xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision a92282e44f968185a6bba094d1e5fece2da819cf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright (c) 2019 Joyent, Inc. All rights reserved.
28  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/sysmacros.h>
36 #include <sys/strsubr.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #include <sys/zone.h>
40 #define	_SUN_TPI_VERSION 2
41 #include <sys/tihdr.h>
42 #include <sys/xti_inet.h>
43 #include <sys/ddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/cmn_err.h>
46 #include <sys/debug.h>
47 #include <sys/kobj.h>
48 #include <sys/modctl.h>
49 #include <sys/atomic.h>
50 #include <sys/policy.h>
51 #include <sys/priv.h>
52 #include <sys/taskq.h>
53 
54 #include <sys/systm.h>
55 #include <sys/param.h>
56 #include <sys/kmem.h>
57 #include <sys/sdt.h>
58 #include <sys/socket.h>
59 #include <sys/vtrace.h>
60 #include <sys/isa_defs.h>
61 #include <sys/mac.h>
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/route.h>
65 #include <sys/sockio.h>
66 #include <netinet/in.h>
67 #include <net/if_dl.h>
68 
69 #include <inet/common.h>
70 #include <inet/mi.h>
71 #include <inet/mib2.h>
72 #include <inet/nd.h>
73 #include <inet/arp.h>
74 #include <inet/snmpcom.h>
75 #include <inet/optcom.h>
76 #include <inet/kstatcom.h>
77 
78 #include <netinet/igmp_var.h>
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet/sctp.h>
82 
83 #include <inet/ip.h>
84 #include <inet/ip_impl.h>
85 #include <inet/ip6.h>
86 #include <inet/ip6_asp.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <inet/ip_multi.h>
90 #include <inet/ip_if.h>
91 #include <inet/ip_ire.h>
92 #include <inet/ip_ftable.h>
93 #include <inet/ip_rts.h>
94 #include <inet/ip_ndp.h>
95 #include <inet/ip_listutils.h>
96 #include <netinet/igmp.h>
97 #include <netinet/ip_mroute.h>
98 #include <inet/ipp_common.h>
99 #include <inet/cc.h>
100 
101 #include <net/pfkeyv2.h>
102 #include <inet/sadb.h>
103 #include <inet/ipsec_impl.h>
104 #include <inet/iptun/iptun_impl.h>
105 #include <inet/ipdrop.h>
106 #include <inet/ip_netinfo.h>
107 #include <inet/ilb_ip.h>
108 
109 #include <sys/ethernet.h>
110 #include <net/if_types.h>
111 #include <sys/cpuvar.h>
112 
113 #include <ipp/ipp.h>
114 #include <ipp/ipp_impl.h>
115 #include <ipp/ipgpc/ipgpc.h>
116 
117 #include <sys/pattr.h>
118 #include <inet/ipclassifier.h>
119 #include <inet/sctp_ip.h>
120 #include <inet/sctp/sctp_impl.h>
121 #include <inet/udp_impl.h>
122 #include <inet/rawip_impl.h>
123 #include <inet/rts_impl.h>
124 
125 #include <sys/tsol/label.h>
126 #include <sys/tsol/tnet.h>
127 
128 #include <sys/squeue_impl.h>
129 #include <inet/ip_arp.h>
130 
131 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
132 
133 /*
134  * Values for squeue switch:
135  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
136  * IP_SQUEUE_ENTER: SQ_PROCESS
137  * IP_SQUEUE_FILL: SQ_FILL
138  */
139 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
140 
141 int ip_squeue_flag;
142 
143 /*
144  * Setable in /etc/system
145  */
146 int ip_poll_normal_ms = 100;
147 int ip_poll_normal_ticks = 0;
148 int ip_modclose_ackwait_ms = 3000;
149 
150 /*
151  * It would be nice to have these present only in DEBUG systems, but the
152  * current design of the global symbol checking logic requires them to be
153  * unconditionally present.
154  */
155 uint_t ip_thread_data;			/* TSD key for debug support */
156 krwlock_t ip_thread_rwlock;
157 list_t	ip_thread_list;
158 
159 /*
160  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
161  */
162 
163 struct listptr_s {
164 	mblk_t	*lp_head;	/* pointer to the head of the list */
165 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
166 };
167 
168 typedef struct listptr_s listptr_t;
169 
170 /*
171  * This is used by ip_snmp_get_mib2_ip_route_media and
172  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
173  */
174 typedef struct iproutedata_s {
175 	uint_t		ird_idx;
176 	uint_t		ird_flags;	/* see below */
177 	listptr_t	ird_route;	/* ipRouteEntryTable */
178 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
179 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
180 } iproutedata_t;
181 
182 /* Include ire_testhidden and IRE_IF_CLONE routes */
183 #define	IRD_REPORT_ALL	0x01
184 
185 /*
186  * Cluster specific hooks. These should be NULL when booted as a non-cluster
187  */
188 
189 /*
190  * Hook functions to enable cluster networking
191  * On non-clustered systems these vectors must always be NULL.
192  *
193  * Hook function to Check ip specified ip address is a shared ip address
194  * in the cluster
195  *
196  */
197 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
198     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
199 
200 /*
201  * Hook function to generate cluster wide ip fragment identifier
202  */
203 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
204     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
205     void *args) = NULL;
206 
207 /*
208  * Hook function to generate cluster wide SPI.
209  */
210 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
211     void *) = NULL;
212 
213 /*
214  * Hook function to verify if the SPI is already utlized.
215  */
216 
217 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
218 
219 /*
220  * Hook function to delete the SPI from the cluster wide repository.
221  */
222 
223 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
224 
225 /*
226  * Hook function to inform the cluster when packet received on an IDLE SA
227  */
228 
229 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
230     in6_addr_t, in6_addr_t, void *) = NULL;
231 
232 /*
233  * Synchronization notes:
234  *
235  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
236  * MT level protection given by STREAMS. IP uses a combination of its own
237  * internal serialization mechanism and standard Solaris locking techniques.
238  * The internal serialization is per phyint.  This is used to serialize
239  * plumbing operations, IPMP operations, most set ioctls, etc.
240  *
241  * Plumbing is a long sequence of operations involving message
242  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
243  * involved in plumbing operations. A natural model is to serialize these
244  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
245  * parallel without any interference. But various set ioctls on hme0 are best
246  * serialized, along with IPMP operations and processing of DLPI control
247  * messages received from drivers on a per phyint basis. This serialization is
248  * provided by the ipsq_t and primitives operating on this. Details can
249  * be found in ip_if.c above the core primitives operating on ipsq_t.
250  *
251  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
252  * Simiarly lookup of an ire by a thread also returns a refheld ire.
253  * In addition ipif's and ill's referenced by the ire are also indirectly
254  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
255  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
256  * address of an ipif has to go through the ipsq_t. This ensures that only
257  * one such exclusive operation proceeds at any time on the ipif. It then
258  * waits for all refcnts
259  * associated with this ipif to come down to zero. The address is changed
260  * only after the ipif has been quiesced. Then the ipif is brought up again.
261  * More details are described above the comment in ip_sioctl_flags.
262  *
263  * Packet processing is based mostly on IREs and are fully multi-threaded
264  * using standard Solaris MT techniques.
265  *
266  * There are explicit locks in IP to handle:
267  * - The ip_g_head list maintained by mi_open_link() and friends.
268  *
269  * - The reassembly data structures (one lock per hash bucket)
270  *
271  * - conn_lock is meant to protect conn_t fields. The fields actually
272  *   protected by conn_lock are documented in the conn_t definition.
273  *
274  * - ire_lock to protect some of the fields of the ire, IRE tables
275  *   (one lock per hash bucket). Refer to ip_ire.c for details.
276  *
277  * - ndp_g_lock and ncec_lock for protecting NCEs.
278  *
279  * - ill_lock protects fields of the ill and ipif. Details in ip.h
280  *
281  * - ill_g_lock: This is a global reader/writer lock. Protects the following
282  *	* The AVL tree based global multi list of all ills.
283  *	* The linked list of all ipifs of an ill
284  *	* The <ipsq-xop> mapping
285  *	* <ill-phyint> association
286  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
287  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
288  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
289  *   writer for the actual duration of the insertion/deletion/change.
290  *
291  * - ill_lock:  This is a per ill mutex.
292  *   It protects some members of the ill_t struct; see ip.h for details.
293  *   It also protects the <ill-phyint> assoc.
294  *   It also protects the list of ipifs hanging off the ill.
295  *
296  * - ipsq_lock: This is a per ipsq_t mutex lock.
297  *   This protects some members of the ipsq_t struct; see ip.h for details.
298  *   It also protects the <ipsq-ipxop> mapping
299  *
300  * - ipx_lock: This is a per ipxop_t mutex lock.
301  *   This protects some members of the ipxop_t struct; see ip.h for details.
302  *
303  * - phyint_lock: This is a per phyint mutex lock. Protects just the
304  *   phyint_flags
305  *
306  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
307  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
308  *   uniqueness check also done atomically.
309  *
310  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
311  *   group list linked by ill_usesrc_grp_next. It also protects the
312  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
313  *   group is being added or deleted.  This lock is taken as a reader when
314  *   walking the list/group(eg: to get the number of members in a usesrc group).
315  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
316  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
317  *   example, it is not necessary to take this lock in the initial portion
318  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
319  *   operations are executed exclusively and that ensures that the "usesrc
320  *   group state" cannot change. The "usesrc group state" change can happen
321  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
322  *
323  * Changing <ill-phyint>, <ipsq-xop> assocications:
324  *
325  * To change the <ill-phyint> association, the ill_g_lock must be held
326  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
327  * must be held.
328  *
329  * To change the <ipsq-xop> association, the ill_g_lock must be held as
330  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
331  * This is only done when ills are added or removed from IPMP groups.
332  *
333  * To add or delete an ipif from the list of ipifs hanging off the ill,
334  * ill_g_lock (writer) and ill_lock must be held and the thread must be
335  * a writer on the associated ipsq.
336  *
337  * To add or delete an ill to the system, the ill_g_lock must be held as
338  * writer and the thread must be a writer on the associated ipsq.
339  *
340  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
341  * must be a writer on the associated ipsq.
342  *
343  * Lock hierarchy
344  *
345  * Some lock hierarchy scenarios are listed below.
346  *
347  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
348  * ill_g_lock -> ill_lock(s) -> phyint_lock
349  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
350  * ill_g_lock -> ip_addr_avail_lock
351  * conn_lock -> irb_lock -> ill_lock -> ire_lock
352  * ill_g_lock -> ip_g_nd_lock
353  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
354  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
355  * arl_lock -> ill_lock
356  * ips_ire_dep_lock -> irb_lock
357  *
358  * When more than 1 ill lock is needed to be held, all ill lock addresses
359  * are sorted on address and locked starting from highest addressed lock
360  * downward.
361  *
362  * Multicast scenarios
363  * ips_ill_g_lock -> ill_mcast_lock
364  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
365  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
366  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
367  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
368  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
369  *
370  * IPsec scenarios
371  *
372  * ipsa_lock -> ill_g_lock -> ill_lock
373  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
374  *
375  * Trusted Solaris scenarios
376  *
377  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
378  * igsa_lock -> gcdb_lock
379  * gcgrp_rwlock -> ire_lock
380  * gcgrp_rwlock -> gcdb_lock
381  *
382  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
383  *
384  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
385  * sq_lock -> conn_lock -> QLOCK(q)
386  * ill_lock -> ft_lock -> fe_lock
387  *
388  * Routing/forwarding table locking notes:
389  *
390  * Lock acquisition order: Radix tree lock, irb_lock.
391  * Requirements:
392  * i.  Walker must not hold any locks during the walker callback.
393  * ii  Walker must not see a truncated tree during the walk because of any node
394  *     deletion.
395  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
396  *     in many places in the code to walk the irb list. Thus even if all the
397  *     ires in a bucket have been deleted, we still can't free the radix node
398  *     until the ires have actually been inactive'd (freed).
399  *
400  * Tree traversal - Need to hold the global tree lock in read mode.
401  * Before dropping the global tree lock, need to either increment the ire_refcnt
402  * to ensure that the radix node can't be deleted.
403  *
404  * Tree add - Need to hold the global tree lock in write mode to add a
405  * radix node. To prevent the node from being deleted, increment the
406  * irb_refcnt, after the node is added to the tree. The ire itself is
407  * added later while holding the irb_lock, but not the tree lock.
408  *
409  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
410  * All associated ires must be inactive (i.e. freed), and irb_refcnt
411  * must be zero.
412  *
413  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
414  * global tree lock (read mode) for traversal.
415  *
416  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
417  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
418  *
419  * IPsec notes :
420  *
421  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
422  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
423  * ip_xmit_attr_t has the
424  * information used by the IPsec code for applying the right level of
425  * protection. The information initialized by IP in the ip_xmit_attr_t
426  * is determined by the per-socket policy or global policy in the system.
427  * For inbound datagrams, the ip_recv_attr_t
428  * starts out with nothing in it. It gets filled
429  * with the right information if it goes through the AH/ESP code, which
430  * happens if the incoming packet is secure. The information initialized
431  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
432  * the policy requirements needed by per-socket policy or global policy
433  * is met or not.
434  *
435  * For fully connected sockets i.e dst, src [addr, port] is known,
436  * conn_policy_cached is set indicating that policy has been cached.
437  * conn_in_enforce_policy may or may not be set depending on whether
438  * there is a global policy match or per-socket policy match.
439  * Policy inheriting happpens in ip_policy_set once the destination is known.
440  * Once the right policy is set on the conn_t, policy cannot change for
441  * this socket. This makes life simpler for TCP (UDP ?) where
442  * re-transmissions go out with the same policy. For symmetry, policy
443  * is cached for fully connected UDP sockets also. Thus if policy is cached,
444  * it also implies that policy is latched i.e policy cannot change
445  * on these sockets. As we have the right policy on the conn, we don't
446  * have to lookup global policy for every outbound and inbound datagram
447  * and thus serving as an optimization. Note that a global policy change
448  * does not affect fully connected sockets if they have policy. If fully
449  * connected sockets did not have any policy associated with it, global
450  * policy change may affect them.
451  *
452  * IP Flow control notes:
453  * ---------------------
454  * Non-TCP streams are flow controlled by IP. The way this is accomplished
455  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
456  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
457  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
458  * functions.
459  *
460  * Per Tx ring udp flow control:
461  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
462  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
463  *
464  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
465  * To achieve best performance, outgoing traffic need to be fanned out among
466  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
467  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
468  * the address of connp as fanout hint to mac_tx(). Under flow controlled
469  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
470  * cookie points to a specific Tx ring that is blocked. The cookie is used to
471  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
472  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
473  * connp's. The drain list is not a single list but a configurable number of
474  * lists.
475  *
476  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
477  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
478  * which is equal to 128. This array in turn contains a pointer to idl_t[],
479  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
480  * list will point to the list of connp's that are flow controlled.
481  *
482  *                      ---------------   -------   -------   -------
483  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
484  *                   |  ---------------   -------   -------   -------
485  *                   |  ---------------   -------   -------   -------
486  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
487  * ----------------  |  ---------------   -------   -------   -------
488  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
489  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
490  *                   |  ---------------   -------   -------   -------
491  *                   .        .              .         .         .
492  *                   |  ---------------   -------   -------   -------
493  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
494  *                      ---------------   -------   -------   -------
495  *                      ---------------   -------   -------   -------
496  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
497  *                   |  ---------------   -------   -------   -------
498  *                   |  ---------------   -------   -------   -------
499  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
500  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
501  * ----------------  |        .              .         .         .
502  *                   |  ---------------   -------   -------   -------
503  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
504  *                      ---------------   -------   -------   -------
505  *     .....
506  * ----------------
507  * |idl_tx_list[n]|-> ...
508  * ----------------
509  *
510  * When mac_tx() returns a cookie, the cookie is hashed into an index into
511  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
512  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
513  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
514  * Further, conn_blocked is set to indicate that the conn is blocked.
515  *
516  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
517  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
518  * is again hashed to locate the appropriate idl_tx_list, which is then
519  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
520  * the drain list and calls conn_drain_remove() to clear flow control (via
521  * calling su_txq_full() or clearing QFULL), and remove the conn from the
522  * drain list.
523  *
524  * Note that the drain list is not a single list but a (configurable) array of
525  * lists (8 elements by default).  Synchronization between drain insertion and
526  * flow control wakeup is handled by using idl_txl->txl_lock, and only
527  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
528  *
529  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
530  * On the send side, if the packet cannot be sent down to the driver by IP
531  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
532  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
533  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
534  * control has been relieved, the blocked conns in the 0'th drain list are
535  * drained as in the non-STREAMS case.
536  *
537  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
538  * is done when the conn is inserted into the drain list (conn_drain_insert())
539  * and cleared when the conn is removed from the it (conn_drain_remove()).
540  *
541  * IPQOS notes:
542  *
543  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
544  * and IPQoS modules. IPPF includes hooks in IP at different control points
545  * (callout positions) which direct packets to IPQoS modules for policy
546  * processing. Policies, if present, are global.
547  *
548  * The callout positions are located in the following paths:
549  *		o local_in (packets destined for this host)
550  *		o local_out (packets orginating from this host )
551  *		o fwd_in  (packets forwarded by this m/c - inbound)
552  *		o fwd_out (packets forwarded by this m/c - outbound)
553  * Hooks at these callout points can be enabled/disabled using the ndd variable
554  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
555  * By default all the callout positions are enabled.
556  *
557  * Outbound (local_out)
558  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
559  *
560  * Inbound (local_in)
561  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
562  *
563  * Forwarding (in and out)
564  * Hooks are placed in ire_recv_forward_v4/v6.
565  *
566  * IP Policy Framework processing (IPPF processing)
567  * Policy processing for a packet is initiated by ip_process, which ascertains
568  * that the classifier (ipgpc) is loaded and configured, failing which the
569  * packet resumes normal processing in IP. If the clasifier is present, the
570  * packet is acted upon by one or more IPQoS modules (action instances), per
571  * filters configured in ipgpc and resumes normal IP processing thereafter.
572  * An action instance can drop a packet in course of its processing.
573  *
574  * Zones notes:
575  *
576  * The partitioning rules for networking are as follows:
577  * 1) Packets coming from a zone must have a source address belonging to that
578  * zone.
579  * 2) Packets coming from a zone can only be sent on a physical interface on
580  * which the zone has an IP address.
581  * 3) Between two zones on the same machine, packet delivery is only allowed if
582  * there's a matching route for the destination and zone in the forwarding
583  * table.
584  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
585  * different zones can bind to the same port with the wildcard address
586  * (INADDR_ANY).
587  *
588  * The granularity of interface partitioning is at the logical interface level.
589  * Therefore, every zone has its own IP addresses, and incoming packets can be
590  * attributed to a zone unambiguously. A logical interface is placed into a zone
591  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
592  * structure. Rule (1) is implemented by modifying the source address selection
593  * algorithm so that the list of eligible addresses is filtered based on the
594  * sending process zone.
595  *
596  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
597  * across all zones, depending on their type. Here is the break-up:
598  *
599  * IRE type				Shared/exclusive
600  * --------				----------------
601  * IRE_BROADCAST			Exclusive
602  * IRE_DEFAULT (default routes)		Shared (*)
603  * IRE_LOCAL				Exclusive (x)
604  * IRE_LOOPBACK				Exclusive
605  * IRE_PREFIX (net routes)		Shared (*)
606  * IRE_IF_NORESOLVER (interface routes)	Exclusive
607  * IRE_IF_RESOLVER (interface routes)	Exclusive
608  * IRE_IF_CLONE (interface routes)	Exclusive
609  * IRE_HOST (host routes)		Shared (*)
610  *
611  * (*) A zone can only use a default or off-subnet route if the gateway is
612  * directly reachable from the zone, that is, if the gateway's address matches
613  * one of the zone's logical interfaces.
614  *
615  * (x) IRE_LOCAL are handled a bit differently.
616  * When ip_restrict_interzone_loopback is set (the default),
617  * ire_route_recursive restricts loopback using an IRE_LOCAL
618  * between zone to the case when L2 would have conceptually looped the packet
619  * back, i.e. the loopback which is required since neither Ethernet drivers
620  * nor Ethernet hardware loops them back. This is the case when the normal
621  * routes (ignoring IREs with different zoneids) would send out the packet on
622  * the same ill as the ill with which is IRE_LOCAL is associated.
623  *
624  * Multiple zones can share a common broadcast address; typically all zones
625  * share the 255.255.255.255 address. Incoming as well as locally originated
626  * broadcast packets must be dispatched to all the zones on the broadcast
627  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
628  * since some zones may not be on the 10.16.72/24 network. To handle this, each
629  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
630  * sent to every zone that has an IRE_BROADCAST entry for the destination
631  * address on the input ill, see ip_input_broadcast().
632  *
633  * Applications in different zones can join the same multicast group address.
634  * The same logic applies for multicast as for broadcast. ip_input_multicast
635  * dispatches packets to all zones that have members on the physical interface.
636  */
637 
638 /*
639  * Squeue Fanout flags:
640  *	0: No fanout.
641  *	1: Fanout across all squeues
642  */
643 boolean_t	ip_squeue_fanout = 0;
644 
645 /*
646  * Maximum dups allowed per packet.
647  */
648 uint_t ip_max_frag_dups = 10;
649 
650 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
651 		    cred_t *credp, boolean_t isv6);
652 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
653 
654 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
655 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
656 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
657     ip_recv_attr_t *);
658 static void	icmp_options_update(ipha_t *);
659 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
660 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
661 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
662 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
663     ip_recv_attr_t *);
664 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
665 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
666     ip_recv_attr_t *);
667 
668 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
669 char		*ip_dot_addr(ipaddr_t, char *);
670 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
671 static char	*ip_dot_saddr(uchar_t *, char *);
672 static int	ip_lrput(queue_t *, mblk_t *);
673 ipaddr_t	ip_net_mask(ipaddr_t);
674 char		*ip_nv_lookup(nv_t *, int);
675 int		ip_rput(queue_t *, mblk_t *);
676 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
677 		    void *dummy_arg);
678 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
679 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
680 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
681 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
682 		    ip_stack_t *, boolean_t);
683 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
684 		    boolean_t);
685 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
688 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
689 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
690 		    ip_stack_t *ipst, boolean_t);
691 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
692 		    ip_stack_t *ipst, boolean_t);
693 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
694 		    ip_stack_t *ipst);
695 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
696 		    ip_stack_t *ipst);
697 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
698 		    ip_stack_t *ipst);
699 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
700 		    ip_stack_t *ipst);
701 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
702 		    ip_stack_t *ipst);
703 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
704 		    ip_stack_t *ipst);
705 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
706 		    ip_stack_t *ipst);
707 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
708 		    ip_stack_t *ipst);
709 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
710 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
711 static void	ip_snmp_get2_v4_media(ncec_t *, void *);
712 static void	ip_snmp_get2_v6_media(ncec_t *, void *);
713 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
714 
715 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
716 		    mblk_t *);
717 
718 static void	conn_drain_init(ip_stack_t *);
719 static void	conn_drain_fini(ip_stack_t *);
720 static void	conn_drain(conn_t *connp, boolean_t closing);
721 
722 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
723 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
724 
725 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
726 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
727 static void	ip_stack_fini(netstackid_t stackid, void *arg);
728 
729 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
730     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
731     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
732     const in6_addr_t *);
733 
734 static int	ip_squeue_switch(int);
735 
736 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
737 static void	ip_kstat_fini(netstackid_t, kstat_t *);
738 static int	ip_kstat_update(kstat_t *kp, int rw);
739 static void	*icmp_kstat_init(netstackid_t);
740 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
741 static int	icmp_kstat_update(kstat_t *kp, int rw);
742 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
743 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
744 
745 static void	ipobs_init(ip_stack_t *);
746 static void	ipobs_fini(ip_stack_t *);
747 
748 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
749 
750 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
751 
752 static long ip_rput_pullups;
753 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
754 
755 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
756 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
757 
758 int	ip_debug;
759 
760 /*
761  * Multirouting/CGTP stuff
762  */
763 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
764 
765 /*
766  * IP tunables related declarations. Definitions are in ip_tunables.c
767  */
768 extern mod_prop_info_t ip_propinfo_tbl[];
769 extern int ip_propinfo_count;
770 
771 /*
772  * Table of IP ioctls encoding the various properties of the ioctl and
773  * indexed based on the last byte of the ioctl command. Occasionally there
774  * is a clash, and there is more than 1 ioctl with the same last byte.
775  * In such a case 1 ioctl is encoded in the ndx table and the remaining
776  * ioctls are encoded in the misc table. An entry in the ndx table is
777  * retrieved by indexing on the last byte of the ioctl command and comparing
778  * the ioctl command with the value in the ndx table. In the event of a
779  * mismatch the misc table is then searched sequentially for the desired
780  * ioctl command.
781  *
782  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
783  */
784 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
785 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
795 
796 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
797 			MISC_CMD, ip_siocaddrt, NULL },
798 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
799 			MISC_CMD, ip_siocdelrt, NULL },
800 
801 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
802 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
803 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
804 			IF_CMD, ip_sioctl_get_addr, NULL },
805 
806 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
807 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
808 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
809 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
810 
811 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
812 			IPI_PRIV | IPI_WR,
813 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
814 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
815 			IPI_MODOK | IPI_GET_CMD,
816 			IF_CMD, ip_sioctl_get_flags, NULL },
817 
818 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
819 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
820 
821 	/* copyin size cannot be coded for SIOCGIFCONF */
822 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
823 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
824 
825 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
826 			IF_CMD, ip_sioctl_mtu, NULL },
827 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
828 			IF_CMD, ip_sioctl_get_mtu, NULL },
829 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
830 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
831 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
832 			IF_CMD, ip_sioctl_brdaddr, NULL },
833 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
834 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
835 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
836 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
837 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
838 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
839 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
840 			IF_CMD, ip_sioctl_metric, NULL },
841 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
842 
843 	/* See 166-168 below for extended SIOC*XARP ioctls */
844 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
845 			ARP_CMD, ip_sioctl_arp, NULL },
846 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
847 			ARP_CMD, ip_sioctl_arp, NULL },
848 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
849 			ARP_CMD, ip_sioctl_arp, NULL },
850 
851 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
872 
873 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
874 			MISC_CMD, if_unitsel, if_unitsel_restart },
875 
876 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
894 
895 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
896 			IPI_PRIV | IPI_WR | IPI_MODOK,
897 			IF_CMD, ip_sioctl_sifname, NULL },
898 
899 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
912 
913 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
914 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
915 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
916 			IF_CMD, ip_sioctl_get_muxid, NULL },
917 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
918 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
919 
920 	/* Both if and lif variants share same func */
921 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
922 			IF_CMD, ip_sioctl_get_lifindex, NULL },
923 	/* Both if and lif variants share same func */
924 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
925 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
926 
927 	/* copyin size cannot be coded for SIOCGIFCONF */
928 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
929 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
930 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
947 
948 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
949 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
950 			ip_sioctl_removeif_restart },
951 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
952 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
953 			LIF_CMD, ip_sioctl_addif, NULL },
954 #define	SIOCLIFADDR_NDX 112
955 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
956 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
957 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
958 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
959 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
960 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
961 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
962 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
963 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
964 			IPI_PRIV | IPI_WR,
965 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
966 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
967 			IPI_GET_CMD | IPI_MODOK,
968 			LIF_CMD, ip_sioctl_get_flags, NULL },
969 
970 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
971 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
972 
973 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
974 			ip_sioctl_get_lifconf, NULL },
975 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
976 			LIF_CMD, ip_sioctl_mtu, NULL },
977 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
978 			LIF_CMD, ip_sioctl_get_mtu, NULL },
979 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
980 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
981 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
982 			LIF_CMD, ip_sioctl_brdaddr, NULL },
983 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
984 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
985 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
986 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
987 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
988 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
989 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
990 			LIF_CMD, ip_sioctl_metric, NULL },
991 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
992 			IPI_PRIV | IPI_WR | IPI_MODOK,
993 			LIF_CMD, ip_sioctl_slifname,
994 			ip_sioctl_slifname_restart },
995 
996 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
997 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
998 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
999 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
1000 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1001 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1002 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1003 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1004 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1005 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1006 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1007 			LIF_CMD, ip_sioctl_token, NULL },
1008 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1009 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1010 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1011 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1012 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1013 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1014 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1015 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1016 
1017 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1018 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1019 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1020 			LIF_CMD, ip_siocdelndp_v6, NULL },
1021 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1022 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1023 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1024 			LIF_CMD, ip_siocsetndp_v6, NULL },
1025 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1027 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1028 			MISC_CMD, ip_sioctl_tonlink, NULL },
1029 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1030 			MISC_CMD, ip_sioctl_tmysite, NULL },
1031 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1033 
1034 	/* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1035 	/* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 	/* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 	/* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039 
1040 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1041 
1042 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1043 			LIF_CMD, ip_sioctl_get_binding, NULL },
1044 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1045 			IPI_PRIV | IPI_WR,
1046 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1047 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1048 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1049 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1050 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1051 
1052 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1053 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 
1057 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1058 
1059 	/* These are handled in ip_sioctl_copyin_setup itself */
1060 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1061 			MISC_CMD, NULL, NULL },
1062 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1063 			MISC_CMD, NULL, NULL },
1064 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1065 
1066 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1067 			ip_sioctl_get_lifconf, NULL },
1068 
1069 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1070 			XARP_CMD, ip_sioctl_arp, NULL },
1071 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1072 			XARP_CMD, ip_sioctl_arp, NULL },
1073 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1074 			XARP_CMD, ip_sioctl_arp, NULL },
1075 
1076 	/* SIOCPOPSOCKFS is not handled by IP */
1077 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1078 
1079 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1080 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1081 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1082 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1083 			ip_sioctl_slifzone_restart },
1084 	/* 172-174 are SCTP ioctls and not handled by IP */
1085 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1088 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1089 			IPI_GET_CMD, LIF_CMD,
1090 			ip_sioctl_get_lifusesrc, 0 },
1091 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1092 			IPI_PRIV | IPI_WR,
1093 			LIF_CMD, ip_sioctl_slifusesrc,
1094 			NULL },
1095 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1096 			ip_sioctl_get_lifsrcof, NULL },
1097 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1098 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1100 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1102 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1104 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1105 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1106 	/* SIOCSENABLESDP is handled by SDP */
1107 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1108 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1109 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1110 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1111 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1112 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1113 			ip_sioctl_ilb_cmd, NULL },
1114 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1115 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1116 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1117 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1118 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1119 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1120 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1121 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1122 };
1123 
1124 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1125 
1126 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1127 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131 	{ ND_GET,	0, 0, 0, NULL, NULL },
1132 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1133 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1134 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1135 		MISC_CMD, mrt_ioctl},
1136 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1137 		MISC_CMD, mrt_ioctl},
1138 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1139 		MISC_CMD, mrt_ioctl}
1140 };
1141 
1142 int ip_misc_ioctl_count =
1143     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1144 
1145 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1146 					/* Settable in /etc/system */
1147 /* Defined in ip_ire.c */
1148 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1149 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1150 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1151 
1152 static nv_t	ire_nv_arr[] = {
1153 	{ IRE_BROADCAST, "BROADCAST" },
1154 	{ IRE_LOCAL, "LOCAL" },
1155 	{ IRE_LOOPBACK, "LOOPBACK" },
1156 	{ IRE_DEFAULT, "DEFAULT" },
1157 	{ IRE_PREFIX, "PREFIX" },
1158 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1159 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1160 	{ IRE_IF_CLONE, "IF_CLONE" },
1161 	{ IRE_HOST, "HOST" },
1162 	{ IRE_MULTICAST, "MULTICAST" },
1163 	{ IRE_NOROUTE, "NOROUTE" },
1164 	{ 0 }
1165 };
1166 
1167 nv_t	*ire_nv_tbl = ire_nv_arr;
1168 
1169 /* Simple ICMP IP Header Template */
1170 static ipha_t icmp_ipha = {
1171 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1172 };
1173 
1174 struct module_info ip_mod_info = {
1175 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1176 	IP_MOD_LOWAT
1177 };
1178 
1179 /*
1180  * Duplicate static symbols within a module confuses mdb; so we avoid the
1181  * problem by making the symbols here distinct from those in udp.c.
1182  */
1183 
1184 /*
1185  * Entry points for IP as a device and as a module.
1186  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1187  */
1188 static struct qinit iprinitv4 = {
1189 	ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1190 };
1191 
1192 struct qinit iprinitv6 = {
1193 	ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1194 };
1195 
1196 static struct qinit ipwinit = {
1197 	ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1198 };
1199 
1200 static struct qinit iplrinit = {
1201 	ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1202 };
1203 
1204 static struct qinit iplwinit = {
1205 	ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1206 };
1207 
1208 /* For AF_INET aka /dev/ip */
1209 struct streamtab ipinfov4 = {
1210 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1211 };
1212 
1213 /* For AF_INET6 aka /dev/ip6 */
1214 struct streamtab ipinfov6 = {
1215 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1216 };
1217 
1218 #ifdef	DEBUG
1219 boolean_t skip_sctp_cksum = B_FALSE;
1220 #endif
1221 
1222 /*
1223  * Generate an ICMP fragmentation needed message.
1224  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1225  * constructed by the caller.
1226  */
1227 void
1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1229 {
1230 	icmph_t	icmph;
1231 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1232 
1233 	mp = icmp_pkt_err_ok(mp, ira);
1234 	if (mp == NULL)
1235 		return;
1236 
1237 	bzero(&icmph, sizeof (icmph_t));
1238 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1239 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1240 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1241 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1242 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1243 
1244 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1245 }
1246 
1247 /*
1248  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1249  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1250  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1251  * Likewise, if the ICMP error is misformed (too short, etc), then it
1252  * returns NULL. The caller uses this to determine whether or not to send
1253  * to raw sockets.
1254  *
1255  * All error messages are passed to the matching transport stream.
1256  *
1257  * The following cases are handled by icmp_inbound:
1258  * 1) It needs to send a reply back and possibly delivering it
1259  *    to the "interested" upper clients.
1260  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1261  * 3) It needs to change some values in IP only.
1262  * 4) It needs to change some values in IP and upper layers e.g TCP
1263  *    by delivering an error to the upper layers.
1264  *
1265  * We handle the above three cases in the context of IPsec in the
1266  * following way :
1267  *
1268  * 1) Send the reply back in the same way as the request came in.
1269  *    If it came in encrypted, it goes out encrypted. If it came in
1270  *    clear, it goes out in clear. Thus, this will prevent chosen
1271  *    plain text attack.
1272  * 2) The client may or may not expect things to come in secure.
1273  *    If it comes in secure, the policy constraints are checked
1274  *    before delivering it to the upper layers. If it comes in
1275  *    clear, ipsec_inbound_accept_clear will decide whether to
1276  *    accept this in clear or not. In both the cases, if the returned
1277  *    message (IP header + 8 bytes) that caused the icmp message has
1278  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1279  *    sending up. If there are only 8 bytes of returned message, then
1280  *    upper client will not be notified.
1281  * 3) Check with global policy to see whether it matches the constaints.
1282  *    But this will be done only if icmp_accept_messages_in_clear is
1283  *    zero.
1284  * 4) If we need to change both in IP and ULP, then the decision taken
1285  *    while affecting the values in IP and while delivering up to TCP
1286  *    should be the same.
1287  *
1288  *	There are two cases.
1289  *
1290  *	a) If we reject data at the IP layer (ipsec_check_global_policy()
1291  *	   failed), we will not deliver it to the ULP, even though they
1292  *	   are *willing* to accept in *clear*. This is fine as our global
1293  *	   disposition to icmp messages asks us reject the datagram.
1294  *
1295  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1296  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1297  *	   to deliver it to ULP (policy failed), it can lead to
1298  *	   consistency problems. The cases known at this time are
1299  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1300  *	   values :
1301  *
1302  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1303  *	     and Upper layer rejects. Then the communication will
1304  *	     come to a stop. This is solved by making similar decisions
1305  *	     at both levels. Currently, when we are unable to deliver
1306  *	     to the Upper Layer (due to policy failures) while IP has
1307  *	     adjusted dce_pmtu, the next outbound datagram would
1308  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1309  *	     will be with the right level of protection. Thus the right
1310  *	     value will be communicated even if we are not able to
1311  *	     communicate when we get from the wire initially. But this
1312  *	     assumes there would be at least one outbound datagram after
1313  *	     IP has adjusted its dce_pmtu value. To make things
1314  *	     simpler, we accept in clear after the validation of
1315  *	     AH/ESP headers.
1316  *
1317  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1318  *	     upper layer depending on the level of protection the upper
1319  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1320  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1321  *	     should be accepted in clear when the Upper layer expects secure.
1322  *	     Thus the communication may get aborted by some bad ICMP
1323  *	     packets.
1324  */
1325 mblk_t *
1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1327 {
1328 	icmph_t		*icmph;
1329 	ipha_t		*ipha;		/* Outer header */
1330 	int		ip_hdr_length;	/* Outer header length */
1331 	boolean_t	interested;
1332 	ipif_t		*ipif;
1333 	uint32_t	ts;
1334 	uint32_t	*tsp;
1335 	timestruc_t	now;
1336 	ill_t		*ill = ira->ira_ill;
1337 	ip_stack_t	*ipst = ill->ill_ipst;
1338 	zoneid_t	zoneid = ira->ira_zoneid;
1339 	int		len_needed;
1340 	mblk_t		*mp_ret = NULL;
1341 
1342 	ipha = (ipha_t *)mp->b_rptr;
1343 
1344 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1345 
1346 	ip_hdr_length = ira->ira_ip_hdr_length;
1347 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1348 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1349 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1350 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1351 			freemsg(mp);
1352 			return (NULL);
1353 		}
1354 		/* Last chance to get real. */
1355 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1356 		if (ipha == NULL) {
1357 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1358 			freemsg(mp);
1359 			return (NULL);
1360 		}
1361 	}
1362 
1363 	/* The IP header will always be a multiple of four bytes */
1364 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1365 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1366 	    icmph->icmph_code));
1367 
1368 	/*
1369 	 * We will set "interested" to "true" if we should pass a copy to
1370 	 * the transport or if we handle the packet locally.
1371 	 */
1372 	interested = B_FALSE;
1373 	switch (icmph->icmph_type) {
1374 	case ICMP_ECHO_REPLY:
1375 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1376 		break;
1377 	case ICMP_DEST_UNREACHABLE:
1378 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1379 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1380 		interested = B_TRUE;	/* Pass up to transport */
1381 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1382 		break;
1383 	case ICMP_SOURCE_QUENCH:
1384 		interested = B_TRUE;	/* Pass up to transport */
1385 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1386 		break;
1387 	case ICMP_REDIRECT:
1388 		if (!ipst->ips_ip_ignore_redirect)
1389 			interested = B_TRUE;
1390 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1391 		break;
1392 	case ICMP_ECHO_REQUEST:
1393 		/*
1394 		 * Whether to respond to echo requests that come in as IP
1395 		 * broadcasts or as IP multicast is subject to debate
1396 		 * (what isn't?).  We aim to please, you pick it.
1397 		 * Default is do it.
1398 		 */
1399 		if (ira->ira_flags & IRAF_MULTICAST) {
1400 			/* multicast: respond based on tunable */
1401 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1402 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1403 			/* broadcast: respond based on tunable */
1404 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1405 		} else {
1406 			/* unicast: always respond */
1407 			interested = B_TRUE;
1408 		}
1409 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1410 		if (!interested) {
1411 			/* We never pass these to RAW sockets */
1412 			freemsg(mp);
1413 			return (NULL);
1414 		}
1415 
1416 		/* Check db_ref to make sure we can modify the packet. */
1417 		if (mp->b_datap->db_ref > 1) {
1418 			mblk_t	*mp1;
1419 
1420 			mp1 = copymsg(mp);
1421 			freemsg(mp);
1422 			if (!mp1) {
1423 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1424 				return (NULL);
1425 			}
1426 			mp = mp1;
1427 			ipha = (ipha_t *)mp->b_rptr;
1428 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1429 		}
1430 		icmph->icmph_type = ICMP_ECHO_REPLY;
1431 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1432 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1433 		return (NULL);
1434 
1435 	case ICMP_ROUTER_ADVERTISEMENT:
1436 	case ICMP_ROUTER_SOLICITATION:
1437 		break;
1438 	case ICMP_TIME_EXCEEDED:
1439 		interested = B_TRUE;	/* Pass up to transport */
1440 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1441 		break;
1442 	case ICMP_PARAM_PROBLEM:
1443 		interested = B_TRUE;	/* Pass up to transport */
1444 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1445 		break;
1446 	case ICMP_TIME_STAMP_REQUEST:
1447 		/* Response to Time Stamp Requests is local policy. */
1448 		if (ipst->ips_ip_g_resp_to_timestamp) {
1449 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1450 				interested =
1451 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1452 			else
1453 				interested = B_TRUE;
1454 		}
1455 		if (!interested) {
1456 			/* We never pass these to RAW sockets */
1457 			freemsg(mp);
1458 			return (NULL);
1459 		}
1460 
1461 		/* Make sure we have enough of the packet */
1462 		len_needed = ip_hdr_length + ICMPH_SIZE +
1463 		    3 * sizeof (uint32_t);
1464 
1465 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1466 			ipha = ip_pullup(mp, len_needed, ira);
1467 			if (ipha == NULL) {
1468 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1469 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1470 				    mp, ill);
1471 				freemsg(mp);
1472 				return (NULL);
1473 			}
1474 			/* Refresh following the pullup. */
1475 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1476 		}
1477 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1478 		/* Check db_ref to make sure we can modify the packet. */
1479 		if (mp->b_datap->db_ref > 1) {
1480 			mblk_t	*mp1;
1481 
1482 			mp1 = copymsg(mp);
1483 			freemsg(mp);
1484 			if (!mp1) {
1485 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1486 				return (NULL);
1487 			}
1488 			mp = mp1;
1489 			ipha = (ipha_t *)mp->b_rptr;
1490 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1491 		}
1492 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1493 		tsp = (uint32_t *)&icmph[1];
1494 		tsp++;		/* Skip past 'originate time' */
1495 		/* Compute # of milliseconds since midnight */
1496 		gethrestime(&now);
1497 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1498 		    NSEC2MSEC(now.tv_nsec);
1499 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1500 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1501 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1502 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1503 		return (NULL);
1504 
1505 	case ICMP_TIME_STAMP_REPLY:
1506 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1507 		break;
1508 	case ICMP_INFO_REQUEST:
1509 		/* Per RFC 1122 3.2.2.7, ignore this. */
1510 	case ICMP_INFO_REPLY:
1511 		break;
1512 	case ICMP_ADDRESS_MASK_REQUEST:
1513 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1514 			interested =
1515 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1516 		} else {
1517 			interested = B_TRUE;
1518 		}
1519 		if (!interested) {
1520 			/* We never pass these to RAW sockets */
1521 			freemsg(mp);
1522 			return (NULL);
1523 		}
1524 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1525 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1526 			ipha = ip_pullup(mp, len_needed, ira);
1527 			if (ipha == NULL) {
1528 				BUMP_MIB(ill->ill_ip_mib,
1529 				    ipIfStatsInTruncatedPkts);
1530 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1531 				    ill);
1532 				freemsg(mp);
1533 				return (NULL);
1534 			}
1535 			/* Refresh following the pullup. */
1536 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1537 		}
1538 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1539 		/* Check db_ref to make sure we can modify the packet. */
1540 		if (mp->b_datap->db_ref > 1) {
1541 			mblk_t	*mp1;
1542 
1543 			mp1 = copymsg(mp);
1544 			freemsg(mp);
1545 			if (!mp1) {
1546 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1547 				return (NULL);
1548 			}
1549 			mp = mp1;
1550 			ipha = (ipha_t *)mp->b_rptr;
1551 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1552 		}
1553 		/*
1554 		 * Need the ipif with the mask be the same as the source
1555 		 * address of the mask reply. For unicast we have a specific
1556 		 * ipif. For multicast/broadcast we only handle onlink
1557 		 * senders, and use the source address to pick an ipif.
1558 		 */
1559 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1560 		if (ipif == NULL) {
1561 			/* Broadcast or multicast */
1562 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1563 			if (ipif == NULL) {
1564 				freemsg(mp);
1565 				return (NULL);
1566 			}
1567 		}
1568 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1569 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1570 		ipif_refrele(ipif);
1571 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1572 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1573 		return (NULL);
1574 
1575 	case ICMP_ADDRESS_MASK_REPLY:
1576 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1577 		break;
1578 	default:
1579 		interested = B_TRUE;	/* Pass up to transport */
1580 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1581 		break;
1582 	}
1583 	/*
1584 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1585 	 * if there isn't one.
1586 	 */
1587 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1588 		/* If there is an ICMP client and we want one too, copy it. */
1589 
1590 		if (!interested) {
1591 			/* Caller will deliver to RAW sockets */
1592 			return (mp);
1593 		}
1594 		mp_ret = copymsg(mp);
1595 		if (mp_ret == NULL) {
1596 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1597 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1598 		}
1599 	} else if (!interested) {
1600 		/* Neither we nor raw sockets are interested. Drop packet now */
1601 		freemsg(mp);
1602 		return (NULL);
1603 	}
1604 
1605 	/*
1606 	 * ICMP error or redirect packet. Make sure we have enough of
1607 	 * the header and that db_ref == 1 since we might end up modifying
1608 	 * the packet.
1609 	 */
1610 	if (mp->b_cont != NULL) {
1611 		if (ip_pullup(mp, -1, ira) == NULL) {
1612 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1613 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1614 			    mp, ill);
1615 			freemsg(mp);
1616 			return (mp_ret);
1617 		}
1618 	}
1619 
1620 	if (mp->b_datap->db_ref > 1) {
1621 		mblk_t	*mp1;
1622 
1623 		mp1 = copymsg(mp);
1624 		if (mp1 == NULL) {
1625 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1626 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1627 			freemsg(mp);
1628 			return (mp_ret);
1629 		}
1630 		freemsg(mp);
1631 		mp = mp1;
1632 	}
1633 
1634 	/*
1635 	 * In case mp has changed, verify the message before any further
1636 	 * processes.
1637 	 */
1638 	ipha = (ipha_t *)mp->b_rptr;
1639 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1640 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1641 		freemsg(mp);
1642 		return (mp_ret);
1643 	}
1644 
1645 	switch (icmph->icmph_type) {
1646 	case ICMP_REDIRECT:
1647 		icmp_redirect_v4(mp, ipha, icmph, ira);
1648 		break;
1649 	case ICMP_DEST_UNREACHABLE:
1650 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1651 			/* Update DCE and adjust MTU is icmp header if needed */
1652 			icmp_inbound_too_big_v4(icmph, ira);
1653 		}
1654 		/* FALLTHROUGH */
1655 	default:
1656 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1657 		break;
1658 	}
1659 	return (mp_ret);
1660 }
1661 
1662 /*
1663  * Send an ICMP echo, timestamp or address mask reply.
1664  * The caller has already updated the payload part of the packet.
1665  * We handle the ICMP checksum, IP source address selection and feed
1666  * the packet into ip_output_simple.
1667  */
1668 static void
1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1670     ip_recv_attr_t *ira)
1671 {
1672 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1673 	ill_t		*ill = ira->ira_ill;
1674 	ip_stack_t	*ipst = ill->ill_ipst;
1675 	ip_xmit_attr_t	ixas;
1676 
1677 	/* Send out an ICMP packet */
1678 	icmph->icmph_checksum = 0;
1679 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1680 	/* Reset time to live. */
1681 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1682 	{
1683 		/* Swap source and destination addresses */
1684 		ipaddr_t tmp;
1685 
1686 		tmp = ipha->ipha_src;
1687 		ipha->ipha_src = ipha->ipha_dst;
1688 		ipha->ipha_dst = tmp;
1689 	}
1690 	ipha->ipha_ident = 0;
1691 	if (!IS_SIMPLE_IPH(ipha))
1692 		icmp_options_update(ipha);
1693 
1694 	bzero(&ixas, sizeof (ixas));
1695 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1696 	ixas.ixa_zoneid = ira->ira_zoneid;
1697 	ixas.ixa_cred = kcred;
1698 	ixas.ixa_cpid = NOPID;
1699 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1700 	ixas.ixa_ifindex = 0;
1701 	ixas.ixa_ipst = ipst;
1702 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1703 
1704 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1705 		/*
1706 		 * This packet should go out the same way as it
1707 		 * came in i.e in clear, independent of the IPsec policy
1708 		 * for transmitting packets.
1709 		 */
1710 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1711 	} else {
1712 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1713 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1714 			/* Note: mp already consumed and ip_drop_packet done */
1715 			return;
1716 		}
1717 	}
1718 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1719 		/*
1720 		 * Not one or our addresses (IRE_LOCALs), thus we let
1721 		 * ip_output_simple pick the source.
1722 		 */
1723 		ipha->ipha_src = INADDR_ANY;
1724 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1725 	}
1726 	/* Should we send with DF and use dce_pmtu? */
1727 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1728 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1729 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1730 	}
1731 
1732 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1733 
1734 	(void) ip_output_simple(mp, &ixas);
1735 	ixa_cleanup(&ixas);
1736 }
1737 
1738 /*
1739  * Verify the ICMP messages for either for ICMP error or redirect packet.
1740  * The caller should have fully pulled up the message. If it's a redirect
1741  * packet, only basic checks on IP header will be done; otherwise, verify
1742  * the packet by looking at the included ULP header.
1743  *
1744  * Called before icmp_inbound_error_fanout_v4 is called.
1745  */
1746 static boolean_t
1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1748 {
1749 	ill_t		*ill = ira->ira_ill;
1750 	int		hdr_length;
1751 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1752 	conn_t		*connp;
1753 	ipha_t		*ipha;	/* Inner IP header */
1754 
1755 	ipha = (ipha_t *)&icmph[1];
1756 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1757 		goto truncated;
1758 
1759 	hdr_length = IPH_HDR_LENGTH(ipha);
1760 
1761 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1762 		goto discard_pkt;
1763 
1764 	if (hdr_length < sizeof (ipha_t))
1765 		goto truncated;
1766 
1767 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1768 		goto truncated;
1769 
1770 	/*
1771 	 * Stop here for ICMP_REDIRECT.
1772 	 */
1773 	if (icmph->icmph_type == ICMP_REDIRECT)
1774 		return (B_TRUE);
1775 
1776 	/*
1777 	 * ICMP errors only.
1778 	 */
1779 	switch (ipha->ipha_protocol) {
1780 	case IPPROTO_UDP:
1781 		/*
1782 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1783 		 * transport header.
1784 		 */
1785 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1786 		    mp->b_wptr)
1787 			goto truncated;
1788 		break;
1789 	case IPPROTO_TCP: {
1790 		tcpha_t		*tcpha;
1791 
1792 		/*
1793 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1794 		 * transport header.
1795 		 */
1796 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1797 		    mp->b_wptr)
1798 			goto truncated;
1799 
1800 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1801 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1802 		    ipst);
1803 		if (connp == NULL)
1804 			goto discard_pkt;
1805 
1806 		if ((connp->conn_verifyicmp != NULL) &&
1807 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1808 			CONN_DEC_REF(connp);
1809 			goto discard_pkt;
1810 		}
1811 		CONN_DEC_REF(connp);
1812 		break;
1813 	}
1814 	case IPPROTO_SCTP:
1815 		/*
1816 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1817 		 * transport header.
1818 		 */
1819 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1820 		    mp->b_wptr)
1821 			goto truncated;
1822 		break;
1823 	case IPPROTO_ESP:
1824 	case IPPROTO_AH:
1825 		break;
1826 	case IPPROTO_ENCAP:
1827 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1828 		    mp->b_wptr)
1829 			goto truncated;
1830 		break;
1831 	default:
1832 		break;
1833 	}
1834 
1835 	return (B_TRUE);
1836 
1837 discard_pkt:
1838 	/* Bogus ICMP error. */
1839 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1840 	return (B_FALSE);
1841 
1842 truncated:
1843 	/* We pulled up everthing already. Must be truncated */
1844 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1845 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1846 	return (B_FALSE);
1847 }
1848 
1849 /* Table from RFC 1191 */
1850 static int icmp_frag_size_table[] =
1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1852 
1853 /*
1854  * Process received ICMP Packet too big.
1855  * Just handles the DCE create/update, including using the above table of
1856  * PMTU guesses. The caller is responsible for validating the packet before
1857  * passing it in and also to fanout the ICMP error to any matching transport
1858  * conns. Assumes the message has been fully pulled up and verified.
1859  *
1860  * Before getting here, the caller has called icmp_inbound_verify_v4()
1861  * that should have verified with ULP to prevent undoing the changes we're
1862  * going to make to DCE. For example, TCP might have verified that the packet
1863  * which generated error is in the send window.
1864  *
1865  * In some cases modified this MTU in the ICMP header packet; the caller
1866  * should pass to the matching ULP after this returns.
1867  */
1868 static void
1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1870 {
1871 	dce_t		*dce;
1872 	int		old_mtu;
1873 	int		mtu, orig_mtu;
1874 	ipaddr_t	dst;
1875 	boolean_t	disable_pmtud;
1876 	ill_t		*ill = ira->ira_ill;
1877 	ip_stack_t	*ipst = ill->ill_ipst;
1878 	uint_t		hdr_length;
1879 	ipha_t		*ipha;
1880 
1881 	/* Caller already pulled up everything. */
1882 	ipha = (ipha_t *)&icmph[1];
1883 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1884 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1885 	ASSERT(ill != NULL);
1886 
1887 	hdr_length = IPH_HDR_LENGTH(ipha);
1888 
1889 	/*
1890 	 * We handle path MTU for source routed packets since the DCE
1891 	 * is looked up using the final destination.
1892 	 */
1893 	dst = ip_get_dst(ipha);
1894 
1895 	dce = dce_lookup_and_add_v4(dst, ipst);
1896 	if (dce == NULL) {
1897 		/* Couldn't add a unique one - ENOMEM */
1898 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1899 		    ntohl(dst)));
1900 		return;
1901 	}
1902 
1903 	/* Check for MTU discovery advice as described in RFC 1191 */
1904 	mtu = ntohs(icmph->icmph_du_mtu);
1905 	orig_mtu = mtu;
1906 	disable_pmtud = B_FALSE;
1907 
1908 	mutex_enter(&dce->dce_lock);
1909 	if (dce->dce_flags & DCEF_PMTU)
1910 		old_mtu = dce->dce_pmtu;
1911 	else
1912 		old_mtu = ill->ill_mtu;
1913 
1914 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1915 		uint32_t length;
1916 		int	i;
1917 
1918 		/*
1919 		 * Use the table from RFC 1191 to figure out
1920 		 * the next "plateau" based on the length in
1921 		 * the original IP packet.
1922 		 */
1923 		length = ntohs(ipha->ipha_length);
1924 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1925 		    uint32_t, length);
1926 		if (old_mtu <= length &&
1927 		    old_mtu >= length - hdr_length) {
1928 			/*
1929 			 * Handle broken BSD 4.2 systems that
1930 			 * return the wrong ipha_length in ICMP
1931 			 * errors.
1932 			 */
1933 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1934 			    length, old_mtu));
1935 			length -= hdr_length;
1936 		}
1937 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1938 			if (length > icmp_frag_size_table[i])
1939 				break;
1940 		}
1941 		if (i == A_CNT(icmp_frag_size_table)) {
1942 			/* Smaller than IP_MIN_MTU! */
1943 			ip1dbg(("Too big for packet size %d\n",
1944 			    length));
1945 			disable_pmtud = B_TRUE;
1946 			mtu = ipst->ips_ip_pmtu_min;
1947 		} else {
1948 			mtu = icmp_frag_size_table[i];
1949 			ip1dbg(("Calculated mtu %d, packet size %d, "
1950 			    "before %d\n", mtu, length, old_mtu));
1951 			if (mtu < ipst->ips_ip_pmtu_min) {
1952 				mtu = ipst->ips_ip_pmtu_min;
1953 				disable_pmtud = B_TRUE;
1954 			}
1955 		}
1956 	}
1957 	if (disable_pmtud)
1958 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1959 	else
1960 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1961 
1962 	dce->dce_pmtu = MIN(old_mtu, mtu);
1963 	/* Prepare to send the new max frag size for the ULP. */
1964 	icmph->icmph_du_zero = 0;
1965 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1966 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1967 	    dce, int, orig_mtu, int, mtu);
1968 
1969 	/* We now have a PMTU for sure */
1970 	dce->dce_flags |= DCEF_PMTU;
1971 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1972 	mutex_exit(&dce->dce_lock);
1973 	/*
1974 	 * After dropping the lock the new value is visible to everyone.
1975 	 * Then we bump the generation number so any cached values reinspect
1976 	 * the dce_t.
1977 	 */
1978 	dce_increment_generation(dce);
1979 	dce_refrele(dce);
1980 }
1981 
1982 /*
1983  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1984  * calls this function.
1985  */
1986 static mblk_t *
1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1988 {
1989 	int length;
1990 
1991 	ASSERT(mp->b_datap->db_type == M_DATA);
1992 
1993 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1994 	ASSERT(mp->b_cont == NULL);
1995 
1996 	/*
1997 	 * The length that we want to overlay is the inner header
1998 	 * and what follows it.
1999 	 */
2000 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2001 
2002 	/*
2003 	 * Overlay the inner header and whatever follows it over the
2004 	 * outer header.
2005 	 */
2006 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2007 
2008 	/* Adjust for what we removed */
2009 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2010 	return (mp);
2011 }
2012 
2013 /*
2014  * Try to pass the ICMP message upstream in case the ULP cares.
2015  *
2016  * If the packet that caused the ICMP error is secure, we send
2017  * it to AH/ESP to make sure that the attached packet has a
2018  * valid association. ipha in the code below points to the
2019  * IP header of the packet that caused the error.
2020  *
2021  * For IPsec cases, we let the next-layer-up (which has access to
2022  * cached policy on the conn_t, or can query the SPD directly)
2023  * subtract out any IPsec overhead if they must.  We therefore make no
2024  * adjustments here for IPsec overhead.
2025  *
2026  * IFN could have been generated locally or by some router.
2027  *
2028  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2029  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2030  *	    This happens because IP adjusted its value of MTU on an
2031  *	    earlier IFN message and could not tell the upper layer,
2032  *	    the new adjusted value of MTU e.g. Packet was encrypted
2033  *	    or there was not enough information to fanout to upper
2034  *	    layers. Thus on the next outbound datagram, ire_send_wire
2035  *	    generates the IFN, where IPsec processing has *not* been
2036  *	    done.
2037  *
2038  *	    Note that we retain ixa_fragsize across IPsec thus once
2039  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2040  *	    no change the fragsize even if the path MTU changes before
2041  *	    we reach ip_output_post_ipsec.
