1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright (c) 2019 Joyent, Inc. All rights reserved. 28 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #include <sys/zone.h> 40 #define _SUN_TPI_VERSION 2 41 #include <sys/tihdr.h> 42 #include <sys/xti_inet.h> 43 #include <sys/ddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/cmn_err.h> 46 #include <sys/debug.h> 47 #include <sys/kobj.h> 48 #include <sys/modctl.h> 49 #include <sys/atomic.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/taskq.h> 53 54 #include <sys/systm.h> 55 #include <sys/param.h> 56 #include <sys/kmem.h> 57 #include <sys/sdt.h> 58 #include <sys/socket.h> 59 #include <sys/vtrace.h> 60 #include <sys/isa_defs.h> 61 #include <sys/mac.h> 62 #include <net/if.h> 63 #include <net/if_arp.h> 64 #include <net/route.h> 65 #include <sys/sockio.h> 66 #include <netinet/in.h> 67 #include <net/if_dl.h> 68 69 #include <inet/common.h> 70 #include <inet/mi.h> 71 #include <inet/mib2.h> 72 #include <inet/nd.h> 73 #include <inet/arp.h> 74 #include <inet/snmpcom.h> 75 #include <inet/optcom.h> 76 #include <inet/kstatcom.h> 77 78 #include <netinet/igmp_var.h> 79 #include <netinet/ip6.h> 80 #include <netinet/icmp6.h> 81 #include <netinet/sctp.h> 82 83 #include <inet/ip.h> 84 #include <inet/ip_impl.h> 85 #include <inet/ip6.h> 86 #include <inet/ip6_asp.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <inet/ip_multi.h> 90 #include <inet/ip_if.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_rts.h> 94 #include <inet/ip_ndp.h> 95 #include <inet/ip_listutils.h> 96 #include <netinet/igmp.h> 97 #include <netinet/ip_mroute.h> 98 #include <inet/ipp_common.h> 99 #include <inet/cc.h> 100 101 #include <net/pfkeyv2.h> 102 #include <inet/sadb.h> 103 #include <inet/ipsec_impl.h> 104 #include <inet/iptun/iptun_impl.h> 105 #include <inet/ipdrop.h> 106 #include <inet/ip_netinfo.h> 107 #include <inet/ilb_ip.h> 108 109 #include <sys/ethernet.h> 110 #include <net/if_types.h> 111 #include <sys/cpuvar.h> 112 113 #include <ipp/ipp.h> 114 #include <ipp/ipp_impl.h> 115 #include <ipp/ipgpc/ipgpc.h> 116 117 #include <sys/pattr.h> 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <sys/squeue_impl.h> 129 #include <inet/ip_arp.h> 130 131 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 132 133 /* 134 * Values for squeue switch: 135 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 136 * IP_SQUEUE_ENTER: SQ_PROCESS 137 * IP_SQUEUE_FILL: SQ_FILL 138 */ 139 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 140 141 int ip_squeue_flag; 142 143 /* 144 * Setable in /etc/system 145 */ 146 int ip_poll_normal_ms = 100; 147 int ip_poll_normal_ticks = 0; 148 int ip_modclose_ackwait_ms = 3000; 149 150 /* 151 * It would be nice to have these present only in DEBUG systems, but the 152 * current design of the global symbol checking logic requires them to be 153 * unconditionally present. 154 */ 155 uint_t ip_thread_data; /* TSD key for debug support */ 156 krwlock_t ip_thread_rwlock; 157 list_t ip_thread_list; 158 159 /* 160 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 161 */ 162 163 struct listptr_s { 164 mblk_t *lp_head; /* pointer to the head of the list */ 165 mblk_t *lp_tail; /* pointer to the tail of the list */ 166 }; 167 168 typedef struct listptr_s listptr_t; 169 170 /* 171 * This is used by ip_snmp_get_mib2_ip_route_media and 172 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 173 */ 174 typedef struct iproutedata_s { 175 uint_t ird_idx; 176 uint_t ird_flags; /* see below */ 177 listptr_t ird_route; /* ipRouteEntryTable */ 178 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 179 listptr_t ird_attrs; /* ipRouteAttributeTable */ 180 } iproutedata_t; 181 182 /* Include ire_testhidden and IRE_IF_CLONE routes */ 183 #define IRD_REPORT_ALL 0x01 184 185 /* 186 * Cluster specific hooks. These should be NULL when booted as a non-cluster 187 */ 188 189 /* 190 * Hook functions to enable cluster networking 191 * On non-clustered systems these vectors must always be NULL. 192 * 193 * Hook function to Check ip specified ip address is a shared ip address 194 * in the cluster 195 * 196 */ 197 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 198 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 199 200 /* 201 * Hook function to generate cluster wide ip fragment identifier 202 */ 203 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 204 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 205 void *args) = NULL; 206 207 /* 208 * Hook function to generate cluster wide SPI. 209 */ 210 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 211 void *) = NULL; 212 213 /* 214 * Hook function to verify if the SPI is already utlized. 215 */ 216 217 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 218 219 /* 220 * Hook function to delete the SPI from the cluster wide repository. 221 */ 222 223 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 224 225 /* 226 * Hook function to inform the cluster when packet received on an IDLE SA 227 */ 228 229 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 230 in6_addr_t, in6_addr_t, void *) = NULL; 231 232 /* 233 * Synchronization notes: 234 * 235 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 236 * MT level protection given by STREAMS. IP uses a combination of its own 237 * internal serialization mechanism and standard Solaris locking techniques. 238 * The internal serialization is per phyint. This is used to serialize 239 * plumbing operations, IPMP operations, most set ioctls, etc. 240 * 241 * Plumbing is a long sequence of operations involving message 242 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 243 * involved in plumbing operations. A natural model is to serialize these 244 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 245 * parallel without any interference. But various set ioctls on hme0 are best 246 * serialized, along with IPMP operations and processing of DLPI control 247 * messages received from drivers on a per phyint basis. This serialization is 248 * provided by the ipsq_t and primitives operating on this. Details can 249 * be found in ip_if.c above the core primitives operating on ipsq_t. 250 * 251 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 252 * Simiarly lookup of an ire by a thread also returns a refheld ire. 253 * In addition ipif's and ill's referenced by the ire are also indirectly 254 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 255 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 256 * address of an ipif has to go through the ipsq_t. This ensures that only 257 * one such exclusive operation proceeds at any time on the ipif. It then 258 * waits for all refcnts 259 * associated with this ipif to come down to zero. The address is changed 260 * only after the ipif has been quiesced. Then the ipif is brought up again. 261 * More details are described above the comment in ip_sioctl_flags. 262 * 263 * Packet processing is based mostly on IREs and are fully multi-threaded 264 * using standard Solaris MT techniques. 265 * 266 * There are explicit locks in IP to handle: 267 * - The ip_g_head list maintained by mi_open_link() and friends. 268 * 269 * - The reassembly data structures (one lock per hash bucket) 270 * 271 * - conn_lock is meant to protect conn_t fields. The fields actually 272 * protected by conn_lock are documented in the conn_t definition. 273 * 274 * - ire_lock to protect some of the fields of the ire, IRE tables 275 * (one lock per hash bucket). Refer to ip_ire.c for details. 276 * 277 * - ndp_g_lock and ncec_lock for protecting NCEs. 278 * 279 * - ill_lock protects fields of the ill and ipif. Details in ip.h 280 * 281 * - ill_g_lock: This is a global reader/writer lock. Protects the following 282 * * The AVL tree based global multi list of all ills. 283 * * The linked list of all ipifs of an ill 284 * * The <ipsq-xop> mapping 285 * * <ill-phyint> association 286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 287 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 288 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 289 * writer for the actual duration of the insertion/deletion/change. 290 * 291 * - ill_lock: This is a per ill mutex. 292 * It protects some members of the ill_t struct; see ip.h for details. 293 * It also protects the <ill-phyint> assoc. 294 * It also protects the list of ipifs hanging off the ill. 295 * 296 * - ipsq_lock: This is a per ipsq_t mutex lock. 297 * This protects some members of the ipsq_t struct; see ip.h for details. 298 * It also protects the <ipsq-ipxop> mapping 299 * 300 * - ipx_lock: This is a per ipxop_t mutex lock. 301 * This protects some members of the ipxop_t struct; see ip.h for details. 302 * 303 * - phyint_lock: This is a per phyint mutex lock. Protects just the 304 * phyint_flags 305 * 306 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 307 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 308 * uniqueness check also done atomically. 309 * 310 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 311 * group list linked by ill_usesrc_grp_next. It also protects the 312 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 313 * group is being added or deleted. This lock is taken as a reader when 314 * walking the list/group(eg: to get the number of members in a usesrc group). 315 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 316 * field is changing state i.e from NULL to non-NULL or vice-versa. For 317 * example, it is not necessary to take this lock in the initial portion 318 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 319 * operations are executed exclusively and that ensures that the "usesrc 320 * group state" cannot change. The "usesrc group state" change can happen 321 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 322 * 323 * Changing <ill-phyint>, <ipsq-xop> assocications: 324 * 325 * To change the <ill-phyint> association, the ill_g_lock must be held 326 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 327 * must be held. 328 * 329 * To change the <ipsq-xop> association, the ill_g_lock must be held as 330 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 331 * This is only done when ills are added or removed from IPMP groups. 332 * 333 * To add or delete an ipif from the list of ipifs hanging off the ill, 334 * ill_g_lock (writer) and ill_lock must be held and the thread must be 335 * a writer on the associated ipsq. 336 * 337 * To add or delete an ill to the system, the ill_g_lock must be held as 338 * writer and the thread must be a writer on the associated ipsq. 339 * 340 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 341 * must be a writer on the associated ipsq. 342 * 343 * Lock hierarchy 344 * 345 * Some lock hierarchy scenarios are listed below. 346 * 347 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 354 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 355 * arl_lock -> ill_lock 356 * ips_ire_dep_lock -> irb_lock 357 * 358 * When more than 1 ill lock is needed to be held, all ill lock addresses 359 * are sorted on address and locked starting from highest addressed lock 360 * downward. 361 * 362 * Multicast scenarios 363 * ips_ill_g_lock -> ill_mcast_lock 364 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 369 * 370 * IPsec scenarios 371 * 372 * ipsa_lock -> ill_g_lock -> ill_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 417 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 418 * 419 * IPsec notes : 420 * 421 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 422 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 423 * ip_xmit_attr_t has the 424 * information used by the IPsec code for applying the right level of 425 * protection. The information initialized by IP in the ip_xmit_attr_t 426 * is determined by the per-socket policy or global policy in the system. 427 * For inbound datagrams, the ip_recv_attr_t 428 * starts out with nothing in it. It gets filled 429 * with the right information if it goes through the AH/ESP code, which 430 * happens if the incoming packet is secure. The information initialized 431 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 432 * the policy requirements needed by per-socket policy or global policy 433 * is met or not. 434 * 435 * For fully connected sockets i.e dst, src [addr, port] is known, 436 * conn_policy_cached is set indicating that policy has been cached. 437 * conn_in_enforce_policy may or may not be set depending on whether 438 * there is a global policy match or per-socket policy match. 439 * Policy inheriting happpens in ip_policy_set once the destination is known. 440 * Once the right policy is set on the conn_t, policy cannot change for 441 * this socket. This makes life simpler for TCP (UDP ?) where 442 * re-transmissions go out with the same policy. For symmetry, policy 443 * is cached for fully connected UDP sockets also. Thus if policy is cached, 444 * it also implies that policy is latched i.e policy cannot change 445 * on these sockets. As we have the right policy on the conn, we don't 446 * have to lookup global policy for every outbound and inbound datagram 447 * and thus serving as an optimization. Note that a global policy change 448 * does not affect fully connected sockets if they have policy. If fully 449 * connected sockets did not have any policy associated with it, global 450 * policy change may affect them. 451 * 452 * IP Flow control notes: 453 * --------------------- 454 * Non-TCP streams are flow controlled by IP. The way this is accomplished 455 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 456 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 457 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 458 * functions. 459 * 460 * Per Tx ring udp flow control: 461 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 462 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 463 * 464 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 465 * To achieve best performance, outgoing traffic need to be fanned out among 466 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 467 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 468 * the address of connp as fanout hint to mac_tx(). Under flow controlled 469 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 470 * cookie points to a specific Tx ring that is blocked. The cookie is used to 471 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 472 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 473 * connp's. The drain list is not a single list but a configurable number of 474 * lists. 475 * 476 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 477 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 478 * which is equal to 128. This array in turn contains a pointer to idl_t[], 479 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 480 * list will point to the list of connp's that are flow controlled. 481 * 482 * --------------- ------- ------- ------- 483 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 484 * | --------------- ------- ------- ------- 485 * | --------------- ------- ------- ------- 486 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 487 * ---------------- | --------------- ------- ------- ------- 488 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 489 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 490 * | --------------- ------- ------- ------- 491 * . . . . . 492 * | --------------- ------- ------- ------- 493 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 494 * --------------- ------- ------- ------- 495 * --------------- ------- ------- ------- 496 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 497 * | --------------- ------- ------- ------- 498 * | --------------- ------- ------- ------- 499 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 500 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 501 * ---------------- | . . . . 502 * | --------------- ------- ------- ------- 503 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 504 * --------------- ------- ------- ------- 505 * ..... 506 * ---------------- 507 * |idl_tx_list[n]|-> ... 508 * ---------------- 509 * 510 * When mac_tx() returns a cookie, the cookie is hashed into an index into 511 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 512 * to insert the conn onto. conn_drain_insert() asserts flow control for the 513 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 514 * Further, conn_blocked is set to indicate that the conn is blocked. 515 * 516 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 517 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 518 * is again hashed to locate the appropriate idl_tx_list, which is then 519 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 520 * the drain list and calls conn_drain_remove() to clear flow control (via 521 * calling su_txq_full() or clearing QFULL), and remove the conn from the 522 * drain list. 523 * 524 * Note that the drain list is not a single list but a (configurable) array of 525 * lists (8 elements by default). Synchronization between drain insertion and 526 * flow control wakeup is handled by using idl_txl->txl_lock, and only 527 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 528 * 529 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 530 * On the send side, if the packet cannot be sent down to the driver by IP 531 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 532 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 533 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 534 * control has been relieved, the blocked conns in the 0'th drain list are 535 * drained as in the non-STREAMS case. 536 * 537 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 538 * is done when the conn is inserted into the drain list (conn_drain_insert()) 539 * and cleared when the conn is removed from the it (conn_drain_remove()). 540 * 541 * IPQOS notes: 542 * 543 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 544 * and IPQoS modules. IPPF includes hooks in IP at different control points 545 * (callout positions) which direct packets to IPQoS modules for policy 546 * processing. Policies, if present, are global. 547 * 548 * The callout positions are located in the following paths: 549 * o local_in (packets destined for this host) 550 * o local_out (packets orginating from this host ) 551 * o fwd_in (packets forwarded by this m/c - inbound) 552 * o fwd_out (packets forwarded by this m/c - outbound) 553 * Hooks at these callout points can be enabled/disabled using the ndd variable 554 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 555 * By default all the callout positions are enabled. 556 * 557 * Outbound (local_out) 558 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 559 * 560 * Inbound (local_in) 561 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 562 * 563 * Forwarding (in and out) 564 * Hooks are placed in ire_recv_forward_v4/v6. 565 * 566 * IP Policy Framework processing (IPPF processing) 567 * Policy processing for a packet is initiated by ip_process, which ascertains 568 * that the classifier (ipgpc) is loaded and configured, failing which the 569 * packet resumes normal processing in IP. If the clasifier is present, the 570 * packet is acted upon by one or more IPQoS modules (action instances), per 571 * filters configured in ipgpc and resumes normal IP processing thereafter. 572 * An action instance can drop a packet in course of its processing. 573 * 574 * Zones notes: 575 * 576 * The partitioning rules for networking are as follows: 577 * 1) Packets coming from a zone must have a source address belonging to that 578 * zone. 579 * 2) Packets coming from a zone can only be sent on a physical interface on 580 * which the zone has an IP address. 581 * 3) Between two zones on the same machine, packet delivery is only allowed if 582 * there's a matching route for the destination and zone in the forwarding 583 * table. 584 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 585 * different zones can bind to the same port with the wildcard address 586 * (INADDR_ANY). 587 * 588 * The granularity of interface partitioning is at the logical interface level. 589 * Therefore, every zone has its own IP addresses, and incoming packets can be 590 * attributed to a zone unambiguously. A logical interface is placed into a zone 591 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 592 * structure. Rule (1) is implemented by modifying the source address selection 593 * algorithm so that the list of eligible addresses is filtered based on the 594 * sending process zone. 595 * 596 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 597 * across all zones, depending on their type. Here is the break-up: 598 * 599 * IRE type Shared/exclusive 600 * -------- ---------------- 601 * IRE_BROADCAST Exclusive 602 * IRE_DEFAULT (default routes) Shared (*) 603 * IRE_LOCAL Exclusive (x) 604 * IRE_LOOPBACK Exclusive 605 * IRE_PREFIX (net routes) Shared (*) 606 * IRE_IF_NORESOLVER (interface routes) Exclusive 607 * IRE_IF_RESOLVER (interface routes) Exclusive 608 * IRE_IF_CLONE (interface routes) Exclusive 609 * IRE_HOST (host routes) Shared (*) 610 * 611 * (*) A zone can only use a default or off-subnet route if the gateway is 612 * directly reachable from the zone, that is, if the gateway's address matches 613 * one of the zone's logical interfaces. 614 * 615 * (x) IRE_LOCAL are handled a bit differently. 616 * When ip_restrict_interzone_loopback is set (the default), 617 * ire_route_recursive restricts loopback using an IRE_LOCAL 618 * between zone to the case when L2 would have conceptually looped the packet 619 * back, i.e. the loopback which is required since neither Ethernet drivers 620 * nor Ethernet hardware loops them back. This is the case when the normal 621 * routes (ignoring IREs with different zoneids) would send out the packet on 622 * the same ill as the ill with which is IRE_LOCAL is associated. 623 * 624 * Multiple zones can share a common broadcast address; typically all zones 625 * share the 255.255.255.255 address. Incoming as well as locally originated 626 * broadcast packets must be dispatched to all the zones on the broadcast 627 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 628 * since some zones may not be on the 10.16.72/24 network. To handle this, each 629 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 630 * sent to every zone that has an IRE_BROADCAST entry for the destination 631 * address on the input ill, see ip_input_broadcast(). 632 * 633 * Applications in different zones can join the same multicast group address. 634 * The same logic applies for multicast as for broadcast. ip_input_multicast 635 * dispatches packets to all zones that have members on the physical interface. 636 */ 637 638 /* 639 * Squeue Fanout flags: 640 * 0: No fanout. 641 * 1: Fanout across all squeues 642 */ 643 boolean_t ip_squeue_fanout = 0; 644 645 /* 646 * Maximum dups allowed per packet. 647 */ 648 uint_t ip_max_frag_dups = 10; 649 650 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 651 cred_t *credp, boolean_t isv6); 652 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 653 654 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 655 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 656 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 657 ip_recv_attr_t *); 658 static void icmp_options_update(ipha_t *); 659 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 660 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 661 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 662 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 663 ip_recv_attr_t *); 664 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 665 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 666 ip_recv_attr_t *); 667 668 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 669 char *ip_dot_addr(ipaddr_t, char *); 670 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 671 static char *ip_dot_saddr(uchar_t *, char *); 672 static int ip_lrput(queue_t *, mblk_t *); 673 ipaddr_t ip_net_mask(ipaddr_t); 674 char *ip_nv_lookup(nv_t *, int); 675 int ip_rput(queue_t *, mblk_t *); 676 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 677 void *dummy_arg); 678 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 680 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 682 ip_stack_t *, boolean_t); 683 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 684 boolean_t); 685 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 692 ip_stack_t *ipst, boolean_t); 693 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 708 ip_stack_t *ipst); 709 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 710 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 711 static void ip_snmp_get2_v4_media(ncec_t *, void *); 712 static void ip_snmp_get2_v6_media(ncec_t *, void *); 713 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 714 715 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 716 mblk_t *); 717 718 static void conn_drain_init(ip_stack_t *); 719 static void conn_drain_fini(ip_stack_t *); 720 static void conn_drain(conn_t *connp, boolean_t closing); 721 722 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 723 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 724 725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 726 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 727 static void ip_stack_fini(netstackid_t stackid, void *arg); 728 729 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 730 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 731 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 732 const in6_addr_t *); 733 734 static int ip_squeue_switch(int); 735 736 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 737 static void ip_kstat_fini(netstackid_t, kstat_t *); 738 static int ip_kstat_update(kstat_t *kp, int rw); 739 static void *icmp_kstat_init(netstackid_t); 740 static void icmp_kstat_fini(netstackid_t, kstat_t *); 741 static int icmp_kstat_update(kstat_t *kp, int rw); 742 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 743 static void ip_kstat2_fini(netstackid_t, kstat_t *); 744 745 static void ipobs_init(ip_stack_t *); 746 static void ipobs_fini(ip_stack_t *); 747 748 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 749 750 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 751 752 static long ip_rput_pullups; 753 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 754 755 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 756 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 757 758 int ip_debug; 759 760 /* 761 * Multirouting/CGTP stuff 762 */ 763 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 764 765 /* 766 * IP tunables related declarations. Definitions are in ip_tunables.c 767 */ 768 extern mod_prop_info_t ip_propinfo_tbl[]; 769 extern int ip_propinfo_count; 770 771 /* 772 * Table of IP ioctls encoding the various properties of the ioctl and 773 * indexed based on the last byte of the ioctl command. Occasionally there 774 * is a clash, and there is more than 1 ioctl with the same last byte. 775 * In such a case 1 ioctl is encoded in the ndx table and the remaining 776 * ioctls are encoded in the misc table. An entry in the ndx table is 777 * retrieved by indexing on the last byte of the ioctl command and comparing 778 * the ioctl command with the value in the ndx table. In the event of a 779 * mismatch the misc table is then searched sequentially for the desired 780 * ioctl command. 781 * 782 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 783 */ 784 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 785 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 795 796 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocaddrt, NULL }, 798 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 799 MISC_CMD, ip_siocdelrt, NULL }, 800 801 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 802 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 803 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 804 IF_CMD, ip_sioctl_get_addr, NULL }, 805 806 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 807 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 808 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 809 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 810 811 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 812 IPI_PRIV | IPI_WR, 813 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 814 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 815 IPI_MODOK | IPI_GET_CMD, 816 IF_CMD, ip_sioctl_get_flags, NULL }, 817 818 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 820 821 /* copyin size cannot be coded for SIOCGIFCONF */ 822 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 823 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 824 825 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 826 IF_CMD, ip_sioctl_mtu, NULL }, 827 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 828 IF_CMD, ip_sioctl_get_mtu, NULL }, 829 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 831 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 832 IF_CMD, ip_sioctl_brdaddr, NULL }, 833 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 835 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 836 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 837 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 838 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 839 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 840 IF_CMD, ip_sioctl_metric, NULL }, 841 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 842 843 /* See 166-168 below for extended SIOC*XARP ioctls */ 844 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 849 ARP_CMD, ip_sioctl_arp, NULL }, 850 851 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 873 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 874 MISC_CMD, if_unitsel, if_unitsel_restart }, 875 876 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 895 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 896 IPI_PRIV | IPI_WR | IPI_MODOK, 897 IF_CMD, ip_sioctl_sifname, NULL }, 898 899 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 912 913 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 914 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 915 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 916 IF_CMD, ip_sioctl_get_muxid, NULL }, 917 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 919 920 /* Both if and lif variants share same func */ 921 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 922 IF_CMD, ip_sioctl_get_lifindex, NULL }, 923 /* Both if and lif variants share same func */ 924 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 925 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 926 927 /* copyin size cannot be coded for SIOCGIFCONF */ 928 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 929 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 930 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 948 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 949 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 950 ip_sioctl_removeif_restart }, 951 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 952 IPI_GET_CMD | IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_addif, NULL }, 954 #define SIOCLIFADDR_NDX 112 955 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 956 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 957 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 959 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 960 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 961 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 962 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 963 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 964 IPI_PRIV | IPI_WR, 965 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 966 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 967 IPI_GET_CMD | IPI_MODOK, 968 LIF_CMD, ip_sioctl_get_flags, NULL }, 969 970 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 973 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 974 ip_sioctl_get_lifconf, NULL }, 975 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 976 LIF_CMD, ip_sioctl_mtu, NULL }, 977 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 978 LIF_CMD, ip_sioctl_get_mtu, NULL }, 979 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 981 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 982 LIF_CMD, ip_sioctl_brdaddr, NULL }, 983 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 985 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 986 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 987 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 988 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 989 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 990 LIF_CMD, ip_sioctl_metric, NULL }, 991 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 992 IPI_PRIV | IPI_WR | IPI_MODOK, 993 LIF_CMD, ip_sioctl_slifname, 994 ip_sioctl_slifname_restart }, 995 996 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 997 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 998 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1000 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1002 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1003 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1004 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1005 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1006 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1007 LIF_CMD, ip_sioctl_token, NULL }, 1008 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1010 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1011 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1012 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1013 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1014 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1015 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1016 1017 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1018 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1019 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1020 LIF_CMD, ip_siocdelndp_v6, NULL }, 1021 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1022 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1023 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1024 LIF_CMD, ip_siocsetndp_v6, NULL }, 1025 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1027 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1028 MISC_CMD, ip_sioctl_tonlink, NULL }, 1029 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1030 MISC_CMD, ip_sioctl_tmysite, NULL }, 1031 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 1034 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1035 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 1042 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1043 LIF_CMD, ip_sioctl_get_binding, NULL }, 1044 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1045 IPI_PRIV | IPI_WR, 1046 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1047 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1048 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1049 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1050 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1051 1052 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1053 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* These are handled in ip_sioctl_copyin_setup itself */ 1060 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1063 MISC_CMD, NULL, NULL }, 1064 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1065 1066 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1067 ip_sioctl_get_lifconf, NULL }, 1068 1069 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1074 XARP_CMD, ip_sioctl_arp, NULL }, 1075 1076 /* SIOCPOPSOCKFS is not handled by IP */ 1077 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1078 1079 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1080 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1081 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1082 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1083 ip_sioctl_slifzone_restart }, 1084 /* 172-174 are SCTP ioctls and not handled by IP */ 1085 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1089 IPI_GET_CMD, LIF_CMD, 1090 ip_sioctl_get_lifusesrc, 0 }, 1091 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1092 IPI_PRIV | IPI_WR, 1093 LIF_CMD, ip_sioctl_slifusesrc, 1094 NULL }, 1095 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1096 ip_sioctl_get_lifsrcof, NULL }, 1097 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1104 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1105 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* SIOCSENABLESDP is handled by SDP */ 1107 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1108 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1109 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1110 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1111 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1112 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1113 ip_sioctl_ilb_cmd, NULL }, 1114 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1115 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1116 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1117 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1118 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1119 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1120 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1121 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1122 }; 1123 1124 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1125 1126 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1127 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { ND_GET, 0, 0, 0, NULL, NULL }, 1132 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1133 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1134 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl}, 1138 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1139 MISC_CMD, mrt_ioctl} 1140 }; 1141 1142 int ip_misc_ioctl_count = 1143 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1144 1145 int conn_drain_nthreads; /* Number of drainers reqd. */ 1146 /* Settable in /etc/system */ 1147 /* Defined in ip_ire.c */ 1148 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1149 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1150 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1151 1152 static nv_t ire_nv_arr[] = { 1153 { IRE_BROADCAST, "BROADCAST" }, 1154 { IRE_LOCAL, "LOCAL" }, 1155 { IRE_LOOPBACK, "LOOPBACK" }, 1156 { IRE_DEFAULT, "DEFAULT" }, 1157 { IRE_PREFIX, "PREFIX" }, 1158 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1159 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1160 { IRE_IF_CLONE, "IF_CLONE" }, 1161 { IRE_HOST, "HOST" }, 1162 { IRE_MULTICAST, "MULTICAST" }, 1163 { IRE_NOROUTE, "NOROUTE" }, 1164 { 0 } 1165 }; 1166 1167 nv_t *ire_nv_tbl = ire_nv_arr; 1168 1169 /* Simple ICMP IP Header Template */ 1170 static ipha_t icmp_ipha = { 1171 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1172 }; 1173 1174 struct module_info ip_mod_info = { 1175 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1176 IP_MOD_LOWAT 1177 }; 1178 1179 /* 1180 * Duplicate static symbols within a module confuses mdb; so we avoid the 1181 * problem by making the symbols here distinct from those in udp.c. 1182 */ 1183 1184 /* 1185 * Entry points for IP as a device and as a module. 1186 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1187 */ 1188 static struct qinit iprinitv4 = { 1189 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1190 }; 1191 1192 struct qinit iprinitv6 = { 1193 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1194 }; 1195 1196 static struct qinit ipwinit = { 1197 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1198 }; 1199 1200 static struct qinit iplrinit = { 1201 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1202 }; 1203 1204 static struct qinit iplwinit = { 1205 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1206 }; 1207 1208 /* For AF_INET aka /dev/ip */ 1209 struct streamtab ipinfov4 = { 1210 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1211 }; 1212 1213 /* For AF_INET6 aka /dev/ip6 */ 1214 struct streamtab ipinfov6 = { 1215 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1216 }; 1217 1218 #ifdef DEBUG 1219 boolean_t skip_sctp_cksum = B_FALSE; 1220 #endif 1221 1222 /* 1223 * Generate an ICMP fragmentation needed message. 1224 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1225 * constructed by the caller. 1226 */ 1227 void 1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1229 { 1230 icmph_t icmph; 1231 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1232 1233 mp = icmp_pkt_err_ok(mp, ira); 1234 if (mp == NULL) 1235 return; 1236 1237 bzero(&icmph, sizeof (icmph_t)); 1238 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1239 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1240 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1243 1244 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1245 } 1246 1247 /* 1248 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1249 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1250 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1251 * Likewise, if the ICMP error is misformed (too short, etc), then it 1252 * returns NULL. The caller uses this to determine whether or not to send 1253 * to raw sockets. 1254 * 1255 * All error messages are passed to the matching transport stream. 1256 * 1257 * The following cases are handled by icmp_inbound: 1258 * 1) It needs to send a reply back and possibly delivering it 1259 * to the "interested" upper clients. 1260 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1261 * 3) It needs to change some values in IP only. 1262 * 4) It needs to change some values in IP and upper layers e.g TCP 1263 * by delivering an error to the upper layers. 1264 * 1265 * We handle the above three cases in the context of IPsec in the 1266 * following way : 1267 * 1268 * 1) Send the reply back in the same way as the request came in. 1269 * If it came in encrypted, it goes out encrypted. If it came in 1270 * clear, it goes out in clear. Thus, this will prevent chosen 1271 * plain text attack. 1272 * 2) The client may or may not expect things to come in secure. 1273 * If it comes in secure, the policy constraints are checked 1274 * before delivering it to the upper layers. If it comes in 1275 * clear, ipsec_inbound_accept_clear will decide whether to 1276 * accept this in clear or not. In both the cases, if the returned 1277 * message (IP header + 8 bytes) that caused the icmp message has 1278 * AH/ESP headers, it is sent up to AH/ESP for validation before 1279 * sending up. If there are only 8 bytes of returned message, then 1280 * upper client will not be notified. 1281 * 3) Check with global policy to see whether it matches the constaints. 1282 * But this will be done only if icmp_accept_messages_in_clear is 1283 * zero. 1284 * 4) If we need to change both in IP and ULP, then the decision taken 1285 * while affecting the values in IP and while delivering up to TCP 1286 * should be the same. 1287 * 1288 * There are two cases. 1289 * 1290 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1291 * failed), we will not deliver it to the ULP, even though they 1292 * are *willing* to accept in *clear*. This is fine as our global 1293 * disposition to icmp messages asks us reject the datagram. 1294 * 1295 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1296 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1297 * to deliver it to ULP (policy failed), it can lead to 1298 * consistency problems. The cases known at this time are 1299 * ICMP_DESTINATION_UNREACHABLE messages with following code 1300 * values : 1301 * 1302 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1303 * and Upper layer rejects. Then the communication will 1304 * come to a stop. This is solved by making similar decisions 1305 * at both levels. Currently, when we are unable to deliver 1306 * to the Upper Layer (due to policy failures) while IP has 1307 * adjusted dce_pmtu, the next outbound datagram would 1308 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1309 * will be with the right level of protection. Thus the right 1310 * value will be communicated even if we are not able to 1311 * communicate when we get from the wire initially. But this 1312 * assumes there would be at least one outbound datagram after 1313 * IP has adjusted its dce_pmtu value. To make things 1314 * simpler, we accept in clear after the validation of 1315 * AH/ESP headers. 1316 * 1317 * - Other ICMP ERRORS : We may not be able to deliver it to the 1318 * upper layer depending on the level of protection the upper 1319 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1320 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1321 * should be accepted in clear when the Upper layer expects secure. 1322 * Thus the communication may get aborted by some bad ICMP 1323 * packets. 1324 */ 1325 mblk_t * 1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1327 { 1328 icmph_t *icmph; 1329 ipha_t *ipha; /* Outer header */ 1330 int ip_hdr_length; /* Outer header length */ 1331 boolean_t interested; 1332 ipif_t *ipif; 1333 uint32_t ts; 1334 uint32_t *tsp; 1335 timestruc_t now; 1336 ill_t *ill = ira->ira_ill; 1337 ip_stack_t *ipst = ill->ill_ipst; 1338 zoneid_t zoneid = ira->ira_zoneid; 1339 int len_needed; 1340 mblk_t *mp_ret = NULL; 1341 1342 ipha = (ipha_t *)mp->b_rptr; 1343 1344 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1345 1346 ip_hdr_length = ira->ira_ip_hdr_length; 1347 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1348 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1350 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1351 freemsg(mp); 1352 return (NULL); 1353 } 1354 /* Last chance to get real. */ 1355 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1356 if (ipha == NULL) { 1357 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1358 freemsg(mp); 1359 return (NULL); 1360 } 1361 } 1362 1363 /* The IP header will always be a multiple of four bytes */ 1364 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1365 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1366 icmph->icmph_code)); 1367 1368 /* 1369 * We will set "interested" to "true" if we should pass a copy to 1370 * the transport or if we handle the packet locally. 1371 */ 1372 interested = B_FALSE; 1373 switch (icmph->icmph_type) { 1374 case ICMP_ECHO_REPLY: 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1376 break; 1377 case ICMP_DEST_UNREACHABLE: 1378 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1380 interested = B_TRUE; /* Pass up to transport */ 1381 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1382 break; 1383 case ICMP_SOURCE_QUENCH: 1384 interested = B_TRUE; /* Pass up to transport */ 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1386 break; 1387 case ICMP_REDIRECT: 1388 if (!ipst->ips_ip_ignore_redirect) 1389 interested = B_TRUE; 1390 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1391 break; 1392 case ICMP_ECHO_REQUEST: 1393 /* 1394 * Whether to respond to echo requests that come in as IP 1395 * broadcasts or as IP multicast is subject to debate 1396 * (what isn't?). We aim to please, you pick it. 1397 * Default is do it. 1398 */ 1399 if (ira->ira_flags & IRAF_MULTICAST) { 1400 /* multicast: respond based on tunable */ 1401 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1402 } else if (ira->ira_flags & IRAF_BROADCAST) { 1403 /* broadcast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1405 } else { 1406 /* unicast: always respond */ 1407 interested = B_TRUE; 1408 } 1409 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1410 if (!interested) { 1411 /* We never pass these to RAW sockets */ 1412 freemsg(mp); 1413 return (NULL); 1414 } 1415 1416 /* Check db_ref to make sure we can modify the packet. */ 1417 if (mp->b_datap->db_ref > 1) { 1418 mblk_t *mp1; 1419 1420 mp1 = copymsg(mp); 1421 freemsg(mp); 1422 if (!mp1) { 1423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1424 return (NULL); 1425 } 1426 mp = mp1; 1427 ipha = (ipha_t *)mp->b_rptr; 1428 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1429 } 1430 icmph->icmph_type = ICMP_ECHO_REPLY; 1431 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1432 icmp_send_reply_v4(mp, ipha, icmph, ira); 1433 return (NULL); 1434 1435 case ICMP_ROUTER_ADVERTISEMENT: 1436 case ICMP_ROUTER_SOLICITATION: 1437 break; 1438 case ICMP_TIME_EXCEEDED: 1439 interested = B_TRUE; /* Pass up to transport */ 1440 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1441 break; 1442 case ICMP_PARAM_PROBLEM: 1443 interested = B_TRUE; /* Pass up to transport */ 1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1445 break; 1446 case ICMP_TIME_STAMP_REQUEST: 1447 /* Response to Time Stamp Requests is local policy. */ 1448 if (ipst->ips_ip_g_resp_to_timestamp) { 1449 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1450 interested = 1451 ipst->ips_ip_g_resp_to_timestamp_bcast; 1452 else 1453 interested = B_TRUE; 1454 } 1455 if (!interested) { 1456 /* We never pass these to RAW sockets */ 1457 freemsg(mp); 1458 return (NULL); 1459 } 1460 1461 /* Make sure we have enough of the packet */ 1462 len_needed = ip_hdr_length + ICMPH_SIZE + 1463 3 * sizeof (uint32_t); 1464 1465 if (mp->b_wptr - mp->b_rptr < len_needed) { 1466 ipha = ip_pullup(mp, len_needed, ira); 1467 if (ipha == NULL) { 1468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1469 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1470 mp, ill); 1471 freemsg(mp); 1472 return (NULL); 1473 } 1474 /* Refresh following the pullup. */ 1475 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1476 } 1477 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1478 /* Check db_ref to make sure we can modify the packet. */ 1479 if (mp->b_datap->db_ref > 1) { 1480 mblk_t *mp1; 1481 1482 mp1 = copymsg(mp); 1483 freemsg(mp); 1484 if (!mp1) { 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1486 return (NULL); 1487 } 1488 mp = mp1; 1489 ipha = (ipha_t *)mp->b_rptr; 1490 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1491 } 1492 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1493 tsp = (uint32_t *)&icmph[1]; 1494 tsp++; /* Skip past 'originate time' */ 1495 /* Compute # of milliseconds since midnight */ 1496 gethrestime(&now); 1497 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1498 NSEC2MSEC(now.tv_nsec); 1499 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1500 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1502 icmp_send_reply_v4(mp, ipha, icmph, ira); 1503 return (NULL); 1504 1505 case ICMP_TIME_STAMP_REPLY: 1506 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1507 break; 1508 case ICMP_INFO_REQUEST: 1509 /* Per RFC 1122 3.2.2.7, ignore this. */ 1510 case ICMP_INFO_REPLY: 1511 break; 1512 case ICMP_ADDRESS_MASK_REQUEST: 1513 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1514 interested = 1515 ipst->ips_ip_respond_to_address_mask_broadcast; 1516 } else { 1517 interested = B_TRUE; 1518 } 1519 if (!interested) { 1520 /* We never pass these to RAW sockets */ 1521 freemsg(mp); 1522 return (NULL); 1523 } 1524 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1525 if (mp->b_wptr - mp->b_rptr < len_needed) { 1526 ipha = ip_pullup(mp, len_needed, ira); 1527 if (ipha == NULL) { 1528 BUMP_MIB(ill->ill_ip_mib, 1529 ipIfStatsInTruncatedPkts); 1530 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1531 ill); 1532 freemsg(mp); 1533 return (NULL); 1534 } 1535 /* Refresh following the pullup. */ 1536 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1537 } 1538 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1539 /* Check db_ref to make sure we can modify the packet. */ 1540 if (mp->b_datap->db_ref > 1) { 1541 mblk_t *mp1; 1542 1543 mp1 = copymsg(mp); 1544 freemsg(mp); 1545 if (!mp1) { 1546 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1547 return (NULL); 1548 } 1549 mp = mp1; 1550 ipha = (ipha_t *)mp->b_rptr; 1551 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1552 } 1553 /* 1554 * Need the ipif with the mask be the same as the source 1555 * address of the mask reply. For unicast we have a specific 1556 * ipif. For multicast/broadcast we only handle onlink 1557 * senders, and use the source address to pick an ipif. 1558 */ 1559 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1560 if (ipif == NULL) { 1561 /* Broadcast or multicast */ 1562 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1563 if (ipif == NULL) { 1564 freemsg(mp); 1565 return (NULL); 1566 } 1567 } 1568 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1569 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1570 ipif_refrele(ipif); 1571 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1572 icmp_send_reply_v4(mp, ipha, icmph, ira); 1573 return (NULL); 1574 1575 case ICMP_ADDRESS_MASK_REPLY: 1576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1577 break; 1578 default: 1579 interested = B_TRUE; /* Pass up to transport */ 1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1581 break; 1582 } 1583 /* 1584 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1585 * if there isn't one. 1586 */ 1587 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1588 /* If there is an ICMP client and we want one too, copy it. */ 1589 1590 if (!interested) { 1591 /* Caller will deliver to RAW sockets */ 1592 return (mp); 1593 } 1594 mp_ret = copymsg(mp); 1595 if (mp_ret == NULL) { 1596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1597 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1598 } 1599 } else if (!interested) { 1600 /* Neither we nor raw sockets are interested. Drop packet now */ 1601 freemsg(mp); 1602 return (NULL); 1603 } 1604 1605 /* 1606 * ICMP error or redirect packet. Make sure we have enough of 1607 * the header and that db_ref == 1 since we might end up modifying 1608 * the packet. 1609 */ 1610 if (mp->b_cont != NULL) { 1611 if (ip_pullup(mp, -1, ira) == NULL) { 1612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1613 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1614 mp, ill); 1615 freemsg(mp); 1616 return (mp_ret); 1617 } 1618 } 1619 1620 if (mp->b_datap->db_ref > 1) { 1621 mblk_t *mp1; 1622 1623 mp1 = copymsg(mp); 1624 if (mp1 == NULL) { 1625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1626 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1627 freemsg(mp); 1628 return (mp_ret); 1629 } 1630 freemsg(mp); 1631 mp = mp1; 1632 } 1633 1634 /* 1635 * In case mp has changed, verify the message before any further 1636 * processes. 1637 */ 1638 ipha = (ipha_t *)mp->b_rptr; 1639 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1640 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1641 freemsg(mp); 1642 return (mp_ret); 1643 } 1644 1645 switch (icmph->icmph_type) { 1646 case ICMP_REDIRECT: 1647 icmp_redirect_v4(mp, ipha, icmph, ira); 1648 break; 1649 case ICMP_DEST_UNREACHABLE: 1650 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1651 /* Update DCE and adjust MTU is icmp header if needed */ 1652 icmp_inbound_too_big_v4(icmph, ira); 1653 } 1654 /* FALLTHROUGH */ 1655 default: 1656 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1657 break; 1658 } 1659 return (mp_ret); 1660 } 1661 1662 /* 1663 * Send an ICMP echo, timestamp or address mask reply. 1664 * The caller has already updated the payload part of the packet. 1665 * We handle the ICMP checksum, IP source address selection and feed 1666 * the packet into ip_output_simple. 1667 */ 1668 static void 1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1670 ip_recv_attr_t *ira) 1671 { 1672 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1673 ill_t *ill = ira->ira_ill; 1674 ip_stack_t *ipst = ill->ill_ipst; 1675 ip_xmit_attr_t ixas; 1676 1677 /* Send out an ICMP packet */ 1678 icmph->icmph_checksum = 0; 1679 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1680 /* Reset time to live. */ 1681 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1682 { 1683 /* Swap source and destination addresses */ 1684 ipaddr_t tmp; 1685 1686 tmp = ipha->ipha_src; 1687 ipha->ipha_src = ipha->ipha_dst; 1688 ipha->ipha_dst = tmp; 1689 } 1690 ipha->ipha_ident = 0; 1691 if (!IS_SIMPLE_IPH(ipha)) 1692 icmp_options_update(ipha); 1693 1694 bzero(&ixas, sizeof (ixas)); 1695 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1696 ixas.ixa_zoneid = ira->ira_zoneid; 1697 ixas.ixa_cred = kcred; 1698 ixas.ixa_cpid = NOPID; 1699 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1700 ixas.ixa_ifindex = 0; 1701 ixas.ixa_ipst = ipst; 1702 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1703 1704 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1705 /* 1706 * This packet should go out the same way as it 1707 * came in i.e in clear, independent of the IPsec policy 1708 * for transmitting packets. 1709 */ 1710 ixas.ixa_flags |= IXAF_NO_IPSEC; 1711 } else { 1712 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1714 /* Note: mp already consumed and ip_drop_packet done */ 1715 return; 1716 } 1717 } 1718 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1719 /* 1720 * Not one or our addresses (IRE_LOCALs), thus we let 1721 * ip_output_simple pick the source. 1722 */ 1723 ipha->ipha_src = INADDR_ANY; 1724 ixas.ixa_flags |= IXAF_SET_SOURCE; 1725 } 1726 /* Should we send with DF and use dce_pmtu? */ 1727 if (ipst->ips_ipv4_icmp_return_pmtu) { 1728 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1729 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1730 } 1731 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1733 1734 (void) ip_output_simple(mp, &ixas); 1735 ixa_cleanup(&ixas); 1736 } 1737 1738 /* 1739 * Verify the ICMP messages for either for ICMP error or redirect packet. 1740 * The caller should have fully pulled up the message. If it's a redirect 1741 * packet, only basic checks on IP header will be done; otherwise, verify 1742 * the packet by looking at the included ULP header. 1743 * 1744 * Called before icmp_inbound_error_fanout_v4 is called. 1745 */ 1746 static boolean_t 1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1748 { 1749 ill_t *ill = ira->ira_ill; 1750 int hdr_length; 1751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1752 conn_t *connp; 1753 ipha_t *ipha; /* Inner IP header */ 1754 1755 ipha = (ipha_t *)&icmph[1]; 1756 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1757 goto truncated; 1758 1759 hdr_length = IPH_HDR_LENGTH(ipha); 1760 1761 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1762 goto discard_pkt; 1763 1764 if (hdr_length < sizeof (ipha_t)) 1765 goto truncated; 1766 1767 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1768 goto truncated; 1769 1770 /* 1771 * Stop here for ICMP_REDIRECT. 1772 */ 1773 if (icmph->icmph_type == ICMP_REDIRECT) 1774 return (B_TRUE); 1775 1776 /* 1777 * ICMP errors only. 1778 */ 1779 switch (ipha->ipha_protocol) { 1780 case IPPROTO_UDP: 1781 /* 1782 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1783 * transport header. 1784 */ 1785 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1786 mp->b_wptr) 1787 goto truncated; 1788 break; 1789 case IPPROTO_TCP: { 1790 tcpha_t *tcpha; 1791 1792 /* 1793 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1794 * transport header. 1795 */ 1796 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1797 mp->b_wptr) 1798 goto truncated; 1799 1800 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1801 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1802 ipst); 1803 if (connp == NULL) 1804 goto discard_pkt; 1805 1806 if ((connp->conn_verifyicmp != NULL) && 1807 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1808 CONN_DEC_REF(connp); 1809 goto discard_pkt; 1810 } 1811 CONN_DEC_REF(connp); 1812 break; 1813 } 1814 case IPPROTO_SCTP: 1815 /* 1816 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1817 * transport header. 