We will fanout again if we have more 2048 * data in the packet. 2049 * 2050 * If the packet in error does not have AH/ESP, we handle it 2051 * like any other case. 2052 * 2053 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2054 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2055 * valid SA or not and send it back. We will fanout again if 2056 * we have more data in the packet. 2057 * 2058 * If the packet in error does not have AH/ESP, we handle it 2059 * like any other case. 2060 * 2061 * The caller must have called icmp_inbound_verify_v4. 2062 */ 2063 static void 2064 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2065 { 2066 uint16_t *up; /* Pointer to ports in ULP header */ 2067 uint32_t ports; /* reversed ports for fanout */ 2068 ipha_t ripha; /* With reversed addresses */ 2069 ipha_t *ipha; /* Inner IP header */ 2070 uint_t hdr_length; /* Inner IP header length */ 2071 tcpha_t *tcpha; 2072 conn_t *connp; 2073 ill_t *ill = ira->ira_ill; 2074 ip_stack_t *ipst = ill->ill_ipst; 2075 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2076 ill_t *rill = ira->ira_rill; 2077 2078 /* Caller already pulled up everything. */ 2079 ipha = (ipha_t *)&icmph[1]; 2080 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2081 ASSERT(mp->b_cont == NULL); 2082 2083 hdr_length = IPH_HDR_LENGTH(ipha); 2084 ira->ira_protocol = ipha->ipha_protocol; 2085 2086 /* 2087 * We need a separate IP header with the source and destination 2088 * addresses reversed to do fanout/classification because the ipha in 2089 * the ICMP error is in the form we sent it out. 2090 */ 2091 ripha.ipha_src = ipha->ipha_dst; 2092 ripha.ipha_dst = ipha->ipha_src; 2093 ripha.ipha_protocol = ipha->ipha_protocol; 2094 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2095 2096 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2097 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2098 ntohl(ipha->ipha_dst), 2099 icmph->icmph_type, icmph->icmph_code)); 2100 2101 switch (ipha->ipha_protocol) { 2102 case IPPROTO_UDP: 2103 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2104 2105 /* Attempt to find a client stream based on port. */ 2106 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2107 ntohs(up[0]), ntohs(up[1]))); 2108 2109 /* Note that we send error to all matches. */ 2110 ira->ira_flags |= IRAF_ICMP_ERROR; 2111 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2112 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2113 return; 2114 2115 case IPPROTO_TCP: 2116 /* 2117 * Find a TCP client stream for this packet. 2118 * Note that we do a reverse lookup since the header is 2119 * in the form we sent it out. 2120 */ 2121 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2122 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2123 ipst); 2124 if (connp == NULL) 2125 goto discard_pkt; 2126 2127 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2128 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2129 mp = ipsec_check_inbound_policy(mp, connp, 2130 ipha, NULL, ira); 2131 if (mp == NULL) { 2132 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2133 /* Note that mp is NULL */ 2134 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2135 CONN_DEC_REF(connp); 2136 return; 2137 } 2138 } 2139 2140 ira->ira_flags |= IRAF_ICMP_ERROR; 2141 ira->ira_ill = ira->ira_rill = NULL; 2142 if (IPCL_IS_TCP(connp)) { 2143 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2144 connp->conn_recvicmp, connp, ira, SQ_FILL, 2145 SQTAG_TCP_INPUT_ICMP_ERR); 2146 } else { 2147 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2148 (connp->conn_recv)(connp, mp, NULL, ira); 2149 CONN_DEC_REF(connp); 2150 } 2151 ira->ira_ill = ill; 2152 ira->ira_rill = rill; 2153 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2154 return; 2155 2156 case IPPROTO_SCTP: 2157 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2158 /* Find a SCTP client stream for this packet. */ 2159 ((uint16_t *)&ports)[0] = up[1]; 2160 ((uint16_t *)&ports)[1] = up[0]; 2161 2162 ira->ira_flags |= IRAF_ICMP_ERROR; 2163 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2164 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2165 return; 2166 2167 case IPPROTO_ESP: 2168 case IPPROTO_AH: 2169 if (!ipsec_loaded(ipss)) { 2170 ip_proto_not_sup(mp, ira); 2171 return; 2172 } 2173 2174 if (ipha->ipha_protocol == IPPROTO_ESP) 2175 mp = ipsecesp_icmp_error(mp, ira); 2176 else 2177 mp = ipsecah_icmp_error(mp, ira); 2178 if (mp == NULL) 2179 return; 2180 2181 /* Just in case ipsec didn't preserve the NULL b_cont */ 2182 if (mp->b_cont != NULL) { 2183 if (!pullupmsg(mp, -1)) 2184 goto discard_pkt; 2185 } 2186 2187 /* 2188 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2189 * correct, but we don't use them any more here. 2190 * 2191 * If succesful, the mp has been modified to not include 2192 * the ESP/AH header so we can fanout to the ULP's icmp 2193 * error handler. 2194 */ 2195 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2196 goto truncated; 2197 2198 /* Verify the modified message before any further processes. */ 2199 ipha = (ipha_t *)mp->b_rptr; 2200 hdr_length = IPH_HDR_LENGTH(ipha); 2201 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2202 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2203 freemsg(mp); 2204 return; 2205 } 2206 2207 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2208 return; 2209 2210 case IPPROTO_ENCAP: { 2211 /* Look for self-encapsulated packets that caused an error */ 2212 ipha_t *in_ipha; 2213 2214 /* 2215 * Caller has verified that length has to be 2216 * at least the size of IP header. 2217 */ 2218 ASSERT(hdr_length >= sizeof (ipha_t)); 2219 /* 2220 * Check the sanity of the inner IP header like 2221 * we did for the outer header. 2222 */ 2223 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2224 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2225 goto discard_pkt; 2226 } 2227 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2228 goto discard_pkt; 2229 } 2230 /* Check for Self-encapsulated tunnels */ 2231 if (in_ipha->ipha_src == ipha->ipha_src && 2232 in_ipha->ipha_dst == ipha->ipha_dst) { 2233 2234 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2235 in_ipha); 2236 if (mp == NULL) 2237 goto discard_pkt; 2238 2239 /* 2240 * Just in case self_encap didn't preserve the NULL 2241 * b_cont 2242 */ 2243 if (mp->b_cont != NULL) { 2244 if (!pullupmsg(mp, -1)) 2245 goto discard_pkt; 2246 } 2247 /* 2248 * Note that ira_pktlen and ira_ip_hdr_length are no 2249 * longer correct, but we don't use them any more here. 2250 */ 2251 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2252 goto truncated; 2253 2254 /* 2255 * Verify the modified message before any further 2256 * processes. 2257 */ 2258 ipha = (ipha_t *)mp->b_rptr; 2259 hdr_length = IPH_HDR_LENGTH(ipha); 2260 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2261 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2262 freemsg(mp); 2263 return; 2264 } 2265 2266 /* 2267 * The packet in error is self-encapsualted. 2268 * And we are finding it further encapsulated 2269 * which we could not have possibly generated. 2270 */ 2271 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2272 goto discard_pkt; 2273 } 2274 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2275 return; 2276 } 2277 /* No self-encapsulated */ 2278 /* FALLTHRU */ 2279 } 2280 case IPPROTO_IPV6: 2281 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2282 &ripha.ipha_dst, ipst)) != NULL) { 2283 ira->ira_flags |= IRAF_ICMP_ERROR; 2284 connp->conn_recvicmp(connp, mp, NULL, ira); 2285 CONN_DEC_REF(connp); 2286 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2287 return; 2288 } 2289 /* 2290 * No IP tunnel is interested, fallthrough and see 2291 * if a raw socket will want it. 2292 */ 2293 /* FALLTHRU */ 2294 default: 2295 ira->ira_flags |= IRAF_ICMP_ERROR; 2296 ip_fanout_proto_v4(mp, &ripha, ira); 2297 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2298 return; 2299 } 2300 /* NOTREACHED */ 2301 discard_pkt: 2302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2303 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2304 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2305 freemsg(mp); 2306 return; 2307 2308 truncated: 2309 /* We pulled up everthing already. Must be truncated */ 2310 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2311 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2312 freemsg(mp); 2313 } 2314 2315 /* 2316 * Common IP options parser. 2317 * 2318 * Setup routine: fill in *optp with options-parsing state, then 2319 * tail-call ipoptp_next to return the first option. 2320 */ 2321 uint8_t 2322 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2323 { 2324 uint32_t totallen; /* total length of all options */ 2325 2326 totallen = ipha->ipha_version_and_hdr_length - 2327 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2328 totallen <<= 2; 2329 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2330 optp->ipoptp_end = optp->ipoptp_next + totallen; 2331 optp->ipoptp_flags = 0; 2332 return (ipoptp_next(optp)); 2333 } 2334 2335 /* Like above but without an ipha_t */ 2336 uint8_t 2337 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2338 { 2339 optp->ipoptp_next = opt; 2340 optp->ipoptp_end = optp->ipoptp_next + totallen; 2341 optp->ipoptp_flags = 0; 2342 return (ipoptp_next(optp)); 2343 } 2344 2345 /* 2346 * Common IP options parser: extract next option. 2347 */ 2348 uint8_t 2349 ipoptp_next(ipoptp_t *optp) 2350 { 2351 uint8_t *end = optp->ipoptp_end; 2352 uint8_t *cur = optp->ipoptp_next; 2353 uint8_t opt, len, pointer; 2354 2355 /* 2356 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2357 * has been corrupted. 2358 */ 2359 ASSERT(cur <= end); 2360 2361 if (cur == end) 2362 return (IPOPT_EOL); 2363 2364 opt = cur[IPOPT_OPTVAL]; 2365 2366 /* 2367 * Skip any NOP options. 2368 */ 2369 while (opt == IPOPT_NOP) { 2370 cur++; 2371 if (cur == end) 2372 return (IPOPT_EOL); 2373 opt = cur[IPOPT_OPTVAL]; 2374 } 2375 2376 if (opt == IPOPT_EOL) 2377 return (IPOPT_EOL); 2378 2379 /* 2380 * Option requiring a length. 2381 */ 2382 if ((cur + 1) >= end) { 2383 optp->ipoptp_flags |= IPOPTP_ERROR; 2384 return (IPOPT_EOL); 2385 } 2386 len = cur[IPOPT_OLEN]; 2387 if (len < 2) { 2388 optp->ipoptp_flags |= IPOPTP_ERROR; 2389 return (IPOPT_EOL); 2390 } 2391 optp->ipoptp_cur = cur; 2392 optp->ipoptp_len = len; 2393 optp->ipoptp_next = cur + len; 2394 if (cur + len > end) { 2395 optp->ipoptp_flags |= IPOPTP_ERROR; 2396 return (IPOPT_EOL); 2397 } 2398 2399 /* 2400 * For the options which require a pointer field, make sure 2401 * its there, and make sure it points to either something 2402 * inside this option, or the end of the option. 2403 */ 2404 switch (opt) { 2405 case IPOPT_RR: 2406 case IPOPT_TS: 2407 case IPOPT_LSRR: 2408 case IPOPT_SSRR: 2409 if (len <= IPOPT_OFFSET) { 2410 optp->ipoptp_flags |= IPOPTP_ERROR; 2411 return (opt); 2412 } 2413 pointer = cur[IPOPT_OFFSET]; 2414 if (pointer - 1 > len) { 2415 optp->ipoptp_flags |= IPOPTP_ERROR; 2416 return (opt); 2417 } 2418 break; 2419 } 2420 2421 /* 2422 * Sanity check the pointer field based on the type of the 2423 * option. 2424 */ 2425 switch (opt) { 2426 case IPOPT_RR: 2427 case IPOPT_SSRR: 2428 case IPOPT_LSRR: 2429 if (pointer < IPOPT_MINOFF_SR) 2430 optp->ipoptp_flags |= IPOPTP_ERROR; 2431 break; 2432 case IPOPT_TS: 2433 if (pointer < IPOPT_MINOFF_IT) 2434 optp->ipoptp_flags |= IPOPTP_ERROR; 2435 /* 2436 * Note that the Internet Timestamp option also 2437 * contains two four bit fields (the Overflow field, 2438 * and the Flag field), which follow the pointer 2439 * field. We don't need to check that these fields 2440 * fall within the length of the option because this 2441 * was implicitely done above. We've checked that the 2442 * pointer value is at least IPOPT_MINOFF_IT, and that 2443 * it falls within the option. Since IPOPT_MINOFF_IT > 2444 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2445 */ 2446 ASSERT(len > IPOPT_POS_OV_FLG); 2447 break; 2448 } 2449 2450 return (opt); 2451 } 2452 2453 /* 2454 * Use the outgoing IP header to create an IP_OPTIONS option the way 2455 * it was passed down from the application. 2456 * 2457 * This is compatible with BSD in that it returns 2458 * the reverse source route with the final destination 2459 * as the last entry. The first 4 bytes of the option 2460 * will contain the final destination. 2461 */ 2462 int 2463 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2464 { 2465 ipoptp_t opts; 2466 uchar_t *opt; 2467 uint8_t optval; 2468 uint8_t optlen; 2469 uint32_t len = 0; 2470 uchar_t *buf1 = buf; 2471 uint32_t totallen; 2472 ipaddr_t dst; 2473 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2474 2475 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2476 return (0); 2477 2478 totallen = ipp->ipp_ipv4_options_len; 2479 if (totallen & 0x3) 2480 return (0); 2481 2482 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2483 len += IP_ADDR_LEN; 2484 bzero(buf1, IP_ADDR_LEN); 2485 2486 dst = connp->conn_faddr_v4; 2487 2488 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2489 optval != IPOPT_EOL; 2490 optval = ipoptp_next(&opts)) { 2491 int off; 2492 2493 opt = opts.ipoptp_cur; 2494 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2495 break; 2496 } 2497 optlen = opts.ipoptp_len; 2498 2499 switch (optval) { 2500 case IPOPT_SSRR: 2501 case IPOPT_LSRR: 2502 2503 /* 2504 * Insert destination as the first entry in the source 2505 * route and move down the entries on step. 2506 * The last entry gets placed at buf1. 2507 */ 2508 buf[IPOPT_OPTVAL] = optval; 2509 buf[IPOPT_OLEN] = optlen; 2510 buf[IPOPT_OFFSET] = optlen; 2511 2512 off = optlen - IP_ADDR_LEN; 2513 if (off < 0) { 2514 /* No entries in source route */ 2515 break; 2516 } 2517 /* Last entry in source route if not already set */ 2518 if (dst == INADDR_ANY) 2519 bcopy(opt + off, buf1, IP_ADDR_LEN); 2520 off -= IP_ADDR_LEN; 2521 2522 while (off > 0) { 2523 bcopy(opt + off, 2524 buf + off + IP_ADDR_LEN, 2525 IP_ADDR_LEN); 2526 off -= IP_ADDR_LEN; 2527 } 2528 /* ipha_dst into first slot */ 2529 bcopy(&dst, buf + off + IP_ADDR_LEN, 2530 IP_ADDR_LEN); 2531 buf += optlen; 2532 len += optlen; 2533 break; 2534 2535 default: 2536 bcopy(opt, buf, optlen); 2537 buf += optlen; 2538 len += optlen; 2539 break; 2540 } 2541 } 2542 done: 2543 /* Pad the resulting options */ 2544 while (len & 0x3) { 2545 *buf++ = IPOPT_EOL; 2546 len++; 2547 } 2548 return (len); 2549 } 2550 2551 /* 2552 * Update any record route or timestamp options to include this host. 2553 * Reverse any source route option. 2554 * This routine assumes that the options are well formed i.e. that they 2555 * have already been checked. 2556 */ 2557 static void 2558 icmp_options_update(ipha_t *ipha) 2559 { 2560 ipoptp_t opts; 2561 uchar_t *opt; 2562 uint8_t optval; 2563 ipaddr_t src; /* Our local address */ 2564 ipaddr_t dst; 2565 2566 ip2dbg(("icmp_options_update\n")); 2567 src = ipha->ipha_src; 2568 dst = ipha->ipha_dst; 2569 2570 for (optval = ipoptp_first(&opts, ipha); 2571 optval != IPOPT_EOL; 2572 optval = ipoptp_next(&opts)) { 2573 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2574 opt = opts.ipoptp_cur; 2575 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2576 optval, opts.ipoptp_len)); 2577 switch (optval) { 2578 int off1, off2; 2579 case IPOPT_SSRR: 2580 case IPOPT_LSRR: 2581 /* 2582 * Reverse the source route. The first entry 2583 * should be the next to last one in the current 2584 * source route (the last entry is our address). 2585 * The last entry should be the final destination. 2586 */ 2587 off1 = IPOPT_MINOFF_SR - 1; 2588 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2589 if (off2 < 0) { 2590 /* No entries in source route */ 2591 ip1dbg(( 2592 "icmp_options_update: bad src route\n")); 2593 break; 2594 } 2595 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2596 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2597 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2598 off2 -= IP_ADDR_LEN; 2599 2600 while (off1 < off2) { 2601 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2602 bcopy((char *)opt + off2, (char *)opt + off1, 2603 IP_ADDR_LEN); 2604 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2605 off1 += IP_ADDR_LEN; 2606 off2 -= IP_ADDR_LEN; 2607 } 2608 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2609 break; 2610 } 2611 } 2612 } 2613 2614 /* 2615 * Process received ICMP Redirect messages. 2616 * Assumes the caller has verified that the headers are in the pulled up mblk. 2617 * Consumes mp. 2618 */ 2619 static void 2620 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2621 { 2622 ire_t *ire, *nire; 2623 ire_t *prev_ire; 2624 ipaddr_t src, dst, gateway; 2625 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2626 ipha_t *inner_ipha; /* Inner IP header */ 2627 2628 /* Caller already pulled up everything. */ 2629 inner_ipha = (ipha_t *)&icmph[1]; 2630 src = ipha->ipha_src; 2631 dst = inner_ipha->ipha_dst; 2632 gateway = icmph->icmph_rd_gateway; 2633 /* Make sure the new gateway is reachable somehow. */ 2634 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2635 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2636 /* 2637 * Make sure we had a route for the dest in question and that 2638 * that route was pointing to the old gateway (the source of the 2639 * redirect packet.) 2640 * We do longest match and then compare ire_gateway_addr below. 2641 */ 2642 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2643 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2644 /* 2645 * Check that 2646 * the redirect was not from ourselves 2647 * the new gateway and the old gateway are directly reachable 2648 */ 2649 if (prev_ire == NULL || ire == NULL || 2650 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2651 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2652 !(ire->ire_type & IRE_IF_ALL) || 2653 prev_ire->ire_gateway_addr != src) { 2654 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2655 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2656 freemsg(mp); 2657 if (ire != NULL) 2658 ire_refrele(ire); 2659 if (prev_ire != NULL) 2660 ire_refrele(prev_ire); 2661 return; 2662 } 2663 2664 ire_refrele(prev_ire); 2665 ire_refrele(ire); 2666 2667 /* 2668 * TODO: more precise handling for cases 0, 2, 3, the latter two 2669 * require TOS routing 2670 */ 2671 switch (icmph->icmph_code) { 2672 case 0: 2673 case 1: 2674 /* TODO: TOS specificity for cases 2 and 3 */ 2675 case 2: 2676 case 3: 2677 break; 2678 default: 2679 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2680 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2681 freemsg(mp); 2682 return; 2683 } 2684 /* 2685 * Create a Route Association. This will allow us to remember that 2686 * someone we believe told us to use the particular gateway. 2687 */ 2688 ire = ire_create( 2689 (uchar_t *)&dst, /* dest addr */ 2690 (uchar_t *)&ip_g_all_ones, /* mask */ 2691 (uchar_t *)&gateway, /* gateway addr */ 2692 IRE_HOST, 2693 NULL, /* ill */ 2694 ALL_ZONES, 2695 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2696 NULL, /* tsol_gc_t */ 2697 ipst); 2698 2699 if (ire == NULL) { 2700 freemsg(mp); 2701 return; 2702 } 2703 nire = ire_add(ire); 2704 /* Check if it was a duplicate entry */ 2705 if (nire != NULL && nire != ire) { 2706 ASSERT(nire->ire_identical_ref > 1); 2707 ire_delete(nire); 2708 ire_refrele(nire); 2709 nire = NULL; 2710 } 2711 ire = nire; 2712 if (ire != NULL) { 2713 ire_refrele(ire); /* Held in ire_add */ 2714 2715 /* tell routing sockets that we received a redirect */ 2716 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2717 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2718 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2719 } 2720 2721 /* 2722 * Delete any existing IRE_HOST type redirect ires for this destination. 2723 * This together with the added IRE has the effect of 2724 * modifying an existing redirect. 2725 */ 2726 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2727 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2728 if (prev_ire != NULL) { 2729 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2730 ire_delete(prev_ire); 2731 ire_refrele(prev_ire); 2732 } 2733 2734 freemsg(mp); 2735 } 2736 2737 /* 2738 * Generate an ICMP parameter problem message. 2739 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2740 * constructed by the caller. 2741 */ 2742 static void 2743 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2744 { 2745 icmph_t icmph; 2746 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2747 2748 mp = icmp_pkt_err_ok(mp, ira); 2749 if (mp == NULL) 2750 return; 2751 2752 bzero(&icmph, sizeof (icmph_t)); 2753 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2754 icmph.icmph_pp_ptr = ptr; 2755 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2756 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2757 } 2758 2759 /* 2760 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2761 * the ICMP header pointed to by "stuff". (May be called as writer.) 2762 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2763 * an icmp error packet can be sent. 2764 * Assigns an appropriate source address to the packet. If ipha_dst is 2765 * one of our addresses use it for source. Otherwise let ip_output_simple 2766 * pick the source address. 2767 */ 2768 static void 2769 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2770 { 2771 ipaddr_t dst; 2772 icmph_t *icmph; 2773 ipha_t *ipha; 2774 uint_t len_needed; 2775 size_t msg_len; 2776 mblk_t *mp1; 2777 ipaddr_t src; 2778 ire_t *ire; 2779 ip_xmit_attr_t ixas; 2780 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2781 2782 ipha = (ipha_t *)mp->b_rptr; 2783 2784 bzero(&ixas, sizeof (ixas)); 2785 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2786 ixas.ixa_zoneid = ira->ira_zoneid; 2787 ixas.ixa_ifindex = 0; 2788 ixas.ixa_ipst = ipst; 2789 ixas.ixa_cred = kcred; 2790 ixas.ixa_cpid = NOPID; 2791 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2792 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2793 2794 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2795 /* 2796 * Apply IPsec based on how IPsec was applied to 2797 * the packet that had the error. 2798 * 2799 * If it was an outbound packet that caused the ICMP 2800 * error, then the caller will have setup the IRA 2801 * appropriately. 2802 */ 2803 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2804 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2805 /* Note: mp already consumed and ip_drop_packet done */ 2806 return; 2807 } 2808 } else { 2809 /* 2810 * This is in clear. The icmp message we are building 2811 * here should go out in clear, independent of our policy. 2812 */ 2813 ixas.ixa_flags |= IXAF_NO_IPSEC; 2814 } 2815 2816 /* Remember our eventual destination */ 2817 dst = ipha->ipha_src; 2818 2819 /* 2820 * If the packet was for one of our unicast addresses, make 2821 * sure we respond with that as the source. Otherwise 2822 * have ip_output_simple pick the source address. 2823 */ 2824 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2825 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2826 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2827 if (ire != NULL) { 2828 ire_refrele(ire); 2829 src = ipha->ipha_dst; 2830 } else { 2831 src = INADDR_ANY; 2832 ixas.ixa_flags |= IXAF_SET_SOURCE; 2833 } 2834 2835 /* 2836 * Check if we can send back more then 8 bytes in addition to 2837 * the IP header. We try to send 64 bytes of data and the internal 2838 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2839 */ 2840 len_needed = IPH_HDR_LENGTH(ipha); 2841 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2842 ipha->ipha_protocol == IPPROTO_IPV6) { 2843 if (!pullupmsg(mp, -1)) { 2844 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2845 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2846 freemsg(mp); 2847 return; 2848 } 2849 ipha = (ipha_t *)mp->b_rptr; 2850 2851 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2852 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2853 len_needed)); 2854 } else { 2855 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2856 2857 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2858 len_needed += ip_hdr_length_v6(mp, ip6h); 2859 } 2860 } 2861 len_needed += ipst->ips_ip_icmp_return; 2862 msg_len = msgdsize(mp); 2863 if (msg_len > len_needed) { 2864 (void) adjmsg(mp, len_needed - msg_len); 2865 msg_len = len_needed; 2866 } 2867 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2868 if (mp1 == NULL) { 2869 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2870 freemsg(mp); 2871 return; 2872 } 2873 mp1->b_cont = mp; 2874 mp = mp1; 2875 2876 /* 2877 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2878 * node generates be accepted in peace by all on-host destinations. 2879 * If we do NOT assume that all on-host destinations trust 2880 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2881 * (Look for IXAF_TRUSTED_ICMP). 2882 */ 2883 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2884 2885 ipha = (ipha_t *)mp->b_rptr; 2886 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2887 *ipha = icmp_ipha; 2888 ipha->ipha_src = src; 2889 ipha->ipha_dst = dst; 2890 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2891 msg_len += sizeof (icmp_ipha) + len; 2892 if (msg_len > IP_MAXPACKET) { 2893 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2894 msg_len = IP_MAXPACKET; 2895 } 2896 ipha->ipha_length = htons((uint16_t)msg_len); 2897 icmph = (icmph_t *)&ipha[1]; 2898 bcopy(stuff, icmph, len); 2899 icmph->icmph_checksum = 0; 2900 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2902 2903 (void) ip_output_simple(mp, &ixas); 2904 ixa_cleanup(&ixas); 2905 } 2906 2907 /* 2908 * Determine if an ICMP error packet can be sent given the rate limit. 2909 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2910 * in milliseconds) and a burst size. Burst size number of packets can 2911 * be sent arbitrarely closely spaced. 2912 * The state is tracked using two variables to implement an approximate 2913 * token bucket filter: 2914 * icmp_pkt_err_last - lbolt value when the last burst started 2915 * icmp_pkt_err_sent - number of packets sent in current burst 2916 */ 2917 boolean_t 2918 icmp_err_rate_limit(ip_stack_t *ipst) 2919 { 2920 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2921 uint_t refilled; /* Number of packets refilled in tbf since last */ 2922 /* Guard against changes by loading into local variable */ 2923 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2924 2925 if (err_interval == 0) 2926 return (B_FALSE); 2927 2928 if (ipst->ips_icmp_pkt_err_last > now) { 2929 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2930 ipst->ips_icmp_pkt_err_last = 0; 2931 ipst->ips_icmp_pkt_err_sent = 0; 2932 } 2933 /* 2934 * If we are in a burst update the token bucket filter. 2935 * Update the "last" time to be close to "now" but make sure 2936 * we don't loose precision. 2937 */ 2938 if (ipst->ips_icmp_pkt_err_sent != 0) { 2939 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2940 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2941 ipst->ips_icmp_pkt_err_sent = 0; 2942 } else { 2943 ipst->ips_icmp_pkt_err_sent -= refilled; 2944 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2945 } 2946 } 2947 if (ipst->ips_icmp_pkt_err_sent == 0) { 2948 /* Start of new burst */ 2949 ipst->ips_icmp_pkt_err_last = now; 2950 } 2951 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2952 ipst->ips_icmp_pkt_err_sent++; 2953 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2954 ipst->ips_icmp_pkt_err_sent)); 2955 return (B_FALSE); 2956 } 2957 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2958 return (B_TRUE); 2959 } 2960 2961 /* 2962 * Check if it is ok to send an IPv4 ICMP error packet in 2963 * response to the IPv4 packet in mp. 2964 * Free the message and return null if no 2965 * ICMP error packet should be sent. 2966 */ 2967 static mblk_t * 2968 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2969 { 2970 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2971 icmph_t *icmph; 2972 ipha_t *ipha; 2973 uint_t len_needed; 2974 2975 if (!mp) 2976 return (NULL); 2977 ipha = (ipha_t *)mp->b_rptr; 2978 if (ip_csum_hdr(ipha)) { 2979 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2980 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2981 freemsg(mp); 2982 return (NULL); 2983 } 2984 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2985 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2986 CLASSD(ipha->ipha_dst) || 2987 CLASSD(ipha->ipha_src) || 2988 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2989 /* Note: only errors to the fragment with offset 0 */ 2990 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2991 freemsg(mp); 2992 return (NULL); 2993 } 2994 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2995 /* 2996 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2997 * errors in response to any ICMP errors. 2998 */ 2999 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3000 if (mp->b_wptr - mp->b_rptr < len_needed) { 3001 if (!pullupmsg(mp, len_needed)) { 3002 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3003 freemsg(mp); 3004 return (NULL); 3005 } 3006 ipha = (ipha_t *)mp->b_rptr; 3007 } 3008 icmph = (icmph_t *) 3009 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3010 switch (icmph->icmph_type) { 3011 case ICMP_DEST_UNREACHABLE: 3012 case ICMP_SOURCE_QUENCH: 3013 case ICMP_TIME_EXCEEDED: 3014 case ICMP_PARAM_PROBLEM: 3015 case ICMP_REDIRECT: 3016 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3017 freemsg(mp); 3018 return (NULL); 3019 default: 3020 break; 3021 } 3022 } 3023 /* 3024 * If this is a labeled system, then check to see if we're allowed to 3025 * send a response to this particular sender. If not, then just drop. 3026 */ 3027 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3028 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3029 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3030 freemsg(mp); 3031 return (NULL); 3032 } 3033 if (icmp_err_rate_limit(ipst)) { 3034 /* 3035 * Only send ICMP error packets every so often. 3036 * This should be done on a per port/source basis, 3037 * but for now this will suffice. 3038 */ 3039 freemsg(mp); 3040 return (NULL); 3041 } 3042 return (mp); 3043 } 3044 3045 /* 3046 * Called when a packet was sent out the same link that it arrived on. 3047 * Check if it is ok to send a redirect and then send it. 3048 */ 3049 void 3050 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3051 ip_recv_attr_t *ira) 3052 { 3053 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3054 ipaddr_t src, nhop; 3055 mblk_t *mp1; 3056 ire_t *nhop_ire; 3057 3058 /* 3059 * Check the source address to see if it originated 3060 * on the same logical subnet it is going back out on. 3061 * If so, we should be able to send it a redirect. 3062 * Avoid sending a redirect if the destination 3063 * is directly connected (i.e., we matched an IRE_ONLINK), 3064 * or if the packet was source routed out this interface. 3065 * 3066 * We avoid sending a redirect if the 3067 * destination is directly connected 3068 * because it is possible that multiple 3069 * IP subnets may have been configured on 3070 * the link, and the source may not 3071 * be on the same subnet as ip destination, 3072 * even though they are on the same 3073 * physical link. 3074 */ 3075 if ((ire->ire_type & IRE_ONLINK) || 3076 ip_source_routed(ipha, ipst)) 3077 return; 3078 3079 nhop_ire = ire_nexthop(ire); 3080 if (nhop_ire == NULL) 3081 return; 3082 3083 nhop = nhop_ire->ire_addr; 3084 3085 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3086 ire_t *ire2; 3087 3088 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3089 mutex_enter(&nhop_ire->ire_lock); 3090 ire2 = nhop_ire->ire_dep_parent; 3091 if (ire2 != NULL) 3092 ire_refhold(ire2); 3093 mutex_exit(&nhop_ire->ire_lock); 3094 ire_refrele(nhop_ire); 3095 nhop_ire = ire2; 3096 } 3097 if (nhop_ire == NULL) 3098 return; 3099 3100 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3101 3102 src = ipha->ipha_src; 3103 3104 /* 3105 * We look at the interface ire for the nexthop, 3106 * to see if ipha_src is in the same subnet 3107 * as the nexthop. 3108 */ 3109 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3110 /* 3111 * The source is directly connected. 3112 */ 3113 mp1 = copymsg(mp); 3114 if (mp1 != NULL) { 3115 icmp_send_redirect(mp1, nhop, ira); 3116 } 3117 } 3118 ire_refrele(nhop_ire); 3119 } 3120 3121 /* 3122 * Generate an ICMP redirect message. 3123 */ 3124 static void 3125 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3126 { 3127 icmph_t icmph; 3128 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3129 3130 mp = icmp_pkt_err_ok(mp, ira); 3131 if (mp == NULL) 3132 return; 3133 3134 bzero(&icmph, sizeof (icmph_t)); 3135 icmph.icmph_type = ICMP_REDIRECT; 3136 icmph.icmph_code = 1; 3137 icmph.icmph_rd_gateway = gateway; 3138 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3139 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3140 } 3141 3142 /* 3143 * Generate an ICMP time exceeded message. 3144 */ 3145 void 3146 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3147 { 3148 icmph_t icmph; 3149 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3150 3151 mp = icmp_pkt_err_ok(mp, ira); 3152 if (mp == NULL) 3153 return; 3154 3155 bzero(&icmph, sizeof (icmph_t)); 3156 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3157 icmph.icmph_code = code; 3158 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3159 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3160 } 3161 3162 /* 3163 * Generate an ICMP unreachable message. 3164 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3165 * constructed by the caller. 3166 */ 3167 void 3168 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3169 { 3170 icmph_t icmph; 3171 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3172 3173 mp = icmp_pkt_err_ok(mp, ira); 3174 if (mp == NULL) 3175 return; 3176 3177 bzero(&icmph, sizeof (icmph_t)); 3178 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3179 icmph.icmph_code = code; 3180 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3181 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3182 } 3183 3184 /* 3185 * Latch in the IPsec state for a stream based the policy in the listener 3186 * and the actions in the ip_recv_attr_t. 3187 * Called directly from TCP and SCTP. 3188 */ 3189 boolean_t 3190 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3191 { 3192 ASSERT(lconnp->conn_policy != NULL); 3193 ASSERT(connp->conn_policy == NULL); 3194 3195 IPPH_REFHOLD(lconnp->conn_policy); 3196 connp->conn_policy = lconnp->conn_policy; 3197 3198 if (ira->ira_ipsec_action != NULL) { 3199 if (connp->conn_latch == NULL) { 3200 connp->conn_latch = iplatch_create(); 3201 if (connp->conn_latch == NULL) 3202 return (B_FALSE); 3203 } 3204 ipsec_latch_inbound(connp, ira); 3205 } 3206 return (B_TRUE); 3207 } 3208 3209 /* 3210 * Verify whether or not the IP address is a valid local address. 3211 * Could be a unicast, including one for a down interface. 3212 * If allow_mcbc then a multicast or broadcast address is also 3213 * acceptable. 3214 * 3215 * In the case of a broadcast/multicast address, however, the 3216 * upper protocol is expected to reset the src address 3217 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3218 * no packets are emitted with broadcast/multicast address as 3219 * source address (that violates hosts requirements RFC 1122) 3220 * The addresses valid for bind are: 3221 * (1) - INADDR_ANY (0) 3222 * (2) - IP address of an UP interface 3223 * (3) - IP address of a DOWN interface 3224 * (4) - valid local IP broadcast addresses. In this case 3225 * the conn will only receive packets destined to 3226 * the specified broadcast address. 3227 * (5) - a multicast address. In this case 3228 * the conn will only receive packets destined to 3229 * the specified multicast address. Note: the 3230 * application still has to issue an 3231 * IP_ADD_MEMBERSHIP socket option. 3232 * 3233 * In all the above cases, the bound address must be valid in the current zone. 3234 * When the address is loopback, multicast or broadcast, there might be many 3235 * matching IREs so bind has to look up based on the zone. 3236 */ 3237 ip_laddr_t 3238 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3239 ip_stack_t *ipst, boolean_t allow_mcbc) 3240 { 3241 ire_t *src_ire; 3242 3243 ASSERT(src_addr != INADDR_ANY); 3244 3245 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3246 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3247 3248 /* 3249 * If an address other than in6addr_any is requested, 3250 * we verify that it is a valid address for bind 3251 * Note: Following code is in if-else-if form for 3252 * readability compared to a condition check. 3253 */ 3254 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3255 /* 3256 * (2) Bind to address of local UP interface 3257 */ 3258 ire_refrele(src_ire); 3259 return (IPVL_UNICAST_UP); 3260 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3261 /* 3262 * (4) Bind to broadcast address 3263 */ 3264 ire_refrele(src_ire); 3265 if (allow_mcbc) 3266 return (IPVL_BCAST); 3267 else 3268 return (IPVL_BAD); 3269 } else if (CLASSD(src_addr)) { 3270 /* (5) bind to multicast address. */ 3271 if (src_ire != NULL) 3272 ire_refrele(src_ire); 3273 3274 if (allow_mcbc) 3275 return (IPVL_MCAST); 3276 else 3277 return (IPVL_BAD); 3278 } else { 3279 ipif_t *ipif; 3280 3281 /* 3282 * (3) Bind to address of local DOWN interface? 3283 * (ipif_lookup_addr() looks up all interfaces 3284 * but we do not get here for UP interfaces 3285 * - case (2) above) 3286 */ 3287 if (src_ire != NULL) 3288 ire_refrele(src_ire); 3289 3290 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3291 if (ipif == NULL) 3292 return (IPVL_BAD); 3293 3294 /* Not a useful source? */ 3295 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3296 ipif_refrele(ipif); 3297 return (IPVL_BAD); 3298 } 3299 ipif_refrele(ipif); 3300 return (IPVL_UNICAST_DOWN); 3301 } 3302 } 3303 3304 /* 3305 * Insert in the bind fanout for IPv4 and IPv6. 3306 * The caller should already have used ip_laddr_verify_v*() before calling 3307 * this. 3308 */ 3309 int 3310 ip_laddr_fanout_insert(conn_t *connp) 3311 { 3312 int error; 3313 3314 /* 3315 * Allow setting new policies. For example, disconnects result 3316 * in us being called. As we would have set conn_policy_cached 3317 * to B_TRUE before, we should set it to B_FALSE, so that policy 3318 * can change after the disconnect. 3319 */ 3320 connp->conn_policy_cached = B_FALSE; 3321 3322 error = ipcl_bind_insert(connp); 3323 if (error != 0) { 3324 if (connp->conn_anon_port) { 3325 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3326 connp->conn_mlp_type, connp->conn_proto, 3327 ntohs(connp->conn_lport), B_FALSE); 3328 } 3329 connp->conn_mlp_type = mlptSingle; 3330 } 3331 return (error); 3332 } 3333 3334 /* 3335 * Verify that both the source and destination addresses are valid. If 3336 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3337 * i.e. have no route to it. Protocols like TCP want to verify destination 3338 * reachability, while tunnels do not. 3339 * 3340 * Determine the route, the interface, and (optionally) the source address 3341 * to use to reach a given destination. 3342 * Note that we allow connect to broadcast and multicast addresses when 3343 * IPDF_ALLOW_MCBC is set. 3344 * first_hop and dst_addr are normally the same, but if source routing 3345 * they will differ; in that case the first_hop is what we'll use for the 3346 * routing lookup but the dce and label checks will be done on dst_addr, 3347 * 3348 * If uinfo is set, then we fill in the best available information 3349 * we have for the destination. This is based on (in priority order) any 3350 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3351 * ill_mtu. 3352 * 3353 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3354 * always do the label check on dst_addr. 3355 */ 3356 int 3357 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3358 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3359 { 3360 ire_t *ire = NULL; 3361 int error = 0; 3362 ipaddr_t setsrc; /* RTF_SETSRC */ 3363 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3364 ip_stack_t *ipst = ixa->ixa_ipst; 3365 dce_t *dce; 3366 uint_t pmtu; 3367 uint_t generation; 3368 nce_t *nce; 3369 ill_t *ill = NULL; 3370 boolean_t multirt = B_FALSE; 3371 3372 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3373 3374 /* 3375 * We never send to zero; the ULPs map it to the loopback address. 3376 * We can't allow it since we use zero to mean unitialized in some 3377 * places. 3378 */ 3379 ASSERT(dst_addr != INADDR_ANY); 3380 3381 if (is_system_labeled()) { 3382 ts_label_t *tsl = NULL; 3383 3384 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3385 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3386 if (error != 0) 3387 return (error); 3388 if (tsl != NULL) { 3389 /* Update the label */ 3390 ip_xmit_attr_replace_tsl(ixa, tsl); 3391 } 3392 } 3393 3394 setsrc = INADDR_ANY; 3395 /* 3396 * Select a route; For IPMP interfaces, we would only select 3397 * a "hidden" route (i.e., going through a specific under_ill) 3398 * if ixa_ifindex has been specified. 3399 */ 3400 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3401 &generation, &setsrc, &error, &multirt); 3402 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3403 if (error != 0) 3404 goto bad_addr; 3405 3406 /* 3407 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3408 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3409 * Otherwise the destination needn't be reachable. 3410 * 3411 * If we match on a reject or black hole, then we've got a 3412 * local failure. May as well fail out the connect() attempt, 3413 * since it's never going to succeed. 3414 */ 3415 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3416 /* 3417 * If we're verifying destination reachability, we always want 3418 * to complain here. 3419 * 3420 * If we're not verifying destination reachability but the 3421 * destination has a route, we still want to fail on the 3422 * temporary address and broadcast address tests. 3423 * 3424 * In both cases do we let the code continue so some reasonable 3425 * information is returned to the caller. That enables the 3426 * caller to use (and even cache) the IRE. conn_ip_ouput will 3427 * use the generation mismatch path to check for the unreachable 3428 * case thereby avoiding any specific check in the main path. 3429 */ 3430 ASSERT(generation == IRE_GENERATION_VERIFY); 3431 if (flags & IPDF_VERIFY_DST) { 3432 /* 3433 * Set errno but continue to set up ixa_ire to be 3434 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3435 * That allows callers to use ip_output to get an 3436 * ICMP error back. 3437 */ 3438 if (!(ire->ire_type & IRE_HOST)) 3439 error = ENETUNREACH; 3440 else 3441 error = EHOSTUNREACH; 3442 } 3443 } 3444 3445 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3446 !(flags & IPDF_ALLOW_MCBC)) { 3447 ire_refrele(ire); 3448 ire = ire_reject(ipst, B_FALSE); 3449 generation = IRE_GENERATION_VERIFY; 3450 error = ENETUNREACH; 3451 } 3452 3453 /* Cache things */ 3454 if (ixa->ixa_ire != NULL) 3455 ire_refrele_notr(ixa->ixa_ire); 3456 #ifdef DEBUG 3457 ire_refhold_notr(ire); 3458 ire_refrele(ire); 3459 #endif 3460 ixa->ixa_ire = ire; 3461 ixa->ixa_ire_generation = generation; 3462 3463 /* 3464 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3465 * since some callers will send a packet to conn_ip_output() even if 3466 * there's an error. 3467 */ 3468 if (flags & IPDF_UNIQUE_DCE) { 3469 /* Fallback to the default dce if allocation fails */ 3470 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3471 if (dce != NULL) 3472 generation = dce->dce_generation; 3473 else 3474 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3475 } else { 3476 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3477 } 3478 ASSERT(dce != NULL); 3479 if (ixa->ixa_dce != NULL) 3480 dce_refrele_notr(ixa->ixa_dce); 3481 #ifdef DEBUG 3482 dce_refhold_notr(dce); 3483 dce_refrele(dce); 3484 #endif 3485 ixa->ixa_dce = dce; 3486 ixa->ixa_dce_generation = generation; 3487 3488 /* 3489 * For multicast with multirt we have a flag passed back from 3490 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3491 * possible multicast address. 3492 * We also need a flag for multicast since we can't check 3493 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3494 */ 3495 if (multirt) { 3496 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3497 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3498 } else { 3499 ixa->ixa_postfragfn = ire->ire_postfragfn; 3500 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3501 } 3502 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3503 /* Get an nce to cache. */ 3504 nce = ire_to_nce(ire, firsthop, NULL); 3505 if (nce == NULL) { 3506 /* Allocation failure? */ 3507 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3508 } else { 3509 if (ixa->ixa_nce != NULL) 3510 nce_refrele(ixa->ixa_nce); 3511 ixa->ixa_nce = nce; 3512 } 3513 } 3514 3515 /* 3516 * If the source address is a loopback address, the 3517 * destination had best be local or multicast. 3518 * If we are sending to an IRE_LOCAL using a loopback source then 3519 * it had better be the same zoneid. 3520 */ 3521 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3522 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3523 ire = NULL; /* Stored in ixa_ire */ 3524 error = EADDRNOTAVAIL; 3525 goto bad_addr; 3526 } 3527 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3528 ire = NULL; /* Stored in ixa_ire */ 3529 error = EADDRNOTAVAIL; 3530 goto bad_addr; 3531 } 3532 } 3533 if (ire->ire_type & IRE_BROADCAST) { 3534 /* 3535 * If the ULP didn't have a specified source, then we 3536 * make sure we reselect the source when sending 3537 * broadcasts out different interfaces. 3538 */ 3539 if (flags & IPDF_SELECT_SRC) 3540 ixa->ixa_flags |= IXAF_SET_SOURCE; 3541 else 3542 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3543 } 3544 3545 /* 3546 * Does the caller want us to pick a source address? 3547 */ 3548 if (flags & IPDF_SELECT_SRC) { 3549 ipaddr_t src_addr; 3550 3551 /* 3552 * We use use ire_nexthop_ill to avoid the under ipmp 3553 * interface for source address selection. Note that for ipmp 3554 * probe packets, ixa_ifindex would have been specified, and 3555 * the ip_select_route() invocation would have picked an ire 3556 * will ire_ill pointing at an under interface. 3557 */ 3558 ill = ire_nexthop_ill(ire); 3559 3560 /* If unreachable we have no ill but need some source */ 3561 if (ill == NULL) { 3562 src_addr = htonl(INADDR_LOOPBACK); 3563 /* Make sure we look for a better source address */ 3564 generation = SRC_GENERATION_VERIFY; 3565 } else { 3566 error = ip_select_source_v4(ill, setsrc, dst_addr, 3567 ixa->ixa_multicast_ifaddr, zoneid, 3568 ipst, &src_addr, &generation, NULL); 3569 if (error != 0) { 3570 ire = NULL; /* Stored in ixa_ire */ 3571 goto bad_addr; 3572 } 3573 } 3574 3575 /* 3576 * We allow the source address to to down. 3577 * However, we check that we don't use the loopback address 3578 * as a source when sending out on the wire. 3579 */ 3580 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3581 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3582 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3583 ire = NULL; /* Stored in ixa_ire */ 3584 error = EADDRNOTAVAIL; 3585 goto bad_addr; 3586 } 3587 3588 *src_addrp = src_addr; 3589 ixa->ixa_src_generation = generation; 3590 } 3591 3592 /* 3593 * Make sure we don't leave an unreachable ixa_nce in place 3594 * since ip_select_route is used when we unplumb i.e., remove 3595 * references on ixa_ire, ixa_nce, and ixa_dce. 3596 */ 3597 nce = ixa->ixa_nce; 3598 if (nce != NULL && nce->nce_is_condemned) { 3599 nce_refrele(nce); 3600 ixa->ixa_nce = NULL; 3601 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3602 } 3603 3604 /* 3605 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3606 * However, we can't do it for IPv4 multicast or broadcast. 3607 */ 3608 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3609 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3610 3611 /* 3612 * Set initial value for fragmentation limit. Either conn_ip_output 3613 * or ULP might updates it when there are routing changes. 3614 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3615 */ 3616 pmtu = ip_get_pmtu(ixa); 3617 ixa->ixa_fragsize = pmtu; 3618 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3619 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3620 ixa->ixa_pmtu = pmtu; 3621 3622 /* 3623 * Extract information useful for some transports. 3624 * First we look for DCE metrics. Then we take what we have in 3625 * the metrics in the route, where the offlink is used if we have 3626 * one. 3627 */ 3628 if (uinfo != NULL) { 3629 bzero(uinfo, sizeof (*uinfo)); 3630 3631 if (dce->dce_flags & DCEF_UINFO) 3632 *uinfo = dce->dce_uinfo; 3633 3634 rts_merge_metrics(uinfo, &ire->ire_metrics); 3635 3636 /* Allow ire_metrics to decrease the path MTU from above */ 3637 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3638 uinfo->iulp_mtu = pmtu; 3639 3640 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3641 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3642 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3643 } 3644 3645 if (ill != NULL) 3646 ill_refrele(ill); 3647 3648 return (error); 3649 3650 bad_addr: 3651 if (ire != NULL) 3652 ire_refrele(ire); 3653 3654 if (ill != NULL) 3655 ill_refrele(ill); 3656 3657 /* 3658 * Make sure we don't leave an unreachable ixa_nce in place 3659 * since ip_select_route is used when we unplumb i.e., remove 3660 * references on ixa_ire, ixa_nce, and ixa_dce. 3661 */ 3662 nce = ixa->ixa_nce; 3663 if (nce != NULL && nce->nce_is_condemned) { 3664 nce_refrele(nce); 3665 ixa->ixa_nce = NULL; 3666 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3667 } 3668 3669 return (error); 3670 } 3671 3672 3673 /* 3674 * Get the base MTU for the case when path MTU discovery is not used. 3675 * Takes the MTU of the IRE into account. 3676 */ 3677 uint_t 3678 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3679 { 3680 uint_t mtu = ill->ill_mtu; 3681 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3682 3683 if (iremtu != 0 && iremtu < mtu) 3684 mtu = iremtu; 3685 3686 return (mtu); 3687 } 3688 3689 /* 3690 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3691 * Assumes that ixa_ire, dce, and nce have already been set up. 3692 * 3693 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3694 * We avoid path MTU discovery if it is disabled with ndd. 3695 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3696 * 3697 * NOTE: We also used to turn it off for source routed packets. That 3698 * is no longer required since the dce is per final destination. 