2042  *
2043  *	    In the local case, IRAF_LOOPBACK will be set indicating
2044  *	    that IFN was generated locally.
2045  *
2046  * ROUTER : IFN could be secure or non-secure.
2047  *
2048  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2049  *	      packet in error has AH/ESP headers to validate the AH/ESP
2050  *	      headers. AH/ESP will verify whether there is a valid SA or
2051  *	      not and send it back. We will fanout again if we have more
2052  *	      data in the packet.
2053  *
2054  *	      If the packet in error does not have AH/ESP, we handle it
2055  *	      like any other case.
2056  *
2057  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2058  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2059  *	      valid SA or not and send it back. We will fanout again if
2060  *	      we have more data in the packet.
2061  *
2062  *	      If the packet in error does not have AH/ESP, we handle it
2063  *	      like any other case.
2064  *
2065  * The caller must have called icmp_inbound_verify_v4.
2066  */
2067 static void
2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2069 {
2070 	uint16_t	*up;	/* Pointer to ports in ULP header */
2071 	uint32_t	ports;	/* reversed ports for fanout */
2072 	ipha_t		ripha;	/* With reversed addresses */
2073 	ipha_t		*ipha;  /* Inner IP header */
2074 	uint_t		hdr_length; /* Inner IP header length */
2075 	tcpha_t		*tcpha;
2076 	conn_t		*connp;
2077 	ill_t		*ill = ira->ira_ill;
2078 	ip_stack_t	*ipst = ill->ill_ipst;
2079 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2080 	ill_t		*rill = ira->ira_rill;
2081 
2082 	/* Caller already pulled up everything. */
2083 	ipha = (ipha_t *)&icmph[1];
2084 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2085 	ASSERT(mp->b_cont == NULL);
2086 
2087 	hdr_length = IPH_HDR_LENGTH(ipha);
2088 	ira->ira_protocol = ipha->ipha_protocol;
2089 
2090 	/*
2091 	 * We need a separate IP header with the source and destination
2092 	 * addresses reversed to do fanout/classification because the ipha in
2093 	 * the ICMP error is in the form we sent it out.
2094 	 */
2095 	ripha.ipha_src = ipha->ipha_dst;
2096 	ripha.ipha_dst = ipha->ipha_src;
2097 	ripha.ipha_protocol = ipha->ipha_protocol;
2098 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2099 
2100 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2101 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2102 	    ntohl(ipha->ipha_dst),
2103 	    icmph->icmph_type, icmph->icmph_code));
2104 
2105 	switch (ipha->ipha_protocol) {
2106 	case IPPROTO_UDP:
2107 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2108 
2109 		/* Attempt to find a client stream based on port. */
2110 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2111 		    ntohs(up[0]), ntohs(up[1])));
2112 
2113 		/* Note that we send error to all matches. */
2114 		ira->ira_flags |= IRAF_ICMP_ERROR;
2115 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2116 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2117 		return;
2118 
2119 	case IPPROTO_TCP:
2120 		/*
2121 		 * Find a TCP client stream for this packet.
2122 		 * Note that we do a reverse lookup since the header is
2123 		 * in the form we sent it out.
2124 		 */
2125 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2126 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2127 		    ipst);
2128 		if (connp == NULL)
2129 			goto discard_pkt;
2130 
2131 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2132 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2133 			mp = ipsec_check_inbound_policy(mp, connp,
2134 			    ipha, NULL, ira);
2135 			if (mp == NULL) {
2136 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2137 				/* Note that mp is NULL */
2138 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2139 				CONN_DEC_REF(connp);
2140 				return;
2141 			}
2142 		}
2143 
2144 		ira->ira_flags |= IRAF_ICMP_ERROR;
2145 		ira->ira_ill = ira->ira_rill = NULL;
2146 		if (IPCL_IS_TCP(connp)) {
2147 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2148 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2149 			    SQTAG_TCP_INPUT_ICMP_ERR);
2150 		} else {
2151 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2152 			(connp->conn_recv)(connp, mp, NULL, ira);
2153 			CONN_DEC_REF(connp);
2154 		}
2155 		ira->ira_ill = ill;
2156 		ira->ira_rill = rill;
2157 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2158 		return;
2159 
2160 	case IPPROTO_SCTP:
2161 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2162 		/* Find a SCTP client stream for this packet. */
2163 		((uint16_t *)&ports)[0] = up[1];
2164 		((uint16_t *)&ports)[1] = up[0];
2165 
2166 		ira->ira_flags |= IRAF_ICMP_ERROR;
2167 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2168 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2169 		return;
2170 
2171 	case IPPROTO_ESP:
2172 	case IPPROTO_AH:
2173 		if (!ipsec_loaded(ipss)) {
2174 			ip_proto_not_sup(mp, ira);
2175 			return;
2176 		}
2177 
2178 		if (ipha->ipha_protocol == IPPROTO_ESP)
2179 			mp = ipsecesp_icmp_error(mp, ira);
2180 		else
2181 			mp = ipsecah_icmp_error(mp, ira);
2182 		if (mp == NULL)
2183 			return;
2184 
2185 		/* Just in case ipsec didn't preserve the NULL b_cont */
2186 		if (mp->b_cont != NULL) {
2187 			if (!pullupmsg(mp, -1))
2188 				goto discard_pkt;
2189 		}
2190 
2191 		/*
2192 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2193 		 * correct, but we don't use them any more here.
2194 		 *
2195 		 * If succesful, the mp has been modified to not include
2196 		 * the ESP/AH header so we can fanout to the ULP's icmp
2197 		 * error handler.
2198 		 */
2199 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2200 			goto truncated;
2201 
2202 		/* Verify the modified message before any further processes. */
2203 		ipha = (ipha_t *)mp->b_rptr;
2204 		hdr_length = IPH_HDR_LENGTH(ipha);
2205 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2206 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2207 			freemsg(mp);
2208 			return;
2209 		}
2210 
2211 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2212 		return;
2213 
2214 	case IPPROTO_ENCAP: {
2215 		/* Look for self-encapsulated packets that caused an error */
2216 		ipha_t *in_ipha;
2217 
2218 		/*
2219 		 * Caller has verified that length has to be
2220 		 * at least the size of IP header.
2221 		 */
2222 		ASSERT(hdr_length >= sizeof (ipha_t));
2223 		/*
2224 		 * Check the sanity of the inner IP header like
2225 		 * we did for the outer header.
2226 		 */
2227 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2228 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2229 			goto discard_pkt;
2230 		}
2231 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2232 			goto discard_pkt;
2233 		}
2234 		/* Check for Self-encapsulated tunnels */
2235 		if (in_ipha->ipha_src == ipha->ipha_src &&
2236 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2237 
2238 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2239 			    in_ipha);
2240 			if (mp == NULL)
2241 				goto discard_pkt;
2242 
2243 			/*
2244 			 * Just in case self_encap didn't preserve the NULL
2245 			 * b_cont
2246 			 */
2247 			if (mp->b_cont != NULL) {
2248 				if (!pullupmsg(mp, -1))
2249 					goto discard_pkt;
2250 			}
2251 			/*
2252 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2253 			 * longer correct, but we don't use them any more here.
2254 			 */
2255 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2256 				goto truncated;
2257 
2258 			/*
2259 			 * Verify the modified message before any further
2260 			 * processes.
2261 			 */
2262 			ipha = (ipha_t *)mp->b_rptr;
2263 			hdr_length = IPH_HDR_LENGTH(ipha);
2264 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2265 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2266 				freemsg(mp);
2267 				return;
2268 			}
2269 
2270 			/*
2271 			 * The packet in error is self-encapsualted.
2272 			 * And we are finding it further encapsulated
2273 			 * which we could not have possibly generated.
2274 			 */
2275 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2276 				goto discard_pkt;
2277 			}
2278 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2279 			return;
2280 		}
2281 		/* No self-encapsulated */
2282 	}
2283 	/* FALLTHROUGH */
2284 	case IPPROTO_IPV6:
2285 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2286 		    &ripha.ipha_dst, ipst)) != NULL) {
2287 			ira->ira_flags |= IRAF_ICMP_ERROR;
2288 			connp->conn_recvicmp(connp, mp, NULL, ira);
2289 			CONN_DEC_REF(connp);
2290 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2291 			return;
2292 		}
2293 		/*
2294 		 * No IP tunnel is interested, fallthrough and see
2295 		 * if a raw socket will want it.
2296 		 */
2297 		/* FALLTHROUGH */
2298 	default:
2299 		ira->ira_flags |= IRAF_ICMP_ERROR;
2300 		ip_fanout_proto_v4(mp, &ripha, ira);
2301 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2302 		return;
2303 	}
2304 	/* NOTREACHED */
2305 discard_pkt:
2306 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2307 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2308 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2309 	freemsg(mp);
2310 	return;
2311 
2312 truncated:
2313 	/* We pulled up everthing already. Must be truncated */
2314 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2315 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2316 	freemsg(mp);
2317 }
2318 
2319 /*
2320  * Common IP options parser.
2321  *
2322  * Setup routine: fill in *optp with options-parsing state, then
2323  * tail-call ipoptp_next to return the first option.
2324  */
2325 uint8_t
2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2327 {
2328 	uint32_t totallen; /* total length of all options */
2329 
2330 	totallen = ipha->ipha_version_and_hdr_length -
2331 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2332 	totallen <<= 2;
2333 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2334 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2335 	optp->ipoptp_flags = 0;
2336 	return (ipoptp_next(optp));
2337 }
2338 
2339 /* Like above but without an ipha_t */
2340 uint8_t
2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2342 {
2343 	optp->ipoptp_next = opt;
2344 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2345 	optp->ipoptp_flags = 0;
2346 	return (ipoptp_next(optp));
2347 }
2348 
2349 /*
2350  * Common IP options parser: extract next option.
2351  */
2352 uint8_t
2353 ipoptp_next(ipoptp_t *optp)
2354 {
2355 	uint8_t *end = optp->ipoptp_end;
2356 	uint8_t *cur = optp->ipoptp_next;
2357 	uint8_t opt, len, pointer;
2358 
2359 	/*
2360 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2361 	 * has been corrupted.
2362 	 */
2363 	ASSERT(cur <= end);
2364 
2365 	if (cur == end)
2366 		return (IPOPT_EOL);
2367 
2368 	opt = cur[IPOPT_OPTVAL];
2369 
2370 	/*
2371 	 * Skip any NOP options.
2372 	 */
2373 	while (opt == IPOPT_NOP) {
2374 		cur++;
2375 		if (cur == end)
2376 			return (IPOPT_EOL);
2377 		opt = cur[IPOPT_OPTVAL];
2378 	}
2379 
2380 	if (opt == IPOPT_EOL)
2381 		return (IPOPT_EOL);
2382 
2383 	/*
2384 	 * Option requiring a length.
2385 	 */
2386 	if ((cur + 1) >= end) {
2387 		optp->ipoptp_flags |= IPOPTP_ERROR;
2388 		return (IPOPT_EOL);
2389 	}
2390 	len = cur[IPOPT_OLEN];
2391 	if (len < 2) {
2392 		optp->ipoptp_flags |= IPOPTP_ERROR;
2393 		return (IPOPT_EOL);
2394 	}
2395 	optp->ipoptp_cur = cur;
2396 	optp->ipoptp_len = len;
2397 	optp->ipoptp_next = cur + len;
2398 	if (cur + len > end) {
2399 		optp->ipoptp_flags |= IPOPTP_ERROR;
2400 		return (IPOPT_EOL);
2401 	}
2402 
2403 	/*
2404 	 * For the options which require a pointer field, make sure
2405 	 * its there, and make sure it points to either something
2406 	 * inside this option, or the end of the option.
2407 	 */
2408 	pointer = IPOPT_EOL;
2409 	switch (opt) {
2410 	case IPOPT_RR:
2411 	case IPOPT_TS:
2412 	case IPOPT_LSRR:
2413 	case IPOPT_SSRR:
2414 		if (len <= IPOPT_OFFSET) {
2415 			optp->ipoptp_flags |= IPOPTP_ERROR;
2416 			return (opt);
2417 		}
2418 		pointer = cur[IPOPT_OFFSET];
2419 		if (pointer - 1 > len) {
2420 			optp->ipoptp_flags |= IPOPTP_ERROR;
2421 			return (opt);
2422 		}
2423 		break;
2424 	}
2425 
2426 	/*
2427 	 * Sanity check the pointer field based on the type of the
2428 	 * option.
2429 	 */
2430 	switch (opt) {
2431 	case IPOPT_RR:
2432 	case IPOPT_SSRR:
2433 	case IPOPT_LSRR:
2434 		if (pointer < IPOPT_MINOFF_SR)
2435 			optp->ipoptp_flags |= IPOPTP_ERROR;
2436 		break;
2437 	case IPOPT_TS:
2438 		if (pointer < IPOPT_MINOFF_IT)
2439 			optp->ipoptp_flags |= IPOPTP_ERROR;
2440 		/*
2441 		 * Note that the Internet Timestamp option also
2442 		 * contains two four bit fields (the Overflow field,
2443 		 * and the Flag field), which follow the pointer
2444 		 * field.  We don't need to check that these fields
2445 		 * fall within the length of the option because this
2446 		 * was implicitely done above.  We've checked that the
2447 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2448 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2449 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2450 		 */
2451 		ASSERT(len > IPOPT_POS_OV_FLG);
2452 		break;
2453 	}
2454 
2455 	return (opt);
2456 }
2457 
2458 /*
2459  * Use the outgoing IP header to create an IP_OPTIONS option the way
2460  * it was passed down from the application.
2461  *
2462  * This is compatible with BSD in that it returns
2463  * the reverse source route with the final destination
2464  * as the last entry. The first 4 bytes of the option
2465  * will contain the final destination.
2466  */
2467 int
2468 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2469 {
2470 	ipoptp_t	opts;
2471 	uchar_t		*opt;
2472 	uint8_t		optval;
2473 	uint8_t		optlen;
2474 	uint32_t	len = 0;
2475 	uchar_t		*buf1 = buf;
2476 	uint32_t	totallen;
2477 	ipaddr_t	dst;
2478 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2479 
2480 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2481 		return (0);
2482 
2483 	totallen = ipp->ipp_ipv4_options_len;
2484 	if (totallen & 0x3)
2485 		return (0);
2486 
2487 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2488 	len += IP_ADDR_LEN;
2489 	bzero(buf1, IP_ADDR_LEN);
2490 
2491 	dst = connp->conn_faddr_v4;
2492 
2493 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2494 	    optval != IPOPT_EOL;
2495 	    optval = ipoptp_next(&opts)) {
2496 		int	off;
2497 
2498 		opt = opts.ipoptp_cur;
2499 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2500 			break;
2501 		}
2502 		optlen = opts.ipoptp_len;
2503 
2504 		switch (optval) {
2505 		case IPOPT_SSRR:
2506 		case IPOPT_LSRR:
2507 
2508 			/*
2509 			 * Insert destination as the first entry in the source
2510 			 * route and move down the entries on step.
2511 			 * The last entry gets placed at buf1.
2512 			 */
2513 			buf[IPOPT_OPTVAL] = optval;
2514 			buf[IPOPT_OLEN] = optlen;
2515 			buf[IPOPT_OFFSET] = optlen;
2516 
2517 			off = optlen - IP_ADDR_LEN;
2518 			if (off < 0) {
2519 				/* No entries in source route */
2520 				break;
2521 			}
2522 			/* Last entry in source route if not already set */
2523 			if (dst == INADDR_ANY)
2524 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2525 			off -= IP_ADDR_LEN;
2526 
2527 			while (off > 0) {
2528 				bcopy(opt + off,
2529 				    buf + off + IP_ADDR_LEN,
2530 				    IP_ADDR_LEN);
2531 				off -= IP_ADDR_LEN;
2532 			}
2533 			/* ipha_dst into first slot */
2534 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2535 			    IP_ADDR_LEN);
2536 			buf += optlen;
2537 			len += optlen;
2538 			break;
2539 
2540 		default:
2541 			bcopy(opt, buf, optlen);
2542 			buf += optlen;
2543 			len += optlen;
2544 			break;
2545 		}
2546 	}
2547 done:
2548 	/* Pad the resulting options */
2549 	while (len & 0x3) {
2550 		*buf++ = IPOPT_EOL;
2551 		len++;
2552 	}
2553 	return (len);
2554 }
2555 
2556 /*
2557  * Update any record route or timestamp options to include this host.
2558  * Reverse any source route option.
2559  * This routine assumes that the options are well formed i.e. that they
2560  * have already been checked.
2561  */
2562 static void
2563 icmp_options_update(ipha_t *ipha)
2564 {
2565 	ipoptp_t	opts;
2566 	uchar_t		*opt;
2567 	uint8_t		optval;
2568 	ipaddr_t	src;		/* Our local address */
2569 	ipaddr_t	dst;
2570 
2571 	ip2dbg(("icmp_options_update\n"));
2572 	src = ipha->ipha_src;
2573 	dst = ipha->ipha_dst;
2574 
2575 	for (optval = ipoptp_first(&opts, ipha);
2576 	    optval != IPOPT_EOL;
2577 	    optval = ipoptp_next(&opts)) {
2578 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2579 		opt = opts.ipoptp_cur;
2580 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2581 		    optval, opts.ipoptp_len));
2582 		switch (optval) {
2583 			int off1, off2;
2584 		case IPOPT_SSRR:
2585 		case IPOPT_LSRR:
2586 			/*
2587 			 * Reverse the source route.  The first entry
2588 			 * should be the next to last one in the current
2589 			 * source route (the last entry is our address).
2590 			 * The last entry should be the final destination.
2591 			 */
2592 			off1 = IPOPT_MINOFF_SR - 1;
2593 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2594 			if (off2 < 0) {
2595 				/* No entries in source route */
2596 				ip1dbg((
2597 				    "icmp_options_update: bad src route\n"));
2598 				break;
2599 			}
2600 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2601 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2602 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2603 			off2 -= IP_ADDR_LEN;
2604 
2605 			while (off1 < off2) {
2606 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2607 				bcopy((char *)opt + off2, (char *)opt + off1,
2608 				    IP_ADDR_LEN);
2609 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2610 				off1 += IP_ADDR_LEN;
2611 				off2 -= IP_ADDR_LEN;
2612 			}
2613 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2614 			break;
2615 		}
2616 	}
2617 }
2618 
2619 /*
2620  * Process received ICMP Redirect messages.
2621  * Assumes the caller has verified that the headers are in the pulled up mblk.
2622  * Consumes mp.
2623  */
2624 static void
2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2626 {
2627 	ire_t		*ire, *nire;
2628 	ire_t		*prev_ire;
2629 	ipaddr_t	src, dst, gateway;
2630 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2631 	ipha_t		*inner_ipha;	/* Inner IP header */
2632 
2633 	/* Caller already pulled up everything. */
2634 	inner_ipha = (ipha_t *)&icmph[1];
2635 	src = ipha->ipha_src;
2636 	dst = inner_ipha->ipha_dst;
2637 	gateway = icmph->icmph_rd_gateway;
2638 	/* Make sure the new gateway is reachable somehow. */
2639 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2640 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2641 	/*
2642 	 * Make sure we had a route for the dest in question and that
2643 	 * that route was pointing to the old gateway (the source of the
2644 	 * redirect packet.)
2645 	 * We do longest match and then compare ire_gateway_addr below.
2646 	 */
2647 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2648 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2649 	/*
2650 	 * Check that
2651 	 *	the redirect was not from ourselves
2652 	 *	the new gateway and the old gateway are directly reachable
2653 	 */
2654 	if (prev_ire == NULL || ire == NULL ||
2655 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2656 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2657 	    !(ire->ire_type & IRE_IF_ALL) ||
2658 	    prev_ire->ire_gateway_addr != src) {
2659 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2660 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2661 		freemsg(mp);
2662 		if (ire != NULL)
2663 			ire_refrele(ire);
2664 		if (prev_ire != NULL)
2665 			ire_refrele(prev_ire);
2666 		return;
2667 	}
2668 
2669 	ire_refrele(prev_ire);
2670 	ire_refrele(ire);
2671 
2672 	/*
2673 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2674 	 * require TOS routing
2675 	 */
2676 	switch (icmph->icmph_code) {
2677 	case 0:
2678 	case 1:
2679 		/* TODO: TOS specificity for cases 2 and 3 */
2680 	case 2:
2681 	case 3:
2682 		break;
2683 	default:
2684 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2685 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2686 		freemsg(mp);
2687 		return;
2688 	}
2689 	/*
2690 	 * Create a Route Association.  This will allow us to remember that
2691 	 * someone we believe told us to use the particular gateway.
2692 	 */
2693 	ire = ire_create(
2694 	    (uchar_t *)&dst,			/* dest addr */
2695 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2696 	    (uchar_t *)&gateway,		/* gateway addr */
2697 	    IRE_HOST,
2698 	    NULL,				/* ill */
2699 	    ALL_ZONES,
2700 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2701 	    NULL,				/* tsol_gc_t */
2702 	    ipst);
2703 
2704 	if (ire == NULL) {
2705 		freemsg(mp);
2706 		return;
2707 	}
2708 	nire = ire_add(ire);
2709 	/* Check if it was a duplicate entry */
2710 	if (nire != NULL && nire != ire) {
2711 		ASSERT(nire->ire_identical_ref > 1);
2712 		ire_delete(nire);
2713 		ire_refrele(nire);
2714 		nire = NULL;
2715 	}
2716 	ire = nire;
2717 	if (ire != NULL) {
2718 		ire_refrele(ire);		/* Held in ire_add */
2719 
2720 		/* tell routing sockets that we received a redirect */
2721 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2722 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2723 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2724 	}
2725 
2726 	/*
2727 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2728 	 * This together with the added IRE has the effect of
2729 	 * modifying an existing redirect.
2730 	 */
2731 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2732 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2733 	if (prev_ire != NULL) {
2734 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2735 			ire_delete(prev_ire);
2736 		ire_refrele(prev_ire);
2737 	}
2738 
2739 	freemsg(mp);
2740 }
2741 
2742 /*
2743  * Generate an ICMP parameter problem message.
2744  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2745  * constructed by the caller.
2746  */
2747 static void
2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2749 {
2750 	icmph_t	icmph;
2751 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2752 
2753 	mp = icmp_pkt_err_ok(mp, ira);
2754 	if (mp == NULL)
2755 		return;
2756 
2757 	bzero(&icmph, sizeof (icmph_t));
2758 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2759 	icmph.icmph_pp_ptr = ptr;
2760 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2761 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2762 }
2763 
2764 /*
2765  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2766  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2767  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2768  * an icmp error packet can be sent.
2769  * Assigns an appropriate source address to the packet. If ipha_dst is
2770  * one of our addresses use it for source. Otherwise let ip_output_simple
2771  * pick the source address.
2772  */
2773 static void
2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2775 {
2776 	ipaddr_t dst;
2777 	icmph_t	*icmph;
2778 	ipha_t	*ipha;
2779 	uint_t	len_needed;
2780 	size_t	msg_len;
2781 	mblk_t	*mp1;
2782 	ipaddr_t src;
2783 	ire_t	*ire;
2784 	ip_xmit_attr_t ixas;
2785 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2786 
2787 	ipha = (ipha_t *)mp->b_rptr;
2788 
2789 	bzero(&ixas, sizeof (ixas));
2790 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2791 	ixas.ixa_zoneid = ira->ira_zoneid;
2792 	ixas.ixa_ifindex = 0;
2793 	ixas.ixa_ipst = ipst;
2794 	ixas.ixa_cred = kcred;
2795 	ixas.ixa_cpid = NOPID;
2796 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2797 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2798 
2799 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2800 		/*
2801 		 * Apply IPsec based on how IPsec was applied to
2802 		 * the packet that had the error.
2803 		 *
2804 		 * If it was an outbound packet that caused the ICMP
2805 		 * error, then the caller will have setup the IRA
2806 		 * appropriately.
2807 		 */
2808 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2809 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2810 			/* Note: mp already consumed and ip_drop_packet done */
2811 			return;
2812 		}
2813 	} else {
2814 		/*
2815 		 * This is in clear. The icmp message we are building
2816 		 * here should go out in clear, independent of our policy.
2817 		 */
2818 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2819 	}
2820 
2821 	/* Remember our eventual destination */
2822 	dst = ipha->ipha_src;
2823 
2824 	/*
2825 	 * If the packet was for one of our unicast addresses, make
2826 	 * sure we respond with that as the source. Otherwise
2827 	 * have ip_output_simple pick the source address.
2828 	 */
2829 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2830 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2831 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2832 	if (ire != NULL) {
2833 		ire_refrele(ire);
2834 		src = ipha->ipha_dst;
2835 	} else {
2836 		src = INADDR_ANY;
2837 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2838 	}
2839 
2840 	/*
2841 	 * Check if we can send back more then 8 bytes in addition to
2842 	 * the IP header.  We try to send 64 bytes of data and the internal
2843 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2844 	 */
2845 	len_needed = IPH_HDR_LENGTH(ipha);
2846 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2847 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2848 		if (!pullupmsg(mp, -1)) {
2849 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2850 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2851 			freemsg(mp);
2852 			return;
2853 		}
2854 		ipha = (ipha_t *)mp->b_rptr;
2855 
2856 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2857 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2858 			    len_needed));
2859 		} else {
2860 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2861 
2862 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2863 			len_needed += ip_hdr_length_v6(mp, ip6h);
2864 		}
2865 	}
2866 	len_needed += ipst->ips_ip_icmp_return;
2867 	msg_len = msgdsize(mp);
2868 	if (msg_len > len_needed) {
2869 		(void) adjmsg(mp, len_needed - msg_len);
2870 		msg_len = len_needed;
2871 	}
2872 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2873 	if (mp1 == NULL) {
2874 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2875 		freemsg(mp);
2876 		return;
2877 	}
2878 	mp1->b_cont = mp;
2879 	mp = mp1;
2880 
2881 	/*
2882 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2883 	 * node generates be accepted in peace by all on-host destinations.
2884 	 * If we do NOT assume that all on-host destinations trust
2885 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2886 	 * (Look for IXAF_TRUSTED_ICMP).
2887 	 */
2888 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2889 
2890 	ipha = (ipha_t *)mp->b_rptr;
2891 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2892 	*ipha = icmp_ipha;
2893 	ipha->ipha_src = src;
2894 	ipha->ipha_dst = dst;
2895 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2896 	msg_len += sizeof (icmp_ipha) + len;
2897 	if (msg_len > IP_MAXPACKET) {
2898 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2899 		msg_len = IP_MAXPACKET;
2900 	}
2901 	ipha->ipha_length = htons((uint16_t)msg_len);
2902 	icmph = (icmph_t *)&ipha[1];
2903 	bcopy(stuff, icmph, len);
2904 	icmph->icmph_checksum = 0;
2905 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2906 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2907 
2908 	(void) ip_output_simple(mp, &ixas);
2909 	ixa_cleanup(&ixas);
2910 }
2911 
2912 /*
2913  * Determine if an ICMP error packet can be sent given the rate limit.
2914  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2915  * in milliseconds) and a burst size. Burst size number of packets can
2916  * be sent arbitrarely closely spaced.
2917  * The state is tracked using two variables to implement an approximate
2918  * token bucket filter:
2919  *	icmp_pkt_err_last - lbolt value when the last burst started
2920  *	icmp_pkt_err_sent - number of packets sent in current burst
2921  */
2922 boolean_t
2923 icmp_err_rate_limit(ip_stack_t *ipst)
2924 {
2925 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2926 	uint_t refilled; /* Number of packets refilled in tbf since last */
2927 	/* Guard against changes by loading into local variable */
2928 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2929 
2930 	if (err_interval == 0)
2931 		return (B_FALSE);
2932 
2933 	if (ipst->ips_icmp_pkt_err_last > now) {
2934 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2935 		ipst->ips_icmp_pkt_err_last = 0;
2936 		ipst->ips_icmp_pkt_err_sent = 0;
2937 	}
2938 	/*
2939 	 * If we are in a burst update the token bucket filter.
2940 	 * Update the "last" time to be close to "now" but make sure
2941 	 * we don't loose precision.
2942 	 */
2943 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2944 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2945 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2946 			ipst->ips_icmp_pkt_err_sent = 0;
2947 		} else {
2948 			ipst->ips_icmp_pkt_err_sent -= refilled;
2949 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2950 		}
2951 	}
2952 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2953 		/* Start of new burst */
2954 		ipst->ips_icmp_pkt_err_last = now;
2955 	}
2956 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2957 		ipst->ips_icmp_pkt_err_sent++;
2958 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2959 		    ipst->ips_icmp_pkt_err_sent));
2960 		return (B_FALSE);
2961 	}
2962 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2963 	return (B_TRUE);
2964 }
2965 
2966 /*
2967  * Check if it is ok to send an IPv4 ICMP error packet in
2968  * response to the IPv4 packet in mp.
2969  * Free the message and return null if no
2970  * ICMP error packet should be sent.
2971  */
2972 static mblk_t *
2973 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2974 {
2975 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2976 	icmph_t	*icmph;
2977 	ipha_t	*ipha;
2978 	uint_t	len_needed;
2979 
2980 	if (!mp)
2981 		return (NULL);
2982 	ipha = (ipha_t *)mp->b_rptr;
2983 	if (ip_csum_hdr(ipha)) {
2984 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2985 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2986 		freemsg(mp);
2987 		return (NULL);
2988 	}
2989 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2990 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2991 	    CLASSD(ipha->ipha_dst) ||
2992 	    CLASSD(ipha->ipha_src) ||
2993 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2994 		/* Note: only errors to the fragment with offset 0 */
2995 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2996 		freemsg(mp);
2997 		return (NULL);
2998 	}
2999 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3000 		/*
3001 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3002 		 * errors in response to any ICMP errors.
3003 		 */
3004 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3005 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3006 			if (!pullupmsg(mp, len_needed)) {
3007 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3008 				freemsg(mp);
3009 				return (NULL);
3010 			}
3011 			ipha = (ipha_t *)mp->b_rptr;
3012 		}
3013 		icmph = (icmph_t *)
3014 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3015 		switch (icmph->icmph_type) {
3016 		case ICMP_DEST_UNREACHABLE:
3017 		case ICMP_SOURCE_QUENCH:
3018 		case ICMP_TIME_EXCEEDED:
3019 		case ICMP_PARAM_PROBLEM:
3020 		case ICMP_REDIRECT:
3021 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3022 			freemsg(mp);
3023 			return (NULL);
3024 		default:
3025 			break;
3026 		}
3027 	}
3028 	/*
3029 	 * If this is a labeled system, then check to see if we're allowed to
3030 	 * send a response to this particular sender.  If not, then just drop.
3031 	 */
3032 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3033 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3034 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3035 		freemsg(mp);
3036 		return (NULL);
3037 	}
3038 	if (icmp_err_rate_limit(ipst)) {
3039 		/*
3040 		 * Only send ICMP error packets every so often.
3041 		 * This should be done on a per port/source basis,
3042 		 * but for now this will suffice.
3043 		 */
3044 		freemsg(mp);
3045 		return (NULL);
3046 	}
3047 	return (mp);
3048 }
3049 
3050 /*
3051  * Called when a packet was sent out the same link that it arrived on.
3052  * Check if it is ok to send a redirect and then send it.
3053  */
3054 void
3055 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3056     ip_recv_attr_t *ira)
3057 {
3058 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3059 	ipaddr_t	src, nhop;
3060 	mblk_t		*mp1;
3061 	ire_t		*nhop_ire;
3062 
3063 	/*
3064 	 * Check the source address to see if it originated
3065 	 * on the same logical subnet it is going back out on.
3066 	 * If so, we should be able to send it a redirect.
3067 	 * Avoid sending a redirect if the destination
3068 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3069 	 * or if the packet was source routed out this interface.
3070 	 *
3071 	 * We avoid sending a redirect if the
3072 	 * destination is directly connected
3073 	 * because it is possible that multiple
3074 	 * IP subnets may have been configured on
3075 	 * the link, and the source may not
3076 	 * be on the same subnet as ip destination,
3077 	 * even though they are on the same
3078 	 * physical link.
3079 	 */
3080 	if ((ire->ire_type & IRE_ONLINK) ||
3081 	    ip_source_routed(ipha, ipst))
3082 		return;
3083 
3084 	nhop_ire = ire_nexthop(ire);
3085 	if (nhop_ire == NULL)
3086 		return;
3087 
3088 	nhop = nhop_ire->ire_addr;
3089 
3090 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3091 		ire_t	*ire2;
3092 
3093 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3094 		mutex_enter(&nhop_ire->ire_lock);
3095 		ire2 = nhop_ire->ire_dep_parent;
3096 		if (ire2 != NULL)
3097 			ire_refhold(ire2);
3098 		mutex_exit(&nhop_ire->ire_lock);
3099 		ire_refrele(nhop_ire);
3100 		nhop_ire = ire2;
3101 	}
3102 	if (nhop_ire == NULL)
3103 		return;
3104 
3105 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3106 
3107 	src = ipha->ipha_src;
3108 
3109 	/*
3110 	 * We look at the interface ire for the nexthop,
3111 	 * to see if ipha_src is in the same subnet
3112 	 * as the nexthop.
3113 	 */
3114 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3115 		/*
3116 		 * The source is directly connected.
3117 		 */
3118 		mp1 = copymsg(mp);
3119 		if (mp1 != NULL) {
3120 			icmp_send_redirect(mp1, nhop, ira);
3121 		}
3122 	}
3123 	ire_refrele(nhop_ire);
3124 }
3125 
3126 /*
3127  * Generate an ICMP redirect message.
3128  */
3129 static void
3130 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3131 {
3132 	icmph_t	icmph;
3133 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3134 
3135 	mp = icmp_pkt_err_ok(mp, ira);
3136 	if (mp == NULL)
3137 		return;
3138 
3139 	bzero(&icmph, sizeof (icmph_t));
3140 	icmph.icmph_type = ICMP_REDIRECT;
3141 	icmph.icmph_code = 1;
3142 	icmph.icmph_rd_gateway = gateway;
3143 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3144 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3145 }
3146 
3147 /*
3148  * Generate an ICMP time exceeded message.
3149  */
3150 void
3151 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3152 {
3153 	icmph_t	icmph;
3154 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3155 
3156 	mp = icmp_pkt_err_ok(mp, ira);
3157 	if (mp == NULL)
3158 		return;
3159 
3160 	bzero(&icmph, sizeof (icmph_t));
3161 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3162 	icmph.icmph_code = code;
3163 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3164 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3165 }
3166 
3167 /*
3168  * Generate an ICMP unreachable message.
3169  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3170  * constructed by the caller.
3171  */
3172 void
3173 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3174 {
3175 	icmph_t	icmph;
3176 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3177 
3178 	mp = icmp_pkt_err_ok(mp, ira);
3179 	if (mp == NULL)
3180 		return;
3181 
3182 	bzero(&icmph, sizeof (icmph_t));
3183 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3184 	icmph.icmph_code = code;
3185 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3186 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3187 }
3188 
3189 /*
3190  * Latch in the IPsec state for a stream based the policy in the listener
3191  * and the actions in the ip_recv_attr_t.
3192  * Called directly from TCP and SCTP.
3193  */
3194 boolean_t
3195 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3196 {
3197 	ASSERT(lconnp->conn_policy != NULL);
3198 	ASSERT(connp->conn_policy == NULL);
3199 
3200 	IPPH_REFHOLD(lconnp->conn_policy);
3201 	connp->conn_policy = lconnp->conn_policy;
3202 
3203 	if (ira->ira_ipsec_action != NULL) {
3204 		if (connp->conn_latch == NULL) {
3205 			connp->conn_latch = iplatch_create();
3206 			if (connp->conn_latch == NULL)
3207 				return (B_FALSE);
3208 		}
3209 		ipsec_latch_inbound(connp, ira);
3210 	}
3211 	return (B_TRUE);
3212 }
3213 
3214 /*
3215  * Verify whether or not the IP address is a valid local address.
3216  * Could be a unicast, including one for a down interface.
3217  * If allow_mcbc then a multicast or broadcast address is also
3218  * acceptable.
3219  *
3220  * In the case of a broadcast/multicast address, however, the
3221  * upper protocol is expected to reset the src address
3222  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3223  * no packets are emitted with broadcast/multicast address as
3224  * source address (that violates hosts requirements RFC 1122)
3225  * The addresses valid for bind are:
3226  *	(1) - INADDR_ANY (0)
3227  *	(2) - IP address of an UP interface
3228  *	(3) - IP address of a DOWN interface
3229  *	(4) - valid local IP broadcast addresses. In this case
3230  *	the conn will only receive packets destined to
3231  *	the specified broadcast address.
3232  *	(5) - a multicast address. In this case
3233  *	the conn will only receive packets destined to
3234  *	the specified multicast address. Note: the
3235  *	application still has to issue an
3236  *	IP_ADD_MEMBERSHIP socket option.
3237  *
3238  * In all the above cases, the bound address must be valid in the current zone.
3239  * When the address is loopback, multicast or broadcast, there might be many
3240  * matching IREs so bind has to look up based on the zone.
3241  */
3242 ip_laddr_t
3243 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3244     ip_stack_t *ipst, boolean_t allow_mcbc)
3245 {
3246 	ire_t *src_ire;
3247 
3248 	ASSERT(src_addr != INADDR_ANY);
3249 
3250 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3251 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3252 
3253 	/*
3254 	 * If an address other than in6addr_any is requested,
3255 	 * we verify that it is a valid address for bind
3256 	 * Note: Following code is in if-else-if form for
3257 	 * readability compared to a condition check.
3258 	 */
3259 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3260 		/*
3261 		 * (2) Bind to address of local UP interface
3262 		 */
3263 		ire_refrele(src_ire);
3264 		return (IPVL_UNICAST_UP);
3265 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3266 		/*
3267 		 * (4) Bind to broadcast address
3268 		 */
3269 		ire_refrele(src_ire);
3270 		if (allow_mcbc)
3271 			return (IPVL_BCAST);
3272 		else
3273 			return (IPVL_BAD);
3274 	} else if (CLASSD(src_addr)) {
3275 		/* (5) bind to multicast address. */
3276 		if (src_ire != NULL)
3277 			ire_refrele(src_ire);
3278 
3279 		if (allow_mcbc)
3280 			return (IPVL_MCAST);
3281 		else
3282 			return (IPVL_BAD);
3283 	} else {
3284 		ipif_t *ipif;
3285 
3286 		/*
3287 		 * (3) Bind to address of local DOWN interface?
3288 		 * (ipif_lookup_addr() looks up all interfaces
3289 		 * but we do not get here for UP interfaces
3290 		 * - case (2) above)
3291 		 */
3292 		if (src_ire != NULL)
3293 			ire_refrele(src_ire);
3294 
3295 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3296 		if (ipif == NULL)
3297 			return (IPVL_BAD);
3298 
3299 		/* Not a useful source? */
3300 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3301 			ipif_refrele(ipif);
3302 			return (IPVL_BAD);
3303 		}
3304 		ipif_refrele(ipif);
3305 		return (IPVL_UNICAST_DOWN);
3306 	}
3307 }
3308 
3309 /*
3310  * Insert in the bind fanout for IPv4 and IPv6.
3311  * The caller should already have used ip_laddr_verify_v*() before calling
3312  * this.
3313  */
3314 int
3315 ip_laddr_fanout_insert(conn_t *connp)
3316 {
3317 	int		error;
3318 
3319 	/*
3320 	 * Allow setting new policies. For example, disconnects result
3321 	 * in us being called. As we would have set conn_policy_cached
3322 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3323 	 * can change after the disconnect.
3324 	 */
3325 	connp->conn_policy_cached = B_FALSE;
3326 
3327 	error = ipcl_bind_insert(connp);
3328 	if (error != 0) {
3329 		if (connp->conn_anon_port) {
3330 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3331 			    connp->conn_mlp_type, connp->conn_proto,
3332 			    ntohs(connp->conn_lport), B_FALSE);
3333 		}
3334 		connp->conn_mlp_type = mlptSingle;
3335 	}
3336 	return (error);
3337 }
3338 
3339 /*
3340  * Verify that both the source and destination addresses are valid. If
3341  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3342  * i.e. have no route to it.  Protocols like TCP want to verify destination
3343  * reachability, while tunnels do not.
3344  *
3345  * Determine the route, the interface, and (optionally) the source address
3346  * to use to reach a given destination.
3347  * Note that we allow connect to broadcast and multicast addresses when
3348  * IPDF_ALLOW_MCBC is set.
3349  * first_hop and dst_addr are normally the same, but if source routing
3350  * they will differ; in that case the first_hop is what we'll use for the
3351  * routing lookup but the dce and label checks will be done on dst_addr,
3352  *
3353  * If uinfo is set, then we fill in the best available information
3354  * we have for the destination. This is based on (in priority order) any
3355  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3356  * ill_mtu/ill_mc_mtu.
3357  *
3358  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3359  * always do the label check on dst_addr.
3360  */
3361 int
3362 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3363     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3364 {
3365 	ire_t		*ire = NULL;
3366 	int		error = 0;
3367 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3368 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3369 	ip_stack_t	*ipst = ixa->ixa_ipst;
3370 	dce_t		*dce;
3371 	uint_t		pmtu;
3372 	uint_t		generation;
3373 	nce_t		*nce;
3374 	ill_t		*ill = NULL;
3375 	boolean_t	multirt = B_FALSE;
3376 
3377 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3378 
3379 	/*
3380 	 * We never send to zero; the ULPs map it to the loopback address.
3381 	 * We can't allow it since we use zero to mean unitialized in some
3382 	 * places.
3383 	 */
3384 	ASSERT(dst_addr != INADDR_ANY);
3385 
3386 	if (is_system_labeled()) {
3387 		ts_label_t *tsl = NULL;
3388 
3389 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3390 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3391 		if (error != 0)
3392 			return (error);
3393 		if (tsl != NULL) {
3394 			/* Update the label */
3395 			ip_xmit_attr_replace_tsl(ixa, tsl);
3396 		}
3397 	}
3398 
3399 	setsrc = INADDR_ANY;
3400 	/*
3401 	 * Select a route; For IPMP interfaces, we would only select
3402 	 * a "hidden" route (i.e., going through a specific under_ill)
3403 	 * if ixa_ifindex has been specified.
3404 	 */
3405 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3406 	    &generation, &setsrc, &error, &multirt);
3407 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3408 	if (error != 0)
3409 		goto bad_addr;
3410 
3411 	/*
3412 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3413 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3414 	 * Otherwise the destination needn't be reachable.
3415 	 *
3416 	 * If we match on a reject or black hole, then we've got a
3417 	 * local failure.  May as well fail out the connect() attempt,
3418 	 * since it's never going to succeed.
3419 	 */
3420 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3421 		/*
3422 		 * If we're verifying destination reachability, we always want
3423 		 * to complain here.
3424 		 *
3425 		 * If we're not verifying destination reachability but the
3426 		 * destination has a route, we still want to fail on the
3427 		 * temporary address and broadcast address tests.
3428 		 *
3429 		 * In both cases do we let the code continue so some reasonable
3430 		 * information is returned to the caller. That enables the
3431 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3432 		 * use the generation mismatch path to check for the unreachable
3433 		 * case thereby avoiding any specific check in the main path.
3434 		 */
3435 		ASSERT(generation == IRE_GENERATION_VERIFY);
3436 		if (flags & IPDF_VERIFY_DST) {
3437 			/*
3438 			 * Set errno but continue to set up ixa_ire to be
3439 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3440 			 * That allows callers to use ip_output to get an
3441 			 * ICMP error back.
3442 			 */
3443 			if (!(ire->ire_type & IRE_HOST))
3444 				error = ENETUNREACH;
3445 			else
3446 				error = EHOSTUNREACH;
3447 		}
3448 	}
3449 
3450 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3451 	    !(flags & IPDF_ALLOW_MCBC)) {
3452 		ire_refrele(ire);
3453 		ire = ire_reject(ipst, B_FALSE);
3454 		generation = IRE_GENERATION_VERIFY;
3455 		error = ENETUNREACH;
3456 	}
3457 
3458 	/* Cache things */
3459 	if (ixa->ixa_ire != NULL)
3460 		ire_refrele_notr(ixa->ixa_ire);
3461 #ifdef DEBUG
3462 	ire_refhold_notr(ire);
3463 	ire_refrele(ire);
3464 #endif
3465 	ixa->ixa_ire = ire;
3466 	ixa->ixa_ire_generation = generation;
3467 
3468 	/*
3469 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3470 	 * since some callers will send a packet to conn_ip_output() even if
3471 	 * there's an error.
3472 	 */
3473 	if (flags & IPDF_UNIQUE_DCE) {
3474 		/* Fallback to the default dce if allocation fails */
3475 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3476 		if (dce != NULL)
3477 			generation = dce->dce_generation;
3478 		else
3479 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480 	} else {
3481 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482 	}
3483 	ASSERT(dce != NULL);
3484 	if (ixa->ixa_dce != NULL)
3485 		dce_refrele_notr(ixa->ixa_dce);
3486 #ifdef DEBUG
3487 	dce_refhold_notr(dce);
3488 	dce_refrele(dce);
3489 #endif
3490 	ixa->ixa_dce = dce;
3491 	ixa->ixa_dce_generation = generation;
3492 
3493 	/*
3494 	 * For multicast with multirt we have a flag passed back from
3495 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3496 	 * possible multicast address.
3497 	 * We also need a flag for multicast since we can't check
3498 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3499 	 */
3500 	if (multirt) {
3501 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3502 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3503 	} else {
3504 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3505 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3506 	}
3507 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3508 		/* Get an nce to cache. */
3509 		nce = ire_to_nce(ire, firsthop, NULL);
3510 		if (nce == NULL) {
3511 			/* Allocation failure? */
3512 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3513 		} else {
3514 			if (ixa->ixa_nce != NULL)
3515 				nce_refrele(ixa->ixa_nce);
3516 			ixa->ixa_nce = nce;
3517 		}
3518 	}
3519 
3520 	/*
3521 	 * If the source address is a loopback address, the
3522 	 * destination had best be local or multicast.
3523 	 * If we are sending to an IRE_LOCAL using a loopback source then
3524 	 * it had better be the same zoneid.
3525 	 */
3526 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3527 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3528 			ire = NULL;	/* Stored in ixa_ire */
3529 			error = EADDRNOTAVAIL;
3530 			goto bad_addr;
3531 		}
3532 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3533 			ire = NULL;	/* Stored in ixa_ire */
3534 			error = EADDRNOTAVAIL;
3535 			goto bad_addr;
3536 		}
3537 	}
3538 	if (ire->ire_type & IRE_BROADCAST) {
3539 		/*
3540 		 * If the ULP didn't have a specified source, then we
3541 		 * make sure we reselect the source when sending
3542 		 * broadcasts out different interfaces.
3543 		 */
3544 		if (flags & IPDF_SELECT_SRC)
3545 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3546 		else
3547 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3548 	}
3549 
3550 	/*
3551 	 * Does the caller want us to pick a source address?
3552 	 */
3553 	if (flags & IPDF_SELECT_SRC) {
3554 		ipaddr_t	src_addr;
3555 
3556 		/*
3557 		 * We use use ire_nexthop_ill to avoid the under ipmp
3558 		 * interface for source address selection. Note that for ipmp
3559 		 * probe packets, ixa_ifindex would have been specified, and
3560 		 * the ip_select_route() invocation would have picked an ire
3561 		 * will ire_ill pointing at an under interface.
3562 		 */
3563 		ill = ire_nexthop_ill(ire);
3564 
3565 		/* If unreachable we have no ill but need some source */
3566 		if (ill == NULL) {
3567 			src_addr = htonl(INADDR_LOOPBACK);
3568 			/* Make sure we look for a better source address */
3569 			generation = SRC_GENERATION_VERIFY;
3570 		} else {
3571 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3572 			    ixa->ixa_multicast_ifaddr, zoneid,
3573 			    ipst, &src_addr, &generation, NULL);
3574 			if (error != 0) {
3575 				ire = NULL;	/* Stored in ixa_ire */
3576 				goto bad_addr;
3577 			}
3578 		}
3579 
3580 		/*
3581 		 * We allow the source address to to down.
3582 		 * However, we check that we don't use the loopback address
3583 		 * as a source when sending out on the wire.
3584 		 */
3585 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3586 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3587 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3588 			ire = NULL;	/* Stored in ixa_ire */
3589 			error = EADDRNOTAVAIL;
3590 			goto bad_addr;
3591 		}
3592 
3593 		*src_addrp = src_addr;
3594 		ixa->ixa_src_generation = generation;
3595 	}
3596 
3597 	/*
3598 	 * Make sure we don't leave an unreachable ixa_nce in place
3599 	 * since ip_select_route is used when we unplumb i.e., remove
3600 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3601 	 */
3602 	nce = ixa->ixa_nce;
3603 	if (nce != NULL && nce->nce_is_condemned) {
3604 		nce_refrele(nce);
3605 		ixa->ixa_nce = NULL;
3606 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3607 	}
3608 
3609 	/*
3610 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3611 	 * However, we can't do it for IPv4 multicast or broadcast.
3612 	 */
3613 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3614 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3615 
3616 	/*
3617 	 * Set initial value for fragmentation limit. Either conn_ip_output
3618 	 * or ULP might updates it when there are routing changes.
3619 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3620 	 */
3621 	pmtu = ip_get_pmtu(ixa);
3622 	ixa->ixa_fragsize = pmtu;
3623 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3624 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3625 		ixa->ixa_pmtu = pmtu;
3626 
3627 	/*
3628 	 * Extract information useful for some transports.
3629 	 * First we look for DCE metrics. Then we take what we have in
3630 	 * the metrics in the route, where the offlink is used if we have
3631 	 * one.
3632 	 */
3633 	if (uinfo != NULL) {
3634 		bzero(uinfo, sizeof (*uinfo));
3635 
3636 		if (dce->dce_flags & DCEF_UINFO)
3637 			*uinfo = dce->dce_uinfo;
3638 
3639 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3640 
3641 		/* Allow ire_metrics to decrease the path MTU from above */
3642 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3643 			uinfo->iulp_mtu = pmtu;
3644 
3645 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3646 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3647 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3648 	}
3649 
3650 	if (ill != NULL)
3651 		ill_refrele(ill);
3652 
3653 	return (error);
3654 
3655 bad_addr:
3656 	if (ire != NULL)
3657 		ire_refrele(ire);
3658 
3659 	if (ill != NULL)
3660 		ill_refrele(ill);
3661 
3662 	/*
3663 	 * Make sure we don't leave an unreachable ixa_nce in place
3664 	 * since ip_select_route is used when we unplumb i.e., remove
3665 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3666 	 */
3667 	nce = ixa->ixa_nce;
3668 	if (nce != NULL && nce->nce_is_condemned) {
3669 		nce_refrele(nce);
3670 		ixa->ixa_nce = NULL;
3671 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3672 	}
3673 
3674 	return (error);
3675 }
3676 
3677 
3678 /*
3679  * Get the base MTU for the case when path MTU discovery is not used.
3680  * Takes the MTU of the IRE into account.
3681  */
3682 uint_t
3683 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3684 {
3685 	uint_t mtu;
3686 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3687 
3688 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3689 		mtu = ill->ill_mc_mtu;
3690 	else
3691 		mtu = ill->ill_mtu;
3692 
3693 	if (iremtu != 0 && iremtu < mtu)
3694 		mtu = iremtu;
3695 
3696 	return (mtu);
3697 }
3698 
3699 /*
3700  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3701  * Assumes that ixa_ire, dce, and nce have already been set up.
3702  *
3703  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3704  * We avoid path MTU discovery if it is disabled with ndd.
3705  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3706  *
3707  * NOTE: We also used to turn it off for source routed packets. That
3708  * is no longer required since the dce is per final destination.
3709  */
3710 uint_t
3711 ip_get_pmtu(ip_xmit_attr_t *ixa)
3712 {
3713 	ip_stack_t	*ipst = ixa->ixa_ipst;
3714 	dce_t		*dce;
3715 	nce_t		*nce;
3716 	ire_t		*ire;
3717 	uint_t		pmtu;
3718 
3719 	ire = ixa->ixa_ire;
3720 	dce = ixa->ixa_dce;
3721 	nce = ixa->ixa_nce;
3722 
3723 	/*
3724 	 * If path MTU discovery has been turned off by ndd, then we ignore
3725 	 * any dce_pmtu and for IPv4 we will not set DF.
3726 	 */
3727 	if (!ipst->ips_ip_path_mtu_discovery)
3728 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3729 
3730 	pmtu = IP_MAXPACKET;
3731 	/*
3732 	 * Decide whether whether IPv4 sets DF
3733 	 * For IPv6 "no DF" means to use the 1280 mtu
3734 	 */
3735 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3736 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3737 	} else {
3738 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3739 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3740 			pmtu = IPV6_MIN_MTU;
3741 	}
3742 
3743 	/* Check if the PMTU is to old before we use it */
3744 	if ((dce->dce_flags & DCEF_PMTU) &&
3745 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3746 	    ipst->ips_ip_pathmtu_interval) {
3747 		/*
3748 		 * Older than 20 minutes. Drop the path MTU information.
3749 		 */
3750 		mutex_enter(&dce->dce_lock);
3751 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3752 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3753 		mutex_exit(&dce->dce_lock);
3754 		dce_increment_generation(dce);
3755 	}
3756 
3757 	/* The metrics on the route can lower the path MTU */
3758 	if (ire->ire_metrics.iulp_mtu != 0 &&
3759 	    ire->ire_metrics.iulp_mtu < pmtu)
3760 		pmtu = ire->ire_metrics.iulp_mtu;
3761 
3762 	/*
3763 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3764 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3765 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3766 	 */
3767 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3768 		if (dce->dce_flags & DCEF_PMTU) {
3769 			if (dce->dce_pmtu < pmtu)
3770 				pmtu = dce->dce_pmtu;
3771 
3772 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3773 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3774 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3775 			} else {
3776 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3777 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3778 			}
3779 		} else {
3780 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3781 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3782 		}
3783 	}
3784 
3785 	/*
3786 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3787 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3788 	 * mtu as IRE_LOOPBACK.
3789 	 */
3790 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3791 		uint_t loopback_mtu;
3792 
3793 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3794 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3795 
3796 		if (loopback_mtu < pmtu)
3797 			pmtu = loopback_mtu;
3798 	} else if (nce != NULL) {
3799 		/*
3800 		 * Make sure we don't exceed the interface MTU.
3801 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3802 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3803 		 * to tell the transport something larger than zero.
3804 		 */
3805 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3806 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3807 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3808 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3809 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3810 				/*
3811 				 * for interfaces in an IPMP group, the mtu of
3812 				 * the nce_ill (under_ill) could be different
3813 				 * from the mtu of the ncec_ill, so we take the
3814 				 * min of the two.
3815 				 */
3816 				pmtu = nce->nce_ill->ill_mc_mtu;
3817 			}
3818 		} else {
3819 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3820 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3821 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3822 			    nce->nce_ill->ill_mtu < pmtu) {
3823 				/*
3824 				 * for interfaces in an IPMP group, the mtu of
3825 				 * the nce_ill (under_ill) could be different
3826 				 * from the mtu of the ncec_ill, so we take the
3827 				 * min of the two.
3828 				 */
3829 				pmtu = nce->nce_ill->ill_mtu;
3830 			}
3831 		}
3832 	}
3833 
3834 	/*
3835 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3836 	 * Only applies to IPv6.
3837 	 */
3838 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3839 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3840 			switch (ixa->ixa_use_min_mtu) {
3841 			case IPV6_USE_MIN_MTU_MULTICAST:
3842 				if (ire->ire_type & IRE_MULTICAST)
3843 					pmtu = IPV6_MIN_MTU;
3844 				break;
3845 			case IPV6_USE_MIN_MTU_ALWAYS:
3846 				pmtu = IPV6_MIN_MTU;
3847 				break;
3848 			case IPV6_USE_MIN_MTU_NEVER:
3849 				break;
3850 			}
3851 		} else {
3852 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3853 			if (ire->ire_type & IRE_MULTICAST)
3854 				pmtu = IPV6_MIN_MTU;
3855 		}
3856 	}
3857 
3858 	/*
3859 	 * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3860 	 * fragment header in every packet. We compensate for those cases by
3861 	 * returning a smaller path MTU to the ULP.
3862 	 *
3863 	 * In the case of CGTP then ip_output will add a fragment header.
3864 	 * Make sure there is room for it by telling a smaller number
3865 	 * to the transport.
3866 	 *
3867 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3868 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3869 	 * which is the size of the packets it can send.
3870 	 */
3871 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3872 		if ((ire->ire_flags & RTF_MULTIRT) ||
3873 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3874 			pmtu -= sizeof (ip6_frag_t);
3875 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3876 		}
3877 	}
3878 
3879 	return (pmtu);
3880 }
3881 
3882 /*
3883  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3884  * the final piece where we don't.  Return a pointer to the first mblk in the
3885  * result, and update the pointer to the next mblk to chew on.  If anything
3886  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3887  * NULL pointer.
3888  */
3889 mblk_t *
3890 ip_carve_mp(mblk_t **mpp, ssize_t len)
3891 {
3892 	mblk_t	*mp0;
3893 	mblk_t	*mp1;
3894 	mblk_t	*mp2;
3895 
3896 	if (!len || !mpp || !(mp0 = *mpp))
3897 		return (NULL);
3898 	/* If we aren't going to consume the first mblk, we need a dup. */
3899 	if (mp0->b_wptr - mp0->b_rptr > len) {
3900 		mp1 = dupb(mp0);
3901 		if (mp1) {
3902 			/* Partition the data between the two mblks. */
3903 			mp1->b_wptr = mp1->b_rptr + len;
3904 			mp0->b_rptr = mp1->b_wptr;
3905 			/*
3906 			 * after adjustments if mblk not consumed is now
3907 			 * unaligned, try to align it. If this fails free
3908 			 * all messages and let upper layer recover.
3909 			 */
3910 			if (!OK_32PTR(mp0->b_rptr)) {
3911 				if (!pullupmsg(mp0, -1)) {
3912 					freemsg(mp0);
3913 					freemsg(mp1);
3914 					*mpp = NULL;
3915 					return (NULL);
3916 				}
3917 			}
3918 		}
3919 		return (mp1);
3920 	}
3921 	/* Eat through as many mblks as we need to get len bytes. */
3922 	len -= mp0->b_wptr - mp0->b_rptr;
3923 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3924 		if (mp2->b_wptr - mp2->b_rptr > len) {
3925 			/*
3926 			 * We won't consume the entire last mblk.  Like
3927 			 * above, dup and partition it.