1818 */ 1819 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1820 mp->b_wptr) 1821 goto truncated; 1822 break; 1823 case IPPROTO_ESP: 1824 case IPPROTO_AH: 1825 break; 1826 case IPPROTO_ENCAP: 1827 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1828 mp->b_wptr) 1829 goto truncated; 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 return (B_TRUE); 1836 1837 discard_pkt: 1838 /* Bogus ICMP error. */ 1839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1840 return (B_FALSE); 1841 1842 truncated: 1843 /* We pulled up everthing already. Must be truncated */ 1844 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1845 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1846 return (B_FALSE); 1847 } 1848 1849 /* Table from RFC 1191 */ 1850 static int icmp_frag_size_table[] = 1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1852 1853 /* 1854 * Process received ICMP Packet too big. 1855 * Just handles the DCE create/update, including using the above table of 1856 * PMTU guesses. The caller is responsible for validating the packet before 1857 * passing it in and also to fanout the ICMP error to any matching transport 1858 * conns. Assumes the message has been fully pulled up and verified. 1859 * 1860 * Before getting here, the caller has called icmp_inbound_verify_v4() 1861 * that should have verified with ULP to prevent undoing the changes we're 1862 * going to make to DCE. For example, TCP might have verified that the packet 1863 * which generated error is in the send window. 1864 * 1865 * In some cases modified this MTU in the ICMP header packet; the caller 1866 * should pass to the matching ULP after this returns. 1867 */ 1868 static void 1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1870 { 1871 dce_t *dce; 1872 int old_mtu; 1873 int mtu, orig_mtu; 1874 ipaddr_t dst; 1875 boolean_t disable_pmtud; 1876 ill_t *ill = ira->ira_ill; 1877 ip_stack_t *ipst = ill->ill_ipst; 1878 uint_t hdr_length; 1879 ipha_t *ipha; 1880 1881 /* Caller already pulled up everything. */ 1882 ipha = (ipha_t *)&icmph[1]; 1883 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1884 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1885 ASSERT(ill != NULL); 1886 1887 hdr_length = IPH_HDR_LENGTH(ipha); 1888 1889 /* 1890 * We handle path MTU for source routed packets since the DCE 1891 * is looked up using the final destination. 1892 */ 1893 dst = ip_get_dst(ipha); 1894 1895 dce = dce_lookup_and_add_v4(dst, ipst); 1896 if (dce == NULL) { 1897 /* Couldn't add a unique one - ENOMEM */ 1898 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1899 ntohl(dst))); 1900 return; 1901 } 1902 1903 /* Check for MTU discovery advice as described in RFC 1191 */ 1904 mtu = ntohs(icmph->icmph_du_mtu); 1905 orig_mtu = mtu; 1906 disable_pmtud = B_FALSE; 1907 1908 mutex_enter(&dce->dce_lock); 1909 if (dce->dce_flags & DCEF_PMTU) 1910 old_mtu = dce->dce_pmtu; 1911 else 1912 old_mtu = ill->ill_mtu; 1913 1914 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1915 uint32_t length; 1916 int i; 1917 1918 /* 1919 * Use the table from RFC 1191 to figure out 1920 * the next "plateau" based on the length in 1921 * the original IP packet. 1922 */ 1923 length = ntohs(ipha->ipha_length); 1924 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1925 uint32_t, length); 1926 if (old_mtu <= length && 1927 old_mtu >= length - hdr_length) { 1928 /* 1929 * Handle broken BSD 4.2 systems that 1930 * return the wrong ipha_length in ICMP 1931 * errors. 1932 */ 1933 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1934 length, old_mtu)); 1935 length -= hdr_length; 1936 } 1937 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1938 if (length > icmp_frag_size_table[i]) 1939 break; 1940 } 1941 if (i == A_CNT(icmp_frag_size_table)) { 1942 /* Smaller than IP_MIN_MTU! */ 1943 ip1dbg(("Too big for packet size %d\n", 1944 length)); 1945 disable_pmtud = B_TRUE; 1946 mtu = ipst->ips_ip_pmtu_min; 1947 } else { 1948 mtu = icmp_frag_size_table[i]; 1949 ip1dbg(("Calculated mtu %d, packet size %d, " 1950 "before %d\n", mtu, length, old_mtu)); 1951 if (mtu < ipst->ips_ip_pmtu_min) { 1952 mtu = ipst->ips_ip_pmtu_min; 1953 disable_pmtud = B_TRUE; 1954 } 1955 } 1956 } 1957 if (disable_pmtud) 1958 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1959 else 1960 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1961 1962 dce->dce_pmtu = MIN(old_mtu, mtu); 1963 /* Prepare to send the new max frag size for the ULP. */ 1964 icmph->icmph_du_zero = 0; 1965 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1966 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1967 dce, int, orig_mtu, int, mtu); 1968 1969 /* We now have a PMTU for sure */ 1970 dce->dce_flags |= DCEF_PMTU; 1971 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1972 mutex_exit(&dce->dce_lock); 1973 /* 1974 * After dropping the lock the new value is visible to everyone. 1975 * Then we bump the generation number so any cached values reinspect 1976 * the dce_t. 1977 */ 1978 dce_increment_generation(dce); 1979 dce_refrele(dce); 1980 } 1981 1982 /* 1983 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1984 * calls this function. 1985 */ 1986 static mblk_t * 1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1988 { 1989 int length; 1990 1991 ASSERT(mp->b_datap->db_type == M_DATA); 1992 1993 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1994 ASSERT(mp->b_cont == NULL); 1995 1996 /* 1997 * The length that we want to overlay is the inner header 1998 * and what follows it. 1999 */ 2000 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2001 2002 /* 2003 * Overlay the inner header and whatever follows it over the 2004 * outer header. 2005 */ 2006 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2007 2008 /* Adjust for what we removed */ 2009 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2010 return (mp); 2011 } 2012 2013 /* 2014 * Try to pass the ICMP message upstream in case the ULP cares. 2015 * 2016 * If the packet that caused the ICMP error is secure, we send 2017 * it to AH/ESP to make sure that the attached packet has a 2018 * valid association. ipha in the code below points to the 2019 * IP header of the packet that caused the error. 2020 * 2021 * For IPsec cases, we let the next-layer-up (which has access to 2022 * cached policy on the conn_t, or can query the SPD directly) 2023 * subtract out any IPsec overhead if they must. We therefore make no 2024 * adjustments here for IPsec overhead. 2025 * 2026 * IFN could have been generated locally or by some router. 2027 * 2028 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2029 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2030 * This happens because IP adjusted its value of MTU on an 2031 * earlier IFN message and could not tell the upper layer, 2032 * the new adjusted value of MTU e.g. Packet was encrypted 2033 * or there was not enough information to fanout to upper 2034 * layers. Thus on the next outbound datagram, ire_send_wire 2035 * generates the IFN, where IPsec processing has *not* been 2036 * done. 2037 * 2038 * Note that we retain ixa_fragsize across IPsec thus once 2039 * we have picking ixa_fragsize and entered ipsec_out_process we do 2040 * no change the fragsize even if the path MTU changes before 2041 * we reach ip_output_post_ipsec. 2042 * 2043 * In the local case, IRAF_LOOPBACK will be set indicating 2044 * that IFN was generated locally. 2045 * 2046 * ROUTER : IFN could be secure or non-secure. 2047 * 2048 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2049 * packet in error has AH/ESP headers to validate the AH/ESP 2050 * headers. AH/ESP will verify whether there is a valid SA or 2051 * not and send it back. We will fanout again if we have more 2052 * data in the packet. 2053 * 2054 * If the packet in error does not have AH/ESP, we handle it 2055 * like any other case. 2056 * 2057 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2058 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2059 * valid SA or not and send it back. We will fanout again if 2060 * we have more data in the packet. 2061 * 2062 * If the packet in error does not have AH/ESP, we handle it 2063 * like any other case. 2064 * 2065 * The caller must have called icmp_inbound_verify_v4. 2066 */ 2067 static void 2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2069 { 2070 uint16_t *up; /* Pointer to ports in ULP header */ 2071 uint32_t ports; /* reversed ports for fanout */ 2072 ipha_t ripha; /* With reversed addresses */ 2073 ipha_t *ipha; /* Inner IP header */ 2074 uint_t hdr_length; /* Inner IP header length */ 2075 tcpha_t *tcpha; 2076 conn_t *connp; 2077 ill_t *ill = ira->ira_ill; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2080 ill_t *rill = ira->ira_rill; 2081 2082 /* Caller already pulled up everything. */ 2083 ipha = (ipha_t *)&icmph[1]; 2084 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2085 ASSERT(mp->b_cont == NULL); 2086 2087 hdr_length = IPH_HDR_LENGTH(ipha); 2088 ira->ira_protocol = ipha->ipha_protocol; 2089 2090 /* 2091 * We need a separate IP header with the source and destination 2092 * addresses reversed to do fanout/classification because the ipha in 2093 * the ICMP error is in the form we sent it out. 2094 */ 2095 ripha.ipha_src = ipha->ipha_dst; 2096 ripha.ipha_dst = ipha->ipha_src; 2097 ripha.ipha_protocol = ipha->ipha_protocol; 2098 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2099 2100 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2101 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2102 ntohl(ipha->ipha_dst), 2103 icmph->icmph_type, icmph->icmph_code)); 2104 2105 switch (ipha->ipha_protocol) { 2106 case IPPROTO_UDP: 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 2109 /* Attempt to find a client stream based on port. */ 2110 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2111 ntohs(up[0]), ntohs(up[1]))); 2112 2113 /* Note that we send error to all matches. */ 2114 ira->ira_flags |= IRAF_ICMP_ERROR; 2115 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2116 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2117 return; 2118 2119 case IPPROTO_TCP: 2120 /* 2121 * Find a TCP client stream for this packet. 2122 * Note that we do a reverse lookup since the header is 2123 * in the form we sent it out. 2124 */ 2125 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2126 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2127 ipst); 2128 if (connp == NULL) 2129 goto discard_pkt; 2130 2131 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2132 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2133 mp = ipsec_check_inbound_policy(mp, connp, 2134 ipha, NULL, ira); 2135 if (mp == NULL) { 2136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2137 /* Note that mp is NULL */ 2138 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2139 CONN_DEC_REF(connp); 2140 return; 2141 } 2142 } 2143 2144 ira->ira_flags |= IRAF_ICMP_ERROR; 2145 ira->ira_ill = ira->ira_rill = NULL; 2146 if (IPCL_IS_TCP(connp)) { 2147 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2148 connp->conn_recvicmp, connp, ira, SQ_FILL, 2149 SQTAG_TCP_INPUT_ICMP_ERR); 2150 } else { 2151 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2152 (connp->conn_recv)(connp, mp, NULL, ira); 2153 CONN_DEC_REF(connp); 2154 } 2155 ira->ira_ill = ill; 2156 ira->ira_rill = rill; 2157 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2158 return; 2159 2160 case IPPROTO_SCTP: 2161 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2162 /* Find a SCTP client stream for this packet. */ 2163 ((uint16_t *)&ports)[0] = up[1]; 2164 ((uint16_t *)&ports)[1] = up[0]; 2165 2166 ira->ira_flags |= IRAF_ICMP_ERROR; 2167 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2168 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2169 return; 2170 2171 case IPPROTO_ESP: 2172 case IPPROTO_AH: 2173 if (!ipsec_loaded(ipss)) { 2174 ip_proto_not_sup(mp, ira); 2175 return; 2176 } 2177 2178 if (ipha->ipha_protocol == IPPROTO_ESP) 2179 mp = ipsecesp_icmp_error(mp, ira); 2180 else 2181 mp = ipsecah_icmp_error(mp, ira); 2182 if (mp == NULL) 2183 return; 2184 2185 /* Just in case ipsec didn't preserve the NULL b_cont */ 2186 if (mp->b_cont != NULL) { 2187 if (!pullupmsg(mp, -1)) 2188 goto discard_pkt; 2189 } 2190 2191 /* 2192 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2193 * correct, but we don't use them any more here. 2194 * 2195 * If succesful, the mp has been modified to not include 2196 * the ESP/AH header so we can fanout to the ULP's icmp 2197 * error handler. 2198 */ 2199 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2200 goto truncated; 2201 2202 /* Verify the modified message before any further processes. */ 2203 ipha = (ipha_t *)mp->b_rptr; 2204 hdr_length = IPH_HDR_LENGTH(ipha); 2205 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2206 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2207 freemsg(mp); 2208 return; 2209 } 2210 2211 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2212 return; 2213 2214 case IPPROTO_ENCAP: { 2215 /* Look for self-encapsulated packets that caused an error */ 2216 ipha_t *in_ipha; 2217 2218 /* 2219 * Caller has verified that length has to be 2220 * at least the size of IP header. 2221 */ 2222 ASSERT(hdr_length >= sizeof (ipha_t)); 2223 /* 2224 * Check the sanity of the inner IP header like 2225 * we did for the outer header. 2226 */ 2227 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2228 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2229 goto discard_pkt; 2230 } 2231 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2232 goto discard_pkt; 2233 } 2234 /* Check for Self-encapsulated tunnels */ 2235 if (in_ipha->ipha_src == ipha->ipha_src && 2236 in_ipha->ipha_dst == ipha->ipha_dst) { 2237 2238 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2239 in_ipha); 2240 if (mp == NULL) 2241 goto discard_pkt; 2242 2243 /* 2244 * Just in case self_encap didn't preserve the NULL 2245 * b_cont 2246 */ 2247 if (mp->b_cont != NULL) { 2248 if (!pullupmsg(mp, -1)) 2249 goto discard_pkt; 2250 } 2251 /* 2252 * Note that ira_pktlen and ira_ip_hdr_length are no 2253 * longer correct, but we don't use them any more here. 2254 */ 2255 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2256 goto truncated; 2257 2258 /* 2259 * Verify the modified message before any further 2260 * processes. 2261 */ 2262 ipha = (ipha_t *)mp->b_rptr; 2263 hdr_length = IPH_HDR_LENGTH(ipha); 2264 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2265 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2266 freemsg(mp); 2267 return; 2268 } 2269 2270 /* 2271 * The packet in error is self-encapsualted. 2272 * And we are finding it further encapsulated 2273 * which we could not have possibly generated. 2274 */ 2275 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2276 goto discard_pkt; 2277 } 2278 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2279 return; 2280 } 2281 /* No self-encapsulated */ 2282 } 2283 /* FALLTHROUGH */ 2284 case IPPROTO_IPV6: 2285 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2286 &ripha.ipha_dst, ipst)) != NULL) { 2287 ira->ira_flags |= IRAF_ICMP_ERROR; 2288 connp->conn_recvicmp(connp, mp, NULL, ira); 2289 CONN_DEC_REF(connp); 2290 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2291 return; 2292 } 2293 /* 2294 * No IP tunnel is interested, fallthrough and see 2295 * if a raw socket will want it. 2296 */ 2297 /* FALLTHROUGH */ 2298 default: 2299 ira->ira_flags |= IRAF_ICMP_ERROR; 2300 ip_fanout_proto_v4(mp, &ripha, ira); 2301 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2302 return; 2303 } 2304 /* NOTREACHED */ 2305 discard_pkt: 2306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2307 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2308 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2309 freemsg(mp); 2310 return; 2311 2312 truncated: 2313 /* We pulled up everthing already. Must be truncated */ 2314 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2315 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2316 freemsg(mp); 2317 } 2318 2319 /* 2320 * Common IP options parser. 2321 * 2322 * Setup routine: fill in *optp with options-parsing state, then 2323 * tail-call ipoptp_next to return the first option. 2324 */ 2325 uint8_t 2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2327 { 2328 uint32_t totallen; /* total length of all options */ 2329 2330 totallen = ipha->ipha_version_and_hdr_length - 2331 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2332 totallen <<= 2; 2333 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2334 optp->ipoptp_end = optp->ipoptp_next + totallen; 2335 optp->ipoptp_flags = 0; 2336 return (ipoptp_next(optp)); 2337 } 2338 2339 /* Like above but without an ipha_t */ 2340 uint8_t 2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2342 { 2343 optp->ipoptp_next = opt; 2344 optp->ipoptp_end = optp->ipoptp_next + totallen; 2345 optp->ipoptp_flags = 0; 2346 return (ipoptp_next(optp)); 2347 } 2348 2349 /* 2350 * Common IP options parser: extract next option. 2351 */ 2352 uint8_t 2353 ipoptp_next(ipoptp_t *optp) 2354 { 2355 uint8_t *end = optp->ipoptp_end; 2356 uint8_t *cur = optp->ipoptp_next; 2357 uint8_t opt, len, pointer; 2358 2359 /* 2360 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2361 * has been corrupted. 2362 */ 2363 ASSERT(cur <= end); 2364 2365 if (cur == end) 2366 return (IPOPT_EOL); 2367 2368 opt = cur[IPOPT_OPTVAL]; 2369 2370 /* 2371 * Skip any NOP options. 2372 */ 2373 while (opt == IPOPT_NOP) { 2374 cur++; 2375 if (cur == end) 2376 return (IPOPT_EOL); 2377 opt = cur[IPOPT_OPTVAL]; 2378 } 2379 2380 if (opt == IPOPT_EOL) 2381 return (IPOPT_EOL); 2382 2383 /* 2384 * Option requiring a length. 2385 */ 2386 if ((cur + 1) >= end) { 2387 optp->ipoptp_flags |= IPOPTP_ERROR; 2388 return (IPOPT_EOL); 2389 } 2390 len = cur[IPOPT_OLEN]; 2391 if (len < 2) { 2392 optp->ipoptp_flags |= IPOPTP_ERROR; 2393 return (IPOPT_EOL); 2394 } 2395 optp->ipoptp_cur = cur; 2396 optp->ipoptp_len = len; 2397 optp->ipoptp_next = cur + len; 2398 if (cur + len > end) { 2399 optp->ipoptp_flags |= IPOPTP_ERROR; 2400 return (IPOPT_EOL); 2401 } 2402 2403 /* 2404 * For the options which require a pointer field, make sure 2405 * its there, and make sure it points to either something 2406 * inside this option, or the end of the option. 2407 */ 2408 pointer = IPOPT_EOL; 2409 switch (opt) { 2410 case IPOPT_RR: 2411 case IPOPT_TS: 2412 case IPOPT_LSRR: 2413 case IPOPT_SSRR: 2414 if (len <= IPOPT_OFFSET) { 2415 optp->ipoptp_flags |= IPOPTP_ERROR; 2416 return (opt); 2417 } 2418 pointer = cur[IPOPT_OFFSET]; 2419 if (pointer - 1 > len) { 2420 optp->ipoptp_flags |= IPOPTP_ERROR; 2421 return (opt); 2422 } 2423 break; 2424 } 2425 2426 /* 2427 * Sanity check the pointer field based on the type of the 2428 * option. 2429 */ 2430 switch (opt) { 2431 case IPOPT_RR: 2432 case IPOPT_SSRR: 2433 case IPOPT_LSRR: 2434 if (pointer < IPOPT_MINOFF_SR) 2435 optp->ipoptp_flags |= IPOPTP_ERROR; 2436 break; 2437 case IPOPT_TS: 2438 if (pointer < IPOPT_MINOFF_IT) 2439 optp->ipoptp_flags |= IPOPTP_ERROR; 2440 /* 2441 * Note that the Internet Timestamp option also 2442 * contains two four bit fields (the Overflow field, 2443 * and the Flag field), which follow the pointer 2444 * field. We don't need to check that these fields 2445 * fall within the length of the option because this 2446 * was implicitely done above. We've checked that the 2447 * pointer value is at least IPOPT_MINOFF_IT, and that 2448 * it falls within the option. Since IPOPT_MINOFF_IT > 2449 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2450 */ 2451 ASSERT(len > IPOPT_POS_OV_FLG); 2452 break; 2453 } 2454 2455 return (opt); 2456 } 2457 2458 /* 2459 * Use the outgoing IP header to create an IP_OPTIONS option the way 2460 * it was passed down from the application. 2461 * 2462 * This is compatible with BSD in that it returns 2463 * the reverse source route with the final destination 2464 * as the last entry. The first 4 bytes of the option 2465 * will contain the final destination. 2466 */ 2467 int 2468 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2469 { 2470 ipoptp_t opts; 2471 uchar_t *opt; 2472 uint8_t optval; 2473 uint8_t optlen; 2474 uint32_t len = 0; 2475 uchar_t *buf1 = buf; 2476 uint32_t totallen; 2477 ipaddr_t dst; 2478 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2479 2480 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2481 return (0); 2482 2483 totallen = ipp->ipp_ipv4_options_len; 2484 if (totallen & 0x3) 2485 return (0); 2486 2487 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2488 len += IP_ADDR_LEN; 2489 bzero(buf1, IP_ADDR_LEN); 2490 2491 dst = connp->conn_faddr_v4; 2492 2493 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2494 optval != IPOPT_EOL; 2495 optval = ipoptp_next(&opts)) { 2496 int off; 2497 2498 opt = opts.ipoptp_cur; 2499 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2500 break; 2501 } 2502 optlen = opts.ipoptp_len; 2503 2504 switch (optval) { 2505 case IPOPT_SSRR: 2506 case IPOPT_LSRR: 2507 2508 /* 2509 * Insert destination as the first entry in the source 2510 * route and move down the entries on step. 2511 * The last entry gets placed at buf1. 2512 */ 2513 buf[IPOPT_OPTVAL] = optval; 2514 buf[IPOPT_OLEN] = optlen; 2515 buf[IPOPT_OFFSET] = optlen; 2516 2517 off = optlen - IP_ADDR_LEN; 2518 if (off < 0) { 2519 /* No entries in source route */ 2520 break; 2521 } 2522 /* Last entry in source route if not already set */ 2523 if (dst == INADDR_ANY) 2524 bcopy(opt + off, buf1, IP_ADDR_LEN); 2525 off -= IP_ADDR_LEN; 2526 2527 while (off > 0) { 2528 bcopy(opt + off, 2529 buf + off + IP_ADDR_LEN, 2530 IP_ADDR_LEN); 2531 off -= IP_ADDR_LEN; 2532 } 2533 /* ipha_dst into first slot */ 2534 bcopy(&dst, buf + off + IP_ADDR_LEN, 2535 IP_ADDR_LEN); 2536 buf += optlen; 2537 len += optlen; 2538 break; 2539 2540 default: 2541 bcopy(opt, buf, optlen); 2542 buf += optlen; 2543 len += optlen; 2544 break; 2545 } 2546 } 2547 done: 2548 /* Pad the resulting options */ 2549 while (len & 0x3) { 2550 *buf++ = IPOPT_EOL; 2551 len++; 2552 } 2553 return (len); 2554 } 2555 2556 /* 2557 * Update any record route or timestamp options to include this host. 2558 * Reverse any source route option. 2559 * This routine assumes that the options are well formed i.e. that they 2560 * have already been checked. 2561 */ 2562 static void 2563 icmp_options_update(ipha_t *ipha) 2564 { 2565 ipoptp_t opts; 2566 uchar_t *opt; 2567 uint8_t optval; 2568 ipaddr_t src; /* Our local address */ 2569 ipaddr_t dst; 2570 2571 ip2dbg(("icmp_options_update\n")); 2572 src = ipha->ipha_src; 2573 dst = ipha->ipha_dst; 2574 2575 for (optval = ipoptp_first(&opts, ipha); 2576 optval != IPOPT_EOL; 2577 optval = ipoptp_next(&opts)) { 2578 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2579 opt = opts.ipoptp_cur; 2580 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2581 optval, opts.ipoptp_len)); 2582 switch (optval) { 2583 int off1, off2; 2584 case IPOPT_SSRR: 2585 case IPOPT_LSRR: 2586 /* 2587 * Reverse the source route. The first entry 2588 * should be the next to last one in the current 2589 * source route (the last entry is our address). 2590 * The last entry should be the final destination. 2591 */ 2592 off1 = IPOPT_MINOFF_SR - 1; 2593 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2594 if (off2 < 0) { 2595 /* No entries in source route */ 2596 ip1dbg(( 2597 "icmp_options_update: bad src route\n")); 2598 break; 2599 } 2600 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2601 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2602 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2603 off2 -= IP_ADDR_LEN; 2604 2605 while (off1 < off2) { 2606 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2607 bcopy((char *)opt + off2, (char *)opt + off1, 2608 IP_ADDR_LEN); 2609 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2610 off1 += IP_ADDR_LEN; 2611 off2 -= IP_ADDR_LEN; 2612 } 2613 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2614 break; 2615 } 2616 } 2617 } 2618 2619 /* 2620 * Process received ICMP Redirect messages. 2621 * Assumes the caller has verified that the headers are in the pulled up mblk. 2622 * Consumes mp. 2623 */ 2624 static void 2625 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2626 { 2627 ire_t *ire, *nire; 2628 ire_t *prev_ire; 2629 ipaddr_t src, dst, gateway; 2630 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2631 ipha_t *inner_ipha; /* Inner IP header */ 2632 2633 /* Caller already pulled up everything. */ 2634 inner_ipha = (ipha_t *)&icmph[1]; 2635 src = ipha->ipha_src; 2636 dst = inner_ipha->ipha_dst; 2637 gateway = icmph->icmph_rd_gateway; 2638 /* Make sure the new gateway is reachable somehow. */ 2639 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2640 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2641 /* 2642 * Make sure we had a route for the dest in question and that 2643 * that route was pointing to the old gateway (the source of the 2644 * redirect packet.) 2645 * We do longest match and then compare ire_gateway_addr below. 2646 */ 2647 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2648 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2649 /* 2650 * Check that 2651 * the redirect was not from ourselves 2652 * the new gateway and the old gateway are directly reachable 2653 */ 2654 if (prev_ire == NULL || ire == NULL || 2655 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2656 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2657 !(ire->ire_type & IRE_IF_ALL) || 2658 prev_ire->ire_gateway_addr != src) { 2659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2660 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2661 freemsg(mp); 2662 if (ire != NULL) 2663 ire_refrele(ire); 2664 if (prev_ire != NULL) 2665 ire_refrele(prev_ire); 2666 return; 2667 } 2668 2669 ire_refrele(prev_ire); 2670 ire_refrele(ire); 2671 2672 /* 2673 * TODO: more precise handling for cases 0, 2, 3, the latter two 2674 * require TOS routing 2675 */ 2676 switch (icmph->icmph_code) { 2677 case 0: 2678 case 1: 2679 /* TODO: TOS specificity for cases 2 and 3 */ 2680 case 2: 2681 case 3: 2682 break; 2683 default: 2684 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2685 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2686 freemsg(mp); 2687 return; 2688 } 2689 /* 2690 * Create a Route Association. This will allow us to remember that 2691 * someone we believe told us to use the particular gateway. 2692 */ 2693 ire = ire_create( 2694 (uchar_t *)&dst, /* dest addr */ 2695 (uchar_t *)&ip_g_all_ones, /* mask */ 2696 (uchar_t *)&gateway, /* gateway addr */ 2697 IRE_HOST, 2698 NULL, /* ill */ 2699 ALL_ZONES, 2700 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2701 NULL, /* tsol_gc_t */ 2702 ipst); 2703 2704 if (ire == NULL) { 2705 freemsg(mp); 2706 return; 2707 } 2708 nire = ire_add(ire); 2709 /* Check if it was a duplicate entry */ 2710 if (nire != NULL && nire != ire) { 2711 ASSERT(nire->ire_identical_ref > 1); 2712 ire_delete(nire); 2713 ire_refrele(nire); 2714 nire = NULL; 2715 } 2716 ire = nire; 2717 if (ire != NULL) { 2718 ire_refrele(ire); /* Held in ire_add */ 2719 2720 /* tell routing sockets that we received a redirect */ 2721 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2722 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2723 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2724 } 2725 2726 /* 2727 * Delete any existing IRE_HOST type redirect ires for this destination. 2728 * This together with the added IRE has the effect of 2729 * modifying an existing redirect. 2730 */ 2731 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2732 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2733 if (prev_ire != NULL) { 2734 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2735 ire_delete(prev_ire); 2736 ire_refrele(prev_ire); 2737 } 2738 2739 freemsg(mp); 2740 } 2741 2742 /* 2743 * Generate an ICMP parameter problem message. 2744 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2745 * constructed by the caller. 2746 */ 2747 static void 2748 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2749 { 2750 icmph_t icmph; 2751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2752 2753 mp = icmp_pkt_err_ok(mp, ira); 2754 if (mp == NULL) 2755 return; 2756 2757 bzero(&icmph, sizeof (icmph_t)); 2758 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2759 icmph.icmph_pp_ptr = ptr; 2760 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2761 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2762 } 2763 2764 /* 2765 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2766 * the ICMP header pointed to by "stuff". (May be called as writer.) 2767 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2768 * an icmp error packet can be sent. 2769 * Assigns an appropriate source address to the packet. If ipha_dst is 2770 * one of our addresses use it for source. Otherwise let ip_output_simple 2771 * pick the source address. 2772 */ 2773 static void 2774 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2775 { 2776 ipaddr_t dst; 2777 icmph_t *icmph; 2778 ipha_t *ipha; 2779 uint_t len_needed; 2780 size_t msg_len; 2781 mblk_t *mp1; 2782 ipaddr_t src; 2783 ire_t *ire; 2784 ip_xmit_attr_t ixas; 2785 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2786 2787 ipha = (ipha_t *)mp->b_rptr; 2788 2789 bzero(&ixas, sizeof (ixas)); 2790 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2791 ixas.ixa_zoneid = ira->ira_zoneid; 2792 ixas.ixa_ifindex = 0; 2793 ixas.ixa_ipst = ipst; 2794 ixas.ixa_cred = kcred; 2795 ixas.ixa_cpid = NOPID; 2796 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2797 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2798 2799 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2800 /* 2801 * Apply IPsec based on how IPsec was applied to 2802 * the packet that had the error. 2803 * 2804 * If it was an outbound packet that caused the ICMP 2805 * error, then the caller will have setup the IRA 2806 * appropriately. 2807 */ 2808 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2809 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2810 /* Note: mp already consumed and ip_drop_packet done */ 2811 return; 2812 } 2813 } else { 2814 /* 2815 * This is in clear. The icmp message we are building 2816 * here should go out in clear, independent of our policy. 2817 */ 2818 ixas.ixa_flags |= IXAF_NO_IPSEC; 2819 } 2820 2821 /* Remember our eventual destination */ 2822 dst = ipha->ipha_src; 2823 2824 /* 2825 * If the packet was for one of our unicast addresses, make 2826 * sure we respond with that as the source. Otherwise 2827 * have ip_output_simple pick the source address. 2828 */ 2829 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2830 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2831 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2832 if (ire != NULL) { 2833 ire_refrele(ire); 2834 src = ipha->ipha_dst; 2835 } else { 2836 src = INADDR_ANY; 2837 ixas.ixa_flags |= IXAF_SET_SOURCE; 2838 } 2839 2840 /* 2841 * Check if we can send back more then 8 bytes in addition to 2842 * the IP header. We try to send 64 bytes of data and the internal 2843 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2844 */ 2845 len_needed = IPH_HDR_LENGTH(ipha); 2846 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2847 ipha->ipha_protocol == IPPROTO_IPV6) { 2848 if (!pullupmsg(mp, -1)) { 2849 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2850 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2851 freemsg(mp); 2852 return; 2853 } 2854 ipha = (ipha_t *)mp->b_rptr; 2855 2856 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2857 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2858 len_needed)); 2859 } else { 2860 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2861 2862 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2863 len_needed += ip_hdr_length_v6(mp, ip6h); 2864 } 2865 } 2866 len_needed += ipst->ips_ip_icmp_return; 2867 msg_len = msgdsize(mp); 2868 if (msg_len > len_needed) { 2869 (void) adjmsg(mp, len_needed - msg_len); 2870 msg_len = len_needed; 2871 } 2872 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2873 if (mp1 == NULL) { 2874 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2875 freemsg(mp); 2876 return; 2877 } 2878 mp1->b_cont = mp; 2879 mp = mp1; 2880 2881 /* 2882 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2883 * node generates be accepted in peace by all on-host destinations. 2884 * If we do NOT assume that all on-host destinations trust 2885 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2886 * (Look for IXAF_TRUSTED_ICMP). 2887 */ 2888 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2889 2890 ipha = (ipha_t *)mp->b_rptr; 2891 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2892 *ipha = icmp_ipha; 2893 ipha->ipha_src = src; 2894 ipha->ipha_dst = dst; 2895 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2896 msg_len += sizeof (icmp_ipha) + len; 2897 if (msg_len > IP_MAXPACKET) { 2898 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2899 msg_len = IP_MAXPACKET; 2900 } 2901 ipha->ipha_length = htons((uint16_t)msg_len); 2902 icmph = (icmph_t *)&ipha[1]; 2903 bcopy(stuff, icmph, len); 2904 icmph->icmph_checksum = 0; 2905 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2906 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2907 2908 (void) ip_output_simple(mp, &ixas); 2909 ixa_cleanup(&ixas); 2910 } 2911 2912 /* 2913 * Determine if an ICMP error packet can be sent given the rate limit. 2914 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2915 * in milliseconds) and a burst size. Burst size number of packets can 2916 * be sent arbitrarely closely spaced. 2917 * The state is tracked using two variables to implement an approximate 2918 * token bucket filter: 2919 * icmp_pkt_err_last - lbolt value when the last burst started 2920 * icmp_pkt_err_sent - number of packets sent in current burst 2921 */ 2922 boolean_t 2923 icmp_err_rate_limit(ip_stack_t *ipst) 2924 { 2925 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2926 uint_t refilled; /* Number of packets refilled in tbf since last */ 2927 /* Guard against changes by loading into local variable */ 2928 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2929 2930 if (err_interval == 0) 2931 return (B_FALSE); 2932 2933 if (ipst->ips_icmp_pkt_err_last > now) { 2934 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2935 ipst->ips_icmp_pkt_err_last = 0; 2936 ipst->ips_icmp_pkt_err_sent = 0; 2937 } 2938 /* 2939 * If we are in a burst update the token bucket filter. 2940 * Update the "last" time to be close to "now" but make sure 2941 * we don't loose precision. 2942 */ 2943 if (ipst->ips_icmp_pkt_err_sent != 0) { 2944 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2945 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2946 ipst->ips_icmp_pkt_err_sent = 0; 2947 } else { 2948 ipst->ips_icmp_pkt_err_sent -= refilled; 2949 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2950 } 2951 } 2952 if (ipst->ips_icmp_pkt_err_sent == 0) { 2953 /* Start of new burst */ 2954 ipst->ips_icmp_pkt_err_last = now; 2955 } 2956 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2957 ipst->ips_icmp_pkt_err_sent++; 2958 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2959 ipst->ips_icmp_pkt_err_sent)); 2960 return (B_FALSE); 2961 } 2962 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2963 return (B_TRUE); 2964 } 2965 2966 /* 2967 * Check if it is ok to send an IPv4 ICMP error packet in 2968 * response to the IPv4 packet in mp. 2969 * Free the message and return null if no 2970 * ICMP error packet should be sent. 2971 */ 2972 static mblk_t * 2973 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2974 { 2975 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2976 icmph_t *icmph; 2977 ipha_t *ipha; 2978 uint_t len_needed; 2979 2980 if (!mp) 2981 return (NULL); 2982 ipha = (ipha_t *)mp->b_rptr; 2983 if (ip_csum_hdr(ipha)) { 2984 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2985 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2986 freemsg(mp); 2987 return (NULL); 2988 } 2989 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2990 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2991 CLASSD(ipha->ipha_dst) || 2992 CLASSD(ipha->ipha_src) || 2993 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2994 /* Note: only errors to the fragment with offset 0 */ 2995 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2996 freemsg(mp); 2997 return (NULL); 2998 } 2999 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3000 /* 3001 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3002 * errors in response to any ICMP errors. 3003 */ 3004 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3005 if (mp->b_wptr - mp->b_rptr < len_needed) { 3006 if (!pullupmsg(mp, len_needed)) { 3007 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3008 freemsg(mp); 3009 return (NULL); 3010 } 3011 ipha = (ipha_t *)mp->b_rptr; 3012 } 3013 icmph = (icmph_t *) 3014 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3015 switch (icmph->icmph_type) { 3016 case ICMP_DEST_UNREACHABLE: 3017 case ICMP_SOURCE_QUENCH: 3018 case ICMP_TIME_EXCEEDED: 3019 case ICMP_PARAM_PROBLEM: 3020 case ICMP_REDIRECT: 3021 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3022 freemsg(mp); 3023 return (NULL); 3024 default: 3025 break; 3026 } 3027 } 3028 /* 3029 * If this is a labeled system, then check to see if we're allowed to 3030 * send a response to this particular sender. If not, then just drop. 3031 */ 3032 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3033 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3034 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3035 freemsg(mp); 3036 return (NULL); 3037 } 3038 if (icmp_err_rate_limit(ipst)) { 3039 /* 3040 * Only send ICMP error packets every so often. 3041 * This should be done on a per port/source basis, 3042 * but for now this will suffice. 3043 */ 3044 freemsg(mp); 3045 return (NULL); 3046 } 3047 return (mp); 3048 } 3049 3050 /* 3051 * Called when a packet was sent out the same link that it arrived on. 3052 * Check if it is ok to send a redirect and then send it. 3053 */ 3054 void 3055 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3056 ip_recv_attr_t *ira) 3057 { 3058 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3059 ipaddr_t src, nhop; 3060 mblk_t *mp1; 3061 ire_t *nhop_ire; 3062 3063 /* 3064 * Check the source address to see if it originated 3065 * on the same logical subnet it is going back out on. 3066 * If so, we should be able to send it a redirect. 3067 * Avoid sending a redirect if the destination 3068 * is directly connected (i.e., we matched an IRE_ONLINK), 3069 * or if the packet was source routed out this interface. 3070 * 3071 * We avoid sending a redirect if the 3072 * destination is directly connected 3073 * because it is possible that multiple 3074 * IP subnets may have been configured on 3075 * the link, and the source may not 3076 * be on the same subnet as ip destination, 3077 * even though they are on the same 3078 * physical link. 3079 */ 3080 if ((ire->ire_type & IRE_ONLINK) || 3081 ip_source_routed(ipha, ipst)) 3082 return; 3083 3084 nhop_ire = ire_nexthop(ire); 3085 if (nhop_ire == NULL) 3086 return; 3087 3088 nhop = nhop_ire->ire_addr; 3089 3090 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3091 ire_t *ire2; 3092 3093 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3094 mutex_enter(&nhop_ire->ire_lock); 3095 ire2 = nhop_ire->ire_dep_parent; 3096 if (ire2 != NULL) 3097 ire_refhold(ire2); 3098 mutex_exit(&nhop_ire->ire_lock); 3099 ire_refrele(nhop_ire); 3100 nhop_ire = ire2; 3101 } 3102 if (nhop_ire == NULL) 3103 return; 3104 3105 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3106 3107 src = ipha->ipha_src; 3108 3109 /* 3110 * We look at the interface ire for the nexthop, 3111 * to see if ipha_src is in the same subnet 3112 * as the nexthop. 3113 */ 3114 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3115 /* 3116 * The source is directly connected. 3117 */ 3118 mp1 = copymsg(mp); 3119 if (mp1 != NULL) { 3120 icmp_send_redirect(mp1, nhop, ira); 3121 } 3122 } 3123 ire_refrele(nhop_ire); 3124 } 3125 3126 /* 3127 * Generate an ICMP redirect message. 3128 */ 3129 static void 3130 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3131 { 3132 icmph_t icmph; 3133 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3134 3135 mp = icmp_pkt_err_ok(mp, ira); 3136 if (mp == NULL) 3137 return; 3138 3139 bzero(&icmph, sizeof (icmph_t)); 3140 icmph.icmph_type = ICMP_REDIRECT; 3141 icmph.icmph_code = 1; 3142 icmph.icmph_rd_gateway = gateway; 3143 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3144 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3145 } 3146 3147 /* 3148 * Generate an ICMP time exceeded message. 3149 */ 3150 void 3151 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3152 { 3153 icmph_t icmph; 3154 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3155 3156 mp = icmp_pkt_err_ok(mp, ira); 3157 if (mp == NULL) 3158 return; 3159 3160 bzero(&icmph, sizeof (icmph_t)); 3161 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3162 icmph.icmph_code = code; 3163 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3164 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3165 } 3166 3167 /* 3168 * Generate an ICMP unreachable message. 3169 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3170 * constructed by the caller. 3171 */ 3172 void 3173 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3174 { 3175 icmph_t icmph; 3176 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3177 3178 mp = icmp_pkt_err_ok(mp, ira); 3179 if (mp == NULL) 3180 return; 3181 3182 bzero(&icmph, sizeof (icmph_t)); 3183 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3184 icmph.icmph_code = code; 3185 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3186 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3187 } 3188 3189 /* 3190 * Latch in the IPsec state for a stream based the policy in the listener 3191 * and the actions in the ip_recv_attr_t. 3192 * Called directly from TCP and SCTP. 3193 */ 3194 boolean_t 3195 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3196 { 3197 ASSERT(lconnp->conn_policy != NULL); 3198 ASSERT(connp->conn_policy == NULL); 3199 3200 IPPH_REFHOLD(lconnp->conn_policy); 3201 connp->conn_policy = lconnp->conn_policy; 3202 3203 if (ira->ira_ipsec_action != NULL) { 3204 if (connp->conn_latch == NULL) { 3205 connp->conn_latch = iplatch_create(); 3206 if (connp->conn_latch == NULL) 3207 return (B_FALSE); 3208 } 3209 ipsec_latch_inbound(connp, ira); 3210 } 3211 return (B_TRUE); 3212 } 3213 3214 /* 3215 * Verify whether or not the IP address is a valid local address. 3216 * Could be a unicast, including one for a down interface. 3217 * If allow_mcbc then a multicast or broadcast address is also 3218 * acceptable. 3219 * 3220 * In the case of a broadcast/multicast address, however, the 3221 * upper protocol is expected to reset the src address 3222 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3223 * no packets are emitted with broadcast/multicast address as 3224 * source address (that violates hosts requirements RFC 1122) 3225 * The addresses valid for bind are: 3226 * (1) - INADDR_ANY (0) 3227 * (2) - IP address of an UP interface 3228 * (3) - IP address of a DOWN interface 3229 * (4) - valid local IP broadcast addresses. In this case 3230 * the conn will only receive packets destined to 3231 * the specified broadcast address. 3232 * (5) - a multicast address. In this case 3233 * the conn will only receive packets destined to 3234 * the specified multicast address. Note: the 3235 * application still has to issue an 3236 * IP_ADD_MEMBERSHIP socket option. 3237 * 3238 * In all the above cases, the bound address must be valid in the current zone. 3239 * When the address is loopback, multicast or broadcast, there might be many 3240 * matching IREs so bind has to look up based on the zone. 3241 */ 3242 ip_laddr_t 3243 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3244 ip_stack_t *ipst, boolean_t allow_mcbc) 3245 { 3246 ire_t *src_ire; 3247 3248 ASSERT(src_addr != INADDR_ANY); 3249 3250 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3251 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3252 3253 /* 3254 * If an address other than in6addr_any is requested, 3255 * we verify that it is a valid address for bind 3256 * Note: Following code is in if-else-if form for 3257 * readability compared to a condition check. 3258 */ 3259 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3260 /* 3261 * (2) Bind to address of local UP interface 3262 */ 3263 ire_refrele(src_ire); 3264 return (IPVL_UNICAST_UP); 3265 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3266 /* 3267 * (4) Bind to broadcast address 3268 */ 3269 ire_refrele(src_ire); 3270 if (allow_mcbc) 3271 return (IPVL_BCAST); 3272 else 3273 return (IPVL_BAD); 3274 } else if (CLASSD(src_addr)) { 3275 /* (5) bind to multicast address. */ 3276 if (src_ire != NULL) 3277 ire_refrele(src_ire); 3278 3279 if (allow_mcbc) 3280 return (IPVL_MCAST); 3281 else 3282 return (IPVL_BAD); 3283 } else { 3284 ipif_t *ipif; 3285 3286 /* 3287 * (3) Bind to address of local DOWN interface? 3288 * (ipif_lookup_addr() looks up all interfaces 3289 * but we do not get here for UP interfaces 3290 * - case (2) above) 3291 */ 3292 if (src_ire != NULL) 3293 ire_refrele(src_ire); 3294 3295 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3296 if (ipif == NULL) 3297 return (IPVL_BAD); 3298 3299 /* Not a useful source? */ 3300 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3301 ipif_refrele(ipif); 3302 return (IPVL_BAD); 3303 } 3304 ipif_refrele(ipif); 3305 return (IPVL_UNICAST_DOWN); 3306 } 3307 } 3308 3309 /* 3310 * Insert in the bind fanout for IPv4 and IPv6. 3311 * The caller should already have used ip_laddr_verify_v*() before calling 3312 * this. 3313 */ 3314 int 3315 ip_laddr_fanout_insert(conn_t *connp) 3316 { 3317 int error; 3318 3319 /* 3320 * Allow setting new policies. For example, disconnects result 3321 * in us being called. As we would have set conn_policy_cached 3322 * to B_TRUE before, we should set it to B_FALSE, so that policy 3323 * can change after the disconnect. 3324 */ 3325 connp->conn_policy_cached = B_FALSE; 3326 3327 error = ipcl_bind_insert(connp); 3328 if (error != 0) { 3329 if (connp->conn_anon_port) { 3330 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3331 connp->conn_mlp_type, connp->conn_proto, 3332 ntohs(connp->conn_lport), B_FALSE); 3333 } 3334 connp->conn_mlp_type = mlptSingle; 3335 } 3336 return (error); 3337 } 3338 3339 /* 3340 * Verify that both the source and destination addresses are valid. If 3341 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3342 * i.e. have no route to it. Protocols like TCP want to verify destination 3343 * reachability, while tunnels do not. 3344 * 3345 * Determine the route, the interface, and (optionally) the source address 3346 * to use to reach a given destination. 3347 * Note that we allow connect to broadcast and multicast addresses when 3348 * IPDF_ALLOW_MCBC is set. 3349 * first_hop and dst_addr are normally the same, but if source routing 3350 * they will differ; in that case the first_hop is what we'll use for the 3351 * routing lookup but the dce and label checks will be done on dst_addr, 3352 * 3353 * If uinfo is set, then we fill in the best available information 3354 * we have for the destination. This is based on (in priority order) any 3355 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3356 * ill_mtu/ill_mc_mtu. 3357 * 3358 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3359 * always do the label check on dst_addr. 3360 */ 3361 int 3362 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3363 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3364 { 3365 ire_t *ire = NULL; 3366 int error = 0; 3367 ipaddr_t setsrc; /* RTF_SETSRC */ 3368 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3369 ip_stack_t *ipst = ixa->ixa_ipst; 3370 dce_t *dce; 3371 uint_t pmtu; 3372 uint_t generation; 3373 nce_t *nce; 3374 ill_t *ill = NULL; 3375 boolean_t multirt = B_FALSE; 3376 3377 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3378 3379 /* 3380 * We never send to zero; the ULPs map it to the loopback address. 3381 * We can't allow it since we use zero to mean unitialized in some 3382 * places. 3383 */ 3384 ASSERT(dst_addr != INADDR_ANY); 3385 3386 if (is_system_labeled()) { 3387 ts_label_t *tsl = NULL; 3388 3389 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3390 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3391 if (error != 0) 3392 return (error); 3393 if (tsl != NULL) { 3394 /* Update the label */ 3395 ip_xmit_attr_replace_tsl(ixa, tsl); 3396 } 3397 } 3398 3399 setsrc = INADDR_ANY; 3400 /* 3401 * Select a route; For IPMP interfaces, we would only select 3402 * a "hidden" route (i.e., going through a specific under_ill) 3403 * if ixa_ifindex has been specified. 3404 */ 3405 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3406 &generation, &setsrc, &error, &multirt); 3407 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3408 if (error != 0) 3409 goto bad_addr; 3410 3411 /* 3412 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3413 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3414 * Otherwise the destination needn't be reachable. 3415 * 3416 * If we match on a reject or black hole, then we've got a 3417 * local failure. May as well fail out the connect() attempt, 3418 * since it's never going to succeed. 3419 */ 3420 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3421 /* 3422 * If we're verifying destination reachability, we always want 3423 * to complain here. 3424 * 3425 * If we're not verifying destination reachability but the 3426 * destination has a route, we still want to fail on the 3427 * temporary address and broadcast address tests. 3428 * 3429 * In both cases do we let the code continue so some reasonable 3430 * information is returned to the caller. That enables the 3431 * caller to use (and even cache) the IRE. conn_ip_ouput will 3432 * use the generation mismatch path to check for the unreachable 3433 * case thereby avoiding any specific check in the main path. 3434 */ 3435 ASSERT(generation == IRE_GENERATION_VERIFY); 3436 if (flags & IPDF_VERIFY_DST) { 3437 /* 3438 * Set errno but continue to set up ixa_ire to be 3439 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3440 * That allows callers to use ip_output to get an 3441 * ICMP error back. 3442 */ 3443 if (!(ire->ire_type & IRE_HOST)) 3444 error = ENETUNREACH; 3445 else 3446 error = EHOSTUNREACH; 3447 } 3448 } 3449 3450 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3451 !(flags & IPDF_ALLOW_MCBC)) { 3452 ire_refrele(ire); 3453 ire = ire_reject(ipst, B_FALSE); 3454 generation = IRE_GENERATION_VERIFY; 3455 error = ENETUNREACH; 3456 } 3457 3458 /* Cache things */ 3459 if (ixa->ixa_ire != NULL) 3460 ire_refrele_notr(ixa->ixa_ire); 3461 #ifdef DEBUG 3462 ire_refhold_notr(ire); 3463 ire_refrele(ire); 3464 #endif 3465 ixa->ixa_ire = ire; 3466 ixa->ixa_ire_generation = generation; 3467 3468 /* 3469 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3470 * since some callers will send a packet to conn_ip_output() even if 3471 * there's an error. 3472 */ 3473 if (flags & IPDF_UNIQUE_DCE) { 3474 /* Fallback to the default dce if allocation fails */ 3475 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3476 if (dce != NULL) 3477 generation = dce->dce_generation; 3478 else 3479 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3480 } else { 3481 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3482 } 3483 ASSERT(dce != NULL); 3484 if (ixa->ixa_dce != NULL) 3485 dce_refrele_notr(ixa->ixa_dce); 3486 #ifdef DEBUG 3487 dce_refhold_notr(dce); 3488 dce_refrele(dce); 3489 #endif 3490 ixa->ixa_dce = dce; 3491 ixa->ixa_dce_generation = generation; 3492 3493 /* 3494 * For multicast with multirt we have a flag passed back from 3495 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3496 * possible multicast address. 3497 * We also need a flag for multicast since we can't check 3498 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3499 */ 3500 if (multirt) { 3501 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3502 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3503 } else { 3504 ixa->ixa_postfragfn = ire->ire_postfragfn; 3505 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3506 } 3507 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3508 /* Get an nce to cache. */ 3509 nce = ire_to_nce(ire, firsthop, NULL); 3510 if (nce == NULL) { 3511 /* Allocation failure? */ 3512 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3513 } else { 3514 if (ixa->ixa_nce != NULL) 3515 nce_refrele(ixa->ixa_nce); 3516 ixa->ixa_nce = nce; 3517 } 3518 } 3519 3520 /* 3521 * If the source address is a loopback address, the 3522 * destination had best be local or multicast. 3523 * If we are sending to an IRE_LOCAL using a loopback source then 3524 * it had better be the same zoneid. 3525 */ 3526 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3527 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3528 ire = NULL; /* Stored in ixa_ire */ 3529 error = EADDRNOTAVAIL; 3530 goto bad_addr; 3531 } 3532 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3533 ire = NULL; /* Stored in ixa_ire */ 3534 error = EADDRNOTAVAIL; 3535 goto bad_addr; 3536 } 3537 } 3538 if (ire->ire_type & IRE_BROADCAST) { 3539 /* 3540 * If the ULP didn't have a specified source, then we 3541 * make sure we reselect the source when sending 3542 * broadcasts out different interfaces. 3543 */ 3544 if (flags & IPDF_SELECT_SRC) 3545 ixa->ixa_flags |= IXAF_SET_SOURCE; 3546 else 3547 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3548 } 3549 3550 /* 3551 * Does the caller want us to pick a source address? 3552 */ 3553 if (flags & IPDF_SELECT_SRC) { 3554 ipaddr_t src_addr; 3555 3556 /* 3557 * We use use ire_nexthop_ill to avoid the under ipmp 3558 * interface for source address selection. Note that for ipmp 3559 * probe packets, ixa_ifindex would have been specified, and 3560 * the ip_select_route() invocation would have picked an ire 3561 * will ire_ill pointing at an under interface. 3562 */ 3563 ill = ire_nexthop_ill(ire); 3564 3565 /* If unreachable we have no ill but need some source */ 3566 if (ill == NULL) { 3567 src_addr = htonl(INADDR_LOOPBACK); 3568 /* Make sure we look for a better source address */ 3569 generation = SRC_GENERATION_VERIFY; 3570 } else { 3571 error = ip_select_source_v4(ill, setsrc, dst_addr, 3572 ixa->ixa_multicast_ifaddr, zoneid, 3573 ipst, &src_addr, &generation, NULL); 3574 if (error != 0) { 3575 ire = NULL; /* Stored in ixa_ire */ 3576 goto bad_addr; 3577 } 3578 } 3579 3580 /* 3581 * We allow the source address to to down. 3582 * However, we check that we don't use the loopback address 3583 * as a source when sending out on the wire. 3584 */ 3585 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3586 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3587 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3588 ire = NULL; /* Stored in ixa_ire */ 3589 error = EADDRNOTAVAIL; 3590 goto bad_addr; 3591 } 3592 3593 *src_addrp = src_addr; 3594 ixa->ixa_src_generation = generation; 3595 } 3596 3597 /* 3598 * Make sure we don't leave an unreachable ixa_nce in place 3599 * since ip_select_route is used when we unplumb i.e., remove 3600 * references on ixa_ire, ixa_nce, and ixa_dce. 3601 */ 3602 nce = ixa->ixa_nce; 3603 if (nce != NULL && nce->nce_is_condemned) { 3604 nce_refrele(nce); 3605 ixa->ixa_nce = NULL; 3606 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3607 } 3608 3609 /* 3610 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3611 * However, we can't do it for IPv4 multicast or broadcast. 3612 */ 3613 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3614 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3615 3616 /* 3617 * Set initial value for fragmentation limit. Either conn_ip_output 3618 * or ULP might updates it when there are routing changes. 3619 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3620 */ 3621 pmtu = ip_get_pmtu(ixa); 3622 ixa->ixa_fragsize = pmtu; 3623 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3624 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3625 ixa->ixa_pmtu = pmtu; 3626 3627 /* 3628 * Extract information useful for some transports. 3629 * First we look for DCE metrics. Then we take what we have in 3630 * the metrics in the route, where the offlink is used if we have 3631 * one. 3632 */ 3633 if (uinfo != NULL) { 3634 bzero(uinfo, sizeof (*uinfo)); 3635 3636 if (dce->dce_flags & DCEF_UINFO) 3637 *uinfo = dce->dce_uinfo; 3638 3639 rts_merge_metrics(uinfo, &ire->ire_metrics); 3640 3641 /* Allow ire_metrics to decrease the path MTU from above */ 3642 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3643 uinfo->iulp_mtu = pmtu; 3644 3645 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3646 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3647 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3648 } 3649 3650 if (ill != NULL) 3651 ill_refrele(ill); 3652 3653 return (error); 3654 3655 bad_addr: 3656 if (ire != NULL) 3657 ire_refrele(ire); 3658 3659 if (ill != NULL) 3660 ill_refrele(ill); 3661 3662 /* 3663 * Make sure we don't leave an unreachable ixa_nce in place 3664 * since ip_select_route is used when we unplumb i.e., remove 3665 * references on ixa_ire, ixa_nce, and ixa_dce. 3666 */ 3667 nce = ixa->ixa_nce; 3668 if (nce != NULL && nce->nce_is_condemned) { 3669 nce_refrele(nce); 3670 ixa->ixa_nce = NULL; 3671 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3672 } 3673 3674 return (error); 3675 } 3676 3677 3678 /* 3679 * Get the base MTU for the case when path MTU discovery is not used. 3680 * Takes the MTU of the IRE into account. 3681 */ 3682 uint_t 3683 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3684 { 3685 uint_t mtu; 3686 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3687 3688 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3689 mtu = ill->ill_mc_mtu; 3690 else 3691 mtu = ill->ill_mtu; 3692 3693 if (iremtu != 0 && iremtu < mtu) 3694 mtu = iremtu; 3695 3696 return (mtu); 3697 } 3698 3699 /* 3700 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3701 * Assumes that ixa_ire, dce, and nce have already been set up. 3702 * 3703 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3704 * We avoid path MTU discovery if it is disabled with ndd. 3705 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3706 * 3707 * NOTE: We also used to turn it off for source routed packets. That 3708 * is no longer required since the dce is per final destination. 3709 */ 3710 uint_t 3711 ip_get_pmtu(ip_xmit_attr_t *ixa) 3712 { 3713 ip_stack_t *ipst = ixa->ixa_ipst; 3714 dce_t *dce; 3715 nce_t *nce; 3716 ire_t *ire; 3717 uint_t pmtu; 3718 3719 ire = ixa->ixa_ire; 3720 dce = ixa->ixa_dce; 3721 nce = ixa->ixa_nce; 3722 3723 /* 3724 * If path MTU discovery has been turned off by ndd, then we ignore 3725 * any dce_pmtu and for IPv4 we will not set DF. 3726 */ 3727 if (!ipst->ips_ip_path_mtu_discovery) 3728 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3729 3730 pmtu = IP_MAXPACKET; 3731 /* 3732 * Decide whether whether IPv4 sets DF 3733 * For IPv6 "no DF" means to use the 1280 mtu 3734 */ 3735 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3736 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3737 } else { 3738 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3739 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3740 pmtu = IPV6_MIN_MTU; 3741 } 3742 3743 /* Check if the PMTU is to old before we use it */ 3744 if ((dce->dce_flags & DCEF_PMTU) && 3745 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3746 ipst->ips_ip_pathmtu_interval) { 3747 /* 3748 * Older than 20 minutes. Drop the path MTU information. 3749 */ 3750 mutex_enter(&dce->dce_lock); 3751 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3752 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3753 mutex_exit(&dce->dce_lock); 3754 dce_increment_generation(dce); 3755 } 3756 3757 /* The metrics on the route can lower the path MTU */ 3758 if (ire->ire_metrics.iulp_mtu != 0 && 3759 ire->ire_metrics.iulp_mtu < pmtu) 3760 pmtu = ire->ire_metrics.iulp_mtu; 3761 3762 /* 3763 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3764 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3765 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3766 */ 3767 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3768 if (dce->dce_flags & DCEF_PMTU) { 3769 if (dce->dce_pmtu < pmtu) 3770 pmtu = dce->dce_pmtu; 3771 3772 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3773 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3774 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3775 } else { 3776 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3777 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3778 } 3779 } else { 3780 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3781 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3782 } 3783 } 3784 3785 /* 3786 * If we have an IRE_LOCAL we use the loopback mtu instead of 3787 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3788 * mtu as IRE_LOOPBACK. 