3699 */ 3700 uint_t 3701 ip_get_pmtu(ip_xmit_attr_t *ixa) 3702 { 3703 ip_stack_t *ipst = ixa->ixa_ipst; 3704 dce_t *dce; 3705 nce_t *nce; 3706 ire_t *ire; 3707 uint_t pmtu; 3708 3709 ire = ixa->ixa_ire; 3710 dce = ixa->ixa_dce; 3711 nce = ixa->ixa_nce; 3712 3713 /* 3714 * If path MTU discovery has been turned off by ndd, then we ignore 3715 * any dce_pmtu and for IPv4 we will not set DF. 3716 */ 3717 if (!ipst->ips_ip_path_mtu_discovery) 3718 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3719 3720 pmtu = IP_MAXPACKET; 3721 /* 3722 * Decide whether whether IPv4 sets DF 3723 * For IPv6 "no DF" means to use the 1280 mtu 3724 */ 3725 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3726 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3727 } else { 3728 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3729 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3730 pmtu = IPV6_MIN_MTU; 3731 } 3732 3733 /* Check if the PMTU is to old before we use it */ 3734 if ((dce->dce_flags & DCEF_PMTU) && 3735 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3736 ipst->ips_ip_pathmtu_interval) { 3737 /* 3738 * Older than 20 minutes. Drop the path MTU information. 3739 */ 3740 mutex_enter(&dce->dce_lock); 3741 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3742 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3743 mutex_exit(&dce->dce_lock); 3744 dce_increment_generation(dce); 3745 } 3746 3747 /* The metrics on the route can lower the path MTU */ 3748 if (ire->ire_metrics.iulp_mtu != 0 && 3749 ire->ire_metrics.iulp_mtu < pmtu) 3750 pmtu = ire->ire_metrics.iulp_mtu; 3751 3752 /* 3753 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3754 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3755 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3756 */ 3757 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3758 if (dce->dce_flags & DCEF_PMTU) { 3759 if (dce->dce_pmtu < pmtu) 3760 pmtu = dce->dce_pmtu; 3761 3762 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3763 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3764 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3765 } else { 3766 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3767 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3768 } 3769 } else { 3770 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3771 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3772 } 3773 } 3774 3775 /* 3776 * If we have an IRE_LOCAL we use the loopback mtu instead of 3777 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3778 * mtu as IRE_LOOPBACK. 3779 */ 3780 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3781 uint_t loopback_mtu; 3782 3783 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3784 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3785 3786 if (loopback_mtu < pmtu) 3787 pmtu = loopback_mtu; 3788 } else if (nce != NULL) { 3789 /* 3790 * Make sure we don't exceed the interface MTU. 3791 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3792 * an ill. We'd use the above IP_MAXPACKET in that case just 3793 * to tell the transport something larger than zero. 3794 */ 3795 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3796 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3797 if (nce->nce_common->ncec_ill != nce->nce_ill && 3798 nce->nce_ill->ill_mtu < pmtu) { 3799 /* 3800 * for interfaces in an IPMP group, the mtu of 3801 * the nce_ill (under_ill) could be different 3802 * from the mtu of the ncec_ill, so we take the 3803 * min of the two. 3804 */ 3805 pmtu = nce->nce_ill->ill_mtu; 3806 } 3807 } 3808 3809 /* 3810 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3811 * Only applies to IPv6. 3812 */ 3813 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3814 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3815 switch (ixa->ixa_use_min_mtu) { 3816 case IPV6_USE_MIN_MTU_MULTICAST: 3817 if (ire->ire_type & IRE_MULTICAST) 3818 pmtu = IPV6_MIN_MTU; 3819 break; 3820 case IPV6_USE_MIN_MTU_ALWAYS: 3821 pmtu = IPV6_MIN_MTU; 3822 break; 3823 case IPV6_USE_MIN_MTU_NEVER: 3824 break; 3825 } 3826 } else { 3827 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3828 if (ire->ire_type & IRE_MULTICAST) 3829 pmtu = IPV6_MIN_MTU; 3830 } 3831 } 3832 3833 /* 3834 * After receiving an ICMPv6 "packet too big" message with a 3835 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3836 * will insert a 8-byte fragment header in every packet. We compensate 3837 * for those cases by returning a smaller path MTU to the ULP. 3838 * 3839 * In the case of CGTP then ip_output will add a fragment header. 3840 * Make sure there is room for it by telling a smaller number 3841 * to the transport. 3842 * 3843 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3844 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3845 * which is the size of the packets it can send. 3846 */ 3847 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3848 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3849 (ire->ire_flags & RTF_MULTIRT) || 3850 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3851 pmtu -= sizeof (ip6_frag_t); 3852 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3853 } 3854 } 3855 3856 return (pmtu); 3857 } 3858 3859 /* 3860 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3861 * the final piece where we don't. Return a pointer to the first mblk in the 3862 * result, and update the pointer to the next mblk to chew on. If anything 3863 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3864 * NULL pointer. 3865 */ 3866 mblk_t * 3867 ip_carve_mp(mblk_t **mpp, ssize_t len) 3868 { 3869 mblk_t *mp0; 3870 mblk_t *mp1; 3871 mblk_t *mp2; 3872 3873 if (!len || !mpp || !(mp0 = *mpp)) 3874 return (NULL); 3875 /* If we aren't going to consume the first mblk, we need a dup. */ 3876 if (mp0->b_wptr - mp0->b_rptr > len) { 3877 mp1 = dupb(mp0); 3878 if (mp1) { 3879 /* Partition the data between the two mblks. */ 3880 mp1->b_wptr = mp1->b_rptr + len; 3881 mp0->b_rptr = mp1->b_wptr; 3882 /* 3883 * after adjustments if mblk not consumed is now 3884 * unaligned, try to align it. If this fails free 3885 * all messages and let upper layer recover. 3886 */ 3887 if (!OK_32PTR(mp0->b_rptr)) { 3888 if (!pullupmsg(mp0, -1)) { 3889 freemsg(mp0); 3890 freemsg(mp1); 3891 *mpp = NULL; 3892 return (NULL); 3893 } 3894 } 3895 } 3896 return (mp1); 3897 } 3898 /* Eat through as many mblks as we need to get len bytes. */ 3899 len -= mp0->b_wptr - mp0->b_rptr; 3900 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3901 if (mp2->b_wptr - mp2->b_rptr > len) { 3902 /* 3903 * We won't consume the entire last mblk. Like 3904 * above, dup and partition it. 3905 */ 3906 mp1->b_cont = dupb(mp2); 3907 mp1 = mp1->b_cont; 3908 if (!mp1) { 3909 /* 3910 * Trouble. Rather than go to a lot of 3911 * trouble to clean up, we free the messages. 3912 * This won't be any worse than losing it on 3913 * the wire. 3914 */ 3915 freemsg(mp0); 3916 freemsg(mp2); 3917 *mpp = NULL; 3918 return (NULL); 3919 } 3920 mp1->b_wptr = mp1->b_rptr + len; 3921 mp2->b_rptr = mp1->b_wptr; 3922 /* 3923 * after adjustments if mblk not consumed is now 3924 * unaligned, try to align it. If this fails free 3925 * all messages and let upper layer recover. 3926 */ 3927 if (!OK_32PTR(mp2->b_rptr)) { 3928 if (!pullupmsg(mp2, -1)) { 3929 freemsg(mp0); 3930 freemsg(mp2); 3931 *mpp = NULL; 3932 return (NULL); 3933 } 3934 } 3935 *mpp = mp2; 3936 return (mp0); 3937 } 3938 /* Decrement len by the amount we just got. */ 3939 len -= mp2->b_wptr - mp2->b_rptr; 3940 } 3941 /* 3942 * len should be reduced to zero now. If not our caller has 3943 * screwed up. 3944 */ 3945 if (len) { 3946 /* Shouldn't happen! */ 3947 freemsg(mp0); 3948 *mpp = NULL; 3949 return (NULL); 3950 } 3951 /* 3952 * We consumed up to exactly the end of an mblk. Detach the part 3953 * we are returning from the rest of the chain. 3954 */ 3955 mp1->b_cont = NULL; 3956 *mpp = mp2; 3957 return (mp0); 3958 } 3959 3960 /* The ill stream is being unplumbed. Called from ip_close */ 3961 int 3962 ip_modclose(ill_t *ill) 3963 { 3964 boolean_t success; 3965 ipsq_t *ipsq; 3966 ipif_t *ipif; 3967 queue_t *q = ill->ill_rq; 3968 ip_stack_t *ipst = ill->ill_ipst; 3969 int i; 3970 arl_ill_common_t *ai = ill->ill_common; 3971 3972 /* 3973 * The punlink prior to this may have initiated a capability 3974 * negotiation. But ipsq_enter will block until that finishes or 3975 * times out. 3976 */ 3977 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3978 3979 /* 3980 * Open/close/push/pop is guaranteed to be single threaded 3981 * per stream by STREAMS. FS guarantees that all references 3982 * from top are gone before close is called. So there can't 3983 * be another close thread that has set CONDEMNED on this ill. 3984 * and cause ipsq_enter to return failure. 3985 */ 3986 ASSERT(success); 3987 ipsq = ill->ill_phyint->phyint_ipsq; 3988 3989 /* 3990 * Mark it condemned. No new reference will be made to this ill. 3991 * Lookup functions will return an error. Threads that try to 3992 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3993 * that the refcnt will drop down to zero. 3994 */ 3995 mutex_enter(&ill->ill_lock); 3996 ill->ill_state_flags |= ILL_CONDEMNED; 3997 for (ipif = ill->ill_ipif; ipif != NULL; 3998 ipif = ipif->ipif_next) { 3999 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4000 } 4001 /* 4002 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4003 * returns error if ILL_CONDEMNED is set 4004 */ 4005 cv_broadcast(&ill->ill_cv); 4006 mutex_exit(&ill->ill_lock); 4007 4008 /* 4009 * Send all the deferred DLPI messages downstream which came in 4010 * during the small window right before ipsq_enter(). We do this 4011 * without waiting for the ACKs because all the ACKs for M_PROTO 4012 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4013 */ 4014 ill_dlpi_send_deferred(ill); 4015 4016 /* 4017 * Shut down fragmentation reassembly. 4018 * ill_frag_timer won't start a timer again. 4019 * Now cancel any existing timer 4020 */ 4021 (void) untimeout(ill->ill_frag_timer_id); 4022 (void) ill_frag_timeout(ill, 0); 4023 4024 /* 4025 * Call ill_delete to bring down the ipifs, ilms and ill on 4026 * this ill. Then wait for the refcnts to drop to zero. 4027 * ill_is_freeable checks whether the ill is really quiescent. 4028 * Then make sure that threads that are waiting to enter the 4029 * ipsq have seen the error returned by ipsq_enter and have 4030 * gone away. Then we call ill_delete_tail which does the 4031 * DL_UNBIND_REQ with the driver and then qprocsoff. 4032 */ 4033 ill_delete(ill); 4034 mutex_enter(&ill->ill_lock); 4035 while (!ill_is_freeable(ill)) 4036 cv_wait(&ill->ill_cv, &ill->ill_lock); 4037 4038 while (ill->ill_waiters) 4039 cv_wait(&ill->ill_cv, &ill->ill_lock); 4040 4041 mutex_exit(&ill->ill_lock); 4042 4043 /* 4044 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4045 * it held until the end of the function since the cleanup 4046 * below needs to be able to use the ip_stack_t. 4047 */ 4048 netstack_hold(ipst->ips_netstack); 4049 4050 /* qprocsoff is done via ill_delete_tail */ 4051 ill_delete_tail(ill); 4052 /* 4053 * synchronously wait for arp stream to unbind. After this, we 4054 * cannot get any data packets up from the driver. 4055 */ 4056 arp_unbind_complete(ill); 4057 ASSERT(ill->ill_ipst == NULL); 4058 4059 /* 4060 * Walk through all conns and qenable those that have queued data. 4061 * Close synchronization needs this to 4062 * be done to ensure that all upper layers blocked 4063 * due to flow control to the closing device 4064 * get unblocked. 4065 */ 4066 ip1dbg(("ip_wsrv: walking\n")); 4067 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4068 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4069 } 4070 4071 /* 4072 * ai can be null if this is an IPv6 ill, or if the IPv4 4073 * stream is being torn down before ARP was plumbed (e.g., 4074 * /sbin/ifconfig plumbing a stream twice, and encountering 4075 * an error 4076 */ 4077 if (ai != NULL) { 4078 ASSERT(!ill->ill_isv6); 4079 mutex_enter(&ai->ai_lock); 4080 ai->ai_ill = NULL; 4081 if (ai->ai_arl == NULL) { 4082 mutex_destroy(&ai->ai_lock); 4083 kmem_free(ai, sizeof (*ai)); 4084 } else { 4085 cv_signal(&ai->ai_ill_unplumb_done); 4086 mutex_exit(&ai->ai_lock); 4087 } 4088 } 4089 4090 mutex_enter(&ipst->ips_ip_mi_lock); 4091 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4092 mutex_exit(&ipst->ips_ip_mi_lock); 4093 4094 /* 4095 * credp could be null if the open didn't succeed and ip_modopen 4096 * itself calls ip_close. 4097 */ 4098 if (ill->ill_credp != NULL) 4099 crfree(ill->ill_credp); 4100 4101 mutex_destroy(&ill->ill_saved_ire_lock); 4102 mutex_destroy(&ill->ill_lock); 4103 rw_destroy(&ill->ill_mcast_lock); 4104 mutex_destroy(&ill->ill_mcast_serializer); 4105 list_destroy(&ill->ill_nce); 4106 4107 /* 4108 * Now we are done with the module close pieces that 4109 * need the netstack_t. 4110 */ 4111 netstack_rele(ipst->ips_netstack); 4112 4113 mi_close_free((IDP)ill); 4114 q->q_ptr = WR(q)->q_ptr = NULL; 4115 4116 ipsq_exit(ipsq); 4117 4118 return (0); 4119 } 4120 4121 /* 4122 * This is called as part of close() for IP, UDP, ICMP, and RTS 4123 * in order to quiesce the conn. 4124 */ 4125 void 4126 ip_quiesce_conn(conn_t *connp) 4127 { 4128 boolean_t drain_cleanup_reqd = B_FALSE; 4129 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4130 boolean_t ilg_cleanup_reqd = B_FALSE; 4131 ip_stack_t *ipst; 4132 4133 ASSERT(!IPCL_IS_TCP(connp)); 4134 ipst = connp->conn_netstack->netstack_ip; 4135 4136 /* 4137 * Mark the conn as closing, and this conn must not be 4138 * inserted in future into any list. Eg. conn_drain_insert(), 4139 * won't insert this conn into the conn_drain_list. 4140 * 4141 * conn_idl, and conn_ilg cannot get set henceforth. 4142 */ 4143 mutex_enter(&connp->conn_lock); 4144 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4145 connp->conn_state_flags |= CONN_CLOSING; 4146 if (connp->conn_idl != NULL) 4147 drain_cleanup_reqd = B_TRUE; 4148 if (connp->conn_oper_pending_ill != NULL) 4149 conn_ioctl_cleanup_reqd = B_TRUE; 4150 if (connp->conn_dhcpinit_ill != NULL) { 4151 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4152 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4153 ill_set_inputfn(connp->conn_dhcpinit_ill); 4154 connp->conn_dhcpinit_ill = NULL; 4155 } 4156 if (connp->conn_ilg != NULL) 4157 ilg_cleanup_reqd = B_TRUE; 4158 mutex_exit(&connp->conn_lock); 4159 4160 if (conn_ioctl_cleanup_reqd) 4161 conn_ioctl_cleanup(connp); 4162 4163 if (is_system_labeled() && connp->conn_anon_port) { 4164 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4165 connp->conn_mlp_type, connp->conn_proto, 4166 ntohs(connp->conn_lport), B_FALSE); 4167 connp->conn_anon_port = 0; 4168 } 4169 connp->conn_mlp_type = mlptSingle; 4170 4171 /* 4172 * Remove this conn from any fanout list it is on. 4173 * and then wait for any threads currently operating 4174 * on this endpoint to finish 4175 */ 4176 ipcl_hash_remove(connp); 4177 4178 /* 4179 * Remove this conn from the drain list, and do any other cleanup that 4180 * may be required. (TCP conns are never flow controlled, and 4181 * conn_idl will be NULL.) 4182 */ 4183 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4184 idl_t *idl = connp->conn_idl; 4185 4186 mutex_enter(&idl->idl_lock); 4187 conn_drain(connp, B_TRUE); 4188 mutex_exit(&idl->idl_lock); 4189 } 4190 4191 if (connp == ipst->ips_ip_g_mrouter) 4192 (void) ip_mrouter_done(ipst); 4193 4194 if (ilg_cleanup_reqd) 4195 ilg_delete_all(connp); 4196 4197 /* 4198 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4199 * callers from write side can't be there now because close 4200 * is in progress. The only other caller is ipcl_walk 4201 * which checks for the condemned flag. 4202 */ 4203 mutex_enter(&connp->conn_lock); 4204 connp->conn_state_flags |= CONN_CONDEMNED; 4205 while (connp->conn_ref != 1) 4206 cv_wait(&connp->conn_cv, &connp->conn_lock); 4207 connp->conn_state_flags |= CONN_QUIESCED; 4208 mutex_exit(&connp->conn_lock); 4209 } 4210 4211 /* ARGSUSED */ 4212 int 4213 ip_close(queue_t *q, int flags) 4214 { 4215 conn_t *connp; 4216 4217 /* 4218 * Call the appropriate delete routine depending on whether this is 4219 * a module or device. 4220 */ 4221 if (WR(q)->q_next != NULL) { 4222 /* This is a module close */ 4223 return (ip_modclose((ill_t *)q->q_ptr)); 4224 } 4225 4226 connp = q->q_ptr; 4227 ip_quiesce_conn(connp); 4228 4229 qprocsoff(q); 4230 4231 /* 4232 * Now we are truly single threaded on this stream, and can 4233 * delete the things hanging off the connp, and finally the connp. 4234 * We removed this connp from the fanout list, it cannot be 4235 * accessed thru the fanouts, and we already waited for the 4236 * conn_ref to drop to 0. We are already in close, so 4237 * there cannot be any other thread from the top. qprocsoff 4238 * has completed, and service has completed or won't run in 4239 * future. 4240 */ 4241 ASSERT(connp->conn_ref == 1); 4242 4243 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4244 4245 connp->conn_ref--; 4246 ipcl_conn_destroy(connp); 4247 4248 q->q_ptr = WR(q)->q_ptr = NULL; 4249 return (0); 4250 } 4251 4252 /* 4253 * Wapper around putnext() so that ip_rts_request can merely use 4254 * conn_recv. 4255 */ 4256 /*ARGSUSED2*/ 4257 static void 4258 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4259 { 4260 conn_t *connp = (conn_t *)arg1; 4261 4262 putnext(connp->conn_rq, mp); 4263 } 4264 4265 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4266 /* ARGSUSED */ 4267 static void 4268 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4269 { 4270 freemsg(mp); 4271 } 4272 4273 /* 4274 * Called when the module is about to be unloaded 4275 */ 4276 void 4277 ip_ddi_destroy(void) 4278 { 4279 /* This needs to be called before destroying any transports. */ 4280 mutex_enter(&cpu_lock); 4281 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4282 mutex_exit(&cpu_lock); 4283 4284 tnet_fini(); 4285 4286 icmp_ddi_g_destroy(); 4287 rts_ddi_g_destroy(); 4288 udp_ddi_g_destroy(); 4289 sctp_ddi_g_destroy(); 4290 tcp_ddi_g_destroy(); 4291 ilb_ddi_g_destroy(); 4292 dce_g_destroy(); 4293 ipsec_policy_g_destroy(); 4294 ipcl_g_destroy(); 4295 ip_net_g_destroy(); 4296 ip_ire_g_fini(); 4297 inet_minor_destroy(ip_minor_arena_sa); 4298 #if defined(_LP64) 4299 inet_minor_destroy(ip_minor_arena_la); 4300 #endif 4301 4302 #ifdef DEBUG 4303 list_destroy(&ip_thread_list); 4304 rw_destroy(&ip_thread_rwlock); 4305 tsd_destroy(&ip_thread_data); 4306 #endif 4307 4308 netstack_unregister(NS_IP); 4309 } 4310 4311 /* 4312 * First step in cleanup. 4313 */ 4314 /* ARGSUSED */ 4315 static void 4316 ip_stack_shutdown(netstackid_t stackid, void *arg) 4317 { 4318 ip_stack_t *ipst = (ip_stack_t *)arg; 4319 4320 #ifdef NS_DEBUG 4321 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4322 #endif 4323 4324 /* 4325 * Perform cleanup for special interfaces (loopback and IPMP). 4326 */ 4327 ip_interface_cleanup(ipst); 4328 4329 /* 4330 * The *_hook_shutdown()s start the process of notifying any 4331 * consumers that things are going away.... nothing is destroyed. 4332 */ 4333 ipv4_hook_shutdown(ipst); 4334 ipv6_hook_shutdown(ipst); 4335 arp_hook_shutdown(ipst); 4336 4337 mutex_enter(&ipst->ips_capab_taskq_lock); 4338 ipst->ips_capab_taskq_quit = B_TRUE; 4339 cv_signal(&ipst->ips_capab_taskq_cv); 4340 mutex_exit(&ipst->ips_capab_taskq_lock); 4341 } 4342 4343 /* 4344 * Free the IP stack instance. 4345 */ 4346 static void 4347 ip_stack_fini(netstackid_t stackid, void *arg) 4348 { 4349 ip_stack_t *ipst = (ip_stack_t *)arg; 4350 int ret; 4351 4352 #ifdef NS_DEBUG 4353 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4354 #endif 4355 /* 4356 * At this point, all of the notifications that the events and 4357 * protocols are going away have been run, meaning that we can 4358 * now set about starting to clean things up. 4359 */ 4360 ipobs_fini(ipst); 4361 ipv4_hook_destroy(ipst); 4362 ipv6_hook_destroy(ipst); 4363 arp_hook_destroy(ipst); 4364 ip_net_destroy(ipst); 4365 4366 ipmp_destroy(ipst); 4367 4368 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4369 ipst->ips_ip_mibkp = NULL; 4370 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4371 ipst->ips_icmp_mibkp = NULL; 4372 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4373 ipst->ips_ip_kstat = NULL; 4374 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4375 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4376 ipst->ips_ip6_kstat = NULL; 4377 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4378 4379 kmem_free(ipst->ips_propinfo_tbl, 4380 ip_propinfo_count * sizeof (mod_prop_info_t)); 4381 ipst->ips_propinfo_tbl = NULL; 4382 4383 dce_stack_destroy(ipst); 4384 ip_mrouter_stack_destroy(ipst); 4385 4386 ret = untimeout(ipst->ips_igmp_timeout_id); 4387 if (ret == -1) { 4388 ASSERT(ipst->ips_igmp_timeout_id == 0); 4389 } else { 4390 ASSERT(ipst->ips_igmp_timeout_id != 0); 4391 ipst->ips_igmp_timeout_id = 0; 4392 } 4393 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4394 if (ret == -1) { 4395 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4396 } else { 4397 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4398 ipst->ips_igmp_slowtimeout_id = 0; 4399 } 4400 ret = untimeout(ipst->ips_mld_timeout_id); 4401 if (ret == -1) { 4402 ASSERT(ipst->ips_mld_timeout_id == 0); 4403 } else { 4404 ASSERT(ipst->ips_mld_timeout_id != 0); 4405 ipst->ips_mld_timeout_id = 0; 4406 } 4407 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4408 if (ret == -1) { 4409 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4410 } else { 4411 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4412 ipst->ips_mld_slowtimeout_id = 0; 4413 } 4414 4415 ip_ire_fini(ipst); 4416 ip6_asp_free(ipst); 4417 conn_drain_fini(ipst); 4418 ipcl_destroy(ipst); 4419 4420 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4421 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4422 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4423 ipst->ips_ndp4 = NULL; 4424 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4425 ipst->ips_ndp6 = NULL; 4426 4427 if (ipst->ips_loopback_ksp != NULL) { 4428 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4429 ipst->ips_loopback_ksp = NULL; 4430 } 4431 4432 mutex_destroy(&ipst->ips_capab_taskq_lock); 4433 cv_destroy(&ipst->ips_capab_taskq_cv); 4434 4435 rw_destroy(&ipst->ips_srcid_lock); 4436 4437 mutex_destroy(&ipst->ips_ip_mi_lock); 4438 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4439 4440 mutex_destroy(&ipst->ips_igmp_timer_lock); 4441 mutex_destroy(&ipst->ips_mld_timer_lock); 4442 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4443 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4444 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4445 rw_destroy(&ipst->ips_ill_g_lock); 4446 4447 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4448 ipst->ips_phyint_g_list = NULL; 4449 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4450 ipst->ips_ill_g_heads = NULL; 4451 4452 ldi_ident_release(ipst->ips_ldi_ident); 4453 kmem_free(ipst, sizeof (*ipst)); 4454 } 4455 4456 /* 4457 * This function is called from the TSD destructor, and is used to debug 4458 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4459 * details. 4460 */ 4461 static void 4462 ip_thread_exit(void *phash) 4463 { 4464 th_hash_t *thh = phash; 4465 4466 rw_enter(&ip_thread_rwlock, RW_WRITER); 4467 list_remove(&ip_thread_list, thh); 4468 rw_exit(&ip_thread_rwlock); 4469 mod_hash_destroy_hash(thh->thh_hash); 4470 kmem_free(thh, sizeof (*thh)); 4471 } 4472 4473 /* 4474 * Called when the IP kernel module is loaded into the kernel 4475 */ 4476 void 4477 ip_ddi_init(void) 4478 { 4479 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4480 4481 /* 4482 * For IP and TCP the minor numbers should start from 2 since we have 4 4483 * initial devices: ip, ip6, tcp, tcp6. 4484 */ 4485 /* 4486 * If this is a 64-bit kernel, then create two separate arenas - 4487 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4488 * other for socket apps in the range 2^^18 through 2^^32-1. 4489 */ 4490 ip_minor_arena_la = NULL; 4491 ip_minor_arena_sa = NULL; 4492 #if defined(_LP64) 4493 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4494 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4495 cmn_err(CE_PANIC, 4496 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4497 } 4498 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4499 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4500 cmn_err(CE_PANIC, 4501 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4502 } 4503 #else 4504 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4505 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4506 cmn_err(CE_PANIC, 4507 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4508 } 4509 #endif 4510 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4511 4512 ipcl_g_init(); 4513 ip_ire_g_init(); 4514 ip_net_g_init(); 4515 4516 #ifdef DEBUG 4517 tsd_create(&ip_thread_data, ip_thread_exit); 4518 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4519 list_create(&ip_thread_list, sizeof (th_hash_t), 4520 offsetof(th_hash_t, thh_link)); 4521 #endif 4522 ipsec_policy_g_init(); 4523 tcp_ddi_g_init(); 4524 sctp_ddi_g_init(); 4525 dce_g_init(); 4526 4527 /* 4528 * We want to be informed each time a stack is created or 4529 * destroyed in the kernel, so we can maintain the 4530 * set of udp_stack_t's. 4531 */ 4532 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4533 ip_stack_fini); 4534 4535 tnet_init(); 4536 4537 udp_ddi_g_init(); 4538 rts_ddi_g_init(); 4539 icmp_ddi_g_init(); 4540 ilb_ddi_g_init(); 4541 4542 /* This needs to be called after all transports are initialized. */ 4543 mutex_enter(&cpu_lock); 4544 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4545 mutex_exit(&cpu_lock); 4546 } 4547 4548 /* 4549 * Initialize the IP stack instance. 4550 */ 4551 static void * 4552 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4553 { 4554 ip_stack_t *ipst; 4555 size_t arrsz; 4556 major_t major; 4557 4558 #ifdef NS_DEBUG 4559 printf("ip_stack_init(stack %d)\n", stackid); 4560 #endif 4561 4562 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4563 ipst->ips_netstack = ns; 4564 4565 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4566 KM_SLEEP); 4567 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4568 KM_SLEEP); 4569 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4570 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4571 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4572 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4573 4574 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4575 ipst->ips_igmp_deferred_next = INFINITY; 4576 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4577 ipst->ips_mld_deferred_next = INFINITY; 4578 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4579 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4580 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4581 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4582 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4583 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4584 4585 ipcl_init(ipst); 4586 ip_ire_init(ipst); 4587 ip6_asp_init(ipst); 4588 ipif_init(ipst); 4589 conn_drain_init(ipst); 4590 ip_mrouter_stack_init(ipst); 4591 dce_stack_init(ipst); 4592 4593 ipst->ips_ip_multirt_log_interval = 1000; 4594 4595 ipst->ips_ill_index = 1; 4596 4597 ipst->ips_saved_ip_forwarding = -1; 4598 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4599 4600 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4601 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4602 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4603 4604 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4605 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4606 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4607 ipst->ips_ip6_kstat = 4608 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4609 4610 ipst->ips_ip_src_id = 1; 4611 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4612 4613 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4614 4615 ip_net_init(ipst, ns); 4616 ipv4_hook_init(ipst); 4617 ipv6_hook_init(ipst); 4618 arp_hook_init(ipst); 4619 ipmp_init(ipst); 4620 ipobs_init(ipst); 4621 4622 /* 4623 * Create the taskq dispatcher thread and initialize related stuff. 4624 */ 4625 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4626 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4627 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4628 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4629 4630 major = mod_name_to_major(INET_NAME); 4631 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4632 return (ipst); 4633 } 4634 4635 /* 4636 * Allocate and initialize a DLPI template of the specified length. (May be 4637 * called as writer.) 4638 */ 4639 mblk_t * 4640 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4641 { 4642 mblk_t *mp; 4643 4644 mp = allocb(len, BPRI_MED); 4645 if (!mp) 4646 return (NULL); 4647 4648 /* 4649 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4650 * of which we don't seem to use) are sent with M_PCPROTO, and 4651 * that other DLPI are M_PROTO. 4652 */ 4653 if (prim == DL_INFO_REQ) { 4654 mp->b_datap->db_type = M_PCPROTO; 4655 } else { 4656 mp->b_datap->db_type = M_PROTO; 4657 } 4658 4659 mp->b_wptr = mp->b_rptr + len; 4660 bzero(mp->b_rptr, len); 4661 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4662 return (mp); 4663 } 4664 4665 /* 4666 * Allocate and initialize a DLPI notification. (May be called as writer.) 4667 */ 4668 mblk_t * 4669 ip_dlnotify_alloc(uint_t notification, uint_t data) 4670 { 4671 dl_notify_ind_t *notifyp; 4672 mblk_t *mp; 4673 4674 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4675 return (NULL); 4676 4677 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4678 notifyp->dl_notification = notification; 4679 notifyp->dl_data = data; 4680 return (mp); 4681 } 4682 4683 /* 4684 * Debug formatting routine. Returns a character string representation of the 4685 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4686 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4687 * 4688 * Once the ndd table-printing interfaces are removed, this can be changed to 4689 * standard dotted-decimal form. 4690 */ 4691 char * 4692 ip_dot_addr(ipaddr_t addr, char *buf) 4693 { 4694 uint8_t *ap = (uint8_t *)&addr; 4695 4696 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4697 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4698 return (buf); 4699 } 4700 4701 /* 4702 * Write the given MAC address as a printable string in the usual colon- 4703 * separated format. 4704 */ 4705 const char * 4706 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4707 { 4708 char *bp; 4709 4710 if (alen == 0 || buflen < 4) 4711 return ("?"); 4712 bp = buf; 4713 for (;;) { 4714 /* 4715 * If there are more MAC address bytes available, but we won't 4716 * have any room to print them, then add "..." to the string 4717 * instead. See below for the 'magic number' explanation. 4718 */ 4719 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4720 (void) strcpy(bp, "..."); 4721 break; 4722 } 4723 (void) sprintf(bp, "%02x", *addr++); 4724 bp += 2; 4725 if (--alen == 0) 4726 break; 4727 *bp++ = ':'; 4728 buflen -= 3; 4729 /* 4730 * At this point, based on the first 'if' statement above, 4731 * either alen == 1 and buflen >= 3, or alen > 1 and 4732 * buflen >= 4. The first case leaves room for the final "xx" 4733 * number and trailing NUL byte. The second leaves room for at 4734 * least "...". Thus the apparently 'magic' numbers chosen for 4735 * that statement. 4736 */ 4737 } 4738 return (buf); 4739 } 4740 4741 /* 4742 * Called when it is conceptually a ULP that would sent the packet 4743 * e.g., port unreachable and protocol unreachable. Check that the packet 4744 * would have passed the IPsec global policy before sending the error. 4745 * 4746 * Send an ICMP error after patching up the packet appropriately. 4747 * Uses ip_drop_input and bumps the appropriate MIB. 4748 */ 4749 void 4750 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4751 ip_recv_attr_t *ira) 4752 { 4753 ipha_t *ipha; 4754 boolean_t secure; 4755 ill_t *ill = ira->ira_ill; 4756 ip_stack_t *ipst = ill->ill_ipst; 4757 netstack_t *ns = ipst->ips_netstack; 4758 ipsec_stack_t *ipss = ns->netstack_ipsec; 4759 4760 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4761 4762 /* 4763 * We are generating an icmp error for some inbound packet. 4764 * Called from all ip_fanout_(udp, tcp, proto) functions. 4765 * Before we generate an error, check with global policy 4766 * to see whether this is allowed to enter the system. As 4767 * there is no "conn", we are checking with global policy. 4768 */ 4769 ipha = (ipha_t *)mp->b_rptr; 4770 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4771 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4772 if (mp == NULL) 4773 return; 4774 } 4775 4776 /* We never send errors for protocols that we do implement */ 4777 if (ira->ira_protocol == IPPROTO_ICMP || 4778 ira->ira_protocol == IPPROTO_IGMP) { 4779 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4780 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4781 freemsg(mp); 4782 return; 4783 } 4784 /* 4785 * Have to correct checksum since 4786 * the packet might have been 4787 * fragmented and the reassembly code in ip_rput 4788 * does not restore the IP checksum. 4789 */ 4790 ipha->ipha_hdr_checksum = 0; 4791 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4792 4793 switch (icmp_type) { 4794 case ICMP_DEST_UNREACHABLE: 4795 switch (icmp_code) { 4796 case ICMP_PROTOCOL_UNREACHABLE: 4797 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4798 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4799 break; 4800 case ICMP_PORT_UNREACHABLE: 4801 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4802 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4803 break; 4804 } 4805 4806 icmp_unreachable(mp, icmp_code, ira); 4807 break; 4808 default: 4809 #ifdef DEBUG 4810 panic("ip_fanout_send_icmp_v4: wrong type"); 4811 /*NOTREACHED*/ 4812 #else 4813 freemsg(mp); 4814 break; 4815 #endif 4816 } 4817 } 4818 4819 /* 4820 * Used to send an ICMP error message when a packet is received for 4821 * a protocol that is not supported. The mblk passed as argument 4822 * is consumed by this function. 4823 */ 4824 void 4825 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4826 { 4827 ipha_t *ipha; 4828 4829 ipha = (ipha_t *)mp->b_rptr; 4830 if (ira->ira_flags & IRAF_IS_IPV4) { 4831 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4832 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4833 ICMP_PROTOCOL_UNREACHABLE, ira); 4834 } else { 4835 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4836 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4837 ICMP6_PARAMPROB_NEXTHEADER, ira); 4838 } 4839 } 4840 4841 /* 4842 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4843 * Handles IPv4 and IPv6. 4844 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4845 * Caller is responsible for dropping references to the conn. 4846 */ 4847 void 4848 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4849 ip_recv_attr_t *ira) 4850 { 4851 ill_t *ill = ira->ira_ill; 4852 ip_stack_t *ipst = ill->ill_ipst; 4853 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4854 boolean_t secure; 4855 uint_t protocol = ira->ira_protocol; 4856 iaflags_t iraflags = ira->ira_flags; 4857 queue_t *rq; 4858 4859 secure = iraflags & IRAF_IPSEC_SECURE; 4860 4861 rq = connp->conn_rq; 4862 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4863 switch (protocol) { 4864 case IPPROTO_ICMPV6: 4865 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4866 break; 4867 case IPPROTO_ICMP: 4868 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4869 break; 4870 default: 4871 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4872 break; 4873 } 4874 freemsg(mp); 4875 return; 4876 } 4877 4878 ASSERT(!(IPCL_IS_IPTUN(connp))); 4879 4880 if (((iraflags & IRAF_IS_IPV4) ? 4881 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4882 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4883 secure) { 4884 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4885 ip6h, ira); 4886 if (mp == NULL) { 4887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4888 /* Note that mp is NULL */ 4889 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4890 return; 4891 } 4892 } 4893 4894 if (iraflags & IRAF_ICMP_ERROR) { 4895 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4896 } else { 4897 ill_t *rill = ira->ira_rill; 4898 4899 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4900 ira->ira_ill = ira->ira_rill = NULL; 4901 /* Send it upstream */ 4902 (connp->conn_recv)(connp, mp, NULL, ira); 4903 ira->ira_ill = ill; 4904 ira->ira_rill = rill; 4905 } 4906 } 4907 4908 /* 4909 * Handle protocols with which IP is less intimate. There 4910 * can be more than one stream bound to a particular 4911 * protocol. When this is the case, normally each one gets a copy 4912 * of any incoming packets. 4913 * 4914 * IPsec NOTE : 4915 * 4916 * Don't allow a secure packet going up a non-secure connection. 4917 * We don't allow this because 4918 * 4919 * 1) Reply might go out in clear which will be dropped at 4920 * the sending side. 4921 * 2) If the reply goes out in clear it will give the 4922 * adversary enough information for getting the key in 4923 * most of the cases. 4924 * 4925 * Moreover getting a secure packet when we expect clear 4926 * implies that SA's were added without checking for 4927 * policy on both ends. This should not happen once ISAKMP 4928 * is used to negotiate SAs as SAs will be added only after 4929 * verifying the policy. 4930 * 4931 * Zones notes: 4932 * Earlier in ip_input on a system with multiple shared-IP zones we 4933 * duplicate the multicast and broadcast packets and send them up 4934 * with each explicit zoneid that exists on that ill. 4935 * This means that here we can match the zoneid with SO_ALLZONES being special. 4936 */ 4937 void 4938 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4939 { 4940 mblk_t *mp1; 4941 ipaddr_t laddr; 4942 conn_t *connp, *first_connp, *next_connp; 4943 connf_t *connfp; 4944 ill_t *ill = ira->ira_ill; 4945 ip_stack_t *ipst = ill->ill_ipst; 4946 4947 laddr = ipha->ipha_dst; 4948 4949 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4950 mutex_enter(&connfp->connf_lock); 4951 connp = connfp->connf_head; 4952 for (connp = connfp->connf_head; connp != NULL; 4953 connp = connp->conn_next) { 4954 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4955 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4956 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4957 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4958 break; 4959 } 4960 } 4961 4962 if (connp == NULL) { 4963 /* 4964 * No one bound to these addresses. Is 4965 * there a client that wants all 4966 * unclaimed datagrams? 4967 */ 4968 mutex_exit(&connfp->connf_lock); 4969 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4970 ICMP_PROTOCOL_UNREACHABLE, ira); 4971 return; 4972 } 4973 4974 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4975 4976 CONN_INC_REF(connp); 4977 first_connp = connp; 4978 connp = connp->conn_next; 4979 4980 for (;;) { 4981 while (connp != NULL) { 4982 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4983 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4984 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4985 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4986 ira, connp))) 4987 break; 4988 connp = connp->conn_next; 4989 } 4990 4991 if (connp == NULL) { 4992 /* No more interested clients */ 4993 connp = first_connp; 4994 break; 4995 } 4996 if (((mp1 = dupmsg(mp)) == NULL) && 4997 ((mp1 = copymsg(mp)) == NULL)) { 4998 /* Memory allocation failed */ 4999 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5000 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5001 connp = first_connp; 5002 break; 5003 } 5004 5005 CONN_INC_REF(connp); 5006 mutex_exit(&connfp->connf_lock); 5007 5008 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5009 ira); 5010 5011 mutex_enter(&connfp->connf_lock); 5012 /* Follow the next pointer before releasing the conn. */ 5013 next_connp = connp->conn_next; 5014 CONN_DEC_REF(connp); 5015 connp = next_connp; 5016 } 5017 5018 /* Last one. Send it upstream. */ 5019 mutex_exit(&connfp->connf_lock); 5020 5021 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5022 5023 CONN_DEC_REF(connp); 5024 } 5025 5026 /* 5027 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5028 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5029 * is not consumed. 5030 * 5031 * One of three things can happen, all of which affect the passed-in mblk: 5032 * 5033 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5034 * 5035 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5036 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5037 * 5038 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5039 */ 5040 mblk_t * 5041 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5042 { 5043 int shift, plen, iph_len; 5044 ipha_t *ipha; 5045 udpha_t *udpha; 5046 uint32_t *spi; 5047 uint32_t esp_ports; 5048 uint8_t *orptr; 5049 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5050 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5051 5052 ipha = (ipha_t *)mp->b_rptr; 5053 iph_len = ira->ira_ip_hdr_length; 5054 plen = ira->ira_pktlen; 5055 5056 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5057 /* 5058 * Most likely a keepalive for the benefit of an intervening 5059 * NAT. These aren't for us, per se, so drop it. 5060 * 5061 * RFC 3947/8 doesn't say for sure what to do for 2-3 5062 * byte packets (keepalives are 1-byte), but we'll drop them 5063 * also. 5064 */ 5065 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5066 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5067 return (NULL); 5068 } 5069 5070 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5071 /* might as well pull it all up - it might be ESP. */ 5072 if (!pullupmsg(mp, -1)) { 5073 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5074 DROPPER(ipss, ipds_esp_nomem), 5075 &ipss->ipsec_dropper); 5076 return (NULL); 5077 } 5078 5079 ipha = (ipha_t *)mp->b_rptr; 5080 } 5081 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5082 if (*spi == 0) { 5083 /* UDP packet - remove 0-spi. */ 5084 shift = sizeof (uint32_t); 5085 } else { 5086 /* ESP-in-UDP packet - reduce to ESP. */ 5087 ipha->ipha_protocol = IPPROTO_ESP; 5088 shift = sizeof (udpha_t); 5089 } 5090 5091 /* Fix IP header */ 5092 ira->ira_pktlen = (plen - shift); 5093 ipha->ipha_length = htons(ira->ira_pktlen); 5094 ipha->ipha_hdr_checksum = 0; 5095 5096 orptr = mp->b_rptr; 5097 mp->b_rptr += shift; 5098 5099 udpha = (udpha_t *)(orptr + iph_len); 5100 if (*spi == 0) { 5101 ASSERT((uint8_t *)ipha == orptr); 5102 udpha->uha_length = htons(plen - shift - iph_len); 5103 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5104 esp_ports = 0; 5105 } else { 5106 esp_ports = *((uint32_t *)udpha); 5107 ASSERT(esp_ports != 0); 5108 } 5109 ovbcopy(orptr, orptr + shift, iph_len); 5110 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5111 ipha = (ipha_t *)(orptr + shift); 5112 5113 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5114 ira->ira_esp_udp_ports = esp_ports; 5115 ip_fanout_v4(mp, ipha, ira); 5116 return (NULL); 5117 } 5118 return (mp); 5119 } 5120 5121 /* 5122 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5123 * Handles IPv4 and IPv6. 5124 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5125 * Caller is responsible for dropping references to the conn. 5126 */ 5127 void 5128 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5129 ip_recv_attr_t *ira) 5130 { 5131 ill_t *ill = ira->ira_ill; 5132 ip_stack_t *ipst = ill->ill_ipst; 5133 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5134 boolean_t secure; 5135 iaflags_t iraflags = ira->ira_flags; 5136 5137 secure = iraflags & IRAF_IPSEC_SECURE; 5138 5139 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5140 !canputnext(connp->conn_rq)) { 5141 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5142 freemsg(mp); 5143 return; 5144 } 5145 5146 if (((iraflags & IRAF_IS_IPV4) ? 5147 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5148 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5149 secure) { 5150 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5151 ip6h, ira); 5152 if (mp == NULL) { 5153 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5154 /* Note that mp is NULL */ 5155 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5156 return; 5157 } 5158 } 5159 5160 /* 5161 * Since this code is not used for UDP unicast we don't need a NAT_T 5162 * check. Only ip_fanout_v4 has that check. 5163 */ 5164 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5165 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5166 } else { 5167 ill_t *rill = ira->ira_rill; 5168 5169 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5170 ira->ira_ill = ira->ira_rill = NULL; 5171 /* Send it upstream */ 5172 (connp->conn_recv)(connp, mp, NULL, ira); 5173 ira->ira_ill = ill; 5174 ira->ira_rill = rill; 5175 } 5176 } 5177 5178 /* 5179 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5180 * (Unicast fanout is handled in ip_input_v4.) 5181 * 5182 * If SO_REUSEADDR is set all multicast and broadcast packets 5183 * will be delivered to all conns bound to the same port. 5184 * 5185 * If there is at least one matching AF_INET receiver, then we will 5186 * ignore any AF_INET6 receivers. 5187 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5188 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5189 * packets. 5190 * 5191 * Zones notes: 5192 * Earlier in ip_input on a system with multiple shared-IP zones we 5193 * duplicate the multicast and broadcast packets and send them up 5194 * with each explicit zoneid that exists on that ill. 5195 * This means that here we can match the zoneid with SO_ALLZONES being special. 5196 */ 5197 void 5198 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5199 ip_recv_attr_t *ira) 5200 { 5201 ipaddr_t laddr; 5202 in6_addr_t v6faddr; 5203 conn_t *connp; 5204 connf_t *connfp; 5205 ipaddr_t faddr; 5206 ill_t *ill = ira->ira_ill; 5207 ip_stack_t *ipst = ill->ill_ipst; 5208 5209 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5210 5211 laddr = ipha->ipha_dst; 5212 faddr = ipha->ipha_src; 5213 5214 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5215 mutex_enter(&connfp->connf_lock); 5216 connp = connfp->connf_head; 5217 5218 /* 5219 * If SO_REUSEADDR has been set on the first we send the 5220 * packet to all clients that have joined the group and 5221 * match the port. 5222 */ 5223 while (connp != NULL) { 5224 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5225 conn_wantpacket(connp, ira, ipha) && 5226 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5227 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5228 break; 5229 connp = connp->conn_next; 5230 } 5231 5232 if (connp == NULL) 5233 goto notfound; 5234 5235 CONN_INC_REF(connp); 5236 5237 if (connp->conn_reuseaddr) { 5238 conn_t *first_connp = connp; 5239 conn_t *next_connp; 5240 mblk_t *mp1; 5241 5242 connp = connp->conn_next; 5243 for (;;) { 5244 while (connp != NULL) { 5245 if (IPCL_UDP_MATCH(connp, lport, laddr, 5246 fport, faddr) && 5247 conn_wantpacket(connp, ira, ipha) && 5248 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5249 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5250 ira, connp))) 5251 break; 5252 connp = connp->conn_next; 5253 } 5254 if (connp == NULL) { 5255 /* No more interested clients */ 5256 connp = first_connp; 5257 break; 5258 } 5259 if (((mp1 = dupmsg(mp)) == NULL) && 5260 ((mp1 = copymsg(mp)) == NULL)) { 5261 /* Memory allocation failed */ 5262 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5263 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5264 connp = first_connp; 5265 break; 5266 } 5267 CONN_INC_REF(connp); 5268 mutex_exit(&connfp->connf_lock); 5269 5270 IP_STAT(ipst, ip_udp_fanmb); 5271 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5272 NULL, ira); 5273 mutex_enter(&connfp->connf_lock); 5274 /* Follow the next pointer before releasing the conn */ 5275 next_connp = connp->conn_next; 5276 CONN_DEC_REF(connp); 5277 connp = next_connp; 5278 } 5279 } 5280 5281 /* Last one. Send it upstream. */ 5282 mutex_exit(&connfp->connf_lock); 5283 IP_STAT(ipst, ip_udp_fanmb); 5284 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5285 CONN_DEC_REF(connp); 5286 return; 5287 5288 notfound: 5289 mutex_exit(&connfp->connf_lock); 5290 /* 5291 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5292 * have already been matched above, since they live in the IPv4 5293 * fanout tables. This implies we only need to 5294 * check for IPv6 in6addr_any endpoints here. 5295 * Thus we compare using ipv6_all_zeros instead of the destination 5296 * address, except for the multicast group membership lookup which 5297 * uses the IPv4 destination. 5298 */ 5299 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5300 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5301 mutex_enter(&connfp->connf_lock); 5302 connp = connfp->connf_head; 5303 /* 5304 * IPv4 multicast packet being delivered to an AF_INET6 5305 * in6addr_any endpoint. 5306 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5307 * and not conn_wantpacket_v6() since any multicast membership is 5308 * for an IPv4-mapped multicast address. 5309 */ 5310 while (connp != NULL) { 5311 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5312 fport, v6faddr) && 5313 conn_wantpacket(connp, ira, ipha) && 5314 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5315 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5316 break; 5317 connp = connp->conn_next; 5318 } 5319 5320 if (connp == NULL) { 5321 /* 5322 * No one bound to this port. Is 5323 * there a client that wants all 5324 * unclaimed datagrams? 5325 */ 5326 mutex_exit(&connfp->connf_lock); 5327 5328 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5329 NULL) { 5330 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5331 ip_fanout_proto_v4(mp, ipha, ira); 5332 } else { 5333 /* 5334 * We used to attempt to send an icmp error here, but 5335 * since this is known to be a multicast packet 5336 * and we don't send icmp errors in response to 5337 * multicast, just drop the packet and give up sooner. 5338 */ 5339 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5340 freemsg(mp); 5341 } 5342 return; 5343 } 5344 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5345 5346 /* 5347 * If SO_REUSEADDR has been set on the first we send the 5348 * packet to all clients that have joined the group and 5349 * match the port. 5350 */ 5351 if (connp->conn_reuseaddr) { 5352 conn_t *first_connp = connp; 5353 conn_t *next_connp; 5354 mblk_t *mp1; 5355 5356 CONN_INC_REF(connp); 5357 connp = connp->conn_next; 5358 for (;;) { 5359 while (connp != NULL) { 5360 if (IPCL_UDP_MATCH_V6(connp, lport, 5361 ipv6_all_zeros, fport, v6faddr) && 5362 conn_wantpacket(connp, ira, ipha) && 5363 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5364 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5365 ira, connp))) 5366 break; 5367 connp = connp->conn_next; 5368 } 5369 if (connp == NULL) { 5370 /* No more interested clients */ 5371 connp = first_connp; 5372 break; 5373 } 5374 if (((mp1 = dupmsg(mp)) == NULL) && 5375 ((mp1 = copymsg(mp)) == NULL)) { 5376 /* Memory allocation failed */ 5377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5378 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5379 connp = first_connp; 5380 break; 5381 } 5382 CONN_INC_REF(connp); 5383 mutex_exit(&connfp->connf_lock); 5384 5385 IP_STAT(ipst, ip_udp_fanmb); 5386 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5387 NULL, ira); 5388 mutex_enter(&connfp->connf_lock); 5389 /* Follow the next pointer before releasing the conn */ 5390 next_connp = connp->conn_next; 5391 CONN_DEC_REF(connp); 5392 connp = next_connp; 5393 } 5394 } 5395 5396 /* Last one. Send it upstream. */ 5397 mutex_exit(&connfp->connf_lock); 5398 IP_STAT(ipst, ip_udp_fanmb); 5399 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5400 CONN_DEC_REF(connp); 5401 } 5402 5403 /* 5404 * Split an incoming packet's IPv4 options into the label and the other options. 