3928 			 */
3929 			mp1->b_cont = dupb(mp2);
3930 			mp1 = mp1->b_cont;
3931 			if (!mp1) {
3932 				/*
3933 				 * Trouble.  Rather than go to a lot of
3934 				 * trouble to clean up, we free the messages.
3935 				 * This won't be any worse than losing it on
3936 				 * the wire.
3937 				 */
3938 				freemsg(mp0);
3939 				freemsg(mp2);
3940 				*mpp = NULL;
3941 				return (NULL);
3942 			}
3943 			mp1->b_wptr = mp1->b_rptr + len;
3944 			mp2->b_rptr = mp1->b_wptr;
3945 			/*
3946 			 * after adjustments if mblk not consumed is now
3947 			 * unaligned, try to align it. If this fails free
3948 			 * all messages and let upper layer recover.
3949 			 */
3950 			if (!OK_32PTR(mp2->b_rptr)) {
3951 				if (!pullupmsg(mp2, -1)) {
3952 					freemsg(mp0);
3953 					freemsg(mp2);
3954 					*mpp = NULL;
3955 					return (NULL);
3956 				}
3957 			}
3958 			*mpp = mp2;
3959 			return (mp0);
3960 		}
3961 		/* Decrement len by the amount we just got. */
3962 		len -= mp2->b_wptr - mp2->b_rptr;
3963 	}
3964 	/*
3965 	 * len should be reduced to zero now.  If not our caller has
3966 	 * screwed up.
3967 	 */
3968 	if (len) {
3969 		/* Shouldn't happen! */
3970 		freemsg(mp0);
3971 		*mpp = NULL;
3972 		return (NULL);
3973 	}
3974 	/*
3975 	 * We consumed up to exactly the end of an mblk.  Detach the part
3976 	 * we are returning from the rest of the chain.
3977 	 */
3978 	mp1->b_cont = NULL;
3979 	*mpp = mp2;
3980 	return (mp0);
3981 }
3982 
3983 /* The ill stream is being unplumbed. Called from ip_close */
3984 int
3985 ip_modclose(ill_t *ill)
3986 {
3987 	boolean_t success;
3988 	ipsq_t	*ipsq;
3989 	ipif_t	*ipif;
3990 	queue_t	*q = ill->ill_rq;
3991 	ip_stack_t	*ipst = ill->ill_ipst;
3992 	int	i;
3993 	arl_ill_common_t *ai = ill->ill_common;
3994 
3995 	/*
3996 	 * The punlink prior to this may have initiated a capability
3997 	 * negotiation. But ipsq_enter will block until that finishes or
3998 	 * times out.
3999 	 */
4000 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
4001 
4002 	/*
4003 	 * Open/close/push/pop is guaranteed to be single threaded
4004 	 * per stream by STREAMS. FS guarantees that all references
4005 	 * from top are gone before close is called. So there can't
4006 	 * be another close thread that has set CONDEMNED on this ill.
4007 	 * and cause ipsq_enter to return failure.
4008 	 */
4009 	ASSERT(success);
4010 	ipsq = ill->ill_phyint->phyint_ipsq;
4011 
4012 	/*
4013 	 * Mark it condemned. No new reference will be made to this ill.
4014 	 * Lookup functions will return an error. Threads that try to
4015 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4016 	 * that the refcnt will drop down to zero.
4017 	 */
4018 	mutex_enter(&ill->ill_lock);
4019 	ill->ill_state_flags |= ILL_CONDEMNED;
4020 	for (ipif = ill->ill_ipif; ipif != NULL;
4021 	    ipif = ipif->ipif_next) {
4022 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4023 	}
4024 	/*
4025 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4026 	 * returns  error if ILL_CONDEMNED is set
4027 	 */
4028 	cv_broadcast(&ill->ill_cv);
4029 	mutex_exit(&ill->ill_lock);
4030 
4031 	/*
4032 	 * Send all the deferred DLPI messages downstream which came in
4033 	 * during the small window right before ipsq_enter(). We do this
4034 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4035 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4036 	 */
4037 	ill_dlpi_send_deferred(ill);
4038 
4039 	/*
4040 	 * Shut down fragmentation reassembly.
4041 	 * ill_frag_timer won't start a timer again.
4042 	 * Now cancel any existing timer
4043 	 */
4044 	(void) untimeout(ill->ill_frag_timer_id);
4045 	(void) ill_frag_timeout(ill, 0);
4046 
4047 	/*
4048 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4049 	 * this ill. Then wait for the refcnts to drop to zero.
4050 	 * ill_is_freeable checks whether the ill is really quiescent.
4051 	 * Then make sure that threads that are waiting to enter the
4052 	 * ipsq have seen the error returned by ipsq_enter and have
4053 	 * gone away. Then we call ill_delete_tail which does the
4054 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4055 	 */
4056 	ill_delete(ill);
4057 	mutex_enter(&ill->ill_lock);
4058 	while (!ill_is_freeable(ill))
4059 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4060 
4061 	while (ill->ill_waiters)
4062 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4063 
4064 	mutex_exit(&ill->ill_lock);
4065 
4066 	/*
4067 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4068 	 * it held until the end of the function since the cleanup
4069 	 * below needs to be able to use the ip_stack_t.
4070 	 */
4071 	netstack_hold(ipst->ips_netstack);
4072 
4073 	/* qprocsoff is done via ill_delete_tail */
4074 	ill_delete_tail(ill);
4075 	/*
4076 	 * synchronously wait for arp stream to unbind. After this, we
4077 	 * cannot get any data packets up from the driver.
4078 	 */
4079 	arp_unbind_complete(ill);
4080 	ASSERT(ill->ill_ipst == NULL);
4081 
4082 	/*
4083 	 * Walk through all conns and qenable those that have queued data.
4084 	 * Close synchronization needs this to
4085 	 * be done to ensure that all upper layers blocked
4086 	 * due to flow control to the closing device
4087 	 * get unblocked.
4088 	 */
4089 	ip1dbg(("ip_wsrv: walking\n"));
4090 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4091 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4092 	}
4093 
4094 	/*
4095 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4096 	 * stream is being torn down before ARP was plumbed (e.g.,
4097 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4098 	 * an error
4099 	 */
4100 	if (ai != NULL) {
4101 		ASSERT(!ill->ill_isv6);
4102 		mutex_enter(&ai->ai_lock);
4103 		ai->ai_ill = NULL;
4104 		if (ai->ai_arl == NULL) {
4105 			mutex_destroy(&ai->ai_lock);
4106 			kmem_free(ai, sizeof (*ai));
4107 		} else {
4108 			cv_signal(&ai->ai_ill_unplumb_done);
4109 			mutex_exit(&ai->ai_lock);
4110 		}
4111 	}
4112 
4113 	mutex_enter(&ipst->ips_ip_mi_lock);
4114 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4115 	mutex_exit(&ipst->ips_ip_mi_lock);
4116 
4117 	/*
4118 	 * credp could be null if the open didn't succeed and ip_modopen
4119 	 * itself calls ip_close.
4120 	 */
4121 	if (ill->ill_credp != NULL)
4122 		crfree(ill->ill_credp);
4123 
4124 	mutex_destroy(&ill->ill_saved_ire_lock);
4125 	mutex_destroy(&ill->ill_lock);
4126 	rw_destroy(&ill->ill_mcast_lock);
4127 	mutex_destroy(&ill->ill_mcast_serializer);
4128 	list_destroy(&ill->ill_nce);
4129 
4130 	/*
4131 	 * Now we are done with the module close pieces that
4132 	 * need the netstack_t.
4133 	 */
4134 	netstack_rele(ipst->ips_netstack);
4135 
4136 	mi_close_free((IDP)ill);
4137 	q->q_ptr = WR(q)->q_ptr = NULL;
4138 
4139 	ipsq_exit(ipsq);
4140 
4141 	return (0);
4142 }
4143 
4144 /*
4145  * This is called as part of close() for IP, UDP, ICMP, and RTS
4146  * in order to quiesce the conn.
4147  */
4148 void
4149 ip_quiesce_conn(conn_t *connp)
4150 {
4151 	boolean_t	drain_cleanup_reqd = B_FALSE;
4152 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4153 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4154 	ip_stack_t	*ipst;
4155 
4156 	ASSERT(!IPCL_IS_TCP(connp));
4157 	ipst = connp->conn_netstack->netstack_ip;
4158 
4159 	/*
4160 	 * Mark the conn as closing, and this conn must not be
4161 	 * inserted in future into any list. Eg. conn_drain_insert(),
4162 	 * won't insert this conn into the conn_drain_list.
4163 	 *
4164 	 * conn_idl, and conn_ilg cannot get set henceforth.
4165 	 */
4166 	mutex_enter(&connp->conn_lock);
4167 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4168 	connp->conn_state_flags |= CONN_CLOSING;
4169 	if (connp->conn_idl != NULL)
4170 		drain_cleanup_reqd = B_TRUE;
4171 	if (connp->conn_oper_pending_ill != NULL)
4172 		conn_ioctl_cleanup_reqd = B_TRUE;
4173 	if (connp->conn_dhcpinit_ill != NULL) {
4174 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4175 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4176 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4177 		connp->conn_dhcpinit_ill = NULL;
4178 	}
4179 	if (connp->conn_ilg != NULL)
4180 		ilg_cleanup_reqd = B_TRUE;
4181 	mutex_exit(&connp->conn_lock);
4182 
4183 	if (conn_ioctl_cleanup_reqd)
4184 		conn_ioctl_cleanup(connp);
4185 
4186 	if (is_system_labeled() && connp->conn_anon_port) {
4187 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4188 		    connp->conn_mlp_type, connp->conn_proto,
4189 		    ntohs(connp->conn_lport), B_FALSE);
4190 		connp->conn_anon_port = 0;
4191 	}
4192 	connp->conn_mlp_type = mlptSingle;
4193 
4194 	/*
4195 	 * Remove this conn from any fanout list it is on.
4196 	 * and then wait for any threads currently operating
4197 	 * on this endpoint to finish
4198 	 */
4199 	ipcl_hash_remove(connp);
4200 
4201 	/*
4202 	 * Remove this conn from the drain list, and do any other cleanup that
4203 	 * may be required.  (TCP conns are never flow controlled, and
4204 	 * conn_idl will be NULL.)
4205 	 */
4206 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4207 		idl_t *idl = connp->conn_idl;
4208 
4209 		mutex_enter(&idl->idl_lock);
4210 		conn_drain(connp, B_TRUE);
4211 		mutex_exit(&idl->idl_lock);
4212 	}
4213 
4214 	if (connp == ipst->ips_ip_g_mrouter)
4215 		(void) ip_mrouter_done(ipst);
4216 
4217 	if (ilg_cleanup_reqd)
4218 		ilg_delete_all(connp);
4219 
4220 	/*
4221 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4222 	 * callers from write side can't be there now because close
4223 	 * is in progress. The only other caller is ipcl_walk
4224 	 * which checks for the condemned flag.
4225 	 */
4226 	mutex_enter(&connp->conn_lock);
4227 	connp->conn_state_flags |= CONN_CONDEMNED;
4228 	while (connp->conn_ref != 1)
4229 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4230 	connp->conn_state_flags |= CONN_QUIESCED;
4231 	mutex_exit(&connp->conn_lock);
4232 }
4233 
4234 /* ARGSUSED */
4235 int
4236 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4237 {
4238 	conn_t		*connp;
4239 
4240 	/*
4241 	 * Call the appropriate delete routine depending on whether this is
4242 	 * a module or device.
4243 	 */
4244 	if (WR(q)->q_next != NULL) {
4245 		/* This is a module close */
4246 		return (ip_modclose((ill_t *)q->q_ptr));
4247 	}
4248 
4249 	connp = q->q_ptr;
4250 	ip_quiesce_conn(connp);
4251 
4252 	qprocsoff(q);
4253 
4254 	/*
4255 	 * Now we are truly single threaded on this stream, and can
4256 	 * delete the things hanging off the connp, and finally the connp.
4257 	 * We removed this connp from the fanout list, it cannot be
4258 	 * accessed thru the fanouts, and we already waited for the
4259 	 * conn_ref to drop to 0. We are already in close, so
4260 	 * there cannot be any other thread from the top. qprocsoff
4261 	 * has completed, and service has completed or won't run in
4262 	 * future.
4263 	 */
4264 	ASSERT(connp->conn_ref == 1);
4265 
4266 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4267 
4268 	connp->conn_ref--;
4269 	ipcl_conn_destroy(connp);
4270 
4271 	q->q_ptr = WR(q)->q_ptr = NULL;
4272 	return (0);
4273 }
4274 
4275 /*
4276  * Wapper around putnext() so that ip_rts_request can merely use
4277  * conn_recv.
4278  */
4279 /*ARGSUSED2*/
4280 static void
4281 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4282 {
4283 	conn_t *connp = (conn_t *)arg1;
4284 
4285 	putnext(connp->conn_rq, mp);
4286 }
4287 
4288 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4289 /* ARGSUSED */
4290 static void
4291 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4292 {
4293 	freemsg(mp);
4294 }
4295 
4296 /*
4297  * Called when the module is about to be unloaded
4298  */
4299 void
4300 ip_ddi_destroy(void)
4301 {
4302 	/* This needs to be called before destroying any transports. */
4303 	mutex_enter(&cpu_lock);
4304 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4305 	mutex_exit(&cpu_lock);
4306 
4307 	tnet_fini();
4308 
4309 	icmp_ddi_g_destroy();
4310 	rts_ddi_g_destroy();
4311 	udp_ddi_g_destroy();
4312 	sctp_ddi_g_destroy();
4313 	tcp_ddi_g_destroy();
4314 	ilb_ddi_g_destroy();
4315 	dce_g_destroy();
4316 	ipsec_policy_g_destroy();
4317 	ipcl_g_destroy();
4318 	ip_net_g_destroy();
4319 	ip_ire_g_fini();
4320 	inet_minor_destroy(ip_minor_arena_sa);
4321 #if defined(_LP64)
4322 	inet_minor_destroy(ip_minor_arena_la);
4323 #endif
4324 
4325 #ifdef DEBUG
4326 	list_destroy(&ip_thread_list);
4327 	rw_destroy(&ip_thread_rwlock);
4328 	tsd_destroy(&ip_thread_data);
4329 #endif
4330 
4331 	netstack_unregister(NS_IP);
4332 }
4333 
4334 /*
4335  * First step in cleanup.
4336  */
4337 /* ARGSUSED */
4338 static void
4339 ip_stack_shutdown(netstackid_t stackid, void *arg)
4340 {
4341 	ip_stack_t *ipst = (ip_stack_t *)arg;
4342 	kt_did_t ktid;
4343 
4344 #ifdef NS_DEBUG
4345 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4346 #endif
4347 
4348 	/*
4349 	 * Perform cleanup for special interfaces (loopback and IPMP).
4350 	 */
4351 	ip_interface_cleanup(ipst);
4352 
4353 	/*
4354 	 * The *_hook_shutdown()s start the process of notifying any
4355 	 * consumers that things are going away.... nothing is destroyed.
4356 	 */
4357 	ipv4_hook_shutdown(ipst);
4358 	ipv6_hook_shutdown(ipst);
4359 	arp_hook_shutdown(ipst);
4360 
4361 	mutex_enter(&ipst->ips_capab_taskq_lock);
4362 	ktid = ipst->ips_capab_taskq_thread->t_did;
4363 	ipst->ips_capab_taskq_quit = B_TRUE;
4364 	cv_signal(&ipst->ips_capab_taskq_cv);
4365 	mutex_exit(&ipst->ips_capab_taskq_lock);
4366 
4367 	/*
4368 	 * In rare occurrences, particularly on virtual hardware where CPUs can
4369 	 * be de-scheduled, the thread that we just signaled will not run until
4370 	 * after we have gotten through parts of ip_stack_fini. If that happens
4371 	 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4372 	 * from cv_wait which no longer exists.
4373 	 */
4374 	thread_join(ktid);
4375 }
4376 
4377 /*
4378  * Free the IP stack instance.
4379  */
4380 static void
4381 ip_stack_fini(netstackid_t stackid, void *arg)
4382 {
4383 	ip_stack_t *ipst = (ip_stack_t *)arg;
4384 	int ret;
4385 
4386 #ifdef NS_DEBUG
4387 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4388 #endif
4389 	/*
4390 	 * At this point, all of the notifications that the events and
4391 	 * protocols are going away have been run, meaning that we can
4392 	 * now set about starting to clean things up.
4393 	 */
4394 	ipobs_fini(ipst);
4395 	ipv4_hook_destroy(ipst);
4396 	ipv6_hook_destroy(ipst);
4397 	arp_hook_destroy(ipst);
4398 	ip_net_destroy(ipst);
4399 
4400 	ipmp_destroy(ipst);
4401 
4402 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4403 	ipst->ips_ip_mibkp = NULL;
4404 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4405 	ipst->ips_icmp_mibkp = NULL;
4406 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4407 	ipst->ips_ip_kstat = NULL;
4408 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4409 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4410 	ipst->ips_ip6_kstat = NULL;
4411 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4412 
4413 	kmem_free(ipst->ips_propinfo_tbl,
4414 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4415 	ipst->ips_propinfo_tbl = NULL;
4416 
4417 	dce_stack_destroy(ipst);
4418 	ip_mrouter_stack_destroy(ipst);
4419 
4420 	/*
4421 	 * Quiesce all of our timers. Note we set the quiesce flags before we
4422 	 * call untimeout. The slowtimers may actually kick off another instance
4423 	 * of the non-slow timers.
4424 	 */
4425 	mutex_enter(&ipst->ips_igmp_timer_lock);
4426 	ipst->ips_igmp_timer_quiesce = B_TRUE;
4427 	mutex_exit(&ipst->ips_igmp_timer_lock);
4428 
4429 	mutex_enter(&ipst->ips_mld_timer_lock);
4430 	ipst->ips_mld_timer_quiesce = B_TRUE;
4431 	mutex_exit(&ipst->ips_mld_timer_lock);
4432 
4433 	mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4434 	ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4435 	mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4436 
4437 	mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4438 	ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4439 	mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4440 
4441 	ret = untimeout(ipst->ips_igmp_timeout_id);
4442 	if (ret == -1) {
4443 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4444 	} else {
4445 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4446 		ipst->ips_igmp_timeout_id = 0;
4447 	}
4448 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4449 	if (ret == -1) {
4450 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4451 	} else {
4452 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4453 		ipst->ips_igmp_slowtimeout_id = 0;
4454 	}
4455 	ret = untimeout(ipst->ips_mld_timeout_id);
4456 	if (ret == -1) {
4457 		ASSERT(ipst->ips_mld_timeout_id == 0);
4458 	} else {
4459 		ASSERT(ipst->ips_mld_timeout_id != 0);
4460 		ipst->ips_mld_timeout_id = 0;
4461 	}
4462 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4463 	if (ret == -1) {
4464 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4465 	} else {
4466 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4467 		ipst->ips_mld_slowtimeout_id = 0;
4468 	}
4469 
4470 	ip_ire_fini(ipst);
4471 	ip6_asp_free(ipst);
4472 	conn_drain_fini(ipst);
4473 	ipcl_destroy(ipst);
4474 
4475 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4476 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4477 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4478 	ipst->ips_ndp4 = NULL;
4479 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4480 	ipst->ips_ndp6 = NULL;
4481 
4482 	if (ipst->ips_loopback_ksp != NULL) {
4483 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4484 		ipst->ips_loopback_ksp = NULL;
4485 	}
4486 
4487 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4488 	cv_destroy(&ipst->ips_capab_taskq_cv);
4489 
4490 	rw_destroy(&ipst->ips_srcid_lock);
4491 
4492 	mutex_destroy(&ipst->ips_ip_mi_lock);
4493 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4494 
4495 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4496 	mutex_destroy(&ipst->ips_mld_timer_lock);
4497 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4498 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4499 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4500 	rw_destroy(&ipst->ips_ill_g_lock);
4501 
4502 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4503 	ipst->ips_phyint_g_list = NULL;
4504 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4505 	ipst->ips_ill_g_heads = NULL;
4506 
4507 	ldi_ident_release(ipst->ips_ldi_ident);
4508 	kmem_free(ipst, sizeof (*ipst));
4509 }
4510 
4511 /*
4512  * This function is called from the TSD destructor, and is used to debug
4513  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4514  * details.
4515  */
4516 static void
4517 ip_thread_exit(void *phash)
4518 {
4519 	th_hash_t *thh = phash;
4520 
4521 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4522 	list_remove(&ip_thread_list, thh);
4523 	rw_exit(&ip_thread_rwlock);
4524 	mod_hash_destroy_hash(thh->thh_hash);
4525 	kmem_free(thh, sizeof (*thh));
4526 }
4527 
4528 /*
4529  * Called when the IP kernel module is loaded into the kernel
4530  */
4531 void
4532 ip_ddi_init(void)
4533 {
4534 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4535 
4536 	/*
4537 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4538 	 * initial devices: ip, ip6, tcp, tcp6.
4539 	 */
4540 	/*
4541 	 * If this is a 64-bit kernel, then create two separate arenas -
4542 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4543 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4544 	 */
4545 	ip_minor_arena_la = NULL;
4546 	ip_minor_arena_sa = NULL;
4547 #if defined(_LP64)
4548 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4549 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4550 		cmn_err(CE_PANIC,
4551 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4552 	}
4553 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4554 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4555 		cmn_err(CE_PANIC,
4556 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4557 	}
4558 #else
4559 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4560 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4561 		cmn_err(CE_PANIC,
4562 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4563 	}
4564 #endif
4565 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4566 
4567 	ipcl_g_init();
4568 	ip_ire_g_init();
4569 	ip_net_g_init();
4570 
4571 #ifdef DEBUG
4572 	tsd_create(&ip_thread_data, ip_thread_exit);
4573 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4574 	list_create(&ip_thread_list, sizeof (th_hash_t),
4575 	    offsetof(th_hash_t, thh_link));
4576 #endif
4577 	ipsec_policy_g_init();
4578 	tcp_ddi_g_init();
4579 	sctp_ddi_g_init();
4580 	dce_g_init();
4581 
4582 	/*
4583 	 * We want to be informed each time a stack is created or
4584 	 * destroyed in the kernel, so we can maintain the
4585 	 * set of udp_stack_t's.
4586 	 */
4587 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4588 	    ip_stack_fini);
4589 
4590 	tnet_init();
4591 
4592 	udp_ddi_g_init();
4593 	rts_ddi_g_init();
4594 	icmp_ddi_g_init();
4595 	ilb_ddi_g_init();
4596 
4597 	/* This needs to be called after all transports are initialized. */
4598 	mutex_enter(&cpu_lock);
4599 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4600 	mutex_exit(&cpu_lock);
4601 }
4602 
4603 /*
4604  * Initialize the IP stack instance.
4605  */
4606 static void *
4607 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4608 {
4609 	ip_stack_t	*ipst;
4610 	size_t		arrsz;
4611 	major_t		major;
4612 
4613 #ifdef NS_DEBUG
4614 	printf("ip_stack_init(stack %d)\n", stackid);
4615 #endif
4616 
4617 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4618 	ipst->ips_netstack = ns;
4619 
4620 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4621 	    KM_SLEEP);
4622 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4623 	    KM_SLEEP);
4624 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4625 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4626 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4627 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4628 
4629 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4630 	ipst->ips_igmp_deferred_next = INFINITY;
4631 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4632 	ipst->ips_mld_deferred_next = INFINITY;
4633 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4634 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4635 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4636 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4637 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4638 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4639 
4640 	ipcl_init(ipst);
4641 	ip_ire_init(ipst);
4642 	ip6_asp_init(ipst);
4643 	ipif_init(ipst);
4644 	conn_drain_init(ipst);
4645 	ip_mrouter_stack_init(ipst);
4646 	dce_stack_init(ipst);
4647 
4648 	ipst->ips_ip_multirt_log_interval = 1000;
4649 
4650 	ipst->ips_ill_index = 1;
4651 
4652 	ipst->ips_saved_ip_forwarding = -1;
4653 	ipst->ips_reg_vif_num = ALL_VIFS;	/* Index to Register vif */
4654 
4655 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4656 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4657 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4658 
4659 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4660 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4661 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4662 	ipst->ips_ip6_kstat =
4663 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4664 
4665 	ipst->ips_ip_src_id = 1;
4666 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4667 
4668 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4669 
4670 	ip_net_init(ipst, ns);
4671 	ipv4_hook_init(ipst);
4672 	ipv6_hook_init(ipst);
4673 	arp_hook_init(ipst);
4674 	ipmp_init(ipst);
4675 	ipobs_init(ipst);
4676 
4677 	/*
4678 	 * Create the taskq dispatcher thread and initialize related stuff.
4679 	 */
4680 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4681 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4682 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4683 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4684 
4685 	major = mod_name_to_major(INET_NAME);
4686 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4687 	return (ipst);
4688 }
4689 
4690 /*
4691  * Allocate and initialize a DLPI template of the specified length.  (May be
4692  * called as writer.)
4693  */
4694 mblk_t *
4695 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4696 {
4697 	mblk_t	*mp;
4698 
4699 	mp = allocb(len, BPRI_MED);
4700 	if (!mp)
4701 		return (NULL);
4702 
4703 	/*
4704 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4705 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4706 	 * that other DLPI are M_PROTO.
4707 	 */
4708 	if (prim == DL_INFO_REQ) {
4709 		mp->b_datap->db_type = M_PCPROTO;
4710 	} else {
4711 		mp->b_datap->db_type = M_PROTO;
4712 	}
4713 
4714 	mp->b_wptr = mp->b_rptr + len;
4715 	bzero(mp->b_rptr, len);
4716 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4717 	return (mp);
4718 }
4719 
4720 /*
4721  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4722  */
4723 mblk_t *
4724 ip_dlnotify_alloc(uint_t notification, uint_t data)
4725 {
4726 	dl_notify_ind_t	*notifyp;
4727 	mblk_t		*mp;
4728 
4729 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4730 		return (NULL);
4731 
4732 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4733 	notifyp->dl_notification = notification;
4734 	notifyp->dl_data = data;
4735 	return (mp);
4736 }
4737 
4738 mblk_t *
4739 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4740 {
4741 	dl_notify_ind_t	*notifyp;
4742 	mblk_t		*mp;
4743 
4744 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4745 		return (NULL);
4746 
4747 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4748 	notifyp->dl_notification = notification;
4749 	notifyp->dl_data1 = data1;
4750 	notifyp->dl_data2 = data2;
4751 	return (mp);
4752 }
4753 
4754 /*
4755  * Debug formatting routine.  Returns a character string representation of the
4756  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4757  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4758  *
4759  * Once the ndd table-printing interfaces are removed, this can be changed to
4760  * standard dotted-decimal form.
4761  */
4762 char *
4763 ip_dot_addr(ipaddr_t addr, char *buf)
4764 {
4765 	uint8_t *ap = (uint8_t *)&addr;
4766 
4767 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4768 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4769 	return (buf);
4770 }
4771 
4772 /*
4773  * Write the given MAC address as a printable string in the usual colon-
4774  * separated format.
4775  */
4776 const char *
4777 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4778 {
4779 	char *bp;
4780 
4781 	if (alen == 0 || buflen < 4)
4782 		return ("?");
4783 	bp = buf;
4784 	for (;;) {
4785 		/*
4786 		 * If there are more MAC address bytes available, but we won't
4787 		 * have any room to print them, then add "..." to the string
4788 		 * instead.  See below for the 'magic number' explanation.
4789 		 */
4790 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4791 			(void) strcpy(bp, "...");
4792 			break;
4793 		}
4794 		(void) sprintf(bp, "%02x", *addr++);
4795 		bp += 2;
4796 		if (--alen == 0)
4797 			break;
4798 		*bp++ = ':';
4799 		buflen -= 3;
4800 		/*
4801 		 * At this point, based on the first 'if' statement above,
4802 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4803 		 * buflen >= 4.  The first case leaves room for the final "xx"
4804 		 * number and trailing NUL byte.  The second leaves room for at
4805 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4806 		 * that statement.
4807 		 */
4808 	}
4809 	return (buf);
4810 }
4811 
4812 /*
4813  * Called when it is conceptually a ULP that would sent the packet
4814  * e.g., port unreachable and protocol unreachable. Check that the packet
4815  * would have passed the IPsec global policy before sending the error.
4816  *
4817  * Send an ICMP error after patching up the packet appropriately.
4818  * Uses ip_drop_input and bumps the appropriate MIB.
4819  */
4820 void
4821 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4822     ip_recv_attr_t *ira)
4823 {
4824 	ipha_t		*ipha;
4825 	boolean_t	secure;
4826 	ill_t		*ill = ira->ira_ill;
4827 	ip_stack_t	*ipst = ill->ill_ipst;
4828 	netstack_t	*ns = ipst->ips_netstack;
4829 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4830 
4831 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4832 
4833 	/*
4834 	 * We are generating an icmp error for some inbound packet.
4835 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4836 	 * Before we generate an error, check with global policy
4837 	 * to see whether this is allowed to enter the system. As
4838 	 * there is no "conn", we are checking with global policy.
4839 	 */
4840 	ipha = (ipha_t *)mp->b_rptr;
4841 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4842 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4843 		if (mp == NULL)
4844 			return;
4845 	}
4846 
4847 	/* We never send errors for protocols that we do implement */
4848 	if (ira->ira_protocol == IPPROTO_ICMP ||
4849 	    ira->ira_protocol == IPPROTO_IGMP) {
4850 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4851 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4852 		freemsg(mp);
4853 		return;
4854 	}
4855 	/*
4856 	 * Have to correct checksum since
4857 	 * the packet might have been
4858 	 * fragmented and the reassembly code in ip_rput
4859 	 * does not restore the IP checksum.
4860 	 */
4861 	ipha->ipha_hdr_checksum = 0;
4862 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4863 
4864 	switch (icmp_type) {
4865 	case ICMP_DEST_UNREACHABLE:
4866 		switch (icmp_code) {
4867 		case ICMP_PROTOCOL_UNREACHABLE:
4868 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4869 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4870 			break;
4871 		case ICMP_PORT_UNREACHABLE:
4872 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4873 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4874 			break;
4875 		}
4876 
4877 		icmp_unreachable(mp, icmp_code, ira);
4878 		break;
4879 	default:
4880 #ifdef DEBUG
4881 		panic("ip_fanout_send_icmp_v4: wrong type");
4882 		/*NOTREACHED*/
4883 #else
4884 		freemsg(mp);
4885 		break;
4886 #endif
4887 	}
4888 }
4889 
4890 /*
4891  * Used to send an ICMP error message when a packet is received for
4892  * a protocol that is not supported. The mblk passed as argument
4893  * is consumed by this function.
4894  */
4895 void
4896 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4897 {
4898 	ipha_t		*ipha;
4899 
4900 	ipha = (ipha_t *)mp->b_rptr;
4901 	if (ira->ira_flags & IRAF_IS_IPV4) {
4902 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4903 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4904 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4905 	} else {
4906 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4907 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4908 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4909 	}
4910 }
4911 
4912 /*
4913  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4914  * Handles IPv4 and IPv6.
4915  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4916  * Caller is responsible for dropping references to the conn.
4917  */
4918 void
4919 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4920     ip_recv_attr_t *ira)
4921 {
4922 	ill_t		*ill = ira->ira_ill;
4923 	ip_stack_t	*ipst = ill->ill_ipst;
4924 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4925 	boolean_t	secure;
4926 	uint_t		protocol = ira->ira_protocol;
4927 	iaflags_t	iraflags = ira->ira_flags;
4928 	queue_t		*rq;
4929 
4930 	secure = iraflags & IRAF_IPSEC_SECURE;
4931 
4932 	rq = connp->conn_rq;
4933 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4934 		switch (protocol) {
4935 		case IPPROTO_ICMPV6:
4936 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4937 			break;
4938 		case IPPROTO_ICMP:
4939 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4940 			break;
4941 		default:
4942 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4943 			break;
4944 		}
4945 		freemsg(mp);
4946 		return;
4947 	}
4948 
4949 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4950 
4951 	if (((iraflags & IRAF_IS_IPV4) ?
4952 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4953 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4954 	    secure) {
4955 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4956 		    ip6h, ira);
4957 		if (mp == NULL) {
4958 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4959 			/* Note that mp is NULL */
4960 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4961 			return;
4962 		}
4963 	}
4964 
4965 	if (iraflags & IRAF_ICMP_ERROR) {
4966 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4967 	} else {
4968 		ill_t *rill = ira->ira_rill;
4969 
4970 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4971 		ira->ira_ill = ira->ira_rill = NULL;
4972 		/* Send it upstream */
4973 		(connp->conn_recv)(connp, mp, NULL, ira);
4974 		ira->ira_ill = ill;
4975 		ira->ira_rill = rill;
4976 	}
4977 }
4978 
4979 /*
4980  * Handle protocols with which IP is less intimate.  There
4981  * can be more than one stream bound to a particular
4982  * protocol.  When this is the case, normally each one gets a copy
4983  * of any incoming packets.
4984  *
4985  * IPsec NOTE :
4986  *
4987  * Don't allow a secure packet going up a non-secure connection.
4988  * We don't allow this because
4989  *
4990  * 1) Reply might go out in clear which will be dropped at
4991  *    the sending side.
4992  * 2) If the reply goes out in clear it will give the
4993  *    adversary enough information for getting the key in
4994  *    most of the cases.
4995  *
4996  * Moreover getting a secure packet when we expect clear
4997  * implies that SA's were added without checking for
4998  * policy on both ends. This should not happen once ISAKMP
4999  * is used to negotiate SAs as SAs will be added only after
5000  * verifying the policy.
5001  *
5002  * Zones notes:
5003  * Earlier in ip_input on a system with multiple shared-IP zones we
5004  * duplicate the multicast and broadcast packets and send them up
5005  * with each explicit zoneid that exists on that ill.
5006  * This means that here we can match the zoneid with SO_ALLZONES being special.
5007  */
5008 void
5009 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5010 {
5011 	mblk_t		*mp1;
5012 	ipaddr_t	laddr;
5013 	conn_t		*connp, *first_connp, *next_connp;
5014 	connf_t		*connfp;
5015 	ill_t		*ill = ira->ira_ill;
5016 	ip_stack_t	*ipst = ill->ill_ipst;
5017 
5018 	laddr = ipha->ipha_dst;
5019 
5020 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5021 	mutex_enter(&connfp->connf_lock);
5022 	connp = connfp->connf_head;
5023 	for (connp = connfp->connf_head; connp != NULL;
5024 	    connp = connp->conn_next) {
5025 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5026 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5027 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5028 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5029 			break;
5030 		}
5031 	}
5032 
5033 	if (connp == NULL) {
5034 		/*
5035 		 * No one bound to these addresses.  Is
5036 		 * there a client that wants all
5037 		 * unclaimed datagrams?
5038 		 */
5039 		mutex_exit(&connfp->connf_lock);
5040 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5041 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5042 		return;
5043 	}
5044 
5045 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5046 
5047 	CONN_INC_REF(connp);
5048 	first_connp = connp;
5049 	connp = connp->conn_next;
5050 
5051 	for (;;) {
5052 		while (connp != NULL) {
5053 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5054 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5055 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5056 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5057 			    ira, connp)))
5058 				break;
5059 			connp = connp->conn_next;
5060 		}
5061 
5062 		if (connp == NULL) {
5063 			/* No more interested clients */
5064 			connp = first_connp;
5065 			break;
5066 		}
5067 		if (((mp1 = dupmsg(mp)) == NULL) &&
5068 		    ((mp1 = copymsg(mp)) == NULL)) {
5069 			/* Memory allocation failed */
5070 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5071 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5072 			connp = first_connp;
5073 			break;
5074 		}
5075 
5076 		CONN_INC_REF(connp);
5077 		mutex_exit(&connfp->connf_lock);
5078 
5079 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5080 		    ira);
5081 
5082 		mutex_enter(&connfp->connf_lock);
5083 		/* Follow the next pointer before releasing the conn. */
5084 		next_connp = connp->conn_next;
5085 		CONN_DEC_REF(connp);
5086 		connp = next_connp;
5087 	}
5088 
5089 	/* Last one.  Send it upstream. */
5090 	mutex_exit(&connfp->connf_lock);
5091 
5092 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5093 
5094 	CONN_DEC_REF(connp);
5095 }
5096 
5097 /*
5098  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5099  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5100  * is not consumed.
5101  *
5102  * One of three things can happen, all of which affect the passed-in mblk:
5103  *
5104  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5105  *
5106  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5107  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5108  *
5109  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5110  */
5111 mblk_t *
5112 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5113 {
5114 	int shift, plen, iph_len;
5115 	ipha_t *ipha;
5116 	udpha_t *udpha;
5117 	uint32_t *spi;
5118 	uint32_t esp_ports;
5119 	uint8_t *orptr;
5120 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5121 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5122 
5123 	ipha = (ipha_t *)mp->b_rptr;
5124 	iph_len = ira->ira_ip_hdr_length;
5125 	plen = ira->ira_pktlen;
5126 
5127 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5128 		/*
5129 		 * Most likely a keepalive for the benefit of an intervening
5130 		 * NAT.  These aren't for us, per se, so drop it.
5131 		 *
5132 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5133 		 * byte packets (keepalives are 1-byte), but we'll drop them
5134 		 * also.
5135 		 */
5136 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5137 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5138 		return (NULL);
5139 	}
5140 
5141 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5142 		/* might as well pull it all up - it might be ESP. */
5143 		if (!pullupmsg(mp, -1)) {
5144 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5145 			    DROPPER(ipss, ipds_esp_nomem),
5146 			    &ipss->ipsec_dropper);
5147 			return (NULL);
5148 		}
5149 
5150 		ipha = (ipha_t *)mp->b_rptr;
5151 	}
5152 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5153 	if (*spi == 0) {
5154 		/* UDP packet - remove 0-spi. */
5155 		shift = sizeof (uint32_t);
5156 	} else {
5157 		/* ESP-in-UDP packet - reduce to ESP. */
5158 		ipha->ipha_protocol = IPPROTO_ESP;
5159 		shift = sizeof (udpha_t);
5160 	}
5161 
5162 	/* Fix IP header */
5163 	ira->ira_pktlen = (plen - shift);
5164 	ipha->ipha_length = htons(ira->ira_pktlen);
5165 	ipha->ipha_hdr_checksum = 0;
5166 
5167 	orptr = mp->b_rptr;
5168 	mp->b_rptr += shift;
5169 
5170 	udpha = (udpha_t *)(orptr + iph_len);
5171 	if (*spi == 0) {
5172 		ASSERT((uint8_t *)ipha == orptr);
5173 		udpha->uha_length = htons(plen - shift - iph_len);
5174 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5175 		esp_ports = 0;
5176 	} else {
5177 		esp_ports = *((uint32_t *)udpha);
5178 		ASSERT(esp_ports != 0);
5179 	}
5180 	ovbcopy(orptr, orptr + shift, iph_len);
5181 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5182 		ipha = (ipha_t *)(orptr + shift);
5183 
5184 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5185 		ira->ira_esp_udp_ports = esp_ports;
5186 		ip_fanout_v4(mp, ipha, ira);
5187 		return (NULL);
5188 	}
5189 	return (mp);
5190 }
5191 
5192 /*
5193  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5194  * Handles IPv4 and IPv6.
5195  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5196  * Caller is responsible for dropping references to the conn.
5197  */
5198 void
5199 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5200     ip_recv_attr_t *ira)
5201 {
5202 	ill_t		*ill = ira->ira_ill;
5203 	ip_stack_t	*ipst = ill->ill_ipst;
5204 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5205 	boolean_t	secure;
5206 	iaflags_t	iraflags = ira->ira_flags;
5207 
5208 	secure = iraflags & IRAF_IPSEC_SECURE;
5209 
5210 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5211 	    !canputnext(connp->conn_rq)) {
5212 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5213 		freemsg(mp);
5214 		return;
5215 	}
5216 
5217 	if (((iraflags & IRAF_IS_IPV4) ?
5218 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5219 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5220 	    secure) {
5221 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5222 		    ip6h, ira);
5223 		if (mp == NULL) {
5224 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5225 			/* Note that mp is NULL */
5226 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5227 			return;
5228 		}
5229 	}
5230 
5231 	/*
5232 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5233 	 * check. Only ip_fanout_v4 has that check.
5234 	 */
5235 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5236 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5237 	} else {
5238 		ill_t *rill = ira->ira_rill;
5239 
5240 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5241 		ira->ira_ill = ira->ira_rill = NULL;
5242 		/* Send it upstream */
5243 		(connp->conn_recv)(connp, mp, NULL, ira);
5244 		ira->ira_ill = ill;
5245 		ira->ira_rill = rill;
5246 	}
5247 }
5248 
5249 /*
5250  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5251  * (Unicast fanout is handled in ip_input_v4.)
5252  *
5253  * If SO_REUSEADDR is set all multicast and broadcast packets
5254  * will be delivered to all conns bound to the same port.
5255  *
5256  * If there is at least one matching AF_INET receiver, then we will
5257  * ignore any AF_INET6 receivers.
5258  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5259  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5260  * packets.
5261  *
5262  * Zones notes:
5263  * Earlier in ip_input on a system with multiple shared-IP zones we
5264  * duplicate the multicast and broadcast packets and send them up
5265  * with each explicit zoneid that exists on that ill.
5266  * This means that here we can match the zoneid with SO_ALLZONES being special.
5267  */
5268 void
5269 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5270     ip_recv_attr_t *ira)
5271 {
5272 	ipaddr_t	laddr;
5273 	in6_addr_t	v6faddr;
5274 	conn_t		*connp;
5275 	connf_t		*connfp;
5276 	ipaddr_t	faddr;
5277 	ill_t		*ill = ira->ira_ill;
5278 	ip_stack_t	*ipst = ill->ill_ipst;
5279 
5280 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5281 
5282 	laddr = ipha->ipha_dst;
5283 	faddr = ipha->ipha_src;
5284 
5285 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5286 	mutex_enter(&connfp->connf_lock);
5287 	connp = connfp->connf_head;
5288 
5289 	/*
5290 	 * If SO_REUSEADDR has been set on the first we send the
5291 	 * packet to all clients that have joined the group and
5292 	 * match the port.
5293 	 */
5294 	while (connp != NULL) {
5295 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5296 		    conn_wantpacket(connp, ira, ipha) &&
5297 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5298 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5299 			break;
5300 		connp = connp->conn_next;
5301 	}
5302 
5303 	if (connp == NULL)
5304 		goto notfound;
5305 
5306 	CONN_INC_REF(connp);
5307 
5308 	if (connp->conn_reuseaddr) {
5309 		conn_t		*first_connp = connp;
5310 		conn_t		*next_connp;
5311 		mblk_t		*mp1;
5312 
5313 		connp = connp->conn_next;
5314 		for (;;) {
5315 			while (connp != NULL) {
5316 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5317 				    fport, faddr) &&
5318 				    conn_wantpacket(connp, ira, ipha) &&
5319 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5320 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5321 				    ira, connp)))
5322 					break;
5323 				connp = connp->conn_next;
5324 			}
5325 			if (connp == NULL) {
5326 				/* No more interested clients */
5327 				connp = first_connp;
5328 				break;
5329 			}
5330 			if (((mp1 = dupmsg(mp)) == NULL) &&
5331 			    ((mp1 = copymsg(mp)) == NULL)) {
5332 				/* Memory allocation failed */
5333 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5334 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5335 				connp = first_connp;
5336 				break;
5337 			}
5338 			CONN_INC_REF(connp);
5339 			mutex_exit(&connfp->connf_lock);
5340 
5341 			IP_STAT(ipst, ip_udp_fanmb);
5342 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5343 			    NULL, ira);
5344 			mutex_enter(&connfp->connf_lock);
5345 			/* Follow the next pointer before releasing the conn */
5346 			next_connp = connp->conn_next;
5347 			CONN_DEC_REF(connp);
5348 			connp = next_connp;
5349 		}
5350 	}
5351 
5352 	/* Last one.  Send it upstream. */
5353 	mutex_exit(&connfp->connf_lock);
5354 	IP_STAT(ipst, ip_udp_fanmb);
5355 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5356 	CONN_DEC_REF(connp);
5357 	return;
5358 
5359 notfound:
5360 	mutex_exit(&connfp->connf_lock);
5361 	/*
5362 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5363 	 * have already been matched above, since they live in the IPv4
5364 	 * fanout tables. This implies we only need to
5365 	 * check for IPv6 in6addr_any endpoints here.
5366 	 * Thus we compare using ipv6_all_zeros instead of the destination
5367 	 * address, except for the multicast group membership lookup which
5368 	 * uses the IPv4 destination.
5369 	 */
5370 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5371 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5372 	mutex_enter(&connfp->connf_lock);
5373 	connp = connfp->connf_head;
5374 	/*
5375 	 * IPv4 multicast packet being delivered to an AF_INET6
5376 	 * in6addr_any endpoint.
5377 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5378 	 * and not conn_wantpacket_v6() since any multicast membership is
5379 	 * for an IPv4-mapped multicast address.
5380 	 */
5381 	while (connp != NULL) {
5382 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5383 		    fport, v6faddr) &&
5384 		    conn_wantpacket(connp, ira, ipha) &&
5385 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5386 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5387 			break;
5388 		connp = connp->conn_next;
5389 	}
5390 
5391 	if (connp == NULL) {
5392 		/*
5393 		 * No one bound to this port.  Is
5394 		 * there a client that wants all
5395 		 * unclaimed datagrams?
5396 		 */
5397 		mutex_exit(&connfp->connf_lock);
5398 
5399 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5400 		    NULL) {
5401 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5402 			ip_fanout_proto_v4(mp, ipha, ira);
5403 		} else {
5404 			/*
5405 			 * We used to attempt to send an icmp error here, but
5406 			 * since this is known to be a multicast packet
5407 			 * and we don't send icmp errors in response to
5408 			 * multicast, just drop the packet and give up sooner.
5409 			 */
5410 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5411 			freemsg(mp);
5412 		}
5413 		return;
5414 	}
5415 	CONN_INC_REF(connp);
5416 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5417 
5418 	/*
5419 	 * If SO_REUSEADDR has been set on the first we send the
5420 	 * packet to all clients that have joined the group and
5421 	 * match the port.
5422 	 */
5423 	if (connp->conn_reuseaddr) {
5424 		conn_t		*first_connp = connp;
5425 		conn_t		*next_connp;
5426 		mblk_t		*mp1;
5427 
5428 		connp = connp->conn_next;
5429 		for (;;) {
5430 			while (connp != NULL) {
5431 				if (IPCL_UDP_MATCH_V6(connp, lport,
5432 				    ipv6_all_zeros, fport, v6faddr) &&
5433 				    conn_wantpacket(connp, ira, ipha) &&
5434 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5435 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5436 				    ira, connp)))
5437 					break;
5438 				connp = connp->conn_next;
5439 			}
5440 			if (connp == NULL) {
5441 				/* No more interested clients */
5442 				connp = first_connp;
5443 				break;
5444 			}
5445 			if (((mp1 = dupmsg(mp)) == NULL) &&
5446 			    ((mp1 = copymsg(mp)) == NULL)) {
5447 				/* Memory allocation failed */
5448 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5449 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5450 				connp = first_connp;
5451 				break;
5452 			}
5453 			CONN_INC_REF(connp);
5454 			mutex_exit(&connfp->connf_lock);
5455 
5456 			IP_STAT(ipst, ip_udp_fanmb);
5457 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5458 			    NULL, ira);
5459 			mutex_enter(&connfp->connf_lock);
5460 			/* Follow the next pointer before releasing the conn */
5461 			next_connp = connp->conn_next;
5462 			CONN_DEC_REF(connp);
5463 			connp = next_connp;
5464 		}
5465 	}
5466 
5467 	/* Last one.  Send it upstream. */
5468 	mutex_exit(&connfp->connf_lock);
5469 	IP_STAT(ipst, ip_udp_fanmb);
5470 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5471 	CONN_DEC_REF(connp);
5472 }
5473 
5474 /*
5475  * Split an incoming packet's IPv4 options into the label and the other options.
5476  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5477  * clearing out any leftover label or options.
5478  * Otherwise it just makes ipp point into the packet.
5479  *
5480  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5481  */
5482 int
5483 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5484 {
5485 	uchar_t		*opt;
5486 	uint32_t	totallen;
5487 	uint32_t	optval;
5488 	uint32_t	optlen;
5489 
5490 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5491 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5492 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5493 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5494 
5495 	/*
5496 	 * Get length (in 4 byte octets) of IP header options.
5497 	 */
5498 	totallen = ipha->ipha_version_and_hdr_length -
5499 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5500 
5501 	if (totallen == 0) {
5502 		if (!allocate)
5503 			return (0);
5504 
5505 		/* Clear out anything from a previous packet */
5506 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5507 			kmem_free(ipp->ipp_ipv4_options,
5508 			    ipp->ipp_ipv4_options_len);
5509 			ipp->ipp_ipv4_options = NULL;
5510 			ipp->ipp_ipv4_options_len = 0;
5511 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5512 		}
5513 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5514 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5515 			ipp->ipp_label_v4 = NULL;
5516 			ipp->ipp_label_len_v4 = 0;
5517 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5518 		}
5519 		return (0);
5520 	}
5521 
5522 	totallen <<= 2;
5523 	opt = (uchar_t *)&ipha[1];
5524 	if (!is_system_labeled()) {
5525 
5526 	copyall:
5527 		if (!allocate) {
5528 			if (totallen != 0) {
5529 				ipp->ipp_ipv4_options = opt;
5530 				ipp->ipp_ipv4_options_len = totallen;
5531 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5532 			}
5533 			return (0);
5534 		}
5535 		/* Just copy all of options */
5536 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5537 			if (totallen == ipp->ipp_ipv4_options_len) {
5538 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5539 				return (0);
5540 			}
5541 			kmem_free(ipp->ipp_ipv4_options,
5542 			    ipp->ipp_ipv4_options_len);
5543 			ipp->ipp_ipv4_options = NULL;
5544 			ipp->ipp_ipv4_options_len = 0;
5545 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5546 		}
5547 		if (totallen == 0)
5548 			return (0);
5549 
5550 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5551 		if (ipp->ipp_ipv4_options == NULL)
5552 			return (ENOMEM);
5553 		ipp->ipp_ipv4_options_len = totallen;
5554 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5555 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5556 		return (0);
5557 	}
5558 
5559 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5560 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5561 		ipp->ipp_label_v4 = NULL;
5562 		ipp->ipp_label_len_v4 = 0;
5563 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5564 	}
5565 
5566 	/*
5567 	 * Search for CIPSO option.
5568 	 * We assume CIPSO is first in options if it is present.
5569 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5570 	 * prior to the CIPSO option.
5571 	 */
5572 	while (totallen != 0) {
5573 		switch (optval = opt[IPOPT_OPTVAL]) {
5574 		case IPOPT_EOL:
5575 			return (0);
5576 		case IPOPT_NOP:
5577 			optlen = 1;
5578 			break;
5579 		default:
5580 			if (totallen <= IPOPT_OLEN)
5581 				return (EINVAL);
5582 			optlen = opt[IPOPT_OLEN];
5583 			if (optlen < 2)
5584 				return (EINVAL);
5585 		}
5586 		if (optlen > totallen)
5587 			return (EINVAL);
5588 
5589 		switch (optval) {
5590 		case IPOPT_COMSEC:
5591 			if (!allocate) {
5592 				ipp->ipp_label_v4 = opt;
5593 				ipp->ipp_label_len_v4 = optlen;
5594 				ipp->ipp_fields |= IPPF_LABEL_V4;
5595 			} else {
5596 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5597 				    KM_NOSLEEP);
5598 				if (ipp->ipp_label_v4 == NULL)
5599 					return (ENOMEM);
5600 				ipp->ipp_label_len_v4 = optlen;
5601 				ipp->ipp_fields |= IPPF_LABEL_V4;
5602 				bcopy(opt, ipp->ipp_label_v4, optlen);
5603 			}
5604 			totallen -= optlen;
5605 			opt += optlen;
5606 
5607 			/* Skip padding bytes until we get to a multiple of 4 */
5608 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5609 				totallen--;
5610 				opt++;
5611 			}
5612 			/* Remaining as ipp_ipv4_options */
5613 			goto copyall;
5614 		}
5615 		totallen -= optlen;
5616 		opt += optlen;
5617 	}
5618 	/* No CIPSO found; return everything as ipp_ipv4_options */
5619 	totallen = ipha->ipha_version_and_hdr_length -
5620 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5621 	totallen <<= 2;
5622 	opt = (uchar_t *)&ipha[1];
5623 	goto copyall;
5624 }
5625 
5626 /*
5627  * Efficient versions of lookup for an IRE when we only
5628  * match the address.
5629  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5630  * Does not handle multicast addresses.
5631  */
5632 uint_t
5633 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5634 {
5635 	ire_t *ire;
5636 	uint_t result;
5637 
5638 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5639 	ASSERT(ire != NULL);
5640 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5641 		result = IRE_NOROUTE;
5642 	else
5643 		result = ire->ire_type;
5644 	ire_refrele(ire);
5645 	return (result);
5646 }
5647 
5648 /*
5649  * Efficient versions of lookup for an IRE when we only
5650  * match the address.
5651  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5652  * Does not handle multicast addresses.
5653  */
5654 uint_t
5655 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5656 {
5657 	ire_t *ire;
5658 	uint_t result;
5659 
5660 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5661 	ASSERT(ire != NULL);
5662 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5663 		result = IRE_NOROUTE;
5664 	else
5665 		result = ire->ire_type;
5666 	ire_refrele(ire);
5667 	return (result);
5668 }
5669 
5670 /*
5671  * Nobody should be sending
5672  * packets up this stream
5673  */
5674 static int
5675 ip_lrput(queue_t *q, mblk_t *mp)
5676 {
5677 	switch (mp->b_datap->db_type) {
5678 	case M_FLUSH:
5679 		/* Turn around */
5680 		if (*mp->b_rptr & FLUSHW) {
5681 			*mp->b_rptr &= ~FLUSHR;
5682 			qreply(q, mp);
5683 			return (0);
5684 		}
5685 		break;
5686 	}
5687 	freemsg(mp);
5688 	return (0);
5689 }
5690 
5691 /* Nobody should be sending packets down this stream */
5692 /* ARGSUSED */
5693 int
5694 ip_lwput(queue_t *q, mblk_t *mp)
5695 {
5696 	freemsg(mp);
5697 	return (0);
5698 }
5699 
5700 /*
5701  * Move the first hop in any source route to ipha_dst and remove that part of
5702  * the source route.  Called by other protocols.  Errors in option formatting
5703  * are ignored - will be handled by ip_output_options. Return the final
5704  * destination (either ipha_dst or the last entry in a source route.)
5705  */
5706 ipaddr_t
5707 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5708 {
5709 	ipoptp_t	opts;
5710 	uchar_t		*opt;
5711 	uint8_t		optval;
5712 	uint8_t		optlen;
5713 	ipaddr_t	dst;
5714 	int		i;
5715 	ip_stack_t	*ipst = ns->netstack_ip;
5716 
5717 	ip2dbg(("ip_massage_options\n"));
5718 	dst = ipha->ipha_dst;
5719 	for (optval = ipoptp_first(&opts, ipha);
5720 	    optval != IPOPT_EOL;
5721 	    optval = ipoptp_next(&opts)) {
5722 		opt = opts.ipoptp_cur;
5723 		switch (optval) {
5724 			uint8_t off;
5725 		case IPOPT_SSRR:
5726 		case IPOPT_LSRR:
5727 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5728 				ip1dbg(("ip_massage_options: bad src route\n"));
5729 				break;
5730 			}
5731 			optlen = opts.ipoptp_len;
5732 			off = opt[IPOPT_OFFSET];
5733 			off--;
5734 		redo_srr:
5735 			if (optlen < IP_ADDR_LEN ||
5736 			    off > optlen - IP_ADDR_LEN) {
5737 				/* End of source route */
5738 				ip1dbg(("ip_massage_options: end of SR\n"));
5739 				break;
5740 			}
5741 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5742 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5743 			    ntohl(dst)));
5744 			/*
5745 			 * Check if our address is present more than
5746 			 * once as consecutive hops in source route.
5747 			 * XXX verify per-interface ip_forwarding
5748 			 * for source route?
5749 			 */
5750 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5751 				off += IP_ADDR_LEN;
5752 				goto redo_srr;
5753 			}
5754 			if (dst == htonl(INADDR_LOOPBACK)) {
5755 				ip1dbg(("ip_massage_options: loopback addr in "
5756 				    "source route!\n"));
5757 				break;
5758 			}
5759 			/*
5760 			 * Update ipha_dst to be the first hop and remove the
5761 			 * first hop from the source route (by overwriting
5762 			 * part of the option with NOP options).
5763 			 */
5764 			ipha->ipha_dst = dst;
5765 			/* Put the last entry in dst */
5766 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5767 			    3;
5768 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5769 
5770 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5771 			    ntohl(dst)));
5772 			/* Move down and overwrite */
5773 			opt[IP_ADDR_LEN] = opt[0];
5774 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5775 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5776 			for (i = 0; i < IP_ADDR_LEN; i++)
5777 				opt[i] = IPOPT_NOP;
5778 			break;
5779 		}
5780 	}
5781 	return (dst);
5782 }
5783 
5784 /*
5785  * Return the network mask
5786  * associated with the specified address.
5787  */
5788 ipaddr_t
5789 ip_net_mask(ipaddr_t addr)
5790 {
5791 	uchar_t	*up = (uchar_t *)&addr;
5792 	ipaddr_t mask = 0;
5793 	uchar_t	*maskp = (uchar_t *)&mask;
5794 
5795 #if defined(__i386) || defined(__amd64)
5796 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5797 #endif
5798 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5799 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5800 #endif
5801 	if (CLASSD(addr)) {
5802 		maskp[0] = 0xF0;
5803 		return (mask);
5804 	}
5805 
5806 	/* We assume Class E default netmask to be 32 */
5807 	if (CLASSE(addr))
5808 		return (0xffffffffU);
5809 
5810 	if (addr == 0)
5811 		return (0);
5812 	maskp[0] = 0xFF;
5813 	if ((up[0] & 0x80) == 0)
5814 		return (mask);
5815 
5816 	maskp[1] = 0xFF;
5817 	if ((up[0] & 0xC0) == 0x80)
5818 		return (mask);
5819 
5820 	maskp[2] = 0xFF;
5821 	if ((up[0] & 0xE0) == 0xC0)
5822 		return (mask);
5823 
5824 	/* Otherwise return no mask */
5825 	return ((ipaddr_t)0);
5826 }
5827 
5828 /* Name/Value Table Lookup Routine */
5829 char *
5830 ip_nv_lookup(nv_t *nv, int value)
5831 {
5832 	if (!nv)
5833 		return (NULL);
5834 	for (; nv->nv_name; nv++) {
5835 		if (nv->nv_value == value)
5836 			return (nv->nv_name);
5837 	}
5838 	return ("unknown");
5839 }
5840 
5841 static int
5842 ip_wait_for_info_ack(ill_t *ill)
5843 {
5844 	int err;
5845 
5846 	mutex_enter(&ill->ill_lock);
5847 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5848 		/*
5849 		 * Return value of 0 indicates a pending signal.