3789 */ 3790 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3791 uint_t loopback_mtu; 3792 3793 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3794 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3795 3796 if (loopback_mtu < pmtu) 3797 pmtu = loopback_mtu; 3798 } else if (nce != NULL) { 3799 /* 3800 * Make sure we don't exceed the interface MTU. 3801 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3802 * an ill. We'd use the above IP_MAXPACKET in that case just 3803 * to tell the transport something larger than zero. 3804 */ 3805 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3806 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3807 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3808 if (nce->nce_common->ncec_ill != nce->nce_ill && 3809 nce->nce_ill->ill_mc_mtu < pmtu) { 3810 /* 3811 * for interfaces in an IPMP group, the mtu of 3812 * the nce_ill (under_ill) could be different 3813 * from the mtu of the ncec_ill, so we take the 3814 * min of the two. 3815 */ 3816 pmtu = nce->nce_ill->ill_mc_mtu; 3817 } 3818 } else { 3819 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3820 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3821 if (nce->nce_common->ncec_ill != nce->nce_ill && 3822 nce->nce_ill->ill_mtu < pmtu) { 3823 /* 3824 * for interfaces in an IPMP group, the mtu of 3825 * the nce_ill (under_ill) could be different 3826 * from the mtu of the ncec_ill, so we take the 3827 * min of the two. 3828 */ 3829 pmtu = nce->nce_ill->ill_mtu; 3830 } 3831 } 3832 } 3833 3834 /* 3835 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3836 * Only applies to IPv6. 3837 */ 3838 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3839 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3840 switch (ixa->ixa_use_min_mtu) { 3841 case IPV6_USE_MIN_MTU_MULTICAST: 3842 if (ire->ire_type & IRE_MULTICAST) 3843 pmtu = IPV6_MIN_MTU; 3844 break; 3845 case IPV6_USE_MIN_MTU_ALWAYS: 3846 pmtu = IPV6_MIN_MTU; 3847 break; 3848 case IPV6_USE_MIN_MTU_NEVER: 3849 break; 3850 } 3851 } else { 3852 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3853 if (ire->ire_type & IRE_MULTICAST) 3854 pmtu = IPV6_MIN_MTU; 3855 } 3856 } 3857 3858 /* 3859 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3860 * fragment header in every packet. We compensate for those cases by 3861 * returning a smaller path MTU to the ULP. 3862 * 3863 * In the case of CGTP then ip_output will add a fragment header. 3864 * Make sure there is room for it by telling a smaller number 3865 * to the transport. 3866 * 3867 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3868 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3869 * which is the size of the packets it can send. 3870 */ 3871 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3872 if ((ire->ire_flags & RTF_MULTIRT) || 3873 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3874 pmtu -= sizeof (ip6_frag_t); 3875 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3876 } 3877 } 3878 3879 return (pmtu); 3880 } 3881 3882 /* 3883 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3884 * the final piece where we don't. Return a pointer to the first mblk in the 3885 * result, and update the pointer to the next mblk to chew on. If anything 3886 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3887 * NULL pointer. 3888 */ 3889 mblk_t * 3890 ip_carve_mp(mblk_t **mpp, ssize_t len) 3891 { 3892 mblk_t *mp0; 3893 mblk_t *mp1; 3894 mblk_t *mp2; 3895 3896 if (!len || !mpp || !(mp0 = *mpp)) 3897 return (NULL); 3898 /* If we aren't going to consume the first mblk, we need a dup. */ 3899 if (mp0->b_wptr - mp0->b_rptr > len) { 3900 mp1 = dupb(mp0); 3901 if (mp1) { 3902 /* Partition the data between the two mblks. */ 3903 mp1->b_wptr = mp1->b_rptr + len; 3904 mp0->b_rptr = mp1->b_wptr; 3905 /* 3906 * after adjustments if mblk not consumed is now 3907 * unaligned, try to align it. If this fails free 3908 * all messages and let upper layer recover. 3909 */ 3910 if (!OK_32PTR(mp0->b_rptr)) { 3911 if (!pullupmsg(mp0, -1)) { 3912 freemsg(mp0); 3913 freemsg(mp1); 3914 *mpp = NULL; 3915 return (NULL); 3916 } 3917 } 3918 } 3919 return (mp1); 3920 } 3921 /* Eat through as many mblks as we need to get len bytes. */ 3922 len -= mp0->b_wptr - mp0->b_rptr; 3923 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3924 if (mp2->b_wptr - mp2->b_rptr > len) { 3925 /* 3926 * We won't consume the entire last mblk. Like 3927 * above, dup and partition it. 3928 */ 3929 mp1->b_cont = dupb(mp2); 3930 mp1 = mp1->b_cont; 3931 if (!mp1) { 3932 /* 3933 * Trouble. Rather than go to a lot of 3934 * trouble to clean up, we free the messages. 3935 * This won't be any worse than losing it on 3936 * the wire. 3937 */ 3938 freemsg(mp0); 3939 freemsg(mp2); 3940 *mpp = NULL; 3941 return (NULL); 3942 } 3943 mp1->b_wptr = mp1->b_rptr + len; 3944 mp2->b_rptr = mp1->b_wptr; 3945 /* 3946 * after adjustments if mblk not consumed is now 3947 * unaligned, try to align it. If this fails free 3948 * all messages and let upper layer recover. 3949 */ 3950 if (!OK_32PTR(mp2->b_rptr)) { 3951 if (!pullupmsg(mp2, -1)) { 3952 freemsg(mp0); 3953 freemsg(mp2); 3954 *mpp = NULL; 3955 return (NULL); 3956 } 3957 } 3958 *mpp = mp2; 3959 return (mp0); 3960 } 3961 /* Decrement len by the amount we just got. */ 3962 len -= mp2->b_wptr - mp2->b_rptr; 3963 } 3964 /* 3965 * len should be reduced to zero now. If not our caller has 3966 * screwed up. 3967 */ 3968 if (len) { 3969 /* Shouldn't happen! */ 3970 freemsg(mp0); 3971 *mpp = NULL; 3972 return (NULL); 3973 } 3974 /* 3975 * We consumed up to exactly the end of an mblk. Detach the part 3976 * we are returning from the rest of the chain. 3977 */ 3978 mp1->b_cont = NULL; 3979 *mpp = mp2; 3980 return (mp0); 3981 } 3982 3983 /* The ill stream is being unplumbed. Called from ip_close */ 3984 int 3985 ip_modclose(ill_t *ill) 3986 { 3987 boolean_t success; 3988 ipsq_t *ipsq; 3989 ipif_t *ipif; 3990 queue_t *q = ill->ill_rq; 3991 ip_stack_t *ipst = ill->ill_ipst; 3992 int i; 3993 arl_ill_common_t *ai = ill->ill_common; 3994 3995 /* 3996 * The punlink prior to this may have initiated a capability 3997 * negotiation. But ipsq_enter will block until that finishes or 3998 * times out. 3999 */ 4000 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4001 4002 /* 4003 * Open/close/push/pop is guaranteed to be single threaded 4004 * per stream by STREAMS. FS guarantees that all references 4005 * from top are gone before close is called. So there can't 4006 * be another close thread that has set CONDEMNED on this ill. 4007 * and cause ipsq_enter to return failure. 4008 */ 4009 ASSERT(success); 4010 ipsq = ill->ill_phyint->phyint_ipsq; 4011 4012 /* 4013 * Mark it condemned. No new reference will be made to this ill. 4014 * Lookup functions will return an error. Threads that try to 4015 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4016 * that the refcnt will drop down to zero. 4017 */ 4018 mutex_enter(&ill->ill_lock); 4019 ill->ill_state_flags |= ILL_CONDEMNED; 4020 for (ipif = ill->ill_ipif; ipif != NULL; 4021 ipif = ipif->ipif_next) { 4022 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4023 } 4024 /* 4025 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4026 * returns error if ILL_CONDEMNED is set 4027 */ 4028 cv_broadcast(&ill->ill_cv); 4029 mutex_exit(&ill->ill_lock); 4030 4031 /* 4032 * Send all the deferred DLPI messages downstream which came in 4033 * during the small window right before ipsq_enter(). We do this 4034 * without waiting for the ACKs because all the ACKs for M_PROTO 4035 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4036 */ 4037 ill_dlpi_send_deferred(ill); 4038 4039 /* 4040 * Shut down fragmentation reassembly. 4041 * ill_frag_timer won't start a timer again. 4042 * Now cancel any existing timer 4043 */ 4044 (void) untimeout(ill->ill_frag_timer_id); 4045 (void) ill_frag_timeout(ill, 0); 4046 4047 /* 4048 * Call ill_delete to bring down the ipifs, ilms and ill on 4049 * this ill. Then wait for the refcnts to drop to zero. 4050 * ill_is_freeable checks whether the ill is really quiescent. 4051 * Then make sure that threads that are waiting to enter the 4052 * ipsq have seen the error returned by ipsq_enter and have 4053 * gone away. Then we call ill_delete_tail which does the 4054 * DL_UNBIND_REQ with the driver and then qprocsoff. 4055 */ 4056 ill_delete(ill); 4057 mutex_enter(&ill->ill_lock); 4058 while (!ill_is_freeable(ill)) 4059 cv_wait(&ill->ill_cv, &ill->ill_lock); 4060 4061 while (ill->ill_waiters) 4062 cv_wait(&ill->ill_cv, &ill->ill_lock); 4063 4064 mutex_exit(&ill->ill_lock); 4065 4066 /* 4067 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4068 * it held until the end of the function since the cleanup 4069 * below needs to be able to use the ip_stack_t. 4070 */ 4071 netstack_hold(ipst->ips_netstack); 4072 4073 /* qprocsoff is done via ill_delete_tail */ 4074 ill_delete_tail(ill); 4075 /* 4076 * synchronously wait for arp stream to unbind. After this, we 4077 * cannot get any data packets up from the driver. 4078 */ 4079 arp_unbind_complete(ill); 4080 ASSERT(ill->ill_ipst == NULL); 4081 4082 /* 4083 * Walk through all conns and qenable those that have queued data. 4084 * Close synchronization needs this to 4085 * be done to ensure that all upper layers blocked 4086 * due to flow control to the closing device 4087 * get unblocked. 4088 */ 4089 ip1dbg(("ip_wsrv: walking\n")); 4090 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4091 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4092 } 4093 4094 /* 4095 * ai can be null if this is an IPv6 ill, or if the IPv4 4096 * stream is being torn down before ARP was plumbed (e.g., 4097 * /sbin/ifconfig plumbing a stream twice, and encountering 4098 * an error 4099 */ 4100 if (ai != NULL) { 4101 ASSERT(!ill->ill_isv6); 4102 mutex_enter(&ai->ai_lock); 4103 ai->ai_ill = NULL; 4104 if (ai->ai_arl == NULL) { 4105 mutex_destroy(&ai->ai_lock); 4106 kmem_free(ai, sizeof (*ai)); 4107 } else { 4108 cv_signal(&ai->ai_ill_unplumb_done); 4109 mutex_exit(&ai->ai_lock); 4110 } 4111 } 4112 4113 mutex_enter(&ipst->ips_ip_mi_lock); 4114 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4115 mutex_exit(&ipst->ips_ip_mi_lock); 4116 4117 /* 4118 * credp could be null if the open didn't succeed and ip_modopen 4119 * itself calls ip_close. 4120 */ 4121 if (ill->ill_credp != NULL) 4122 crfree(ill->ill_credp); 4123 4124 mutex_destroy(&ill->ill_saved_ire_lock); 4125 mutex_destroy(&ill->ill_lock); 4126 rw_destroy(&ill->ill_mcast_lock); 4127 mutex_destroy(&ill->ill_mcast_serializer); 4128 list_destroy(&ill->ill_nce); 4129 4130 /* 4131 * Now we are done with the module close pieces that 4132 * need the netstack_t. 4133 */ 4134 netstack_rele(ipst->ips_netstack); 4135 4136 mi_close_free((IDP)ill); 4137 q->q_ptr = WR(q)->q_ptr = NULL; 4138 4139 ipsq_exit(ipsq); 4140 4141 return (0); 4142 } 4143 4144 /* 4145 * This is called as part of close() for IP, UDP, ICMP, and RTS 4146 * in order to quiesce the conn. 4147 */ 4148 void 4149 ip_quiesce_conn(conn_t *connp) 4150 { 4151 boolean_t drain_cleanup_reqd = B_FALSE; 4152 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4153 boolean_t ilg_cleanup_reqd = B_FALSE; 4154 ip_stack_t *ipst; 4155 4156 ASSERT(!IPCL_IS_TCP(connp)); 4157 ipst = connp->conn_netstack->netstack_ip; 4158 4159 /* 4160 * Mark the conn as closing, and this conn must not be 4161 * inserted in future into any list. Eg. conn_drain_insert(), 4162 * won't insert this conn into the conn_drain_list. 4163 * 4164 * conn_idl, and conn_ilg cannot get set henceforth. 4165 */ 4166 mutex_enter(&connp->conn_lock); 4167 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4168 connp->conn_state_flags |= CONN_CLOSING; 4169 if (connp->conn_idl != NULL) 4170 drain_cleanup_reqd = B_TRUE; 4171 if (connp->conn_oper_pending_ill != NULL) 4172 conn_ioctl_cleanup_reqd = B_TRUE; 4173 if (connp->conn_dhcpinit_ill != NULL) { 4174 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4175 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4176 ill_set_inputfn(connp->conn_dhcpinit_ill); 4177 connp->conn_dhcpinit_ill = NULL; 4178 } 4179 if (connp->conn_ilg != NULL) 4180 ilg_cleanup_reqd = B_TRUE; 4181 mutex_exit(&connp->conn_lock); 4182 4183 if (conn_ioctl_cleanup_reqd) 4184 conn_ioctl_cleanup(connp); 4185 4186 if (is_system_labeled() && connp->conn_anon_port) { 4187 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4188 connp->conn_mlp_type, connp->conn_proto, 4189 ntohs(connp->conn_lport), B_FALSE); 4190 connp->conn_anon_port = 0; 4191 } 4192 connp->conn_mlp_type = mlptSingle; 4193 4194 /* 4195 * Remove this conn from any fanout list it is on. 4196 * and then wait for any threads currently operating 4197 * on this endpoint to finish 4198 */ 4199 ipcl_hash_remove(connp); 4200 4201 /* 4202 * Remove this conn from the drain list, and do any other cleanup that 4203 * may be required. (TCP conns are never flow controlled, and 4204 * conn_idl will be NULL.) 4205 */ 4206 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4207 idl_t *idl = connp->conn_idl; 4208 4209 mutex_enter(&idl->idl_lock); 4210 conn_drain(connp, B_TRUE); 4211 mutex_exit(&idl->idl_lock); 4212 } 4213 4214 if (connp == ipst->ips_ip_g_mrouter) 4215 (void) ip_mrouter_done(ipst); 4216 4217 if (ilg_cleanup_reqd) 4218 ilg_delete_all(connp); 4219 4220 /* 4221 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4222 * callers from write side can't be there now because close 4223 * is in progress. The only other caller is ipcl_walk 4224 * which checks for the condemned flag. 4225 */ 4226 mutex_enter(&connp->conn_lock); 4227 connp->conn_state_flags |= CONN_CONDEMNED; 4228 while (connp->conn_ref != 1) 4229 cv_wait(&connp->conn_cv, &connp->conn_lock); 4230 connp->conn_state_flags |= CONN_QUIESCED; 4231 mutex_exit(&connp->conn_lock); 4232 } 4233 4234 /* ARGSUSED */ 4235 int 4236 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4237 { 4238 conn_t *connp; 4239 4240 /* 4241 * Call the appropriate delete routine depending on whether this is 4242 * a module or device. 4243 */ 4244 if (WR(q)->q_next != NULL) { 4245 /* This is a module close */ 4246 return (ip_modclose((ill_t *)q->q_ptr)); 4247 } 4248 4249 connp = q->q_ptr; 4250 ip_quiesce_conn(connp); 4251 4252 qprocsoff(q); 4253 4254 /* 4255 * Now we are truly single threaded on this stream, and can 4256 * delete the things hanging off the connp, and finally the connp. 4257 * We removed this connp from the fanout list, it cannot be 4258 * accessed thru the fanouts, and we already waited for the 4259 * conn_ref to drop to 0. We are already in close, so 4260 * there cannot be any other thread from the top. qprocsoff 4261 * has completed, and service has completed or won't run in 4262 * future. 4263 */ 4264 ASSERT(connp->conn_ref == 1); 4265 4266 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4267 4268 connp->conn_ref--; 4269 ipcl_conn_destroy(connp); 4270 4271 q->q_ptr = WR(q)->q_ptr = NULL; 4272 return (0); 4273 } 4274 4275 /* 4276 * Wapper around putnext() so that ip_rts_request can merely use 4277 * conn_recv. 4278 */ 4279 /*ARGSUSED2*/ 4280 static void 4281 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4282 { 4283 conn_t *connp = (conn_t *)arg1; 4284 4285 putnext(connp->conn_rq, mp); 4286 } 4287 4288 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4289 /* ARGSUSED */ 4290 static void 4291 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4292 { 4293 freemsg(mp); 4294 } 4295 4296 /* 4297 * Called when the module is about to be unloaded 4298 */ 4299 void 4300 ip_ddi_destroy(void) 4301 { 4302 /* This needs to be called before destroying any transports. */ 4303 mutex_enter(&cpu_lock); 4304 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4305 mutex_exit(&cpu_lock); 4306 4307 tnet_fini(); 4308 4309 icmp_ddi_g_destroy(); 4310 rts_ddi_g_destroy(); 4311 udp_ddi_g_destroy(); 4312 sctp_ddi_g_destroy(); 4313 tcp_ddi_g_destroy(); 4314 ilb_ddi_g_destroy(); 4315 dce_g_destroy(); 4316 ipsec_policy_g_destroy(); 4317 ipcl_g_destroy(); 4318 ip_net_g_destroy(); 4319 ip_ire_g_fini(); 4320 inet_minor_destroy(ip_minor_arena_sa); 4321 #if defined(_LP64) 4322 inet_minor_destroy(ip_minor_arena_la); 4323 #endif 4324 4325 #ifdef DEBUG 4326 list_destroy(&ip_thread_list); 4327 rw_destroy(&ip_thread_rwlock); 4328 tsd_destroy(&ip_thread_data); 4329 #endif 4330 4331 netstack_unregister(NS_IP); 4332 } 4333 4334 /* 4335 * First step in cleanup. 4336 */ 4337 /* ARGSUSED */ 4338 static void 4339 ip_stack_shutdown(netstackid_t stackid, void *arg) 4340 { 4341 ip_stack_t *ipst = (ip_stack_t *)arg; 4342 kt_did_t ktid; 4343 4344 #ifdef NS_DEBUG 4345 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4346 #endif 4347 4348 /* 4349 * Perform cleanup for special interfaces (loopback and IPMP). 4350 */ 4351 ip_interface_cleanup(ipst); 4352 4353 /* 4354 * The *_hook_shutdown()s start the process of notifying any 4355 * consumers that things are going away.... nothing is destroyed. 4356 */ 4357 ipv4_hook_shutdown(ipst); 4358 ipv6_hook_shutdown(ipst); 4359 arp_hook_shutdown(ipst); 4360 4361 mutex_enter(&ipst->ips_capab_taskq_lock); 4362 ktid = ipst->ips_capab_taskq_thread->t_did; 4363 ipst->ips_capab_taskq_quit = B_TRUE; 4364 cv_signal(&ipst->ips_capab_taskq_cv); 4365 mutex_exit(&ipst->ips_capab_taskq_lock); 4366 4367 /* 4368 * In rare occurrences, particularly on virtual hardware where CPUs can 4369 * be de-scheduled, the thread that we just signaled will not run until 4370 * after we have gotten through parts of ip_stack_fini. If that happens 4371 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4372 * from cv_wait which no longer exists. 4373 */ 4374 thread_join(ktid); 4375 } 4376 4377 /* 4378 * Free the IP stack instance. 4379 */ 4380 static void 4381 ip_stack_fini(netstackid_t stackid, void *arg) 4382 { 4383 ip_stack_t *ipst = (ip_stack_t *)arg; 4384 int ret; 4385 4386 #ifdef NS_DEBUG 4387 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4388 #endif 4389 /* 4390 * At this point, all of the notifications that the events and 4391 * protocols are going away have been run, meaning that we can 4392 * now set about starting to clean things up. 4393 */ 4394 ipobs_fini(ipst); 4395 ipv4_hook_destroy(ipst); 4396 ipv6_hook_destroy(ipst); 4397 arp_hook_destroy(ipst); 4398 ip_net_destroy(ipst); 4399 4400 ipmp_destroy(ipst); 4401 4402 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4403 ipst->ips_ip_mibkp = NULL; 4404 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4405 ipst->ips_icmp_mibkp = NULL; 4406 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4407 ipst->ips_ip_kstat = NULL; 4408 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4409 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4410 ipst->ips_ip6_kstat = NULL; 4411 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4412 4413 kmem_free(ipst->ips_propinfo_tbl, 4414 ip_propinfo_count * sizeof (mod_prop_info_t)); 4415 ipst->ips_propinfo_tbl = NULL; 4416 4417 dce_stack_destroy(ipst); 4418 ip_mrouter_stack_destroy(ipst); 4419 4420 /* 4421 * Quiesce all of our timers. Note we set the quiesce flags before we 4422 * call untimeout. The slowtimers may actually kick off another instance 4423 * of the non-slow timers. 4424 */ 4425 mutex_enter(&ipst->ips_igmp_timer_lock); 4426 ipst->ips_igmp_timer_quiesce = B_TRUE; 4427 mutex_exit(&ipst->ips_igmp_timer_lock); 4428 4429 mutex_enter(&ipst->ips_mld_timer_lock); 4430 ipst->ips_mld_timer_quiesce = B_TRUE; 4431 mutex_exit(&ipst->ips_mld_timer_lock); 4432 4433 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4434 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4435 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4436 4437 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4438 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4439 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4440 4441 ret = untimeout(ipst->ips_igmp_timeout_id); 4442 if (ret == -1) { 4443 ASSERT(ipst->ips_igmp_timeout_id == 0); 4444 } else { 4445 ASSERT(ipst->ips_igmp_timeout_id != 0); 4446 ipst->ips_igmp_timeout_id = 0; 4447 } 4448 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4449 if (ret == -1) { 4450 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4451 } else { 4452 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4453 ipst->ips_igmp_slowtimeout_id = 0; 4454 } 4455 ret = untimeout(ipst->ips_mld_timeout_id); 4456 if (ret == -1) { 4457 ASSERT(ipst->ips_mld_timeout_id == 0); 4458 } else { 4459 ASSERT(ipst->ips_mld_timeout_id != 0); 4460 ipst->ips_mld_timeout_id = 0; 4461 } 4462 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4463 if (ret == -1) { 4464 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4465 } else { 4466 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4467 ipst->ips_mld_slowtimeout_id = 0; 4468 } 4469 4470 ip_ire_fini(ipst); 4471 ip6_asp_free(ipst); 4472 conn_drain_fini(ipst); 4473 ipcl_destroy(ipst); 4474 4475 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4476 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4477 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4478 ipst->ips_ndp4 = NULL; 4479 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4480 ipst->ips_ndp6 = NULL; 4481 4482 if (ipst->ips_loopback_ksp != NULL) { 4483 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4484 ipst->ips_loopback_ksp = NULL; 4485 } 4486 4487 mutex_destroy(&ipst->ips_capab_taskq_lock); 4488 cv_destroy(&ipst->ips_capab_taskq_cv); 4489 4490 rw_destroy(&ipst->ips_srcid_lock); 4491 4492 mutex_destroy(&ipst->ips_ip_mi_lock); 4493 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4494 4495 mutex_destroy(&ipst->ips_igmp_timer_lock); 4496 mutex_destroy(&ipst->ips_mld_timer_lock); 4497 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4498 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4499 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4500 rw_destroy(&ipst->ips_ill_g_lock); 4501 4502 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4503 ipst->ips_phyint_g_list = NULL; 4504 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4505 ipst->ips_ill_g_heads = NULL; 4506 4507 ldi_ident_release(ipst->ips_ldi_ident); 4508 kmem_free(ipst, sizeof (*ipst)); 4509 } 4510 4511 /* 4512 * This function is called from the TSD destructor, and is used to debug 4513 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4514 * details. 4515 */ 4516 static void 4517 ip_thread_exit(void *phash) 4518 { 4519 th_hash_t *thh = phash; 4520 4521 rw_enter(&ip_thread_rwlock, RW_WRITER); 4522 list_remove(&ip_thread_list, thh); 4523 rw_exit(&ip_thread_rwlock); 4524 mod_hash_destroy_hash(thh->thh_hash); 4525 kmem_free(thh, sizeof (*thh)); 4526 } 4527 4528 /* 4529 * Called when the IP kernel module is loaded into the kernel 4530 */ 4531 void 4532 ip_ddi_init(void) 4533 { 4534 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4535 4536 /* 4537 * For IP and TCP the minor numbers should start from 2 since we have 4 4538 * initial devices: ip, ip6, tcp, tcp6. 4539 */ 4540 /* 4541 * If this is a 64-bit kernel, then create two separate arenas - 4542 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4543 * other for socket apps in the range 2^^18 through 2^^32-1. 4544 */ 4545 ip_minor_arena_la = NULL; 4546 ip_minor_arena_sa = NULL; 4547 #if defined(_LP64) 4548 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4549 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4550 cmn_err(CE_PANIC, 4551 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4552 } 4553 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4554 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4555 cmn_err(CE_PANIC, 4556 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4557 } 4558 #else 4559 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4560 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4561 cmn_err(CE_PANIC, 4562 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4563 } 4564 #endif 4565 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4566 4567 ipcl_g_init(); 4568 ip_ire_g_init(); 4569 ip_net_g_init(); 4570 4571 #ifdef DEBUG 4572 tsd_create(&ip_thread_data, ip_thread_exit); 4573 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4574 list_create(&ip_thread_list, sizeof (th_hash_t), 4575 offsetof(th_hash_t, thh_link)); 4576 #endif 4577 ipsec_policy_g_init(); 4578 tcp_ddi_g_init(); 4579 sctp_ddi_g_init(); 4580 dce_g_init(); 4581 4582 /* 4583 * We want to be informed each time a stack is created or 4584 * destroyed in the kernel, so we can maintain the 4585 * set of udp_stack_t's. 4586 */ 4587 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4588 ip_stack_fini); 4589 4590 tnet_init(); 4591 4592 udp_ddi_g_init(); 4593 rts_ddi_g_init(); 4594 icmp_ddi_g_init(); 4595 ilb_ddi_g_init(); 4596 4597 /* This needs to be called after all transports are initialized. */ 4598 mutex_enter(&cpu_lock); 4599 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4600 mutex_exit(&cpu_lock); 4601 } 4602 4603 /* 4604 * Initialize the IP stack instance. 4605 */ 4606 static void * 4607 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4608 { 4609 ip_stack_t *ipst; 4610 size_t arrsz; 4611 major_t major; 4612 4613 #ifdef NS_DEBUG 4614 printf("ip_stack_init(stack %d)\n", stackid); 4615 #endif 4616 4617 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4618 ipst->ips_netstack = ns; 4619 4620 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4621 KM_SLEEP); 4622 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4623 KM_SLEEP); 4624 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4625 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4626 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4627 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4628 4629 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4630 ipst->ips_igmp_deferred_next = INFINITY; 4631 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4632 ipst->ips_mld_deferred_next = INFINITY; 4633 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4634 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4635 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4636 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4637 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4638 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4639 4640 ipcl_init(ipst); 4641 ip_ire_init(ipst); 4642 ip6_asp_init(ipst); 4643 ipif_init(ipst); 4644 conn_drain_init(ipst); 4645 ip_mrouter_stack_init(ipst); 4646 dce_stack_init(ipst); 4647 4648 ipst->ips_ip_multirt_log_interval = 1000; 4649 4650 ipst->ips_ill_index = 1; 4651 4652 ipst->ips_saved_ip_forwarding = -1; 4653 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4654 4655 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4656 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4657 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4658 4659 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4660 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4661 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4662 ipst->ips_ip6_kstat = 4663 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4664 4665 ipst->ips_ip_src_id = 1; 4666 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4667 4668 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4669 4670 ip_net_init(ipst, ns); 4671 ipv4_hook_init(ipst); 4672 ipv6_hook_init(ipst); 4673 arp_hook_init(ipst); 4674 ipmp_init(ipst); 4675 ipobs_init(ipst); 4676 4677 /* 4678 * Create the taskq dispatcher thread and initialize related stuff. 4679 */ 4680 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4681 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4682 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4683 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4684 4685 major = mod_name_to_major(INET_NAME); 4686 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4687 return (ipst); 4688 } 4689 4690 /* 4691 * Allocate and initialize a DLPI template of the specified length. (May be 4692 * called as writer.) 4693 */ 4694 mblk_t * 4695 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4696 { 4697 mblk_t *mp; 4698 4699 mp = allocb(len, BPRI_MED); 4700 if (!mp) 4701 return (NULL); 4702 4703 /* 4704 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4705 * of which we don't seem to use) are sent with M_PCPROTO, and 4706 * that other DLPI are M_PROTO. 4707 */ 4708 if (prim == DL_INFO_REQ) { 4709 mp->b_datap->db_type = M_PCPROTO; 4710 } else { 4711 mp->b_datap->db_type = M_PROTO; 4712 } 4713 4714 mp->b_wptr = mp->b_rptr + len; 4715 bzero(mp->b_rptr, len); 4716 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4717 return (mp); 4718 } 4719 4720 /* 4721 * Allocate and initialize a DLPI notification. (May be called as writer.) 4722 */ 4723 mblk_t * 4724 ip_dlnotify_alloc(uint_t notification, uint_t data) 4725 { 4726 dl_notify_ind_t *notifyp; 4727 mblk_t *mp; 4728 4729 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4730 return (NULL); 4731 4732 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4733 notifyp->dl_notification = notification; 4734 notifyp->dl_data = data; 4735 return (mp); 4736 } 4737 4738 mblk_t * 4739 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4740 { 4741 dl_notify_ind_t *notifyp; 4742 mblk_t *mp; 4743 4744 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4745 return (NULL); 4746 4747 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4748 notifyp->dl_notification = notification; 4749 notifyp->dl_data1 = data1; 4750 notifyp->dl_data2 = data2; 4751 return (mp); 4752 } 4753 4754 /* 4755 * Debug formatting routine. Returns a character string representation of the 4756 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4757 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4758 * 4759 * Once the ndd table-printing interfaces are removed, this can be changed to 4760 * standard dotted-decimal form. 4761 */ 4762 char * 4763 ip_dot_addr(ipaddr_t addr, char *buf) 4764 { 4765 uint8_t *ap = (uint8_t *)&addr; 4766 4767 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4768 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4769 return (buf); 4770 } 4771 4772 /* 4773 * Write the given MAC address as a printable string in the usual colon- 4774 * separated format. 4775 */ 4776 const char * 4777 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4778 { 4779 char *bp; 4780 4781 if (alen == 0 || buflen < 4) 4782 return ("?"); 4783 bp = buf; 4784 for (;;) { 4785 /* 4786 * If there are more MAC address bytes available, but we won't 4787 * have any room to print them, then add "..." to the string 4788 * instead. See below for the 'magic number' explanation. 4789 */ 4790 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4791 (void) strcpy(bp, "..."); 4792 break; 4793 } 4794 (void) sprintf(bp, "%02x", *addr++); 4795 bp += 2; 4796 if (--alen == 0) 4797 break; 4798 *bp++ = ':'; 4799 buflen -= 3; 4800 /* 4801 * At this point, based on the first 'if' statement above, 4802 * either alen == 1 and buflen >= 3, or alen > 1 and 4803 * buflen >= 4. The first case leaves room for the final "xx" 4804 * number and trailing NUL byte. The second leaves room for at 4805 * least "...". Thus the apparently 'magic' numbers chosen for 4806 * that statement. 4807 */ 4808 } 4809 return (buf); 4810 } 4811 4812 /* 4813 * Called when it is conceptually a ULP that would sent the packet 4814 * e.g., port unreachable and protocol unreachable. Check that the packet 4815 * would have passed the IPsec global policy before sending the error. 4816 * 4817 * Send an ICMP error after patching up the packet appropriately. 4818 * Uses ip_drop_input and bumps the appropriate MIB. 4819 */ 4820 void 4821 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4822 ip_recv_attr_t *ira) 4823 { 4824 ipha_t *ipha; 4825 boolean_t secure; 4826 ill_t *ill = ira->ira_ill; 4827 ip_stack_t *ipst = ill->ill_ipst; 4828 netstack_t *ns = ipst->ips_netstack; 4829 ipsec_stack_t *ipss = ns->netstack_ipsec; 4830 4831 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4832 4833 /* 4834 * We are generating an icmp error for some inbound packet. 4835 * Called from all ip_fanout_(udp, tcp, proto) functions. 4836 * Before we generate an error, check with global policy 4837 * to see whether this is allowed to enter the system. As 4838 * there is no "conn", we are checking with global policy. 4839 */ 4840 ipha = (ipha_t *)mp->b_rptr; 4841 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4842 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4843 if (mp == NULL) 4844 return; 4845 } 4846 4847 /* We never send errors for protocols that we do implement */ 4848 if (ira->ira_protocol == IPPROTO_ICMP || 4849 ira->ira_protocol == IPPROTO_IGMP) { 4850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4851 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4852 freemsg(mp); 4853 return; 4854 } 4855 /* 4856 * Have to correct checksum since 4857 * the packet might have been 4858 * fragmented and the reassembly code in ip_rput 4859 * does not restore the IP checksum. 4860 */ 4861 ipha->ipha_hdr_checksum = 0; 4862 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4863 4864 switch (icmp_type) { 4865 case ICMP_DEST_UNREACHABLE: 4866 switch (icmp_code) { 4867 case ICMP_PROTOCOL_UNREACHABLE: 4868 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4869 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4870 break; 4871 case ICMP_PORT_UNREACHABLE: 4872 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4873 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4874 break; 4875 } 4876 4877 icmp_unreachable(mp, icmp_code, ira); 4878 break; 4879 default: 4880 #ifdef DEBUG 4881 panic("ip_fanout_send_icmp_v4: wrong type"); 4882 /*NOTREACHED*/ 4883 #else 4884 freemsg(mp); 4885 break; 4886 #endif 4887 } 4888 } 4889 4890 /* 4891 * Used to send an ICMP error message when a packet is received for 4892 * a protocol that is not supported. The mblk passed as argument 4893 * is consumed by this function. 4894 */ 4895 void 4896 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4897 { 4898 ipha_t *ipha; 4899 4900 ipha = (ipha_t *)mp->b_rptr; 4901 if (ira->ira_flags & IRAF_IS_IPV4) { 4902 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4903 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4904 ICMP_PROTOCOL_UNREACHABLE, ira); 4905 } else { 4906 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4907 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4908 ICMP6_PARAMPROB_NEXTHEADER, ira); 4909 } 4910 } 4911 4912 /* 4913 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4914 * Handles IPv4 and IPv6. 4915 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4916 * Caller is responsible for dropping references to the conn. 4917 */ 4918 void 4919 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4920 ip_recv_attr_t *ira) 4921 { 4922 ill_t *ill = ira->ira_ill; 4923 ip_stack_t *ipst = ill->ill_ipst; 4924 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4925 boolean_t secure; 4926 uint_t protocol = ira->ira_protocol; 4927 iaflags_t iraflags = ira->ira_flags; 4928 queue_t *rq; 4929 4930 secure = iraflags & IRAF_IPSEC_SECURE; 4931 4932 rq = connp->conn_rq; 4933 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4934 switch (protocol) { 4935 case IPPROTO_ICMPV6: 4936 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4937 break; 4938 case IPPROTO_ICMP: 4939 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4940 break; 4941 default: 4942 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4943 break; 4944 } 4945 freemsg(mp); 4946 return; 4947 } 4948 4949 ASSERT(!(IPCL_IS_IPTUN(connp))); 4950 4951 if (((iraflags & IRAF_IS_IPV4) ? 4952 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4953 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4954 secure) { 4955 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4956 ip6h, ira); 4957 if (mp == NULL) { 4958 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4959 /* Note that mp is NULL */ 4960 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4961 return; 4962 } 4963 } 4964 4965 if (iraflags & IRAF_ICMP_ERROR) { 4966 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4967 } else { 4968 ill_t *rill = ira->ira_rill; 4969 4970 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4971 ira->ira_ill = ira->ira_rill = NULL; 4972 /* Send it upstream */ 4973 (connp->conn_recv)(connp, mp, NULL, ira); 4974 ira->ira_ill = ill; 4975 ira->ira_rill = rill; 4976 } 4977 } 4978 4979 /* 4980 * Handle protocols with which IP is less intimate. There 4981 * can be more than one stream bound to a particular 4982 * protocol. When this is the case, normally each one gets a copy 4983 * of any incoming packets. 4984 * 4985 * IPsec NOTE : 4986 * 4987 * Don't allow a secure packet going up a non-secure connection. 4988 * We don't allow this because 4989 * 4990 * 1) Reply might go out in clear which will be dropped at 4991 * the sending side. 4992 * 2) If the reply goes out in clear it will give the 4993 * adversary enough information for getting the key in 4994 * most of the cases. 4995 * 4996 * Moreover getting a secure packet when we expect clear 4997 * implies that SA's were added without checking for 4998 * policy on both ends. This should not happen once ISAKMP 4999 * is used to negotiate SAs as SAs will be added only after 5000 * verifying the policy. 5001 * 5002 * Zones notes: 5003 * Earlier in ip_input on a system with multiple shared-IP zones we 5004 * duplicate the multicast and broadcast packets and send them up 5005 * with each explicit zoneid that exists on that ill. 5006 * This means that here we can match the zoneid with SO_ALLZONES being special. 5007 */ 5008 void 5009 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5010 { 5011 mblk_t *mp1; 5012 ipaddr_t laddr; 5013 conn_t *connp, *first_connp, *next_connp; 5014 connf_t *connfp; 5015 ill_t *ill = ira->ira_ill; 5016 ip_stack_t *ipst = ill->ill_ipst; 5017 5018 laddr = ipha->ipha_dst; 5019 5020 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5021 mutex_enter(&connfp->connf_lock); 5022 connp = connfp->connf_head; 5023 for (connp = connfp->connf_head; connp != NULL; 5024 connp = connp->conn_next) { 5025 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5026 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5027 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5028 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5029 break; 5030 } 5031 } 5032 5033 if (connp == NULL) { 5034 /* 5035 * No one bound to these addresses. Is 5036 * there a client that wants all 5037 * unclaimed datagrams? 5038 */ 5039 mutex_exit(&connfp->connf_lock); 5040 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5041 ICMP_PROTOCOL_UNREACHABLE, ira); 5042 return; 5043 } 5044 5045 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5046 5047 CONN_INC_REF(connp); 5048 first_connp = connp; 5049 connp = connp->conn_next; 5050 5051 for (;;) { 5052 while (connp != NULL) { 5053 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5054 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5055 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5056 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5057 ira, connp))) 5058 break; 5059 connp = connp->conn_next; 5060 } 5061 5062 if (connp == NULL) { 5063 /* No more interested clients */ 5064 connp = first_connp; 5065 break; 5066 } 5067 if (((mp1 = dupmsg(mp)) == NULL) && 5068 ((mp1 = copymsg(mp)) == NULL)) { 5069 /* Memory allocation failed */ 5070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5071 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5072 connp = first_connp; 5073 break; 5074 } 5075 5076 CONN_INC_REF(connp); 5077 mutex_exit(&connfp->connf_lock); 5078 5079 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5080 ira); 5081 5082 mutex_enter(&connfp->connf_lock); 5083 /* Follow the next pointer before releasing the conn. */ 5084 next_connp = connp->conn_next; 5085 CONN_DEC_REF(connp); 5086 connp = next_connp; 5087 } 5088 5089 /* Last one. Send it upstream. */ 5090 mutex_exit(&connfp->connf_lock); 5091 5092 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5093 5094 CONN_DEC_REF(connp); 5095 } 5096 5097 /* 5098 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5099 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5100 * is not consumed. 5101 * 5102 * One of three things can happen, all of which affect the passed-in mblk: 5103 * 5104 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5105 * 5106 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5107 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5108 * 5109 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5110 */ 5111 mblk_t * 5112 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5113 { 5114 int shift, plen, iph_len; 5115 ipha_t *ipha; 5116 udpha_t *udpha; 5117 uint32_t *spi; 5118 uint32_t esp_ports; 5119 uint8_t *orptr; 5120 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5121 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5122 5123 ipha = (ipha_t *)mp->b_rptr; 5124 iph_len = ira->ira_ip_hdr_length; 5125 plen = ira->ira_pktlen; 5126 5127 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5128 /* 5129 * Most likely a keepalive for the benefit of an intervening 5130 * NAT. These aren't for us, per se, so drop it. 5131 * 5132 * RFC 3947/8 doesn't say for sure what to do for 2-3 5133 * byte packets (keepalives are 1-byte), but we'll drop them 5134 * also. 5135 */ 5136 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5137 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5138 return (NULL); 5139 } 5140 5141 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5142 /* might as well pull it all up - it might be ESP. */ 5143 if (!pullupmsg(mp, -1)) { 5144 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5145 DROPPER(ipss, ipds_esp_nomem), 5146 &ipss->ipsec_dropper); 5147 return (NULL); 5148 } 5149 5150 ipha = (ipha_t *)mp->b_rptr; 5151 } 5152 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5153 if (*spi == 0) { 5154 /* UDP packet - remove 0-spi. */ 5155 shift = sizeof (uint32_t); 5156 } else { 5157 /* ESP-in-UDP packet - reduce to ESP. */ 5158 ipha->ipha_protocol = IPPROTO_ESP; 5159 shift = sizeof (udpha_t); 5160 } 5161 5162 /* Fix IP header */ 5163 ira->ira_pktlen = (plen - shift); 5164 ipha->ipha_length = htons(ira->ira_pktlen); 5165 ipha->ipha_hdr_checksum = 0; 5166 5167 orptr = mp->b_rptr; 5168 mp->b_rptr += shift; 5169 5170 udpha = (udpha_t *)(orptr + iph_len); 5171 if (*spi == 0) { 5172 ASSERT((uint8_t *)ipha == orptr); 5173 udpha->uha_length = htons(plen - shift - iph_len); 5174 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5175 esp_ports = 0; 5176 } else { 5177 esp_ports = *((uint32_t *)udpha); 5178 ASSERT(esp_ports != 0); 5179 } 5180 ovbcopy(orptr, orptr + shift, iph_len); 5181 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5182 ipha = (ipha_t *)(orptr + shift); 5183 5184 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5185 ira->ira_esp_udp_ports = esp_ports; 5186 ip_fanout_v4(mp, ipha, ira); 5187 return (NULL); 5188 } 5189 return (mp); 5190 } 5191 5192 /* 5193 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5194 * Handles IPv4 and IPv6. 5195 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5196 * Caller is responsible for dropping references to the conn. 5197 */ 5198 void 5199 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5200 ip_recv_attr_t *ira) 5201 { 5202 ill_t *ill = ira->ira_ill; 5203 ip_stack_t *ipst = ill->ill_ipst; 5204 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5205 boolean_t secure; 5206 iaflags_t iraflags = ira->ira_flags; 5207 5208 secure = iraflags & IRAF_IPSEC_SECURE; 5209 5210 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5211 !canputnext(connp->conn_rq)) { 5212 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5213 freemsg(mp); 5214 return; 5215 } 5216 5217 if (((iraflags & IRAF_IS_IPV4) ? 5218 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5219 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5220 secure) { 5221 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5222 ip6h, ira); 5223 if (mp == NULL) { 5224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5225 /* Note that mp is NULL */ 5226 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5227 return; 5228 } 5229 } 5230 5231 /* 5232 * Since this code is not used for UDP unicast we don't need a NAT_T 5233 * check. Only ip_fanout_v4 has that check. 5234 */ 5235 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5236 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5237 } else { 5238 ill_t *rill = ira->ira_rill; 5239 5240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5241 ira->ira_ill = ira->ira_rill = NULL; 5242 /* Send it upstream */ 5243 (connp->conn_recv)(connp, mp, NULL, ira); 5244 ira->ira_ill = ill; 5245 ira->ira_rill = rill; 5246 } 5247 } 5248 5249 /* 5250 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5251 * (Unicast fanout is handled in ip_input_v4.) 5252 * 5253 * If SO_REUSEADDR is set all multicast and broadcast packets 5254 * will be delivered to all conns bound to the same port. 5255 * 5256 * If there is at least one matching AF_INET receiver, then we will 5257 * ignore any AF_INET6 receivers. 5258 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5259 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5260 * packets. 5261 * 5262 * Zones notes: 5263 * Earlier in ip_input on a system with multiple shared-IP zones we 5264 * duplicate the multicast and broadcast packets and send them up 5265 * with each explicit zoneid that exists on that ill. 5266 * This means that here we can match the zoneid with SO_ALLZONES being special. 5267 */ 5268 void 5269 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5270 ip_recv_attr_t *ira) 5271 { 5272 ipaddr_t laddr; 5273 in6_addr_t v6faddr; 5274 conn_t *connp; 5275 connf_t *connfp; 5276 ipaddr_t faddr; 5277 ill_t *ill = ira->ira_ill; 5278 ip_stack_t *ipst = ill->ill_ipst; 5279 5280 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5281 5282 laddr = ipha->ipha_dst; 5283 faddr = ipha->ipha_src; 5284 5285 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5286 mutex_enter(&connfp->connf_lock); 5287 connp = connfp->connf_head; 5288 5289 /* 5290 * If SO_REUSEADDR has been set on the first we send the 5291 * packet to all clients that have joined the group and 5292 * match the port. 5293 */ 5294 while (connp != NULL) { 5295 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5296 conn_wantpacket(connp, ira, ipha) && 5297 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5298 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5299 break; 5300 connp = connp->conn_next; 5301 } 5302 5303 if (connp == NULL) 5304 goto notfound; 5305 5306 CONN_INC_REF(connp); 5307 5308 if (connp->conn_reuseaddr) { 5309 conn_t *first_connp = connp; 5310 conn_t *next_connp; 5311 mblk_t *mp1; 5312 5313 connp = connp->conn_next; 5314 for (;;) { 5315 while (connp != NULL) { 5316 if (IPCL_UDP_MATCH(connp, lport, laddr, 5317 fport, faddr) && 5318 conn_wantpacket(connp, ira, ipha) && 5319 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5320 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5321 ira, connp))) 5322 break; 5323 connp = connp->conn_next; 5324 } 5325 if (connp == NULL) { 5326 /* No more interested clients */ 5327 connp = first_connp; 5328 break; 5329 } 5330 if (((mp1 = dupmsg(mp)) == NULL) && 5331 ((mp1 = copymsg(mp)) == NULL)) { 5332 /* Memory allocation failed */ 5333 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5334 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5335 connp = first_connp; 5336 break; 5337 } 5338 CONN_INC_REF(connp); 5339 mutex_exit(&connfp->connf_lock); 5340 5341 IP_STAT(ipst, ip_udp_fanmb); 5342 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5343 NULL, ira); 5344 mutex_enter(&connfp->connf_lock); 5345 /* Follow the next pointer before releasing the conn */ 5346 next_connp = connp->conn_next; 5347 CONN_DEC_REF(connp); 5348 connp = next_connp; 5349 } 5350 } 5351 5352 /* Last one. Send it upstream. */ 5353 mutex_exit(&connfp->connf_lock); 5354 IP_STAT(ipst, ip_udp_fanmb); 5355 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5356 CONN_DEC_REF(connp); 5357 return; 5358 5359 notfound: 5360 mutex_exit(&connfp->connf_lock); 5361 /* 5362 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5363 * have already been matched above, since they live in the IPv4 5364 * fanout tables. This implies we only need to 5365 * check for IPv6 in6addr_any endpoints here. 5366 * Thus we compare using ipv6_all_zeros instead of the destination 5367 * address, except for the multicast group membership lookup which 5368 * uses the IPv4 destination. 5369 */ 5370 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5371 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5372 mutex_enter(&connfp->connf_lock); 5373 connp = connfp->connf_head; 5374 /* 5375 * IPv4 multicast packet being delivered to an AF_INET6 5376 * in6addr_any endpoint. 5377 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5378 * and not conn_wantpacket_v6() since any multicast membership is 5379 * for an IPv4-mapped multicast address. 5380 */ 5381 while (connp != NULL) { 5382 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5383 fport, v6faddr) && 5384 conn_wantpacket(connp, ira, ipha) && 5385 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5386 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5387 break; 5388 connp = connp->conn_next; 5389 } 5390 5391 if (connp == NULL) { 5392 /* 5393 * No one bound to this port. Is 5394 * there a client that wants all 5395 * unclaimed datagrams? 5396 */ 5397 mutex_exit(&connfp->connf_lock); 5398 5399 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5400 NULL) { 5401 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5402 ip_fanout_proto_v4(mp, ipha, ira); 5403 } else { 5404 /* 5405 * We used to attempt to send an icmp error here, but 5406 * since this is known to be a multicast packet 5407 * and we don't send icmp errors in response to 5408 * multicast, just drop the packet and give up sooner. 5409 */ 5410 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5411 freemsg(mp); 5412 } 5413 return; 5414 } 5415 CONN_INC_REF(connp); 5416 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5417 5418 /* 5419 * If SO_REUSEADDR has been set on the first we send the 5420 * packet to all clients that have joined the group and 5421 * match the port. 5422 */ 5423 if (connp->conn_reuseaddr) { 5424 conn_t *first_connp = connp; 5425 conn_t *next_connp; 5426 mblk_t *mp1; 5427 5428 connp = connp->conn_next; 5429 for (;;) { 5430 while (connp != NULL) { 5431 if (IPCL_UDP_MATCH_V6(connp, lport, 5432 ipv6_all_zeros, fport, v6faddr) && 5433 conn_wantpacket(connp, ira, ipha) && 5434 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5435 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5436 ira, connp))) 5437 break; 5438 connp = connp->conn_next; 5439 } 5440 if (connp == NULL) { 5441 /* No more interested clients */ 5442 connp = first_connp; 5443 break; 5444 } 5445 if (((mp1 = dupmsg(mp)) == NULL) && 5446 ((mp1 = copymsg(mp)) == NULL)) { 5447 /* Memory allocation failed */ 5448 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5449 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5450 connp = first_connp; 5451 break; 5452 } 5453 CONN_INC_REF(connp); 5454 mutex_exit(&connfp->connf_lock); 5455 5456 IP_STAT(ipst, ip_udp_fanmb); 5457 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5458 NULL, ira); 5459 mutex_enter(&connfp->connf_lock); 5460 /* Follow the next pointer before releasing the conn */ 5461 next_connp = connp->conn_next; 5462 CONN_DEC_REF(connp); 5463 connp = next_connp; 5464 } 5465 } 5466 5467 /* Last one. Send it upstream. */ 5468 mutex_exit(&connfp->connf_lock); 5469 IP_STAT(ipst, ip_udp_fanmb); 5470 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5471 CONN_DEC_REF(connp); 5472 } 5473 5474 /* 5475 * Split an incoming packet's IPv4 options into the label and the other options. 5476 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5477 * clearing out any leftover label or options. 5478 * Otherwise it just makes ipp point into the packet. 5479 * 5480 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5481 */ 5482 int 5483 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5484 { 5485 uchar_t *opt; 5486 uint32_t totallen; 5487 uint32_t optval; 5488 uint32_t optlen; 5489 5490 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5491 ipp->ipp_hoplimit = ipha->ipha_ttl; 5492 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5493 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5494 5495 /* 5496 * Get length (in 4 byte octets) of IP header options. 5497 */ 5498 totallen = ipha->ipha_version_and_hdr_length - 5499 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5500 5501 if (totallen == 0) { 5502 if (!allocate) 5503 return (0); 5504 5505 /* Clear out anything from a previous packet */ 5506 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5507 kmem_free(ipp->ipp_ipv4_options, 5508 ipp->ipp_ipv4_options_len); 5509 ipp->ipp_ipv4_options = NULL; 5510 ipp->ipp_ipv4_options_len = 0; 5511 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5512 } 5513 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5514 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5515 ipp->ipp_label_v4 = NULL; 5516 ipp->ipp_label_len_v4 = 0; 5517 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5518 } 5519 return (0); 5520 } 5521 5522 totallen <<= 2; 5523 opt = (uchar_t *)&ipha[1]; 5524 if (!is_system_labeled()) { 5525 5526 copyall: 5527 if (!allocate) { 5528 if (totallen != 0) { 5529 ipp->ipp_ipv4_options = opt; 5530 ipp->ipp_ipv4_options_len = totallen; 5531 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5532 } 5533 return (0); 5534 } 5535 /* Just copy all of options */ 5536 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5537 if (totallen == ipp->ipp_ipv4_options_len) { 5538 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5539 return (0); 5540 } 5541 kmem_free(ipp->ipp_ipv4_options, 5542 ipp->ipp_ipv4_options_len); 5543 ipp->ipp_ipv4_options = NULL; 5544 ipp->ipp_ipv4_options_len = 0; 5545 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5546 } 5547 if (totallen == 0) 5548 return (0); 5549 5550 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5551 if (ipp->ipp_ipv4_options == NULL) 5552 return (ENOMEM); 5553 ipp->ipp_ipv4_options_len = totallen; 5554 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5555 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5556 return (0); 5557 } 5558 5559 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5560 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5561 ipp->ipp_label_v4 = NULL; 5562 ipp->ipp_label_len_v4 = 0; 5563 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5564 } 5565 5566 /* 5567 * Search for CIPSO option. 5568 * We assume CIPSO is first in options if it is present. 5569 * If it isn't, then ipp_opt_ipv4_options will not include the options 5570 * prior to the CIPSO option. 5571 */ 5572 while (totallen != 0) { 5573 switch (optval = opt[IPOPT_OPTVAL]) { 5574 case IPOPT_EOL: 5575 return (0); 5576 case IPOPT_NOP: 5577 optlen = 1; 5578 break; 5579 default: 5580 if (totallen <= IPOPT_OLEN) 5581 return (EINVAL); 5582 optlen = opt[IPOPT_OLEN]; 5583 if (optlen < 2) 5584 return (EINVAL); 5585 } 5586 if (optlen > totallen) 5587 return (EINVAL); 5588 5589 switch (optval) { 5590 case IPOPT_COMSEC: 5591 if (!allocate) { 5592 ipp->ipp_label_v4 = opt; 5593 ipp->ipp_label_len_v4 = optlen; 5594 ipp->ipp_fields |= IPPF_LABEL_V4; 5595 } else { 5596 ipp->ipp_label_v4 = kmem_alloc(optlen, 5597 KM_NOSLEEP); 5598 if (ipp->ipp_label_v4 == NULL) 5599 return (ENOMEM); 5600 ipp->ipp_label_len_v4 = optlen; 5601 ipp->ipp_fields |= IPPF_LABEL_V4; 5602 bcopy(opt, ipp->ipp_label_v4, optlen); 5603 } 5604 totallen -= optlen; 5605 opt += optlen; 5606 5607 /* Skip padding bytes until we get to a multiple of 4 */ 5608 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5609 totallen--; 5610 opt++; 5611 } 5612 /* Remaining as ipp_ipv4_options */ 5613 goto copyall; 5614 } 5615 totallen -= optlen; 5616 opt += optlen; 5617 } 5618 /* No CIPSO found; return everything as ipp_ipv4_options */ 5619 totallen = ipha->ipha_version_and_hdr_length - 5620 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5621 totallen <<= 2; 5622 opt = (uchar_t *)&ipha[1]; 5623 goto copyall; 5624 } 5625 5626 /* 5627 * Efficient versions of lookup for an IRE when we only 5628 * match the address. 5629 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5630 * Does not handle multicast addresses. 5631 */ 5632 uint_t 5633 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5634 { 5635 ire_t *ire; 5636 uint_t result; 5637 5638 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5639 ASSERT(ire != NULL); 5640 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5641 result = IRE_NOROUTE; 5642 else 5643 result = ire->ire_type; 5644 ire_refrele(ire); 5645 return (result); 5646 } 5647 5648 /* 5649 * Efficient versions of lookup for an IRE when we only 5650 * match the address. 5651 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5652 * Does not handle multicast addresses. 5653 */ 5654 uint_t 5655 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5656 { 5657 ire_t *ire; 5658 uint_t result; 5659 5660 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5661 ASSERT(ire != NULL); 5662 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5663 result = IRE_NOROUTE; 5664 else 5665 result = ire->ire_type; 5666 ire_refrele(ire); 5667 return (result); 5668 } 5669 5670 /* 5671 * Nobody should be sending 5672 * packets up this stream 5673 */ 5674 static int 5675 ip_lrput(queue_t *q, mblk_t *mp) 5676 { 5677 switch (mp->b_datap->db_type) { 5678 case M_FLUSH: 5679 /* Turn around */ 5680 if (*mp->b_rptr & FLUSHW) { 5681 *mp->b_rptr &= ~FLUSHR; 5682 qreply(q, mp); 5683 return (0); 5684 } 5685 break; 5686 } 5687 freemsg(mp); 5688 return (0); 5689 } 5690 5691 /* Nobody should be sending packets down this stream */ 5692 /* ARGSUSED */ 5693 int 5694 ip_lwput(queue_t *q, mblk_t *mp) 5695 { 5696 freemsg(mp); 5697 return (0); 5698 } 5699 5700 /* 5701 * Move the first hop in any source route to ipha_dst and remove that part of 5702 * the source route. Called by other protocols. Errors in option formatting 5703 * are ignored - will be handled by ip_output_options. Return the final 5704 * destination (either ipha_dst or the last entry in a source route.) 5705 */ 5706 ipaddr_t 5707 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5708 { 5709 ipoptp_t opts; 5710 uchar_t *opt; 5711 uint8_t optval; 5712 uint8_t optlen; 5713 ipaddr_t dst; 5714 int i; 5715 ip_stack_t *ipst = ns->netstack_ip; 5716 5717 ip2dbg(("ip_massage_options\n")); 5718 dst = ipha->ipha_dst; 5719 for (optval = ipoptp_first(&opts, ipha); 5720 optval != IPOPT_EOL; 5721 optval = ipoptp_next(&opts)) { 5722 opt = opts.ipoptp_cur; 5723 switch (optval) { 5724 uint8_t off; 5725 case IPOPT_SSRR: 5726 case IPOPT_LSRR: 5727 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5728 ip1dbg(("ip_massage_options: bad src route\n")); 5729 break; 5730 } 5731 optlen = opts.ipoptp_len; 5732 off = opt[IPOPT_OFFSET]; 5733 off--; 5734 redo_srr: 5735 if (optlen < IP_ADDR_LEN || 5736 off > optlen - IP_ADDR_LEN) { 5737 /* End of source route */ 5738 ip1dbg(("ip_massage_options: end of SR\n")); 5739 break; 5740 } 5741 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5742 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5743 ntohl(dst))); 5744 /* 5745 * Check if our address is present more than 5746 * once as consecutive hops in source route. 5747 * XXX verify per-interface ip_forwarding 5748 * for source route? 5749 */ 5750 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5751 off += IP_ADDR_LEN; 5752 goto redo_srr; 5753 } 5754 if (dst == htonl(INADDR_LOOPBACK)) { 5755 ip1dbg(("ip_massage_options: loopback addr in " 5756 "source route!