5405 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5406 * clearing out any leftover label or options. 5407 * Otherwise it just makes ipp point into the packet. 5408 * 5409 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5410 */ 5411 int 5412 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5413 { 5414 uchar_t *opt; 5415 uint32_t totallen; 5416 uint32_t optval; 5417 uint32_t optlen; 5418 5419 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5420 ipp->ipp_hoplimit = ipha->ipha_ttl; 5421 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5422 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5423 5424 /* 5425 * Get length (in 4 byte octets) of IP header options. 5426 */ 5427 totallen = ipha->ipha_version_and_hdr_length - 5428 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5429 5430 if (totallen == 0) { 5431 if (!allocate) 5432 return (0); 5433 5434 /* Clear out anything from a previous packet */ 5435 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5436 kmem_free(ipp->ipp_ipv4_options, 5437 ipp->ipp_ipv4_options_len); 5438 ipp->ipp_ipv4_options = NULL; 5439 ipp->ipp_ipv4_options_len = 0; 5440 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5441 } 5442 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5443 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5444 ipp->ipp_label_v4 = NULL; 5445 ipp->ipp_label_len_v4 = 0; 5446 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5447 } 5448 return (0); 5449 } 5450 5451 totallen <<= 2; 5452 opt = (uchar_t *)&ipha[1]; 5453 if (!is_system_labeled()) { 5454 5455 copyall: 5456 if (!allocate) { 5457 if (totallen != 0) { 5458 ipp->ipp_ipv4_options = opt; 5459 ipp->ipp_ipv4_options_len = totallen; 5460 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5461 } 5462 return (0); 5463 } 5464 /* Just copy all of options */ 5465 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5466 if (totallen == ipp->ipp_ipv4_options_len) { 5467 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5468 return (0); 5469 } 5470 kmem_free(ipp->ipp_ipv4_options, 5471 ipp->ipp_ipv4_options_len); 5472 ipp->ipp_ipv4_options = NULL; 5473 ipp->ipp_ipv4_options_len = 0; 5474 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5475 } 5476 if (totallen == 0) 5477 return (0); 5478 5479 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5480 if (ipp->ipp_ipv4_options == NULL) 5481 return (ENOMEM); 5482 ipp->ipp_ipv4_options_len = totallen; 5483 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5484 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5485 return (0); 5486 } 5487 5488 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5489 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5490 ipp->ipp_label_v4 = NULL; 5491 ipp->ipp_label_len_v4 = 0; 5492 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5493 } 5494 5495 /* 5496 * Search for CIPSO option. 5497 * We assume CIPSO is first in options if it is present. 5498 * If it isn't, then ipp_opt_ipv4_options will not include the options 5499 * prior to the CIPSO option. 5500 */ 5501 while (totallen != 0) { 5502 switch (optval = opt[IPOPT_OPTVAL]) { 5503 case IPOPT_EOL: 5504 return (0); 5505 case IPOPT_NOP: 5506 optlen = 1; 5507 break; 5508 default: 5509 if (totallen <= IPOPT_OLEN) 5510 return (EINVAL); 5511 optlen = opt[IPOPT_OLEN]; 5512 if (optlen < 2) 5513 return (EINVAL); 5514 } 5515 if (optlen > totallen) 5516 return (EINVAL); 5517 5518 switch (optval) { 5519 case IPOPT_COMSEC: 5520 if (!allocate) { 5521 ipp->ipp_label_v4 = opt; 5522 ipp->ipp_label_len_v4 = optlen; 5523 ipp->ipp_fields |= IPPF_LABEL_V4; 5524 } else { 5525 ipp->ipp_label_v4 = kmem_alloc(optlen, 5526 KM_NOSLEEP); 5527 if (ipp->ipp_label_v4 == NULL) 5528 return (ENOMEM); 5529 ipp->ipp_label_len_v4 = optlen; 5530 ipp->ipp_fields |= IPPF_LABEL_V4; 5531 bcopy(opt, ipp->ipp_label_v4, optlen); 5532 } 5533 totallen -= optlen; 5534 opt += optlen; 5535 5536 /* Skip padding bytes until we get to a multiple of 4 */ 5537 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5538 totallen--; 5539 opt++; 5540 } 5541 /* Remaining as ipp_ipv4_options */ 5542 goto copyall; 5543 } 5544 totallen -= optlen; 5545 opt += optlen; 5546 } 5547 /* No CIPSO found; return everything as ipp_ipv4_options */ 5548 totallen = ipha->ipha_version_and_hdr_length - 5549 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5550 totallen <<= 2; 5551 opt = (uchar_t *)&ipha[1]; 5552 goto copyall; 5553 } 5554 5555 /* 5556 * Efficient versions of lookup for an IRE when we only 5557 * match the address. 5558 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5559 * Does not handle multicast addresses. 5560 */ 5561 uint_t 5562 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5563 { 5564 ire_t *ire; 5565 uint_t result; 5566 5567 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5568 ASSERT(ire != NULL); 5569 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5570 result = IRE_NOROUTE; 5571 else 5572 result = ire->ire_type; 5573 ire_refrele(ire); 5574 return (result); 5575 } 5576 5577 /* 5578 * Efficient versions of lookup for an IRE when we only 5579 * match the address. 5580 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5581 * Does not handle multicast addresses. 5582 */ 5583 uint_t 5584 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5585 { 5586 ire_t *ire; 5587 uint_t result; 5588 5589 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5590 ASSERT(ire != NULL); 5591 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5592 result = IRE_NOROUTE; 5593 else 5594 result = ire->ire_type; 5595 ire_refrele(ire); 5596 return (result); 5597 } 5598 5599 /* 5600 * Nobody should be sending 5601 * packets up this stream 5602 */ 5603 static void 5604 ip_lrput(queue_t *q, mblk_t *mp) 5605 { 5606 switch (mp->b_datap->db_type) { 5607 case M_FLUSH: 5608 /* Turn around */ 5609 if (*mp->b_rptr & FLUSHW) { 5610 *mp->b_rptr &= ~FLUSHR; 5611 qreply(q, mp); 5612 return; 5613 } 5614 break; 5615 } 5616 freemsg(mp); 5617 } 5618 5619 /* Nobody should be sending packets down this stream */ 5620 /* ARGSUSED */ 5621 void 5622 ip_lwput(queue_t *q, mblk_t *mp) 5623 { 5624 freemsg(mp); 5625 } 5626 5627 /* 5628 * Move the first hop in any source route to ipha_dst and remove that part of 5629 * the source route. Called by other protocols. Errors in option formatting 5630 * are ignored - will be handled by ip_output_options. Return the final 5631 * destination (either ipha_dst or the last entry in a source route.) 5632 */ 5633 ipaddr_t 5634 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5635 { 5636 ipoptp_t opts; 5637 uchar_t *opt; 5638 uint8_t optval; 5639 uint8_t optlen; 5640 ipaddr_t dst; 5641 int i; 5642 ip_stack_t *ipst = ns->netstack_ip; 5643 5644 ip2dbg(("ip_massage_options\n")); 5645 dst = ipha->ipha_dst; 5646 for (optval = ipoptp_first(&opts, ipha); 5647 optval != IPOPT_EOL; 5648 optval = ipoptp_next(&opts)) { 5649 opt = opts.ipoptp_cur; 5650 switch (optval) { 5651 uint8_t off; 5652 case IPOPT_SSRR: 5653 case IPOPT_LSRR: 5654 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5655 ip1dbg(("ip_massage_options: bad src route\n")); 5656 break; 5657 } 5658 optlen = opts.ipoptp_len; 5659 off = opt[IPOPT_OFFSET]; 5660 off--; 5661 redo_srr: 5662 if (optlen < IP_ADDR_LEN || 5663 off > optlen - IP_ADDR_LEN) { 5664 /* End of source route */ 5665 ip1dbg(("ip_massage_options: end of SR\n")); 5666 break; 5667 } 5668 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5669 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5670 ntohl(dst))); 5671 /* 5672 * Check if our address is present more than 5673 * once as consecutive hops in source route. 5674 * XXX verify per-interface ip_forwarding 5675 * for source route? 5676 */ 5677 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5678 off += IP_ADDR_LEN; 5679 goto redo_srr; 5680 } 5681 if (dst == htonl(INADDR_LOOPBACK)) { 5682 ip1dbg(("ip_massage_options: loopback addr in " 5683 "source route!\n")); 5684 break; 5685 } 5686 /* 5687 * Update ipha_dst to be the first hop and remove the 5688 * first hop from the source route (by overwriting 5689 * part of the option with NOP options). 5690 */ 5691 ipha->ipha_dst = dst; 5692 /* Put the last entry in dst */ 5693 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5694 3; 5695 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5696 5697 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5698 ntohl(dst))); 5699 /* Move down and overwrite */ 5700 opt[IP_ADDR_LEN] = opt[0]; 5701 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5702 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5703 for (i = 0; i < IP_ADDR_LEN; i++) 5704 opt[i] = IPOPT_NOP; 5705 break; 5706 } 5707 } 5708 return (dst); 5709 } 5710 5711 /* 5712 * Return the network mask 5713 * associated with the specified address. 5714 */ 5715 ipaddr_t 5716 ip_net_mask(ipaddr_t addr) 5717 { 5718 uchar_t *up = (uchar_t *)&addr; 5719 ipaddr_t mask = 0; 5720 uchar_t *maskp = (uchar_t *)&mask; 5721 5722 #if defined(__i386) || defined(__amd64) 5723 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5724 #endif 5725 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5726 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5727 #endif 5728 if (CLASSD(addr)) { 5729 maskp[0] = 0xF0; 5730 return (mask); 5731 } 5732 5733 /* We assume Class E default netmask to be 32 */ 5734 if (CLASSE(addr)) 5735 return (0xffffffffU); 5736 5737 if (addr == 0) 5738 return (0); 5739 maskp[0] = 0xFF; 5740 if ((up[0] & 0x80) == 0) 5741 return (mask); 5742 5743 maskp[1] = 0xFF; 5744 if ((up[0] & 0xC0) == 0x80) 5745 return (mask); 5746 5747 maskp[2] = 0xFF; 5748 if ((up[0] & 0xE0) == 0xC0) 5749 return (mask); 5750 5751 /* Otherwise return no mask */ 5752 return ((ipaddr_t)0); 5753 } 5754 5755 /* Name/Value Table Lookup Routine */ 5756 char * 5757 ip_nv_lookup(nv_t *nv, int value) 5758 { 5759 if (!nv) 5760 return (NULL); 5761 for (; nv->nv_name; nv++) { 5762 if (nv->nv_value == value) 5763 return (nv->nv_name); 5764 } 5765 return ("unknown"); 5766 } 5767 5768 static int 5769 ip_wait_for_info_ack(ill_t *ill) 5770 { 5771 int err; 5772 5773 mutex_enter(&ill->ill_lock); 5774 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5775 /* 5776 * Return value of 0 indicates a pending signal. 5777 */ 5778 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5779 if (err == 0) { 5780 mutex_exit(&ill->ill_lock); 5781 return (EINTR); 5782 } 5783 } 5784 mutex_exit(&ill->ill_lock); 5785 /* 5786 * ip_rput_other could have set an error in ill_error on 5787 * receipt of M_ERROR. 5788 */ 5789 return (ill->ill_error); 5790 } 5791 5792 /* 5793 * This is a module open, i.e. this is a control stream for access 5794 * to a DLPI device. We allocate an ill_t as the instance data in 5795 * this case. 5796 */ 5797 static int 5798 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5799 { 5800 ill_t *ill; 5801 int err; 5802 zoneid_t zoneid; 5803 netstack_t *ns; 5804 ip_stack_t *ipst; 5805 5806 /* 5807 * Prevent unprivileged processes from pushing IP so that 5808 * they can't send raw IP. 5809 */ 5810 if (secpolicy_net_rawaccess(credp) != 0) 5811 return (EPERM); 5812 5813 ns = netstack_find_by_cred(credp); 5814 ASSERT(ns != NULL); 5815 ipst = ns->netstack_ip; 5816 ASSERT(ipst != NULL); 5817 5818 /* 5819 * For exclusive stacks we set the zoneid to zero 5820 * to make IP operate as if in the global zone. 5821 */ 5822 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5823 zoneid = GLOBAL_ZONEID; 5824 else 5825 zoneid = crgetzoneid(credp); 5826 5827 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5828 q->q_ptr = WR(q)->q_ptr = ill; 5829 ill->ill_ipst = ipst; 5830 ill->ill_zoneid = zoneid; 5831 5832 /* 5833 * ill_init initializes the ill fields and then sends down 5834 * down a DL_INFO_REQ after calling qprocson. 5835 */ 5836 err = ill_init(q, ill); 5837 5838 if (err != 0) { 5839 mi_free(ill); 5840 netstack_rele(ipst->ips_netstack); 5841 q->q_ptr = NULL; 5842 WR(q)->q_ptr = NULL; 5843 return (err); 5844 } 5845 5846 /* 5847 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5848 * 5849 * ill_init initializes the ipsq marking this thread as 5850 * writer 5851 */ 5852 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5853 err = ip_wait_for_info_ack(ill); 5854 if (err == 0) 5855 ill->ill_credp = credp; 5856 else 5857 goto fail; 5858 5859 crhold(credp); 5860 5861 mutex_enter(&ipst->ips_ip_mi_lock); 5862 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5863 sflag, credp); 5864 mutex_exit(&ipst->ips_ip_mi_lock); 5865 fail: 5866 if (err) { 5867 (void) ip_close(q, 0); 5868 return (err); 5869 } 5870 return (0); 5871 } 5872 5873 /* For /dev/ip aka AF_INET open */ 5874 int 5875 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5876 { 5877 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5878 } 5879 5880 /* For /dev/ip6 aka AF_INET6 open */ 5881 int 5882 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5883 { 5884 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5885 } 5886 5887 /* IP open routine. */ 5888 int 5889 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5890 boolean_t isv6) 5891 { 5892 conn_t *connp; 5893 major_t maj; 5894 zoneid_t zoneid; 5895 netstack_t *ns; 5896 ip_stack_t *ipst; 5897 5898 /* Allow reopen. */ 5899 if (q->q_ptr != NULL) 5900 return (0); 5901 5902 if (sflag & MODOPEN) { 5903 /* This is a module open */ 5904 return (ip_modopen(q, devp, flag, sflag, credp)); 5905 } 5906 5907 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5908 /* 5909 * Non streams based socket looking for a stream 5910 * to access IP 5911 */ 5912 return (ip_helper_stream_setup(q, devp, flag, sflag, 5913 credp, isv6)); 5914 } 5915 5916 ns = netstack_find_by_cred(credp); 5917 ASSERT(ns != NULL); 5918 ipst = ns->netstack_ip; 5919 ASSERT(ipst != NULL); 5920 5921 /* 5922 * For exclusive stacks we set the zoneid to zero 5923 * to make IP operate as if in the global zone. 5924 */ 5925 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5926 zoneid = GLOBAL_ZONEID; 5927 else 5928 zoneid = crgetzoneid(credp); 5929 5930 /* 5931 * We are opening as a device. This is an IP client stream, and we 5932 * allocate an conn_t as the instance data. 5933 */ 5934 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5935 5936 /* 5937 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5938 * done by netstack_find_by_cred() 5939 */ 5940 netstack_rele(ipst->ips_netstack); 5941 5942 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5943 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5944 connp->conn_ixa->ixa_zoneid = zoneid; 5945 connp->conn_zoneid = zoneid; 5946 5947 connp->conn_rq = q; 5948 q->q_ptr = WR(q)->q_ptr = connp; 5949 5950 /* Minor tells us which /dev entry was opened */ 5951 if (isv6) { 5952 connp->conn_family = AF_INET6; 5953 connp->conn_ipversion = IPV6_VERSION; 5954 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5955 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5956 } else { 5957 connp->conn_family = AF_INET; 5958 connp->conn_ipversion = IPV4_VERSION; 5959 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5960 } 5961 5962 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5963 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5964 connp->conn_minor_arena = ip_minor_arena_la; 5965 } else { 5966 /* 5967 * Either minor numbers in the large arena were exhausted 5968 * or a non socket application is doing the open. 5969 * Try to allocate from the small arena. 5970 */ 5971 if ((connp->conn_dev = 5972 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5973 /* CONN_DEC_REF takes care of netstack_rele() */ 5974 q->q_ptr = WR(q)->q_ptr = NULL; 5975 CONN_DEC_REF(connp); 5976 return (EBUSY); 5977 } 5978 connp->conn_minor_arena = ip_minor_arena_sa; 5979 } 5980 5981 maj = getemajor(*devp); 5982 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5983 5984 /* 5985 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5986 */ 5987 connp->conn_cred = credp; 5988 connp->conn_cpid = curproc->p_pid; 5989 /* Cache things in ixa without an extra refhold */ 5990 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5991 connp->conn_ixa->ixa_cred = connp->conn_cred; 5992 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5993 if (is_system_labeled()) 5994 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5995 5996 /* 5997 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 5998 */ 5999 connp->conn_recv = ip_conn_input; 6000 connp->conn_recvicmp = ip_conn_input_icmp; 6001 6002 crhold(connp->conn_cred); 6003 6004 /* 6005 * If the caller has the process-wide flag set, then default to MAC 6006 * exempt mode. This allows read-down to unlabeled hosts. 6007 */ 6008 if (getpflags(NET_MAC_AWARE, credp) != 0) 6009 connp->conn_mac_mode = CONN_MAC_AWARE; 6010 6011 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6012 6013 connp->conn_rq = q; 6014 connp->conn_wq = WR(q); 6015 6016 /* Non-zero default values */ 6017 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6018 6019 /* 6020 * Make the conn globally visible to walkers 6021 */ 6022 ASSERT(connp->conn_ref == 1); 6023 mutex_enter(&connp->conn_lock); 6024 connp->conn_state_flags &= ~CONN_INCIPIENT; 6025 mutex_exit(&connp->conn_lock); 6026 6027 qprocson(q); 6028 6029 return (0); 6030 } 6031 6032 /* 6033 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6034 * all of them are copied to the conn_t. If the req is "zero", the policy is 6035 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6036 * fields. 6037 * We keep only the latest setting of the policy and thus policy setting 6038 * is not incremental/cumulative. 6039 * 6040 * Requests to set policies with multiple alternative actions will 6041 * go through a different API. 6042 */ 6043 int 6044 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6045 { 6046 uint_t ah_req = 0; 6047 uint_t esp_req = 0; 6048 uint_t se_req = 0; 6049 ipsec_act_t *actp = NULL; 6050 uint_t nact; 6051 ipsec_policy_head_t *ph; 6052 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6053 int error = 0; 6054 netstack_t *ns = connp->conn_netstack; 6055 ip_stack_t *ipst = ns->netstack_ip; 6056 ipsec_stack_t *ipss = ns->netstack_ipsec; 6057 6058 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6059 6060 /* 6061 * The IP_SEC_OPT option does not allow variable length parameters, 6062 * hence a request cannot be NULL. 6063 */ 6064 if (req == NULL) 6065 return (EINVAL); 6066 6067 ah_req = req->ipsr_ah_req; 6068 esp_req = req->ipsr_esp_req; 6069 se_req = req->ipsr_self_encap_req; 6070 6071 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6072 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6073 return (EINVAL); 6074 6075 /* 6076 * Are we dealing with a request to reset the policy (i.e. 6077 * zero requests). 6078 */ 6079 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6080 (esp_req & REQ_MASK) == 0 && 6081 (se_req & REQ_MASK) == 0); 6082 6083 if (!is_pol_reset) { 6084 /* 6085 * If we couldn't load IPsec, fail with "protocol 6086 * not supported". 6087 * IPsec may not have been loaded for a request with zero 6088 * policies, so we don't fail in this case. 6089 */ 6090 mutex_enter(&ipss->ipsec_loader_lock); 6091 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6092 mutex_exit(&ipss->ipsec_loader_lock); 6093 return (EPROTONOSUPPORT); 6094 } 6095 mutex_exit(&ipss->ipsec_loader_lock); 6096 6097 /* 6098 * Test for valid requests. Invalid algorithms 6099 * need to be tested by IPsec code because new 6100 * algorithms can be added dynamically. 6101 */ 6102 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6103 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6104 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6105 return (EINVAL); 6106 } 6107 6108 /* 6109 * Only privileged users can issue these 6110 * requests. 6111 */ 6112 if (((ah_req & IPSEC_PREF_NEVER) || 6113 (esp_req & IPSEC_PREF_NEVER) || 6114 (se_req & IPSEC_PREF_NEVER)) && 6115 secpolicy_ip_config(cr, B_FALSE) != 0) { 6116 return (EPERM); 6117 } 6118 6119 /* 6120 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6121 * are mutually exclusive. 6122 */ 6123 if (((ah_req & REQ_MASK) == REQ_MASK) || 6124 ((esp_req & REQ_MASK) == REQ_MASK) || 6125 ((se_req & REQ_MASK) == REQ_MASK)) { 6126 /* Both of them are set */ 6127 return (EINVAL); 6128 } 6129 } 6130 6131 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6132 6133 /* 6134 * If we have already cached policies in conn_connect(), don't 6135 * let them change now. We cache policies for connections 6136 * whose src,dst [addr, port] is known. 6137 */ 6138 if (connp->conn_policy_cached) { 6139 return (EINVAL); 6140 } 6141 6142 /* 6143 * We have a zero policies, reset the connection policy if already 6144 * set. This will cause the connection to inherit the 6145 * global policy, if any. 6146 */ 6147 if (is_pol_reset) { 6148 if (connp->conn_policy != NULL) { 6149 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6150 connp->conn_policy = NULL; 6151 } 6152 connp->conn_in_enforce_policy = B_FALSE; 6153 connp->conn_out_enforce_policy = B_FALSE; 6154 return (0); 6155 } 6156 6157 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6158 ipst->ips_netstack); 6159 if (ph == NULL) 6160 goto enomem; 6161 6162 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6163 if (actp == NULL) 6164 goto enomem; 6165 6166 /* 6167 * Always insert IPv4 policy entries, since they can also apply to 6168 * ipv6 sockets being used in ipv4-compat mode. 6169 */ 6170 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6171 IPSEC_TYPE_INBOUND, ns)) 6172 goto enomem; 6173 is_pol_inserted = B_TRUE; 6174 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6175 IPSEC_TYPE_OUTBOUND, ns)) 6176 goto enomem; 6177 6178 /* 6179 * We're looking at a v6 socket, also insert the v6-specific 6180 * entries. 6181 */ 6182 if (connp->conn_family == AF_INET6) { 6183 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6184 IPSEC_TYPE_INBOUND, ns)) 6185 goto enomem; 6186 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6187 IPSEC_TYPE_OUTBOUND, ns)) 6188 goto enomem; 6189 } 6190 6191 ipsec_actvec_free(actp, nact); 6192 6193 /* 6194 * If the requests need security, set enforce_policy. 6195 * If the requests are IPSEC_PREF_NEVER, one should 6196 * still set conn_out_enforce_policy so that ip_set_destination 6197 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6198 * for connections that we don't cache policy in at connect time, 6199 * if global policy matches in ip_output_attach_policy, we 6200 * don't wrongly inherit global policy. Similarly, we need 6201 * to set conn_in_enforce_policy also so that we don't verify 6202 * policy wrongly. 6203 */ 6204 if ((ah_req & REQ_MASK) != 0 || 6205 (esp_req & REQ_MASK) != 0 || 6206 (se_req & REQ_MASK) != 0) { 6207 connp->conn_in_enforce_policy = B_TRUE; 6208 connp->conn_out_enforce_policy = B_TRUE; 6209 } 6210 6211 return (error); 6212 #undef REQ_MASK 6213 6214 /* 6215 * Common memory-allocation-failure exit path. 6216 */ 6217 enomem: 6218 if (actp != NULL) 6219 ipsec_actvec_free(actp, nact); 6220 if (is_pol_inserted) 6221 ipsec_polhead_flush(ph, ns); 6222 return (ENOMEM); 6223 } 6224 6225 /* 6226 * Set socket options for joining and leaving multicast groups. 6227 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6228 * The caller has already check that the option name is consistent with 6229 * the address family of the socket. 6230 */ 6231 int 6232 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6233 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6234 { 6235 int *i1 = (int *)invalp; 6236 int error = 0; 6237 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6238 struct ip_mreq *v4_mreqp; 6239 struct ipv6_mreq *v6_mreqp; 6240 struct group_req *greqp; 6241 ire_t *ire; 6242 boolean_t done = B_FALSE; 6243 ipaddr_t ifaddr; 6244 in6_addr_t v6group; 6245 uint_t ifindex; 6246 boolean_t mcast_opt = B_TRUE; 6247 mcast_record_t fmode; 6248 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6249 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6250 6251 switch (name) { 6252 case IP_ADD_MEMBERSHIP: 6253 case IPV6_JOIN_GROUP: 6254 mcast_opt = B_FALSE; 6255 /* FALLTHRU */ 6256 case MCAST_JOIN_GROUP: 6257 fmode = MODE_IS_EXCLUDE; 6258 optfn = ip_opt_add_group; 6259 break; 6260 6261 case IP_DROP_MEMBERSHIP: 6262 case IPV6_LEAVE_GROUP: 6263 mcast_opt = B_FALSE; 6264 /* FALLTHRU */ 6265 case MCAST_LEAVE_GROUP: 6266 fmode = MODE_IS_INCLUDE; 6267 optfn = ip_opt_delete_group; 6268 break; 6269 default: 6270 ASSERT(0); 6271 } 6272 6273 if (mcast_opt) { 6274 struct sockaddr_in *sin; 6275 struct sockaddr_in6 *sin6; 6276 6277 greqp = (struct group_req *)i1; 6278 if (greqp->gr_group.ss_family == AF_INET) { 6279 sin = (struct sockaddr_in *)&(greqp->gr_group); 6280 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6281 } else { 6282 if (!inet6) 6283 return (EINVAL); /* Not on INET socket */ 6284 6285 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6286 v6group = sin6->sin6_addr; 6287 } 6288 ifaddr = INADDR_ANY; 6289 ifindex = greqp->gr_interface; 6290 } else if (inet6) { 6291 v6_mreqp = (struct ipv6_mreq *)i1; 6292 v6group = v6_mreqp->ipv6mr_multiaddr; 6293 ifaddr = INADDR_ANY; 6294 ifindex = v6_mreqp->ipv6mr_interface; 6295 } else { 6296 v4_mreqp = (struct ip_mreq *)i1; 6297 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6298 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6299 ifindex = 0; 6300 } 6301 6302 /* 6303 * In the multirouting case, we need to replicate 6304 * the request on all interfaces that will take part 6305 * in replication. We do so because multirouting is 6306 * reflective, thus we will probably receive multi- 6307 * casts on those interfaces. 6308 * The ip_multirt_apply_membership() succeeds if 6309 * the operation succeeds on at least one interface. 6310 */ 6311 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6312 ipaddr_t group; 6313 6314 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6315 6316 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6317 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6318 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6319 } else { 6320 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6321 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6322 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6323 } 6324 if (ire != NULL) { 6325 if (ire->ire_flags & RTF_MULTIRT) { 6326 error = ip_multirt_apply_membership(optfn, ire, connp, 6327 checkonly, &v6group, fmode, &ipv6_all_zeros); 6328 done = B_TRUE; 6329 } 6330 ire_refrele(ire); 6331 } 6332 6333 if (!done) { 6334 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6335 fmode, &ipv6_all_zeros); 6336 } 6337 return (error); 6338 } 6339 6340 /* 6341 * Set socket options for joining and leaving multicast groups 6342 * for specific sources. 6343 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6344 * The caller has already check that the option name is consistent with 6345 * the address family of the socket. 6346 */ 6347 int 6348 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6349 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6350 { 6351 int *i1 = (int *)invalp; 6352 int error = 0; 6353 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6354 struct ip_mreq_source *imreqp; 6355 struct group_source_req *gsreqp; 6356 in6_addr_t v6group, v6src; 6357 uint32_t ifindex; 6358 ipaddr_t ifaddr; 6359 boolean_t mcast_opt = B_TRUE; 6360 mcast_record_t fmode; 6361 ire_t *ire; 6362 boolean_t done = B_FALSE; 6363 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6364 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6365 6366 switch (name) { 6367 case IP_BLOCK_SOURCE: 6368 mcast_opt = B_FALSE; 6369 /* FALLTHRU */ 6370 case MCAST_BLOCK_SOURCE: 6371 fmode = MODE_IS_EXCLUDE; 6372 optfn = ip_opt_add_group; 6373 break; 6374 6375 case IP_UNBLOCK_SOURCE: 6376 mcast_opt = B_FALSE; 6377 /* FALLTHRU */ 6378 case MCAST_UNBLOCK_SOURCE: 6379 fmode = MODE_IS_EXCLUDE; 6380 optfn = ip_opt_delete_group; 6381 break; 6382 6383 case IP_ADD_SOURCE_MEMBERSHIP: 6384 mcast_opt = B_FALSE; 6385 /* FALLTHRU */ 6386 case MCAST_JOIN_SOURCE_GROUP: 6387 fmode = MODE_IS_INCLUDE; 6388 optfn = ip_opt_add_group; 6389 break; 6390 6391 case IP_DROP_SOURCE_MEMBERSHIP: 6392 mcast_opt = B_FALSE; 6393 /* FALLTHRU */ 6394 case MCAST_LEAVE_SOURCE_GROUP: 6395 fmode = MODE_IS_INCLUDE; 6396 optfn = ip_opt_delete_group; 6397 break; 6398 default: 6399 ASSERT(0); 6400 } 6401 6402 if (mcast_opt) { 6403 gsreqp = (struct group_source_req *)i1; 6404 ifindex = gsreqp->gsr_interface; 6405 if (gsreqp->gsr_group.ss_family == AF_INET) { 6406 struct sockaddr_in *s; 6407 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6408 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6409 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6410 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6411 } else { 6412 struct sockaddr_in6 *s6; 6413 6414 if (!inet6) 6415 return (EINVAL); /* Not on INET socket */ 6416 6417 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6418 v6group = s6->sin6_addr; 6419 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6420 v6src = s6->sin6_addr; 6421 } 6422 ifaddr = INADDR_ANY; 6423 } else { 6424 imreqp = (struct ip_mreq_source *)i1; 6425 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6426 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6427 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6428 ifindex = 0; 6429 } 6430 6431 /* 6432 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6433 */ 6434 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6435 v6src = ipv6_all_zeros; 6436 6437 /* 6438 * In the multirouting case, we need to replicate 6439 * the request as noted in the mcast cases above. 6440 */ 6441 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6442 ipaddr_t group; 6443 6444 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6445 6446 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6447 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6448 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6449 } else { 6450 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6451 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6452 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6453 } 6454 if (ire != NULL) { 6455 if (ire->ire_flags & RTF_MULTIRT) { 6456 error = ip_multirt_apply_membership(optfn, ire, connp, 6457 checkonly, &v6group, fmode, &v6src); 6458 done = B_TRUE; 6459 } 6460 ire_refrele(ire); 6461 } 6462 if (!done) { 6463 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6464 fmode, &v6src); 6465 } 6466 return (error); 6467 } 6468 6469 /* 6470 * Given a destination address and a pointer to where to put the information 6471 * this routine fills in the mtuinfo. 6472 * The socket must be connected. 6473 * For sctp conn_faddr is the primary address. 6474 */ 6475 int 6476 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6477 { 6478 uint32_t pmtu = IP_MAXPACKET; 6479 uint_t scopeid; 6480 6481 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6482 return (-1); 6483 6484 /* In case we never sent or called ip_set_destination_v4/v6 */ 6485 if (ixa->ixa_ire != NULL) 6486 pmtu = ip_get_pmtu(ixa); 6487 6488 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6489 scopeid = ixa->ixa_scopeid; 6490 else 6491 scopeid = 0; 6492 6493 bzero(mtuinfo, sizeof (*mtuinfo)); 6494 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6495 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6496 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6497 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6498 mtuinfo->ip6m_mtu = pmtu; 6499 6500 return (sizeof (struct ip6_mtuinfo)); 6501 } 6502 6503 /* 6504 * When the src multihoming is changed from weak to [strong, preferred] 6505 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6506 * and identify routes that were created by user-applications in the 6507 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6508 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6509 * is selected by finding an interface route for the gateway. 6510 */ 6511 /* ARGSUSED */ 6512 void 6513 ip_ire_rebind_walker(ire_t *ire, void *notused) 6514 { 6515 if (!ire->ire_unbound || ire->ire_ill != NULL) 6516 return; 6517 ire_rebind(ire); 6518 ire_delete(ire); 6519 } 6520 6521 /* 6522 * When the src multihoming is changed from [strong, preferred] to weak, 6523 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6524 * set any entries that were created by user-applications in the unbound state 6525 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6526 */ 6527 /* ARGSUSED */ 6528 void 6529 ip_ire_unbind_walker(ire_t *ire, void *notused) 6530 { 6531 ire_t *new_ire; 6532 6533 if (!ire->ire_unbound || ire->ire_ill == NULL) 6534 return; 6535 if (ire->ire_ipversion == IPV6_VERSION) { 6536 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6537 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6538 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6539 } else { 6540 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6541 (uchar_t *)&ire->ire_mask, 6542 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6543 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6544 } 6545 if (new_ire == NULL) 6546 return; 6547 new_ire->ire_unbound = B_TRUE; 6548 /* 6549 * The bound ire must first be deleted so that we don't return 6550 * the existing one on the attempt to add the unbound new_ire. 6551 */ 6552 ire_delete(ire); 6553 new_ire = ire_add(new_ire); 6554 if (new_ire != NULL) 6555 ire_refrele(new_ire); 6556 } 6557 6558 /* 6559 * When the settings of ip*_strict_src_multihoming tunables are changed, 6560 * all cached routes need to be recomputed. This recomputation needs to be 6561 * done when going from weaker to stronger modes so that the cached ire 6562 * for the connection does not violate the current ip*_strict_src_multihoming 6563 * setting. It also needs to be done when going from stronger to weaker modes, 6564 * so that we fall back to matching on the longest-matching-route (as opposed 6565 * to a shorter match that may have been selected in the strong mode 6566 * to satisfy src_multihoming settings). 6567 * 6568 * The cached ixa_ire entires for all conn_t entries are marked as 6569 * "verify" so that they will be recomputed for the next packet. 6570 */ 6571 void 6572 conn_ire_revalidate(conn_t *connp, void *arg) 6573 { 6574 boolean_t isv6 = (boolean_t)arg; 6575 6576 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6577 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6578 return; 6579 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6580 } 6581 6582 /* 6583 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6584 * When an ipf is passed here for the first time, if 6585 * we already have in-order fragments on the queue, we convert from the fast- 6586 * path reassembly scheme to the hard-case scheme. From then on, additional 6587 * fragments are reassembled here. We keep track of the start and end offsets 6588 * of each piece, and the number of holes in the chain. When the hole count 6589 * goes to zero, we are done! 6590 * 6591 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6592 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6593 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6594 * after the call to ip_reassemble(). 6595 */ 6596 int 6597 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6598 size_t msg_len) 6599 { 6600 uint_t end; 6601 mblk_t *next_mp; 6602 mblk_t *mp1; 6603 uint_t offset; 6604 boolean_t incr_dups = B_TRUE; 6605 boolean_t offset_zero_seen = B_FALSE; 6606 boolean_t pkt_boundary_checked = B_FALSE; 6607 6608 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6609 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6610 6611 /* Add in byte count */ 6612 ipf->ipf_count += msg_len; 6613 if (ipf->ipf_end) { 6614 /* 6615 * We were part way through in-order reassembly, but now there 6616 * is a hole. We walk through messages already queued, and 6617 * mark them for hard case reassembly. We know that up till 6618 * now they were in order starting from offset zero. 6619 */ 6620 offset = 0; 6621 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6622 IP_REASS_SET_START(mp1, offset); 6623 if (offset == 0) { 6624 ASSERT(ipf->ipf_nf_hdr_len != 0); 6625 offset = -ipf->ipf_nf_hdr_len; 6626 } 6627 offset += mp1->b_wptr - mp1->b_rptr; 6628 IP_REASS_SET_END(mp1, offset); 6629 } 6630 /* One hole at the end. */ 6631 ipf->ipf_hole_cnt = 1; 6632 /* Brand it as a hard case, forever. */ 6633 ipf->ipf_end = 0; 6634 } 6635 /* Walk through all the new pieces. */ 6636 do { 6637 end = start + (mp->b_wptr - mp->b_rptr); 6638 /* 6639 * If start is 0, decrease 'end' only for the first mblk of 6640 * the fragment. Otherwise 'end' can get wrong value in the 6641 * second pass of the loop if first mblk is exactly the 6642 * size of ipf_nf_hdr_len. 6643 */ 6644 if (start == 0 && !offset_zero_seen) { 6645 /* First segment */ 6646 ASSERT(ipf->ipf_nf_hdr_len != 0); 6647 end -= ipf->ipf_nf_hdr_len; 6648 offset_zero_seen = B_TRUE; 6649 } 6650 next_mp = mp->b_cont; 6651 /* 6652 * We are checking to see if there is any interesing data 6653 * to process. If there isn't and the mblk isn't the 6654 * one which carries the unfragmentable header then we 6655 * drop it. It's possible to have just the unfragmentable 6656 * header come through without any data. That needs to be 6657 * saved. 6658 * 6659 * If the assert at the top of this function holds then the 6660 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6661 * is infrequently traveled enough that the test is left in 6662 * to protect against future code changes which break that 6663 * invariant. 6664 */ 6665 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6666 /* Empty. Blast it. */ 6667 IP_REASS_SET_START(mp, 0); 6668 IP_REASS_SET_END(mp, 0); 6669 /* 6670 * If the ipf points to the mblk we are about to free, 6671 * update ipf to point to the next mblk (or NULL 6672 * if none). 6673 */ 6674 if (ipf->ipf_mp->b_cont == mp) 6675 ipf->ipf_mp->b_cont = next_mp; 6676 freeb(mp); 6677 continue; 6678 } 6679 mp->b_cont = NULL; 6680 IP_REASS_SET_START(mp, start); 6681 IP_REASS_SET_END(mp, end); 6682 if (!ipf->ipf_tail_mp) { 6683 ipf->ipf_tail_mp = mp; 6684 ipf->ipf_mp->b_cont = mp; 6685 if (start == 0 || !more) { 6686 ipf->ipf_hole_cnt = 1; 6687 /* 6688 * if the first fragment comes in more than one 6689 * mblk, this loop will be executed for each 6690 * mblk. Need to adjust hole count so exiting 6691 * this routine will leave hole count at 1. 6692 */ 6693 if (next_mp) 6694 ipf->ipf_hole_cnt++; 6695 } else 6696 ipf->ipf_hole_cnt = 2; 6697 continue; 6698 } else if (ipf->ipf_last_frag_seen && !more && 6699 !pkt_boundary_checked) { 6700 /* 6701 * We check datagram boundary only if this fragment 6702 * claims to be the last fragment and we have seen a 6703 * last fragment in the past too. We do this only 6704 * once for a given fragment. 6705 * 6706 * start cannot be 0 here as fragments with start=0 6707 * and MF=0 gets handled as a complete packet. These 6708 * fragments should not reach here. 6709 */ 6710 6711 if (start + msgdsize(mp) != 6712 IP_REASS_END(ipf->ipf_tail_mp)) { 6713 /* 6714 * We have two fragments both of which claim 6715 * to be the last fragment but gives conflicting 6716 * information about the whole datagram size. 6717 * Something fishy is going on. Drop the 6718 * fragment and free up the reassembly list. 6719 */ 6720 return (IP_REASS_FAILED); 6721 } 6722 6723 /* 6724 * We shouldn't come to this code block again for this 6725 * particular fragment. 6726 */ 6727 pkt_boundary_checked = B_TRUE; 6728 } 6729 6730 /* New stuff at or beyond tail? */ 6731 offset = IP_REASS_END(ipf->ipf_tail_mp); 6732 if (start >= offset) { 6733 if (ipf->ipf_last_frag_seen) { 6734 /* current fragment is beyond last fragment */ 6735 return (IP_REASS_FAILED); 6736 } 6737 /* Link it on end. */ 6738 ipf->ipf_tail_mp->b_cont = mp; 6739 ipf->ipf_tail_mp = mp; 6740 if (more) { 6741 if (start != offset) 6742 ipf->ipf_hole_cnt++; 6743 } else if (start == offset && next_mp == NULL) 6744 ipf->ipf_hole_cnt--; 6745 continue; 6746 } 6747 mp1 = ipf->ipf_mp->b_cont; 6748 offset = IP_REASS_START(mp1); 6749 /* New stuff at the front? */ 6750 if (start < offset) { 6751 if (start == 0) { 6752 if (end >= offset) { 6753 /* Nailed the hole at the begining. */ 6754 ipf->ipf_hole_cnt--; 6755 } 6756 } else if (end < offset) { 6757 /* 6758 * A hole, stuff, and a hole where there used 6759 * to be just a hole. 6760 */ 6761 ipf->ipf_hole_cnt++; 6762 } 6763 mp->b_cont = mp1; 6764 /* Check for overlap. */ 6765 while (end > offset) { 6766 if (end < IP_REASS_END(mp1)) { 6767 mp->b_wptr -= end - offset; 6768 IP_REASS_SET_END(mp, offset); 6769 BUMP_MIB(ill->ill_ip_mib, 6770 ipIfStatsReasmPartDups); 6771 break; 6772 } 6773 /* Did we cover another hole? */ 6774 if ((mp1->b_cont && 6775 IP_REASS_END(mp1) != 6776 IP_REASS_START(mp1->b_cont) && 6777 end >= IP_REASS_START(mp1->b_cont)) || 6778 (!ipf->ipf_last_frag_seen && !more)) { 6779 ipf->ipf_hole_cnt--; 6780 } 6781 /* Clip out mp1. */ 6782 if ((mp->b_cont = mp1->b_cont) == NULL) { 6783 /* 6784 * After clipping out mp1, this guy 6785 * is now hanging off the end. 6786 */ 6787 ipf->ipf_tail_mp = mp; 6788 } 6789 IP_REASS_SET_START(mp1, 0); 6790 IP_REASS_SET_END(mp1, 0); 6791 /* Subtract byte count */ 6792 ipf->ipf_count -= mp1->b_datap->db_lim - 6793 mp1->b_datap->db_base; 6794 freeb(mp1); 6795 BUMP_MIB(ill->ill_ip_mib, 6796 ipIfStatsReasmPartDups); 6797 mp1 = mp->b_cont; 6798 if (!mp1) 6799 break; 6800 offset = IP_REASS_START(mp1); 6801 } 6802 ipf->ipf_mp->b_cont = mp; 6803 continue; 6804 } 6805 /* 6806 * The new piece starts somewhere between the start of the head 6807 * and before the end of the tail. 6808 */ 6809 for (; mp1; mp1 = mp1->b_cont) { 6810 offset = IP_REASS_END(mp1); 6811 if (start < offset) { 6812 if (end <= offset) { 6813 /* Nothing new. */ 6814 IP_REASS_SET_START(mp, 0); 6815 IP_REASS_SET_END(mp, 0); 6816 /* Subtract byte count */ 6817 ipf->ipf_count -= mp->b_datap->db_lim - 6818 mp->b_datap->db_base; 6819 if (incr_dups) { 6820 ipf->ipf_num_dups++; 6821 incr_dups = B_FALSE; 6822 } 6823 freeb(mp); 6824 BUMP_MIB(ill->ill_ip_mib, 6825 ipIfStatsReasmDuplicates); 6826 break; 6827 } 6828 /* 6829 * Trim redundant stuff off beginning of new 6830 * piece. 6831 */ 6832 IP_REASS_SET_START(mp, offset); 6833 mp->b_rptr += offset - start; 6834 BUMP_MIB(ill->ill_ip_mib, 6835 ipIfStatsReasmPartDups); 6836 start = offset; 6837 if (!mp1->b_cont) { 6838 /* 6839 * After trimming, this guy is now 6840 * hanging off the end. 6841 */ 6842 mp1->b_cont = mp; 6843 ipf->ipf_tail_mp = mp; 6844 if (!more) { 6845 ipf->ipf_hole_cnt--; 6846 } 6847 break; 6848 } 6849 } 6850 if (start >= IP_REASS_START(mp1->b_cont)) 6851 continue; 6852 /* Fill a hole */ 6853 if (start > offset) 6854 ipf->ipf_hole_cnt++; 6855 mp->b_cont = mp1->b_cont; 6856 mp1->b_cont = mp; 6857 mp1 = mp->b_cont; 6858 offset = IP_REASS_START(mp1); 6859 if (end >= offset) { 6860 ipf->ipf_hole_cnt--; 6861 /* Check for overlap. */ 6862 while (end > offset) { 6863 if (end < IP_REASS_END(mp1)) { 6864 mp->b_wptr -= end - offset; 6865 IP_REASS_SET_END(mp, offset); 6866 /* 6867 * TODO we might bump 6868 * this up twice if there is 6869 * overlap at both ends. 6870 */ 6871 BUMP_MIB(ill->ill_ip_mib, 6872 ipIfStatsReasmPartDups); 6873 break; 6874 } 6875 /* Did we cover another hole? */ 6876 if ((mp1->b_cont && 6877 IP_REASS_END(mp1) 6878 != IP_REASS_START(mp1->b_cont) && 6879 end >= 6880 IP_REASS_START(mp1->b_cont)) || 6881 (!ipf->ipf_last_frag_seen && 6882 !more)) { 6883 ipf->ipf_hole_cnt--; 6884 } 6885 /* Clip out mp1. */ 6886 if ((mp->b_cont = mp1->b_cont) == 6887 NULL) { 6888 /* 6889 * After clipping out mp1, 6890 * this guy is now hanging 6891 * off the end. 6892 */ 6893 ipf->ipf_tail_mp = mp; 6894 } 6895 IP_REASS_SET_START(mp1, 0); 6896 IP_REASS_SET_END(mp1, 0); 6897 /* Subtract byte count */ 6898 ipf->ipf_count -= 6899 mp1->b_datap->db_lim - 6900 mp1->b_datap->db_base; 6901 freeb(mp1); 6902 BUMP_MIB(ill->ill_ip_mib, 6903 ipIfStatsReasmPartDups); 6904 mp1 = mp->b_cont; 6905 if (!mp1) 6906 break; 6907 offset = IP_REASS_START(mp1); 6908 } 6909 } 6910 break; 6911 } 6912 } while (start = end, mp = next_mp); 6913 6914 /* Fragment just processed could be the last one. Remember this fact */ 6915 if (!more) 6916 ipf->ipf_last_frag_seen = B_TRUE; 6917 6918 /* Still got holes? */ 6919 if (ipf->ipf_hole_cnt) 6920 return (IP_REASS_PARTIAL); 6921 /* Clean up overloaded fields to avoid upstream disasters. */ 6922 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6923 IP_REASS_SET_START(mp1, 0); 6924 IP_REASS_SET_END(mp1, 0); 6925 } 6926 return (IP_REASS_COMPLETE); 6927 } 6928 6929 /* 6930 * Fragmentation reassembly. Each ILL has a hash table for 6931 * queuing packets undergoing reassembly for all IPIFs 6932 * associated with the ILL. The hash is based on the packet 6933 * IP ident field. The ILL frag hash table was allocated 6934 * as a timer block at the time the ILL was created. Whenever 6935 * there is anything on the reassembly queue, the timer will 6936 * be running. Returns the reassembled packet if reassembly completes. 6937 */ 6938 mblk_t * 6939 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6940 { 6941 uint32_t frag_offset_flags; 6942 mblk_t *t_mp; 6943 ipaddr_t dst; 6944 uint8_t proto = ipha->ipha_protocol; 6945 uint32_t sum_val; 6946 uint16_t sum_flags; 6947 ipf_t *ipf; 6948 ipf_t **ipfp; 6949 ipfb_t *ipfb; 6950 uint16_t ident; 6951 uint32_t offset; 6952 ipaddr_t src; 6953 uint_t hdr_length; 6954 uint32_t end; 6955 mblk_t *mp1; 6956 mblk_t *tail_mp; 6957 size_t count; 6958 size_t msg_len; 6959 uint8_t ecn_info = 0; 6960 uint32_t packet_size; 6961 boolean_t pruned = B_FALSE; 6962 ill_t *ill = ira->ira_ill; 6963 ip_stack_t *ipst = ill->ill_ipst; 6964 6965 /* 6966 * Drop the fragmented as early as possible, if 6967 * we don't have resource(s) to re-assemble. 6968 */ 6969 if (ipst->ips_ip_reass_queue_bytes == 0) { 6970 freemsg(mp); 6971 return (NULL); 6972 } 6973 6974 /* Check for fragmentation offset; return if there's none */ 6975 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6976 (IPH_MF | IPH_OFFSET)) == 0) 6977 return (mp); 6978 6979 /* 6980 * We utilize hardware computed checksum info only for UDP since 6981 * IP fragmentation is a normal occurrence for the protocol. In 6982 * addition, checksum offload support for IP fragments carrying 6983 * UDP payload is commonly implemented across network adapters. 6984 */ 6985 ASSERT(ira->ira_rill != NULL); 6986 if (proto == IPPROTO_UDP && dohwcksum && 6987 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6988 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6989 mblk_t *mp1 = mp->b_cont; 6990 int32_t len; 6991 6992 /* Record checksum information from the packet */ 6993 sum_val = (uint32_t)DB_CKSUM16(mp); 6994 sum_flags = DB_CKSUMFLAGS(mp); 6995 6996 /* IP payload offset from beginning of mblk */ 6997 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 6998 6999 if ((sum_flags & HCK_PARTIALCKSUM) && 7000 (mp1 == NULL || mp1->b_cont == NULL) && 7001 offset >= DB_CKSUMSTART(mp) && 7002 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7003 uint32_t adj; 7004 /* 7005 * Partial checksum has been calculated by hardware 7006 * and attached to the packet; in addition, any 7007 * prepended extraneous data is even byte aligned. 7008 * If any such data exists, we adjust the checksum; 7009 * this would also handle any postpended data. 7010 */ 7011 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7012 mp, mp1, len, adj); 7013 7014 /* One's complement subtract extraneous checksum */ 7015 if (adj >= sum_val) 7016 sum_val = ~(adj - sum_val) & 0xFFFF; 7017 else 7018 sum_val -= adj; 7019 } 7020 } else { 7021 sum_val = 0; 7022 sum_flags = 0; 7023 } 7024 7025 /* Clear hardware checksumming flag */ 7026 DB_CKSUMFLAGS(mp) = 0; 7027 7028 ident = ipha->ipha_ident; 7029 offset = (frag_offset_flags << 3) & 0xFFFF; 7030 src = ipha->ipha_src; 7031 dst = ipha->ipha_dst; 7032 hdr_length = IPH_HDR_LENGTH(ipha); 7033 end = ntohs(ipha->ipha_length) - hdr_length; 7034 7035 /* If end == 0 then we have a packet with no data, so just free it */ 7036 if (end == 0) { 7037 freemsg(mp); 7038 return (NULL); 7039 } 7040 7041 /* Record the ECN field info. */ 7042 ecn_info = (ipha->ipha_type_of_service & 0x3); 7043 if (offset != 0) { 7044 /* 7045 * If this isn't the first piece, strip the header, and 7046 * add the offset to the end value. 7047 */ 7048 mp->b_rptr += hdr_length; 7049 end += offset; 7050 } 7051 7052 /* Handle vnic loopback of fragments */ 7053 if (mp->b_datap->db_ref > 2) 7054 msg_len = 0; 7055 else 7056 msg_len = MBLKSIZE(mp); 7057 7058 tail_mp = mp; 7059 while (tail_mp->b_cont != NULL) { 7060 tail_mp = tail_mp->b_cont; 7061 if (tail_mp->b_datap->db_ref <= 2) 7062 msg_len += MBLKSIZE(tail_mp); 7063 } 7064 7065 /* If the reassembly list for this ILL will get too big, prune it */ 7066 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7067 ipst->ips_ip_reass_queue_bytes) { 7068 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7069 uint_t, ill->ill_frag_count, 7070 uint_t, ipst->ips_ip_reass_queue_bytes); 7071 ill_frag_prune(ill, 7072 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7073 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7074 pruned = B_TRUE; 7075 } 7076 7077 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7078 mutex_enter(&ipfb->ipfb_lock); 7079 7080 ipfp = &ipfb->ipfb_ipf; 7081 /* Try to find an existing fragment queue for this packet. */ 7082 for (;;) { 7083 ipf = ipfp[0]; 7084 if (ipf != NULL) { 7085 /* 7086 * It has to match on ident and src/dst address. 7087 */ 7088 if (ipf->ipf_ident == ident && 7089 ipf->ipf_src == src && 7090 ipf->ipf_dst == dst && 7091 ipf->ipf_protocol == proto) { 7092 /* 7093 * If we have received too many 7094 * duplicate fragments for this packet 7095 * free it. 7096 */ 7097 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7098 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7099 freemsg(mp); 7100 mutex_exit(&ipfb->ipfb_lock); 7101 return (NULL); 7102 } 7103 /* Found it. */ 7104 break; 7105 } 7106 ipfp = &ipf->ipf_hash_next; 7107 continue; 7108 } 7109 7110 /* 7111 * If we pruned the list, do we want to store this new 7112 * fragment?. We apply an optimization here based on the 7113 * fact that most fragments will be received in order. 7114 * So if the offset of this incoming fragment is zero, 7115 * it is the first fragment of a new packet. We will 7116 * keep it. Otherwise drop the fragment, as we have 7117 * probably pruned the packet already (since the 7118 * packet cannot be found). 