5850 		 */
5851 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5852 		if (err == 0) {
5853 			mutex_exit(&ill->ill_lock);
5854 			return (EINTR);
5855 		}
5856 	}
5857 	mutex_exit(&ill->ill_lock);
5858 	/*
5859 	 * ip_rput_other could have set an error  in ill_error on
5860 	 * receipt of M_ERROR.
5861 	 */
5862 	return (ill->ill_error);
5863 }
5864 
5865 /*
5866  * This is a module open, i.e. this is a control stream for access
5867  * to a DLPI device.  We allocate an ill_t as the instance data in
5868  * this case.
5869  */
5870 static int
5871 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5872 {
5873 	ill_t	*ill;
5874 	int	err;
5875 	zoneid_t zoneid;
5876 	netstack_t *ns;
5877 	ip_stack_t *ipst;
5878 
5879 	/*
5880 	 * Prevent unprivileged processes from pushing IP so that
5881 	 * they can't send raw IP.
5882 	 */
5883 	if (secpolicy_net_rawaccess(credp) != 0)
5884 		return (EPERM);
5885 
5886 	ns = netstack_find_by_cred(credp);
5887 	ASSERT(ns != NULL);
5888 	ipst = ns->netstack_ip;
5889 	ASSERT(ipst != NULL);
5890 
5891 	/*
5892 	 * For exclusive stacks we set the zoneid to zero
5893 	 * to make IP operate as if in the global zone.
5894 	 */
5895 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5896 		zoneid = GLOBAL_ZONEID;
5897 	else
5898 		zoneid = crgetzoneid(credp);
5899 
5900 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5901 	q->q_ptr = WR(q)->q_ptr = ill;
5902 	ill->ill_ipst = ipst;
5903 	ill->ill_zoneid = zoneid;
5904 
5905 	/*
5906 	 * ill_init initializes the ill fields and then sends down
5907 	 * down a DL_INFO_REQ after calling qprocson.
5908 	 */
5909 	err = ill_init(q, ill);
5910 
5911 	if (err != 0) {
5912 		mi_free(ill);
5913 		netstack_rele(ipst->ips_netstack);
5914 		q->q_ptr = NULL;
5915 		WR(q)->q_ptr = NULL;
5916 		return (err);
5917 	}
5918 
5919 	/*
5920 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5921 	 *
5922 	 * ill_init initializes the ipsq marking this thread as
5923 	 * writer
5924 	 */
5925 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5926 	err = ip_wait_for_info_ack(ill);
5927 	if (err == 0)
5928 		ill->ill_credp = credp;
5929 	else
5930 		goto fail;
5931 
5932 	crhold(credp);
5933 
5934 	mutex_enter(&ipst->ips_ip_mi_lock);
5935 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5936 	    sflag, credp);
5937 	mutex_exit(&ipst->ips_ip_mi_lock);
5938 fail:
5939 	if (err) {
5940 		(void) ip_close(q, 0, credp);
5941 		return (err);
5942 	}
5943 	return (0);
5944 }
5945 
5946 /* For /dev/ip aka AF_INET open */
5947 int
5948 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5949 {
5950 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5951 }
5952 
5953 /* For /dev/ip6 aka AF_INET6 open */
5954 int
5955 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5956 {
5957 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5958 }
5959 
5960 /* IP open routine. */
5961 int
5962 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5963     boolean_t isv6)
5964 {
5965 	conn_t		*connp;
5966 	major_t		maj;
5967 	zoneid_t	zoneid;
5968 	netstack_t	*ns;
5969 	ip_stack_t	*ipst;
5970 
5971 	/* Allow reopen. */
5972 	if (q->q_ptr != NULL)
5973 		return (0);
5974 
5975 	if (sflag & MODOPEN) {
5976 		/* This is a module open */
5977 		return (ip_modopen(q, devp, flag, sflag, credp));
5978 	}
5979 
5980 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5981 		/*
5982 		 * Non streams based socket looking for a stream
5983 		 * to access IP
5984 		 */
5985 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5986 		    credp, isv6));
5987 	}
5988 
5989 	ns = netstack_find_by_cred(credp);
5990 	ASSERT(ns != NULL);
5991 	ipst = ns->netstack_ip;
5992 	ASSERT(ipst != NULL);
5993 
5994 	/*
5995 	 * For exclusive stacks we set the zoneid to zero
5996 	 * to make IP operate as if in the global zone.
5997 	 */
5998 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5999 		zoneid = GLOBAL_ZONEID;
6000 	else
6001 		zoneid = crgetzoneid(credp);
6002 
6003 	/*
6004 	 * We are opening as a device. This is an IP client stream, and we
6005 	 * allocate an conn_t as the instance data.
6006 	 */
6007 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6008 
6009 	/*
6010 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6011 	 * done by netstack_find_by_cred()
6012 	 */
6013 	netstack_rele(ipst->ips_netstack);
6014 
6015 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6016 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6017 	connp->conn_ixa->ixa_zoneid = zoneid;
6018 	connp->conn_zoneid = zoneid;
6019 
6020 	connp->conn_rq = q;
6021 	q->q_ptr = WR(q)->q_ptr = connp;
6022 
6023 	/* Minor tells us which /dev entry was opened */
6024 	if (isv6) {
6025 		connp->conn_family = AF_INET6;
6026 		connp->conn_ipversion = IPV6_VERSION;
6027 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6028 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6029 	} else {
6030 		connp->conn_family = AF_INET;
6031 		connp->conn_ipversion = IPV4_VERSION;
6032 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6033 	}
6034 
6035 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6036 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6037 		connp->conn_minor_arena = ip_minor_arena_la;
6038 	} else {
6039 		/*
6040 		 * Either minor numbers in the large arena were exhausted
6041 		 * or a non socket application is doing the open.
6042 		 * Try to allocate from the small arena.
6043 		 */
6044 		if ((connp->conn_dev =
6045 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6046 			/* CONN_DEC_REF takes care of netstack_rele() */
6047 			q->q_ptr = WR(q)->q_ptr = NULL;
6048 			CONN_DEC_REF(connp);
6049 			return (EBUSY);
6050 		}
6051 		connp->conn_minor_arena = ip_minor_arena_sa;
6052 	}
6053 
6054 	maj = getemajor(*devp);
6055 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6056 
6057 	/*
6058 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6059 	 */
6060 	connp->conn_cred = credp;
6061 	connp->conn_cpid = curproc->p_pid;
6062 	/* Cache things in ixa without an extra refhold */
6063 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6064 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6065 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6066 	if (is_system_labeled())
6067 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6068 
6069 	/*
6070 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6071 	 */
6072 	connp->conn_recv = ip_conn_input;
6073 	connp->conn_recvicmp = ip_conn_input_icmp;
6074 
6075 	crhold(connp->conn_cred);
6076 
6077 	/*
6078 	 * If the caller has the process-wide flag set, then default to MAC
6079 	 * exempt mode.  This allows read-down to unlabeled hosts.
6080 	 */
6081 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6082 		connp->conn_mac_mode = CONN_MAC_AWARE;
6083 
6084 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6085 
6086 	connp->conn_rq = q;
6087 	connp->conn_wq = WR(q);
6088 
6089 	/* Non-zero default values */
6090 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6091 
6092 	/*
6093 	 * Make the conn globally visible to walkers
6094 	 */
6095 	ASSERT(connp->conn_ref == 1);
6096 	mutex_enter(&connp->conn_lock);
6097 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6098 	mutex_exit(&connp->conn_lock);
6099 
6100 	qprocson(q);
6101 
6102 	return (0);
6103 }
6104 
6105 /*
6106  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6107  * all of them are copied to the conn_t. If the req is "zero", the policy is
6108  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6109  * fields.
6110  * We keep only the latest setting of the policy and thus policy setting
6111  * is not incremental/cumulative.
6112  *
6113  * Requests to set policies with multiple alternative actions will
6114  * go through a different API.
6115  */
6116 int
6117 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6118 {
6119 	uint_t ah_req = 0;
6120 	uint_t esp_req = 0;
6121 	uint_t se_req = 0;
6122 	ipsec_act_t *actp = NULL;
6123 	uint_t nact;
6124 	ipsec_policy_head_t *ph;
6125 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6126 	int error = 0;
6127 	netstack_t	*ns = connp->conn_netstack;
6128 	ip_stack_t	*ipst = ns->netstack_ip;
6129 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6130 
6131 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6132 
6133 	/*
6134 	 * The IP_SEC_OPT option does not allow variable length parameters,
6135 	 * hence a request cannot be NULL.
6136 	 */
6137 	if (req == NULL)
6138 		return (EINVAL);
6139 
6140 	ah_req = req->ipsr_ah_req;
6141 	esp_req = req->ipsr_esp_req;
6142 	se_req = req->ipsr_self_encap_req;
6143 
6144 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6145 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6146 		return (EINVAL);
6147 
6148 	/*
6149 	 * Are we dealing with a request to reset the policy (i.e.
6150 	 * zero requests).
6151 	 */
6152 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6153 	    (esp_req & REQ_MASK) == 0 &&
6154 	    (se_req & REQ_MASK) == 0);
6155 
6156 	if (!is_pol_reset) {
6157 		/*
6158 		 * If we couldn't load IPsec, fail with "protocol
6159 		 * not supported".
6160 		 * IPsec may not have been loaded for a request with zero
6161 		 * policies, so we don't fail in this case.
6162 		 */
6163 		mutex_enter(&ipss->ipsec_loader_lock);
6164 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6165 			mutex_exit(&ipss->ipsec_loader_lock);
6166 			return (EPROTONOSUPPORT);
6167 		}
6168 		mutex_exit(&ipss->ipsec_loader_lock);
6169 
6170 		/*
6171 		 * Test for valid requests. Invalid algorithms
6172 		 * need to be tested by IPsec code because new
6173 		 * algorithms can be added dynamically.
6174 		 */
6175 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6176 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6177 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6178 			return (EINVAL);
6179 		}
6180 
6181 		/*
6182 		 * Only privileged users can issue these
6183 		 * requests.
6184 		 */
6185 		if (((ah_req & IPSEC_PREF_NEVER) ||
6186 		    (esp_req & IPSEC_PREF_NEVER) ||
6187 		    (se_req & IPSEC_PREF_NEVER)) &&
6188 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6189 			return (EPERM);
6190 		}
6191 
6192 		/*
6193 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6194 		 * are mutually exclusive.
6195 		 */
6196 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6197 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6198 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6199 			/* Both of them are set */
6200 			return (EINVAL);
6201 		}
6202 	}
6203 
6204 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6205 
6206 	/*
6207 	 * If we have already cached policies in conn_connect(), don't
6208 	 * let them change now. We cache policies for connections
6209 	 * whose src,dst [addr, port] is known.
6210 	 */
6211 	if (connp->conn_policy_cached) {
6212 		return (EINVAL);
6213 	}
6214 
6215 	/*
6216 	 * We have a zero policies, reset the connection policy if already
6217 	 * set. This will cause the connection to inherit the
6218 	 * global policy, if any.
6219 	 */
6220 	if (is_pol_reset) {
6221 		if (connp->conn_policy != NULL) {
6222 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6223 			connp->conn_policy = NULL;
6224 		}
6225 		connp->conn_in_enforce_policy = B_FALSE;
6226 		connp->conn_out_enforce_policy = B_FALSE;
6227 		return (0);
6228 	}
6229 
6230 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6231 	    ipst->ips_netstack);
6232 	if (ph == NULL)
6233 		goto enomem;
6234 
6235 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6236 	if (actp == NULL)
6237 		goto enomem;
6238 
6239 	/*
6240 	 * Always insert IPv4 policy entries, since they can also apply to
6241 	 * ipv6 sockets being used in ipv4-compat mode.
6242 	 */
6243 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6244 	    IPSEC_TYPE_INBOUND, ns))
6245 		goto enomem;
6246 	is_pol_inserted = B_TRUE;
6247 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6248 	    IPSEC_TYPE_OUTBOUND, ns))
6249 		goto enomem;
6250 
6251 	/*
6252 	 * We're looking at a v6 socket, also insert the v6-specific
6253 	 * entries.
6254 	 */
6255 	if (connp->conn_family == AF_INET6) {
6256 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6257 		    IPSEC_TYPE_INBOUND, ns))
6258 			goto enomem;
6259 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6260 		    IPSEC_TYPE_OUTBOUND, ns))
6261 			goto enomem;
6262 	}
6263 
6264 	ipsec_actvec_free(actp, nact);
6265 
6266 	/*
6267 	 * If the requests need security, set enforce_policy.
6268 	 * If the requests are IPSEC_PREF_NEVER, one should
6269 	 * still set conn_out_enforce_policy so that ip_set_destination
6270 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6271 	 * for connections that we don't cache policy in at connect time,
6272 	 * if global policy matches in ip_output_attach_policy, we
6273 	 * don't wrongly inherit global policy. Similarly, we need
6274 	 * to set conn_in_enforce_policy also so that we don't verify
6275 	 * policy wrongly.
6276 	 */
6277 	if ((ah_req & REQ_MASK) != 0 ||
6278 	    (esp_req & REQ_MASK) != 0 ||
6279 	    (se_req & REQ_MASK) != 0) {
6280 		connp->conn_in_enforce_policy = B_TRUE;
6281 		connp->conn_out_enforce_policy = B_TRUE;
6282 	}
6283 
6284 	return (error);
6285 #undef REQ_MASK
6286 
6287 	/*
6288 	 * Common memory-allocation-failure exit path.
6289 	 */
6290 enomem:
6291 	if (actp != NULL)
6292 		ipsec_actvec_free(actp, nact);
6293 	if (is_pol_inserted)
6294 		ipsec_polhead_flush(ph, ns);
6295 	return (ENOMEM);
6296 }
6297 
6298 /*
6299  * Set socket options for joining and leaving multicast groups.
6300  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6301  * The caller has already check that the option name is consistent with
6302  * the address family of the socket.
6303  */
6304 int
6305 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6306     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6307 {
6308 	int		*i1 = (int *)invalp;
6309 	int		error = 0;
6310 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6311 	struct ip_mreq	*v4_mreqp;
6312 	struct ipv6_mreq *v6_mreqp;
6313 	struct group_req *greqp;
6314 	ire_t *ire;
6315 	boolean_t done = B_FALSE;
6316 	ipaddr_t ifaddr;
6317 	in6_addr_t v6group;
6318 	uint_t ifindex;
6319 	boolean_t mcast_opt = B_TRUE;
6320 	mcast_record_t fmode;
6321 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6322 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6323 
6324 	switch (name) {
6325 	case IP_ADD_MEMBERSHIP:
6326 	case IPV6_JOIN_GROUP:
6327 		mcast_opt = B_FALSE;
6328 		/* FALLTHROUGH */
6329 	case MCAST_JOIN_GROUP:
6330 		fmode = MODE_IS_EXCLUDE;
6331 		optfn = ip_opt_add_group;
6332 		break;
6333 
6334 	case IP_DROP_MEMBERSHIP:
6335 	case IPV6_LEAVE_GROUP:
6336 		mcast_opt = B_FALSE;
6337 		/* FALLTHROUGH */
6338 	case MCAST_LEAVE_GROUP:
6339 		fmode = MODE_IS_INCLUDE;
6340 		optfn = ip_opt_delete_group;
6341 		break;
6342 	default:
6343 		/* Should not be reached. */
6344 		fmode = MODE_IS_INCLUDE;
6345 		optfn = NULL;
6346 		ASSERT(0);
6347 	}
6348 
6349 	if (mcast_opt) {
6350 		struct sockaddr_in *sin;
6351 		struct sockaddr_in6 *sin6;
6352 
6353 		greqp = (struct group_req *)i1;
6354 		if (greqp->gr_group.ss_family == AF_INET) {
6355 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6356 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6357 		} else {
6358 			if (!inet6)
6359 				return (EINVAL);	/* Not on INET socket */
6360 
6361 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6362 			v6group = sin6->sin6_addr;
6363 		}
6364 		ifaddr = INADDR_ANY;
6365 		ifindex = greqp->gr_interface;
6366 	} else if (inet6) {
6367 		v6_mreqp = (struct ipv6_mreq *)i1;
6368 		v6group = v6_mreqp->ipv6mr_multiaddr;
6369 		ifaddr = INADDR_ANY;
6370 		ifindex = v6_mreqp->ipv6mr_interface;
6371 	} else {
6372 		v4_mreqp = (struct ip_mreq *)i1;
6373 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6374 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6375 		ifindex = 0;
6376 	}
6377 
6378 	/*
6379 	 * In the multirouting case, we need to replicate
6380 	 * the request on all interfaces that will take part
6381 	 * in replication.  We do so because multirouting is
6382 	 * reflective, thus we will probably receive multi-
6383 	 * casts on those interfaces.
6384 	 * The ip_multirt_apply_membership() succeeds if
6385 	 * the operation succeeds on at least one interface.
6386 	 */
6387 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6388 		ipaddr_t group;
6389 
6390 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6391 
6392 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6393 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6394 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6395 	} else {
6396 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6397 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6398 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6399 	}
6400 	if (ire != NULL) {
6401 		if (ire->ire_flags & RTF_MULTIRT) {
6402 			error = ip_multirt_apply_membership(optfn, ire, connp,
6403 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6404 			done = B_TRUE;
6405 		}
6406 		ire_refrele(ire);
6407 	}
6408 
6409 	if (!done) {
6410 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6411 		    fmode, &ipv6_all_zeros);
6412 	}
6413 	return (error);
6414 }
6415 
6416 /*
6417  * Set socket options for joining and leaving multicast groups
6418  * for specific sources.
6419  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6420  * The caller has already check that the option name is consistent with
6421  * the address family of the socket.
6422  */
6423 int
6424 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6425     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6426 {
6427 	int		*i1 = (int *)invalp;
6428 	int		error = 0;
6429 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6430 	struct ip_mreq_source *imreqp;
6431 	struct group_source_req *gsreqp;
6432 	in6_addr_t v6group, v6src;
6433 	uint32_t ifindex;
6434 	ipaddr_t ifaddr;
6435 	boolean_t mcast_opt = B_TRUE;
6436 	mcast_record_t fmode;
6437 	ire_t *ire;
6438 	boolean_t done = B_FALSE;
6439 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6440 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6441 
6442 	switch (name) {
6443 	case IP_BLOCK_SOURCE:
6444 		mcast_opt = B_FALSE;
6445 		/* FALLTHROUGH */
6446 	case MCAST_BLOCK_SOURCE:
6447 		fmode = MODE_IS_EXCLUDE;
6448 		optfn = ip_opt_add_group;
6449 		break;
6450 
6451 	case IP_UNBLOCK_SOURCE:
6452 		mcast_opt = B_FALSE;
6453 		/* FALLTHROUGH */
6454 	case MCAST_UNBLOCK_SOURCE:
6455 		fmode = MODE_IS_EXCLUDE;
6456 		optfn = ip_opt_delete_group;
6457 		break;
6458 
6459 	case IP_ADD_SOURCE_MEMBERSHIP:
6460 		mcast_opt = B_FALSE;
6461 		/* FALLTHROUGH */
6462 	case MCAST_JOIN_SOURCE_GROUP:
6463 		fmode = MODE_IS_INCLUDE;
6464 		optfn = ip_opt_add_group;
6465 		break;
6466 
6467 	case IP_DROP_SOURCE_MEMBERSHIP:
6468 		mcast_opt = B_FALSE;
6469 		/* FALLTHROUGH */
6470 	case MCAST_LEAVE_SOURCE_GROUP:
6471 		fmode = MODE_IS_INCLUDE;
6472 		optfn = ip_opt_delete_group;
6473 		break;
6474 	default:
6475 		/* Should not be reached. */
6476 		optfn = NULL;
6477 		fmode = 0;
6478 		ASSERT(0);
6479 	}
6480 
6481 	if (mcast_opt) {
6482 		gsreqp = (struct group_source_req *)i1;
6483 		ifindex = gsreqp->gsr_interface;
6484 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6485 			struct sockaddr_in *s;
6486 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6487 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6488 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6489 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6490 		} else {
6491 			struct sockaddr_in6 *s6;
6492 
6493 			if (!inet6)
6494 				return (EINVAL);	/* Not on INET socket */
6495 
6496 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6497 			v6group = s6->sin6_addr;
6498 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6499 			v6src = s6->sin6_addr;
6500 		}
6501 		ifaddr = INADDR_ANY;
6502 	} else {
6503 		imreqp = (struct ip_mreq_source *)i1;
6504 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6505 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6506 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6507 		ifindex = 0;
6508 	}
6509 
6510 	/*
6511 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6512 	 */
6513 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6514 		v6src = ipv6_all_zeros;
6515 
6516 	/*
6517 	 * In the multirouting case, we need to replicate
6518 	 * the request as noted in the mcast cases above.
6519 	 */
6520 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6521 		ipaddr_t group;
6522 
6523 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6524 
6525 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6526 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6527 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6528 	} else {
6529 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6530 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6531 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6532 	}
6533 	if (ire != NULL) {
6534 		if (ire->ire_flags & RTF_MULTIRT) {
6535 			error = ip_multirt_apply_membership(optfn, ire, connp,
6536 			    checkonly, &v6group, fmode, &v6src);
6537 			done = B_TRUE;
6538 		}
6539 		ire_refrele(ire);
6540 	}
6541 	if (!done) {
6542 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6543 		    fmode, &v6src);
6544 	}
6545 	return (error);
6546 }
6547 
6548 /*
6549  * Given a destination address and a pointer to where to put the information
6550  * this routine fills in the mtuinfo.
6551  * The socket must be connected.
6552  * For sctp conn_faddr is the primary address.
6553  */
6554 int
6555 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6556 {
6557 	uint32_t	pmtu = IP_MAXPACKET;
6558 	uint_t		scopeid;
6559 
6560 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6561 		return (-1);
6562 
6563 	/* In case we never sent or called ip_set_destination_v4/v6 */
6564 	if (ixa->ixa_ire != NULL)
6565 		pmtu = ip_get_pmtu(ixa);
6566 
6567 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6568 		scopeid = ixa->ixa_scopeid;
6569 	else
6570 		scopeid = 0;
6571 
6572 	bzero(mtuinfo, sizeof (*mtuinfo));
6573 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6574 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6575 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6576 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6577 	mtuinfo->ip6m_mtu = pmtu;
6578 
6579 	return (sizeof (struct ip6_mtuinfo));
6580 }
6581 
6582 /*
6583  * When the src multihoming is changed from weak to [strong, preferred]
6584  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6585  * and identify routes that were created by user-applications in the
6586  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6587  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6588  * is selected by finding an interface route for the gateway.
6589  */
6590 /* ARGSUSED */
6591 void
6592 ip_ire_rebind_walker(ire_t *ire, void *notused)
6593 {
6594 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6595 		return;
6596 	ire_rebind(ire);
6597 	ire_delete(ire);
6598 }
6599 
6600 /*
6601  * When the src multihoming is changed from  [strong, preferred] to weak,
6602  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6603  * set any entries that were created by user-applications in the unbound state
6604  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6605  */
6606 /* ARGSUSED */
6607 void
6608 ip_ire_unbind_walker(ire_t *ire, void *notused)
6609 {
6610 	ire_t *new_ire;
6611 
6612 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6613 		return;
6614 	if (ire->ire_ipversion == IPV6_VERSION) {
6615 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6616 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6617 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6618 	} else {
6619 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6620 		    (uchar_t *)&ire->ire_mask,
6621 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6622 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6623 	}
6624 	if (new_ire == NULL)
6625 		return;
6626 	new_ire->ire_unbound = B_TRUE;
6627 	/*
6628 	 * The bound ire must first be deleted so that we don't return
6629 	 * the existing one on the attempt to add the unbound new_ire.
6630 	 */
6631 	ire_delete(ire);
6632 	new_ire = ire_add(new_ire);
6633 	if (new_ire != NULL)
6634 		ire_refrele(new_ire);
6635 }
6636 
6637 /*
6638  * When the settings of ip*_strict_src_multihoming tunables are changed,
6639  * all cached routes need to be recomputed. This recomputation needs to be
6640  * done when going from weaker to stronger modes so that the cached ire
6641  * for the connection does not violate the current ip*_strict_src_multihoming
6642  * setting. It also needs to be done when going from stronger to weaker modes,
6643  * so that we fall back to matching on the longest-matching-route (as opposed
6644  * to a shorter match that may have been selected in the strong mode
6645  * to satisfy src_multihoming settings).
6646  *
6647  * The cached ixa_ire entires for all conn_t entries are marked as
6648  * "verify" so that they will be recomputed for the next packet.
6649  */
6650 void
6651 conn_ire_revalidate(conn_t *connp, void *arg)
6652 {
6653 	boolean_t isv6 = (boolean_t)arg;
6654 
6655 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6656 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6657 		return;
6658 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6659 }
6660 
6661 /*
6662  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6663  * When an ipf is passed here for the first time, if
6664  * we already have in-order fragments on the queue, we convert from the fast-
6665  * path reassembly scheme to the hard-case scheme.  From then on, additional
6666  * fragments are reassembled here.  We keep track of the start and end offsets
6667  * of each piece, and the number of holes in the chain.  When the hole count
6668  * goes to zero, we are done!
6669  *
6670  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6671  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6672  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6673  * after the call to ip_reassemble().
6674  */
6675 int
6676 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6677     size_t msg_len)
6678 {
6679 	uint_t	end;
6680 	mblk_t	*next_mp;
6681 	mblk_t	*mp1;
6682 	uint_t	offset;
6683 	boolean_t incr_dups = B_TRUE;
6684 	boolean_t offset_zero_seen = B_FALSE;
6685 	boolean_t pkt_boundary_checked = B_FALSE;
6686 
6687 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6688 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6689 
6690 	/* Add in byte count */
6691 	ipf->ipf_count += msg_len;
6692 	if (ipf->ipf_end) {
6693 		/*
6694 		 * We were part way through in-order reassembly, but now there
6695 		 * is a hole.  We walk through messages already queued, and
6696 		 * mark them for hard case reassembly.  We know that up till
6697 		 * now they were in order starting from offset zero.
6698 		 */
6699 		offset = 0;
6700 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6701 			IP_REASS_SET_START(mp1, offset);
6702 			if (offset == 0) {
6703 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6704 				offset = -ipf->ipf_nf_hdr_len;
6705 			}
6706 			offset += mp1->b_wptr - mp1->b_rptr;
6707 			IP_REASS_SET_END(mp1, offset);
6708 		}
6709 		/* One hole at the end. */
6710 		ipf->ipf_hole_cnt = 1;
6711 		/* Brand it as a hard case, forever. */
6712 		ipf->ipf_end = 0;
6713 	}
6714 	/* Walk through all the new pieces. */
6715 	do {
6716 		end = start + (mp->b_wptr - mp->b_rptr);
6717 		/*
6718 		 * If start is 0, decrease 'end' only for the first mblk of
6719 		 * the fragment. Otherwise 'end' can get wrong value in the
6720 		 * second pass of the loop if first mblk is exactly the
6721 		 * size of ipf_nf_hdr_len.
6722 		 */
6723 		if (start == 0 && !offset_zero_seen) {
6724 			/* First segment */
6725 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6726 			end -= ipf->ipf_nf_hdr_len;
6727 			offset_zero_seen = B_TRUE;
6728 		}
6729 		next_mp = mp->b_cont;
6730 		/*
6731 		 * We are checking to see if there is any interesing data
6732 		 * to process.  If there isn't and the mblk isn't the
6733 		 * one which carries the unfragmentable header then we
6734 		 * drop it.  It's possible to have just the unfragmentable
6735 		 * header come through without any data.  That needs to be
6736 		 * saved.
6737 		 *
6738 		 * If the assert at the top of this function holds then the
6739 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6740 		 * is infrequently traveled enough that the test is left in
6741 		 * to protect against future code changes which break that
6742 		 * invariant.
6743 		 */
6744 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6745 			/* Empty.  Blast it. */
6746 			IP_REASS_SET_START(mp, 0);
6747 			IP_REASS_SET_END(mp, 0);
6748 			/*
6749 			 * If the ipf points to the mblk we are about to free,
6750 			 * update ipf to point to the next mblk (or NULL
6751 			 * if none).
6752 			 */
6753 			if (ipf->ipf_mp->b_cont == mp)
6754 				ipf->ipf_mp->b_cont = next_mp;
6755 			freeb(mp);
6756 			continue;
6757 		}
6758 		mp->b_cont = NULL;
6759 		IP_REASS_SET_START(mp, start);
6760 		IP_REASS_SET_END(mp, end);
6761 		if (!ipf->ipf_tail_mp) {
6762 			ipf->ipf_tail_mp = mp;
6763 			ipf->ipf_mp->b_cont = mp;
6764 			if (start == 0 || !more) {
6765 				ipf->ipf_hole_cnt = 1;
6766 				/*
6767 				 * if the first fragment comes in more than one
6768 				 * mblk, this loop will be executed for each
6769 				 * mblk. Need to adjust hole count so exiting
6770 				 * this routine will leave hole count at 1.
6771 				 */
6772 				if (next_mp)
6773 					ipf->ipf_hole_cnt++;
6774 			} else
6775 				ipf->ipf_hole_cnt = 2;
6776 			continue;
6777 		} else if (ipf->ipf_last_frag_seen && !more &&
6778 		    !pkt_boundary_checked) {
6779 			/*
6780 			 * We check datagram boundary only if this fragment
6781 			 * claims to be the last fragment and we have seen a
6782 			 * last fragment in the past too. We do this only
6783 			 * once for a given fragment.
6784 			 *
6785 			 * start cannot be 0 here as fragments with start=0
6786 			 * and MF=0 gets handled as a complete packet. These
6787 			 * fragments should not reach here.
6788 			 */
6789 
6790 			if (start + msgdsize(mp) !=
6791 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6792 				/*
6793 				 * We have two fragments both of which claim
6794 				 * to be the last fragment but gives conflicting
6795 				 * information about the whole datagram size.
6796 				 * Something fishy is going on. Drop the
6797 				 * fragment and free up the reassembly list.
6798 				 */
6799 				return (IP_REASS_FAILED);
6800 			}
6801 
6802 			/*
6803 			 * We shouldn't come to this code block again for this
6804 			 * particular fragment.
6805 			 */
6806 			pkt_boundary_checked = B_TRUE;
6807 		}
6808 
6809 		/* New stuff at or beyond tail? */
6810 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6811 		if (start >= offset) {
6812 			if (ipf->ipf_last_frag_seen) {
6813 				/* current fragment is beyond last fragment */
6814 				return (IP_REASS_FAILED);
6815 			}
6816 			/* Link it on end. */
6817 			ipf->ipf_tail_mp->b_cont = mp;
6818 			ipf->ipf_tail_mp = mp;
6819 			if (more) {
6820 				if (start != offset)
6821 					ipf->ipf_hole_cnt++;
6822 			} else if (start == offset && next_mp == NULL)
6823 					ipf->ipf_hole_cnt--;
6824 			continue;
6825 		}
6826 		mp1 = ipf->ipf_mp->b_cont;
6827 		offset = IP_REASS_START(mp1);
6828 		/* New stuff at the front? */
6829 		if (start < offset) {
6830 			if (start == 0) {
6831 				if (end >= offset) {
6832 					/* Nailed the hole at the begining. */
6833 					ipf->ipf_hole_cnt--;
6834 				}
6835 			} else if (end < offset) {
6836 				/*
6837 				 * A hole, stuff, and a hole where there used
6838 				 * to be just a hole.
6839 				 */
6840 				ipf->ipf_hole_cnt++;
6841 			}
6842 			mp->b_cont = mp1;
6843 			/* Check for overlap. */
6844 			while (end > offset) {
6845 				if (end < IP_REASS_END(mp1)) {
6846 					mp->b_wptr -= end - offset;
6847 					IP_REASS_SET_END(mp, offset);
6848 					BUMP_MIB(ill->ill_ip_mib,
6849 					    ipIfStatsReasmPartDups);
6850 					break;
6851 				}
6852 				/* Did we cover another hole? */
6853 				if ((mp1->b_cont &&
6854 				    IP_REASS_END(mp1) !=
6855 				    IP_REASS_START(mp1->b_cont) &&
6856 				    end >= IP_REASS_START(mp1->b_cont)) ||
6857 				    (!ipf->ipf_last_frag_seen && !more)) {
6858 					ipf->ipf_hole_cnt--;
6859 				}
6860 				/* Clip out mp1. */
6861 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6862 					/*
6863 					 * After clipping out mp1, this guy
6864 					 * is now hanging off the end.
6865 					 */
6866 					ipf->ipf_tail_mp = mp;
6867 				}
6868 				IP_REASS_SET_START(mp1, 0);
6869 				IP_REASS_SET_END(mp1, 0);
6870 				/* Subtract byte count */
6871 				ipf->ipf_count -= mp1->b_datap->db_lim -
6872 				    mp1->b_datap->db_base;
6873 				freeb(mp1);
6874 				BUMP_MIB(ill->ill_ip_mib,
6875 				    ipIfStatsReasmPartDups);
6876 				mp1 = mp->b_cont;
6877 				if (!mp1)
6878 					break;
6879 				offset = IP_REASS_START(mp1);
6880 			}
6881 			ipf->ipf_mp->b_cont = mp;
6882 			continue;
6883 		}
6884 		/*
6885 		 * The new piece starts somewhere between the start of the head
6886 		 * and before the end of the tail.
6887 		 */
6888 		for (; mp1; mp1 = mp1->b_cont) {
6889 			offset = IP_REASS_END(mp1);
6890 			if (start < offset) {
6891 				if (end <= offset) {
6892 					/* Nothing new. */
6893 					IP_REASS_SET_START(mp, 0);
6894 					IP_REASS_SET_END(mp, 0);
6895 					/* Subtract byte count */
6896 					ipf->ipf_count -= mp->b_datap->db_lim -
6897 					    mp->b_datap->db_base;
6898 					if (incr_dups) {
6899 						ipf->ipf_num_dups++;
6900 						incr_dups = B_FALSE;
6901 					}
6902 					freeb(mp);
6903 					BUMP_MIB(ill->ill_ip_mib,
6904 					    ipIfStatsReasmDuplicates);
6905 					break;
6906 				}
6907 				/*
6908 				 * Trim redundant stuff off beginning of new
6909 				 * piece.
6910 				 */
6911 				IP_REASS_SET_START(mp, offset);
6912 				mp->b_rptr += offset - start;
6913 				BUMP_MIB(ill->ill_ip_mib,
6914 				    ipIfStatsReasmPartDups);
6915 				start = offset;
6916 				if (!mp1->b_cont) {
6917 					/*
6918 					 * After trimming, this guy is now
6919 					 * hanging off the end.
6920 					 */
6921 					mp1->b_cont = mp;
6922 					ipf->ipf_tail_mp = mp;
6923 					if (!more) {
6924 						ipf->ipf_hole_cnt--;
6925 					}
6926 					break;
6927 				}
6928 			}
6929 			if (start >= IP_REASS_START(mp1->b_cont))
6930 				continue;
6931 			/* Fill a hole */
6932 			if (start > offset)
6933 				ipf->ipf_hole_cnt++;
6934 			mp->b_cont = mp1->b_cont;
6935 			mp1->b_cont = mp;
6936 			mp1 = mp->b_cont;
6937 			offset = IP_REASS_START(mp1);
6938 			if (end >= offset) {
6939 				ipf->ipf_hole_cnt--;
6940 				/* Check for overlap. */
6941 				while (end > offset) {
6942 					if (end < IP_REASS_END(mp1)) {
6943 						mp->b_wptr -= end - offset;
6944 						IP_REASS_SET_END(mp, offset);
6945 						/*
6946 						 * TODO we might bump
6947 						 * this up twice if there is
6948 						 * overlap at both ends.
6949 						 */
6950 						BUMP_MIB(ill->ill_ip_mib,
6951 						    ipIfStatsReasmPartDups);
6952 						break;
6953 					}
6954 					/* Did we cover another hole? */
6955 					if ((mp1->b_cont &&
6956 					    IP_REASS_END(mp1)
6957 					    != IP_REASS_START(mp1->b_cont) &&
6958 					    end >=
6959 					    IP_REASS_START(mp1->b_cont)) ||
6960 					    (!ipf->ipf_last_frag_seen &&
6961 					    !more)) {
6962 						ipf->ipf_hole_cnt--;
6963 					}
6964 					/* Clip out mp1. */
6965 					if ((mp->b_cont = mp1->b_cont) ==
6966 					    NULL) {
6967 						/*
6968 						 * After clipping out mp1,
6969 						 * this guy is now hanging
6970 						 * off the end.
6971 						 */
6972 						ipf->ipf_tail_mp = mp;
6973 					}
6974 					IP_REASS_SET_START(mp1, 0);
6975 					IP_REASS_SET_END(mp1, 0);
6976 					/* Subtract byte count */
6977 					ipf->ipf_count -=
6978 					    mp1->b_datap->db_lim -
6979 					    mp1->b_datap->db_base;
6980 					freeb(mp1);
6981 					BUMP_MIB(ill->ill_ip_mib,
6982 					    ipIfStatsReasmPartDups);
6983 					mp1 = mp->b_cont;
6984 					if (!mp1)
6985 						break;
6986 					offset = IP_REASS_START(mp1);
6987 				}
6988 			}
6989 			break;
6990 		}
6991 	} while (start = end, mp = next_mp);
6992 
6993 	/* Fragment just processed could be the last one. Remember this fact */
6994 	if (!more)
6995 		ipf->ipf_last_frag_seen = B_TRUE;
6996 
6997 	/* Still got holes? */
6998 	if (ipf->ipf_hole_cnt)
6999 		return (IP_REASS_PARTIAL);
7000 	/* Clean up overloaded fields to avoid upstream disasters. */
7001 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
7002 		IP_REASS_SET_START(mp1, 0);
7003 		IP_REASS_SET_END(mp1, 0);
7004 	}
7005 	return (IP_REASS_COMPLETE);
7006 }
7007 
7008 /*
7009  * Fragmentation reassembly.  Each ILL has a hash table for
7010  * queuing packets undergoing reassembly for all IPIFs
7011  * associated with the ILL.  The hash is based on the packet
7012  * IP ident field.  The ILL frag hash table was allocated
7013  * as a timer block at the time the ILL was created.  Whenever
7014  * there is anything on the reassembly queue, the timer will
7015  * be running.  Returns the reassembled packet if reassembly completes.
7016  */
7017 mblk_t *
7018 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7019 {
7020 	uint32_t	frag_offset_flags;
7021 	mblk_t		*t_mp;
7022 	ipaddr_t	dst;
7023 	uint8_t		proto = ipha->ipha_protocol;
7024 	uint32_t	sum_val;
7025 	uint16_t	sum_flags;
7026 	ipf_t		*ipf;
7027 	ipf_t		**ipfp;
7028 	ipfb_t		*ipfb;
7029 	uint16_t	ident;
7030 	uint32_t	offset;
7031 	ipaddr_t	src;
7032 	uint_t		hdr_length;
7033 	uint32_t	end;
7034 	mblk_t		*mp1;
7035 	mblk_t		*tail_mp;
7036 	size_t		count;
7037 	size_t		msg_len;
7038 	uint8_t		ecn_info = 0;
7039 	uint32_t	packet_size;
7040 	boolean_t	pruned = B_FALSE;
7041 	ill_t		*ill = ira->ira_ill;
7042 	ip_stack_t	*ipst = ill->ill_ipst;
7043 
7044 	/*
7045 	 * Drop the fragmented as early as possible, if
7046 	 * we don't have resource(s) to re-assemble.
7047 	 */
7048 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7049 		freemsg(mp);
7050 		return (NULL);
7051 	}
7052 
7053 	/* Check for fragmentation offset; return if there's none */
7054 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7055 	    (IPH_MF | IPH_OFFSET)) == 0)
7056 		return (mp);
7057 
7058 	/*
7059 	 * We utilize hardware computed checksum info only for UDP since
7060 	 * IP fragmentation is a normal occurrence for the protocol.  In
7061 	 * addition, checksum offload support for IP fragments carrying
7062 	 * UDP payload is commonly implemented across network adapters.
7063 	 */
7064 	ASSERT(ira->ira_rill != NULL);
7065 	if (proto == IPPROTO_UDP && dohwcksum &&
7066 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7067 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7068 		mblk_t *mp1 = mp->b_cont;
7069 		int32_t len;
7070 
7071 		/* Record checksum information from the packet */
7072 		sum_val = (uint32_t)DB_CKSUM16(mp);
7073 		sum_flags = DB_CKSUMFLAGS(mp);
7074 
7075 		/* IP payload offset from beginning of mblk */
7076 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7077 
7078 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7079 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7080 		    offset >= DB_CKSUMSTART(mp) &&
7081 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7082 			uint32_t adj;
7083 			/*
7084 			 * Partial checksum has been calculated by hardware
7085 			 * and attached to the packet; in addition, any
7086 			 * prepended extraneous data is even byte aligned.
7087 			 * If any such data exists, we adjust the checksum;
7088 			 * this would also handle any postpended data.
7089 			 */
7090 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7091 			    mp, mp1, len, adj);
7092 
7093 			/* One's complement subtract extraneous checksum */
7094 			if (adj >= sum_val)
7095 				sum_val = ~(adj - sum_val) & 0xFFFF;
7096 			else
7097 				sum_val -= adj;
7098 		}
7099 	} else {
7100 		sum_val = 0;
7101 		sum_flags = 0;
7102 	}
7103 
7104 	/* Clear hardware checksumming flag */
7105 	DB_CKSUMFLAGS(mp) = 0;
7106 
7107 	ident = ipha->ipha_ident;
7108 	offset = (frag_offset_flags << 3) & 0xFFFF;
7109 	src = ipha->ipha_src;
7110 	dst = ipha->ipha_dst;
7111 	hdr_length = IPH_HDR_LENGTH(ipha);
7112 	end = ntohs(ipha->ipha_length) - hdr_length;
7113 
7114 	/* If end == 0 then we have a packet with no data, so just free it */
7115 	if (end == 0) {
7116 		freemsg(mp);
7117 		return (NULL);
7118 	}
7119 
7120 	/* Record the ECN field info. */
7121 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7122 	if (offset != 0) {
7123 		/*
7124 		 * If this isn't the first piece, strip the header, and
7125 		 * add the offset to the end value.
7126 		 */
7127 		mp->b_rptr += hdr_length;
7128 		end += offset;
7129 	}
7130 
7131 	/* Handle vnic loopback of fragments */
7132 	if (mp->b_datap->db_ref > 2)
7133 		msg_len = 0;
7134 	else
7135 		msg_len = MBLKSIZE(mp);
7136 
7137 	tail_mp = mp;
7138 	while (tail_mp->b_cont != NULL) {
7139 		tail_mp = tail_mp->b_cont;
7140 		if (tail_mp->b_datap->db_ref <= 2)
7141 			msg_len += MBLKSIZE(tail_mp);
7142 	}
7143 
7144 	/* If the reassembly list for this ILL will get too big, prune it */
7145 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7146 	    ipst->ips_ip_reass_queue_bytes) {
7147 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7148 		    uint_t, ill->ill_frag_count,
7149 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7150 		ill_frag_prune(ill,
7151 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7152 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7153 		pruned = B_TRUE;
7154 	}
7155 
7156 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7157 	mutex_enter(&ipfb->ipfb_lock);
7158 
7159 	ipfp = &ipfb->ipfb_ipf;
7160 	/* Try to find an existing fragment queue for this packet. */
7161 	for (;;) {
7162 		ipf = ipfp[0];
7163 		if (ipf != NULL) {
7164 			/*
7165 			 * It has to match on ident and src/dst address.
7166 			 */
7167 			if (ipf->ipf_ident == ident &&
7168 			    ipf->ipf_src == src &&
7169 			    ipf->ipf_dst == dst &&
7170 			    ipf->ipf_protocol == proto) {
7171 				/*
7172 				 * If we have received too many
7173 				 * duplicate fragments for this packet
7174 				 * free it.
7175 				 */
7176 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7177 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7178 					freemsg(mp);
7179 					mutex_exit(&ipfb->ipfb_lock);
7180 					return (NULL);
7181 				}
7182 				/* Found it. */
7183 				break;
7184 			}
7185 			ipfp = &ipf->ipf_hash_next;
7186 			continue;
7187 		}
7188 
7189 		/*
7190 		 * If we pruned the list, do we want to store this new
7191 		 * fragment?. We apply an optimization here based on the
7192 		 * fact that most fragments will be received in order.
7193 		 * So if the offset of this incoming fragment is zero,
7194 		 * it is the first fragment of a new packet. We will
7195 		 * keep it.  Otherwise drop the fragment, as we have
7196 		 * probably pruned the packet already (since the
7197 		 * packet cannot be found).
7198 		 */
7199 		if (pruned && offset != 0) {
7200 			mutex_exit(&ipfb->ipfb_lock);
7201 			freemsg(mp);
7202 			return (NULL);
7203 		}
7204 
7205 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7206 			/*
7207 			 * Too many fragmented packets in this hash
7208 			 * bucket. Free the oldest.
7209 			 */
7210 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7211 		}
7212 
7213 		/* New guy.  Allocate a frag message. */
7214 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7215 		if (mp1 == NULL) {
7216 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7217 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7218 			freemsg(mp);
7219 reass_done:
7220 			mutex_exit(&ipfb->ipfb_lock);
7221 			return (NULL);
7222 		}
7223 
7224 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7225 		mp1->b_cont = mp;
7226 
7227 		/* Initialize the fragment header. */
7228 		ipf = (ipf_t *)mp1->b_rptr;
7229 		ipf->ipf_mp = mp1;
7230 		ipf->ipf_ptphn = ipfp;
7231 		ipfp[0] = ipf;
7232 		ipf->ipf_hash_next = NULL;
7233 		ipf->ipf_ident = ident;
7234 		ipf->ipf_protocol = proto;
7235 		ipf->ipf_src = src;
7236 		ipf->ipf_dst = dst;
7237 		ipf->ipf_nf_hdr_len = 0;
7238 		/* Record reassembly start time. */
7239 		ipf->ipf_timestamp = gethrestime_sec();
7240 		/* Record ipf generation and account for frag header */
7241 		ipf->ipf_gen = ill->ill_ipf_gen++;
7242 		ipf->ipf_count = MBLKSIZE(mp1);
7243 		ipf->ipf_last_frag_seen = B_FALSE;
7244 		ipf->ipf_ecn = ecn_info;
7245 		ipf->ipf_num_dups = 0;
7246 		ipfb->ipfb_frag_pkts++;
7247 		ipf->ipf_checksum = 0;
7248 		ipf->ipf_checksum_flags = 0;
7249 
7250 		/* Store checksum value in fragment header */
7251 		if (sum_flags != 0) {
7252 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7253 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7254 			ipf->ipf_checksum = sum_val;
7255 			ipf->ipf_checksum_flags = sum_flags;
7256 		}
7257 
7258 		/*
7259 		 * We handle reassembly two ways.  In the easy case,
7260 		 * where all the fragments show up in order, we do
7261 		 * minimal bookkeeping, and just clip new pieces on
7262 		 * the end.  If we ever see a hole, then we go off
7263 		 * to ip_reassemble which has to mark the pieces and
7264 		 * keep track of the number of holes, etc.  Obviously,
7265 		 * the point of having both mechanisms is so we can
7266 		 * handle the easy case as efficiently as possible.
7267 		 */
7268 		if (offset == 0) {
7269 			/* Easy case, in-order reassembly so far. */
7270 			ipf->ipf_count += msg_len;
7271 			ipf->ipf_tail_mp = tail_mp;
7272 			/*
7273 			 * Keep track of next expected offset in
7274 			 * ipf_end.
7275 			 */
7276 			ipf->ipf_end = end;
7277 			ipf->ipf_nf_hdr_len = hdr_length;
7278 		} else {
7279 			/* Hard case, hole at the beginning. */
7280 			ipf->ipf_tail_mp = NULL;
7281 			/*
7282 			 * ipf_end == 0 means that we have given up
7283 			 * on easy reassembly.
7284 			 */
7285 			ipf->ipf_end = 0;
7286 
7287 			/* Forget checksum offload from now on */
7288 			ipf->ipf_checksum_flags = 0;
7289 
7290 			/*
7291 			 * ipf_hole_cnt is set by ip_reassemble.
7292 			 * ipf_count is updated by ip_reassemble.
7293 			 * No need to check for return value here
7294 			 * as we don't expect reassembly to complete
7295 			 * or fail for the first fragment itself.
7296 			 */
7297 			(void) ip_reassemble(mp, ipf,
7298 			    (frag_offset_flags & IPH_OFFSET) << 3,
7299 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7300 		}
7301 		/* Update per ipfb and ill byte counts */
7302 		ipfb->ipfb_count += ipf->ipf_count;
7303 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7304 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7305 		/* If the frag timer wasn't already going, start it. */
7306 		mutex_enter(&ill->ill_lock);
7307 		ill_frag_timer_start(ill);
7308 		mutex_exit(&ill->ill_lock);
7309 		goto reass_done;
7310 	}
7311 
7312 	/*
7313 	 * If the packet's flag has changed (it could be coming up
7314 	 * from an interface different than the previous, therefore
7315 	 * possibly different checksum capability), then forget about
7316 	 * any stored checksum states.  Otherwise add the value to
7317 	 * the existing one stored in the fragment header.
7318 	 */
7319 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7320 		sum_val += ipf->ipf_checksum;
7321 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7322 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7323 		ipf->ipf_checksum = sum_val;
7324 	} else if (ipf->ipf_checksum_flags != 0) {
7325 		/* Forget checksum offload from now on */
7326 		ipf->ipf_checksum_flags = 0;
7327 	}
7328 
7329 	/*
7330 	 * We have a new piece of a datagram which is already being
7331 	 * reassembled.  Update the ECN info if all IP fragments
7332 	 * are ECN capable.  If there is one which is not, clear
7333 	 * all the info.  If there is at least one which has CE
7334 	 * code point, IP needs to report that up to transport.
7335 	 */
7336 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7337 		if (ecn_info == IPH_ECN_CE)
7338 			ipf->ipf_ecn = IPH_ECN_CE;
7339 	} else {
7340 		ipf->ipf_ecn = IPH_ECN_NECT;
7341 	}
7342 	if (offset && ipf->ipf_end == offset) {
7343 		/* The new fragment fits at the end */
7344 		ipf->ipf_tail_mp->b_cont = mp;
7345 		/* Update the byte count */
7346 		ipf->ipf_count += msg_len;
7347 		/* Update per ipfb and ill byte counts */
7348 		ipfb->ipfb_count += msg_len;
7349 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7350 		atomic_add_32(&ill->ill_frag_count, msg_len);
7351 		if (frag_offset_flags & IPH_MF) {
7352 			/* More to come. */
7353 			ipf->ipf_end = end;
7354 			ipf->ipf_tail_mp = tail_mp;
7355 			goto reass_done;
7356 		}
7357 	} else {
7358 		/* Go do the hard cases. */
7359 		int ret;
7360 
7361 		if (offset == 0)
7362 			ipf->ipf_nf_hdr_len = hdr_length;
7363 
7364 		/* Save current byte count */
7365 		count = ipf->ipf_count;
7366 		ret = ip_reassemble(mp, ipf,
7367 		    (frag_offset_flags & IPH_OFFSET) << 3,
7368 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7369 		/* Count of bytes added and subtracted (freeb()ed) */
7370 		count = ipf->ipf_count - count;
7371 		if (count) {
7372 			/* Update per ipfb and ill byte counts */
7373 			ipfb->ipfb_count += count;
7374 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7375 			atomic_add_32(&ill->ill_frag_count, count);
7376 		}
7377 		if (ret == IP_REASS_PARTIAL) {
7378 			goto reass_done;
7379 		} else if (ret == IP_REASS_FAILED) {
7380 			/* Reassembly failed. Free up all resources */
7381 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7382 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7383 				IP_REASS_SET_START(t_mp, 0);
7384 				IP_REASS_SET_END(t_mp, 0);
7385 			}
7386 			freemsg(mp);
7387 			goto reass_done;
7388 		}
7389 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7390 	}
7391 	/*
7392 	 * We have completed reassembly.  Unhook the frag header from
7393 	 * the reassembly list.
7394 	 *
7395 	 * Before we free the frag header, record the ECN info
7396 	 * to report back to the transport.
7397 	 */
7398 	ecn_info = ipf->ipf_ecn;
7399 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7400 	ipfp = ipf->ipf_ptphn;
7401 
7402 	/* We need to supply these to caller */
7403 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7404 		sum_val = ipf->ipf_checksum;
7405 	else
7406 		sum_val = 0;
7407 
7408 	mp1 = ipf->ipf_mp;
7409 	count = ipf->ipf_count;
7410 	ipf = ipf->ipf_hash_next;
7411 	if (ipf != NULL)
7412 		ipf->ipf_ptphn = ipfp;
7413 	ipfp[0] = ipf;
7414 	atomic_add_32(&ill->ill_frag_count, -count);
7415 	ASSERT(ipfb->ipfb_count >= count);
7416 	ipfb->ipfb_count -= count;
7417 	ipfb->ipfb_frag_pkts--;
7418 	mutex_exit(&ipfb->ipfb_lock);
7419 	/* Ditch the frag header. */
7420 	mp = mp1->b_cont;
7421 
7422 	freeb(mp1);
7423 
7424 	/* Restore original IP length in header. */
7425 	packet_size = (uint32_t)msgdsize(mp);
7426 	if (packet_size > IP_MAXPACKET) {
7427 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7428 		ip_drop_input("Reassembled packet too large", mp, ill);
7429 		freemsg(mp);
7430 		return (NULL);
7431 	}
7432 
7433 	if (DB_REF(mp) > 1) {
7434 		mblk_t *mp2 = copymsg(mp);
7435 
7436 		if (mp2 == NULL) {
7437 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7438 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7439 			freemsg(mp);
7440 			return (NULL);
7441 		}
7442 		freemsg(mp);
7443 		mp = mp2;
7444 	}
7445 	ipha = (ipha_t *)mp->b_rptr;
7446 
7447 	ipha->ipha_length = htons((uint16_t)packet_size);
7448 	/* We're now complete, zip the frag state */
7449 	ipha->ipha_fragment_offset_and_flags = 0;
7450 	/* Record the ECN info. */
7451 	ipha->ipha_type_of_service &= 0xFC;
7452 	ipha->ipha_type_of_service |= ecn_info;
7453 
7454 	/* Update the receive attributes */
7455 	ira->ira_pktlen = packet_size;
7456 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7457 
7458 	/* Reassembly is successful; set checksum information in packet */
7459 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7460 	DB_CKSUMFLAGS(mp) = sum_flags;
7461 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7462 
7463 	return (mp);
7464 }
7465 
7466 /*
7467  * Pullup function that should be used for IP input in order to
7468  * ensure we do not loose the L2 source address; we need the l2 source
7469  * address for IP_RECVSLLA and for ndp_input.
7470  *
7471  * We return either NULL or b_rptr.
7472  */
7473 void *
7474 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7475 {
7476 	ill_t		*ill = ira->ira_ill;
7477 
7478 	if (ip_rput_pullups++ == 0) {
7479 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7480 		    "ip_pullup: %s forced us to "
7481 		    " pullup pkt, hdr len %ld, hdr addr %p",
7482 		    ill->ill_name, len, (void *)mp->b_rptr);
7483 	}
7484 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7485 		ip_setl2src(mp, ira, ira->ira_rill);
7486 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7487 	if (!pullupmsg(mp, len))
7488 		return (NULL);
7489 	else
7490 		return (mp->b_rptr);
7491 }
7492 
7493 /*
7494  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7495  * When called from the ULP ira_rill will be NULL hence the caller has to
7496  * pass in the ill.
7497  */
7498 /* ARGSUSED */
7499 void
7500 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7501 {
7502 	const uchar_t *addr;
7503 	int alen;
7504 
7505 	if (ira->ira_flags & IRAF_L2SRC_SET)
7506 		return;
7507 
7508 	ASSERT(ill != NULL);
7509 	alen = ill->ill_phys_addr_length;
7510 	ASSERT(alen <= sizeof (ira->ira_l2src));
7511 	if (ira->ira_mhip != NULL &&
7512 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7513 		bcopy(addr, ira->ira_l2src, alen);
7514 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7515 	    (addr = ill->ill_phys_addr) != NULL) {
7516 		bcopy(addr, ira->ira_l2src, alen);
7517 	} else {
7518 		bzero(ira->ira_l2src, alen);
7519 	}
7520 	ira->ira_flags |= IRAF_L2SRC_SET;
7521 }
7522 
7523 /*
7524  * check ip header length and align it.
7525  */
7526 mblk_t *
7527 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7528 {
7529 	ill_t	*ill = ira->ira_ill;
7530 	ssize_t len;
7531 
7532 	len = MBLKL(mp);
7533 
7534 	if (!OK_32PTR(mp->b_rptr))
7535 		IP_STAT(ill->ill_ipst, ip_notaligned);
7536 	else
7537 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7538 
7539 	/* Guard against bogus device drivers */
7540 	if (len < 0) {
7541 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7542 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7543 		freemsg(mp);
7544 		return (NULL);
7545 	}
7546 
7547 	if (len == 0) {
7548 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7549 		mblk_t *mp1 = mp->b_cont;
7550 
7551 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7552 			ip_setl2src(mp, ira, ira->ira_rill);
7553 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7554 
7555 		freeb(mp);
7556 		mp = mp1;
7557 		if (mp == NULL)
7558 			return (NULL);
7559 
7560 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7561 			return (mp);
7562 	}
7563 	if (ip_pullup(mp, min_size, ira) == NULL) {
7564 		if (msgdsize(mp) < min_size) {
7565 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7566 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7567 		} else {
7568 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7569 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7570 		}
7571 		freemsg(mp);
7572 		return (NULL);
7573 	}
7574 	return (mp);
7575 }
7576 
7577 /*
7578  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7579  */
7580 mblk_t *
7581 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7582     uint_t min_size, ip_recv_attr_t *ira)
7583 {
7584 	ill_t	*ill = ira->ira_ill;
7585 
7586 	/*
7587 	 * Make sure we have data length consistent
7588 	 * with the IP header.