\n")); 5757 break; 5758 } 5759 /* 5760 * Update ipha_dst to be the first hop and remove the 5761 * first hop from the source route (by overwriting 5762 * part of the option with NOP options). 5763 */ 5764 ipha->ipha_dst = dst; 5765 /* Put the last entry in dst */ 5766 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5767 3; 5768 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5769 5770 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5771 ntohl(dst))); 5772 /* Move down and overwrite */ 5773 opt[IP_ADDR_LEN] = opt[0]; 5774 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5775 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5776 for (i = 0; i < IP_ADDR_LEN; i++) 5777 opt[i] = IPOPT_NOP; 5778 break; 5779 } 5780 } 5781 return (dst); 5782 } 5783 5784 /* 5785 * Return the network mask 5786 * associated with the specified address. 5787 */ 5788 ipaddr_t 5789 ip_net_mask(ipaddr_t addr) 5790 { 5791 uchar_t *up = (uchar_t *)&addr; 5792 ipaddr_t mask = 0; 5793 uchar_t *maskp = (uchar_t *)&mask; 5794 5795 #if defined(__i386) || defined(__amd64) 5796 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5797 #endif 5798 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5799 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5800 #endif 5801 if (CLASSD(addr)) { 5802 maskp[0] = 0xF0; 5803 return (mask); 5804 } 5805 5806 /* We assume Class E default netmask to be 32 */ 5807 if (CLASSE(addr)) 5808 return (0xffffffffU); 5809 5810 if (addr == 0) 5811 return (0); 5812 maskp[0] = 0xFF; 5813 if ((up[0] & 0x80) == 0) 5814 return (mask); 5815 5816 maskp[1] = 0xFF; 5817 if ((up[0] & 0xC0) == 0x80) 5818 return (mask); 5819 5820 maskp[2] = 0xFF; 5821 if ((up[0] & 0xE0) == 0xC0) 5822 return (mask); 5823 5824 /* Otherwise return no mask */ 5825 return ((ipaddr_t)0); 5826 } 5827 5828 /* Name/Value Table Lookup Routine */ 5829 char * 5830 ip_nv_lookup(nv_t *nv, int value) 5831 { 5832 if (!nv) 5833 return (NULL); 5834 for (; nv->nv_name; nv++) { 5835 if (nv->nv_value == value) 5836 return (nv->nv_name); 5837 } 5838 return ("unknown"); 5839 } 5840 5841 static int 5842 ip_wait_for_info_ack(ill_t *ill) 5843 { 5844 int err; 5845 5846 mutex_enter(&ill->ill_lock); 5847 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5848 /* 5849 * Return value of 0 indicates a pending signal. 5850 */ 5851 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5852 if (err == 0) { 5853 mutex_exit(&ill->ill_lock); 5854 return (EINTR); 5855 } 5856 } 5857 mutex_exit(&ill->ill_lock); 5858 /* 5859 * ip_rput_other could have set an error in ill_error on 5860 * receipt of M_ERROR. 5861 */ 5862 return (ill->ill_error); 5863 } 5864 5865 /* 5866 * This is a module open, i.e. this is a control stream for access 5867 * to a DLPI device. We allocate an ill_t as the instance data in 5868 * this case. 5869 */ 5870 static int 5871 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5872 { 5873 ill_t *ill; 5874 int err; 5875 zoneid_t zoneid; 5876 netstack_t *ns; 5877 ip_stack_t *ipst; 5878 5879 /* 5880 * Prevent unprivileged processes from pushing IP so that 5881 * they can't send raw IP. 5882 */ 5883 if (secpolicy_net_rawaccess(credp) != 0) 5884 return (EPERM); 5885 5886 ns = netstack_find_by_cred(credp); 5887 ASSERT(ns != NULL); 5888 ipst = ns->netstack_ip; 5889 ASSERT(ipst != NULL); 5890 5891 /* 5892 * For exclusive stacks we set the zoneid to zero 5893 * to make IP operate as if in the global zone. 5894 */ 5895 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5896 zoneid = GLOBAL_ZONEID; 5897 else 5898 zoneid = crgetzoneid(credp); 5899 5900 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5901 q->q_ptr = WR(q)->q_ptr = ill; 5902 ill->ill_ipst = ipst; 5903 ill->ill_zoneid = zoneid; 5904 5905 /* 5906 * ill_init initializes the ill fields and then sends down 5907 * down a DL_INFO_REQ after calling qprocson. 5908 */ 5909 err = ill_init(q, ill); 5910 5911 if (err != 0) { 5912 mi_free(ill); 5913 netstack_rele(ipst->ips_netstack); 5914 q->q_ptr = NULL; 5915 WR(q)->q_ptr = NULL; 5916 return (err); 5917 } 5918 5919 /* 5920 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5921 * 5922 * ill_init initializes the ipsq marking this thread as 5923 * writer 5924 */ 5925 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5926 err = ip_wait_for_info_ack(ill); 5927 if (err == 0) 5928 ill->ill_credp = credp; 5929 else 5930 goto fail; 5931 5932 crhold(credp); 5933 5934 mutex_enter(&ipst->ips_ip_mi_lock); 5935 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5936 sflag, credp); 5937 mutex_exit(&ipst->ips_ip_mi_lock); 5938 fail: 5939 if (err) { 5940 (void) ip_close(q, 0, credp); 5941 return (err); 5942 } 5943 return (0); 5944 } 5945 5946 /* For /dev/ip aka AF_INET open */ 5947 int 5948 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5949 { 5950 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5951 } 5952 5953 /* For /dev/ip6 aka AF_INET6 open */ 5954 int 5955 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5956 { 5957 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5958 } 5959 5960 /* IP open routine. */ 5961 int 5962 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5963 boolean_t isv6) 5964 { 5965 conn_t *connp; 5966 major_t maj; 5967 zoneid_t zoneid; 5968 netstack_t *ns; 5969 ip_stack_t *ipst; 5970 5971 /* Allow reopen. */ 5972 if (q->q_ptr != NULL) 5973 return (0); 5974 5975 if (sflag & MODOPEN) { 5976 /* This is a module open */ 5977 return (ip_modopen(q, devp, flag, sflag, credp)); 5978 } 5979 5980 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5981 /* 5982 * Non streams based socket looking for a stream 5983 * to access IP 5984 */ 5985 return (ip_helper_stream_setup(q, devp, flag, sflag, 5986 credp, isv6)); 5987 } 5988 5989 ns = netstack_find_by_cred(credp); 5990 ASSERT(ns != NULL); 5991 ipst = ns->netstack_ip; 5992 ASSERT(ipst != NULL); 5993 5994 /* 5995 * For exclusive stacks we set the zoneid to zero 5996 * to make IP operate as if in the global zone. 5997 */ 5998 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5999 zoneid = GLOBAL_ZONEID; 6000 else 6001 zoneid = crgetzoneid(credp); 6002 6003 /* 6004 * We are opening as a device. This is an IP client stream, and we 6005 * allocate an conn_t as the instance data. 6006 */ 6007 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6008 6009 /* 6010 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6011 * done by netstack_find_by_cred() 6012 */ 6013 netstack_rele(ipst->ips_netstack); 6014 6015 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6016 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6017 connp->conn_ixa->ixa_zoneid = zoneid; 6018 connp->conn_zoneid = zoneid; 6019 6020 connp->conn_rq = q; 6021 q->q_ptr = WR(q)->q_ptr = connp; 6022 6023 /* Minor tells us which /dev entry was opened */ 6024 if (isv6) { 6025 connp->conn_family = AF_INET6; 6026 connp->conn_ipversion = IPV6_VERSION; 6027 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6028 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6029 } else { 6030 connp->conn_family = AF_INET; 6031 connp->conn_ipversion = IPV4_VERSION; 6032 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6033 } 6034 6035 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6036 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6037 connp->conn_minor_arena = ip_minor_arena_la; 6038 } else { 6039 /* 6040 * Either minor numbers in the large arena were exhausted 6041 * or a non socket application is doing the open. 6042 * Try to allocate from the small arena. 6043 */ 6044 if ((connp->conn_dev = 6045 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6046 /* CONN_DEC_REF takes care of netstack_rele() */ 6047 q->q_ptr = WR(q)->q_ptr = NULL; 6048 CONN_DEC_REF(connp); 6049 return (EBUSY); 6050 } 6051 connp->conn_minor_arena = ip_minor_arena_sa; 6052 } 6053 6054 maj = getemajor(*devp); 6055 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6056 6057 /* 6058 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6059 */ 6060 connp->conn_cred = credp; 6061 connp->conn_cpid = curproc->p_pid; 6062 /* Cache things in ixa without an extra refhold */ 6063 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6064 connp->conn_ixa->ixa_cred = connp->conn_cred; 6065 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6066 if (is_system_labeled()) 6067 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6068 6069 /* 6070 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6071 */ 6072 connp->conn_recv = ip_conn_input; 6073 connp->conn_recvicmp = ip_conn_input_icmp; 6074 6075 crhold(connp->conn_cred); 6076 6077 /* 6078 * If the caller has the process-wide flag set, then default to MAC 6079 * exempt mode. This allows read-down to unlabeled hosts. 6080 */ 6081 if (getpflags(NET_MAC_AWARE, credp) != 0) 6082 connp->conn_mac_mode = CONN_MAC_AWARE; 6083 6084 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6085 6086 connp->conn_rq = q; 6087 connp->conn_wq = WR(q); 6088 6089 /* Non-zero default values */ 6090 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6091 6092 /* 6093 * Make the conn globally visible to walkers 6094 */ 6095 ASSERT(connp->conn_ref == 1); 6096 mutex_enter(&connp->conn_lock); 6097 connp->conn_state_flags &= ~CONN_INCIPIENT; 6098 mutex_exit(&connp->conn_lock); 6099 6100 qprocson(q); 6101 6102 return (0); 6103 } 6104 6105 /* 6106 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6107 * all of them are copied to the conn_t. If the req is "zero", the policy is 6108 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6109 * fields. 6110 * We keep only the latest setting of the policy and thus policy setting 6111 * is not incremental/cumulative. 6112 * 6113 * Requests to set policies with multiple alternative actions will 6114 * go through a different API. 6115 */ 6116 int 6117 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6118 { 6119 uint_t ah_req = 0; 6120 uint_t esp_req = 0; 6121 uint_t se_req = 0; 6122 ipsec_act_t *actp = NULL; 6123 uint_t nact; 6124 ipsec_policy_head_t *ph; 6125 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6126 int error = 0; 6127 netstack_t *ns = connp->conn_netstack; 6128 ip_stack_t *ipst = ns->netstack_ip; 6129 ipsec_stack_t *ipss = ns->netstack_ipsec; 6130 6131 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6132 6133 /* 6134 * The IP_SEC_OPT option does not allow variable length parameters, 6135 * hence a request cannot be NULL. 6136 */ 6137 if (req == NULL) 6138 return (EINVAL); 6139 6140 ah_req = req->ipsr_ah_req; 6141 esp_req = req->ipsr_esp_req; 6142 se_req = req->ipsr_self_encap_req; 6143 6144 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6145 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6146 return (EINVAL); 6147 6148 /* 6149 * Are we dealing with a request to reset the policy (i.e. 6150 * zero requests). 6151 */ 6152 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6153 (esp_req & REQ_MASK) == 0 && 6154 (se_req & REQ_MASK) == 0); 6155 6156 if (!is_pol_reset) { 6157 /* 6158 * If we couldn't load IPsec, fail with "protocol 6159 * not supported". 6160 * IPsec may not have been loaded for a request with zero 6161 * policies, so we don't fail in this case. 6162 */ 6163 mutex_enter(&ipss->ipsec_loader_lock); 6164 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6165 mutex_exit(&ipss->ipsec_loader_lock); 6166 return (EPROTONOSUPPORT); 6167 } 6168 mutex_exit(&ipss->ipsec_loader_lock); 6169 6170 /* 6171 * Test for valid requests. Invalid algorithms 6172 * need to be tested by IPsec code because new 6173 * algorithms can be added dynamically. 6174 */ 6175 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6176 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6177 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6178 return (EINVAL); 6179 } 6180 6181 /* 6182 * Only privileged users can issue these 6183 * requests. 6184 */ 6185 if (((ah_req & IPSEC_PREF_NEVER) || 6186 (esp_req & IPSEC_PREF_NEVER) || 6187 (se_req & IPSEC_PREF_NEVER)) && 6188 secpolicy_ip_config(cr, B_FALSE) != 0) { 6189 return (EPERM); 6190 } 6191 6192 /* 6193 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6194 * are mutually exclusive. 6195 */ 6196 if (((ah_req & REQ_MASK) == REQ_MASK) || 6197 ((esp_req & REQ_MASK) == REQ_MASK) || 6198 ((se_req & REQ_MASK) == REQ_MASK)) { 6199 /* Both of them are set */ 6200 return (EINVAL); 6201 } 6202 } 6203 6204 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6205 6206 /* 6207 * If we have already cached policies in conn_connect(), don't 6208 * let them change now. We cache policies for connections 6209 * whose src,dst [addr, port] is known. 6210 */ 6211 if (connp->conn_policy_cached) { 6212 return (EINVAL); 6213 } 6214 6215 /* 6216 * We have a zero policies, reset the connection policy if already 6217 * set. This will cause the connection to inherit the 6218 * global policy, if any. 6219 */ 6220 if (is_pol_reset) { 6221 if (connp->conn_policy != NULL) { 6222 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6223 connp->conn_policy = NULL; 6224 } 6225 connp->conn_in_enforce_policy = B_FALSE; 6226 connp->conn_out_enforce_policy = B_FALSE; 6227 return (0); 6228 } 6229 6230 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6231 ipst->ips_netstack); 6232 if (ph == NULL) 6233 goto enomem; 6234 6235 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6236 if (actp == NULL) 6237 goto enomem; 6238 6239 /* 6240 * Always insert IPv4 policy entries, since they can also apply to 6241 * ipv6 sockets being used in ipv4-compat mode. 6242 */ 6243 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6244 IPSEC_TYPE_INBOUND, ns)) 6245 goto enomem; 6246 is_pol_inserted = B_TRUE; 6247 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6248 IPSEC_TYPE_OUTBOUND, ns)) 6249 goto enomem; 6250 6251 /* 6252 * We're looking at a v6 socket, also insert the v6-specific 6253 * entries. 6254 */ 6255 if (connp->conn_family == AF_INET6) { 6256 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6257 IPSEC_TYPE_INBOUND, ns)) 6258 goto enomem; 6259 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6260 IPSEC_TYPE_OUTBOUND, ns)) 6261 goto enomem; 6262 } 6263 6264 ipsec_actvec_free(actp, nact); 6265 6266 /* 6267 * If the requests need security, set enforce_policy. 6268 * If the requests are IPSEC_PREF_NEVER, one should 6269 * still set conn_out_enforce_policy so that ip_set_destination 6270 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6271 * for connections that we don't cache policy in at connect time, 6272 * if global policy matches in ip_output_attach_policy, we 6273 * don't wrongly inherit global policy. Similarly, we need 6274 * to set conn_in_enforce_policy also so that we don't verify 6275 * policy wrongly. 6276 */ 6277 if ((ah_req & REQ_MASK) != 0 || 6278 (esp_req & REQ_MASK) != 0 || 6279 (se_req & REQ_MASK) != 0) { 6280 connp->conn_in_enforce_policy = B_TRUE; 6281 connp->conn_out_enforce_policy = B_TRUE; 6282 } 6283 6284 return (error); 6285 #undef REQ_MASK 6286 6287 /* 6288 * Common memory-allocation-failure exit path. 6289 */ 6290 enomem: 6291 if (actp != NULL) 6292 ipsec_actvec_free(actp, nact); 6293 if (is_pol_inserted) 6294 ipsec_polhead_flush(ph, ns); 6295 return (ENOMEM); 6296 } 6297 6298 /* 6299 * Set socket options for joining and leaving multicast groups. 6300 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6301 * The caller has already check that the option name is consistent with 6302 * the address family of the socket. 6303 */ 6304 int 6305 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6306 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6307 { 6308 int *i1 = (int *)invalp; 6309 int error = 0; 6310 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6311 struct ip_mreq *v4_mreqp; 6312 struct ipv6_mreq *v6_mreqp; 6313 struct group_req *greqp; 6314 ire_t *ire; 6315 boolean_t done = B_FALSE; 6316 ipaddr_t ifaddr; 6317 in6_addr_t v6group; 6318 uint_t ifindex; 6319 boolean_t mcast_opt = B_TRUE; 6320 mcast_record_t fmode; 6321 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6322 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6323 6324 switch (name) { 6325 case IP_ADD_MEMBERSHIP: 6326 case IPV6_JOIN_GROUP: 6327 mcast_opt = B_FALSE; 6328 /* FALLTHROUGH */ 6329 case MCAST_JOIN_GROUP: 6330 fmode = MODE_IS_EXCLUDE; 6331 optfn = ip_opt_add_group; 6332 break; 6333 6334 case IP_DROP_MEMBERSHIP: 6335 case IPV6_LEAVE_GROUP: 6336 mcast_opt = B_FALSE; 6337 /* FALLTHROUGH */ 6338 case MCAST_LEAVE_GROUP: 6339 fmode = MODE_IS_INCLUDE; 6340 optfn = ip_opt_delete_group; 6341 break; 6342 default: 6343 /* Should not be reached. */ 6344 fmode = MODE_IS_INCLUDE; 6345 optfn = NULL; 6346 ASSERT(0); 6347 } 6348 6349 if (mcast_opt) { 6350 struct sockaddr_in *sin; 6351 struct sockaddr_in6 *sin6; 6352 6353 greqp = (struct group_req *)i1; 6354 if (greqp->gr_group.ss_family == AF_INET) { 6355 sin = (struct sockaddr_in *)&(greqp->gr_group); 6356 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6357 } else { 6358 if (!inet6) 6359 return (EINVAL); /* Not on INET socket */ 6360 6361 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6362 v6group = sin6->sin6_addr; 6363 } 6364 ifaddr = INADDR_ANY; 6365 ifindex = greqp->gr_interface; 6366 } else if (inet6) { 6367 v6_mreqp = (struct ipv6_mreq *)i1; 6368 v6group = v6_mreqp->ipv6mr_multiaddr; 6369 ifaddr = INADDR_ANY; 6370 ifindex = v6_mreqp->ipv6mr_interface; 6371 } else { 6372 v4_mreqp = (struct ip_mreq *)i1; 6373 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6374 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6375 ifindex = 0; 6376 } 6377 6378 /* 6379 * In the multirouting case, we need to replicate 6380 * the request on all interfaces that will take part 6381 * in replication. We do so because multirouting is 6382 * reflective, thus we will probably receive multi- 6383 * casts on those interfaces. 6384 * The ip_multirt_apply_membership() succeeds if 6385 * the operation succeeds on at least one interface. 6386 */ 6387 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6388 ipaddr_t group; 6389 6390 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6391 6392 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6393 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6394 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6395 } else { 6396 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6397 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6398 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6399 } 6400 if (ire != NULL) { 6401 if (ire->ire_flags & RTF_MULTIRT) { 6402 error = ip_multirt_apply_membership(optfn, ire, connp, 6403 checkonly, &v6group, fmode, &ipv6_all_zeros); 6404 done = B_TRUE; 6405 } 6406 ire_refrele(ire); 6407 } 6408 6409 if (!done) { 6410 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6411 fmode, &ipv6_all_zeros); 6412 } 6413 return (error); 6414 } 6415 6416 /* 6417 * Set socket options for joining and leaving multicast groups 6418 * for specific sources. 6419 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6420 * The caller has already check that the option name is consistent with 6421 * the address family of the socket. 6422 */ 6423 int 6424 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6425 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6426 { 6427 int *i1 = (int *)invalp; 6428 int error = 0; 6429 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6430 struct ip_mreq_source *imreqp; 6431 struct group_source_req *gsreqp; 6432 in6_addr_t v6group, v6src; 6433 uint32_t ifindex; 6434 ipaddr_t ifaddr; 6435 boolean_t mcast_opt = B_TRUE; 6436 mcast_record_t fmode; 6437 ire_t *ire; 6438 boolean_t done = B_FALSE; 6439 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6440 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6441 6442 switch (name) { 6443 case IP_BLOCK_SOURCE: 6444 mcast_opt = B_FALSE; 6445 /* FALLTHROUGH */ 6446 case MCAST_BLOCK_SOURCE: 6447 fmode = MODE_IS_EXCLUDE; 6448 optfn = ip_opt_add_group; 6449 break; 6450 6451 case IP_UNBLOCK_SOURCE: 6452 mcast_opt = B_FALSE; 6453 /* FALLTHROUGH */ 6454 case MCAST_UNBLOCK_SOURCE: 6455 fmode = MODE_IS_EXCLUDE; 6456 optfn = ip_opt_delete_group; 6457 break; 6458 6459 case IP_ADD_SOURCE_MEMBERSHIP: 6460 mcast_opt = B_FALSE; 6461 /* FALLTHROUGH */ 6462 case MCAST_JOIN_SOURCE_GROUP: 6463 fmode = MODE_IS_INCLUDE; 6464 optfn = ip_opt_add_group; 6465 break; 6466 6467 case IP_DROP_SOURCE_MEMBERSHIP: 6468 mcast_opt = B_FALSE; 6469 /* FALLTHROUGH */ 6470 case MCAST_LEAVE_SOURCE_GROUP: 6471 fmode = MODE_IS_INCLUDE; 6472 optfn = ip_opt_delete_group; 6473 break; 6474 default: 6475 /* Should not be reached. */ 6476 optfn = NULL; 6477 fmode = 0; 6478 ASSERT(0); 6479 } 6480 6481 if (mcast_opt) { 6482 gsreqp = (struct group_source_req *)i1; 6483 ifindex = gsreqp->gsr_interface; 6484 if (gsreqp->gsr_group.ss_family == AF_INET) { 6485 struct sockaddr_in *s; 6486 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6487 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6488 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6489 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6490 } else { 6491 struct sockaddr_in6 *s6; 6492 6493 if (!inet6) 6494 return (EINVAL); /* Not on INET socket */ 6495 6496 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6497 v6group = s6->sin6_addr; 6498 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6499 v6src = s6->sin6_addr; 6500 } 6501 ifaddr = INADDR_ANY; 6502 } else { 6503 imreqp = (struct ip_mreq_source *)i1; 6504 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6505 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6506 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6507 ifindex = 0; 6508 } 6509 6510 /* 6511 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6512 */ 6513 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6514 v6src = ipv6_all_zeros; 6515 6516 /* 6517 * In the multirouting case, we need to replicate 6518 * the request as noted in the mcast cases above. 6519 */ 6520 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6521 ipaddr_t group; 6522 6523 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6524 6525 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6526 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6527 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6528 } else { 6529 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6530 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6531 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6532 } 6533 if (ire != NULL) { 6534 if (ire->ire_flags & RTF_MULTIRT) { 6535 error = ip_multirt_apply_membership(optfn, ire, connp, 6536 checkonly, &v6group, fmode, &v6src); 6537 done = B_TRUE; 6538 } 6539 ire_refrele(ire); 6540 } 6541 if (!done) { 6542 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6543 fmode, &v6src); 6544 } 6545 return (error); 6546 } 6547 6548 /* 6549 * Given a destination address and a pointer to where to put the information 6550 * this routine fills in the mtuinfo. 6551 * The socket must be connected. 6552 * For sctp conn_faddr is the primary address. 6553 */ 6554 int 6555 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6556 { 6557 uint32_t pmtu = IP_MAXPACKET; 6558 uint_t scopeid; 6559 6560 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6561 return (-1); 6562 6563 /* In case we never sent or called ip_set_destination_v4/v6 */ 6564 if (ixa->ixa_ire != NULL) 6565 pmtu = ip_get_pmtu(ixa); 6566 6567 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6568 scopeid = ixa->ixa_scopeid; 6569 else 6570 scopeid = 0; 6571 6572 bzero(mtuinfo, sizeof (*mtuinfo)); 6573 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6574 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6575 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6576 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6577 mtuinfo->ip6m_mtu = pmtu; 6578 6579 return (sizeof (struct ip6_mtuinfo)); 6580 } 6581 6582 /* 6583 * When the src multihoming is changed from weak to [strong, preferred] 6584 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6585 * and identify routes that were created by user-applications in the 6586 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6587 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6588 * is selected by finding an interface route for the gateway. 6589 */ 6590 /* ARGSUSED */ 6591 void 6592 ip_ire_rebind_walker(ire_t *ire, void *notused) 6593 { 6594 if (!ire->ire_unbound || ire->ire_ill != NULL) 6595 return; 6596 ire_rebind(ire); 6597 ire_delete(ire); 6598 } 6599 6600 /* 6601 * When the src multihoming is changed from [strong, preferred] to weak, 6602 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6603 * set any entries that were created by user-applications in the unbound state 6604 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6605 */ 6606 /* ARGSUSED */ 6607 void 6608 ip_ire_unbind_walker(ire_t *ire, void *notused) 6609 { 6610 ire_t *new_ire; 6611 6612 if (!ire->ire_unbound || ire->ire_ill == NULL) 6613 return; 6614 if (ire->ire_ipversion == IPV6_VERSION) { 6615 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6616 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6617 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6618 } else { 6619 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6620 (uchar_t *)&ire->ire_mask, 6621 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6622 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6623 } 6624 if (new_ire == NULL) 6625 return; 6626 new_ire->ire_unbound = B_TRUE; 6627 /* 6628 * The bound ire must first be deleted so that we don't return 6629 * the existing one on the attempt to add the unbound new_ire. 6630 */ 6631 ire_delete(ire); 6632 new_ire = ire_add(new_ire); 6633 if (new_ire != NULL) 6634 ire_refrele(new_ire); 6635 } 6636 6637 /* 6638 * When the settings of ip*_strict_src_multihoming tunables are changed, 6639 * all cached routes need to be recomputed. This recomputation needs to be 6640 * done when going from weaker to stronger modes so that the cached ire 6641 * for the connection does not violate the current ip*_strict_src_multihoming 6642 * setting. It also needs to be done when going from stronger to weaker modes, 6643 * so that we fall back to matching on the longest-matching-route (as opposed 6644 * to a shorter match that may have been selected in the strong mode 6645 * to satisfy src_multihoming settings). 6646 * 6647 * The cached ixa_ire entires for all conn_t entries are marked as 6648 * "verify" so that they will be recomputed for the next packet. 6649 */ 6650 void 6651 conn_ire_revalidate(conn_t *connp, void *arg) 6652 { 6653 boolean_t isv6 = (boolean_t)arg; 6654 6655 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6656 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6657 return; 6658 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6659 } 6660 6661 /* 6662 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6663 * When an ipf is passed here for the first time, if 6664 * we already have in-order fragments on the queue, we convert from the fast- 6665 * path reassembly scheme to the hard-case scheme. From then on, additional 6666 * fragments are reassembled here. We keep track of the start and end offsets 6667 * of each piece, and the number of holes in the chain. When the hole count 6668 * goes to zero, we are done! 6669 * 6670 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6671 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6672 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6673 * after the call to ip_reassemble(). 6674 */ 6675 int 6676 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6677 size_t msg_len) 6678 { 6679 uint_t end; 6680 mblk_t *next_mp; 6681 mblk_t *mp1; 6682 uint_t offset; 6683 boolean_t incr_dups = B_TRUE; 6684 boolean_t offset_zero_seen = B_FALSE; 6685 boolean_t pkt_boundary_checked = B_FALSE; 6686 6687 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6688 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6689 6690 /* Add in byte count */ 6691 ipf->ipf_count += msg_len; 6692 if (ipf->ipf_end) { 6693 /* 6694 * We were part way through in-order reassembly, but now there 6695 * is a hole. We walk through messages already queued, and 6696 * mark them for hard case reassembly. We know that up till 6697 * now they were in order starting from offset zero. 6698 */ 6699 offset = 0; 6700 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6701 IP_REASS_SET_START(mp1, offset); 6702 if (offset == 0) { 6703 ASSERT(ipf->ipf_nf_hdr_len != 0); 6704 offset = -ipf->ipf_nf_hdr_len; 6705 } 6706 offset += mp1->b_wptr - mp1->b_rptr; 6707 IP_REASS_SET_END(mp1, offset); 6708 } 6709 /* One hole at the end. */ 6710 ipf->ipf_hole_cnt = 1; 6711 /* Brand it as a hard case, forever. */ 6712 ipf->ipf_end = 0; 6713 } 6714 /* Walk through all the new pieces. */ 6715 do { 6716 end = start + (mp->b_wptr - mp->b_rptr); 6717 /* 6718 * If start is 0, decrease 'end' only for the first mblk of 6719 * the fragment. Otherwise 'end' can get wrong value in the 6720 * second pass of the loop if first mblk is exactly the 6721 * size of ipf_nf_hdr_len. 6722 */ 6723 if (start == 0 && !offset_zero_seen) { 6724 /* First segment */ 6725 ASSERT(ipf->ipf_nf_hdr_len != 0); 6726 end -= ipf->ipf_nf_hdr_len; 6727 offset_zero_seen = B_TRUE; 6728 } 6729 next_mp = mp->b_cont; 6730 /* 6731 * We are checking to see if there is any interesing data 6732 * to process. If there isn't and the mblk isn't the 6733 * one which carries the unfragmentable header then we 6734 * drop it. It's possible to have just the unfragmentable 6735 * header come through without any data. That needs to be 6736 * saved. 6737 * 6738 * If the assert at the top of this function holds then the 6739 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6740 * is infrequently traveled enough that the test is left in 6741 * to protect against future code changes which break that 6742 * invariant. 6743 */ 6744 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6745 /* Empty. Blast it. */ 6746 IP_REASS_SET_START(mp, 0); 6747 IP_REASS_SET_END(mp, 0); 6748 /* 6749 * If the ipf points to the mblk we are about to free, 6750 * update ipf to point to the next mblk (or NULL 6751 * if none). 6752 */ 6753 if (ipf->ipf_mp->b_cont == mp) 6754 ipf->ipf_mp->b_cont = next_mp; 6755 freeb(mp); 6756 continue; 6757 } 6758 mp->b_cont = NULL; 6759 IP_REASS_SET_START(mp, start); 6760 IP_REASS_SET_END(mp, end); 6761 if (!ipf->ipf_tail_mp) { 6762 ipf->ipf_tail_mp = mp; 6763 ipf->ipf_mp->b_cont = mp; 6764 if (start == 0 || !more) { 6765 ipf->ipf_hole_cnt = 1; 6766 /* 6767 * if the first fragment comes in more than one 6768 * mblk, this loop will be executed for each 6769 * mblk. Need to adjust hole count so exiting 6770 * this routine will leave hole count at 1. 6771 */ 6772 if (next_mp) 6773 ipf->ipf_hole_cnt++; 6774 } else 6775 ipf->ipf_hole_cnt = 2; 6776 continue; 6777 } else if (ipf->ipf_last_frag_seen && !more && 6778 !pkt_boundary_checked) { 6779 /* 6780 * We check datagram boundary only if this fragment 6781 * claims to be the last fragment and we have seen a 6782 * last fragment in the past too. We do this only 6783 * once for a given fragment. 6784 * 6785 * start cannot be 0 here as fragments with start=0 6786 * and MF=0 gets handled as a complete packet. These 6787 * fragments should not reach here. 6788 */ 6789 6790 if (start + msgdsize(mp) != 6791 IP_REASS_END(ipf->ipf_tail_mp)) { 6792 /* 6793 * We have two fragments both of which claim 6794 * to be the last fragment but gives conflicting 6795 * information about the whole datagram size. 6796 * Something fishy is going on. Drop the 6797 * fragment and free up the reassembly list. 6798 */ 6799 return (IP_REASS_FAILED); 6800 } 6801 6802 /* 6803 * We shouldn't come to this code block again for this 6804 * particular fragment. 6805 */ 6806 pkt_boundary_checked = B_TRUE; 6807 } 6808 6809 /* New stuff at or beyond tail? */ 6810 offset = IP_REASS_END(ipf->ipf_tail_mp); 6811 if (start >= offset) { 6812 if (ipf->ipf_last_frag_seen) { 6813 /* current fragment is beyond last fragment */ 6814 return (IP_REASS_FAILED); 6815 } 6816 /* Link it on end. */ 6817 ipf->ipf_tail_mp->b_cont = mp; 6818 ipf->ipf_tail_mp = mp; 6819 if (more) { 6820 if (start != offset) 6821 ipf->ipf_hole_cnt++; 6822 } else if (start == offset && next_mp == NULL) 6823 ipf->ipf_hole_cnt--; 6824 continue; 6825 } 6826 mp1 = ipf->ipf_mp->b_cont; 6827 offset = IP_REASS_START(mp1); 6828 /* New stuff at the front? */ 6829 if (start < offset) { 6830 if (start == 0) { 6831 if (end >= offset) { 6832 /* Nailed the hole at the begining. */ 6833 ipf->ipf_hole_cnt--; 6834 } 6835 } else if (end < offset) { 6836 /* 6837 * A hole, stuff, and a hole where there used 6838 * to be just a hole. 6839 */ 6840 ipf->ipf_hole_cnt++; 6841 } 6842 mp->b_cont = mp1; 6843 /* Check for overlap. */ 6844 while (end > offset) { 6845 if (end < IP_REASS_END(mp1)) { 6846 mp->b_wptr -= end - offset; 6847 IP_REASS_SET_END(mp, offset); 6848 BUMP_MIB(ill->ill_ip_mib, 6849 ipIfStatsReasmPartDups); 6850 break; 6851 } 6852 /* Did we cover another hole? */ 6853 if ((mp1->b_cont && 6854 IP_REASS_END(mp1) != 6855 IP_REASS_START(mp1->b_cont) && 6856 end >= IP_REASS_START(mp1->b_cont)) || 6857 (!ipf->ipf_last_frag_seen && !more)) { 6858 ipf->ipf_hole_cnt--; 6859 } 6860 /* Clip out mp1. */ 6861 if ((mp->b_cont = mp1->b_cont) == NULL) { 6862 /* 6863 * After clipping out mp1, this guy 6864 * is now hanging off the end. 6865 */ 6866 ipf->ipf_tail_mp = mp; 6867 } 6868 IP_REASS_SET_START(mp1, 0); 6869 IP_REASS_SET_END(mp1, 0); 6870 /* Subtract byte count */ 6871 ipf->ipf_count -= mp1->b_datap->db_lim - 6872 mp1->b_datap->db_base; 6873 freeb(mp1); 6874 BUMP_MIB(ill->ill_ip_mib, 6875 ipIfStatsReasmPartDups); 6876 mp1 = mp->b_cont; 6877 if (!mp1) 6878 break; 6879 offset = IP_REASS_START(mp1); 6880 } 6881 ipf->ipf_mp->b_cont = mp; 6882 continue; 6883 } 6884 /* 6885 * The new piece starts somewhere between the start of the head 6886 * and before the end of the tail. 6887 */ 6888 for (; mp1; mp1 = mp1->b_cont) { 6889 offset = IP_REASS_END(mp1); 6890 if (start < offset) { 6891 if (end <= offset) { 6892 /* Nothing new. */ 6893 IP_REASS_SET_START(mp, 0); 6894 IP_REASS_SET_END(mp, 0); 6895 /* Subtract byte count */ 6896 ipf->ipf_count -= mp->b_datap->db_lim - 6897 mp->b_datap->db_base; 6898 if (incr_dups) { 6899 ipf->ipf_num_dups++; 6900 incr_dups = B_FALSE; 6901 } 6902 freeb(mp); 6903 BUMP_MIB(ill->ill_ip_mib, 6904 ipIfStatsReasmDuplicates); 6905 break; 6906 } 6907 /* 6908 * Trim redundant stuff off beginning of new 6909 * piece. 6910 */ 6911 IP_REASS_SET_START(mp, offset); 6912 mp->b_rptr += offset - start; 6913 BUMP_MIB(ill->ill_ip_mib, 6914 ipIfStatsReasmPartDups); 6915 start = offset; 6916 if (!mp1->b_cont) { 6917 /* 6918 * After trimming, this guy is now 6919 * hanging off the end. 6920 */ 6921 mp1->b_cont = mp; 6922 ipf->ipf_tail_mp = mp; 6923 if (!more) { 6924 ipf->ipf_hole_cnt--; 6925 } 6926 break; 6927 } 6928 } 6929 if (start >= IP_REASS_START(mp1->b_cont)) 6930 continue; 6931 /* Fill a hole */ 6932 if (start > offset) 6933 ipf->ipf_hole_cnt++; 6934 mp->b_cont = mp1->b_cont; 6935 mp1->b_cont = mp; 6936 mp1 = mp->b_cont; 6937 offset = IP_REASS_START(mp1); 6938 if (end >= offset) { 6939 ipf->ipf_hole_cnt--; 6940 /* Check for overlap. */ 6941 while (end > offset) { 6942 if (end < IP_REASS_END(mp1)) { 6943 mp->b_wptr -= end - offset; 6944 IP_REASS_SET_END(mp, offset); 6945 /* 6946 * TODO we might bump 6947 * this up twice if there is 6948 * overlap at both ends. 6949 */ 6950 BUMP_MIB(ill->ill_ip_mib, 6951 ipIfStatsReasmPartDups); 6952 break; 6953 } 6954 /* Did we cover another hole? */ 6955 if ((mp1->b_cont && 6956 IP_REASS_END(mp1) 6957 != IP_REASS_START(mp1->b_cont) && 6958 end >= 6959 IP_REASS_START(mp1->b_cont)) || 6960 (!ipf->ipf_last_frag_seen && 6961 !more)) { 6962 ipf->ipf_hole_cnt--; 6963 } 6964 /* Clip out mp1. */ 6965 if ((mp->b_cont = mp1->b_cont) == 6966 NULL) { 6967 /* 6968 * After clipping out mp1, 6969 * this guy is now hanging 6970 * off the end. 6971 */ 6972 ipf->ipf_tail_mp = mp; 6973 } 6974 IP_REASS_SET_START(mp1, 0); 6975 IP_REASS_SET_END(mp1, 0); 6976 /* Subtract byte count */ 6977 ipf->ipf_count -= 6978 mp1->b_datap->db_lim - 6979 mp1->b_datap->db_base; 6980 freeb(mp1); 6981 BUMP_MIB(ill->ill_ip_mib, 6982 ipIfStatsReasmPartDups); 6983 mp1 = mp->b_cont; 6984 if (!mp1) 6985 break; 6986 offset = IP_REASS_START(mp1); 6987 } 6988 } 6989 break; 6990 } 6991 } while (start = end, mp = next_mp); 6992 6993 /* Fragment just processed could be the last one. Remember this fact */ 6994 if (!more) 6995 ipf->ipf_last_frag_seen = B_TRUE; 6996 6997 /* Still got holes? */ 6998 if (ipf->ipf_hole_cnt) 6999 return (IP_REASS_PARTIAL); 7000 /* Clean up overloaded fields to avoid upstream disasters. */ 7001 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7002 IP_REASS_SET_START(mp1, 0); 7003 IP_REASS_SET_END(mp1, 0); 7004 } 7005 return (IP_REASS_COMPLETE); 7006 } 7007 7008 /* 7009 * Fragmentation reassembly. Each ILL has a hash table for 7010 * queuing packets undergoing reassembly for all IPIFs 7011 * associated with the ILL. The hash is based on the packet 7012 * IP ident field. The ILL frag hash table was allocated 7013 * as a timer block at the time the ILL was created. Whenever 7014 * there is anything on the reassembly queue, the timer will 7015 * be running. Returns the reassembled packet if reassembly completes. 7016 */ 7017 mblk_t * 7018 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7019 { 7020 uint32_t frag_offset_flags; 7021 mblk_t *t_mp; 7022 ipaddr_t dst; 7023 uint8_t proto = ipha->ipha_protocol; 7024 uint32_t sum_val; 7025 uint16_t sum_flags; 7026 ipf_t *ipf; 7027 ipf_t **ipfp; 7028 ipfb_t *ipfb; 7029 uint16_t ident; 7030 uint32_t offset; 7031 ipaddr_t src; 7032 uint_t hdr_length; 7033 uint32_t end; 7034 mblk_t *mp1; 7035 mblk_t *tail_mp; 7036 size_t count; 7037 size_t msg_len; 7038 uint8_t ecn_info = 0; 7039 uint32_t packet_size; 7040 boolean_t pruned = B_FALSE; 7041 ill_t *ill = ira->ira_ill; 7042 ip_stack_t *ipst = ill->ill_ipst; 7043 7044 /* 7045 * Drop the fragmented as early as possible, if 7046 * we don't have resource(s) to re-assemble. 7047 */ 7048 if (ipst->ips_ip_reass_queue_bytes == 0) { 7049 freemsg(mp); 7050 return (NULL); 7051 } 7052 7053 /* Check for fragmentation offset; return if there's none */ 7054 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7055 (IPH_MF | IPH_OFFSET)) == 0) 7056 return (mp); 7057 7058 /* 7059 * We utilize hardware computed checksum info only for UDP since 7060 * IP fragmentation is a normal occurrence for the protocol. In 7061 * addition, checksum offload support for IP fragments carrying 7062 * UDP payload is commonly implemented across network adapters. 7063 */ 7064 ASSERT(ira->ira_rill != NULL); 7065 if (proto == IPPROTO_UDP && dohwcksum && 7066 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7067 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7068 mblk_t *mp1 = mp->b_cont; 7069 int32_t len; 7070 7071 /* Record checksum information from the packet */ 7072 sum_val = (uint32_t)DB_CKSUM16(mp); 7073 sum_flags = DB_CKSUMFLAGS(mp); 7074 7075 /* IP payload offset from beginning of mblk */ 7076 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7077 7078 if ((sum_flags & HCK_PARTIALCKSUM) && 7079 (mp1 == NULL || mp1->b_cont == NULL) && 7080 offset >= DB_CKSUMSTART(mp) && 7081 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7082 uint32_t adj; 7083 /* 7084 * Partial checksum has been calculated by hardware 7085 * and attached to the packet; in addition, any 7086 * prepended extraneous data is even byte aligned. 7087 * If any such data exists, we adjust the checksum; 7088 * this would also handle any postpended data. 7089 */ 7090 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7091 mp, mp1, len, adj); 7092 7093 /* One's complement subtract extraneous checksum */ 7094 if (adj >= sum_val) 7095 sum_val = ~(adj - sum_val) & 0xFFFF; 7096 else 7097 sum_val -= adj; 7098 } 7099 } else { 7100 sum_val = 0; 7101 sum_flags = 0; 7102 } 7103 7104 /* Clear hardware checksumming flag */ 7105 DB_CKSUMFLAGS(mp) = 0; 7106 7107 ident = ipha->ipha_ident; 7108 offset = (frag_offset_flags << 3) & 0xFFFF; 7109 src = ipha->ipha_src; 7110 dst = ipha->ipha_dst; 7111 hdr_length = IPH_HDR_LENGTH(ipha); 7112 end = ntohs(ipha->ipha_length) - hdr_length; 7113 7114 /* If end == 0 then we have a packet with no data, so just free it */ 7115 if (end == 0) { 7116 freemsg(mp); 7117 return (NULL); 7118 } 7119 7120 /* Record the ECN field info. */ 7121 ecn_info = (ipha->ipha_type_of_service & 0x3); 7122 if (offset != 0) { 7123 /* 7124 * If this isn't the first piece, strip the header, and 7125 * add the offset to the end value. 7126 */ 7127 mp->b_rptr += hdr_length; 7128 end += offset; 7129 } 7130 7131 /* Handle vnic loopback of fragments */ 7132 if (mp->b_datap->db_ref > 2) 7133 msg_len = 0; 7134 else 7135 msg_len = MBLKSIZE(mp); 7136 7137 tail_mp = mp; 7138 while (tail_mp->b_cont != NULL) { 7139 tail_mp = tail_mp->b_cont; 7140 if (tail_mp->b_datap->db_ref <= 2) 7141 msg_len += MBLKSIZE(tail_mp); 7142 } 7143 7144 /* If the reassembly list for this ILL will get too big, prune it */ 7145 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7146 ipst->ips_ip_reass_queue_bytes) { 7147 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7148 uint_t, ill->ill_frag_count, 7149 uint_t, ipst->ips_ip_reass_queue_bytes); 7150 ill_frag_prune(ill, 7151 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7152 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7153 pruned = B_TRUE; 7154 } 7155 7156 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7157 mutex_enter(&ipfb->ipfb_lock); 7158 7159 ipfp = &ipfb->ipfb_ipf; 7160 /* Try to find an existing fragment queue for this packet. */ 7161 for (;;) { 7162 ipf = ipfp[0]; 7163 if (ipf != NULL) { 7164 /* 7165 * It has to match on ident and src/dst address. 7166 */ 7167 if (ipf->ipf_ident == ident && 7168 ipf->ipf_src == src && 7169 ipf->ipf_dst == dst && 7170 ipf->ipf_protocol == proto) { 7171 /* 7172 * If we have received too many 7173 * duplicate fragments for this packet 7174 * free it. 7175 */ 7176 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7177 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7178 freemsg(mp); 7179 mutex_exit(&ipfb->ipfb_lock); 7180 return (NULL); 7181 } 7182 /* Found it. */ 7183 break; 7184 } 7185 ipfp = &ipf->ipf_hash_next; 7186 continue; 7187 } 7188 7189 /* 7190 * If we pruned the list, do we want to store this new 7191 * fragment?. We apply an optimization here based on the 7192 * fact that most fragments will be received in order. 7193 * So if the offset of this incoming fragment is zero, 7194 * it is the first fragment of a new packet. We will 7195 * keep it. Otherwise drop the fragment, as we have 7196 * probably pruned the packet already (since the 7197 * packet cannot be found). 7198 */ 7199 if (pruned && offset != 0) { 7200 mutex_exit(&ipfb->ipfb_lock); 7201 freemsg(mp); 7202 return (NULL); 7203 } 7204 7205 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7206 /* 7207 * Too many fragmented packets in this hash 7208 * bucket. Free the oldest. 7209 */ 7210 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7211 } 7212 7213 /* New guy. Allocate a frag message. */ 7214 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7215 if (mp1 == NULL) { 7216 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7217 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7218 freemsg(mp); 7219 reass_done: 7220 mutex_exit(&ipfb->ipfb_lock); 7221 return (NULL); 7222 } 7223 7224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7225 mp1->b_cont = mp; 7226 7227 /* Initialize the fragment header. */ 7228 ipf = (ipf_t *)mp1->b_rptr; 7229 ipf->ipf_mp = mp1; 7230 ipf->ipf_ptphn = ipfp; 7231 ipfp[0] = ipf; 7232 ipf->ipf_hash_next = NULL; 7233 ipf->ipf_ident = ident; 7234 ipf->ipf_protocol = proto; 7235 ipf->ipf_src = src; 7236 ipf->ipf_dst = dst; 7237 ipf->ipf_nf_hdr_len = 0; 7238 /* Record reassembly start time. */ 7239 ipf->ipf_timestamp = gethrestime_sec(); 7240 /* Record ipf generation and account for frag header */ 7241 ipf->ipf_gen = ill->ill_ipf_gen++; 7242 ipf->ipf_count = MBLKSIZE(mp1); 7243 ipf->ipf_last_frag_seen = B_FALSE; 7244 ipf->ipf_ecn = ecn_info; 7245 ipf->ipf_num_dups = 0; 7246 ipfb->ipfb_frag_pkts++; 7247 ipf->ipf_checksum = 0; 7248 ipf->ipf_checksum_flags = 0; 7249 7250 /* Store checksum value in fragment header */ 7251 if (sum_flags != 0) { 7252 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7253 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7254 ipf->ipf_checksum = sum_val; 7255 ipf->ipf_checksum_flags = sum_flags; 7256 } 7257 7258 /* 7259 * We handle reassembly two ways. In the easy case, 7260 * where all the fragments show up in order, we do 7261 * minimal bookkeeping, and just clip new pieces on 7262 * the end. If we ever see a hole, then we go off 7263 * to ip_reassemble which has to mark the pieces and 7264 * keep track of the number of holes, etc. Obviously, 7265 * the point of having both mechanisms is so we can 7266 * handle the easy case as efficiently as possible. 7267 */ 7268 if (offset == 0) { 7269 /* Easy case, in-order reassembly so far. */ 7270 ipf->ipf_count += msg_len; 7271 ipf->ipf_tail_mp = tail_mp; 7272 /* 7273 * Keep track of next expected offset in 7274 * ipf_end. 7275 */ 7276 ipf->ipf_end = end; 7277 ipf->ipf_nf_hdr_len = hdr_length; 7278 } else { 7279 /* Hard case, hole at the beginning. */ 7280 ipf->ipf_tail_mp = NULL; 7281 /* 7282 * ipf_end == 0 means that we have given up 7283 * on easy reassembly. 7284 */ 7285 ipf->ipf_end = 0; 7286 7287 /* Forget checksum offload from now on */ 7288 ipf->ipf_checksum_flags = 0; 7289 7290 /* 7291 * ipf_hole_cnt is set by ip_reassemble. 7292 * ipf_count is updated by ip_reassemble. 7293 * No need to check for return value here 7294 * as we don't expect reassembly to complete 7295 * or fail for the first fragment itself. 7296 */ 7297 (void) ip_reassemble(mp, ipf, 7298 (frag_offset_flags & IPH_OFFSET) << 3, 7299 (frag_offset_flags & IPH_MF), ill, msg_len); 7300 } 7301 /* Update per ipfb and ill byte counts */ 7302 ipfb->ipfb_count += ipf->ipf_count; 7303 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7304 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7305 /* If the frag timer wasn't already going, start it. */ 7306 mutex_enter(&ill->ill_lock); 7307 ill_frag_timer_start(ill); 7308 mutex_exit(&ill->ill_lock); 7309 goto reass_done; 7310 } 7311 7312 /* 7313 * If the packet's flag has changed (it could be coming up 7314 * from an interface different than the previous, therefore 7315 * possibly different checksum capability), then forget about 7316 * any stored checksum states. Otherwise add the value to 7317 * the existing one stored in the fragment header. 7318 */ 7319 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7320 sum_val += ipf->ipf_checksum; 7321 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7322 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7323 ipf->ipf_checksum = sum_val; 7324 } else if (ipf->ipf_checksum_flags != 0) { 7325 /* Forget checksum offload from now on */ 7326 ipf->ipf_checksum_flags = 0; 7327 } 7328 7329 /* 7330 * We have a new piece of a datagram which is already being 7331 * reassembled. Update the ECN info if all IP fragments 7332 * are ECN capable. If there is one which is not, clear 7333 * all the info. If there is at least one which has CE 7334 * code point, IP needs to report that up to transport. 7335 */ 7336 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7337 if (ecn_info == IPH_ECN_CE) 7338 ipf->ipf_ecn = IPH_ECN_CE; 7339 } else { 7340 ipf->ipf_ecn = IPH_ECN_NECT; 7341 } 7342 if (offset && ipf->ipf_end == offset) { 7343 /* The new fragment fits at the end */ 7344 ipf->ipf_tail_mp->b_cont = mp; 7345 /* Update the byte count */ 7346 ipf->ipf_count += msg_len; 7347 /* Update per ipfb and ill byte counts */ 7348 ipfb->ipfb_count += msg_len; 7349 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7350 atomic_add_32(&ill->ill_frag_count, msg_len); 7351 if (frag_offset_flags & IPH_MF) { 7352 /* More to come. */ 7353 ipf->ipf_end = end; 7354 ipf->ipf_tail_mp = tail_mp; 7355 goto reass_done; 7356 } 7357 } else { 7358 /* Go do the hard cases. */ 7359 int ret; 7360 7361 if (offset == 0) 7362 ipf->ipf_nf_hdr_len = hdr_length; 7363 7364 /* Save current byte count */ 7365 count = ipf->ipf_count; 7366 ret = ip_reassemble(mp, ipf, 7367 (frag_offset_flags & IPH_OFFSET) << 3, 7368 (frag_offset_flags & IPH_MF), ill, msg_len); 7369 /* Count of bytes added and subtracted (freeb()ed) */ 7370 count = ipf->ipf_count - count; 7371 if (count) { 7372 /* Update per ipfb and ill byte counts */ 7373 ipfb->ipfb_count += count; 7374 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7375 atomic_add_32(&ill->ill_frag_count, count); 7376 } 7377 if (ret == IP_REASS_PARTIAL) { 7378 goto reass_done; 7379 } else if (ret == IP_REASS_FAILED) { 7380 /* Reassembly failed. Free up all resources */ 7381 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7382 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7383 IP_REASS_SET_START(t_mp, 0); 7384 IP_REASS_SET_END(t_mp, 0); 7385 } 7386 freemsg(mp); 7387 goto reass_done; 7388 } 7389 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7390 } 7391 /* 7392 * We have completed reassembly. Unhook the frag header from 7393 * the reassembly list. 7394 * 7395 * Before we free the frag header, record the ECN info 7396 * to report back to the transport. 7397 */ 7398 ecn_info = ipf->ipf_ecn; 7399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7400 ipfp = ipf->ipf_ptphn; 7401 7402 /* We need to supply these to caller */ 7403 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7404 sum_val = ipf->ipf_checksum; 7405 else 7406 sum_val = 0; 7407 7408 mp1 = ipf->ipf_mp; 7409 count = ipf->ipf_count; 7410 ipf = ipf->ipf_hash_next; 7411 if (ipf != NULL) 7412 ipf->ipf_ptphn = ipfp; 7413 ipfp[0] = ipf; 7414 atomic_add_32(&ill->ill_frag_count, -count); 7415 ASSERT(ipfb->ipfb_count >= count); 7416 ipfb->ipfb_count -= count; 7417 ipfb->ipfb_frag_pkts--; 7418 mutex_exit(&ipfb->ipfb_lock); 7419 /* Ditch the frag header. */ 7420 mp = mp1->b_cont; 7421 7422 freeb(mp1); 7423 7424 /* Restore original IP length in header. */ 7425 packet_size = (uint32_t)msgdsize(mp); 7426 if (packet_size > IP_MAXPACKET) { 7427 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7428 ip_drop_input("Reassembled packet too large", mp, ill); 7429 freemsg(mp); 7430 return (NULL); 7431 } 7432 7433 if (DB_REF(mp) > 1) { 7434 mblk_t *mp2 = copymsg(mp); 7435 7436 if (mp2 == NULL) { 7437 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7438 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7439 freemsg(mp); 7440 return (NULL); 7441 } 7442 freemsg(mp); 7443 mp = mp2; 7444 } 7445 ipha = (ipha_t *)mp->b_rptr; 7446 7447 ipha->ipha_length = htons((uint16_t)packet_size); 7448 /* We're now complete, zip the frag state */ 7449 ipha->ipha_fragment_offset_and_flags = 0; 7450 /* Record the ECN info. */ 7451 ipha->ipha_type_of_service &= 0xFC; 7452 ipha->ipha_type_of_service |= ecn_info; 7453 7454 /* Update the receive attributes */ 7455 ira->ira_pktlen = packet_size; 7456 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7457 7458 /* Reassembly is successful; set checksum information in packet */ 7459 DB_CKSUM16(mp) = (uint16_t)sum_val; 7460 DB_CKSUMFLAGS(mp) = sum_flags; 7461 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7462 7463 return (mp); 7464 } 7465 7466 /* 7467 * Pullup function that should be used for IP input in order to 7468 * ensure we do not loose the L2 source address; we need the l2 source 7469 * address for IP_RECVSLLA and for ndp_input. 7470 * 7471 * We return either NULL or b_rptr. 7472 */ 7473 void * 7474 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7475 { 7476 ill_t *ill = ira->ira_ill; 7477 7478 if (ip_rput_pullups++ == 0) { 7479 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7480 "ip_pullup: %s forced us to " 7481 " pullup pkt, hdr len %ld, hdr addr %p", 7482 ill->ill_name, len, (void *)mp->b_rptr); 7483 } 7484 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7485 ip_setl2src(mp, ira, ira->ira_rill); 7486 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7487 if (!pullupmsg(mp, len)) 7488 return (NULL); 7489 else 7490 return (mp->b_rptr); 7491 } 7492 7493 /* 7494 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7495 * When called from the ULP ira_rill will be NULL hence the caller has to 7496 * pass in the ill. 7497 */ 7498 /* ARGSUSED */ 7499 void 7500 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7501 { 7502 const uchar_t *addr; 7503 int alen; 7504 7505 if (ira->ira_flags & IRAF_L2SRC_SET) 7506 return; 7507 7508 ASSERT(ill != NULL); 7509 alen = ill->ill_phys_addr_length; 7510 ASSERT(alen <= sizeof (ira->ira_l2src)); 7511 if (ira->ira_mhip != NULL && 7512 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7513 bcopy(addr, ira->ira_l2src, alen); 7514 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7515 (addr = ill->ill_phys_addr) != NULL) { 7516 bcopy(addr, ira->ira_l2src, alen); 7517 } else { 7518 bzero(ira->ira_l2src, alen); 7519 } 7520 ira->ira_flags |= IRAF_L2SRC_SET; 7521 } 7522 7523 /* 7524 * check ip header length and align it. 7525 */ 7526 mblk_t * 7527 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7528 { 7529 ill_t *ill = ira->ira_ill; 7530 ssize_t len; 7531 7532 len = MBLKL(mp); 7533 7534 if (!OK_32PTR(mp->b_rptr)) 7535 IP_STAT(ill->ill_ipst, ip_notaligned); 7536 else 7537 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7538 7539 /* Guard against bogus device drivers */ 7540 if (len < 0) { 7541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7542 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7543 freemsg(mp); 7544 return (NULL); 7545 } 7546 7547 if (len == 0) { 7548 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7549 mblk_t *mp1 = mp->b_cont; 7550 7551 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7552 ip_setl2src(mp, ira, ira->ira_rill); 7553 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7554 7555 freeb(mp); 7556 mp = mp1; 7557 if (mp == NULL) 7558 return (NULL); 7559 7560 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7561 return (mp); 7562 } 7563 if (ip_pullup(mp, min_size, ira) == NULL) { 7564 if (msgdsize(mp) < min_size) { 7565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7566 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7567 } else { 7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7569 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7570 } 7571 freemsg(mp); 7572 return (NULL); 7573 } 7574 return (mp); 7575 } 7576 7577 /* 7578 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7579 */ 7580 mblk_t * 7581 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7582 uint_t min_size, ip_recv_attr_t *ira) 7583 { 7584 ill_t *ill = ira->ira_ill; 7585 7586 /* 7587 * Make sure we have data length consistent 7588 * with the IP header. 7589 */ 7590 if (mp->b_cont == NULL) { 7591 /* pkt_len is based on ipha_len, not the mblk length */ 7592 if (pkt_len < min_size) { 7593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7594 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7595 freemsg(mp); 7596 return (NULL); 7597 } 7598 if (len < 0) { 7599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7600 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7601 freemsg(mp); 7602 return (NULL); 7603 } 7604 /* Drop any pad */ 7605 mp->b_wptr = rptr + pkt_len; 7606 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7607 ASSERT(pkt_len >= min_size); 7608 if (pkt_len < min_size) { 7609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7610 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7611 freemsg(mp); 7612 return (NULL); 7613 } 7614 if (len < 0) { 7615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7616 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7617 freemsg(mp); 7618 return (NULL); 7619 } 7620 /* Drop any pad */ 7621 (void) adjmsg(mp, -len); 7622 /* 7623 * adjmsg may have freed an mblk from the chain, hence 7624 * invalidate any hw checksum here. This will force IP to 7625 * calculate the checksum in sw, but only for this packet. 7626 */ 7627 DB_CKSUMFLAGS(mp) = 0; 7628 IP_STAT(ill->ill_ipst, ip_multimblk); 7629 } 7630 return (mp); 7631 } 7632 7633 /* 7634 * Check that the IPv4 opt_len is consistent with the packet and pullup 7635 * the options. 7636 */ 7637 mblk_t * 7638 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7639 ip_recv_attr_t *ira) 7640 { 7641 ill_t *ill = ira->ira_ill; 7642 ssize_t len; 7643 7644 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7645 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7648 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7649 freemsg(mp); 7650 return (NULL); 7651 } 7652 7653 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7655 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7656 freemsg(mp); 7657 return (NULL); 7658 } 7659 /* 7660 * Recompute complete header length and make sure we 7661 * have access to all of it. 7662 */ 7663 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7664 if (len > (mp->b_wptr - mp->b_rptr)) { 7665 if (len > pkt_len) { 7666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7667 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7668 freemsg(mp); 7669 return (NULL); 7670 } 7671 if (ip_pullup(mp, len, ira) == NULL) { 7672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7673 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7674 freemsg(mp); 7675 return (NULL); 7676 } 7677 } 7678 return (mp); 7679 } 7680 7681 /* 7682 * Returns a new ire, or the same ire, or NULL. 7683 * If a different IRE is returned, then it is held; the caller 7684 * needs to release it. 7685 * In no case is there any hold/release on the ire argument. 7686 */ 7687 ire_t * 7688 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7689 { 7690 ire_t *new_ire; 7691 ill_t *ire_ill; 7692 uint_t ifindex; 7693 ip_stack_t *ipst = ill->ill_ipst; 7694 boolean_t strict_check = B_FALSE; 7695 7696 /* 7697 * IPMP common case: if IRE and ILL are in the same group, there's no 7698 * issue (e.g. packet received on an underlying interface matched an 7699 * IRE_LOCAL on its associated group interface). 7700 */ 7701 ASSERT(ire->ire_ill != NULL); 7702 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7703 return (ire); 7704 7705 /* 7706 * Do another ire lookup here, using the ingress ill, to see if the 7707 * interface is in a usesrc group. 7708 * As long as the ills belong to the same group, we don't consider 7709 * them to be arriving on the wrong interface. Thus, if the switch 7710 * is doing inbound load spreading, we won't drop packets when the 7711 * ip*_strict_dst_multihoming switch is on. 7712 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7713 * where the local address may not be unique. In this case we were 7714 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7715 * actually returned. The new lookup, which is more specific, should 7716 * only find the IRE_LOCAL associated with the ingress ill if one 7717 * exists. 7718 */ 7719 if (ire->ire_ipversion == IPV4_VERSION) { 7720 if (ipst->ips_ip_strict_dst_multihoming) 7721 strict_check = B_TRUE; 7722 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7723 IRE_LOCAL, ill, ALL_ZONES, NULL, 7724 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7725 } else { 7726 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7727 if (ipst->ips_ipv6_strict_dst_multihoming) 7728 strict_check = B_TRUE; 7729 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7730 IRE_LOCAL, ill, ALL_ZONES, NULL, 7731 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7732 } 7733 /* 7734 * If the same ire that was returned in ip_input() is found then this 7735 * is an indication that usesrc groups are in use. The packet 7736 * arrived on a different ill in the group than the one associated with 7737 * the destination address. If a different ire was found then the same 7738 * IP address must be hosted on multiple ills. This is possible with 7739 * unnumbered point2point interfaces. We switch to use this new ire in 7740 * order to have accurate interface statistics. 7741 */ 7742 if (new_ire != NULL) { 7743 /* Note: held in one case but not the other? Caller handles */ 7744 if (new_ire != ire) 7745 return (new_ire); 7746 /* Unchanged */ 7747 ire_refrele(new_ire); 7748 return (ire); 7749 } 7750 7751 /* 7752 * Chase pointers once and store locally. 