7119 */ 7120 if (pruned && offset != 0) { 7121 mutex_exit(&ipfb->ipfb_lock); 7122 freemsg(mp); 7123 return (NULL); 7124 } 7125 7126 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7127 /* 7128 * Too many fragmented packets in this hash 7129 * bucket. Free the oldest. 7130 */ 7131 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7132 } 7133 7134 /* New guy. Allocate a frag message. */ 7135 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7136 if (mp1 == NULL) { 7137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7138 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7139 freemsg(mp); 7140 reass_done: 7141 mutex_exit(&ipfb->ipfb_lock); 7142 return (NULL); 7143 } 7144 7145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7146 mp1->b_cont = mp; 7147 7148 /* Initialize the fragment header. */ 7149 ipf = (ipf_t *)mp1->b_rptr; 7150 ipf->ipf_mp = mp1; 7151 ipf->ipf_ptphn = ipfp; 7152 ipfp[0] = ipf; 7153 ipf->ipf_hash_next = NULL; 7154 ipf->ipf_ident = ident; 7155 ipf->ipf_protocol = proto; 7156 ipf->ipf_src = src; 7157 ipf->ipf_dst = dst; 7158 ipf->ipf_nf_hdr_len = 0; 7159 /* Record reassembly start time. */ 7160 ipf->ipf_timestamp = gethrestime_sec(); 7161 /* Record ipf generation and account for frag header */ 7162 ipf->ipf_gen = ill->ill_ipf_gen++; 7163 ipf->ipf_count = MBLKSIZE(mp1); 7164 ipf->ipf_last_frag_seen = B_FALSE; 7165 ipf->ipf_ecn = ecn_info; 7166 ipf->ipf_num_dups = 0; 7167 ipfb->ipfb_frag_pkts++; 7168 ipf->ipf_checksum = 0; 7169 ipf->ipf_checksum_flags = 0; 7170 7171 /* Store checksum value in fragment header */ 7172 if (sum_flags != 0) { 7173 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7174 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7175 ipf->ipf_checksum = sum_val; 7176 ipf->ipf_checksum_flags = sum_flags; 7177 } 7178 7179 /* 7180 * We handle reassembly two ways. In the easy case, 7181 * where all the fragments show up in order, we do 7182 * minimal bookkeeping, and just clip new pieces on 7183 * the end. If we ever see a hole, then we go off 7184 * to ip_reassemble which has to mark the pieces and 7185 * keep track of the number of holes, etc. Obviously, 7186 * the point of having both mechanisms is so we can 7187 * handle the easy case as efficiently as possible. 7188 */ 7189 if (offset == 0) { 7190 /* Easy case, in-order reassembly so far. */ 7191 ipf->ipf_count += msg_len; 7192 ipf->ipf_tail_mp = tail_mp; 7193 /* 7194 * Keep track of next expected offset in 7195 * ipf_end. 7196 */ 7197 ipf->ipf_end = end; 7198 ipf->ipf_nf_hdr_len = hdr_length; 7199 } else { 7200 /* Hard case, hole at the beginning. */ 7201 ipf->ipf_tail_mp = NULL; 7202 /* 7203 * ipf_end == 0 means that we have given up 7204 * on easy reassembly. 7205 */ 7206 ipf->ipf_end = 0; 7207 7208 /* Forget checksum offload from now on */ 7209 ipf->ipf_checksum_flags = 0; 7210 7211 /* 7212 * ipf_hole_cnt is set by ip_reassemble. 7213 * ipf_count is updated by ip_reassemble. 7214 * No need to check for return value here 7215 * as we don't expect reassembly to complete 7216 * or fail for the first fragment itself. 7217 */ 7218 (void) ip_reassemble(mp, ipf, 7219 (frag_offset_flags & IPH_OFFSET) << 3, 7220 (frag_offset_flags & IPH_MF), ill, msg_len); 7221 } 7222 /* Update per ipfb and ill byte counts */ 7223 ipfb->ipfb_count += ipf->ipf_count; 7224 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7225 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7226 /* If the frag timer wasn't already going, start it. */ 7227 mutex_enter(&ill->ill_lock); 7228 ill_frag_timer_start(ill); 7229 mutex_exit(&ill->ill_lock); 7230 goto reass_done; 7231 } 7232 7233 /* 7234 * If the packet's flag has changed (it could be coming up 7235 * from an interface different than the previous, therefore 7236 * possibly different checksum capability), then forget about 7237 * any stored checksum states. Otherwise add the value to 7238 * the existing one stored in the fragment header. 7239 */ 7240 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7241 sum_val += ipf->ipf_checksum; 7242 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7243 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7244 ipf->ipf_checksum = sum_val; 7245 } else if (ipf->ipf_checksum_flags != 0) { 7246 /* Forget checksum offload from now on */ 7247 ipf->ipf_checksum_flags = 0; 7248 } 7249 7250 /* 7251 * We have a new piece of a datagram which is already being 7252 * reassembled. Update the ECN info if all IP fragments 7253 * are ECN capable. If there is one which is not, clear 7254 * all the info. If there is at least one which has CE 7255 * code point, IP needs to report that up to transport. 7256 */ 7257 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7258 if (ecn_info == IPH_ECN_CE) 7259 ipf->ipf_ecn = IPH_ECN_CE; 7260 } else { 7261 ipf->ipf_ecn = IPH_ECN_NECT; 7262 } 7263 if (offset && ipf->ipf_end == offset) { 7264 /* The new fragment fits at the end */ 7265 ipf->ipf_tail_mp->b_cont = mp; 7266 /* Update the byte count */ 7267 ipf->ipf_count += msg_len; 7268 /* Update per ipfb and ill byte counts */ 7269 ipfb->ipfb_count += msg_len; 7270 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7271 atomic_add_32(&ill->ill_frag_count, msg_len); 7272 if (frag_offset_flags & IPH_MF) { 7273 /* More to come. */ 7274 ipf->ipf_end = end; 7275 ipf->ipf_tail_mp = tail_mp; 7276 goto reass_done; 7277 } 7278 } else { 7279 /* Go do the hard cases. */ 7280 int ret; 7281 7282 if (offset == 0) 7283 ipf->ipf_nf_hdr_len = hdr_length; 7284 7285 /* Save current byte count */ 7286 count = ipf->ipf_count; 7287 ret = ip_reassemble(mp, ipf, 7288 (frag_offset_flags & IPH_OFFSET) << 3, 7289 (frag_offset_flags & IPH_MF), ill, msg_len); 7290 /* Count of bytes added and subtracted (freeb()ed) */ 7291 count = ipf->ipf_count - count; 7292 if (count) { 7293 /* Update per ipfb and ill byte counts */ 7294 ipfb->ipfb_count += count; 7295 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7296 atomic_add_32(&ill->ill_frag_count, count); 7297 } 7298 if (ret == IP_REASS_PARTIAL) { 7299 goto reass_done; 7300 } else if (ret == IP_REASS_FAILED) { 7301 /* Reassembly failed. Free up all resources */ 7302 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7303 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7304 IP_REASS_SET_START(t_mp, 0); 7305 IP_REASS_SET_END(t_mp, 0); 7306 } 7307 freemsg(mp); 7308 goto reass_done; 7309 } 7310 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7311 } 7312 /* 7313 * We have completed reassembly. Unhook the frag header from 7314 * the reassembly list. 7315 * 7316 * Before we free the frag header, record the ECN info 7317 * to report back to the transport. 7318 */ 7319 ecn_info = ipf->ipf_ecn; 7320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7321 ipfp = ipf->ipf_ptphn; 7322 7323 /* We need to supply these to caller */ 7324 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7325 sum_val = ipf->ipf_checksum; 7326 else 7327 sum_val = 0; 7328 7329 mp1 = ipf->ipf_mp; 7330 count = ipf->ipf_count; 7331 ipf = ipf->ipf_hash_next; 7332 if (ipf != NULL) 7333 ipf->ipf_ptphn = ipfp; 7334 ipfp[0] = ipf; 7335 atomic_add_32(&ill->ill_frag_count, -count); 7336 ASSERT(ipfb->ipfb_count >= count); 7337 ipfb->ipfb_count -= count; 7338 ipfb->ipfb_frag_pkts--; 7339 mutex_exit(&ipfb->ipfb_lock); 7340 /* Ditch the frag header. */ 7341 mp = mp1->b_cont; 7342 7343 freeb(mp1); 7344 7345 /* Restore original IP length in header. */ 7346 packet_size = (uint32_t)msgdsize(mp); 7347 if (packet_size > IP_MAXPACKET) { 7348 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7349 ip_drop_input("Reassembled packet too large", mp, ill); 7350 freemsg(mp); 7351 return (NULL); 7352 } 7353 7354 if (DB_REF(mp) > 1) { 7355 mblk_t *mp2 = copymsg(mp); 7356 7357 if (mp2 == NULL) { 7358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7359 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7360 freemsg(mp); 7361 return (NULL); 7362 } 7363 freemsg(mp); 7364 mp = mp2; 7365 } 7366 ipha = (ipha_t *)mp->b_rptr; 7367 7368 ipha->ipha_length = htons((uint16_t)packet_size); 7369 /* We're now complete, zip the frag state */ 7370 ipha->ipha_fragment_offset_and_flags = 0; 7371 /* Record the ECN info. */ 7372 ipha->ipha_type_of_service &= 0xFC; 7373 ipha->ipha_type_of_service |= ecn_info; 7374 7375 /* Update the receive attributes */ 7376 ira->ira_pktlen = packet_size; 7377 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7378 7379 /* Reassembly is successful; set checksum information in packet */ 7380 DB_CKSUM16(mp) = (uint16_t)sum_val; 7381 DB_CKSUMFLAGS(mp) = sum_flags; 7382 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7383 7384 return (mp); 7385 } 7386 7387 /* 7388 * Pullup function that should be used for IP input in order to 7389 * ensure we do not loose the L2 source address; we need the l2 source 7390 * address for IP_RECVSLLA and for ndp_input. 7391 * 7392 * We return either NULL or b_rptr. 7393 */ 7394 void * 7395 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7396 { 7397 ill_t *ill = ira->ira_ill; 7398 7399 if (ip_rput_pullups++ == 0) { 7400 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7401 "ip_pullup: %s forced us to " 7402 " pullup pkt, hdr len %ld, hdr addr %p", 7403 ill->ill_name, len, (void *)mp->b_rptr); 7404 } 7405 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7406 ip_setl2src(mp, ira, ira->ira_rill); 7407 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7408 if (!pullupmsg(mp, len)) 7409 return (NULL); 7410 else 7411 return (mp->b_rptr); 7412 } 7413 7414 /* 7415 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7416 * When called from the ULP ira_rill will be NULL hence the caller has to 7417 * pass in the ill. 7418 */ 7419 /* ARGSUSED */ 7420 void 7421 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7422 { 7423 const uchar_t *addr; 7424 int alen; 7425 7426 if (ira->ira_flags & IRAF_L2SRC_SET) 7427 return; 7428 7429 ASSERT(ill != NULL); 7430 alen = ill->ill_phys_addr_length; 7431 ASSERT(alen <= sizeof (ira->ira_l2src)); 7432 if (ira->ira_mhip != NULL && 7433 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7434 bcopy(addr, ira->ira_l2src, alen); 7435 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7436 (addr = ill->ill_phys_addr) != NULL) { 7437 bcopy(addr, ira->ira_l2src, alen); 7438 } else { 7439 bzero(ira->ira_l2src, alen); 7440 } 7441 ira->ira_flags |= IRAF_L2SRC_SET; 7442 } 7443 7444 /* 7445 * check ip header length and align it. 7446 */ 7447 mblk_t * 7448 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7449 { 7450 ill_t *ill = ira->ira_ill; 7451 ssize_t len; 7452 7453 len = MBLKL(mp); 7454 7455 if (!OK_32PTR(mp->b_rptr)) 7456 IP_STAT(ill->ill_ipst, ip_notaligned); 7457 else 7458 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7459 7460 /* Guard against bogus device drivers */ 7461 if (len < 0) { 7462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7463 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7464 freemsg(mp); 7465 return (NULL); 7466 } 7467 7468 if (len == 0) { 7469 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7470 mblk_t *mp1 = mp->b_cont; 7471 7472 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7473 ip_setl2src(mp, ira, ira->ira_rill); 7474 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7475 7476 freeb(mp); 7477 mp = mp1; 7478 if (mp == NULL) 7479 return (NULL); 7480 7481 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7482 return (mp); 7483 } 7484 if (ip_pullup(mp, min_size, ira) == NULL) { 7485 if (msgdsize(mp) < min_size) { 7486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7487 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7488 } else { 7489 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7490 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7491 } 7492 freemsg(mp); 7493 return (NULL); 7494 } 7495 return (mp); 7496 } 7497 7498 /* 7499 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7500 */ 7501 mblk_t * 7502 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7503 uint_t min_size, ip_recv_attr_t *ira) 7504 { 7505 ill_t *ill = ira->ira_ill; 7506 7507 /* 7508 * Make sure we have data length consistent 7509 * with the IP header. 7510 */ 7511 if (mp->b_cont == NULL) { 7512 /* pkt_len is based on ipha_len, not the mblk length */ 7513 if (pkt_len < min_size) { 7514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7515 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7516 freemsg(mp); 7517 return (NULL); 7518 } 7519 if (len < 0) { 7520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7521 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7522 freemsg(mp); 7523 return (NULL); 7524 } 7525 /* Drop any pad */ 7526 mp->b_wptr = rptr + pkt_len; 7527 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7528 ASSERT(pkt_len >= min_size); 7529 if (pkt_len < min_size) { 7530 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7531 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7532 freemsg(mp); 7533 return (NULL); 7534 } 7535 if (len < 0) { 7536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7537 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7538 freemsg(mp); 7539 return (NULL); 7540 } 7541 /* Drop any pad */ 7542 (void) adjmsg(mp, -len); 7543 /* 7544 * adjmsg may have freed an mblk from the chain, hence 7545 * invalidate any hw checksum here. This will force IP to 7546 * calculate the checksum in sw, but only for this packet. 7547 */ 7548 DB_CKSUMFLAGS(mp) = 0; 7549 IP_STAT(ill->ill_ipst, ip_multimblk); 7550 } 7551 return (mp); 7552 } 7553 7554 /* 7555 * Check that the IPv4 opt_len is consistent with the packet and pullup 7556 * the options. 7557 */ 7558 mblk_t * 7559 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7560 ip_recv_attr_t *ira) 7561 { 7562 ill_t *ill = ira->ira_ill; 7563 ssize_t len; 7564 7565 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7566 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7569 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7570 freemsg(mp); 7571 return (NULL); 7572 } 7573 7574 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7576 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7577 freemsg(mp); 7578 return (NULL); 7579 } 7580 /* 7581 * Recompute complete header length and make sure we 7582 * have access to all of it. 7583 */ 7584 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7585 if (len > (mp->b_wptr - mp->b_rptr)) { 7586 if (len > pkt_len) { 7587 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7588 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7589 freemsg(mp); 7590 return (NULL); 7591 } 7592 if (ip_pullup(mp, len, ira) == NULL) { 7593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7594 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7595 freemsg(mp); 7596 return (NULL); 7597 } 7598 } 7599 return (mp); 7600 } 7601 7602 /* 7603 * Returns a new ire, or the same ire, or NULL. 7604 * If a different IRE is returned, then it is held; the caller 7605 * needs to release it. 7606 * In no case is there any hold/release on the ire argument. 7607 */ 7608 ire_t * 7609 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7610 { 7611 ire_t *new_ire; 7612 ill_t *ire_ill; 7613 uint_t ifindex; 7614 ip_stack_t *ipst = ill->ill_ipst; 7615 boolean_t strict_check = B_FALSE; 7616 7617 /* 7618 * IPMP common case: if IRE and ILL are in the same group, there's no 7619 * issue (e.g. packet received on an underlying interface matched an 7620 * IRE_LOCAL on its associated group interface). 7621 */ 7622 ASSERT(ire->ire_ill != NULL); 7623 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7624 return (ire); 7625 7626 /* 7627 * Do another ire lookup here, using the ingress ill, to see if the 7628 * interface is in a usesrc group. 7629 * As long as the ills belong to the same group, we don't consider 7630 * them to be arriving on the wrong interface. Thus, if the switch 7631 * is doing inbound load spreading, we won't drop packets when the 7632 * ip*_strict_dst_multihoming switch is on. 7633 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7634 * where the local address may not be unique. In this case we were 7635 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7636 * actually returned. The new lookup, which is more specific, should 7637 * only find the IRE_LOCAL associated with the ingress ill if one 7638 * exists. 7639 */ 7640 if (ire->ire_ipversion == IPV4_VERSION) { 7641 if (ipst->ips_ip_strict_dst_multihoming) 7642 strict_check = B_TRUE; 7643 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7644 IRE_LOCAL, ill, ALL_ZONES, NULL, 7645 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7646 } else { 7647 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7648 if (ipst->ips_ipv6_strict_dst_multihoming) 7649 strict_check = B_TRUE; 7650 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7651 IRE_LOCAL, ill, ALL_ZONES, NULL, 7652 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7653 } 7654 /* 7655 * If the same ire that was returned in ip_input() is found then this 7656 * is an indication that usesrc groups are in use. The packet 7657 * arrived on a different ill in the group than the one associated with 7658 * the destination address. If a different ire was found then the same 7659 * IP address must be hosted on multiple ills. This is possible with 7660 * unnumbered point2point interfaces. We switch to use this new ire in 7661 * order to have accurate interface statistics. 7662 */ 7663 if (new_ire != NULL) { 7664 /* Note: held in one case but not the other? Caller handles */ 7665 if (new_ire != ire) 7666 return (new_ire); 7667 /* Unchanged */ 7668 ire_refrele(new_ire); 7669 return (ire); 7670 } 7671 7672 /* 7673 * Chase pointers once and store locally. 7674 */ 7675 ASSERT(ire->ire_ill != NULL); 7676 ire_ill = ire->ire_ill; 7677 ifindex = ill->ill_usesrc_ifindex; 7678 7679 /* 7680 * Check if it's a legal address on the 'usesrc' interface. 7681 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7682 * can just check phyint_ifindex. 7683 */ 7684 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7685 return (ire); 7686 } 7687 7688 /* 7689 * If the ip*_strict_dst_multihoming switch is on then we can 7690 * only accept this packet if the interface is marked as routing. 7691 */ 7692 if (!(strict_check)) 7693 return (ire); 7694 7695 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7696 return (ire); 7697 } 7698 return (NULL); 7699 } 7700 7701 /* 7702 * This function is used to construct a mac_header_info_s from a 7703 * DL_UNITDATA_IND message. 7704 * The address fields in the mhi structure points into the message, 7705 * thus the caller can't use those fields after freeing the message. 7706 * 7707 * We determine whether the packet received is a non-unicast packet 7708 * and in doing so, determine whether or not it is broadcast vs multicast. 7709 * For it to be a broadcast packet, we must have the appropriate mblk_t 7710 * hanging off the ill_t. If this is either not present or doesn't match 7711 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7712 * to be multicast. Thus NICs that have no broadcast address (or no 7713 * capability for one, such as point to point links) cannot return as 7714 * the packet being broadcast. 7715 */ 7716 void 7717 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7718 { 7719 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7720 mblk_t *bmp; 7721 uint_t extra_offset; 7722 7723 bzero(mhip, sizeof (struct mac_header_info_s)); 7724 7725 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7726 7727 if (ill->ill_sap_length < 0) 7728 extra_offset = 0; 7729 else 7730 extra_offset = ill->ill_sap_length; 7731 7732 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7733 extra_offset; 7734 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7735 extra_offset; 7736 7737 if (!ind->dl_group_address) 7738 return; 7739 7740 /* Multicast or broadcast */ 7741 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7742 7743 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7744 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7745 (bmp = ill->ill_bcast_mp) != NULL) { 7746 dl_unitdata_req_t *dlur; 7747 uint8_t *bphys_addr; 7748 7749 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7750 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7751 extra_offset; 7752 7753 if (bcmp(mhip->mhi_daddr, bphys_addr, 7754 ind->dl_dest_addr_length) == 0) 7755 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7756 } 7757 } 7758 7759 /* 7760 * This function is used to construct a mac_header_info_s from a 7761 * M_DATA fastpath message from a DLPI driver. 7762 * The address fields in the mhi structure points into the message, 7763 * thus the caller can't use those fields after freeing the message. 7764 * 7765 * We determine whether the packet received is a non-unicast packet 7766 * and in doing so, determine whether or not it is broadcast vs multicast. 7767 * For it to be a broadcast packet, we must have the appropriate mblk_t 7768 * hanging off the ill_t. If this is either not present or doesn't match 7769 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7770 * to be multicast. Thus NICs that have no broadcast address (or no 7771 * capability for one, such as point to point links) cannot return as 7772 * the packet being broadcast. 7773 */ 7774 void 7775 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7776 { 7777 mblk_t *bmp; 7778 struct ether_header *pether; 7779 7780 bzero(mhip, sizeof (struct mac_header_info_s)); 7781 7782 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7783 7784 pether = (struct ether_header *)((char *)mp->b_rptr 7785 - sizeof (struct ether_header)); 7786 7787 /* 7788 * Make sure the interface is an ethernet type, since we don't 7789 * know the header format for anything but Ethernet. Also make 7790 * sure we are pointing correctly above db_base. 7791 */ 7792 if (ill->ill_type != IFT_ETHER) 7793 return; 7794 7795 retry: 7796 if ((uchar_t *)pether < mp->b_datap->db_base) 7797 return; 7798 7799 /* Is there a VLAN tag? */ 7800 if (ill->ill_isv6) { 7801 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7802 pether = (struct ether_header *)((char *)pether - 4); 7803 goto retry; 7804 } 7805 } else { 7806 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7807 pether = (struct ether_header *)((char *)pether - 4); 7808 goto retry; 7809 } 7810 } 7811 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7812 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7813 7814 if (!(mhip->mhi_daddr[0] & 0x01)) 7815 return; 7816 7817 /* Multicast or broadcast */ 7818 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7819 7820 if ((bmp = ill->ill_bcast_mp) != NULL) { 7821 dl_unitdata_req_t *dlur; 7822 uint8_t *bphys_addr; 7823 uint_t addrlen; 7824 7825 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7826 addrlen = dlur->dl_dest_addr_length; 7827 if (ill->ill_sap_length < 0) { 7828 bphys_addr = (uchar_t *)dlur + 7829 dlur->dl_dest_addr_offset; 7830 addrlen += ill->ill_sap_length; 7831 } else { 7832 bphys_addr = (uchar_t *)dlur + 7833 dlur->dl_dest_addr_offset + 7834 ill->ill_sap_length; 7835 addrlen -= ill->ill_sap_length; 7836 } 7837 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7838 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7839 } 7840 } 7841 7842 /* 7843 * Handle anything but M_DATA messages 7844 * We see the DL_UNITDATA_IND which are part 7845 * of the data path, and also the other messages from the driver. 7846 */ 7847 void 7848 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7849 { 7850 mblk_t *first_mp; 7851 struct iocblk *iocp; 7852 struct mac_header_info_s mhi; 7853 7854 switch (DB_TYPE(mp)) { 7855 case M_PROTO: 7856 case M_PCPROTO: { 7857 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7858 DL_UNITDATA_IND) { 7859 /* Go handle anything other than data elsewhere. */ 7860 ip_rput_dlpi(ill, mp); 7861 return; 7862 } 7863 7864 first_mp = mp; 7865 mp = first_mp->b_cont; 7866 first_mp->b_cont = NULL; 7867 7868 if (mp == NULL) { 7869 freeb(first_mp); 7870 return; 7871 } 7872 ip_dlur_to_mhi(ill, first_mp, &mhi); 7873 if (ill->ill_isv6) 7874 ip_input_v6(ill, NULL, mp, &mhi); 7875 else 7876 ip_input(ill, NULL, mp, &mhi); 7877 7878 /* Ditch the DLPI header. */ 7879 freeb(first_mp); 7880 return; 7881 } 7882 case M_IOCACK: 7883 iocp = (struct iocblk *)mp->b_rptr; 7884 switch (iocp->ioc_cmd) { 7885 case DL_IOC_HDR_INFO: 7886 ill_fastpath_ack(ill, mp); 7887 return; 7888 default: 7889 putnext(ill->ill_rq, mp); 7890 return; 7891 } 7892 /* FALLTHRU */ 7893 case M_ERROR: 7894 case M_HANGUP: 7895 mutex_enter(&ill->ill_lock); 7896 if (ill->ill_state_flags & ILL_CONDEMNED) { 7897 mutex_exit(&ill->ill_lock); 7898 freemsg(mp); 7899 return; 7900 } 7901 ill_refhold_locked(ill); 7902 mutex_exit(&ill->ill_lock); 7903 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7904 B_FALSE); 7905 return; 7906 case M_CTL: 7907 putnext(ill->ill_rq, mp); 7908 return; 7909 case M_IOCNAK: 7910 ip1dbg(("got iocnak ")); 7911 iocp = (struct iocblk *)mp->b_rptr; 7912 switch (iocp->ioc_cmd) { 7913 case DL_IOC_HDR_INFO: 7914 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7915 return; 7916 default: 7917 break; 7918 } 7919 /* FALLTHRU */ 7920 default: 7921 putnext(ill->ill_rq, mp); 7922 return; 7923 } 7924 } 7925 7926 /* Read side put procedure. Packets coming from the wire arrive here. */ 7927 void 7928 ip_rput(queue_t *q, mblk_t *mp) 7929 { 7930 ill_t *ill; 7931 union DL_primitives *dl; 7932 7933 ill = (ill_t *)q->q_ptr; 7934 7935 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7936 /* 7937 * If things are opening or closing, only accept high-priority 7938 * DLPI messages. (On open ill->ill_ipif has not yet been 7939 * created; on close, things hanging off the ill may have been 7940 * freed already.) 7941 */ 7942 dl = (union DL_primitives *)mp->b_rptr; 7943 if (DB_TYPE(mp) != M_PCPROTO || 7944 dl->dl_primitive == DL_UNITDATA_IND) { 7945 inet_freemsg(mp); 7946 return; 7947 } 7948 } 7949 if (DB_TYPE(mp) == M_DATA) { 7950 struct mac_header_info_s mhi; 7951 7952 ip_mdata_to_mhi(ill, mp, &mhi); 7953 ip_input(ill, NULL, mp, &mhi); 7954 } else { 7955 ip_rput_notdata(ill, mp); 7956 } 7957 } 7958 7959 /* 7960 * Move the information to a copy. 7961 */ 7962 mblk_t * 7963 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7964 { 7965 mblk_t *mp1; 7966 ill_t *ill = ira->ira_ill; 7967 ip_stack_t *ipst = ill->ill_ipst; 7968 7969 IP_STAT(ipst, ip_db_ref); 7970 7971 /* Make sure we have ira_l2src before we loose the original mblk */ 7972 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7973 ip_setl2src(mp, ira, ira->ira_rill); 7974 7975 mp1 = copymsg(mp); 7976 if (mp1 == NULL) { 7977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7978 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7979 freemsg(mp); 7980 return (NULL); 7981 } 7982 /* preserve the hardware checksum flags and data, if present */ 7983 if (DB_CKSUMFLAGS(mp) != 0) { 7984 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7985 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7986 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7987 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7988 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7989 } 7990 freemsg(mp); 7991 return (mp1); 7992 } 7993 7994 static void 7995 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 7996 t_uscalar_t err) 7997 { 7998 if (dl_err == DL_SYSERR) { 7999 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8000 "%s: %s failed: DL_SYSERR (errno %u)\n", 8001 ill->ill_name, dl_primstr(prim), err); 8002 return; 8003 } 8004 8005 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8006 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8007 dl_errstr(dl_err)); 8008 } 8009 8010 /* 8011 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8012 * than DL_UNITDATA_IND messages. If we need to process this message 8013 * exclusively, we call qwriter_ip, in which case we also need to call 8014 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8015 */ 8016 void 8017 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8018 { 8019 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8020 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8021 queue_t *q = ill->ill_rq; 8022 t_uscalar_t prim = dloa->dl_primitive; 8023 t_uscalar_t reqprim = DL_PRIM_INVAL; 8024 8025 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8026 char *, dl_primstr(prim), ill_t *, ill); 8027 ip1dbg(("ip_rput_dlpi")); 8028 8029 /* 8030 * If we received an ACK but didn't send a request for it, then it 8031 * can't be part of any pending operation; discard up-front. 8032 */ 8033 switch (prim) { 8034 case DL_ERROR_ACK: 8035 reqprim = dlea->dl_error_primitive; 8036 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8037 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8038 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8039 dlea->dl_unix_errno)); 8040 break; 8041 case DL_OK_ACK: 8042 reqprim = dloa->dl_correct_primitive; 8043 break; 8044 case DL_INFO_ACK: 8045 reqprim = DL_INFO_REQ; 8046 break; 8047 case DL_BIND_ACK: 8048 reqprim = DL_BIND_REQ; 8049 break; 8050 case DL_PHYS_ADDR_ACK: 8051 reqprim = DL_PHYS_ADDR_REQ; 8052 break; 8053 case DL_NOTIFY_ACK: 8054 reqprim = DL_NOTIFY_REQ; 8055 break; 8056 case DL_CAPABILITY_ACK: 8057 reqprim = DL_CAPABILITY_REQ; 8058 break; 8059 } 8060 8061 if (prim != DL_NOTIFY_IND) { 8062 if (reqprim == DL_PRIM_INVAL || 8063 !ill_dlpi_pending(ill, reqprim)) { 8064 /* Not a DLPI message we support or expected */ 8065 freemsg(mp); 8066 return; 8067 } 8068 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8069 dl_primstr(reqprim))); 8070 } 8071 8072 switch (reqprim) { 8073 case DL_UNBIND_REQ: 8074 /* 8075 * NOTE: we mark the unbind as complete even if we got a 8076 * DL_ERROR_ACK, since there's not much else we can do. 8077 */ 8078 mutex_enter(&ill->ill_lock); 8079 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8080 cv_signal(&ill->ill_cv); 8081 mutex_exit(&ill->ill_lock); 8082 break; 8083 8084 case DL_ENABMULTI_REQ: 8085 if (prim == DL_OK_ACK) { 8086 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8087 ill->ill_dlpi_multicast_state = IDS_OK; 8088 } 8089 break; 8090 } 8091 8092 /* 8093 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8094 * need to become writer to continue to process it. Because an 8095 * exclusive operation doesn't complete until replies to all queued 8096 * DLPI messages have been received, we know we're in the middle of an 8097 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8098 * 8099 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8100 * Since this is on the ill stream we unconditionally bump up the 8101 * refcount without doing ILL_CAN_LOOKUP(). 8102 */ 8103 ill_refhold(ill); 8104 if (prim == DL_NOTIFY_IND) 8105 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8106 else 8107 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8108 } 8109 8110 /* 8111 * Handling of DLPI messages that require exclusive access to the ipsq. 8112 * 8113 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8114 * happen here. (along with mi_copy_done) 8115 */ 8116 /* ARGSUSED */ 8117 static void 8118 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8119 { 8120 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8121 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8122 int err = 0; 8123 ill_t *ill = (ill_t *)q->q_ptr; 8124 ipif_t *ipif = NULL; 8125 mblk_t *mp1 = NULL; 8126 conn_t *connp = NULL; 8127 t_uscalar_t paddrreq; 8128 mblk_t *mp_hw; 8129 boolean_t success; 8130 boolean_t ioctl_aborted = B_FALSE; 8131 boolean_t log = B_TRUE; 8132 8133 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8134 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8135 8136 ip1dbg(("ip_rput_dlpi_writer ..")); 8137 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8138 ASSERT(IAM_WRITER_ILL(ill)); 8139 8140 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8141 /* 8142 * The current ioctl could have been aborted by the user and a new 8143 * ioctl to bring up another ill could have started. We could still 8144 * get a response from the driver later. 8145 */ 8146 if (ipif != NULL && ipif->ipif_ill != ill) 8147 ioctl_aborted = B_TRUE; 8148 8149 switch (dloa->dl_primitive) { 8150 case DL_ERROR_ACK: 8151 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8152 dl_primstr(dlea->dl_error_primitive))); 8153 8154 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8155 char *, dl_primstr(dlea->dl_error_primitive), 8156 ill_t *, ill); 8157 8158 switch (dlea->dl_error_primitive) { 8159 case DL_DISABMULTI_REQ: 8160 ill_dlpi_done(ill, dlea->dl_error_primitive); 8161 break; 8162 case DL_PROMISCON_REQ: 8163 case DL_PROMISCOFF_REQ: 8164 case DL_UNBIND_REQ: 8165 case DL_ATTACH_REQ: 8166 case DL_INFO_REQ: 8167 ill_dlpi_done(ill, dlea->dl_error_primitive); 8168 break; 8169 case DL_NOTIFY_REQ: 8170 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8171 log = B_FALSE; 8172 break; 8173 case DL_PHYS_ADDR_REQ: 8174 /* 8175 * For IPv6 only, there are two additional 8176 * phys_addr_req's sent to the driver to get the 8177 * IPv6 token and lla. This allows IP to acquire 8178 * the hardware address format for a given interface 8179 * without having built in knowledge of the hardware 8180 * address. ill_phys_addr_pend keeps track of the last 8181 * DL_PAR sent so we know which response we are 8182 * dealing with. ill_dlpi_done will update 8183 * ill_phys_addr_pend when it sends the next req. 8184 * We don't complete the IOCTL until all three DL_PARs 8185 * have been attempted, so set *_len to 0 and break. 8186 */ 8187 paddrreq = ill->ill_phys_addr_pend; 8188 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8189 if (paddrreq == DL_IPV6_TOKEN) { 8190 ill->ill_token_length = 0; 8191 log = B_FALSE; 8192 break; 8193 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8194 ill->ill_nd_lla_len = 0; 8195 log = B_FALSE; 8196 break; 8197 } 8198 /* 8199 * Something went wrong with the DL_PHYS_ADDR_REQ. 8200 * We presumably have an IOCTL hanging out waiting 8201 * for completion. Find it and complete the IOCTL 8202 * with the error noted. 8203 * However, ill_dl_phys was called on an ill queue 8204 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8205 * set. But the ioctl is known to be pending on ill_wq. 8206 */ 8207 if (!ill->ill_ifname_pending) 8208 break; 8209 ill->ill_ifname_pending = 0; 8210 if (!ioctl_aborted) 8211 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8212 if (mp1 != NULL) { 8213 /* 8214 * This operation (SIOCSLIFNAME) must have 8215 * happened on the ill. Assert there is no conn 8216 */ 8217 ASSERT(connp == NULL); 8218 q = ill->ill_wq; 8219 } 8220 break; 8221 case DL_BIND_REQ: 8222 ill_dlpi_done(ill, DL_BIND_REQ); 8223 if (ill->ill_ifname_pending) 8224 break; 8225 mutex_enter(&ill->ill_lock); 8226 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8227 mutex_exit(&ill->ill_lock); 8228 /* 8229 * Something went wrong with the bind. We presumably 8230 * have an IOCTL hanging out waiting for completion. 8231 * Find it, take down the interface that was coming 8232 * up, and complete the IOCTL with the error noted. 8233 */ 8234 if (!ioctl_aborted) 8235 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8236 if (mp1 != NULL) { 8237 /* 8238 * This might be a result of a DL_NOTE_REPLUMB 8239 * notification. In that case, connp is NULL. 8240 */ 8241 if (connp != NULL) 8242 q = CONNP_TO_WQ(connp); 8243 8244 (void) ipif_down(ipif, NULL, NULL); 8245 /* error is set below the switch */ 8246 } 8247 break; 8248 case DL_ENABMULTI_REQ: 8249 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8250 8251 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8252 ill->ill_dlpi_multicast_state = IDS_FAILED; 8253 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8254 8255 printf("ip: joining multicasts failed (%d)" 8256 " on %s - will use link layer " 8257 "broadcasts for multicast\n", 8258 dlea->dl_errno, ill->ill_name); 8259 8260 /* 8261 * Set up for multi_bcast; We are the 8262 * writer, so ok to access ill->ill_ipif 8263 * without any lock. 8264 */ 8265 mutex_enter(&ill->ill_phyint->phyint_lock); 8266 ill->ill_phyint->phyint_flags |= 8267 PHYI_MULTI_BCAST; 8268 mutex_exit(&ill->ill_phyint->phyint_lock); 8269 8270 } 8271 freemsg(mp); /* Don't want to pass this up */ 8272 return; 8273 case DL_CAPABILITY_REQ: 8274 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8275 "DL_CAPABILITY REQ\n")); 8276 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8277 ill->ill_dlpi_capab_state = IDCS_FAILED; 8278 ill_capability_done(ill); 8279 freemsg(mp); 8280 return; 8281 } 8282 /* 8283 * Note the error for IOCTL completion (mp1 is set when 8284 * ready to complete ioctl). If ill_ifname_pending_err is 8285 * set, an error occured during plumbing (ill_ifname_pending), 8286 * so we want to report that error. 8287 * 8288 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8289 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8290 * expected to get errack'd if the driver doesn't support 8291 * these flags (e.g. ethernet). log will be set to B_FALSE 8292 * if these error conditions are encountered. 8293 */ 8294 if (mp1 != NULL) { 8295 if (ill->ill_ifname_pending_err != 0) { 8296 err = ill->ill_ifname_pending_err; 8297 ill->ill_ifname_pending_err = 0; 8298 } else { 8299 err = dlea->dl_unix_errno ? 8300 dlea->dl_unix_errno : ENXIO; 8301 } 8302 /* 8303 * If we're plumbing an interface and an error hasn't already 8304 * been saved, set ill_ifname_pending_err to the error passed 8305 * up. Ignore the error if log is B_FALSE (see comment above). 8306 */ 8307 } else if (log && ill->ill_ifname_pending && 8308 ill->ill_ifname_pending_err == 0) { 8309 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8310 dlea->dl_unix_errno : ENXIO; 8311 } 8312 8313 if (log) 8314 ip_dlpi_error(ill, dlea->dl_error_primitive, 8315 dlea->dl_errno, dlea->dl_unix_errno); 8316 break; 8317 case DL_CAPABILITY_ACK: 8318 ill_capability_ack(ill, mp); 8319 /* 8320 * The message has been handed off to ill_capability_ack 8321 * and must not be freed below 8322 */ 8323 mp = NULL; 8324 break; 8325 8326 case DL_INFO_ACK: 8327 /* Call a routine to handle this one. */ 8328 ill_dlpi_done(ill, DL_INFO_REQ); 8329 ip_ll_subnet_defaults(ill, mp); 8330 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8331 return; 8332 case DL_BIND_ACK: 8333 /* 8334 * We should have an IOCTL waiting on this unless 8335 * sent by ill_dl_phys, in which case just return 8336 */ 8337 ill_dlpi_done(ill, DL_BIND_REQ); 8338 8339 if (ill->ill_ifname_pending) { 8340 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8341 ill_t *, ill, mblk_t *, mp); 8342 break; 8343 } 8344 mutex_enter(&ill->ill_lock); 8345 ill->ill_dl_up = 1; 8346 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8347 mutex_exit(&ill->ill_lock); 8348 8349 if (!ioctl_aborted) 8350 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8351 if (mp1 == NULL) { 8352 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8353 break; 8354 } 8355 /* 8356 * mp1 was added by ill_dl_up(). if that is a result of 8357 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8358 */ 8359 if (connp != NULL) 8360 q = CONNP_TO_WQ(connp); 8361 /* 8362 * We are exclusive. So nothing can change even after 8363 * we get the pending mp. 8364 */ 8365 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8366 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8367 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8368 8369 /* 8370 * Now bring up the resolver; when that is complete, we'll 8371 * create IREs. Note that we intentionally mirror what 8372 * ipif_up() would have done, because we got here by way of 8373 * ill_dl_up(), which stopped ipif_up()'s processing. 8374 */ 8375 if (ill->ill_isv6) { 8376 /* 8377 * v6 interfaces. 8378 * Unlike ARP which has to do another bind 8379 * and attach, once we get here we are 8380 * done with NDP 8381 */ 8382 (void) ipif_resolver_up(ipif, Res_act_initial); 8383 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8384 err = ipif_up_done_v6(ipif); 8385 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8386 /* 8387 * ARP and other v4 external resolvers. 8388 * Leave the pending mblk intact so that 8389 * the ioctl completes in ip_rput(). 8390 */ 8391 if (connp != NULL) 8392 mutex_enter(&connp->conn_lock); 8393 mutex_enter(&ill->ill_lock); 8394 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8395 mutex_exit(&ill->ill_lock); 8396 if (connp != NULL) 8397 mutex_exit(&connp->conn_lock); 8398 if (success) { 8399 err = ipif_resolver_up(ipif, Res_act_initial); 8400 if (err == EINPROGRESS) { 8401 freemsg(mp); 8402 return; 8403 } 8404 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8405 } else { 8406 /* The conn has started closing */ 8407 err = EINTR; 8408 } 8409 } else { 8410 /* 8411 * This one is complete. Reply to pending ioctl. 8412 */ 8413 (void) ipif_resolver_up(ipif, Res_act_initial); 8414 err = ipif_up_done(ipif); 8415 } 8416 8417 if ((err == 0) && (ill->ill_up_ipifs)) { 8418 err = ill_up_ipifs(ill, q, mp1); 8419 if (err == EINPROGRESS) { 8420 freemsg(mp); 8421 return; 8422 } 8423 } 8424 8425 /* 8426 * If we have a moved ipif to bring up, and everything has 8427 * succeeded to this point, bring it up on the IPMP ill. 8428 * Otherwise, leave it down -- the admin can try to bring it 8429 * up by hand if need be. 8430 */ 8431 if (ill->ill_move_ipif != NULL) { 8432 if (err != 0) { 8433 ill->ill_move_ipif = NULL; 8434 } else { 8435 ipif = ill->ill_move_ipif; 8436 ill->ill_move_ipif = NULL; 8437 err = ipif_up(ipif, q, mp1); 8438 if (err == EINPROGRESS) { 8439 freemsg(mp); 8440 return; 8441 } 8442 } 8443 } 8444 break; 8445 8446 case DL_NOTIFY_IND: { 8447 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8448 uint_t orig_mtu; 8449 8450 switch (notify->dl_notification) { 8451 case DL_NOTE_PHYS_ADDR: 8452 err = ill_set_phys_addr(ill, mp); 8453 break; 8454 8455 case DL_NOTE_REPLUMB: 8456 /* 8457 * Directly return after calling ill_replumb(). 8458 * Note that we should not free mp as it is reused 8459 * in the ill_replumb() function. 8460 */ 8461 err = ill_replumb(ill, mp); 8462 return; 8463 8464 case DL_NOTE_FASTPATH_FLUSH: 8465 nce_flush(ill, B_FALSE); 8466 break; 8467 8468 case DL_NOTE_SDU_SIZE: 8469 /* 8470 * The dce and fragmentation code can cope with 8471 * this changing while packets are being sent. 8472 * When packets are sent ip_output will discover 8473 * a change. 8474 * 8475 * Change the MTU size of the interface. 8476 */ 8477 mutex_enter(&ill->ill_lock); 8478 ill->ill_current_frag = (uint_t)notify->dl_data; 8479 if (ill->ill_current_frag > ill->ill_max_frag) 8480 ill->ill_max_frag = ill->ill_current_frag; 8481 8482 orig_mtu = ill->ill_mtu; 8483 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8484 ill->ill_mtu = ill->ill_current_frag; 8485 8486 /* 8487 * If ill_user_mtu was set (via 8488 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8489 */ 8490 if (ill->ill_user_mtu != 0 && 8491 ill->ill_user_mtu < ill->ill_mtu) 8492 ill->ill_mtu = ill->ill_user_mtu; 8493 8494 if (ill->ill_isv6) { 8495 if (ill->ill_mtu < IPV6_MIN_MTU) 8496 ill->ill_mtu = IPV6_MIN_MTU; 8497 } else { 8498 if (ill->ill_mtu < IP_MIN_MTU) 8499 ill->ill_mtu = IP_MIN_MTU; 8500 } 8501 } 8502 mutex_exit(&ill->ill_lock); 8503 /* 8504 * Make sure all dce_generation checks find out 8505 * that ill_mtu has changed. 8506 */ 8507 if (orig_mtu != ill->ill_mtu) { 8508 dce_increment_all_generations(ill->ill_isv6, 8509 ill->ill_ipst); 8510 } 8511 8512 /* 8513 * Refresh IPMP meta-interface MTU if necessary. 8514 */ 8515 if (IS_UNDER_IPMP(ill)) 8516 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8517 break; 8518 8519 case DL_NOTE_LINK_UP: 8520 case DL_NOTE_LINK_DOWN: { 8521 /* 8522 * We are writer. ill / phyint / ipsq assocs stable. 8523 * The RUNNING flag reflects the state of the link. 8524 */ 8525 phyint_t *phyint = ill->ill_phyint; 8526 uint64_t new_phyint_flags; 8527 boolean_t changed = B_FALSE; 8528 boolean_t went_up; 8529 8530 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8531 mutex_enter(&phyint->phyint_lock); 8532 8533 new_phyint_flags = went_up ? 8534 phyint->phyint_flags | PHYI_RUNNING : 8535 phyint->phyint_flags & ~PHYI_RUNNING; 8536 8537 if (IS_IPMP(ill)) { 8538 new_phyint_flags = went_up ? 8539 new_phyint_flags & ~PHYI_FAILED : 8540 new_phyint_flags | PHYI_FAILED; 8541 } 8542 8543 if (new_phyint_flags != phyint->phyint_flags) { 8544 phyint->phyint_flags = new_phyint_flags; 8545 changed = B_TRUE; 8546 } 8547 mutex_exit(&phyint->phyint_lock); 8548 /* 8549 * ill_restart_dad handles the DAD restart and routing 8550 * socket notification logic. 8551 */ 8552 if (changed) { 8553 ill_restart_dad(phyint->phyint_illv4, went_up); 8554 ill_restart_dad(phyint->phyint_illv6, went_up); 8555 } 8556 break; 8557 } 8558 case DL_NOTE_PROMISC_ON_PHYS: { 8559 phyint_t *phyint = ill->ill_phyint; 8560 8561 mutex_enter(&phyint->phyint_lock); 8562 phyint->phyint_flags |= PHYI_PROMISC; 8563 mutex_exit(&phyint->phyint_lock); 8564 break; 8565 } 8566 case DL_NOTE_PROMISC_OFF_PHYS: { 8567 phyint_t *phyint = ill->ill_phyint; 8568 8569 mutex_enter(&phyint->phyint_lock); 8570 phyint->phyint_flags &= ~PHYI_PROMISC; 8571 mutex_exit(&phyint->phyint_lock); 8572 break; 8573 } 8574 case DL_NOTE_CAPAB_RENEG: 8575 /* 8576 * Something changed on the driver side. 8577 * It wants us to renegotiate the capabilities 8578 * on this ill. One possible cause is the aggregation 8579 * interface under us where a port got added or 8580 * went away. 8581 * 8582 * If the capability negotiation is already done 8583 * or is in progress, reset the capabilities and 8584 * mark the ill's ill_capab_reneg to be B_TRUE, 8585 * so that when the ack comes back, we can start 8586 * the renegotiation process. 8587 * 8588 * Note that if ill_capab_reneg is already B_TRUE 8589 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8590 * the capability resetting request has been sent 8591 * and the renegotiation has not been started yet; 8592 * nothing needs to be done in this case. 8593 */ 8594 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8595 ill_capability_reset(ill, B_TRUE); 8596 ipsq_current_finish(ipsq); 8597 break; 8598 8599 case DL_NOTE_ALLOWED_IPS: 8600 ill_set_allowed_ips(ill, mp); 8601 break; 8602 default: 8603 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8604 "type 0x%x for DL_NOTIFY_IND\n", 8605 notify->dl_notification)); 8606 break; 8607 } 8608 8609 /* 8610 * As this is an asynchronous operation, we 8611 * should not call ill_dlpi_done 8612 */ 8613 break; 8614 } 8615 case DL_NOTIFY_ACK: { 8616 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8617 8618 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8619 ill->ill_note_link = 1; 8620 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8621 break; 8622 } 8623 case DL_PHYS_ADDR_ACK: { 8624 /* 8625 * As part of plumbing the interface via SIOCSLIFNAME, 8626 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8627 * whose answers we receive here. As each answer is received, 8628 * we call ill_dlpi_done() to dispatch the next request as 8629 * we're processing the current one. Once all answers have 8630 * been received, we use ipsq_pending_mp_get() to dequeue the 8631 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8632 * is invoked from an ill queue, conn_oper_pending_ill is not 8633 * available, but we know the ioctl is pending on ill_wq.) 8634 */ 8635 uint_t paddrlen, paddroff; 8636 uint8_t *addr; 8637 8638 paddrreq = ill->ill_phys_addr_pend; 8639 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8640 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8641 addr = mp->b_rptr + paddroff; 8642 8643 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8644 if (paddrreq == DL_IPV6_TOKEN) { 8645 /* 8646 * bcopy to low-order bits of ill_token 8647 * 8648 * XXX Temporary hack - currently, all known tokens 8649 * are 64 bits, so I'll cheat for the moment. 8650 */ 8651 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8652 ill->ill_token_length = paddrlen; 8653 break; 8654 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8655 ASSERT(ill->ill_nd_lla_mp == NULL); 8656 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8657 mp = NULL; 8658 break; 8659 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8660 ASSERT(ill->ill_dest_addr_mp == NULL); 8661 ill->ill_dest_addr_mp = mp; 8662 ill->ill_dest_addr = addr; 8663 mp = NULL; 8664 if (ill->ill_isv6) { 8665 ill_setdesttoken(ill); 8666 ipif_setdestlinklocal(ill->ill_ipif); 8667 } 8668 break; 8669 } 8670 8671 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8672 ASSERT(ill->ill_phys_addr_mp == NULL); 8673 if (!ill->ill_ifname_pending) 8674 break; 8675 ill->ill_ifname_pending = 0; 8676 if (!ioctl_aborted) 8677 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8678 if (mp1 != NULL) { 8679 ASSERT(connp == NULL); 8680 q = ill->ill_wq; 8681 } 8682 /* 8683 * If any error acks received during the plumbing sequence, 8684 * ill_ifname_pending_err will be set. Break out and send up 8685 * the error to the pending ioctl. 8686 */ 8687 if (ill->ill_ifname_pending_err != 0) { 8688 err = ill->ill_ifname_pending_err; 8689 ill->ill_ifname_pending_err = 0; 8690 break; 8691 } 8692 8693 ill->ill_phys_addr_mp = mp; 8694 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8695 mp = NULL; 8696 8697 /* 8698 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8699 * provider doesn't support physical addresses. We check both 8700 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8701 * not have physical addresses, but historically adversises a 8702 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8703 * its DL_PHYS_ADDR_ACK. 8704 */ 8705 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8706 ill->ill_phys_addr = NULL; 8707 } else if (paddrlen != ill->ill_phys_addr_length) { 8708 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8709 paddrlen, ill->ill_phys_addr_length)); 8710 err = EINVAL; 8711 break; 8712 } 8713 8714 if (ill->ill_nd_lla_mp == NULL) { 8715 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8716 err = ENOMEM; 8717 break; 8718 } 8719 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8720 } 8721 8722 if (ill->ill_isv6) { 8723 ill_setdefaulttoken(ill); 8724 ipif_setlinklocal(ill->ill_ipif); 8725 } 8726 break; 8727 } 8728 case DL_OK_ACK: 8729 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8730 dl_primstr((int)dloa->dl_correct_primitive), 8731 dloa->dl_correct_primitive)); 8732 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8733 char *, dl_primstr(dloa->dl_correct_primitive), 8734 ill_t *, ill); 8735 8736 switch (dloa->dl_correct_primitive) { 8737 case DL_ENABMULTI_REQ: 8738 case DL_DISABMULTI_REQ: 8739 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8740 break; 8741 case DL_PROMISCON_REQ: 8742 case DL_PROMISCOFF_REQ: 8743 case DL_UNBIND_REQ: 8744 case DL_ATTACH_REQ: 8745 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8746 break; 8747 } 8748 break; 8749 default: 8750 break; 8751 } 8752 8753 freemsg(mp); 8754 if (mp1 == NULL) 8755 return; 8756 8757 /* 8758 * The operation must complete without EINPROGRESS since 8759 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8760 * the operation will be stuck forever inside the IPSQ. 8761 */ 8762 ASSERT(err != EINPROGRESS); 8763 8764 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8765 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8766 ipif_t *, NULL); 8767 8768 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8769 case 0: 8770 ipsq_current_finish(ipsq); 8771 break; 8772 8773 case SIOCSLIFNAME: 8774 case IF_UNITSEL: { 8775 ill_t *ill_other = ILL_OTHER(ill); 8776 8777 /* 8778 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8779 * ill has a peer which is in an IPMP group, then place ill 8780 * into the same group. One catch: although ifconfig plumbs 8781 * the appropriate IPMP meta-interface prior to plumbing this 8782 * ill, it is possible for multiple ifconfig applications to 8783 * race (or for another application to adjust plumbing), in 8784 * which case the IPMP meta-interface we need will be missing. 