7589 	 */
7590 	if (mp->b_cont == NULL) {
7591 		/* pkt_len is based on ipha_len, not the mblk length */
7592 		if (pkt_len < min_size) {
7593 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7594 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7595 			freemsg(mp);
7596 			return (NULL);
7597 		}
7598 		if (len < 0) {
7599 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7600 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7601 			freemsg(mp);
7602 			return (NULL);
7603 		}
7604 		/* Drop any pad */
7605 		mp->b_wptr = rptr + pkt_len;
7606 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7607 		ASSERT(pkt_len >= min_size);
7608 		if (pkt_len < min_size) {
7609 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7610 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7611 			freemsg(mp);
7612 			return (NULL);
7613 		}
7614 		if (len < 0) {
7615 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7616 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7617 			freemsg(mp);
7618 			return (NULL);
7619 		}
7620 		/* Drop any pad */
7621 		(void) adjmsg(mp, -len);
7622 		/*
7623 		 * adjmsg may have freed an mblk from the chain, hence
7624 		 * invalidate any hw checksum here. This will force IP to
7625 		 * calculate the checksum in sw, but only for this packet.
7626 		 */
7627 		DB_CKSUMFLAGS(mp) = 0;
7628 		IP_STAT(ill->ill_ipst, ip_multimblk);
7629 	}
7630 	return (mp);
7631 }
7632 
7633 /*
7634  * Check that the IPv4 opt_len is consistent with the packet and pullup
7635  * the options.
7636  */
7637 mblk_t *
7638 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7639     ip_recv_attr_t *ira)
7640 {
7641 	ill_t	*ill = ira->ira_ill;
7642 	ssize_t len;
7643 
7644 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7645 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7646 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7647 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7648 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7649 		freemsg(mp);
7650 		return (NULL);
7651 	}
7652 
7653 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7654 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7655 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7656 		freemsg(mp);
7657 		return (NULL);
7658 	}
7659 	/*
7660 	 * Recompute complete header length and make sure we
7661 	 * have access to all of it.
7662 	 */
7663 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7664 	if (len > (mp->b_wptr - mp->b_rptr)) {
7665 		if (len > pkt_len) {
7666 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7667 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7668 			freemsg(mp);
7669 			return (NULL);
7670 		}
7671 		if (ip_pullup(mp, len, ira) == NULL) {
7672 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7673 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7674 			freemsg(mp);
7675 			return (NULL);
7676 		}
7677 	}
7678 	return (mp);
7679 }
7680 
7681 /*
7682  * Returns a new ire, or the same ire, or NULL.
7683  * If a different IRE is returned, then it is held; the caller
7684  * needs to release it.
7685  * In no case is there any hold/release on the ire argument.
7686  */
7687 ire_t *
7688 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7689 {
7690 	ire_t		*new_ire;
7691 	ill_t		*ire_ill;
7692 	uint_t		ifindex;
7693 	ip_stack_t	*ipst = ill->ill_ipst;
7694 	boolean_t	strict_check = B_FALSE;
7695 
7696 	/*
7697 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7698 	 * issue (e.g. packet received on an underlying interface matched an
7699 	 * IRE_LOCAL on its associated group interface).
7700 	 */
7701 	ASSERT(ire->ire_ill != NULL);
7702 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7703 		return (ire);
7704 
7705 	/*
7706 	 * Do another ire lookup here, using the ingress ill, to see if the
7707 	 * interface is in a usesrc group.
7708 	 * As long as the ills belong to the same group, we don't consider
7709 	 * them to be arriving on the wrong interface. Thus, if the switch
7710 	 * is doing inbound load spreading, we won't drop packets when the
7711 	 * ip*_strict_dst_multihoming switch is on.
7712 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7713 	 * where the local address may not be unique. In this case we were
7714 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7715 	 * actually returned. The new lookup, which is more specific, should
7716 	 * only find the IRE_LOCAL associated with the ingress ill if one
7717 	 * exists.
7718 	 */
7719 	if (ire->ire_ipversion == IPV4_VERSION) {
7720 		if (ipst->ips_ip_strict_dst_multihoming)
7721 			strict_check = B_TRUE;
7722 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7723 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7724 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7725 	} else {
7726 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7727 		if (ipst->ips_ipv6_strict_dst_multihoming)
7728 			strict_check = B_TRUE;
7729 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7730 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7731 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7732 	}
7733 	/*
7734 	 * If the same ire that was returned in ip_input() is found then this
7735 	 * is an indication that usesrc groups are in use. The packet
7736 	 * arrived on a different ill in the group than the one associated with
7737 	 * the destination address.  If a different ire was found then the same
7738 	 * IP address must be hosted on multiple ills. This is possible with
7739 	 * unnumbered point2point interfaces. We switch to use this new ire in
7740 	 * order to have accurate interface statistics.
7741 	 */
7742 	if (new_ire != NULL) {
7743 		/* Note: held in one case but not the other? Caller handles */
7744 		if (new_ire != ire)
7745 			return (new_ire);
7746 		/* Unchanged */
7747 		ire_refrele(new_ire);
7748 		return (ire);
7749 	}
7750 
7751 	/*
7752 	 * Chase pointers once and store locally.
7753 	 */
7754 	ASSERT(ire->ire_ill != NULL);
7755 	ire_ill = ire->ire_ill;
7756 	ifindex = ill->ill_usesrc_ifindex;
7757 
7758 	/*
7759 	 * Check if it's a legal address on the 'usesrc' interface.
7760 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7761 	 * can just check phyint_ifindex.
7762 	 */
7763 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7764 		return (ire);
7765 	}
7766 
7767 	/*
7768 	 * If the ip*_strict_dst_multihoming switch is on then we can
7769 	 * only accept this packet if the interface is marked as routing.
7770 	 */
7771 	if (!(strict_check))
7772 		return (ire);
7773 
7774 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7775 		return (ire);
7776 	}
7777 	return (NULL);
7778 }
7779 
7780 /*
7781  * This function is used to construct a mac_header_info_s from a
7782  * DL_UNITDATA_IND message.
7783  * The address fields in the mhi structure points into the message,
7784  * thus the caller can't use those fields after freeing the message.
7785  *
7786  * We determine whether the packet received is a non-unicast packet
7787  * and in doing so, determine whether or not it is broadcast vs multicast.
7788  * For it to be a broadcast packet, we must have the appropriate mblk_t
7789  * hanging off the ill_t.  If this is either not present or doesn't match
7790  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7791  * to be multicast.  Thus NICs that have no broadcast address (or no
7792  * capability for one, such as point to point links) cannot return as
7793  * the packet being broadcast.
7794  */
7795 void
7796 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7797 {
7798 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7799 	mblk_t *bmp;
7800 	uint_t extra_offset;
7801 
7802 	bzero(mhip, sizeof (struct mac_header_info_s));
7803 
7804 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7805 
7806 	if (ill->ill_sap_length < 0)
7807 		extra_offset = 0;
7808 	else
7809 		extra_offset = ill->ill_sap_length;
7810 
7811 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7812 	    extra_offset;
7813 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7814 	    extra_offset;
7815 
7816 	if (!ind->dl_group_address)
7817 		return;
7818 
7819 	/* Multicast or broadcast */
7820 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7821 
7822 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7823 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7824 	    (bmp = ill->ill_bcast_mp) != NULL) {
7825 		dl_unitdata_req_t *dlur;
7826 		uint8_t *bphys_addr;
7827 
7828 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7829 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7830 		    extra_offset;
7831 
7832 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7833 		    ind->dl_dest_addr_length) == 0)
7834 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7835 	}
7836 }
7837 
7838 /*
7839  * This function is used to construct a mac_header_info_s from a
7840  * M_DATA fastpath message from a DLPI driver.
7841  * The address fields in the mhi structure points into the message,
7842  * thus the caller can't use those fields after freeing the message.
7843  *
7844  * We determine whether the packet received is a non-unicast packet
7845  * and in doing so, determine whether or not it is broadcast vs multicast.
7846  * For it to be a broadcast packet, we must have the appropriate mblk_t
7847  * hanging off the ill_t.  If this is either not present or doesn't match
7848  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7849  * to be multicast.  Thus NICs that have no broadcast address (or no
7850  * capability for one, such as point to point links) cannot return as
7851  * the packet being broadcast.
7852  */
7853 void
7854 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7855 {
7856 	mblk_t *bmp;
7857 	struct ether_header *pether;
7858 
7859 	bzero(mhip, sizeof (struct mac_header_info_s));
7860 
7861 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7862 
7863 	pether = (struct ether_header *)((char *)mp->b_rptr
7864 	    - sizeof (struct ether_header));
7865 
7866 	/*
7867 	 * Make sure the interface is an ethernet type, since we don't
7868 	 * know the header format for anything but Ethernet. Also make
7869 	 * sure we are pointing correctly above db_base.
7870 	 */
7871 	if (ill->ill_type != IFT_ETHER)
7872 		return;
7873 
7874 retry:
7875 	if ((uchar_t *)pether < mp->b_datap->db_base)
7876 		return;
7877 
7878 	/* Is there a VLAN tag? */
7879 	if (ill->ill_isv6) {
7880 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7881 			pether = (struct ether_header *)((char *)pether - 4);
7882 			goto retry;
7883 		}
7884 	} else {
7885 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7886 			pether = (struct ether_header *)((char *)pether - 4);
7887 			goto retry;
7888 		}
7889 	}
7890 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7891 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7892 
7893 	if (!(mhip->mhi_daddr[0] & 0x01))
7894 		return;
7895 
7896 	/* Multicast or broadcast */
7897 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7898 
7899 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7900 		dl_unitdata_req_t *dlur;
7901 		uint8_t *bphys_addr;
7902 		uint_t	addrlen;
7903 
7904 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7905 		addrlen = dlur->dl_dest_addr_length;
7906 		if (ill->ill_sap_length < 0) {
7907 			bphys_addr = (uchar_t *)dlur +
7908 			    dlur->dl_dest_addr_offset;
7909 			addrlen += ill->ill_sap_length;
7910 		} else {
7911 			bphys_addr = (uchar_t *)dlur +
7912 			    dlur->dl_dest_addr_offset +
7913 			    ill->ill_sap_length;
7914 			addrlen -= ill->ill_sap_length;
7915 		}
7916 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7917 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7918 	}
7919 }
7920 
7921 /*
7922  * Handle anything but M_DATA messages
7923  * We see the DL_UNITDATA_IND which are part
7924  * of the data path, and also the other messages from the driver.
7925  */
7926 void
7927 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7928 {
7929 	mblk_t		*first_mp;
7930 	struct iocblk   *iocp;
7931 	struct mac_header_info_s mhi;
7932 
7933 	switch (DB_TYPE(mp)) {
7934 	case M_PROTO:
7935 	case M_PCPROTO: {
7936 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7937 		    DL_UNITDATA_IND) {
7938 			/* Go handle anything other than data elsewhere. */
7939 			ip_rput_dlpi(ill, mp);
7940 			return;
7941 		}
7942 
7943 		first_mp = mp;
7944 		mp = first_mp->b_cont;
7945 		first_mp->b_cont = NULL;
7946 
7947 		if (mp == NULL) {
7948 			freeb(first_mp);
7949 			return;
7950 		}
7951 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7952 		if (ill->ill_isv6)
7953 			ip_input_v6(ill, NULL, mp, &mhi);
7954 		else
7955 			ip_input(ill, NULL, mp, &mhi);
7956 
7957 		/* Ditch the DLPI header. */
7958 		freeb(first_mp);
7959 		return;
7960 	}
7961 	case M_IOCACK:
7962 		iocp = (struct iocblk *)mp->b_rptr;
7963 		switch (iocp->ioc_cmd) {
7964 		case DL_IOC_HDR_INFO:
7965 			ill_fastpath_ack(ill, mp);
7966 			return;
7967 		default:
7968 			putnext(ill->ill_rq, mp);
7969 			return;
7970 		}
7971 		/* FALLTHROUGH */
7972 	case M_ERROR:
7973 	case M_HANGUP:
7974 		mutex_enter(&ill->ill_lock);
7975 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7976 			mutex_exit(&ill->ill_lock);
7977 			freemsg(mp);
7978 			return;
7979 		}
7980 		ill_refhold_locked(ill);
7981 		mutex_exit(&ill->ill_lock);
7982 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7983 		    B_FALSE);
7984 		return;
7985 	case M_CTL:
7986 		putnext(ill->ill_rq, mp);
7987 		return;
7988 	case M_IOCNAK:
7989 		ip1dbg(("got iocnak "));
7990 		iocp = (struct iocblk *)mp->b_rptr;
7991 		switch (iocp->ioc_cmd) {
7992 		case DL_IOC_HDR_INFO:
7993 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7994 			return;
7995 		default:
7996 			break;
7997 		}
7998 		/* FALLTHROUGH */
7999 	default:
8000 		putnext(ill->ill_rq, mp);
8001 		return;
8002 	}
8003 }
8004 
8005 /* Read side put procedure.  Packets coming from the wire arrive here. */
8006 int
8007 ip_rput(queue_t *q, mblk_t *mp)
8008 {
8009 	ill_t	*ill;
8010 	union DL_primitives *dl;
8011 
8012 	ill = (ill_t *)q->q_ptr;
8013 
8014 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8015 		/*
8016 		 * If things are opening or closing, only accept high-priority
8017 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
8018 		 * created; on close, things hanging off the ill may have been
8019 		 * freed already.)
8020 		 */
8021 		dl = (union DL_primitives *)mp->b_rptr;
8022 		if (DB_TYPE(mp) != M_PCPROTO ||
8023 		    dl->dl_primitive == DL_UNITDATA_IND) {
8024 			inet_freemsg(mp);
8025 			return (0);
8026 		}
8027 	}
8028 	if (DB_TYPE(mp) == M_DATA) {
8029 		struct mac_header_info_s mhi;
8030 
8031 		ip_mdata_to_mhi(ill, mp, &mhi);
8032 		ip_input(ill, NULL, mp, &mhi);
8033 	} else {
8034 		ip_rput_notdata(ill, mp);
8035 	}
8036 	return (0);
8037 }
8038 
8039 /*
8040  * Move the information to a copy.
8041  */
8042 mblk_t *
8043 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8044 {
8045 	mblk_t		*mp1;
8046 	ill_t		*ill = ira->ira_ill;
8047 	ip_stack_t	*ipst = ill->ill_ipst;
8048 
8049 	IP_STAT(ipst, ip_db_ref);
8050 
8051 	/* Make sure we have ira_l2src before we loose the original mblk */
8052 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8053 		ip_setl2src(mp, ira, ira->ira_rill);
8054 
8055 	mp1 = copymsg(mp);
8056 	if (mp1 == NULL) {
8057 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8058 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8059 		freemsg(mp);
8060 		return (NULL);
8061 	}
8062 	/* preserve the hardware checksum flags and data, if present */
8063 	if (DB_CKSUMFLAGS(mp) != 0) {
8064 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8065 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8066 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8067 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8068 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8069 	}
8070 	freemsg(mp);
8071 	return (mp1);
8072 }
8073 
8074 static void
8075 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8076     t_uscalar_t err)
8077 {
8078 	if (dl_err == DL_SYSERR) {
8079 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8080 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8081 		    ill->ill_name, dl_primstr(prim), err);
8082 		return;
8083 	}
8084 
8085 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8086 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8087 	    dl_errstr(dl_err));
8088 }
8089 
8090 /*
8091  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8092  * than DL_UNITDATA_IND messages. If we need to process this message
8093  * exclusively, we call qwriter_ip, in which case we also need to call
8094  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8095  */
8096 void
8097 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8098 {
8099 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8100 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8101 	queue_t		*q = ill->ill_rq;
8102 	t_uscalar_t	prim = dloa->dl_primitive;
8103 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8104 
8105 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8106 	    char *, dl_primstr(prim), ill_t *, ill);
8107 	ip1dbg(("ip_rput_dlpi"));
8108 
8109 	/*
8110 	 * If we received an ACK but didn't send a request for it, then it
8111 	 * can't be part of any pending operation; discard up-front.
8112 	 */
8113 	switch (prim) {
8114 	case DL_ERROR_ACK:
8115 		reqprim = dlea->dl_error_primitive;
8116 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8117 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8118 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8119 		    dlea->dl_unix_errno));
8120 		break;
8121 	case DL_OK_ACK:
8122 		reqprim = dloa->dl_correct_primitive;
8123 		break;
8124 	case DL_INFO_ACK:
8125 		reqprim = DL_INFO_REQ;
8126 		break;
8127 	case DL_BIND_ACK:
8128 		reqprim = DL_BIND_REQ;
8129 		break;
8130 	case DL_PHYS_ADDR_ACK:
8131 		reqprim = DL_PHYS_ADDR_REQ;
8132 		break;
8133 	case DL_NOTIFY_ACK:
8134 		reqprim = DL_NOTIFY_REQ;
8135 		break;
8136 	case DL_CAPABILITY_ACK:
8137 		reqprim = DL_CAPABILITY_REQ;
8138 		break;
8139 	}
8140 
8141 	if (prim != DL_NOTIFY_IND) {
8142 		if (reqprim == DL_PRIM_INVAL ||
8143 		    !ill_dlpi_pending(ill, reqprim)) {
8144 			/* Not a DLPI message we support or expected */
8145 			freemsg(mp);
8146 			return;
8147 		}
8148 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8149 		    dl_primstr(reqprim)));
8150 	}
8151 
8152 	switch (reqprim) {
8153 	case DL_UNBIND_REQ:
8154 		/*
8155 		 * NOTE: we mark the unbind as complete even if we got a
8156 		 * DL_ERROR_ACK, since there's not much else we can do.
8157 		 */
8158 		mutex_enter(&ill->ill_lock);
8159 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8160 		cv_signal(&ill->ill_cv);
8161 		mutex_exit(&ill->ill_lock);
8162 		break;
8163 
8164 	case DL_ENABMULTI_REQ:
8165 		if (prim == DL_OK_ACK) {
8166 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8167 				ill->ill_dlpi_multicast_state = IDS_OK;
8168 		}
8169 		break;
8170 	}
8171 
8172 	/*
8173 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8174 	 * need to become writer to continue to process it.  Because an
8175 	 * exclusive operation doesn't complete until replies to all queued
8176 	 * DLPI messages have been received, we know we're in the middle of an
8177 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8178 	 *
8179 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8180 	 * Since this is on the ill stream we unconditionally bump up the
8181 	 * refcount without doing ILL_CAN_LOOKUP().
8182 	 */
8183 	ill_refhold(ill);
8184 	if (prim == DL_NOTIFY_IND)
8185 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8186 	else
8187 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8188 }
8189 
8190 /*
8191  * Handling of DLPI messages that require exclusive access to the ipsq.
8192  *
8193  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8194  * happen here. (along with mi_copy_done)
8195  */
8196 /* ARGSUSED */
8197 static void
8198 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8199 {
8200 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8201 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8202 	int		err = 0;
8203 	ill_t		*ill = (ill_t *)q->q_ptr;
8204 	ipif_t		*ipif = NULL;
8205 	mblk_t		*mp1 = NULL;
8206 	conn_t		*connp = NULL;
8207 	t_uscalar_t	paddrreq;
8208 	mblk_t		*mp_hw;
8209 	boolean_t	success;
8210 	boolean_t	ioctl_aborted = B_FALSE;
8211 	boolean_t	log = B_TRUE;
8212 
8213 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8214 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8215 
8216 	ip1dbg(("ip_rput_dlpi_writer .."));
8217 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8218 	ASSERT(IAM_WRITER_ILL(ill));
8219 
8220 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8221 	/*
8222 	 * The current ioctl could have been aborted by the user and a new
8223 	 * ioctl to bring up another ill could have started. We could still
8224 	 * get a response from the driver later.
8225 	 */
8226 	if (ipif != NULL && ipif->ipif_ill != ill)
8227 		ioctl_aborted = B_TRUE;
8228 
8229 	switch (dloa->dl_primitive) {
8230 	case DL_ERROR_ACK:
8231 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8232 		    dl_primstr(dlea->dl_error_primitive)));
8233 
8234 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8235 		    char *, dl_primstr(dlea->dl_error_primitive),
8236 		    ill_t *, ill);
8237 
8238 		switch (dlea->dl_error_primitive) {
8239 		case DL_DISABMULTI_REQ:
8240 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8241 			break;
8242 		case DL_PROMISCON_REQ:
8243 		case DL_PROMISCOFF_REQ:
8244 		case DL_UNBIND_REQ:
8245 		case DL_ATTACH_REQ:
8246 		case DL_INFO_REQ:
8247 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8248 			break;
8249 		case DL_NOTIFY_REQ:
8250 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8251 			log = B_FALSE;
8252 			break;
8253 		case DL_PHYS_ADDR_REQ:
8254 			/*
8255 			 * For IPv6 only, there are two additional
8256 			 * phys_addr_req's sent to the driver to get the
8257 			 * IPv6 token and lla. This allows IP to acquire
8258 			 * the hardware address format for a given interface
8259 			 * without having built in knowledge of the hardware
8260 			 * address. ill_phys_addr_pend keeps track of the last
8261 			 * DL_PAR sent so we know which response we are
8262 			 * dealing with. ill_dlpi_done will update
8263 			 * ill_phys_addr_pend when it sends the next req.
8264 			 * We don't complete the IOCTL until all three DL_PARs
8265 			 * have been attempted, so set *_len to 0 and break.
8266 			 */
8267 			paddrreq = ill->ill_phys_addr_pend;
8268 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8269 			if (paddrreq == DL_IPV6_TOKEN) {
8270 				ill->ill_token_length = 0;
8271 				log = B_FALSE;
8272 				break;
8273 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8274 				ill->ill_nd_lla_len = 0;
8275 				log = B_FALSE;
8276 				break;
8277 			}
8278 			/*
8279 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8280 			 * We presumably have an IOCTL hanging out waiting
8281 			 * for completion. Find it and complete the IOCTL
8282 			 * with the error noted.
8283 			 * However, ill_dl_phys was called on an ill queue
8284 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8285 			 * set. But the ioctl is known to be pending on ill_wq.
8286 			 */
8287 			if (!ill->ill_ifname_pending)
8288 				break;
8289 			ill->ill_ifname_pending = 0;
8290 			if (!ioctl_aborted)
8291 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8292 			if (mp1 != NULL) {
8293 				/*
8294 				 * This operation (SIOCSLIFNAME) must have
8295 				 * happened on the ill. Assert there is no conn
8296 				 */
8297 				ASSERT(connp == NULL);
8298 				q = ill->ill_wq;
8299 			}
8300 			break;
8301 		case DL_BIND_REQ:
8302 			ill_dlpi_done(ill, DL_BIND_REQ);
8303 			if (ill->ill_ifname_pending)
8304 				break;
8305 			mutex_enter(&ill->ill_lock);
8306 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8307 			mutex_exit(&ill->ill_lock);
8308 			/*
8309 			 * Something went wrong with the bind.  We presumably
8310 			 * have an IOCTL hanging out waiting for completion.
8311 			 * Find it, take down the interface that was coming
8312 			 * up, and complete the IOCTL with the error noted.
8313 			 */
8314 			if (!ioctl_aborted)
8315 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8316 			if (mp1 != NULL) {
8317 				/*
8318 				 * This might be a result of a DL_NOTE_REPLUMB
8319 				 * notification. In that case, connp is NULL.
8320 				 */
8321 				if (connp != NULL)
8322 					q = CONNP_TO_WQ(connp);
8323 
8324 				(void) ipif_down(ipif, NULL, NULL);
8325 				/* error is set below the switch */
8326 			}
8327 			break;
8328 		case DL_ENABMULTI_REQ:
8329 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8330 
8331 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8332 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8333 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8334 
8335 				printf("ip: joining multicasts failed (%d)"
8336 				    " on %s - will use link layer "
8337 				    "broadcasts for multicast\n",
8338 				    dlea->dl_errno, ill->ill_name);
8339 
8340 				/*
8341 				 * Set up for multi_bcast; We are the
8342 				 * writer, so ok to access ill->ill_ipif
8343 				 * without any lock.
8344 				 */
8345 				mutex_enter(&ill->ill_phyint->phyint_lock);
8346 				ill->ill_phyint->phyint_flags |=
8347 				    PHYI_MULTI_BCAST;
8348 				mutex_exit(&ill->ill_phyint->phyint_lock);
8349 
8350 			}
8351 			freemsg(mp);	/* Don't want to pass this up */
8352 			return;
8353 		case DL_CAPABILITY_REQ:
8354 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8355 			    "DL_CAPABILITY REQ\n"));
8356 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8357 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8358 			ill_capability_done(ill);
8359 			freemsg(mp);
8360 			return;
8361 		}
8362 		/*
8363 		 * Note the error for IOCTL completion (mp1 is set when
8364 		 * ready to complete ioctl). If ill_ifname_pending_err is
8365 		 * set, an error occured during plumbing (ill_ifname_pending),
8366 		 * so we want to report that error.
8367 		 *
8368 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8369 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8370 		 * expected to get errack'd if the driver doesn't support
8371 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8372 		 * if these error conditions are encountered.
8373 		 */
8374 		if (mp1 != NULL) {
8375 			if (ill->ill_ifname_pending_err != 0)  {
8376 				err = ill->ill_ifname_pending_err;
8377 				ill->ill_ifname_pending_err = 0;
8378 			} else {
8379 				err = dlea->dl_unix_errno ?
8380 				    dlea->dl_unix_errno : ENXIO;
8381 			}
8382 		/*
8383 		 * If we're plumbing an interface and an error hasn't already
8384 		 * been saved, set ill_ifname_pending_err to the error passed
8385 		 * up. Ignore the error if log is B_FALSE (see comment above).
8386 		 */
8387 		} else if (log && ill->ill_ifname_pending &&
8388 		    ill->ill_ifname_pending_err == 0) {
8389 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8390 			    dlea->dl_unix_errno : ENXIO;
8391 		}
8392 
8393 		if (log)
8394 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8395 			    dlea->dl_errno, dlea->dl_unix_errno);
8396 		break;
8397 	case DL_CAPABILITY_ACK:
8398 		ill_capability_ack(ill, mp);
8399 		/*
8400 		 * The message has been handed off to ill_capability_ack
8401 		 * and must not be freed below
8402 		 */
8403 		mp = NULL;
8404 		break;
8405 
8406 	case DL_INFO_ACK:
8407 		/* Call a routine to handle this one. */
8408 		ill_dlpi_done(ill, DL_INFO_REQ);
8409 		ip_ll_subnet_defaults(ill, mp);
8410 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8411 		return;
8412 	case DL_BIND_ACK:
8413 		/*
8414 		 * We should have an IOCTL waiting on this unless
8415 		 * sent by ill_dl_phys, in which case just return
8416 		 */
8417 		ill_dlpi_done(ill, DL_BIND_REQ);
8418 
8419 		if (ill->ill_ifname_pending) {
8420 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8421 			    ill_t *, ill, mblk_t *, mp);
8422 			break;
8423 		}
8424 		mutex_enter(&ill->ill_lock);
8425 		ill->ill_dl_up = 1;
8426 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8427 		mutex_exit(&ill->ill_lock);
8428 
8429 		if (!ioctl_aborted)
8430 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8431 		if (mp1 == NULL) {
8432 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8433 			break;
8434 		}
8435 		/*
8436 		 * mp1 was added by ill_dl_up(). if that is a result of
8437 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8438 		 */
8439 		if (connp != NULL)
8440 			q = CONNP_TO_WQ(connp);
8441 		/*
8442 		 * We are exclusive. So nothing can change even after
8443 		 * we get the pending mp.
8444 		 */
8445 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8446 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8447 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8448 
8449 		/*
8450 		 * Now bring up the resolver; when that is complete, we'll
8451 		 * create IREs.  Note that we intentionally mirror what
8452 		 * ipif_up() would have done, because we got here by way of
8453 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8454 		 */
8455 		if (ill->ill_isv6) {
8456 			/*
8457 			 * v6 interfaces.
8458 			 * Unlike ARP which has to do another bind
8459 			 * and attach, once we get here we are
8460 			 * done with NDP
8461 			 */
8462 			(void) ipif_resolver_up(ipif, Res_act_initial);
8463 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8464 				err = ipif_up_done_v6(ipif);
8465 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8466 			/*
8467 			 * ARP and other v4 external resolvers.
8468 			 * Leave the pending mblk intact so that
8469 			 * the ioctl completes in ip_rput().
8470 			 */
8471 			if (connp != NULL)
8472 				mutex_enter(&connp->conn_lock);
8473 			mutex_enter(&ill->ill_lock);
8474 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8475 			mutex_exit(&ill->ill_lock);
8476 			if (connp != NULL)
8477 				mutex_exit(&connp->conn_lock);
8478 			if (success) {
8479 				err = ipif_resolver_up(ipif, Res_act_initial);
8480 				if (err == EINPROGRESS) {
8481 					freemsg(mp);
8482 					return;
8483 				}
8484 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8485 			} else {
8486 				/* The conn has started closing */
8487 				err = EINTR;
8488 			}
8489 		} else {
8490 			/*
8491 			 * This one is complete. Reply to pending ioctl.
8492 			 */
8493 			(void) ipif_resolver_up(ipif, Res_act_initial);
8494 			err = ipif_up_done(ipif);
8495 		}
8496 
8497 		if ((err == 0) && (ill->ill_up_ipifs)) {
8498 			err = ill_up_ipifs(ill, q, mp1);
8499 			if (err == EINPROGRESS) {
8500 				freemsg(mp);
8501 				return;
8502 			}
8503 		}
8504 
8505 		/*
8506 		 * If we have a moved ipif to bring up, and everything has
8507 		 * succeeded to this point, bring it up on the IPMP ill.
8508 		 * Otherwise, leave it down -- the admin can try to bring it
8509 		 * up by hand if need be.
8510 		 */
8511 		if (ill->ill_move_ipif != NULL) {
8512 			if (err != 0) {
8513 				ill->ill_move_ipif = NULL;
8514 			} else {
8515 				ipif = ill->ill_move_ipif;
8516 				ill->ill_move_ipif = NULL;
8517 				err = ipif_up(ipif, q, mp1);
8518 				if (err == EINPROGRESS) {
8519 					freemsg(mp);
8520 					return;
8521 				}
8522 			}
8523 		}
8524 		break;
8525 
8526 	case DL_NOTIFY_IND: {
8527 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8528 		uint_t orig_mtu, orig_mc_mtu;
8529 
8530 		switch (notify->dl_notification) {
8531 		case DL_NOTE_PHYS_ADDR:
8532 			err = ill_set_phys_addr(ill, mp);
8533 			break;
8534 
8535 		case DL_NOTE_REPLUMB:
8536 			/*
8537 			 * Directly return after calling ill_replumb().
8538 			 * Note that we should not free mp as it is reused
8539 			 * in the ill_replumb() function.
8540 			 */
8541 			err = ill_replumb(ill, mp);
8542 			return;
8543 
8544 		case DL_NOTE_FASTPATH_FLUSH:
8545 			nce_flush(ill, B_FALSE);
8546 			break;
8547 
8548 		case DL_NOTE_SDU_SIZE:
8549 		case DL_NOTE_SDU_SIZE2:
8550 			/*
8551 			 * The dce and fragmentation code can cope with
8552 			 * this changing while packets are being sent.
8553 			 * When packets are sent ip_output will discover
8554 			 * a change.
8555 			 *
8556 			 * Change the MTU size of the interface.
8557 			 */
8558 			mutex_enter(&ill->ill_lock);
8559 			orig_mtu = ill->ill_mtu;
8560 			orig_mc_mtu = ill->ill_mc_mtu;
8561 			switch (notify->dl_notification) {
8562 			case DL_NOTE_SDU_SIZE:
8563 				ill->ill_current_frag =
8564 				    (uint_t)notify->dl_data;
8565 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8566 				break;
8567 			case DL_NOTE_SDU_SIZE2:
8568 				ill->ill_current_frag =
8569 				    (uint_t)notify->dl_data1;
8570 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8571 				break;
8572 			}
8573 			if (ill->ill_current_frag > ill->ill_max_frag)
8574 				ill->ill_max_frag = ill->ill_current_frag;
8575 
8576 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8577 				ill->ill_mtu = ill->ill_current_frag;
8578 
8579 				/*
8580 				 * If ill_user_mtu was set (via
8581 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8582 				 */
8583 				if (ill->ill_user_mtu != 0 &&
8584 				    ill->ill_user_mtu < ill->ill_mtu)
8585 					ill->ill_mtu = ill->ill_user_mtu;
8586 
8587 				if (ill->ill_user_mtu != 0 &&
8588 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8589 					ill->ill_mc_mtu = ill->ill_user_mtu;
8590 
8591 				if (ill->ill_isv6) {
8592 					if (ill->ill_mtu < IPV6_MIN_MTU)
8593 						ill->ill_mtu = IPV6_MIN_MTU;
8594 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8595 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8596 				} else {
8597 					if (ill->ill_mtu < IP_MIN_MTU)
8598 						ill->ill_mtu = IP_MIN_MTU;
8599 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8600 						ill->ill_mc_mtu = IP_MIN_MTU;
8601 				}
8602 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8603 				ill->ill_mc_mtu = ill->ill_mtu;
8604 			}
8605 
8606 			mutex_exit(&ill->ill_lock);
8607 			/*
8608 			 * Make sure all dce_generation checks find out
8609 			 * that ill_mtu/ill_mc_mtu has changed.
8610 			 */
8611 			if (orig_mtu != ill->ill_mtu ||
8612 			    orig_mc_mtu != ill->ill_mc_mtu) {
8613 				dce_increment_all_generations(ill->ill_isv6,
8614 				    ill->ill_ipst);
8615 			}
8616 
8617 			/*
8618 			 * Refresh IPMP meta-interface MTU if necessary.
8619 			 */
8620 			if (IS_UNDER_IPMP(ill))
8621 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8622 			break;
8623 
8624 		case DL_NOTE_LINK_UP:
8625 		case DL_NOTE_LINK_DOWN: {
8626 			/*
8627 			 * We are writer. ill / phyint / ipsq assocs stable.
8628 			 * The RUNNING flag reflects the state of the link.
8629 			 */
8630 			phyint_t *phyint = ill->ill_phyint;
8631 			uint64_t new_phyint_flags;
8632 			boolean_t changed = B_FALSE;
8633 			boolean_t went_up;
8634 
8635 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8636 			mutex_enter(&phyint->phyint_lock);
8637 
8638 			new_phyint_flags = went_up ?
8639 			    phyint->phyint_flags | PHYI_RUNNING :
8640 			    phyint->phyint_flags & ~PHYI_RUNNING;
8641 
8642 			if (IS_IPMP(ill)) {
8643 				new_phyint_flags = went_up ?
8644 				    new_phyint_flags & ~PHYI_FAILED :
8645 				    new_phyint_flags | PHYI_FAILED;
8646 			}
8647 
8648 			if (new_phyint_flags != phyint->phyint_flags) {
8649 				phyint->phyint_flags = new_phyint_flags;
8650 				changed = B_TRUE;
8651 			}
8652 			mutex_exit(&phyint->phyint_lock);
8653 			/*
8654 			 * ill_restart_dad handles the DAD restart and routing
8655 			 * socket notification logic.
8656 			 */
8657 			if (changed) {
8658 				ill_restart_dad(phyint->phyint_illv4, went_up);
8659 				ill_restart_dad(phyint->phyint_illv6, went_up);
8660 			}
8661 			break;
8662 		}
8663 		case DL_NOTE_PROMISC_ON_PHYS: {
8664 			phyint_t *phyint = ill->ill_phyint;
8665 
8666 			mutex_enter(&phyint->phyint_lock);
8667 			phyint->phyint_flags |= PHYI_PROMISC;
8668 			mutex_exit(&phyint->phyint_lock);
8669 			break;
8670 		}
8671 		case DL_NOTE_PROMISC_OFF_PHYS: {
8672 			phyint_t *phyint = ill->ill_phyint;
8673 
8674 			mutex_enter(&phyint->phyint_lock);
8675 			phyint->phyint_flags &= ~PHYI_PROMISC;
8676 			mutex_exit(&phyint->phyint_lock);
8677 			break;
8678 		}
8679 		case DL_NOTE_CAPAB_RENEG:
8680 			/*
8681 			 * Something changed on the driver side.
8682 			 * It wants us to renegotiate the capabilities
8683 			 * on this ill. One possible cause is the aggregation
8684 			 * interface under us where a port got added or
8685 			 * went away.
8686 			 *
8687 			 * If the capability negotiation is already done
8688 			 * or is in progress, reset the capabilities and
8689 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8690 			 * so that when the ack comes back, we can start
8691 			 * the renegotiation process.
8692 			 *
8693 			 * Note that if ill_capab_reneg is already B_TRUE
8694 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8695 			 * the capability resetting request has been sent
8696 			 * and the renegotiation has not been started yet;
8697 			 * nothing needs to be done in this case.
8698 			 */
8699 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8700 			ill_capability_reset(ill, B_TRUE);
8701 			ipsq_current_finish(ipsq);
8702 			break;
8703 
8704 		case DL_NOTE_ALLOWED_IPS:
8705 			ill_set_allowed_ips(ill, mp);
8706 			break;
8707 		default:
8708 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8709 			    "type 0x%x for DL_NOTIFY_IND\n",
8710 			    notify->dl_notification));
8711 			break;
8712 		}
8713 
8714 		/*
8715 		 * As this is an asynchronous operation, we
8716 		 * should not call ill_dlpi_done
8717 		 */
8718 		break;
8719 	}
8720 	case DL_NOTIFY_ACK: {
8721 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8722 
8723 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8724 			ill->ill_note_link = 1;
8725 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8726 		break;
8727 	}
8728 	case DL_PHYS_ADDR_ACK: {
8729 		/*
8730 		 * As part of plumbing the interface via SIOCSLIFNAME,
8731 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8732 		 * whose answers we receive here.  As each answer is received,
8733 		 * we call ill_dlpi_done() to dispatch the next request as
8734 		 * we're processing the current one.  Once all answers have
8735 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8736 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8737 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8738 		 * available, but we know the ioctl is pending on ill_wq.)
8739 		 */
8740 		uint_t	paddrlen, paddroff;
8741 		uint8_t	*addr;
8742 
8743 		paddrreq = ill->ill_phys_addr_pend;
8744 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8745 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8746 		addr = mp->b_rptr + paddroff;
8747 
8748 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8749 		if (paddrreq == DL_IPV6_TOKEN) {
8750 			/*
8751 			 * bcopy to low-order bits of ill_token
8752 			 *
8753 			 * XXX Temporary hack - currently, all known tokens
8754 			 * are 64 bits, so I'll cheat for the moment.
8755 			 */
8756 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8757 			ill->ill_token_length = paddrlen;
8758 			break;
8759 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8760 			ASSERT(ill->ill_nd_lla_mp == NULL);
8761 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8762 			mp = NULL;
8763 			break;
8764 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8765 			ASSERT(ill->ill_dest_addr_mp == NULL);
8766 			ill->ill_dest_addr_mp = mp;
8767 			ill->ill_dest_addr = addr;
8768 			mp = NULL;
8769 			if (ill->ill_isv6) {
8770 				ill_setdesttoken(ill);
8771 				ipif_setdestlinklocal(ill->ill_ipif);
8772 			}
8773 			break;
8774 		}
8775 
8776 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8777 		ASSERT(ill->ill_phys_addr_mp == NULL);
8778 		if (!ill->ill_ifname_pending)
8779 			break;
8780 		ill->ill_ifname_pending = 0;
8781 		if (!ioctl_aborted)
8782 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8783 		if (mp1 != NULL) {
8784 			ASSERT(connp == NULL);
8785 			q = ill->ill_wq;
8786 		}
8787 		/*
8788 		 * If any error acks received during the plumbing sequence,
8789 		 * ill_ifname_pending_err will be set. Break out and send up
8790 		 * the error to the pending ioctl.
8791 		 */
8792 		if (ill->ill_ifname_pending_err != 0) {
8793 			err = ill->ill_ifname_pending_err;
8794 			ill->ill_ifname_pending_err = 0;
8795 			break;
8796 		}
8797 
8798 		ill->ill_phys_addr_mp = mp;
8799 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8800 		mp = NULL;
8801 
8802 		/*
8803 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8804 		 * provider doesn't support physical addresses.  We check both
8805 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8806 		 * not have physical addresses, but historically adversises a
8807 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8808 		 * its DL_PHYS_ADDR_ACK.
8809 		 */
8810 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8811 			ill->ill_phys_addr = NULL;
8812 		} else if (paddrlen != ill->ill_phys_addr_length) {
8813 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8814 			    paddrlen, ill->ill_phys_addr_length));
8815 			err = EINVAL;
8816 			break;
8817 		}
8818 
8819 		if (ill->ill_nd_lla_mp == NULL) {
8820 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8821 				err = ENOMEM;
8822 				break;
8823 			}
8824 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8825 		}
8826 
8827 		if (ill->ill_isv6) {
8828 			ill_setdefaulttoken(ill);
8829 			ipif_setlinklocal(ill->ill_ipif);
8830 		}
8831 		break;
8832 	}
8833 	case DL_OK_ACK:
8834 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8835 		    dl_primstr((int)dloa->dl_correct_primitive),
8836 		    dloa->dl_correct_primitive));
8837 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8838 		    char *, dl_primstr(dloa->dl_correct_primitive),
8839 		    ill_t *, ill);
8840 
8841 		switch (dloa->dl_correct_primitive) {
8842 		case DL_ENABMULTI_REQ:
8843 		case DL_DISABMULTI_REQ:
8844 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8845 			break;
8846 		case DL_PROMISCON_REQ:
8847 		case DL_PROMISCOFF_REQ:
8848 		case DL_UNBIND_REQ:
8849 		case DL_ATTACH_REQ:
8850 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8851 			break;
8852 		}
8853 		break;
8854 	default:
8855 		break;
8856 	}
8857 
8858 	freemsg(mp);
8859 	if (mp1 == NULL)
8860 		return;
8861 
8862 	/*
8863 	 * The operation must complete without EINPROGRESS since
8864 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8865 	 * the operation will be stuck forever inside the IPSQ.
8866 	 */
8867 	ASSERT(err != EINPROGRESS);
8868 
8869 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8870 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8871 	    ipif_t *, NULL);
8872 
8873 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8874 	case 0:
8875 		ipsq_current_finish(ipsq);
8876 		break;
8877 
8878 	case SIOCSLIFNAME:
8879 	case IF_UNITSEL: {
8880 		ill_t *ill_other = ILL_OTHER(ill);
8881 
8882 		/*
8883 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8884 		 * ill has a peer which is in an IPMP group, then place ill
8885 		 * into the same group.  One catch: although ifconfig plumbs
8886 		 * the appropriate IPMP meta-interface prior to plumbing this
8887 		 * ill, it is possible for multiple ifconfig applications to
8888 		 * race (or for another application to adjust plumbing), in
8889 		 * which case the IPMP meta-interface we need will be missing.
8890 		 * If so, kick the phyint out of the group.
8891 		 */
8892 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8893 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8894 			ipmp_illgrp_t	*illg;
8895 
8896 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8897 			if (illg == NULL)
8898 				ipmp_phyint_leave_grp(ill->ill_phyint);
8899 			else
8900 				ipmp_ill_join_illgrp(ill, illg);
8901 		}
8902 
8903 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8904 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8905 		else
8906 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8907 		break;
8908 	}
8909 	case SIOCLIFADDIF:
8910 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8911 		break;
8912 
8913 	default:
8914 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8915 		break;
8916 	}
8917 }
8918 
8919 /*
8920  * ip_rput_other is called by ip_rput to handle messages modifying the global
8921  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8922  */
8923 /* ARGSUSED */
8924 void
8925 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8926 {
8927 	ill_t		*ill = q->q_ptr;
8928 	struct iocblk	*iocp;
8929 
8930 	ip1dbg(("ip_rput_other "));
8931 	if (ipsq != NULL) {
8932 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8933 		ASSERT(ipsq->ipsq_xop ==
8934 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8935 	}
8936 
8937 	switch (mp->b_datap->db_type) {
8938 	case M_ERROR:
8939 	case M_HANGUP:
8940 		/*
8941 		 * The device has a problem.  We force the ILL down.  It can
8942 		 * be brought up again manually using SIOCSIFFLAGS (via
8943 		 * ifconfig or equivalent).
8944 		 */
8945 		ASSERT(ipsq != NULL);
8946 		if (mp->b_rptr < mp->b_wptr)
8947 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8948 		if (ill->ill_error == 0)
8949 			ill->ill_error = ENXIO;
8950 		if (!ill_down_start(q, mp))
8951 			return;
8952 		ipif_all_down_tail(ipsq, q, mp, NULL);
8953 		break;
8954 	case M_IOCNAK: {
8955 		iocp = (struct iocblk *)mp->b_rptr;
8956 
8957 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8958 		/*
8959 		 * If this was the first attempt, turn off the fastpath
8960 		 * probing.
8961 		 */
8962 		mutex_enter(&ill->ill_lock);
8963 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8964 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8965 			mutex_exit(&ill->ill_lock);
8966 			/*
8967 			 * don't flush the nce_t entries: we use them
8968 			 * as an index to the ncec itself.
8969 			 */
8970 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8971 			    ill->ill_name));
8972 		} else {
8973 			mutex_exit(&ill->ill_lock);
8974 		}
8975 		freemsg(mp);
8976 		break;
8977 	}
8978 	default:
8979 		ASSERT(0);
8980 		break;
8981 	}
8982 }
8983 
8984 /*
8985  * Update any source route, record route or timestamp options
8986  * When it fails it has consumed the message and BUMPed the MIB.
8987  */
8988 boolean_t
8989 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8990     ip_recv_attr_t *ira)
8991 {
8992 	ipoptp_t	opts;
8993 	uchar_t		*opt;
8994 	uint8_t		optval;
8995 	uint8_t		optlen;
8996 	ipaddr_t	dst;
8997 	ipaddr_t	ifaddr;
8998 	uint32_t	ts;
8999 	timestruc_t	now;
9000 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9001 
9002 	ip2dbg(("ip_forward_options\n"));
9003 	dst = ipha->ipha_dst;
9004 	opt = NULL;
9005 
9006 	for (optval = ipoptp_first(&opts, ipha);
9007 	    optval != IPOPT_EOL;
9008 	    optval = ipoptp_next(&opts)) {
9009 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9010 		opt = opts.ipoptp_cur;
9011 		optlen = opts.ipoptp_len;
9012 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
9013 		    optval, opts.ipoptp_len));
9014 		switch (optval) {
9015 			uint32_t off;
9016 		case IPOPT_SSRR:
9017 		case IPOPT_LSRR:
9018 			/* Check if adminstratively disabled */
9019 			if (!ipst->ips_ip_forward_src_routed) {
9020 				BUMP_MIB(dst_ill->ill_ip_mib,
9021 				    ipIfStatsForwProhibits);
9022 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9023 				    mp, dst_ill);
9024 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9025 				    ira);
9026 				return (B_FALSE);
9027 			}
9028 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9029 				/*
9030 				 * Must be partial since ip_input_options
9031 				 * checked for strict.
9032 				 */
9033 				break;
9034 			}
9035 			off = opt[IPOPT_OFFSET];
9036 			off--;
9037 		redo_srr:
9038 			if (optlen < IP_ADDR_LEN ||
9039 			    off > optlen - IP_ADDR_LEN) {
9040 				/* End of source route */
9041 				ip1dbg((
9042 				    "ip_forward_options: end of SR\n"));
9043 				break;
9044 			}
9045 			/* Pick a reasonable address on the outbound if */
9046 			ASSERT(dst_ill != NULL);
9047 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9048 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9049 			    NULL) != 0) {
9050 				/* No source! Shouldn't happen */
9051 				ifaddr = INADDR_ANY;
9052 			}
9053 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9054 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9055 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9056 			    ntohl(dst)));
9057 
9058 			/*
9059 			 * Check if our address is present more than
9060 			 * once as consecutive hops in source route.
9061 			 */
9062 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9063 				off += IP_ADDR_LEN;
9064 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9065 				goto redo_srr;
9066 			}
9067 			ipha->ipha_dst = dst;
9068 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9069 			break;
9070 		case IPOPT_RR:
9071 			off = opt[IPOPT_OFFSET];
9072 			off--;
9073 			if (optlen < IP_ADDR_LEN ||
9074 			    off > optlen - IP_ADDR_LEN) {
9075 				/* No more room - ignore */
9076 				ip1dbg((
9077 				    "ip_forward_options: end of RR\n"));
9078 				break;
9079 			}
9080 			/* Pick a reasonable address on the outbound if */
9081 			ASSERT(dst_ill != NULL);
9082 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9083 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9084 			    NULL) != 0) {
9085 				/* No source! Shouldn't happen */
9086 				ifaddr = INADDR_ANY;
9087 			}
9088 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9089 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9090 			break;
9091 		case IPOPT_TS:
9092 			off = 0;
9093 			/* Insert timestamp if there is room */
9094 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9095 			case IPOPT_TS_TSONLY:
9096 				off = IPOPT_TS_TIMELEN;
9097 				break;
9098 			case IPOPT_TS_PRESPEC:
9099 			case IPOPT_TS_PRESPEC_RFC791:
9100 				/* Verify that the address matched */
9101 				off = opt[IPOPT_OFFSET] - 1;
9102 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9103 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9104 					/* Not for us */
9105 					break;
9106 				}
9107 				/* FALLTHROUGH */
9108 			case IPOPT_TS_TSANDADDR:
9109 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9110 				break;
9111 			default:
9112 				/*
9113 				 * ip_*put_options should have already
9114 				 * dropped this packet.
9115 				 */
9116 				cmn_err(CE_PANIC, "ip_forward_options: "
9117 				    "unknown IT - bug in ip_input_options?\n");
9118 			}
9119 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9120 				/* Increase overflow counter */
9121 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9122 				opt[IPOPT_POS_OV_FLG] =
9123 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9124 				    (off << 4));
9125 				break;
9126 			}
9127 			off = opt[IPOPT_OFFSET] - 1;
9128 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9129 			case IPOPT_TS_PRESPEC:
9130 			case IPOPT_TS_PRESPEC_RFC791:
9131 			case IPOPT_TS_TSANDADDR:
9132 				/* Pick a reasonable addr on the outbound if */
9133 				ASSERT(dst_ill != NULL);
9134 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9135 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9136 				    NULL, NULL) != 0) {
9137 					/* No source! Shouldn't happen */
9138 					ifaddr = INADDR_ANY;
9139 				}
9140 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9141 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9142 				/* FALLTHROUGH */
9143 			case IPOPT_TS_TSONLY:
9144 				off = opt[IPOPT_OFFSET] - 1;
9145 				/* Compute # of milliseconds since midnight */
9146 				gethrestime(&now);
9147 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9148 				    NSEC2MSEC(now.tv_nsec);
9149 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9150 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9151 				break;
9152 			}
9153 			break;
9154 		}
9155 	}
9156 	return (B_TRUE);
9157 }
9158 
9159 /*
9160  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9161  * returns 'true' if there are still fragments left on the queue, in
9162  * which case we restart the timer.
9163  */
9164 void
9165 ill_frag_timer(void *arg)
9166 {
9167 	ill_t	*ill = (ill_t *)arg;
9168 	boolean_t frag_pending;
9169 	ip_stack_t *ipst = ill->ill_ipst;
9170 	time_t	timeout;
9171 
9172 	mutex_enter(&ill->ill_lock);
9173 	ASSERT(!ill->ill_fragtimer_executing);
9174 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9175 		ill->ill_frag_timer_id = 0;
9176 		mutex_exit(&ill->ill_lock);
9177 		return;
9178 	}
9179 	ill->ill_fragtimer_executing = 1;
9180 	mutex_exit(&ill->ill_lock);
9181 
9182 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9183 	    ipst->ips_ip_reassembly_timeout);
9184 
9185 	frag_pending = ill_frag_timeout(ill, timeout);
9186 
9187 	/*
9188 	 * Restart the timer, if we have fragments pending or if someone
9189 	 * wanted us to be scheduled again.
9190 	 */
9191 	mutex_enter(&ill->ill_lock);
9192 	ill->ill_fragtimer_executing = 0;
9193 	ill->ill_frag_timer_id = 0;
9194 	if (frag_pending || ill->ill_fragtimer_needrestart)
9195 		ill_frag_timer_start(ill);
9196 	mutex_exit(&ill->ill_lock);
9197 }
9198 
9199 void
9200 ill_frag_timer_start(ill_t *ill)
9201 {
9202 	ip_stack_t *ipst = ill->ill_ipst;
9203 	clock_t	timeo_ms;
9204 
9205 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9206 
9207 	/* If the ill is closing or opening don't proceed */
9208 	if (ill->ill_state_flags & ILL_CONDEMNED)
9209 		return;
9210 
9211 	if (ill->ill_fragtimer_executing) {
9212 		/*
9213 		 * ill_frag_timer is currently executing. Just record the
9214 		 * the fact that we want the timer to be restarted.
9215 		 * ill_frag_timer will post a timeout before it returns,
9216 		 * ensuring it will be called again.
9217 		 */
9218 		ill->ill_fragtimer_needrestart = 1;
9219 		return;
9220 	}
9221 
9222 	if (ill->ill_frag_timer_id == 0) {
9223 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9224 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9225 
9226 		/*
9227 		 * The timer is neither running nor is the timeout handler
9228 		 * executing. Post a timeout so that ill_frag_timer will be
9229 		 * called
9230 		 */
9231 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9232 		    MSEC_TO_TICK(timeo_ms >> 1));
9233 		ill->ill_fragtimer_needrestart = 0;
9234 	}
9235 }
9236 
9237 /*
9238  * Update any source route, record route or timestamp options.
9239  * Check that we are at end of strict source route.
9240  * The options have already been checked for sanity in ip_input_options().
9241  */
9242 boolean_t
9243 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9244 {
9245 	ipoptp_t	opts;
9246 	uchar_t		*opt;
9247 	uint8_t		optval;
9248 	uint8_t		optlen;
9249 	ipaddr_t	dst;
9250 	ipaddr_t	ifaddr;
9251 	uint32_t	ts;
9252 	timestruc_t	now;
9253 	ill_t		*ill = ira->ira_ill;
9254 	ip_stack_t	*ipst = ill->ill_ipst;
9255 
9256 	ip2dbg(("ip_input_local_options\n"));
9257 	opt = NULL;
9258 
9259 	for (optval = ipoptp_first(&opts, ipha);
9260 	    optval != IPOPT_EOL;
9261 	    optval = ipoptp_next(&opts)) {
9262 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9263 		opt = opts.ipoptp_cur;
9264 		optlen = opts.ipoptp_len;
9265 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9266 		    optval, optlen));
9267 		switch (optval) {
9268 			uint32_t off;
9269 		case IPOPT_SSRR:
9270 		case IPOPT_LSRR:
9271 			off = opt[IPOPT_OFFSET];
9272 			off--;
9273 			if (optlen < IP_ADDR_LEN ||
9274 			    off > optlen - IP_ADDR_LEN) {
9275 				/* End of source route */
9276 				ip1dbg(("ip_input_local_options: end of SR\n"));
9277 				break;
9278 			}
9279 			/*
9280 			 * This will only happen if two consecutive entries
9281 			 * in the source route contains our address or if
9282 			 * it is a packet with a loose source route which
9283 			 * reaches us before consuming the whole source route
9284 			 */
9285 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9286 			if (optval == IPOPT_SSRR) {
9287 				goto bad_src_route;
9288 			}
9289 			/*
9290 			 * Hack: instead of dropping the packet truncate the
9291 			 * source route to what has been used by filling the
9292 			 * rest with IPOPT_NOP.
9293 			 */
9294 			opt[IPOPT_OLEN] = (uint8_t)off;
9295 			while (off < optlen) {
9296 				opt[off++] = IPOPT_NOP;
9297 			}
9298 			break;
9299 		case IPOPT_RR:
9300 			off = opt[IPOPT_OFFSET];
9301 			off--;
9302 			if (optlen < IP_ADDR_LEN ||
9303 			    off > optlen - IP_ADDR_LEN) {
9304 				/* No more room - ignore */
9305 				ip1dbg((
9306 				    "ip_input_local_options: end of RR\n"));
9307 				break;
9308 			}
9309 			/* Pick a reasonable address on the outbound if */
9310 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9311 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9312 			    NULL) != 0) {
9313 				/* No source! Shouldn't happen */
9314 				ifaddr = INADDR_ANY;
9315 			}
9316 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9317 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9318 			break;
9319 		case IPOPT_TS:
9320 			off = 0;
9321 			/* Insert timestamp if there is romm */
9322 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9323 			case IPOPT_TS_TSONLY:
9324 				off = IPOPT_TS_TIMELEN;
9325 				break;
9326 			case IPOPT_TS_PRESPEC:
9327 			case IPOPT_TS_PRESPEC_RFC791:
9328 				/* Verify that the address matched */
9329 				off = opt[IPOPT_OFFSET] - 1;
9330 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9331 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9332 					/* Not for us */
9333 					break;
9334 				}
9335 				/* FALLTHROUGH */
9336 			case IPOPT_TS_TSANDADDR:
9337 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9338 				break;
9339 			default:
9340 				/*
9341 				 * ip_*put_options should have already
9342 				 * dropped this packet.
9343 				 */
9344 				cmn_err(CE_PANIC, "ip_input_local_options: "
9345 				    "unknown IT - bug in ip_input_options?\n");
9346 			}
9347 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9348 				/* Increase overflow counter */
9349 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9350 				opt[IPOPT_POS_OV_FLG] =
9351 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9352 				    (off << 4));
9353 				break;
9354 			}
9355 			off = opt[IPOPT_OFFSET] - 1;
9356 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9357 			case IPOPT_TS_PRESPEC:
9358 			case IPOPT_TS_PRESPEC_RFC791:
9359 			case IPOPT_TS_TSANDADDR:
9360 				/* Pick a reasonable addr on the outbound if */
9361 				if (ip_select_source_v4(ill, INADDR_ANY,
9362 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9363 				    &ifaddr, NULL, NULL) != 0) {
9364 					/* No source! Shouldn't happen */
9365 					ifaddr = INADDR_ANY;
9366 				}
9367 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9368 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9369 				/* FALLTHROUGH */
9370 			case IPOPT_TS_TSONLY:
9371 				off = opt[IPOPT_OFFSET] - 1;
9372 				/* Compute # of milliseconds since midnight */
9373 				gethrestime(&now);
9374 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9375 				    NSEC2MSEC(now.tv_nsec);
9376 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9377 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9378 				break;
9379 			}
9380 			break;
9381 		}
9382 	}
9383 	return (B_TRUE);
9384 
9385 bad_src_route:
9386 	/* make sure we clear any indication of a hardware checksum */
9387 	DB_CKSUMFLAGS(mp) = 0;
9388 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9389 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9390 	return (B_FALSE);
9391 
9392 }
9393 
9394 /*
9395  * Process IP options in an inbound packet.  Always returns the nexthop.