7753 */ 7754 ASSERT(ire->ire_ill != NULL); 7755 ire_ill = ire->ire_ill; 7756 ifindex = ill->ill_usesrc_ifindex; 7757 7758 /* 7759 * Check if it's a legal address on the 'usesrc' interface. 7760 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7761 * can just check phyint_ifindex. 7762 */ 7763 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7764 return (ire); 7765 } 7766 7767 /* 7768 * If the ip*_strict_dst_multihoming switch is on then we can 7769 * only accept this packet if the interface is marked as routing. 7770 */ 7771 if (!(strict_check)) 7772 return (ire); 7773 7774 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7775 return (ire); 7776 } 7777 return (NULL); 7778 } 7779 7780 /* 7781 * This function is used to construct a mac_header_info_s from a 7782 * DL_UNITDATA_IND message. 7783 * The address fields in the mhi structure points into the message, 7784 * thus the caller can't use those fields after freeing the message. 7785 * 7786 * We determine whether the packet received is a non-unicast packet 7787 * and in doing so, determine whether or not it is broadcast vs multicast. 7788 * For it to be a broadcast packet, we must have the appropriate mblk_t 7789 * hanging off the ill_t. If this is either not present or doesn't match 7790 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7791 * to be multicast. Thus NICs that have no broadcast address (or no 7792 * capability for one, such as point to point links) cannot return as 7793 * the packet being broadcast. 7794 */ 7795 void 7796 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7797 { 7798 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7799 mblk_t *bmp; 7800 uint_t extra_offset; 7801 7802 bzero(mhip, sizeof (struct mac_header_info_s)); 7803 7804 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7805 7806 if (ill->ill_sap_length < 0) 7807 extra_offset = 0; 7808 else 7809 extra_offset = ill->ill_sap_length; 7810 7811 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7812 extra_offset; 7813 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7814 extra_offset; 7815 7816 if (!ind->dl_group_address) 7817 return; 7818 7819 /* Multicast or broadcast */ 7820 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7821 7822 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7823 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7824 (bmp = ill->ill_bcast_mp) != NULL) { 7825 dl_unitdata_req_t *dlur; 7826 uint8_t *bphys_addr; 7827 7828 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7829 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7830 extra_offset; 7831 7832 if (bcmp(mhip->mhi_daddr, bphys_addr, 7833 ind->dl_dest_addr_length) == 0) 7834 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7835 } 7836 } 7837 7838 /* 7839 * This function is used to construct a mac_header_info_s from a 7840 * M_DATA fastpath message from a DLPI driver. 7841 * The address fields in the mhi structure points into the message, 7842 * thus the caller can't use those fields after freeing the message. 7843 * 7844 * We determine whether the packet received is a non-unicast packet 7845 * and in doing so, determine whether or not it is broadcast vs multicast. 7846 * For it to be a broadcast packet, we must have the appropriate mblk_t 7847 * hanging off the ill_t. If this is either not present or doesn't match 7848 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7849 * to be multicast. Thus NICs that have no broadcast address (or no 7850 * capability for one, such as point to point links) cannot return as 7851 * the packet being broadcast. 7852 */ 7853 void 7854 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7855 { 7856 mblk_t *bmp; 7857 struct ether_header *pether; 7858 7859 bzero(mhip, sizeof (struct mac_header_info_s)); 7860 7861 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7862 7863 pether = (struct ether_header *)((char *)mp->b_rptr 7864 - sizeof (struct ether_header)); 7865 7866 /* 7867 * Make sure the interface is an ethernet type, since we don't 7868 * know the header format for anything but Ethernet. Also make 7869 * sure we are pointing correctly above db_base. 7870 */ 7871 if (ill->ill_type != IFT_ETHER) 7872 return; 7873 7874 retry: 7875 if ((uchar_t *)pether < mp->b_datap->db_base) 7876 return; 7877 7878 /* Is there a VLAN tag? */ 7879 if (ill->ill_isv6) { 7880 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7881 pether = (struct ether_header *)((char *)pether - 4); 7882 goto retry; 7883 } 7884 } else { 7885 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7886 pether = (struct ether_header *)((char *)pether - 4); 7887 goto retry; 7888 } 7889 } 7890 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7891 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7892 7893 if (!(mhip->mhi_daddr[0] & 0x01)) 7894 return; 7895 7896 /* Multicast or broadcast */ 7897 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7898 7899 if ((bmp = ill->ill_bcast_mp) != NULL) { 7900 dl_unitdata_req_t *dlur; 7901 uint8_t *bphys_addr; 7902 uint_t addrlen; 7903 7904 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7905 addrlen = dlur->dl_dest_addr_length; 7906 if (ill->ill_sap_length < 0) { 7907 bphys_addr = (uchar_t *)dlur + 7908 dlur->dl_dest_addr_offset; 7909 addrlen += ill->ill_sap_length; 7910 } else { 7911 bphys_addr = (uchar_t *)dlur + 7912 dlur->dl_dest_addr_offset + 7913 ill->ill_sap_length; 7914 addrlen -= ill->ill_sap_length; 7915 } 7916 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7917 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7918 } 7919 } 7920 7921 /* 7922 * Handle anything but M_DATA messages 7923 * We see the DL_UNITDATA_IND which are part 7924 * of the data path, and also the other messages from the driver. 7925 */ 7926 void 7927 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7928 { 7929 mblk_t *first_mp; 7930 struct iocblk *iocp; 7931 struct mac_header_info_s mhi; 7932 7933 switch (DB_TYPE(mp)) { 7934 case M_PROTO: 7935 case M_PCPROTO: { 7936 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7937 DL_UNITDATA_IND) { 7938 /* Go handle anything other than data elsewhere. */ 7939 ip_rput_dlpi(ill, mp); 7940 return; 7941 } 7942 7943 first_mp = mp; 7944 mp = first_mp->b_cont; 7945 first_mp->b_cont = NULL; 7946 7947 if (mp == NULL) { 7948 freeb(first_mp); 7949 return; 7950 } 7951 ip_dlur_to_mhi(ill, first_mp, &mhi); 7952 if (ill->ill_isv6) 7953 ip_input_v6(ill, NULL, mp, &mhi); 7954 else 7955 ip_input(ill, NULL, mp, &mhi); 7956 7957 /* Ditch the DLPI header. */ 7958 freeb(first_mp); 7959 return; 7960 } 7961 case M_IOCACK: 7962 iocp = (struct iocblk *)mp->b_rptr; 7963 switch (iocp->ioc_cmd) { 7964 case DL_IOC_HDR_INFO: 7965 ill_fastpath_ack(ill, mp); 7966 return; 7967 default: 7968 putnext(ill->ill_rq, mp); 7969 return; 7970 } 7971 /* FALLTHROUGH */ 7972 case M_ERROR: 7973 case M_HANGUP: 7974 mutex_enter(&ill->ill_lock); 7975 if (ill->ill_state_flags & ILL_CONDEMNED) { 7976 mutex_exit(&ill->ill_lock); 7977 freemsg(mp); 7978 return; 7979 } 7980 ill_refhold_locked(ill); 7981 mutex_exit(&ill->ill_lock); 7982 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7983 B_FALSE); 7984 return; 7985 case M_CTL: 7986 putnext(ill->ill_rq, mp); 7987 return; 7988 case M_IOCNAK: 7989 ip1dbg(("got iocnak ")); 7990 iocp = (struct iocblk *)mp->b_rptr; 7991 switch (iocp->ioc_cmd) { 7992 case DL_IOC_HDR_INFO: 7993 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7994 return; 7995 default: 7996 break; 7997 } 7998 /* FALLTHROUGH */ 7999 default: 8000 putnext(ill->ill_rq, mp); 8001 return; 8002 } 8003 } 8004 8005 /* Read side put procedure. Packets coming from the wire arrive here. */ 8006 int 8007 ip_rput(queue_t *q, mblk_t *mp) 8008 { 8009 ill_t *ill; 8010 union DL_primitives *dl; 8011 8012 ill = (ill_t *)q->q_ptr; 8013 8014 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8015 /* 8016 * If things are opening or closing, only accept high-priority 8017 * DLPI messages. (On open ill->ill_ipif has not yet been 8018 * created; on close, things hanging off the ill may have been 8019 * freed already.) 8020 */ 8021 dl = (union DL_primitives *)mp->b_rptr; 8022 if (DB_TYPE(mp) != M_PCPROTO || 8023 dl->dl_primitive == DL_UNITDATA_IND) { 8024 inet_freemsg(mp); 8025 return (0); 8026 } 8027 } 8028 if (DB_TYPE(mp) == M_DATA) { 8029 struct mac_header_info_s mhi; 8030 8031 ip_mdata_to_mhi(ill, mp, &mhi); 8032 ip_input(ill, NULL, mp, &mhi); 8033 } else { 8034 ip_rput_notdata(ill, mp); 8035 } 8036 return (0); 8037 } 8038 8039 /* 8040 * Move the information to a copy. 8041 */ 8042 mblk_t * 8043 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8044 { 8045 mblk_t *mp1; 8046 ill_t *ill = ira->ira_ill; 8047 ip_stack_t *ipst = ill->ill_ipst; 8048 8049 IP_STAT(ipst, ip_db_ref); 8050 8051 /* Make sure we have ira_l2src before we loose the original mblk */ 8052 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8053 ip_setl2src(mp, ira, ira->ira_rill); 8054 8055 mp1 = copymsg(mp); 8056 if (mp1 == NULL) { 8057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8058 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8059 freemsg(mp); 8060 return (NULL); 8061 } 8062 /* preserve the hardware checksum flags and data, if present */ 8063 if (DB_CKSUMFLAGS(mp) != 0) { 8064 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8065 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8066 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8067 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8068 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8069 } 8070 freemsg(mp); 8071 return (mp1); 8072 } 8073 8074 static void 8075 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8076 t_uscalar_t err) 8077 { 8078 if (dl_err == DL_SYSERR) { 8079 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8080 "%s: %s failed: DL_SYSERR (errno %u)\n", 8081 ill->ill_name, dl_primstr(prim), err); 8082 return; 8083 } 8084 8085 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8086 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8087 dl_errstr(dl_err)); 8088 } 8089 8090 /* 8091 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8092 * than DL_UNITDATA_IND messages. If we need to process this message 8093 * exclusively, we call qwriter_ip, in which case we also need to call 8094 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8095 */ 8096 void 8097 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8098 { 8099 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8100 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8101 queue_t *q = ill->ill_rq; 8102 t_uscalar_t prim = dloa->dl_primitive; 8103 t_uscalar_t reqprim = DL_PRIM_INVAL; 8104 8105 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8106 char *, dl_primstr(prim), ill_t *, ill); 8107 ip1dbg(("ip_rput_dlpi")); 8108 8109 /* 8110 * If we received an ACK but didn't send a request for it, then it 8111 * can't be part of any pending operation; discard up-front. 8112 */ 8113 switch (prim) { 8114 case DL_ERROR_ACK: 8115 reqprim = dlea->dl_error_primitive; 8116 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8117 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8118 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8119 dlea->dl_unix_errno)); 8120 break; 8121 case DL_OK_ACK: 8122 reqprim = dloa->dl_correct_primitive; 8123 break; 8124 case DL_INFO_ACK: 8125 reqprim = DL_INFO_REQ; 8126 break; 8127 case DL_BIND_ACK: 8128 reqprim = DL_BIND_REQ; 8129 break; 8130 case DL_PHYS_ADDR_ACK: 8131 reqprim = DL_PHYS_ADDR_REQ; 8132 break; 8133 case DL_NOTIFY_ACK: 8134 reqprim = DL_NOTIFY_REQ; 8135 break; 8136 case DL_CAPABILITY_ACK: 8137 reqprim = DL_CAPABILITY_REQ; 8138 break; 8139 } 8140 8141 if (prim != DL_NOTIFY_IND) { 8142 if (reqprim == DL_PRIM_INVAL || 8143 !ill_dlpi_pending(ill, reqprim)) { 8144 /* Not a DLPI message we support or expected */ 8145 freemsg(mp); 8146 return; 8147 } 8148 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8149 dl_primstr(reqprim))); 8150 } 8151 8152 switch (reqprim) { 8153 case DL_UNBIND_REQ: 8154 /* 8155 * NOTE: we mark the unbind as complete even if we got a 8156 * DL_ERROR_ACK, since there's not much else we can do. 8157 */ 8158 mutex_enter(&ill->ill_lock); 8159 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8160 cv_signal(&ill->ill_cv); 8161 mutex_exit(&ill->ill_lock); 8162 break; 8163 8164 case DL_ENABMULTI_REQ: 8165 if (prim == DL_OK_ACK) { 8166 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8167 ill->ill_dlpi_multicast_state = IDS_OK; 8168 } 8169 break; 8170 } 8171 8172 /* 8173 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8174 * need to become writer to continue to process it. Because an 8175 * exclusive operation doesn't complete until replies to all queued 8176 * DLPI messages have been received, we know we're in the middle of an 8177 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8178 * 8179 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8180 * Since this is on the ill stream we unconditionally bump up the 8181 * refcount without doing ILL_CAN_LOOKUP(). 8182 */ 8183 ill_refhold(ill); 8184 if (prim == DL_NOTIFY_IND) 8185 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8186 else 8187 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8188 } 8189 8190 /* 8191 * Handling of DLPI messages that require exclusive access to the ipsq. 8192 * 8193 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8194 * happen here. (along with mi_copy_done) 8195 */ 8196 /* ARGSUSED */ 8197 static void 8198 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8199 { 8200 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8201 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8202 int err = 0; 8203 ill_t *ill = (ill_t *)q->q_ptr; 8204 ipif_t *ipif = NULL; 8205 mblk_t *mp1 = NULL; 8206 conn_t *connp = NULL; 8207 t_uscalar_t paddrreq; 8208 mblk_t *mp_hw; 8209 boolean_t success; 8210 boolean_t ioctl_aborted = B_FALSE; 8211 boolean_t log = B_TRUE; 8212 8213 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8214 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8215 8216 ip1dbg(("ip_rput_dlpi_writer ..")); 8217 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8218 ASSERT(IAM_WRITER_ILL(ill)); 8219 8220 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8221 /* 8222 * The current ioctl could have been aborted by the user and a new 8223 * ioctl to bring up another ill could have started. We could still 8224 * get a response from the driver later. 8225 */ 8226 if (ipif != NULL && ipif->ipif_ill != ill) 8227 ioctl_aborted = B_TRUE; 8228 8229 switch (dloa->dl_primitive) { 8230 case DL_ERROR_ACK: 8231 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8232 dl_primstr(dlea->dl_error_primitive))); 8233 8234 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8235 char *, dl_primstr(dlea->dl_error_primitive), 8236 ill_t *, ill); 8237 8238 switch (dlea->dl_error_primitive) { 8239 case DL_DISABMULTI_REQ: 8240 ill_dlpi_done(ill, dlea->dl_error_primitive); 8241 break; 8242 case DL_PROMISCON_REQ: 8243 case DL_PROMISCOFF_REQ: 8244 case DL_UNBIND_REQ: 8245 case DL_ATTACH_REQ: 8246 case DL_INFO_REQ: 8247 ill_dlpi_done(ill, dlea->dl_error_primitive); 8248 break; 8249 case DL_NOTIFY_REQ: 8250 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8251 log = B_FALSE; 8252 break; 8253 case DL_PHYS_ADDR_REQ: 8254 /* 8255 * For IPv6 only, there are two additional 8256 * phys_addr_req's sent to the driver to get the 8257 * IPv6 token and lla. This allows IP to acquire 8258 * the hardware address format for a given interface 8259 * without having built in knowledge of the hardware 8260 * address. ill_phys_addr_pend keeps track of the last 8261 * DL_PAR sent so we know which response we are 8262 * dealing with. ill_dlpi_done will update 8263 * ill_phys_addr_pend when it sends the next req. 8264 * We don't complete the IOCTL until all three DL_PARs 8265 * have been attempted, so set *_len to 0 and break. 8266 */ 8267 paddrreq = ill->ill_phys_addr_pend; 8268 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8269 if (paddrreq == DL_IPV6_TOKEN) { 8270 ill->ill_token_length = 0; 8271 log = B_FALSE; 8272 break; 8273 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8274 ill->ill_nd_lla_len = 0; 8275 log = B_FALSE; 8276 break; 8277 } 8278 /* 8279 * Something went wrong with the DL_PHYS_ADDR_REQ. 8280 * We presumably have an IOCTL hanging out waiting 8281 * for completion. Find it and complete the IOCTL 8282 * with the error noted. 8283 * However, ill_dl_phys was called on an ill queue 8284 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8285 * set. But the ioctl is known to be pending on ill_wq. 8286 */ 8287 if (!ill->ill_ifname_pending) 8288 break; 8289 ill->ill_ifname_pending = 0; 8290 if (!ioctl_aborted) 8291 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8292 if (mp1 != NULL) { 8293 /* 8294 * This operation (SIOCSLIFNAME) must have 8295 * happened on the ill. Assert there is no conn 8296 */ 8297 ASSERT(connp == NULL); 8298 q = ill->ill_wq; 8299 } 8300 break; 8301 case DL_BIND_REQ: 8302 ill_dlpi_done(ill, DL_BIND_REQ); 8303 if (ill->ill_ifname_pending) 8304 break; 8305 mutex_enter(&ill->ill_lock); 8306 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8307 mutex_exit(&ill->ill_lock); 8308 /* 8309 * Something went wrong with the bind. We presumably 8310 * have an IOCTL hanging out waiting for completion. 8311 * Find it, take down the interface that was coming 8312 * up, and complete the IOCTL with the error noted. 8313 */ 8314 if (!ioctl_aborted) 8315 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8316 if (mp1 != NULL) { 8317 /* 8318 * This might be a result of a DL_NOTE_REPLUMB 8319 * notification. In that case, connp is NULL. 8320 */ 8321 if (connp != NULL) 8322 q = CONNP_TO_WQ(connp); 8323 8324 (void) ipif_down(ipif, NULL, NULL); 8325 /* error is set below the switch */ 8326 } 8327 break; 8328 case DL_ENABMULTI_REQ: 8329 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8330 8331 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8332 ill->ill_dlpi_multicast_state = IDS_FAILED; 8333 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8334 8335 printf("ip: joining multicasts failed (%d)" 8336 " on %s - will use link layer " 8337 "broadcasts for multicast\n", 8338 dlea->dl_errno, ill->ill_name); 8339 8340 /* 8341 * Set up for multi_bcast; We are the 8342 * writer, so ok to access ill->ill_ipif 8343 * without any lock. 8344 */ 8345 mutex_enter(&ill->ill_phyint->phyint_lock); 8346 ill->ill_phyint->phyint_flags |= 8347 PHYI_MULTI_BCAST; 8348 mutex_exit(&ill->ill_phyint->phyint_lock); 8349 8350 } 8351 freemsg(mp); /* Don't want to pass this up */ 8352 return; 8353 case DL_CAPABILITY_REQ: 8354 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8355 "DL_CAPABILITY REQ\n")); 8356 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8357 ill->ill_dlpi_capab_state = IDCS_FAILED; 8358 ill_capability_done(ill); 8359 freemsg(mp); 8360 return; 8361 } 8362 /* 8363 * Note the error for IOCTL completion (mp1 is set when 8364 * ready to complete ioctl). If ill_ifname_pending_err is 8365 * set, an error occured during plumbing (ill_ifname_pending), 8366 * so we want to report that error. 8367 * 8368 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8369 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8370 * expected to get errack'd if the driver doesn't support 8371 * these flags (e.g. ethernet). log will be set to B_FALSE 8372 * if these error conditions are encountered. 8373 */ 8374 if (mp1 != NULL) { 8375 if (ill->ill_ifname_pending_err != 0) { 8376 err = ill->ill_ifname_pending_err; 8377 ill->ill_ifname_pending_err = 0; 8378 } else { 8379 err = dlea->dl_unix_errno ? 8380 dlea->dl_unix_errno : ENXIO; 8381 } 8382 /* 8383 * If we're plumbing an interface and an error hasn't already 8384 * been saved, set ill_ifname_pending_err to the error passed 8385 * up. Ignore the error if log is B_FALSE (see comment above). 8386 */ 8387 } else if (log && ill->ill_ifname_pending && 8388 ill->ill_ifname_pending_err == 0) { 8389 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8390 dlea->dl_unix_errno : ENXIO; 8391 } 8392 8393 if (log) 8394 ip_dlpi_error(ill, dlea->dl_error_primitive, 8395 dlea->dl_errno, dlea->dl_unix_errno); 8396 break; 8397 case DL_CAPABILITY_ACK: 8398 ill_capability_ack(ill, mp); 8399 /* 8400 * The message has been handed off to ill_capability_ack 8401 * and must not be freed below 8402 */ 8403 mp = NULL; 8404 break; 8405 8406 case DL_INFO_ACK: 8407 /* Call a routine to handle this one. */ 8408 ill_dlpi_done(ill, DL_INFO_REQ); 8409 ip_ll_subnet_defaults(ill, mp); 8410 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8411 return; 8412 case DL_BIND_ACK: 8413 /* 8414 * We should have an IOCTL waiting on this unless 8415 * sent by ill_dl_phys, in which case just return 8416 */ 8417 ill_dlpi_done(ill, DL_BIND_REQ); 8418 8419 if (ill->ill_ifname_pending) { 8420 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8421 ill_t *, ill, mblk_t *, mp); 8422 break; 8423 } 8424 mutex_enter(&ill->ill_lock); 8425 ill->ill_dl_up = 1; 8426 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8427 mutex_exit(&ill->ill_lock); 8428 8429 if (!ioctl_aborted) 8430 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8431 if (mp1 == NULL) { 8432 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8433 break; 8434 } 8435 /* 8436 * mp1 was added by ill_dl_up(). if that is a result of 8437 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8438 */ 8439 if (connp != NULL) 8440 q = CONNP_TO_WQ(connp); 8441 /* 8442 * We are exclusive. So nothing can change even after 8443 * we get the pending mp. 8444 */ 8445 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8446 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8447 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8448 8449 /* 8450 * Now bring up the resolver; when that is complete, we'll 8451 * create IREs. Note that we intentionally mirror what 8452 * ipif_up() would have done, because we got here by way of 8453 * ill_dl_up(), which stopped ipif_up()'s processing. 8454 */ 8455 if (ill->ill_isv6) { 8456 /* 8457 * v6 interfaces. 8458 * Unlike ARP which has to do another bind 8459 * and attach, once we get here we are 8460 * done with NDP 8461 */ 8462 (void) ipif_resolver_up(ipif, Res_act_initial); 8463 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8464 err = ipif_up_done_v6(ipif); 8465 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8466 /* 8467 * ARP and other v4 external resolvers. 8468 * Leave the pending mblk intact so that 8469 * the ioctl completes in ip_rput(). 8470 */ 8471 if (connp != NULL) 8472 mutex_enter(&connp->conn_lock); 8473 mutex_enter(&ill->ill_lock); 8474 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8475 mutex_exit(&ill->ill_lock); 8476 if (connp != NULL) 8477 mutex_exit(&connp->conn_lock); 8478 if (success) { 8479 err = ipif_resolver_up(ipif, Res_act_initial); 8480 if (err == EINPROGRESS) { 8481 freemsg(mp); 8482 return; 8483 } 8484 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8485 } else { 8486 /* The conn has started closing */ 8487 err = EINTR; 8488 } 8489 } else { 8490 /* 8491 * This one is complete. Reply to pending ioctl. 8492 */ 8493 (void) ipif_resolver_up(ipif, Res_act_initial); 8494 err = ipif_up_done(ipif); 8495 } 8496 8497 if ((err == 0) && (ill->ill_up_ipifs)) { 8498 err = ill_up_ipifs(ill, q, mp1); 8499 if (err == EINPROGRESS) { 8500 freemsg(mp); 8501 return; 8502 } 8503 } 8504 8505 /* 8506 * If we have a moved ipif to bring up, and everything has 8507 * succeeded to this point, bring it up on the IPMP ill. 8508 * Otherwise, leave it down -- the admin can try to bring it 8509 * up by hand if need be. 8510 */ 8511 if (ill->ill_move_ipif != NULL) { 8512 if (err != 0) { 8513 ill->ill_move_ipif = NULL; 8514 } else { 8515 ipif = ill->ill_move_ipif; 8516 ill->ill_move_ipif = NULL; 8517 err = ipif_up(ipif, q, mp1); 8518 if (err == EINPROGRESS) { 8519 freemsg(mp); 8520 return; 8521 } 8522 } 8523 } 8524 break; 8525 8526 case DL_NOTIFY_IND: { 8527 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8528 uint_t orig_mtu, orig_mc_mtu; 8529 8530 switch (notify->dl_notification) { 8531 case DL_NOTE_PHYS_ADDR: 8532 err = ill_set_phys_addr(ill, mp); 8533 break; 8534 8535 case DL_NOTE_REPLUMB: 8536 /* 8537 * Directly return after calling ill_replumb(). 8538 * Note that we should not free mp as it is reused 8539 * in the ill_replumb() function. 8540 */ 8541 err = ill_replumb(ill, mp); 8542 return; 8543 8544 case DL_NOTE_FASTPATH_FLUSH: 8545 nce_flush(ill, B_FALSE); 8546 break; 8547 8548 case DL_NOTE_SDU_SIZE: 8549 case DL_NOTE_SDU_SIZE2: 8550 /* 8551 * The dce and fragmentation code can cope with 8552 * this changing while packets are being sent. 8553 * When packets are sent ip_output will discover 8554 * a change. 8555 * 8556 * Change the MTU size of the interface. 8557 */ 8558 mutex_enter(&ill->ill_lock); 8559 orig_mtu = ill->ill_mtu; 8560 orig_mc_mtu = ill->ill_mc_mtu; 8561 switch (notify->dl_notification) { 8562 case DL_NOTE_SDU_SIZE: 8563 ill->ill_current_frag = 8564 (uint_t)notify->dl_data; 8565 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8566 break; 8567 case DL_NOTE_SDU_SIZE2: 8568 ill->ill_current_frag = 8569 (uint_t)notify->dl_data1; 8570 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8571 break; 8572 } 8573 if (ill->ill_current_frag > ill->ill_max_frag) 8574 ill->ill_max_frag = ill->ill_current_frag; 8575 8576 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8577 ill->ill_mtu = ill->ill_current_frag; 8578 8579 /* 8580 * If ill_user_mtu was set (via 8581 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8582 */ 8583 if (ill->ill_user_mtu != 0 && 8584 ill->ill_user_mtu < ill->ill_mtu) 8585 ill->ill_mtu = ill->ill_user_mtu; 8586 8587 if (ill->ill_user_mtu != 0 && 8588 ill->ill_user_mtu < ill->ill_mc_mtu) 8589 ill->ill_mc_mtu = ill->ill_user_mtu; 8590 8591 if (ill->ill_isv6) { 8592 if (ill->ill_mtu < IPV6_MIN_MTU) 8593 ill->ill_mtu = IPV6_MIN_MTU; 8594 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8595 ill->ill_mc_mtu = IPV6_MIN_MTU; 8596 } else { 8597 if (ill->ill_mtu < IP_MIN_MTU) 8598 ill->ill_mtu = IP_MIN_MTU; 8599 if (ill->ill_mc_mtu < IP_MIN_MTU) 8600 ill->ill_mc_mtu = IP_MIN_MTU; 8601 } 8602 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8603 ill->ill_mc_mtu = ill->ill_mtu; 8604 } 8605 8606 mutex_exit(&ill->ill_lock); 8607 /* 8608 * Make sure all dce_generation checks find out 8609 * that ill_mtu/ill_mc_mtu has changed. 8610 */ 8611 if (orig_mtu != ill->ill_mtu || 8612 orig_mc_mtu != ill->ill_mc_mtu) { 8613 dce_increment_all_generations(ill->ill_isv6, 8614 ill->ill_ipst); 8615 } 8616 8617 /* 8618 * Refresh IPMP meta-interface MTU if necessary. 8619 */ 8620 if (IS_UNDER_IPMP(ill)) 8621 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8622 break; 8623 8624 case DL_NOTE_LINK_UP: 8625 case DL_NOTE_LINK_DOWN: { 8626 /* 8627 * We are writer. ill / phyint / ipsq assocs stable. 8628 * The RUNNING flag reflects the state of the link. 8629 */ 8630 phyint_t *phyint = ill->ill_phyint; 8631 uint64_t new_phyint_flags; 8632 boolean_t changed = B_FALSE; 8633 boolean_t went_up; 8634 8635 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8636 mutex_enter(&phyint->phyint_lock); 8637 8638 new_phyint_flags = went_up ? 8639 phyint->phyint_flags | PHYI_RUNNING : 8640 phyint->phyint_flags & ~PHYI_RUNNING; 8641 8642 if (IS_IPMP(ill)) { 8643 new_phyint_flags = went_up ? 8644 new_phyint_flags & ~PHYI_FAILED : 8645 new_phyint_flags | PHYI_FAILED; 8646 } 8647 8648 if (new_phyint_flags != phyint->phyint_flags) { 8649 phyint->phyint_flags = new_phyint_flags; 8650 changed = B_TRUE; 8651 } 8652 mutex_exit(&phyint->phyint_lock); 8653 /* 8654 * ill_restart_dad handles the DAD restart and routing 8655 * socket notification logic. 8656 */ 8657 if (changed) { 8658 ill_restart_dad(phyint->phyint_illv4, went_up); 8659 ill_restart_dad(phyint->phyint_illv6, went_up); 8660 } 8661 break; 8662 } 8663 case DL_NOTE_PROMISC_ON_PHYS: { 8664 phyint_t *phyint = ill->ill_phyint; 8665 8666 mutex_enter(&phyint->phyint_lock); 8667 phyint->phyint_flags |= PHYI_PROMISC; 8668 mutex_exit(&phyint->phyint_lock); 8669 break; 8670 } 8671 case DL_NOTE_PROMISC_OFF_PHYS: { 8672 phyint_t *phyint = ill->ill_phyint; 8673 8674 mutex_enter(&phyint->phyint_lock); 8675 phyint->phyint_flags &= ~PHYI_PROMISC; 8676 mutex_exit(&phyint->phyint_lock); 8677 break; 8678 } 8679 case DL_NOTE_CAPAB_RENEG: 8680 /* 8681 * Something changed on the driver side. 8682 * It wants us to renegotiate the capabilities 8683 * on this ill. One possible cause is the aggregation 8684 * interface under us where a port got added or 8685 * went away. 8686 * 8687 * If the capability negotiation is already done 8688 * or is in progress, reset the capabilities and 8689 * mark the ill's ill_capab_reneg to be B_TRUE, 8690 * so that when the ack comes back, we can start 8691 * the renegotiation process. 8692 * 8693 * Note that if ill_capab_reneg is already B_TRUE 8694 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8695 * the capability resetting request has been sent 8696 * and the renegotiation has not been started yet; 8697 * nothing needs to be done in this case. 8698 */ 8699 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8700 ill_capability_reset(ill, B_TRUE); 8701 ipsq_current_finish(ipsq); 8702 break; 8703 8704 case DL_NOTE_ALLOWED_IPS: 8705 ill_set_allowed_ips(ill, mp); 8706 break; 8707 default: 8708 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8709 "type 0x%x for DL_NOTIFY_IND\n", 8710 notify->dl_notification)); 8711 break; 8712 } 8713 8714 /* 8715 * As this is an asynchronous operation, we 8716 * should not call ill_dlpi_done 8717 */ 8718 break; 8719 } 8720 case DL_NOTIFY_ACK: { 8721 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8722 8723 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8724 ill->ill_note_link = 1; 8725 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8726 break; 8727 } 8728 case DL_PHYS_ADDR_ACK: { 8729 /* 8730 * As part of plumbing the interface via SIOCSLIFNAME, 8731 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8732 * whose answers we receive here. As each answer is received, 8733 * we call ill_dlpi_done() to dispatch the next request as 8734 * we're processing the current one. Once all answers have 8735 * been received, we use ipsq_pending_mp_get() to dequeue the 8736 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8737 * is invoked from an ill queue, conn_oper_pending_ill is not 8738 * available, but we know the ioctl is pending on ill_wq.) 8739 */ 8740 uint_t paddrlen, paddroff; 8741 uint8_t *addr; 8742 8743 paddrreq = ill->ill_phys_addr_pend; 8744 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8745 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8746 addr = mp->b_rptr + paddroff; 8747 8748 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8749 if (paddrreq == DL_IPV6_TOKEN) { 8750 /* 8751 * bcopy to low-order bits of ill_token 8752 * 8753 * XXX Temporary hack - currently, all known tokens 8754 * are 64 bits, so I'll cheat for the moment. 8755 */ 8756 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8757 ill->ill_token_length = paddrlen; 8758 break; 8759 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8760 ASSERT(ill->ill_nd_lla_mp == NULL); 8761 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8762 mp = NULL; 8763 break; 8764 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8765 ASSERT(ill->ill_dest_addr_mp == NULL); 8766 ill->ill_dest_addr_mp = mp; 8767 ill->ill_dest_addr = addr; 8768 mp = NULL; 8769 if (ill->ill_isv6) { 8770 ill_setdesttoken(ill); 8771 ipif_setdestlinklocal(ill->ill_ipif); 8772 } 8773 break; 8774 } 8775 8776 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8777 ASSERT(ill->ill_phys_addr_mp == NULL); 8778 if (!ill->ill_ifname_pending) 8779 break; 8780 ill->ill_ifname_pending = 0; 8781 if (!ioctl_aborted) 8782 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8783 if (mp1 != NULL) { 8784 ASSERT(connp == NULL); 8785 q = ill->ill_wq; 8786 } 8787 /* 8788 * If any error acks received during the plumbing sequence, 8789 * ill_ifname_pending_err will be set. Break out and send up 8790 * the error to the pending ioctl. 8791 */ 8792 if (ill->ill_ifname_pending_err != 0) { 8793 err = ill->ill_ifname_pending_err; 8794 ill->ill_ifname_pending_err = 0; 8795 break; 8796 } 8797 8798 ill->ill_phys_addr_mp = mp; 8799 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8800 mp = NULL; 8801 8802 /* 8803 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8804 * provider doesn't support physical addresses. We check both 8805 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8806 * not have physical addresses, but historically adversises a 8807 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8808 * its DL_PHYS_ADDR_ACK. 8809 */ 8810 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8811 ill->ill_phys_addr = NULL; 8812 } else if (paddrlen != ill->ill_phys_addr_length) { 8813 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8814 paddrlen, ill->ill_phys_addr_length)); 8815 err = EINVAL; 8816 break; 8817 } 8818 8819 if (ill->ill_nd_lla_mp == NULL) { 8820 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8821 err = ENOMEM; 8822 break; 8823 } 8824 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8825 } 8826 8827 if (ill->ill_isv6) { 8828 ill_setdefaulttoken(ill); 8829 ipif_setlinklocal(ill->ill_ipif); 8830 } 8831 break; 8832 } 8833 case DL_OK_ACK: 8834 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8835 dl_primstr((int)dloa->dl_correct_primitive), 8836 dloa->dl_correct_primitive)); 8837 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8838 char *, dl_primstr(dloa->dl_correct_primitive), 8839 ill_t *, ill); 8840 8841 switch (dloa->dl_correct_primitive) { 8842 case DL_ENABMULTI_REQ: 8843 case DL_DISABMULTI_REQ: 8844 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8845 break; 8846 case DL_PROMISCON_REQ: 8847 case DL_PROMISCOFF_REQ: 8848 case DL_UNBIND_REQ: 8849 case DL_ATTACH_REQ: 8850 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8851 break; 8852 } 8853 break; 8854 default: 8855 break; 8856 } 8857 8858 freemsg(mp); 8859 if (mp1 == NULL) 8860 return; 8861 8862 /* 8863 * The operation must complete without EINPROGRESS since 8864 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8865 * the operation will be stuck forever inside the IPSQ. 8866 */ 8867 ASSERT(err != EINPROGRESS); 8868 8869 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8870 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8871 ipif_t *, NULL); 8872 8873 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8874 case 0: 8875 ipsq_current_finish(ipsq); 8876 break; 8877 8878 case SIOCSLIFNAME: 8879 case IF_UNITSEL: { 8880 ill_t *ill_other = ILL_OTHER(ill); 8881 8882 /* 8883 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8884 * ill has a peer which is in an IPMP group, then place ill 8885 * into the same group. One catch: although ifconfig plumbs 8886 * the appropriate IPMP meta-interface prior to plumbing this 8887 * ill, it is possible for multiple ifconfig applications to 8888 * race (or for another application to adjust plumbing), in 8889 * which case the IPMP meta-interface we need will be missing. 8890 * If so, kick the phyint out of the group. 8891 */ 8892 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8893 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8894 ipmp_illgrp_t *illg; 8895 8896 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8897 if (illg == NULL) 8898 ipmp_phyint_leave_grp(ill->ill_phyint); 8899 else 8900 ipmp_ill_join_illgrp(ill, illg); 8901 } 8902 8903 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8904 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8905 else 8906 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8907 break; 8908 } 8909 case SIOCLIFADDIF: 8910 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8911 break; 8912 8913 default: 8914 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8915 break; 8916 } 8917 } 8918 8919 /* 8920 * ip_rput_other is called by ip_rput to handle messages modifying the global 8921 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8922 */ 8923 /* ARGSUSED */ 8924 void 8925 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8926 { 8927 ill_t *ill = q->q_ptr; 8928 struct iocblk *iocp; 8929 8930 ip1dbg(("ip_rput_other ")); 8931 if (ipsq != NULL) { 8932 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8933 ASSERT(ipsq->ipsq_xop == 8934 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8935 } 8936 8937 switch (mp->b_datap->db_type) { 8938 case M_ERROR: 8939 case M_HANGUP: 8940 /* 8941 * The device has a problem. We force the ILL down. It can 8942 * be brought up again manually using SIOCSIFFLAGS (via 8943 * ifconfig or equivalent). 8944 */ 8945 ASSERT(ipsq != NULL); 8946 if (mp->b_rptr < mp->b_wptr) 8947 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8948 if (ill->ill_error == 0) 8949 ill->ill_error = ENXIO; 8950 if (!ill_down_start(q, mp)) 8951 return; 8952 ipif_all_down_tail(ipsq, q, mp, NULL); 8953 break; 8954 case M_IOCNAK: { 8955 iocp = (struct iocblk *)mp->b_rptr; 8956 8957 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8958 /* 8959 * If this was the first attempt, turn off the fastpath 8960 * probing. 8961 */ 8962 mutex_enter(&ill->ill_lock); 8963 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8964 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8965 mutex_exit(&ill->ill_lock); 8966 /* 8967 * don't flush the nce_t entries: we use them 8968 * as an index to the ncec itself. 8969 */ 8970 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8971 ill->ill_name)); 8972 } else { 8973 mutex_exit(&ill->ill_lock); 8974 } 8975 freemsg(mp); 8976 break; 8977 } 8978 default: 8979 ASSERT(0); 8980 break; 8981 } 8982 } 8983 8984 /* 8985 * Update any source route, record route or timestamp options 8986 * When it fails it has consumed the message and BUMPed the MIB. 8987 */ 8988 boolean_t 8989 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8990 ip_recv_attr_t *ira) 8991 { 8992 ipoptp_t opts; 8993 uchar_t *opt; 8994 uint8_t optval; 8995 uint8_t optlen; 8996 ipaddr_t dst; 8997 ipaddr_t ifaddr; 8998 uint32_t ts; 8999 timestruc_t now; 9000 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9001 9002 ip2dbg(("ip_forward_options\n")); 9003 dst = ipha->ipha_dst; 9004 opt = NULL; 9005 9006 for (optval = ipoptp_first(&opts, ipha); 9007 optval != IPOPT_EOL; 9008 optval = ipoptp_next(&opts)) { 9009 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9010 opt = opts.ipoptp_cur; 9011 optlen = opts.ipoptp_len; 9012 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9013 optval, opts.ipoptp_len)); 9014 switch (optval) { 9015 uint32_t off; 9016 case IPOPT_SSRR: 9017 case IPOPT_LSRR: 9018 /* Check if adminstratively disabled */ 9019 if (!ipst->ips_ip_forward_src_routed) { 9020 BUMP_MIB(dst_ill->ill_ip_mib, 9021 ipIfStatsForwProhibits); 9022 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9023 mp, dst_ill); 9024 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9025 ira); 9026 return (B_FALSE); 9027 } 9028 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9029 /* 9030 * Must be partial since ip_input_options 9031 * checked for strict. 9032 */ 9033 break; 9034 } 9035 off = opt[IPOPT_OFFSET]; 9036 off--; 9037 redo_srr: 9038 if (optlen < IP_ADDR_LEN || 9039 off > optlen - IP_ADDR_LEN) { 9040 /* End of source route */ 9041 ip1dbg(( 9042 "ip_forward_options: end of SR\n")); 9043 break; 9044 } 9045 /* Pick a reasonable address on the outbound if */ 9046 ASSERT(dst_ill != NULL); 9047 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9048 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9049 NULL) != 0) { 9050 /* No source! Shouldn't happen */ 9051 ifaddr = INADDR_ANY; 9052 } 9053 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9054 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9055 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9056 ntohl(dst))); 9057 9058 /* 9059 * Check if our address is present more than 9060 * once as consecutive hops in source route. 9061 */ 9062 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9063 off += IP_ADDR_LEN; 9064 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9065 goto redo_srr; 9066 } 9067 ipha->ipha_dst = dst; 9068 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9069 break; 9070 case IPOPT_RR: 9071 off = opt[IPOPT_OFFSET]; 9072 off--; 9073 if (optlen < IP_ADDR_LEN || 9074 off > optlen - IP_ADDR_LEN) { 9075 /* No more room - ignore */ 9076 ip1dbg(( 9077 "ip_forward_options: end of RR\n")); 9078 break; 9079 } 9080 /* Pick a reasonable address on the outbound if */ 9081 ASSERT(dst_ill != NULL); 9082 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9083 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9084 NULL) != 0) { 9085 /* No source! Shouldn't happen */ 9086 ifaddr = INADDR_ANY; 9087 } 9088 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9089 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9090 break; 9091 case IPOPT_TS: 9092 off = 0; 9093 /* Insert timestamp if there is room */ 9094 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9095 case IPOPT_TS_TSONLY: 9096 off = IPOPT_TS_TIMELEN; 9097 break; 9098 case IPOPT_TS_PRESPEC: 9099 case IPOPT_TS_PRESPEC_RFC791: 9100 /* Verify that the address matched */ 9101 off = opt[IPOPT_OFFSET] - 1; 9102 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9103 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9104 /* Not for us */ 9105 break; 9106 } 9107 /* FALLTHROUGH */ 9108 case IPOPT_TS_TSANDADDR: 9109 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9110 break; 9111 default: 9112 /* 9113 * ip_*put_options should have already 9114 * dropped this packet. 9115 */ 9116 cmn_err(CE_PANIC, "ip_forward_options: " 9117 "unknown IT - bug in ip_input_options?\n"); 9118 } 9119 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9120 /* Increase overflow counter */ 9121 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9122 opt[IPOPT_POS_OV_FLG] = 9123 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9124 (off << 4)); 9125 break; 9126 } 9127 off = opt[IPOPT_OFFSET] - 1; 9128 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9129 case IPOPT_TS_PRESPEC: 9130 case IPOPT_TS_PRESPEC_RFC791: 9131 case IPOPT_TS_TSANDADDR: 9132 /* Pick a reasonable addr on the outbound if */ 9133 ASSERT(dst_ill != NULL); 9134 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9135 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9136 NULL, NULL) != 0) { 9137 /* No source! Shouldn't happen */ 9138 ifaddr = INADDR_ANY; 9139 } 9140 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9141 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9142 /* FALLTHROUGH */ 9143 case IPOPT_TS_TSONLY: 9144 off = opt[IPOPT_OFFSET] - 1; 9145 /* Compute # of milliseconds since midnight */ 9146 gethrestime(&now); 9147 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9148 NSEC2MSEC(now.tv_nsec); 9149 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9150 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9151 break; 9152 } 9153 break; 9154 } 9155 } 9156 return (B_TRUE); 9157 } 9158 9159 /* 9160 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9161 * returns 'true' if there are still fragments left on the queue, in 9162 * which case we restart the timer. 9163 */ 9164 void 9165 ill_frag_timer(void *arg) 9166 { 9167 ill_t *ill = (ill_t *)arg; 9168 boolean_t frag_pending; 9169 ip_stack_t *ipst = ill->ill_ipst; 9170 time_t timeout; 9171 9172 mutex_enter(&ill->ill_lock); 9173 ASSERT(!ill->ill_fragtimer_executing); 9174 if (ill->ill_state_flags & ILL_CONDEMNED) { 9175 ill->ill_frag_timer_id = 0; 9176 mutex_exit(&ill->ill_lock); 9177 return; 9178 } 9179 ill->ill_fragtimer_executing = 1; 9180 mutex_exit(&ill->ill_lock); 9181 9182 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9183 ipst->ips_ip_reassembly_timeout); 9184 9185 frag_pending = ill_frag_timeout(ill, timeout); 9186 9187 /* 9188 * Restart the timer, if we have fragments pending or if someone 9189 * wanted us to be scheduled again. 9190 */ 9191 mutex_enter(&ill->ill_lock); 9192 ill->ill_fragtimer_executing = 0; 9193 ill->ill_frag_timer_id = 0; 9194 if (frag_pending || ill->ill_fragtimer_needrestart) 9195 ill_frag_timer_start(ill); 9196 mutex_exit(&ill->ill_lock); 9197 } 9198 9199 void 9200 ill_frag_timer_start(ill_t *ill) 9201 { 9202 ip_stack_t *ipst = ill->ill_ipst; 9203 clock_t timeo_ms; 9204 9205 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9206 9207 /* If the ill is closing or opening don't proceed */ 9208 if (ill->ill_state_flags & ILL_CONDEMNED) 9209 return; 9210 9211 if (ill->ill_fragtimer_executing) { 9212 /* 9213 * ill_frag_timer is currently executing. Just record the 9214 * the fact that we want the timer to be restarted. 9215 * ill_frag_timer will post a timeout before it returns, 9216 * ensuring it will be called again. 9217 */ 9218 ill->ill_fragtimer_needrestart = 1; 9219 return; 9220 } 9221 9222 if (ill->ill_frag_timer_id == 0) { 9223 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9224 ipst->ips_ip_reassembly_timeout) * SECONDS; 9225 9226 /* 9227 * The timer is neither running nor is the timeout handler 9228 * executing. Post a timeout so that ill_frag_timer will be 9229 * called 9230 */ 9231 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9232 MSEC_TO_TICK(timeo_ms >> 1)); 9233 ill->ill_fragtimer_needrestart = 0; 9234 } 9235 } 9236 9237 /* 9238 * Update any source route, record route or timestamp options. 9239 * Check that we are at end of strict source route. 9240 * The options have already been checked for sanity in ip_input_options(). 9241 */ 9242 boolean_t 9243 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9244 { 9245 ipoptp_t opts; 9246 uchar_t *opt; 9247 uint8_t optval; 9248 uint8_t optlen; 9249 ipaddr_t dst; 9250 ipaddr_t ifaddr; 9251 uint32_t ts; 9252 timestruc_t now; 9253 ill_t *ill = ira->ira_ill; 9254 ip_stack_t *ipst = ill->ill_ipst; 9255 9256 ip2dbg(("ip_input_local_options\n")); 9257 opt = NULL; 9258 9259 for (optval = ipoptp_first(&opts, ipha); 9260 optval != IPOPT_EOL; 9261 optval = ipoptp_next(&opts)) { 9262 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9263 opt = opts.ipoptp_cur; 9264 optlen = opts.ipoptp_len; 9265 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9266 optval, optlen)); 9267 switch (optval) { 9268 uint32_t off; 9269 case IPOPT_SSRR: 9270 case IPOPT_LSRR: 9271 off = opt[IPOPT_OFFSET]; 9272 off--; 9273 if (optlen < IP_ADDR_LEN || 9274 off > optlen - IP_ADDR_LEN) { 9275 /* End of source route */ 9276 ip1dbg(("ip_input_local_options: end of SR\n")); 9277 break; 9278 } 9279 /* 9280 * This will only happen if two consecutive entries 9281 * in the source route contains our address or if 9282 * it is a packet with a loose source route which 9283 * reaches us before consuming the whole source route 9284 */ 9285 ip1dbg(("ip_input_local_options: not end of SR\n")); 9286 if (optval == IPOPT_SSRR) { 9287 goto bad_src_route; 9288 } 9289 /* 9290 * Hack: instead of dropping the packet truncate the 9291 * source route to what has been used by filling the 9292 * rest with IPOPT_NOP. 9293 */ 9294 opt[IPOPT_OLEN] = (uint8_t)off; 9295 while (off < optlen) { 9296 opt[off++] = IPOPT_NOP; 9297 } 9298 break; 9299 case IPOPT_RR: 9300 off = opt[IPOPT_OFFSET]; 9301 off--; 9302 if (optlen < IP_ADDR_LEN || 9303 off > optlen - IP_ADDR_LEN) { 9304 /* No more room - ignore */ 9305 ip1dbg(( 9306 "ip_input_local_options: end of RR\n")); 9307 break; 9308 } 9309 /* Pick a reasonable address on the outbound if */ 9310 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9311 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9312 NULL) != 0) { 9313 /* No source! Shouldn't happen */ 9314 ifaddr = INADDR_ANY; 9315 } 9316 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9317 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9318 break; 9319 case IPOPT_TS: 9320 off = 0; 9321 /* Insert timestamp if there is romm */ 9322 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9323 case IPOPT_TS_TSONLY: 9324 off = IPOPT_TS_TIMELEN; 9325 break; 9326 case IPOPT_TS_PRESPEC: 9327 case IPOPT_TS_PRESPEC_RFC791: 9328 /* Verify that the address matched */ 9329 off = opt[IPOPT_OFFSET] - 1; 9330 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9331 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9332 /* Not for us */ 9333 break; 9334 } 9335 /* FALLTHROUGH */ 9336 case IPOPT_TS_TSANDADDR: 9337 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9338 break; 9339 default: 9340 /* 9341 * ip_*put_options should have already 9342 * dropped this packet. 9343 */ 9344 cmn_err(CE_PANIC, "ip_input_local_options: " 9345 "unknown IT - bug in ip_input_options?\n"); 9346 } 9347 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9348 /* Increase overflow counter */ 9349 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9350 opt[IPOPT_POS_OV_FLG] = 9351 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9352 (off << 4)); 9353 break; 9354 } 9355 off = opt[IPOPT_OFFSET] - 1; 9356 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9357 case IPOPT_TS_PRESPEC: 9358 case IPOPT_TS_PRESPEC_RFC791: 9359 case IPOPT_TS_TSANDADDR: 9360 /* Pick a reasonable addr on the outbound if */ 9361 if (ip_select_source_v4(ill, INADDR_ANY, 9362 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9363 &ifaddr, NULL, NULL) != 0) { 9364 /* No source! Shouldn't happen */ 9365 ifaddr = INADDR_ANY; 9366 } 9367 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9368 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9369 /* FALLTHROUGH */ 9370 case IPOPT_TS_TSONLY: 9371 off = opt[IPOPT_OFFSET] - 1; 9372 /* Compute # of milliseconds since midnight */ 9373 gethrestime(&now); 9374 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9375 NSEC2MSEC(now.tv_nsec); 9376 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9377 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9378 break; 9379 } 9380 break; 9381 } 9382 } 9383 return (B_TRUE); 9384 9385 bad_src_route: 9386 /* make sure we clear any indication of a hardware checksum */ 9387 DB_CKSUMFLAGS(mp) = 0; 9388 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9389 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9390 return (B_FALSE); 9391 9392 } 9393 9394 /* 9395 * Process IP options in an inbound packet. Always returns the nexthop. 9396 * Normally this is the passed in nexthop, but if there is an option 9397 * that effects the nexthop (such as a source route) that will be returned. 9398 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9399 * and mp freed. 9400 */ 9401 ipaddr_t 9402 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9403 ip_recv_attr_t *ira, int *errorp) 9404 { 9405 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9406 ipoptp_t opts; 9407 uchar_t *opt; 9408 uint8_t optval; 9409 uint8_t optlen; 9410 intptr_t code = 0; 9411 ire_t *ire; 9412 9413 ip2dbg(("ip_input_options\n")); 9414 opt = NULL; 9415 *errorp = 0; 9416 for (optval = ipoptp_first(&opts, ipha); 9417 optval != IPOPT_EOL; 9418 optval = ipoptp_next(&opts)) { 9419 opt = opts.ipoptp_cur; 9420 optlen = opts.ipoptp_len; 9421 ip2dbg(("ip_input_options: opt %d, len %d\n", 9422 optval, optlen)); 9423 /* 9424 * Note: we need to verify the checksum before we 9425 * modify anything thus this routine only extracts the next 9426 * hop dst from any source route. 9427 */ 9428 switch (optval) { 9429 uint32_t off; 9430 case IPOPT_SSRR: 9431 case IPOPT_LSRR: 9432 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9433 if (optval == IPOPT_SSRR) { 9434 ip1dbg(("ip_input_options: not next" 9435 " strict source route 0x%x\n", 9436 ntohl(dst))); 9437 code = (char *)&ipha->ipha_dst - 9438 (char *)ipha; 9439 goto param_prob; /* RouterReq's */ 9440 } 9441 ip2dbg(("ip_input_options: " 9442 "not next source route 0x%x\n", 9443 ntohl(dst))); 9444 break; 9445 } 9446 9447 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9448 ip1dbg(( 9449 "ip_input_options: bad option offset\n")); 9450 code = (char *)&opt[IPOPT_OLEN] - 9451 (char *)ipha; 9452 goto param_prob; 9453 } 9454 off = opt[IPOPT_OFFSET]; 9455 off--; 9456 redo_srr: 9457 if (optlen < IP_ADDR_LEN || 9458 off > optlen - IP_ADDR_LEN) { 9459 /* End of source route */ 9460 ip1dbg(("ip_input_options: end of SR\n")); 9461 break; 9462 } 9463 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9464 ip1dbg(("ip_input_options: next hop 0x%x\n", 9465 ntohl(dst))); 9466 9467 /* 9468 * Check if our address is present more than 9469 * once as consecutive hops in source route. 9470 * XXX verify per-interface ip_forwarding 9471 * for source route? 9472 */ 9473 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9474 off += IP_ADDR_LEN; 9475 goto redo_srr; 9476 } 9477 9478 if (dst == htonl(INADDR_LOOPBACK)) { 9479 ip1dbg(("ip_input_options: loopback addr in " 9480 "source route!\n")); 9481 goto bad_src_route; 9482 } 9483 /* 9484 * For strict: verify that dst is directly 9485 * reachable. 9486 */ 9487 if (optval == IPOPT_SSRR) { 9488 ire = ire_ftable_lookup_v4(dst, 0, 0, 9489 IRE_INTERFACE, NULL, ALL_ZONES, 9490 ira->ira_tsl, 9491 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9492 NULL); 9493 if (ire == NULL) { 9494 ip1dbg(("ip_input_options: SSRR not " 9495 "directly reachable: 0x%x\n", 9496 ntohl(dst))); 9497 goto bad_src_route; 9498 } 9499 ire_refrele(ire); 9500 } 9501 /* 9502 * Defer update of the offset and the record route 9503 * until the packet is forwarded. 9504 */ 9505 break; 9506 case IPOPT_RR: 9507 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9508 ip1dbg(( 9509 "ip_input_options: bad option offset\n")); 9510 code = (char *)&opt[IPOPT_OLEN] - 9511 (char *)ipha; 9512 goto param_prob; 9513 } 9514 break; 9515 case IPOPT_TS: 9516 /* 9517 * Verify that length >= 5 and that there is either 9518 * room for another timestamp or that the overflow 9519 * counter is not maxed out. 9520 */ 9521 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9522 if (optlen < IPOPT_MINLEN_IT) { 9523 goto param_prob; 9524 } 9525 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9526 ip1dbg(( 9527 "ip_input_options: bad option offset\n")); 9528 code = (char *)&opt[IPOPT_OFFSET] - 9529 (char *)ipha; 9530 goto param_prob; 9531 } 9532 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9533 case IPOPT_TS_TSONLY: 9534 off = IPOPT_TS_TIMELEN; 9535 break; 9536 case IPOPT_TS_TSANDADDR: 9537 case IPOPT_TS_PRESPEC: 9538 case IPOPT_TS_PRESPEC_RFC791: 9539 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9540 break; 9541 default: 9542 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9543 (char *)ipha; 9544 goto param_prob; 9545 } 9546 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9547 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9548 /* 9549 * No room and the overflow counter is 15 9550 * already. 9551 */ 9552 goto param_prob; 9553 } 9554 break; 9555 } 9556 } 9557 9558 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9559 return (dst); 9560 } 9561 9562 ip1dbg(("ip_input_options: error processing IP options.")); 9563 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9564 9565 param_prob: 9566 /* make sure we clear any indication of a hardware checksum */ 9567 DB_CKSUMFLAGS(mp) = 0; 9568 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9569 icmp_param_problem(mp, (uint8_t)code, ira); 9570 *errorp = -1; 9571 return (dst); 9572 9573 bad_src_route: 9574 /* make sure we clear any indication of a hardware checksum */ 9575 DB_CKSUMFLAGS(mp) = 0; 9576 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9577 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9578 *errorp = -1; 9579 return (dst); 9580 } 9581 9582 /* 9583 * IP & ICMP info in >=14 msg's ... 9584 * - ip fixed part (mib2_ip_t) 9585 * - icmp fixed part (mib2_icmp_t) 9586 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9587 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9588 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9589 * - ipRouteAttributeTable (ip 102) labeled routes 9590 * - ip multicast membership (ip_member_t) 9591 * - ip multicast source filtering (ip_grpsrc_t) 9592 * - igmp fixed part (struct igmpstat) 9593 * - multicast routing stats (struct mrtstat) 9594 * - multicast routing vifs (array of struct vifctl) 9595 * - multicast routing routes (array of struct mfcctl) 9596 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9597 * One per ill plus one generic 9598 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9599 * One per ill plus one generic 9600 * - ipv6RouteEntry all IPv6 IREs 9601 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9602 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9603 * - ipv6AddrEntry all IPv6 ipifs 9604 * - ipv6 multicast membership (ipv6_member_t) 9605 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9606 * 9607 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9608 * already filled in by the caller. 9609 * If legacy_req is true then MIB structures needs to be truncated to their 9610 * legacy sizes before being returned. 9611 * Return value of 0 indicates that no messages were sent and caller 9612 * should free mpctl. 9613 */ 9614 int 9615 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9616 { 9617 ip_stack_t *ipst; 9618 sctp_stack_t *sctps; 9619 9620 if (q->q_next != NULL) { 9621 ipst = ILLQ_TO_IPST(q); 9622 } else { 9623 ipst = CONNQ_TO_IPST(q); 9624 } 9625 ASSERT(ipst != NULL); 9626 sctps = ipst->ips_netstack->netstack_sctp; 9627 9628 if (mpctl == NULL || mpctl->b_cont == NULL) { 9629 return (0); 9630 } 9631 9632 /* 9633 * For the purposes of the (broken) packet shell use 9634 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9635 * to make TCP and UDP appear first in the list of mib items. 9636 * TBD: We could expand this and use it in netstat so that 9637 * the kernel doesn't have to produce large tables (connections, 9638 * routes, etc) when netstat only wants the statistics or a particular 9639 * table. 