8785 * If so, kick the phyint out of the group. 8786 */ 8787 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8788 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8789 ipmp_illgrp_t *illg; 8790 8791 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8792 if (illg == NULL) 8793 ipmp_phyint_leave_grp(ill->ill_phyint); 8794 else 8795 ipmp_ill_join_illgrp(ill, illg); 8796 } 8797 8798 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8799 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8800 else 8801 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8802 break; 8803 } 8804 case SIOCLIFADDIF: 8805 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8806 break; 8807 8808 default: 8809 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8810 break; 8811 } 8812 } 8813 8814 /* 8815 * ip_rput_other is called by ip_rput to handle messages modifying the global 8816 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8817 */ 8818 /* ARGSUSED */ 8819 void 8820 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8821 { 8822 ill_t *ill = q->q_ptr; 8823 struct iocblk *iocp; 8824 8825 ip1dbg(("ip_rput_other ")); 8826 if (ipsq != NULL) { 8827 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8828 ASSERT(ipsq->ipsq_xop == 8829 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8830 } 8831 8832 switch (mp->b_datap->db_type) { 8833 case M_ERROR: 8834 case M_HANGUP: 8835 /* 8836 * The device has a problem. We force the ILL down. It can 8837 * be brought up again manually using SIOCSIFFLAGS (via 8838 * ifconfig or equivalent). 8839 */ 8840 ASSERT(ipsq != NULL); 8841 if (mp->b_rptr < mp->b_wptr) 8842 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8843 if (ill->ill_error == 0) 8844 ill->ill_error = ENXIO; 8845 if (!ill_down_start(q, mp)) 8846 return; 8847 ipif_all_down_tail(ipsq, q, mp, NULL); 8848 break; 8849 case M_IOCNAK: { 8850 iocp = (struct iocblk *)mp->b_rptr; 8851 8852 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8853 /* 8854 * If this was the first attempt, turn off the fastpath 8855 * probing. 8856 */ 8857 mutex_enter(&ill->ill_lock); 8858 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8859 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8860 mutex_exit(&ill->ill_lock); 8861 /* 8862 * don't flush the nce_t entries: we use them 8863 * as an index to the ncec itself. 8864 */ 8865 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8866 ill->ill_name)); 8867 } else { 8868 mutex_exit(&ill->ill_lock); 8869 } 8870 freemsg(mp); 8871 break; 8872 } 8873 default: 8874 ASSERT(0); 8875 break; 8876 } 8877 } 8878 8879 /* 8880 * Update any source route, record route or timestamp options 8881 * When it fails it has consumed the message and BUMPed the MIB. 8882 */ 8883 boolean_t 8884 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8885 ip_recv_attr_t *ira) 8886 { 8887 ipoptp_t opts; 8888 uchar_t *opt; 8889 uint8_t optval; 8890 uint8_t optlen; 8891 ipaddr_t dst; 8892 ipaddr_t ifaddr; 8893 uint32_t ts; 8894 timestruc_t now; 8895 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8896 8897 ip2dbg(("ip_forward_options\n")); 8898 dst = ipha->ipha_dst; 8899 for (optval = ipoptp_first(&opts, ipha); 8900 optval != IPOPT_EOL; 8901 optval = ipoptp_next(&opts)) { 8902 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8903 opt = opts.ipoptp_cur; 8904 optlen = opts.ipoptp_len; 8905 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8906 optval, opts.ipoptp_len)); 8907 switch (optval) { 8908 uint32_t off; 8909 case IPOPT_SSRR: 8910 case IPOPT_LSRR: 8911 /* Check if adminstratively disabled */ 8912 if (!ipst->ips_ip_forward_src_routed) { 8913 BUMP_MIB(dst_ill->ill_ip_mib, 8914 ipIfStatsForwProhibits); 8915 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8916 mp, dst_ill); 8917 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8918 ira); 8919 return (B_FALSE); 8920 } 8921 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8922 /* 8923 * Must be partial since ip_input_options 8924 * checked for strict. 8925 */ 8926 break; 8927 } 8928 off = opt[IPOPT_OFFSET]; 8929 off--; 8930 redo_srr: 8931 if (optlen < IP_ADDR_LEN || 8932 off > optlen - IP_ADDR_LEN) { 8933 /* End of source route */ 8934 ip1dbg(( 8935 "ip_forward_options: end of SR\n")); 8936 break; 8937 } 8938 /* Pick a reasonable address on the outbound if */ 8939 ASSERT(dst_ill != NULL); 8940 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8941 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8942 NULL) != 0) { 8943 /* No source! Shouldn't happen */ 8944 ifaddr = INADDR_ANY; 8945 } 8946 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8947 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8948 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8949 ntohl(dst))); 8950 8951 /* 8952 * Check if our address is present more than 8953 * once as consecutive hops in source route. 8954 */ 8955 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8956 off += IP_ADDR_LEN; 8957 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8958 goto redo_srr; 8959 } 8960 ipha->ipha_dst = dst; 8961 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8962 break; 8963 case IPOPT_RR: 8964 off = opt[IPOPT_OFFSET]; 8965 off--; 8966 if (optlen < IP_ADDR_LEN || 8967 off > optlen - IP_ADDR_LEN) { 8968 /* No more room - ignore */ 8969 ip1dbg(( 8970 "ip_forward_options: end of RR\n")); 8971 break; 8972 } 8973 /* Pick a reasonable address on the outbound if */ 8974 ASSERT(dst_ill != NULL); 8975 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8976 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8977 NULL) != 0) { 8978 /* No source! Shouldn't happen */ 8979 ifaddr = INADDR_ANY; 8980 } 8981 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8982 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8983 break; 8984 case IPOPT_TS: 8985 /* Insert timestamp if there is room */ 8986 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8987 case IPOPT_TS_TSONLY: 8988 off = IPOPT_TS_TIMELEN; 8989 break; 8990 case IPOPT_TS_PRESPEC: 8991 case IPOPT_TS_PRESPEC_RFC791: 8992 /* Verify that the address matched */ 8993 off = opt[IPOPT_OFFSET] - 1; 8994 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8995 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8996 /* Not for us */ 8997 break; 8998 } 8999 /* FALLTHRU */ 9000 case IPOPT_TS_TSANDADDR: 9001 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9002 break; 9003 default: 9004 /* 9005 * ip_*put_options should have already 9006 * dropped this packet. 9007 */ 9008 cmn_err(CE_PANIC, "ip_forward_options: " 9009 "unknown IT - bug in ip_input_options?\n"); 9010 return (B_TRUE); /* Keep "lint" happy */ 9011 } 9012 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9013 /* Increase overflow counter */ 9014 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9015 opt[IPOPT_POS_OV_FLG] = 9016 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9017 (off << 4)); 9018 break; 9019 } 9020 off = opt[IPOPT_OFFSET] - 1; 9021 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9022 case IPOPT_TS_PRESPEC: 9023 case IPOPT_TS_PRESPEC_RFC791: 9024 case IPOPT_TS_TSANDADDR: 9025 /* Pick a reasonable addr on the outbound if */ 9026 ASSERT(dst_ill != NULL); 9027 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9028 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9029 NULL, NULL) != 0) { 9030 /* No source! Shouldn't happen */ 9031 ifaddr = INADDR_ANY; 9032 } 9033 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9034 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9035 /* FALLTHRU */ 9036 case IPOPT_TS_TSONLY: 9037 off = opt[IPOPT_OFFSET] - 1; 9038 /* Compute # of milliseconds since midnight */ 9039 gethrestime(&now); 9040 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9041 now.tv_nsec / (NANOSEC / MILLISEC); 9042 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9043 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9044 break; 9045 } 9046 break; 9047 } 9048 } 9049 return (B_TRUE); 9050 } 9051 9052 /* 9053 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9054 * returns 'true' if there are still fragments left on the queue, in 9055 * which case we restart the timer. 9056 */ 9057 void 9058 ill_frag_timer(void *arg) 9059 { 9060 ill_t *ill = (ill_t *)arg; 9061 boolean_t frag_pending; 9062 ip_stack_t *ipst = ill->ill_ipst; 9063 time_t timeout; 9064 9065 mutex_enter(&ill->ill_lock); 9066 ASSERT(!ill->ill_fragtimer_executing); 9067 if (ill->ill_state_flags & ILL_CONDEMNED) { 9068 ill->ill_frag_timer_id = 0; 9069 mutex_exit(&ill->ill_lock); 9070 return; 9071 } 9072 ill->ill_fragtimer_executing = 1; 9073 mutex_exit(&ill->ill_lock); 9074 9075 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9076 ipst->ips_ip_reassembly_timeout); 9077 9078 frag_pending = ill_frag_timeout(ill, timeout); 9079 9080 /* 9081 * Restart the timer, if we have fragments pending or if someone 9082 * wanted us to be scheduled again. 9083 */ 9084 mutex_enter(&ill->ill_lock); 9085 ill->ill_fragtimer_executing = 0; 9086 ill->ill_frag_timer_id = 0; 9087 if (frag_pending || ill->ill_fragtimer_needrestart) 9088 ill_frag_timer_start(ill); 9089 mutex_exit(&ill->ill_lock); 9090 } 9091 9092 void 9093 ill_frag_timer_start(ill_t *ill) 9094 { 9095 ip_stack_t *ipst = ill->ill_ipst; 9096 clock_t timeo_ms; 9097 9098 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9099 9100 /* If the ill is closing or opening don't proceed */ 9101 if (ill->ill_state_flags & ILL_CONDEMNED) 9102 return; 9103 9104 if (ill->ill_fragtimer_executing) { 9105 /* 9106 * ill_frag_timer is currently executing. Just record the 9107 * the fact that we want the timer to be restarted. 9108 * ill_frag_timer will post a timeout before it returns, 9109 * ensuring it will be called again. 9110 */ 9111 ill->ill_fragtimer_needrestart = 1; 9112 return; 9113 } 9114 9115 if (ill->ill_frag_timer_id == 0) { 9116 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9117 ipst->ips_ip_reassembly_timeout) * SECONDS; 9118 9119 /* 9120 * The timer is neither running nor is the timeout handler 9121 * executing. Post a timeout so that ill_frag_timer will be 9122 * called 9123 */ 9124 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9125 MSEC_TO_TICK(timeo_ms >> 1)); 9126 ill->ill_fragtimer_needrestart = 0; 9127 } 9128 } 9129 9130 /* 9131 * Update any source route, record route or timestamp options. 9132 * Check that we are at end of strict source route. 9133 * The options have already been checked for sanity in ip_input_options(). 9134 */ 9135 boolean_t 9136 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9137 { 9138 ipoptp_t opts; 9139 uchar_t *opt; 9140 uint8_t optval; 9141 uint8_t optlen; 9142 ipaddr_t dst; 9143 ipaddr_t ifaddr; 9144 uint32_t ts; 9145 timestruc_t now; 9146 ill_t *ill = ira->ira_ill; 9147 ip_stack_t *ipst = ill->ill_ipst; 9148 9149 ip2dbg(("ip_input_local_options\n")); 9150 9151 for (optval = ipoptp_first(&opts, ipha); 9152 optval != IPOPT_EOL; 9153 optval = ipoptp_next(&opts)) { 9154 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9155 opt = opts.ipoptp_cur; 9156 optlen = opts.ipoptp_len; 9157 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9158 optval, optlen)); 9159 switch (optval) { 9160 uint32_t off; 9161 case IPOPT_SSRR: 9162 case IPOPT_LSRR: 9163 off = opt[IPOPT_OFFSET]; 9164 off--; 9165 if (optlen < IP_ADDR_LEN || 9166 off > optlen - IP_ADDR_LEN) { 9167 /* End of source route */ 9168 ip1dbg(("ip_input_local_options: end of SR\n")); 9169 break; 9170 } 9171 /* 9172 * This will only happen if two consecutive entries 9173 * in the source route contains our address or if 9174 * it is a packet with a loose source route which 9175 * reaches us before consuming the whole source route 9176 */ 9177 ip1dbg(("ip_input_local_options: not end of SR\n")); 9178 if (optval == IPOPT_SSRR) { 9179 goto bad_src_route; 9180 } 9181 /* 9182 * Hack: instead of dropping the packet truncate the 9183 * source route to what has been used by filling the 9184 * rest with IPOPT_NOP. 9185 */ 9186 opt[IPOPT_OLEN] = (uint8_t)off; 9187 while (off < optlen) { 9188 opt[off++] = IPOPT_NOP; 9189 } 9190 break; 9191 case IPOPT_RR: 9192 off = opt[IPOPT_OFFSET]; 9193 off--; 9194 if (optlen < IP_ADDR_LEN || 9195 off > optlen - IP_ADDR_LEN) { 9196 /* No more room - ignore */ 9197 ip1dbg(( 9198 "ip_input_local_options: end of RR\n")); 9199 break; 9200 } 9201 /* Pick a reasonable address on the outbound if */ 9202 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9203 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9204 NULL) != 0) { 9205 /* No source! Shouldn't happen */ 9206 ifaddr = INADDR_ANY; 9207 } 9208 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9209 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9210 break; 9211 case IPOPT_TS: 9212 /* Insert timestamp if there is romm */ 9213 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9214 case IPOPT_TS_TSONLY: 9215 off = IPOPT_TS_TIMELEN; 9216 break; 9217 case IPOPT_TS_PRESPEC: 9218 case IPOPT_TS_PRESPEC_RFC791: 9219 /* Verify that the address matched */ 9220 off = opt[IPOPT_OFFSET] - 1; 9221 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9222 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9223 /* Not for us */ 9224 break; 9225 } 9226 /* FALLTHRU */ 9227 case IPOPT_TS_TSANDADDR: 9228 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9229 break; 9230 default: 9231 /* 9232 * ip_*put_options should have already 9233 * dropped this packet. 9234 */ 9235 cmn_err(CE_PANIC, "ip_input_local_options: " 9236 "unknown IT - bug in ip_input_options?\n"); 9237 return (B_TRUE); /* Keep "lint" happy */ 9238 } 9239 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9240 /* Increase overflow counter */ 9241 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9242 opt[IPOPT_POS_OV_FLG] = 9243 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9244 (off << 4)); 9245 break; 9246 } 9247 off = opt[IPOPT_OFFSET] - 1; 9248 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9249 case IPOPT_TS_PRESPEC: 9250 case IPOPT_TS_PRESPEC_RFC791: 9251 case IPOPT_TS_TSANDADDR: 9252 /* Pick a reasonable addr on the outbound if */ 9253 if (ip_select_source_v4(ill, INADDR_ANY, 9254 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9255 &ifaddr, NULL, NULL) != 0) { 9256 /* No source! Shouldn't happen */ 9257 ifaddr = INADDR_ANY; 9258 } 9259 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9260 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9261 /* FALLTHRU */ 9262 case IPOPT_TS_TSONLY: 9263 off = opt[IPOPT_OFFSET] - 1; 9264 /* Compute # of milliseconds since midnight */ 9265 gethrestime(&now); 9266 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9267 now.tv_nsec / (NANOSEC / MILLISEC); 9268 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9269 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9270 break; 9271 } 9272 break; 9273 } 9274 } 9275 return (B_TRUE); 9276 9277 bad_src_route: 9278 /* make sure we clear any indication of a hardware checksum */ 9279 DB_CKSUMFLAGS(mp) = 0; 9280 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9281 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9282 return (B_FALSE); 9283 9284 } 9285 9286 /* 9287 * Process IP options in an inbound packet. Always returns the nexthop. 9288 * Normally this is the passed in nexthop, but if there is an option 9289 * that effects the nexthop (such as a source route) that will be returned. 9290 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9291 * and mp freed. 9292 */ 9293 ipaddr_t 9294 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9295 ip_recv_attr_t *ira, int *errorp) 9296 { 9297 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9298 ipoptp_t opts; 9299 uchar_t *opt; 9300 uint8_t optval; 9301 uint8_t optlen; 9302 intptr_t code = 0; 9303 ire_t *ire; 9304 9305 ip2dbg(("ip_input_options\n")); 9306 *errorp = 0; 9307 for (optval = ipoptp_first(&opts, ipha); 9308 optval != IPOPT_EOL; 9309 optval = ipoptp_next(&opts)) { 9310 opt = opts.ipoptp_cur; 9311 optlen = opts.ipoptp_len; 9312 ip2dbg(("ip_input_options: opt %d, len %d\n", 9313 optval, optlen)); 9314 /* 9315 * Note: we need to verify the checksum before we 9316 * modify anything thus this routine only extracts the next 9317 * hop dst from any source route. 9318 */ 9319 switch (optval) { 9320 uint32_t off; 9321 case IPOPT_SSRR: 9322 case IPOPT_LSRR: 9323 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9324 if (optval == IPOPT_SSRR) { 9325 ip1dbg(("ip_input_options: not next" 9326 " strict source route 0x%x\n", 9327 ntohl(dst))); 9328 code = (char *)&ipha->ipha_dst - 9329 (char *)ipha; 9330 goto param_prob; /* RouterReq's */ 9331 } 9332 ip2dbg(("ip_input_options: " 9333 "not next source route 0x%x\n", 9334 ntohl(dst))); 9335 break; 9336 } 9337 9338 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9339 ip1dbg(( 9340 "ip_input_options: bad option offset\n")); 9341 code = (char *)&opt[IPOPT_OLEN] - 9342 (char *)ipha; 9343 goto param_prob; 9344 } 9345 off = opt[IPOPT_OFFSET]; 9346 off--; 9347 redo_srr: 9348 if (optlen < IP_ADDR_LEN || 9349 off > optlen - IP_ADDR_LEN) { 9350 /* End of source route */ 9351 ip1dbg(("ip_input_options: end of SR\n")); 9352 break; 9353 } 9354 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9355 ip1dbg(("ip_input_options: next hop 0x%x\n", 9356 ntohl(dst))); 9357 9358 /* 9359 * Check if our address is present more than 9360 * once as consecutive hops in source route. 9361 * XXX verify per-interface ip_forwarding 9362 * for source route? 9363 */ 9364 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9365 off += IP_ADDR_LEN; 9366 goto redo_srr; 9367 } 9368 9369 if (dst == htonl(INADDR_LOOPBACK)) { 9370 ip1dbg(("ip_input_options: loopback addr in " 9371 "source route!\n")); 9372 goto bad_src_route; 9373 } 9374 /* 9375 * For strict: verify that dst is directly 9376 * reachable. 9377 */ 9378 if (optval == IPOPT_SSRR) { 9379 ire = ire_ftable_lookup_v4(dst, 0, 0, 9380 IRE_IF_ALL, NULL, ALL_ZONES, 9381 ira->ira_tsl, 9382 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9383 NULL); 9384 if (ire == NULL) { 9385 ip1dbg(("ip_input_options: SSRR not " 9386 "directly reachable: 0x%x\n", 9387 ntohl(dst))); 9388 goto bad_src_route; 9389 } 9390 ire_refrele(ire); 9391 } 9392 /* 9393 * Defer update of the offset and the record route 9394 * until the packet is forwarded. 9395 */ 9396 break; 9397 case IPOPT_RR: 9398 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9399 ip1dbg(( 9400 "ip_input_options: bad option offset\n")); 9401 code = (char *)&opt[IPOPT_OLEN] - 9402 (char *)ipha; 9403 goto param_prob; 9404 } 9405 break; 9406 case IPOPT_TS: 9407 /* 9408 * Verify that length >= 5 and that there is either 9409 * room for another timestamp or that the overflow 9410 * counter is not maxed out. 9411 */ 9412 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9413 if (optlen < IPOPT_MINLEN_IT) { 9414 goto param_prob; 9415 } 9416 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9417 ip1dbg(( 9418 "ip_input_options: bad option offset\n")); 9419 code = (char *)&opt[IPOPT_OFFSET] - 9420 (char *)ipha; 9421 goto param_prob; 9422 } 9423 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9424 case IPOPT_TS_TSONLY: 9425 off = IPOPT_TS_TIMELEN; 9426 break; 9427 case IPOPT_TS_TSANDADDR: 9428 case IPOPT_TS_PRESPEC: 9429 case IPOPT_TS_PRESPEC_RFC791: 9430 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9431 break; 9432 default: 9433 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9434 (char *)ipha; 9435 goto param_prob; 9436 } 9437 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9438 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9439 /* 9440 * No room and the overflow counter is 15 9441 * already. 9442 */ 9443 goto param_prob; 9444 } 9445 break; 9446 } 9447 } 9448 9449 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9450 return (dst); 9451 } 9452 9453 ip1dbg(("ip_input_options: error processing IP options.")); 9454 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9455 9456 param_prob: 9457 /* make sure we clear any indication of a hardware checksum */ 9458 DB_CKSUMFLAGS(mp) = 0; 9459 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9460 icmp_param_problem(mp, (uint8_t)code, ira); 9461 *errorp = -1; 9462 return (dst); 9463 9464 bad_src_route: 9465 /* make sure we clear any indication of a hardware checksum */ 9466 DB_CKSUMFLAGS(mp) = 0; 9467 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9468 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9469 *errorp = -1; 9470 return (dst); 9471 } 9472 9473 /* 9474 * IP & ICMP info in >=14 msg's ... 9475 * - ip fixed part (mib2_ip_t) 9476 * - icmp fixed part (mib2_icmp_t) 9477 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9478 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9479 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9480 * - ipRouteAttributeTable (ip 102) labeled routes 9481 * - ip multicast membership (ip_member_t) 9482 * - ip multicast source filtering (ip_grpsrc_t) 9483 * - igmp fixed part (struct igmpstat) 9484 * - multicast routing stats (struct mrtstat) 9485 * - multicast routing vifs (array of struct vifctl) 9486 * - multicast routing routes (array of struct mfcctl) 9487 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9488 * One per ill plus one generic 9489 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9490 * One per ill plus one generic 9491 * - ipv6RouteEntry all IPv6 IREs 9492 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9493 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9494 * - ipv6AddrEntry all IPv6 ipifs 9495 * - ipv6 multicast membership (ipv6_member_t) 9496 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9497 * 9498 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9499 * already filled in by the caller. 9500 * Return value of 0 indicates that no messages were sent and caller 9501 * should free mpctl. 9502 */ 9503 int 9504 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9505 { 9506 ip_stack_t *ipst; 9507 sctp_stack_t *sctps; 9508 9509 if (q->q_next != NULL) { 9510 ipst = ILLQ_TO_IPST(q); 9511 } else { 9512 ipst = CONNQ_TO_IPST(q); 9513 } 9514 ASSERT(ipst != NULL); 9515 sctps = ipst->ips_netstack->netstack_sctp; 9516 9517 if (mpctl == NULL || mpctl->b_cont == NULL) { 9518 return (0); 9519 } 9520 9521 /* 9522 * For the purposes of the (broken) packet shell use 9523 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9524 * to make TCP and UDP appear first in the list of mib items. 9525 * TBD: We could expand this and use it in netstat so that 9526 * the kernel doesn't have to produce large tables (connections, 9527 * routes, etc) when netstat only wants the statistics or a particular 9528 * table. 9529 */ 9530 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9531 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9532 return (1); 9533 } 9534 } 9535 9536 if (level != MIB2_TCP) { 9537 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9538 return (1); 9539 } 9540 } 9541 9542 if (level != MIB2_UDP) { 9543 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9544 return (1); 9545 } 9546 } 9547 9548 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9549 ipst)) == NULL) { 9550 return (1); 9551 } 9552 9553 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9554 return (1); 9555 } 9556 9557 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9558 return (1); 9559 } 9560 9561 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9562 return (1); 9563 } 9564 9565 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9566 return (1); 9567 } 9568 9569 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9570 return (1); 9571 } 9572 9573 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9574 return (1); 9575 } 9576 9577 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9578 return (1); 9579 } 9580 9581 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9582 return (1); 9583 } 9584 9585 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9586 return (1); 9587 } 9588 9589 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9590 return (1); 9591 } 9592 9593 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9594 return (1); 9595 } 9596 9597 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9598 return (1); 9599 } 9600 9601 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9602 return (1); 9603 } 9604 9605 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9606 if (mpctl == NULL) 9607 return (1); 9608 9609 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9610 if (mpctl == NULL) 9611 return (1); 9612 9613 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9614 return (1); 9615 } 9616 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9617 return (1); 9618 } 9619 freemsg(mpctl); 9620 return (1); 9621 } 9622 9623 /* Get global (legacy) IPv4 statistics */ 9624 static mblk_t * 9625 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9626 ip_stack_t *ipst) 9627 { 9628 mib2_ip_t old_ip_mib; 9629 struct opthdr *optp; 9630 mblk_t *mp2ctl; 9631 9632 /* 9633 * make a copy of the original message 9634 */ 9635 mp2ctl = copymsg(mpctl); 9636 9637 /* fixed length IP structure... */ 9638 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9639 optp->level = MIB2_IP; 9640 optp->name = 0; 9641 SET_MIB(old_ip_mib.ipForwarding, 9642 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9643 SET_MIB(old_ip_mib.ipDefaultTTL, 9644 (uint32_t)ipst->ips_ip_def_ttl); 9645 SET_MIB(old_ip_mib.ipReasmTimeout, 9646 ipst->ips_ip_reassembly_timeout); 9647 SET_MIB(old_ip_mib.ipAddrEntrySize, 9648 sizeof (mib2_ipAddrEntry_t)); 9649 SET_MIB(old_ip_mib.ipRouteEntrySize, 9650 sizeof (mib2_ipRouteEntry_t)); 9651 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9652 sizeof (mib2_ipNetToMediaEntry_t)); 9653 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9654 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9655 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9656 sizeof (mib2_ipAttributeEntry_t)); 9657 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9658 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9659 9660 /* 9661 * Grab the statistics from the new IP MIB 9662 */ 9663 SET_MIB(old_ip_mib.ipInReceives, 9664 (uint32_t)ipmib->ipIfStatsHCInReceives); 9665 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9666 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9667 SET_MIB(old_ip_mib.ipForwDatagrams, 9668 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9669 SET_MIB(old_ip_mib.ipInUnknownProtos, 9670 ipmib->ipIfStatsInUnknownProtos); 9671 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9672 SET_MIB(old_ip_mib.ipInDelivers, 9673 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9674 SET_MIB(old_ip_mib.ipOutRequests, 9675 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9676 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9677 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9678 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9679 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9680 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9681 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9682 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9683 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9684 9685 /* ipRoutingDiscards is not being used */ 9686 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9687 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9688 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9689 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9690 SET_MIB(old_ip_mib.ipReasmDuplicates, 9691 ipmib->ipIfStatsReasmDuplicates); 9692 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9693 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9694 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9695 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9696 SET_MIB(old_ip_mib.rawipInOverflows, 9697 ipmib->rawipIfStatsInOverflows); 9698 9699 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9700 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9701 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9702 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9703 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9704 ipmib->ipIfStatsOutSwitchIPVersion); 9705 9706 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9707 (int)sizeof (old_ip_mib))) { 9708 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9709 (uint_t)sizeof (old_ip_mib))); 9710 } 9711 9712 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9713 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9714 (int)optp->level, (int)optp->name, (int)optp->len)); 9715 qreply(q, mpctl); 9716 return (mp2ctl); 9717 } 9718 9719 /* Per interface IPv4 statistics */ 9720 static mblk_t * 9721 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9722 { 9723 struct opthdr *optp; 9724 mblk_t *mp2ctl; 9725 ill_t *ill; 9726 ill_walk_context_t ctx; 9727 mblk_t *mp_tail = NULL; 9728 mib2_ipIfStatsEntry_t global_ip_mib; 9729 9730 /* 9731 * Make a copy of the original message 9732 */ 9733 mp2ctl = copymsg(mpctl); 9734 9735 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9736 optp->level = MIB2_IP; 9737 optp->name = MIB2_IP_TRAFFIC_STATS; 9738 /* Include "unknown interface" ip_mib */ 9739 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9740 ipst->ips_ip_mib.ipIfStatsIfIndex = 9741 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9742 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9743 (ipst->ips_ip_forwarding ? 1 : 2)); 9744 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9745 (uint32_t)ipst->ips_ip_def_ttl); 9746 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9747 sizeof (mib2_ipIfStatsEntry_t)); 9748 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9749 sizeof (mib2_ipAddrEntry_t)); 9750 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9751 sizeof (mib2_ipRouteEntry_t)); 9752 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9753 sizeof (mib2_ipNetToMediaEntry_t)); 9754 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9755 sizeof (ip_member_t)); 9756 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9757 sizeof (ip_grpsrc_t)); 9758 9759 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9760 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9761 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9762 "failed to allocate %u bytes\n", 9763 (uint_t)sizeof (ipst->ips_ip_mib))); 9764 } 9765 9766 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9767 9768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9769 ill = ILL_START_WALK_V4(&ctx, ipst); 9770 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9771 ill->ill_ip_mib->ipIfStatsIfIndex = 9772 ill->ill_phyint->phyint_ifindex; 9773 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9774 (ipst->ips_ip_forwarding ? 1 : 2)); 9775 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9776 (uint32_t)ipst->ips_ip_def_ttl); 9777 9778 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9779 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9780 (char *)ill->ill_ip_mib, 9781 (int)sizeof (*ill->ill_ip_mib))) { 9782 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9783 "failed to allocate %u bytes\n", 9784 (uint_t)sizeof (*ill->ill_ip_mib))); 9785 } 9786 } 9787 rw_exit(&ipst->ips_ill_g_lock); 9788 9789 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9790 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9791 "level %d, name %d, len %d\n", 9792 (int)optp->level, (int)optp->name, (int)optp->len)); 9793 qreply(q, mpctl); 9794 9795 if (mp2ctl == NULL) 9796 return (NULL); 9797 9798 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 9799 } 9800 9801 /* Global IPv4 ICMP statistics */ 9802 static mblk_t * 9803 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9804 { 9805 struct opthdr *optp; 9806 mblk_t *mp2ctl; 9807 9808 /* 9809 * Make a copy of the original message 9810 */ 9811 mp2ctl = copymsg(mpctl); 9812 9813 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9814 optp->level = MIB2_ICMP; 9815 optp->name = 0; 9816 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9817 (int)sizeof (ipst->ips_icmp_mib))) { 9818 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9819 (uint_t)sizeof (ipst->ips_icmp_mib))); 9820 } 9821 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9822 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9823 (int)optp->level, (int)optp->name, (int)optp->len)); 9824 qreply(q, mpctl); 9825 return (mp2ctl); 9826 } 9827 9828 /* Global IPv4 IGMP statistics */ 9829 static mblk_t * 9830 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9831 { 9832 struct opthdr *optp; 9833 mblk_t *mp2ctl; 9834 9835 /* 9836 * make a copy of the original message 9837 */ 9838 mp2ctl = copymsg(mpctl); 9839 9840 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9841 optp->level = EXPER_IGMP; 9842 optp->name = 0; 9843 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9844 (int)sizeof (ipst->ips_igmpstat))) { 9845 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9846 (uint_t)sizeof (ipst->ips_igmpstat))); 9847 } 9848 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9849 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9850 (int)optp->level, (int)optp->name, (int)optp->len)); 9851 qreply(q, mpctl); 9852 return (mp2ctl); 9853 } 9854 9855 /* Global IPv4 Multicast Routing statistics */ 9856 static mblk_t * 9857 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9858 { 9859 struct opthdr *optp; 9860 mblk_t *mp2ctl; 9861 9862 /* 9863 * make a copy of the original message 9864 */ 9865 mp2ctl = copymsg(mpctl); 9866 9867 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9868 optp->level = EXPER_DVMRP; 9869 optp->name = 0; 9870 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9871 ip0dbg(("ip_mroute_stats: failed\n")); 9872 } 9873 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9874 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9875 (int)optp->level, (int)optp->name, (int)optp->len)); 9876 qreply(q, mpctl); 9877 return (mp2ctl); 9878 } 9879 9880 /* IPv4 address information */ 9881 static mblk_t * 9882 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9883 { 9884 struct opthdr *optp; 9885 mblk_t *mp2ctl; 9886 mblk_t *mp_tail = NULL; 9887 ill_t *ill; 9888 ipif_t *ipif; 9889 uint_t bitval; 9890 mib2_ipAddrEntry_t mae; 9891 zoneid_t zoneid; 9892 ill_walk_context_t ctx; 9893 9894 /* 9895 * make a copy of the original message 9896 */ 9897 mp2ctl = copymsg(mpctl); 9898 9899 /* ipAddrEntryTable */ 9900 9901 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9902 optp->level = MIB2_IP; 9903 optp->name = MIB2_IP_ADDR; 9904 zoneid = Q_TO_CONN(q)->conn_zoneid; 9905 9906 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9907 ill = ILL_START_WALK_V4(&ctx, ipst); 9908 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9909 for (ipif = ill->ill_ipif; ipif != NULL; 9910 ipif = ipif->ipif_next) { 9911 if (ipif->ipif_zoneid != zoneid && 9912 ipif->ipif_zoneid != ALL_ZONES) 9913 continue; 9914 /* Sum of count from dead IRE_LO* and our current */ 9915 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9916 if (ipif->ipif_ire_local != NULL) { 9917 mae.ipAdEntInfo.ae_ibcnt += 9918 ipif->ipif_ire_local->ire_ib_pkt_count; 9919 } 9920 mae.ipAdEntInfo.ae_obcnt = 0; 9921 mae.ipAdEntInfo.ae_focnt = 0; 9922 9923 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9924 OCTET_LENGTH); 9925 mae.ipAdEntIfIndex.o_length = 9926 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9927 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9928 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9929 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9930 mae.ipAdEntInfo.ae_subnet_len = 9931 ip_mask_to_plen(ipif->ipif_net_mask); 9932 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9933 for (bitval = 1; 9934 bitval && 9935 !(bitval & ipif->ipif_brd_addr); 9936 bitval <<= 1) 9937 noop; 9938 mae.ipAdEntBcastAddr = bitval; 9939 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9940 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9941 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9942 mae.ipAdEntInfo.ae_broadcast_addr = 9943 ipif->ipif_brd_addr; 9944 mae.ipAdEntInfo.ae_pp_dst_addr = 9945 ipif->ipif_pp_dst_addr; 9946 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9947 ill->ill_flags | ill->ill_phyint->phyint_flags; 9948 mae.ipAdEntRetransmitTime = 9949 ill->ill_reachable_retrans_time; 9950 9951 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9952 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 9953 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9954 "allocate %u bytes\n", 9955 (uint_t)sizeof (mib2_ipAddrEntry_t))); 9956 } 9957 } 9958 } 9959 rw_exit(&ipst->ips_ill_g_lock); 9960 9961 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9962 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9963 (int)optp->level, (int)optp->name, (int)optp->len)); 9964 qreply(q, mpctl); 9965 return (mp2ctl); 9966 } 9967 9968 /* IPv6 address information */ 9969 static mblk_t * 9970 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9971 { 9972 struct opthdr *optp; 9973 mblk_t *mp2ctl; 9974 mblk_t *mp_tail = NULL; 9975 ill_t *ill; 9976 ipif_t *ipif; 9977 mib2_ipv6AddrEntry_t mae6; 9978 zoneid_t zoneid; 9979 ill_walk_context_t ctx; 9980 9981 /* 9982 * make a copy of the original message 9983 */ 9984 mp2ctl = copymsg(mpctl); 9985 9986 /* ipv6AddrEntryTable */ 9987 9988 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9989 optp->level = MIB2_IP6; 9990 optp->name = MIB2_IP6_ADDR; 9991 zoneid = Q_TO_CONN(q)->conn_zoneid; 9992 9993 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9994 ill = ILL_START_WALK_V6(&ctx, ipst); 9995 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9996 for (ipif = ill->ill_ipif; ipif != NULL; 9997 ipif = ipif->ipif_next) { 9998 if (ipif->ipif_zoneid != zoneid && 9999 ipif->ipif_zoneid != ALL_ZONES) 10000 continue; 10001 /* Sum of count from dead IRE_LO* and our current */ 10002 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10003 if (ipif->ipif_ire_local != NULL) { 10004 mae6.ipv6AddrInfo.ae_ibcnt += 10005 ipif->ipif_ire_local->ire_ib_pkt_count; 10006 } 10007 mae6.ipv6AddrInfo.ae_obcnt = 0; 10008 mae6.ipv6AddrInfo.ae_focnt = 0; 10009 10010 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10011 OCTET_LENGTH); 10012 mae6.ipv6AddrIfIndex.o_length = 10013 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10014 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10015 mae6.ipv6AddrPfxLength = 10016 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10017 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10018 mae6.ipv6AddrInfo.ae_subnet_len = 10019 mae6.ipv6AddrPfxLength; 10020 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10021 10022 /* Type: stateless(1), stateful(2), unknown(3) */ 10023 if (ipif->ipif_flags & IPIF_ADDRCONF) 10024 mae6.ipv6AddrType = 1; 10025 else 10026 mae6.ipv6AddrType = 2; 10027 /* Anycast: true(1), false(2) */ 10028 if (ipif->ipif_flags & IPIF_ANYCAST) 10029 mae6.ipv6AddrAnycastFlag = 1; 10030 else 10031 mae6.ipv6AddrAnycastFlag = 2; 10032 10033 /* 10034 * Address status: preferred(1), deprecated(2), 10035 * invalid(3), inaccessible(4), unknown(5) 10036 */ 10037 if (ipif->ipif_flags & IPIF_NOLOCAL) 10038 mae6.ipv6AddrStatus = 3; 10039 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10040 mae6.ipv6AddrStatus = 2; 10041 else 10042 mae6.ipv6AddrStatus = 1; 10043 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10044 mae6.ipv6AddrInfo.ae_metric = 10045 ipif->ipif_ill->ill_metric; 10046 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10047 ipif->ipif_v6pp_dst_addr; 10048 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10049 ill->ill_flags | ill->ill_phyint->phyint_flags; 10050 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10051 mae6.ipv6AddrIdentifier = ill->ill_token; 10052 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10053 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10054 mae6.ipv6AddrRetransmitTime = 10055 ill->ill_reachable_retrans_time; 10056 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10057 (char *)&mae6, 10058 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10059 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10060 "allocate %u bytes\n", 10061 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10062 } 10063 } 10064 } 10065 rw_exit(&ipst->ips_ill_g_lock); 10066 10067 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10068 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10069 (int)optp->level, (int)optp->name, (int)optp->len)); 10070 qreply(q, mpctl); 10071 return (mp2ctl); 10072 } 10073 10074 /* IPv4 multicast group membership. */ 10075 static mblk_t * 10076 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10077 { 10078 struct opthdr *optp; 10079 mblk_t *mp2ctl; 10080 ill_t *ill; 10081 ipif_t *ipif; 10082 ilm_t *ilm; 10083 ip_member_t ipm; 10084 mblk_t *mp_tail = NULL; 10085 ill_walk_context_t ctx; 10086 zoneid_t zoneid; 10087 10088 /* 10089 * make a copy of the original message 10090 */ 10091 mp2ctl = copymsg(mpctl); 10092 zoneid = Q_TO_CONN(q)->conn_zoneid; 10093 10094 /* ipGroupMember table */ 10095 optp = (struct opthdr *)&mpctl->b_rptr[ 10096 sizeof (struct T_optmgmt_ack)]; 10097 optp->level = MIB2_IP; 10098 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10099 10100 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10101 ill = ILL_START_WALK_V4(&ctx, ipst); 10102 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10103 /* Make sure the ill isn't going away. */ 10104 if (!ill_check_and_refhold(ill)) 10105 continue; 10106 rw_exit(&ipst->ips_ill_g_lock); 10107 rw_enter(&ill->ill_mcast_lock, RW_READER); 10108 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10109 if (ilm->ilm_zoneid != zoneid && 10110 ilm->ilm_zoneid != ALL_ZONES) 10111 continue; 10112 10113 /* Is there an ipif for ilm_ifaddr? */ 10114 for (ipif = ill->ill_ipif; ipif != NULL; 10115 ipif = ipif->ipif_next) { 10116 if (!IPIF_IS_CONDEMNED(ipif) && 10117 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10118 ilm->ilm_ifaddr != INADDR_ANY) 10119 break; 10120 } 10121 if (ipif != NULL) { 10122 ipif_get_name(ipif, 10123 ipm.ipGroupMemberIfIndex.o_bytes, 10124 OCTET_LENGTH); 10125 } else { 10126 ill_get_name(ill, 10127 ipm.ipGroupMemberIfIndex.o_bytes, 10128 OCTET_LENGTH); 10129 } 10130 ipm.ipGroupMemberIfIndex.o_length = 10131 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10132 10133 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10134 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10135 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10136 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10137 (char *)&ipm, (int)sizeof (ipm))) { 10138 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10139 "failed to allocate %u bytes\n", 10140 (uint_t)sizeof (ipm))); 10141 } 10142 } 10143 rw_exit(&ill->ill_mcast_lock); 10144 ill_refrele(ill); 10145 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10146 } 10147 rw_exit(&ipst->ips_ill_g_lock); 10148 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10149 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10150 (int)optp->level, (int)optp->name, (int)optp->len)); 10151 qreply(q, mpctl); 10152 return (mp2ctl); 10153 } 10154 10155 /* IPv6 multicast group membership. */ 10156 static mblk_t * 10157 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10158 { 10159 struct opthdr *optp; 10160 mblk_t *mp2ctl; 10161 ill_t *ill; 10162 ilm_t *ilm; 10163 ipv6_member_t ipm6; 10164 mblk_t *mp_tail = NULL; 10165 ill_walk_context_t ctx; 10166 zoneid_t zoneid; 10167 10168 /* 10169 * make a copy of the original message 10170 */ 10171 mp2ctl = copymsg(mpctl); 10172 zoneid = Q_TO_CONN(q)->conn_zoneid; 10173 10174 /* ip6GroupMember table */ 10175 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10176 optp->level = MIB2_IP6; 10177 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10178 10179 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10180 ill = ILL_START_WALK_V6(&ctx, ipst); 10181 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10182 /* Make sure the ill isn't going away. */ 10183 if (!ill_check_and_refhold(ill)) 10184 continue; 10185 rw_exit(&ipst->ips_ill_g_lock); 10186 /* 10187 * Normally we don't have any members on under IPMP interfaces. 10188 * We report them as a debugging aid. 10189 */ 10190 rw_enter(&ill->ill_mcast_lock, RW_READER); 10191 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10192 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10193 if (ilm->ilm_zoneid != zoneid && 10194 ilm->ilm_zoneid != ALL_ZONES) 10195 continue; /* not this zone */ 10196 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10197 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10198 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10199 if (!snmp_append_data2(mpctl->b_cont, 10200 &mp_tail, 10201 (char *)&ipm6, (int)sizeof (ipm6))) { 10202 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10203 "failed to allocate %u bytes\n", 10204 (uint_t)sizeof (ipm6))); 10205 } 10206 } 10207 rw_exit(&ill->ill_mcast_lock); 10208 ill_refrele(ill); 10209 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10210 } 10211 rw_exit(&ipst->ips_ill_g_lock); 10212 10213 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10214 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10215 (int)optp->level, (int)optp->name, (int)optp->len)); 10216 qreply(q, mpctl); 10217 return (mp2ctl); 10218 } 10219 10220 /* IP multicast filtered sources */ 10221 static mblk_t * 10222 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10223 { 10224 struct opthdr *optp; 10225 mblk_t *mp2ctl; 10226 ill_t *ill; 10227 ipif_t *ipif; 10228 ilm_t *ilm; 10229 ip_grpsrc_t ips; 10230 mblk_t *mp_tail = NULL; 10231 ill_walk_context_t ctx; 10232 zoneid_t zoneid; 10233 int i; 10234 slist_t *sl; 10235 10236 /* 10237 * make a copy of the original message 10238 */ 10239 mp2ctl = copymsg(mpctl); 10240 zoneid = Q_TO_CONN(q)->conn_zoneid; 10241 10242 /* ipGroupSource table */ 10243 optp = (struct opthdr *)&mpctl->b_rptr[ 10244 sizeof (struct T_optmgmt_ack)]; 10245 optp->level = MIB2_IP; 10246 optp->name = EXPER_IP_GROUP_SOURCES; 10247 10248 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10249 ill = ILL_START_WALK_V4(&ctx, ipst); 10250 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10251 /* Make sure the ill isn't going away. */ 10252 if (!ill_check_and_refhold(ill)) 10253 continue; 10254 rw_exit(&ipst->ips_ill_g_lock); 10255 rw_enter(&ill->ill_mcast_lock, RW_READER); 10256 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10257 sl = ilm->ilm_filter; 10258 if (ilm->ilm_zoneid != zoneid && 10259 ilm->ilm_zoneid != ALL_ZONES) 10260 continue; 10261 if (SLIST_IS_EMPTY(sl)) 10262 continue; 10263 10264 /* Is there an ipif for ilm_ifaddr? */ 10265 for (ipif = ill->ill_ipif; ipif != NULL; 10266 ipif = ipif->ipif_next) { 10267 if (!IPIF_IS_CONDEMNED(ipif) && 10268 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10269 ilm->ilm_ifaddr != INADDR_ANY) 10270 break; 10271 } 10272 if (ipif != NULL) { 10273 ipif_get_name(ipif, 10274 ips.ipGroupSourceIfIndex.o_bytes, 10275 OCTET_LENGTH); 10276 } else { 10277 ill_get_name(ill, 10278 ips.ipGroupSourceIfIndex.o_bytes, 10279 OCTET_LENGTH); 10280 } 10281 ips.ipGroupSourceIfIndex.o_length = 10282 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10283 10284 ips.ipGroupSourceGroup = ilm->ilm_addr; 10285 for (i = 0; i < sl->sl_numsrc; i++) { 10286 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10287 continue; 10288 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10289 ips.ipGroupSourceAddress); 10290 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10291 (char *)&ips, (int)sizeof (ips)) == 0) { 10292 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10293 " failed to allocate %u bytes\n", 10294 (uint_t)sizeof (ips))); 10295 } 10296 } 10297 } 10298 rw_exit(&ill->ill_mcast_lock); 10299 ill_refrele(ill); 10300 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10301 } 10302 rw_exit(&ipst->ips_ill_g_lock); 10303 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10304 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10305 (int)optp->level, (int)optp->name, (int)optp->len)); 10306 qreply(q, mpctl); 10307 return (mp2ctl); 10308 } 10309 10310 /* IPv6 multicast filtered sources. */ 10311 static mblk_t * 10312 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10313 { 10314 struct opthdr *optp; 10315 mblk_t *mp2ctl; 10316 ill_t *ill; 10317 ilm_t *ilm; 10318 ipv6_grpsrc_t ips6; 10319 mblk_t *mp_tail = NULL; 10320 ill_walk_context_t ctx; 10321 zoneid_t zoneid; 10322 int i; 10323 slist_t *sl; 10324 10325 /* 10326 * make a copy of the original message 10327 */ 10328 mp2ctl = copymsg(mpctl); 10329 zoneid = Q_TO_CONN(q)->conn_zoneid; 10330 10331 /* ip6GroupMember table */ 10332 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10333 optp->level = MIB2_IP6; 10334 optp->name = EXPER_IP6_GROUP_SOURCES; 10335 10336 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10337 ill = ILL_START_WALK_V6(&ctx, ipst); 10338 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10339 /* Make sure the ill isn't going away. */ 10340 if (!ill_check_and_refhold(ill)) 10341 continue; 10342 rw_exit(&ipst->ips_ill_g_lock); 10343 /* 10344 * Normally we don't have any members on under IPMP interfaces. 