9396  * Normally this is the passed in nexthop, but if there is an option
9397  * that effects the nexthop (such as a source route) that will be returned.
9398  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9399  * and mp freed.
9400  */
9401 ipaddr_t
9402 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9403     ip_recv_attr_t *ira, int *errorp)
9404 {
9405 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9406 	ipoptp_t	opts;
9407 	uchar_t		*opt;
9408 	uint8_t		optval;
9409 	uint8_t		optlen;
9410 	intptr_t	code = 0;
9411 	ire_t		*ire;
9412 
9413 	ip2dbg(("ip_input_options\n"));
9414 	opt = NULL;
9415 	*errorp = 0;
9416 	for (optval = ipoptp_first(&opts, ipha);
9417 	    optval != IPOPT_EOL;
9418 	    optval = ipoptp_next(&opts)) {
9419 		opt = opts.ipoptp_cur;
9420 		optlen = opts.ipoptp_len;
9421 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9422 		    optval, optlen));
9423 		/*
9424 		 * Note: we need to verify the checksum before we
9425 		 * modify anything thus this routine only extracts the next
9426 		 * hop dst from any source route.
9427 		 */
9428 		switch (optval) {
9429 			uint32_t off;
9430 		case IPOPT_SSRR:
9431 		case IPOPT_LSRR:
9432 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9433 				if (optval == IPOPT_SSRR) {
9434 					ip1dbg(("ip_input_options: not next"
9435 					    " strict source route 0x%x\n",
9436 					    ntohl(dst)));
9437 					code = (char *)&ipha->ipha_dst -
9438 					    (char *)ipha;
9439 					goto param_prob; /* RouterReq's */
9440 				}
9441 				ip2dbg(("ip_input_options: "
9442 				    "not next source route 0x%x\n",
9443 				    ntohl(dst)));
9444 				break;
9445 			}
9446 
9447 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9448 				ip1dbg((
9449 				    "ip_input_options: bad option offset\n"));
9450 				code = (char *)&opt[IPOPT_OLEN] -
9451 				    (char *)ipha;
9452 				goto param_prob;
9453 			}
9454 			off = opt[IPOPT_OFFSET];
9455 			off--;
9456 		redo_srr:
9457 			if (optlen < IP_ADDR_LEN ||
9458 			    off > optlen - IP_ADDR_LEN) {
9459 				/* End of source route */
9460 				ip1dbg(("ip_input_options: end of SR\n"));
9461 				break;
9462 			}
9463 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9464 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9465 			    ntohl(dst)));
9466 
9467 			/*
9468 			 * Check if our address is present more than
9469 			 * once as consecutive hops in source route.
9470 			 * XXX verify per-interface ip_forwarding
9471 			 * for source route?
9472 			 */
9473 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9474 				off += IP_ADDR_LEN;
9475 				goto redo_srr;
9476 			}
9477 
9478 			if (dst == htonl(INADDR_LOOPBACK)) {
9479 				ip1dbg(("ip_input_options: loopback addr in "
9480 				    "source route!\n"));
9481 				goto bad_src_route;
9482 			}
9483 			/*
9484 			 * For strict: verify that dst is directly
9485 			 * reachable.
9486 			 */
9487 			if (optval == IPOPT_SSRR) {
9488 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9489 				    IRE_INTERFACE, NULL, ALL_ZONES,
9490 				    ira->ira_tsl,
9491 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9492 				    NULL);
9493 				if (ire == NULL) {
9494 					ip1dbg(("ip_input_options: SSRR not "
9495 					    "directly reachable: 0x%x\n",
9496 					    ntohl(dst)));
9497 					goto bad_src_route;
9498 				}
9499 				ire_refrele(ire);
9500 			}
9501 			/*
9502 			 * Defer update of the offset and the record route
9503 			 * until the packet is forwarded.
9504 			 */
9505 			break;
9506 		case IPOPT_RR:
9507 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9508 				ip1dbg((
9509 				    "ip_input_options: bad option offset\n"));
9510 				code = (char *)&opt[IPOPT_OLEN] -
9511 				    (char *)ipha;
9512 				goto param_prob;
9513 			}
9514 			break;
9515 		case IPOPT_TS:
9516 			/*
9517 			 * Verify that length >= 5 and that there is either
9518 			 * room for another timestamp or that the overflow
9519 			 * counter is not maxed out.
9520 			 */
9521 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9522 			if (optlen < IPOPT_MINLEN_IT) {
9523 				goto param_prob;
9524 			}
9525 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9526 				ip1dbg((
9527 				    "ip_input_options: bad option offset\n"));
9528 				code = (char *)&opt[IPOPT_OFFSET] -
9529 				    (char *)ipha;
9530 				goto param_prob;
9531 			}
9532 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9533 			case IPOPT_TS_TSONLY:
9534 				off = IPOPT_TS_TIMELEN;
9535 				break;
9536 			case IPOPT_TS_TSANDADDR:
9537 			case IPOPT_TS_PRESPEC:
9538 			case IPOPT_TS_PRESPEC_RFC791:
9539 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9540 				break;
9541 			default:
9542 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9543 				    (char *)ipha;
9544 				goto param_prob;
9545 			}
9546 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9547 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9548 				/*
9549 				 * No room and the overflow counter is 15
9550 				 * already.
9551 				 */
9552 				goto param_prob;
9553 			}
9554 			break;
9555 		}
9556 	}
9557 
9558 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9559 		return (dst);
9560 	}
9561 
9562 	ip1dbg(("ip_input_options: error processing IP options."));
9563 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9564 
9565 param_prob:
9566 	/* make sure we clear any indication of a hardware checksum */
9567 	DB_CKSUMFLAGS(mp) = 0;
9568 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9569 	icmp_param_problem(mp, (uint8_t)code, ira);
9570 	*errorp = -1;
9571 	return (dst);
9572 
9573 bad_src_route:
9574 	/* make sure we clear any indication of a hardware checksum */
9575 	DB_CKSUMFLAGS(mp) = 0;
9576 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9577 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9578 	*errorp = -1;
9579 	return (dst);
9580 }
9581 
9582 /*
9583  * IP & ICMP info in >=14 msg's ...
9584  *  - ip fixed part (mib2_ip_t)
9585  *  - icmp fixed part (mib2_icmp_t)
9586  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9587  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9588  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9589  *  - ipRouteAttributeTable (ip 102)	labeled routes
9590  *  - ip multicast membership (ip_member_t)
9591  *  - ip multicast source filtering (ip_grpsrc_t)
9592  *  - igmp fixed part (struct igmpstat)
9593  *  - multicast routing stats (struct mrtstat)
9594  *  - multicast routing vifs (array of struct vifctl)
9595  *  - multicast routing routes (array of struct mfcctl)
9596  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9597  *					One per ill plus one generic
9598  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9599  *					One per ill plus one generic
9600  *  - ipv6RouteEntry			all IPv6 IREs
9601  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9602  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9603  *  - ipv6AddrEntry			all IPv6 ipifs
9604  *  - ipv6 multicast membership (ipv6_member_t)
9605  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9606  *
9607  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9608  * already filled in by the caller.
9609  * If legacy_req is true then MIB structures needs to be truncated to their
9610  * legacy sizes before being returned.
9611  * Return value of 0 indicates that no messages were sent and caller
9612  * should free mpctl.
9613  */
9614 int
9615 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9616 {
9617 	ip_stack_t *ipst;
9618 	sctp_stack_t *sctps;
9619 
9620 	if (q->q_next != NULL) {
9621 		ipst = ILLQ_TO_IPST(q);
9622 	} else {
9623 		ipst = CONNQ_TO_IPST(q);
9624 	}
9625 	ASSERT(ipst != NULL);
9626 	sctps = ipst->ips_netstack->netstack_sctp;
9627 
9628 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9629 		return (0);
9630 	}
9631 
9632 	/*
9633 	 * For the purposes of the (broken) packet shell use
9634 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9635 	 * to make TCP and UDP appear first in the list of mib items.
9636 	 * TBD: We could expand this and use it in netstat so that
9637 	 * the kernel doesn't have to produce large tables (connections,
9638 	 * routes, etc) when netstat only wants the statistics or a particular
9639 	 * table.
9640 	 */
9641 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9642 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9643 			return (1);
9644 		}
9645 	}
9646 
9647 	if (level != MIB2_TCP) {
9648 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9649 			return (1);
9650 		}
9651 		if (level == MIB2_UDP) {
9652 			goto done;
9653 		}
9654 	}
9655 
9656 	if (level != MIB2_UDP) {
9657 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9658 			return (1);
9659 		}
9660 		if (level == MIB2_TCP) {
9661 			goto done;
9662 		}
9663 	}
9664 
9665 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9666 	    ipst, legacy_req)) == NULL) {
9667 		return (1);
9668 	}
9669 
9670 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9671 	    legacy_req)) == NULL) {
9672 		return (1);
9673 	}
9674 
9675 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9676 		return (1);
9677 	}
9678 
9679 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9680 		return (1);
9681 	}
9682 
9683 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9684 		return (1);
9685 	}
9686 
9687 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9688 		return (1);
9689 	}
9690 
9691 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9692 	    legacy_req)) == NULL) {
9693 		return (1);
9694 	}
9695 
9696 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9697 	    legacy_req)) == NULL) {
9698 		return (1);
9699 	}
9700 
9701 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9702 		return (1);
9703 	}
9704 
9705 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9706 		return (1);
9707 	}
9708 
9709 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9710 		return (1);
9711 	}
9712 
9713 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9714 		return (1);
9715 	}
9716 
9717 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9718 		return (1);
9719 	}
9720 
9721 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9722 		return (1);
9723 	}
9724 
9725 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9726 	if (mpctl == NULL)
9727 		return (1);
9728 
9729 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9730 	if (mpctl == NULL)
9731 		return (1);
9732 
9733 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9734 		return (1);
9735 	}
9736 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9737 		return (1);
9738 	}
9739 done:
9740 	freemsg(mpctl);
9741 	return (1);
9742 }
9743 
9744 /* Get global (legacy) IPv4 statistics */
9745 static mblk_t *
9746 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9747     ip_stack_t *ipst, boolean_t legacy_req)
9748 {
9749 	mib2_ip_t		old_ip_mib;
9750 	struct opthdr		*optp;
9751 	mblk_t			*mp2ctl;
9752 	mib2_ipAddrEntry_t	mae;
9753 
9754 	/*
9755 	 * make a copy of the original message
9756 	 */
9757 	mp2ctl = copymsg(mpctl);
9758 
9759 	/* fixed length IP structure... */
9760 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9761 	optp->level = MIB2_IP;
9762 	optp->name = 0;
9763 	SET_MIB(old_ip_mib.ipForwarding,
9764 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9765 	SET_MIB(old_ip_mib.ipDefaultTTL,
9766 	    (uint32_t)ipst->ips_ip_def_ttl);
9767 	SET_MIB(old_ip_mib.ipReasmTimeout,
9768 	    ipst->ips_ip_reassembly_timeout);
9769 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9770 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9771 	    sizeof (mib2_ipAddrEntry_t));
9772 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9773 	    sizeof (mib2_ipRouteEntry_t));
9774 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9775 	    sizeof (mib2_ipNetToMediaEntry_t));
9776 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9777 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9778 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9779 	    sizeof (mib2_ipAttributeEntry_t));
9780 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9781 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9782 
9783 	/*
9784 	 * Grab the statistics from the new IP MIB
9785 	 */
9786 	SET_MIB(old_ip_mib.ipInReceives,
9787 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9788 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9789 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9790 	SET_MIB(old_ip_mib.ipForwDatagrams,
9791 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9792 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9793 	    ipmib->ipIfStatsInUnknownProtos);
9794 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9795 	SET_MIB(old_ip_mib.ipInDelivers,
9796 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9797 	SET_MIB(old_ip_mib.ipOutRequests,
9798 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9799 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9800 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9801 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9802 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9803 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9804 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9805 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9806 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9807 
9808 	/* ipRoutingDiscards is not being used */
9809 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9810 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9811 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9812 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9813 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9814 	    ipmib->ipIfStatsReasmDuplicates);
9815 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9816 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9817 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9818 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9819 	SET_MIB(old_ip_mib.rawipInOverflows,
9820 	    ipmib->rawipIfStatsInOverflows);
9821 
9822 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9823 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9824 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9825 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9826 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9827 	    ipmib->ipIfStatsOutSwitchIPVersion);
9828 
9829 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9830 	    (int)sizeof (old_ip_mib))) {
9831 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9832 		    (uint_t)sizeof (old_ip_mib)));
9833 	}
9834 
9835 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9836 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9837 	    (int)optp->level, (int)optp->name, (int)optp->len));
9838 	qreply(q, mpctl);
9839 	return (mp2ctl);
9840 }
9841 
9842 /* Per interface IPv4 statistics */
9843 static mblk_t *
9844 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9845     boolean_t legacy_req)
9846 {
9847 	struct opthdr		*optp;
9848 	mblk_t			*mp2ctl;
9849 	ill_t			*ill;
9850 	ill_walk_context_t	ctx;
9851 	mblk_t			*mp_tail = NULL;
9852 	mib2_ipIfStatsEntry_t	global_ip_mib;
9853 	mib2_ipAddrEntry_t	mae;
9854 
9855 	/*
9856 	 * Make a copy of the original message
9857 	 */
9858 	mp2ctl = copymsg(mpctl);
9859 
9860 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9861 	optp->level = MIB2_IP;
9862 	optp->name = MIB2_IP_TRAFFIC_STATS;
9863 	/* Include "unknown interface" ip_mib */
9864 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9865 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9866 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9867 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9868 	    (ipst->ips_ip_forwarding ? 1 : 2));
9869 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9870 	    (uint32_t)ipst->ips_ip_def_ttl);
9871 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9872 	    sizeof (mib2_ipIfStatsEntry_t));
9873 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9874 	    sizeof (mib2_ipAddrEntry_t));
9875 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9876 	    sizeof (mib2_ipRouteEntry_t));
9877 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9878 	    sizeof (mib2_ipNetToMediaEntry_t));
9879 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9880 	    sizeof (ip_member_t));
9881 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9882 	    sizeof (ip_grpsrc_t));
9883 
9884 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9885 
9886 	if (legacy_req) {
9887 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9888 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9889 	}
9890 
9891 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9892 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9893 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9894 		    "failed to allocate %u bytes\n",
9895 		    (uint_t)sizeof (global_ip_mib)));
9896 	}
9897 
9898 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9899 	ill = ILL_START_WALK_V4(&ctx, ipst);
9900 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9901 		ill->ill_ip_mib->ipIfStatsIfIndex =
9902 		    ill->ill_phyint->phyint_ifindex;
9903 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9904 		    (ipst->ips_ip_forwarding ? 1 : 2));
9905 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9906 		    (uint32_t)ipst->ips_ip_def_ttl);
9907 
9908 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9909 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9910 		    (char *)ill->ill_ip_mib,
9911 		    (int)sizeof (*ill->ill_ip_mib))) {
9912 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9913 			    "failed to allocate %u bytes\n",
9914 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9915 		}
9916 	}
9917 	rw_exit(&ipst->ips_ill_g_lock);
9918 
9919 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9920 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9921 	    "level %d, name %d, len %d\n",
9922 	    (int)optp->level, (int)optp->name, (int)optp->len));
9923 	qreply(q, mpctl);
9924 
9925 	if (mp2ctl == NULL)
9926 		return (NULL);
9927 
9928 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9929 	    legacy_req));
9930 }
9931 
9932 /* Global IPv4 ICMP statistics */
9933 static mblk_t *
9934 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9935 {
9936 	struct opthdr		*optp;
9937 	mblk_t			*mp2ctl;
9938 
9939 	/*
9940 	 * Make a copy of the original message
9941 	 */
9942 	mp2ctl = copymsg(mpctl);
9943 
9944 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9945 	optp->level = MIB2_ICMP;
9946 	optp->name = 0;
9947 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9948 	    (int)sizeof (ipst->ips_icmp_mib))) {
9949 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9950 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9951 	}
9952 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9953 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9954 	    (int)optp->level, (int)optp->name, (int)optp->len));
9955 	qreply(q, mpctl);
9956 	return (mp2ctl);
9957 }
9958 
9959 /* Global IPv4 IGMP statistics */
9960 static mblk_t *
9961 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9962 {
9963 	struct opthdr		*optp;
9964 	mblk_t			*mp2ctl;
9965 
9966 	/*
9967 	 * make a copy of the original message
9968 	 */
9969 	mp2ctl = copymsg(mpctl);
9970 
9971 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9972 	optp->level = EXPER_IGMP;
9973 	optp->name = 0;
9974 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9975 	    (int)sizeof (ipst->ips_igmpstat))) {
9976 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9977 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9978 	}
9979 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9980 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9981 	    (int)optp->level, (int)optp->name, (int)optp->len));
9982 	qreply(q, mpctl);
9983 	return (mp2ctl);
9984 }
9985 
9986 /* Global IPv4 Multicast Routing statistics */
9987 static mblk_t *
9988 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9989 {
9990 	struct opthdr		*optp;
9991 	mblk_t			*mp2ctl;
9992 
9993 	/*
9994 	 * make a copy of the original message
9995 	 */
9996 	mp2ctl = copymsg(mpctl);
9997 
9998 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9999 	optp->level = EXPER_DVMRP;
10000 	optp->name = 0;
10001 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
10002 		ip0dbg(("ip_mroute_stats: failed\n"));
10003 	}
10004 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10005 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
10006 	    (int)optp->level, (int)optp->name, (int)optp->len));
10007 	qreply(q, mpctl);
10008 	return (mp2ctl);
10009 }
10010 
10011 /* IPv4 address information */
10012 static mblk_t *
10013 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10014     boolean_t legacy_req)
10015 {
10016 	struct opthdr		*optp;
10017 	mblk_t			*mp2ctl;
10018 	mblk_t			*mp_tail = NULL;
10019 	ill_t			*ill;
10020 	ipif_t			*ipif;
10021 	uint_t			bitval;
10022 	mib2_ipAddrEntry_t	mae;
10023 	size_t			mae_size;
10024 	zoneid_t		zoneid;
10025 	ill_walk_context_t	ctx;
10026 
10027 	/*
10028 	 * make a copy of the original message
10029 	 */
10030 	mp2ctl = copymsg(mpctl);
10031 
10032 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10033 	    sizeof (mib2_ipAddrEntry_t);
10034 
10035 	/* ipAddrEntryTable */
10036 
10037 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10038 	optp->level = MIB2_IP;
10039 	optp->name = MIB2_IP_ADDR;
10040 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10041 
10042 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10043 	ill = ILL_START_WALK_V4(&ctx, ipst);
10044 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10045 		for (ipif = ill->ill_ipif; ipif != NULL;
10046 		    ipif = ipif->ipif_next) {
10047 			if (ipif->ipif_zoneid != zoneid &&
10048 			    ipif->ipif_zoneid != ALL_ZONES)
10049 				continue;
10050 			/* Sum of count from dead IRE_LO* and our current */
10051 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10052 			if (ipif->ipif_ire_local != NULL) {
10053 				mae.ipAdEntInfo.ae_ibcnt +=
10054 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10055 			}
10056 			mae.ipAdEntInfo.ae_obcnt = 0;
10057 			mae.ipAdEntInfo.ae_focnt = 0;
10058 
10059 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10060 			    OCTET_LENGTH);
10061 			mae.ipAdEntIfIndex.o_length =
10062 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10063 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10064 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10065 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10066 			mae.ipAdEntInfo.ae_subnet_len =
10067 			    ip_mask_to_plen(ipif->ipif_net_mask);
10068 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10069 			for (bitval = 1;
10070 			    bitval &&
10071 			    !(bitval & ipif->ipif_brd_addr);
10072 			    bitval <<= 1)
10073 				noop;
10074 			mae.ipAdEntBcastAddr = bitval;
10075 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10076 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10077 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10078 			mae.ipAdEntInfo.ae_broadcast_addr =
10079 			    ipif->ipif_brd_addr;
10080 			mae.ipAdEntInfo.ae_pp_dst_addr =
10081 			    ipif->ipif_pp_dst_addr;
10082 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10083 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10084 			mae.ipAdEntRetransmitTime =
10085 			    ill->ill_reachable_retrans_time;
10086 
10087 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10088 			    (char *)&mae, (int)mae_size)) {
10089 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10090 				    "allocate %u bytes\n", (uint_t)mae_size));
10091 			}
10092 		}
10093 	}
10094 	rw_exit(&ipst->ips_ill_g_lock);
10095 
10096 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10097 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10098 	    (int)optp->level, (int)optp->name, (int)optp->len));
10099 	qreply(q, mpctl);
10100 	return (mp2ctl);
10101 }
10102 
10103 /* IPv6 address information */
10104 static mblk_t *
10105 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10106     boolean_t legacy_req)
10107 {
10108 	struct opthdr		*optp;
10109 	mblk_t			*mp2ctl;
10110 	mblk_t			*mp_tail = NULL;
10111 	ill_t			*ill;
10112 	ipif_t			*ipif;
10113 	mib2_ipv6AddrEntry_t	mae6;
10114 	size_t			mae6_size;
10115 	zoneid_t		zoneid;
10116 	ill_walk_context_t	ctx;
10117 
10118 	/*
10119 	 * make a copy of the original message
10120 	 */
10121 	mp2ctl = copymsg(mpctl);
10122 
10123 	mae6_size = (legacy_req) ?
10124 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10125 	    sizeof (mib2_ipv6AddrEntry_t);
10126 
10127 	/* ipv6AddrEntryTable */
10128 
10129 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10130 	optp->level = MIB2_IP6;
10131 	optp->name = MIB2_IP6_ADDR;
10132 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10133 
10134 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10135 	ill = ILL_START_WALK_V6(&ctx, ipst);
10136 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10137 		for (ipif = ill->ill_ipif; ipif != NULL;
10138 		    ipif = ipif->ipif_next) {
10139 			if (ipif->ipif_zoneid != zoneid &&
10140 			    ipif->ipif_zoneid != ALL_ZONES)
10141 				continue;
10142 			/* Sum of count from dead IRE_LO* and our current */
10143 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10144 			if (ipif->ipif_ire_local != NULL) {
10145 				mae6.ipv6AddrInfo.ae_ibcnt +=
10146 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10147 			}
10148 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10149 			mae6.ipv6AddrInfo.ae_focnt = 0;
10150 
10151 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10152 			    OCTET_LENGTH);
10153 			mae6.ipv6AddrIfIndex.o_length =
10154 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10155 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10156 			mae6.ipv6AddrPfxLength =
10157 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10158 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10159 			mae6.ipv6AddrInfo.ae_subnet_len =
10160 			    mae6.ipv6AddrPfxLength;
10161 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10162 
10163 			/* Type: stateless(1), stateful(2), unknown(3) */
10164 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10165 				mae6.ipv6AddrType = 1;
10166 			else
10167 				mae6.ipv6AddrType = 2;
10168 			/* Anycast: true(1), false(2) */
10169 			if (ipif->ipif_flags & IPIF_ANYCAST)
10170 				mae6.ipv6AddrAnycastFlag = 1;
10171 			else
10172 				mae6.ipv6AddrAnycastFlag = 2;
10173 
10174 			/*
10175 			 * Address status: preferred(1), deprecated(2),
10176 			 * invalid(3), inaccessible(4), unknown(5)
10177 			 */
10178 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10179 				mae6.ipv6AddrStatus = 3;
10180 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10181 				mae6.ipv6AddrStatus = 2;
10182 			else
10183 				mae6.ipv6AddrStatus = 1;
10184 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10185 			mae6.ipv6AddrInfo.ae_metric  =
10186 			    ipif->ipif_ill->ill_metric;
10187 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10188 			    ipif->ipif_v6pp_dst_addr;
10189 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10190 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10191 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10192 			mae6.ipv6AddrIdentifier = ill->ill_token;
10193 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10194 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10195 			mae6.ipv6AddrRetransmitTime =
10196 			    ill->ill_reachable_retrans_time;
10197 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10198 			    (char *)&mae6, (int)mae6_size)) {
10199 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10200 				    "allocate %u bytes\n",
10201 				    (uint_t)mae6_size));
10202 			}
10203 		}
10204 	}
10205 	rw_exit(&ipst->ips_ill_g_lock);
10206 
10207 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10208 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10209 	    (int)optp->level, (int)optp->name, (int)optp->len));
10210 	qreply(q, mpctl);
10211 	return (mp2ctl);
10212 }
10213 
10214 /* IPv4 multicast group membership. */
10215 static mblk_t *
10216 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10217 {
10218 	struct opthdr		*optp;
10219 	mblk_t			*mp2ctl;
10220 	ill_t			*ill;
10221 	ipif_t			*ipif;
10222 	ilm_t			*ilm;
10223 	ip_member_t		ipm;
10224 	mblk_t			*mp_tail = NULL;
10225 	ill_walk_context_t	ctx;
10226 	zoneid_t		zoneid;
10227 
10228 	/*
10229 	 * make a copy of the original message
10230 	 */
10231 	mp2ctl = copymsg(mpctl);
10232 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10233 
10234 	/* ipGroupMember table */
10235 	optp = (struct opthdr *)&mpctl->b_rptr[
10236 	    sizeof (struct T_optmgmt_ack)];
10237 	optp->level = MIB2_IP;
10238 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10239 
10240 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10241 	ill = ILL_START_WALK_V4(&ctx, ipst);
10242 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10243 		/* Make sure the ill isn't going away. */
10244 		if (!ill_check_and_refhold(ill))
10245 			continue;
10246 		rw_exit(&ipst->ips_ill_g_lock);
10247 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10248 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10249 			if (ilm->ilm_zoneid != zoneid &&
10250 			    ilm->ilm_zoneid != ALL_ZONES)
10251 				continue;
10252 
10253 			/* Is there an ipif for ilm_ifaddr? */
10254 			for (ipif = ill->ill_ipif; ipif != NULL;
10255 			    ipif = ipif->ipif_next) {
10256 				if (!IPIF_IS_CONDEMNED(ipif) &&
10257 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10258 				    ilm->ilm_ifaddr != INADDR_ANY)
10259 					break;
10260 			}
10261 			if (ipif != NULL) {
10262 				ipif_get_name(ipif,
10263 				    ipm.ipGroupMemberIfIndex.o_bytes,
10264 				    OCTET_LENGTH);
10265 			} else {
10266 				ill_get_name(ill,
10267 				    ipm.ipGroupMemberIfIndex.o_bytes,
10268 				    OCTET_LENGTH);
10269 			}
10270 			ipm.ipGroupMemberIfIndex.o_length =
10271 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10272 
10273 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10274 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10275 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10276 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10277 			    (char *)&ipm, (int)sizeof (ipm))) {
10278 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10279 				    "failed to allocate %u bytes\n",
10280 				    (uint_t)sizeof (ipm)));
10281 			}
10282 		}
10283 		rw_exit(&ill->ill_mcast_lock);
10284 		ill_refrele(ill);
10285 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10286 	}
10287 	rw_exit(&ipst->ips_ill_g_lock);
10288 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10289 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10290 	    (int)optp->level, (int)optp->name, (int)optp->len));
10291 	qreply(q, mpctl);
10292 	return (mp2ctl);
10293 }
10294 
10295 /* IPv6 multicast group membership. */
10296 static mblk_t *
10297 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10298 {
10299 	struct opthdr		*optp;
10300 	mblk_t			*mp2ctl;
10301 	ill_t			*ill;
10302 	ilm_t			*ilm;
10303 	ipv6_member_t		ipm6;
10304 	mblk_t			*mp_tail = NULL;
10305 	ill_walk_context_t	ctx;
10306 	zoneid_t		zoneid;
10307 
10308 	/*
10309 	 * make a copy of the original message
10310 	 */
10311 	mp2ctl = copymsg(mpctl);
10312 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10313 
10314 	/* ip6GroupMember table */
10315 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10316 	optp->level = MIB2_IP6;
10317 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10318 
10319 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10320 	ill = ILL_START_WALK_V6(&ctx, ipst);
10321 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10322 		/* Make sure the ill isn't going away. */
10323 		if (!ill_check_and_refhold(ill))
10324 			continue;
10325 		rw_exit(&ipst->ips_ill_g_lock);
10326 		/*
10327 		 * Normally we don't have any members on under IPMP interfaces.
10328 		 * We report them as a debugging aid.
10329 		 */
10330 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10331 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10332 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10333 			if (ilm->ilm_zoneid != zoneid &&
10334 			    ilm->ilm_zoneid != ALL_ZONES)
10335 				continue;	/* not this zone */
10336 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10337 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10338 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10339 			if (!snmp_append_data2(mpctl->b_cont,
10340 			    &mp_tail,
10341 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10342 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10343 				    "failed to allocate %u bytes\n",
10344 				    (uint_t)sizeof (ipm6)));
10345 			}
10346 		}
10347 		rw_exit(&ill->ill_mcast_lock);
10348 		ill_refrele(ill);
10349 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10350 	}
10351 	rw_exit(&ipst->ips_ill_g_lock);
10352 
10353 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10354 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10355 	    (int)optp->level, (int)optp->name, (int)optp->len));
10356 	qreply(q, mpctl);
10357 	return (mp2ctl);
10358 }
10359 
10360 /* IP multicast filtered sources */
10361 static mblk_t *
10362 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10363 {
10364 	struct opthdr		*optp;
10365 	mblk_t			*mp2ctl;
10366 	ill_t			*ill;
10367 	ipif_t			*ipif;
10368 	ilm_t			*ilm;
10369 	ip_grpsrc_t		ips;
10370 	mblk_t			*mp_tail = NULL;
10371 	ill_walk_context_t	ctx;
10372 	zoneid_t		zoneid;
10373 	int			i;
10374 	slist_t			*sl;
10375 
10376 	/*
10377 	 * make a copy of the original message
10378 	 */
10379 	mp2ctl = copymsg(mpctl);
10380 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10381 
10382 	/* ipGroupSource table */
10383 	optp = (struct opthdr *)&mpctl->b_rptr[
10384 	    sizeof (struct T_optmgmt_ack)];
10385 	optp->level = MIB2_IP;
10386 	optp->name = EXPER_IP_GROUP_SOURCES;
10387 
10388 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10389 	ill = ILL_START_WALK_V4(&ctx, ipst);
10390 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10391 		/* Make sure the ill isn't going away. */
10392 		if (!ill_check_and_refhold(ill))
10393 			continue;
10394 		rw_exit(&ipst->ips_ill_g_lock);
10395 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10396 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10397 			sl = ilm->ilm_filter;
10398 			if (ilm->ilm_zoneid != zoneid &&
10399 			    ilm->ilm_zoneid != ALL_ZONES)
10400 				continue;
10401 			if (SLIST_IS_EMPTY(sl))
10402 				continue;
10403 
10404 			/* Is there an ipif for ilm_ifaddr? */
10405 			for (ipif = ill->ill_ipif; ipif != NULL;
10406 			    ipif = ipif->ipif_next) {
10407 				if (!IPIF_IS_CONDEMNED(ipif) &&
10408 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10409 				    ilm->ilm_ifaddr != INADDR_ANY)
10410 					break;
10411 			}
10412 			if (ipif != NULL) {
10413 				ipif_get_name(ipif,
10414 				    ips.ipGroupSourceIfIndex.o_bytes,
10415 				    OCTET_LENGTH);
10416 			} else {
10417 				ill_get_name(ill,
10418 				    ips.ipGroupSourceIfIndex.o_bytes,
10419 				    OCTET_LENGTH);
10420 			}
10421 			ips.ipGroupSourceIfIndex.o_length =
10422 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10423 
10424 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10425 			for (i = 0; i < sl->sl_numsrc; i++) {
10426 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10427 					continue;
10428 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10429 				    ips.ipGroupSourceAddress);
10430 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10431 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10432 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10433 					    " failed to allocate %u bytes\n",
10434 					    (uint_t)sizeof (ips)));
10435 				}
10436 			}
10437 		}
10438 		rw_exit(&ill->ill_mcast_lock);
10439 		ill_refrele(ill);
10440 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10441 	}
10442 	rw_exit(&ipst->ips_ill_g_lock);
10443 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10444 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10445 	    (int)optp->level, (int)optp->name, (int)optp->len));
10446 	qreply(q, mpctl);
10447 	return (mp2ctl);
10448 }
10449 
10450 /* IPv6 multicast filtered sources. */
10451 static mblk_t *
10452 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10453 {
10454 	struct opthdr		*optp;
10455 	mblk_t			*mp2ctl;
10456 	ill_t			*ill;
10457 	ilm_t			*ilm;
10458 	ipv6_grpsrc_t		ips6;
10459 	mblk_t			*mp_tail = NULL;
10460 	ill_walk_context_t	ctx;
10461 	zoneid_t		zoneid;
10462 	int			i;
10463 	slist_t			*sl;
10464 
10465 	/*
10466 	 * make a copy of the original message
10467 	 */
10468 	mp2ctl = copymsg(mpctl);
10469 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10470 
10471 	/* ip6GroupMember table */
10472 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10473 	optp->level = MIB2_IP6;
10474 	optp->name = EXPER_IP6_GROUP_SOURCES;
10475 
10476 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10477 	ill = ILL_START_WALK_V6(&ctx, ipst);
10478 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10479 		/* Make sure the ill isn't going away. */
10480 		if (!ill_check_and_refhold(ill))
10481 			continue;
10482 		rw_exit(&ipst->ips_ill_g_lock);
10483 		/*
10484 		 * Normally we don't have any members on under IPMP interfaces.
10485 		 * We report them as a debugging aid.
10486 		 */
10487 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10488 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10489 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10490 			sl = ilm->ilm_filter;
10491 			if (ilm->ilm_zoneid != zoneid &&
10492 			    ilm->ilm_zoneid != ALL_ZONES)
10493 				continue;
10494 			if (SLIST_IS_EMPTY(sl))
10495 				continue;
10496 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10497 			for (i = 0; i < sl->sl_numsrc; i++) {
10498 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10499 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10500 				    (char *)&ips6, (int)sizeof (ips6))) {
10501 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10502 					    "group_src: failed to allocate "
10503 					    "%u bytes\n",
10504 					    (uint_t)sizeof (ips6)));
10505 				}
10506 			}
10507 		}
10508 		rw_exit(&ill->ill_mcast_lock);
10509 		ill_refrele(ill);
10510 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10511 	}
10512 	rw_exit(&ipst->ips_ill_g_lock);
10513 
10514 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10515 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10516 	    (int)optp->level, (int)optp->name, (int)optp->len));
10517 	qreply(q, mpctl);
10518 	return (mp2ctl);
10519 }
10520 
10521 /* Multicast routing virtual interface table. */
10522 static mblk_t *
10523 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10524 {
10525 	struct opthdr		*optp;
10526 	mblk_t			*mp2ctl;
10527 
10528 	/*
10529 	 * make a copy of the original message
10530 	 */
10531 	mp2ctl = copymsg(mpctl);
10532 
10533 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10534 	optp->level = EXPER_DVMRP;
10535 	optp->name = EXPER_DVMRP_VIF;
10536 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10537 		ip0dbg(("ip_mroute_vif: failed\n"));
10538 	}
10539 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10540 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10541 	    (int)optp->level, (int)optp->name, (int)optp->len));
10542 	qreply(q, mpctl);
10543 	return (mp2ctl);
10544 }
10545 
10546 /* Multicast routing table. */
10547 static mblk_t *
10548 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10549 {
10550 	struct opthdr		*optp;
10551 	mblk_t			*mp2ctl;
10552 
10553 	/*
10554 	 * make a copy of the original message
10555 	 */
10556 	mp2ctl = copymsg(mpctl);
10557 
10558 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10559 	optp->level = EXPER_DVMRP;
10560 	optp->name = EXPER_DVMRP_MRT;
10561 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10562 		ip0dbg(("ip_mroute_mrt: failed\n"));
10563 	}
10564 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10565 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10566 	    (int)optp->level, (int)optp->name, (int)optp->len));
10567 	qreply(q, mpctl);
10568 	return (mp2ctl);
10569 }
10570 
10571 /*
10572  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10573  * in one IRE walk.
10574  */
10575 static mblk_t *
10576 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10577     ip_stack_t *ipst)
10578 {
10579 	struct opthdr	*optp;
10580 	mblk_t		*mp2ctl;	/* Returned */
10581 	mblk_t		*mp3ctl;	/* nettomedia */
10582 	mblk_t		*mp4ctl;	/* routeattrs */
10583 	iproutedata_t	ird;
10584 	zoneid_t	zoneid;
10585 
10586 	/*
10587 	 * make copies of the original message
10588 	 *	- mp2ctl is returned unchanged to the caller for its use
10589 	 *	- mpctl is sent upstream as ipRouteEntryTable
10590 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10591 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10592 	 */
10593 	mp2ctl = copymsg(mpctl);
10594 	mp3ctl = copymsg(mpctl);
10595 	mp4ctl = copymsg(mpctl);
10596 	if (mp3ctl == NULL || mp4ctl == NULL) {
10597 		freemsg(mp4ctl);
10598 		freemsg(mp3ctl);
10599 		freemsg(mp2ctl);
10600 		freemsg(mpctl);
10601 		return (NULL);
10602 	}
10603 
10604 	bzero(&ird, sizeof (ird));
10605 
10606 	ird.ird_route.lp_head = mpctl->b_cont;
10607 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10608 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10609 	/*
10610 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10611 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10612 	 * intended a temporary solution until a proper MIB API is provided
10613 	 * that provides complete filtering/caller-opt-in.
10614 	 */
10615 	if (level == EXPER_IP_AND_ALL_IRES)
10616 		ird.ird_flags |= IRD_REPORT_ALL;
10617 
10618 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10619 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10620 
10621 	/* ipRouteEntryTable in mpctl */
10622 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10623 	optp->level = MIB2_IP;
10624 	optp->name = MIB2_IP_ROUTE;
10625 	optp->len = msgdsize(ird.ird_route.lp_head);
10626 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10627 	    (int)optp->level, (int)optp->name, (int)optp->len));
10628 	qreply(q, mpctl);
10629 
10630 	/* ipNetToMediaEntryTable in mp3ctl */
10631 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10632 
10633 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10634 	optp->level = MIB2_IP;
10635 	optp->name = MIB2_IP_MEDIA;
10636 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10637 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10638 	    (int)optp->level, (int)optp->name, (int)optp->len));
10639 	qreply(q, mp3ctl);
10640 
10641 	/* ipRouteAttributeTable in mp4ctl */
10642 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10643 	optp->level = MIB2_IP;
10644 	optp->name = EXPER_IP_RTATTR;
10645 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10646 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10647 	    (int)optp->level, (int)optp->name, (int)optp->len));
10648 	if (optp->len == 0)
10649 		freemsg(mp4ctl);
10650 	else
10651 		qreply(q, mp4ctl);
10652 
10653 	return (mp2ctl);
10654 }
10655 
10656 /*
10657  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10658  * ipv6NetToMediaEntryTable in an NDP walk.
10659  */
10660 static mblk_t *
10661 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10662     ip_stack_t *ipst)
10663 {
10664 	struct opthdr	*optp;
10665 	mblk_t		*mp2ctl;	/* Returned */
10666 	mblk_t		*mp3ctl;	/* nettomedia */
10667 	mblk_t		*mp4ctl;	/* routeattrs */
10668 	iproutedata_t	ird;
10669 	zoneid_t	zoneid;
10670 
10671 	/*
10672 	 * make copies of the original message
10673 	 *	- mp2ctl is returned unchanged to the caller for its use
10674 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10675 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10676 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10677 	 */
10678 	mp2ctl = copymsg(mpctl);
10679 	mp3ctl = copymsg(mpctl);
10680 	mp4ctl = copymsg(mpctl);
10681 	if (mp3ctl == NULL || mp4ctl == NULL) {
10682 		freemsg(mp4ctl);
10683 		freemsg(mp3ctl);
10684 		freemsg(mp2ctl);
10685 		freemsg(mpctl);
10686 		return (NULL);
10687 	}
10688 
10689 	bzero(&ird, sizeof (ird));
10690 
10691 	ird.ird_route.lp_head = mpctl->b_cont;
10692 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10693 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10694 	/*
10695 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10696 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10697 	 * intended a temporary solution until a proper MIB API is provided
10698 	 * that provides complete filtering/caller-opt-in.
10699 	 */
10700 	if (level == EXPER_IP_AND_ALL_IRES)
10701 		ird.ird_flags |= IRD_REPORT_ALL;
10702 
10703 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10704 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10705 
10706 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10707 	optp->level = MIB2_IP6;
10708 	optp->name = MIB2_IP6_ROUTE;
10709 	optp->len = msgdsize(ird.ird_route.lp_head);
10710 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10711 	    (int)optp->level, (int)optp->name, (int)optp->len));
10712 	qreply(q, mpctl);
10713 
10714 	/* ipv6NetToMediaEntryTable in mp3ctl */
10715 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10716 
10717 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10718 	optp->level = MIB2_IP6;
10719 	optp->name = MIB2_IP6_MEDIA;
10720 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10721 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10722 	    (int)optp->level, (int)optp->name, (int)optp->len));
10723 	qreply(q, mp3ctl);
10724 
10725 	/* ipv6RouteAttributeTable in mp4ctl */
10726 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10727 	optp->level = MIB2_IP6;
10728 	optp->name = EXPER_IP_RTATTR;
10729 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10730 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10731 	    (int)optp->level, (int)optp->name, (int)optp->len));
10732 	if (optp->len == 0)
10733 		freemsg(mp4ctl);
10734 	else
10735 		qreply(q, mp4ctl);
10736 
10737 	return (mp2ctl);
10738 }
10739 
10740 /*
10741  * IPv6 mib: One per ill
10742  */
10743 static mblk_t *
10744 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10745     boolean_t legacy_req)
10746 {
10747 	struct opthdr		*optp;
10748 	mblk_t			*mp2ctl;
10749 	ill_t			*ill;
10750 	ill_walk_context_t	ctx;
10751 	mblk_t			*mp_tail = NULL;
10752 	mib2_ipv6AddrEntry_t	mae6;
10753 	mib2_ipIfStatsEntry_t	*ise;
10754 	size_t			ise_size, iae_size;
10755 
10756 	/*
10757 	 * Make a copy of the original message
10758 	 */
10759 	mp2ctl = copymsg(mpctl);
10760 
10761 	/* fixed length IPv6 structure ... */
10762 
10763 	if (legacy_req) {
10764 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10765 		    mib2_ipIfStatsEntry_t);
10766 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10767 	} else {
10768 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10769 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10770 	}
10771 
10772 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10773 	optp->level = MIB2_IP6;
10774 	optp->name = 0;
10775 	/* Include "unknown interface" ip6_mib */
10776 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10777 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10778 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10779 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10780 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10781 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10782 	    ipst->ips_ipv6_def_hops);
10783 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10784 	    sizeof (mib2_ipIfStatsEntry_t));
10785 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10786 	    sizeof (mib2_ipv6AddrEntry_t));
10787 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10788 	    sizeof (mib2_ipv6RouteEntry_t));
10789 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10790 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10791 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10792 	    sizeof (ipv6_member_t));
10793 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10794 	    sizeof (ipv6_grpsrc_t));
10795 
10796 	/*
10797 	 * Synchronize 64- and 32-bit counters
10798 	 */
10799 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10800 	    ipIfStatsHCInReceives);
10801 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10802 	    ipIfStatsHCInDelivers);
10803 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10804 	    ipIfStatsHCOutRequests);
10805 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10806 	    ipIfStatsHCOutForwDatagrams);
10807 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10808 	    ipIfStatsHCOutMcastPkts);
10809 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10810 	    ipIfStatsHCInMcastPkts);
10811 
10812 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10813 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10814 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10815 		    (uint_t)ise_size));
10816 	} else if (legacy_req) {
10817 		/* Adjust the EntrySize fields for legacy requests. */
10818 		ise =
10819 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10820 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10821 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10822 	}
10823 
10824 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10825 	ill = ILL_START_WALK_V6(&ctx, ipst);
10826 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10827 		ill->ill_ip_mib->ipIfStatsIfIndex =
10828 		    ill->ill_phyint->phyint_ifindex;
10829 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10830 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10831 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10832 		    ill->ill_max_hops);
10833 
10834 		/*
10835 		 * Synchronize 64- and 32-bit counters
10836 		 */
10837 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10838 		    ipIfStatsHCInReceives);
10839 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10840 		    ipIfStatsHCInDelivers);
10841 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10842 		    ipIfStatsHCOutRequests);
10843 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10844 		    ipIfStatsHCOutForwDatagrams);
10845 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10846 		    ipIfStatsHCOutMcastPkts);
10847 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10848 		    ipIfStatsHCInMcastPkts);
10849 
10850 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10851 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10852 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10853 			"%u bytes\n", (uint_t)ise_size));
10854 		} else if (legacy_req) {
10855 			/* Adjust the EntrySize fields for legacy requests. */
10856 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10857 			    (int)ise_size);
10858 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10859 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10860 		}
10861 	}
10862 	rw_exit(&ipst->ips_ill_g_lock);
10863 
10864 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10865 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10866 	    (int)optp->level, (int)optp->name, (int)optp->len));
10867 	qreply(q, mpctl);
10868 	return (mp2ctl);
10869 }
10870 
10871 /*
10872  * ICMPv6 mib: One per ill
10873  */
10874 static mblk_t *
10875 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10876 {
10877 	struct opthdr		*optp;
10878 	mblk_t			*mp2ctl;
10879 	ill_t			*ill;
10880 	ill_walk_context_t	ctx;
10881 	mblk_t			*mp_tail = NULL;
10882 	/*
10883 	 * Make a copy of the original message
10884 	 */
10885 	mp2ctl = copymsg(mpctl);
10886 
10887 	/* fixed length ICMPv6 structure ... */
10888 
10889 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10890 	optp->level = MIB2_ICMP6;
10891 	optp->name = 0;
10892 	/* Include "unknown interface" icmp6_mib */
10893 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10894 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10895 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10896 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10897 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10898 	    (char *)&ipst->ips_icmp6_mib,
10899 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10900 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10901 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10902 	}
10903 
10904 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10905 	ill = ILL_START_WALK_V6(&ctx, ipst);
10906 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10907 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10908 		    ill->ill_phyint->phyint_ifindex;
10909 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10910 		    (char *)ill->ill_icmp6_mib,
10911 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10912 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10913 			    "%u bytes\n",
10914 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10915 		}
10916 	}
10917 	rw_exit(&ipst->ips_ill_g_lock);
10918 
10919 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10920 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10921 	    (int)optp->level, (int)optp->name, (int)optp->len));
10922 	qreply(q, mpctl);
10923 	return (mp2ctl);
10924 }
10925 
10926 /*
10927  * ire_walk routine to create both ipRouteEntryTable and
10928  * ipRouteAttributeTable in one IRE walk
10929  */
10930 static void
10931 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10932 {
10933 	ill_t				*ill;
10934 	mib2_ipRouteEntry_t		*re;
10935 	mib2_ipAttributeEntry_t		iaes;
10936 	tsol_ire_gw_secattr_t		*attrp;
10937 	tsol_gc_t			*gc = NULL;
10938 	tsol_gcgrp_t			*gcgrp = NULL;
10939 	ip_stack_t			*ipst = ire->ire_ipst;
10940 
10941 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10942 
10943 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10944 		if (ire->ire_testhidden)
10945 			return;
10946 		if (ire->ire_type & IRE_IF_CLONE)
10947 			return;
10948 	}
10949 
10950 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10951 		return;
10952 
10953 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10954 		mutex_enter(&attrp->igsa_lock);
10955 		if ((gc = attrp->igsa_gc) != NULL) {
10956 			gcgrp = gc->gc_grp;
10957 			ASSERT(gcgrp != NULL);
10958 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10959 		}
10960 		mutex_exit(&attrp->igsa_lock);
10961 	}
10962 	/*
10963 	 * Return all IRE types for route table... let caller pick and choose
10964 	 */
10965 	re->ipRouteDest = ire->ire_addr;
10966 	ill = ire->ire_ill;
10967 	re->ipRouteIfIndex.o_length = 0;
10968 	if (ill != NULL) {
10969 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10970 		re->ipRouteIfIndex.o_length =
10971 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10972 	}
10973 	re->ipRouteMetric1 = -1;
10974 	re->ipRouteMetric2 = -1;
10975 	re->ipRouteMetric3 = -1;
10976 	re->ipRouteMetric4 = -1;
10977 
10978 	re->ipRouteNextHop = ire->ire_gateway_addr;
10979 	/* indirect(4), direct(3), or invalid(2) */
10980 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10981 		re->ipRouteType = 2;
10982 	else if (ire->ire_type & IRE_ONLINK)
10983 		re->ipRouteType = 3;
10984 	else
10985 		re->ipRouteType = 4;
10986 
10987 	re->ipRouteProto = -1;
10988 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10989 	re->ipRouteMask = ire->ire_mask;
10990 	re->ipRouteMetric5 = -1;
10991 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10992 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10993 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10994 
10995 	re->ipRouteInfo.re_frag_flag	= 0;
10996 	re->ipRouteInfo.re_rtt		= 0;
10997 	re->ipRouteInfo.re_src_addr	= 0;
10998 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10999 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11000 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11001 	re->ipRouteInfo.re_flags	= ire->ire_flags;
11002 
11003 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11004 	if (ire->ire_type & IRE_INTERFACE) {
11005 		ire_t *child;
11006 
11007 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11008 		child = ire->ire_dep_children;
11009 		while (child != NULL) {
11010 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
11011 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11012 			child = child->ire_dep_sib_next;
11013 		}
11014 		rw_exit(&ipst->ips_ire_dep_lock);
11015 	}
11016 
11017 	if (ire->ire_flags & RTF_DYNAMIC) {
11018 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11019 	} else {
11020 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
11021 	}
11022 
11023 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11024 	    (char *)re, (int)sizeof (*re))) {
11025 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11026 		    (uint_t)sizeof (*re)));
11027 	}
11028 
11029 	if (gc != NULL) {
11030 		iaes.iae_routeidx = ird->ird_idx;
11031 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11032 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11033 
11034 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11035 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11036 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11037 			    "bytes\n", (uint_t)sizeof (iaes)));
11038 		}
11039 	}
11040 
11041 	/* bump route index for next pass */
11042 	ird->ird_idx++;
11043 
11044 	kmem_free(re, sizeof (*re));
11045 	if (gcgrp != NULL)
11046 		rw_exit(&gcgrp->gcgrp_rwlock);
11047 }
11048 
11049 /*
11050  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11051  */
11052 static void
11053 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11054 {
11055 	ill_t				*ill;
11056 	mib2_ipv6RouteEntry_t		*re;
11057 	mib2_ipAttributeEntry_t		iaes;
11058 	tsol_ire_gw_secattr_t		*attrp;
11059 	tsol_gc_t			*gc = NULL;
11060 	tsol_gcgrp_t			*gcgrp = NULL;
11061 	ip_stack_t			*ipst = ire->ire_ipst;
11062 
11063 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11064 
11065 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11066 		if (ire->ire_testhidden)
11067 			return;
11068 		if (ire->ire_type & IRE_IF_CLONE)
11069 			return;
11070 	}
11071 
11072 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11073 		return;
11074 
11075 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11076 		mutex_enter(&attrp->igsa_lock);
11077 		if ((gc = attrp->igsa_gc) != NULL) {
11078 			gcgrp = gc->gc_grp;
11079 			ASSERT(gcgrp != NULL);
11080 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11081 		}
11082 		mutex_exit(&attrp->igsa_lock);
11083 	}
11084 	/*
11085 	 * Return all IRE types for route table... let caller pick and choose
11086 	 */
11087 	re->ipv6RouteDest = ire->ire_addr_v6;
11088 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11089 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11090 	re->ipv6RouteIfIndex.o_length = 0;
11091 	ill = ire->ire_ill;
11092 	if (ill != NULL) {
11093 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11094 		re->ipv6RouteIfIndex.o_length =
11095 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11096 	}
11097 
11098 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11099 
11100 	mutex_enter(&ire->ire_lock);
11101 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11102 	mutex_exit(&ire->ire_lock);
11103 
11104 	/* remote(4), local(3), or discard(2) */
11105 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11106 		re->ipv6RouteType = 2;
11107 	else if (ire->ire_type & IRE_ONLINK)
11108 		re->ipv6RouteType = 3;
11109 	else
11110 		re->ipv6RouteType = 4;
11111 
11112 	re->ipv6RouteProtocol	= -1;
11113 	re->ipv6RoutePolicy	= 0;
11114 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11115 	re->ipv6RouteNextHopRDI	= 0;
11116 	re->ipv6RouteWeight	= 0;
11117 	re->ipv6RouteMetric	= 0;
11118 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11119 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11120 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11121 
11122 	re->ipv6RouteInfo.re_frag_flag	= 0;
11123 	re->ipv6RouteInfo.re_rtt	= 0;
11124 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11125 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11126 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11127 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11128 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11129 
11130 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11131 	if (ire->ire_type & IRE_INTERFACE) {
11132 		ire_t *child;
11133 
11134 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11135 		child = ire->ire_dep_children;
11136 		while (child != NULL) {
11137 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11138 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11139 			child = child->ire_dep_sib_next;
11140 		}
11141 		rw_exit(&ipst->ips_ire_dep_lock);
11142 	}
11143 	if (ire->ire_flags & RTF_DYNAMIC) {
11144 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11145 	} else {
11146 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11147 	}
11148 
11149 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11150 	    (char *)re, (int)sizeof (*re))) {
11151 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11152 		    (uint_t)sizeof (*re)));
11153 	}
11154 
11155 	if (gc != NULL) {
11156 		iaes.iae_routeidx = ird->ird_idx;
11157 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11158 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11159 
11160 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11161 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11162 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11163 			    "bytes\n", (uint_t)sizeof (iaes)));
11164 		}
11165 	}
11166 
11167 	/* bump route index for next pass */
11168 	ird->ird_idx++;
11169 
11170 	kmem_free(re, sizeof (*re));
11171 	if (gcgrp != NULL)
11172 		rw_exit(&gcgrp->gcgrp_rwlock);
11173 }
11174 
11175 /*
11176  * ncec_walk routine to create ipv6NetToMediaEntryTable
11177  */
11178 static void
11179 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11180 {
11181 	iproutedata_t *ird		= ptr;
11182 	ill_t				*ill;
11183 	mib2_ipv6NetToMediaEntry_t	ntme;
11184 
11185 	ill = ncec->ncec_ill;
11186 	/* skip arpce entries, and loopback ncec entries */
11187 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11188 		return;
11189 	/*
11190 	 * Neighbor cache entry attached to IRE with on-link
11191 	 * destination.
11192 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11193 	 */
11194 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11195 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11196 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11197 	if (ncec->ncec_lladdr != NULL) {
11198 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11199 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11200 	}
11201 	/*
11202 	 * Note: Returns ND_* states. Should be:
11203 	 * reachable(1), stale(2), delay(3), probe(4),
11204 	 * invalid(5), unknown(6)
11205 	 */
11206 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11207 	ntme.ipv6NetToMediaLastUpdated = 0;
11208 
11209 	/* other(1), dynamic(2), static(3), local(4) */
11210 	if (NCE_MYADDR(ncec)) {
11211 		ntme.ipv6NetToMediaType = 4;
11212 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11213 		ntme.ipv6NetToMediaType = 1; /* proxy */
11214 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11215 		ntme.ipv6NetToMediaType = 3;
11216 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11217 		ntme.ipv6NetToMediaType = 1;
11218 	} else {
11219 		ntme.ipv6NetToMediaType = 2;
11220 	}
11221 
11222 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11223 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11224 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11225 		    (uint_t)sizeof (ntme)));
11226 	}
11227 }
11228 
11229 int
11230 nce2ace(ncec_t *ncec)
11231 {
11232 	int flags = 0;
11233 
11234 	if (NCE_ISREACHABLE(ncec))
11235 		flags |= ACE_F_RESOLVED;
11236 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11237 		flags |= ACE_F_AUTHORITY;
11238 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11239 		flags |= ACE_F_PUBLISH;
11240 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11241 		flags |= ACE_F_PERMANENT;
11242 	if (NCE_MYADDR(ncec))
11243 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11244 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11245 		flags |= ACE_F_UNVERIFIED;
11246 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11247 		flags |= ACE_F_AUTHORITY;
11248 	if (ncec->ncec_flags & NCE_F_DELAYED)
11249 		flags |= ACE_F_DELAYED;
11250 	return (flags);
11251 }
11252 
11253 /*
11254  * ncec_walk routine to create ipNetToMediaEntryTable
11255  */
11256 static void
11257 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11258 {
11259 	iproutedata_t *ird		= ptr;
11260 	ill_t				*ill;
11261 	mib2_ipNetToMediaEntry_t	ntme;
11262 	const char			*name = "unknown";
11263 	ipaddr_t			ncec_addr;
11264 
11265 	ill = ncec->ncec_ill;
11266 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11267 	    ill->ill_net_type == IRE_LOOPBACK)
11268 		return;
11269 
11270 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11271 	name = ill->ill_name;
11272 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11273 	if (NCE_MYADDR(ncec)) {
11274 		ntme.ipNetToMediaType = 4;
11275 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11276 		ntme.ipNetToMediaType = 1;
11277 	} else {
11278 		ntme.ipNetToMediaType = 3;
11279 	}
11280 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11281 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11282 	    ntme.ipNetToMediaIfIndex.o_length);
11283 
11284 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11285 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11286 
11287 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11288 	ncec_addr = INADDR_BROADCAST;
11289 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11290 	    sizeof (ncec_addr));
11291 	/*
11292 	 * map all the flags to the ACE counterpart.
11293 	 */
11294 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11295 
11296 	ntme.ipNetToMediaPhysAddress.o_length =
11297 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11298 
11299 	if (!NCE_ISREACHABLE(ncec))
11300 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11301 	else {
11302 		if (ncec->ncec_lladdr != NULL) {
11303 			bcopy(ncec->ncec_lladdr,
11304 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11305 			    ntme.ipNetToMediaPhysAddress.o_length);
11306 		}
11307 	}
11308 
11309 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11310 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11311 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11312 		    (uint_t)sizeof (ntme)));
11313 	}
11314 }
11315 
11316 /*
11317  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11318  */
11319 /* ARGSUSED */
11320 int
11321 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11322 {
11323 	switch (level) {
11324 	case MIB2_IP:
11325 	case MIB2_ICMP:
11326 		switch (name) {
11327 		default:
11328 			break;
11329 		}
11330 		return (1);
11331 	default:
11332 		return (1);
11333 	}
11334 }
11335 
11336 /*
11337  * When there exists both a 64- and 32-bit counter of a particular type
11338  * (i.e., InReceives), only the 64-bit counters are added.