9640 */ 9641 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9642 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9643 return (1); 9644 } 9645 } 9646 9647 if (level != MIB2_TCP) { 9648 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9649 return (1); 9650 } 9651 if (level == MIB2_UDP) { 9652 goto done; 9653 } 9654 } 9655 9656 if (level != MIB2_UDP) { 9657 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9658 return (1); 9659 } 9660 if (level == MIB2_TCP) { 9661 goto done; 9662 } 9663 } 9664 9665 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9666 ipst, legacy_req)) == NULL) { 9667 return (1); 9668 } 9669 9670 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9671 legacy_req)) == NULL) { 9672 return (1); 9673 } 9674 9675 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9676 return (1); 9677 } 9678 9679 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9680 return (1); 9681 } 9682 9683 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9684 return (1); 9685 } 9686 9687 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9688 return (1); 9689 } 9690 9691 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9692 legacy_req)) == NULL) { 9693 return (1); 9694 } 9695 9696 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9697 legacy_req)) == NULL) { 9698 return (1); 9699 } 9700 9701 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9702 return (1); 9703 } 9704 9705 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9706 return (1); 9707 } 9708 9709 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9710 return (1); 9711 } 9712 9713 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9714 return (1); 9715 } 9716 9717 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9718 return (1); 9719 } 9720 9721 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9722 return (1); 9723 } 9724 9725 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9726 if (mpctl == NULL) 9727 return (1); 9728 9729 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9730 if (mpctl == NULL) 9731 return (1); 9732 9733 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9734 return (1); 9735 } 9736 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9737 return (1); 9738 } 9739 done: 9740 freemsg(mpctl); 9741 return (1); 9742 } 9743 9744 /* Get global (legacy) IPv4 statistics */ 9745 static mblk_t * 9746 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9747 ip_stack_t *ipst, boolean_t legacy_req) 9748 { 9749 mib2_ip_t old_ip_mib; 9750 struct opthdr *optp; 9751 mblk_t *mp2ctl; 9752 mib2_ipAddrEntry_t mae; 9753 9754 /* 9755 * make a copy of the original message 9756 */ 9757 mp2ctl = copymsg(mpctl); 9758 9759 /* fixed length IP structure... */ 9760 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9761 optp->level = MIB2_IP; 9762 optp->name = 0; 9763 SET_MIB(old_ip_mib.ipForwarding, 9764 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9765 SET_MIB(old_ip_mib.ipDefaultTTL, 9766 (uint32_t)ipst->ips_ip_def_ttl); 9767 SET_MIB(old_ip_mib.ipReasmTimeout, 9768 ipst->ips_ip_reassembly_timeout); 9769 SET_MIB(old_ip_mib.ipAddrEntrySize, 9770 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9771 sizeof (mib2_ipAddrEntry_t)); 9772 SET_MIB(old_ip_mib.ipRouteEntrySize, 9773 sizeof (mib2_ipRouteEntry_t)); 9774 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9775 sizeof (mib2_ipNetToMediaEntry_t)); 9776 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9777 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9778 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9779 sizeof (mib2_ipAttributeEntry_t)); 9780 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9781 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9782 9783 /* 9784 * Grab the statistics from the new IP MIB 9785 */ 9786 SET_MIB(old_ip_mib.ipInReceives, 9787 (uint32_t)ipmib->ipIfStatsHCInReceives); 9788 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9789 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9790 SET_MIB(old_ip_mib.ipForwDatagrams, 9791 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9792 SET_MIB(old_ip_mib.ipInUnknownProtos, 9793 ipmib->ipIfStatsInUnknownProtos); 9794 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9795 SET_MIB(old_ip_mib.ipInDelivers, 9796 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9797 SET_MIB(old_ip_mib.ipOutRequests, 9798 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9799 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9800 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9801 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9802 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9803 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9804 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9805 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9806 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9807 9808 /* ipRoutingDiscards is not being used */ 9809 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9810 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9811 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9812 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9813 SET_MIB(old_ip_mib.ipReasmDuplicates, 9814 ipmib->ipIfStatsReasmDuplicates); 9815 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9816 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9817 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9818 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9819 SET_MIB(old_ip_mib.rawipInOverflows, 9820 ipmib->rawipIfStatsInOverflows); 9821 9822 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9823 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9824 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9825 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9826 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9827 ipmib->ipIfStatsOutSwitchIPVersion); 9828 9829 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9830 (int)sizeof (old_ip_mib))) { 9831 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9832 (uint_t)sizeof (old_ip_mib))); 9833 } 9834 9835 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9836 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9837 (int)optp->level, (int)optp->name, (int)optp->len)); 9838 qreply(q, mpctl); 9839 return (mp2ctl); 9840 } 9841 9842 /* Per interface IPv4 statistics */ 9843 static mblk_t * 9844 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9845 boolean_t legacy_req) 9846 { 9847 struct opthdr *optp; 9848 mblk_t *mp2ctl; 9849 ill_t *ill; 9850 ill_walk_context_t ctx; 9851 mblk_t *mp_tail = NULL; 9852 mib2_ipIfStatsEntry_t global_ip_mib; 9853 mib2_ipAddrEntry_t mae; 9854 9855 /* 9856 * Make a copy of the original message 9857 */ 9858 mp2ctl = copymsg(mpctl); 9859 9860 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9861 optp->level = MIB2_IP; 9862 optp->name = MIB2_IP_TRAFFIC_STATS; 9863 /* Include "unknown interface" ip_mib */ 9864 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9865 ipst->ips_ip_mib.ipIfStatsIfIndex = 9866 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9867 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9868 (ipst->ips_ip_forwarding ? 1 : 2)); 9869 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9870 (uint32_t)ipst->ips_ip_def_ttl); 9871 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9872 sizeof (mib2_ipIfStatsEntry_t)); 9873 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9874 sizeof (mib2_ipAddrEntry_t)); 9875 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9876 sizeof (mib2_ipRouteEntry_t)); 9877 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9878 sizeof (mib2_ipNetToMediaEntry_t)); 9879 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9880 sizeof (ip_member_t)); 9881 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9882 sizeof (ip_grpsrc_t)); 9883 9884 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9885 9886 if (legacy_req) { 9887 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9888 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9889 } 9890 9891 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9892 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9893 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9894 "failed to allocate %u bytes\n", 9895 (uint_t)sizeof (global_ip_mib))); 9896 } 9897 9898 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9899 ill = ILL_START_WALK_V4(&ctx, ipst); 9900 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9901 ill->ill_ip_mib->ipIfStatsIfIndex = 9902 ill->ill_phyint->phyint_ifindex; 9903 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9904 (ipst->ips_ip_forwarding ? 1 : 2)); 9905 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9906 (uint32_t)ipst->ips_ip_def_ttl); 9907 9908 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9909 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9910 (char *)ill->ill_ip_mib, 9911 (int)sizeof (*ill->ill_ip_mib))) { 9912 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9913 "failed to allocate %u bytes\n", 9914 (uint_t)sizeof (*ill->ill_ip_mib))); 9915 } 9916 } 9917 rw_exit(&ipst->ips_ill_g_lock); 9918 9919 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9920 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9921 "level %d, name %d, len %d\n", 9922 (int)optp->level, (int)optp->name, (int)optp->len)); 9923 qreply(q, mpctl); 9924 9925 if (mp2ctl == NULL) 9926 return (NULL); 9927 9928 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9929 legacy_req)); 9930 } 9931 9932 /* Global IPv4 ICMP statistics */ 9933 static mblk_t * 9934 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9935 { 9936 struct opthdr *optp; 9937 mblk_t *mp2ctl; 9938 9939 /* 9940 * Make a copy of the original message 9941 */ 9942 mp2ctl = copymsg(mpctl); 9943 9944 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9945 optp->level = MIB2_ICMP; 9946 optp->name = 0; 9947 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9948 (int)sizeof (ipst->ips_icmp_mib))) { 9949 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9950 (uint_t)sizeof (ipst->ips_icmp_mib))); 9951 } 9952 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9953 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9954 (int)optp->level, (int)optp->name, (int)optp->len)); 9955 qreply(q, mpctl); 9956 return (mp2ctl); 9957 } 9958 9959 /* Global IPv4 IGMP statistics */ 9960 static mblk_t * 9961 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9962 { 9963 struct opthdr *optp; 9964 mblk_t *mp2ctl; 9965 9966 /* 9967 * make a copy of the original message 9968 */ 9969 mp2ctl = copymsg(mpctl); 9970 9971 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9972 optp->level = EXPER_IGMP; 9973 optp->name = 0; 9974 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9975 (int)sizeof (ipst->ips_igmpstat))) { 9976 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9977 (uint_t)sizeof (ipst->ips_igmpstat))); 9978 } 9979 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9980 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9981 (int)optp->level, (int)optp->name, (int)optp->len)); 9982 qreply(q, mpctl); 9983 return (mp2ctl); 9984 } 9985 9986 /* Global IPv4 Multicast Routing statistics */ 9987 static mblk_t * 9988 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9989 { 9990 struct opthdr *optp; 9991 mblk_t *mp2ctl; 9992 9993 /* 9994 * make a copy of the original message 9995 */ 9996 mp2ctl = copymsg(mpctl); 9997 9998 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9999 optp->level = EXPER_DVMRP; 10000 optp->name = 0; 10001 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10002 ip0dbg(("ip_mroute_stats: failed\n")); 10003 } 10004 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10005 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10006 (int)optp->level, (int)optp->name, (int)optp->len)); 10007 qreply(q, mpctl); 10008 return (mp2ctl); 10009 } 10010 10011 /* IPv4 address information */ 10012 static mblk_t * 10013 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10014 boolean_t legacy_req) 10015 { 10016 struct opthdr *optp; 10017 mblk_t *mp2ctl; 10018 mblk_t *mp_tail = NULL; 10019 ill_t *ill; 10020 ipif_t *ipif; 10021 uint_t bitval; 10022 mib2_ipAddrEntry_t mae; 10023 size_t mae_size; 10024 zoneid_t zoneid; 10025 ill_walk_context_t ctx; 10026 10027 /* 10028 * make a copy of the original message 10029 */ 10030 mp2ctl = copymsg(mpctl); 10031 10032 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10033 sizeof (mib2_ipAddrEntry_t); 10034 10035 /* ipAddrEntryTable */ 10036 10037 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10038 optp->level = MIB2_IP; 10039 optp->name = MIB2_IP_ADDR; 10040 zoneid = Q_TO_CONN(q)->conn_zoneid; 10041 10042 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10043 ill = ILL_START_WALK_V4(&ctx, ipst); 10044 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10045 for (ipif = ill->ill_ipif; ipif != NULL; 10046 ipif = ipif->ipif_next) { 10047 if (ipif->ipif_zoneid != zoneid && 10048 ipif->ipif_zoneid != ALL_ZONES) 10049 continue; 10050 /* Sum of count from dead IRE_LO* and our current */ 10051 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10052 if (ipif->ipif_ire_local != NULL) { 10053 mae.ipAdEntInfo.ae_ibcnt += 10054 ipif->ipif_ire_local->ire_ib_pkt_count; 10055 } 10056 mae.ipAdEntInfo.ae_obcnt = 0; 10057 mae.ipAdEntInfo.ae_focnt = 0; 10058 10059 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10060 OCTET_LENGTH); 10061 mae.ipAdEntIfIndex.o_length = 10062 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10063 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10064 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10065 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10066 mae.ipAdEntInfo.ae_subnet_len = 10067 ip_mask_to_plen(ipif->ipif_net_mask); 10068 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10069 for (bitval = 1; 10070 bitval && 10071 !(bitval & ipif->ipif_brd_addr); 10072 bitval <<= 1) 10073 noop; 10074 mae.ipAdEntBcastAddr = bitval; 10075 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10076 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10077 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10078 mae.ipAdEntInfo.ae_broadcast_addr = 10079 ipif->ipif_brd_addr; 10080 mae.ipAdEntInfo.ae_pp_dst_addr = 10081 ipif->ipif_pp_dst_addr; 10082 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10083 ill->ill_flags | ill->ill_phyint->phyint_flags; 10084 mae.ipAdEntRetransmitTime = 10085 ill->ill_reachable_retrans_time; 10086 10087 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10088 (char *)&mae, (int)mae_size)) { 10089 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10090 "allocate %u bytes\n", (uint_t)mae_size)); 10091 } 10092 } 10093 } 10094 rw_exit(&ipst->ips_ill_g_lock); 10095 10096 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10097 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10098 (int)optp->level, (int)optp->name, (int)optp->len)); 10099 qreply(q, mpctl); 10100 return (mp2ctl); 10101 } 10102 10103 /* IPv6 address information */ 10104 static mblk_t * 10105 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10106 boolean_t legacy_req) 10107 { 10108 struct opthdr *optp; 10109 mblk_t *mp2ctl; 10110 mblk_t *mp_tail = NULL; 10111 ill_t *ill; 10112 ipif_t *ipif; 10113 mib2_ipv6AddrEntry_t mae6; 10114 size_t mae6_size; 10115 zoneid_t zoneid; 10116 ill_walk_context_t ctx; 10117 10118 /* 10119 * make a copy of the original message 10120 */ 10121 mp2ctl = copymsg(mpctl); 10122 10123 mae6_size = (legacy_req) ? 10124 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10125 sizeof (mib2_ipv6AddrEntry_t); 10126 10127 /* ipv6AddrEntryTable */ 10128 10129 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10130 optp->level = MIB2_IP6; 10131 optp->name = MIB2_IP6_ADDR; 10132 zoneid = Q_TO_CONN(q)->conn_zoneid; 10133 10134 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10135 ill = ILL_START_WALK_V6(&ctx, ipst); 10136 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10137 for (ipif = ill->ill_ipif; ipif != NULL; 10138 ipif = ipif->ipif_next) { 10139 if (ipif->ipif_zoneid != zoneid && 10140 ipif->ipif_zoneid != ALL_ZONES) 10141 continue; 10142 /* Sum of count from dead IRE_LO* and our current */ 10143 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10144 if (ipif->ipif_ire_local != NULL) { 10145 mae6.ipv6AddrInfo.ae_ibcnt += 10146 ipif->ipif_ire_local->ire_ib_pkt_count; 10147 } 10148 mae6.ipv6AddrInfo.ae_obcnt = 0; 10149 mae6.ipv6AddrInfo.ae_focnt = 0; 10150 10151 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10152 OCTET_LENGTH); 10153 mae6.ipv6AddrIfIndex.o_length = 10154 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10155 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10156 mae6.ipv6AddrPfxLength = 10157 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10158 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10159 mae6.ipv6AddrInfo.ae_subnet_len = 10160 mae6.ipv6AddrPfxLength; 10161 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10162 10163 /* Type: stateless(1), stateful(2), unknown(3) */ 10164 if (ipif->ipif_flags & IPIF_ADDRCONF) 10165 mae6.ipv6AddrType = 1; 10166 else 10167 mae6.ipv6AddrType = 2; 10168 /* Anycast: true(1), false(2) */ 10169 if (ipif->ipif_flags & IPIF_ANYCAST) 10170 mae6.ipv6AddrAnycastFlag = 1; 10171 else 10172 mae6.ipv6AddrAnycastFlag = 2; 10173 10174 /* 10175 * Address status: preferred(1), deprecated(2), 10176 * invalid(3), inaccessible(4), unknown(5) 10177 */ 10178 if (ipif->ipif_flags & IPIF_NOLOCAL) 10179 mae6.ipv6AddrStatus = 3; 10180 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10181 mae6.ipv6AddrStatus = 2; 10182 else 10183 mae6.ipv6AddrStatus = 1; 10184 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10185 mae6.ipv6AddrInfo.ae_metric = 10186 ipif->ipif_ill->ill_metric; 10187 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10188 ipif->ipif_v6pp_dst_addr; 10189 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10190 ill->ill_flags | ill->ill_phyint->phyint_flags; 10191 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10192 mae6.ipv6AddrIdentifier = ill->ill_token; 10193 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10194 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10195 mae6.ipv6AddrRetransmitTime = 10196 ill->ill_reachable_retrans_time; 10197 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10198 (char *)&mae6, (int)mae6_size)) { 10199 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10200 "allocate %u bytes\n", 10201 (uint_t)mae6_size)); 10202 } 10203 } 10204 } 10205 rw_exit(&ipst->ips_ill_g_lock); 10206 10207 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10208 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10209 (int)optp->level, (int)optp->name, (int)optp->len)); 10210 qreply(q, mpctl); 10211 return (mp2ctl); 10212 } 10213 10214 /* IPv4 multicast group membership. */ 10215 static mblk_t * 10216 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10217 { 10218 struct opthdr *optp; 10219 mblk_t *mp2ctl; 10220 ill_t *ill; 10221 ipif_t *ipif; 10222 ilm_t *ilm; 10223 ip_member_t ipm; 10224 mblk_t *mp_tail = NULL; 10225 ill_walk_context_t ctx; 10226 zoneid_t zoneid; 10227 10228 /* 10229 * make a copy of the original message 10230 */ 10231 mp2ctl = copymsg(mpctl); 10232 zoneid = Q_TO_CONN(q)->conn_zoneid; 10233 10234 /* ipGroupMember table */ 10235 optp = (struct opthdr *)&mpctl->b_rptr[ 10236 sizeof (struct T_optmgmt_ack)]; 10237 optp->level = MIB2_IP; 10238 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10239 10240 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10241 ill = ILL_START_WALK_V4(&ctx, ipst); 10242 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10243 /* Make sure the ill isn't going away. */ 10244 if (!ill_check_and_refhold(ill)) 10245 continue; 10246 rw_exit(&ipst->ips_ill_g_lock); 10247 rw_enter(&ill->ill_mcast_lock, RW_READER); 10248 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10249 if (ilm->ilm_zoneid != zoneid && 10250 ilm->ilm_zoneid != ALL_ZONES) 10251 continue; 10252 10253 /* Is there an ipif for ilm_ifaddr? */ 10254 for (ipif = ill->ill_ipif; ipif != NULL; 10255 ipif = ipif->ipif_next) { 10256 if (!IPIF_IS_CONDEMNED(ipif) && 10257 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10258 ilm->ilm_ifaddr != INADDR_ANY) 10259 break; 10260 } 10261 if (ipif != NULL) { 10262 ipif_get_name(ipif, 10263 ipm.ipGroupMemberIfIndex.o_bytes, 10264 OCTET_LENGTH); 10265 } else { 10266 ill_get_name(ill, 10267 ipm.ipGroupMemberIfIndex.o_bytes, 10268 OCTET_LENGTH); 10269 } 10270 ipm.ipGroupMemberIfIndex.o_length = 10271 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10272 10273 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10274 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10275 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10276 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10277 (char *)&ipm, (int)sizeof (ipm))) { 10278 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10279 "failed to allocate %u bytes\n", 10280 (uint_t)sizeof (ipm))); 10281 } 10282 } 10283 rw_exit(&ill->ill_mcast_lock); 10284 ill_refrele(ill); 10285 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10286 } 10287 rw_exit(&ipst->ips_ill_g_lock); 10288 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10289 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10290 (int)optp->level, (int)optp->name, (int)optp->len)); 10291 qreply(q, mpctl); 10292 return (mp2ctl); 10293 } 10294 10295 /* IPv6 multicast group membership. */ 10296 static mblk_t * 10297 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10298 { 10299 struct opthdr *optp; 10300 mblk_t *mp2ctl; 10301 ill_t *ill; 10302 ilm_t *ilm; 10303 ipv6_member_t ipm6; 10304 mblk_t *mp_tail = NULL; 10305 ill_walk_context_t ctx; 10306 zoneid_t zoneid; 10307 10308 /* 10309 * make a copy of the original message 10310 */ 10311 mp2ctl = copymsg(mpctl); 10312 zoneid = Q_TO_CONN(q)->conn_zoneid; 10313 10314 /* ip6GroupMember table */ 10315 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10316 optp->level = MIB2_IP6; 10317 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10318 10319 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10320 ill = ILL_START_WALK_V6(&ctx, ipst); 10321 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10322 /* Make sure the ill isn't going away. */ 10323 if (!ill_check_and_refhold(ill)) 10324 continue; 10325 rw_exit(&ipst->ips_ill_g_lock); 10326 /* 10327 * Normally we don't have any members on under IPMP interfaces. 10328 * We report them as a debugging aid. 10329 */ 10330 rw_enter(&ill->ill_mcast_lock, RW_READER); 10331 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10332 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10333 if (ilm->ilm_zoneid != zoneid && 10334 ilm->ilm_zoneid != ALL_ZONES) 10335 continue; /* not this zone */ 10336 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10337 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10338 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10339 if (!snmp_append_data2(mpctl->b_cont, 10340 &mp_tail, 10341 (char *)&ipm6, (int)sizeof (ipm6))) { 10342 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10343 "failed to allocate %u bytes\n", 10344 (uint_t)sizeof (ipm6))); 10345 } 10346 } 10347 rw_exit(&ill->ill_mcast_lock); 10348 ill_refrele(ill); 10349 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10350 } 10351 rw_exit(&ipst->ips_ill_g_lock); 10352 10353 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10354 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10355 (int)optp->level, (int)optp->name, (int)optp->len)); 10356 qreply(q, mpctl); 10357 return (mp2ctl); 10358 } 10359 10360 /* IP multicast filtered sources */ 10361 static mblk_t * 10362 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10363 { 10364 struct opthdr *optp; 10365 mblk_t *mp2ctl; 10366 ill_t *ill; 10367 ipif_t *ipif; 10368 ilm_t *ilm; 10369 ip_grpsrc_t ips; 10370 mblk_t *mp_tail = NULL; 10371 ill_walk_context_t ctx; 10372 zoneid_t zoneid; 10373 int i; 10374 slist_t *sl; 10375 10376 /* 10377 * make a copy of the original message 10378 */ 10379 mp2ctl = copymsg(mpctl); 10380 zoneid = Q_TO_CONN(q)->conn_zoneid; 10381 10382 /* ipGroupSource table */ 10383 optp = (struct opthdr *)&mpctl->b_rptr[ 10384 sizeof (struct T_optmgmt_ack)]; 10385 optp->level = MIB2_IP; 10386 optp->name = EXPER_IP_GROUP_SOURCES; 10387 10388 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10389 ill = ILL_START_WALK_V4(&ctx, ipst); 10390 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10391 /* Make sure the ill isn't going away. */ 10392 if (!ill_check_and_refhold(ill)) 10393 continue; 10394 rw_exit(&ipst->ips_ill_g_lock); 10395 rw_enter(&ill->ill_mcast_lock, RW_READER); 10396 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10397 sl = ilm->ilm_filter; 10398 if (ilm->ilm_zoneid != zoneid && 10399 ilm->ilm_zoneid != ALL_ZONES) 10400 continue; 10401 if (SLIST_IS_EMPTY(sl)) 10402 continue; 10403 10404 /* Is there an ipif for ilm_ifaddr? */ 10405 for (ipif = ill->ill_ipif; ipif != NULL; 10406 ipif = ipif->ipif_next) { 10407 if (!IPIF_IS_CONDEMNED(ipif) && 10408 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10409 ilm->ilm_ifaddr != INADDR_ANY) 10410 break; 10411 } 10412 if (ipif != NULL) { 10413 ipif_get_name(ipif, 10414 ips.ipGroupSourceIfIndex.o_bytes, 10415 OCTET_LENGTH); 10416 } else { 10417 ill_get_name(ill, 10418 ips.ipGroupSourceIfIndex.o_bytes, 10419 OCTET_LENGTH); 10420 } 10421 ips.ipGroupSourceIfIndex.o_length = 10422 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10423 10424 ips.ipGroupSourceGroup = ilm->ilm_addr; 10425 for (i = 0; i < sl->sl_numsrc; i++) { 10426 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10427 continue; 10428 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10429 ips.ipGroupSourceAddress); 10430 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10431 (char *)&ips, (int)sizeof (ips)) == 0) { 10432 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10433 " failed to allocate %u bytes\n", 10434 (uint_t)sizeof (ips))); 10435 } 10436 } 10437 } 10438 rw_exit(&ill->ill_mcast_lock); 10439 ill_refrele(ill); 10440 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10441 } 10442 rw_exit(&ipst->ips_ill_g_lock); 10443 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10444 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10445 (int)optp->level, (int)optp->name, (int)optp->len)); 10446 qreply(q, mpctl); 10447 return (mp2ctl); 10448 } 10449 10450 /* IPv6 multicast filtered sources. */ 10451 static mblk_t * 10452 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10453 { 10454 struct opthdr *optp; 10455 mblk_t *mp2ctl; 10456 ill_t *ill; 10457 ilm_t *ilm; 10458 ipv6_grpsrc_t ips6; 10459 mblk_t *mp_tail = NULL; 10460 ill_walk_context_t ctx; 10461 zoneid_t zoneid; 10462 int i; 10463 slist_t *sl; 10464 10465 /* 10466 * make a copy of the original message 10467 */ 10468 mp2ctl = copymsg(mpctl); 10469 zoneid = Q_TO_CONN(q)->conn_zoneid; 10470 10471 /* ip6GroupMember table */ 10472 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10473 optp->level = MIB2_IP6; 10474 optp->name = EXPER_IP6_GROUP_SOURCES; 10475 10476 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10477 ill = ILL_START_WALK_V6(&ctx, ipst); 10478 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10479 /* Make sure the ill isn't going away. */ 10480 if (!ill_check_and_refhold(ill)) 10481 continue; 10482 rw_exit(&ipst->ips_ill_g_lock); 10483 /* 10484 * Normally we don't have any members on under IPMP interfaces. 10485 * We report them as a debugging aid. 10486 */ 10487 rw_enter(&ill->ill_mcast_lock, RW_READER); 10488 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10489 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10490 sl = ilm->ilm_filter; 10491 if (ilm->ilm_zoneid != zoneid && 10492 ilm->ilm_zoneid != ALL_ZONES) 10493 continue; 10494 if (SLIST_IS_EMPTY(sl)) 10495 continue; 10496 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10497 for (i = 0; i < sl->sl_numsrc; i++) { 10498 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10499 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10500 (char *)&ips6, (int)sizeof (ips6))) { 10501 ip1dbg(("ip_snmp_get_mib2_ip6_" 10502 "group_src: failed to allocate " 10503 "%u bytes\n", 10504 (uint_t)sizeof (ips6))); 10505 } 10506 } 10507 } 10508 rw_exit(&ill->ill_mcast_lock); 10509 ill_refrele(ill); 10510 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10511 } 10512 rw_exit(&ipst->ips_ill_g_lock); 10513 10514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10515 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10516 (int)optp->level, (int)optp->name, (int)optp->len)); 10517 qreply(q, mpctl); 10518 return (mp2ctl); 10519 } 10520 10521 /* Multicast routing virtual interface table. */ 10522 static mblk_t * 10523 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10524 { 10525 struct opthdr *optp; 10526 mblk_t *mp2ctl; 10527 10528 /* 10529 * make a copy of the original message 10530 */ 10531 mp2ctl = copymsg(mpctl); 10532 10533 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10534 optp->level = EXPER_DVMRP; 10535 optp->name = EXPER_DVMRP_VIF; 10536 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10537 ip0dbg(("ip_mroute_vif: failed\n")); 10538 } 10539 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10540 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10541 (int)optp->level, (int)optp->name, (int)optp->len)); 10542 qreply(q, mpctl); 10543 return (mp2ctl); 10544 } 10545 10546 /* Multicast routing table. */ 10547 static mblk_t * 10548 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10549 { 10550 struct opthdr *optp; 10551 mblk_t *mp2ctl; 10552 10553 /* 10554 * make a copy of the original message 10555 */ 10556 mp2ctl = copymsg(mpctl); 10557 10558 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10559 optp->level = EXPER_DVMRP; 10560 optp->name = EXPER_DVMRP_MRT; 10561 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10562 ip0dbg(("ip_mroute_mrt: failed\n")); 10563 } 10564 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10565 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10566 (int)optp->level, (int)optp->name, (int)optp->len)); 10567 qreply(q, mpctl); 10568 return (mp2ctl); 10569 } 10570 10571 /* 10572 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10573 * in one IRE walk. 10574 */ 10575 static mblk_t * 10576 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10577 ip_stack_t *ipst) 10578 { 10579 struct opthdr *optp; 10580 mblk_t *mp2ctl; /* Returned */ 10581 mblk_t *mp3ctl; /* nettomedia */ 10582 mblk_t *mp4ctl; /* routeattrs */ 10583 iproutedata_t ird; 10584 zoneid_t zoneid; 10585 10586 /* 10587 * make copies of the original message 10588 * - mp2ctl is returned unchanged to the caller for its use 10589 * - mpctl is sent upstream as ipRouteEntryTable 10590 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10591 * - mp4ctl is sent upstream as ipRouteAttributeTable 10592 */ 10593 mp2ctl = copymsg(mpctl); 10594 mp3ctl = copymsg(mpctl); 10595 mp4ctl = copymsg(mpctl); 10596 if (mp3ctl == NULL || mp4ctl == NULL) { 10597 freemsg(mp4ctl); 10598 freemsg(mp3ctl); 10599 freemsg(mp2ctl); 10600 freemsg(mpctl); 10601 return (NULL); 10602 } 10603 10604 bzero(&ird, sizeof (ird)); 10605 10606 ird.ird_route.lp_head = mpctl->b_cont; 10607 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10608 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10609 /* 10610 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10611 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10612 * intended a temporary solution until a proper MIB API is provided 10613 * that provides complete filtering/caller-opt-in. 10614 */ 10615 if (level == EXPER_IP_AND_ALL_IRES) 10616 ird.ird_flags |= IRD_REPORT_ALL; 10617 10618 zoneid = Q_TO_CONN(q)->conn_zoneid; 10619 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10620 10621 /* ipRouteEntryTable in mpctl */ 10622 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10623 optp->level = MIB2_IP; 10624 optp->name = MIB2_IP_ROUTE; 10625 optp->len = msgdsize(ird.ird_route.lp_head); 10626 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10627 (int)optp->level, (int)optp->name, (int)optp->len)); 10628 qreply(q, mpctl); 10629 10630 /* ipNetToMediaEntryTable in mp3ctl */ 10631 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10632 10633 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10634 optp->level = MIB2_IP; 10635 optp->name = MIB2_IP_MEDIA; 10636 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10637 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10638 (int)optp->level, (int)optp->name, (int)optp->len)); 10639 qreply(q, mp3ctl); 10640 10641 /* ipRouteAttributeTable in mp4ctl */ 10642 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10643 optp->level = MIB2_IP; 10644 optp->name = EXPER_IP_RTATTR; 10645 optp->len = msgdsize(ird.ird_attrs.lp_head); 10646 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10647 (int)optp->level, (int)optp->name, (int)optp->len)); 10648 if (optp->len == 0) 10649 freemsg(mp4ctl); 10650 else 10651 qreply(q, mp4ctl); 10652 10653 return (mp2ctl); 10654 } 10655 10656 /* 10657 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10658 * ipv6NetToMediaEntryTable in an NDP walk. 10659 */ 10660 static mblk_t * 10661 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10662 ip_stack_t *ipst) 10663 { 10664 struct opthdr *optp; 10665 mblk_t *mp2ctl; /* Returned */ 10666 mblk_t *mp3ctl; /* nettomedia */ 10667 mblk_t *mp4ctl; /* routeattrs */ 10668 iproutedata_t ird; 10669 zoneid_t zoneid; 10670 10671 /* 10672 * make copies of the original message 10673 * - mp2ctl is returned unchanged to the caller for its use 10674 * - mpctl is sent upstream as ipv6RouteEntryTable 10675 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10676 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10677 */ 10678 mp2ctl = copymsg(mpctl); 10679 mp3ctl = copymsg(mpctl); 10680 mp4ctl = copymsg(mpctl); 10681 if (mp3ctl == NULL || mp4ctl == NULL) { 10682 freemsg(mp4ctl); 10683 freemsg(mp3ctl); 10684 freemsg(mp2ctl); 10685 freemsg(mpctl); 10686 return (NULL); 10687 } 10688 10689 bzero(&ird, sizeof (ird)); 10690 10691 ird.ird_route.lp_head = mpctl->b_cont; 10692 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10693 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10694 /* 10695 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10696 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10697 * intended a temporary solution until a proper MIB API is provided 10698 * that provides complete filtering/caller-opt-in. 10699 */ 10700 if (level == EXPER_IP_AND_ALL_IRES) 10701 ird.ird_flags |= IRD_REPORT_ALL; 10702 10703 zoneid = Q_TO_CONN(q)->conn_zoneid; 10704 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10705 10706 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10707 optp->level = MIB2_IP6; 10708 optp->name = MIB2_IP6_ROUTE; 10709 optp->len = msgdsize(ird.ird_route.lp_head); 10710 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10711 (int)optp->level, (int)optp->name, (int)optp->len)); 10712 qreply(q, mpctl); 10713 10714 /* ipv6NetToMediaEntryTable in mp3ctl */ 10715 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10716 10717 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10718 optp->level = MIB2_IP6; 10719 optp->name = MIB2_IP6_MEDIA; 10720 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10721 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10722 (int)optp->level, (int)optp->name, (int)optp->len)); 10723 qreply(q, mp3ctl); 10724 10725 /* ipv6RouteAttributeTable in mp4ctl */ 10726 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10727 optp->level = MIB2_IP6; 10728 optp->name = EXPER_IP_RTATTR; 10729 optp->len = msgdsize(ird.ird_attrs.lp_head); 10730 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10731 (int)optp->level, (int)optp->name, (int)optp->len)); 10732 if (optp->len == 0) 10733 freemsg(mp4ctl); 10734 else 10735 qreply(q, mp4ctl); 10736 10737 return (mp2ctl); 10738 } 10739 10740 /* 10741 * IPv6 mib: One per ill 10742 */ 10743 static mblk_t * 10744 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10745 boolean_t legacy_req) 10746 { 10747 struct opthdr *optp; 10748 mblk_t *mp2ctl; 10749 ill_t *ill; 10750 ill_walk_context_t ctx; 10751 mblk_t *mp_tail = NULL; 10752 mib2_ipv6AddrEntry_t mae6; 10753 mib2_ipIfStatsEntry_t *ise; 10754 size_t ise_size, iae_size; 10755 10756 /* 10757 * Make a copy of the original message 10758 */ 10759 mp2ctl = copymsg(mpctl); 10760 10761 /* fixed length IPv6 structure ... */ 10762 10763 if (legacy_req) { 10764 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10765 mib2_ipIfStatsEntry_t); 10766 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10767 } else { 10768 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10769 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10770 } 10771 10772 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10773 optp->level = MIB2_IP6; 10774 optp->name = 0; 10775 /* Include "unknown interface" ip6_mib */ 10776 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10777 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10778 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10779 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10780 ipst->ips_ipv6_forwarding ? 1 : 2); 10781 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10782 ipst->ips_ipv6_def_hops); 10783 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10784 sizeof (mib2_ipIfStatsEntry_t)); 10785 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10786 sizeof (mib2_ipv6AddrEntry_t)); 10787 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10788 sizeof (mib2_ipv6RouteEntry_t)); 10789 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10790 sizeof (mib2_ipv6NetToMediaEntry_t)); 10791 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10792 sizeof (ipv6_member_t)); 10793 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10794 sizeof (ipv6_grpsrc_t)); 10795 10796 /* 10797 * Synchronize 64- and 32-bit counters 10798 */ 10799 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10800 ipIfStatsHCInReceives); 10801 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10802 ipIfStatsHCInDelivers); 10803 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10804 ipIfStatsHCOutRequests); 10805 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10806 ipIfStatsHCOutForwDatagrams); 10807 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10808 ipIfStatsHCOutMcastPkts); 10809 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10810 ipIfStatsHCInMcastPkts); 10811 10812 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10813 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10814 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10815 (uint_t)ise_size)); 10816 } else if (legacy_req) { 10817 /* Adjust the EntrySize fields for legacy requests. */ 10818 ise = 10819 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10820 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10821 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10822 } 10823 10824 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10825 ill = ILL_START_WALK_V6(&ctx, ipst); 10826 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10827 ill->ill_ip_mib->ipIfStatsIfIndex = 10828 ill->ill_phyint->phyint_ifindex; 10829 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10830 ipst->ips_ipv6_forwarding ? 1 : 2); 10831 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10832 ill->ill_max_hops); 10833 10834 /* 10835 * Synchronize 64- and 32-bit counters 10836 */ 10837 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10838 ipIfStatsHCInReceives); 10839 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10840 ipIfStatsHCInDelivers); 10841 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10842 ipIfStatsHCOutRequests); 10843 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10844 ipIfStatsHCOutForwDatagrams); 10845 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10846 ipIfStatsHCOutMcastPkts); 10847 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10848 ipIfStatsHCInMcastPkts); 10849 10850 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10851 (char *)ill->ill_ip_mib, (int)ise_size)) { 10852 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10853 "%u bytes\n", (uint_t)ise_size)); 10854 } else if (legacy_req) { 10855 /* Adjust the EntrySize fields for legacy requests. */ 10856 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10857 (int)ise_size); 10858 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10859 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10860 } 10861 } 10862 rw_exit(&ipst->ips_ill_g_lock); 10863 10864 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10865 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10866 (int)optp->level, (int)optp->name, (int)optp->len)); 10867 qreply(q, mpctl); 10868 return (mp2ctl); 10869 } 10870 10871 /* 10872 * ICMPv6 mib: One per ill 10873 */ 10874 static mblk_t * 10875 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10876 { 10877 struct opthdr *optp; 10878 mblk_t *mp2ctl; 10879 ill_t *ill; 10880 ill_walk_context_t ctx; 10881 mblk_t *mp_tail = NULL; 10882 /* 10883 * Make a copy of the original message 10884 */ 10885 mp2ctl = copymsg(mpctl); 10886 10887 /* fixed length ICMPv6 structure ... */ 10888 10889 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10890 optp->level = MIB2_ICMP6; 10891 optp->name = 0; 10892 /* Include "unknown interface" icmp6_mib */ 10893 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10894 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10895 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10896 sizeof (mib2_ipv6IfIcmpEntry_t); 10897 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10898 (char *)&ipst->ips_icmp6_mib, 10899 (int)sizeof (ipst->ips_icmp6_mib))) { 10900 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10901 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10902 } 10903 10904 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10905 ill = ILL_START_WALK_V6(&ctx, ipst); 10906 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10907 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10908 ill->ill_phyint->phyint_ifindex; 10909 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10910 (char *)ill->ill_icmp6_mib, 10911 (int)sizeof (*ill->ill_icmp6_mib))) { 10912 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10913 "%u bytes\n", 10914 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10915 } 10916 } 10917 rw_exit(&ipst->ips_ill_g_lock); 10918 10919 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10920 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10921 (int)optp->level, (int)optp->name, (int)optp->len)); 10922 qreply(q, mpctl); 10923 return (mp2ctl); 10924 } 10925 10926 /* 10927 * ire_walk routine to create both ipRouteEntryTable and 10928 * ipRouteAttributeTable in one IRE walk 10929 */ 10930 static void 10931 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10932 { 10933 ill_t *ill; 10934 mib2_ipRouteEntry_t *re; 10935 mib2_ipAttributeEntry_t iaes; 10936 tsol_ire_gw_secattr_t *attrp; 10937 tsol_gc_t *gc = NULL; 10938 tsol_gcgrp_t *gcgrp = NULL; 10939 ip_stack_t *ipst = ire->ire_ipst; 10940 10941 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10942 10943 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10944 if (ire->ire_testhidden) 10945 return; 10946 if (ire->ire_type & IRE_IF_CLONE) 10947 return; 10948 } 10949 10950 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10951 return; 10952 10953 if ((attrp = ire->ire_gw_secattr) != NULL) { 10954 mutex_enter(&attrp->igsa_lock); 10955 if ((gc = attrp->igsa_gc) != NULL) { 10956 gcgrp = gc->gc_grp; 10957 ASSERT(gcgrp != NULL); 10958 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10959 } 10960 mutex_exit(&attrp->igsa_lock); 10961 } 10962 /* 10963 * Return all IRE types for route table... let caller pick and choose 10964 */ 10965 re->ipRouteDest = ire->ire_addr; 10966 ill = ire->ire_ill; 10967 re->ipRouteIfIndex.o_length = 0; 10968 if (ill != NULL) { 10969 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10970 re->ipRouteIfIndex.o_length = 10971 mi_strlen(re->ipRouteIfIndex.o_bytes); 10972 } 10973 re->ipRouteMetric1 = -1; 10974 re->ipRouteMetric2 = -1; 10975 re->ipRouteMetric3 = -1; 10976 re->ipRouteMetric4 = -1; 10977 10978 re->ipRouteNextHop = ire->ire_gateway_addr; 10979 /* indirect(4), direct(3), or invalid(2) */ 10980 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10981 re->ipRouteType = 2; 10982 else if (ire->ire_type & IRE_ONLINK) 10983 re->ipRouteType = 3; 10984 else 10985 re->ipRouteType = 4; 10986 10987 re->ipRouteProto = -1; 10988 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10989 re->ipRouteMask = ire->ire_mask; 10990 re->ipRouteMetric5 = -1; 10991 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10992 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10993 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10994 10995 re->ipRouteInfo.re_frag_flag = 0; 10996 re->ipRouteInfo.re_rtt = 0; 10997 re->ipRouteInfo.re_src_addr = 0; 10998 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10999 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11000 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11001 re->ipRouteInfo.re_flags = ire->ire_flags; 11002 11003 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11004 if (ire->ire_type & IRE_INTERFACE) { 11005 ire_t *child; 11006 11007 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11008 child = ire->ire_dep_children; 11009 while (child != NULL) { 11010 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11011 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11012 child = child->ire_dep_sib_next; 11013 } 11014 rw_exit(&ipst->ips_ire_dep_lock); 11015 } 11016 11017 if (ire->ire_flags & RTF_DYNAMIC) { 11018 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11019 } else { 11020 re->ipRouteInfo.re_ire_type = ire->ire_type; 11021 } 11022 11023 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11024 (char *)re, (int)sizeof (*re))) { 11025 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11026 (uint_t)sizeof (*re))); 11027 } 11028 11029 if (gc != NULL) { 11030 iaes.iae_routeidx = ird->ird_idx; 11031 iaes.iae_doi = gc->gc_db->gcdb_doi; 11032 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11033 11034 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11035 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11036 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11037 "bytes\n", (uint_t)sizeof (iaes))); 11038 } 11039 } 11040 11041 /* bump route index for next pass */ 11042 ird->ird_idx++; 11043 11044 kmem_free(re, sizeof (*re)); 11045 if (gcgrp != NULL) 11046 rw_exit(&gcgrp->gcgrp_rwlock); 11047 } 11048 11049 /* 11050 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11051 */ 11052 static void 11053 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11054 { 11055 ill_t *ill; 11056 mib2_ipv6RouteEntry_t *re; 11057 mib2_ipAttributeEntry_t iaes; 11058 tsol_ire_gw_secattr_t *attrp; 11059 tsol_gc_t *gc = NULL; 11060 tsol_gcgrp_t *gcgrp = NULL; 11061 ip_stack_t *ipst = ire->ire_ipst; 11062 11063 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11064 11065 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11066 if (ire->ire_testhidden) 11067 return; 11068 if (ire->ire_type & IRE_IF_CLONE) 11069 return; 11070 } 11071 11072 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11073 return; 11074 11075 if ((attrp = ire->ire_gw_secattr) != NULL) { 11076 mutex_enter(&attrp->igsa_lock); 11077 if ((gc = attrp->igsa_gc) != NULL) { 11078 gcgrp = gc->gc_grp; 11079 ASSERT(gcgrp != NULL); 11080 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11081 } 11082 mutex_exit(&attrp->igsa_lock); 11083 } 11084 /* 11085 * Return all IRE types for route table... let caller pick and choose 11086 */ 11087 re->ipv6RouteDest = ire->ire_addr_v6; 11088 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11089 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11090 re->ipv6RouteIfIndex.o_length = 0; 11091 ill = ire->ire_ill; 11092 if (ill != NULL) { 11093 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11094 re->ipv6RouteIfIndex.o_length = 11095 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11096 } 11097 11098 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11099 11100 mutex_enter(&ire->ire_lock); 11101 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11102 mutex_exit(&ire->ire_lock); 11103 11104 /* remote(4), local(3), or discard(2) */ 11105 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11106 re->ipv6RouteType = 2; 11107 else if (ire->ire_type & IRE_ONLINK) 11108 re->ipv6RouteType = 3; 11109 else 11110 re->ipv6RouteType = 4; 11111 11112 re->ipv6RouteProtocol = -1; 11113 re->ipv6RoutePolicy = 0; 11114 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11115 re->ipv6RouteNextHopRDI = 0; 11116 re->ipv6RouteWeight = 0; 11117 re->ipv6RouteMetric = 0; 11118 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11119 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11120 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11121 11122 re->ipv6RouteInfo.re_frag_flag = 0; 11123 re->ipv6RouteInfo.re_rtt = 0; 11124 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11125 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11126 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11127 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11128 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11129 11130 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11131 if (ire->ire_type & IRE_INTERFACE) { 11132 ire_t *child; 11133 11134 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11135 child = ire->ire_dep_children; 11136 while (child != NULL) { 11137 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11138 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11139 child = child->ire_dep_sib_next; 11140 } 11141 rw_exit(&ipst->ips_ire_dep_lock); 11142 } 11143 if (ire->ire_flags & RTF_DYNAMIC) { 11144 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11145 } else { 11146 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11147 } 11148 11149 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11150 (char *)re, (int)sizeof (*re))) { 11151 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11152 (uint_t)sizeof (*re))); 11153 } 11154 11155 if (gc != NULL) { 11156 iaes.iae_routeidx = ird->ird_idx; 11157 iaes.iae_doi = gc->gc_db->gcdb_doi; 11158 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11159 11160 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11161 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11162 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11163 "bytes\n", (uint_t)sizeof (iaes))); 11164 } 11165 } 11166 11167 /* bump route index for next pass */ 11168 ird->ird_idx++; 11169 11170 kmem_free(re, sizeof (*re)); 11171 if (gcgrp != NULL) 11172 rw_exit(&gcgrp->gcgrp_rwlock); 11173 } 11174 11175 /* 11176 * ncec_walk routine to create ipv6NetToMediaEntryTable 11177 */ 11178 static void 11179 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11180 { 11181 iproutedata_t *ird = ptr; 11182 ill_t *ill; 11183 mib2_ipv6NetToMediaEntry_t ntme; 11184 11185 ill = ncec->ncec_ill; 11186 /* skip arpce entries, and loopback ncec entries */ 11187 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11188 return; 11189 /* 11190 * Neighbor cache entry attached to IRE with on-link 11191 * destination. 11192 * We report all IPMP groups on ncec_ill which is normally the upper. 11193 */ 11194 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11195 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11196 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11197 if (ncec->ncec_lladdr != NULL) { 11198 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11199 ntme.ipv6NetToMediaPhysAddress.o_length); 11200 } 11201 /* 11202 * Note: Returns ND_* states. Should be: 11203 * reachable(1), stale(2), delay(3), probe(4), 11204 * invalid(5), unknown(6) 11205 */ 11206 ntme.ipv6NetToMediaState = ncec->ncec_state; 11207 ntme.ipv6NetToMediaLastUpdated = 0; 11208 11209 /* other(1), dynamic(2), static(3), local(4) */ 11210 if (NCE_MYADDR(ncec)) { 11211 ntme.ipv6NetToMediaType = 4; 11212 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11213 ntme.ipv6NetToMediaType = 1; /* proxy */ 11214 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11215 ntme.ipv6NetToMediaType = 3; 11216 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11217 ntme.ipv6NetToMediaType = 1; 11218 } else { 11219 ntme.ipv6NetToMediaType = 2; 11220 } 11221 11222 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11223 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11224 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11225 (uint_t)sizeof (ntme))); 11226 } 11227 } 11228 11229 int 11230 nce2ace(ncec_t *ncec) 11231 { 11232 int flags = 0; 11233 11234 if (NCE_ISREACHABLE(ncec)) 11235 flags |= ACE_F_RESOLVED; 11236 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11237 flags |= ACE_F_AUTHORITY; 11238 if (ncec->ncec_flags & NCE_F_PUBLISH) 11239 flags |= ACE_F_PUBLISH; 11240 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11241 flags |= ACE_F_PERMANENT; 11242 if (NCE_MYADDR(ncec)) 11243 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11244 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11245 flags |= ACE_F_UNVERIFIED; 11246 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11247 flags |= ACE_F_AUTHORITY; 11248 if (ncec->ncec_flags & NCE_F_DELAYED) 11249 flags |= ACE_F_DELAYED; 11250 return (flags); 11251 } 11252 11253 /* 11254 * ncec_walk routine to create ipNetToMediaEntryTable 11255 */ 11256 static void 11257 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11258 { 11259 iproutedata_t *ird = ptr; 11260 ill_t *ill; 11261 mib2_ipNetToMediaEntry_t ntme; 11262 const char *name = "unknown"; 11263 ipaddr_t ncec_addr; 11264 11265 ill = ncec->ncec_ill; 11266 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11267 ill->ill_net_type == IRE_LOOPBACK) 11268 return; 11269 11270 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11271 name = ill->ill_name; 11272 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11273 if (NCE_MYADDR(ncec)) { 11274 ntme.ipNetToMediaType = 4; 11275 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11276 ntme.ipNetToMediaType = 1; 11277 } else { 11278 ntme.ipNetToMediaType = 3; 11279 } 11280 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11281 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11282 ntme.ipNetToMediaIfIndex.o_length); 11283 11284 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11285 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11286 11287 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11288 ncec_addr = INADDR_BROADCAST; 11289 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11290 sizeof (ncec_addr)); 11291 /* 11292 * map all the flags to the ACE counterpart. 11293 */ 11294 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11295 11296 ntme.ipNetToMediaPhysAddress.o_length = 11297 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11298 11299 if (!NCE_ISREACHABLE(ncec)) 11300 ntme.ipNetToMediaPhysAddress.o_length = 0; 11301 else { 11302 if (ncec->ncec_lladdr != NULL) { 11303 bcopy(ncec->ncec_lladdr, 11304 ntme.ipNetToMediaPhysAddress.o_bytes, 11305 ntme.ipNetToMediaPhysAddress.o_length); 11306 } 11307 } 11308 11309 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11310 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11311 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11312 (uint_t)sizeof (ntme))); 11313 } 11314 } 11315 11316 /* 11317 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11318 */ 11319 /* ARGSUSED */ 11320 int 11321 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11322 { 11323 switch (level) { 11324 case MIB2_IP: 11325 case MIB2_ICMP: 11326 switch (name) { 11327 default: 11328 break; 11329 } 11330 return (1); 11331 default: 11332 return (1); 11333 } 11334 } 11335 11336 /* 11337 * When there exists both a 64- and 32-bit counter of a particular type 11338 * (i.e., InReceives), only the 64-bit counters are added. 11339 */ 11340 void 11341 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11342 { 11343 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11344 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11345 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11346 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11347 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11348 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11349 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11350 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11351 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11352 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11353 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11354 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11355 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11356 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11357 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11358 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11359 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11360 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11361 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11362 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11363 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11364 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11365 o2->ipIfStatsInWrongIPVersion); 11366 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11367 o2->ipIfStatsInWrongIPVersion); 11368 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11369 o2->ipIfStatsOutSwitchIPVersion); 11370 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11371 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11372 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11373 o2->ipIfStatsHCInForwDatagrams); 11374 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11375 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11376 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11377 o2->ipIfStatsHCOutForwDatagrams); 11378 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11379 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11380 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11381 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11382 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11383 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11384 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11385 o2->ipIfStatsHCOutMcastOctets); 11386 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11387 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11388 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11389 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11390 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11391 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11392 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11393 } 11394 11395 void 11396 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11397 { 11398 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11399 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11400 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11401 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11402 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11403 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11404 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11405 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11406 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11407 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11408 o2->ipv6IfIcmpInRouterSolicits); 11409 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11410 o2->ipv6IfIcmpInRouterAdvertisements); 11411 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11412 o2->ipv6IfIcmpInNeighborSolicits); 11413 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11414 o2->ipv6IfIcmpInNeighborAdvertisements); 11415 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11416 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11417 o2->ipv6IfIcmpInGroupMembQueries); 11418 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11419 o2->ipv6IfIcmpInGroupMembResponses); 11420 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11421 o2->ipv6IfIcmpInGroupMembReductions); 11422 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11423 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11424 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11425 o2->ipv6IfIcmpOutDestUnreachs); 11426 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11427 o2->ipv6IfIcmpOutAdminProhibs); 11428 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11429 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11430 o2->ipv6IfIcmpOutParmProblems); 11431 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11432 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11433 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11434 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11435 o2->ipv6IfIcmpOutRouterSolicits); 11436 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11437 o2->ipv6IfIcmpOutRouterAdvertisements); 11438 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11439 o2->ipv6IfIcmpOutNeighborSolicits); 11440 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11441 o2->ipv6IfIcmpOutNeighborAdvertisements); 11442 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11443 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11444 o2->ipv6IfIcmpOutGroupMembQueries); 11445 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11446 o2->ipv6IfIcmpOutGroupMembResponses); 11447 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11448 o2->ipv6IfIcmpOutGroupMembReductions); 11449 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11450 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11451 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11452 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11453 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11454 o2->ipv6IfIcmpInBadNeighborSolicitations); 11455 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11456 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11457 o2->ipv6IfIcmpInGroupMembTotal); 11458 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11459 o2->ipv6IfIcmpInGroupMembBadQueries); 11460 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11461 o2->ipv6IfIcmpInGroupMembBadReports); 11462 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11463 o2->ipv6IfIcmpInGroupMembOurReports); 11464 } 11465 11466 /* 11467 * Called before the options are updated to check if this packet will 11468 * be source routed from here. 11469 * This routine assumes that the options are well formed i.e. that they 11470 * have already been checked. 