10345 * We report them as a debugging aid. 10346 */ 10347 rw_enter(&ill->ill_mcast_lock, RW_READER); 10348 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10349 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10350 sl = ilm->ilm_filter; 10351 if (ilm->ilm_zoneid != zoneid && 10352 ilm->ilm_zoneid != ALL_ZONES) 10353 continue; 10354 if (SLIST_IS_EMPTY(sl)) 10355 continue; 10356 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10357 for (i = 0; i < sl->sl_numsrc; i++) { 10358 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10359 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10360 (char *)&ips6, (int)sizeof (ips6))) { 10361 ip1dbg(("ip_snmp_get_mib2_ip6_" 10362 "group_src: failed to allocate " 10363 "%u bytes\n", 10364 (uint_t)sizeof (ips6))); 10365 } 10366 } 10367 } 10368 rw_exit(&ill->ill_mcast_lock); 10369 ill_refrele(ill); 10370 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10371 } 10372 rw_exit(&ipst->ips_ill_g_lock); 10373 10374 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10375 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10376 (int)optp->level, (int)optp->name, (int)optp->len)); 10377 qreply(q, mpctl); 10378 return (mp2ctl); 10379 } 10380 10381 /* Multicast routing virtual interface table. */ 10382 static mblk_t * 10383 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10384 { 10385 struct opthdr *optp; 10386 mblk_t *mp2ctl; 10387 10388 /* 10389 * make a copy of the original message 10390 */ 10391 mp2ctl = copymsg(mpctl); 10392 10393 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10394 optp->level = EXPER_DVMRP; 10395 optp->name = EXPER_DVMRP_VIF; 10396 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10397 ip0dbg(("ip_mroute_vif: failed\n")); 10398 } 10399 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10400 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10401 (int)optp->level, (int)optp->name, (int)optp->len)); 10402 qreply(q, mpctl); 10403 return (mp2ctl); 10404 } 10405 10406 /* Multicast routing table. */ 10407 static mblk_t * 10408 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10409 { 10410 struct opthdr *optp; 10411 mblk_t *mp2ctl; 10412 10413 /* 10414 * make a copy of the original message 10415 */ 10416 mp2ctl = copymsg(mpctl); 10417 10418 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10419 optp->level = EXPER_DVMRP; 10420 optp->name = EXPER_DVMRP_MRT; 10421 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10422 ip0dbg(("ip_mroute_mrt: failed\n")); 10423 } 10424 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10425 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10426 (int)optp->level, (int)optp->name, (int)optp->len)); 10427 qreply(q, mpctl); 10428 return (mp2ctl); 10429 } 10430 10431 /* 10432 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10433 * in one IRE walk. 10434 */ 10435 static mblk_t * 10436 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10437 ip_stack_t *ipst) 10438 { 10439 struct opthdr *optp; 10440 mblk_t *mp2ctl; /* Returned */ 10441 mblk_t *mp3ctl; /* nettomedia */ 10442 mblk_t *mp4ctl; /* routeattrs */ 10443 iproutedata_t ird; 10444 zoneid_t zoneid; 10445 10446 /* 10447 * make copies of the original message 10448 * - mp2ctl is returned unchanged to the caller for his use 10449 * - mpctl is sent upstream as ipRouteEntryTable 10450 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10451 * - mp4ctl is sent upstream as ipRouteAttributeTable 10452 */ 10453 mp2ctl = copymsg(mpctl); 10454 mp3ctl = copymsg(mpctl); 10455 mp4ctl = copymsg(mpctl); 10456 if (mp3ctl == NULL || mp4ctl == NULL) { 10457 freemsg(mp4ctl); 10458 freemsg(mp3ctl); 10459 freemsg(mp2ctl); 10460 freemsg(mpctl); 10461 return (NULL); 10462 } 10463 10464 bzero(&ird, sizeof (ird)); 10465 10466 ird.ird_route.lp_head = mpctl->b_cont; 10467 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10468 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10469 /* 10470 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10471 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10472 * intended a temporary solution until a proper MIB API is provided 10473 * that provides complete filtering/caller-opt-in. 10474 */ 10475 if (level == EXPER_IP_AND_ALL_IRES) 10476 ird.ird_flags |= IRD_REPORT_ALL; 10477 10478 zoneid = Q_TO_CONN(q)->conn_zoneid; 10479 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10480 10481 /* ipRouteEntryTable in mpctl */ 10482 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10483 optp->level = MIB2_IP; 10484 optp->name = MIB2_IP_ROUTE; 10485 optp->len = msgdsize(ird.ird_route.lp_head); 10486 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10487 (int)optp->level, (int)optp->name, (int)optp->len)); 10488 qreply(q, mpctl); 10489 10490 /* ipNetToMediaEntryTable in mp3ctl */ 10491 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10492 10493 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10494 optp->level = MIB2_IP; 10495 optp->name = MIB2_IP_MEDIA; 10496 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10497 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10498 (int)optp->level, (int)optp->name, (int)optp->len)); 10499 qreply(q, mp3ctl); 10500 10501 /* ipRouteAttributeTable in mp4ctl */ 10502 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10503 optp->level = MIB2_IP; 10504 optp->name = EXPER_IP_RTATTR; 10505 optp->len = msgdsize(ird.ird_attrs.lp_head); 10506 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10507 (int)optp->level, (int)optp->name, (int)optp->len)); 10508 if (optp->len == 0) 10509 freemsg(mp4ctl); 10510 else 10511 qreply(q, mp4ctl); 10512 10513 return (mp2ctl); 10514 } 10515 10516 /* 10517 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10518 * ipv6NetToMediaEntryTable in an NDP walk. 10519 */ 10520 static mblk_t * 10521 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10522 ip_stack_t *ipst) 10523 { 10524 struct opthdr *optp; 10525 mblk_t *mp2ctl; /* Returned */ 10526 mblk_t *mp3ctl; /* nettomedia */ 10527 mblk_t *mp4ctl; /* routeattrs */ 10528 iproutedata_t ird; 10529 zoneid_t zoneid; 10530 10531 /* 10532 * make copies of the original message 10533 * - mp2ctl is returned unchanged to the caller for his use 10534 * - mpctl is sent upstream as ipv6RouteEntryTable 10535 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10536 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10537 */ 10538 mp2ctl = copymsg(mpctl); 10539 mp3ctl = copymsg(mpctl); 10540 mp4ctl = copymsg(mpctl); 10541 if (mp3ctl == NULL || mp4ctl == NULL) { 10542 freemsg(mp4ctl); 10543 freemsg(mp3ctl); 10544 freemsg(mp2ctl); 10545 freemsg(mpctl); 10546 return (NULL); 10547 } 10548 10549 bzero(&ird, sizeof (ird)); 10550 10551 ird.ird_route.lp_head = mpctl->b_cont; 10552 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10553 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10554 /* 10555 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10556 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10557 * intended a temporary solution until a proper MIB API is provided 10558 * that provides complete filtering/caller-opt-in. 10559 */ 10560 if (level == EXPER_IP_AND_ALL_IRES) 10561 ird.ird_flags |= IRD_REPORT_ALL; 10562 10563 zoneid = Q_TO_CONN(q)->conn_zoneid; 10564 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10565 10566 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10567 optp->level = MIB2_IP6; 10568 optp->name = MIB2_IP6_ROUTE; 10569 optp->len = msgdsize(ird.ird_route.lp_head); 10570 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10571 (int)optp->level, (int)optp->name, (int)optp->len)); 10572 qreply(q, mpctl); 10573 10574 /* ipv6NetToMediaEntryTable in mp3ctl */ 10575 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10576 10577 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10578 optp->level = MIB2_IP6; 10579 optp->name = MIB2_IP6_MEDIA; 10580 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10581 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10582 (int)optp->level, (int)optp->name, (int)optp->len)); 10583 qreply(q, mp3ctl); 10584 10585 /* ipv6RouteAttributeTable in mp4ctl */ 10586 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10587 optp->level = MIB2_IP6; 10588 optp->name = EXPER_IP_RTATTR; 10589 optp->len = msgdsize(ird.ird_attrs.lp_head); 10590 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10591 (int)optp->level, (int)optp->name, (int)optp->len)); 10592 if (optp->len == 0) 10593 freemsg(mp4ctl); 10594 else 10595 qreply(q, mp4ctl); 10596 10597 return (mp2ctl); 10598 } 10599 10600 /* 10601 * IPv6 mib: One per ill 10602 */ 10603 static mblk_t * 10604 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10605 { 10606 struct opthdr *optp; 10607 mblk_t *mp2ctl; 10608 ill_t *ill; 10609 ill_walk_context_t ctx; 10610 mblk_t *mp_tail = NULL; 10611 10612 /* 10613 * Make a copy of the original message 10614 */ 10615 mp2ctl = copymsg(mpctl); 10616 10617 /* fixed length IPv6 structure ... */ 10618 10619 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10620 optp->level = MIB2_IP6; 10621 optp->name = 0; 10622 /* Include "unknown interface" ip6_mib */ 10623 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10624 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10625 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10626 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10627 ipst->ips_ipv6_forwarding ? 1 : 2); 10628 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10629 ipst->ips_ipv6_def_hops); 10630 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10631 sizeof (mib2_ipIfStatsEntry_t)); 10632 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10633 sizeof (mib2_ipv6AddrEntry_t)); 10634 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10635 sizeof (mib2_ipv6RouteEntry_t)); 10636 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10637 sizeof (mib2_ipv6NetToMediaEntry_t)); 10638 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10639 sizeof (ipv6_member_t)); 10640 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10641 sizeof (ipv6_grpsrc_t)); 10642 10643 /* 10644 * Synchronize 64- and 32-bit counters 10645 */ 10646 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10647 ipIfStatsHCInReceives); 10648 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10649 ipIfStatsHCInDelivers); 10650 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10651 ipIfStatsHCOutRequests); 10652 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10653 ipIfStatsHCOutForwDatagrams); 10654 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10655 ipIfStatsHCOutMcastPkts); 10656 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10657 ipIfStatsHCInMcastPkts); 10658 10659 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10660 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10661 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10662 (uint_t)sizeof (ipst->ips_ip6_mib))); 10663 } 10664 10665 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10666 ill = ILL_START_WALK_V6(&ctx, ipst); 10667 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10668 ill->ill_ip_mib->ipIfStatsIfIndex = 10669 ill->ill_phyint->phyint_ifindex; 10670 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10671 ipst->ips_ipv6_forwarding ? 1 : 2); 10672 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10673 ill->ill_max_hops); 10674 10675 /* 10676 * Synchronize 64- and 32-bit counters 10677 */ 10678 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10679 ipIfStatsHCInReceives); 10680 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10681 ipIfStatsHCInDelivers); 10682 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10683 ipIfStatsHCOutRequests); 10684 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10685 ipIfStatsHCOutForwDatagrams); 10686 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10687 ipIfStatsHCOutMcastPkts); 10688 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10689 ipIfStatsHCInMcastPkts); 10690 10691 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10692 (char *)ill->ill_ip_mib, 10693 (int)sizeof (*ill->ill_ip_mib))) { 10694 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10695 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10696 } 10697 } 10698 rw_exit(&ipst->ips_ill_g_lock); 10699 10700 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10701 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10702 (int)optp->level, (int)optp->name, (int)optp->len)); 10703 qreply(q, mpctl); 10704 return (mp2ctl); 10705 } 10706 10707 /* 10708 * ICMPv6 mib: One per ill 10709 */ 10710 static mblk_t * 10711 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10712 { 10713 struct opthdr *optp; 10714 mblk_t *mp2ctl; 10715 ill_t *ill; 10716 ill_walk_context_t ctx; 10717 mblk_t *mp_tail = NULL; 10718 /* 10719 * Make a copy of the original message 10720 */ 10721 mp2ctl = copymsg(mpctl); 10722 10723 /* fixed length ICMPv6 structure ... */ 10724 10725 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10726 optp->level = MIB2_ICMP6; 10727 optp->name = 0; 10728 /* Include "unknown interface" icmp6_mib */ 10729 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10730 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10731 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10732 sizeof (mib2_ipv6IfIcmpEntry_t); 10733 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10734 (char *)&ipst->ips_icmp6_mib, 10735 (int)sizeof (ipst->ips_icmp6_mib))) { 10736 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10737 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10738 } 10739 10740 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10741 ill = ILL_START_WALK_V6(&ctx, ipst); 10742 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10743 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10744 ill->ill_phyint->phyint_ifindex; 10745 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10746 (char *)ill->ill_icmp6_mib, 10747 (int)sizeof (*ill->ill_icmp6_mib))) { 10748 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10749 "%u bytes\n", 10750 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10751 } 10752 } 10753 rw_exit(&ipst->ips_ill_g_lock); 10754 10755 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10756 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10757 (int)optp->level, (int)optp->name, (int)optp->len)); 10758 qreply(q, mpctl); 10759 return (mp2ctl); 10760 } 10761 10762 /* 10763 * ire_walk routine to create both ipRouteEntryTable and 10764 * ipRouteAttributeTable in one IRE walk 10765 */ 10766 static void 10767 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10768 { 10769 ill_t *ill; 10770 mib2_ipRouteEntry_t *re; 10771 mib2_ipAttributeEntry_t iaes; 10772 tsol_ire_gw_secattr_t *attrp; 10773 tsol_gc_t *gc = NULL; 10774 tsol_gcgrp_t *gcgrp = NULL; 10775 ip_stack_t *ipst = ire->ire_ipst; 10776 10777 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10778 10779 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10780 if (ire->ire_testhidden) 10781 return; 10782 if (ire->ire_type & IRE_IF_CLONE) 10783 return; 10784 } 10785 10786 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10787 return; 10788 10789 if ((attrp = ire->ire_gw_secattr) != NULL) { 10790 mutex_enter(&attrp->igsa_lock); 10791 if ((gc = attrp->igsa_gc) != NULL) { 10792 gcgrp = gc->gc_grp; 10793 ASSERT(gcgrp != NULL); 10794 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10795 } 10796 mutex_exit(&attrp->igsa_lock); 10797 } 10798 /* 10799 * Return all IRE types for route table... let caller pick and choose 10800 */ 10801 re->ipRouteDest = ire->ire_addr; 10802 ill = ire->ire_ill; 10803 re->ipRouteIfIndex.o_length = 0; 10804 if (ill != NULL) { 10805 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10806 re->ipRouteIfIndex.o_length = 10807 mi_strlen(re->ipRouteIfIndex.o_bytes); 10808 } 10809 re->ipRouteMetric1 = -1; 10810 re->ipRouteMetric2 = -1; 10811 re->ipRouteMetric3 = -1; 10812 re->ipRouteMetric4 = -1; 10813 10814 re->ipRouteNextHop = ire->ire_gateway_addr; 10815 /* indirect(4), direct(3), or invalid(2) */ 10816 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10817 re->ipRouteType = 2; 10818 else if (ire->ire_type & IRE_ONLINK) 10819 re->ipRouteType = 3; 10820 else 10821 re->ipRouteType = 4; 10822 10823 re->ipRouteProto = -1; 10824 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10825 re->ipRouteMask = ire->ire_mask; 10826 re->ipRouteMetric5 = -1; 10827 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10828 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10829 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10830 10831 re->ipRouteInfo.re_frag_flag = 0; 10832 re->ipRouteInfo.re_rtt = 0; 10833 re->ipRouteInfo.re_src_addr = 0; 10834 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10835 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10836 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10837 re->ipRouteInfo.re_flags = ire->ire_flags; 10838 10839 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10840 if (ire->ire_type & IRE_INTERFACE) { 10841 ire_t *child; 10842 10843 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10844 child = ire->ire_dep_children; 10845 while (child != NULL) { 10846 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10847 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10848 child = child->ire_dep_sib_next; 10849 } 10850 rw_exit(&ipst->ips_ire_dep_lock); 10851 } 10852 10853 if (ire->ire_flags & RTF_DYNAMIC) { 10854 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10855 } else { 10856 re->ipRouteInfo.re_ire_type = ire->ire_type; 10857 } 10858 10859 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10860 (char *)re, (int)sizeof (*re))) { 10861 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10862 (uint_t)sizeof (*re))); 10863 } 10864 10865 if (gc != NULL) { 10866 iaes.iae_routeidx = ird->ird_idx; 10867 iaes.iae_doi = gc->gc_db->gcdb_doi; 10868 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10869 10870 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10871 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10872 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10873 "bytes\n", (uint_t)sizeof (iaes))); 10874 } 10875 } 10876 10877 /* bump route index for next pass */ 10878 ird->ird_idx++; 10879 10880 kmem_free(re, sizeof (*re)); 10881 if (gcgrp != NULL) 10882 rw_exit(&gcgrp->gcgrp_rwlock); 10883 } 10884 10885 /* 10886 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10887 */ 10888 static void 10889 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10890 { 10891 ill_t *ill; 10892 mib2_ipv6RouteEntry_t *re; 10893 mib2_ipAttributeEntry_t iaes; 10894 tsol_ire_gw_secattr_t *attrp; 10895 tsol_gc_t *gc = NULL; 10896 tsol_gcgrp_t *gcgrp = NULL; 10897 ip_stack_t *ipst = ire->ire_ipst; 10898 10899 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10900 10901 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10902 if (ire->ire_testhidden) 10903 return; 10904 if (ire->ire_type & IRE_IF_CLONE) 10905 return; 10906 } 10907 10908 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10909 return; 10910 10911 if ((attrp = ire->ire_gw_secattr) != NULL) { 10912 mutex_enter(&attrp->igsa_lock); 10913 if ((gc = attrp->igsa_gc) != NULL) { 10914 gcgrp = gc->gc_grp; 10915 ASSERT(gcgrp != NULL); 10916 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10917 } 10918 mutex_exit(&attrp->igsa_lock); 10919 } 10920 /* 10921 * Return all IRE types for route table... let caller pick and choose 10922 */ 10923 re->ipv6RouteDest = ire->ire_addr_v6; 10924 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10925 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10926 re->ipv6RouteIfIndex.o_length = 0; 10927 ill = ire->ire_ill; 10928 if (ill != NULL) { 10929 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10930 re->ipv6RouteIfIndex.o_length = 10931 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10932 } 10933 10934 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10935 10936 mutex_enter(&ire->ire_lock); 10937 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10938 mutex_exit(&ire->ire_lock); 10939 10940 /* remote(4), local(3), or discard(2) */ 10941 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10942 re->ipv6RouteType = 2; 10943 else if (ire->ire_type & IRE_ONLINK) 10944 re->ipv6RouteType = 3; 10945 else 10946 re->ipv6RouteType = 4; 10947 10948 re->ipv6RouteProtocol = -1; 10949 re->ipv6RoutePolicy = 0; 10950 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 10951 re->ipv6RouteNextHopRDI = 0; 10952 re->ipv6RouteWeight = 0; 10953 re->ipv6RouteMetric = 0; 10954 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10955 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 10956 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10957 10958 re->ipv6RouteInfo.re_frag_flag = 0; 10959 re->ipv6RouteInfo.re_rtt = 0; 10960 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 10961 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10962 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10963 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 10964 re->ipv6RouteInfo.re_flags = ire->ire_flags; 10965 10966 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10967 if (ire->ire_type & IRE_INTERFACE) { 10968 ire_t *child; 10969 10970 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10971 child = ire->ire_dep_children; 10972 while (child != NULL) { 10973 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 10974 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10975 child = child->ire_dep_sib_next; 10976 } 10977 rw_exit(&ipst->ips_ire_dep_lock); 10978 } 10979 if (ire->ire_flags & RTF_DYNAMIC) { 10980 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10981 } else { 10982 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 10983 } 10984 10985 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10986 (char *)re, (int)sizeof (*re))) { 10987 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 10988 (uint_t)sizeof (*re))); 10989 } 10990 10991 if (gc != NULL) { 10992 iaes.iae_routeidx = ird->ird_idx; 10993 iaes.iae_doi = gc->gc_db->gcdb_doi; 10994 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10995 10996 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10997 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10998 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 10999 "bytes\n", (uint_t)sizeof (iaes))); 11000 } 11001 } 11002 11003 /* bump route index for next pass */ 11004 ird->ird_idx++; 11005 11006 kmem_free(re, sizeof (*re)); 11007 if (gcgrp != NULL) 11008 rw_exit(&gcgrp->gcgrp_rwlock); 11009 } 11010 11011 /* 11012 * ncec_walk routine to create ipv6NetToMediaEntryTable 11013 */ 11014 static int 11015 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11016 { 11017 ill_t *ill; 11018 mib2_ipv6NetToMediaEntry_t ntme; 11019 11020 ill = ncec->ncec_ill; 11021 /* skip arpce entries, and loopback ncec entries */ 11022 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11023 return (0); 11024 /* 11025 * Neighbor cache entry attached to IRE with on-link 11026 * destination. 11027 * We report all IPMP groups on ncec_ill which is normally the upper. 11028 */ 11029 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11030 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11031 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11032 if (ncec->ncec_lladdr != NULL) { 11033 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11034 ntme.ipv6NetToMediaPhysAddress.o_length); 11035 } 11036 /* 11037 * Note: Returns ND_* states. Should be: 11038 * reachable(1), stale(2), delay(3), probe(4), 11039 * invalid(5), unknown(6) 11040 */ 11041 ntme.ipv6NetToMediaState = ncec->ncec_state; 11042 ntme.ipv6NetToMediaLastUpdated = 0; 11043 11044 /* other(1), dynamic(2), static(3), local(4) */ 11045 if (NCE_MYADDR(ncec)) { 11046 ntme.ipv6NetToMediaType = 4; 11047 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11048 ntme.ipv6NetToMediaType = 1; /* proxy */ 11049 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11050 ntme.ipv6NetToMediaType = 3; 11051 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11052 ntme.ipv6NetToMediaType = 1; 11053 } else { 11054 ntme.ipv6NetToMediaType = 2; 11055 } 11056 11057 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11058 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11059 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11060 (uint_t)sizeof (ntme))); 11061 } 11062 return (0); 11063 } 11064 11065 int 11066 nce2ace(ncec_t *ncec) 11067 { 11068 int flags = 0; 11069 11070 if (NCE_ISREACHABLE(ncec)) 11071 flags |= ACE_F_RESOLVED; 11072 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11073 flags |= ACE_F_AUTHORITY; 11074 if (ncec->ncec_flags & NCE_F_PUBLISH) 11075 flags |= ACE_F_PUBLISH; 11076 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11077 flags |= ACE_F_PERMANENT; 11078 if (NCE_MYADDR(ncec)) 11079 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11080 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11081 flags |= ACE_F_UNVERIFIED; 11082 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11083 flags |= ACE_F_AUTHORITY; 11084 if (ncec->ncec_flags & NCE_F_DELAYED) 11085 flags |= ACE_F_DELAYED; 11086 return (flags); 11087 } 11088 11089 /* 11090 * ncec_walk routine to create ipNetToMediaEntryTable 11091 */ 11092 static int 11093 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11094 { 11095 ill_t *ill; 11096 mib2_ipNetToMediaEntry_t ntme; 11097 const char *name = "unknown"; 11098 ipaddr_t ncec_addr; 11099 11100 ill = ncec->ncec_ill; 11101 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11102 ill->ill_net_type == IRE_LOOPBACK) 11103 return (0); 11104 11105 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11106 name = ill->ill_name; 11107 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11108 if (NCE_MYADDR(ncec)) { 11109 ntme.ipNetToMediaType = 4; 11110 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11111 ntme.ipNetToMediaType = 1; 11112 } else { 11113 ntme.ipNetToMediaType = 3; 11114 } 11115 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11116 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11117 ntme.ipNetToMediaIfIndex.o_length); 11118 11119 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11120 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11121 11122 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11123 ncec_addr = INADDR_BROADCAST; 11124 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11125 sizeof (ncec_addr)); 11126 /* 11127 * map all the flags to the ACE counterpart. 11128 */ 11129 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11130 11131 ntme.ipNetToMediaPhysAddress.o_length = 11132 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11133 11134 if (!NCE_ISREACHABLE(ncec)) 11135 ntme.ipNetToMediaPhysAddress.o_length = 0; 11136 else { 11137 if (ncec->ncec_lladdr != NULL) { 11138 bcopy(ncec->ncec_lladdr, 11139 ntme.ipNetToMediaPhysAddress.o_bytes, 11140 ntme.ipNetToMediaPhysAddress.o_length); 11141 } 11142 } 11143 11144 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11145 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11146 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11147 (uint_t)sizeof (ntme))); 11148 } 11149 return (0); 11150 } 11151 11152 /* 11153 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11154 */ 11155 /* ARGSUSED */ 11156 int 11157 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11158 { 11159 switch (level) { 11160 case MIB2_IP: 11161 case MIB2_ICMP: 11162 switch (name) { 11163 default: 11164 break; 11165 } 11166 return (1); 11167 default: 11168 return (1); 11169 } 11170 } 11171 11172 /* 11173 * When there exists both a 64- and 32-bit counter of a particular type 11174 * (i.e., InReceives), only the 64-bit counters are added. 11175 */ 11176 void 11177 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11178 { 11179 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11180 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11181 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11182 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11183 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11184 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11185 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11186 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11187 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11188 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11189 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11190 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11191 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11192 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11193 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11194 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11195 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11196 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11197 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11198 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11199 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11200 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11201 o2->ipIfStatsInWrongIPVersion); 11202 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11203 o2->ipIfStatsInWrongIPVersion); 11204 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11205 o2->ipIfStatsOutSwitchIPVersion); 11206 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11207 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11208 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11209 o2->ipIfStatsHCInForwDatagrams); 11210 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11211 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11212 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11213 o2->ipIfStatsHCOutForwDatagrams); 11214 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11215 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11216 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11217 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11218 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11219 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11220 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11221 o2->ipIfStatsHCOutMcastOctets); 11222 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11223 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11224 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11225 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11226 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11227 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11228 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11229 } 11230 11231 void 11232 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11233 { 11234 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11235 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11236 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11237 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11238 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11239 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11240 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11241 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11242 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11243 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11244 o2->ipv6IfIcmpInRouterSolicits); 11245 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11246 o2->ipv6IfIcmpInRouterAdvertisements); 11247 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11248 o2->ipv6IfIcmpInNeighborSolicits); 11249 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11250 o2->ipv6IfIcmpInNeighborAdvertisements); 11251 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11252 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11253 o2->ipv6IfIcmpInGroupMembQueries); 11254 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11255 o2->ipv6IfIcmpInGroupMembResponses); 11256 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11257 o2->ipv6IfIcmpInGroupMembReductions); 11258 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11259 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11260 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11261 o2->ipv6IfIcmpOutDestUnreachs); 11262 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11263 o2->ipv6IfIcmpOutAdminProhibs); 11264 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11265 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11266 o2->ipv6IfIcmpOutParmProblems); 11267 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11268 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11269 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11270 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11271 o2->ipv6IfIcmpOutRouterSolicits); 11272 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11273 o2->ipv6IfIcmpOutRouterAdvertisements); 11274 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11275 o2->ipv6IfIcmpOutNeighborSolicits); 11276 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11277 o2->ipv6IfIcmpOutNeighborAdvertisements); 11278 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11279 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11280 o2->ipv6IfIcmpOutGroupMembQueries); 11281 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11282 o2->ipv6IfIcmpOutGroupMembResponses); 11283 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11284 o2->ipv6IfIcmpOutGroupMembReductions); 11285 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11286 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11287 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11288 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11289 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11290 o2->ipv6IfIcmpInBadNeighborSolicitations); 11291 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11292 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11293 o2->ipv6IfIcmpInGroupMembTotal); 11294 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11295 o2->ipv6IfIcmpInGroupMembBadQueries); 11296 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11297 o2->ipv6IfIcmpInGroupMembBadReports); 11298 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11299 o2->ipv6IfIcmpInGroupMembOurReports); 11300 } 11301 11302 /* 11303 * Called before the options are updated to check if this packet will 11304 * be source routed from here. 11305 * This routine assumes that the options are well formed i.e. that they 11306 * have already been checked. 11307 */ 11308 boolean_t 11309 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11310 { 11311 ipoptp_t opts; 11312 uchar_t *opt; 11313 uint8_t optval; 11314 uint8_t optlen; 11315 ipaddr_t dst; 11316 11317 if (IS_SIMPLE_IPH(ipha)) { 11318 ip2dbg(("not source routed\n")); 11319 return (B_FALSE); 11320 } 11321 dst = ipha->ipha_dst; 11322 for (optval = ipoptp_first(&opts, ipha); 11323 optval != IPOPT_EOL; 11324 optval = ipoptp_next(&opts)) { 11325 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11326 opt = opts.ipoptp_cur; 11327 optlen = opts.ipoptp_len; 11328 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11329 optval, optlen)); 11330 switch (optval) { 11331 uint32_t off; 11332 case IPOPT_SSRR: 11333 case IPOPT_LSRR: 11334 /* 11335 * If dst is one of our addresses and there are some 11336 * entries left in the source route return (true). 11337 */ 11338 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11339 ip2dbg(("ip_source_routed: not next" 11340 " source route 0x%x\n", 11341 ntohl(dst))); 11342 return (B_FALSE); 11343 } 11344 off = opt[IPOPT_OFFSET]; 11345 off--; 11346 if (optlen < IP_ADDR_LEN || 11347 off > optlen - IP_ADDR_LEN) { 11348 /* End of source route */ 11349 ip1dbg(("ip_source_routed: end of SR\n")); 11350 return (B_FALSE); 11351 } 11352 return (B_TRUE); 11353 } 11354 } 11355 ip2dbg(("not source routed\n")); 11356 return (B_FALSE); 11357 } 11358 11359 /* 11360 * ip_unbind is called by the transports to remove a conn from 11361 * the fanout table. 11362 */ 11363 void 11364 ip_unbind(conn_t *connp) 11365 { 11366 11367 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11368 11369 if (is_system_labeled() && connp->conn_anon_port) { 11370 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11371 connp->conn_mlp_type, connp->conn_proto, 11372 ntohs(connp->conn_lport), B_FALSE); 11373 connp->conn_anon_port = 0; 11374 } 11375 connp->conn_mlp_type = mlptSingle; 11376 11377 ipcl_hash_remove(connp); 11378 } 11379 11380 /* 11381 * Used for deciding the MSS size for the upper layer. Thus 11382 * we need to check the outbound policy values in the conn. 11383 */ 11384 int 11385 conn_ipsec_length(conn_t *connp) 11386 { 11387 ipsec_latch_t *ipl; 11388 11389 ipl = connp->conn_latch; 11390 if (ipl == NULL) 11391 return (0); 11392 11393 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11394 return (0); 11395 11396 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11397 } 11398 11399 /* 11400 * Returns an estimate of the IPsec headers size. This is used if 11401 * we don't want to call into IPsec to get the exact size. 11402 */ 11403 int 11404 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11405 { 11406 ipsec_action_t *a; 11407 11408 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11409 return (0); 11410 11411 a = ixa->ixa_ipsec_action; 11412 if (a == NULL) { 11413 ASSERT(ixa->ixa_ipsec_policy != NULL); 11414 a = ixa->ixa_ipsec_policy->ipsp_act; 11415 } 11416 ASSERT(a != NULL); 11417 11418 return (a->ipa_ovhd); 11419 } 11420 11421 /* 11422 * If there are any source route options, return the true final 11423 * destination. Otherwise, return the destination. 11424 */ 11425 ipaddr_t 11426 ip_get_dst(ipha_t *ipha) 11427 { 11428 ipoptp_t opts; 11429 uchar_t *opt; 11430 uint8_t optval; 11431 uint8_t optlen; 11432 ipaddr_t dst; 11433 uint32_t off; 11434 11435 dst = ipha->ipha_dst; 11436 11437 if (IS_SIMPLE_IPH(ipha)) 11438 return (dst); 11439 11440 for (optval = ipoptp_first(&opts, ipha); 11441 optval != IPOPT_EOL; 11442 optval = ipoptp_next(&opts)) { 11443 opt = opts.ipoptp_cur; 11444 optlen = opts.ipoptp_len; 11445 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11446 switch (optval) { 11447 case IPOPT_SSRR: 11448 case IPOPT_LSRR: 11449 off = opt[IPOPT_OFFSET]; 11450 /* 11451 * If one of the conditions is true, it means 11452 * end of options and dst already has the right 11453 * value. 11454 */ 11455 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11456 off = optlen - IP_ADDR_LEN; 11457 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11458 } 11459 return (dst); 11460 default: 11461 break; 11462 } 11463 } 11464 11465 return (dst); 11466 } 11467 11468 /* 11469 * Outbound IP fragmentation routine. 11470 * Assumes the caller has checked whether or not fragmentation should 11471 * be allowed. Here we copy the DF bit from the header to all the generated 11472 * fragments. 11473 */ 11474 int 11475 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11476 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11477 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11478 { 11479 int i1; 11480 int hdr_len; 11481 mblk_t *hdr_mp; 11482 ipha_t *ipha; 11483 int ip_data_end; 11484 int len; 11485 mblk_t *mp = mp_orig; 11486 int offset; 11487 ill_t *ill = nce->nce_ill; 11488 ip_stack_t *ipst = ill->ill_ipst; 11489 mblk_t *carve_mp; 11490 uint32_t frag_flag; 11491 uint_t priority = mp->b_band; 11492 int error = 0; 11493 11494 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11495 11496 if (pkt_len != msgdsize(mp)) { 11497 ip0dbg(("Packet length mismatch: %d, %ld\n", 11498 pkt_len, msgdsize(mp))); 11499 freemsg(mp); 11500 return (EINVAL); 11501 } 11502 11503 if (max_frag == 0) { 11504 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11505 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11506 ip_drop_output("FragFails: zero max_frag", mp, ill); 11507 freemsg(mp); 11508 return (EINVAL); 11509 } 11510 11511 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11512 ipha = (ipha_t *)mp->b_rptr; 11513 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11514 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11515 11516 /* 11517 * Establish the starting offset. May not be zero if we are fragging 11518 * a fragment that is being forwarded. 11519 */ 11520 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11521 11522 /* TODO why is this test needed? */ 11523 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11524 /* TODO: notify ulp somehow */ 11525 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11526 ip_drop_output("FragFails: bad starting offset", mp, ill); 11527 freemsg(mp); 11528 return (EINVAL); 11529 } 11530 11531 hdr_len = IPH_HDR_LENGTH(ipha); 11532 ipha->ipha_hdr_checksum = 0; 11533 11534 /* 11535 * Establish the number of bytes maximum per frag, after putting 11536 * in the header. 11537 */ 11538 len = (max_frag - hdr_len) & ~7; 11539 11540 /* Get a copy of the header for the trailing frags */ 11541 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11542 mp); 11543 if (hdr_mp == NULL) { 11544 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11545 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11546 freemsg(mp); 11547 return (ENOBUFS); 11548 } 11549 11550 /* Store the starting offset, with the MoreFrags flag. */ 11551 i1 = offset | IPH_MF | frag_flag; 11552 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11553 11554 /* Establish the ending byte offset, based on the starting offset. */ 11555 offset <<= 3; 11556 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11557 11558 /* Store the length of the first fragment in the IP header. */ 11559 i1 = len + hdr_len; 11560 ASSERT(i1 <= IP_MAXPACKET); 11561 ipha->ipha_length = htons((uint16_t)i1); 11562 11563 /* 11564 * Compute the IP header checksum for the first frag. We have to 11565 * watch out that we stop at the end of the header. 11566 */ 11567 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11568 11569 /* 11570 * Now carve off the first frag. Note that this will include the 11571 * original IP header. 11572 */ 11573 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11575 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11576 freeb(hdr_mp); 11577 freemsg(mp_orig); 11578 return (ENOBUFS); 11579 } 11580 11581 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11582 11583 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11584 ixa_cookie); 11585 if (error != 0 && error != EWOULDBLOCK) { 11586 /* No point in sending the other fragments */ 11587 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11588 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11589 freeb(hdr_mp); 11590 freemsg(mp_orig); 11591 return (error); 11592 } 11593 11594 /* No need to redo state machine in loop */ 11595 ixaflags &= ~IXAF_REACH_CONF; 11596 11597 /* Advance the offset to the second frag starting point. */ 11598 offset += len; 11599 /* 11600 * Update hdr_len from the copied header - there might be less options 11601 * in the later fragments. 11602 */ 11603 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11604 /* Loop until done. */ 11605 for (;;) { 11606 uint16_t offset_and_flags; 11607 uint16_t ip_len; 11608 11609 if (ip_data_end - offset > len) { 11610 /* 11611 * Carve off the appropriate amount from the original 11612 * datagram. 11613 */ 11614 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11615 mp = NULL; 11616 break; 11617 } 11618 /* 11619 * More frags after this one. Get another copy 11620 * of the header. 11621 */ 11622 if (carve_mp->b_datap->db_ref == 1 && 11623 hdr_mp->b_wptr - hdr_mp->b_rptr < 11624 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11625 /* Inline IP header */ 11626 carve_mp->b_rptr -= hdr_mp->b_wptr - 11627 hdr_mp->b_rptr; 11628 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11629 hdr_mp->b_wptr - hdr_mp->b_rptr); 11630 mp = carve_mp; 11631 } else { 11632 if (!(mp = copyb(hdr_mp))) { 11633 freemsg(carve_mp); 11634 break; 11635 } 11636 /* Get priority marking, if any. */ 11637 mp->b_band = priority; 11638 mp->b_cont = carve_mp; 11639 } 11640 ipha = (ipha_t *)mp->b_rptr; 11641 offset_and_flags = IPH_MF; 11642 } else { 11643 /* 11644 * Last frag. Consume the header. Set len to 11645 * the length of this last piece. 11646 */ 11647 len = ip_data_end - offset; 11648 11649 /* 11650 * Carve off the appropriate amount from the original 11651 * datagram. 11652 */ 11653 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11654 mp = NULL; 11655 break; 11656 } 11657 if (carve_mp->b_datap->db_ref == 1 && 11658 hdr_mp->b_wptr - hdr_mp->b_rptr < 11659 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11660 /* Inline IP header */ 11661 carve_mp->b_rptr -= hdr_mp->b_wptr - 11662 hdr_mp->b_rptr; 11663 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11664 hdr_mp->b_wptr - hdr_mp->b_rptr); 11665 mp = carve_mp; 11666 freeb(hdr_mp); 11667 hdr_mp = mp; 11668 } else { 11669 mp = hdr_mp; 11670 /* Get priority marking, if any. */ 11671 mp->b_band = priority; 11672 mp->b_cont = carve_mp; 11673 } 11674 ipha = (ipha_t *)mp->b_rptr; 11675 /* A frag of a frag might have IPH_MF non-zero */ 11676 offset_and_flags = 11677 ntohs(ipha->ipha_fragment_offset_and_flags) & 11678 IPH_MF; 11679 } 11680 offset_and_flags |= (uint16_t)(offset >> 3); 11681 offset_and_flags |= (uint16_t)frag_flag; 11682 /* Store the offset and flags in the IP header. */ 11683 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11684 11685 /* Store the length in the IP header. */ 11686 ip_len = (uint16_t)(len + hdr_len); 11687 ipha->ipha_length = htons(ip_len); 11688 11689 /* 11690 * Set the IP header checksum. Note that mp is just 11691 * the header, so this is easy to pass to ip_csum. 11692 */ 11693 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11694 11695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11696 11697 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11698 nolzid, ixa_cookie); 11699 /* All done if we just consumed the hdr_mp. */ 11700 if (mp == hdr_mp) { 11701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11702 return (error); 11703 } 11704 if (error != 0 && error != EWOULDBLOCK) { 11705 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11706 mblk_t *, hdr_mp); 11707 /* No point in sending the other fragments */ 11708 break; 11709 } 11710 11711 /* Otherwise, advance and loop. */ 11712 offset += len; 11713 } 11714 /* Clean up following allocation failure. */ 11715 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11716 ip_drop_output("FragFails: loop ended", NULL, ill); 11717 if (mp != hdr_mp) 11718 freeb(hdr_mp); 11719 if (mp != mp_orig) 11720 freemsg(mp_orig); 11721 return (error); 11722 } 11723 11724 /* 11725 * Copy the header plus those options which have the copy bit set 11726 */ 11727 static mblk_t * 11728 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11729 mblk_t *src) 11730 { 11731 mblk_t *mp; 11732 uchar_t *up; 11733 11734 /* 11735 * Quick check if we need to look for options without the copy bit 11736 * set 11737 */ 11738 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11739 if (!mp) 11740 return (mp); 11741 mp->b_rptr += ipst->ips_ip_wroff_extra; 11742 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11743 bcopy(rptr, mp->b_rptr, hdr_len); 11744 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11745 return (mp); 11746 } 11747 up = mp->b_rptr; 11748 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11749 up += IP_SIMPLE_HDR_LENGTH; 11750 rptr += IP_SIMPLE_HDR_LENGTH; 11751 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11752 while (hdr_len > 0) { 11753 uint32_t optval; 11754 uint32_t optlen; 11755 11756 optval = *rptr; 11757 if (optval == IPOPT_EOL) 11758 break; 11759 if (optval == IPOPT_NOP) 11760 optlen = 1; 11761 else 11762 optlen = rptr[1]; 11763 if (optval & IPOPT_COPY) { 11764 bcopy(rptr, up, optlen); 11765 up += optlen; 11766 } 11767 rptr += optlen; 11768 hdr_len -= optlen; 11769 } 11770 /* 11771 * Make sure that we drop an even number of words by filling 11772 * with EOL to the next word boundary. 11773 */ 11774 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11775 hdr_len & 0x3; hdr_len++) 11776 *up++ = IPOPT_EOL; 11777 mp->b_wptr = up; 11778 /* Update header length */ 11779 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11780 return (mp); 11781 } 11782 11783 /* 11784 * Update any source route, record route, or timestamp options when 11785 * sending a packet back to ourselves. 11786 * Check that we are at end of strict source route. 11787 * The options have been sanity checked by ip_output_options(). 11788 */ 11789 void 11790 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11791 { 11792 ipoptp_t opts; 11793 uchar_t *opt; 11794 uint8_t optval; 11795 uint8_t optlen; 11796 ipaddr_t dst; 11797 uint32_t ts; 11798 timestruc_t now; 11799 11800 for (optval = ipoptp_first(&opts, ipha); 11801 optval != IPOPT_EOL; 11802 optval = ipoptp_next(&opts)) { 11803 opt = opts.ipoptp_cur; 11804 optlen = opts.ipoptp_len; 11805 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11806 switch (optval) { 11807 uint32_t off; 11808 case IPOPT_SSRR: 11809 case IPOPT_LSRR: 11810 off = opt[IPOPT_OFFSET]; 11811 off--; 11812 if (optlen < IP_ADDR_LEN || 11813 off > optlen - IP_ADDR_LEN) { 11814 /* End of source route */ 11815 break; 11816 } 11817 /* 11818 * This will only happen if two consecutive entries 11819 * in the source route contains our address or if 11820 * it is a packet with a loose source route which 11821 * reaches us before consuming the whole source route 11822 */ 11823 11824 if (optval == IPOPT_SSRR) { 11825 return; 11826 } 11827 /* 11828 * Hack: instead of dropping the packet truncate the 11829 * source route to what has been used by filling the 11830 * rest with IPOPT_NOP. 11831 */ 11832 opt[IPOPT_OLEN] = (uint8_t)off; 11833 while (off < optlen) { 11834 opt[off++] = IPOPT_NOP; 11835 } 11836 break; 11837 case IPOPT_RR: 11838 off = opt[IPOPT_OFFSET]; 11839 off--; 11840 if (optlen < IP_ADDR_LEN || 11841 off > optlen - IP_ADDR_LEN) { 11842 /* No more room - ignore */ 11843 ip1dbg(( 11844 "ip_output_local_options: end of RR\n")); 11845 break; 11846 } 11847 dst = htonl(INADDR_LOOPBACK); 11848 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11849 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11850 break; 11851 case IPOPT_TS: 11852 /* Insert timestamp if there is romm */ 11853 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11854 case IPOPT_TS_TSONLY: 11855 off = IPOPT_TS_TIMELEN; 11856 break; 11857 case IPOPT_TS_PRESPEC: 11858 case IPOPT_TS_PRESPEC_RFC791: 11859 /* Verify that the address matched */ 11860 off = opt[IPOPT_OFFSET] - 1; 11861 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11862 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11863 /* Not for us */ 11864 break; 11865 } 11866 /* FALLTHRU */ 11867 case IPOPT_TS_TSANDADDR: 11868 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11869 break; 11870 default: 11871 /* 11872 * ip_*put_options should have already 11873 * dropped this packet. 11874 */ 11875 cmn_err(CE_PANIC, "ip_output_local_options: " 11876 "unknown IT - bug in ip_output_options?\n"); 11877 return; /* Keep "lint" happy */ 11878 } 11879 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11880 /* Increase overflow counter */ 11881 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11882 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11883 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11884 (off << 4); 11885 break; 11886 } 11887 off = opt[IPOPT_OFFSET] - 1; 11888 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11889 case IPOPT_TS_PRESPEC: 11890 case IPOPT_TS_PRESPEC_RFC791: 11891 case IPOPT_TS_TSANDADDR: 11892 dst = htonl(INADDR_LOOPBACK); 11893 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11894 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11895 /* FALLTHRU */ 11896 case IPOPT_TS_TSONLY: 11897 off = opt[IPOPT_OFFSET] - 1; 11898 /* Compute # of milliseconds since midnight */ 11899 gethrestime(&now); 11900 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11901 now.tv_nsec / (NANOSEC / MILLISEC); 11902 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11903 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11904 break; 11905 } 11906 break; 11907 } 11908 } 11909 } 11910 11911 /* 11912 * Prepend an M_DATA fastpath header, and if none present prepend a 11913 * DL_UNITDATA_REQ. Frees the mblk on failure. 11914 * 11915 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11916 * If there is a change to them, the nce will be deleted (condemned) and 11917 * a new nce_t will be created when packets are sent. Thus we need no locks 11918 * to access those fields. 