11339  */
11340 void
11341 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11342 {
11343 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11344 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11345 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11346 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11347 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11348 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11349 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11350 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11351 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11352 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11353 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11354 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11355 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11356 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11357 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11358 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11359 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11360 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11361 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11362 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11363 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11364 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11365 	    o2->ipIfStatsInWrongIPVersion);
11366 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11367 	    o2->ipIfStatsInWrongIPVersion);
11368 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11369 	    o2->ipIfStatsOutSwitchIPVersion);
11370 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11371 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11372 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11373 	    o2->ipIfStatsHCInForwDatagrams);
11374 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11375 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11376 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11377 	    o2->ipIfStatsHCOutForwDatagrams);
11378 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11379 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11380 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11381 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11382 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11383 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11384 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11385 	    o2->ipIfStatsHCOutMcastOctets);
11386 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11387 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11388 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11389 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11390 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11391 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11392 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11393 }
11394 
11395 void
11396 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11397 {
11398 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11399 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11400 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11401 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11402 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11403 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11404 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11405 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11406 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11407 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11408 	    o2->ipv6IfIcmpInRouterSolicits);
11409 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11410 	    o2->ipv6IfIcmpInRouterAdvertisements);
11411 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11412 	    o2->ipv6IfIcmpInNeighborSolicits);
11413 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11414 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11415 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11416 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11417 	    o2->ipv6IfIcmpInGroupMembQueries);
11418 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11419 	    o2->ipv6IfIcmpInGroupMembResponses);
11420 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11421 	    o2->ipv6IfIcmpInGroupMembReductions);
11422 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11423 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11424 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11425 	    o2->ipv6IfIcmpOutDestUnreachs);
11426 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11427 	    o2->ipv6IfIcmpOutAdminProhibs);
11428 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11429 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11430 	    o2->ipv6IfIcmpOutParmProblems);
11431 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11432 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11433 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11434 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11435 	    o2->ipv6IfIcmpOutRouterSolicits);
11436 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11437 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11438 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11439 	    o2->ipv6IfIcmpOutNeighborSolicits);
11440 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11441 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11442 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11443 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11444 	    o2->ipv6IfIcmpOutGroupMembQueries);
11445 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11446 	    o2->ipv6IfIcmpOutGroupMembResponses);
11447 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11448 	    o2->ipv6IfIcmpOutGroupMembReductions);
11449 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11450 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11451 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11452 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11453 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11454 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11455 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11456 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11457 	    o2->ipv6IfIcmpInGroupMembTotal);
11458 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11459 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11460 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11461 	    o2->ipv6IfIcmpInGroupMembBadReports);
11462 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11463 	    o2->ipv6IfIcmpInGroupMembOurReports);
11464 }
11465 
11466 /*
11467  * Called before the options are updated to check if this packet will
11468  * be source routed from here.
11469  * This routine assumes that the options are well formed i.e. that they
11470  * have already been checked.
11471  */
11472 boolean_t
11473 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11474 {
11475 	ipoptp_t	opts;
11476 	uchar_t		*opt;
11477 	uint8_t		optval;
11478 	uint8_t		optlen;
11479 	ipaddr_t	dst;
11480 
11481 	if (IS_SIMPLE_IPH(ipha)) {
11482 		ip2dbg(("not source routed\n"));
11483 		return (B_FALSE);
11484 	}
11485 	dst = ipha->ipha_dst;
11486 	for (optval = ipoptp_first(&opts, ipha);
11487 	    optval != IPOPT_EOL;
11488 	    optval = ipoptp_next(&opts)) {
11489 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11490 		opt = opts.ipoptp_cur;
11491 		optlen = opts.ipoptp_len;
11492 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11493 		    optval, optlen));
11494 		switch (optval) {
11495 			uint32_t off;
11496 		case IPOPT_SSRR:
11497 		case IPOPT_LSRR:
11498 			/*
11499 			 * If dst is one of our addresses and there are some
11500 			 * entries left in the source route return (true).
11501 			 */
11502 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11503 				ip2dbg(("ip_source_routed: not next"
11504 				    " source route 0x%x\n",
11505 				    ntohl(dst)));
11506 				return (B_FALSE);
11507 			}
11508 			off = opt[IPOPT_OFFSET];
11509 			off--;
11510 			if (optlen < IP_ADDR_LEN ||
11511 			    off > optlen - IP_ADDR_LEN) {
11512 				/* End of source route */
11513 				ip1dbg(("ip_source_routed: end of SR\n"));
11514 				return (B_FALSE);
11515 			}
11516 			return (B_TRUE);
11517 		}
11518 	}
11519 	ip2dbg(("not source routed\n"));
11520 	return (B_FALSE);
11521 }
11522 
11523 /*
11524  * ip_unbind is called by the transports to remove a conn from
11525  * the fanout table.
11526  */
11527 void
11528 ip_unbind(conn_t *connp)
11529 {
11530 
11531 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11532 
11533 	if (is_system_labeled() && connp->conn_anon_port) {
11534 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11535 		    connp->conn_mlp_type, connp->conn_proto,
11536 		    ntohs(connp->conn_lport), B_FALSE);
11537 		connp->conn_anon_port = 0;
11538 	}
11539 	connp->conn_mlp_type = mlptSingle;
11540 
11541 	ipcl_hash_remove(connp);
11542 }
11543 
11544 /*
11545  * Used for deciding the MSS size for the upper layer. Thus
11546  * we need to check the outbound policy values in the conn.
11547  */
11548 int
11549 conn_ipsec_length(conn_t *connp)
11550 {
11551 	ipsec_latch_t *ipl;
11552 
11553 	ipl = connp->conn_latch;
11554 	if (ipl == NULL)
11555 		return (0);
11556 
11557 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11558 		return (0);
11559 
11560 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11561 }
11562 
11563 /*
11564  * Returns an estimate of the IPsec headers size. This is used if
11565  * we don't want to call into IPsec to get the exact size.
11566  */
11567 int
11568 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11569 {
11570 	ipsec_action_t *a;
11571 
11572 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11573 		return (0);
11574 
11575 	a = ixa->ixa_ipsec_action;
11576 	if (a == NULL) {
11577 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11578 		a = ixa->ixa_ipsec_policy->ipsp_act;
11579 	}
11580 	ASSERT(a != NULL);
11581 
11582 	return (a->ipa_ovhd);
11583 }
11584 
11585 /*
11586  * If there are any source route options, return the true final
11587  * destination. Otherwise, return the destination.
11588  */
11589 ipaddr_t
11590 ip_get_dst(ipha_t *ipha)
11591 {
11592 	ipoptp_t	opts;
11593 	uchar_t		*opt;
11594 	uint8_t		optval;
11595 	uint8_t		optlen;
11596 	ipaddr_t	dst;
11597 	uint32_t off;
11598 
11599 	dst = ipha->ipha_dst;
11600 
11601 	if (IS_SIMPLE_IPH(ipha))
11602 		return (dst);
11603 
11604 	for (optval = ipoptp_first(&opts, ipha);
11605 	    optval != IPOPT_EOL;
11606 	    optval = ipoptp_next(&opts)) {
11607 		opt = opts.ipoptp_cur;
11608 		optlen = opts.ipoptp_len;
11609 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11610 		switch (optval) {
11611 		case IPOPT_SSRR:
11612 		case IPOPT_LSRR:
11613 			off = opt[IPOPT_OFFSET];
11614 			/*
11615 			 * If one of the conditions is true, it means
11616 			 * end of options and dst already has the right
11617 			 * value.
11618 			 */
11619 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11620 				off = optlen - IP_ADDR_LEN;
11621 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11622 			}
11623 			return (dst);
11624 		default:
11625 			break;
11626 		}
11627 	}
11628 
11629 	return (dst);
11630 }
11631 
11632 /*
11633  * Outbound IP fragmentation routine.
11634  * Assumes the caller has checked whether or not fragmentation should
11635  * be allowed. Here we copy the DF bit from the header to all the generated
11636  * fragments.
11637  */
11638 int
11639 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11640     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11641     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11642 {
11643 	int		i1;
11644 	int		hdr_len;
11645 	mblk_t		*hdr_mp;
11646 	ipha_t		*ipha;
11647 	int		ip_data_end;
11648 	int		len;
11649 	mblk_t		*mp = mp_orig;
11650 	int		offset;
11651 	ill_t		*ill = nce->nce_ill;
11652 	ip_stack_t	*ipst = ill->ill_ipst;
11653 	mblk_t		*carve_mp;
11654 	uint32_t	frag_flag;
11655 	uint_t		priority = mp->b_band;
11656 	int		error = 0;
11657 
11658 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11659 
11660 	if (pkt_len != msgdsize(mp)) {
11661 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11662 		    pkt_len, msgdsize(mp)));
11663 		freemsg(mp);
11664 		return (EINVAL);
11665 	}
11666 
11667 	if (max_frag == 0) {
11668 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11669 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11670 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11671 		freemsg(mp);
11672 		return (EINVAL);
11673 	}
11674 
11675 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11676 	ipha = (ipha_t *)mp->b_rptr;
11677 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11678 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11679 
11680 	/*
11681 	 * Establish the starting offset.  May not be zero if we are fragging
11682 	 * a fragment that is being forwarded.
11683 	 */
11684 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11685 
11686 	/* TODO why is this test needed? */
11687 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11688 		/* TODO: notify ulp somehow */
11689 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11690 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11691 		freemsg(mp);
11692 		return (EINVAL);
11693 	}
11694 
11695 	hdr_len = IPH_HDR_LENGTH(ipha);
11696 	ipha->ipha_hdr_checksum = 0;
11697 
11698 	/*
11699 	 * Establish the number of bytes maximum per frag, after putting
11700 	 * in the header.
11701 	 */
11702 	len = (max_frag - hdr_len) & ~7;
11703 
11704 	/* Get a copy of the header for the trailing frags */
11705 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11706 	    mp);
11707 	if (hdr_mp == NULL) {
11708 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11709 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11710 		freemsg(mp);
11711 		return (ENOBUFS);
11712 	}
11713 
11714 	/* Store the starting offset, with the MoreFrags flag. */
11715 	i1 = offset | IPH_MF | frag_flag;
11716 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11717 
11718 	/* Establish the ending byte offset, based on the starting offset. */
11719 	offset <<= 3;
11720 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11721 
11722 	/* Store the length of the first fragment in the IP header. */
11723 	i1 = len + hdr_len;
11724 	ASSERT(i1 <= IP_MAXPACKET);
11725 	ipha->ipha_length = htons((uint16_t)i1);
11726 
11727 	/*
11728 	 * Compute the IP header checksum for the first frag.  We have to
11729 	 * watch out that we stop at the end of the header.
11730 	 */
11731 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11732 
11733 	/*
11734 	 * Now carve off the first frag.  Note that this will include the
11735 	 * original IP header.
11736 	 */
11737 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11738 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11739 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11740 		freeb(hdr_mp);
11741 		freemsg(mp_orig);
11742 		return (ENOBUFS);
11743 	}
11744 
11745 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11746 
11747 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11748 	    ixa_cookie);
11749 	if (error != 0 && error != EWOULDBLOCK) {
11750 		/* No point in sending the other fragments */
11751 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11752 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11753 		freeb(hdr_mp);
11754 		freemsg(mp_orig);
11755 		return (error);
11756 	}
11757 
11758 	/* No need to redo state machine in loop */
11759 	ixaflags &= ~IXAF_REACH_CONF;
11760 
11761 	/* Advance the offset to the second frag starting point. */
11762 	offset += len;
11763 	/*
11764 	 * Update hdr_len from the copied header - there might be less options
11765 	 * in the later fragments.
11766 	 */
11767 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11768 	/* Loop until done. */
11769 	for (;;) {
11770 		uint16_t	offset_and_flags;
11771 		uint16_t	ip_len;
11772 
11773 		if (ip_data_end - offset > len) {
11774 			/*
11775 			 * Carve off the appropriate amount from the original
11776 			 * datagram.
11777 			 */
11778 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11779 				mp = NULL;
11780 				break;
11781 			}
11782 			/*
11783 			 * More frags after this one.  Get another copy
11784 			 * of the header.
11785 			 */
11786 			if (carve_mp->b_datap->db_ref == 1 &&
11787 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11788 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11789 				/* Inline IP header */
11790 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11791 				    hdr_mp->b_rptr;
11792 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11793 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11794 				mp = carve_mp;
11795 			} else {
11796 				if (!(mp = copyb(hdr_mp))) {
11797 					freemsg(carve_mp);
11798 					break;
11799 				}
11800 				/* Get priority marking, if any. */
11801 				mp->b_band = priority;
11802 				mp->b_cont = carve_mp;
11803 			}
11804 			ipha = (ipha_t *)mp->b_rptr;
11805 			offset_and_flags = IPH_MF;
11806 		} else {
11807 			/*
11808 			 * Last frag.  Consume the header. Set len to
11809 			 * the length of this last piece.
11810 			 */
11811 			len = ip_data_end - offset;
11812 
11813 			/*
11814 			 * Carve off the appropriate amount from the original
11815 			 * datagram.
11816 			 */
11817 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11818 				mp = NULL;
11819 				break;
11820 			}
11821 			if (carve_mp->b_datap->db_ref == 1 &&
11822 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11823 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11824 				/* Inline IP header */
11825 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11826 				    hdr_mp->b_rptr;
11827 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11828 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11829 				mp = carve_mp;
11830 				freeb(hdr_mp);
11831 				hdr_mp = mp;
11832 			} else {
11833 				mp = hdr_mp;
11834 				/* Get priority marking, if any. */
11835 				mp->b_band = priority;
11836 				mp->b_cont = carve_mp;
11837 			}
11838 			ipha = (ipha_t *)mp->b_rptr;
11839 			/* A frag of a frag might have IPH_MF non-zero */
11840 			offset_and_flags =
11841 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11842 			    IPH_MF;
11843 		}
11844 		offset_and_flags |= (uint16_t)(offset >> 3);
11845 		offset_and_flags |= (uint16_t)frag_flag;
11846 		/* Store the offset and flags in the IP header. */
11847 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11848 
11849 		/* Store the length in the IP header. */
11850 		ip_len = (uint16_t)(len + hdr_len);
11851 		ipha->ipha_length = htons(ip_len);
11852 
11853 		/*
11854 		 * Set the IP header checksum.	Note that mp is just
11855 		 * the header, so this is easy to pass to ip_csum.
11856 		 */
11857 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11858 
11859 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11860 
11861 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11862 		    nolzid, ixa_cookie);
11863 		/* All done if we just consumed the hdr_mp. */
11864 		if (mp == hdr_mp) {
11865 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11866 			return (error);
11867 		}
11868 		if (error != 0 && error != EWOULDBLOCK) {
11869 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11870 			    mblk_t *, hdr_mp);
11871 			/* No point in sending the other fragments */
11872 			break;
11873 		}
11874 
11875 		/* Otherwise, advance and loop. */
11876 		offset += len;
11877 	}
11878 	/* Clean up following allocation failure. */
11879 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11880 	ip_drop_output("FragFails: loop ended", NULL, ill);
11881 	if (mp != hdr_mp)
11882 		freeb(hdr_mp);
11883 	if (mp != mp_orig)
11884 		freemsg(mp_orig);
11885 	return (error);
11886 }
11887 
11888 /*
11889  * Copy the header plus those options which have the copy bit set
11890  */
11891 static mblk_t *
11892 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11893     mblk_t *src)
11894 {
11895 	mblk_t	*mp;
11896 	uchar_t	*up;
11897 
11898 	/*
11899 	 * Quick check if we need to look for options without the copy bit
11900 	 * set
11901 	 */
11902 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11903 	if (!mp)
11904 		return (mp);
11905 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11906 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11907 		bcopy(rptr, mp->b_rptr, hdr_len);
11908 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11909 		return (mp);
11910 	}
11911 	up  = mp->b_rptr;
11912 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11913 	up += IP_SIMPLE_HDR_LENGTH;
11914 	rptr += IP_SIMPLE_HDR_LENGTH;
11915 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11916 	while (hdr_len > 0) {
11917 		uint32_t optval;
11918 		uint32_t optlen;
11919 
11920 		optval = *rptr;
11921 		if (optval == IPOPT_EOL)
11922 			break;
11923 		if (optval == IPOPT_NOP)
11924 			optlen = 1;
11925 		else
11926 			optlen = rptr[1];
11927 		if (optval & IPOPT_COPY) {
11928 			bcopy(rptr, up, optlen);
11929 			up += optlen;
11930 		}
11931 		rptr += optlen;
11932 		hdr_len -= optlen;
11933 	}
11934 	/*
11935 	 * Make sure that we drop an even number of words by filling
11936 	 * with EOL to the next word boundary.
11937 	 */
11938 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11939 	    hdr_len & 0x3; hdr_len++)
11940 		*up++ = IPOPT_EOL;
11941 	mp->b_wptr = up;
11942 	/* Update header length */
11943 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11944 	return (mp);
11945 }
11946 
11947 /*
11948  * Update any source route, record route, or timestamp options when
11949  * sending a packet back to ourselves.
11950  * Check that we are at end of strict source route.
11951  * The options have been sanity checked by ip_output_options().
11952  */
11953 void
11954 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11955 {
11956 	ipoptp_t	opts;
11957 	uchar_t		*opt;
11958 	uint8_t		optval;
11959 	uint8_t		optlen;
11960 	ipaddr_t	dst;
11961 	uint32_t	ts;
11962 	timestruc_t	now;
11963 	uint32_t	off = 0;
11964 
11965 	for (optval = ipoptp_first(&opts, ipha);
11966 	    optval != IPOPT_EOL;
11967 	    optval = ipoptp_next(&opts)) {
11968 		opt = opts.ipoptp_cur;
11969 		optlen = opts.ipoptp_len;
11970 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11971 		switch (optval) {
11972 		case IPOPT_SSRR:
11973 		case IPOPT_LSRR:
11974 			off = opt[IPOPT_OFFSET];
11975 			off--;
11976 			if (optlen < IP_ADDR_LEN ||
11977 			    off > optlen - IP_ADDR_LEN) {
11978 				/* End of source route */
11979 				break;
11980 			}
11981 			/*
11982 			 * This will only happen if two consecutive entries
11983 			 * in the source route contains our address or if
11984 			 * it is a packet with a loose source route which
11985 			 * reaches us before consuming the whole source route
11986 			 */
11987 
11988 			if (optval == IPOPT_SSRR) {
11989 				return;
11990 			}
11991 			/*
11992 			 * Hack: instead of dropping the packet truncate the
11993 			 * source route to what has been used by filling the
11994 			 * rest with IPOPT_NOP.
11995 			 */
11996 			opt[IPOPT_OLEN] = (uint8_t)off;
11997 			while (off < optlen) {
11998 				opt[off++] = IPOPT_NOP;
11999 			}
12000 			break;
12001 		case IPOPT_RR:
12002 			off = opt[IPOPT_OFFSET];
12003 			off--;
12004 			if (optlen < IP_ADDR_LEN ||
12005 			    off > optlen - IP_ADDR_LEN) {
12006 				/* No more room - ignore */
12007 				ip1dbg((
12008 				    "ip_output_local_options: end of RR\n"));
12009 				break;
12010 			}
12011 			dst = htonl(INADDR_LOOPBACK);
12012 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12013 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12014 			break;
12015 		case IPOPT_TS:
12016 			/* Insert timestamp if there is romm */
12017 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12018 			case IPOPT_TS_TSONLY:
12019 				off = IPOPT_TS_TIMELEN;
12020 				break;
12021 			case IPOPT_TS_PRESPEC:
12022 			case IPOPT_TS_PRESPEC_RFC791:
12023 				/* Verify that the address matched */
12024 				off = opt[IPOPT_OFFSET] - 1;
12025 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12026 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12027 					/* Not for us */
12028 					break;
12029 				}
12030 				/* FALLTHROUGH */
12031 			case IPOPT_TS_TSANDADDR:
12032 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12033 				break;
12034 			default:
12035 				/*
12036 				 * ip_*put_options should have already
12037 				 * dropped this packet.
12038 				 */
12039 				cmn_err(CE_PANIC, "ip_output_local_options: "
12040 				    "unknown IT - bug in ip_output_options?\n");
12041 			}
12042 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12043 				/* Increase overflow counter */
12044 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12045 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
12046 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12047 				    (off << 4);
12048 				break;
12049 			}
12050 			off = opt[IPOPT_OFFSET] - 1;
12051 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12052 			case IPOPT_TS_PRESPEC:
12053 			case IPOPT_TS_PRESPEC_RFC791:
12054 			case IPOPT_TS_TSANDADDR:
12055 				dst = htonl(INADDR_LOOPBACK);
12056 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12057 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12058 				/* FALLTHROUGH */
12059 			case IPOPT_TS_TSONLY:
12060 				off = opt[IPOPT_OFFSET] - 1;
12061 				/* Compute # of milliseconds since midnight */
12062 				gethrestime(&now);
12063 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12064 				    NSEC2MSEC(now.tv_nsec);
12065 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12066 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12067 				break;
12068 			}
12069 			break;
12070 		}
12071 	}
12072 }
12073 
12074 /*
12075  * Prepend an M_DATA fastpath header, and if none present prepend a
12076  * DL_UNITDATA_REQ. Frees the mblk on failure.
12077  *
12078  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12079  * If there is a change to them, the nce will be deleted (condemned) and
12080  * a new nce_t will be created when packets are sent. Thus we need no locks
12081  * to access those fields.
12082  *
12083  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12084  * we place b_band in dl_priority.dl_max.
12085  */
12086 static mblk_t *
12087 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12088 {
12089 	uint_t	hlen;
12090 	mblk_t *mp1;
12091 	uint_t	priority;
12092 	uchar_t *rptr;
12093 
12094 	rptr = mp->b_rptr;
12095 
12096 	ASSERT(DB_TYPE(mp) == M_DATA);
12097 	priority = mp->b_band;
12098 
12099 	ASSERT(nce != NULL);
12100 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12101 		hlen = MBLKL(mp1);
12102 		/*
12103 		 * Check if we have enough room to prepend fastpath
12104 		 * header
12105 		 */
12106 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12107 			rptr -= hlen;
12108 			bcopy(mp1->b_rptr, rptr, hlen);
12109 			/*
12110 			 * Set the b_rptr to the start of the link layer
12111 			 * header
12112 			 */
12113 			mp->b_rptr = rptr;
12114 			return (mp);
12115 		}
12116 		mp1 = copyb(mp1);
12117 		if (mp1 == NULL) {
12118 			ill_t *ill = nce->nce_ill;
12119 
12120 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12121 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12122 			freemsg(mp);
12123 			return (NULL);
12124 		}
12125 		mp1->b_band = priority;
12126 		mp1->b_cont = mp;
12127 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12128 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12129 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12130 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12131 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12132 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12133 		/*
12134 		 * XXX disable ICK_VALID and compute checksum
12135 		 * here; can happen if nce_fp_mp changes and
12136 		 * it can't be copied now due to insufficient
12137 		 * space. (unlikely, fp mp can change, but it
12138 		 * does not increase in length)
12139 		 */
12140 		return (mp1);
12141 	}
12142 	mp1 = copyb(nce->nce_dlur_mp);
12143 
12144 	if (mp1 == NULL) {
12145 		ill_t *ill = nce->nce_ill;
12146 
12147 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12148 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12149 		freemsg(mp);
12150 		return (NULL);
12151 	}
12152 	mp1->b_cont = mp;
12153 	if (priority != 0) {
12154 		mp1->b_band = priority;
12155 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12156 		    priority;
12157 	}
12158 	return (mp1);
12159 }
12160 
12161 /*
12162  * Finish the outbound IPsec processing. This function is called from
12163  * ipsec_out_process() if the IPsec packet was processed
12164  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12165  * asynchronously.
12166  *
12167  * This is common to IPv4 and IPv6.
12168  */
12169 int
12170 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12171 {
12172 	iaflags_t	ixaflags = ixa->ixa_flags;
12173 	uint_t		pktlen;
12174 
12175 
12176 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12177 	if (ixaflags & IXAF_IS_IPV4) {
12178 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12179 
12180 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12181 		pktlen = ntohs(ipha->ipha_length);
12182 	} else {
12183 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12184 
12185 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12186 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12187 	}
12188 
12189 	/*
12190 	 * We release any hard reference on the SAs here to make
12191 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12192 	 * on the SAs.
12193 	 * If in the future we want the hard latching of the SAs in the
12194 	 * ip_xmit_attr_t then we should remove this.
12195 	 */
12196 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12197 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12198 		ixa->ixa_ipsec_esp_sa = NULL;
12199 	}
12200 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12201 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12202 		ixa->ixa_ipsec_ah_sa = NULL;
12203 	}
12204 
12205 	/* Do we need to fragment? */
12206 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12207 	    pktlen > ixa->ixa_fragsize) {
12208 		if (ixaflags & IXAF_IS_IPV4) {
12209 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12210 			/*
12211 			 * We check for the DF case in ipsec_out_process
12212 			 * hence this only handles the non-DF case.
12213 			 */
12214 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12215 			    pktlen, ixa->ixa_fragsize,
12216 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12217 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12218 			    &ixa->ixa_cookie));
12219 		} else {
12220 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12221 			if (mp == NULL) {
12222 				/* MIB and ip_drop_output already done */
12223 				return (ENOMEM);
12224 			}
12225 			pktlen += sizeof (ip6_frag_t);
12226 			if (pktlen > ixa->ixa_fragsize) {
12227 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12228 				    ixa->ixa_flags, pktlen,
12229 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12230 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12231 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12232 			}
12233 		}
12234 	}
12235 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12236 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12237 	    ixa->ixa_no_loop_zoneid, NULL));
12238 }
12239 
12240 /*
12241  * Finish the inbound IPsec processing. This function is called from
12242  * ipsec_out_process() if the IPsec packet was processed
12243  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12244  * asynchronously.
12245  *
12246  * This is common to IPv4 and IPv6.
12247  */
12248 void
12249 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12250 {
12251 	iaflags_t	iraflags = ira->ira_flags;
12252 
12253 	/* Length might have changed */
12254 	if (iraflags & IRAF_IS_IPV4) {
12255 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12256 
12257 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12258 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12259 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12260 		ira->ira_protocol = ipha->ipha_protocol;
12261 
12262 		ip_fanout_v4(mp, ipha, ira);
12263 	} else {
12264 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12265 		uint8_t		*nexthdrp;
12266 
12267 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12268 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12269 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12270 		    &nexthdrp)) {
12271 			/* Malformed packet */
12272 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12273 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12274 			freemsg(mp);
12275 			return;
12276 		}
12277 		ira->ira_protocol = *nexthdrp;
12278 		ip_fanout_v6(mp, ip6h, ira);
12279 	}
12280 }
12281 
12282 /*
12283  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12284  *
12285  * If this function returns B_TRUE, the requested SA's have been filled
12286  * into the ixa_ipsec_*_sa pointers.
12287  *
12288  * If the function returns B_FALSE, the packet has been "consumed", most
12289  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12290  *
12291  * The SA references created by the protocol-specific "select"
12292  * function will be released in ip_output_post_ipsec.
12293  */
12294 static boolean_t
12295 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12296 {
12297 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12298 	ipsec_policy_t *pp;
12299 	ipsec_action_t *ap;
12300 
12301 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12302 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12303 	    (ixa->ixa_ipsec_action != NULL));
12304 
12305 	ap = ixa->ixa_ipsec_action;
12306 	if (ap == NULL) {
12307 		pp = ixa->ixa_ipsec_policy;
12308 		ASSERT(pp != NULL);
12309 		ap = pp->ipsp_act;
12310 		ASSERT(ap != NULL);
12311 	}
12312 
12313 	/*
12314 	 * We have an action.  now, let's select SA's.
12315 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12316 	 * be cached in the conn_t.
12317 	 */
12318 	if (ap->ipa_want_esp) {
12319 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12320 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12321 			    IPPROTO_ESP);
12322 		}
12323 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12324 	}
12325 
12326 	if (ap->ipa_want_ah) {
12327 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12328 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12329 			    IPPROTO_AH);
12330 		}
12331 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12332 		/*
12333 		 * The ESP and AH processing order needs to be preserved
12334 		 * when both protocols are required (ESP should be applied
12335 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12336 		 * when both ESP and AH are required, and an AH ACQUIRE
12337 		 * is needed.
12338 		 */
12339 		if (ap->ipa_want_esp && need_ah_acquire)
12340 			need_esp_acquire = B_TRUE;
12341 	}
12342 
12343 	/*
12344 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12345 	 * Release SAs that got referenced, but will not be used until we
12346 	 * acquire _all_ of the SAs we need.
12347 	 */
12348 	if (need_ah_acquire || need_esp_acquire) {
12349 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12350 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12351 			ixa->ixa_ipsec_ah_sa = NULL;
12352 		}
12353 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12354 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12355 			ixa->ixa_ipsec_esp_sa = NULL;
12356 		}
12357 
12358 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12359 		return (B_FALSE);
12360 	}
12361 
12362 	return (B_TRUE);
12363 }
12364 
12365 /*
12366  * Handle IPsec output processing.
12367  * This function is only entered once for a given packet.
12368  * We try to do things synchronously, but if we need to have user-level
12369  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12370  * will be completed
12371  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12372  *  - when asynchronous ESP is done it will do AH
12373  *
12374  * In all cases we come back in ip_output_post_ipsec() to fragment and
12375  * send out the packet.
12376  */
12377 int
12378 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12379 {
12380 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12381 	ip_stack_t	*ipst = ixa->ixa_ipst;
12382 	ipsec_stack_t	*ipss;
12383 	ipsec_policy_t	*pp;
12384 	ipsec_action_t	*ap;
12385 
12386 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12387 
12388 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12389 	    (ixa->ixa_ipsec_action != NULL));
12390 
12391 	ipss = ipst->ips_netstack->netstack_ipsec;
12392 	if (!ipsec_loaded(ipss)) {
12393 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12394 		ip_drop_packet(mp, B_TRUE, ill,
12395 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12396 		    &ipss->ipsec_dropper);
12397 		return (ENOTSUP);
12398 	}
12399 
12400 	ap = ixa->ixa_ipsec_action;
12401 	if (ap == NULL) {
12402 		pp = ixa->ixa_ipsec_policy;
12403 		ASSERT(pp != NULL);
12404 		ap = pp->ipsp_act;
12405 		ASSERT(ap != NULL);
12406 	}
12407 
12408 	/* Handle explicit drop action and bypass. */
12409 	switch (ap->ipa_act.ipa_type) {
12410 	case IPSEC_ACT_DISCARD:
12411 	case IPSEC_ACT_REJECT:
12412 		ip_drop_packet(mp, B_FALSE, ill,
12413 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12414 		return (EHOSTUNREACH);	/* IPsec policy failure */
12415 	case IPSEC_ACT_BYPASS:
12416 		return (ip_output_post_ipsec(mp, ixa));
12417 	}
12418 
12419 	/*
12420 	 * The order of processing is first insert a IP header if needed.
12421 	 * Then insert the ESP header and then the AH header.
12422 	 */
12423 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12424 		/*
12425 		 * First get the outer IP header before sending
12426 		 * it to ESP.
12427 		 */
12428 		ipha_t *oipha, *iipha;
12429 		mblk_t *outer_mp, *inner_mp;
12430 
12431 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12432 			(void) mi_strlog(ill->ill_rq, 0,
12433 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12434 			    "ipsec_out_process: "
12435 			    "Self-Encapsulation failed: Out of memory\n");
12436 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12437 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12438 			freemsg(mp);
12439 			return (ENOBUFS);
12440 		}
12441 		inner_mp = mp;
12442 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12443 		oipha = (ipha_t *)outer_mp->b_rptr;
12444 		iipha = (ipha_t *)inner_mp->b_rptr;
12445 		*oipha = *iipha;
12446 		outer_mp->b_wptr += sizeof (ipha_t);
12447 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12448 		    sizeof (ipha_t));
12449 		oipha->ipha_protocol = IPPROTO_ENCAP;
12450 		oipha->ipha_version_and_hdr_length =
12451 		    IP_SIMPLE_HDR_VERSION;
12452 		oipha->ipha_hdr_checksum = 0;
12453 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12454 		outer_mp->b_cont = inner_mp;
12455 		mp = outer_mp;
12456 
12457 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12458 	}
12459 
12460 	/* If we need to wait for a SA then we can't return any errno */
12461 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12462 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12463 	    !ipsec_out_select_sa(mp, ixa))
12464 		return (0);
12465 
12466 	/*
12467 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12468 	 * to do the heavy lifting.
12469 	 */
12470 	if (ap->ipa_want_esp) {
12471 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12472 
12473 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12474 		if (mp == NULL) {
12475 			/*
12476 			 * Either it failed or is pending. In the former case
12477 			 * ipIfStatsInDiscards was increased.
12478 			 */
12479 			return (0);
12480 		}
12481 	}
12482 
12483 	if (ap->ipa_want_ah) {
12484 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12485 
12486 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12487 		if (mp == NULL) {
12488 			/*
12489 			 * Either it failed or is pending. In the former case
12490 			 * ipIfStatsInDiscards was increased.
12491 			 */
12492 			return (0);
12493 		}
12494 	}
12495 	/*
12496 	 * We are done with IPsec processing. Send it over
12497 	 * the wire.
12498 	 */
12499 	return (ip_output_post_ipsec(mp, ixa));
12500 }
12501 
12502 /*
12503  * ioctls that go through a down/up sequence may need to wait for the down
12504  * to complete. This involves waiting for the ire and ipif refcnts to go down
12505  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12506  */
12507 /* ARGSUSED */
12508 void
12509 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12510 {
12511 	struct iocblk *iocp;
12512 	mblk_t *mp1;
12513 	ip_ioctl_cmd_t *ipip;
12514 	int err;
12515 	sin_t	*sin;
12516 	struct lifreq *lifr;
12517 	struct ifreq *ifr;
12518 
12519 	iocp = (struct iocblk *)mp->b_rptr;
12520 	ASSERT(ipsq != NULL);
12521 	/* Existence of mp1 verified in ip_wput_nondata */
12522 	mp1 = mp->b_cont->b_cont;
12523 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12524 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12525 		/*
12526 		 * Special case where ipx_current_ipif is not set:
12527 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12528 		 * We are here as were not able to complete the operation in
12529 		 * ipif_set_values because we could not become exclusive on
12530 		 * the new ipsq.
12531 		 */
12532 		ill_t *ill = q->q_ptr;
12533 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12534 	}
12535 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12536 
12537 	if (ipip->ipi_cmd_type == IF_CMD) {
12538 		/* This a old style SIOC[GS]IF* command */
12539 		ifr = (struct ifreq *)mp1->b_rptr;
12540 		sin = (sin_t *)&ifr->ifr_addr;
12541 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12542 		/* This a new style SIOC[GS]LIF* command */
12543 		lifr = (struct lifreq *)mp1->b_rptr;
12544 		sin = (sin_t *)&lifr->lifr_addr;
12545 	} else {
12546 		sin = NULL;
12547 	}
12548 
12549 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12550 	    q, mp, ipip, mp1->b_rptr);
12551 
12552 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12553 	    int, ipip->ipi_cmd,
12554 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12555 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12556 
12557 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12558 }
12559 
12560 /*
12561  * ioctl processing
12562  *
12563  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12564  * the ioctl command in the ioctl tables, determines the copyin data size
12565  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12566  *
12567  * ioctl processing then continues when the M_IOCDATA makes its way down to
12568  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12569  * associated 'conn' is refheld till the end of the ioctl and the general
12570  * ioctl processing function ip_process_ioctl() is called to extract the
12571  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12572  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12573  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12574  * is used to extract the ioctl's arguments.
12575  *
12576  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12577  * so goes thru the serialization primitive ipsq_try_enter. Then the
12578  * appropriate function to handle the ioctl is called based on the entry in
12579  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12580  * which also refreleases the 'conn' that was refheld at the start of the
12581  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12582  *
12583  * Many exclusive ioctls go thru an internal down up sequence as part of
12584  * the operation. For example an attempt to change the IP address of an
12585  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12586  * does all the cleanup such as deleting all ires that use this address.
12587  * Then we need to wait till all references to the interface go away.
12588  */
12589 void
12590 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12591 {
12592 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12593 	ip_ioctl_cmd_t *ipip = arg;
12594 	ip_extract_func_t *extract_funcp;
12595 	cmd_info_t ci;
12596 	int err;
12597 	boolean_t entered_ipsq = B_FALSE;
12598 
12599 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12600 
12601 	if (ipip == NULL)
12602 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12603 
12604 	/*
12605 	 * SIOCLIFADDIF needs to go thru a special path since the
12606 	 * ill may not exist yet. This happens in the case of lo0
12607 	 * which is created using this ioctl.
12608 	 */
12609 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12610 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12611 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12612 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12613 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12614 		return;
12615 	}
12616 
12617 	ci.ci_ipif = NULL;
12618 	extract_funcp = NULL;
12619 	switch (ipip->ipi_cmd_type) {
12620 	case MISC_CMD:
12621 	case MSFILT_CMD:
12622 		/*
12623 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12624 		 */
12625 		if (ipip->ipi_cmd == IF_UNITSEL) {
12626 			/* ioctl comes down the ill */
12627 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12628 			ipif_refhold(ci.ci_ipif);
12629 		}
12630 		err = 0;
12631 		ci.ci_sin = NULL;
12632 		ci.ci_sin6 = NULL;
12633 		ci.ci_lifr = NULL;
12634 		extract_funcp = NULL;
12635 		break;
12636 
12637 	case IF_CMD:
12638 	case LIF_CMD:
12639 		extract_funcp = ip_extract_lifreq;
12640 		break;
12641 
12642 	case ARP_CMD:
12643 	case XARP_CMD:
12644 		extract_funcp = ip_extract_arpreq;
12645 		break;
12646 
12647 	default:
12648 		ASSERT(0);
12649 	}
12650 
12651 	if (extract_funcp != NULL) {
12652 		err = (*extract_funcp)(q, mp, ipip, &ci);
12653 		if (err != 0) {
12654 			DTRACE_PROBE4(ipif__ioctl,
12655 			    char *, "ip_process_ioctl finish err",
12656 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12657 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12658 			return;
12659 		}
12660 
12661 		/*
12662 		 * All of the extraction functions return a refheld ipif.
12663 		 */
12664 		ASSERT(ci.ci_ipif != NULL);
12665 	}
12666 
12667 	if (!(ipip->ipi_flags & IPI_WR)) {
12668 		/*
12669 		 * A return value of EINPROGRESS means the ioctl is
12670 		 * either queued and waiting for some reason or has
12671 		 * already completed.
12672 		 */
12673 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12674 		    ci.ci_lifr);
12675 		if (ci.ci_ipif != NULL) {
12676 			DTRACE_PROBE4(ipif__ioctl,
12677 			    char *, "ip_process_ioctl finish RD",
12678 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12679 			    ipif_t *, ci.ci_ipif);
12680 			ipif_refrele(ci.ci_ipif);
12681 		} else {
12682 			DTRACE_PROBE4(ipif__ioctl,
12683 			    char *, "ip_process_ioctl finish RD",
12684 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12685 		}
12686 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12687 		return;
12688 	}
12689 
12690 	ASSERT(ci.ci_ipif != NULL);
12691 
12692 	/*
12693 	 * If ipsq is non-NULL, we are already being called exclusively
12694 	 */
12695 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12696 	if (ipsq == NULL) {
12697 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12698 		    NEW_OP, B_TRUE);
12699 		if (ipsq == NULL) {
12700 			ipif_refrele(ci.ci_ipif);
12701 			return;
12702 		}
12703 		entered_ipsq = B_TRUE;
12704 	}
12705 	/*
12706 	 * Release the ipif so that ipif_down and friends that wait for
12707 	 * references to go away are not misled about the current ipif_refcnt
12708 	 * values. We are writer so we can access the ipif even after releasing
12709 	 * the ipif.
12710 	 */
12711 	ipif_refrele(ci.ci_ipif);
12712 
12713 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12714 
12715 	/*
12716 	 * A return value of EINPROGRESS means the ioctl is
12717 	 * either queued and waiting for some reason or has
12718 	 * already completed.
12719 	 */
12720 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12721 
12722 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12723 	    int, ipip->ipi_cmd,
12724 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12725 	    ipif_t *, ci.ci_ipif);
12726 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12727 
12728 	if (entered_ipsq)
12729 		ipsq_exit(ipsq);
12730 }
12731 
12732 /*
12733  * Complete the ioctl. Typically ioctls use the mi package and need to
12734  * do mi_copyout/mi_copy_done.
12735  */
12736 void
12737 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12738 {
12739 	conn_t	*connp = NULL;
12740 
12741 	if (err == EINPROGRESS)
12742 		return;
12743 
12744 	if (CONN_Q(q)) {
12745 		connp = Q_TO_CONN(q);
12746 		ASSERT(connp->conn_ref >= 2);
12747 	}
12748 
12749 	switch (mode) {
12750 	case COPYOUT:
12751 		if (err == 0)
12752 			mi_copyout(q, mp);
12753 		else
12754 			mi_copy_done(q, mp, err);
12755 		break;
12756 
12757 	case NO_COPYOUT:
12758 		mi_copy_done(q, mp, err);
12759 		break;
12760 
12761 	default:
12762 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12763 		break;
12764 	}
12765 
12766 	/*
12767 	 * The conn refhold and ioctlref placed on the conn at the start of the
12768 	 * ioctl are released here.
12769 	 */
12770 	if (connp != NULL) {
12771 		CONN_DEC_IOCTLREF(connp);
12772 		CONN_OPER_PENDING_DONE(connp);
12773 	}
12774 
12775 	if (ipsq != NULL)
12776 		ipsq_current_finish(ipsq);
12777 }
12778 
12779 /* Handles all non data messages */
12780 int
12781 ip_wput_nondata(queue_t *q, mblk_t *mp)
12782 {
12783 	mblk_t		*mp1;
12784 	struct iocblk	*iocp;
12785 	ip_ioctl_cmd_t	*ipip;
12786 	conn_t		*connp;
12787 	cred_t		*cr;
12788 	char		*proto_str;
12789 
12790 	if (CONN_Q(q))
12791 		connp = Q_TO_CONN(q);
12792 	else
12793 		connp = NULL;
12794 
12795 	iocp = NULL;
12796 	switch (DB_TYPE(mp)) {
12797 	case M_IOCTL:
12798 		/*
12799 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12800 		 * will arrange to copy in associated control structures.
12801 		 */
12802 		ip_sioctl_copyin_setup(q, mp);
12803 		return (0);
12804 	case M_IOCDATA:
12805 		/*
12806 		 * Ensure that this is associated with one of our trans-
12807 		 * parent ioctls.  If it's not ours, discard it if we're
12808 		 * running as a driver, or pass it on if we're a module.
12809 		 */
12810 		iocp = (struct iocblk *)mp->b_rptr;
12811 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12812 		if (ipip == NULL) {
12813 			if (q->q_next == NULL) {
12814 				goto nak;
12815 			} else {
12816 				putnext(q, mp);
12817 			}
12818 			return (0);
12819 		}
12820 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12821 			/*
12822 			 * The ioctl is one we recognise, but is not consumed
12823 			 * by IP as a module and we are a module, so we drop
12824 			 */
12825 			goto nak;
12826 		}
12827 
12828 		/* IOCTL continuation following copyin or copyout. */
12829 		if (mi_copy_state(q, mp, NULL) == -1) {
12830 			/*
12831 			 * The copy operation failed.  mi_copy_state already
12832 			 * cleaned up, so we're out of here.
12833 			 */
12834 			return (0);
12835 		}
12836 		/*
12837 		 * If we just completed a copy in, we become writer and
12838 		 * continue processing in ip_sioctl_copyin_done.  If it
12839 		 * was a copy out, we call mi_copyout again.  If there is
12840 		 * nothing more to copy out, it will complete the IOCTL.
12841 		 */
12842 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12843 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12844 				mi_copy_done(q, mp, EPROTO);
12845 				return (0);
12846 			}
12847 			/*
12848 			 * Check for cases that need more copying.  A return
12849 			 * value of 0 means a second copyin has been started,
12850 			 * so we return; a return value of 1 means no more
12851 			 * copying is needed, so we continue.
12852 			 */
12853 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12854 			    MI_COPY_COUNT(mp) == 1) {
12855 				if (ip_copyin_msfilter(q, mp) == 0)
12856 					return (0);
12857 			}
12858 			/*
12859 			 * Refhold the conn, till the ioctl completes. This is
12860 			 * needed in case the ioctl ends up in the pending mp
12861 			 * list. Every mp in the ipx_pending_mp list must have
12862 			 * a refhold on the conn to resume processing. The
12863 			 * refhold is released when the ioctl completes
12864 			 * (whether normally or abnormally). An ioctlref is also
12865 			 * placed on the conn to prevent TCP from removing the
12866 			 * queue needed to send the ioctl reply back.
12867 			 * In all cases ip_ioctl_finish is called to finish
12868 			 * the ioctl and release the refholds.
12869 			 */
12870 			if (connp != NULL) {
12871 				/* This is not a reentry */
12872 				CONN_INC_REF(connp);
12873 				CONN_INC_IOCTLREF(connp);
12874 			} else {
12875 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12876 					mi_copy_done(q, mp, EINVAL);
12877 					return (0);
12878 				}
12879 			}
12880 
12881 			ip_process_ioctl(NULL, q, mp, ipip);
12882 
12883 		} else {
12884 			mi_copyout(q, mp);
12885 		}
12886 		return (0);
12887 
12888 	case M_IOCNAK:
12889 		/*
12890 		 * The only way we could get here is if a resolver didn't like
12891 		 * an IOCTL we sent it.	 This shouldn't happen.
12892 		 */
12893 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12894 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12895 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12896 		freemsg(mp);
12897 		return (0);
12898 	case M_IOCACK:
12899 		/* /dev/ip shouldn't see this */
12900 		goto nak;
12901 	case M_FLUSH:
12902 		if (*mp->b_rptr & FLUSHW)
12903 			flushq(q, FLUSHALL);
12904 		if (q->q_next) {
12905 			putnext(q, mp);
12906 			return (0);
12907 		}
12908 		if (*mp->b_rptr & FLUSHR) {
12909 			*mp->b_rptr &= ~FLUSHW;
12910 			qreply(q, mp);
12911 			return (0);
12912 		}
12913 		freemsg(mp);
12914 		return (0);
12915 	case M_CTL:
12916 		break;
12917 	case M_PROTO:
12918 	case M_PCPROTO:
12919 		/*
12920 		 * The only PROTO messages we expect are SNMP-related.
12921 		 */
12922 		switch (((union T_primitives *)mp->b_rptr)->type) {
12923 		case T_SVR4_OPTMGMT_REQ:
12924 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12925 			    "flags %x\n",
12926 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12927 
12928 			if (connp == NULL) {
12929 				proto_str = "T_SVR4_OPTMGMT_REQ";
12930 				goto protonak;
12931 			}
12932 
12933 			/*
12934 			 * All Solaris components should pass a db_credp
12935 			 * for this TPI message, hence we ASSERT.
12936 			 * But in case there is some other M_PROTO that looks
12937 			 * like a TPI message sent by some other kernel
12938 			 * component, we check and return an error.
12939 			 */
12940 			cr = msg_getcred(mp, NULL);
12941 			ASSERT(cr != NULL);
12942 			if (cr == NULL) {
12943 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12944 				if (mp != NULL)
12945 					qreply(q, mp);
12946 				return (0);
12947 			}
12948 
12949 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12950 				proto_str = "Bad SNMPCOM request?";
12951 				goto protonak;
12952 			}
12953 			return (0);
12954 		default:
12955 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12956 			    (int)*(uint_t *)mp->b_rptr));
12957 			freemsg(mp);
12958 			return (0);
12959 		}
12960 	default:
12961 		break;
12962 	}
12963 	if (q->q_next) {
12964 		putnext(q, mp);
12965 	} else
12966 		freemsg(mp);
12967 	return (0);
12968 
12969 nak:
12970 	iocp->ioc_error = EINVAL;
12971 	mp->b_datap->db_type = M_IOCNAK;
12972 	iocp->ioc_count = 0;
12973 	qreply(q, mp);
12974 	return (0);
12975 
12976 protonak:
12977 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12978 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12979 		qreply(q, mp);
12980 	return (0);
12981 }
12982 
12983 /*
12984  * Process IP options in an outbound packet.  Verify that the nexthop in a
12985  * strict source route is onlink.
12986  * Returns non-zero if something fails in which case an ICMP error has been
12987  * sent and mp freed.
12988  *
12989  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12990  */
12991 int
12992 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12993 {
12994 	ipoptp_t	opts;
12995 	uchar_t		*opt;
12996 	uint8_t		optval;
12997 	uint8_t		optlen;
12998 	ipaddr_t	dst;
12999 	intptr_t	code = 0;
13000 	ire_t		*ire;
13001 	ip_stack_t	*ipst = ixa->ixa_ipst;
13002 	ip_recv_attr_t	iras;
13003 
13004 	ip2dbg(("ip_output_options\n"));
13005 
13006 	opt = NULL;
13007 	dst = ipha->ipha_dst;
13008 	for (optval = ipoptp_first(&opts, ipha);
13009 	    optval != IPOPT_EOL;
13010 	    optval = ipoptp_next(&opts)) {
13011 		opt = opts.ipoptp_cur;
13012 		optlen = opts.ipoptp_len;
13013 		ip2dbg(("ip_output_options: opt %d, len %d\n",
13014 		    optval, optlen));
13015 		switch (optval) {
13016 			uint32_t off;
13017 		case IPOPT_SSRR:
13018 		case IPOPT_LSRR:
13019 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13020 				ip1dbg((
13021 				    "ip_output_options: bad option offset\n"));
13022 				code = (char *)&opt[IPOPT_OLEN] -
13023 				    (char *)ipha;
13024 				goto param_prob;
13025 			}
13026 			off = opt[IPOPT_OFFSET];
13027 			ip1dbg(("ip_output_options: next hop 0x%x\n",
13028 			    ntohl(dst)));
13029 			/*
13030 			 * For strict: verify that dst is directly
13031 			 * reachable.
13032 			 */
13033 			if (optval == IPOPT_SSRR) {
13034 				ire = ire_ftable_lookup_v4(dst, 0, 0,
13035 				    IRE_INTERFACE, NULL, ALL_ZONES,
13036 				    ixa->ixa_tsl,
13037 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13038 				    NULL);
13039 				if (ire == NULL) {
13040 					ip1dbg(("ip_output_options: SSRR not"
13041 					    " directly reachable: 0x%x\n",
13042 					    ntohl(dst)));
13043 					goto bad_src_route;
13044 				}
13045 				ire_refrele(ire);
13046 			}
13047 			break;
13048 		case IPOPT_RR:
13049 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13050 				ip1dbg((
13051 				    "ip_output_options: bad option offset\n"));
13052 				code = (char *)&opt[IPOPT_OLEN] -
13053 				    (char *)ipha;
13054 				goto param_prob;
13055 			}
13056 			break;
13057 		case IPOPT_TS:
13058 			/*
13059 			 * Verify that length >=5 and that there is either
13060 			 * room for another timestamp or that the overflow
13061 			 * counter is not maxed out.
13062 			 */
13063 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13064 			if (optlen < IPOPT_MINLEN_IT) {
13065 				goto param_prob;
13066 			}
13067 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13068 				ip1dbg((
13069 				    "ip_output_options: bad option offset\n"));
13070 				code = (char *)&opt[IPOPT_OFFSET] -
13071 				    (char *)ipha;
13072 				goto param_prob;
13073 			}
13074 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13075 			case IPOPT_TS_TSONLY:
13076 				off = IPOPT_TS_TIMELEN;
13077 				break;
13078 			case IPOPT_TS_TSANDADDR:
13079 			case IPOPT_TS_PRESPEC:
13080 			case IPOPT_TS_PRESPEC_RFC791:
13081 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13082 				break;
13083 			default:
13084 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13085 				    (char *)ipha;
13086 				goto param_prob;
13087 			}
13088 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13089 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13090 				/*
13091 				 * No room and the overflow counter is 15
13092 				 * already.
13093 				 */
13094 				goto param_prob;
13095 			}
13096 			break;
13097 		}
13098 	}
13099 
13100 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13101 		return (0);
13102 
13103 	ip1dbg(("ip_output_options: error processing IP options."));
13104 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13105 
13106 param_prob:
13107 	bzero(&iras, sizeof (iras));
13108 	iras.ira_ill = iras.ira_rill = ill;
13109 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13110 	iras.ira_rifindex = iras.ira_ruifindex;
13111 	iras.ira_flags = IRAF_IS_IPV4;
13112 
13113 	ip_drop_output("ip_output_options", mp, ill);
13114 	icmp_param_problem(mp, (uint8_t)code, &iras);
13115 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13116 	return (-1);
13117 
13118 bad_src_route:
13119 	bzero(&iras, sizeof (iras));
13120 	iras.ira_ill = iras.ira_rill = ill;
13121 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13122 	iras.ira_rifindex = iras.ira_ruifindex;
13123 	iras.ira_flags = IRAF_IS_IPV4;
13124 
13125 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13126 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13127 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13128 	return (-1);
13129 }
13130 
13131 /*
13132  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13133  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13134  * thru /etc/system.
13135  */
13136 #define	CONN_MAXDRAINCNT	64
13137 
13138 static void
13139 conn_drain_init(ip_stack_t *ipst)
13140 {
13141 	int i, j;
13142 	idl_tx_list_t *itl_tx;
13143 
13144 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13145 
13146 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13147 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13148 		/*
13149 		 * Default value of the number of drainers is the
13150 		 * number of cpus, subject to maximum of 8 drainers.
13151 		 */
13152 		if (boot_max_ncpus != -1)
13153 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13154 		else
13155 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13156 	}
13157 
13158 	ipst->ips_idl_tx_list =
13159 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13160 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13161 		itl_tx =  &ipst->ips_idl_tx_list[i];
13162 		itl_tx->txl_drain_list =
13163 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13164 		    sizeof (idl_t), KM_SLEEP);
13165 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13166 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13167 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13168 			    MUTEX_DEFAULT, NULL);
13169 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13170 		}
13171 	}
13172 }
13173 
13174 static void
13175 conn_drain_fini(ip_stack_t *ipst)
13176 {
13177 	int i;
13178 	idl_tx_list_t *itl_tx;
13179 
13180 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13181 		itl_tx =  &ipst->ips_idl_tx_list[i];
13182 		kmem_free(itl_tx->txl_drain_list,
13183 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13184 	}
13185 	kmem_free(ipst->ips_idl_tx_list,
13186 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13187 	ipst->ips_idl_tx_list = NULL;
13188 }
13189 
13190 /*
13191  * Flow control has blocked us from proceeding.  Insert the given conn in one
13192  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13193  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13194  * will call conn_walk_drain().  See the flow control notes at the top of this
13195  * file for more details.
13196  */
13197 void
13198 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13199 {
13200 	idl_t	*idl = tx_list->txl_drain_list;
13201 	uint_t	index;
13202 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13203 
13204 	mutex_enter(&connp->conn_lock);
13205 	if (connp->conn_state_flags & CONN_CLOSING) {
13206 		/*
13207 		 * The conn is closing as a result of which CONN_CLOSING
13208 		 * is set. Return.
13209 		 */
13210 		mutex_exit(&connp->conn_lock);
13211 		return;
13212 	} else if (connp->conn_idl == NULL) {
13213 		/*
13214 		 * Assign the next drain list round robin. We dont' use
13215 		 * a lock, and thus it may not be strictly round robin.
13216 		 * Atomicity of load/stores is enough to make sure that
13217 		 * conn_drain_list_index is always within bounds.
13218 		 */
13219 		index = tx_list->txl_drain_index;
13220 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13221 		connp->conn_idl = &tx_list->txl_drain_list[index];
13222 		index++;
13223 		if (index == ipst->ips_conn_drain_list_cnt)
13224 			index = 0;
13225 		tx_list->txl_drain_index = index;
13226 	} else {
13227 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13228 	}
13229 	mutex_exit(&connp->conn_lock);
13230 
13231 	idl = connp->conn_idl;
13232 	mutex_enter(&idl->idl_lock);
13233 	if ((connp->conn_drain_prev != NULL) ||
13234 	    (connp->conn_state_flags & CONN_CLOSING)) {
13235 		/*
13236 		 * The conn is either already in the drain list or closing.
13237 		 * (We needed to check for CONN_CLOSING again since close can
13238 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13239 		 */
13240 		mutex_exit(&idl->idl_lock);
13241 		return;
13242 	}
13243 
13244 	/*
13245 	 * The conn is not in the drain list. Insert it at the
13246 	 * tail of the drain list. The drain list is circular
13247 	 * and doubly linked. idl_conn points to the 1st element
13248 	 * in the list.
13249 	 */
13250 	if (idl->idl_conn == NULL) {
13251 		idl->idl_conn = connp;
13252 		connp->conn_drain_next = connp;
13253 		connp->conn_drain_prev = connp;
13254 	} else {
13255 		conn_t *head = idl->idl_conn;
13256 
13257 		connp->conn_drain_next = head;
13258 		connp->conn_drain_prev = head->conn_drain_prev;
13259 		head->conn_drain_prev->conn_drain_next = connp;
13260 		head->conn_drain_prev = connp;
13261 	}
13262 	/*
13263 	 * For non streams based sockets assert flow control.
13264 	 */
13265 	conn_setqfull(connp, NULL);
13266 	mutex_exit(&idl->idl_lock);
13267 }
13268 
13269 static void
13270 conn_drain_remove(conn_t *connp)
13271 {
13272 	idl_t *idl = connp->conn_idl;
13273 
13274 	if (idl != NULL) {
13275 		/*
13276 		 * Remove ourself from the drain list.
13277 		 */
13278 		if (connp->conn_drain_next == connp) {
13279 			/* Singleton in the list */
13280 			ASSERT(connp->conn_drain_prev == connp);
13281 			idl->idl_conn = NULL;
13282 		} else {
13283 			connp->conn_drain_prev->conn_drain_next =
13284 			    connp->conn_drain_next;
13285 			connp->conn_drain_next->conn_drain_prev =
13286 			    connp->conn_drain_prev;
13287 			if (idl->idl_conn == connp)
13288 				idl->idl_conn = connp->conn_drain_next;
13289 		}
13290 
13291 		/*
13292 		 * NOTE: because conn_idl is associated with a specific drain
13293 		 * list which in turn is tied to the index the TX ring
13294 		 * (txl_cookie) hashes to, and because the TX ring can change
13295 		 * over the lifetime of the conn_t, we must clear conn_idl so
13296 		 * a subsequent conn_drain_insert() will set conn_idl again
13297 		 * based on the latest txl_cookie.