11471 */ 11472 boolean_t 11473 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11474 { 11475 ipoptp_t opts; 11476 uchar_t *opt; 11477 uint8_t optval; 11478 uint8_t optlen; 11479 ipaddr_t dst; 11480 11481 if (IS_SIMPLE_IPH(ipha)) { 11482 ip2dbg(("not source routed\n")); 11483 return (B_FALSE); 11484 } 11485 dst = ipha->ipha_dst; 11486 for (optval = ipoptp_first(&opts, ipha); 11487 optval != IPOPT_EOL; 11488 optval = ipoptp_next(&opts)) { 11489 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11490 opt = opts.ipoptp_cur; 11491 optlen = opts.ipoptp_len; 11492 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11493 optval, optlen)); 11494 switch (optval) { 11495 uint32_t off; 11496 case IPOPT_SSRR: 11497 case IPOPT_LSRR: 11498 /* 11499 * If dst is one of our addresses and there are some 11500 * entries left in the source route return (true). 11501 */ 11502 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11503 ip2dbg(("ip_source_routed: not next" 11504 " source route 0x%x\n", 11505 ntohl(dst))); 11506 return (B_FALSE); 11507 } 11508 off = opt[IPOPT_OFFSET]; 11509 off--; 11510 if (optlen < IP_ADDR_LEN || 11511 off > optlen - IP_ADDR_LEN) { 11512 /* End of source route */ 11513 ip1dbg(("ip_source_routed: end of SR\n")); 11514 return (B_FALSE); 11515 } 11516 return (B_TRUE); 11517 } 11518 } 11519 ip2dbg(("not source routed\n")); 11520 return (B_FALSE); 11521 } 11522 11523 /* 11524 * ip_unbind is called by the transports to remove a conn from 11525 * the fanout table. 11526 */ 11527 void 11528 ip_unbind(conn_t *connp) 11529 { 11530 11531 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11532 11533 if (is_system_labeled() && connp->conn_anon_port) { 11534 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11535 connp->conn_mlp_type, connp->conn_proto, 11536 ntohs(connp->conn_lport), B_FALSE); 11537 connp->conn_anon_port = 0; 11538 } 11539 connp->conn_mlp_type = mlptSingle; 11540 11541 ipcl_hash_remove(connp); 11542 } 11543 11544 /* 11545 * Used for deciding the MSS size for the upper layer. Thus 11546 * we need to check the outbound policy values in the conn. 11547 */ 11548 int 11549 conn_ipsec_length(conn_t *connp) 11550 { 11551 ipsec_latch_t *ipl; 11552 11553 ipl = connp->conn_latch; 11554 if (ipl == NULL) 11555 return (0); 11556 11557 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11558 return (0); 11559 11560 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11561 } 11562 11563 /* 11564 * Returns an estimate of the IPsec headers size. This is used if 11565 * we don't want to call into IPsec to get the exact size. 11566 */ 11567 int 11568 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11569 { 11570 ipsec_action_t *a; 11571 11572 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11573 return (0); 11574 11575 a = ixa->ixa_ipsec_action; 11576 if (a == NULL) { 11577 ASSERT(ixa->ixa_ipsec_policy != NULL); 11578 a = ixa->ixa_ipsec_policy->ipsp_act; 11579 } 11580 ASSERT(a != NULL); 11581 11582 return (a->ipa_ovhd); 11583 } 11584 11585 /* 11586 * If there are any source route options, return the true final 11587 * destination. Otherwise, return the destination. 11588 */ 11589 ipaddr_t 11590 ip_get_dst(ipha_t *ipha) 11591 { 11592 ipoptp_t opts; 11593 uchar_t *opt; 11594 uint8_t optval; 11595 uint8_t optlen; 11596 ipaddr_t dst; 11597 uint32_t off; 11598 11599 dst = ipha->ipha_dst; 11600 11601 if (IS_SIMPLE_IPH(ipha)) 11602 return (dst); 11603 11604 for (optval = ipoptp_first(&opts, ipha); 11605 optval != IPOPT_EOL; 11606 optval = ipoptp_next(&opts)) { 11607 opt = opts.ipoptp_cur; 11608 optlen = opts.ipoptp_len; 11609 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11610 switch (optval) { 11611 case IPOPT_SSRR: 11612 case IPOPT_LSRR: 11613 off = opt[IPOPT_OFFSET]; 11614 /* 11615 * If one of the conditions is true, it means 11616 * end of options and dst already has the right 11617 * value. 11618 */ 11619 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11620 off = optlen - IP_ADDR_LEN; 11621 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11622 } 11623 return (dst); 11624 default: 11625 break; 11626 } 11627 } 11628 11629 return (dst); 11630 } 11631 11632 /* 11633 * Outbound IP fragmentation routine. 11634 * Assumes the caller has checked whether or not fragmentation should 11635 * be allowed. Here we copy the DF bit from the header to all the generated 11636 * fragments. 11637 */ 11638 int 11639 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11640 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11641 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11642 { 11643 int i1; 11644 int hdr_len; 11645 mblk_t *hdr_mp; 11646 ipha_t *ipha; 11647 int ip_data_end; 11648 int len; 11649 mblk_t *mp = mp_orig; 11650 int offset; 11651 ill_t *ill = nce->nce_ill; 11652 ip_stack_t *ipst = ill->ill_ipst; 11653 mblk_t *carve_mp; 11654 uint32_t frag_flag; 11655 uint_t priority = mp->b_band; 11656 int error = 0; 11657 11658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11659 11660 if (pkt_len != msgdsize(mp)) { 11661 ip0dbg(("Packet length mismatch: %d, %ld\n", 11662 pkt_len, msgdsize(mp))); 11663 freemsg(mp); 11664 return (EINVAL); 11665 } 11666 11667 if (max_frag == 0) { 11668 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11670 ip_drop_output("FragFails: zero max_frag", mp, ill); 11671 freemsg(mp); 11672 return (EINVAL); 11673 } 11674 11675 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11676 ipha = (ipha_t *)mp->b_rptr; 11677 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11678 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11679 11680 /* 11681 * Establish the starting offset. May not be zero if we are fragging 11682 * a fragment that is being forwarded. 11683 */ 11684 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11685 11686 /* TODO why is this test needed? */ 11687 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11688 /* TODO: notify ulp somehow */ 11689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11690 ip_drop_output("FragFails: bad starting offset", mp, ill); 11691 freemsg(mp); 11692 return (EINVAL); 11693 } 11694 11695 hdr_len = IPH_HDR_LENGTH(ipha); 11696 ipha->ipha_hdr_checksum = 0; 11697 11698 /* 11699 * Establish the number of bytes maximum per frag, after putting 11700 * in the header. 11701 */ 11702 len = (max_frag - hdr_len) & ~7; 11703 11704 /* Get a copy of the header for the trailing frags */ 11705 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11706 mp); 11707 if (hdr_mp == NULL) { 11708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11709 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11710 freemsg(mp); 11711 return (ENOBUFS); 11712 } 11713 11714 /* Store the starting offset, with the MoreFrags flag. */ 11715 i1 = offset | IPH_MF | frag_flag; 11716 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11717 11718 /* Establish the ending byte offset, based on the starting offset. */ 11719 offset <<= 3; 11720 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11721 11722 /* Store the length of the first fragment in the IP header. */ 11723 i1 = len + hdr_len; 11724 ASSERT(i1 <= IP_MAXPACKET); 11725 ipha->ipha_length = htons((uint16_t)i1); 11726 11727 /* 11728 * Compute the IP header checksum for the first frag. We have to 11729 * watch out that we stop at the end of the header. 11730 */ 11731 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11732 11733 /* 11734 * Now carve off the first frag. Note that this will include the 11735 * original IP header. 11736 */ 11737 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11739 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11740 freeb(hdr_mp); 11741 freemsg(mp_orig); 11742 return (ENOBUFS); 11743 } 11744 11745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11746 11747 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11748 ixa_cookie); 11749 if (error != 0 && error != EWOULDBLOCK) { 11750 /* No point in sending the other fragments */ 11751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11752 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11753 freeb(hdr_mp); 11754 freemsg(mp_orig); 11755 return (error); 11756 } 11757 11758 /* No need to redo state machine in loop */ 11759 ixaflags &= ~IXAF_REACH_CONF; 11760 11761 /* Advance the offset to the second frag starting point. */ 11762 offset += len; 11763 /* 11764 * Update hdr_len from the copied header - there might be less options 11765 * in the later fragments. 11766 */ 11767 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11768 /* Loop until done. */ 11769 for (;;) { 11770 uint16_t offset_and_flags; 11771 uint16_t ip_len; 11772 11773 if (ip_data_end - offset > len) { 11774 /* 11775 * Carve off the appropriate amount from the original 11776 * datagram. 11777 */ 11778 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11779 mp = NULL; 11780 break; 11781 } 11782 /* 11783 * More frags after this one. Get another copy 11784 * of the header. 11785 */ 11786 if (carve_mp->b_datap->db_ref == 1 && 11787 hdr_mp->b_wptr - hdr_mp->b_rptr < 11788 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11789 /* Inline IP header */ 11790 carve_mp->b_rptr -= hdr_mp->b_wptr - 11791 hdr_mp->b_rptr; 11792 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11793 hdr_mp->b_wptr - hdr_mp->b_rptr); 11794 mp = carve_mp; 11795 } else { 11796 if (!(mp = copyb(hdr_mp))) { 11797 freemsg(carve_mp); 11798 break; 11799 } 11800 /* Get priority marking, if any. */ 11801 mp->b_band = priority; 11802 mp->b_cont = carve_mp; 11803 } 11804 ipha = (ipha_t *)mp->b_rptr; 11805 offset_and_flags = IPH_MF; 11806 } else { 11807 /* 11808 * Last frag. Consume the header. Set len to 11809 * the length of this last piece. 11810 */ 11811 len = ip_data_end - offset; 11812 11813 /* 11814 * Carve off the appropriate amount from the original 11815 * datagram. 11816 */ 11817 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11818 mp = NULL; 11819 break; 11820 } 11821 if (carve_mp->b_datap->db_ref == 1 && 11822 hdr_mp->b_wptr - hdr_mp->b_rptr < 11823 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11824 /* Inline IP header */ 11825 carve_mp->b_rptr -= hdr_mp->b_wptr - 11826 hdr_mp->b_rptr; 11827 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11828 hdr_mp->b_wptr - hdr_mp->b_rptr); 11829 mp = carve_mp; 11830 freeb(hdr_mp); 11831 hdr_mp = mp; 11832 } else { 11833 mp = hdr_mp; 11834 /* Get priority marking, if any. */ 11835 mp->b_band = priority; 11836 mp->b_cont = carve_mp; 11837 } 11838 ipha = (ipha_t *)mp->b_rptr; 11839 /* A frag of a frag might have IPH_MF non-zero */ 11840 offset_and_flags = 11841 ntohs(ipha->ipha_fragment_offset_and_flags) & 11842 IPH_MF; 11843 } 11844 offset_and_flags |= (uint16_t)(offset >> 3); 11845 offset_and_flags |= (uint16_t)frag_flag; 11846 /* Store the offset and flags in the IP header. */ 11847 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11848 11849 /* Store the length in the IP header. */ 11850 ip_len = (uint16_t)(len + hdr_len); 11851 ipha->ipha_length = htons(ip_len); 11852 11853 /* 11854 * Set the IP header checksum. Note that mp is just 11855 * the header, so this is easy to pass to ip_csum. 11856 */ 11857 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11858 11859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11860 11861 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11862 nolzid, ixa_cookie); 11863 /* All done if we just consumed the hdr_mp. */ 11864 if (mp == hdr_mp) { 11865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11866 return (error); 11867 } 11868 if (error != 0 && error != EWOULDBLOCK) { 11869 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11870 mblk_t *, hdr_mp); 11871 /* No point in sending the other fragments */ 11872 break; 11873 } 11874 11875 /* Otherwise, advance and loop. */ 11876 offset += len; 11877 } 11878 /* Clean up following allocation failure. */ 11879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11880 ip_drop_output("FragFails: loop ended", NULL, ill); 11881 if (mp != hdr_mp) 11882 freeb(hdr_mp); 11883 if (mp != mp_orig) 11884 freemsg(mp_orig); 11885 return (error); 11886 } 11887 11888 /* 11889 * Copy the header plus those options which have the copy bit set 11890 */ 11891 static mblk_t * 11892 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11893 mblk_t *src) 11894 { 11895 mblk_t *mp; 11896 uchar_t *up; 11897 11898 /* 11899 * Quick check if we need to look for options without the copy bit 11900 * set 11901 */ 11902 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11903 if (!mp) 11904 return (mp); 11905 mp->b_rptr += ipst->ips_ip_wroff_extra; 11906 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11907 bcopy(rptr, mp->b_rptr, hdr_len); 11908 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11909 return (mp); 11910 } 11911 up = mp->b_rptr; 11912 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11913 up += IP_SIMPLE_HDR_LENGTH; 11914 rptr += IP_SIMPLE_HDR_LENGTH; 11915 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11916 while (hdr_len > 0) { 11917 uint32_t optval; 11918 uint32_t optlen; 11919 11920 optval = *rptr; 11921 if (optval == IPOPT_EOL) 11922 break; 11923 if (optval == IPOPT_NOP) 11924 optlen = 1; 11925 else 11926 optlen = rptr[1]; 11927 if (optval & IPOPT_COPY) { 11928 bcopy(rptr, up, optlen); 11929 up += optlen; 11930 } 11931 rptr += optlen; 11932 hdr_len -= optlen; 11933 } 11934 /* 11935 * Make sure that we drop an even number of words by filling 11936 * with EOL to the next word boundary. 11937 */ 11938 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11939 hdr_len & 0x3; hdr_len++) 11940 *up++ = IPOPT_EOL; 11941 mp->b_wptr = up; 11942 /* Update header length */ 11943 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11944 return (mp); 11945 } 11946 11947 /* 11948 * Update any source route, record route, or timestamp options when 11949 * sending a packet back to ourselves. 11950 * Check that we are at end of strict source route. 11951 * The options have been sanity checked by ip_output_options(). 11952 */ 11953 void 11954 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11955 { 11956 ipoptp_t opts; 11957 uchar_t *opt; 11958 uint8_t optval; 11959 uint8_t optlen; 11960 ipaddr_t dst; 11961 uint32_t ts; 11962 timestruc_t now; 11963 uint32_t off = 0; 11964 11965 for (optval = ipoptp_first(&opts, ipha); 11966 optval != IPOPT_EOL; 11967 optval = ipoptp_next(&opts)) { 11968 opt = opts.ipoptp_cur; 11969 optlen = opts.ipoptp_len; 11970 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11971 switch (optval) { 11972 case IPOPT_SSRR: 11973 case IPOPT_LSRR: 11974 off = opt[IPOPT_OFFSET]; 11975 off--; 11976 if (optlen < IP_ADDR_LEN || 11977 off > optlen - IP_ADDR_LEN) { 11978 /* End of source route */ 11979 break; 11980 } 11981 /* 11982 * This will only happen if two consecutive entries 11983 * in the source route contains our address or if 11984 * it is a packet with a loose source route which 11985 * reaches us before consuming the whole source route 11986 */ 11987 11988 if (optval == IPOPT_SSRR) { 11989 return; 11990 } 11991 /* 11992 * Hack: instead of dropping the packet truncate the 11993 * source route to what has been used by filling the 11994 * rest with IPOPT_NOP. 11995 */ 11996 opt[IPOPT_OLEN] = (uint8_t)off; 11997 while (off < optlen) { 11998 opt[off++] = IPOPT_NOP; 11999 } 12000 break; 12001 case IPOPT_RR: 12002 off = opt[IPOPT_OFFSET]; 12003 off--; 12004 if (optlen < IP_ADDR_LEN || 12005 off > optlen - IP_ADDR_LEN) { 12006 /* No more room - ignore */ 12007 ip1dbg(( 12008 "ip_output_local_options: end of RR\n")); 12009 break; 12010 } 12011 dst = htonl(INADDR_LOOPBACK); 12012 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12013 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12014 break; 12015 case IPOPT_TS: 12016 /* Insert timestamp if there is romm */ 12017 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12018 case IPOPT_TS_TSONLY: 12019 off = IPOPT_TS_TIMELEN; 12020 break; 12021 case IPOPT_TS_PRESPEC: 12022 case IPOPT_TS_PRESPEC_RFC791: 12023 /* Verify that the address matched */ 12024 off = opt[IPOPT_OFFSET] - 1; 12025 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12026 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12027 /* Not for us */ 12028 break; 12029 } 12030 /* FALLTHROUGH */ 12031 case IPOPT_TS_TSANDADDR: 12032 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12033 break; 12034 default: 12035 /* 12036 * ip_*put_options should have already 12037 * dropped this packet. 12038 */ 12039 cmn_err(CE_PANIC, "ip_output_local_options: " 12040 "unknown IT - bug in ip_output_options?\n"); 12041 } 12042 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12043 /* Increase overflow counter */ 12044 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12045 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12046 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12047 (off << 4); 12048 break; 12049 } 12050 off = opt[IPOPT_OFFSET] - 1; 12051 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12052 case IPOPT_TS_PRESPEC: 12053 case IPOPT_TS_PRESPEC_RFC791: 12054 case IPOPT_TS_TSANDADDR: 12055 dst = htonl(INADDR_LOOPBACK); 12056 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12057 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12058 /* FALLTHROUGH */ 12059 case IPOPT_TS_TSONLY: 12060 off = opt[IPOPT_OFFSET] - 1; 12061 /* Compute # of milliseconds since midnight */ 12062 gethrestime(&now); 12063 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12064 NSEC2MSEC(now.tv_nsec); 12065 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12066 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12067 break; 12068 } 12069 break; 12070 } 12071 } 12072 } 12073 12074 /* 12075 * Prepend an M_DATA fastpath header, and if none present prepend a 12076 * DL_UNITDATA_REQ. Frees the mblk on failure. 12077 * 12078 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12079 * If there is a change to them, the nce will be deleted (condemned) and 12080 * a new nce_t will be created when packets are sent. Thus we need no locks 12081 * to access those fields. 12082 * 12083 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12084 * we place b_band in dl_priority.dl_max. 12085 */ 12086 static mblk_t * 12087 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12088 { 12089 uint_t hlen; 12090 mblk_t *mp1; 12091 uint_t priority; 12092 uchar_t *rptr; 12093 12094 rptr = mp->b_rptr; 12095 12096 ASSERT(DB_TYPE(mp) == M_DATA); 12097 priority = mp->b_band; 12098 12099 ASSERT(nce != NULL); 12100 if ((mp1 = nce->nce_fp_mp) != NULL) { 12101 hlen = MBLKL(mp1); 12102 /* 12103 * Check if we have enough room to prepend fastpath 12104 * header 12105 */ 12106 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12107 rptr -= hlen; 12108 bcopy(mp1->b_rptr, rptr, hlen); 12109 /* 12110 * Set the b_rptr to the start of the link layer 12111 * header 12112 */ 12113 mp->b_rptr = rptr; 12114 return (mp); 12115 } 12116 mp1 = copyb(mp1); 12117 if (mp1 == NULL) { 12118 ill_t *ill = nce->nce_ill; 12119 12120 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12121 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12122 freemsg(mp); 12123 return (NULL); 12124 } 12125 mp1->b_band = priority; 12126 mp1->b_cont = mp; 12127 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12128 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12129 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12130 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12131 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12132 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12133 /* 12134 * XXX disable ICK_VALID and compute checksum 12135 * here; can happen if nce_fp_mp changes and 12136 * it can't be copied now due to insufficient 12137 * space. (unlikely, fp mp can change, but it 12138 * does not increase in length) 12139 */ 12140 return (mp1); 12141 } 12142 mp1 = copyb(nce->nce_dlur_mp); 12143 12144 if (mp1 == NULL) { 12145 ill_t *ill = nce->nce_ill; 12146 12147 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12148 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12149 freemsg(mp); 12150 return (NULL); 12151 } 12152 mp1->b_cont = mp; 12153 if (priority != 0) { 12154 mp1->b_band = priority; 12155 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12156 priority; 12157 } 12158 return (mp1); 12159 } 12160 12161 /* 12162 * Finish the outbound IPsec processing. This function is called from 12163 * ipsec_out_process() if the IPsec packet was processed 12164 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12165 * asynchronously. 12166 * 12167 * This is common to IPv4 and IPv6. 12168 */ 12169 int 12170 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12171 { 12172 iaflags_t ixaflags = ixa->ixa_flags; 12173 uint_t pktlen; 12174 12175 12176 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12177 if (ixaflags & IXAF_IS_IPV4) { 12178 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12179 12180 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12181 pktlen = ntohs(ipha->ipha_length); 12182 } else { 12183 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12184 12185 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12186 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12187 } 12188 12189 /* 12190 * We release any hard reference on the SAs here to make 12191 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12192 * on the SAs. 12193 * If in the future we want the hard latching of the SAs in the 12194 * ip_xmit_attr_t then we should remove this. 12195 */ 12196 if (ixa->ixa_ipsec_esp_sa != NULL) { 12197 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12198 ixa->ixa_ipsec_esp_sa = NULL; 12199 } 12200 if (ixa->ixa_ipsec_ah_sa != NULL) { 12201 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12202 ixa->ixa_ipsec_ah_sa = NULL; 12203 } 12204 12205 /* Do we need to fragment? */ 12206 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12207 pktlen > ixa->ixa_fragsize) { 12208 if (ixaflags & IXAF_IS_IPV4) { 12209 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12210 /* 12211 * We check for the DF case in ipsec_out_process 12212 * hence this only handles the non-DF case. 12213 */ 12214 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12215 pktlen, ixa->ixa_fragsize, 12216 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12217 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12218 &ixa->ixa_cookie)); 12219 } else { 12220 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12221 if (mp == NULL) { 12222 /* MIB and ip_drop_output already done */ 12223 return (ENOMEM); 12224 } 12225 pktlen += sizeof (ip6_frag_t); 12226 if (pktlen > ixa->ixa_fragsize) { 12227 return (ip_fragment_v6(mp, ixa->ixa_nce, 12228 ixa->ixa_flags, pktlen, 12229 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12230 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12231 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12232 } 12233 } 12234 } 12235 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12236 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12237 ixa->ixa_no_loop_zoneid, NULL)); 12238 } 12239 12240 /* 12241 * Finish the inbound IPsec processing. This function is called from 12242 * ipsec_out_process() if the IPsec packet was processed 12243 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12244 * asynchronously. 12245 * 12246 * This is common to IPv4 and IPv6. 12247 */ 12248 void 12249 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12250 { 12251 iaflags_t iraflags = ira->ira_flags; 12252 12253 /* Length might have changed */ 12254 if (iraflags & IRAF_IS_IPV4) { 12255 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12256 12257 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12258 ira->ira_pktlen = ntohs(ipha->ipha_length); 12259 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12260 ira->ira_protocol = ipha->ipha_protocol; 12261 12262 ip_fanout_v4(mp, ipha, ira); 12263 } else { 12264 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12265 uint8_t *nexthdrp; 12266 12267 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12268 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12269 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12270 &nexthdrp)) { 12271 /* Malformed packet */ 12272 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12273 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12274 freemsg(mp); 12275 return; 12276 } 12277 ira->ira_protocol = *nexthdrp; 12278 ip_fanout_v6(mp, ip6h, ira); 12279 } 12280 } 12281 12282 /* 12283 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12284 * 12285 * If this function returns B_TRUE, the requested SA's have been filled 12286 * into the ixa_ipsec_*_sa pointers. 12287 * 12288 * If the function returns B_FALSE, the packet has been "consumed", most 12289 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12290 * 12291 * The SA references created by the protocol-specific "select" 12292 * function will be released in ip_output_post_ipsec. 12293 */ 12294 static boolean_t 12295 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12296 { 12297 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12298 ipsec_policy_t *pp; 12299 ipsec_action_t *ap; 12300 12301 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12302 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12303 (ixa->ixa_ipsec_action != NULL)); 12304 12305 ap = ixa->ixa_ipsec_action; 12306 if (ap == NULL) { 12307 pp = ixa->ixa_ipsec_policy; 12308 ASSERT(pp != NULL); 12309 ap = pp->ipsp_act; 12310 ASSERT(ap != NULL); 12311 } 12312 12313 /* 12314 * We have an action. now, let's select SA's. 12315 * A side effect of setting ixa_ipsec_*_sa is that it will 12316 * be cached in the conn_t. 12317 */ 12318 if (ap->ipa_want_esp) { 12319 if (ixa->ixa_ipsec_esp_sa == NULL) { 12320 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12321 IPPROTO_ESP); 12322 } 12323 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12324 } 12325 12326 if (ap->ipa_want_ah) { 12327 if (ixa->ixa_ipsec_ah_sa == NULL) { 12328 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12329 IPPROTO_AH); 12330 } 12331 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12332 /* 12333 * The ESP and AH processing order needs to be preserved 12334 * when both protocols are required (ESP should be applied 12335 * before AH for an outbound packet). Force an ESP ACQUIRE 12336 * when both ESP and AH are required, and an AH ACQUIRE 12337 * is needed. 12338 */ 12339 if (ap->ipa_want_esp && need_ah_acquire) 12340 need_esp_acquire = B_TRUE; 12341 } 12342 12343 /* 12344 * Send an ACQUIRE (extended, regular, or both) if we need one. 12345 * Release SAs that got referenced, but will not be used until we 12346 * acquire _all_ of the SAs we need. 12347 */ 12348 if (need_ah_acquire || need_esp_acquire) { 12349 if (ixa->ixa_ipsec_ah_sa != NULL) { 12350 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12351 ixa->ixa_ipsec_ah_sa = NULL; 12352 } 12353 if (ixa->ixa_ipsec_esp_sa != NULL) { 12354 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12355 ixa->ixa_ipsec_esp_sa = NULL; 12356 } 12357 12358 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12359 return (B_FALSE); 12360 } 12361 12362 return (B_TRUE); 12363 } 12364 12365 /* 12366 * Handle IPsec output processing. 12367 * This function is only entered once for a given packet. 12368 * We try to do things synchronously, but if we need to have user-level 12369 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12370 * will be completed 12371 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12372 * - when asynchronous ESP is done it will do AH 12373 * 12374 * In all cases we come back in ip_output_post_ipsec() to fragment and 12375 * send out the packet. 12376 */ 12377 int 12378 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12379 { 12380 ill_t *ill = ixa->ixa_nce->nce_ill; 12381 ip_stack_t *ipst = ixa->ixa_ipst; 12382 ipsec_stack_t *ipss; 12383 ipsec_policy_t *pp; 12384 ipsec_action_t *ap; 12385 12386 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12387 12388 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12389 (ixa->ixa_ipsec_action != NULL)); 12390 12391 ipss = ipst->ips_netstack->netstack_ipsec; 12392 if (!ipsec_loaded(ipss)) { 12393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12394 ip_drop_packet(mp, B_TRUE, ill, 12395 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12396 &ipss->ipsec_dropper); 12397 return (ENOTSUP); 12398 } 12399 12400 ap = ixa->ixa_ipsec_action; 12401 if (ap == NULL) { 12402 pp = ixa->ixa_ipsec_policy; 12403 ASSERT(pp != NULL); 12404 ap = pp->ipsp_act; 12405 ASSERT(ap != NULL); 12406 } 12407 12408 /* Handle explicit drop action and bypass. */ 12409 switch (ap->ipa_act.ipa_type) { 12410 case IPSEC_ACT_DISCARD: 12411 case IPSEC_ACT_REJECT: 12412 ip_drop_packet(mp, B_FALSE, ill, 12413 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12414 return (EHOSTUNREACH); /* IPsec policy failure */ 12415 case IPSEC_ACT_BYPASS: 12416 return (ip_output_post_ipsec(mp, ixa)); 12417 } 12418 12419 /* 12420 * The order of processing is first insert a IP header if needed. 12421 * Then insert the ESP header and then the AH header. 12422 */ 12423 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12424 /* 12425 * First get the outer IP header before sending 12426 * it to ESP. 12427 */ 12428 ipha_t *oipha, *iipha; 12429 mblk_t *outer_mp, *inner_mp; 12430 12431 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12432 (void) mi_strlog(ill->ill_rq, 0, 12433 SL_ERROR|SL_TRACE|SL_CONSOLE, 12434 "ipsec_out_process: " 12435 "Self-Encapsulation failed: Out of memory\n"); 12436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12437 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12438 freemsg(mp); 12439 return (ENOBUFS); 12440 } 12441 inner_mp = mp; 12442 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12443 oipha = (ipha_t *)outer_mp->b_rptr; 12444 iipha = (ipha_t *)inner_mp->b_rptr; 12445 *oipha = *iipha; 12446 outer_mp->b_wptr += sizeof (ipha_t); 12447 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12448 sizeof (ipha_t)); 12449 oipha->ipha_protocol = IPPROTO_ENCAP; 12450 oipha->ipha_version_and_hdr_length = 12451 IP_SIMPLE_HDR_VERSION; 12452 oipha->ipha_hdr_checksum = 0; 12453 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12454 outer_mp->b_cont = inner_mp; 12455 mp = outer_mp; 12456 12457 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12458 } 12459 12460 /* If we need to wait for a SA then we can't return any errno */ 12461 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12462 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12463 !ipsec_out_select_sa(mp, ixa)) 12464 return (0); 12465 12466 /* 12467 * By now, we know what SA's to use. Toss over to ESP & AH 12468 * to do the heavy lifting. 12469 */ 12470 if (ap->ipa_want_esp) { 12471 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12472 12473 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12474 if (mp == NULL) { 12475 /* 12476 * Either it failed or is pending. In the former case 12477 * ipIfStatsInDiscards was increased. 12478 */ 12479 return (0); 12480 } 12481 } 12482 12483 if (ap->ipa_want_ah) { 12484 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12485 12486 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12487 if (mp == NULL) { 12488 /* 12489 * Either it failed or is pending. In the former case 12490 * ipIfStatsInDiscards was increased. 12491 */ 12492 return (0); 12493 } 12494 } 12495 /* 12496 * We are done with IPsec processing. Send it over 12497 * the wire. 12498 */ 12499 return (ip_output_post_ipsec(mp, ixa)); 12500 } 12501 12502 /* 12503 * ioctls that go through a down/up sequence may need to wait for the down 12504 * to complete. This involves waiting for the ire and ipif refcnts to go down 12505 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12506 */ 12507 /* ARGSUSED */ 12508 void 12509 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12510 { 12511 struct iocblk *iocp; 12512 mblk_t *mp1; 12513 ip_ioctl_cmd_t *ipip; 12514 int err; 12515 sin_t *sin; 12516 struct lifreq *lifr; 12517 struct ifreq *ifr; 12518 12519 iocp = (struct iocblk *)mp->b_rptr; 12520 ASSERT(ipsq != NULL); 12521 /* Existence of mp1 verified in ip_wput_nondata */ 12522 mp1 = mp->b_cont->b_cont; 12523 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12524 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12525 /* 12526 * Special case where ipx_current_ipif is not set: 12527 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12528 * We are here as were not able to complete the operation in 12529 * ipif_set_values because we could not become exclusive on 12530 * the new ipsq. 12531 */ 12532 ill_t *ill = q->q_ptr; 12533 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12534 } 12535 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12536 12537 if (ipip->ipi_cmd_type == IF_CMD) { 12538 /* This a old style SIOC[GS]IF* command */ 12539 ifr = (struct ifreq *)mp1->b_rptr; 12540 sin = (sin_t *)&ifr->ifr_addr; 12541 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12542 /* This a new style SIOC[GS]LIF* command */ 12543 lifr = (struct lifreq *)mp1->b_rptr; 12544 sin = (sin_t *)&lifr->lifr_addr; 12545 } else { 12546 sin = NULL; 12547 } 12548 12549 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12550 q, mp, ipip, mp1->b_rptr); 12551 12552 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12553 int, ipip->ipi_cmd, 12554 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12555 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12556 12557 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12558 } 12559 12560 /* 12561 * ioctl processing 12562 * 12563 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12564 * the ioctl command in the ioctl tables, determines the copyin data size 12565 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12566 * 12567 * ioctl processing then continues when the M_IOCDATA makes its way down to 12568 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12569 * associated 'conn' is refheld till the end of the ioctl and the general 12570 * ioctl processing function ip_process_ioctl() is called to extract the 12571 * arguments and process the ioctl. To simplify extraction, ioctl commands 12572 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12573 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12574 * is used to extract the ioctl's arguments. 12575 * 12576 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12577 * so goes thru the serialization primitive ipsq_try_enter. Then the 12578 * appropriate function to handle the ioctl is called based on the entry in 12579 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12580 * which also refreleases the 'conn' that was refheld at the start of the 12581 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12582 * 12583 * Many exclusive ioctls go thru an internal down up sequence as part of 12584 * the operation. For example an attempt to change the IP address of an 12585 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12586 * does all the cleanup such as deleting all ires that use this address. 12587 * Then we need to wait till all references to the interface go away. 12588 */ 12589 void 12590 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12591 { 12592 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12593 ip_ioctl_cmd_t *ipip = arg; 12594 ip_extract_func_t *extract_funcp; 12595 cmd_info_t ci; 12596 int err; 12597 boolean_t entered_ipsq = B_FALSE; 12598 12599 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12600 12601 if (ipip == NULL) 12602 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12603 12604 /* 12605 * SIOCLIFADDIF needs to go thru a special path since the 12606 * ill may not exist yet. This happens in the case of lo0 12607 * which is created using this ioctl. 12608 */ 12609 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12610 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12611 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12612 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12613 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12614 return; 12615 } 12616 12617 ci.ci_ipif = NULL; 12618 extract_funcp = NULL; 12619 switch (ipip->ipi_cmd_type) { 12620 case MISC_CMD: 12621 case MSFILT_CMD: 12622 /* 12623 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12624 */ 12625 if (ipip->ipi_cmd == IF_UNITSEL) { 12626 /* ioctl comes down the ill */ 12627 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12628 ipif_refhold(ci.ci_ipif); 12629 } 12630 err = 0; 12631 ci.ci_sin = NULL; 12632 ci.ci_sin6 = NULL; 12633 ci.ci_lifr = NULL; 12634 extract_funcp = NULL; 12635 break; 12636 12637 case IF_CMD: 12638 case LIF_CMD: 12639 extract_funcp = ip_extract_lifreq; 12640 break; 12641 12642 case ARP_CMD: 12643 case XARP_CMD: 12644 extract_funcp = ip_extract_arpreq; 12645 break; 12646 12647 default: 12648 ASSERT(0); 12649 } 12650 12651 if (extract_funcp != NULL) { 12652 err = (*extract_funcp)(q, mp, ipip, &ci); 12653 if (err != 0) { 12654 DTRACE_PROBE4(ipif__ioctl, 12655 char *, "ip_process_ioctl finish err", 12656 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12657 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12658 return; 12659 } 12660 12661 /* 12662 * All of the extraction functions return a refheld ipif. 12663 */ 12664 ASSERT(ci.ci_ipif != NULL); 12665 } 12666 12667 if (!(ipip->ipi_flags & IPI_WR)) { 12668 /* 12669 * A return value of EINPROGRESS means the ioctl is 12670 * either queued and waiting for some reason or has 12671 * already completed. 12672 */ 12673 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12674 ci.ci_lifr); 12675 if (ci.ci_ipif != NULL) { 12676 DTRACE_PROBE4(ipif__ioctl, 12677 char *, "ip_process_ioctl finish RD", 12678 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12679 ipif_t *, ci.ci_ipif); 12680 ipif_refrele(ci.ci_ipif); 12681 } else { 12682 DTRACE_PROBE4(ipif__ioctl, 12683 char *, "ip_process_ioctl finish RD", 12684 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12685 } 12686 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12687 return; 12688 } 12689 12690 ASSERT(ci.ci_ipif != NULL); 12691 12692 /* 12693 * If ipsq is non-NULL, we are already being called exclusively 12694 */ 12695 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12696 if (ipsq == NULL) { 12697 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12698 NEW_OP, B_TRUE); 12699 if (ipsq == NULL) { 12700 ipif_refrele(ci.ci_ipif); 12701 return; 12702 } 12703 entered_ipsq = B_TRUE; 12704 } 12705 /* 12706 * Release the ipif so that ipif_down and friends that wait for 12707 * references to go away are not misled about the current ipif_refcnt 12708 * values. We are writer so we can access the ipif even after releasing 12709 * the ipif. 12710 */ 12711 ipif_refrele(ci.ci_ipif); 12712 12713 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12714 12715 /* 12716 * A return value of EINPROGRESS means the ioctl is 12717 * either queued and waiting for some reason or has 12718 * already completed. 12719 */ 12720 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12721 12722 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12723 int, ipip->ipi_cmd, 12724 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12725 ipif_t *, ci.ci_ipif); 12726 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12727 12728 if (entered_ipsq) 12729 ipsq_exit(ipsq); 12730 } 12731 12732 /* 12733 * Complete the ioctl. Typically ioctls use the mi package and need to 12734 * do mi_copyout/mi_copy_done. 12735 */ 12736 void 12737 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12738 { 12739 conn_t *connp = NULL; 12740 12741 if (err == EINPROGRESS) 12742 return; 12743 12744 if (CONN_Q(q)) { 12745 connp = Q_TO_CONN(q); 12746 ASSERT(connp->conn_ref >= 2); 12747 } 12748 12749 switch (mode) { 12750 case COPYOUT: 12751 if (err == 0) 12752 mi_copyout(q, mp); 12753 else 12754 mi_copy_done(q, mp, err); 12755 break; 12756 12757 case NO_COPYOUT: 12758 mi_copy_done(q, mp, err); 12759 break; 12760 12761 default: 12762 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12763 break; 12764 } 12765 12766 /* 12767 * The conn refhold and ioctlref placed on the conn at the start of the 12768 * ioctl are released here. 12769 */ 12770 if (connp != NULL) { 12771 CONN_DEC_IOCTLREF(connp); 12772 CONN_OPER_PENDING_DONE(connp); 12773 } 12774 12775 if (ipsq != NULL) 12776 ipsq_current_finish(ipsq); 12777 } 12778 12779 /* Handles all non data messages */ 12780 int 12781 ip_wput_nondata(queue_t *q, mblk_t *mp) 12782 { 12783 mblk_t *mp1; 12784 struct iocblk *iocp; 12785 ip_ioctl_cmd_t *ipip; 12786 conn_t *connp; 12787 cred_t *cr; 12788 char *proto_str; 12789 12790 if (CONN_Q(q)) 12791 connp = Q_TO_CONN(q); 12792 else 12793 connp = NULL; 12794 12795 iocp = NULL; 12796 switch (DB_TYPE(mp)) { 12797 case M_IOCTL: 12798 /* 12799 * IOCTL processing begins in ip_sioctl_copyin_setup which 12800 * will arrange to copy in associated control structures. 12801 */ 12802 ip_sioctl_copyin_setup(q, mp); 12803 return (0); 12804 case M_IOCDATA: 12805 /* 12806 * Ensure that this is associated with one of our trans- 12807 * parent ioctls. If it's not ours, discard it if we're 12808 * running as a driver, or pass it on if we're a module. 12809 */ 12810 iocp = (struct iocblk *)mp->b_rptr; 12811 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12812 if (ipip == NULL) { 12813 if (q->q_next == NULL) { 12814 goto nak; 12815 } else { 12816 putnext(q, mp); 12817 } 12818 return (0); 12819 } 12820 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12821 /* 12822 * The ioctl is one we recognise, but is not consumed 12823 * by IP as a module and we are a module, so we drop 12824 */ 12825 goto nak; 12826 } 12827 12828 /* IOCTL continuation following copyin or copyout. */ 12829 if (mi_copy_state(q, mp, NULL) == -1) { 12830 /* 12831 * The copy operation failed. mi_copy_state already 12832 * cleaned up, so we're out of here. 12833 */ 12834 return (0); 12835 } 12836 /* 12837 * If we just completed a copy in, we become writer and 12838 * continue processing in ip_sioctl_copyin_done. If it 12839 * was a copy out, we call mi_copyout again. If there is 12840 * nothing more to copy out, it will complete the IOCTL. 12841 */ 12842 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12843 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12844 mi_copy_done(q, mp, EPROTO); 12845 return (0); 12846 } 12847 /* 12848 * Check for cases that need more copying. A return 12849 * value of 0 means a second copyin has been started, 12850 * so we return; a return value of 1 means no more 12851 * copying is needed, so we continue. 12852 */ 12853 if (ipip->ipi_cmd_type == MSFILT_CMD && 12854 MI_COPY_COUNT(mp) == 1) { 12855 if (ip_copyin_msfilter(q, mp) == 0) 12856 return (0); 12857 } 12858 /* 12859 * Refhold the conn, till the ioctl completes. This is 12860 * needed in case the ioctl ends up in the pending mp 12861 * list. Every mp in the ipx_pending_mp list must have 12862 * a refhold on the conn to resume processing. The 12863 * refhold is released when the ioctl completes 12864 * (whether normally or abnormally). An ioctlref is also 12865 * placed on the conn to prevent TCP from removing the 12866 * queue needed to send the ioctl reply back. 12867 * In all cases ip_ioctl_finish is called to finish 12868 * the ioctl and release the refholds. 12869 */ 12870 if (connp != NULL) { 12871 /* This is not a reentry */ 12872 CONN_INC_REF(connp); 12873 CONN_INC_IOCTLREF(connp); 12874 } else { 12875 if (!(ipip->ipi_flags & IPI_MODOK)) { 12876 mi_copy_done(q, mp, EINVAL); 12877 return (0); 12878 } 12879 } 12880 12881 ip_process_ioctl(NULL, q, mp, ipip); 12882 12883 } else { 12884 mi_copyout(q, mp); 12885 } 12886 return (0); 12887 12888 case M_IOCNAK: 12889 /* 12890 * The only way we could get here is if a resolver didn't like 12891 * an IOCTL we sent it. This shouldn't happen. 12892 */ 12893 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12894 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12895 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12896 freemsg(mp); 12897 return (0); 12898 case M_IOCACK: 12899 /* /dev/ip shouldn't see this */ 12900 goto nak; 12901 case M_FLUSH: 12902 if (*mp->b_rptr & FLUSHW) 12903 flushq(q, FLUSHALL); 12904 if (q->q_next) { 12905 putnext(q, mp); 12906 return (0); 12907 } 12908 if (*mp->b_rptr & FLUSHR) { 12909 *mp->b_rptr &= ~FLUSHW; 12910 qreply(q, mp); 12911 return (0); 12912 } 12913 freemsg(mp); 12914 return (0); 12915 case M_CTL: 12916 break; 12917 case M_PROTO: 12918 case M_PCPROTO: 12919 /* 12920 * The only PROTO messages we expect are SNMP-related. 12921 */ 12922 switch (((union T_primitives *)mp->b_rptr)->type) { 12923 case T_SVR4_OPTMGMT_REQ: 12924 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12925 "flags %x\n", 12926 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12927 12928 if (connp == NULL) { 12929 proto_str = "T_SVR4_OPTMGMT_REQ"; 12930 goto protonak; 12931 } 12932 12933 /* 12934 * All Solaris components should pass a db_credp 12935 * for this TPI message, hence we ASSERT. 12936 * But in case there is some other M_PROTO that looks 12937 * like a TPI message sent by some other kernel 12938 * component, we check and return an error. 12939 */ 12940 cr = msg_getcred(mp, NULL); 12941 ASSERT(cr != NULL); 12942 if (cr == NULL) { 12943 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12944 if (mp != NULL) 12945 qreply(q, mp); 12946 return (0); 12947 } 12948 12949 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12950 proto_str = "Bad SNMPCOM request?"; 12951 goto protonak; 12952 } 12953 return (0); 12954 default: 12955 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12956 (int)*(uint_t *)mp->b_rptr)); 12957 freemsg(mp); 12958 return (0); 12959 } 12960 default: 12961 break; 12962 } 12963 if (q->q_next) { 12964 putnext(q, mp); 12965 } else 12966 freemsg(mp); 12967 return (0); 12968 12969 nak: 12970 iocp->ioc_error = EINVAL; 12971 mp->b_datap->db_type = M_IOCNAK; 12972 iocp->ioc_count = 0; 12973 qreply(q, mp); 12974 return (0); 12975 12976 protonak: 12977 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12978 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12979 qreply(q, mp); 12980 return (0); 12981 } 12982 12983 /* 12984 * Process IP options in an outbound packet. Verify that the nexthop in a 12985 * strict source route is onlink. 12986 * Returns non-zero if something fails in which case an ICMP error has been 12987 * sent and mp freed. 12988 * 12989 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12990 */ 12991 int 12992 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12993 { 12994 ipoptp_t opts; 12995 uchar_t *opt; 12996 uint8_t optval; 12997 uint8_t optlen; 12998 ipaddr_t dst; 12999 intptr_t code = 0; 13000 ire_t *ire; 13001 ip_stack_t *ipst = ixa->ixa_ipst; 13002 ip_recv_attr_t iras; 13003 13004 ip2dbg(("ip_output_options\n")); 13005 13006 opt = NULL; 13007 dst = ipha->ipha_dst; 13008 for (optval = ipoptp_first(&opts, ipha); 13009 optval != IPOPT_EOL; 13010 optval = ipoptp_next(&opts)) { 13011 opt = opts.ipoptp_cur; 13012 optlen = opts.ipoptp_len; 13013 ip2dbg(("ip_output_options: opt %d, len %d\n", 13014 optval, optlen)); 13015 switch (optval) { 13016 uint32_t off; 13017 case IPOPT_SSRR: 13018 case IPOPT_LSRR: 13019 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13020 ip1dbg(( 13021 "ip_output_options: bad option offset\n")); 13022 code = (char *)&opt[IPOPT_OLEN] - 13023 (char *)ipha; 13024 goto param_prob; 13025 } 13026 off = opt[IPOPT_OFFSET]; 13027 ip1dbg(("ip_output_options: next hop 0x%x\n", 13028 ntohl(dst))); 13029 /* 13030 * For strict: verify that dst is directly 13031 * reachable. 13032 */ 13033 if (optval == IPOPT_SSRR) { 13034 ire = ire_ftable_lookup_v4(dst, 0, 0, 13035 IRE_INTERFACE, NULL, ALL_ZONES, 13036 ixa->ixa_tsl, 13037 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13038 NULL); 13039 if (ire == NULL) { 13040 ip1dbg(("ip_output_options: SSRR not" 13041 " directly reachable: 0x%x\n", 13042 ntohl(dst))); 13043 goto bad_src_route; 13044 } 13045 ire_refrele(ire); 13046 } 13047 break; 13048 case IPOPT_RR: 13049 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13050 ip1dbg(( 13051 "ip_output_options: bad option offset\n")); 13052 code = (char *)&opt[IPOPT_OLEN] - 13053 (char *)ipha; 13054 goto param_prob; 13055 } 13056 break; 13057 case IPOPT_TS: 13058 /* 13059 * Verify that length >=5 and that there is either 13060 * room for another timestamp or that the overflow 13061 * counter is not maxed out. 13062 */ 13063 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13064 if (optlen < IPOPT_MINLEN_IT) { 13065 goto param_prob; 13066 } 13067 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13068 ip1dbg(( 13069 "ip_output_options: bad option offset\n")); 13070 code = (char *)&opt[IPOPT_OFFSET] - 13071 (char *)ipha; 13072 goto param_prob; 13073 } 13074 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13075 case IPOPT_TS_TSONLY: 13076 off = IPOPT_TS_TIMELEN; 13077 break; 13078 case IPOPT_TS_TSANDADDR: 13079 case IPOPT_TS_PRESPEC: 13080 case IPOPT_TS_PRESPEC_RFC791: 13081 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13082 break; 13083 default: 13084 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13085 (char *)ipha; 13086 goto param_prob; 13087 } 13088 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13089 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13090 /* 13091 * No room and the overflow counter is 15 13092 * already. 13093 */ 13094 goto param_prob; 13095 } 13096 break; 13097 } 13098 } 13099 13100 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13101 return (0); 13102 13103 ip1dbg(("ip_output_options: error processing IP options.")); 13104 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13105 13106 param_prob: 13107 bzero(&iras, sizeof (iras)); 13108 iras.ira_ill = iras.ira_rill = ill; 13109 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13110 iras.ira_rifindex = iras.ira_ruifindex; 13111 iras.ira_flags = IRAF_IS_IPV4; 13112 13113 ip_drop_output("ip_output_options", mp, ill); 13114 icmp_param_problem(mp, (uint8_t)code, &iras); 13115 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13116 return (-1); 13117 13118 bad_src_route: 13119 bzero(&iras, sizeof (iras)); 13120 iras.ira_ill = iras.ira_rill = ill; 13121 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13122 iras.ira_rifindex = iras.ira_ruifindex; 13123 iras.ira_flags = IRAF_IS_IPV4; 13124 13125 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13126 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13127 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13128 return (-1); 13129 } 13130 13131 /* 13132 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13133 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13134 * thru /etc/system. 13135 */ 13136 #define CONN_MAXDRAINCNT 64 13137 13138 static void 13139 conn_drain_init(ip_stack_t *ipst) 13140 { 13141 int i, j; 13142 idl_tx_list_t *itl_tx; 13143 13144 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13145 13146 if ((ipst->ips_conn_drain_list_cnt == 0) || 13147 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13148 /* 13149 * Default value of the number of drainers is the 13150 * number of cpus, subject to maximum of 8 drainers. 13151 */ 13152 if (boot_max_ncpus != -1) 13153 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13154 else 13155 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13156 } 13157 13158 ipst->ips_idl_tx_list = 13159 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13160 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13161 itl_tx = &ipst->ips_idl_tx_list[i]; 13162 itl_tx->txl_drain_list = 13163 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13164 sizeof (idl_t), KM_SLEEP); 13165 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13166 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13167 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13168 MUTEX_DEFAULT, NULL); 13169 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13170 } 13171 } 13172 } 13173 13174 static void 13175 conn_drain_fini(ip_stack_t *ipst) 13176 { 13177 int i; 13178 idl_tx_list_t *itl_tx; 13179 13180 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13181 itl_tx = &ipst->ips_idl_tx_list[i]; 13182 kmem_free(itl_tx->txl_drain_list, 13183 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13184 } 13185 kmem_free(ipst->ips_idl_tx_list, 13186 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13187 ipst->ips_idl_tx_list = NULL; 13188 } 13189 13190 /* 13191 * Flow control has blocked us from proceeding. Insert the given conn in one 13192 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13193 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13194 * will call conn_walk_drain(). See the flow control notes at the top of this 13195 * file for more details. 13196 */ 13197 void 13198 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13199 { 13200 idl_t *idl = tx_list->txl_drain_list; 13201 uint_t index; 13202 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13203 13204 mutex_enter(&connp->conn_lock); 13205 if (connp->conn_state_flags & CONN_CLOSING) { 13206 /* 13207 * The conn is closing as a result of which CONN_CLOSING 13208 * is set. Return. 13209 */ 13210 mutex_exit(&connp->conn_lock); 13211 return; 13212 } else if (connp->conn_idl == NULL) { 13213 /* 13214 * Assign the next drain list round robin. We dont' use 13215 * a lock, and thus it may not be strictly round robin. 13216 * Atomicity of load/stores is enough to make sure that 13217 * conn_drain_list_index is always within bounds. 13218 */ 13219 index = tx_list->txl_drain_index; 13220 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13221 connp->conn_idl = &tx_list->txl_drain_list[index]; 13222 index++; 13223 if (index == ipst->ips_conn_drain_list_cnt) 13224 index = 0; 13225 tx_list->txl_drain_index = index; 13226 } else { 13227 ASSERT(connp->conn_idl->idl_itl == tx_list); 13228 } 13229 mutex_exit(&connp->conn_lock); 13230 13231 idl = connp->conn_idl; 13232 mutex_enter(&idl->idl_lock); 13233 if ((connp->conn_drain_prev != NULL) || 13234 (connp->conn_state_flags & CONN_CLOSING)) { 13235 /* 13236 * The conn is either already in the drain list or closing. 13237 * (We needed to check for CONN_CLOSING again since close can 13238 * sneak in between dropping conn_lock and acquiring idl_lock.) 13239 */ 13240 mutex_exit(&idl->idl_lock); 13241 return; 13242 } 13243 13244 /* 13245 * The conn is not in the drain list. Insert it at the 13246 * tail of the drain list. The drain list is circular 13247 * and doubly linked. idl_conn points to the 1st element 13248 * in the list. 13249 */ 13250 if (idl->idl_conn == NULL) { 13251 idl->idl_conn = connp; 13252 connp->conn_drain_next = connp; 13253 connp->conn_drain_prev = connp; 13254 } else { 13255 conn_t *head = idl->idl_conn; 13256 13257 connp->conn_drain_next = head; 13258 connp->conn_drain_prev = head->conn_drain_prev; 13259 head->conn_drain_prev->conn_drain_next = connp; 13260 head->conn_drain_prev = connp; 13261 } 13262 /* 13263 * For non streams based sockets assert flow control. 13264 */ 13265 conn_setqfull(connp, NULL); 13266 mutex_exit(&idl->idl_lock); 13267 } 13268 13269 static void 13270 conn_drain_remove(conn_t *connp) 13271 { 13272 idl_t *idl = connp->conn_idl; 13273 13274 if (idl != NULL) { 13275 /* 13276 * Remove ourself from the drain list. 13277 */ 13278 if (connp->conn_drain_next == connp) { 13279 /* Singleton in the list */ 13280 ASSERT(connp->conn_drain_prev == connp); 13281 idl->idl_conn = NULL; 13282 } else { 13283 connp->conn_drain_prev->conn_drain_next = 13284 connp->conn_drain_next; 13285 connp->conn_drain_next->conn_drain_prev = 13286 connp->conn_drain_prev; 13287 if (idl->idl_conn == connp) 13288 idl->idl_conn = connp->conn_drain_next; 13289 } 13290 13291 /* 13292 * NOTE: because conn_idl is associated with a specific drain 13293 * list which in turn is tied to the index the TX ring 13294 * (txl_cookie) hashes to, and because the TX ring can change 13295 * over the lifetime of the conn_t, we must clear conn_idl so 13296 * a subsequent conn_drain_insert() will set conn_idl again 13297 * based on the latest txl_cookie. 13298 */ 13299 connp->conn_idl = NULL; 13300 } 13301 connp->conn_drain_next = NULL; 13302 connp->conn_drain_prev = NULL; 13303 13304 conn_clrqfull(connp, NULL); 13305 /* 13306 * For streams based sockets open up flow control. 13307 */ 13308 if (!IPCL_IS_NONSTR(connp)) 13309 enableok(connp->conn_wq); 13310 } 13311 13312 /* 13313 * This conn is closing, and we are called from ip_close. OR 13314 * this conn is draining because flow-control on the ill has been relieved. 13315 * 13316 * We must also need to remove conn's on this idl from the list, and also 13317 * inform the sockfs upcalls about the change in flow-control. 13318 */ 13319 static void 13320 conn_drain(conn_t *connp, boolean_t closing) 13321 { 13322 idl_t *idl; 13323 conn_t *next_connp; 13324 13325 /* 13326 * connp->conn_idl is stable at this point, and no lock is needed 13327 * to check it. If we are called from ip_close, close has already 13328 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13329 * called us only because conn_idl is non-null. If we are called thru 13330 * service, conn_idl could be null, but it cannot change because 13331 * service is single-threaded per queue, and there cannot be another 13332 * instance of service trying to call conn_drain_insert on this conn 13333 * now. 13334 */ 13335 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13336 13337 /* 13338 * If the conn doesn't exist or is not on a drain list, bail. 13339 */ 13340 if (connp == NULL || connp->conn_idl == NULL || 13341 connp->conn_drain_prev == NULL) { 13342 return; 13343 } 13344 13345 idl = connp->conn_idl; 13346 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13347 13348 if (!closing) { 13349 next_connp = connp->conn_drain_next; 13350 while (next_connp != connp) { 13351 conn_t *delconnp = next_connp; 13352 13353 next_connp = next_connp->conn_drain_next; 13354 conn_drain_remove(delconnp); 13355 } 13356 ASSERT(connp->conn_drain_next == idl->idl_conn); 13357 } 13358 conn_drain_remove(connp); 13359 } 13360 13361 /* 13362 * Write service routine. Shared perimeter entry point. 13363 * The device queue's messages has fallen below the low water mark and STREAMS 13364 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13365 * each waiting conn. 13366 */ 13367 int 13368 ip_wsrv(queue_t *q) 13369 { 13370 ill_t *ill; 13371 13372 ill = (ill_t *)q->q_ptr; 13373 if (ill->ill_state_flags == 0) { 13374 ip_stack_t *ipst = ill->ill_ipst; 13375 13376 /* 13377 * The device flow control has opened up. 13378 * Walk through conn drain lists and qenable the 13379 * first conn in each list. This makes sense only 13380 * if the stream is fully plumbed and setup. 13381 * Hence the ill_state_flags check above. 13382 */ 13383 ip1dbg(("ip_wsrv: walking\n")); 13384 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13385 enableok(ill->ill_wq); 13386 } 13387 return (0); 13388 } 13389 13390 /* 13391 * Callback to disable flow control in IP. 13392 * 13393 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13394 * is enabled. 13395 * 13396 * When MAC_TX() is not able to send any more packets, dld sets its queue 13397 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13398 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13399 * function and wakes up corresponding mac worker threads, which in turn 13400 * calls this callback function, and disables flow control. 13401 */ 13402 void 13403 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13404 { 13405 ill_t *ill = (ill_t *)arg; 13406 ip_stack_t *ipst = ill->ill_ipst; 13407 idl_tx_list_t *idl_txl; 13408 13409 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13410 mutex_enter(&idl_txl->txl_lock); 13411 /* add code to to set a flag to indicate idl_txl is enabled */ 13412 conn_walk_drain(ipst, idl_txl); 13413 mutex_exit(&idl_txl->txl_lock); 13414 } 13415 13416 /* 13417 * Flow control has been relieved and STREAMS has backenabled us; drain 13418 * all the conn lists on `tx_list'. 