11919 * 11920 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11921 * we place b_band in dl_priority.dl_max. 11922 */ 11923 static mblk_t * 11924 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11925 { 11926 uint_t hlen; 11927 mblk_t *mp1; 11928 uint_t priority; 11929 uchar_t *rptr; 11930 11931 rptr = mp->b_rptr; 11932 11933 ASSERT(DB_TYPE(mp) == M_DATA); 11934 priority = mp->b_band; 11935 11936 ASSERT(nce != NULL); 11937 if ((mp1 = nce->nce_fp_mp) != NULL) { 11938 hlen = MBLKL(mp1); 11939 /* 11940 * Check if we have enough room to prepend fastpath 11941 * header 11942 */ 11943 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11944 rptr -= hlen; 11945 bcopy(mp1->b_rptr, rptr, hlen); 11946 /* 11947 * Set the b_rptr to the start of the link layer 11948 * header 11949 */ 11950 mp->b_rptr = rptr; 11951 return (mp); 11952 } 11953 mp1 = copyb(mp1); 11954 if (mp1 == NULL) { 11955 ill_t *ill = nce->nce_ill; 11956 11957 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11958 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11959 freemsg(mp); 11960 return (NULL); 11961 } 11962 mp1->b_band = priority; 11963 mp1->b_cont = mp; 11964 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 11965 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 11966 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 11967 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 11968 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 11969 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 11970 /* 11971 * XXX disable ICK_VALID and compute checksum 11972 * here; can happen if nce_fp_mp changes and 11973 * it can't be copied now due to insufficient 11974 * space. (unlikely, fp mp can change, but it 11975 * does not increase in length) 11976 */ 11977 return (mp1); 11978 } 11979 mp1 = copyb(nce->nce_dlur_mp); 11980 11981 if (mp1 == NULL) { 11982 ill_t *ill = nce->nce_ill; 11983 11984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11985 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11986 freemsg(mp); 11987 return (NULL); 11988 } 11989 mp1->b_cont = mp; 11990 if (priority != 0) { 11991 mp1->b_band = priority; 11992 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 11993 priority; 11994 } 11995 return (mp1); 11996 #undef rptr 11997 } 11998 11999 /* 12000 * Finish the outbound IPsec processing. This function is called from 12001 * ipsec_out_process() if the IPsec packet was processed 12002 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12003 * asynchronously. 12004 * 12005 * This is common to IPv4 and IPv6. 12006 */ 12007 int 12008 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12009 { 12010 iaflags_t ixaflags = ixa->ixa_flags; 12011 uint_t pktlen; 12012 12013 12014 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12015 if (ixaflags & IXAF_IS_IPV4) { 12016 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12017 12018 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12019 pktlen = ntohs(ipha->ipha_length); 12020 } else { 12021 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12022 12023 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12024 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12025 } 12026 12027 /* 12028 * We release any hard reference on the SAs here to make 12029 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12030 * on the SAs. 12031 * If in the future we want the hard latching of the SAs in the 12032 * ip_xmit_attr_t then we should remove this. 12033 */ 12034 if (ixa->ixa_ipsec_esp_sa != NULL) { 12035 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12036 ixa->ixa_ipsec_esp_sa = NULL; 12037 } 12038 if (ixa->ixa_ipsec_ah_sa != NULL) { 12039 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12040 ixa->ixa_ipsec_ah_sa = NULL; 12041 } 12042 12043 /* Do we need to fragment? */ 12044 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12045 pktlen > ixa->ixa_fragsize) { 12046 if (ixaflags & IXAF_IS_IPV4) { 12047 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12048 /* 12049 * We check for the DF case in ipsec_out_process 12050 * hence this only handles the non-DF case. 12051 */ 12052 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12053 pktlen, ixa->ixa_fragsize, 12054 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12055 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12056 &ixa->ixa_cookie)); 12057 } else { 12058 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12059 if (mp == NULL) { 12060 /* MIB and ip_drop_output already done */ 12061 return (ENOMEM); 12062 } 12063 pktlen += sizeof (ip6_frag_t); 12064 if (pktlen > ixa->ixa_fragsize) { 12065 return (ip_fragment_v6(mp, ixa->ixa_nce, 12066 ixa->ixa_flags, pktlen, 12067 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12068 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12069 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12070 } 12071 } 12072 } 12073 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12074 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12075 ixa->ixa_no_loop_zoneid, NULL)); 12076 } 12077 12078 /* 12079 * Finish the inbound IPsec processing. This function is called from 12080 * ipsec_out_process() if the IPsec packet was processed 12081 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12082 * asynchronously. 12083 * 12084 * This is common to IPv4 and IPv6. 12085 */ 12086 void 12087 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12088 { 12089 iaflags_t iraflags = ira->ira_flags; 12090 12091 /* Length might have changed */ 12092 if (iraflags & IRAF_IS_IPV4) { 12093 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12094 12095 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12096 ira->ira_pktlen = ntohs(ipha->ipha_length); 12097 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12098 ira->ira_protocol = ipha->ipha_protocol; 12099 12100 ip_fanout_v4(mp, ipha, ira); 12101 } else { 12102 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12103 uint8_t *nexthdrp; 12104 12105 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12106 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12107 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12108 &nexthdrp)) { 12109 /* Malformed packet */ 12110 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12111 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12112 freemsg(mp); 12113 return; 12114 } 12115 ira->ira_protocol = *nexthdrp; 12116 ip_fanout_v6(mp, ip6h, ira); 12117 } 12118 } 12119 12120 /* 12121 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12122 * 12123 * If this function returns B_TRUE, the requested SA's have been filled 12124 * into the ixa_ipsec_*_sa pointers. 12125 * 12126 * If the function returns B_FALSE, the packet has been "consumed", most 12127 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12128 * 12129 * The SA references created by the protocol-specific "select" 12130 * function will be released in ip_output_post_ipsec. 12131 */ 12132 static boolean_t 12133 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12134 { 12135 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12136 ipsec_policy_t *pp; 12137 ipsec_action_t *ap; 12138 12139 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12140 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12141 (ixa->ixa_ipsec_action != NULL)); 12142 12143 ap = ixa->ixa_ipsec_action; 12144 if (ap == NULL) { 12145 pp = ixa->ixa_ipsec_policy; 12146 ASSERT(pp != NULL); 12147 ap = pp->ipsp_act; 12148 ASSERT(ap != NULL); 12149 } 12150 12151 /* 12152 * We have an action. now, let's select SA's. 12153 * A side effect of setting ixa_ipsec_*_sa is that it will 12154 * be cached in the conn_t. 12155 */ 12156 if (ap->ipa_want_esp) { 12157 if (ixa->ixa_ipsec_esp_sa == NULL) { 12158 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12159 IPPROTO_ESP); 12160 } 12161 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12162 } 12163 12164 if (ap->ipa_want_ah) { 12165 if (ixa->ixa_ipsec_ah_sa == NULL) { 12166 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12167 IPPROTO_AH); 12168 } 12169 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12170 /* 12171 * The ESP and AH processing order needs to be preserved 12172 * when both protocols are required (ESP should be applied 12173 * before AH for an outbound packet). Force an ESP ACQUIRE 12174 * when both ESP and AH are required, and an AH ACQUIRE 12175 * is needed. 12176 */ 12177 if (ap->ipa_want_esp && need_ah_acquire) 12178 need_esp_acquire = B_TRUE; 12179 } 12180 12181 /* 12182 * Send an ACQUIRE (extended, regular, or both) if we need one. 12183 * Release SAs that got referenced, but will not be used until we 12184 * acquire _all_ of the SAs we need. 12185 */ 12186 if (need_ah_acquire || need_esp_acquire) { 12187 if (ixa->ixa_ipsec_ah_sa != NULL) { 12188 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12189 ixa->ixa_ipsec_ah_sa = NULL; 12190 } 12191 if (ixa->ixa_ipsec_esp_sa != NULL) { 12192 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12193 ixa->ixa_ipsec_esp_sa = NULL; 12194 } 12195 12196 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12197 return (B_FALSE); 12198 } 12199 12200 return (B_TRUE); 12201 } 12202 12203 /* 12204 * Handle IPsec output processing. 12205 * This function is only entered once for a given packet. 12206 * We try to do things synchronously, but if we need to have user-level 12207 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12208 * will be completed 12209 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12210 * - when asynchronous ESP is done it will do AH 12211 * 12212 * In all cases we come back in ip_output_post_ipsec() to fragment and 12213 * send out the packet. 12214 */ 12215 int 12216 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12217 { 12218 ill_t *ill = ixa->ixa_nce->nce_ill; 12219 ip_stack_t *ipst = ixa->ixa_ipst; 12220 ipsec_stack_t *ipss; 12221 ipsec_policy_t *pp; 12222 ipsec_action_t *ap; 12223 12224 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12225 12226 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12227 (ixa->ixa_ipsec_action != NULL)); 12228 12229 ipss = ipst->ips_netstack->netstack_ipsec; 12230 if (!ipsec_loaded(ipss)) { 12231 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12232 ip_drop_packet(mp, B_TRUE, ill, 12233 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12234 &ipss->ipsec_dropper); 12235 return (ENOTSUP); 12236 } 12237 12238 ap = ixa->ixa_ipsec_action; 12239 if (ap == NULL) { 12240 pp = ixa->ixa_ipsec_policy; 12241 ASSERT(pp != NULL); 12242 ap = pp->ipsp_act; 12243 ASSERT(ap != NULL); 12244 } 12245 12246 /* Handle explicit drop action and bypass. */ 12247 switch (ap->ipa_act.ipa_type) { 12248 case IPSEC_ACT_DISCARD: 12249 case IPSEC_ACT_REJECT: 12250 ip_drop_packet(mp, B_FALSE, ill, 12251 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12252 return (EHOSTUNREACH); /* IPsec policy failure */ 12253 case IPSEC_ACT_BYPASS: 12254 return (ip_output_post_ipsec(mp, ixa)); 12255 } 12256 12257 /* 12258 * The order of processing is first insert a IP header if needed. 12259 * Then insert the ESP header and then the AH header. 12260 */ 12261 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12262 /* 12263 * First get the outer IP header before sending 12264 * it to ESP. 12265 */ 12266 ipha_t *oipha, *iipha; 12267 mblk_t *outer_mp, *inner_mp; 12268 12269 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12270 (void) mi_strlog(ill->ill_rq, 0, 12271 SL_ERROR|SL_TRACE|SL_CONSOLE, 12272 "ipsec_out_process: " 12273 "Self-Encapsulation failed: Out of memory\n"); 12274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12275 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12276 freemsg(mp); 12277 return (ENOBUFS); 12278 } 12279 inner_mp = mp; 12280 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12281 oipha = (ipha_t *)outer_mp->b_rptr; 12282 iipha = (ipha_t *)inner_mp->b_rptr; 12283 *oipha = *iipha; 12284 outer_mp->b_wptr += sizeof (ipha_t); 12285 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12286 sizeof (ipha_t)); 12287 oipha->ipha_protocol = IPPROTO_ENCAP; 12288 oipha->ipha_version_and_hdr_length = 12289 IP_SIMPLE_HDR_VERSION; 12290 oipha->ipha_hdr_checksum = 0; 12291 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12292 outer_mp->b_cont = inner_mp; 12293 mp = outer_mp; 12294 12295 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12296 } 12297 12298 /* If we need to wait for a SA then we can't return any errno */ 12299 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12300 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12301 !ipsec_out_select_sa(mp, ixa)) 12302 return (0); 12303 12304 /* 12305 * By now, we know what SA's to use. Toss over to ESP & AH 12306 * to do the heavy lifting. 12307 */ 12308 if (ap->ipa_want_esp) { 12309 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12310 12311 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12312 if (mp == NULL) { 12313 /* 12314 * Either it failed or is pending. In the former case 12315 * ipIfStatsInDiscards was increased. 12316 */ 12317 return (0); 12318 } 12319 } 12320 12321 if (ap->ipa_want_ah) { 12322 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12323 12324 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12325 if (mp == NULL) { 12326 /* 12327 * Either it failed or is pending. In the former case 12328 * ipIfStatsInDiscards was increased. 12329 */ 12330 return (0); 12331 } 12332 } 12333 /* 12334 * We are done with IPsec processing. Send it over 12335 * the wire. 12336 */ 12337 return (ip_output_post_ipsec(mp, ixa)); 12338 } 12339 12340 /* 12341 * ioctls that go through a down/up sequence may need to wait for the down 12342 * to complete. This involves waiting for the ire and ipif refcnts to go down 12343 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12344 */ 12345 /* ARGSUSED */ 12346 void 12347 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12348 { 12349 struct iocblk *iocp; 12350 mblk_t *mp1; 12351 ip_ioctl_cmd_t *ipip; 12352 int err; 12353 sin_t *sin; 12354 struct lifreq *lifr; 12355 struct ifreq *ifr; 12356 12357 iocp = (struct iocblk *)mp->b_rptr; 12358 ASSERT(ipsq != NULL); 12359 /* Existence of mp1 verified in ip_wput_nondata */ 12360 mp1 = mp->b_cont->b_cont; 12361 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12362 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12363 /* 12364 * Special case where ipx_current_ipif is not set: 12365 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12366 * We are here as were not able to complete the operation in 12367 * ipif_set_values because we could not become exclusive on 12368 * the new ipsq. 12369 */ 12370 ill_t *ill = q->q_ptr; 12371 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12372 } 12373 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12374 12375 if (ipip->ipi_cmd_type == IF_CMD) { 12376 /* This a old style SIOC[GS]IF* command */ 12377 ifr = (struct ifreq *)mp1->b_rptr; 12378 sin = (sin_t *)&ifr->ifr_addr; 12379 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12380 /* This a new style SIOC[GS]LIF* command */ 12381 lifr = (struct lifreq *)mp1->b_rptr; 12382 sin = (sin_t *)&lifr->lifr_addr; 12383 } else { 12384 sin = NULL; 12385 } 12386 12387 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12388 q, mp, ipip, mp1->b_rptr); 12389 12390 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12391 int, ipip->ipi_cmd, 12392 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12393 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12394 12395 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12396 } 12397 12398 /* 12399 * ioctl processing 12400 * 12401 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12402 * the ioctl command in the ioctl tables, determines the copyin data size 12403 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12404 * 12405 * ioctl processing then continues when the M_IOCDATA makes its way down to 12406 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12407 * associated 'conn' is refheld till the end of the ioctl and the general 12408 * ioctl processing function ip_process_ioctl() is called to extract the 12409 * arguments and process the ioctl. To simplify extraction, ioctl commands 12410 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12411 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12412 * is used to extract the ioctl's arguments. 12413 * 12414 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12415 * so goes thru the serialization primitive ipsq_try_enter. Then the 12416 * appropriate function to handle the ioctl is called based on the entry in 12417 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12418 * which also refreleases the 'conn' that was refheld at the start of the 12419 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12420 * 12421 * Many exclusive ioctls go thru an internal down up sequence as part of 12422 * the operation. For example an attempt to change the IP address of an 12423 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12424 * does all the cleanup such as deleting all ires that use this address. 12425 * Then we need to wait till all references to the interface go away. 12426 */ 12427 void 12428 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12429 { 12430 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12431 ip_ioctl_cmd_t *ipip = arg; 12432 ip_extract_func_t *extract_funcp; 12433 cmd_info_t ci; 12434 int err; 12435 boolean_t entered_ipsq = B_FALSE; 12436 12437 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12438 12439 if (ipip == NULL) 12440 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12441 12442 /* 12443 * SIOCLIFADDIF needs to go thru a special path since the 12444 * ill may not exist yet. This happens in the case of lo0 12445 * which is created using this ioctl. 12446 */ 12447 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12448 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12449 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12450 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12451 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12452 return; 12453 } 12454 12455 ci.ci_ipif = NULL; 12456 switch (ipip->ipi_cmd_type) { 12457 case MISC_CMD: 12458 case MSFILT_CMD: 12459 /* 12460 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12461 */ 12462 if (ipip->ipi_cmd == IF_UNITSEL) { 12463 /* ioctl comes down the ill */ 12464 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12465 ipif_refhold(ci.ci_ipif); 12466 } 12467 err = 0; 12468 ci.ci_sin = NULL; 12469 ci.ci_sin6 = NULL; 12470 ci.ci_lifr = NULL; 12471 extract_funcp = NULL; 12472 break; 12473 12474 case IF_CMD: 12475 case LIF_CMD: 12476 extract_funcp = ip_extract_lifreq; 12477 break; 12478 12479 case ARP_CMD: 12480 case XARP_CMD: 12481 extract_funcp = ip_extract_arpreq; 12482 break; 12483 12484 default: 12485 ASSERT(0); 12486 } 12487 12488 if (extract_funcp != NULL) { 12489 err = (*extract_funcp)(q, mp, ipip, &ci); 12490 if (err != 0) { 12491 DTRACE_PROBE4(ipif__ioctl, 12492 char *, "ip_process_ioctl finish err", 12493 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12494 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12495 return; 12496 } 12497 12498 /* 12499 * All of the extraction functions return a refheld ipif. 12500 */ 12501 ASSERT(ci.ci_ipif != NULL); 12502 } 12503 12504 if (!(ipip->ipi_flags & IPI_WR)) { 12505 /* 12506 * A return value of EINPROGRESS means the ioctl is 12507 * either queued and waiting for some reason or has 12508 * already completed. 12509 */ 12510 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12511 ci.ci_lifr); 12512 if (ci.ci_ipif != NULL) { 12513 DTRACE_PROBE4(ipif__ioctl, 12514 char *, "ip_process_ioctl finish RD", 12515 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12516 ipif_t *, ci.ci_ipif); 12517 ipif_refrele(ci.ci_ipif); 12518 } else { 12519 DTRACE_PROBE4(ipif__ioctl, 12520 char *, "ip_process_ioctl finish RD", 12521 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12522 } 12523 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12524 return; 12525 } 12526 12527 ASSERT(ci.ci_ipif != NULL); 12528 12529 /* 12530 * If ipsq is non-NULL, we are already being called exclusively 12531 */ 12532 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12533 if (ipsq == NULL) { 12534 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12535 NEW_OP, B_TRUE); 12536 if (ipsq == NULL) { 12537 ipif_refrele(ci.ci_ipif); 12538 return; 12539 } 12540 entered_ipsq = B_TRUE; 12541 } 12542 /* 12543 * Release the ipif so that ipif_down and friends that wait for 12544 * references to go away are not misled about the current ipif_refcnt 12545 * values. We are writer so we can access the ipif even after releasing 12546 * the ipif. 12547 */ 12548 ipif_refrele(ci.ci_ipif); 12549 12550 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12551 12552 /* 12553 * A return value of EINPROGRESS means the ioctl is 12554 * either queued and waiting for some reason or has 12555 * already completed. 12556 */ 12557 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12558 12559 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12560 int, ipip->ipi_cmd, 12561 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12562 ipif_t *, ci.ci_ipif); 12563 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12564 12565 if (entered_ipsq) 12566 ipsq_exit(ipsq); 12567 } 12568 12569 /* 12570 * Complete the ioctl. Typically ioctls use the mi package and need to 12571 * do mi_copyout/mi_copy_done. 12572 */ 12573 void 12574 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12575 { 12576 conn_t *connp = NULL; 12577 12578 if (err == EINPROGRESS) 12579 return; 12580 12581 if (CONN_Q(q)) { 12582 connp = Q_TO_CONN(q); 12583 ASSERT(connp->conn_ref >= 2); 12584 } 12585 12586 switch (mode) { 12587 case COPYOUT: 12588 if (err == 0) 12589 mi_copyout(q, mp); 12590 else 12591 mi_copy_done(q, mp, err); 12592 break; 12593 12594 case NO_COPYOUT: 12595 mi_copy_done(q, mp, err); 12596 break; 12597 12598 default: 12599 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12600 break; 12601 } 12602 12603 /* 12604 * The conn refhold and ioctlref placed on the conn at the start of the 12605 * ioctl are released here. 12606 */ 12607 if (connp != NULL) { 12608 CONN_DEC_IOCTLREF(connp); 12609 CONN_OPER_PENDING_DONE(connp); 12610 } 12611 12612 if (ipsq != NULL) 12613 ipsq_current_finish(ipsq); 12614 } 12615 12616 /* Handles all non data messages */ 12617 void 12618 ip_wput_nondata(queue_t *q, mblk_t *mp) 12619 { 12620 mblk_t *mp1; 12621 struct iocblk *iocp; 12622 ip_ioctl_cmd_t *ipip; 12623 conn_t *connp; 12624 cred_t *cr; 12625 char *proto_str; 12626 12627 if (CONN_Q(q)) 12628 connp = Q_TO_CONN(q); 12629 else 12630 connp = NULL; 12631 12632 switch (DB_TYPE(mp)) { 12633 case M_IOCTL: 12634 /* 12635 * IOCTL processing begins in ip_sioctl_copyin_setup which 12636 * will arrange to copy in associated control structures. 12637 */ 12638 ip_sioctl_copyin_setup(q, mp); 12639 return; 12640 case M_IOCDATA: 12641 /* 12642 * Ensure that this is associated with one of our trans- 12643 * parent ioctls. If it's not ours, discard it if we're 12644 * running as a driver, or pass it on if we're a module. 12645 */ 12646 iocp = (struct iocblk *)mp->b_rptr; 12647 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12648 if (ipip == NULL) { 12649 if (q->q_next == NULL) { 12650 goto nak; 12651 } else { 12652 putnext(q, mp); 12653 } 12654 return; 12655 } 12656 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12657 /* 12658 * The ioctl is one we recognise, but is not consumed 12659 * by IP as a module and we are a module, so we drop 12660 */ 12661 goto nak; 12662 } 12663 12664 /* IOCTL continuation following copyin or copyout. */ 12665 if (mi_copy_state(q, mp, NULL) == -1) { 12666 /* 12667 * The copy operation failed. mi_copy_state already 12668 * cleaned up, so we're out of here. 12669 */ 12670 return; 12671 } 12672 /* 12673 * If we just completed a copy in, we become writer and 12674 * continue processing in ip_sioctl_copyin_done. If it 12675 * was a copy out, we call mi_copyout again. If there is 12676 * nothing more to copy out, it will complete the IOCTL. 12677 */ 12678 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12679 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12680 mi_copy_done(q, mp, EPROTO); 12681 return; 12682 } 12683 /* 12684 * Check for cases that need more copying. A return 12685 * value of 0 means a second copyin has been started, 12686 * so we return; a return value of 1 means no more 12687 * copying is needed, so we continue. 12688 */ 12689 if (ipip->ipi_cmd_type == MSFILT_CMD && 12690 MI_COPY_COUNT(mp) == 1) { 12691 if (ip_copyin_msfilter(q, mp) == 0) 12692 return; 12693 } 12694 /* 12695 * Refhold the conn, till the ioctl completes. This is 12696 * needed in case the ioctl ends up in the pending mp 12697 * list. Every mp in the ipx_pending_mp list must have 12698 * a refhold on the conn to resume processing. The 12699 * refhold is released when the ioctl completes 12700 * (whether normally or abnormally). An ioctlref is also 12701 * placed on the conn to prevent TCP from removing the 12702 * queue needed to send the ioctl reply back. 12703 * In all cases ip_ioctl_finish is called to finish 12704 * the ioctl and release the refholds. 12705 */ 12706 if (connp != NULL) { 12707 /* This is not a reentry */ 12708 CONN_INC_REF(connp); 12709 CONN_INC_IOCTLREF(connp); 12710 } else { 12711 if (!(ipip->ipi_flags & IPI_MODOK)) { 12712 mi_copy_done(q, mp, EINVAL); 12713 return; 12714 } 12715 } 12716 12717 ip_process_ioctl(NULL, q, mp, ipip); 12718 12719 } else { 12720 mi_copyout(q, mp); 12721 } 12722 return; 12723 12724 case M_IOCNAK: 12725 /* 12726 * The only way we could get here is if a resolver didn't like 12727 * an IOCTL we sent it. This shouldn't happen. 12728 */ 12729 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12730 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12731 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12732 freemsg(mp); 12733 return; 12734 case M_IOCACK: 12735 /* /dev/ip shouldn't see this */ 12736 goto nak; 12737 case M_FLUSH: 12738 if (*mp->b_rptr & FLUSHW) 12739 flushq(q, FLUSHALL); 12740 if (q->q_next) { 12741 putnext(q, mp); 12742 return; 12743 } 12744 if (*mp->b_rptr & FLUSHR) { 12745 *mp->b_rptr &= ~FLUSHW; 12746 qreply(q, mp); 12747 return; 12748 } 12749 freemsg(mp); 12750 return; 12751 case M_CTL: 12752 break; 12753 case M_PROTO: 12754 case M_PCPROTO: 12755 /* 12756 * The only PROTO messages we expect are SNMP-related. 12757 */ 12758 switch (((union T_primitives *)mp->b_rptr)->type) { 12759 case T_SVR4_OPTMGMT_REQ: 12760 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12761 "flags %x\n", 12762 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12763 12764 if (connp == NULL) { 12765 proto_str = "T_SVR4_OPTMGMT_REQ"; 12766 goto protonak; 12767 } 12768 12769 /* 12770 * All Solaris components should pass a db_credp 12771 * for this TPI message, hence we ASSERT. 12772 * But in case there is some other M_PROTO that looks 12773 * like a TPI message sent by some other kernel 12774 * component, we check and return an error. 12775 */ 12776 cr = msg_getcred(mp, NULL); 12777 ASSERT(cr != NULL); 12778 if (cr == NULL) { 12779 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12780 if (mp != NULL) 12781 qreply(q, mp); 12782 return; 12783 } 12784 12785 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12786 proto_str = "Bad SNMPCOM request?"; 12787 goto protonak; 12788 } 12789 return; 12790 default: 12791 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12792 (int)*(uint_t *)mp->b_rptr)); 12793 freemsg(mp); 12794 return; 12795 } 12796 default: 12797 break; 12798 } 12799 if (q->q_next) { 12800 putnext(q, mp); 12801 } else 12802 freemsg(mp); 12803 return; 12804 12805 nak: 12806 iocp->ioc_error = EINVAL; 12807 mp->b_datap->db_type = M_IOCNAK; 12808 iocp->ioc_count = 0; 12809 qreply(q, mp); 12810 return; 12811 12812 protonak: 12813 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12814 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12815 qreply(q, mp); 12816 } 12817 12818 /* 12819 * Process IP options in an outbound packet. Verify that the nexthop in a 12820 * strict source route is onlink. 12821 * Returns non-zero if something fails in which case an ICMP error has been 12822 * sent and mp freed. 12823 * 12824 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12825 */ 12826 int 12827 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12828 { 12829 ipoptp_t opts; 12830 uchar_t *opt; 12831 uint8_t optval; 12832 uint8_t optlen; 12833 ipaddr_t dst; 12834 intptr_t code = 0; 12835 ire_t *ire; 12836 ip_stack_t *ipst = ixa->ixa_ipst; 12837 ip_recv_attr_t iras; 12838 12839 ip2dbg(("ip_output_options\n")); 12840 12841 dst = ipha->ipha_dst; 12842 for (optval = ipoptp_first(&opts, ipha); 12843 optval != IPOPT_EOL; 12844 optval = ipoptp_next(&opts)) { 12845 opt = opts.ipoptp_cur; 12846 optlen = opts.ipoptp_len; 12847 ip2dbg(("ip_output_options: opt %d, len %d\n", 12848 optval, optlen)); 12849 switch (optval) { 12850 uint32_t off; 12851 case IPOPT_SSRR: 12852 case IPOPT_LSRR: 12853 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12854 ip1dbg(( 12855 "ip_output_options: bad option offset\n")); 12856 code = (char *)&opt[IPOPT_OLEN] - 12857 (char *)ipha; 12858 goto param_prob; 12859 } 12860 off = opt[IPOPT_OFFSET]; 12861 ip1dbg(("ip_output_options: next hop 0x%x\n", 12862 ntohl(dst))); 12863 /* 12864 * For strict: verify that dst is directly 12865 * reachable. 12866 */ 12867 if (optval == IPOPT_SSRR) { 12868 ire = ire_ftable_lookup_v4(dst, 0, 0, 12869 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 12870 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12871 NULL); 12872 if (ire == NULL) { 12873 ip1dbg(("ip_output_options: SSRR not" 12874 " directly reachable: 0x%x\n", 12875 ntohl(dst))); 12876 goto bad_src_route; 12877 } 12878 ire_refrele(ire); 12879 } 12880 break; 12881 case IPOPT_RR: 12882 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12883 ip1dbg(( 12884 "ip_output_options: bad option offset\n")); 12885 code = (char *)&opt[IPOPT_OLEN] - 12886 (char *)ipha; 12887 goto param_prob; 12888 } 12889 break; 12890 case IPOPT_TS: 12891 /* 12892 * Verify that length >=5 and that there is either 12893 * room for another timestamp or that the overflow 12894 * counter is not maxed out. 12895 */ 12896 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12897 if (optlen < IPOPT_MINLEN_IT) { 12898 goto param_prob; 12899 } 12900 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12901 ip1dbg(( 12902 "ip_output_options: bad option offset\n")); 12903 code = (char *)&opt[IPOPT_OFFSET] - 12904 (char *)ipha; 12905 goto param_prob; 12906 } 12907 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12908 case IPOPT_TS_TSONLY: 12909 off = IPOPT_TS_TIMELEN; 12910 break; 12911 case IPOPT_TS_TSANDADDR: 12912 case IPOPT_TS_PRESPEC: 12913 case IPOPT_TS_PRESPEC_RFC791: 12914 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12915 break; 12916 default: 12917 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12918 (char *)ipha; 12919 goto param_prob; 12920 } 12921 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12922 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12923 /* 12924 * No room and the overflow counter is 15 12925 * already. 12926 */ 12927 goto param_prob; 12928 } 12929 break; 12930 } 12931 } 12932 12933 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12934 return (0); 12935 12936 ip1dbg(("ip_output_options: error processing IP options.")); 12937 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12938 12939 param_prob: 12940 bzero(&iras, sizeof (iras)); 12941 iras.ira_ill = iras.ira_rill = ill; 12942 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12943 iras.ira_rifindex = iras.ira_ruifindex; 12944 iras.ira_flags = IRAF_IS_IPV4; 12945 12946 ip_drop_output("ip_output_options", mp, ill); 12947 icmp_param_problem(mp, (uint8_t)code, &iras); 12948 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12949 return (-1); 12950 12951 bad_src_route: 12952 bzero(&iras, sizeof (iras)); 12953 iras.ira_ill = iras.ira_rill = ill; 12954 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12955 iras.ira_rifindex = iras.ira_ruifindex; 12956 iras.ira_flags = IRAF_IS_IPV4; 12957 12958 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 12959 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 12960 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12961 return (-1); 12962 } 12963 12964 /* 12965 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 12966 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 12967 * thru /etc/system. 12968 */ 12969 #define CONN_MAXDRAINCNT 64 12970 12971 static void 12972 conn_drain_init(ip_stack_t *ipst) 12973 { 12974 int i, j; 12975 idl_tx_list_t *itl_tx; 12976 12977 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 12978 12979 if ((ipst->ips_conn_drain_list_cnt == 0) || 12980 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 12981 /* 12982 * Default value of the number of drainers is the 12983 * number of cpus, subject to maximum of 8 drainers. 12984 */ 12985 if (boot_max_ncpus != -1) 12986 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 12987 else 12988 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 12989 } 12990 12991 ipst->ips_idl_tx_list = 12992 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 12993 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12994 itl_tx = &ipst->ips_idl_tx_list[i]; 12995 itl_tx->txl_drain_list = 12996 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 12997 sizeof (idl_t), KM_SLEEP); 12998 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 12999 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13000 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13001 MUTEX_DEFAULT, NULL); 13002 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13003 } 13004 } 13005 } 13006 13007 static void 13008 conn_drain_fini(ip_stack_t *ipst) 13009 { 13010 int i; 13011 idl_tx_list_t *itl_tx; 13012 13013 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13014 itl_tx = &ipst->ips_idl_tx_list[i]; 13015 kmem_free(itl_tx->txl_drain_list, 13016 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13017 } 13018 kmem_free(ipst->ips_idl_tx_list, 13019 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13020 ipst->ips_idl_tx_list = NULL; 13021 } 13022 13023 /* 13024 * Flow control has blocked us from proceeding. Insert the given conn in one 13025 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13026 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13027 * will call conn_walk_drain(). See the flow control notes at the top of this 13028 * file for more details. 13029 */ 13030 void 13031 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13032 { 13033 idl_t *idl = tx_list->txl_drain_list; 13034 uint_t index; 13035 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13036 13037 mutex_enter(&connp->conn_lock); 13038 if (connp->conn_state_flags & CONN_CLOSING) { 13039 /* 13040 * The conn is closing as a result of which CONN_CLOSING 13041 * is set. Return. 13042 */ 13043 mutex_exit(&connp->conn_lock); 13044 return; 13045 } else if (connp->conn_idl == NULL) { 13046 /* 13047 * Assign the next drain list round robin. We dont' use 13048 * a lock, and thus it may not be strictly round robin. 13049 * Atomicity of load/stores is enough to make sure that 13050 * conn_drain_list_index is always within bounds. 13051 */ 13052 index = tx_list->txl_drain_index; 13053 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13054 connp->conn_idl = &tx_list->txl_drain_list[index]; 13055 index++; 13056 if (index == ipst->ips_conn_drain_list_cnt) 13057 index = 0; 13058 tx_list->txl_drain_index = index; 13059 } else { 13060 ASSERT(connp->conn_idl->idl_itl == tx_list); 13061 } 13062 mutex_exit(&connp->conn_lock); 13063 13064 idl = connp->conn_idl; 13065 mutex_enter(&idl->idl_lock); 13066 if ((connp->conn_drain_prev != NULL) || 13067 (connp->conn_state_flags & CONN_CLOSING)) { 13068 /* 13069 * The conn is either already in the drain list or closing. 13070 * (We needed to check for CONN_CLOSING again since close can 13071 * sneak in between dropping conn_lock and acquiring idl_lock.) 13072 */ 13073 mutex_exit(&idl->idl_lock); 13074 return; 13075 } 13076 13077 /* 13078 * The conn is not in the drain list. Insert it at the 13079 * tail of the drain list. The drain list is circular 13080 * and doubly linked. idl_conn points to the 1st element 13081 * in the list. 13082 */ 13083 if (idl->idl_conn == NULL) { 13084 idl->idl_conn = connp; 13085 connp->conn_drain_next = connp; 13086 connp->conn_drain_prev = connp; 13087 } else { 13088 conn_t *head = idl->idl_conn; 13089 13090 connp->conn_drain_next = head; 13091 connp->conn_drain_prev = head->conn_drain_prev; 13092 head->conn_drain_prev->conn_drain_next = connp; 13093 head->conn_drain_prev = connp; 13094 } 13095 /* 13096 * For non streams based sockets assert flow control. 13097 */ 13098 conn_setqfull(connp, NULL); 13099 mutex_exit(&idl->idl_lock); 13100 } 13101 13102 static void 13103 conn_drain_remove(conn_t *connp) 13104 { 13105 idl_t *idl = connp->conn_idl; 13106 13107 if (idl != NULL) { 13108 /* 13109 * Remove ourself from the drain list. 13110 */ 13111 if (connp->conn_drain_next == connp) { 13112 /* Singleton in the list */ 13113 ASSERT(connp->conn_drain_prev == connp); 13114 idl->idl_conn = NULL; 13115 } else { 13116 connp->conn_drain_prev->conn_drain_next = 13117 connp->conn_drain_next; 13118 connp->conn_drain_next->conn_drain_prev = 13119 connp->conn_drain_prev; 13120 if (idl->idl_conn == connp) 13121 idl->idl_conn = connp->conn_drain_next; 13122 } 13123 13124 /* 13125 * NOTE: because conn_idl is associated with a specific drain 13126 * list which in turn is tied to the index the TX ring 13127 * (txl_cookie) hashes to, and because the TX ring can change 13128 * over the lifetime of the conn_t, we must clear conn_idl so 13129 * a subsequent conn_drain_insert() will set conn_idl again 13130 * based on the latest txl_cookie. 13131 */ 13132 connp->conn_idl = NULL; 13133 } 13134 connp->conn_drain_next = NULL; 13135 connp->conn_drain_prev = NULL; 13136 13137 conn_clrqfull(connp, NULL); 13138 /* 13139 * For streams based sockets open up flow control. 13140 */ 13141 if (!IPCL_IS_NONSTR(connp)) 13142 enableok(connp->conn_wq); 13143 } 13144 13145 /* 13146 * This conn is closing, and we are called from ip_close. OR 13147 * this conn is draining because flow-control on the ill has been relieved. 13148 * 13149 * We must also need to remove conn's on this idl from the list, and also 13150 * inform the sockfs upcalls about the change in flow-control. 13151 */ 13152 static void 13153 conn_drain(conn_t *connp, boolean_t closing) 13154 { 13155 idl_t *idl; 13156 conn_t *next_connp; 13157 13158 /* 13159 * connp->conn_idl is stable at this point, and no lock is needed 13160 * to check it. If we are called from ip_close, close has already 13161 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13162 * called us only because conn_idl is non-null. If we are called thru 13163 * service, conn_idl could be null, but it cannot change because 13164 * service is single-threaded per queue, and there cannot be another 13165 * instance of service trying to call conn_drain_insert on this conn 13166 * now. 13167 */ 13168 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13169 13170 /* 13171 * If the conn doesn't exist or is not on a drain list, bail. 13172 */ 13173 if (connp == NULL || connp->conn_idl == NULL || 13174 connp->conn_drain_prev == NULL) { 13175 return; 13176 } 13177 13178 idl = connp->conn_idl; 13179 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13180 13181 if (!closing) { 13182 next_connp = connp->conn_drain_next; 13183 while (next_connp != connp) { 13184 conn_t *delconnp = next_connp; 13185 13186 next_connp = next_connp->conn_drain_next; 13187 conn_drain_remove(delconnp); 13188 } 13189 ASSERT(connp->conn_drain_next == idl->idl_conn); 13190 } 13191 conn_drain_remove(connp); 13192 } 13193 13194 /* 13195 * Write service routine. Shared perimeter entry point. 13196 * The device queue's messages has fallen below the low water mark and STREAMS 13197 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13198 * each waiting conn. 13199 */ 13200 void 13201 ip_wsrv(queue_t *q) 13202 { 13203 ill_t *ill; 13204 13205 ill = (ill_t *)q->q_ptr; 13206 if (ill->ill_state_flags == 0) { 13207 ip_stack_t *ipst = ill->ill_ipst; 13208 13209 /* 13210 * The device flow control has opened up. 13211 * Walk through conn drain lists and qenable the 13212 * first conn in each list. This makes sense only 13213 * if the stream is fully plumbed and setup. 13214 * Hence the ill_state_flags check above. 13215 */ 13216 ip1dbg(("ip_wsrv: walking\n")); 13217 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13218 enableok(ill->ill_wq); 13219 } 13220 } 13221 13222 /* 13223 * Callback to disable flow control in IP. 13224 * 13225 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13226 * is enabled. 13227 * 13228 * When MAC_TX() is not able to send any more packets, dld sets its queue 13229 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13230 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13231 * function and wakes up corresponding mac worker threads, which in turn 13232 * calls this callback function, and disables flow control. 13233 */ 13234 void 13235 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13236 { 13237 ill_t *ill = (ill_t *)arg; 13238 ip_stack_t *ipst = ill->ill_ipst; 13239 idl_tx_list_t *idl_txl; 13240 13241 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13242 mutex_enter(&idl_txl->txl_lock); 13243 /* add code to to set a flag to indicate idl_txl is enabled */ 13244 conn_walk_drain(ipst, idl_txl); 13245 mutex_exit(&idl_txl->txl_lock); 13246 } 13247 13248 /* 13249 * Flow control has been relieved and STREAMS has backenabled us; drain 13250 * all the conn lists on `tx_list'. 13251 */ 13252 static void 13253 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13254 { 13255 int i; 13256 idl_t *idl; 13257 13258 IP_STAT(ipst, ip_conn_walk_drain); 13259 13260 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13261 idl = &tx_list->txl_drain_list[i]; 13262 mutex_enter(&idl->idl_lock); 13263 conn_drain(idl->idl_conn, B_FALSE); 13264 mutex_exit(&idl->idl_lock); 13265 } 13266 } 13267 13268 /* 13269 * Determine if the ill and multicast aspects of that packets 13270 * "matches" the conn. 13271 */ 13272 boolean_t 13273 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13274 { 13275 ill_t *ill = ira->ira_rill; 13276 zoneid_t zoneid = ira->ira_zoneid; 13277 uint_t in_ifindex; 13278 ipaddr_t dst, src; 13279 13280 dst = ipha->ipha_dst; 13281 src = ipha->ipha_src; 13282 13283 /* 13284 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13285 * unicast, broadcast and multicast reception to 13286 * conn_incoming_ifindex. 13287 * conn_wantpacket is called for unicast, broadcast and 13288 * multicast packets. 13289 */ 13290 in_ifindex = connp->conn_incoming_ifindex; 13291 13292 /* mpathd can bind to the under IPMP interface, which we allow */ 13293 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13294 if (!IS_UNDER_IPMP(ill)) 13295 return (B_FALSE); 13296 13297 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13298 return (B_FALSE); 13299 } 13300 13301 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13302 return (B_FALSE); 13303 13304 if (!(ira->ira_flags & IRAF_MULTICAST)) 13305 return (B_TRUE); 13306 13307 if (connp->conn_multi_router) { 13308 /* multicast packet and multicast router socket: send up */ 13309 return (B_TRUE); 13310 } 13311 13312 if (ipha->ipha_protocol == IPPROTO_PIM || 13313 ipha->ipha_protocol == IPPROTO_RSVP) 13314 return (B_TRUE); 13315 13316 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13317 } 13318 13319 void 13320 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13321 { 13322 if (IPCL_IS_NONSTR(connp)) { 13323 (*connp->conn_upcalls->su_txq_full) 13324 (connp->conn_upper_handle, B_TRUE); 13325 if (flow_stopped != NULL) 13326 *flow_stopped = B_TRUE; 13327 } else { 13328 queue_t *q = connp->conn_wq; 13329 13330 ASSERT(q != NULL); 13331 if (!(q->q_flag & QFULL)) { 13332 mutex_enter(QLOCK(q)); 13333 if (!(q->q_flag & QFULL)) { 13334 /* still need to set QFULL */ 13335 q->q_flag |= QFULL; 13336 /* set flow_stopped to true under QLOCK */ 13337 if (flow_stopped != NULL) 13338 *flow_stopped = B_TRUE; 13339 mutex_exit(QLOCK(q)); 13340 } else { 13341 /* flow_stopped is left unchanged */ 13342 mutex_exit(QLOCK(q)); 13343 } 13344 } 13345 } 13346 } 13347 13348 void 13349 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13350 { 13351 if (IPCL_IS_NONSTR(connp)) { 13352 (*connp->conn_upcalls->su_txq_full) 13353 (connp->conn_upper_handle, B_FALSE); 13354 if (flow_stopped != NULL) 13355 *flow_stopped = B_FALSE; 13356 } else { 13357 queue_t *q = connp->conn_wq; 13358 13359 ASSERT(q != NULL); 13360 if (q->q_flag & QFULL) { 13361 mutex_enter(QLOCK(q)); 13362 if (q->q_flag & QFULL) { 13363 q->q_flag &= ~QFULL; 13364 /* set flow_stopped to false under QLOCK */ 13365 if (flow_stopped != NULL) 13366 *flow_stopped = B_FALSE; 13367 mutex_exit(QLOCK(q)); 13368 if (q->q_flag & QWANTW) 13369 qbackenable(q, 0); 13370 } else { 13371 /* flow_stopped is left unchanged */ 13372 mutex_exit(QLOCK(q)); 13373 } 13374 } 13375 } 13376 13377 mutex_enter(&connp->conn_lock); 13378 connp->conn_blocked = B_FALSE; 13379 mutex_exit(&connp->conn_lock); 13380 } 13381 13382 /* 13383 * Return the length in bytes of the IPv4 headers (base header, label, and 13384 * other IP options) that will be needed based on the 13385 * ip_pkt_t structure passed by the caller. 13386 * 13387 * The returned length does not include the length of the upper level 13388 * protocol (ULP) header. 13389 * The caller needs to check that the length doesn't exceed the max for IPv4. 13390 */ 13391 int 13392 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13393 { 13394 int len; 13395 13396 len = IP_SIMPLE_HDR_LENGTH; 13397 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13398 ASSERT(ipp->ipp_label_len_v4 != 0); 13399 /* We need to round up here */ 13400 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13401 } 13402 13403 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13404 ASSERT(ipp->ipp_ipv4_options_len != 0); 13405 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13406 len += ipp->ipp_ipv4_options_len; 13407 } 13408 return (len); 13409 } 13410 13411 /* 13412 * All-purpose routine to build an IPv4 header with options based 13413 * on the abstract ip_pkt_t. 13414 * 13415 * The caller has to set the source and destination address as well as 13416 * ipha_length. The caller has to massage any source route and compensate 13417 * for the ULP pseudo-header checksum due to the source route. 13418 */ 13419 void 13420 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13421 uint8_t protocol) 13422 { 13423 ipha_t *ipha = (ipha_t *)buf; 13424 uint8_t *cp; 13425 13426 /* Initialize IPv4 header */ 13427 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13428 ipha->ipha_length = 0; /* Caller will set later */ 13429 ipha->ipha_ident = 0; 13430 ipha->ipha_fragment_offset_and_flags = 0; 13431 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13432 ipha->ipha_protocol = protocol; 13433 ipha->ipha_hdr_checksum = 0; 13434 13435 if ((ipp->ipp_fields & IPPF_ADDR) && 13436 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13437 ipha->ipha_src = ipp->ipp_addr_v4; 13438 13439 cp = (uint8_t *)&ipha[1]; 13440 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13441 ASSERT(ipp->ipp_label_len_v4 != 0); 13442 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13443 cp += ipp->ipp_label_len_v4; 13444 /* We need to round up here */ 13445 while ((uintptr_t)cp & 0x3) { 13446 *cp++ = IPOPT_NOP; 13447 } 13448 } 13449 13450 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13451 ASSERT(ipp->ipp_ipv4_options_len != 0); 13452 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13453 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13454 cp += ipp->ipp_ipv4_options_len; 13455 } 13456 ipha->ipha_version_and_hdr_length = 13457 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13458 13459 ASSERT((int)(cp - buf) == buf_len); 13460 } 13461 13462 /* Allocate the private structure */ 13463 static int 13464 ip_priv_alloc(void **bufp) 13465 { 13466 void *buf; 13467 13468 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13469 return (ENOMEM); 13470 13471 *bufp = buf; 13472 return (0); 13473 } 13474 13475 /* Function to delete the private structure */ 13476 void 13477 ip_priv_free(void *buf) 13478 { 13479 ASSERT(buf != NULL); 13480 kmem_free(buf, sizeof (ip_priv_t)); 13481 } 13482 13483 /* 13484 * The entry point for IPPF processing. 13485 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13486 * routine just returns. 13487 * 13488 * When called, ip_process generates an ipp_packet_t structure 13489 * which holds the state information for this packet and invokes the 13490 * the classifier (via ipp_packet_process). The classification, depending on 13491 * configured filters, results in a list of actions for this packet. Invoking 13492 * an action may cause the packet to be dropped, in which case we return NULL. 13493 * proc indicates the callout position for 13494 * this packet and ill is the interface this packet arrived on or will leave 13495 * on (inbound and outbound resp.). 13496 * 13497 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13498 * on the ill corrsponding to the destination IP address. 13499 */ 13500 mblk_t * 13501 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13502 { 13503 ip_priv_t *priv; 13504 ipp_action_id_t aid; 13505 int rc = 0; 13506 ipp_packet_t *pp; 13507 13508 /* If the classifier is not loaded, return */ 13509 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13510 return (mp); 13511 } 13512 13513 ASSERT(mp != NULL); 13514 13515 /* Allocate the packet structure */ 13516 rc = ipp_packet_alloc(&pp, "ip", aid); 13517 if (rc != 0) 13518 goto drop; 13519 13520 /* Allocate the private structure */ 13521 rc = ip_priv_alloc((void **)&priv); 13522 if (rc != 0) { 13523 ipp_packet_free(pp); 13524 goto drop; 13525 } 13526 priv->proc = proc; 13527 priv->ill_index = ill_get_upper_ifindex(rill); 13528 13529 ipp_packet_set_private(pp, priv, ip_priv_free); 13530 ipp_packet_set_data(pp, mp); 13531 13532 /* Invoke the classifier */ 13533 rc = ipp_packet_process(&pp); 13534 if (pp != NULL) { 13535 mp = ipp_packet_get_data(pp); 13536 ipp_packet_free(pp); 13537 if (rc != 0) 13538 goto drop; 13539 return (mp); 13540 } else { 13541 /* No mp to trace in ip_drop_input/ip_drop_output */ 13542 mp = NULL; 13543 } 13544 drop: 13545 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13547 ip_drop_input("ip_process", mp, ill); 13548 } else { 13549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13550 ip_drop_output("ip_process", mp, ill); 13551 } 13552 freemsg(mp); 13553 return (NULL); 13554 } 13555 13556 /* 13557 * Propagate a multicast group membership operation (add/drop) on 13558 * all the interfaces crossed by the related multirt routes. 13559 * The call is considered successful if the operation succeeds 13560 * on at least one interface. 