13298 		 */
13299 		connp->conn_idl = NULL;
13300 	}
13301 	connp->conn_drain_next = NULL;
13302 	connp->conn_drain_prev = NULL;
13303 
13304 	conn_clrqfull(connp, NULL);
13305 	/*
13306 	 * For streams based sockets open up flow control.
13307 	 */
13308 	if (!IPCL_IS_NONSTR(connp))
13309 		enableok(connp->conn_wq);
13310 }
13311 
13312 /*
13313  * This conn is closing, and we are called from ip_close. OR
13314  * this conn is draining because flow-control on the ill has been relieved.
13315  *
13316  * We must also need to remove conn's on this idl from the list, and also
13317  * inform the sockfs upcalls about the change in flow-control.
13318  */
13319 static void
13320 conn_drain(conn_t *connp, boolean_t closing)
13321 {
13322 	idl_t *idl;
13323 	conn_t *next_connp;
13324 
13325 	/*
13326 	 * connp->conn_idl is stable at this point, and no lock is needed
13327 	 * to check it. If we are called from ip_close, close has already
13328 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13329 	 * called us only because conn_idl is non-null. If we are called thru
13330 	 * service, conn_idl could be null, but it cannot change because
13331 	 * service is single-threaded per queue, and there cannot be another
13332 	 * instance of service trying to call conn_drain_insert on this conn
13333 	 * now.
13334 	 */
13335 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13336 
13337 	/*
13338 	 * If the conn doesn't exist or is not on a drain list, bail.
13339 	 */
13340 	if (connp == NULL || connp->conn_idl == NULL ||
13341 	    connp->conn_drain_prev == NULL) {
13342 		return;
13343 	}
13344 
13345 	idl = connp->conn_idl;
13346 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13347 
13348 	if (!closing) {
13349 		next_connp = connp->conn_drain_next;
13350 		while (next_connp != connp) {
13351 			conn_t *delconnp = next_connp;
13352 
13353 			next_connp = next_connp->conn_drain_next;
13354 			conn_drain_remove(delconnp);
13355 		}
13356 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13357 	}
13358 	conn_drain_remove(connp);
13359 }
13360 
13361 /*
13362  * Write service routine. Shared perimeter entry point.
13363  * The device queue's messages has fallen below the low water mark and STREAMS
13364  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13365  * each waiting conn.
13366  */
13367 int
13368 ip_wsrv(queue_t *q)
13369 {
13370 	ill_t	*ill;
13371 
13372 	ill = (ill_t *)q->q_ptr;
13373 	if (ill->ill_state_flags == 0) {
13374 		ip_stack_t *ipst = ill->ill_ipst;
13375 
13376 		/*
13377 		 * The device flow control has opened up.
13378 		 * Walk through conn drain lists and qenable the
13379 		 * first conn in each list. This makes sense only
13380 		 * if the stream is fully plumbed and setup.
13381 		 * Hence the ill_state_flags check above.
13382 		 */
13383 		ip1dbg(("ip_wsrv: walking\n"));
13384 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13385 		enableok(ill->ill_wq);
13386 	}
13387 	return (0);
13388 }
13389 
13390 /*
13391  * Callback to disable flow control in IP.
13392  *
13393  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13394  * is enabled.
13395  *
13396  * When MAC_TX() is not able to send any more packets, dld sets its queue
13397  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13398  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13399  * function and wakes up corresponding mac worker threads, which in turn
13400  * calls this callback function, and disables flow control.
13401  */
13402 void
13403 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13404 {
13405 	ill_t *ill = (ill_t *)arg;
13406 	ip_stack_t *ipst = ill->ill_ipst;
13407 	idl_tx_list_t *idl_txl;
13408 
13409 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13410 	mutex_enter(&idl_txl->txl_lock);
13411 	/* add code to to set a flag to indicate idl_txl is enabled */
13412 	conn_walk_drain(ipst, idl_txl);
13413 	mutex_exit(&idl_txl->txl_lock);
13414 }
13415 
13416 /*
13417  * Flow control has been relieved and STREAMS has backenabled us; drain
13418  * all the conn lists on `tx_list'.
13419  */
13420 static void
13421 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13422 {
13423 	int i;
13424 	idl_t *idl;
13425 
13426 	IP_STAT(ipst, ip_conn_walk_drain);
13427 
13428 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13429 		idl = &tx_list->txl_drain_list[i];
13430 		mutex_enter(&idl->idl_lock);
13431 		conn_drain(idl->idl_conn, B_FALSE);
13432 		mutex_exit(&idl->idl_lock);
13433 	}
13434 }
13435 
13436 /*
13437  * Determine if the ill and multicast aspects of that packets
13438  * "matches" the conn.
13439  */
13440 boolean_t
13441 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13442 {
13443 	ill_t		*ill = ira->ira_rill;
13444 	zoneid_t	zoneid = ira->ira_zoneid;
13445 	uint_t		in_ifindex;
13446 	ipaddr_t	dst, src;
13447 
13448 	dst = ipha->ipha_dst;
13449 	src = ipha->ipha_src;
13450 
13451 	/*
13452 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13453 	 * unicast, broadcast and multicast reception to
13454 	 * conn_incoming_ifindex.
13455 	 * conn_wantpacket is called for unicast, broadcast and
13456 	 * multicast packets.
13457 	 */
13458 	in_ifindex = connp->conn_incoming_ifindex;
13459 
13460 	/* mpathd can bind to the under IPMP interface, which we allow */
13461 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13462 		if (!IS_UNDER_IPMP(ill))
13463 			return (B_FALSE);
13464 
13465 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13466 			return (B_FALSE);
13467 	}
13468 
13469 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13470 		return (B_FALSE);
13471 
13472 	if (!(ira->ira_flags & IRAF_MULTICAST))
13473 		return (B_TRUE);
13474 
13475 	if (connp->conn_multi_router) {
13476 		/* multicast packet and multicast router socket: send up */
13477 		return (B_TRUE);
13478 	}
13479 
13480 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13481 	    ipha->ipha_protocol == IPPROTO_RSVP)
13482 		return (B_TRUE);
13483 
13484 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13485 }
13486 
13487 void
13488 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13489 {
13490 	if (IPCL_IS_NONSTR(connp)) {
13491 		(*connp->conn_upcalls->su_txq_full)
13492 		    (connp->conn_upper_handle, B_TRUE);
13493 		if (flow_stopped != NULL)
13494 			*flow_stopped = B_TRUE;
13495 	} else {
13496 		queue_t *q = connp->conn_wq;
13497 
13498 		ASSERT(q != NULL);
13499 		if (!(q->q_flag & QFULL)) {
13500 			mutex_enter(QLOCK(q));
13501 			if (!(q->q_flag & QFULL)) {
13502 				/* still need to set QFULL */
13503 				q->q_flag |= QFULL;
13504 				/* set flow_stopped to true under QLOCK */
13505 				if (flow_stopped != NULL)
13506 					*flow_stopped = B_TRUE;
13507 				mutex_exit(QLOCK(q));
13508 			} else {
13509 				/* flow_stopped is left unchanged */
13510 				mutex_exit(QLOCK(q));
13511 			}
13512 		}
13513 	}
13514 }
13515 
13516 void
13517 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13518 {
13519 	if (IPCL_IS_NONSTR(connp)) {
13520 		(*connp->conn_upcalls->su_txq_full)
13521 		    (connp->conn_upper_handle, B_FALSE);
13522 		if (flow_stopped != NULL)
13523 			*flow_stopped = B_FALSE;
13524 	} else {
13525 		queue_t *q = connp->conn_wq;
13526 
13527 		ASSERT(q != NULL);
13528 		if (q->q_flag & QFULL) {
13529 			mutex_enter(QLOCK(q));
13530 			if (q->q_flag & QFULL) {
13531 				q->q_flag &= ~QFULL;
13532 				/* set flow_stopped to false under QLOCK */
13533 				if (flow_stopped != NULL)
13534 					*flow_stopped = B_FALSE;
13535 				mutex_exit(QLOCK(q));
13536 				if (q->q_flag & QWANTW)
13537 					qbackenable(q, 0);
13538 			} else {
13539 				/* flow_stopped is left unchanged */
13540 				mutex_exit(QLOCK(q));
13541 			}
13542 		}
13543 	}
13544 
13545 	mutex_enter(&connp->conn_lock);
13546 	connp->conn_blocked = B_FALSE;
13547 	mutex_exit(&connp->conn_lock);
13548 }
13549 
13550 /*
13551  * Return the length in bytes of the IPv4 headers (base header, label, and
13552  * other IP options) that will be needed based on the
13553  * ip_pkt_t structure passed by the caller.
13554  *
13555  * The returned length does not include the length of the upper level
13556  * protocol (ULP) header.
13557  * The caller needs to check that the length doesn't exceed the max for IPv4.
13558  */
13559 int
13560 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13561 {
13562 	int len;
13563 
13564 	len = IP_SIMPLE_HDR_LENGTH;
13565 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13566 		ASSERT(ipp->ipp_label_len_v4 != 0);
13567 		/* We need to round up here */
13568 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13569 	}
13570 
13571 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13572 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13573 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13574 		len += ipp->ipp_ipv4_options_len;
13575 	}
13576 	return (len);
13577 }
13578 
13579 /*
13580  * All-purpose routine to build an IPv4 header with options based
13581  * on the abstract ip_pkt_t.
13582  *
13583  * The caller has to set the source and destination address as well as
13584  * ipha_length. The caller has to massage any source route and compensate
13585  * for the ULP pseudo-header checksum due to the source route.
13586  */
13587 void
13588 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13589     uint8_t protocol)
13590 {
13591 	ipha_t	*ipha = (ipha_t *)buf;
13592 	uint8_t *cp;
13593 
13594 	/* Initialize IPv4 header */
13595 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13596 	ipha->ipha_length = 0;	/* Caller will set later */
13597 	ipha->ipha_ident = 0;
13598 	ipha->ipha_fragment_offset_and_flags = 0;
13599 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13600 	ipha->ipha_protocol = protocol;
13601 	ipha->ipha_hdr_checksum = 0;
13602 
13603 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13604 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13605 		ipha->ipha_src = ipp->ipp_addr_v4;
13606 
13607 	cp = (uint8_t *)&ipha[1];
13608 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13609 		ASSERT(ipp->ipp_label_len_v4 != 0);
13610 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13611 		cp += ipp->ipp_label_len_v4;
13612 		/* We need to round up here */
13613 		while ((uintptr_t)cp & 0x3) {
13614 			*cp++ = IPOPT_NOP;
13615 		}
13616 	}
13617 
13618 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13619 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13620 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13621 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13622 		cp += ipp->ipp_ipv4_options_len;
13623 	}
13624 	ipha->ipha_version_and_hdr_length =
13625 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13626 
13627 	ASSERT((int)(cp - buf) == buf_len);
13628 }
13629 
13630 /* Allocate the private structure */
13631 static int
13632 ip_priv_alloc(void **bufp)
13633 {
13634 	void	*buf;
13635 
13636 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13637 		return (ENOMEM);
13638 
13639 	*bufp = buf;
13640 	return (0);
13641 }
13642 
13643 /* Function to delete the private structure */
13644 void
13645 ip_priv_free(void *buf)
13646 {
13647 	ASSERT(buf != NULL);
13648 	kmem_free(buf, sizeof (ip_priv_t));
13649 }
13650 
13651 /*
13652  * The entry point for IPPF processing.
13653  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13654  * routine just returns.
13655  *
13656  * When called, ip_process generates an ipp_packet_t structure
13657  * which holds the state information for this packet and invokes the
13658  * the classifier (via ipp_packet_process). The classification, depending on
13659  * configured filters, results in a list of actions for this packet. Invoking
13660  * an action may cause the packet to be dropped, in which case we return NULL.
13661  * proc indicates the callout position for
13662  * this packet and ill is the interface this packet arrived on or will leave
13663  * on (inbound and outbound resp.).
13664  *
13665  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13666  * on the ill corrsponding to the destination IP address.
13667  */
13668 mblk_t *
13669 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13670 {
13671 	ip_priv_t	*priv;
13672 	ipp_action_id_t	aid;
13673 	int		rc = 0;
13674 	ipp_packet_t	*pp;
13675 
13676 	/* If the classifier is not loaded, return  */
13677 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13678 		return (mp);
13679 	}
13680 
13681 	ASSERT(mp != NULL);
13682 
13683 	/* Allocate the packet structure */
13684 	rc = ipp_packet_alloc(&pp, "ip", aid);
13685 	if (rc != 0)
13686 		goto drop;
13687 
13688 	/* Allocate the private structure */
13689 	rc = ip_priv_alloc((void **)&priv);
13690 	if (rc != 0) {
13691 		ipp_packet_free(pp);
13692 		goto drop;
13693 	}
13694 	priv->proc = proc;
13695 	priv->ill_index = ill_get_upper_ifindex(rill);
13696 
13697 	ipp_packet_set_private(pp, priv, ip_priv_free);
13698 	ipp_packet_set_data(pp, mp);
13699 
13700 	/* Invoke the classifier */
13701 	rc = ipp_packet_process(&pp);
13702 	if (pp != NULL) {
13703 		mp = ipp_packet_get_data(pp);
13704 		ipp_packet_free(pp);
13705 		if (rc != 0)
13706 			goto drop;
13707 		return (mp);
13708 	} else {
13709 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13710 		mp = NULL;
13711 	}
13712 drop:
13713 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13714 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13715 		ip_drop_input("ip_process", mp, ill);
13716 	} else {
13717 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13718 		ip_drop_output("ip_process", mp, ill);
13719 	}
13720 	freemsg(mp);
13721 	return (NULL);
13722 }
13723 
13724 /*
13725  * Propagate a multicast group membership operation (add/drop) on
13726  * all the interfaces crossed by the related multirt routes.
13727  * The call is considered successful if the operation succeeds
13728  * on at least one interface.
13729  *
13730  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13731  * multicast addresses with the ire argument being the first one.
13732  * We walk the bucket to find all the of those.
13733  *
13734  * Common to IPv4 and IPv6.
13735  */
13736 static int
13737 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13738     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13739     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13740     mcast_record_t fmode, const in6_addr_t *v6src)
13741 {
13742 	ire_t		*ire_gw;
13743 	irb_t		*irb;
13744 	int		ifindex;
13745 	int		error = 0;
13746 	int		result;
13747 	ip_stack_t	*ipst = ire->ire_ipst;
13748 	ipaddr_t	group;
13749 	boolean_t	isv6;
13750 	int		match_flags;
13751 
13752 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13753 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13754 		isv6 = B_FALSE;
13755 	} else {
13756 		isv6 = B_TRUE;
13757 	}
13758 
13759 	irb = ire->ire_bucket;
13760 	ASSERT(irb != NULL);
13761 
13762 	result = 0;
13763 	irb_refhold(irb);
13764 	for (; ire != NULL; ire = ire->ire_next) {
13765 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13766 			continue;
13767 
13768 		/* We handle -ifp routes by matching on the ill if set */
13769 		match_flags = MATCH_IRE_TYPE;
13770 		if (ire->ire_ill != NULL)
13771 			match_flags |= MATCH_IRE_ILL;
13772 
13773 		if (isv6) {
13774 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13775 				continue;
13776 
13777 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13778 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13779 			    match_flags, 0, ipst, NULL);
13780 		} else {
13781 			if (ire->ire_addr != group)
13782 				continue;
13783 
13784 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13785 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13786 			    match_flags, 0, ipst, NULL);
13787 		}
13788 		/* No interface route exists for the gateway; skip this ire. */
13789 		if (ire_gw == NULL)
13790 			continue;
13791 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13792 			ire_refrele(ire_gw);
13793 			continue;
13794 		}
13795 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13796 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13797 
13798 		/*
13799 		 * The operation is considered a success if
13800 		 * it succeeds at least once on any one interface.
13801 		 */
13802 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13803 		    fmode, v6src);
13804 		if (error == 0)
13805 			result = CGTP_MCAST_SUCCESS;
13806 
13807 		ire_refrele(ire_gw);
13808 	}
13809 	irb_refrele(irb);
13810 	/*
13811 	 * Consider the call as successful if we succeeded on at least
13812 	 * one interface. Otherwise, return the last encountered error.
13813 	 */
13814 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13815 }
13816 
13817 /*
13818  * Return the expected CGTP hooks version number.
13819  */
13820 int
13821 ip_cgtp_filter_supported(void)
13822 {
13823 	return (ip_cgtp_filter_rev);
13824 }
13825 
13826 /*
13827  * CGTP hooks can be registered by invoking this function.
13828  * Checks that the version number matches.
13829  */
13830 int
13831 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13832 {
13833 	netstack_t *ns;
13834 	ip_stack_t *ipst;
13835 
13836 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13837 		return (ENOTSUP);
13838 
13839 	ns = netstack_find_by_stackid(stackid);
13840 	if (ns == NULL)
13841 		return (EINVAL);
13842 	ipst = ns->netstack_ip;
13843 	ASSERT(ipst != NULL);
13844 
13845 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13846 		netstack_rele(ns);
13847 		return (EALREADY);
13848 	}
13849 
13850 	ipst->ips_ip_cgtp_filter_ops = ops;
13851 
13852 	ill_set_inputfn_all(ipst);
13853 
13854 	netstack_rele(ns);
13855 	return (0);
13856 }
13857 
13858 /*
13859  * CGTP hooks can be unregistered by invoking this function.
13860  * Returns ENXIO if there was no registration.
13861  * Returns EBUSY if the ndd variable has not been turned off.
13862  */
13863 int
13864 ip_cgtp_filter_unregister(netstackid_t stackid)
13865 {
13866 	netstack_t *ns;
13867 	ip_stack_t *ipst;
13868 
13869 	ns = netstack_find_by_stackid(stackid);
13870 	if (ns == NULL)
13871 		return (EINVAL);
13872 	ipst = ns->netstack_ip;
13873 	ASSERT(ipst != NULL);
13874 
13875 	if (ipst->ips_ip_cgtp_filter) {
13876 		netstack_rele(ns);
13877 		return (EBUSY);
13878 	}
13879 
13880 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13881 		netstack_rele(ns);
13882 		return (ENXIO);
13883 	}
13884 	ipst->ips_ip_cgtp_filter_ops = NULL;
13885 
13886 	ill_set_inputfn_all(ipst);
13887 
13888 	netstack_rele(ns);
13889 	return (0);
13890 }
13891 
13892 /*
13893  * Check whether there is a CGTP filter registration.
13894  * Returns non-zero if there is a registration, otherwise returns zero.
13895  * Note: returns zero if bad stackid.
13896  */
13897 int
13898 ip_cgtp_filter_is_registered(netstackid_t stackid)
13899 {
13900 	netstack_t *ns;
13901 	ip_stack_t *ipst;
13902 	int ret;
13903 
13904 	ns = netstack_find_by_stackid(stackid);
13905 	if (ns == NULL)
13906 		return (0);
13907 	ipst = ns->netstack_ip;
13908 	ASSERT(ipst != NULL);
13909 
13910 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13911 		ret = 1;
13912 	else
13913 		ret = 0;
13914 
13915 	netstack_rele(ns);
13916 	return (ret);
13917 }
13918 
13919 static int
13920 ip_squeue_switch(int val)
13921 {
13922 	int rval;
13923 
13924 	switch (val) {
13925 	case IP_SQUEUE_ENTER_NODRAIN:
13926 		rval = SQ_NODRAIN;
13927 		break;
13928 	case IP_SQUEUE_ENTER:
13929 		rval = SQ_PROCESS;
13930 		break;
13931 	case IP_SQUEUE_FILL:
13932 	default:
13933 		rval = SQ_FILL;
13934 		break;
13935 	}
13936 	return (rval);
13937 }
13938 
13939 static void *
13940 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13941 {
13942 	kstat_t *ksp;
13943 
13944 	ip_stat_t template = {
13945 		{ "ip_udp_fannorm",		KSTAT_DATA_UINT64 },
13946 		{ "ip_udp_fanmb",		KSTAT_DATA_UINT64 },
13947 		{ "ip_recv_pullup",		KSTAT_DATA_UINT64 },
13948 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13949 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13950 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13951 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13952 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13953 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13954 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13955 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13956 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13957 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13958 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13959 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13960 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13961 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13962 		{ "ip_nce_mcast_reclaim_calls",	KSTAT_DATA_UINT64 },
13963 		{ "ip_nce_mcast_reclaim_deleted",	KSTAT_DATA_UINT64 },
13964 		{ "ip_nce_mcast_reclaim_tqfail",	KSTAT_DATA_UINT64 },
13965 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13966 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13967 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13968 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13969 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13970 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13971 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13972 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13973 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13974 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13975 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13976 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13977 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13978 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13979 		{ "conn_in_recvtos",		KSTAT_DATA_UINT64 },
13980 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13981 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13982 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13983 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13984 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13985 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13986 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13987 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13988 	};
13989 
13990 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13991 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13992 	    KSTAT_FLAG_VIRTUAL, stackid);
13993 
13994 	if (ksp == NULL)
13995 		return (NULL);
13996 
13997 	bcopy(&template, ip_statisticsp, sizeof (template));
13998 	ksp->ks_data = (void *)ip_statisticsp;
13999 	ksp->ks_private = (void *)(uintptr_t)stackid;
14000 
14001 	kstat_install(ksp);
14002 	return (ksp);
14003 }
14004 
14005 static void
14006 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
14007 {
14008 	if (ksp != NULL) {
14009 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14010 		kstat_delete_netstack(ksp, stackid);
14011 	}
14012 }
14013 
14014 static void *
14015 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
14016 {
14017 	kstat_t	*ksp;
14018 
14019 	ip_named_kstat_t template = {
14020 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
14021 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
14022 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
14023 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
14024 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
14025 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
14026 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
14027 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
14028 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
14029 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
14030 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
14031 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
14032 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
14033 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
14034 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
14035 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
14036 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
14037 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
14038 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
14039 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
14040 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
14041 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
14042 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
14043 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
14044 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
14045 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
14046 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
14047 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
14048 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
14049 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
14050 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
14051 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
14052 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
14053 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
14054 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
14055 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
14056 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14057 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14058 	};
14059 
14060 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14061 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14062 	if (ksp == NULL || ksp->ks_data == NULL)
14063 		return (NULL);
14064 
14065 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14066 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14067 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14068 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14069 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14070 
14071 	template.netToMediaEntrySize.value.i32 =
14072 	    sizeof (mib2_ipNetToMediaEntry_t);
14073 
14074 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14075 
14076 	bcopy(&template, ksp->ks_data, sizeof (template));
14077 	ksp->ks_update = ip_kstat_update;
14078 	ksp->ks_private = (void *)(uintptr_t)stackid;
14079 
14080 	kstat_install(ksp);
14081 	return (ksp);
14082 }
14083 
14084 static void
14085 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14086 {
14087 	if (ksp != NULL) {
14088 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14089 		kstat_delete_netstack(ksp, stackid);
14090 	}
14091 }
14092 
14093 static int
14094 ip_kstat_update(kstat_t *kp, int rw)
14095 {
14096 	ip_named_kstat_t *ipkp;
14097 	mib2_ipIfStatsEntry_t ipmib;
14098 	ill_walk_context_t ctx;
14099 	ill_t *ill;
14100 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14101 	netstack_t	*ns;
14102 	ip_stack_t	*ipst;
14103 
14104 	if (kp->ks_data == NULL)
14105 		return (EIO);
14106 
14107 	if (rw == KSTAT_WRITE)
14108 		return (EACCES);
14109 
14110 	ns = netstack_find_by_stackid(stackid);
14111 	if (ns == NULL)
14112 		return (-1);
14113 	ipst = ns->netstack_ip;
14114 	if (ipst == NULL) {
14115 		netstack_rele(ns);
14116 		return (-1);
14117 	}
14118 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14119 
14120 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14121 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14122 	ill = ILL_START_WALK_V4(&ctx, ipst);
14123 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14124 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14125 	rw_exit(&ipst->ips_ill_g_lock);
14126 
14127 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14128 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14129 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14130 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14131 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14132 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14133 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14134 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14135 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14136 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14137 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14138 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14139 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14140 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14141 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14142 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14143 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14144 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14145 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14146 
14147 	ipkp->routingDiscards.value.ui32 =	0;
14148 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14149 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14150 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14151 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14152 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14153 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14154 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14155 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14156 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14157 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14158 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14159 
14160 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14161 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14162 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14163 
14164 	netstack_rele(ns);
14165 
14166 	return (0);
14167 }
14168 
14169 static void *
14170 icmp_kstat_init(netstackid_t stackid)
14171 {
14172 	kstat_t	*ksp;
14173 
14174 	icmp_named_kstat_t template = {
14175 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14176 		{ "inErrors",		KSTAT_DATA_UINT32 },
14177 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14178 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14179 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14180 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14181 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14182 		{ "inEchos",		KSTAT_DATA_UINT32 },
14183 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14184 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14185 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14186 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14187 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14188 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14189 		{ "outErrors",		KSTAT_DATA_UINT32 },
14190 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14191 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14192 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14193 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14194 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14195 		{ "outEchos",		KSTAT_DATA_UINT32 },
14196 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14197 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14198 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14199 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14200 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14201 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14202 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14203 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14204 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14205 		{ "outDrops",		KSTAT_DATA_UINT32 },
14206 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14207 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14208 	};
14209 
14210 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14211 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14212 	if (ksp == NULL || ksp->ks_data == NULL)
14213 		return (NULL);
14214 
14215 	bcopy(&template, ksp->ks_data, sizeof (template));
14216 
14217 	ksp->ks_update = icmp_kstat_update;
14218 	ksp->ks_private = (void *)(uintptr_t)stackid;
14219 
14220 	kstat_install(ksp);
14221 	return (ksp);
14222 }
14223 
14224 static void
14225 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14226 {
14227 	if (ksp != NULL) {
14228 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14229 		kstat_delete_netstack(ksp, stackid);
14230 	}
14231 }
14232 
14233 static int
14234 icmp_kstat_update(kstat_t *kp, int rw)
14235 {
14236 	icmp_named_kstat_t *icmpkp;
14237 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14238 	netstack_t	*ns;
14239 	ip_stack_t	*ipst;
14240 
14241 	if (kp->ks_data == NULL)
14242 		return (EIO);
14243 
14244 	if (rw == KSTAT_WRITE)
14245 		return (EACCES);
14246 
14247 	ns = netstack_find_by_stackid(stackid);
14248 	if (ns == NULL)
14249 		return (-1);
14250 	ipst = ns->netstack_ip;
14251 	if (ipst == NULL) {
14252 		netstack_rele(ns);
14253 		return (-1);
14254 	}
14255 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14256 
14257 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14258 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14259 	icmpkp->inDestUnreachs.value.ui32 =
14260 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14261 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14262 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14263 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14264 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14265 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14266 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14267 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14268 	icmpkp->inTimestampReps.value.ui32 =
14269 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14270 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14271 	icmpkp->inAddrMaskReps.value.ui32 =
14272 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14273 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14274 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14275 	icmpkp->outDestUnreachs.value.ui32 =
14276 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14277 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14278 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14279 	icmpkp->outSrcQuenchs.value.ui32 =
14280 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14281 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14282 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14283 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14284 	icmpkp->outTimestamps.value.ui32 =
14285 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14286 	icmpkp->outTimestampReps.value.ui32 =
14287 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14288 	icmpkp->outAddrMasks.value.ui32 =
14289 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14290 	icmpkp->outAddrMaskReps.value.ui32 =
14291 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14292 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14293 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14294 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14295 	icmpkp->outFragNeeded.value.ui32 =
14296 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14297 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14298 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14299 	icmpkp->inBadRedirects.value.ui32 =
14300 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14301 
14302 	netstack_rele(ns);
14303 	return (0);
14304 }
14305 
14306 /*
14307  * This is the fanout function for raw socket opened for SCTP.  Note
14308  * that it is called after SCTP checks that there is no socket which
14309  * wants a packet.  Then before SCTP handles this out of the blue packet,
14310  * this function is called to see if there is any raw socket for SCTP.
14311  * If there is and it is bound to the correct address, the packet will
14312  * be sent to that socket.  Note that only one raw socket can be bound to
14313  * a port.  This is assured in ipcl_sctp_hash_insert();
14314  */
14315 void
14316 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14317     ip_recv_attr_t *ira)
14318 {
14319 	conn_t		*connp;
14320 	queue_t		*rq;
14321 	boolean_t	secure;
14322 	ill_t		*ill = ira->ira_ill;
14323 	ip_stack_t	*ipst = ill->ill_ipst;
14324 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14325 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14326 	iaflags_t	iraflags = ira->ira_flags;
14327 	ill_t		*rill = ira->ira_rill;
14328 
14329 	secure = iraflags & IRAF_IPSEC_SECURE;
14330 
14331 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14332 	    ira, ipst);
14333 	if (connp == NULL) {
14334 		/*
14335 		 * Although raw sctp is not summed, OOB chunks must be.
14336 		 * Drop the packet here if the sctp checksum failed.
14337 		 */
14338 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14339 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14340 			freemsg(mp);
14341 			return;
14342 		}
14343 		ira->ira_ill = ira->ira_rill = NULL;
14344 		sctp_ootb_input(mp, ira, ipst);
14345 		ira->ira_ill = ill;
14346 		ira->ira_rill = rill;
14347 		return;
14348 	}
14349 	rq = connp->conn_rq;
14350 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14351 		CONN_DEC_REF(connp);
14352 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14353 		freemsg(mp);
14354 		return;
14355 	}
14356 	if (((iraflags & IRAF_IS_IPV4) ?
14357 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14358 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14359 	    secure) {
14360 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14361 		    ip6h, ira);
14362 		if (mp == NULL) {
14363 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14364 			/* Note that mp is NULL */
14365 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14366 			CONN_DEC_REF(connp);
14367 			return;
14368 		}
14369 	}
14370 
14371 	if (iraflags & IRAF_ICMP_ERROR) {
14372 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14373 	} else {
14374 		ill_t *rill = ira->ira_rill;
14375 
14376 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14377 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14378 		ira->ira_ill = ira->ira_rill = NULL;
14379 		(connp->conn_recv)(connp, mp, NULL, ira);
14380 		ira->ira_ill = ill;
14381 		ira->ira_rill = rill;
14382 	}
14383 	CONN_DEC_REF(connp);
14384 }
14385 
14386 /*
14387  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14388  * header before the ip payload.
14389  */
14390 static void
14391 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14392 {
14393 	int len = (mp->b_wptr - mp->b_rptr);
14394 	mblk_t *ip_mp;
14395 
14396 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14397 	if (is_fp_mp || len != fp_mp_len) {
14398 		if (len > fp_mp_len) {
14399 			/*
14400 			 * fastpath header and ip header in the first mblk
14401 			 */
14402 			mp->b_rptr += fp_mp_len;
14403 		} else {
14404 			/*
14405 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14406 			 * attach the fastpath header before ip header.
14407 			 */
14408 			ip_mp = mp->b_cont;
14409 			freeb(mp);
14410 			mp = ip_mp;
14411 			mp->b_rptr += (fp_mp_len - len);
14412 		}
14413 	} else {
14414 		ip_mp = mp->b_cont;
14415 		freeb(mp);
14416 		mp = ip_mp;
14417 	}
14418 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14419 	freemsg(mp);
14420 }
14421 
14422 /*
14423  * Normal post fragmentation function.
14424  *
14425  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14426  * using the same state machine.
14427  *
14428  * We return an error on failure. In particular we return EWOULDBLOCK
14429  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14430  * (currently by canputnext failure resulting in backenabling from GLD.)
14431  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14432  * indication that they can flow control until ip_wsrv() tells then to restart.
14433  *
14434  * If the nce passed by caller is incomplete, this function
14435  * queues the packet and if necessary, sends ARP request and bails.
14436  * If the Neighbor Cache passed is fully resolved, we simply prepend
14437  * the link-layer header to the packet, do ipsec hw acceleration
14438  * work if necessary, and send the packet out on the wire.
14439  */
14440 /* ARGSUSED6 */
14441 int
14442 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14443     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14444 {
14445 	queue_t		*wq;
14446 	ill_t		*ill = nce->nce_ill;
14447 	ip_stack_t	*ipst = ill->ill_ipst;
14448 	uint64_t	delta;
14449 	boolean_t	isv6 = ill->ill_isv6;
14450 	boolean_t	fp_mp;
14451 	ncec_t		*ncec = nce->nce_common;
14452 	int64_t		now = LBOLT_FASTPATH64;
14453 	boolean_t	is_probe;
14454 
14455 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14456 
14457 	ASSERT(mp != NULL);
14458 	ASSERT(mp->b_datap->db_type == M_DATA);
14459 	ASSERT(pkt_len == msgdsize(mp));
14460 
14461 	/*
14462 	 * If we have already been here and are coming back after ARP/ND.
14463 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14464 	 * in that case since they have seen the packet when it came here
14465 	 * the first time.
14466 	 */
14467 	if (ixaflags & IXAF_NO_TRACE)
14468 		goto sendit;
14469 
14470 	if (ixaflags & IXAF_IS_IPV4) {
14471 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14472 
14473 		ASSERT(!isv6);
14474 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14475 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14476 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14477 			int	error;
14478 
14479 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14480 			    ipst->ips_ipv4firewall_physical_out,
14481 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14482 			DTRACE_PROBE1(ip4__physical__out__end,
14483 			    mblk_t *, mp);
14484 			if (mp == NULL)
14485 				return (error);
14486 
14487 			/* The length could have changed */
14488 			pkt_len = msgdsize(mp);
14489 		}
14490 		if (ipst->ips_ip4_observe.he_interested) {
14491 			/*
14492 			 * Note that for TX the zoneid is the sending
14493 			 * zone, whether or not MLP is in play.
14494 			 * Since the szone argument is the IP zoneid (i.e.,
14495 			 * zero for exclusive-IP zones) and ipobs wants
14496 			 * the system zoneid, we map it here.
14497 			 */
14498 			szone = IP_REAL_ZONEID(szone, ipst);
14499 
14500 			/*
14501 			 * On the outbound path the destination zone will be
14502 			 * unknown as we're sending this packet out on the
14503 			 * wire.
14504 			 */
14505 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14506 			    ill, ipst);
14507 		}
14508 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14509 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14510 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14511 	} else {
14512 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14513 
14514 		ASSERT(isv6);
14515 		ASSERT(pkt_len ==
14516 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14517 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14518 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14519 			int	error;
14520 
14521 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14522 			    ipst->ips_ipv6firewall_physical_out,
14523 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14524 			DTRACE_PROBE1(ip6__physical__out__end,
14525 			    mblk_t *, mp);
14526 			if (mp == NULL)
14527 				return (error);
14528 
14529 			/* The length could have changed */
14530 			pkt_len = msgdsize(mp);
14531 		}
14532 		if (ipst->ips_ip6_observe.he_interested) {
14533 			/* See above */
14534 			szone = IP_REAL_ZONEID(szone, ipst);
14535 
14536 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14537 			    ill, ipst);
14538 		}
14539 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14540 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14541 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14542 	}
14543 
14544 sendit:
14545 	/*
14546 	 * We check the state without a lock because the state can never
14547 	 * move "backwards" to initial or incomplete.
14548 	 */
14549 	switch (ncec->ncec_state) {
14550 	case ND_REACHABLE:
14551 	case ND_STALE:
14552 	case ND_DELAY:
14553 	case ND_PROBE:
14554 		mp = ip_xmit_attach_llhdr(mp, nce);
14555 		if (mp == NULL) {
14556 			/*
14557 			 * ip_xmit_attach_llhdr has increased
14558 			 * ipIfStatsOutDiscards and called ip_drop_output()
14559 			 */
14560 			return (ENOBUFS);
14561 		}
14562 		/*
14563 		 * check if nce_fastpath completed and we tagged on a
14564 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14565 		 */
14566 		fp_mp = (mp->b_datap->db_type == M_DATA);
14567 
14568 		if (fp_mp &&
14569 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14570 			ill_dld_direct_t *idd;
14571 
14572 			idd = &ill->ill_dld_capab->idc_direct;
14573 			/*
14574 			 * Send the packet directly to DLD, where it
14575 			 * may be queued depending on the availability
14576 			 * of transmit resources at the media layer.
14577 			 * Return value should be taken into
14578 			 * account and flow control the TCP.
14579 			 */
14580 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14581 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14582 			    pkt_len);
14583 
14584 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14585 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14586 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14587 			} else {
14588 				uintptr_t cookie;
14589 
14590 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14591 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14592 					if (ixacookie != NULL)
14593 						*ixacookie = cookie;
14594 					return (EWOULDBLOCK);
14595 				}
14596 			}
14597 		} else {
14598 			wq = ill->ill_wq;
14599 
14600 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14601 			    !canputnext(wq)) {
14602 				if (ixacookie != NULL)
14603 					*ixacookie = 0;
14604 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14605 				    nce->nce_fp_mp != NULL ?
14606 				    MBLKL(nce->nce_fp_mp) : 0);
14607 				return (EWOULDBLOCK);
14608 			}
14609 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14610 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14611 			    pkt_len);
14612 			putnext(wq, mp);
14613 		}
14614 
14615 		/*
14616 		 * The rest of this function implements Neighbor Unreachability
14617 		 * detection. Determine if the ncec is eligible for NUD.
14618 		 */
14619 		if (ncec->ncec_flags & NCE_F_NONUD)
14620 			return (0);
14621 
14622 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14623 
14624 		/*
14625 		 * Check for upper layer advice
14626 		 */
14627 		if (ixaflags & IXAF_REACH_CONF) {
14628 			timeout_id_t tid;
14629 
14630 			/*
14631 			 * It should be o.k. to check the state without
14632 			 * a lock here, at most we lose an advice.
14633 			 */
14634 			ncec->ncec_last = TICK_TO_MSEC(now);
14635 			if (ncec->ncec_state != ND_REACHABLE) {
14636 				mutex_enter(&ncec->ncec_lock);
14637 				ncec->ncec_state = ND_REACHABLE;
14638 				tid = ncec->ncec_timeout_id;
14639 				ncec->ncec_timeout_id = 0;
14640 				mutex_exit(&ncec->ncec_lock);
14641 				(void) untimeout(tid);
14642 				if (ip_debug > 2) {
14643 					/* ip1dbg */
14644 					pr_addr_dbg("ip_xmit: state"
14645 					    " for %s changed to"
14646 					    " REACHABLE\n", AF_INET6,
14647 					    &ncec->ncec_addr);
14648 				}
14649 			}
14650 			return (0);
14651 		}
14652 
14653 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14654 		ip1dbg(("ip_xmit: delta = %" PRId64
14655 		    " ill_reachable_time = %d \n", delta,
14656 		    ill->ill_reachable_time));
14657 		if (delta > (uint64_t)ill->ill_reachable_time) {
14658 			mutex_enter(&ncec->ncec_lock);
14659 			switch (ncec->ncec_state) {
14660 			case ND_REACHABLE:
14661 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14662 				/* FALLTHROUGH */
14663 			case ND_STALE:
14664 				/*
14665 				 * ND_REACHABLE is identical to
14666 				 * ND_STALE in this specific case. If
14667 				 * reachable time has expired for this
14668 				 * neighbor (delta is greater than
14669 				 * reachable time), conceptually, the
14670 				 * neighbor cache is no longer in
14671 				 * REACHABLE state, but already in
14672 				 * STALE state.  So the correct
14673 				 * transition here is to ND_DELAY.
14674 				 */
14675 				ncec->ncec_state = ND_DELAY;
14676 				mutex_exit(&ncec->ncec_lock);
14677 				nce_restart_timer(ncec,
14678 				    ipst->ips_delay_first_probe_time);
14679 				if (ip_debug > 3) {
14680 					/* ip2dbg */
14681 					pr_addr_dbg("ip_xmit: state"
14682 					    " for %s changed to"
14683 					    " DELAY\n", AF_INET6,
14684 					    &ncec->ncec_addr);
14685 				}
14686 				break;
14687 			case ND_DELAY:
14688 			case ND_PROBE:
14689 				mutex_exit(&ncec->ncec_lock);
14690 				/* Timers have already started */
14691 				break;
14692 			case ND_UNREACHABLE:
14693 				/*
14694 				 * nce_timer has detected that this ncec
14695 				 * is unreachable and initiated deleting
14696 				 * this ncec.
14697 				 * This is a harmless race where we found the
14698 				 * ncec before it was deleted and have
14699 				 * just sent out a packet using this
14700 				 * unreachable ncec.
14701 				 */
14702 				mutex_exit(&ncec->ncec_lock);
14703 				break;
14704 			default:
14705 				ASSERT(0);
14706 				mutex_exit(&ncec->ncec_lock);
14707 			}
14708 		}
14709 		return (0);
14710 
14711 	case ND_INCOMPLETE:
14712 		/*
14713 		 * the state could have changed since we didn't hold the lock.
14714 		 * Re-verify state under lock.
14715 		 */
14716 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14717 		mutex_enter(&ncec->ncec_lock);
14718 		if (NCE_ISREACHABLE(ncec)) {
14719 			mutex_exit(&ncec->ncec_lock);
14720 			goto sendit;
14721 		}
14722 		/* queue the packet */
14723 		nce_queue_mp(ncec, mp, is_probe);
14724 		mutex_exit(&ncec->ncec_lock);
14725 		DTRACE_PROBE2(ip__xmit__incomplete,
14726 		    (ncec_t *), ncec, (mblk_t *), mp);
14727 		return (0);
14728 
14729 	case ND_INITIAL:
14730 		/*
14731 		 * State could have changed since we didn't hold the lock, so
14732 		 * re-verify state.
14733 		 */
14734 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14735 		mutex_enter(&ncec->ncec_lock);
14736 		if (NCE_ISREACHABLE(ncec))  {
14737 			mutex_exit(&ncec->ncec_lock);
14738 			goto sendit;
14739 		}
14740 		nce_queue_mp(ncec, mp, is_probe);
14741 		if (ncec->ncec_state == ND_INITIAL) {
14742 			ncec->ncec_state = ND_INCOMPLETE;
14743 			mutex_exit(&ncec->ncec_lock);
14744 			/*
14745 			 * figure out the source we want to use
14746 			 * and resolve it.
14747 			 */
14748 			ip_ndp_resolve(ncec);
14749 		} else  {
14750 			mutex_exit(&ncec->ncec_lock);
14751 		}
14752 		return (0);
14753 
14754 	case ND_UNREACHABLE:
14755 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14756 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14757 		    mp, ill);
14758 		freemsg(mp);
14759 		return (0);
14760 
14761 	default:
14762 		ASSERT(0);
14763 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14764 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14765 		    mp, ill);
14766 		freemsg(mp);
14767 		return (ENETUNREACH);
14768 	}
14769 }
14770 
14771 /*
14772  * Return B_TRUE if the buffers differ in length or content.
14773  * This is used for comparing extension header buffers.
14774  * Note that an extension header would be declared different
14775  * even if all that changed was the next header value in that header i.e.
14776  * what really changed is the next extension header.
14777  */
14778 boolean_t
14779 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14780     uint_t blen)
14781 {
14782 	if (!b_valid)
14783 		blen = 0;
14784 
14785 	if (alen != blen)
14786 		return (B_TRUE);
14787 	if (alen == 0)
14788 		return (B_FALSE);	/* Both zero length */
14789 	return (bcmp(abuf, bbuf, alen));
14790 }
14791 
14792 /*
14793  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14794  * Return B_FALSE if memory allocation fails - don't change any state!
14795  */
14796 boolean_t
14797 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14798     const void *src, uint_t srclen)
14799 {
14800 	void *dst;
14801 
14802 	if (!src_valid)
14803 		srclen = 0;
14804 
14805 	ASSERT(*dstlenp == 0);
14806 	if (src != NULL && srclen != 0) {
14807 		dst = mi_alloc(srclen, BPRI_MED);
14808 		if (dst == NULL)
14809 			return (B_FALSE);
14810 	} else {
14811 		dst = NULL;
14812 	}
14813 	if (*dstp != NULL)
14814 		mi_free(*dstp);
14815 	*dstp = dst;
14816 	*dstlenp = dst == NULL ? 0 : srclen;
14817 	return (B_TRUE);
14818 }
14819 
14820 /*
14821  * Replace what is in *dst, *dstlen with the source.
14822  * Assumes ip_allocbuf has already been called.
14823  */
14824 void
14825 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14826     const void *src, uint_t srclen)
14827 {
14828 	if (!src_valid)
14829 		srclen = 0;
14830 
14831 	ASSERT(*dstlenp == srclen);
14832 	if (src != NULL && srclen != 0)
14833 		bcopy(src, *dstp, srclen);
14834 }
14835 
14836 /*
14837  * Free the storage pointed to by the members of an ip_pkt_t.
14838  */
14839 void
14840 ip_pkt_free(ip_pkt_t *ipp)
14841 {
14842 	uint_t	fields = ipp->ipp_fields;
14843 
14844 	if (fields & IPPF_HOPOPTS) {
14845 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14846 		ipp->ipp_hopopts = NULL;
14847 		ipp->ipp_hopoptslen = 0;
14848 	}
14849 	if (fields & IPPF_RTHDRDSTOPTS) {
14850 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14851 		ipp->ipp_rthdrdstopts = NULL;
14852 		ipp->ipp_rthdrdstoptslen = 0;
14853 	}
14854 	if (fields & IPPF_DSTOPTS) {
14855 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14856 		ipp->ipp_dstopts = NULL;
14857 		ipp->ipp_dstoptslen = 0;
14858 	}
14859 	if (fields & IPPF_RTHDR) {
14860 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14861 		ipp->ipp_rthdr = NULL;
14862 		ipp->ipp_rthdrlen = 0;
14863 	}
14864 	if (fields & IPPF_IPV4_OPTIONS) {
14865 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14866 		ipp->ipp_ipv4_options = NULL;
14867 		ipp->ipp_ipv4_options_len = 0;
14868 	}
14869 	if (fields & IPPF_LABEL_V4) {
14870 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14871 		ipp->ipp_label_v4 = NULL;
14872 		ipp->ipp_label_len_v4 = 0;
14873 	}
14874 	if (fields & IPPF_LABEL_V6) {
14875 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14876 		ipp->ipp_label_v6 = NULL;
14877 		ipp->ipp_label_len_v6 = 0;
14878 	}
14879 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14880 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14881 }
14882 
14883 /*
14884  * Copy from src to dst and allocate as needed.
14885  * Returns zero or ENOMEM.
14886  *
14887  * The caller must initialize dst to zero.
14888  */
14889 int
14890 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14891 {
14892 	uint_t	fields = src->ipp_fields;
14893 
14894 	/* Start with fields that don't require memory allocation */
14895 	dst->ipp_fields = fields &
14896 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14897 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14898 
14899 	dst->ipp_addr = src->ipp_addr;
14900 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14901 	dst->ipp_hoplimit = src->ipp_hoplimit;
14902 	dst->ipp_tclass = src->ipp_tclass;
14903 	dst->ipp_type_of_service = src->ipp_type_of_service;
14904 
14905 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14906 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14907 		return (0);
14908 
14909 	if (fields & IPPF_HOPOPTS) {
14910 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14911 		if (dst->ipp_hopopts == NULL) {
14912 			ip_pkt_free(dst);
14913 			return (ENOMEM);
14914 		}
14915 		dst->ipp_fields |= IPPF_HOPOPTS;
14916 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14917 		    src->ipp_hopoptslen);
14918 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14919 	}
14920 	if (fields & IPPF_RTHDRDSTOPTS) {
14921 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14922 		    kmflag);
14923 		if (dst->ipp_rthdrdstopts == NULL) {
14924 			ip_pkt_free(dst);
14925 			return (ENOMEM);
14926 		}
14927 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14928 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14929 		    src->ipp_rthdrdstoptslen);
14930 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14931 	}
14932 	if (fields & IPPF_DSTOPTS) {
14933 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14934 		if (dst->ipp_dstopts == NULL) {
14935 			ip_pkt_free(dst);
14936 			return (ENOMEM);
14937 		}
14938 		dst->ipp_fields |= IPPF_DSTOPTS;
14939 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14940 		    src->ipp_dstoptslen);
14941 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14942 	}
14943 	if (fields & IPPF_RTHDR) {
14944 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14945 		if (dst->ipp_rthdr == NULL) {
14946 			ip_pkt_free(dst);
14947 			return (ENOMEM);
14948 		}
14949 		dst->ipp_fields |= IPPF_RTHDR;
14950 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14951 		    src->ipp_rthdrlen);
14952 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14953 	}
14954 	if (fields & IPPF_IPV4_OPTIONS) {
14955 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14956 		    kmflag);
14957 		if (dst->ipp_ipv4_options == NULL) {
14958 			ip_pkt_free(dst);
14959 			return (ENOMEM);
14960 		}
14961 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14962 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14963 		    src->ipp_ipv4_options_len);
14964 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14965 	}
14966 	if (fields & IPPF_LABEL_V4) {
14967 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14968 		if (dst->ipp_label_v4 == NULL) {
14969 			ip_pkt_free(dst);
14970 			return (ENOMEM);
14971 		}
14972 		dst->ipp_fields |= IPPF_LABEL_V4;
14973 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14974 		    src->ipp_label_len_v4);
14975 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14976 	}
14977 	if (fields & IPPF_LABEL_V6) {
14978 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14979 		if (dst->ipp_label_v6 == NULL) {
14980 			ip_pkt_free(dst);
14981 			return (ENOMEM);
14982 		}
14983 		dst->ipp_fields |= IPPF_LABEL_V6;
14984 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14985 		    src->ipp_label_len_v6);
14986 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14987 	}
14988 	if (fields & IPPF_FRAGHDR) {
14989 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14990 		if (dst->ipp_fraghdr == NULL) {
14991 			ip_pkt_free(dst);
14992 			return (ENOMEM);
14993 		}
14994 		dst->ipp_fields |= IPPF_FRAGHDR;
14995 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14996 		    src->ipp_fraghdrlen);
14997 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14998 	}
14999 	return (0);
15000 }
15001 
15002 /*
15003  * Returns INADDR_ANY if no source route
15004  */
15005 ipaddr_t
15006 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
15007 {
15008 	ipaddr_t	nexthop = INADDR_ANY;
15009 	ipoptp_t	opts;
15010 	uchar_t		*opt;
15011 	uint8_t		optval;
15012 	uint8_t		optlen;
15013 	uint32_t	totallen;
15014 
15015 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15016 		return (INADDR_ANY);
15017 
15018 	totallen = ipp->ipp_ipv4_options_len;
15019 	if (totallen & 0x3)
15020 		return (INADDR_ANY);
15021 
15022 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15023 	    optval != IPOPT_EOL;
15024 	    optval = ipoptp_next(&opts)) {
15025 		opt = opts.ipoptp_cur;
15026 		switch (optval) {
15027 			uint8_t off;
15028 		case IPOPT_SSRR:
15029 		case IPOPT_LSRR:
15030 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15031 				break;
15032 			}
15033 			optlen = opts.ipoptp_len;
15034 			off = opt[IPOPT_OFFSET];
15035 			off--;
15036 			if (optlen < IP_ADDR_LEN ||
15037 			    off > optlen - IP_ADDR_LEN) {
15038 				/* End of source route */
15039 				break;
15040 			}
15041 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15042 			if (nexthop == htonl(INADDR_LOOPBACK)) {
15043 				/* Ignore */
15044 				nexthop = INADDR_ANY;
15045 				break;
15046 			}
15047 			break;
15048 		}
15049 	}
15050 	return (nexthop);
15051 }
15052 
15053 /*
15054  * Reverse a source route.
15055  */
15056 void
15057 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15058 {
15059 	ipaddr_t	tmp;
15060 	ipoptp_t	opts;
15061 	uchar_t		*opt;
15062 	uint8_t		optval;
15063 	uint32_t	totallen;
15064 
15065 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15066 		return;
15067 
15068 	totallen = ipp->ipp_ipv4_options_len;
15069 	if (totallen & 0x3)
15070 		return;
15071 
15072 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15073 	    optval != IPOPT_EOL;
15074 	    optval = ipoptp_next(&opts)) {
15075 		uint8_t off1, off2;
15076 
15077 		opt = opts.ipoptp_cur;
15078 		switch (optval) {
15079 		case IPOPT_SSRR:
15080 		case IPOPT_LSRR:
15081 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15082 				break;
15083 			}
15084 			off1 = IPOPT_MINOFF_SR - 1;
15085 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15086 			while (off2 > off1) {
15087 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15088 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15089 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15090 				off2 -= IP_ADDR_LEN;
15091 				off1 += IP_ADDR_LEN;
15092 			}
15093 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15094 			break;
15095 		}
15096 	}
15097 }
15098 
15099 /*
15100  * Returns NULL if no routing header
15101  */
15102 in6_addr_t *
15103 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15104 {
15105 	in6_addr_t	*nexthop = NULL;
15106 	ip6_rthdr0_t	*rthdr;
15107 
15108 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15109 		return (NULL);
15110 
15111 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15112 	if (rthdr->ip6r0_segleft == 0)
15113 		return (NULL);
15114 
15115 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15116 	return (nexthop);
15117 }
15118 
15119 zoneid_t
15120 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15121     zoneid_t lookup_zoneid)
15122 {
15123 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15124 	ire_t		*ire;
15125 	int		ire_flags = MATCH_IRE_TYPE;
15126 	zoneid_t	zoneid = ALL_ZONES;
15127 
15128 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15129 		return (ALL_ZONES);
15130 
15131 	if (lookup_zoneid != ALL_ZONES)
15132 		ire_flags |= MATCH_IRE_ZONEONLY;
15133 	ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK,
15134 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15135 	if (ire != NULL) {
15136 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15137 		ire_refrele(ire);
15138 	}
15139 	return (zoneid);
15140 }
15141 
15142 zoneid_t
15143 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15144     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15145 {
15146 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15147 	ire_t		*ire;
15148 	int		ire_flags = MATCH_IRE_TYPE;
15149 	zoneid_t	zoneid = ALL_ZONES;
15150 
15151 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15152 		return (ALL_ZONES);
15153 
15154 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15155 		ire_flags |= MATCH_IRE_ILL;
15156 
15157 	if (lookup_zoneid != ALL_ZONES)
15158 		ire_flags |= MATCH_IRE_ZONEONLY;
15159 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15160 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15161 	if (ire != NULL) {
15162 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15163 		ire_refrele(ire);
15164 	}
15165 	return (zoneid);
15166 }
15167 
15168 /*
15169  * IP obserability hook support functions.
15170  */
15171 static void
15172 ipobs_init(ip_stack_t *ipst)
15173 {
15174 	netid_t id;
15175 
15176 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15177 
15178 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15179 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15180 
15181 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15182 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15183 }
15184 
15185 static void
15186 ipobs_fini(ip_stack_t *ipst)
15187 {
15188 
15189 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15190 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15191 }
15192 
15193 /*
15194  * hook_pkt_observe_t is composed in network byte order so that the
15195  * entire mblk_t chain handed into hook_run can be used as-is.
15196  * The caveat is that use of the fields, such as the zone fields,
15197  * requires conversion into host byte order first.
15198  */
15199 void
15200 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15201     const ill_t *ill, ip_stack_t *ipst)
15202 {
15203 	hook_pkt_observe_t *hdr;
15204 	uint64_t grifindex;
15205 	mblk_t *imp;
15206 
15207 	imp = allocb(sizeof (*hdr), BPRI_HI);
15208 	if (imp == NULL)
15209 		return;
15210 
15211 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15212 	/*
15213 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15214 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15215 	 */
15216 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15217 	imp->b_cont = mp;
15218 
15219 	ASSERT(DB_TYPE(mp) == M_DATA);
15220 
15221 	if (IS_UNDER_IPMP(ill))
15222 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15223 	else
15224 		grifindex = 0;
15225 
15226 	hdr->hpo_version = 1;
15227 	hdr->hpo_htype = htons(htype);
15228 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15229 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15230 	hdr->hpo_grifindex = htonl(grifindex);
15231 	hdr->hpo_zsrc = htonl(zsrc);
15232 	hdr->hpo_zdst = htonl(zdst);
15233 	hdr->hpo_pkt = imp;
15234 	hdr->hpo_ctx = ipst->ips_netstack;
15235 
15236 	if (ill->ill_isv6) {
15237 		hdr->hpo_family = AF_INET6;
15238 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15239 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15240 	} else {
15241 		hdr->hpo_family = AF_INET;
15242 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15243 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15244 	}
15245 
15246 	imp->b_cont = NULL;
15247 	freemsg(imp);
15248 }
15249 
15250 /*
15251  * Utility routine that checks if `v4srcp' is a valid address on underlying
15252  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15253  * associated with `v4srcp' on success.  NOTE: if this is not called from
15254  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15255  * group during or after this lookup.
15256  */
15257 boolean_t
15258 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15259 {
15260 	ipif_t *ipif;
15261 
15262 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15263 	if (ipif != NULL) {
15264 		if (ipifp != NULL)
15265 			*ipifp = ipif;
15266 		else
15267 			ipif_refrele(ipif);
15268 		return (B_TRUE);
15269 	}
15270 
15271 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15272 	    *v4srcp));
15273 	return (B_FALSE);
15274 }
15275 
15276 /*
15277  * Transport protocol call back function for CPU state change.
15278  */
15279 /* ARGSUSED */
15280 static int
15281 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15282 {
15283 	processorid_t cpu_seqid;
15284 	netstack_handle_t nh;
15285 	netstack_t *ns;
15286 
15287 	ASSERT(MUTEX_HELD(&cpu_lock));
15288 
15289 	switch (what) {
15290 	case CPU_CONFIG:
15291 	case CPU_ON:
15292 	case CPU_INIT:
15293 	case CPU_CPUPART_IN:
15294 		cpu_seqid = cpu[id]->cpu_seqid;
15295 		netstack_next_init(&nh);
15296 		while ((ns = netstack_next(&nh)) != NULL) {
15297 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15298 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15299 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15300 			netstack_rele(ns);
15301 		}
15302 		netstack_next_fini(&nh);
15303 		break;
15304 	case CPU_UNCONFIG:
15305 	case CPU_OFF:
15306 	case CPU_CPUPART_OUT:
15307 		/*
15308 		 * Nothing to do.  We don't remove the per CPU stats from
15309 		 * the IP stack even when the CPU goes offline.
15310 		 */
15311 		break;
15312 	default:
15313 		break;
15314 	}
15315 	return (0);
15316 }
15317