13419 */ 13420 static void 13421 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13422 { 13423 int i; 13424 idl_t *idl; 13425 13426 IP_STAT(ipst, ip_conn_walk_drain); 13427 13428 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13429 idl = &tx_list->txl_drain_list[i]; 13430 mutex_enter(&idl->idl_lock); 13431 conn_drain(idl->idl_conn, B_FALSE); 13432 mutex_exit(&idl->idl_lock); 13433 } 13434 } 13435 13436 /* 13437 * Determine if the ill and multicast aspects of that packets 13438 * "matches" the conn. 13439 */ 13440 boolean_t 13441 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13442 { 13443 ill_t *ill = ira->ira_rill; 13444 zoneid_t zoneid = ira->ira_zoneid; 13445 uint_t in_ifindex; 13446 ipaddr_t dst, src; 13447 13448 dst = ipha->ipha_dst; 13449 src = ipha->ipha_src; 13450 13451 /* 13452 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13453 * unicast, broadcast and multicast reception to 13454 * conn_incoming_ifindex. 13455 * conn_wantpacket is called for unicast, broadcast and 13456 * multicast packets. 13457 */ 13458 in_ifindex = connp->conn_incoming_ifindex; 13459 13460 /* mpathd can bind to the under IPMP interface, which we allow */ 13461 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13462 if (!IS_UNDER_IPMP(ill)) 13463 return (B_FALSE); 13464 13465 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13466 return (B_FALSE); 13467 } 13468 13469 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13470 return (B_FALSE); 13471 13472 if (!(ira->ira_flags & IRAF_MULTICAST)) 13473 return (B_TRUE); 13474 13475 if (connp->conn_multi_router) { 13476 /* multicast packet and multicast router socket: send up */ 13477 return (B_TRUE); 13478 } 13479 13480 if (ipha->ipha_protocol == IPPROTO_PIM || 13481 ipha->ipha_protocol == IPPROTO_RSVP) 13482 return (B_TRUE); 13483 13484 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13485 } 13486 13487 void 13488 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13489 { 13490 if (IPCL_IS_NONSTR(connp)) { 13491 (*connp->conn_upcalls->su_txq_full) 13492 (connp->conn_upper_handle, B_TRUE); 13493 if (flow_stopped != NULL) 13494 *flow_stopped = B_TRUE; 13495 } else { 13496 queue_t *q = connp->conn_wq; 13497 13498 ASSERT(q != NULL); 13499 if (!(q->q_flag & QFULL)) { 13500 mutex_enter(QLOCK(q)); 13501 if (!(q->q_flag & QFULL)) { 13502 /* still need to set QFULL */ 13503 q->q_flag |= QFULL; 13504 /* set flow_stopped to true under QLOCK */ 13505 if (flow_stopped != NULL) 13506 *flow_stopped = B_TRUE; 13507 mutex_exit(QLOCK(q)); 13508 } else { 13509 /* flow_stopped is left unchanged */ 13510 mutex_exit(QLOCK(q)); 13511 } 13512 } 13513 } 13514 } 13515 13516 void 13517 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13518 { 13519 if (IPCL_IS_NONSTR(connp)) { 13520 (*connp->conn_upcalls->su_txq_full) 13521 (connp->conn_upper_handle, B_FALSE); 13522 if (flow_stopped != NULL) 13523 *flow_stopped = B_FALSE; 13524 } else { 13525 queue_t *q = connp->conn_wq; 13526 13527 ASSERT(q != NULL); 13528 if (q->q_flag & QFULL) { 13529 mutex_enter(QLOCK(q)); 13530 if (q->q_flag & QFULL) { 13531 q->q_flag &= ~QFULL; 13532 /* set flow_stopped to false under QLOCK */ 13533 if (flow_stopped != NULL) 13534 *flow_stopped = B_FALSE; 13535 mutex_exit(QLOCK(q)); 13536 if (q->q_flag & QWANTW) 13537 qbackenable(q, 0); 13538 } else { 13539 /* flow_stopped is left unchanged */ 13540 mutex_exit(QLOCK(q)); 13541 } 13542 } 13543 } 13544 13545 mutex_enter(&connp->conn_lock); 13546 connp->conn_blocked = B_FALSE; 13547 mutex_exit(&connp->conn_lock); 13548 } 13549 13550 /* 13551 * Return the length in bytes of the IPv4 headers (base header, label, and 13552 * other IP options) that will be needed based on the 13553 * ip_pkt_t structure passed by the caller. 13554 * 13555 * The returned length does not include the length of the upper level 13556 * protocol (ULP) header. 13557 * The caller needs to check that the length doesn't exceed the max for IPv4. 13558 */ 13559 int 13560 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13561 { 13562 int len; 13563 13564 len = IP_SIMPLE_HDR_LENGTH; 13565 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13566 ASSERT(ipp->ipp_label_len_v4 != 0); 13567 /* We need to round up here */ 13568 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13569 } 13570 13571 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13572 ASSERT(ipp->ipp_ipv4_options_len != 0); 13573 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13574 len += ipp->ipp_ipv4_options_len; 13575 } 13576 return (len); 13577 } 13578 13579 /* 13580 * All-purpose routine to build an IPv4 header with options based 13581 * on the abstract ip_pkt_t. 13582 * 13583 * The caller has to set the source and destination address as well as 13584 * ipha_length. The caller has to massage any source route and compensate 13585 * for the ULP pseudo-header checksum due to the source route. 13586 */ 13587 void 13588 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13589 uint8_t protocol) 13590 { 13591 ipha_t *ipha = (ipha_t *)buf; 13592 uint8_t *cp; 13593 13594 /* Initialize IPv4 header */ 13595 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13596 ipha->ipha_length = 0; /* Caller will set later */ 13597 ipha->ipha_ident = 0; 13598 ipha->ipha_fragment_offset_and_flags = 0; 13599 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13600 ipha->ipha_protocol = protocol; 13601 ipha->ipha_hdr_checksum = 0; 13602 13603 if ((ipp->ipp_fields & IPPF_ADDR) && 13604 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13605 ipha->ipha_src = ipp->ipp_addr_v4; 13606 13607 cp = (uint8_t *)&ipha[1]; 13608 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13609 ASSERT(ipp->ipp_label_len_v4 != 0); 13610 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13611 cp += ipp->ipp_label_len_v4; 13612 /* We need to round up here */ 13613 while ((uintptr_t)cp & 0x3) { 13614 *cp++ = IPOPT_NOP; 13615 } 13616 } 13617 13618 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13619 ASSERT(ipp->ipp_ipv4_options_len != 0); 13620 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13621 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13622 cp += ipp->ipp_ipv4_options_len; 13623 } 13624 ipha->ipha_version_and_hdr_length = 13625 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13626 13627 ASSERT((int)(cp - buf) == buf_len); 13628 } 13629 13630 /* Allocate the private structure */ 13631 static int 13632 ip_priv_alloc(void **bufp) 13633 { 13634 void *buf; 13635 13636 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13637 return (ENOMEM); 13638 13639 *bufp = buf; 13640 return (0); 13641 } 13642 13643 /* Function to delete the private structure */ 13644 void 13645 ip_priv_free(void *buf) 13646 { 13647 ASSERT(buf != NULL); 13648 kmem_free(buf, sizeof (ip_priv_t)); 13649 } 13650 13651 /* 13652 * The entry point for IPPF processing. 13653 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13654 * routine just returns. 13655 * 13656 * When called, ip_process generates an ipp_packet_t structure 13657 * which holds the state information for this packet and invokes the 13658 * the classifier (via ipp_packet_process). The classification, depending on 13659 * configured filters, results in a list of actions for this packet. Invoking 13660 * an action may cause the packet to be dropped, in which case we return NULL. 13661 * proc indicates the callout position for 13662 * this packet and ill is the interface this packet arrived on or will leave 13663 * on (inbound and outbound resp.). 13664 * 13665 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13666 * on the ill corrsponding to the destination IP address. 13667 */ 13668 mblk_t * 13669 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13670 { 13671 ip_priv_t *priv; 13672 ipp_action_id_t aid; 13673 int rc = 0; 13674 ipp_packet_t *pp; 13675 13676 /* If the classifier is not loaded, return */ 13677 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13678 return (mp); 13679 } 13680 13681 ASSERT(mp != NULL); 13682 13683 /* Allocate the packet structure */ 13684 rc = ipp_packet_alloc(&pp, "ip", aid); 13685 if (rc != 0) 13686 goto drop; 13687 13688 /* Allocate the private structure */ 13689 rc = ip_priv_alloc((void **)&priv); 13690 if (rc != 0) { 13691 ipp_packet_free(pp); 13692 goto drop; 13693 } 13694 priv->proc = proc; 13695 priv->ill_index = ill_get_upper_ifindex(rill); 13696 13697 ipp_packet_set_private(pp, priv, ip_priv_free); 13698 ipp_packet_set_data(pp, mp); 13699 13700 /* Invoke the classifier */ 13701 rc = ipp_packet_process(&pp); 13702 if (pp != NULL) { 13703 mp = ipp_packet_get_data(pp); 13704 ipp_packet_free(pp); 13705 if (rc != 0) 13706 goto drop; 13707 return (mp); 13708 } else { 13709 /* No mp to trace in ip_drop_input/ip_drop_output */ 13710 mp = NULL; 13711 } 13712 drop: 13713 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13715 ip_drop_input("ip_process", mp, ill); 13716 } else { 13717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13718 ip_drop_output("ip_process", mp, ill); 13719 } 13720 freemsg(mp); 13721 return (NULL); 13722 } 13723 13724 /* 13725 * Propagate a multicast group membership operation (add/drop) on 13726 * all the interfaces crossed by the related multirt routes. 13727 * The call is considered successful if the operation succeeds 13728 * on at least one interface. 13729 * 13730 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13731 * multicast addresses with the ire argument being the first one. 13732 * We walk the bucket to find all the of those. 13733 * 13734 * Common to IPv4 and IPv6. 13735 */ 13736 static int 13737 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13738 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13739 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13740 mcast_record_t fmode, const in6_addr_t *v6src) 13741 { 13742 ire_t *ire_gw; 13743 irb_t *irb; 13744 int ifindex; 13745 int error = 0; 13746 int result; 13747 ip_stack_t *ipst = ire->ire_ipst; 13748 ipaddr_t group; 13749 boolean_t isv6; 13750 int match_flags; 13751 13752 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13753 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13754 isv6 = B_FALSE; 13755 } else { 13756 isv6 = B_TRUE; 13757 } 13758 13759 irb = ire->ire_bucket; 13760 ASSERT(irb != NULL); 13761 13762 result = 0; 13763 irb_refhold(irb); 13764 for (; ire != NULL; ire = ire->ire_next) { 13765 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13766 continue; 13767 13768 /* We handle -ifp routes by matching on the ill if set */ 13769 match_flags = MATCH_IRE_TYPE; 13770 if (ire->ire_ill != NULL) 13771 match_flags |= MATCH_IRE_ILL; 13772 13773 if (isv6) { 13774 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13775 continue; 13776 13777 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13778 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13779 match_flags, 0, ipst, NULL); 13780 } else { 13781 if (ire->ire_addr != group) 13782 continue; 13783 13784 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13785 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13786 match_flags, 0, ipst, NULL); 13787 } 13788 /* No interface route exists for the gateway; skip this ire. */ 13789 if (ire_gw == NULL) 13790 continue; 13791 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13792 ire_refrele(ire_gw); 13793 continue; 13794 } 13795 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13796 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13797 13798 /* 13799 * The operation is considered a success if 13800 * it succeeds at least once on any one interface. 13801 */ 13802 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13803 fmode, v6src); 13804 if (error == 0) 13805 result = CGTP_MCAST_SUCCESS; 13806 13807 ire_refrele(ire_gw); 13808 } 13809 irb_refrele(irb); 13810 /* 13811 * Consider the call as successful if we succeeded on at least 13812 * one interface. Otherwise, return the last encountered error. 13813 */ 13814 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13815 } 13816 13817 /* 13818 * Return the expected CGTP hooks version number. 13819 */ 13820 int 13821 ip_cgtp_filter_supported(void) 13822 { 13823 return (ip_cgtp_filter_rev); 13824 } 13825 13826 /* 13827 * CGTP hooks can be registered by invoking this function. 13828 * Checks that the version number matches. 13829 */ 13830 int 13831 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13832 { 13833 netstack_t *ns; 13834 ip_stack_t *ipst; 13835 13836 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13837 return (ENOTSUP); 13838 13839 ns = netstack_find_by_stackid(stackid); 13840 if (ns == NULL) 13841 return (EINVAL); 13842 ipst = ns->netstack_ip; 13843 ASSERT(ipst != NULL); 13844 13845 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13846 netstack_rele(ns); 13847 return (EALREADY); 13848 } 13849 13850 ipst->ips_ip_cgtp_filter_ops = ops; 13851 13852 ill_set_inputfn_all(ipst); 13853 13854 netstack_rele(ns); 13855 return (0); 13856 } 13857 13858 /* 13859 * CGTP hooks can be unregistered by invoking this function. 13860 * Returns ENXIO if there was no registration. 13861 * Returns EBUSY if the ndd variable has not been turned off. 13862 */ 13863 int 13864 ip_cgtp_filter_unregister(netstackid_t stackid) 13865 { 13866 netstack_t *ns; 13867 ip_stack_t *ipst; 13868 13869 ns = netstack_find_by_stackid(stackid); 13870 if (ns == NULL) 13871 return (EINVAL); 13872 ipst = ns->netstack_ip; 13873 ASSERT(ipst != NULL); 13874 13875 if (ipst->ips_ip_cgtp_filter) { 13876 netstack_rele(ns); 13877 return (EBUSY); 13878 } 13879 13880 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13881 netstack_rele(ns); 13882 return (ENXIO); 13883 } 13884 ipst->ips_ip_cgtp_filter_ops = NULL; 13885 13886 ill_set_inputfn_all(ipst); 13887 13888 netstack_rele(ns); 13889 return (0); 13890 } 13891 13892 /* 13893 * Check whether there is a CGTP filter registration. 13894 * Returns non-zero if there is a registration, otherwise returns zero. 13895 * Note: returns zero if bad stackid. 13896 */ 13897 int 13898 ip_cgtp_filter_is_registered(netstackid_t stackid) 13899 { 13900 netstack_t *ns; 13901 ip_stack_t *ipst; 13902 int ret; 13903 13904 ns = netstack_find_by_stackid(stackid); 13905 if (ns == NULL) 13906 return (0); 13907 ipst = ns->netstack_ip; 13908 ASSERT(ipst != NULL); 13909 13910 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13911 ret = 1; 13912 else 13913 ret = 0; 13914 13915 netstack_rele(ns); 13916 return (ret); 13917 } 13918 13919 static int 13920 ip_squeue_switch(int val) 13921 { 13922 int rval; 13923 13924 switch (val) { 13925 case IP_SQUEUE_ENTER_NODRAIN: 13926 rval = SQ_NODRAIN; 13927 break; 13928 case IP_SQUEUE_ENTER: 13929 rval = SQ_PROCESS; 13930 break; 13931 case IP_SQUEUE_FILL: 13932 default: 13933 rval = SQ_FILL; 13934 break; 13935 } 13936 return (rval); 13937 } 13938 13939 static void * 13940 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13941 { 13942 kstat_t *ksp; 13943 13944 ip_stat_t template = { 13945 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13946 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13947 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13948 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13949 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13950 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13951 { "ip_opt", KSTAT_DATA_UINT64 }, 13952 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13953 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13954 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13955 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13956 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13957 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13958 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13959 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13960 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13961 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13962 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 13963 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 13964 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 13965 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13966 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13967 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13968 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13969 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13970 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13971 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13972 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13973 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13974 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13975 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13976 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13977 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13978 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13979 { "conn_in_recvtos", KSTAT_DATA_UINT64 }, 13980 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13981 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13982 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13983 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13984 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13985 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13986 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13987 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13988 }; 13989 13990 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13991 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13992 KSTAT_FLAG_VIRTUAL, stackid); 13993 13994 if (ksp == NULL) 13995 return (NULL); 13996 13997 bcopy(&template, ip_statisticsp, sizeof (template)); 13998 ksp->ks_data = (void *)ip_statisticsp; 13999 ksp->ks_private = (void *)(uintptr_t)stackid; 14000 14001 kstat_install(ksp); 14002 return (ksp); 14003 } 14004 14005 static void 14006 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14007 { 14008 if (ksp != NULL) { 14009 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14010 kstat_delete_netstack(ksp, stackid); 14011 } 14012 } 14013 14014 static void * 14015 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14016 { 14017 kstat_t *ksp; 14018 14019 ip_named_kstat_t template = { 14020 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14021 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14022 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14023 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14024 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14025 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14026 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14027 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14028 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14029 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14030 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14031 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14032 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14033 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14034 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14035 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14036 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14037 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14038 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14039 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14040 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14041 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14042 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14043 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14044 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14045 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14046 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14047 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14048 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14049 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14050 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14051 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14052 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14053 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14054 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14055 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14056 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14057 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14058 }; 14059 14060 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14061 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14062 if (ksp == NULL || ksp->ks_data == NULL) 14063 return (NULL); 14064 14065 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14066 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14067 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14068 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14069 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14070 14071 template.netToMediaEntrySize.value.i32 = 14072 sizeof (mib2_ipNetToMediaEntry_t); 14073 14074 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14075 14076 bcopy(&template, ksp->ks_data, sizeof (template)); 14077 ksp->ks_update = ip_kstat_update; 14078 ksp->ks_private = (void *)(uintptr_t)stackid; 14079 14080 kstat_install(ksp); 14081 return (ksp); 14082 } 14083 14084 static void 14085 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14086 { 14087 if (ksp != NULL) { 14088 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14089 kstat_delete_netstack(ksp, stackid); 14090 } 14091 } 14092 14093 static int 14094 ip_kstat_update(kstat_t *kp, int rw) 14095 { 14096 ip_named_kstat_t *ipkp; 14097 mib2_ipIfStatsEntry_t ipmib; 14098 ill_walk_context_t ctx; 14099 ill_t *ill; 14100 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14101 netstack_t *ns; 14102 ip_stack_t *ipst; 14103 14104 if (kp->ks_data == NULL) 14105 return (EIO); 14106 14107 if (rw == KSTAT_WRITE) 14108 return (EACCES); 14109 14110 ns = netstack_find_by_stackid(stackid); 14111 if (ns == NULL) 14112 return (-1); 14113 ipst = ns->netstack_ip; 14114 if (ipst == NULL) { 14115 netstack_rele(ns); 14116 return (-1); 14117 } 14118 ipkp = (ip_named_kstat_t *)kp->ks_data; 14119 14120 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14121 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14122 ill = ILL_START_WALK_V4(&ctx, ipst); 14123 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14124 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14125 rw_exit(&ipst->ips_ill_g_lock); 14126 14127 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14128 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14129 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14130 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14131 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14132 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14133 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14134 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14135 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14136 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14137 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14138 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14139 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14140 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14141 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14142 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14143 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14144 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14145 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14146 14147 ipkp->routingDiscards.value.ui32 = 0; 14148 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14149 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14150 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14151 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14152 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14153 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14154 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14155 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14156 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14157 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14158 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14159 14160 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14161 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14162 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14163 14164 netstack_rele(ns); 14165 14166 return (0); 14167 } 14168 14169 static void * 14170 icmp_kstat_init(netstackid_t stackid) 14171 { 14172 kstat_t *ksp; 14173 14174 icmp_named_kstat_t template = { 14175 { "inMsgs", KSTAT_DATA_UINT32 }, 14176 { "inErrors", KSTAT_DATA_UINT32 }, 14177 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14178 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14179 { "inParmProbs", KSTAT_DATA_UINT32 }, 14180 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14181 { "inRedirects", KSTAT_DATA_UINT32 }, 14182 { "inEchos", KSTAT_DATA_UINT32 }, 14183 { "inEchoReps", KSTAT_DATA_UINT32 }, 14184 { "inTimestamps", KSTAT_DATA_UINT32 }, 14185 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14186 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14187 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14188 { "outMsgs", KSTAT_DATA_UINT32 }, 14189 { "outErrors", KSTAT_DATA_UINT32 }, 14190 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14191 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14192 { "outParmProbs", KSTAT_DATA_UINT32 }, 14193 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14194 { "outRedirects", KSTAT_DATA_UINT32 }, 14195 { "outEchos", KSTAT_DATA_UINT32 }, 14196 { "outEchoReps", KSTAT_DATA_UINT32 }, 14197 { "outTimestamps", KSTAT_DATA_UINT32 }, 14198 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14199 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14200 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14201 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14202 { "inUnknowns", KSTAT_DATA_UINT32 }, 14203 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14204 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14205 { "outDrops", KSTAT_DATA_UINT32 }, 14206 { "inOverFlows", KSTAT_DATA_UINT32 }, 14207 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14208 }; 14209 14210 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14211 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14212 if (ksp == NULL || ksp->ks_data == NULL) 14213 return (NULL); 14214 14215 bcopy(&template, ksp->ks_data, sizeof (template)); 14216 14217 ksp->ks_update = icmp_kstat_update; 14218 ksp->ks_private = (void *)(uintptr_t)stackid; 14219 14220 kstat_install(ksp); 14221 return (ksp); 14222 } 14223 14224 static void 14225 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14226 { 14227 if (ksp != NULL) { 14228 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14229 kstat_delete_netstack(ksp, stackid); 14230 } 14231 } 14232 14233 static int 14234 icmp_kstat_update(kstat_t *kp, int rw) 14235 { 14236 icmp_named_kstat_t *icmpkp; 14237 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14238 netstack_t *ns; 14239 ip_stack_t *ipst; 14240 14241 if (kp->ks_data == NULL) 14242 return (EIO); 14243 14244 if (rw == KSTAT_WRITE) 14245 return (EACCES); 14246 14247 ns = netstack_find_by_stackid(stackid); 14248 if (ns == NULL) 14249 return (-1); 14250 ipst = ns->netstack_ip; 14251 if (ipst == NULL) { 14252 netstack_rele(ns); 14253 return (-1); 14254 } 14255 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14256 14257 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14258 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14259 icmpkp->inDestUnreachs.value.ui32 = 14260 ipst->ips_icmp_mib.icmpInDestUnreachs; 14261 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14262 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14263 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14264 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14265 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14266 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14267 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14268 icmpkp->inTimestampReps.value.ui32 = 14269 ipst->ips_icmp_mib.icmpInTimestampReps; 14270 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14271 icmpkp->inAddrMaskReps.value.ui32 = 14272 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14273 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14274 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14275 icmpkp->outDestUnreachs.value.ui32 = 14276 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14277 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14278 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14279 icmpkp->outSrcQuenchs.value.ui32 = 14280 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14281 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14282 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14283 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14284 icmpkp->outTimestamps.value.ui32 = 14285 ipst->ips_icmp_mib.icmpOutTimestamps; 14286 icmpkp->outTimestampReps.value.ui32 = 14287 ipst->ips_icmp_mib.icmpOutTimestampReps; 14288 icmpkp->outAddrMasks.value.ui32 = 14289 ipst->ips_icmp_mib.icmpOutAddrMasks; 14290 icmpkp->outAddrMaskReps.value.ui32 = 14291 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14292 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14293 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14294 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14295 icmpkp->outFragNeeded.value.ui32 = 14296 ipst->ips_icmp_mib.icmpOutFragNeeded; 14297 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14298 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14299 icmpkp->inBadRedirects.value.ui32 = 14300 ipst->ips_icmp_mib.icmpInBadRedirects; 14301 14302 netstack_rele(ns); 14303 return (0); 14304 } 14305 14306 /* 14307 * This is the fanout function for raw socket opened for SCTP. Note 14308 * that it is called after SCTP checks that there is no socket which 14309 * wants a packet. Then before SCTP handles this out of the blue packet, 14310 * this function is called to see if there is any raw socket for SCTP. 14311 * If there is and it is bound to the correct address, the packet will 14312 * be sent to that socket. Note that only one raw socket can be bound to 14313 * a port. This is assured in ipcl_sctp_hash_insert(); 14314 */ 14315 void 14316 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14317 ip_recv_attr_t *ira) 14318 { 14319 conn_t *connp; 14320 queue_t *rq; 14321 boolean_t secure; 14322 ill_t *ill = ira->ira_ill; 14323 ip_stack_t *ipst = ill->ill_ipst; 14324 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14325 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14326 iaflags_t iraflags = ira->ira_flags; 14327 ill_t *rill = ira->ira_rill; 14328 14329 secure = iraflags & IRAF_IPSEC_SECURE; 14330 14331 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14332 ira, ipst); 14333 if (connp == NULL) { 14334 /* 14335 * Although raw sctp is not summed, OOB chunks must be. 14336 * Drop the packet here if the sctp checksum failed. 14337 */ 14338 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14339 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14340 freemsg(mp); 14341 return; 14342 } 14343 ira->ira_ill = ira->ira_rill = NULL; 14344 sctp_ootb_input(mp, ira, ipst); 14345 ira->ira_ill = ill; 14346 ira->ira_rill = rill; 14347 return; 14348 } 14349 rq = connp->conn_rq; 14350 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14351 CONN_DEC_REF(connp); 14352 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14353 freemsg(mp); 14354 return; 14355 } 14356 if (((iraflags & IRAF_IS_IPV4) ? 14357 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14358 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14359 secure) { 14360 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14361 ip6h, ira); 14362 if (mp == NULL) { 14363 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14364 /* Note that mp is NULL */ 14365 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14366 CONN_DEC_REF(connp); 14367 return; 14368 } 14369 } 14370 14371 if (iraflags & IRAF_ICMP_ERROR) { 14372 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14373 } else { 14374 ill_t *rill = ira->ira_rill; 14375 14376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14377 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14378 ira->ira_ill = ira->ira_rill = NULL; 14379 (connp->conn_recv)(connp, mp, NULL, ira); 14380 ira->ira_ill = ill; 14381 ira->ira_rill = rill; 14382 } 14383 CONN_DEC_REF(connp); 14384 } 14385 14386 /* 14387 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14388 * header before the ip payload. 14389 */ 14390 static void 14391 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14392 { 14393 int len = (mp->b_wptr - mp->b_rptr); 14394 mblk_t *ip_mp; 14395 14396 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14397 if (is_fp_mp || len != fp_mp_len) { 14398 if (len > fp_mp_len) { 14399 /* 14400 * fastpath header and ip header in the first mblk 14401 */ 14402 mp->b_rptr += fp_mp_len; 14403 } else { 14404 /* 14405 * ip_xmit_attach_llhdr had to prepend an mblk to 14406 * attach the fastpath header before ip header. 14407 */ 14408 ip_mp = mp->b_cont; 14409 freeb(mp); 14410 mp = ip_mp; 14411 mp->b_rptr += (fp_mp_len - len); 14412 } 14413 } else { 14414 ip_mp = mp->b_cont; 14415 freeb(mp); 14416 mp = ip_mp; 14417 } 14418 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14419 freemsg(mp); 14420 } 14421 14422 /* 14423 * Normal post fragmentation function. 14424 * 14425 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14426 * using the same state machine. 14427 * 14428 * We return an error on failure. In particular we return EWOULDBLOCK 14429 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14430 * (currently by canputnext failure resulting in backenabling from GLD.) 14431 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14432 * indication that they can flow control until ip_wsrv() tells then to restart. 14433 * 14434 * If the nce passed by caller is incomplete, this function 14435 * queues the packet and if necessary, sends ARP request and bails. 14436 * If the Neighbor Cache passed is fully resolved, we simply prepend 14437 * the link-layer header to the packet, do ipsec hw acceleration 14438 * work if necessary, and send the packet out on the wire. 14439 */ 14440 /* ARGSUSED6 */ 14441 int 14442 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14443 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14444 { 14445 queue_t *wq; 14446 ill_t *ill = nce->nce_ill; 14447 ip_stack_t *ipst = ill->ill_ipst; 14448 uint64_t delta; 14449 boolean_t isv6 = ill->ill_isv6; 14450 boolean_t fp_mp; 14451 ncec_t *ncec = nce->nce_common; 14452 int64_t now = LBOLT_FASTPATH64; 14453 boolean_t is_probe; 14454 14455 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14456 14457 ASSERT(mp != NULL); 14458 ASSERT(mp->b_datap->db_type == M_DATA); 14459 ASSERT(pkt_len == msgdsize(mp)); 14460 14461 /* 14462 * If we have already been here and are coming back after ARP/ND. 14463 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14464 * in that case since they have seen the packet when it came here 14465 * the first time. 14466 */ 14467 if (ixaflags & IXAF_NO_TRACE) 14468 goto sendit; 14469 14470 if (ixaflags & IXAF_IS_IPV4) { 14471 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14472 14473 ASSERT(!isv6); 14474 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14475 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14476 !(ixaflags & IXAF_NO_PFHOOK)) { 14477 int error; 14478 14479 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14480 ipst->ips_ipv4firewall_physical_out, 14481 NULL, ill, ipha, mp, mp, 0, ipst, error); 14482 DTRACE_PROBE1(ip4__physical__out__end, 14483 mblk_t *, mp); 14484 if (mp == NULL) 14485 return (error); 14486 14487 /* The length could have changed */ 14488 pkt_len = msgdsize(mp); 14489 } 14490 if (ipst->ips_ip4_observe.he_interested) { 14491 /* 14492 * Note that for TX the zoneid is the sending 14493 * zone, whether or not MLP is in play. 14494 * Since the szone argument is the IP zoneid (i.e., 14495 * zero for exclusive-IP zones) and ipobs wants 14496 * the system zoneid, we map it here. 14497 */ 14498 szone = IP_REAL_ZONEID(szone, ipst); 14499 14500 /* 14501 * On the outbound path the destination zone will be 14502 * unknown as we're sending this packet out on the 14503 * wire. 14504 */ 14505 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14506 ill, ipst); 14507 } 14508 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14509 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14510 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14511 } else { 14512 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14513 14514 ASSERT(isv6); 14515 ASSERT(pkt_len == 14516 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14517 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14518 !(ixaflags & IXAF_NO_PFHOOK)) { 14519 int error; 14520 14521 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14522 ipst->ips_ipv6firewall_physical_out, 14523 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14524 DTRACE_PROBE1(ip6__physical__out__end, 14525 mblk_t *, mp); 14526 if (mp == NULL) 14527 return (error); 14528 14529 /* The length could have changed */ 14530 pkt_len = msgdsize(mp); 14531 } 14532 if (ipst->ips_ip6_observe.he_interested) { 14533 /* See above */ 14534 szone = IP_REAL_ZONEID(szone, ipst); 14535 14536 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14537 ill, ipst); 14538 } 14539 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14540 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14541 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14542 } 14543 14544 sendit: 14545 /* 14546 * We check the state without a lock because the state can never 14547 * move "backwards" to initial or incomplete. 14548 */ 14549 switch (ncec->ncec_state) { 14550 case ND_REACHABLE: 14551 case ND_STALE: 14552 case ND_DELAY: 14553 case ND_PROBE: 14554 mp = ip_xmit_attach_llhdr(mp, nce); 14555 if (mp == NULL) { 14556 /* 14557 * ip_xmit_attach_llhdr has increased 14558 * ipIfStatsOutDiscards and called ip_drop_output() 14559 */ 14560 return (ENOBUFS); 14561 } 14562 /* 14563 * check if nce_fastpath completed and we tagged on a 14564 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14565 */ 14566 fp_mp = (mp->b_datap->db_type == M_DATA); 14567 14568 if (fp_mp && 14569 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14570 ill_dld_direct_t *idd; 14571 14572 idd = &ill->ill_dld_capab->idc_direct; 14573 /* 14574 * Send the packet directly to DLD, where it 14575 * may be queued depending on the availability 14576 * of transmit resources at the media layer. 14577 * Return value should be taken into 14578 * account and flow control the TCP. 14579 */ 14580 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14581 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14582 pkt_len); 14583 14584 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14585 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14586 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14587 } else { 14588 uintptr_t cookie; 14589 14590 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14591 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14592 if (ixacookie != NULL) 14593 *ixacookie = cookie; 14594 return (EWOULDBLOCK); 14595 } 14596 } 14597 } else { 14598 wq = ill->ill_wq; 14599 14600 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14601 !canputnext(wq)) { 14602 if (ixacookie != NULL) 14603 *ixacookie = 0; 14604 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14605 nce->nce_fp_mp != NULL ? 14606 MBLKL(nce->nce_fp_mp) : 0); 14607 return (EWOULDBLOCK); 14608 } 14609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14610 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14611 pkt_len); 14612 putnext(wq, mp); 14613 } 14614 14615 /* 14616 * The rest of this function implements Neighbor Unreachability 14617 * detection. Determine if the ncec is eligible for NUD. 14618 */ 14619 if (ncec->ncec_flags & NCE_F_NONUD) 14620 return (0); 14621 14622 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14623 14624 /* 14625 * Check for upper layer advice 14626 */ 14627 if (ixaflags & IXAF_REACH_CONF) { 14628 timeout_id_t tid; 14629 14630 /* 14631 * It should be o.k. to check the state without 14632 * a lock here, at most we lose an advice. 14633 */ 14634 ncec->ncec_last = TICK_TO_MSEC(now); 14635 if (ncec->ncec_state != ND_REACHABLE) { 14636 mutex_enter(&ncec->ncec_lock); 14637 ncec->ncec_state = ND_REACHABLE; 14638 tid = ncec->ncec_timeout_id; 14639 ncec->ncec_timeout_id = 0; 14640 mutex_exit(&ncec->ncec_lock); 14641 (void) untimeout(tid); 14642 if (ip_debug > 2) { 14643 /* ip1dbg */ 14644 pr_addr_dbg("ip_xmit: state" 14645 " for %s changed to" 14646 " REACHABLE\n", AF_INET6, 14647 &ncec->ncec_addr); 14648 } 14649 } 14650 return (0); 14651 } 14652 14653 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14654 ip1dbg(("ip_xmit: delta = %" PRId64 14655 " ill_reachable_time = %d \n", delta, 14656 ill->ill_reachable_time)); 14657 if (delta > (uint64_t)ill->ill_reachable_time) { 14658 mutex_enter(&ncec->ncec_lock); 14659 switch (ncec->ncec_state) { 14660 case ND_REACHABLE: 14661 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14662 /* FALLTHROUGH */ 14663 case ND_STALE: 14664 /* 14665 * ND_REACHABLE is identical to 14666 * ND_STALE in this specific case. If 14667 * reachable time has expired for this 14668 * neighbor (delta is greater than 14669 * reachable time), conceptually, the 14670 * neighbor cache is no longer in 14671 * REACHABLE state, but already in 14672 * STALE state. So the correct 14673 * transition here is to ND_DELAY. 14674 */ 14675 ncec->ncec_state = ND_DELAY; 14676 mutex_exit(&ncec->ncec_lock); 14677 nce_restart_timer(ncec, 14678 ipst->ips_delay_first_probe_time); 14679 if (ip_debug > 3) { 14680 /* ip2dbg */ 14681 pr_addr_dbg("ip_xmit: state" 14682 " for %s changed to" 14683 " DELAY\n", AF_INET6, 14684 &ncec->ncec_addr); 14685 } 14686 break; 14687 case ND_DELAY: 14688 case ND_PROBE: 14689 mutex_exit(&ncec->ncec_lock); 14690 /* Timers have already started */ 14691 break; 14692 case ND_UNREACHABLE: 14693 /* 14694 * nce_timer has detected that this ncec 14695 * is unreachable and initiated deleting 14696 * this ncec. 14697 * This is a harmless race where we found the 14698 * ncec before it was deleted and have 14699 * just sent out a packet using this 14700 * unreachable ncec. 14701 */ 14702 mutex_exit(&ncec->ncec_lock); 14703 break; 14704 default: 14705 ASSERT(0); 14706 mutex_exit(&ncec->ncec_lock); 14707 } 14708 } 14709 return (0); 14710 14711 case ND_INCOMPLETE: 14712 /* 14713 * the state could have changed since we didn't hold the lock. 14714 * Re-verify state under lock. 14715 */ 14716 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14717 mutex_enter(&ncec->ncec_lock); 14718 if (NCE_ISREACHABLE(ncec)) { 14719 mutex_exit(&ncec->ncec_lock); 14720 goto sendit; 14721 } 14722 /* queue the packet */ 14723 nce_queue_mp(ncec, mp, is_probe); 14724 mutex_exit(&ncec->ncec_lock); 14725 DTRACE_PROBE2(ip__xmit__incomplete, 14726 (ncec_t *), ncec, (mblk_t *), mp); 14727 return (0); 14728 14729 case ND_INITIAL: 14730 /* 14731 * State could have changed since we didn't hold the lock, so 14732 * re-verify state. 14733 */ 14734 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14735 mutex_enter(&ncec->ncec_lock); 14736 if (NCE_ISREACHABLE(ncec)) { 14737 mutex_exit(&ncec->ncec_lock); 14738 goto sendit; 14739 } 14740 nce_queue_mp(ncec, mp, is_probe); 14741 if (ncec->ncec_state == ND_INITIAL) { 14742 ncec->ncec_state = ND_INCOMPLETE; 14743 mutex_exit(&ncec->ncec_lock); 14744 /* 14745 * figure out the source we want to use 14746 * and resolve it. 14747 */ 14748 ip_ndp_resolve(ncec); 14749 } else { 14750 mutex_exit(&ncec->ncec_lock); 14751 } 14752 return (0); 14753 14754 case ND_UNREACHABLE: 14755 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14756 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14757 mp, ill); 14758 freemsg(mp); 14759 return (0); 14760 14761 default: 14762 ASSERT(0); 14763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14764 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14765 mp, ill); 14766 freemsg(mp); 14767 return (ENETUNREACH); 14768 } 14769 } 14770 14771 /* 14772 * Return B_TRUE if the buffers differ in length or content. 14773 * This is used for comparing extension header buffers. 14774 * Note that an extension header would be declared different 14775 * even if all that changed was the next header value in that header i.e. 14776 * what really changed is the next extension header. 14777 */ 14778 boolean_t 14779 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14780 uint_t blen) 14781 { 14782 if (!b_valid) 14783 blen = 0; 14784 14785 if (alen != blen) 14786 return (B_TRUE); 14787 if (alen == 0) 14788 return (B_FALSE); /* Both zero length */ 14789 return (bcmp(abuf, bbuf, alen)); 14790 } 14791 14792 /* 14793 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14794 * Return B_FALSE if memory allocation fails - don't change any state! 14795 */ 14796 boolean_t 14797 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14798 const void *src, uint_t srclen) 14799 { 14800 void *dst; 14801 14802 if (!src_valid) 14803 srclen = 0; 14804 14805 ASSERT(*dstlenp == 0); 14806 if (src != NULL && srclen != 0) { 14807 dst = mi_alloc(srclen, BPRI_MED); 14808 if (dst == NULL) 14809 return (B_FALSE); 14810 } else { 14811 dst = NULL; 14812 } 14813 if (*dstp != NULL) 14814 mi_free(*dstp); 14815 *dstp = dst; 14816 *dstlenp = dst == NULL ? 0 : srclen; 14817 return (B_TRUE); 14818 } 14819 14820 /* 14821 * Replace what is in *dst, *dstlen with the source. 14822 * Assumes ip_allocbuf has already been called. 14823 */ 14824 void 14825 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14826 const void *src, uint_t srclen) 14827 { 14828 if (!src_valid) 14829 srclen = 0; 14830 14831 ASSERT(*dstlenp == srclen); 14832 if (src != NULL && srclen != 0) 14833 bcopy(src, *dstp, srclen); 14834 } 14835 14836 /* 14837 * Free the storage pointed to by the members of an ip_pkt_t. 14838 */ 14839 void 14840 ip_pkt_free(ip_pkt_t *ipp) 14841 { 14842 uint_t fields = ipp->ipp_fields; 14843 14844 if (fields & IPPF_HOPOPTS) { 14845 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14846 ipp->ipp_hopopts = NULL; 14847 ipp->ipp_hopoptslen = 0; 14848 } 14849 if (fields & IPPF_RTHDRDSTOPTS) { 14850 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14851 ipp->ipp_rthdrdstopts = NULL; 14852 ipp->ipp_rthdrdstoptslen = 0; 14853 } 14854 if (fields & IPPF_DSTOPTS) { 14855 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14856 ipp->ipp_dstopts = NULL; 14857 ipp->ipp_dstoptslen = 0; 14858 } 14859 if (fields & IPPF_RTHDR) { 14860 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14861 ipp->ipp_rthdr = NULL; 14862 ipp->ipp_rthdrlen = 0; 14863 } 14864 if (fields & IPPF_IPV4_OPTIONS) { 14865 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14866 ipp->ipp_ipv4_options = NULL; 14867 ipp->ipp_ipv4_options_len = 0; 14868 } 14869 if (fields & IPPF_LABEL_V4) { 14870 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14871 ipp->ipp_label_v4 = NULL; 14872 ipp->ipp_label_len_v4 = 0; 14873 } 14874 if (fields & IPPF_LABEL_V6) { 14875 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14876 ipp->ipp_label_v6 = NULL; 14877 ipp->ipp_label_len_v6 = 0; 14878 } 14879 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14880 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14881 } 14882 14883 /* 14884 * Copy from src to dst and allocate as needed. 14885 * Returns zero or ENOMEM. 14886 * 14887 * The caller must initialize dst to zero. 14888 */ 14889 int 14890 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14891 { 14892 uint_t fields = src->ipp_fields; 14893 14894 /* Start with fields that don't require memory allocation */ 14895 dst->ipp_fields = fields & 14896 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14897 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14898 14899 dst->ipp_addr = src->ipp_addr; 14900 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14901 dst->ipp_hoplimit = src->ipp_hoplimit; 14902 dst->ipp_tclass = src->ipp_tclass; 14903 dst->ipp_type_of_service = src->ipp_type_of_service; 14904 14905 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14906 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14907 return (0); 14908 14909 if (fields & IPPF_HOPOPTS) { 14910 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14911 if (dst->ipp_hopopts == NULL) { 14912 ip_pkt_free(dst); 14913 return (ENOMEM); 14914 } 14915 dst->ipp_fields |= IPPF_HOPOPTS; 14916 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14917 src->ipp_hopoptslen); 14918 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14919 } 14920 if (fields & IPPF_RTHDRDSTOPTS) { 14921 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14922 kmflag); 14923 if (dst->ipp_rthdrdstopts == NULL) { 14924 ip_pkt_free(dst); 14925 return (ENOMEM); 14926 } 14927 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14928 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14929 src->ipp_rthdrdstoptslen); 14930 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14931 } 14932 if (fields & IPPF_DSTOPTS) { 14933 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14934 if (dst->ipp_dstopts == NULL) { 14935 ip_pkt_free(dst); 14936 return (ENOMEM); 14937 } 14938 dst->ipp_fields |= IPPF_DSTOPTS; 14939 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14940 src->ipp_dstoptslen); 14941 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14942 } 14943 if (fields & IPPF_RTHDR) { 14944 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14945 if (dst->ipp_rthdr == NULL) { 14946 ip_pkt_free(dst); 14947 return (ENOMEM); 14948 } 14949 dst->ipp_fields |= IPPF_RTHDR; 14950 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14951 src->ipp_rthdrlen); 14952 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14953 } 14954 if (fields & IPPF_IPV4_OPTIONS) { 14955 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14956 kmflag); 14957 if (dst->ipp_ipv4_options == NULL) { 14958 ip_pkt_free(dst); 14959 return (ENOMEM); 14960 } 14961 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14962 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14963 src->ipp_ipv4_options_len); 14964 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14965 } 14966 if (fields & IPPF_LABEL_V4) { 14967 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14968 if (dst->ipp_label_v4 == NULL) { 14969 ip_pkt_free(dst); 14970 return (ENOMEM); 14971 } 14972 dst->ipp_fields |= IPPF_LABEL_V4; 14973 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14974 src->ipp_label_len_v4); 14975 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14976 } 14977 if (fields & IPPF_LABEL_V6) { 14978 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14979 if (dst->ipp_label_v6 == NULL) { 14980 ip_pkt_free(dst); 14981 return (ENOMEM); 14982 } 14983 dst->ipp_fields |= IPPF_LABEL_V6; 14984 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14985 src->ipp_label_len_v6); 14986 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14987 } 14988 if (fields & IPPF_FRAGHDR) { 14989 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14990 if (dst->ipp_fraghdr == NULL) { 14991 ip_pkt_free(dst); 14992 return (ENOMEM); 14993 } 14994 dst->ipp_fields |= IPPF_FRAGHDR; 14995 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14996 src->ipp_fraghdrlen); 14997 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14998 } 14999 return (0); 15000 } 15001 15002 /* 15003 * Returns INADDR_ANY if no source route 15004 */ 15005 ipaddr_t 15006 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15007 { 15008 ipaddr_t nexthop = INADDR_ANY; 15009 ipoptp_t opts; 15010 uchar_t *opt; 15011 uint8_t optval; 15012 uint8_t optlen; 15013 uint32_t totallen; 15014 15015 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15016 return (INADDR_ANY); 15017 15018 totallen = ipp->ipp_ipv4_options_len; 15019 if (totallen & 0x3) 15020 return (INADDR_ANY); 15021 15022 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15023 optval != IPOPT_EOL; 15024 optval = ipoptp_next(&opts)) { 15025 opt = opts.ipoptp_cur; 15026 switch (optval) { 15027 uint8_t off; 15028 case IPOPT_SSRR: 15029 case IPOPT_LSRR: 15030 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15031 break; 15032 } 15033 optlen = opts.ipoptp_len; 15034 off = opt[IPOPT_OFFSET]; 15035 off--; 15036 if (optlen < IP_ADDR_LEN || 15037 off > optlen - IP_ADDR_LEN) { 15038 /* End of source route */ 15039 break; 15040 } 15041 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15042 if (nexthop == htonl(INADDR_LOOPBACK)) { 15043 /* Ignore */ 15044 nexthop = INADDR_ANY; 15045 break; 15046 } 15047 break; 15048 } 15049 } 15050 return (nexthop); 15051 } 15052 15053 /* 15054 * Reverse a source route. 15055 */ 15056 void 15057 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15058 { 15059 ipaddr_t tmp; 15060 ipoptp_t opts; 15061 uchar_t *opt; 15062 uint8_t optval; 15063 uint32_t totallen; 15064 15065 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15066 return; 15067 15068 totallen = ipp->ipp_ipv4_options_len; 15069 if (totallen & 0x3) 15070 return; 15071 15072 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15073 optval != IPOPT_EOL; 15074 optval = ipoptp_next(&opts)) { 15075 uint8_t off1, off2; 15076 15077 opt = opts.ipoptp_cur; 15078 switch (optval) { 15079 case IPOPT_SSRR: 15080 case IPOPT_LSRR: 15081 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15082 break; 15083 } 15084 off1 = IPOPT_MINOFF_SR - 1; 15085 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15086 while (off2 > off1) { 15087 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15088 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15089 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15090 off2 -= IP_ADDR_LEN; 15091 off1 += IP_ADDR_LEN; 15092 } 15093 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15094 break; 15095 } 15096 } 15097 } 15098 15099 /* 15100 * Returns NULL if no routing header 15101 */ 15102 in6_addr_t * 15103 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15104 { 15105 in6_addr_t *nexthop = NULL; 15106 ip6_rthdr0_t *rthdr; 15107 15108 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15109 return (NULL); 15110 15111 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15112 if (rthdr->ip6r0_segleft == 0) 15113 return (NULL); 15114 15115 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15116 return (nexthop); 15117 } 15118 15119 zoneid_t 15120 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15121 zoneid_t lookup_zoneid) 15122 { 15123 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15124 ire_t *ire; 15125 int ire_flags = MATCH_IRE_TYPE; 15126 zoneid_t zoneid = ALL_ZONES; 15127 15128 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15129 return (ALL_ZONES); 15130 15131 if (lookup_zoneid != ALL_ZONES) 15132 ire_flags |= MATCH_IRE_ZONEONLY; 15133 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15134 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15135 if (ire != NULL) { 15136 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15137 ire_refrele(ire); 15138 } 15139 return (zoneid); 15140 } 15141 15142 zoneid_t 15143 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15144 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15145 { 15146 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15147 ire_t *ire; 15148 int ire_flags = MATCH_IRE_TYPE; 15149 zoneid_t zoneid = ALL_ZONES; 15150 15151 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15152 return (ALL_ZONES); 15153 15154 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15155 ire_flags |= MATCH_IRE_ILL; 15156 15157 if (lookup_zoneid != ALL_ZONES) 15158 ire_flags |= MATCH_IRE_ZONEONLY; 15159 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15160 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15161 if (ire != NULL) { 15162 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15163 ire_refrele(ire); 15164 } 15165 return (zoneid); 15166 } 15167 15168 /* 15169 * IP obserability hook support functions. 15170 */ 15171 static void 15172 ipobs_init(ip_stack_t *ipst) 15173 { 15174 netid_t id; 15175 15176 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15177 15178 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15179 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15180 15181 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15182 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15183 } 15184 15185 static void 15186 ipobs_fini(ip_stack_t *ipst) 15187 { 15188 15189 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15190 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15191 } 15192 15193 /* 15194 * hook_pkt_observe_t is composed in network byte order so that the 15195 * entire mblk_t chain handed into hook_run can be used as-is. 15196 * The caveat is that use of the fields, such as the zone fields, 15197 * requires conversion into host byte order first. 15198 */ 15199 void 15200 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15201 const ill_t *ill, ip_stack_t *ipst) 15202 { 15203 hook_pkt_observe_t *hdr; 15204 uint64_t grifindex; 15205 mblk_t *imp; 15206 15207 imp = allocb(sizeof (*hdr), BPRI_HI); 15208 if (imp == NULL) 15209 return; 15210 15211 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15212 /* 15213 * b_wptr is set to make the apparent size of the data in the mblk_t 15214 * to exclude the pointers at the end of hook_pkt_observer_t. 15215 */ 15216 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15217 imp->b_cont = mp; 15218 15219 ASSERT(DB_TYPE(mp) == M_DATA); 15220 15221 if (IS_UNDER_IPMP(ill)) 15222 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15223 else 15224 grifindex = 0; 15225 15226 hdr->hpo_version = 1; 15227 hdr->hpo_htype = htons(htype); 15228 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15229 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15230 hdr->hpo_grifindex = htonl(grifindex); 15231 hdr->hpo_zsrc = htonl(zsrc); 15232 hdr->hpo_zdst = htonl(zdst); 15233 hdr->hpo_pkt = imp; 15234 hdr->hpo_ctx = ipst->ips_netstack; 15235 15236 if (ill->ill_isv6) { 15237 hdr->hpo_family = AF_INET6; 15238 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15239 ipst->ips_ipv6observing, (hook_data_t)hdr); 15240 } else { 15241 hdr->hpo_family = AF_INET; 15242 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15243 ipst->ips_ipv4observing, (hook_data_t)hdr); 15244 } 15245 15246 imp->b_cont = NULL; 15247 freemsg(imp); 15248 } 15249 15250 /* 15251 * Utility routine that checks if `v4srcp' is a valid address on underlying 15252 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15253 * associated with `v4srcp' on success. NOTE: if this is not called from 15254 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15255 * group during or after this lookup. 15256 */ 15257 boolean_t 15258 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15259 { 15260 ipif_t *ipif; 15261 15262 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15263 if (ipif != NULL) { 15264 if (ipifp != NULL) 15265 *ipifp = ipif; 15266 else 15267 ipif_refrele(ipif); 15268 return (B_TRUE); 15269 } 15270 15271 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15272 *v4srcp)); 15273 return (B_FALSE); 15274 } 15275 15276 /* 15277 * Transport protocol call back function for CPU state change. 15278 */ 15279 /* ARGSUSED */ 15280 static int 15281 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15282 { 15283 processorid_t cpu_seqid; 15284 netstack_handle_t nh; 15285 netstack_t *ns; 15286 15287 ASSERT(MUTEX_HELD(&cpu_lock)); 15288 15289 switch (what) { 15290 case CPU_CONFIG: 15291 case CPU_ON: 15292 case CPU_INIT: 15293 case CPU_CPUPART_IN: 15294 cpu_seqid = cpu[id]->cpu_seqid; 15295 netstack_next_init(&nh); 15296 while ((ns = netstack_next(&nh)) != NULL) { 15297 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15298 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15299 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15300 netstack_rele(ns); 15301 } 15302 netstack_next_fini(&nh); 15303 break; 15304 case CPU_UNCONFIG: 15305 case CPU_OFF: 15306 case CPU_CPUPART_OUT: 15307 /* 15308 * Nothing to do. We don't remove the per CPU stats from 15309 * the IP stack even when the CPU goes offline. 15310 */ 15311 break; 15312 default: 15313 break; 15314 } 15315 return (0); 15316 } 15317