13561 * 13562 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13563 * multicast addresses with the ire argument being the first one. 13564 * We walk the bucket to find all the of those. 13565 * 13566 * Common to IPv4 and IPv6. 13567 */ 13568 static int 13569 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13570 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13571 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13572 mcast_record_t fmode, const in6_addr_t *v6src) 13573 { 13574 ire_t *ire_gw; 13575 irb_t *irb; 13576 int ifindex; 13577 int error = 0; 13578 int result; 13579 ip_stack_t *ipst = ire->ire_ipst; 13580 ipaddr_t group; 13581 boolean_t isv6; 13582 int match_flags; 13583 13584 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13585 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13586 isv6 = B_FALSE; 13587 } else { 13588 isv6 = B_TRUE; 13589 } 13590 13591 irb = ire->ire_bucket; 13592 ASSERT(irb != NULL); 13593 13594 result = 0; 13595 irb_refhold(irb); 13596 for (; ire != NULL; ire = ire->ire_next) { 13597 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13598 continue; 13599 13600 /* We handle -ifp routes by matching on the ill if set */ 13601 match_flags = MATCH_IRE_TYPE; 13602 if (ire->ire_ill != NULL) 13603 match_flags |= MATCH_IRE_ILL; 13604 13605 if (isv6) { 13606 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13607 continue; 13608 13609 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13610 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13611 match_flags, 0, ipst, NULL); 13612 } else { 13613 if (ire->ire_addr != group) 13614 continue; 13615 13616 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13617 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13618 match_flags, 0, ipst, NULL); 13619 } 13620 /* No interface route exists for the gateway; skip this ire. */ 13621 if (ire_gw == NULL) 13622 continue; 13623 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13624 ire_refrele(ire_gw); 13625 continue; 13626 } 13627 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13628 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13629 13630 /* 13631 * The operation is considered a success if 13632 * it succeeds at least once on any one interface. 13633 */ 13634 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13635 fmode, v6src); 13636 if (error == 0) 13637 result = CGTP_MCAST_SUCCESS; 13638 13639 ire_refrele(ire_gw); 13640 } 13641 irb_refrele(irb); 13642 /* 13643 * Consider the call as successful if we succeeded on at least 13644 * one interface. Otherwise, return the last encountered error. 13645 */ 13646 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13647 } 13648 13649 /* 13650 * Return the expected CGTP hooks version number. 13651 */ 13652 int 13653 ip_cgtp_filter_supported(void) 13654 { 13655 return (ip_cgtp_filter_rev); 13656 } 13657 13658 /* 13659 * CGTP hooks can be registered by invoking this function. 13660 * Checks that the version number matches. 13661 */ 13662 int 13663 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13664 { 13665 netstack_t *ns; 13666 ip_stack_t *ipst; 13667 13668 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13669 return (ENOTSUP); 13670 13671 ns = netstack_find_by_stackid(stackid); 13672 if (ns == NULL) 13673 return (EINVAL); 13674 ipst = ns->netstack_ip; 13675 ASSERT(ipst != NULL); 13676 13677 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13678 netstack_rele(ns); 13679 return (EALREADY); 13680 } 13681 13682 ipst->ips_ip_cgtp_filter_ops = ops; 13683 13684 ill_set_inputfn_all(ipst); 13685 13686 netstack_rele(ns); 13687 return (0); 13688 } 13689 13690 /* 13691 * CGTP hooks can be unregistered by invoking this function. 13692 * Returns ENXIO if there was no registration. 13693 * Returns EBUSY if the ndd variable has not been turned off. 13694 */ 13695 int 13696 ip_cgtp_filter_unregister(netstackid_t stackid) 13697 { 13698 netstack_t *ns; 13699 ip_stack_t *ipst; 13700 13701 ns = netstack_find_by_stackid(stackid); 13702 if (ns == NULL) 13703 return (EINVAL); 13704 ipst = ns->netstack_ip; 13705 ASSERT(ipst != NULL); 13706 13707 if (ipst->ips_ip_cgtp_filter) { 13708 netstack_rele(ns); 13709 return (EBUSY); 13710 } 13711 13712 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13713 netstack_rele(ns); 13714 return (ENXIO); 13715 } 13716 ipst->ips_ip_cgtp_filter_ops = NULL; 13717 13718 ill_set_inputfn_all(ipst); 13719 13720 netstack_rele(ns); 13721 return (0); 13722 } 13723 13724 /* 13725 * Check whether there is a CGTP filter registration. 13726 * Returns non-zero if there is a registration, otherwise returns zero. 13727 * Note: returns zero if bad stackid. 13728 */ 13729 int 13730 ip_cgtp_filter_is_registered(netstackid_t stackid) 13731 { 13732 netstack_t *ns; 13733 ip_stack_t *ipst; 13734 int ret; 13735 13736 ns = netstack_find_by_stackid(stackid); 13737 if (ns == NULL) 13738 return (0); 13739 ipst = ns->netstack_ip; 13740 ASSERT(ipst != NULL); 13741 13742 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13743 ret = 1; 13744 else 13745 ret = 0; 13746 13747 netstack_rele(ns); 13748 return (ret); 13749 } 13750 13751 static int 13752 ip_squeue_switch(int val) 13753 { 13754 int rval; 13755 13756 switch (val) { 13757 case IP_SQUEUE_ENTER_NODRAIN: 13758 rval = SQ_NODRAIN; 13759 break; 13760 case IP_SQUEUE_ENTER: 13761 rval = SQ_PROCESS; 13762 break; 13763 case IP_SQUEUE_FILL: 13764 default: 13765 rval = SQ_FILL; 13766 break; 13767 } 13768 return (rval); 13769 } 13770 13771 static void * 13772 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13773 { 13774 kstat_t *ksp; 13775 13776 ip_stat_t template = { 13777 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13778 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13779 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13780 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13781 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13782 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13783 { "ip_opt", KSTAT_DATA_UINT64 }, 13784 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13785 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13786 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13787 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13788 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13789 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13790 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13791 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13792 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13793 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13794 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13795 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13796 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13797 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13798 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13799 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13800 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13801 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13802 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13803 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13804 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13805 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13806 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13807 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13808 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13809 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13810 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13811 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13812 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13813 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13814 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13815 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13816 }; 13817 13818 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13819 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13820 KSTAT_FLAG_VIRTUAL, stackid); 13821 13822 if (ksp == NULL) 13823 return (NULL); 13824 13825 bcopy(&template, ip_statisticsp, sizeof (template)); 13826 ksp->ks_data = (void *)ip_statisticsp; 13827 ksp->ks_private = (void *)(uintptr_t)stackid; 13828 13829 kstat_install(ksp); 13830 return (ksp); 13831 } 13832 13833 static void 13834 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13835 { 13836 if (ksp != NULL) { 13837 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13838 kstat_delete_netstack(ksp, stackid); 13839 } 13840 } 13841 13842 static void * 13843 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13844 { 13845 kstat_t *ksp; 13846 13847 ip_named_kstat_t template = { 13848 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13849 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13850 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13851 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13852 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13853 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13854 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13855 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13856 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13857 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13858 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13859 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13860 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13861 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13862 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13863 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13864 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13865 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13866 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13867 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13868 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13869 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13870 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13871 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13872 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13873 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13874 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13875 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13876 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13877 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13878 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13879 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13880 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13881 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13882 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13883 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13884 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13885 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13886 }; 13887 13888 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13889 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13890 if (ksp == NULL || ksp->ks_data == NULL) 13891 return (NULL); 13892 13893 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13894 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13895 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13896 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13897 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13898 13899 template.netToMediaEntrySize.value.i32 = 13900 sizeof (mib2_ipNetToMediaEntry_t); 13901 13902 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13903 13904 bcopy(&template, ksp->ks_data, sizeof (template)); 13905 ksp->ks_update = ip_kstat_update; 13906 ksp->ks_private = (void *)(uintptr_t)stackid; 13907 13908 kstat_install(ksp); 13909 return (ksp); 13910 } 13911 13912 static void 13913 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13914 { 13915 if (ksp != NULL) { 13916 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13917 kstat_delete_netstack(ksp, stackid); 13918 } 13919 } 13920 13921 static int 13922 ip_kstat_update(kstat_t *kp, int rw) 13923 { 13924 ip_named_kstat_t *ipkp; 13925 mib2_ipIfStatsEntry_t ipmib; 13926 ill_walk_context_t ctx; 13927 ill_t *ill; 13928 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13929 netstack_t *ns; 13930 ip_stack_t *ipst; 13931 13932 if (kp == NULL || kp->ks_data == NULL) 13933 return (EIO); 13934 13935 if (rw == KSTAT_WRITE) 13936 return (EACCES); 13937 13938 ns = netstack_find_by_stackid(stackid); 13939 if (ns == NULL) 13940 return (-1); 13941 ipst = ns->netstack_ip; 13942 if (ipst == NULL) { 13943 netstack_rele(ns); 13944 return (-1); 13945 } 13946 ipkp = (ip_named_kstat_t *)kp->ks_data; 13947 13948 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 13949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13950 ill = ILL_START_WALK_V4(&ctx, ipst); 13951 for (; ill != NULL; ill = ill_next(&ctx, ill)) 13952 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 13953 rw_exit(&ipst->ips_ill_g_lock); 13954 13955 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 13956 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 13957 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 13958 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 13959 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 13960 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 13961 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 13962 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 13963 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 13964 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 13965 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 13966 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 13967 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13968 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 13969 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 13970 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 13971 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 13972 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 13973 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 13974 13975 ipkp->routingDiscards.value.ui32 = 0; 13976 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 13977 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 13978 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 13979 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 13980 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 13981 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 13982 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 13983 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 13984 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 13985 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 13986 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 13987 13988 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 13989 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 13990 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 13991 13992 netstack_rele(ns); 13993 13994 return (0); 13995 } 13996 13997 static void * 13998 icmp_kstat_init(netstackid_t stackid) 13999 { 14000 kstat_t *ksp; 14001 14002 icmp_named_kstat_t template = { 14003 { "inMsgs", KSTAT_DATA_UINT32 }, 14004 { "inErrors", KSTAT_DATA_UINT32 }, 14005 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14006 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14007 { "inParmProbs", KSTAT_DATA_UINT32 }, 14008 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14009 { "inRedirects", KSTAT_DATA_UINT32 }, 14010 { "inEchos", KSTAT_DATA_UINT32 }, 14011 { "inEchoReps", KSTAT_DATA_UINT32 }, 14012 { "inTimestamps", KSTAT_DATA_UINT32 }, 14013 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14014 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14015 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14016 { "outMsgs", KSTAT_DATA_UINT32 }, 14017 { "outErrors", KSTAT_DATA_UINT32 }, 14018 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14019 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14020 { "outParmProbs", KSTAT_DATA_UINT32 }, 14021 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14022 { "outRedirects", KSTAT_DATA_UINT32 }, 14023 { "outEchos", KSTAT_DATA_UINT32 }, 14024 { "outEchoReps", KSTAT_DATA_UINT32 }, 14025 { "outTimestamps", KSTAT_DATA_UINT32 }, 14026 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14027 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14028 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14029 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14030 { "inUnknowns", KSTAT_DATA_UINT32 }, 14031 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14032 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14033 { "outDrops", KSTAT_DATA_UINT32 }, 14034 { "inOverFlows", KSTAT_DATA_UINT32 }, 14035 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14036 }; 14037 14038 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14039 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14040 if (ksp == NULL || ksp->ks_data == NULL) 14041 return (NULL); 14042 14043 bcopy(&template, ksp->ks_data, sizeof (template)); 14044 14045 ksp->ks_update = icmp_kstat_update; 14046 ksp->ks_private = (void *)(uintptr_t)stackid; 14047 14048 kstat_install(ksp); 14049 return (ksp); 14050 } 14051 14052 static void 14053 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14054 { 14055 if (ksp != NULL) { 14056 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14057 kstat_delete_netstack(ksp, stackid); 14058 } 14059 } 14060 14061 static int 14062 icmp_kstat_update(kstat_t *kp, int rw) 14063 { 14064 icmp_named_kstat_t *icmpkp; 14065 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14066 netstack_t *ns; 14067 ip_stack_t *ipst; 14068 14069 if ((kp == NULL) || (kp->ks_data == NULL)) 14070 return (EIO); 14071 14072 if (rw == KSTAT_WRITE) 14073 return (EACCES); 14074 14075 ns = netstack_find_by_stackid(stackid); 14076 if (ns == NULL) 14077 return (-1); 14078 ipst = ns->netstack_ip; 14079 if (ipst == NULL) { 14080 netstack_rele(ns); 14081 return (-1); 14082 } 14083 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14084 14085 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14086 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14087 icmpkp->inDestUnreachs.value.ui32 = 14088 ipst->ips_icmp_mib.icmpInDestUnreachs; 14089 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14090 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14091 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14092 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14093 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14094 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14095 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14096 icmpkp->inTimestampReps.value.ui32 = 14097 ipst->ips_icmp_mib.icmpInTimestampReps; 14098 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14099 icmpkp->inAddrMaskReps.value.ui32 = 14100 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14101 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14102 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14103 icmpkp->outDestUnreachs.value.ui32 = 14104 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14105 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14106 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14107 icmpkp->outSrcQuenchs.value.ui32 = 14108 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14109 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14110 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14111 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14112 icmpkp->outTimestamps.value.ui32 = 14113 ipst->ips_icmp_mib.icmpOutTimestamps; 14114 icmpkp->outTimestampReps.value.ui32 = 14115 ipst->ips_icmp_mib.icmpOutTimestampReps; 14116 icmpkp->outAddrMasks.value.ui32 = 14117 ipst->ips_icmp_mib.icmpOutAddrMasks; 14118 icmpkp->outAddrMaskReps.value.ui32 = 14119 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14120 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14121 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14122 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14123 icmpkp->outFragNeeded.value.ui32 = 14124 ipst->ips_icmp_mib.icmpOutFragNeeded; 14125 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14126 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14127 icmpkp->inBadRedirects.value.ui32 = 14128 ipst->ips_icmp_mib.icmpInBadRedirects; 14129 14130 netstack_rele(ns); 14131 return (0); 14132 } 14133 14134 /* 14135 * This is the fanout function for raw socket opened for SCTP. Note 14136 * that it is called after SCTP checks that there is no socket which 14137 * wants a packet. Then before SCTP handles this out of the blue packet, 14138 * this function is called to see if there is any raw socket for SCTP. 14139 * If there is and it is bound to the correct address, the packet will 14140 * be sent to that socket. Note that only one raw socket can be bound to 14141 * a port. This is assured in ipcl_sctp_hash_insert(); 14142 */ 14143 void 14144 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14145 ip_recv_attr_t *ira) 14146 { 14147 conn_t *connp; 14148 queue_t *rq; 14149 boolean_t secure; 14150 ill_t *ill = ira->ira_ill; 14151 ip_stack_t *ipst = ill->ill_ipst; 14152 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14153 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14154 iaflags_t iraflags = ira->ira_flags; 14155 ill_t *rill = ira->ira_rill; 14156 14157 secure = iraflags & IRAF_IPSEC_SECURE; 14158 14159 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14160 ira, ipst); 14161 if (connp == NULL) { 14162 /* 14163 * Although raw sctp is not summed, OOB chunks must be. 14164 * Drop the packet here if the sctp checksum failed. 14165 */ 14166 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14167 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14168 freemsg(mp); 14169 return; 14170 } 14171 ira->ira_ill = ira->ira_rill = NULL; 14172 sctp_ootb_input(mp, ira, ipst); 14173 ira->ira_ill = ill; 14174 ira->ira_rill = rill; 14175 return; 14176 } 14177 rq = connp->conn_rq; 14178 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14179 CONN_DEC_REF(connp); 14180 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14181 freemsg(mp); 14182 return; 14183 } 14184 if (((iraflags & IRAF_IS_IPV4) ? 14185 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14186 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14187 secure) { 14188 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14189 ip6h, ira); 14190 if (mp == NULL) { 14191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14192 /* Note that mp is NULL */ 14193 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14194 CONN_DEC_REF(connp); 14195 return; 14196 } 14197 } 14198 14199 if (iraflags & IRAF_ICMP_ERROR) { 14200 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14201 } else { 14202 ill_t *rill = ira->ira_rill; 14203 14204 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14205 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14206 ira->ira_ill = ira->ira_rill = NULL; 14207 (connp->conn_recv)(connp, mp, NULL, ira); 14208 ira->ira_ill = ill; 14209 ira->ira_rill = rill; 14210 } 14211 CONN_DEC_REF(connp); 14212 } 14213 14214 /* 14215 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14216 * header before the ip payload. 14217 */ 14218 static void 14219 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14220 { 14221 int len = (mp->b_wptr - mp->b_rptr); 14222 mblk_t *ip_mp; 14223 14224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14225 if (is_fp_mp || len != fp_mp_len) { 14226 if (len > fp_mp_len) { 14227 /* 14228 * fastpath header and ip header in the first mblk 14229 */ 14230 mp->b_rptr += fp_mp_len; 14231 } else { 14232 /* 14233 * ip_xmit_attach_llhdr had to prepend an mblk to 14234 * attach the fastpath header before ip header. 14235 */ 14236 ip_mp = mp->b_cont; 14237 freeb(mp); 14238 mp = ip_mp; 14239 mp->b_rptr += (fp_mp_len - len); 14240 } 14241 } else { 14242 ip_mp = mp->b_cont; 14243 freeb(mp); 14244 mp = ip_mp; 14245 } 14246 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14247 freemsg(mp); 14248 } 14249 14250 /* 14251 * Normal post fragmentation function. 14252 * 14253 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14254 * using the same state machine. 14255 * 14256 * We return an error on failure. In particular we return EWOULDBLOCK 14257 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14258 * (currently by canputnext failure resulting in backenabling from GLD.) 14259 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14260 * indication that they can flow control until ip_wsrv() tells then to restart. 14261 * 14262 * If the nce passed by caller is incomplete, this function 14263 * queues the packet and if necessary, sends ARP request and bails. 14264 * If the Neighbor Cache passed is fully resolved, we simply prepend 14265 * the link-layer header to the packet, do ipsec hw acceleration 14266 * work if necessary, and send the packet out on the wire. 14267 */ 14268 /* ARGSUSED6 */ 14269 int 14270 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14271 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14272 { 14273 queue_t *wq; 14274 ill_t *ill = nce->nce_ill; 14275 ip_stack_t *ipst = ill->ill_ipst; 14276 uint64_t delta; 14277 boolean_t isv6 = ill->ill_isv6; 14278 boolean_t fp_mp; 14279 ncec_t *ncec = nce->nce_common; 14280 int64_t now = LBOLT_FASTPATH64; 14281 boolean_t is_probe; 14282 14283 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14284 14285 ASSERT(mp != NULL); 14286 ASSERT(mp->b_datap->db_type == M_DATA); 14287 ASSERT(pkt_len == msgdsize(mp)); 14288 14289 /* 14290 * If we have already been here and are coming back after ARP/ND. 14291 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14292 * in that case since they have seen the packet when it came here 14293 * the first time. 14294 */ 14295 if (ixaflags & IXAF_NO_TRACE) 14296 goto sendit; 14297 14298 if (ixaflags & IXAF_IS_IPV4) { 14299 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14300 14301 ASSERT(!isv6); 14302 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14303 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14304 !(ixaflags & IXAF_NO_PFHOOK)) { 14305 int error; 14306 14307 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14308 ipst->ips_ipv4firewall_physical_out, 14309 NULL, ill, ipha, mp, mp, 0, ipst, error); 14310 DTRACE_PROBE1(ip4__physical__out__end, 14311 mblk_t *, mp); 14312 if (mp == NULL) 14313 return (error); 14314 14315 /* The length could have changed */ 14316 pkt_len = msgdsize(mp); 14317 } 14318 if (ipst->ips_ip4_observe.he_interested) { 14319 /* 14320 * Note that for TX the zoneid is the sending 14321 * zone, whether or not MLP is in play. 14322 * Since the szone argument is the IP zoneid (i.e., 14323 * zero for exclusive-IP zones) and ipobs wants 14324 * the system zoneid, we map it here. 14325 */ 14326 szone = IP_REAL_ZONEID(szone, ipst); 14327 14328 /* 14329 * On the outbound path the destination zone will be 14330 * unknown as we're sending this packet out on the 14331 * wire. 14332 */ 14333 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14334 ill, ipst); 14335 } 14336 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14337 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14338 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14339 } else { 14340 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14341 14342 ASSERT(isv6); 14343 ASSERT(pkt_len == 14344 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14345 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14346 !(ixaflags & IXAF_NO_PFHOOK)) { 14347 int error; 14348 14349 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14350 ipst->ips_ipv6firewall_physical_out, 14351 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14352 DTRACE_PROBE1(ip6__physical__out__end, 14353 mblk_t *, mp); 14354 if (mp == NULL) 14355 return (error); 14356 14357 /* The length could have changed */ 14358 pkt_len = msgdsize(mp); 14359 } 14360 if (ipst->ips_ip6_observe.he_interested) { 14361 /* See above */ 14362 szone = IP_REAL_ZONEID(szone, ipst); 14363 14364 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14365 ill, ipst); 14366 } 14367 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14368 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14369 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14370 } 14371 14372 sendit: 14373 /* 14374 * We check the state without a lock because the state can never 14375 * move "backwards" to initial or incomplete. 14376 */ 14377 switch (ncec->ncec_state) { 14378 case ND_REACHABLE: 14379 case ND_STALE: 14380 case ND_DELAY: 14381 case ND_PROBE: 14382 mp = ip_xmit_attach_llhdr(mp, nce); 14383 if (mp == NULL) { 14384 /* 14385 * ip_xmit_attach_llhdr has increased 14386 * ipIfStatsOutDiscards and called ip_drop_output() 14387 */ 14388 return (ENOBUFS); 14389 } 14390 /* 14391 * check if nce_fastpath completed and we tagged on a 14392 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14393 */ 14394 fp_mp = (mp->b_datap->db_type == M_DATA); 14395 14396 if (fp_mp && 14397 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14398 ill_dld_direct_t *idd; 14399 14400 idd = &ill->ill_dld_capab->idc_direct; 14401 /* 14402 * Send the packet directly to DLD, where it 14403 * may be queued depending on the availability 14404 * of transmit resources at the media layer. 14405 * Return value should be taken into 14406 * account and flow control the TCP. 14407 */ 14408 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14409 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14410 pkt_len); 14411 14412 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14413 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14414 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14415 } else { 14416 uintptr_t cookie; 14417 14418 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14419 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14420 if (ixacookie != NULL) 14421 *ixacookie = cookie; 14422 return (EWOULDBLOCK); 14423 } 14424 } 14425 } else { 14426 wq = ill->ill_wq; 14427 14428 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14429 !canputnext(wq)) { 14430 if (ixacookie != NULL) 14431 *ixacookie = 0; 14432 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14433 nce->nce_fp_mp != NULL ? 14434 MBLKL(nce->nce_fp_mp) : 0); 14435 return (EWOULDBLOCK); 14436 } 14437 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14438 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14439 pkt_len); 14440 putnext(wq, mp); 14441 } 14442 14443 /* 14444 * The rest of this function implements Neighbor Unreachability 14445 * detection. Determine if the ncec is eligible for NUD. 14446 */ 14447 if (ncec->ncec_flags & NCE_F_NONUD) 14448 return (0); 14449 14450 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14451 14452 /* 14453 * Check for upper layer advice 14454 */ 14455 if (ixaflags & IXAF_REACH_CONF) { 14456 timeout_id_t tid; 14457 14458 /* 14459 * It should be o.k. to check the state without 14460 * a lock here, at most we lose an advice. 14461 */ 14462 ncec->ncec_last = TICK_TO_MSEC(now); 14463 if (ncec->ncec_state != ND_REACHABLE) { 14464 mutex_enter(&ncec->ncec_lock); 14465 ncec->ncec_state = ND_REACHABLE; 14466 tid = ncec->ncec_timeout_id; 14467 ncec->ncec_timeout_id = 0; 14468 mutex_exit(&ncec->ncec_lock); 14469 (void) untimeout(tid); 14470 if (ip_debug > 2) { 14471 /* ip1dbg */ 14472 pr_addr_dbg("ip_xmit: state" 14473 " for %s changed to" 14474 " REACHABLE\n", AF_INET6, 14475 &ncec->ncec_addr); 14476 } 14477 } 14478 return (0); 14479 } 14480 14481 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14482 ip1dbg(("ip_xmit: delta = %" PRId64 14483 " ill_reachable_time = %d \n", delta, 14484 ill->ill_reachable_time)); 14485 if (delta > (uint64_t)ill->ill_reachable_time) { 14486 mutex_enter(&ncec->ncec_lock); 14487 switch (ncec->ncec_state) { 14488 case ND_REACHABLE: 14489 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14490 /* FALLTHROUGH */ 14491 case ND_STALE: 14492 /* 14493 * ND_REACHABLE is identical to 14494 * ND_STALE in this specific case. If 14495 * reachable time has expired for this 14496 * neighbor (delta is greater than 14497 * reachable time), conceptually, the 14498 * neighbor cache is no longer in 14499 * REACHABLE state, but already in 14500 * STALE state. So the correct 14501 * transition here is to ND_DELAY. 14502 */ 14503 ncec->ncec_state = ND_DELAY; 14504 mutex_exit(&ncec->ncec_lock); 14505 nce_restart_timer(ncec, 14506 ipst->ips_delay_first_probe_time); 14507 if (ip_debug > 3) { 14508 /* ip2dbg */ 14509 pr_addr_dbg("ip_xmit: state" 14510 " for %s changed to" 14511 " DELAY\n", AF_INET6, 14512 &ncec->ncec_addr); 14513 } 14514 break; 14515 case ND_DELAY: 14516 case ND_PROBE: 14517 mutex_exit(&ncec->ncec_lock); 14518 /* Timers have already started */ 14519 break; 14520 case ND_UNREACHABLE: 14521 /* 14522 * nce_timer has detected that this ncec 14523 * is unreachable and initiated deleting 14524 * this ncec. 14525 * This is a harmless race where we found the 14526 * ncec before it was deleted and have 14527 * just sent out a packet using this 14528 * unreachable ncec. 14529 */ 14530 mutex_exit(&ncec->ncec_lock); 14531 break; 14532 default: 14533 ASSERT(0); 14534 mutex_exit(&ncec->ncec_lock); 14535 } 14536 } 14537 return (0); 14538 14539 case ND_INCOMPLETE: 14540 /* 14541 * the state could have changed since we didn't hold the lock. 14542 * Re-verify state under lock. 14543 */ 14544 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14545 mutex_enter(&ncec->ncec_lock); 14546 if (NCE_ISREACHABLE(ncec)) { 14547 mutex_exit(&ncec->ncec_lock); 14548 goto sendit; 14549 } 14550 /* queue the packet */ 14551 nce_queue_mp(ncec, mp, is_probe); 14552 mutex_exit(&ncec->ncec_lock); 14553 DTRACE_PROBE2(ip__xmit__incomplete, 14554 (ncec_t *), ncec, (mblk_t *), mp); 14555 return (0); 14556 14557 case ND_INITIAL: 14558 /* 14559 * State could have changed since we didn't hold the lock, so 14560 * re-verify state. 14561 */ 14562 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14563 mutex_enter(&ncec->ncec_lock); 14564 if (NCE_ISREACHABLE(ncec)) { 14565 mutex_exit(&ncec->ncec_lock); 14566 goto sendit; 14567 } 14568 nce_queue_mp(ncec, mp, is_probe); 14569 if (ncec->ncec_state == ND_INITIAL) { 14570 ncec->ncec_state = ND_INCOMPLETE; 14571 mutex_exit(&ncec->ncec_lock); 14572 /* 14573 * figure out the source we want to use 14574 * and resolve it. 14575 */ 14576 ip_ndp_resolve(ncec); 14577 } else { 14578 mutex_exit(&ncec->ncec_lock); 14579 } 14580 return (0); 14581 14582 case ND_UNREACHABLE: 14583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14584 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14585 mp, ill); 14586 freemsg(mp); 14587 return (0); 14588 14589 default: 14590 ASSERT(0); 14591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14592 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14593 mp, ill); 14594 freemsg(mp); 14595 return (ENETUNREACH); 14596 } 14597 } 14598 14599 /* 14600 * Return B_TRUE if the buffers differ in length or content. 14601 * This is used for comparing extension header buffers. 14602 * Note that an extension header would be declared different 14603 * even if all that changed was the next header value in that header i.e. 14604 * what really changed is the next extension header. 14605 */ 14606 boolean_t 14607 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14608 uint_t blen) 14609 { 14610 if (!b_valid) 14611 blen = 0; 14612 14613 if (alen != blen) 14614 return (B_TRUE); 14615 if (alen == 0) 14616 return (B_FALSE); /* Both zero length */ 14617 return (bcmp(abuf, bbuf, alen)); 14618 } 14619 14620 /* 14621 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14622 * Return B_FALSE if memory allocation fails - don't change any state! 14623 */ 14624 boolean_t 14625 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14626 const void *src, uint_t srclen) 14627 { 14628 void *dst; 14629 14630 if (!src_valid) 14631 srclen = 0; 14632 14633 ASSERT(*dstlenp == 0); 14634 if (src != NULL && srclen != 0) { 14635 dst = mi_alloc(srclen, BPRI_MED); 14636 if (dst == NULL) 14637 return (B_FALSE); 14638 } else { 14639 dst = NULL; 14640 } 14641 if (*dstp != NULL) 14642 mi_free(*dstp); 14643 *dstp = dst; 14644 *dstlenp = dst == NULL ? 0 : srclen; 14645 return (B_TRUE); 14646 } 14647 14648 /* 14649 * Replace what is in *dst, *dstlen with the source. 14650 * Assumes ip_allocbuf has already been called. 14651 */ 14652 void 14653 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14654 const void *src, uint_t srclen) 14655 { 14656 if (!src_valid) 14657 srclen = 0; 14658 14659 ASSERT(*dstlenp == srclen); 14660 if (src != NULL && srclen != 0) 14661 bcopy(src, *dstp, srclen); 14662 } 14663 14664 /* 14665 * Free the storage pointed to by the members of an ip_pkt_t. 14666 */ 14667 void 14668 ip_pkt_free(ip_pkt_t *ipp) 14669 { 14670 uint_t fields = ipp->ipp_fields; 14671 14672 if (fields & IPPF_HOPOPTS) { 14673 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14674 ipp->ipp_hopopts = NULL; 14675 ipp->ipp_hopoptslen = 0; 14676 } 14677 if (fields & IPPF_RTHDRDSTOPTS) { 14678 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14679 ipp->ipp_rthdrdstopts = NULL; 14680 ipp->ipp_rthdrdstoptslen = 0; 14681 } 14682 if (fields & IPPF_DSTOPTS) { 14683 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14684 ipp->ipp_dstopts = NULL; 14685 ipp->ipp_dstoptslen = 0; 14686 } 14687 if (fields & IPPF_RTHDR) { 14688 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14689 ipp->ipp_rthdr = NULL; 14690 ipp->ipp_rthdrlen = 0; 14691 } 14692 if (fields & IPPF_IPV4_OPTIONS) { 14693 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14694 ipp->ipp_ipv4_options = NULL; 14695 ipp->ipp_ipv4_options_len = 0; 14696 } 14697 if (fields & IPPF_LABEL_V4) { 14698 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14699 ipp->ipp_label_v4 = NULL; 14700 ipp->ipp_label_len_v4 = 0; 14701 } 14702 if (fields & IPPF_LABEL_V6) { 14703 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14704 ipp->ipp_label_v6 = NULL; 14705 ipp->ipp_label_len_v6 = 0; 14706 } 14707 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14708 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14709 } 14710 14711 /* 14712 * Copy from src to dst and allocate as needed. 14713 * Returns zero or ENOMEM. 14714 * 14715 * The caller must initialize dst to zero. 14716 */ 14717 int 14718 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14719 { 14720 uint_t fields = src->ipp_fields; 14721 14722 /* Start with fields that don't require memory allocation */ 14723 dst->ipp_fields = fields & 14724 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14725 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14726 14727 dst->ipp_addr = src->ipp_addr; 14728 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14729 dst->ipp_hoplimit = src->ipp_hoplimit; 14730 dst->ipp_tclass = src->ipp_tclass; 14731 dst->ipp_type_of_service = src->ipp_type_of_service; 14732 14733 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14734 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14735 return (0); 14736 14737 if (fields & IPPF_HOPOPTS) { 14738 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14739 if (dst->ipp_hopopts == NULL) { 14740 ip_pkt_free(dst); 14741 return (ENOMEM); 14742 } 14743 dst->ipp_fields |= IPPF_HOPOPTS; 14744 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14745 src->ipp_hopoptslen); 14746 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14747 } 14748 if (fields & IPPF_RTHDRDSTOPTS) { 14749 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14750 kmflag); 14751 if (dst->ipp_rthdrdstopts == NULL) { 14752 ip_pkt_free(dst); 14753 return (ENOMEM); 14754 } 14755 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14756 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14757 src->ipp_rthdrdstoptslen); 14758 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14759 } 14760 if (fields & IPPF_DSTOPTS) { 14761 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14762 if (dst->ipp_dstopts == NULL) { 14763 ip_pkt_free(dst); 14764 return (ENOMEM); 14765 } 14766 dst->ipp_fields |= IPPF_DSTOPTS; 14767 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14768 src->ipp_dstoptslen); 14769 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14770 } 14771 if (fields & IPPF_RTHDR) { 14772 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14773 if (dst->ipp_rthdr == NULL) { 14774 ip_pkt_free(dst); 14775 return (ENOMEM); 14776 } 14777 dst->ipp_fields |= IPPF_RTHDR; 14778 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14779 src->ipp_rthdrlen); 14780 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14781 } 14782 if (fields & IPPF_IPV4_OPTIONS) { 14783 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14784 kmflag); 14785 if (dst->ipp_ipv4_options == NULL) { 14786 ip_pkt_free(dst); 14787 return (ENOMEM); 14788 } 14789 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14790 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14791 src->ipp_ipv4_options_len); 14792 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14793 } 14794 if (fields & IPPF_LABEL_V4) { 14795 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14796 if (dst->ipp_label_v4 == NULL) { 14797 ip_pkt_free(dst); 14798 return (ENOMEM); 14799 } 14800 dst->ipp_fields |= IPPF_LABEL_V4; 14801 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14802 src->ipp_label_len_v4); 14803 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14804 } 14805 if (fields & IPPF_LABEL_V6) { 14806 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14807 if (dst->ipp_label_v6 == NULL) { 14808 ip_pkt_free(dst); 14809 return (ENOMEM); 14810 } 14811 dst->ipp_fields |= IPPF_LABEL_V6; 14812 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14813 src->ipp_label_len_v6); 14814 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14815 } 14816 if (fields & IPPF_FRAGHDR) { 14817 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14818 if (dst->ipp_fraghdr == NULL) { 14819 ip_pkt_free(dst); 14820 return (ENOMEM); 14821 } 14822 dst->ipp_fields |= IPPF_FRAGHDR; 14823 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14824 src->ipp_fraghdrlen); 14825 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14826 } 14827 return (0); 14828 } 14829 14830 /* 14831 * Returns INADDR_ANY if no source route 14832 */ 14833 ipaddr_t 14834 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14835 { 14836 ipaddr_t nexthop = INADDR_ANY; 14837 ipoptp_t opts; 14838 uchar_t *opt; 14839 uint8_t optval; 14840 uint8_t optlen; 14841 uint32_t totallen; 14842 14843 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14844 return (INADDR_ANY); 14845 14846 totallen = ipp->ipp_ipv4_options_len; 14847 if (totallen & 0x3) 14848 return (INADDR_ANY); 14849 14850 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14851 optval != IPOPT_EOL; 14852 optval = ipoptp_next(&opts)) { 14853 opt = opts.ipoptp_cur; 14854 switch (optval) { 14855 uint8_t off; 14856 case IPOPT_SSRR: 14857 case IPOPT_LSRR: 14858 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14859 break; 14860 } 14861 optlen = opts.ipoptp_len; 14862 off = opt[IPOPT_OFFSET]; 14863 off--; 14864 if (optlen < IP_ADDR_LEN || 14865 off > optlen - IP_ADDR_LEN) { 14866 /* End of source route */ 14867 break; 14868 } 14869 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14870 if (nexthop == htonl(INADDR_LOOPBACK)) { 14871 /* Ignore */ 14872 nexthop = INADDR_ANY; 14873 break; 14874 } 14875 break; 14876 } 14877 } 14878 return (nexthop); 14879 } 14880 14881 /* 14882 * Reverse a source route. 14883 */ 14884 void 14885 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14886 { 14887 ipaddr_t tmp; 14888 ipoptp_t opts; 14889 uchar_t *opt; 14890 uint8_t optval; 14891 uint32_t totallen; 14892 14893 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14894 return; 14895 14896 totallen = ipp->ipp_ipv4_options_len; 14897 if (totallen & 0x3) 14898 return; 14899 14900 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14901 optval != IPOPT_EOL; 14902 optval = ipoptp_next(&opts)) { 14903 uint8_t off1, off2; 14904 14905 opt = opts.ipoptp_cur; 14906 switch (optval) { 14907 case IPOPT_SSRR: 14908 case IPOPT_LSRR: 14909 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14910 break; 14911 } 14912 off1 = IPOPT_MINOFF_SR - 1; 14913 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14914 while (off2 > off1) { 14915 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14916 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14917 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14918 off2 -= IP_ADDR_LEN; 14919 off1 += IP_ADDR_LEN; 14920 } 14921 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14922 break; 14923 } 14924 } 14925 } 14926 14927 /* 14928 * Returns NULL if no routing header 14929 */ 14930 in6_addr_t * 14931 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14932 { 14933 in6_addr_t *nexthop = NULL; 14934 ip6_rthdr0_t *rthdr; 14935 14936 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14937 return (NULL); 14938 14939 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14940 if (rthdr->ip6r0_segleft == 0) 14941 return (NULL); 14942 14943 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14944 return (nexthop); 14945 } 14946 14947 zoneid_t 14948 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 14949 zoneid_t lookup_zoneid) 14950 { 14951 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14952 ire_t *ire; 14953 int ire_flags = MATCH_IRE_TYPE; 14954 zoneid_t zoneid = ALL_ZONES; 14955 14956 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14957 return (ALL_ZONES); 14958 14959 if (lookup_zoneid != ALL_ZONES) 14960 ire_flags |= MATCH_IRE_ZONEONLY; 14961 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14962 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14963 if (ire != NULL) { 14964 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14965 ire_refrele(ire); 14966 } 14967 return (zoneid); 14968 } 14969 14970 zoneid_t 14971 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 14972 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 14973 { 14974 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14975 ire_t *ire; 14976 int ire_flags = MATCH_IRE_TYPE; 14977 zoneid_t zoneid = ALL_ZONES; 14978 14979 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14980 return (ALL_ZONES); 14981 14982 if (IN6_IS_ADDR_LINKLOCAL(addr)) 14983 ire_flags |= MATCH_IRE_ILL; 14984 14985 if (lookup_zoneid != ALL_ZONES) 14986 ire_flags |= MATCH_IRE_ZONEONLY; 14987 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14988 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14989 if (ire != NULL) { 14990 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14991 ire_refrele(ire); 14992 } 14993 return (zoneid); 14994 } 14995 14996 /* 14997 * IP obserability hook support functions. 14998 */ 14999 static void 15000 ipobs_init(ip_stack_t *ipst) 15001 { 15002 netid_t id; 15003 15004 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15005 15006 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15007 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15008 15009 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15010 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15011 } 15012 15013 static void 15014 ipobs_fini(ip_stack_t *ipst) 15015 { 15016 15017 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15018 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15019 } 15020 15021 /* 15022 * hook_pkt_observe_t is composed in network byte order so that the 15023 * entire mblk_t chain handed into hook_run can be used as-is. 15024 * The caveat is that use of the fields, such as the zone fields, 15025 * requires conversion into host byte order first. 15026 */ 15027 void 15028 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15029 const ill_t *ill, ip_stack_t *ipst) 15030 { 15031 hook_pkt_observe_t *hdr; 15032 uint64_t grifindex; 15033 mblk_t *imp; 15034 15035 imp = allocb(sizeof (*hdr), BPRI_HI); 15036 if (imp == NULL) 15037 return; 15038 15039 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15040 /* 15041 * b_wptr is set to make the apparent size of the data in the mblk_t 15042 * to exclude the pointers at the end of hook_pkt_observer_t. 15043 */ 15044 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15045 imp->b_cont = mp; 15046 15047 ASSERT(DB_TYPE(mp) == M_DATA); 15048 15049 if (IS_UNDER_IPMP(ill)) 15050 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15051 else 15052 grifindex = 0; 15053 15054 hdr->hpo_version = 1; 15055 hdr->hpo_htype = htons(htype); 15056 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15057 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15058 hdr->hpo_grifindex = htonl(grifindex); 15059 hdr->hpo_zsrc = htonl(zsrc); 15060 hdr->hpo_zdst = htonl(zdst); 15061 hdr->hpo_pkt = imp; 15062 hdr->hpo_ctx = ipst->ips_netstack; 15063 15064 if (ill->ill_isv6) { 15065 hdr->hpo_family = AF_INET6; 15066 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15067 ipst->ips_ipv6observing, (hook_data_t)hdr); 15068 } else { 15069 hdr->hpo_family = AF_INET; 15070 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15071 ipst->ips_ipv4observing, (hook_data_t)hdr); 15072 } 15073 15074 imp->b_cont = NULL; 15075 freemsg(imp); 15076 } 15077 15078 /* 15079 * Utility routine that checks if `v4srcp' is a valid address on underlying 15080 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15081 * associated with `v4srcp' on success. NOTE: if this is not called from 15082 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15083 * group during or after this lookup. 15084 */ 15085 boolean_t 15086 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15087 { 15088 ipif_t *ipif; 15089 15090 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15091 if (ipif != NULL) { 15092 if (ipifp != NULL) 15093 *ipifp = ipif; 15094 else 15095 ipif_refrele(ipif); 15096 return (B_TRUE); 15097 } 15098 15099 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15100 *v4srcp)); 15101 return (B_FALSE); 15102 } 15103 15104 /* 15105 * Transport protocol call back function for CPU state change. 15106 */ 15107 /* ARGSUSED */ 15108 static int 15109 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15110 { 15111 processorid_t cpu_seqid; 15112 netstack_handle_t nh; 15113 netstack_t *ns; 15114 15115 ASSERT(MUTEX_HELD(&cpu_lock)); 15116 cpu_seqid = cpu[id]->cpu_seqid; 15117 15118 switch (what) { 15119 case CPU_CONFIG: 15120 case CPU_ON: 15121 case CPU_INIT: 15122 case CPU_CPUPART_IN: 15123 netstack_next_init(&nh); 15124 while ((ns = netstack_next(&nh)) != NULL) { 15125 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15126 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15127 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15128 netstack_rele(ns); 15129 } 15130 netstack_next_fini(&nh); 15131 break; 15132 case CPU_UNCONFIG: 15133 case CPU_OFF: 15134 case CPU_CPUPART_OUT: 15135 /* 15136 * Nothing to do. We don't remove the per CPU stats from 15137 * the IP stack even when the CPU goes offline. 15138 */ 15139 break; 15140 default: 15141 break; 15142 } 15143 return (0); 15144 } 15145